1 | //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This contains code to emit Expr nodes with complex types as LLVM code. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "CGOpenMPRuntime.h" |
14 | #include "CodeGenFunction.h" |
15 | #include "CodeGenModule.h" |
16 | #include "ConstantEmitter.h" |
17 | #include "clang/AST/StmtVisitor.h" |
18 | #include "llvm/ADT/STLExtras.h" |
19 | #include "llvm/IR/Constants.h" |
20 | #include "llvm/IR/Instructions.h" |
21 | #include "llvm/IR/MDBuilder.h" |
22 | #include "llvm/IR/Metadata.h" |
23 | #include <algorithm> |
24 | using namespace clang; |
25 | using namespace CodeGen; |
26 | |
27 | //===----------------------------------------------------------------------===// |
28 | // Complex Expression Emitter |
29 | //===----------------------------------------------------------------------===// |
30 | |
31 | namespace llvm { |
32 | extern cl::opt<bool> EnableSingleByteCoverage; |
33 | } // namespace llvm |
34 | |
35 | typedef CodeGenFunction::ComplexPairTy ComplexPairTy; |
36 | |
37 | /// Return the complex type that we are meant to emit. |
38 | static const ComplexType *getComplexType(QualType type) { |
39 | type = type.getCanonicalType(); |
40 | if (const ComplexType *comp = dyn_cast<ComplexType>(Val&: type)) { |
41 | return comp; |
42 | } else { |
43 | return cast<ComplexType>(Val: cast<AtomicType>(Val&: type)->getValueType()); |
44 | } |
45 | } |
46 | |
47 | namespace { |
48 | class ComplexExprEmitter |
49 | : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> { |
50 | CodeGenFunction &CGF; |
51 | CGBuilderTy &Builder; |
52 | bool IgnoreReal; |
53 | bool IgnoreImag; |
54 | bool FPHasBeenPromoted; |
55 | |
56 | public: |
57 | ComplexExprEmitter(CodeGenFunction &cgf, bool ir = false, bool ii = false) |
58 | : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii), |
59 | FPHasBeenPromoted(false) {} |
60 | |
61 | //===--------------------------------------------------------------------===// |
62 | // Utilities |
63 | //===--------------------------------------------------------------------===// |
64 | |
65 | bool TestAndClearIgnoreReal() { |
66 | bool I = IgnoreReal; |
67 | IgnoreReal = false; |
68 | return I; |
69 | } |
70 | bool TestAndClearIgnoreImag() { |
71 | bool I = IgnoreImag; |
72 | IgnoreImag = false; |
73 | return I; |
74 | } |
75 | |
76 | /// EmitLoadOfLValue - Given an expression with complex type that represents a |
77 | /// value l-value, this method emits the address of the l-value, then loads |
78 | /// and returns the result. |
79 | ComplexPairTy EmitLoadOfLValue(const Expr *E) { |
80 | return EmitLoadOfLValue(LV: CGF.EmitLValue(E), Loc: E->getExprLoc()); |
81 | } |
82 | |
83 | ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc); |
84 | |
85 | /// EmitStoreOfComplex - Store the specified real/imag parts into the |
86 | /// specified value pointer. |
87 | void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit); |
88 | |
89 | /// Emit a cast from complex value Val to DestType. |
90 | ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType, |
91 | QualType DestType, SourceLocation Loc); |
92 | /// Emit a cast from scalar value Val to DestType. |
93 | ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType, |
94 | QualType DestType, SourceLocation Loc); |
95 | |
96 | //===--------------------------------------------------------------------===// |
97 | // Visitor Methods |
98 | //===--------------------------------------------------------------------===// |
99 | |
100 | ComplexPairTy Visit(Expr *E) { |
101 | ApplyDebugLocation DL(CGF, E); |
102 | return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E); |
103 | } |
104 | |
105 | ComplexPairTy VisitStmt(Stmt *S) { |
106 | S->dump(OS&: llvm::errs(), Context: CGF.getContext()); |
107 | llvm_unreachable("Stmt can't have complex result type!" ); |
108 | } |
109 | ComplexPairTy VisitExpr(Expr *S); |
110 | ComplexPairTy VisitConstantExpr(ConstantExpr *E) { |
111 | if (llvm::Constant *Result = ConstantEmitter(CGF).tryEmitConstantExpr(CE: E)) |
112 | return ComplexPairTy(Result->getAggregateElement(Elt: 0U), |
113 | Result->getAggregateElement(Elt: 1U)); |
114 | return Visit(E: E->getSubExpr()); |
115 | } |
116 | ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(E: PE->getSubExpr());} |
117 | ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) { |
118 | return Visit(E: GE->getResultExpr()); |
119 | } |
120 | ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL); |
121 | ComplexPairTy |
122 | VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) { |
123 | return Visit(E: PE->getReplacement()); |
124 | } |
125 | ComplexPairTy VisitCoawaitExpr(CoawaitExpr *S) { |
126 | return CGF.EmitCoawaitExpr(E: *S).getComplexVal(); |
127 | } |
128 | ComplexPairTy VisitCoyieldExpr(CoyieldExpr *S) { |
129 | return CGF.EmitCoyieldExpr(E: *S).getComplexVal(); |
130 | } |
131 | ComplexPairTy VisitUnaryCoawait(const UnaryOperator *E) { |
132 | return Visit(E: E->getSubExpr()); |
133 | } |
134 | |
135 | ComplexPairTy emitConstant(const CodeGenFunction::ConstantEmission &Constant, |
136 | Expr *E) { |
137 | assert(Constant && "not a constant" ); |
138 | if (Constant.isReference()) |
139 | return EmitLoadOfLValue(LV: Constant.getReferenceLValue(CGF, refExpr: E), |
140 | Loc: E->getExprLoc()); |
141 | |
142 | llvm::Constant *pair = Constant.getValue(); |
143 | return ComplexPairTy(pair->getAggregateElement(Elt: 0U), |
144 | pair->getAggregateElement(Elt: 1U)); |
145 | } |
146 | |
147 | // l-values. |
148 | ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) { |
149 | if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(refExpr: E)) |
150 | return emitConstant(Constant, E); |
151 | return EmitLoadOfLValue(E); |
152 | } |
153 | ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { |
154 | return EmitLoadOfLValue(E); |
155 | } |
156 | ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) { |
157 | return CGF.EmitObjCMessageExpr(E).getComplexVal(); |
158 | } |
159 | ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); } |
160 | ComplexPairTy VisitMemberExpr(MemberExpr *ME) { |
161 | if (CodeGenFunction::ConstantEmission Constant = |
162 | CGF.tryEmitAsConstant(ME)) { |
163 | CGF.EmitIgnoredExpr(E: ME->getBase()); |
164 | return emitConstant(Constant, ME); |
165 | } |
166 | return EmitLoadOfLValue(ME); |
167 | } |
168 | ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) { |
169 | if (E->isGLValue()) |
170 | return EmitLoadOfLValue(LV: CGF.getOrCreateOpaqueLValueMapping(e: E), |
171 | Loc: E->getExprLoc()); |
172 | return CGF.getOrCreateOpaqueRValueMapping(e: E).getComplexVal(); |
173 | } |
174 | |
175 | ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) { |
176 | return CGF.EmitPseudoObjectRValue(e: E).getComplexVal(); |
177 | } |
178 | |
179 | // FIXME: CompoundLiteralExpr |
180 | |
181 | ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy); |
182 | ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) { |
183 | // Unlike for scalars, we don't have to worry about function->ptr demotion |
184 | // here. |
185 | if (E->changesVolatileQualification()) |
186 | return EmitLoadOfLValue(E); |
187 | return EmitCast(CK: E->getCastKind(), Op: E->getSubExpr(), DestTy: E->getType()); |
188 | } |
189 | ComplexPairTy VisitCastExpr(CastExpr *E) { |
190 | if (const auto *ECE = dyn_cast<ExplicitCastExpr>(Val: E)) |
191 | CGF.CGM.EmitExplicitCastExprType(E: ECE, CGF: &CGF); |
192 | if (E->changesVolatileQualification()) |
193 | return EmitLoadOfLValue(E); |
194 | return EmitCast(CK: E->getCastKind(), Op: E->getSubExpr(), DestTy: E->getType()); |
195 | } |
196 | ComplexPairTy VisitCallExpr(const CallExpr *E); |
197 | ComplexPairTy VisitStmtExpr(const StmtExpr *E); |
198 | |
199 | // Operators. |
200 | ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E, |
201 | bool isInc, bool isPre) { |
202 | LValue LV = CGF.EmitLValue(E: E->getSubExpr()); |
203 | return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre); |
204 | } |
205 | ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) { |
206 | return VisitPrePostIncDec(E, isInc: false, isPre: false); |
207 | } |
208 | ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) { |
209 | return VisitPrePostIncDec(E, isInc: true, isPre: false); |
210 | } |
211 | ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) { |
212 | return VisitPrePostIncDec(E, isInc: false, isPre: true); |
213 | } |
214 | ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) { |
215 | return VisitPrePostIncDec(E, isInc: true, isPre: true); |
216 | } |
217 | ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); } |
218 | |
219 | ComplexPairTy VisitUnaryPlus(const UnaryOperator *E, |
220 | QualType PromotionType = QualType()); |
221 | ComplexPairTy VisitPlus(const UnaryOperator *E, QualType PromotionType); |
222 | ComplexPairTy VisitUnaryMinus(const UnaryOperator *E, |
223 | QualType PromotionType = QualType()); |
224 | ComplexPairTy VisitMinus(const UnaryOperator *E, QualType PromotionType); |
225 | ComplexPairTy VisitUnaryNot (const UnaryOperator *E); |
226 | // LNot,Real,Imag never return complex. |
227 | ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) { |
228 | return Visit(E: E->getSubExpr()); |
229 | } |
230 | ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { |
231 | CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); |
232 | return Visit(E: DAE->getExpr()); |
233 | } |
234 | ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { |
235 | CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); |
236 | return Visit(E: DIE->getExpr()); |
237 | } |
238 | ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) { |
239 | CodeGenFunction::RunCleanupsScope Scope(CGF); |
240 | ComplexPairTy Vals = Visit(E: E->getSubExpr()); |
241 | // Defend against dominance problems caused by jumps out of expression |
242 | // evaluation through the shared cleanup block. |
243 | Scope.ForceCleanup(ValuesToReload: {&Vals.first, &Vals.second}); |
244 | return Vals; |
245 | } |
246 | ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { |
247 | assert(E->getType()->isAnyComplexType() && "Expected complex type!" ); |
248 | QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); |
249 | llvm::Constant *Null = llvm::Constant::getNullValue(Ty: CGF.ConvertType(T: Elem)); |
250 | return ComplexPairTy(Null, Null); |
251 | } |
252 | ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { |
253 | assert(E->getType()->isAnyComplexType() && "Expected complex type!" ); |
254 | QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); |
255 | llvm::Constant *Null = |
256 | llvm::Constant::getNullValue(Ty: CGF.ConvertType(T: Elem)); |
257 | return ComplexPairTy(Null, Null); |
258 | } |
259 | |
260 | struct BinOpInfo { |
261 | ComplexPairTy LHS; |
262 | ComplexPairTy RHS; |
263 | QualType Ty; // Computation Type. |
264 | FPOptions FPFeatures; |
265 | }; |
266 | |
267 | BinOpInfo EmitBinOps(const BinaryOperator *E, |
268 | QualType PromotionTy = QualType()); |
269 | ComplexPairTy EmitPromoted(const Expr *E, QualType PromotionTy); |
270 | ComplexPairTy EmitPromotedComplexOperand(const Expr *E, QualType PromotionTy); |
271 | LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, |
272 | ComplexPairTy (ComplexExprEmitter::*Func) |
273 | (const BinOpInfo &), |
274 | RValue &Val); |
275 | ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E, |
276 | ComplexPairTy (ComplexExprEmitter::*Func) |
277 | (const BinOpInfo &)); |
278 | |
279 | ComplexPairTy EmitBinAdd(const BinOpInfo &Op); |
280 | ComplexPairTy EmitBinSub(const BinOpInfo &Op); |
281 | ComplexPairTy EmitBinMul(const BinOpInfo &Op); |
282 | ComplexPairTy EmitBinDiv(const BinOpInfo &Op); |
283 | ComplexPairTy EmitAlgebraicDiv(llvm::Value *A, llvm::Value *B, llvm::Value *C, |
284 | llvm::Value *D); |
285 | ComplexPairTy EmitRangeReductionDiv(llvm::Value *A, llvm::Value *B, |
286 | llvm::Value *C, llvm::Value *D); |
287 | |
288 | ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName, |
289 | const BinOpInfo &Op); |
290 | |
291 | QualType GetHigherPrecisionFPType(QualType ElementType) { |
292 | const auto *CurrentBT = cast<BuiltinType>(Val&: ElementType); |
293 | switch (CurrentBT->getKind()) { |
294 | case BuiltinType::Kind::Float16: |
295 | return CGF.getContext().FloatTy; |
296 | case BuiltinType::Kind::Float: |
297 | case BuiltinType::Kind::BFloat16: |
298 | return CGF.getContext().DoubleTy; |
299 | case BuiltinType::Kind::Double: |
300 | return CGF.getContext().LongDoubleTy; |
301 | default: |
302 | return ElementType; |
303 | } |
304 | } |
305 | |
306 | QualType HigherPrecisionTypeForComplexArithmetic(QualType ElementType, |
307 | bool IsDivOpCode) { |
308 | QualType HigherElementType = GetHigherPrecisionFPType(ElementType); |
309 | const llvm::fltSemantics &ElementTypeSemantics = |
310 | CGF.getContext().getFloatTypeSemantics(T: ElementType); |
311 | const llvm::fltSemantics &HigherElementTypeSemantics = |
312 | CGF.getContext().getFloatTypeSemantics(T: HigherElementType); |
313 | // Check that the promoted type can handle the intermediate values without |
314 | // overflowing. This can be interpreted as: |
315 | // (SmallerType.LargestFiniteVal * SmallerType.LargestFiniteVal) * 2 <= |
316 | // LargerType.LargestFiniteVal. |
317 | // In terms of exponent it gives this formula: |
318 | // (SmallerType.LargestFiniteVal * SmallerType.LargestFiniteVal |
319 | // doubles the exponent of SmallerType.LargestFiniteVal) |
320 | if (llvm::APFloat::semanticsMaxExponent(ElementTypeSemantics) * 2 + 1 <= |
321 | llvm::APFloat::semanticsMaxExponent(HigherElementTypeSemantics)) { |
322 | FPHasBeenPromoted = true; |
323 | return CGF.getContext().getComplexType(T: HigherElementType); |
324 | } else { |
325 | DiagnosticsEngine &Diags = CGF.CGM.getDiags(); |
326 | Diags.Report(diag::warn_next_larger_fp_type_same_size_than_fp); |
327 | return QualType(); |
328 | } |
329 | } |
330 | |
331 | QualType getPromotionType(QualType Ty, bool IsDivOpCode = false) { |
332 | if (auto *CT = Ty->getAs<ComplexType>()) { |
333 | QualType ElementType = CT->getElementType(); |
334 | if (IsDivOpCode && ElementType->isFloatingType() && |
335 | CGF.getLangOpts().getComplexRange() == |
336 | LangOptions::ComplexRangeKind::CX_Promoted) |
337 | return HigherPrecisionTypeForComplexArithmetic(ElementType, |
338 | IsDivOpCode); |
339 | if (ElementType.UseExcessPrecision(Ctx: CGF.getContext())) |
340 | return CGF.getContext().getComplexType(CGF.getContext().FloatTy); |
341 | } |
342 | if (Ty.UseExcessPrecision(Ctx: CGF.getContext())) |
343 | return CGF.getContext().FloatTy; |
344 | return QualType(); |
345 | } |
346 | |
347 | #define HANDLEBINOP(OP) \ |
348 | ComplexPairTy VisitBin##OP(const BinaryOperator *E) { \ |
349 | QualType promotionTy = getPromotionType( \ |
350 | E->getType(), \ |
351 | (E->getOpcode() == BinaryOperatorKind::BO_Div) ? true : false); \ |
352 | ComplexPairTy result = EmitBin##OP(EmitBinOps(E, promotionTy)); \ |
353 | if (!promotionTy.isNull()) \ |
354 | result = CGF.EmitUnPromotedValue(result, E->getType()); \ |
355 | return result; \ |
356 | } |
357 | |
358 | HANDLEBINOP(Mul) |
359 | HANDLEBINOP(Div) |
360 | HANDLEBINOP(Add) |
361 | HANDLEBINOP(Sub) |
362 | #undef HANDLEBINOP |
363 | |
364 | ComplexPairTy VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) { |
365 | return Visit(E: E->getSemanticForm()); |
366 | } |
367 | |
368 | // Compound assignments. |
369 | ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) { |
370 | return EmitCompoundAssign(E, Func: &ComplexExprEmitter::EmitBinAdd); |
371 | } |
372 | ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) { |
373 | return EmitCompoundAssign(E, Func: &ComplexExprEmitter::EmitBinSub); |
374 | } |
375 | ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) { |
376 | return EmitCompoundAssign(E, Func: &ComplexExprEmitter::EmitBinMul); |
377 | } |
378 | ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) { |
379 | return EmitCompoundAssign(E, Func: &ComplexExprEmitter::EmitBinDiv); |
380 | } |
381 | |
382 | // GCC rejects rem/and/or/xor for integer complex. |
383 | // Logical and/or always return int, never complex. |
384 | |
385 | // No comparisons produce a complex result. |
386 | |
387 | LValue EmitBinAssignLValue(const BinaryOperator *E, |
388 | ComplexPairTy &Val); |
389 | ComplexPairTy VisitBinAssign (const BinaryOperator *E); |
390 | ComplexPairTy VisitBinComma (const BinaryOperator *E); |
391 | |
392 | |
393 | ComplexPairTy |
394 | VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); |
395 | ComplexPairTy VisitChooseExpr(ChooseExpr *CE); |
396 | |
397 | ComplexPairTy VisitInitListExpr(InitListExpr *E); |
398 | |
399 | ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { |
400 | return EmitLoadOfLValue(E); |
401 | } |
402 | |
403 | ComplexPairTy VisitVAArgExpr(VAArgExpr *E); |
404 | |
405 | ComplexPairTy VisitAtomicExpr(AtomicExpr *E) { |
406 | return CGF.EmitAtomicExpr(E).getComplexVal(); |
407 | } |
408 | |
409 | ComplexPairTy VisitPackIndexingExpr(PackIndexingExpr *E) { |
410 | return Visit(E: E->getSelectedExpr()); |
411 | } |
412 | }; |
413 | } // end anonymous namespace. |
414 | |
415 | //===----------------------------------------------------------------------===// |
416 | // Utilities |
417 | //===----------------------------------------------------------------------===// |
418 | |
419 | Address CodeGenFunction::emitAddrOfRealComponent(Address addr, |
420 | QualType complexType) { |
421 | return Builder.CreateStructGEP(Addr: addr, Index: 0, Name: addr.getName() + ".realp" ); |
422 | } |
423 | |
424 | Address CodeGenFunction::emitAddrOfImagComponent(Address addr, |
425 | QualType complexType) { |
426 | return Builder.CreateStructGEP(Addr: addr, Index: 1, Name: addr.getName() + ".imagp" ); |
427 | } |
428 | |
429 | /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to |
430 | /// load the real and imaginary pieces, returning them as Real/Imag. |
431 | ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue, |
432 | SourceLocation loc) { |
433 | assert(lvalue.isSimple() && "non-simple complex l-value?" ); |
434 | if (lvalue.getType()->isAtomicType()) |
435 | return CGF.EmitAtomicLoad(LV: lvalue, SL: loc).getComplexVal(); |
436 | |
437 | Address SrcPtr = lvalue.getAddress(CGF); |
438 | bool isVolatile = lvalue.isVolatileQualified(); |
439 | |
440 | llvm::Value *Real = nullptr, *Imag = nullptr; |
441 | |
442 | if (!IgnoreReal || isVolatile) { |
443 | Address RealP = CGF.emitAddrOfRealComponent(addr: SrcPtr, complexType: lvalue.getType()); |
444 | Real = Builder.CreateLoad(Addr: RealP, IsVolatile: isVolatile, Name: SrcPtr.getName() + ".real" ); |
445 | } |
446 | |
447 | if (!IgnoreImag || isVolatile) { |
448 | Address ImagP = CGF.emitAddrOfImagComponent(addr: SrcPtr, complexType: lvalue.getType()); |
449 | Imag = Builder.CreateLoad(Addr: ImagP, IsVolatile: isVolatile, Name: SrcPtr.getName() + ".imag" ); |
450 | } |
451 | |
452 | return ComplexPairTy(Real, Imag); |
453 | } |
454 | |
455 | /// EmitStoreOfComplex - Store the specified real/imag parts into the |
456 | /// specified value pointer. |
457 | void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue, |
458 | bool isInit) { |
459 | if (lvalue.getType()->isAtomicType() || |
460 | (!isInit && CGF.LValueIsSuitableForInlineAtomic(Src: lvalue))) |
461 | return CGF.EmitAtomicStore(rvalue: RValue::getComplex(C: Val), lvalue, isInit); |
462 | |
463 | Address Ptr = lvalue.getAddress(CGF); |
464 | Address RealPtr = CGF.emitAddrOfRealComponent(addr: Ptr, complexType: lvalue.getType()); |
465 | Address ImagPtr = CGF.emitAddrOfImagComponent(addr: Ptr, complexType: lvalue.getType()); |
466 | |
467 | Builder.CreateStore(Val: Val.first, Addr: RealPtr, IsVolatile: lvalue.isVolatileQualified()); |
468 | Builder.CreateStore(Val: Val.second, Addr: ImagPtr, IsVolatile: lvalue.isVolatileQualified()); |
469 | } |
470 | |
471 | |
472 | |
473 | //===----------------------------------------------------------------------===// |
474 | // Visitor Methods |
475 | //===----------------------------------------------------------------------===// |
476 | |
477 | ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) { |
478 | CGF.ErrorUnsupported(E, "complex expression" ); |
479 | llvm::Type *EltTy = |
480 | CGF.ConvertType(T: getComplexType(type: E->getType())->getElementType()); |
481 | llvm::Value *U = llvm::UndefValue::get(T: EltTy); |
482 | return ComplexPairTy(U, U); |
483 | } |
484 | |
485 | ComplexPairTy ComplexExprEmitter:: |
486 | VisitImaginaryLiteral(const ImaginaryLiteral *IL) { |
487 | llvm::Value *Imag = CGF.EmitScalarExpr(E: IL->getSubExpr()); |
488 | return ComplexPairTy(llvm::Constant::getNullValue(Ty: Imag->getType()), Imag); |
489 | } |
490 | |
491 | |
492 | ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) { |
493 | if (E->getCallReturnType(Ctx: CGF.getContext())->isReferenceType()) |
494 | return EmitLoadOfLValue(E); |
495 | |
496 | return CGF.EmitCallExpr(E).getComplexVal(); |
497 | } |
498 | |
499 | ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) { |
500 | CodeGenFunction::StmtExprEvaluation eval(CGF); |
501 | Address RetAlloca = CGF.EmitCompoundStmt(S: *E->getSubStmt(), GetLast: true); |
502 | assert(RetAlloca.isValid() && "Expected complex return value" ); |
503 | return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()), |
504 | E->getExprLoc()); |
505 | } |
506 | |
507 | /// Emit a cast from complex value Val to DestType. |
508 | ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val, |
509 | QualType SrcType, |
510 | QualType DestType, |
511 | SourceLocation Loc) { |
512 | // Get the src/dest element type. |
513 | SrcType = SrcType->castAs<ComplexType>()->getElementType(); |
514 | DestType = DestType->castAs<ComplexType>()->getElementType(); |
515 | |
516 | // C99 6.3.1.6: When a value of complex type is converted to another |
517 | // complex type, both the real and imaginary parts follow the conversion |
518 | // rules for the corresponding real types. |
519 | if (Val.first) |
520 | Val.first = CGF.EmitScalarConversion(Src: Val.first, SrcTy: SrcType, DstTy: DestType, Loc); |
521 | if (Val.second) |
522 | Val.second = CGF.EmitScalarConversion(Src: Val.second, SrcTy: SrcType, DstTy: DestType, Loc); |
523 | return Val; |
524 | } |
525 | |
526 | ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val, |
527 | QualType SrcType, |
528 | QualType DestType, |
529 | SourceLocation Loc) { |
530 | // Convert the input element to the element type of the complex. |
531 | DestType = DestType->castAs<ComplexType>()->getElementType(); |
532 | Val = CGF.EmitScalarConversion(Src: Val, SrcTy: SrcType, DstTy: DestType, Loc); |
533 | |
534 | // Return (realval, 0). |
535 | return ComplexPairTy(Val, llvm::Constant::getNullValue(Ty: Val->getType())); |
536 | } |
537 | |
538 | ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op, |
539 | QualType DestTy) { |
540 | switch (CK) { |
541 | case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!" ); |
542 | |
543 | // Atomic to non-atomic casts may be more than a no-op for some platforms and |
544 | // for some types. |
545 | case CK_AtomicToNonAtomic: |
546 | case CK_NonAtomicToAtomic: |
547 | case CK_NoOp: |
548 | case CK_LValueToRValue: |
549 | case CK_UserDefinedConversion: |
550 | return Visit(E: Op); |
551 | |
552 | case CK_LValueBitCast: { |
553 | LValue origLV = CGF.EmitLValue(E: Op); |
554 | Address V = origLV.getAddress(CGF).withElementType(ElemTy: CGF.ConvertType(T: DestTy)); |
555 | return EmitLoadOfLValue(lvalue: CGF.MakeAddrLValue(Addr: V, T: DestTy), loc: Op->getExprLoc()); |
556 | } |
557 | |
558 | case CK_LValueToRValueBitCast: { |
559 | LValue SourceLVal = CGF.EmitLValue(E: Op); |
560 | Address Addr = SourceLVal.getAddress(CGF).withElementType( |
561 | ElemTy: CGF.ConvertTypeForMem(T: DestTy)); |
562 | LValue DestLV = CGF.MakeAddrLValue(Addr, T: DestTy); |
563 | DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); |
564 | return EmitLoadOfLValue(lvalue: DestLV, loc: Op->getExprLoc()); |
565 | } |
566 | |
567 | case CK_BitCast: |
568 | case CK_BaseToDerived: |
569 | case CK_DerivedToBase: |
570 | case CK_UncheckedDerivedToBase: |
571 | case CK_Dynamic: |
572 | case CK_ToUnion: |
573 | case CK_ArrayToPointerDecay: |
574 | case CK_FunctionToPointerDecay: |
575 | case CK_NullToPointer: |
576 | case CK_NullToMemberPointer: |
577 | case CK_BaseToDerivedMemberPointer: |
578 | case CK_DerivedToBaseMemberPointer: |
579 | case CK_MemberPointerToBoolean: |
580 | case CK_ReinterpretMemberPointer: |
581 | case CK_ConstructorConversion: |
582 | case CK_IntegralToPointer: |
583 | case CK_PointerToIntegral: |
584 | case CK_PointerToBoolean: |
585 | case CK_ToVoid: |
586 | case CK_VectorSplat: |
587 | case CK_IntegralCast: |
588 | case CK_BooleanToSignedIntegral: |
589 | case CK_IntegralToBoolean: |
590 | case CK_IntegralToFloating: |
591 | case CK_FloatingToIntegral: |
592 | case CK_FloatingToBoolean: |
593 | case CK_FloatingCast: |
594 | case CK_CPointerToObjCPointerCast: |
595 | case CK_BlockPointerToObjCPointerCast: |
596 | case CK_AnyPointerToBlockPointerCast: |
597 | case CK_ObjCObjectLValueCast: |
598 | case CK_FloatingComplexToReal: |
599 | case CK_FloatingComplexToBoolean: |
600 | case CK_IntegralComplexToReal: |
601 | case CK_IntegralComplexToBoolean: |
602 | case CK_ARCProduceObject: |
603 | case CK_ARCConsumeObject: |
604 | case CK_ARCReclaimReturnedObject: |
605 | case CK_ARCExtendBlockObject: |
606 | case CK_CopyAndAutoreleaseBlockObject: |
607 | case CK_BuiltinFnToFnPtr: |
608 | case CK_ZeroToOCLOpaqueType: |
609 | case CK_AddressSpaceConversion: |
610 | case CK_IntToOCLSampler: |
611 | case CK_FloatingToFixedPoint: |
612 | case CK_FixedPointToFloating: |
613 | case CK_FixedPointCast: |
614 | case CK_FixedPointToBoolean: |
615 | case CK_FixedPointToIntegral: |
616 | case CK_IntegralToFixedPoint: |
617 | case CK_MatrixCast: |
618 | case CK_HLSLVectorTruncation: |
619 | case CK_HLSLArrayRValue: |
620 | llvm_unreachable("invalid cast kind for complex value" ); |
621 | |
622 | case CK_FloatingRealToComplex: |
623 | case CK_IntegralRealToComplex: { |
624 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op); |
625 | return EmitScalarToComplexCast(Val: CGF.EmitScalarExpr(E: Op), SrcType: Op->getType(), |
626 | DestType: DestTy, Loc: Op->getExprLoc()); |
627 | } |
628 | |
629 | case CK_FloatingComplexCast: |
630 | case CK_FloatingComplexToIntegralComplex: |
631 | case CK_IntegralComplexCast: |
632 | case CK_IntegralComplexToFloatingComplex: { |
633 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op); |
634 | return EmitComplexToComplexCast(Val: Visit(E: Op), SrcType: Op->getType(), DestType: DestTy, |
635 | Loc: Op->getExprLoc()); |
636 | } |
637 | } |
638 | |
639 | llvm_unreachable("unknown cast resulting in complex value" ); |
640 | } |
641 | |
642 | ComplexPairTy ComplexExprEmitter::VisitUnaryPlus(const UnaryOperator *E, |
643 | QualType PromotionType) { |
644 | QualType promotionTy = PromotionType.isNull() |
645 | ? getPromotionType(Ty: E->getSubExpr()->getType()) |
646 | : PromotionType; |
647 | ComplexPairTy result = VisitPlus(E, PromotionType: promotionTy); |
648 | if (!promotionTy.isNull()) |
649 | return CGF.EmitUnPromotedValue(result, PromotionType: E->getSubExpr()->getType()); |
650 | return result; |
651 | } |
652 | |
653 | ComplexPairTy ComplexExprEmitter::VisitPlus(const UnaryOperator *E, |
654 | QualType PromotionType) { |
655 | TestAndClearIgnoreReal(); |
656 | TestAndClearIgnoreImag(); |
657 | if (!PromotionType.isNull()) |
658 | return CGF.EmitPromotedComplexExpr(E: E->getSubExpr(), PromotionType); |
659 | return Visit(E: E->getSubExpr()); |
660 | } |
661 | |
662 | ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E, |
663 | QualType PromotionType) { |
664 | QualType promotionTy = PromotionType.isNull() |
665 | ? getPromotionType(Ty: E->getSubExpr()->getType()) |
666 | : PromotionType; |
667 | ComplexPairTy result = VisitMinus(E, PromotionType: promotionTy); |
668 | if (!promotionTy.isNull()) |
669 | return CGF.EmitUnPromotedValue(result, PromotionType: E->getSubExpr()->getType()); |
670 | return result; |
671 | } |
672 | ComplexPairTy ComplexExprEmitter::VisitMinus(const UnaryOperator *E, |
673 | QualType PromotionType) { |
674 | TestAndClearIgnoreReal(); |
675 | TestAndClearIgnoreImag(); |
676 | ComplexPairTy Op; |
677 | if (!PromotionType.isNull()) |
678 | Op = CGF.EmitPromotedComplexExpr(E: E->getSubExpr(), PromotionType); |
679 | else |
680 | Op = Visit(E: E->getSubExpr()); |
681 | |
682 | llvm::Value *ResR, *ResI; |
683 | if (Op.first->getType()->isFloatingPointTy()) { |
684 | ResR = Builder.CreateFNeg(V: Op.first, Name: "neg.r" ); |
685 | ResI = Builder.CreateFNeg(V: Op.second, Name: "neg.i" ); |
686 | } else { |
687 | ResR = Builder.CreateNeg(V: Op.first, Name: "neg.r" ); |
688 | ResI = Builder.CreateNeg(V: Op.second, Name: "neg.i" ); |
689 | } |
690 | return ComplexPairTy(ResR, ResI); |
691 | } |
692 | |
693 | ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) { |
694 | TestAndClearIgnoreReal(); |
695 | TestAndClearIgnoreImag(); |
696 | // ~(a+ib) = a + i*-b |
697 | ComplexPairTy Op = Visit(E: E->getSubExpr()); |
698 | llvm::Value *ResI; |
699 | if (Op.second->getType()->isFloatingPointTy()) |
700 | ResI = Builder.CreateFNeg(V: Op.second, Name: "conj.i" ); |
701 | else |
702 | ResI = Builder.CreateNeg(V: Op.second, Name: "conj.i" ); |
703 | |
704 | return ComplexPairTy(Op.first, ResI); |
705 | } |
706 | |
707 | ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) { |
708 | llvm::Value *ResR, *ResI; |
709 | |
710 | if (Op.LHS.first->getType()->isFloatingPointTy()) { |
711 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op.FPFeatures); |
712 | ResR = Builder.CreateFAdd(L: Op.LHS.first, R: Op.RHS.first, Name: "add.r" ); |
713 | if (Op.LHS.second && Op.RHS.second) |
714 | ResI = Builder.CreateFAdd(L: Op.LHS.second, R: Op.RHS.second, Name: "add.i" ); |
715 | else |
716 | ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second; |
717 | assert(ResI && "Only one operand may be real!" ); |
718 | } else { |
719 | ResR = Builder.CreateAdd(LHS: Op.LHS.first, RHS: Op.RHS.first, Name: "add.r" ); |
720 | assert(Op.LHS.second && Op.RHS.second && |
721 | "Both operands of integer complex operators must be complex!" ); |
722 | ResI = Builder.CreateAdd(LHS: Op.LHS.second, RHS: Op.RHS.second, Name: "add.i" ); |
723 | } |
724 | return ComplexPairTy(ResR, ResI); |
725 | } |
726 | |
727 | ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) { |
728 | llvm::Value *ResR, *ResI; |
729 | if (Op.LHS.first->getType()->isFloatingPointTy()) { |
730 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op.FPFeatures); |
731 | ResR = Builder.CreateFSub(L: Op.LHS.first, R: Op.RHS.first, Name: "sub.r" ); |
732 | if (Op.LHS.second && Op.RHS.second) |
733 | ResI = Builder.CreateFSub(L: Op.LHS.second, R: Op.RHS.second, Name: "sub.i" ); |
734 | else |
735 | ResI = Op.LHS.second ? Op.LHS.second |
736 | : Builder.CreateFNeg(V: Op.RHS.second, Name: "sub.i" ); |
737 | assert(ResI && "Only one operand may be real!" ); |
738 | } else { |
739 | ResR = Builder.CreateSub(LHS: Op.LHS.first, RHS: Op.RHS.first, Name: "sub.r" ); |
740 | assert(Op.LHS.second && Op.RHS.second && |
741 | "Both operands of integer complex operators must be complex!" ); |
742 | ResI = Builder.CreateSub(LHS: Op.LHS.second, RHS: Op.RHS.second, Name: "sub.i" ); |
743 | } |
744 | return ComplexPairTy(ResR, ResI); |
745 | } |
746 | |
747 | /// Emit a libcall for a binary operation on complex types. |
748 | ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName, |
749 | const BinOpInfo &Op) { |
750 | CallArgList Args; |
751 | Args.add(rvalue: RValue::get(V: Op.LHS.first), |
752 | type: Op.Ty->castAs<ComplexType>()->getElementType()); |
753 | Args.add(rvalue: RValue::get(V: Op.LHS.second), |
754 | type: Op.Ty->castAs<ComplexType>()->getElementType()); |
755 | Args.add(rvalue: RValue::get(V: Op.RHS.first), |
756 | type: Op.Ty->castAs<ComplexType>()->getElementType()); |
757 | Args.add(rvalue: RValue::get(V: Op.RHS.second), |
758 | type: Op.Ty->castAs<ComplexType>()->getElementType()); |
759 | |
760 | // We *must* use the full CG function call building logic here because the |
761 | // complex type has special ABI handling. We also should not forget about |
762 | // special calling convention which may be used for compiler builtins. |
763 | |
764 | // We create a function qualified type to state that this call does not have |
765 | // any exceptions. |
766 | FunctionProtoType::ExtProtoInfo EPI; |
767 | EPI = EPI.withExceptionSpec( |
768 | ESI: FunctionProtoType::ExceptionSpecInfo(EST_BasicNoexcept)); |
769 | SmallVector<QualType, 4> ArgsQTys( |
770 | 4, Op.Ty->castAs<ComplexType>()->getElementType()); |
771 | QualType FQTy = CGF.getContext().getFunctionType(ResultTy: Op.Ty, Args: ArgsQTys, EPI); |
772 | const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall( |
773 | Args, Ty: cast<FunctionType>(Val: FQTy.getTypePtr()), ChainCall: false); |
774 | |
775 | llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(Info: FuncInfo); |
776 | llvm::FunctionCallee Func = CGF.CGM.CreateRuntimeFunction( |
777 | Ty: FTy, Name: LibCallName, ExtraAttrs: llvm::AttributeList(), Local: true); |
778 | CGCallee Callee = CGCallee::forDirect(functionPtr: Func, abstractInfo: FQTy->getAs<FunctionProtoType>()); |
779 | |
780 | llvm::CallBase *Call; |
781 | RValue Res = CGF.EmitCall(CallInfo: FuncInfo, Callee, ReturnValue: ReturnValueSlot(), Args, callOrInvoke: &Call); |
782 | Call->setCallingConv(CGF.CGM.getRuntimeCC()); |
783 | return Res.getComplexVal(); |
784 | } |
785 | |
786 | /// Lookup the libcall name for a given floating point type complex |
787 | /// multiply. |
788 | static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) { |
789 | switch (Ty->getTypeID()) { |
790 | default: |
791 | llvm_unreachable("Unsupported floating point type!" ); |
792 | case llvm::Type::HalfTyID: |
793 | return "__mulhc3" ; |
794 | case llvm::Type::FloatTyID: |
795 | return "__mulsc3" ; |
796 | case llvm::Type::DoubleTyID: |
797 | return "__muldc3" ; |
798 | case llvm::Type::PPC_FP128TyID: |
799 | return "__multc3" ; |
800 | case llvm::Type::X86_FP80TyID: |
801 | return "__mulxc3" ; |
802 | case llvm::Type::FP128TyID: |
803 | return "__multc3" ; |
804 | } |
805 | } |
806 | |
807 | // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex |
808 | // typed values. |
809 | ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) { |
810 | using llvm::Value; |
811 | Value *ResR, *ResI; |
812 | llvm::MDBuilder MDHelper(CGF.getLLVMContext()); |
813 | |
814 | if (Op.LHS.first->getType()->isFloatingPointTy()) { |
815 | // The general formulation is: |
816 | // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c) |
817 | // |
818 | // But we can fold away components which would be zero due to a real |
819 | // operand according to C11 Annex G.5.1p2. |
820 | // FIXME: C11 also provides for imaginary types which would allow folding |
821 | // still more of this within the type system. |
822 | |
823 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op.FPFeatures); |
824 | if (Op.LHS.second && Op.RHS.second) { |
825 | // If both operands are complex, emit the core math directly, and then |
826 | // test for NaNs. If we find NaNs in the result, we delegate to a libcall |
827 | // to carefully re-compute the correct infinity representation if |
828 | // possible. The expectation is that the presence of NaNs here is |
829 | // *extremely* rare, and so the cost of the libcall is almost irrelevant. |
830 | // This is good, because the libcall re-computes the core multiplication |
831 | // exactly the same as we do here and re-tests for NaNs in order to be |
832 | // a generic complex*complex libcall. |
833 | |
834 | // First compute the four products. |
835 | Value *AC = Builder.CreateFMul(L: Op.LHS.first, R: Op.RHS.first, Name: "mul_ac" ); |
836 | Value *BD = Builder.CreateFMul(L: Op.LHS.second, R: Op.RHS.second, Name: "mul_bd" ); |
837 | Value *AD = Builder.CreateFMul(L: Op.LHS.first, R: Op.RHS.second, Name: "mul_ad" ); |
838 | Value *BC = Builder.CreateFMul(L: Op.LHS.second, R: Op.RHS.first, Name: "mul_bc" ); |
839 | |
840 | // The real part is the difference of the first two, the imaginary part is |
841 | // the sum of the second. |
842 | ResR = Builder.CreateFSub(L: AC, R: BD, Name: "mul_r" ); |
843 | ResI = Builder.CreateFAdd(L: AD, R: BC, Name: "mul_i" ); |
844 | |
845 | if (Op.FPFeatures.getComplexRange() == LangOptions::CX_Basic || |
846 | Op.FPFeatures.getComplexRange() == LangOptions::CX_Improved || |
847 | Op.FPFeatures.getComplexRange() == LangOptions::CX_Promoted) |
848 | return ComplexPairTy(ResR, ResI); |
849 | |
850 | // Emit the test for the real part becoming NaN and create a branch to |
851 | // handle it. We test for NaN by comparing the number to itself. |
852 | Value *IsRNaN = Builder.CreateFCmpUNO(LHS: ResR, RHS: ResR, Name: "isnan_cmp" ); |
853 | llvm::BasicBlock *ContBB = CGF.createBasicBlock(name: "complex_mul_cont" ); |
854 | llvm::BasicBlock *INaNBB = CGF.createBasicBlock(name: "complex_mul_imag_nan" ); |
855 | llvm::Instruction *Branch = Builder.CreateCondBr(Cond: IsRNaN, True: INaNBB, False: ContBB); |
856 | llvm::BasicBlock *OrigBB = Branch->getParent(); |
857 | |
858 | // Give hint that we very much don't expect to see NaNs. |
859 | // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp |
860 | llvm::MDNode *BrWeight = MDHelper.createBranchWeights(TrueWeight: 1, FalseWeight: (1U << 20) - 1); |
861 | Branch->setMetadata(KindID: llvm::LLVMContext::MD_prof, Node: BrWeight); |
862 | |
863 | // Now test the imaginary part and create its branch. |
864 | CGF.EmitBlock(BB: INaNBB); |
865 | Value *IsINaN = Builder.CreateFCmpUNO(LHS: ResI, RHS: ResI, Name: "isnan_cmp" ); |
866 | llvm::BasicBlock *LibCallBB = CGF.createBasicBlock(name: "complex_mul_libcall" ); |
867 | Branch = Builder.CreateCondBr(Cond: IsINaN, True: LibCallBB, False: ContBB); |
868 | Branch->setMetadata(KindID: llvm::LLVMContext::MD_prof, Node: BrWeight); |
869 | |
870 | // Now emit the libcall on this slowest of the slow paths. |
871 | CGF.EmitBlock(BB: LibCallBB); |
872 | Value *LibCallR, *LibCallI; |
873 | std::tie(args&: LibCallR, args&: LibCallI) = EmitComplexBinOpLibCall( |
874 | LibCallName: getComplexMultiplyLibCallName(Ty: Op.LHS.first->getType()), Op); |
875 | Builder.CreateBr(Dest: ContBB); |
876 | |
877 | // Finally continue execution by phi-ing together the different |
878 | // computation paths. |
879 | CGF.EmitBlock(BB: ContBB); |
880 | llvm::PHINode *RealPHI = Builder.CreatePHI(Ty: ResR->getType(), NumReservedValues: 3, Name: "real_mul_phi" ); |
881 | RealPHI->addIncoming(V: ResR, BB: OrigBB); |
882 | RealPHI->addIncoming(V: ResR, BB: INaNBB); |
883 | RealPHI->addIncoming(V: LibCallR, BB: LibCallBB); |
884 | llvm::PHINode *ImagPHI = Builder.CreatePHI(Ty: ResI->getType(), NumReservedValues: 3, Name: "imag_mul_phi" ); |
885 | ImagPHI->addIncoming(V: ResI, BB: OrigBB); |
886 | ImagPHI->addIncoming(V: ResI, BB: INaNBB); |
887 | ImagPHI->addIncoming(V: LibCallI, BB: LibCallBB); |
888 | return ComplexPairTy(RealPHI, ImagPHI); |
889 | } |
890 | assert((Op.LHS.second || Op.RHS.second) && |
891 | "At least one operand must be complex!" ); |
892 | |
893 | // If either of the operands is a real rather than a complex, the |
894 | // imaginary component is ignored when computing the real component of the |
895 | // result. |
896 | ResR = Builder.CreateFMul(L: Op.LHS.first, R: Op.RHS.first, Name: "mul.rl" ); |
897 | |
898 | ResI = Op.LHS.second |
899 | ? Builder.CreateFMul(L: Op.LHS.second, R: Op.RHS.first, Name: "mul.il" ) |
900 | : Builder.CreateFMul(L: Op.LHS.first, R: Op.RHS.second, Name: "mul.ir" ); |
901 | } else { |
902 | assert(Op.LHS.second && Op.RHS.second && |
903 | "Both operands of integer complex operators must be complex!" ); |
904 | Value *ResRl = Builder.CreateMul(LHS: Op.LHS.first, RHS: Op.RHS.first, Name: "mul.rl" ); |
905 | Value *ResRr = Builder.CreateMul(LHS: Op.LHS.second, RHS: Op.RHS.second, Name: "mul.rr" ); |
906 | ResR = Builder.CreateSub(LHS: ResRl, RHS: ResRr, Name: "mul.r" ); |
907 | |
908 | Value *ResIl = Builder.CreateMul(LHS: Op.LHS.second, RHS: Op.RHS.first, Name: "mul.il" ); |
909 | Value *ResIr = Builder.CreateMul(LHS: Op.LHS.first, RHS: Op.RHS.second, Name: "mul.ir" ); |
910 | ResI = Builder.CreateAdd(LHS: ResIl, RHS: ResIr, Name: "mul.i" ); |
911 | } |
912 | return ComplexPairTy(ResR, ResI); |
913 | } |
914 | |
915 | ComplexPairTy ComplexExprEmitter::EmitAlgebraicDiv(llvm::Value *LHSr, |
916 | llvm::Value *LHSi, |
917 | llvm::Value *RHSr, |
918 | llvm::Value *RHSi) { |
919 | // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) |
920 | llvm::Value *DSTr, *DSTi; |
921 | |
922 | llvm::Value *AC = Builder.CreateFMul(L: LHSr, R: RHSr); // a*c |
923 | llvm::Value *BD = Builder.CreateFMul(L: LHSi, R: RHSi); // b*d |
924 | llvm::Value *ACpBD = Builder.CreateFAdd(L: AC, R: BD); // ac+bd |
925 | |
926 | llvm::Value *CC = Builder.CreateFMul(L: RHSr, R: RHSr); // c*c |
927 | llvm::Value *DD = Builder.CreateFMul(L: RHSi, R: RHSi); // d*d |
928 | llvm::Value *CCpDD = Builder.CreateFAdd(L: CC, R: DD); // cc+dd |
929 | |
930 | llvm::Value *BC = Builder.CreateFMul(L: LHSi, R: RHSr); // b*c |
931 | llvm::Value *AD = Builder.CreateFMul(L: LHSr, R: RHSi); // a*d |
932 | llvm::Value *BCmAD = Builder.CreateFSub(L: BC, R: AD); // bc-ad |
933 | |
934 | DSTr = Builder.CreateFDiv(L: ACpBD, R: CCpDD); |
935 | DSTi = Builder.CreateFDiv(L: BCmAD, R: CCpDD); |
936 | return ComplexPairTy(DSTr, DSTi); |
937 | } |
938 | |
939 | // EmitFAbs - Emit a call to @llvm.fabs. |
940 | static llvm::Value *EmitllvmFAbs(CodeGenFunction &CGF, llvm::Value *Value) { |
941 | llvm::Function *Func = |
942 | CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Value->getType()); |
943 | llvm::Value *Call = CGF.Builder.CreateCall(Callee: Func, Args: Value); |
944 | return Call; |
945 | } |
946 | |
947 | // EmitRangeReductionDiv - Implements Smith's algorithm for complex division. |
948 | // SMITH, R. L. Algorithm 116: Complex division. Commun. ACM 5, 8 (1962). |
949 | ComplexPairTy ComplexExprEmitter::EmitRangeReductionDiv(llvm::Value *LHSr, |
950 | llvm::Value *LHSi, |
951 | llvm::Value *RHSr, |
952 | llvm::Value *RHSi) { |
953 | // FIXME: This could eventually be replaced by an LLVM intrinsic to |
954 | // avoid this long IR sequence. |
955 | |
956 | // (a + ib) / (c + id) = (e + if) |
957 | llvm::Value *FAbsRHSr = EmitllvmFAbs(CGF, Value: RHSr); // |c| |
958 | llvm::Value *FAbsRHSi = EmitllvmFAbs(CGF, Value: RHSi); // |d| |
959 | // |c| >= |d| |
960 | llvm::Value *IsR = Builder.CreateFCmpUGT(LHS: FAbsRHSr, RHS: FAbsRHSi, Name: "abs_cmp" ); |
961 | |
962 | llvm::BasicBlock *TrueBB = |
963 | CGF.createBasicBlock(name: "abs_rhsr_greater_or_equal_abs_rhsi" ); |
964 | llvm::BasicBlock *FalseBB = |
965 | CGF.createBasicBlock(name: "abs_rhsr_less_than_abs_rhsi" ); |
966 | llvm::BasicBlock *ContBB = CGF.createBasicBlock(name: "complex_div" ); |
967 | Builder.CreateCondBr(Cond: IsR, True: TrueBB, False: FalseBB); |
968 | |
969 | CGF.EmitBlock(BB: TrueBB); |
970 | // abs(c) >= abs(d) |
971 | // r = d/c |
972 | // tmp = c + rd |
973 | // e = (a + br)/tmp |
974 | // f = (b - ar)/tmp |
975 | llvm::Value *DdC = Builder.CreateFDiv(L: RHSi, R: RHSr); // r=d/c |
976 | |
977 | llvm::Value *RD = Builder.CreateFMul(L: DdC, R: RHSi); // rd |
978 | llvm::Value *CpRD = Builder.CreateFAdd(L: RHSr, R: RD); // tmp=c+rd |
979 | |
980 | llvm::Value *T3 = Builder.CreateFMul(L: LHSi, R: DdC); // br |
981 | llvm::Value *T4 = Builder.CreateFAdd(L: LHSr, R: T3); // a+br |
982 | llvm::Value *DSTTr = Builder.CreateFDiv(L: T4, R: CpRD); // (a+br)/tmp |
983 | |
984 | llvm::Value *T5 = Builder.CreateFMul(L: LHSr, R: DdC); // ar |
985 | llvm::Value *T6 = Builder.CreateFSub(L: LHSi, R: T5); // b-ar |
986 | llvm::Value *DSTTi = Builder.CreateFDiv(L: T6, R: CpRD); // (b-ar)/tmp |
987 | Builder.CreateBr(Dest: ContBB); |
988 | |
989 | CGF.EmitBlock(BB: FalseBB); |
990 | // abs(c) < abs(d) |
991 | // r = c/d |
992 | // tmp = d + rc |
993 | // e = (ar + b)/tmp |
994 | // f = (br - a)/tmp |
995 | llvm::Value *CdD = Builder.CreateFDiv(L: RHSr, R: RHSi); // r=c/d |
996 | |
997 | llvm::Value *RC = Builder.CreateFMul(L: CdD, R: RHSr); // rc |
998 | llvm::Value *DpRC = Builder.CreateFAdd(L: RHSi, R: RC); // tmp=d+rc |
999 | |
1000 | llvm::Value *T7 = Builder.CreateFMul(L: LHSr, R: CdD); // ar |
1001 | llvm::Value *T8 = Builder.CreateFAdd(L: T7, R: LHSi); // ar+b |
1002 | llvm::Value *DSTFr = Builder.CreateFDiv(L: T8, R: DpRC); // (ar+b)/tmp |
1003 | |
1004 | llvm::Value *T9 = Builder.CreateFMul(L: LHSi, R: CdD); // br |
1005 | llvm::Value *T10 = Builder.CreateFSub(L: T9, R: LHSr); // br-a |
1006 | llvm::Value *DSTFi = Builder.CreateFDiv(L: T10, R: DpRC); // (br-a)/tmp |
1007 | Builder.CreateBr(Dest: ContBB); |
1008 | |
1009 | // Phi together the computation paths. |
1010 | CGF.EmitBlock(BB: ContBB); |
1011 | llvm::PHINode *VALr = Builder.CreatePHI(Ty: DSTTr->getType(), NumReservedValues: 2); |
1012 | VALr->addIncoming(V: DSTTr, BB: TrueBB); |
1013 | VALr->addIncoming(V: DSTFr, BB: FalseBB); |
1014 | llvm::PHINode *VALi = Builder.CreatePHI(Ty: DSTTi->getType(), NumReservedValues: 2); |
1015 | VALi->addIncoming(V: DSTTi, BB: TrueBB); |
1016 | VALi->addIncoming(V: DSTFi, BB: FalseBB); |
1017 | return ComplexPairTy(VALr, VALi); |
1018 | } |
1019 | |
1020 | // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex |
1021 | // typed values. |
1022 | ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) { |
1023 | llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second; |
1024 | llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second; |
1025 | llvm::Value *DSTr, *DSTi; |
1026 | if (LHSr->getType()->isFloatingPointTy()) { |
1027 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op.FPFeatures); |
1028 | if (!RHSi) { |
1029 | assert(LHSi && "Can have at most one non-complex operand!" ); |
1030 | |
1031 | DSTr = Builder.CreateFDiv(L: LHSr, R: RHSr); |
1032 | DSTi = Builder.CreateFDiv(L: LHSi, R: RHSr); |
1033 | return ComplexPairTy(DSTr, DSTi); |
1034 | } |
1035 | llvm::Value *OrigLHSi = LHSi; |
1036 | if (!LHSi) |
1037 | LHSi = llvm::Constant::getNullValue(Ty: RHSi->getType()); |
1038 | if (Op.FPFeatures.getComplexRange() == LangOptions::CX_Improved || |
1039 | (Op.FPFeatures.getComplexRange() == LangOptions::CX_Promoted && |
1040 | !FPHasBeenPromoted)) |
1041 | return EmitRangeReductionDiv(LHSr, LHSi, RHSr, RHSi); |
1042 | else if (Op.FPFeatures.getComplexRange() == LangOptions::CX_Basic || |
1043 | Op.FPFeatures.getComplexRange() == LangOptions::CX_Promoted) |
1044 | return EmitAlgebraicDiv(LHSr, LHSi, RHSr, RHSi); |
1045 | // '-ffast-math' is used in the command line but followed by an |
1046 | // '-fno-cx-limited-range' or '-fcomplex-arithmetic=full'. |
1047 | else if (Op.FPFeatures.getComplexRange() == LangOptions::CX_Full) { |
1048 | LHSi = OrigLHSi; |
1049 | // If we have a complex operand on the RHS and FastMath is not allowed, we |
1050 | // delegate to a libcall to handle all of the complexities and minimize |
1051 | // underflow/overflow cases. When FastMath is allowed we construct the |
1052 | // divide inline using the same algorithm as for integer operands. |
1053 | // |
1054 | // FIXME: We would be able to avoid the libcall in many places if we |
1055 | // supported imaginary types in addition to complex types. |
1056 | BinOpInfo LibCallOp = Op; |
1057 | // If LHS was a real, supply a null imaginary part. |
1058 | if (!LHSi) |
1059 | LibCallOp.LHS.second = llvm::Constant::getNullValue(Ty: LHSr->getType()); |
1060 | |
1061 | switch (LHSr->getType()->getTypeID()) { |
1062 | default: |
1063 | llvm_unreachable("Unsupported floating point type!" ); |
1064 | case llvm::Type::HalfTyID: |
1065 | return EmitComplexBinOpLibCall(LibCallName: "__divhc3" , Op: LibCallOp); |
1066 | case llvm::Type::FloatTyID: |
1067 | return EmitComplexBinOpLibCall(LibCallName: "__divsc3" , Op: LibCallOp); |
1068 | case llvm::Type::DoubleTyID: |
1069 | return EmitComplexBinOpLibCall(LibCallName: "__divdc3" , Op: LibCallOp); |
1070 | case llvm::Type::PPC_FP128TyID: |
1071 | return EmitComplexBinOpLibCall(LibCallName: "__divtc3" , Op: LibCallOp); |
1072 | case llvm::Type::X86_FP80TyID: |
1073 | return EmitComplexBinOpLibCall(LibCallName: "__divxc3" , Op: LibCallOp); |
1074 | case llvm::Type::FP128TyID: |
1075 | return EmitComplexBinOpLibCall(LibCallName: "__divtc3" , Op: LibCallOp); |
1076 | } |
1077 | } else { |
1078 | return EmitAlgebraicDiv(LHSr, LHSi, RHSr, RHSi); |
1079 | } |
1080 | } else { |
1081 | assert(Op.LHS.second && Op.RHS.second && |
1082 | "Both operands of integer complex operators must be complex!" ); |
1083 | // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) |
1084 | llvm::Value *Tmp1 = Builder.CreateMul(LHS: LHSr, RHS: RHSr); // a*c |
1085 | llvm::Value *Tmp2 = Builder.CreateMul(LHS: LHSi, RHS: RHSi); // b*d |
1086 | llvm::Value *Tmp3 = Builder.CreateAdd(LHS: Tmp1, RHS: Tmp2); // ac+bd |
1087 | |
1088 | llvm::Value *Tmp4 = Builder.CreateMul(LHS: RHSr, RHS: RHSr); // c*c |
1089 | llvm::Value *Tmp5 = Builder.CreateMul(LHS: RHSi, RHS: RHSi); // d*d |
1090 | llvm::Value *Tmp6 = Builder.CreateAdd(LHS: Tmp4, RHS: Tmp5); // cc+dd |
1091 | |
1092 | llvm::Value *Tmp7 = Builder.CreateMul(LHS: LHSi, RHS: RHSr); // b*c |
1093 | llvm::Value *Tmp8 = Builder.CreateMul(LHS: LHSr, RHS: RHSi); // a*d |
1094 | llvm::Value *Tmp9 = Builder.CreateSub(LHS: Tmp7, RHS: Tmp8); // bc-ad |
1095 | |
1096 | if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) { |
1097 | DSTr = Builder.CreateUDiv(LHS: Tmp3, RHS: Tmp6); |
1098 | DSTi = Builder.CreateUDiv(LHS: Tmp9, RHS: Tmp6); |
1099 | } else { |
1100 | DSTr = Builder.CreateSDiv(LHS: Tmp3, RHS: Tmp6); |
1101 | DSTi = Builder.CreateSDiv(LHS: Tmp9, RHS: Tmp6); |
1102 | } |
1103 | } |
1104 | |
1105 | return ComplexPairTy(DSTr, DSTi); |
1106 | } |
1107 | |
1108 | ComplexPairTy CodeGenFunction::EmitUnPromotedValue(ComplexPairTy result, |
1109 | QualType UnPromotionType) { |
1110 | llvm::Type *ComplexElementTy = |
1111 | ConvertType(T: UnPromotionType->castAs<ComplexType>()->getElementType()); |
1112 | if (result.first) |
1113 | result.first = |
1114 | Builder.CreateFPTrunc(V: result.first, DestTy: ComplexElementTy, Name: "unpromotion" ); |
1115 | if (result.second) |
1116 | result.second = |
1117 | Builder.CreateFPTrunc(V: result.second, DestTy: ComplexElementTy, Name: "unpromotion" ); |
1118 | return result; |
1119 | } |
1120 | |
1121 | ComplexPairTy CodeGenFunction::EmitPromotedValue(ComplexPairTy result, |
1122 | QualType PromotionType) { |
1123 | llvm::Type *ComplexElementTy = |
1124 | ConvertType(T: PromotionType->castAs<ComplexType>()->getElementType()); |
1125 | if (result.first) |
1126 | result.first = Builder.CreateFPExt(V: result.first, DestTy: ComplexElementTy, Name: "ext" ); |
1127 | if (result.second) |
1128 | result.second = Builder.CreateFPExt(V: result.second, DestTy: ComplexElementTy, Name: "ext" ); |
1129 | |
1130 | return result; |
1131 | } |
1132 | |
1133 | ComplexPairTy ComplexExprEmitter::EmitPromoted(const Expr *E, |
1134 | QualType PromotionType) { |
1135 | E = E->IgnoreParens(); |
1136 | if (auto BO = dyn_cast<BinaryOperator>(Val: E)) { |
1137 | switch (BO->getOpcode()) { |
1138 | #define HANDLE_BINOP(OP) \ |
1139 | case BO_##OP: \ |
1140 | return EmitBin##OP(EmitBinOps(BO, PromotionType)); |
1141 | HANDLE_BINOP(Add) |
1142 | HANDLE_BINOP(Sub) |
1143 | HANDLE_BINOP(Mul) |
1144 | HANDLE_BINOP(Div) |
1145 | #undef HANDLE_BINOP |
1146 | default: |
1147 | break; |
1148 | } |
1149 | } else if (auto UO = dyn_cast<UnaryOperator>(Val: E)) { |
1150 | switch (UO->getOpcode()) { |
1151 | case UO_Minus: |
1152 | return VisitMinus(E: UO, PromotionType); |
1153 | case UO_Plus: |
1154 | return VisitPlus(E: UO, PromotionType); |
1155 | default: |
1156 | break; |
1157 | } |
1158 | } |
1159 | auto result = Visit(E: const_cast<Expr *>(E)); |
1160 | if (!PromotionType.isNull()) |
1161 | return CGF.EmitPromotedValue(result, PromotionType); |
1162 | else |
1163 | return result; |
1164 | } |
1165 | |
1166 | ComplexPairTy CodeGenFunction::EmitPromotedComplexExpr(const Expr *E, |
1167 | QualType DstTy) { |
1168 | return ComplexExprEmitter(*this).EmitPromoted(E, PromotionType: DstTy); |
1169 | } |
1170 | |
1171 | ComplexPairTy |
1172 | ComplexExprEmitter::EmitPromotedComplexOperand(const Expr *E, |
1173 | QualType OverallPromotionType) { |
1174 | if (E->getType()->isAnyComplexType()) { |
1175 | if (!OverallPromotionType.isNull()) |
1176 | return CGF.EmitPromotedComplexExpr(E, DstTy: OverallPromotionType); |
1177 | else |
1178 | return Visit(E: const_cast<Expr *>(E)); |
1179 | } else { |
1180 | if (!OverallPromotionType.isNull()) { |
1181 | QualType ComplexElementTy = |
1182 | OverallPromotionType->castAs<ComplexType>()->getElementType(); |
1183 | return ComplexPairTy(CGF.EmitPromotedScalarExpr(E, PromotionType: ComplexElementTy), |
1184 | nullptr); |
1185 | } else { |
1186 | return ComplexPairTy(CGF.EmitScalarExpr(E), nullptr); |
1187 | } |
1188 | } |
1189 | } |
1190 | |
1191 | ComplexExprEmitter::BinOpInfo |
1192 | ComplexExprEmitter::EmitBinOps(const BinaryOperator *E, |
1193 | QualType PromotionType) { |
1194 | TestAndClearIgnoreReal(); |
1195 | TestAndClearIgnoreImag(); |
1196 | BinOpInfo Ops; |
1197 | |
1198 | Ops.LHS = EmitPromotedComplexOperand(E: E->getLHS(), OverallPromotionType: PromotionType); |
1199 | Ops.RHS = EmitPromotedComplexOperand(E: E->getRHS(), OverallPromotionType: PromotionType); |
1200 | if (!PromotionType.isNull()) |
1201 | Ops.Ty = PromotionType; |
1202 | else |
1203 | Ops.Ty = E->getType(); |
1204 | Ops.FPFeatures = E->getFPFeaturesInEffect(LO: CGF.getLangOpts()); |
1205 | return Ops; |
1206 | } |
1207 | |
1208 | |
1209 | LValue ComplexExprEmitter:: |
1210 | EmitCompoundAssignLValue(const CompoundAssignOperator *E, |
1211 | ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&), |
1212 | RValue &Val) { |
1213 | TestAndClearIgnoreReal(); |
1214 | TestAndClearIgnoreImag(); |
1215 | QualType LHSTy = E->getLHS()->getType(); |
1216 | if (const AtomicType *AT = LHSTy->getAs<AtomicType>()) |
1217 | LHSTy = AT->getValueType(); |
1218 | |
1219 | BinOpInfo OpInfo; |
1220 | OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); |
1221 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures); |
1222 | |
1223 | // Load the RHS and LHS operands. |
1224 | // __block variables need to have the rhs evaluated first, plus this should |
1225 | // improve codegen a little. |
1226 | QualType PromotionTypeCR; |
1227 | PromotionTypeCR = getPromotionType(Ty: E->getComputationResultType()); |
1228 | if (PromotionTypeCR.isNull()) |
1229 | PromotionTypeCR = E->getComputationResultType(); |
1230 | OpInfo.Ty = PromotionTypeCR; |
1231 | QualType ComplexElementTy = |
1232 | OpInfo.Ty->castAs<ComplexType>()->getElementType(); |
1233 | QualType PromotionTypeRHS = getPromotionType(Ty: E->getRHS()->getType()); |
1234 | |
1235 | // The RHS should have been converted to the computation type. |
1236 | if (E->getRHS()->getType()->isRealFloatingType()) { |
1237 | if (!PromotionTypeRHS.isNull()) |
1238 | OpInfo.RHS = ComplexPairTy( |
1239 | CGF.EmitPromotedScalarExpr(E: E->getRHS(), PromotionType: PromotionTypeRHS), nullptr); |
1240 | else { |
1241 | assert(CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, |
1242 | E->getRHS()->getType())); |
1243 | |
1244 | OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E: E->getRHS()), nullptr); |
1245 | } |
1246 | } else { |
1247 | if (!PromotionTypeRHS.isNull()) { |
1248 | OpInfo.RHS = ComplexPairTy( |
1249 | CGF.EmitPromotedComplexExpr(E: E->getRHS(), DstTy: PromotionTypeRHS)); |
1250 | } else { |
1251 | assert(CGF.getContext().hasSameUnqualifiedType(OpInfo.Ty, |
1252 | E->getRHS()->getType())); |
1253 | OpInfo.RHS = Visit(E: E->getRHS()); |
1254 | } |
1255 | } |
1256 | |
1257 | LValue LHS = CGF.EmitLValue(E: E->getLHS()); |
1258 | |
1259 | // Load from the l-value and convert it. |
1260 | SourceLocation Loc = E->getExprLoc(); |
1261 | QualType PromotionTypeLHS = getPromotionType(Ty: E->getComputationLHSType()); |
1262 | if (LHSTy->isAnyComplexType()) { |
1263 | ComplexPairTy LHSVal = EmitLoadOfLValue(lvalue: LHS, loc: Loc); |
1264 | if (!PromotionTypeLHS.isNull()) |
1265 | OpInfo.LHS = |
1266 | EmitComplexToComplexCast(Val: LHSVal, SrcType: LHSTy, DestType: PromotionTypeLHS, Loc); |
1267 | else |
1268 | OpInfo.LHS = EmitComplexToComplexCast(Val: LHSVal, SrcType: LHSTy, DestType: OpInfo.Ty, Loc); |
1269 | } else { |
1270 | llvm::Value *LHSVal = CGF.EmitLoadOfScalar(lvalue: LHS, Loc); |
1271 | // For floating point real operands we can directly pass the scalar form |
1272 | // to the binary operator emission and potentially get more efficient code. |
1273 | if (LHSTy->isRealFloatingType()) { |
1274 | QualType PromotedComplexElementTy; |
1275 | if (!PromotionTypeLHS.isNull()) { |
1276 | PromotedComplexElementTy = |
1277 | cast<ComplexType>(Val&: PromotionTypeLHS)->getElementType(); |
1278 | if (!CGF.getContext().hasSameUnqualifiedType(T1: PromotedComplexElementTy, |
1279 | T2: PromotionTypeLHS)) |
1280 | LHSVal = CGF.EmitScalarConversion(Src: LHSVal, SrcTy: LHSTy, |
1281 | DstTy: PromotedComplexElementTy, Loc); |
1282 | } else { |
1283 | if (!CGF.getContext().hasSameUnqualifiedType(T1: ComplexElementTy, T2: LHSTy)) |
1284 | LHSVal = |
1285 | CGF.EmitScalarConversion(Src: LHSVal, SrcTy: LHSTy, DstTy: ComplexElementTy, Loc); |
1286 | } |
1287 | OpInfo.LHS = ComplexPairTy(LHSVal, nullptr); |
1288 | } else { |
1289 | OpInfo.LHS = EmitScalarToComplexCast(Val: LHSVal, SrcType: LHSTy, DestType: OpInfo.Ty, Loc); |
1290 | } |
1291 | } |
1292 | |
1293 | // Expand the binary operator. |
1294 | ComplexPairTy Result = (this->*Func)(OpInfo); |
1295 | |
1296 | // Truncate the result and store it into the LHS lvalue. |
1297 | if (LHSTy->isAnyComplexType()) { |
1298 | ComplexPairTy ResVal = |
1299 | EmitComplexToComplexCast(Val: Result, SrcType: OpInfo.Ty, DestType: LHSTy, Loc); |
1300 | EmitStoreOfComplex(Val: ResVal, lvalue: LHS, /*isInit*/ false); |
1301 | Val = RValue::getComplex(C: ResVal); |
1302 | } else { |
1303 | llvm::Value *ResVal = |
1304 | CGF.EmitComplexToScalarConversion(Src: Result, SrcTy: OpInfo.Ty, DstTy: LHSTy, Loc); |
1305 | CGF.EmitStoreOfScalar(value: ResVal, lvalue: LHS, /*isInit*/ false); |
1306 | Val = RValue::get(V: ResVal); |
1307 | } |
1308 | |
1309 | return LHS; |
1310 | } |
1311 | |
1312 | // Compound assignments. |
1313 | ComplexPairTy ComplexExprEmitter:: |
1314 | EmitCompoundAssign(const CompoundAssignOperator *E, |
1315 | ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){ |
1316 | RValue Val; |
1317 | LValue LV = EmitCompoundAssignLValue(E, Func, Val); |
1318 | |
1319 | // The result of an assignment in C is the assigned r-value. |
1320 | if (!CGF.getLangOpts().CPlusPlus) |
1321 | return Val.getComplexVal(); |
1322 | |
1323 | // If the lvalue is non-volatile, return the computed value of the assignment. |
1324 | if (!LV.isVolatileQualified()) |
1325 | return Val.getComplexVal(); |
1326 | |
1327 | return EmitLoadOfLValue(LV, E->getExprLoc()); |
1328 | } |
1329 | |
1330 | LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E, |
1331 | ComplexPairTy &Val) { |
1332 | assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), |
1333 | E->getRHS()->getType()) && |
1334 | "Invalid assignment" ); |
1335 | TestAndClearIgnoreReal(); |
1336 | TestAndClearIgnoreImag(); |
1337 | |
1338 | // Emit the RHS. __block variables need the RHS evaluated first. |
1339 | Val = Visit(E: E->getRHS()); |
1340 | |
1341 | // Compute the address to store into. |
1342 | LValue LHS = CGF.EmitLValue(E: E->getLHS()); |
1343 | |
1344 | // Store the result value into the LHS lvalue. |
1345 | EmitStoreOfComplex(Val, lvalue: LHS, /*isInit*/ false); |
1346 | |
1347 | return LHS; |
1348 | } |
1349 | |
1350 | ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) { |
1351 | ComplexPairTy Val; |
1352 | LValue LV = EmitBinAssignLValue(E, Val); |
1353 | |
1354 | // The result of an assignment in C is the assigned r-value. |
1355 | if (!CGF.getLangOpts().CPlusPlus) |
1356 | return Val; |
1357 | |
1358 | // If the lvalue is non-volatile, return the computed value of the assignment. |
1359 | if (!LV.isVolatileQualified()) |
1360 | return Val; |
1361 | |
1362 | return EmitLoadOfLValue(lvalue: LV, loc: E->getExprLoc()); |
1363 | } |
1364 | |
1365 | ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) { |
1366 | CGF.EmitIgnoredExpr(E: E->getLHS()); |
1367 | return Visit(E: E->getRHS()); |
1368 | } |
1369 | |
1370 | ComplexPairTy ComplexExprEmitter:: |
1371 | VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { |
1372 | TestAndClearIgnoreReal(); |
1373 | TestAndClearIgnoreImag(); |
1374 | llvm::BasicBlock *LHSBlock = CGF.createBasicBlock(name: "cond.true" ); |
1375 | llvm::BasicBlock *RHSBlock = CGF.createBasicBlock(name: "cond.false" ); |
1376 | llvm::BasicBlock *ContBlock = CGF.createBasicBlock(name: "cond.end" ); |
1377 | |
1378 | // Bind the common expression if necessary. |
1379 | CodeGenFunction::OpaqueValueMapping binding(CGF, E); |
1380 | |
1381 | |
1382 | CodeGenFunction::ConditionalEvaluation eval(CGF); |
1383 | CGF.EmitBranchOnBoolExpr(Cond: E->getCond(), TrueBlock: LHSBlock, FalseBlock: RHSBlock, |
1384 | TrueCount: CGF.getProfileCount(E)); |
1385 | |
1386 | eval.begin(CGF); |
1387 | CGF.EmitBlock(BB: LHSBlock); |
1388 | if (llvm::EnableSingleByteCoverage) |
1389 | CGF.incrementProfileCounter(E->getTrueExpr()); |
1390 | else |
1391 | CGF.incrementProfileCounter(E); |
1392 | |
1393 | ComplexPairTy LHS = Visit(E: E->getTrueExpr()); |
1394 | LHSBlock = Builder.GetInsertBlock(); |
1395 | CGF.EmitBranch(Block: ContBlock); |
1396 | eval.end(CGF); |
1397 | |
1398 | eval.begin(CGF); |
1399 | CGF.EmitBlock(BB: RHSBlock); |
1400 | if (llvm::EnableSingleByteCoverage) |
1401 | CGF.incrementProfileCounter(E->getFalseExpr()); |
1402 | ComplexPairTy RHS = Visit(E: E->getFalseExpr()); |
1403 | RHSBlock = Builder.GetInsertBlock(); |
1404 | CGF.EmitBlock(BB: ContBlock); |
1405 | if (llvm::EnableSingleByteCoverage) |
1406 | CGF.incrementProfileCounter(E); |
1407 | eval.end(CGF); |
1408 | |
1409 | // Create a PHI node for the real part. |
1410 | llvm::PHINode *RealPN = Builder.CreatePHI(Ty: LHS.first->getType(), NumReservedValues: 2, Name: "cond.r" ); |
1411 | RealPN->addIncoming(V: LHS.first, BB: LHSBlock); |
1412 | RealPN->addIncoming(V: RHS.first, BB: RHSBlock); |
1413 | |
1414 | // Create a PHI node for the imaginary part. |
1415 | llvm::PHINode *ImagPN = Builder.CreatePHI(Ty: LHS.first->getType(), NumReservedValues: 2, Name: "cond.i" ); |
1416 | ImagPN->addIncoming(V: LHS.second, BB: LHSBlock); |
1417 | ImagPN->addIncoming(V: RHS.second, BB: RHSBlock); |
1418 | |
1419 | return ComplexPairTy(RealPN, ImagPN); |
1420 | } |
1421 | |
1422 | ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) { |
1423 | return Visit(E: E->getChosenSubExpr()); |
1424 | } |
1425 | |
1426 | ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) { |
1427 | bool Ignore = TestAndClearIgnoreReal(); |
1428 | (void)Ignore; |
1429 | assert (Ignore == false && "init list ignored" ); |
1430 | Ignore = TestAndClearIgnoreImag(); |
1431 | (void)Ignore; |
1432 | assert (Ignore == false && "init list ignored" ); |
1433 | |
1434 | if (E->getNumInits() == 2) { |
1435 | llvm::Value *Real = CGF.EmitScalarExpr(E: E->getInit(Init: 0)); |
1436 | llvm::Value *Imag = CGF.EmitScalarExpr(E: E->getInit(Init: 1)); |
1437 | return ComplexPairTy(Real, Imag); |
1438 | } else if (E->getNumInits() == 1) { |
1439 | return Visit(E: E->getInit(Init: 0)); |
1440 | } |
1441 | |
1442 | // Empty init list initializes to null |
1443 | assert(E->getNumInits() == 0 && "Unexpected number of inits" ); |
1444 | QualType Ty = E->getType()->castAs<ComplexType>()->getElementType(); |
1445 | llvm::Type* LTy = CGF.ConvertType(T: Ty); |
1446 | llvm::Value* zeroConstant = llvm::Constant::getNullValue(Ty: LTy); |
1447 | return ComplexPairTy(zeroConstant, zeroConstant); |
1448 | } |
1449 | |
1450 | ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) { |
1451 | Address ArgValue = Address::invalid(); |
1452 | Address ArgPtr = CGF.EmitVAArg(VE: E, VAListAddr&: ArgValue); |
1453 | |
1454 | if (!ArgPtr.isValid()) { |
1455 | CGF.ErrorUnsupported(E, "complex va_arg expression" ); |
1456 | llvm::Type *EltTy = |
1457 | CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType()); |
1458 | llvm::Value *U = llvm::UndefValue::get(T: EltTy); |
1459 | return ComplexPairTy(U, U); |
1460 | } |
1461 | |
1462 | return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()), |
1463 | E->getExprLoc()); |
1464 | } |
1465 | |
1466 | //===----------------------------------------------------------------------===// |
1467 | // Entry Point into this File |
1468 | //===----------------------------------------------------------------------===// |
1469 | |
1470 | /// EmitComplexExpr - Emit the computation of the specified expression of |
1471 | /// complex type, ignoring the result. |
1472 | ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal, |
1473 | bool IgnoreImag) { |
1474 | assert(E && getComplexType(E->getType()) && |
1475 | "Invalid complex expression to emit" ); |
1476 | |
1477 | return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag) |
1478 | .Visit(E: const_cast<Expr *>(E)); |
1479 | } |
1480 | |
1481 | void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest, |
1482 | bool isInit) { |
1483 | assert(E && getComplexType(E->getType()) && |
1484 | "Invalid complex expression to emit" ); |
1485 | ComplexExprEmitter Emitter(*this); |
1486 | ComplexPairTy Val = Emitter.Visit(E: const_cast<Expr*>(E)); |
1487 | Emitter.EmitStoreOfComplex(Val, lvalue: dest, isInit); |
1488 | } |
1489 | |
1490 | /// EmitStoreOfComplex - Store a complex number into the specified l-value. |
1491 | void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest, |
1492 | bool isInit) { |
1493 | ComplexExprEmitter(*this).EmitStoreOfComplex(Val: V, lvalue: dest, isInit); |
1494 | } |
1495 | |
1496 | /// EmitLoadOfComplex - Load a complex number from the specified address. |
1497 | ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src, |
1498 | SourceLocation loc) { |
1499 | return ComplexExprEmitter(*this).EmitLoadOfLValue(lvalue: src, loc); |
1500 | } |
1501 | |
1502 | LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) { |
1503 | assert(E->getOpcode() == BO_Assign); |
1504 | ComplexPairTy Val; // ignored |
1505 | LValue LVal = ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val); |
1506 | if (getLangOpts().OpenMP) |
1507 | CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF&: *this, |
1508 | LHS: E->getLHS()); |
1509 | return LVal; |
1510 | } |
1511 | |
1512 | typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)( |
1513 | const ComplexExprEmitter::BinOpInfo &); |
1514 | |
1515 | static CompoundFunc getComplexOp(BinaryOperatorKind Op) { |
1516 | switch (Op) { |
1517 | case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul; |
1518 | case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv; |
1519 | case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub; |
1520 | case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd; |
1521 | default: |
1522 | llvm_unreachable("unexpected complex compound assignment" ); |
1523 | } |
1524 | } |
1525 | |
1526 | LValue CodeGenFunction:: |
1527 | EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) { |
1528 | CompoundFunc Op = getComplexOp(E->getOpcode()); |
1529 | RValue Val; |
1530 | return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Func: Op, Val); |
1531 | } |
1532 | |
1533 | LValue CodeGenFunction:: |
1534 | EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, |
1535 | llvm::Value *&Result) { |
1536 | CompoundFunc Op = getComplexOp(E->getOpcode()); |
1537 | RValue Val; |
1538 | LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Func: Op, Val); |
1539 | Result = Val.getScalarVal(); |
1540 | return Ret; |
1541 | } |
1542 | |