| 1 | //===----------------------------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Internal per-function state used for AST-to-ClangIR code gen |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "CIRGenFunction.h" |
| 14 | |
| 15 | #include "CIRGenCXXABI.h" |
| 16 | #include "CIRGenCall.h" |
| 17 | #include "CIRGenValue.h" |
| 18 | #include "mlir/IR/Location.h" |
| 19 | #include "clang/AST/ExprCXX.h" |
| 20 | #include "clang/AST/GlobalDecl.h" |
| 21 | #include "clang/CIR/MissingFeatures.h" |
| 22 | |
| 23 | #include <cassert> |
| 24 | |
| 25 | namespace clang::CIRGen { |
| 26 | |
| 27 | CIRGenFunction::CIRGenFunction(CIRGenModule &cgm, CIRGenBuilderTy &builder, |
| 28 | bool suppressNewContext) |
| 29 | : CIRGenTypeCache(cgm), cgm{cgm}, builder(builder) {} |
| 30 | |
| 31 | CIRGenFunction::~CIRGenFunction() {} |
| 32 | |
| 33 | // This is copied from clang/lib/CodeGen/CodeGenFunction.cpp |
| 34 | cir::TypeEvaluationKind CIRGenFunction::getEvaluationKind(QualType type) { |
| 35 | type = type.getCanonicalType(); |
| 36 | while (true) { |
| 37 | switch (type->getTypeClass()) { |
| 38 | #define TYPE(name, parent) |
| 39 | #define ABSTRACT_TYPE(name, parent) |
| 40 | #define NON_CANONICAL_TYPE(name, parent) case Type::name: |
| 41 | #define DEPENDENT_TYPE(name, parent) case Type::name: |
| 42 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: |
| 43 | #include "clang/AST/TypeNodes.inc" |
| 44 | llvm_unreachable("non-canonical or dependent type in IR-generation" ); |
| 45 | |
| 46 | case Type::Auto: |
| 47 | case Type::DeducedTemplateSpecialization: |
| 48 | llvm_unreachable("undeduced type in IR-generation" ); |
| 49 | |
| 50 | // Various scalar types. |
| 51 | case Type::Builtin: |
| 52 | case Type::Pointer: |
| 53 | case Type::BlockPointer: |
| 54 | case Type::LValueReference: |
| 55 | case Type::RValueReference: |
| 56 | case Type::MemberPointer: |
| 57 | case Type::Vector: |
| 58 | case Type::ExtVector: |
| 59 | case Type::ConstantMatrix: |
| 60 | case Type::FunctionProto: |
| 61 | case Type::FunctionNoProto: |
| 62 | case Type::Enum: |
| 63 | case Type::ObjCObjectPointer: |
| 64 | case Type::Pipe: |
| 65 | case Type::BitInt: |
| 66 | case Type::HLSLAttributedResource: |
| 67 | case Type::HLSLInlineSpirv: |
| 68 | return cir::TEK_Scalar; |
| 69 | |
| 70 | // Complexes. |
| 71 | case Type::Complex: |
| 72 | return cir::TEK_Complex; |
| 73 | |
| 74 | // Arrays, records, and Objective-C objects. |
| 75 | case Type::ConstantArray: |
| 76 | case Type::IncompleteArray: |
| 77 | case Type::VariableArray: |
| 78 | case Type::Record: |
| 79 | case Type::ObjCObject: |
| 80 | case Type::ObjCInterface: |
| 81 | case Type::ArrayParameter: |
| 82 | return cir::TEK_Aggregate; |
| 83 | |
| 84 | // We operate on atomic values according to their underlying type. |
| 85 | case Type::Atomic: |
| 86 | type = cast<AtomicType>(type)->getValueType(); |
| 87 | continue; |
| 88 | } |
| 89 | llvm_unreachable("unknown type kind!" ); |
| 90 | } |
| 91 | } |
| 92 | |
| 93 | mlir::Type CIRGenFunction::convertTypeForMem(QualType t) { |
| 94 | return cgm.getTypes().convertTypeForMem(t); |
| 95 | } |
| 96 | |
| 97 | mlir::Type CIRGenFunction::convertType(QualType t) { |
| 98 | return cgm.getTypes().convertType(t); |
| 99 | } |
| 100 | |
| 101 | mlir::Location CIRGenFunction::getLoc(SourceLocation srcLoc) { |
| 102 | // Some AST nodes might contain invalid source locations (e.g. |
| 103 | // CXXDefaultArgExpr), workaround that to still get something out. |
| 104 | if (srcLoc.isValid()) { |
| 105 | const SourceManager &sm = getContext().getSourceManager(); |
| 106 | PresumedLoc pLoc = sm.getPresumedLoc(Loc: srcLoc); |
| 107 | StringRef filename = pLoc.getFilename(); |
| 108 | return mlir::FileLineColLoc::get(builder.getStringAttr(filename), |
| 109 | pLoc.getLine(), pLoc.getColumn()); |
| 110 | } |
| 111 | // Do our best... |
| 112 | assert(currSrcLoc && "expected to inherit some source location" ); |
| 113 | return *currSrcLoc; |
| 114 | } |
| 115 | |
| 116 | mlir::Location CIRGenFunction::getLoc(SourceRange srcLoc) { |
| 117 | // Some AST nodes might contain invalid source locations (e.g. |
| 118 | // CXXDefaultArgExpr), workaround that to still get something out. |
| 119 | if (srcLoc.isValid()) { |
| 120 | mlir::Location beg = getLoc(srcLoc.getBegin()); |
| 121 | mlir::Location end = getLoc(srcLoc.getEnd()); |
| 122 | SmallVector<mlir::Location, 2> locs = {beg, end}; |
| 123 | mlir::Attribute metadata; |
| 124 | return mlir::FusedLoc::get(locs, metadata, &getMLIRContext()); |
| 125 | } |
| 126 | if (currSrcLoc) { |
| 127 | return *currSrcLoc; |
| 128 | } |
| 129 | // We're brave, but time to give up. |
| 130 | return builder.getUnknownLoc(); |
| 131 | } |
| 132 | |
| 133 | mlir::Location CIRGenFunction::getLoc(mlir::Location lhs, mlir::Location rhs) { |
| 134 | SmallVector<mlir::Location, 2> locs = {lhs, rhs}; |
| 135 | mlir::Attribute metadata; |
| 136 | return mlir::FusedLoc::get(locs, metadata, &getMLIRContext()); |
| 137 | } |
| 138 | |
| 139 | bool CIRGenFunction::containsLabel(const Stmt *s, bool ignoreCaseStmts) { |
| 140 | // Null statement, not a label! |
| 141 | if (!s) |
| 142 | return false; |
| 143 | |
| 144 | // If this is a label, we have to emit the code, consider something like: |
| 145 | // if (0) { ... foo: bar(); } goto foo; |
| 146 | // |
| 147 | // TODO: If anyone cared, we could track __label__'s, since we know that you |
| 148 | // can't jump to one from outside their declared region. |
| 149 | if (isa<LabelStmt>(s)) |
| 150 | return true; |
| 151 | |
| 152 | // If this is a case/default statement, and we haven't seen a switch, we |
| 153 | // have to emit the code. |
| 154 | if (isa<SwitchCase>(s) && !ignoreCaseStmts) |
| 155 | return true; |
| 156 | |
| 157 | // If this is a switch statement, we want to ignore case statements when we |
| 158 | // recursively process the sub-statements of the switch. If we haven't |
| 159 | // encountered a switch statement, we treat case statements like labels, but |
| 160 | // if we are processing a switch statement, case statements are expected. |
| 161 | if (isa<SwitchStmt>(s)) |
| 162 | ignoreCaseStmts = true; |
| 163 | |
| 164 | // Scan subexpressions for verboten labels. |
| 165 | return std::any_of(s->child_begin(), s->child_end(), |
| 166 | [=](const Stmt *subStmt) { |
| 167 | return containsLabel(s: subStmt, ignoreCaseStmts); |
| 168 | }); |
| 169 | } |
| 170 | |
| 171 | /// If the specified expression does not fold to a constant, or if it does but |
| 172 | /// contains a label, return false. If it constant folds return true and set |
| 173 | /// the boolean result in Result. |
| 174 | bool CIRGenFunction::constantFoldsToBool(const Expr *cond, bool &resultBool, |
| 175 | bool allowLabels) { |
| 176 | llvm::APSInt resultInt; |
| 177 | if (!constantFoldsToSimpleInteger(cond, resultInt, allowLabels)) |
| 178 | return false; |
| 179 | |
| 180 | resultBool = resultInt.getBoolValue(); |
| 181 | return true; |
| 182 | } |
| 183 | |
| 184 | /// If the specified expression does not fold to a constant, or if it does |
| 185 | /// fold but contains a label, return false. If it constant folds, return |
| 186 | /// true and set the folded value. |
| 187 | bool CIRGenFunction::constantFoldsToSimpleInteger(const Expr *cond, |
| 188 | llvm::APSInt &resultInt, |
| 189 | bool allowLabels) { |
| 190 | // FIXME: Rename and handle conversion of other evaluatable things |
| 191 | // to bool. |
| 192 | Expr::EvalResult result; |
| 193 | if (!cond->EvaluateAsInt(Result&: result, Ctx: getContext())) |
| 194 | return false; // Not foldable, not integer or not fully evaluatable. |
| 195 | |
| 196 | llvm::APSInt intValue = result.Val.getInt(); |
| 197 | if (!allowLabels && containsLabel(cond)) |
| 198 | return false; // Contains a label. |
| 199 | |
| 200 | resultInt = intValue; |
| 201 | return true; |
| 202 | } |
| 203 | |
| 204 | void CIRGenFunction::emitAndUpdateRetAlloca(QualType type, mlir::Location loc, |
| 205 | CharUnits alignment) { |
| 206 | if (!type->isVoidType()) { |
| 207 | fnRetAlloca = emitAlloca("__retval" , convertType(type), loc, alignment, |
| 208 | /*insertIntoFnEntryBlock=*/false); |
| 209 | } |
| 210 | } |
| 211 | |
| 212 | void CIRGenFunction::declare(mlir::Value addrVal, const Decl *var, QualType ty, |
| 213 | mlir::Location loc, CharUnits alignment, |
| 214 | bool isParam) { |
| 215 | const auto *namedVar = dyn_cast_or_null<NamedDecl>(var); |
| 216 | assert(namedVar && "Needs a named decl" ); |
| 217 | assert(!cir::MissingFeatures::cgfSymbolTable()); |
| 218 | |
| 219 | auto allocaOp = cast<cir::AllocaOp>(addrVal.getDefiningOp()); |
| 220 | if (isParam) |
| 221 | allocaOp.setInitAttr(mlir::UnitAttr::get(&getMLIRContext())); |
| 222 | if (ty->isReferenceType() || ty.isConstQualified()) |
| 223 | allocaOp.setConstantAttr(mlir::UnitAttr::get(&getMLIRContext())); |
| 224 | } |
| 225 | |
| 226 | void CIRGenFunction::LexicalScope::cleanup() { |
| 227 | CIRGenBuilderTy &builder = cgf.builder; |
| 228 | LexicalScope *localScope = cgf.curLexScope; |
| 229 | |
| 230 | if (returnBlock != nullptr) { |
| 231 | // Write out the return block, which loads the value from `__retval` and |
| 232 | // issues the `cir.return`. |
| 233 | mlir::OpBuilder::InsertionGuard guard(builder); |
| 234 | builder.setInsertionPointToEnd(returnBlock); |
| 235 | (void)emitReturn(*returnLoc); |
| 236 | } |
| 237 | |
| 238 | mlir::Block *curBlock = builder.getBlock(); |
| 239 | if (isGlobalInit() && !curBlock) |
| 240 | return; |
| 241 | if (curBlock->mightHaveTerminator() && curBlock->getTerminator()) |
| 242 | return; |
| 243 | |
| 244 | // Get rid of any empty block at the end of the scope. |
| 245 | bool entryBlock = builder.getInsertionBlock()->isEntryBlock(); |
| 246 | if (!entryBlock && curBlock->empty()) { |
| 247 | curBlock->erase(); |
| 248 | if (returnBlock != nullptr && returnBlock->getUses().empty()) |
| 249 | returnBlock->erase(); |
| 250 | return; |
| 251 | } |
| 252 | |
| 253 | // Reached the end of the scope. |
| 254 | { |
| 255 | mlir::OpBuilder::InsertionGuard guard(builder); |
| 256 | builder.setInsertionPointToEnd(curBlock); |
| 257 | |
| 258 | if (localScope->depth == 0) { |
| 259 | // Reached the end of the function. |
| 260 | if (returnBlock != nullptr) { |
| 261 | if (returnBlock->getUses().empty()) |
| 262 | returnBlock->erase(); |
| 263 | else { |
| 264 | builder.create<cir::BrOp>(*returnLoc, returnBlock); |
| 265 | return; |
| 266 | } |
| 267 | } |
| 268 | emitImplicitReturn(); |
| 269 | return; |
| 270 | } |
| 271 | // Reached the end of a non-function scope. Some scopes, such as those |
| 272 | // used with the ?: operator, can return a value. |
| 273 | if (!localScope->isTernary() && !curBlock->mightHaveTerminator()) { |
| 274 | !retVal ? builder.create<cir::YieldOp>(localScope->endLoc) |
| 275 | : builder.create<cir::YieldOp>(localScope->endLoc, retVal); |
| 276 | } |
| 277 | } |
| 278 | } |
| 279 | |
| 280 | cir::ReturnOp CIRGenFunction::LexicalScope::emitReturn(mlir::Location loc) { |
| 281 | CIRGenBuilderTy &builder = cgf.getBuilder(); |
| 282 | |
| 283 | if (!cgf.curFn.getFunctionType().hasVoidReturn()) { |
| 284 | // Load the value from `__retval` and return it via the `cir.return` op. |
| 285 | auto value = builder.create<cir::LoadOp>( |
| 286 | loc, cgf.curFn.getFunctionType().getReturnType(), *cgf.fnRetAlloca); |
| 287 | return builder.create<cir::ReturnOp>(loc, |
| 288 | llvm::ArrayRef(value.getResult())); |
| 289 | } |
| 290 | return builder.create<cir::ReturnOp>(loc); |
| 291 | } |
| 292 | |
| 293 | // This is copied from CodeGenModule::MayDropFunctionReturn. This is a |
| 294 | // candidate for sharing between CIRGen and CodeGen. |
| 295 | static bool mayDropFunctionReturn(const ASTContext &astContext, |
| 296 | QualType returnType) { |
| 297 | // We can't just discard the return value for a record type with a complex |
| 298 | // destructor or a non-trivially copyable type. |
| 299 | if (const RecordType *recordType = |
| 300 | returnType.getCanonicalType()->getAs<RecordType>()) { |
| 301 | if (const auto *classDecl = dyn_cast<CXXRecordDecl>(recordType->getDecl())) |
| 302 | return classDecl->hasTrivialDestructor(); |
| 303 | } |
| 304 | return returnType.isTriviallyCopyableType(Context: astContext); |
| 305 | } |
| 306 | |
| 307 | void CIRGenFunction::LexicalScope::emitImplicitReturn() { |
| 308 | CIRGenBuilderTy &builder = cgf.getBuilder(); |
| 309 | LexicalScope *localScope = cgf.curLexScope; |
| 310 | |
| 311 | const auto *fd = cast<clang::FunctionDecl>(cgf.curGD.getDecl()); |
| 312 | |
| 313 | // In C++, flowing off the end of a non-void function is always undefined |
| 314 | // behavior. In C, flowing off the end of a non-void function is undefined |
| 315 | // behavior only if the non-existent return value is used by the caller. |
| 316 | // That influences whether the terminating op is trap, unreachable, or |
| 317 | // return. |
| 318 | if (cgf.getLangOpts().CPlusPlus && !fd->hasImplicitReturnZero() && |
| 319 | !cgf.sawAsmBlock && !fd->getReturnType()->isVoidType() && |
| 320 | builder.getInsertionBlock()) { |
| 321 | bool shouldEmitUnreachable = |
| 322 | cgf.cgm.getCodeGenOpts().StrictReturn || |
| 323 | !mayDropFunctionReturn(fd->getASTContext(), fd->getReturnType()); |
| 324 | |
| 325 | if (shouldEmitUnreachable) { |
| 326 | if (cgf.cgm.getCodeGenOpts().OptimizationLevel == 0) |
| 327 | builder.create<cir::TrapOp>(localScope->endLoc); |
| 328 | else |
| 329 | builder.create<cir::UnreachableOp>(localScope->endLoc); |
| 330 | builder.clearInsertionPoint(); |
| 331 | return; |
| 332 | } |
| 333 | } |
| 334 | |
| 335 | (void)emitReturn(localScope->endLoc); |
| 336 | } |
| 337 | |
| 338 | void CIRGenFunction::startFunction(GlobalDecl gd, QualType returnType, |
| 339 | cir::FuncOp fn, cir::FuncType funcType, |
| 340 | FunctionArgList args, SourceLocation loc, |
| 341 | SourceLocation startLoc) { |
| 342 | assert(!curFn && |
| 343 | "CIRGenFunction can only be used for one function at a time" ); |
| 344 | |
| 345 | curFn = fn; |
| 346 | |
| 347 | const Decl *d = gd.getDecl(); |
| 348 | const auto *fd = dyn_cast_or_null<FunctionDecl>(d); |
| 349 | curFuncDecl = d->getNonClosureContext(); |
| 350 | |
| 351 | mlir::Block *entryBB = &fn.getBlocks().front(); |
| 352 | builder.setInsertionPointToStart(entryBB); |
| 353 | |
| 354 | // TODO(cir): this should live in `emitFunctionProlog |
| 355 | // Declare all the function arguments in the symbol table. |
| 356 | for (const auto nameValue : llvm::zip(args, entryBB->getArguments())) { |
| 357 | const VarDecl *paramVar = std::get<0>(nameValue); |
| 358 | mlir::Value paramVal = std::get<1>(nameValue); |
| 359 | CharUnits alignment = getContext().getDeclAlign(paramVar); |
| 360 | mlir::Location paramLoc = getLoc(paramVar->getSourceRange()); |
| 361 | paramVal.setLoc(paramLoc); |
| 362 | |
| 363 | mlir::Value addrVal = |
| 364 | emitAlloca(cast<NamedDecl>(paramVar)->getName(), |
| 365 | convertType(paramVar->getType()), paramLoc, alignment, |
| 366 | /*insertIntoFnEntryBlock=*/true); |
| 367 | |
| 368 | declare(addrVal, paramVar, paramVar->getType(), paramLoc, alignment, |
| 369 | /*isParam=*/true); |
| 370 | |
| 371 | setAddrOfLocalVar(paramVar, Address(addrVal, alignment)); |
| 372 | |
| 373 | bool isPromoted = isa<ParmVarDecl>(paramVar) && |
| 374 | cast<ParmVarDecl>(paramVar)->isKNRPromoted(); |
| 375 | assert(!cir::MissingFeatures::constructABIArgDirectExtend()); |
| 376 | if (isPromoted) |
| 377 | cgm.errorNYI(fd->getSourceRange(), "Function argument demotion" ); |
| 378 | |
| 379 | // Location of the store to the param storage tracked as beginning of |
| 380 | // the function body. |
| 381 | mlir::Location fnBodyBegin = getLoc(fd->getBody()->getBeginLoc()); |
| 382 | builder.CIRBaseBuilderTy::createStore(fnBodyBegin, paramVal, addrVal); |
| 383 | } |
| 384 | assert(builder.getInsertionBlock() && "Should be valid" ); |
| 385 | |
| 386 | // When the current function is not void, create an address to store the |
| 387 | // result value. |
| 388 | if (!returnType->isVoidType()) |
| 389 | emitAndUpdateRetAlloca(returnType, getLoc(fd->getBody()->getEndLoc()), |
| 390 | getContext().getTypeAlignInChars(returnType)); |
| 391 | |
| 392 | if (isa_and_nonnull<CXXMethodDecl>(d) && |
| 393 | cast<CXXMethodDecl>(d)->isInstance()) { |
| 394 | cgm.getCXXABI().emitInstanceFunctionProlog(Loc: loc, cgf&: *this); |
| 395 | |
| 396 | const auto *md = cast<CXXMethodDecl>(d); |
| 397 | if (md->getParent()->isLambda() && md->getOverloadedOperator() == OO_Call) { |
| 398 | cgm.errorNYI(loc, "lambda call operator" ); |
| 399 | } else { |
| 400 | // Not in a lambda; just use 'this' from the method. |
| 401 | // FIXME: Should we generate a new load for each use of 'this'? The fast |
| 402 | // register allocator would be happier... |
| 403 | cxxThisValue = cxxabiThisValue; |
| 404 | } |
| 405 | |
| 406 | assert(!cir::MissingFeatures::sanitizers()); |
| 407 | assert(!cir::MissingFeatures::emitTypeCheck()); |
| 408 | } |
| 409 | } |
| 410 | |
| 411 | void CIRGenFunction::finishFunction(SourceLocation endLoc) {} |
| 412 | |
| 413 | mlir::LogicalResult CIRGenFunction::emitFunctionBody(const clang::Stmt *body) { |
| 414 | auto result = mlir::LogicalResult::success(); |
| 415 | if (const CompoundStmt *block = dyn_cast<CompoundStmt>(body)) |
| 416 | emitCompoundStmtWithoutScope(s: *block); |
| 417 | else |
| 418 | result = emitStmt(body, /*useCurrentScope=*/true); |
| 419 | |
| 420 | return result; |
| 421 | } |
| 422 | |
| 423 | static void eraseEmptyAndUnusedBlocks(cir::FuncOp func) { |
| 424 | // Remove any leftover blocks that are unreachable and empty, since they do |
| 425 | // not represent unreachable code useful for warnings nor anything deemed |
| 426 | // useful in general. |
| 427 | SmallVector<mlir::Block *> blocksToDelete; |
| 428 | for (mlir::Block &block : func.getBlocks()) { |
| 429 | if (block.empty() && block.getUses().empty()) |
| 430 | blocksToDelete.push_back(&block); |
| 431 | } |
| 432 | for (mlir::Block *block : blocksToDelete) |
| 433 | block->erase(); |
| 434 | } |
| 435 | |
| 436 | cir::FuncOp CIRGenFunction::generateCode(clang::GlobalDecl gd, cir::FuncOp fn, |
| 437 | cir::FuncType funcType) { |
| 438 | const auto funcDecl = cast<FunctionDecl>(gd.getDecl()); |
| 439 | curGD = gd; |
| 440 | |
| 441 | SourceLocation loc = funcDecl->getLocation(); |
| 442 | Stmt *body = funcDecl->getBody(); |
| 443 | SourceRange bodyRange = |
| 444 | body ? body->getSourceRange() : funcDecl->getLocation(); |
| 445 | |
| 446 | SourceLocRAIIObject fnLoc{*this, loc.isValid() ? getLoc(loc) |
| 447 | : builder.getUnknownLoc()}; |
| 448 | |
| 449 | auto validMLIRLoc = [&](clang::SourceLocation clangLoc) { |
| 450 | return clangLoc.isValid() ? getLoc(clangLoc) : builder.getUnknownLoc(); |
| 451 | }; |
| 452 | const mlir::Location fusedLoc = mlir::FusedLoc::get( |
| 453 | &getMLIRContext(), |
| 454 | {validMLIRLoc(bodyRange.getBegin()), validMLIRLoc(bodyRange.getEnd())}); |
| 455 | mlir::Block *entryBB = fn.addEntryBlock(); |
| 456 | |
| 457 | FunctionArgList args; |
| 458 | QualType retTy = buildFunctionArgList(gd, args); |
| 459 | |
| 460 | { |
| 461 | LexicalScope lexScope(*this, fusedLoc, entryBB); |
| 462 | |
| 463 | startFunction(gd, retTy, fn, funcType, args, loc, bodyRange.getBegin()); |
| 464 | |
| 465 | if (isa<CXXDestructorDecl>(funcDecl)) |
| 466 | getCIRGenModule().errorNYI(bodyRange, "C++ destructor definition" ); |
| 467 | else if (isa<CXXConstructorDecl>(funcDecl)) |
| 468 | getCIRGenModule().errorNYI(bodyRange, "C++ constructor definition" ); |
| 469 | else if (getLangOpts().CUDA && !getLangOpts().CUDAIsDevice && |
| 470 | funcDecl->hasAttr<CUDAGlobalAttr>()) |
| 471 | getCIRGenModule().errorNYI(bodyRange, "CUDA kernel" ); |
| 472 | else if (isa<CXXMethodDecl>(funcDecl) && |
| 473 | cast<CXXMethodDecl>(funcDecl)->isLambdaStaticInvoker()) |
| 474 | getCIRGenModule().errorNYI(bodyRange, "Lambda static invoker" ); |
| 475 | else if (funcDecl->isDefaulted() && isa<CXXMethodDecl>(funcDecl) && |
| 476 | (cast<CXXMethodDecl>(funcDecl)->isCopyAssignmentOperator() || |
| 477 | cast<CXXMethodDecl>(funcDecl)->isMoveAssignmentOperator())) |
| 478 | getCIRGenModule().errorNYI(bodyRange, "Default assignment operator" ); |
| 479 | else if (body) { |
| 480 | if (mlir::failed(emitFunctionBody(body))) { |
| 481 | fn.erase(); |
| 482 | return nullptr; |
| 483 | } |
| 484 | } else { |
| 485 | // Anything without a body should have been handled above. |
| 486 | llvm_unreachable("no definition for normal function" ); |
| 487 | } |
| 488 | |
| 489 | if (mlir::failed(fn.verifyBody())) |
| 490 | return nullptr; |
| 491 | |
| 492 | finishFunction(endLoc: bodyRange.getEnd()); |
| 493 | } |
| 494 | |
| 495 | eraseEmptyAndUnusedBlocks(fn); |
| 496 | return fn; |
| 497 | } |
| 498 | |
| 499 | /// Given a value of type T* that may not be to a complete object, construct |
| 500 | /// an l-vlaue withi the natural pointee alignment of T. |
| 501 | LValue CIRGenFunction::makeNaturalAlignPointeeAddrLValue(mlir::Value val, |
| 502 | QualType ty) { |
| 503 | // FIXME(cir): is it safe to assume Op->getResult(0) is valid? Perhaps |
| 504 | // assert on the result type first. |
| 505 | LValueBaseInfo baseInfo; |
| 506 | assert(!cir::MissingFeatures::opTBAA()); |
| 507 | CharUnits align = cgm.getNaturalTypeAlignment(t: ty, baseInfo: &baseInfo); |
| 508 | return makeAddrLValue(addr: Address(val, align), ty, baseInfo); |
| 509 | } |
| 510 | |
| 511 | clang::QualType CIRGenFunction::buildFunctionArgList(clang::GlobalDecl gd, |
| 512 | FunctionArgList &args) { |
| 513 | const auto *fd = cast<FunctionDecl>(gd.getDecl()); |
| 514 | QualType retTy = fd->getReturnType(); |
| 515 | |
| 516 | const auto *md = dyn_cast<CXXMethodDecl>(fd); |
| 517 | if (md && md->isInstance()) { |
| 518 | if (cgm.getCXXABI().hasThisReturn(gd)) |
| 519 | cgm.errorNYI(fd->getSourceRange(), "this return" ); |
| 520 | else if (cgm.getCXXABI().hasMostDerivedReturn(gd)) |
| 521 | cgm.errorNYI(fd->getSourceRange(), "most derived return" ); |
| 522 | cgm.getCXXABI().buildThisParam(cgf&: *this, params&: args); |
| 523 | } |
| 524 | |
| 525 | if (isa<CXXConstructorDecl>(fd)) |
| 526 | cgm.errorNYI(fd->getSourceRange(), |
| 527 | "buildFunctionArgList: CXXConstructorDecl" ); |
| 528 | |
| 529 | for (auto *param : fd->parameters()) |
| 530 | args.push_back(param); |
| 531 | |
| 532 | if (md && (isa<CXXConstructorDecl>(md) || isa<CXXDestructorDecl>(md))) |
| 533 | cgm.errorNYI(fd->getSourceRange(), |
| 534 | "buildFunctionArgList: implicit structor params" ); |
| 535 | |
| 536 | return retTy; |
| 537 | } |
| 538 | |
| 539 | /// Emit code to compute a designator that specifies the location |
| 540 | /// of the expression. |
| 541 | /// FIXME: document this function better. |
| 542 | LValue CIRGenFunction::emitLValue(const Expr *e) { |
| 543 | // FIXME: ApplyDebugLocation DL(*this, e); |
| 544 | switch (e->getStmtClass()) { |
| 545 | default: |
| 546 | getCIRGenModule().errorNYI(e->getSourceRange(), |
| 547 | std::string("l-value not implemented for '" ) + |
| 548 | e->getStmtClassName() + "'" ); |
| 549 | return LValue(); |
| 550 | case Expr::ArraySubscriptExprClass: |
| 551 | return emitArraySubscriptExpr(e: cast<ArraySubscriptExpr>(e)); |
| 552 | case Expr::UnaryOperatorClass: |
| 553 | return emitUnaryOpLValue(e: cast<UnaryOperator>(e)); |
| 554 | case Expr::StringLiteralClass: |
| 555 | return emitStringLiteralLValue(e: cast<StringLiteral>(e)); |
| 556 | case Expr::MemberExprClass: |
| 557 | return emitMemberExpr(e: cast<MemberExpr>(e)); |
| 558 | case Expr::BinaryOperatorClass: |
| 559 | return emitBinaryOperatorLValue(e: cast<BinaryOperator>(e)); |
| 560 | case Expr::CompoundAssignOperatorClass: { |
| 561 | QualType ty = e->getType(); |
| 562 | if (ty->getAs<AtomicType>()) { |
| 563 | cgm.errorNYI(e->getSourceRange(), |
| 564 | "CompoundAssignOperator with AtomicType" ); |
| 565 | return LValue(); |
| 566 | } |
| 567 | if (!ty->isAnyComplexType()) |
| 568 | return emitCompoundAssignmentLValue(e: cast<CompoundAssignOperator>(e)); |
| 569 | cgm.errorNYI(e->getSourceRange(), |
| 570 | "CompoundAssignOperator with ComplexType" ); |
| 571 | return LValue(); |
| 572 | } |
| 573 | case Expr::CallExprClass: |
| 574 | case Expr::CXXMemberCallExprClass: |
| 575 | case Expr::CXXOperatorCallExprClass: |
| 576 | case Expr::UserDefinedLiteralClass: |
| 577 | return emitCallExprLValue(e: cast<CallExpr>(e)); |
| 578 | case Expr::ParenExprClass: |
| 579 | return emitLValue(e: cast<ParenExpr>(e)->getSubExpr()); |
| 580 | case Expr::DeclRefExprClass: |
| 581 | return emitDeclRefLValue(e: cast<DeclRefExpr>(e)); |
| 582 | case Expr::CStyleCastExprClass: |
| 583 | case Expr::CXXStaticCastExprClass: |
| 584 | case Expr::CXXDynamicCastExprClass: |
| 585 | case Expr::ImplicitCastExprClass: |
| 586 | return emitCastLValue(e: cast<CastExpr>(e)); |
| 587 | } |
| 588 | } |
| 589 | |
| 590 | void CIRGenFunction::emitNullInitialization(mlir::Location loc, Address destPtr, |
| 591 | QualType ty) { |
| 592 | // Ignore empty classes in C++. |
| 593 | if (getLangOpts().CPlusPlus) { |
| 594 | if (const RecordType *rt = ty->getAs<RecordType>()) { |
| 595 | if (cast<CXXRecordDecl>(rt->getDecl())->isEmpty()) |
| 596 | return; |
| 597 | } |
| 598 | } |
| 599 | |
| 600 | // Cast the dest ptr to the appropriate i8 pointer type. |
| 601 | if (builder.isInt8Ty(destPtr.getElementType())) { |
| 602 | cgm.errorNYI(loc, "Cast the dest ptr to the appropriate i8 pointer type" ); |
| 603 | } |
| 604 | |
| 605 | // Get size and alignment info for this aggregate. |
| 606 | const CharUnits size = getContext().getTypeSizeInChars(T: ty); |
| 607 | if (size.isZero()) { |
| 608 | // But note that getTypeInfo returns 0 for a VLA. |
| 609 | if (isa<VariableArrayType>(getContext().getAsArrayType(T: ty))) { |
| 610 | cgm.errorNYI(loc, |
| 611 | "emitNullInitialization for zero size VariableArrayType" ); |
| 612 | } else { |
| 613 | return; |
| 614 | } |
| 615 | } |
| 616 | |
| 617 | // If the type contains a pointer to data member we can't memset it to zero. |
| 618 | // Instead, create a null constant and copy it to the destination. |
| 619 | // TODO: there are other patterns besides zero that we can usefully memset, |
| 620 | // like -1, which happens to be the pattern used by member-pointers. |
| 621 | if (!cgm.getTypes().isZeroInitializable(ty)) { |
| 622 | cgm.errorNYI(loc, "type is not zero initializable" ); |
| 623 | } |
| 624 | |
| 625 | // In LLVM Codegen: otherwise, just memset the whole thing to zero using |
| 626 | // Builder.CreateMemSet. In CIR just emit a store of #cir.zero to the |
| 627 | // respective address. |
| 628 | // Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); |
| 629 | const mlir::Value zeroValue = builder.getNullValue(convertType(ty), loc); |
| 630 | builder.createStore(loc, zeroValue, destPtr); |
| 631 | } |
| 632 | |
| 633 | // TODO(cir): should be shared with LLVM codegen. |
| 634 | bool CIRGenFunction::shouldNullCheckClassCastValue(const CastExpr *ce) { |
| 635 | const Expr *e = ce->getSubExpr(); |
| 636 | |
| 637 | if (ce->getCastKind() == CK_UncheckedDerivedToBase) |
| 638 | return false; |
| 639 | |
| 640 | if (isa<CXXThisExpr>(e->IgnoreParens())) { |
| 641 | // We always assume that 'this' is never null. |
| 642 | return false; |
| 643 | } |
| 644 | |
| 645 | if (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(ce)) { |
| 646 | // And that glvalue casts are never null. |
| 647 | if (ice->isGLValue()) |
| 648 | return false; |
| 649 | } |
| 650 | |
| 651 | return true; |
| 652 | } |
| 653 | |
| 654 | } // namespace clang::CIRGen |
| 655 | |