| 1 | //===----------------------------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This contains code to emit Expr nodes as CIR code. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "Address.h" |
| 14 | #include "CIRGenConstantEmitter.h" |
| 15 | #include "CIRGenFunction.h" |
| 16 | #include "CIRGenModule.h" |
| 17 | #include "CIRGenValue.h" |
| 18 | #include "mlir/IR/BuiltinAttributes.h" |
| 19 | #include "mlir/IR/Value.h" |
| 20 | #include "clang/AST/Attr.h" |
| 21 | #include "clang/AST/CharUnits.h" |
| 22 | #include "clang/AST/Decl.h" |
| 23 | #include "clang/AST/Expr.h" |
| 24 | #include "clang/AST/ExprCXX.h" |
| 25 | #include "clang/CIR/Dialect/IR/CIRDialect.h" |
| 26 | #include "clang/CIR/MissingFeatures.h" |
| 27 | #include <optional> |
| 28 | |
| 29 | using namespace clang; |
| 30 | using namespace clang::CIRGen; |
| 31 | using namespace cir; |
| 32 | |
| 33 | /// Get the address of a zero-sized field within a record. The resulting address |
| 34 | /// doesn't necessarily have the right type. |
| 35 | Address CIRGenFunction::emitAddrOfFieldStorage(Address base, |
| 36 | const FieldDecl *field, |
| 37 | llvm::StringRef fieldName, |
| 38 | unsigned fieldIndex) { |
| 39 | if (field->isZeroSize(Ctx: getContext())) { |
| 40 | cgm.errorNYI(field->getSourceRange(), |
| 41 | "emitAddrOfFieldStorage: zero-sized field" ); |
| 42 | return Address::invalid(); |
| 43 | } |
| 44 | |
| 45 | mlir::Location loc = getLoc(field->getLocation()); |
| 46 | |
| 47 | mlir::Type fieldType = convertType(field->getType()); |
| 48 | auto fieldPtr = cir::PointerType::get(fieldType); |
| 49 | // For most cases fieldName is the same as field->getName() but for lambdas, |
| 50 | // which do not currently carry the name, so it can be passed down from the |
| 51 | // CaptureStmt. |
| 52 | cir::GetMemberOp memberAddr = builder.createGetMember( |
| 53 | loc, fieldPtr, base.getPointer(), fieldName, fieldIndex); |
| 54 | |
| 55 | // Retrieve layout information, compute alignment and return the final |
| 56 | // address. |
| 57 | const RecordDecl *rec = field->getParent(); |
| 58 | const CIRGenRecordLayout &layout = cgm.getTypes().getCIRGenRecordLayout(rd: rec); |
| 59 | unsigned idx = layout.getCIRFieldNo(fd: field); |
| 60 | CharUnits offset = CharUnits::fromQuantity( |
| 61 | layout.getCIRType().getElementOffset(cgm.getDataLayout().layout, idx)); |
| 62 | return Address(memberAddr, base.getAlignment().alignmentAtOffset(offset)); |
| 63 | } |
| 64 | |
| 65 | /// Given an expression of pointer type, try to |
| 66 | /// derive a more accurate bound on the alignment of the pointer. |
| 67 | Address CIRGenFunction::emitPointerWithAlignment(const Expr *expr, |
| 68 | LValueBaseInfo *baseInfo) { |
| 69 | // We allow this with ObjC object pointers because of fragile ABIs. |
| 70 | assert(expr->getType()->isPointerType() || |
| 71 | expr->getType()->isObjCObjectPointerType()); |
| 72 | expr = expr->IgnoreParens(); |
| 73 | |
| 74 | // Casts: |
| 75 | if (auto const *ce = dyn_cast<CastExpr>(Val: expr)) { |
| 76 | if (isa<ExplicitCastExpr>(Val: ce)) { |
| 77 | cgm.errorNYI(expr->getSourceRange(), |
| 78 | "emitPointerWithAlignment: explicit cast" ); |
| 79 | return Address::invalid(); |
| 80 | } |
| 81 | |
| 82 | switch (ce->getCastKind()) { |
| 83 | // Non-converting casts (but not C's implicit conversion from void*). |
| 84 | case CK_BitCast: |
| 85 | case CK_NoOp: |
| 86 | case CK_AddressSpaceConversion: { |
| 87 | cgm.errorNYI(expr->getSourceRange(), |
| 88 | "emitPointerWithAlignment: noop cast" ); |
| 89 | return Address::invalid(); |
| 90 | } break; |
| 91 | |
| 92 | // Array-to-pointer decay. TODO(cir): BaseInfo and TBAAInfo. |
| 93 | case CK_ArrayToPointerDecay: { |
| 94 | cgm.errorNYI(expr->getSourceRange(), |
| 95 | "emitPointerWithAlignment: array-to-pointer decay" ); |
| 96 | return Address::invalid(); |
| 97 | } |
| 98 | |
| 99 | case CK_UncheckedDerivedToBase: |
| 100 | case CK_DerivedToBase: { |
| 101 | assert(!cir::MissingFeatures::opTBAA()); |
| 102 | assert(!cir::MissingFeatures::addressIsKnownNonNull()); |
| 103 | Address addr = emitPointerWithAlignment(expr: ce->getSubExpr(), baseInfo); |
| 104 | const CXXRecordDecl *derived = |
| 105 | ce->getSubExpr()->getType()->getPointeeCXXRecordDecl(); |
| 106 | return getAddressOfBaseClass(value: addr, derived, path: ce->path(), |
| 107 | nullCheckValue: shouldNullCheckClassCastValue(ce), |
| 108 | loc: ce->getExprLoc()); |
| 109 | } |
| 110 | |
| 111 | case CK_AnyPointerToBlockPointerCast: |
| 112 | case CK_BaseToDerived: |
| 113 | case CK_BaseToDerivedMemberPointer: |
| 114 | case CK_BlockPointerToObjCPointerCast: |
| 115 | case CK_BuiltinFnToFnPtr: |
| 116 | case CK_CPointerToObjCPointerCast: |
| 117 | case CK_DerivedToBaseMemberPointer: |
| 118 | case CK_Dynamic: |
| 119 | case CK_FunctionToPointerDecay: |
| 120 | case CK_IntegralToPointer: |
| 121 | case CK_LValueToRValue: |
| 122 | case CK_LValueToRValueBitCast: |
| 123 | case CK_NullToMemberPointer: |
| 124 | case CK_NullToPointer: |
| 125 | case CK_ReinterpretMemberPointer: |
| 126 | // Common pointer conversions, nothing to do here. |
| 127 | // TODO: Is there any reason to treat base-to-derived conversions |
| 128 | // specially? |
| 129 | break; |
| 130 | |
| 131 | case CK_ARCConsumeObject: |
| 132 | case CK_ARCExtendBlockObject: |
| 133 | case CK_ARCProduceObject: |
| 134 | case CK_ARCReclaimReturnedObject: |
| 135 | case CK_AtomicToNonAtomic: |
| 136 | case CK_BooleanToSignedIntegral: |
| 137 | case CK_ConstructorConversion: |
| 138 | case CK_CopyAndAutoreleaseBlockObject: |
| 139 | case CK_Dependent: |
| 140 | case CK_FixedPointCast: |
| 141 | case CK_FixedPointToBoolean: |
| 142 | case CK_FixedPointToFloating: |
| 143 | case CK_FixedPointToIntegral: |
| 144 | case CK_FloatingCast: |
| 145 | case CK_FloatingComplexCast: |
| 146 | case CK_FloatingComplexToBoolean: |
| 147 | case CK_FloatingComplexToIntegralComplex: |
| 148 | case CK_FloatingComplexToReal: |
| 149 | case CK_FloatingRealToComplex: |
| 150 | case CK_FloatingToBoolean: |
| 151 | case CK_FloatingToFixedPoint: |
| 152 | case CK_FloatingToIntegral: |
| 153 | case CK_HLSLAggregateSplatCast: |
| 154 | case CK_HLSLArrayRValue: |
| 155 | case CK_HLSLElementwiseCast: |
| 156 | case CK_HLSLVectorTruncation: |
| 157 | case CK_IntToOCLSampler: |
| 158 | case CK_IntegralCast: |
| 159 | case CK_IntegralComplexCast: |
| 160 | case CK_IntegralComplexToBoolean: |
| 161 | case CK_IntegralComplexToFloatingComplex: |
| 162 | case CK_IntegralComplexToReal: |
| 163 | case CK_IntegralRealToComplex: |
| 164 | case CK_IntegralToBoolean: |
| 165 | case CK_IntegralToFixedPoint: |
| 166 | case CK_IntegralToFloating: |
| 167 | case CK_LValueBitCast: |
| 168 | case CK_MatrixCast: |
| 169 | case CK_MemberPointerToBoolean: |
| 170 | case CK_NonAtomicToAtomic: |
| 171 | case CK_ObjCObjectLValueCast: |
| 172 | case CK_PointerToBoolean: |
| 173 | case CK_PointerToIntegral: |
| 174 | case CK_ToUnion: |
| 175 | case CK_ToVoid: |
| 176 | case CK_UserDefinedConversion: |
| 177 | case CK_VectorSplat: |
| 178 | case CK_ZeroToOCLOpaqueType: |
| 179 | llvm_unreachable("unexpected cast for emitPointerWithAlignment" ); |
| 180 | } |
| 181 | } |
| 182 | |
| 183 | // Unary & |
| 184 | if (const UnaryOperator *uo = dyn_cast<UnaryOperator>(Val: expr)) { |
| 185 | // TODO(cir): maybe we should use cir.unary for pointers here instead. |
| 186 | if (uo->getOpcode() == UO_AddrOf) { |
| 187 | cgm.errorNYI(expr->getSourceRange(), "emitPointerWithAlignment: unary &" ); |
| 188 | return Address::invalid(); |
| 189 | } |
| 190 | } |
| 191 | |
| 192 | // std::addressof and variants. |
| 193 | if (auto const *call = dyn_cast<CallExpr>(Val: expr)) { |
| 194 | switch (call->getBuiltinCallee()) { |
| 195 | default: |
| 196 | break; |
| 197 | case Builtin::BIaddressof: |
| 198 | case Builtin::BI__addressof: |
| 199 | case Builtin::BI__builtin_addressof: { |
| 200 | cgm.errorNYI(expr->getSourceRange(), |
| 201 | "emitPointerWithAlignment: builtin addressof" ); |
| 202 | return Address::invalid(); |
| 203 | } |
| 204 | } |
| 205 | } |
| 206 | |
| 207 | // Otherwise, use the alignment of the type. |
| 208 | return makeNaturalAddressForPointer( |
| 209 | emitScalarExpr(expr), expr->getType()->getPointeeType(), CharUnits(), |
| 210 | /*forPointeeType=*/true, baseInfo); |
| 211 | } |
| 212 | |
| 213 | void CIRGenFunction::emitStoreThroughLValue(RValue src, LValue dst, |
| 214 | bool isInit) { |
| 215 | if (!dst.isSimple()) { |
| 216 | if (dst.isVectorElt()) { |
| 217 | // Read/modify/write the vector, inserting the new element |
| 218 | const mlir::Location loc = dst.getVectorPointer().getLoc(); |
| 219 | const mlir::Value vector = |
| 220 | builder.createLoad(loc, dst.getVectorAddress()); |
| 221 | const mlir::Value newVector = builder.create<cir::VecInsertOp>( |
| 222 | loc, vector, src.getScalarVal(), dst.getVectorIdx()); |
| 223 | builder.createStore(loc, newVector, dst.getVectorAddress()); |
| 224 | return; |
| 225 | } |
| 226 | |
| 227 | cgm.errorNYI(dst.getPointer().getLoc(), |
| 228 | "emitStoreThroughLValue: non-simple lvalue" ); |
| 229 | return; |
| 230 | } |
| 231 | |
| 232 | assert(!cir::MissingFeatures::opLoadStoreObjC()); |
| 233 | |
| 234 | assert(src.isScalar() && "Can't emit an aggregate store with this method" ); |
| 235 | emitStoreOfScalar(src.getScalarVal(), dst, isInit); |
| 236 | } |
| 237 | |
| 238 | static LValue emitGlobalVarDeclLValue(CIRGenFunction &cgf, const Expr *e, |
| 239 | const VarDecl *vd) { |
| 240 | QualType t = e->getType(); |
| 241 | |
| 242 | // If it's thread_local, emit a call to its wrapper function instead. |
| 243 | assert(!cir::MissingFeatures::opGlobalThreadLocal()); |
| 244 | if (vd->getTLSKind() == VarDecl::TLS_Dynamic) |
| 245 | cgf.cgm.errorNYI(e->getSourceRange(), |
| 246 | "emitGlobalVarDeclLValue: thread_local variable" ); |
| 247 | |
| 248 | // Check if the variable is marked as declare target with link clause in |
| 249 | // device codegen. |
| 250 | if (cgf.getLangOpts().OpenMP) |
| 251 | cgf.cgm.errorNYI(e->getSourceRange(), "emitGlobalVarDeclLValue: OpenMP" ); |
| 252 | |
| 253 | // Traditional LLVM codegen handles thread local separately, CIR handles |
| 254 | // as part of getAddrOfGlobalVar. |
| 255 | mlir::Value v = cgf.cgm.getAddrOfGlobalVar(vd); |
| 256 | |
| 257 | assert(!cir::MissingFeatures::addressSpace()); |
| 258 | mlir::Type realVarTy = cgf.convertTypeForMem(vd->getType()); |
| 259 | cir::PointerType realPtrTy = cgf.getBuilder().getPointerTo(realVarTy); |
| 260 | if (realPtrTy != v.getType()) |
| 261 | v = cgf.getBuilder().createBitcast(v.getLoc(), v, realPtrTy); |
| 262 | |
| 263 | CharUnits alignment = cgf.getContext().getDeclAlign(vd); |
| 264 | Address addr(v, realVarTy, alignment); |
| 265 | LValue lv; |
| 266 | if (vd->getType()->isReferenceType()) |
| 267 | cgf.cgm.errorNYI(e->getSourceRange(), |
| 268 | "emitGlobalVarDeclLValue: reference type" ); |
| 269 | else |
| 270 | lv = cgf.makeAddrLValue(addr, ty: t, source: AlignmentSource::Decl); |
| 271 | assert(!cir::MissingFeatures::setObjCGCLValueClass()); |
| 272 | return lv; |
| 273 | } |
| 274 | |
| 275 | void CIRGenFunction::emitStoreOfScalar(mlir::Value value, Address addr, |
| 276 | bool isVolatile, QualType ty, |
| 277 | bool isInit, bool isNontemporal) { |
| 278 | assert(!cir::MissingFeatures::opLoadStoreThreadLocal()); |
| 279 | |
| 280 | if (const auto *clangVecTy = ty->getAs<clang::VectorType>()) { |
| 281 | // Boolean vectors use `iN` as storage type. |
| 282 | if (clangVecTy->isExtVectorBoolType()) |
| 283 | cgm.errorNYI(addr.getPointer().getLoc(), |
| 284 | "emitStoreOfScalar ExtVectorBoolType" ); |
| 285 | |
| 286 | // Handle vectors of size 3 like size 4 for better performance. |
| 287 | const mlir::Type elementType = addr.getElementType(); |
| 288 | const auto vecTy = cast<cir::VectorType>(elementType); |
| 289 | |
| 290 | // TODO(CIR): Use `ABIInfo::getOptimalVectorMemoryType` once it upstreamed |
| 291 | if (vecTy.getSize() == 3 && !getLangOpts().PreserveVec3Type) |
| 292 | cgm.errorNYI(addr.getPointer().getLoc(), |
| 293 | "emitStoreOfScalar Vec3 & PreserveVec3Type disabled" ); |
| 294 | } |
| 295 | |
| 296 | value = emitToMemory(value, ty); |
| 297 | |
| 298 | assert(!cir::MissingFeatures::opLoadStoreAtomic()); |
| 299 | |
| 300 | // Update the alloca with more info on initialization. |
| 301 | assert(addr.getPointer() && "expected pointer to exist" ); |
| 302 | auto srcAlloca = |
| 303 | dyn_cast_or_null<cir::AllocaOp>(addr.getPointer().getDefiningOp()); |
| 304 | if (currVarDecl && srcAlloca) { |
| 305 | const VarDecl *vd = currVarDecl; |
| 306 | assert(vd && "VarDecl expected" ); |
| 307 | if (vd->hasInit()) |
| 308 | srcAlloca.setInitAttr(mlir::UnitAttr::get(&getMLIRContext())); |
| 309 | } |
| 310 | |
| 311 | assert(currSrcLoc && "must pass in source location" ); |
| 312 | builder.createStore(*currSrcLoc, value, addr /*, isVolatile*/); |
| 313 | |
| 314 | if (isNontemporal) { |
| 315 | cgm.errorNYI(addr.getPointer().getLoc(), "emitStoreOfScalar nontemporal" ); |
| 316 | return; |
| 317 | } |
| 318 | |
| 319 | assert(!cir::MissingFeatures::opTBAA()); |
| 320 | } |
| 321 | |
| 322 | mlir::Value CIRGenFunction::emitStoreThroughBitfieldLValue(RValue src, |
| 323 | LValue dst) { |
| 324 | assert(!cir::MissingFeatures::bitfields()); |
| 325 | cgm.errorNYI(feature: "bitfields" ); |
| 326 | return {}; |
| 327 | } |
| 328 | |
| 329 | LValue CIRGenFunction::emitLValueForField(LValue base, const FieldDecl *field) { |
| 330 | LValueBaseInfo baseInfo = base.getBaseInfo(); |
| 331 | |
| 332 | if (field->isBitField()) { |
| 333 | cgm.errorNYI(field->getSourceRange(), "emitLValueForField: bitfield" ); |
| 334 | return LValue(); |
| 335 | } |
| 336 | |
| 337 | QualType fieldType = field->getType(); |
| 338 | const RecordDecl *rec = field->getParent(); |
| 339 | AlignmentSource baseAlignSource = baseInfo.getAlignmentSource(); |
| 340 | LValueBaseInfo fieldBaseInfo(getFieldAlignmentSource(source: baseAlignSource)); |
| 341 | assert(!cir::MissingFeatures::opTBAA()); |
| 342 | |
| 343 | Address addr = base.getAddress(); |
| 344 | if (auto *classDecl = dyn_cast<CXXRecordDecl>(Val: rec)) { |
| 345 | if (cgm.getCodeGenOpts().StrictVTablePointers && |
| 346 | classDecl->isDynamicClass()) { |
| 347 | cgm.errorNYI(field->getSourceRange(), |
| 348 | "emitLValueForField: strict vtable for dynamic class" ); |
| 349 | } |
| 350 | } |
| 351 | |
| 352 | unsigned recordCVR = base.getVRQualifiers(); |
| 353 | |
| 354 | llvm::StringRef fieldName = field->getName(); |
| 355 | unsigned fieldIndex; |
| 356 | assert(!cir::MissingFeatures::lambdaFieldToName()); |
| 357 | |
| 358 | if (rec->isUnion()) |
| 359 | fieldIndex = field->getFieldIndex(); |
| 360 | else { |
| 361 | const CIRGenRecordLayout &layout = |
| 362 | cgm.getTypes().getCIRGenRecordLayout(rd: field->getParent()); |
| 363 | fieldIndex = layout.getCIRFieldNo(fd: field); |
| 364 | } |
| 365 | |
| 366 | addr = emitAddrOfFieldStorage(base: addr, field, fieldName, fieldIndex); |
| 367 | assert(!cir::MissingFeatures::preservedAccessIndexRegion()); |
| 368 | |
| 369 | // If this is a reference field, load the reference right now. |
| 370 | if (fieldType->isReferenceType()) { |
| 371 | cgm.errorNYI(field->getSourceRange(), "emitLValueForField: reference type" ); |
| 372 | return LValue(); |
| 373 | } |
| 374 | |
| 375 | if (field->hasAttr<AnnotateAttr>()) { |
| 376 | cgm.errorNYI(field->getSourceRange(), "emitLValueForField: AnnotateAttr" ); |
| 377 | return LValue(); |
| 378 | } |
| 379 | |
| 380 | LValue lv = makeAddrLValue(addr, ty: fieldType, baseInfo: fieldBaseInfo); |
| 381 | lv.getQuals().addCVRQualifiers(mask: recordCVR); |
| 382 | |
| 383 | // __weak attribute on a field is ignored. |
| 384 | if (lv.getQuals().getObjCGCAttr() == Qualifiers::Weak) { |
| 385 | cgm.errorNYI(field->getSourceRange(), |
| 386 | "emitLValueForField: __weak attribute" ); |
| 387 | return LValue(); |
| 388 | } |
| 389 | |
| 390 | return lv; |
| 391 | } |
| 392 | |
| 393 | mlir::Value CIRGenFunction::emitToMemory(mlir::Value value, QualType ty) { |
| 394 | // Bool has a different representation in memory than in registers, |
| 395 | // but in ClangIR, it is simply represented as a cir.bool value. |
| 396 | // This function is here as a placeholder for possible future changes. |
| 397 | return value; |
| 398 | } |
| 399 | |
| 400 | void CIRGenFunction::emitStoreOfScalar(mlir::Value value, LValue lvalue, |
| 401 | bool isInit) { |
| 402 | if (lvalue.getType()->isConstantMatrixType()) { |
| 403 | assert(0 && "NYI: emitStoreOfScalar constant matrix type" ); |
| 404 | return; |
| 405 | } |
| 406 | |
| 407 | emitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), |
| 408 | lvalue.getType(), isInit, /*isNontemporal=*/false); |
| 409 | } |
| 410 | |
| 411 | mlir::Value CIRGenFunction::emitLoadOfScalar(LValue lvalue, |
| 412 | SourceLocation loc) { |
| 413 | assert(!cir::MissingFeatures::opLoadStoreThreadLocal()); |
| 414 | assert(!cir::MissingFeatures::opLoadEmitScalarRangeCheck()); |
| 415 | assert(!cir::MissingFeatures::opLoadBooleanRepresentation()); |
| 416 | |
| 417 | Address addr = lvalue.getAddress(); |
| 418 | mlir::Type eltTy = addr.getElementType(); |
| 419 | |
| 420 | if (mlir::isa<cir::VoidType>(eltTy)) |
| 421 | cgm.errorNYI(loc, "emitLoadOfScalar: void type" ); |
| 422 | |
| 423 | mlir::Value loadOp = builder.createLoad(getLoc(loc), addr); |
| 424 | |
| 425 | return loadOp; |
| 426 | } |
| 427 | |
| 428 | /// Given an expression that represents a value lvalue, this |
| 429 | /// method emits the address of the lvalue, then loads the result as an rvalue, |
| 430 | /// returning the rvalue. |
| 431 | RValue CIRGenFunction::emitLoadOfLValue(LValue lv, SourceLocation loc) { |
| 432 | assert(!lv.getType()->isFunctionType()); |
| 433 | assert(!(lv.getType()->isConstantMatrixType()) && "not implemented" ); |
| 434 | |
| 435 | if (lv.isSimple()) |
| 436 | return RValue::get(emitLoadOfScalar(lv, loc)); |
| 437 | |
| 438 | if (lv.isVectorElt()) { |
| 439 | const mlir::Value load = |
| 440 | builder.createLoad(getLoc(loc), lv.getVectorAddress()); |
| 441 | return RValue::get(builder.create<cir::VecExtractOp>(getLoc(loc), load, |
| 442 | lv.getVectorIdx())); |
| 443 | } |
| 444 | |
| 445 | cgm.errorNYI(loc, "emitLoadOfLValue" ); |
| 446 | return RValue::get(nullptr); |
| 447 | } |
| 448 | |
| 449 | LValue CIRGenFunction::emitDeclRefLValue(const DeclRefExpr *e) { |
| 450 | const NamedDecl *nd = e->getDecl(); |
| 451 | QualType ty = e->getType(); |
| 452 | |
| 453 | assert(e->isNonOdrUse() != NOUR_Unevaluated && |
| 454 | "should not emit an unevaluated operand" ); |
| 455 | |
| 456 | if (const auto *vd = dyn_cast<VarDecl>(nd)) { |
| 457 | // Checks for omitted feature handling |
| 458 | assert(!cir::MissingFeatures::opAllocaStaticLocal()); |
| 459 | assert(!cir::MissingFeatures::opAllocaNonGC()); |
| 460 | assert(!cir::MissingFeatures::opAllocaImpreciseLifetime()); |
| 461 | assert(!cir::MissingFeatures::opAllocaTLS()); |
| 462 | assert(!cir::MissingFeatures::opAllocaOpenMPThreadPrivate()); |
| 463 | assert(!cir::MissingFeatures::opAllocaEscapeByReference()); |
| 464 | |
| 465 | // Check if this is a global variable |
| 466 | if (vd->hasLinkage() || vd->isStaticDataMember()) |
| 467 | return emitGlobalVarDeclLValue(*this, e, vd); |
| 468 | |
| 469 | Address addr = Address::invalid(); |
| 470 | |
| 471 | // The variable should generally be present in the local decl map. |
| 472 | auto iter = localDeclMap.find(vd); |
| 473 | if (iter != localDeclMap.end()) { |
| 474 | addr = iter->second; |
| 475 | } else { |
| 476 | // Otherwise, it might be static local we haven't emitted yet for some |
| 477 | // reason; most likely, because it's in an outer function. |
| 478 | cgm.errorNYI(e->getSourceRange(), "emitDeclRefLValue: static local" ); |
| 479 | } |
| 480 | |
| 481 | // Drill into reference types. |
| 482 | LValue lv = |
| 483 | vd->getType()->isReferenceType() |
| 484 | ? emitLoadOfReferenceLValue(addr, getLoc(e->getSourceRange()), |
| 485 | vd->getType(), AlignmentSource::Decl) |
| 486 | : makeAddrLValue(addr, ty, AlignmentSource::Decl); |
| 487 | return lv; |
| 488 | } |
| 489 | |
| 490 | cgm.errorNYI(e->getSourceRange(), "emitDeclRefLValue: unhandled decl type" ); |
| 491 | return LValue(); |
| 492 | } |
| 493 | |
| 494 | mlir::Value CIRGenFunction::evaluateExprAsBool(const Expr *e) { |
| 495 | QualType boolTy = getContext().BoolTy; |
| 496 | SourceLocation loc = e->getExprLoc(); |
| 497 | |
| 498 | assert(!cir::MissingFeatures::pgoUse()); |
| 499 | if (e->getType()->getAs<MemberPointerType>()) { |
| 500 | cgm.errorNYI(e->getSourceRange(), |
| 501 | "evaluateExprAsBool: member pointer type" ); |
| 502 | return createDummyValue(getLoc(loc), boolTy); |
| 503 | } |
| 504 | |
| 505 | assert(!cir::MissingFeatures::cgFPOptionsRAII()); |
| 506 | if (!e->getType()->isAnyComplexType()) |
| 507 | return emitScalarConversion(emitScalarExpr(e), e->getType(), boolTy, loc); |
| 508 | |
| 509 | cgm.errorNYI(e->getSourceRange(), "evaluateExprAsBool: complex type" ); |
| 510 | return createDummyValue(getLoc(loc), boolTy); |
| 511 | } |
| 512 | |
| 513 | LValue CIRGenFunction::emitUnaryOpLValue(const UnaryOperator *e) { |
| 514 | UnaryOperatorKind op = e->getOpcode(); |
| 515 | |
| 516 | // __extension__ doesn't affect lvalue-ness. |
| 517 | if (op == UO_Extension) |
| 518 | return emitLValue(e: e->getSubExpr()); |
| 519 | |
| 520 | switch (op) { |
| 521 | case UO_Deref: { |
| 522 | QualType t = e->getSubExpr()->getType()->getPointeeType(); |
| 523 | assert(!t.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type" ); |
| 524 | |
| 525 | assert(!cir::MissingFeatures::opTBAA()); |
| 526 | LValueBaseInfo baseInfo; |
| 527 | Address addr = emitPointerWithAlignment(expr: e->getSubExpr(), baseInfo: &baseInfo); |
| 528 | |
| 529 | // Tag 'load' with deref attribute. |
| 530 | // FIXME: This misses some derefence cases and has problematic interactions |
| 531 | // with other operators. |
| 532 | if (auto loadOp = |
| 533 | dyn_cast<cir::LoadOp>(addr.getPointer().getDefiningOp())) { |
| 534 | loadOp.setIsDerefAttr(mlir::UnitAttr::get(&getMLIRContext())); |
| 535 | } |
| 536 | |
| 537 | LValue lv = makeAddrLValue(addr, ty: t, baseInfo); |
| 538 | assert(!cir::MissingFeatures::addressSpace()); |
| 539 | assert(!cir::MissingFeatures::setNonGC()); |
| 540 | return lv; |
| 541 | } |
| 542 | case UO_Real: |
| 543 | case UO_Imag: { |
| 544 | cgm.errorNYI(e->getSourceRange(), "UnaryOp real/imag" ); |
| 545 | return LValue(); |
| 546 | } |
| 547 | case UO_PreInc: |
| 548 | case UO_PreDec: { |
| 549 | bool isInc = e->isIncrementOp(); |
| 550 | LValue lv = emitLValue(e: e->getSubExpr()); |
| 551 | |
| 552 | assert(e->isPrefix() && "Prefix operator in unexpected state!" ); |
| 553 | |
| 554 | if (e->getType()->isAnyComplexType()) { |
| 555 | cgm.errorNYI(e->getSourceRange(), "UnaryOp complex inc/dec" ); |
| 556 | lv = LValue(); |
| 557 | } else { |
| 558 | emitScalarPrePostIncDec(e, lv, isInc, /*isPre=*/true); |
| 559 | } |
| 560 | |
| 561 | return lv; |
| 562 | } |
| 563 | case UO_Extension: |
| 564 | llvm_unreachable("UnaryOperator extension should be handled above!" ); |
| 565 | case UO_Plus: |
| 566 | case UO_Minus: |
| 567 | case UO_Not: |
| 568 | case UO_LNot: |
| 569 | case UO_AddrOf: |
| 570 | case UO_PostInc: |
| 571 | case UO_PostDec: |
| 572 | case UO_Coawait: |
| 573 | llvm_unreachable("UnaryOperator of non-lvalue kind!" ); |
| 574 | } |
| 575 | llvm_unreachable("Unknown unary operator kind!" ); |
| 576 | } |
| 577 | |
| 578 | /// If the specified expr is a simple decay from an array to pointer, |
| 579 | /// return the array subexpression. |
| 580 | /// FIXME: this could be abstracted into a common AST helper. |
| 581 | static const Expr *getSimpleArrayDecayOperand(const Expr *e) { |
| 582 | // If this isn't just an array->pointer decay, bail out. |
| 583 | const auto *castExpr = dyn_cast<CastExpr>(Val: e); |
| 584 | if (!castExpr || castExpr->getCastKind() != CK_ArrayToPointerDecay) |
| 585 | return nullptr; |
| 586 | |
| 587 | // If this is a decay from variable width array, bail out. |
| 588 | const Expr *subExpr = castExpr->getSubExpr(); |
| 589 | if (subExpr->getType()->isVariableArrayType()) |
| 590 | return nullptr; |
| 591 | |
| 592 | return subExpr; |
| 593 | } |
| 594 | |
| 595 | static cir::IntAttr getConstantIndexOrNull(mlir::Value idx) { |
| 596 | // TODO(cir): should we consider using MLIRs IndexType instead of IntegerAttr? |
| 597 | if (auto constantOp = dyn_cast<cir::ConstantOp>(idx.getDefiningOp())) |
| 598 | return mlir::dyn_cast<cir::IntAttr>(constantOp.getValue()); |
| 599 | return {}; |
| 600 | } |
| 601 | |
| 602 | static CharUnits getArrayElementAlign(CharUnits arrayAlign, mlir::Value idx, |
| 603 | CharUnits eltSize) { |
| 604 | // If we have a constant index, we can use the exact offset of the |
| 605 | // element we're accessing. |
| 606 | const cir::IntAttr constantIdx = getConstantIndexOrNull(idx); |
| 607 | if (constantIdx) { |
| 608 | const CharUnits offset = constantIdx.getValue().getZExtValue() * eltSize; |
| 609 | return arrayAlign.alignmentAtOffset(offset); |
| 610 | } |
| 611 | // Otherwise, use the worst-case alignment for any element. |
| 612 | return arrayAlign.alignmentOfArrayElement(elementSize: eltSize); |
| 613 | } |
| 614 | |
| 615 | static QualType getFixedSizeElementType(const ASTContext &astContext, |
| 616 | const VariableArrayType *vla) { |
| 617 | QualType eltType; |
| 618 | do { |
| 619 | eltType = vla->getElementType(); |
| 620 | } while ((vla = astContext.getAsVariableArrayType(T: eltType))); |
| 621 | return eltType; |
| 622 | } |
| 623 | |
| 624 | static mlir::Value emitArraySubscriptPtr(CIRGenFunction &cgf, |
| 625 | mlir::Location beginLoc, |
| 626 | mlir::Location endLoc, mlir::Value ptr, |
| 627 | mlir::Type eltTy, mlir::Value idx, |
| 628 | bool shouldDecay) { |
| 629 | CIRGenModule &cgm = cgf.getCIRGenModule(); |
| 630 | // TODO(cir): LLVM codegen emits in bound gep check here, is there anything |
| 631 | // that would enhance tracking this later in CIR? |
| 632 | assert(!cir::MissingFeatures::emitCheckedInBoundsGEP()); |
| 633 | return cgm.getBuilder().getArrayElement(beginLoc, endLoc, ptr, eltTy, idx, |
| 634 | shouldDecay); |
| 635 | } |
| 636 | |
| 637 | static Address emitArraySubscriptPtr(CIRGenFunction &cgf, |
| 638 | mlir::Location beginLoc, |
| 639 | mlir::Location endLoc, Address addr, |
| 640 | QualType eltType, mlir::Value idx, |
| 641 | mlir::Location loc, bool shouldDecay) { |
| 642 | |
| 643 | // Determine the element size of the statically-sized base. This is |
| 644 | // the thing that the indices are expressed in terms of. |
| 645 | if (const VariableArrayType *vla = |
| 646 | cgf.getContext().getAsVariableArrayType(T: eltType)) { |
| 647 | eltType = getFixedSizeElementType(astContext: cgf.getContext(), vla); |
| 648 | } |
| 649 | |
| 650 | // We can use that to compute the best alignment of the element. |
| 651 | const CharUnits eltSize = cgf.getContext().getTypeSizeInChars(T: eltType); |
| 652 | const CharUnits eltAlign = |
| 653 | getArrayElementAlign(addr.getAlignment(), idx, eltSize); |
| 654 | |
| 655 | assert(!cir::MissingFeatures::preservedAccessIndexRegion()); |
| 656 | const mlir::Value eltPtr = |
| 657 | emitArraySubscriptPtr(cgf, beginLoc, endLoc, addr.getPointer(), |
| 658 | addr.getElementType(), idx, shouldDecay); |
| 659 | const mlir::Type elementType = cgf.convertTypeForMem(eltType); |
| 660 | return Address(eltPtr, elementType, eltAlign); |
| 661 | } |
| 662 | |
| 663 | LValue |
| 664 | CIRGenFunction::emitArraySubscriptExpr(const clang::ArraySubscriptExpr *e) { |
| 665 | if (isa<ExtVectorElementExpr>(Val: e->getBase())) { |
| 666 | cgm.errorNYI(e->getSourceRange(), |
| 667 | "emitArraySubscriptExpr: ExtVectorElementExpr" ); |
| 668 | return LValue::makeAddr(address: Address::invalid(), t: e->getType(), baseInfo: LValueBaseInfo()); |
| 669 | } |
| 670 | |
| 671 | if (getContext().getAsVariableArrayType(T: e->getType())) { |
| 672 | cgm.errorNYI(e->getSourceRange(), |
| 673 | "emitArraySubscriptExpr: VariableArrayType" ); |
| 674 | return LValue::makeAddr(address: Address::invalid(), t: e->getType(), baseInfo: LValueBaseInfo()); |
| 675 | } |
| 676 | |
| 677 | if (e->getType()->getAs<ObjCObjectType>()) { |
| 678 | cgm.errorNYI(e->getSourceRange(), "emitArraySubscriptExpr: ObjCObjectType" ); |
| 679 | return LValue::makeAddr(address: Address::invalid(), t: e->getType(), baseInfo: LValueBaseInfo()); |
| 680 | } |
| 681 | |
| 682 | // The index must always be an integer, which is not an aggregate. Emit it |
| 683 | // in lexical order (this complexity is, sadly, required by C++17). |
| 684 | assert((e->getIdx() == e->getLHS() || e->getIdx() == e->getRHS()) && |
| 685 | "index was neither LHS nor RHS" ); |
| 686 | |
| 687 | auto emitIdxAfterBase = [&](bool promote) -> mlir::Value { |
| 688 | const mlir::Value idx = emitScalarExpr(e->getIdx()); |
| 689 | |
| 690 | // Extend or truncate the index type to 32 or 64-bits. |
| 691 | auto ptrTy = mlir::dyn_cast<cir::PointerType>(idx.getType()); |
| 692 | if (promote && ptrTy && ptrTy.isPtrTo<cir::IntType>()) |
| 693 | cgm.errorNYI(e->getSourceRange(), |
| 694 | "emitArraySubscriptExpr: index type cast" ); |
| 695 | return idx; |
| 696 | }; |
| 697 | |
| 698 | // If the base is a vector type, then we are forming a vector element |
| 699 | // with this subscript. |
| 700 | if (e->getBase()->getType()->isVectorType() && |
| 701 | !isa<ExtVectorElementExpr>(Val: e->getBase())) { |
| 702 | const mlir::Value idx = emitIdxAfterBase(/*promote=*/false); |
| 703 | const LValue lhs = emitLValue(e: e->getBase()); |
| 704 | return LValue::makeVectorElt(lhs.getAddress(), idx, e->getBase()->getType(), |
| 705 | lhs.getBaseInfo()); |
| 706 | } |
| 707 | |
| 708 | const mlir::Value idx = emitIdxAfterBase(/*promote=*/true); |
| 709 | if (const Expr *array = getSimpleArrayDecayOperand(e: e->getBase())) { |
| 710 | LValue arrayLV; |
| 711 | if (const auto *ase = dyn_cast<ArraySubscriptExpr>(Val: array)) |
| 712 | arrayLV = emitArraySubscriptExpr(e: ase); |
| 713 | else |
| 714 | arrayLV = emitLValue(e: array); |
| 715 | |
| 716 | // Propagate the alignment from the array itself to the result. |
| 717 | const Address addr = emitArraySubscriptPtr( |
| 718 | *this, cgm.getLoc(array->getBeginLoc()), cgm.getLoc(array->getEndLoc()), |
| 719 | arrayLV.getAddress(), e->getType(), idx, cgm.getLoc(e->getExprLoc()), |
| 720 | /*shouldDecay=*/true); |
| 721 | |
| 722 | const LValue lv = LValue::makeAddr(address: addr, t: e->getType(), baseInfo: LValueBaseInfo()); |
| 723 | |
| 724 | if (getLangOpts().ObjC && getLangOpts().getGC() != LangOptions::NonGC) { |
| 725 | cgm.errorNYI(e->getSourceRange(), "emitArraySubscriptExpr: ObjC with GC" ); |
| 726 | } |
| 727 | |
| 728 | return lv; |
| 729 | } |
| 730 | |
| 731 | // The base must be a pointer; emit it with an estimate of its alignment. |
| 732 | assert(e->getBase()->getType()->isPointerType() && |
| 733 | "The base must be a pointer" ); |
| 734 | |
| 735 | LValueBaseInfo eltBaseInfo; |
| 736 | const Address ptrAddr = emitPointerWithAlignment(expr: e->getBase(), baseInfo: &eltBaseInfo); |
| 737 | // Propagate the alignment from the array itself to the result. |
| 738 | const Address addxr = emitArraySubscriptPtr( |
| 739 | *this, cgm.getLoc(e->getBeginLoc()), cgm.getLoc(e->getEndLoc()), ptrAddr, |
| 740 | e->getType(), idx, cgm.getLoc(e->getExprLoc()), |
| 741 | /*shouldDecay=*/false); |
| 742 | |
| 743 | const LValue lv = LValue::makeAddr(address: addxr, t: e->getType(), baseInfo: eltBaseInfo); |
| 744 | |
| 745 | if (getLangOpts().ObjC && getLangOpts().getGC() != LangOptions::NonGC) { |
| 746 | cgm.errorNYI(e->getSourceRange(), "emitArraySubscriptExpr: ObjC with GC" ); |
| 747 | } |
| 748 | |
| 749 | return lv; |
| 750 | } |
| 751 | |
| 752 | LValue CIRGenFunction::emitStringLiteralLValue(const StringLiteral *e) { |
| 753 | cir::GlobalOp globalOp = cgm.getGlobalForStringLiteral(e); |
| 754 | assert(globalOp.getAlignment() && "expected alignment for string literal" ); |
| 755 | unsigned align = *(globalOp.getAlignment()); |
| 756 | mlir::Value addr = |
| 757 | builder.createGetGlobal(getLoc(e->getSourceRange()), globalOp); |
| 758 | return makeAddrLValue( |
| 759 | Address(addr, globalOp.getSymType(), CharUnits::fromQuantity(Quantity: align)), |
| 760 | e->getType(), AlignmentSource::Decl); |
| 761 | } |
| 762 | |
| 763 | /// Casts are never lvalues unless that cast is to a reference type. If the cast |
| 764 | /// is to a reference, we can have the usual lvalue result, otherwise if a cast |
| 765 | /// is needed by the code generator in an lvalue context, then it must mean that |
| 766 | /// we need the address of an aggregate in order to access one of its members. |
| 767 | /// This can happen for all the reasons that casts are permitted with aggregate |
| 768 | /// result, including noop aggregate casts, and cast from scalar to union. |
| 769 | LValue CIRGenFunction::emitCastLValue(const CastExpr *e) { |
| 770 | switch (e->getCastKind()) { |
| 771 | case CK_ToVoid: |
| 772 | case CK_BitCast: |
| 773 | case CK_LValueToRValueBitCast: |
| 774 | case CK_ArrayToPointerDecay: |
| 775 | case CK_FunctionToPointerDecay: |
| 776 | case CK_NullToMemberPointer: |
| 777 | case CK_NullToPointer: |
| 778 | case CK_IntegralToPointer: |
| 779 | case CK_PointerToIntegral: |
| 780 | case CK_PointerToBoolean: |
| 781 | case CK_IntegralCast: |
| 782 | case CK_BooleanToSignedIntegral: |
| 783 | case CK_IntegralToBoolean: |
| 784 | case CK_IntegralToFloating: |
| 785 | case CK_FloatingToIntegral: |
| 786 | case CK_FloatingToBoolean: |
| 787 | case CK_FloatingCast: |
| 788 | case CK_FloatingRealToComplex: |
| 789 | case CK_FloatingComplexToReal: |
| 790 | case CK_FloatingComplexToBoolean: |
| 791 | case CK_FloatingComplexCast: |
| 792 | case CK_FloatingComplexToIntegralComplex: |
| 793 | case CK_IntegralRealToComplex: |
| 794 | case CK_IntegralComplexToReal: |
| 795 | case CK_IntegralComplexToBoolean: |
| 796 | case CK_IntegralComplexCast: |
| 797 | case CK_IntegralComplexToFloatingComplex: |
| 798 | case CK_DerivedToBaseMemberPointer: |
| 799 | case CK_BaseToDerivedMemberPointer: |
| 800 | case CK_MemberPointerToBoolean: |
| 801 | case CK_ReinterpretMemberPointer: |
| 802 | case CK_AnyPointerToBlockPointerCast: |
| 803 | case CK_ARCProduceObject: |
| 804 | case CK_ARCConsumeObject: |
| 805 | case CK_ARCReclaimReturnedObject: |
| 806 | case CK_ARCExtendBlockObject: |
| 807 | case CK_CopyAndAutoreleaseBlockObject: |
| 808 | case CK_IntToOCLSampler: |
| 809 | case CK_FloatingToFixedPoint: |
| 810 | case CK_FixedPointToFloating: |
| 811 | case CK_FixedPointCast: |
| 812 | case CK_FixedPointToBoolean: |
| 813 | case CK_FixedPointToIntegral: |
| 814 | case CK_IntegralToFixedPoint: |
| 815 | case CK_MatrixCast: |
| 816 | case CK_HLSLVectorTruncation: |
| 817 | case CK_HLSLArrayRValue: |
| 818 | case CK_HLSLElementwiseCast: |
| 819 | case CK_HLSLAggregateSplatCast: |
| 820 | llvm_unreachable("unexpected cast lvalue" ); |
| 821 | |
| 822 | case CK_Dependent: |
| 823 | llvm_unreachable("dependent cast kind in IR gen!" ); |
| 824 | |
| 825 | case CK_BuiltinFnToFnPtr: |
| 826 | llvm_unreachable("builtin functions are handled elsewhere" ); |
| 827 | |
| 828 | // These are never l-values; just use the aggregate emission code. |
| 829 | case CK_NonAtomicToAtomic: |
| 830 | case CK_AtomicToNonAtomic: |
| 831 | case CK_Dynamic: |
| 832 | case CK_ToUnion: |
| 833 | case CK_BaseToDerived: |
| 834 | case CK_LValueBitCast: |
| 835 | case CK_AddressSpaceConversion: |
| 836 | case CK_ObjCObjectLValueCast: |
| 837 | case CK_VectorSplat: |
| 838 | case CK_ConstructorConversion: |
| 839 | case CK_UserDefinedConversion: |
| 840 | case CK_CPointerToObjCPointerCast: |
| 841 | case CK_BlockPointerToObjCPointerCast: |
| 842 | case CK_LValueToRValue: { |
| 843 | cgm.errorNYI(e->getSourceRange(), |
| 844 | std::string("emitCastLValue for unhandled cast kind: " ) + |
| 845 | e->getCastKindName()); |
| 846 | |
| 847 | return {}; |
| 848 | } |
| 849 | |
| 850 | case CK_NoOp: { |
| 851 | // CK_NoOp can model a qualification conversion, which can remove an array |
| 852 | // bound and change the IR type. |
| 853 | LValue lv = emitLValue(e: e->getSubExpr()); |
| 854 | // Propagate the volatile qualifier to LValue, if exists in e. |
| 855 | if (e->changesVolatileQualification()) |
| 856 | cgm.errorNYI(e->getSourceRange(), |
| 857 | "emitCastLValue: NoOp changes volatile qual" ); |
| 858 | if (lv.isSimple()) { |
| 859 | Address v = lv.getAddress(); |
| 860 | if (v.isValid()) { |
| 861 | mlir::Type ty = convertTypeForMem(e->getType()); |
| 862 | if (v.getElementType() != ty) |
| 863 | cgm.errorNYI(e->getSourceRange(), |
| 864 | "emitCastLValue: NoOp needs bitcast" ); |
| 865 | } |
| 866 | } |
| 867 | return lv; |
| 868 | } |
| 869 | |
| 870 | case CK_UncheckedDerivedToBase: |
| 871 | case CK_DerivedToBase: { |
| 872 | const auto *derivedClassTy = |
| 873 | e->getSubExpr()->getType()->castAs<clang::RecordType>(); |
| 874 | auto *derivedClassDecl = cast<CXXRecordDecl>(Val: derivedClassTy->getDecl()); |
| 875 | |
| 876 | LValue lv = emitLValue(e: e->getSubExpr()); |
| 877 | Address thisAddr = lv.getAddress(); |
| 878 | |
| 879 | // Perform the derived-to-base conversion |
| 880 | Address baseAddr = |
| 881 | getAddressOfBaseClass(value: thisAddr, derived: derivedClassDecl, path: e->path(), |
| 882 | /*NullCheckValue=*/nullCheckValue: false, loc: e->getExprLoc()); |
| 883 | |
| 884 | // TODO: Support accesses to members of base classes in TBAA. For now, we |
| 885 | // conservatively pretend that the complete object is of the base class |
| 886 | // type. |
| 887 | assert(!cir::MissingFeatures::opTBAA()); |
| 888 | return makeAddrLValue(baseAddr, e->getType(), lv.getBaseInfo()); |
| 889 | } |
| 890 | |
| 891 | case CK_ZeroToOCLOpaqueType: |
| 892 | llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid" ); |
| 893 | } |
| 894 | |
| 895 | llvm_unreachable("Invalid cast kind" ); |
| 896 | } |
| 897 | |
| 898 | LValue CIRGenFunction::emitMemberExpr(const MemberExpr *e) { |
| 899 | if (isa<VarDecl>(Val: e->getMemberDecl())) { |
| 900 | cgm.errorNYI(e->getSourceRange(), "emitMemberExpr: VarDecl" ); |
| 901 | return LValue(); |
| 902 | } |
| 903 | |
| 904 | Expr *baseExpr = e->getBase(); |
| 905 | // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. |
| 906 | LValue baseLV; |
| 907 | if (e->isArrow()) { |
| 908 | LValueBaseInfo baseInfo; |
| 909 | assert(!cir::MissingFeatures::opTBAA()); |
| 910 | Address addr = emitPointerWithAlignment(expr: baseExpr, baseInfo: &baseInfo); |
| 911 | QualType ptrTy = baseExpr->getType()->getPointeeType(); |
| 912 | assert(!cir::MissingFeatures::typeChecks()); |
| 913 | baseLV = makeAddrLValue(addr, ty: ptrTy, baseInfo); |
| 914 | } else { |
| 915 | assert(!cir::MissingFeatures::typeChecks()); |
| 916 | baseLV = emitLValue(e: baseExpr); |
| 917 | } |
| 918 | |
| 919 | const NamedDecl *nd = e->getMemberDecl(); |
| 920 | if (auto *field = dyn_cast<FieldDecl>(nd)) { |
| 921 | LValue lv = emitLValueForField(base: baseLV, field: field); |
| 922 | assert(!cir::MissingFeatures::setObjCGCLValueClass()); |
| 923 | if (getLangOpts().OpenMP) { |
| 924 | // If the member was explicitly marked as nontemporal, mark it as |
| 925 | // nontemporal. If the base lvalue is marked as nontemporal, mark access |
| 926 | // to children as nontemporal too. |
| 927 | cgm.errorNYI(e->getSourceRange(), "emitMemberExpr: OpenMP" ); |
| 928 | } |
| 929 | return lv; |
| 930 | } |
| 931 | |
| 932 | if (isa<FunctionDecl>(Val: nd)) { |
| 933 | cgm.errorNYI(e->getSourceRange(), "emitMemberExpr: FunctionDecl" ); |
| 934 | return LValue(); |
| 935 | } |
| 936 | |
| 937 | llvm_unreachable("Unhandled member declaration!" ); |
| 938 | } |
| 939 | |
| 940 | LValue CIRGenFunction::emitCallExprLValue(const CallExpr *e) { |
| 941 | RValue rv = emitCallExpr(e); |
| 942 | |
| 943 | if (!rv.isScalar()) { |
| 944 | cgm.errorNYI(e->getSourceRange(), "emitCallExprLValue: non-scalar return" ); |
| 945 | return {}; |
| 946 | } |
| 947 | |
| 948 | assert(e->getCallReturnType(getContext())->isReferenceType() && |
| 949 | "Can't have a scalar return unless the return type is a " |
| 950 | "reference type!" ); |
| 951 | |
| 952 | return makeNaturalAlignPointeeAddrLValue(rv.getScalarVal(), e->getType()); |
| 953 | } |
| 954 | |
| 955 | LValue CIRGenFunction::emitBinaryOperatorLValue(const BinaryOperator *e) { |
| 956 | // Comma expressions just emit their LHS then their RHS as an l-value. |
| 957 | if (e->getOpcode() == BO_Comma) { |
| 958 | emitIgnoredExpr(e: e->getLHS()); |
| 959 | return emitLValue(e: e->getRHS()); |
| 960 | } |
| 961 | |
| 962 | if (e->getOpcode() == BO_PtrMemD || e->getOpcode() == BO_PtrMemI) { |
| 963 | cgm.errorNYI(e->getSourceRange(), "member pointers" ); |
| 964 | return {}; |
| 965 | } |
| 966 | |
| 967 | assert(e->getOpcode() == BO_Assign && "unexpected binary l-value" ); |
| 968 | |
| 969 | // Note that in all of these cases, __block variables need the RHS |
| 970 | // evaluated first just in case the variable gets moved by the RHS. |
| 971 | |
| 972 | switch (CIRGenFunction::getEvaluationKind(type: e->getType())) { |
| 973 | case cir::TEK_Scalar: { |
| 974 | assert(!cir::MissingFeatures::objCLifetime()); |
| 975 | if (e->getLHS()->getType().getObjCLifetime() != |
| 976 | clang::Qualifiers::ObjCLifetime::OCL_None) { |
| 977 | cgm.errorNYI(e->getSourceRange(), "objc lifetimes" ); |
| 978 | return {}; |
| 979 | } |
| 980 | |
| 981 | RValue rv = emitAnyExpr(e: e->getRHS()); |
| 982 | LValue lv = emitLValue(e: e->getLHS()); |
| 983 | |
| 984 | SourceLocRAIIObject loc{*this, getLoc(e->getSourceRange())}; |
| 985 | if (lv.isBitField()) { |
| 986 | cgm.errorNYI(e->getSourceRange(), "bitfields" ); |
| 987 | return {}; |
| 988 | } |
| 989 | emitStoreThroughLValue(src: rv, dst: lv); |
| 990 | |
| 991 | if (getLangOpts().OpenMP) { |
| 992 | cgm.errorNYI(e->getSourceRange(), "openmp" ); |
| 993 | return {}; |
| 994 | } |
| 995 | |
| 996 | return lv; |
| 997 | } |
| 998 | |
| 999 | case cir::TEK_Complex: { |
| 1000 | assert(!cir::MissingFeatures::complexType()); |
| 1001 | cgm.errorNYI(e->getSourceRange(), "complex l-values" ); |
| 1002 | return {}; |
| 1003 | } |
| 1004 | case cir::TEK_Aggregate: |
| 1005 | cgm.errorNYI(e->getSourceRange(), "aggregate lvalues" ); |
| 1006 | return {}; |
| 1007 | } |
| 1008 | llvm_unreachable("bad evaluation kind" ); |
| 1009 | } |
| 1010 | |
| 1011 | /// Emit code to compute the specified expression which |
| 1012 | /// can have any type. The result is returned as an RValue struct. |
| 1013 | RValue CIRGenFunction::emitAnyExpr(const Expr *e) { |
| 1014 | switch (CIRGenFunction::getEvaluationKind(type: e->getType())) { |
| 1015 | case cir::TEK_Scalar: |
| 1016 | return RValue::get(emitScalarExpr(e)); |
| 1017 | case cir::TEK_Complex: |
| 1018 | cgm.errorNYI(e->getSourceRange(), "emitAnyExpr: complex type" ); |
| 1019 | return RValue::get(nullptr); |
| 1020 | case cir::TEK_Aggregate: |
| 1021 | cgm.errorNYI(e->getSourceRange(), "emitAnyExpr: aggregate type" ); |
| 1022 | return RValue::get(nullptr); |
| 1023 | } |
| 1024 | llvm_unreachable("bad evaluation kind" ); |
| 1025 | } |
| 1026 | |
| 1027 | static cir::FuncOp emitFunctionDeclPointer(CIRGenModule &cgm, GlobalDecl gd) { |
| 1028 | assert(!cir::MissingFeatures::weakRefReference()); |
| 1029 | return cgm.getAddrOfFunction(gd); |
| 1030 | } |
| 1031 | |
| 1032 | // Detect the unusual situation where an inline version is shadowed by a |
| 1033 | // non-inline version. In that case we should pick the external one |
| 1034 | // everywhere. That's GCC behavior too. |
| 1035 | static bool onlyHasInlineBuiltinDeclaration(const FunctionDecl *fd) { |
| 1036 | for (const FunctionDecl *pd = fd; pd; pd = pd->getPreviousDecl()) |
| 1037 | if (!pd->isInlineBuiltinDeclaration()) |
| 1038 | return false; |
| 1039 | return true; |
| 1040 | } |
| 1041 | |
| 1042 | CIRGenCallee CIRGenFunction::emitDirectCallee(const GlobalDecl &gd) { |
| 1043 | const auto *fd = cast<FunctionDecl>(Val: gd.getDecl()); |
| 1044 | |
| 1045 | if (unsigned builtinID = fd->getBuiltinID()) { |
| 1046 | if (fd->getAttr<AsmLabelAttr>()) { |
| 1047 | cgm.errorNYI(feature: "AsmLabelAttr" ); |
| 1048 | } |
| 1049 | |
| 1050 | StringRef ident = fd->getName(); |
| 1051 | std::string fdInlineName = (ident + ".inline" ).str(); |
| 1052 | |
| 1053 | bool isPredefinedLibFunction = |
| 1054 | cgm.getASTContext().BuiltinInfo.isPredefinedLibFunction(ID: builtinID); |
| 1055 | bool hasAttributeNoBuiltin = false; |
| 1056 | assert(!cir::MissingFeatures::attributeNoBuiltin()); |
| 1057 | |
| 1058 | // When directing calling an inline builtin, call it through it's mangled |
| 1059 | // name to make it clear it's not the actual builtin. |
| 1060 | auto fn = cast<cir::FuncOp>(curFn); |
| 1061 | if (fn.getName() != fdInlineName && onlyHasInlineBuiltinDeclaration(fd)) { |
| 1062 | cgm.errorNYI(feature: "Inline only builtin function calls" ); |
| 1063 | } |
| 1064 | |
| 1065 | // Replaceable builtins provide their own implementation of a builtin. If we |
| 1066 | // are in an inline builtin implementation, avoid trivial infinite |
| 1067 | // recursion. Honor __attribute__((no_builtin("foo"))) or |
| 1068 | // __attribute__((no_builtin)) on the current function unless foo is |
| 1069 | // not a predefined library function which means we must generate the |
| 1070 | // builtin no matter what. |
| 1071 | else if (!isPredefinedLibFunction || !hasAttributeNoBuiltin) |
| 1072 | return CIRGenCallee::forBuiltin(builtinID, builtinDecl: fd); |
| 1073 | } |
| 1074 | |
| 1075 | cir::FuncOp callee = emitFunctionDeclPointer(cgm, gd); |
| 1076 | |
| 1077 | assert(!cir::MissingFeatures::hip()); |
| 1078 | |
| 1079 | return CIRGenCallee::forDirect(callee, gd); |
| 1080 | } |
| 1081 | |
| 1082 | RValue CIRGenFunction::getUndefRValue(QualType ty) { |
| 1083 | if (ty->isVoidType()) |
| 1084 | return RValue::get(nullptr); |
| 1085 | |
| 1086 | cgm.errorNYI(feature: "unsupported type for undef rvalue" ); |
| 1087 | return RValue::get(nullptr); |
| 1088 | } |
| 1089 | |
| 1090 | RValue CIRGenFunction::emitCall(clang::QualType calleeTy, |
| 1091 | const CIRGenCallee &callee, |
| 1092 | const clang::CallExpr *e, |
| 1093 | ReturnValueSlot returnValue) { |
| 1094 | // Get the actual function type. The callee type will always be a pointer to |
| 1095 | // function type or a block pointer type. |
| 1096 | assert(calleeTy->isFunctionPointerType() && |
| 1097 | "Callee must have function pointer type!" ); |
| 1098 | |
| 1099 | calleeTy = getContext().getCanonicalType(T: calleeTy); |
| 1100 | auto pointeeTy = cast<PointerType>(Val&: calleeTy)->getPointeeType(); |
| 1101 | |
| 1102 | if (getLangOpts().CPlusPlus) |
| 1103 | assert(!cir::MissingFeatures::sanitizers()); |
| 1104 | |
| 1105 | const auto *fnType = cast<FunctionType>(Val&: pointeeTy); |
| 1106 | |
| 1107 | assert(!cir::MissingFeatures::sanitizers()); |
| 1108 | |
| 1109 | CallArgList args; |
| 1110 | assert(!cir::MissingFeatures::opCallArgEvaluationOrder()); |
| 1111 | |
| 1112 | emitCallArgs(args, prototype: dyn_cast<FunctionProtoType>(Val: fnType), argRange: e->arguments(), |
| 1113 | callee: e->getDirectCallee()); |
| 1114 | |
| 1115 | const CIRGenFunctionInfo &funcInfo = |
| 1116 | cgm.getTypes().arrangeFreeFunctionCall(args, fnType); |
| 1117 | |
| 1118 | assert(!cir::MissingFeatures::opCallNoPrototypeFunc()); |
| 1119 | assert(!cir::MissingFeatures::opCallFnInfoOpts()); |
| 1120 | assert(!cir::MissingFeatures::hip()); |
| 1121 | assert(!cir::MissingFeatures::opCallMustTail()); |
| 1122 | |
| 1123 | cir::CIRCallOpInterface callOp; |
| 1124 | RValue callResult = emitCall(funcInfo, callee, returnValue, args, &callOp, |
| 1125 | getLoc(e->getExprLoc())); |
| 1126 | |
| 1127 | assert(!cir::MissingFeatures::generateDebugInfo()); |
| 1128 | |
| 1129 | return callResult; |
| 1130 | } |
| 1131 | |
| 1132 | CIRGenCallee CIRGenFunction::emitCallee(const clang::Expr *e) { |
| 1133 | e = e->IgnoreParens(); |
| 1134 | |
| 1135 | // Look through function-to-pointer decay. |
| 1136 | if (const auto *implicitCast = dyn_cast<ImplicitCastExpr>(Val: e)) { |
| 1137 | if (implicitCast->getCastKind() == CK_FunctionToPointerDecay || |
| 1138 | implicitCast->getCastKind() == CK_BuiltinFnToFnPtr) { |
| 1139 | return emitCallee(e: implicitCast->getSubExpr()); |
| 1140 | } |
| 1141 | // When performing an indirect call through a function pointer lvalue, the |
| 1142 | // function pointer lvalue is implicitly converted to an rvalue through an |
| 1143 | // lvalue-to-rvalue conversion. |
| 1144 | assert(implicitCast->getCastKind() == CK_LValueToRValue && |
| 1145 | "unexpected implicit cast on function pointers" ); |
| 1146 | } else if (const auto *declRef = dyn_cast<DeclRefExpr>(Val: e)) { |
| 1147 | // Resolve direct calls. |
| 1148 | const auto *funcDecl = cast<FunctionDecl>(Val: declRef->getDecl()); |
| 1149 | return emitDirectCallee(gd: funcDecl); |
| 1150 | } else if (isa<MemberExpr>(Val: e)) { |
| 1151 | cgm.errorNYI(e->getSourceRange(), |
| 1152 | "emitCallee: call to member function is NYI" ); |
| 1153 | return {}; |
| 1154 | } |
| 1155 | |
| 1156 | assert(!cir::MissingFeatures::opCallPseudoDtor()); |
| 1157 | |
| 1158 | // Otherwise, we have an indirect reference. |
| 1159 | mlir::Value calleePtr; |
| 1160 | QualType functionType; |
| 1161 | if (const auto *ptrType = e->getType()->getAs<clang::PointerType>()) { |
| 1162 | calleePtr = emitScalarExpr(e); |
| 1163 | functionType = ptrType->getPointeeType(); |
| 1164 | } else { |
| 1165 | functionType = e->getType(); |
| 1166 | calleePtr = emitLValue(e).getPointer(); |
| 1167 | } |
| 1168 | assert(functionType->isFunctionType()); |
| 1169 | |
| 1170 | GlobalDecl gd; |
| 1171 | if (const auto *vd = |
| 1172 | dyn_cast_or_null<VarDecl>(Val: e->getReferencedDeclOfCallee())) |
| 1173 | gd = GlobalDecl(vd); |
| 1174 | |
| 1175 | CIRGenCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), gd); |
| 1176 | CIRGenCallee callee(calleeInfo, calleePtr.getDefiningOp()); |
| 1177 | return callee; |
| 1178 | } |
| 1179 | |
| 1180 | RValue CIRGenFunction::emitCallExpr(const clang::CallExpr *e, |
| 1181 | ReturnValueSlot returnValue) { |
| 1182 | assert(!cir::MissingFeatures::objCBlocks()); |
| 1183 | |
| 1184 | if (const auto *ce = dyn_cast<CXXMemberCallExpr>(Val: e)) |
| 1185 | return emitCXXMemberCallExpr(e: ce, returnValue); |
| 1186 | |
| 1187 | if (isa<CUDAKernelCallExpr>(Val: e)) { |
| 1188 | cgm.errorNYI(e->getSourceRange(), "call to CUDA kernel" ); |
| 1189 | return RValue::get(nullptr); |
| 1190 | } |
| 1191 | |
| 1192 | if (const auto *operatorCall = dyn_cast<CXXOperatorCallExpr>(Val: e)) { |
| 1193 | // If the callee decl is a CXXMethodDecl, we need to emit this as a C++ |
| 1194 | // operator member call. |
| 1195 | if (const CXXMethodDecl *md = |
| 1196 | dyn_cast_or_null<CXXMethodDecl>(operatorCall->getCalleeDecl())) |
| 1197 | return emitCXXOperatorMemberCallExpr(e: operatorCall, md, returnValue); |
| 1198 | // A CXXOperatorCallExpr is created even for explicit object methods, but |
| 1199 | // these should be treated like static function calls. Fall through to do |
| 1200 | // that. |
| 1201 | } |
| 1202 | |
| 1203 | CIRGenCallee callee = emitCallee(e: e->getCallee()); |
| 1204 | |
| 1205 | if (callee.isBuiltin()) |
| 1206 | return emitBuiltinExpr(gd: callee.getBuiltinDecl(), builtinID: callee.getBuiltinID(), e, |
| 1207 | returnValue); |
| 1208 | |
| 1209 | if (isa<CXXPseudoDestructorExpr>(Val: e->getCallee())) { |
| 1210 | cgm.errorNYI(e->getSourceRange(), "call to pseudo destructor" ); |
| 1211 | } |
| 1212 | assert(!cir::MissingFeatures::opCallPseudoDtor()); |
| 1213 | |
| 1214 | return emitCall(calleeTy: e->getCallee()->getType(), callee, e, returnValue); |
| 1215 | } |
| 1216 | |
| 1217 | /// Emit code to compute the specified expression, ignoring the result. |
| 1218 | void CIRGenFunction::emitIgnoredExpr(const Expr *e) { |
| 1219 | if (e->isPRValue()) { |
| 1220 | assert(!cir::MissingFeatures::aggValueSlot()); |
| 1221 | emitAnyExpr(e); |
| 1222 | return; |
| 1223 | } |
| 1224 | |
| 1225 | // Just emit it as an l-value and drop the result. |
| 1226 | emitLValue(e); |
| 1227 | } |
| 1228 | |
| 1229 | Address CIRGenFunction::emitArrayToPointerDecay(const Expr *e) { |
| 1230 | assert(e->getType()->isArrayType() && |
| 1231 | "Array to pointer decay must have array source type!" ); |
| 1232 | |
| 1233 | // Expressions of array type can't be bitfields or vector elements. |
| 1234 | LValue lv = emitLValue(e); |
| 1235 | Address addr = lv.getAddress(); |
| 1236 | |
| 1237 | // If the array type was an incomplete type, we need to make sure |
| 1238 | // the decay ends up being the right type. |
| 1239 | auto lvalueAddrTy = mlir::cast<cir::PointerType>(addr.getPointer().getType()); |
| 1240 | |
| 1241 | if (e->getType()->isVariableArrayType()) |
| 1242 | return addr; |
| 1243 | |
| 1244 | auto pointeeTy = mlir::cast<cir::ArrayType>(lvalueAddrTy.getPointee()); |
| 1245 | |
| 1246 | mlir::Type arrayTy = convertType(e->getType()); |
| 1247 | assert(mlir::isa<cir::ArrayType>(arrayTy) && "expected array" ); |
| 1248 | assert(pointeeTy == arrayTy); |
| 1249 | |
| 1250 | // The result of this decay conversion points to an array element within the |
| 1251 | // base lvalue. However, since TBAA currently does not support representing |
| 1252 | // accesses to elements of member arrays, we conservatively represent accesses |
| 1253 | // to the pointee object as if it had no any base lvalue specified. |
| 1254 | // TODO: Support TBAA for member arrays. |
| 1255 | QualType eltType = e->getType()->castAsArrayTypeUnsafe()->getElementType(); |
| 1256 | assert(!cir::MissingFeatures::opTBAA()); |
| 1257 | |
| 1258 | mlir::Value ptr = builder.maybeBuildArrayDecay( |
| 1259 | cgm.getLoc(e->getSourceRange()), addr.getPointer(), |
| 1260 | convertTypeForMem(eltType)); |
| 1261 | return Address(ptr, addr.getAlignment()); |
| 1262 | } |
| 1263 | |
| 1264 | /// Emit an `if` on a boolean condition, filling `then` and `else` into |
| 1265 | /// appropriated regions. |
| 1266 | mlir::LogicalResult CIRGenFunction::emitIfOnBoolExpr(const Expr *cond, |
| 1267 | const Stmt *thenS, |
| 1268 | const Stmt *elseS) { |
| 1269 | mlir::Location thenLoc = getLoc(thenS->getSourceRange()); |
| 1270 | std::optional<mlir::Location> elseLoc; |
| 1271 | if (elseS) |
| 1272 | elseLoc = getLoc(elseS->getSourceRange()); |
| 1273 | |
| 1274 | mlir::LogicalResult resThen = mlir::success(), resElse = mlir::success(); |
| 1275 | emitIfOnBoolExpr( |
| 1276 | cond, /*thenBuilder=*/ |
| 1277 | [&](mlir::OpBuilder &, mlir::Location) { |
| 1278 | LexicalScope lexScope{*this, thenLoc, builder.getInsertionBlock()}; |
| 1279 | resThen = emitStmt(thenS, /*useCurrentScope=*/true); |
| 1280 | }, |
| 1281 | thenLoc, |
| 1282 | /*elseBuilder=*/ |
| 1283 | [&](mlir::OpBuilder &, mlir::Location) { |
| 1284 | assert(elseLoc && "Invalid location for elseS." ); |
| 1285 | LexicalScope lexScope{*this, *elseLoc, builder.getInsertionBlock()}; |
| 1286 | resElse = emitStmt(elseS, /*useCurrentScope=*/true); |
| 1287 | }, |
| 1288 | elseLoc); |
| 1289 | |
| 1290 | return mlir::LogicalResult::success(resThen.succeeded() && |
| 1291 | resElse.succeeded()); |
| 1292 | } |
| 1293 | |
| 1294 | /// Emit an `if` on a boolean condition, filling `then` and `else` into |
| 1295 | /// appropriated regions. |
| 1296 | cir::IfOp CIRGenFunction::emitIfOnBoolExpr( |
| 1297 | const clang::Expr *cond, BuilderCallbackRef thenBuilder, |
| 1298 | mlir::Location thenLoc, BuilderCallbackRef elseBuilder, |
| 1299 | std::optional<mlir::Location> elseLoc) { |
| 1300 | // Attempt to be as accurate as possible with IfOp location, generate |
| 1301 | // one fused location that has either 2 or 4 total locations, depending |
| 1302 | // on else's availability. |
| 1303 | SmallVector<mlir::Location, 2> ifLocs{thenLoc}; |
| 1304 | if (elseLoc) |
| 1305 | ifLocs.push_back(*elseLoc); |
| 1306 | mlir::Location loc = mlir::FusedLoc::get(&getMLIRContext(), ifLocs); |
| 1307 | |
| 1308 | // Emit the code with the fully general case. |
| 1309 | mlir::Value condV = emitOpOnBoolExpr(loc, cond); |
| 1310 | return builder.create<cir::IfOp>(loc, condV, elseLoc.has_value(), |
| 1311 | /*thenBuilder=*/thenBuilder, |
| 1312 | /*elseBuilder=*/elseBuilder); |
| 1313 | } |
| 1314 | |
| 1315 | /// TODO(cir): see EmitBranchOnBoolExpr for extra ideas). |
| 1316 | mlir::Value CIRGenFunction::emitOpOnBoolExpr(mlir::Location loc, |
| 1317 | const Expr *cond) { |
| 1318 | assert(!cir::MissingFeatures::pgoUse()); |
| 1319 | assert(!cir::MissingFeatures::generateDebugInfo()); |
| 1320 | cond = cond->IgnoreParens(); |
| 1321 | |
| 1322 | // In LLVM the condition is reversed here for efficient codegen. |
| 1323 | // This should be done in CIR prior to LLVM lowering, if we do now |
| 1324 | // we can make CIR based diagnostics misleading. |
| 1325 | // cir.ternary(!x, t, f) -> cir.ternary(x, f, t) |
| 1326 | assert(!cir::MissingFeatures::shouldReverseUnaryCondOnBoolExpr()); |
| 1327 | |
| 1328 | if (const ConditionalOperator *condOp = dyn_cast<ConditionalOperator>(Val: cond)) { |
| 1329 | Expr *trueExpr = condOp->getTrueExpr(); |
| 1330 | Expr *falseExpr = condOp->getFalseExpr(); |
| 1331 | mlir::Value condV = emitOpOnBoolExpr(loc, condOp->getCond()); |
| 1332 | |
| 1333 | mlir::Value ternaryOpRes = |
| 1334 | builder |
| 1335 | .create<cir::TernaryOp>( |
| 1336 | loc, condV, /*thenBuilder=*/ |
| 1337 | [this, trueExpr](mlir::OpBuilder &b, mlir::Location loc) { |
| 1338 | mlir::Value lhs = emitScalarExpr(trueExpr); |
| 1339 | b.create<cir::YieldOp>(loc, lhs); |
| 1340 | }, |
| 1341 | /*elseBuilder=*/ |
| 1342 | [this, falseExpr](mlir::OpBuilder &b, mlir::Location loc) { |
| 1343 | mlir::Value rhs = emitScalarExpr(falseExpr); |
| 1344 | b.create<cir::YieldOp>(loc, rhs); |
| 1345 | }) |
| 1346 | .getResult(); |
| 1347 | |
| 1348 | return emitScalarConversion(ternaryOpRes, condOp->getType(), |
| 1349 | getContext().BoolTy, condOp->getExprLoc()); |
| 1350 | } |
| 1351 | |
| 1352 | if (isa<CXXThrowExpr>(Val: cond)) { |
| 1353 | cgm.errorNYI(feature: "NYI" ); |
| 1354 | return createDummyValue(loc, cond->getType()); |
| 1355 | } |
| 1356 | |
| 1357 | // If the branch has a condition wrapped by __builtin_unpredictable, |
| 1358 | // create metadata that specifies that the branch is unpredictable. |
| 1359 | // Don't bother if not optimizing because that metadata would not be used. |
| 1360 | assert(!cir::MissingFeatures::insertBuiltinUnpredictable()); |
| 1361 | |
| 1362 | // Emit the code with the fully general case. |
| 1363 | return evaluateExprAsBool(cond); |
| 1364 | } |
| 1365 | |
| 1366 | mlir::Value CIRGenFunction::emitAlloca(StringRef name, mlir::Type ty, |
| 1367 | mlir::Location loc, CharUnits alignment, |
| 1368 | bool insertIntoFnEntryBlock, |
| 1369 | mlir::Value arraySize) { |
| 1370 | mlir::Block *entryBlock = insertIntoFnEntryBlock |
| 1371 | ? getCurFunctionEntryBlock() |
| 1372 | : curLexScope->getEntryBlock(); |
| 1373 | |
| 1374 | // If this is an alloca in the entry basic block of a cir.try and there's |
| 1375 | // a surrounding cir.scope, make sure the alloca ends up in the surrounding |
| 1376 | // scope instead. This is necessary in order to guarantee all SSA values are |
| 1377 | // reachable during cleanups. |
| 1378 | assert(!cir::MissingFeatures::tryOp()); |
| 1379 | |
| 1380 | return emitAlloca(name, ty, loc, alignment, |
| 1381 | builder.getBestAllocaInsertPoint(entryBlock), arraySize); |
| 1382 | } |
| 1383 | |
| 1384 | mlir::Value CIRGenFunction::emitAlloca(StringRef name, mlir::Type ty, |
| 1385 | mlir::Location loc, CharUnits alignment, |
| 1386 | mlir::OpBuilder::InsertPoint ip, |
| 1387 | mlir::Value arraySize) { |
| 1388 | // CIR uses its own alloca address space rather than follow the target data |
| 1389 | // layout like original CodeGen. The data layout awareness should be done in |
| 1390 | // the lowering pass instead. |
| 1391 | assert(!cir::MissingFeatures::addressSpace()); |
| 1392 | cir::PointerType localVarPtrTy = builder.getPointerTo(ty); |
| 1393 | mlir::IntegerAttr alignIntAttr = cgm.getSize(alignment); |
| 1394 | |
| 1395 | mlir::Value addr; |
| 1396 | { |
| 1397 | mlir::OpBuilder::InsertionGuard guard(builder); |
| 1398 | builder.restoreInsertionPoint(ip); |
| 1399 | addr = builder.createAlloca(loc, /*addr type*/ localVarPtrTy, |
| 1400 | /*var type*/ ty, name, alignIntAttr); |
| 1401 | assert(!cir::MissingFeatures::astVarDeclInterface()); |
| 1402 | } |
| 1403 | return addr; |
| 1404 | } |
| 1405 | |
| 1406 | // Note: this function also emit constructor calls to support a MSVC extensions |
| 1407 | // allowing explicit constructor function call. |
| 1408 | RValue CIRGenFunction::emitCXXMemberCallExpr(const CXXMemberCallExpr *ce, |
| 1409 | ReturnValueSlot returnValue) { |
| 1410 | const Expr *callee = ce->getCallee()->IgnoreParens(); |
| 1411 | |
| 1412 | if (isa<BinaryOperator>(Val: callee)) { |
| 1413 | cgm.errorNYI(ce->getSourceRange(), |
| 1414 | "emitCXXMemberCallExpr: C++ binary operator" ); |
| 1415 | return RValue::get(nullptr); |
| 1416 | } |
| 1417 | |
| 1418 | const auto *me = cast<MemberExpr>(Val: callee); |
| 1419 | const auto *md = cast<CXXMethodDecl>(me->getMemberDecl()); |
| 1420 | |
| 1421 | if (md->isStatic()) { |
| 1422 | cgm.errorNYI(ce->getSourceRange(), "emitCXXMemberCallExpr: static method" ); |
| 1423 | return RValue::get(nullptr); |
| 1424 | } |
| 1425 | |
| 1426 | bool hasQualifier = me->hasQualifier(); |
| 1427 | NestedNameSpecifier *qualifier = hasQualifier ? me->getQualifier() : nullptr; |
| 1428 | bool isArrow = me->isArrow(); |
| 1429 | const Expr *base = me->getBase(); |
| 1430 | |
| 1431 | return emitCXXMemberOrOperatorMemberCallExpr( |
| 1432 | ce, md: md, returnValue, hasQualifier, qualifier, isArrow, base); |
| 1433 | } |
| 1434 | |
| 1435 | void CIRGenFunction::emitCXXConstructExpr(const CXXConstructExpr *e, |
| 1436 | AggValueSlot dest) { |
| 1437 | assert(!dest.isIgnored() && "Must have a destination!" ); |
| 1438 | const CXXConstructorDecl *cd = e->getConstructor(); |
| 1439 | |
| 1440 | // If we require zero initialization before (or instead of) calling the |
| 1441 | // constructor, as can be the case with a non-user-provided default |
| 1442 | // constructor, emit the zero initialization now, unless destination is |
| 1443 | // already zeroed. |
| 1444 | if (e->requiresZeroInitialization() && !dest.isZeroed()) { |
| 1445 | cgm.errorNYI(e->getSourceRange(), |
| 1446 | "emitCXXConstructExpr: requires initialization" ); |
| 1447 | return; |
| 1448 | } |
| 1449 | |
| 1450 | // If this is a call to a trivial default constructor: |
| 1451 | // In LLVM: do nothing. |
| 1452 | // In CIR: emit as a regular call, other later passes should lower the |
| 1453 | // ctor call into trivial initialization. |
| 1454 | |
| 1455 | // Elide the constructor if we're constructing from a temporary |
| 1456 | if (getLangOpts().ElideConstructors && e->isElidable()) { |
| 1457 | cgm.errorNYI(e->getSourceRange(), |
| 1458 | "emitCXXConstructExpr: elidable constructor" ); |
| 1459 | return; |
| 1460 | } |
| 1461 | |
| 1462 | if (getContext().getAsArrayType(T: e->getType())) { |
| 1463 | cgm.errorNYI(e->getSourceRange(), "emitCXXConstructExpr: array type" ); |
| 1464 | return; |
| 1465 | } |
| 1466 | |
| 1467 | clang::CXXCtorType type = Ctor_Complete; |
| 1468 | bool forVirtualBase = false; |
| 1469 | bool delegating = false; |
| 1470 | |
| 1471 | switch (e->getConstructionKind()) { |
| 1472 | case CXXConstructionKind::Complete: |
| 1473 | type = Ctor_Complete; |
| 1474 | break; |
| 1475 | case CXXConstructionKind::Delegating: |
| 1476 | case CXXConstructionKind::VirtualBase: |
| 1477 | case CXXConstructionKind::NonVirtualBase: |
| 1478 | cgm.errorNYI(e->getSourceRange(), |
| 1479 | "emitCXXConstructExpr: other construction kind" ); |
| 1480 | return; |
| 1481 | } |
| 1482 | |
| 1483 | emitCXXConstructorCall(d: cd, type, forVirtualBase, delegating, thisAVS: dest, e); |
| 1484 | } |
| 1485 | |
| 1486 | RValue CIRGenFunction::emitReferenceBindingToExpr(const Expr *e) { |
| 1487 | // Emit the expression as an lvalue. |
| 1488 | LValue lv = emitLValue(e); |
| 1489 | assert(lv.isSimple()); |
| 1490 | mlir::Value value = lv.getPointer(); |
| 1491 | |
| 1492 | assert(!cir::MissingFeatures::sanitizers()); |
| 1493 | |
| 1494 | return RValue::get(value); |
| 1495 | } |
| 1496 | |
| 1497 | Address CIRGenFunction::emitLoadOfReference(LValue refLVal, mlir::Location loc, |
| 1498 | LValueBaseInfo *pointeeBaseInfo) { |
| 1499 | if (refLVal.isVolatile()) |
| 1500 | cgm.errorNYI(loc, "load of volatile reference" ); |
| 1501 | |
| 1502 | cir::LoadOp load = |
| 1503 | builder.create<cir::LoadOp>(loc, refLVal.getAddress().getElementType(), |
| 1504 | refLVal.getAddress().getPointer()); |
| 1505 | |
| 1506 | assert(!cir::MissingFeatures::opTBAA()); |
| 1507 | |
| 1508 | QualType pointeeType = refLVal.getType()->getPointeeType(); |
| 1509 | CharUnits align = cgm.getNaturalTypeAlignment(t: pointeeType, baseInfo: pointeeBaseInfo); |
| 1510 | return Address(load, convertTypeForMem(pointeeType), align); |
| 1511 | } |
| 1512 | |
| 1513 | LValue CIRGenFunction::emitLoadOfReferenceLValue(Address refAddr, |
| 1514 | mlir::Location loc, |
| 1515 | QualType refTy, |
| 1516 | AlignmentSource source) { |
| 1517 | LValue refLVal = makeAddrLValue(addr: refAddr, ty: refTy, baseInfo: LValueBaseInfo(source)); |
| 1518 | LValueBaseInfo pointeeBaseInfo; |
| 1519 | assert(!cir::MissingFeatures::opTBAA()); |
| 1520 | Address pointeeAddr = emitLoadOfReference(refLVal, loc, &pointeeBaseInfo); |
| 1521 | return makeAddrLValue(addr: pointeeAddr, ty: refLVal.getType()->getPointeeType(), |
| 1522 | baseInfo: pointeeBaseInfo); |
| 1523 | } |
| 1524 | |
| 1525 | mlir::Value CIRGenFunction::createDummyValue(mlir::Location loc, |
| 1526 | clang::QualType qt) { |
| 1527 | mlir::Type t = convertType(qt); |
| 1528 | CharUnits alignment = getContext().getTypeAlignInChars(T: qt); |
| 1529 | return builder.createDummyValue(loc, t, alignment); |
| 1530 | } |
| 1531 | |
| 1532 | //===----------------------------------------------------------------------===// |
| 1533 | // CIR builder helpers |
| 1534 | //===----------------------------------------------------------------------===// |
| 1535 | |
| 1536 | Address CIRGenFunction::createMemTemp(QualType ty, mlir::Location loc, |
| 1537 | const Twine &name, Address *alloca, |
| 1538 | mlir::OpBuilder::InsertPoint ip) { |
| 1539 | // FIXME: Should we prefer the preferred type alignment here? |
| 1540 | return createMemTemp(ty, getContext().getTypeAlignInChars(ty), loc, name, |
| 1541 | alloca, ip); |
| 1542 | } |
| 1543 | |
| 1544 | Address CIRGenFunction::createMemTemp(QualType ty, CharUnits align, |
| 1545 | mlir::Location loc, const Twine &name, |
| 1546 | Address *alloca, |
| 1547 | mlir::OpBuilder::InsertPoint ip) { |
| 1548 | Address result = createTempAlloca(convertTypeForMem(ty), align, loc, name, |
| 1549 | /*ArraySize=*/nullptr, alloca, ip); |
| 1550 | if (ty->isConstantMatrixType()) { |
| 1551 | assert(!cir::MissingFeatures::matrixType()); |
| 1552 | cgm.errorNYI(loc, "temporary matrix value" ); |
| 1553 | } |
| 1554 | return result; |
| 1555 | } |
| 1556 | |
| 1557 | /// This creates a alloca and inserts it into the entry block of the |
| 1558 | /// current region. |
| 1559 | Address CIRGenFunction::createTempAllocaWithoutCast( |
| 1560 | mlir::Type ty, CharUnits align, mlir::Location loc, const Twine &name, |
| 1561 | mlir::Value arraySize, mlir::OpBuilder::InsertPoint ip) { |
| 1562 | cir::AllocaOp alloca = ip.isSet() |
| 1563 | ? createTempAlloca(ty, loc, name, ip, arraySize) |
| 1564 | : createTempAlloca(ty, loc, name, arraySize); |
| 1565 | alloca.setAlignmentAttr(cgm.getSize(align)); |
| 1566 | return Address(alloca, ty, align); |
| 1567 | } |
| 1568 | |
| 1569 | /// This creates a alloca and inserts it into the entry block. The alloca is |
| 1570 | /// casted to default address space if necessary. |
| 1571 | Address CIRGenFunction::createTempAlloca(mlir::Type ty, CharUnits align, |
| 1572 | mlir::Location loc, const Twine &name, |
| 1573 | mlir::Value arraySize, |
| 1574 | Address *allocaAddr, |
| 1575 | mlir::OpBuilder::InsertPoint ip) { |
| 1576 | Address alloca = |
| 1577 | createTempAllocaWithoutCast(ty, align, loc, name, arraySize, ip); |
| 1578 | if (allocaAddr) |
| 1579 | *allocaAddr = alloca; |
| 1580 | mlir::Value v = alloca.getPointer(); |
| 1581 | // Alloca always returns a pointer in alloca address space, which may |
| 1582 | // be different from the type defined by the language. For example, |
| 1583 | // in C++ the auto variables are in the default address space. Therefore |
| 1584 | // cast alloca to the default address space when necessary. |
| 1585 | assert(!cir::MissingFeatures::addressSpace()); |
| 1586 | return Address(v, ty, align); |
| 1587 | } |
| 1588 | |
| 1589 | /// This creates an alloca and inserts it into the entry block if \p ArraySize |
| 1590 | /// is nullptr, otherwise inserts it at the current insertion point of the |
| 1591 | /// builder. |
| 1592 | cir::AllocaOp CIRGenFunction::createTempAlloca(mlir::Type ty, |
| 1593 | mlir::Location loc, |
| 1594 | const Twine &name, |
| 1595 | mlir::Value arraySize, |
| 1596 | bool insertIntoFnEntryBlock) { |
| 1597 | return cast<cir::AllocaOp>(emitAlloca(name.str(), ty, loc, CharUnits(), |
| 1598 | insertIntoFnEntryBlock, arraySize) |
| 1599 | .getDefiningOp()); |
| 1600 | } |
| 1601 | |
| 1602 | /// This creates an alloca and inserts it into the provided insertion point |
| 1603 | cir::AllocaOp CIRGenFunction::createTempAlloca(mlir::Type ty, |
| 1604 | mlir::Location loc, |
| 1605 | const Twine &name, |
| 1606 | mlir::OpBuilder::InsertPoint ip, |
| 1607 | mlir::Value arraySize) { |
| 1608 | assert(ip.isSet() && "Insertion point is not set" ); |
| 1609 | return cast<cir::AllocaOp>( |
| 1610 | emitAlloca(name.str(), ty, loc, CharUnits(), ip, arraySize) |
| 1611 | .getDefiningOp()); |
| 1612 | } |
| 1613 | |
| 1614 | /// Try to emit a reference to the given value without producing it as |
| 1615 | /// an l-value. For many cases, this is just an optimization, but it avoids |
| 1616 | /// us needing to emit global copies of variables if they're named without |
| 1617 | /// triggering a formal use in a context where we can't emit a direct |
| 1618 | /// reference to them, for instance if a block or lambda or a member of a |
| 1619 | /// local class uses a const int variable or constexpr variable from an |
| 1620 | /// enclosing function. |
| 1621 | /// |
| 1622 | /// For named members of enums, this is the only way they are emitted. |
| 1623 | CIRGenFunction::ConstantEmission |
| 1624 | CIRGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { |
| 1625 | ValueDecl *value = refExpr->getDecl(); |
| 1626 | |
| 1627 | // There is a lot more to do here, but for now only EnumConstantDecl is |
| 1628 | // supported. |
| 1629 | assert(!cir::MissingFeatures::tryEmitAsConstant()); |
| 1630 | |
| 1631 | // The value needs to be an enum constant or a constant variable. |
| 1632 | if (!isa<EnumConstantDecl>(Val: value)) |
| 1633 | return ConstantEmission(); |
| 1634 | |
| 1635 | Expr::EvalResult result; |
| 1636 | if (!refExpr->EvaluateAsRValue(result, getContext())) |
| 1637 | return ConstantEmission(); |
| 1638 | |
| 1639 | QualType resultType = refExpr->getType(); |
| 1640 | |
| 1641 | // As long as we're only handling EnumConstantDecl, there should be no |
| 1642 | // side-effects. |
| 1643 | assert(!result.HasSideEffects); |
| 1644 | |
| 1645 | // Emit as a constant. |
| 1646 | // FIXME(cir): have emitAbstract build a TypedAttr instead (this requires |
| 1647 | // somewhat heavy refactoring...) |
| 1648 | mlir::Attribute c = ConstantEmitter(*this).emitAbstract( |
| 1649 | refExpr->getLocation(), result.Val, resultType); |
| 1650 | mlir::TypedAttr cstToEmit = mlir::dyn_cast_if_present<mlir::TypedAttr>(c); |
| 1651 | assert(cstToEmit && "expected a typed attribute" ); |
| 1652 | |
| 1653 | assert(!cir::MissingFeatures::generateDebugInfo()); |
| 1654 | |
| 1655 | return ConstantEmission::forValue(cstToEmit); |
| 1656 | } |
| 1657 | |
| 1658 | mlir::Value CIRGenFunction::emitScalarConstant( |
| 1659 | const CIRGenFunction::ConstantEmission &constant, Expr *e) { |
| 1660 | assert(constant && "not a constant" ); |
| 1661 | if (constant.isReference()) { |
| 1662 | cgm.errorNYI(e->getSourceRange(), "emitScalarConstant: reference" ); |
| 1663 | return {}; |
| 1664 | } |
| 1665 | return builder.getConstant(getLoc(e->getSourceRange()), constant.getValue()); |
| 1666 | } |
| 1667 | |