1 | //===--- LiteralSupport.cpp - Code to parse and process literals ----------===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements the NumericLiteralParser, CharLiteralParser, and |
10 | // StringLiteralParser interfaces. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "clang/Lex/LiteralSupport.h" |
15 | #include "clang/Basic/CharInfo.h" |
16 | #include "clang/Basic/LangOptions.h" |
17 | #include "clang/Basic/SourceLocation.h" |
18 | #include "clang/Basic/TargetInfo.h" |
19 | #include "clang/Lex/LexDiagnostic.h" |
20 | #include "clang/Lex/Lexer.h" |
21 | #include "clang/Lex/Preprocessor.h" |
22 | #include "clang/Lex/Token.h" |
23 | #include "llvm/ADT/APInt.h" |
24 | #include "llvm/ADT/ScopeExit.h" |
25 | #include "llvm/ADT/SmallVector.h" |
26 | #include "llvm/ADT/StringExtras.h" |
27 | #include "llvm/ADT/StringSwitch.h" |
28 | #include "llvm/Support/ConvertUTF.h" |
29 | #include "llvm/Support/Error.h" |
30 | #include "llvm/Support/ErrorHandling.h" |
31 | #include "llvm/Support/Unicode.h" |
32 | #include <algorithm> |
33 | #include <cassert> |
34 | #include <cstddef> |
35 | #include <cstdint> |
36 | #include <cstring> |
37 | #include <string> |
38 | |
39 | using namespace clang; |
40 | |
41 | static unsigned getCharWidth(tok::TokenKind kind, const TargetInfo &Target) { |
42 | switch (kind) { |
43 | default: llvm_unreachable("Unknown token type!"); |
44 | case tok::char_constant: |
45 | case tok::string_literal: |
46 | case tok::utf8_char_constant: |
47 | case tok::utf8_string_literal: |
48 | return Target.getCharWidth(); |
49 | case tok::wide_char_constant: |
50 | case tok::wide_string_literal: |
51 | return Target.getWCharWidth(); |
52 | case tok::utf16_char_constant: |
53 | case tok::utf16_string_literal: |
54 | return Target.getChar16Width(); |
55 | case tok::utf32_char_constant: |
56 | case tok::utf32_string_literal: |
57 | return Target.getChar32Width(); |
58 | } |
59 | } |
60 | |
61 | static unsigned getEncodingPrefixLen(tok::TokenKind kind) { |
62 | switch (kind) { |
63 | default: |
64 | llvm_unreachable("Unknown token type!"); |
65 | case tok::char_constant: |
66 | case tok::string_literal: |
67 | return 0; |
68 | case tok::utf8_char_constant: |
69 | case tok::utf8_string_literal: |
70 | return 2; |
71 | case tok::wide_char_constant: |
72 | case tok::wide_string_literal: |
73 | case tok::utf16_char_constant: |
74 | case tok::utf16_string_literal: |
75 | case tok::utf32_char_constant: |
76 | case tok::utf32_string_literal: |
77 | return 1; |
78 | } |
79 | } |
80 | |
81 | static CharSourceRange MakeCharSourceRange(const LangOptions &Features, |
82 | FullSourceLoc TokLoc, |
83 | const char *TokBegin, |
84 | const char *TokRangeBegin, |
85 | const char *TokRangeEnd) { |
86 | SourceLocation Begin = |
87 | Lexer::AdvanceToTokenCharacter(TokStart: TokLoc, Characters: TokRangeBegin - TokBegin, |
88 | SM: TokLoc.getManager(), LangOpts: Features); |
89 | SourceLocation End = |
90 | Lexer::AdvanceToTokenCharacter(TokStart: Begin, Characters: TokRangeEnd - TokRangeBegin, |
91 | SM: TokLoc.getManager(), LangOpts: Features); |
92 | return CharSourceRange::getCharRange(B: Begin, E: End); |
93 | } |
94 | |
95 | /// Produce a diagnostic highlighting some portion of a literal. |
96 | /// |
97 | /// Emits the diagnostic \p DiagID, highlighting the range of characters from |
98 | /// \p TokRangeBegin (inclusive) to \p TokRangeEnd (exclusive), which must be |
99 | /// a substring of a spelling buffer for the token beginning at \p TokBegin. |
100 | static DiagnosticBuilder Diag(DiagnosticsEngine *Diags, |
101 | const LangOptions &Features, FullSourceLoc TokLoc, |
102 | const char *TokBegin, const char *TokRangeBegin, |
103 | const char *TokRangeEnd, unsigned DiagID) { |
104 | SourceLocation Begin = |
105 | Lexer::AdvanceToTokenCharacter(TokStart: TokLoc, Characters: TokRangeBegin - TokBegin, |
106 | SM: TokLoc.getManager(), LangOpts: Features); |
107 | return Diags->Report(Loc: Begin, DiagID) << |
108 | MakeCharSourceRange(Features, TokLoc, TokBegin, TokRangeBegin, TokRangeEnd); |
109 | } |
110 | |
111 | static bool IsEscapeValidInUnevaluatedStringLiteral(char Escape) { |
112 | switch (Escape) { |
113 | case '\'': |
114 | case '"': |
115 | case '?': |
116 | case '\\': |
117 | case 'a': |
118 | case 'b': |
119 | case 'f': |
120 | case 'n': |
121 | case 'r': |
122 | case 't': |
123 | case 'v': |
124 | return true; |
125 | } |
126 | return false; |
127 | } |
128 | |
129 | /// ProcessCharEscape - Parse a standard C escape sequence, which can occur in |
130 | /// either a character or a string literal. |
131 | static unsigned ProcessCharEscape(const char *ThisTokBegin, |
132 | const char *&ThisTokBuf, |
133 | const char *ThisTokEnd, bool &HadError, |
134 | FullSourceLoc Loc, unsigned CharWidth, |
135 | DiagnosticsEngine *Diags, |
136 | const LangOptions &Features, |
137 | StringLiteralEvalMethod EvalMethod) { |
138 | const char *EscapeBegin = ThisTokBuf; |
139 | bool Delimited = false; |
140 | bool EndDelimiterFound = false; |
141 | |
142 | // Skip the '\' char. |
143 | ++ThisTokBuf; |
144 | |
145 | // We know that this character can't be off the end of the buffer, because |
146 | // that would have been \", which would not have been the end of string. |
147 | unsigned ResultChar = *ThisTokBuf++; |
148 | char Escape = ResultChar; |
149 | switch (ResultChar) { |
150 | // These map to themselves. |
151 | case '\\': case '\'': case '"': case '?': break; |
152 | |
153 | // These have fixed mappings. |
154 | case 'a': |
155 | // TODO: K&R: the meaning of '\\a' is different in traditional C |
156 | ResultChar = 7; |
157 | break; |
158 | case 'b': |
159 | ResultChar = 8; |
160 | break; |
161 | case 'e': |
162 | if (Diags) |
163 | Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, |
164 | diag::ext_nonstandard_escape) << "e"; |
165 | ResultChar = 27; |
166 | break; |
167 | case 'E': |
168 | if (Diags) |
169 | Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, |
170 | diag::ext_nonstandard_escape) << "E"; |
171 | ResultChar = 27; |
172 | break; |
173 | case 'f': |
174 | ResultChar = 12; |
175 | break; |
176 | case 'n': |
177 | ResultChar = 10; |
178 | break; |
179 | case 'r': |
180 | ResultChar = 13; |
181 | break; |
182 | case 't': |
183 | ResultChar = 9; |
184 | break; |
185 | case 'v': |
186 | ResultChar = 11; |
187 | break; |
188 | case 'x': { // Hex escape. |
189 | ResultChar = 0; |
190 | if (ThisTokBuf != ThisTokEnd && *ThisTokBuf == '{') { |
191 | Delimited = true; |
192 | ThisTokBuf++; |
193 | if (*ThisTokBuf == '}') { |
194 | HadError = true; |
195 | if (Diags) |
196 | Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, |
197 | diag::err_delimited_escape_empty); |
198 | } |
199 | } else if (ThisTokBuf == ThisTokEnd || !isHexDigit(c: *ThisTokBuf)) { |
200 | if (Diags) |
201 | Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, |
202 | diag::err_hex_escape_no_digits) << "x"; |
203 | return ResultChar; |
204 | } |
205 | |
206 | // Hex escapes are a maximal series of hex digits. |
207 | bool Overflow = false; |
208 | for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) { |
209 | if (Delimited && *ThisTokBuf == '}') { |
210 | ThisTokBuf++; |
211 | EndDelimiterFound = true; |
212 | break; |
213 | } |
214 | int CharVal = llvm::hexDigitValue(C: *ThisTokBuf); |
215 | if (CharVal == -1) { |
216 | // Non delimited hex escape sequences stop at the first non-hex digit. |
217 | if (!Delimited) |
218 | break; |
219 | HadError = true; |
220 | if (Diags) |
221 | Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, |
222 | diag::err_delimited_escape_invalid) |
223 | << StringRef(ThisTokBuf, 1); |
224 | continue; |
225 | } |
226 | // About to shift out a digit? |
227 | if (ResultChar & 0xF0000000) |
228 | Overflow = true; |
229 | ResultChar <<= 4; |
230 | ResultChar |= CharVal; |
231 | } |
232 | // See if any bits will be truncated when evaluated as a character. |
233 | if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) { |
234 | Overflow = true; |
235 | ResultChar &= ~0U >> (32-CharWidth); |
236 | } |
237 | |
238 | // Check for overflow. |
239 | if (!HadError && Overflow) { // Too many digits to fit in |
240 | HadError = true; |
241 | if (Diags) |
242 | Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, |
243 | diag::err_escape_too_large) |
244 | << 0; |
245 | } |
246 | break; |
247 | } |
248 | case '0': case '1': case '2': case '3': |
249 | case '4': case '5': case '6': case '7': { |
250 | // Octal escapes. |
251 | --ThisTokBuf; |
252 | ResultChar = 0; |
253 | |
254 | // Octal escapes are a series of octal digits with maximum length 3. |
255 | // "\0123" is a two digit sequence equal to "\012" "3". |
256 | unsigned NumDigits = 0; |
257 | do { |
258 | ResultChar <<= 3; |
259 | ResultChar |= *ThisTokBuf++ - '0'; |
260 | ++NumDigits; |
261 | } while (ThisTokBuf != ThisTokEnd && NumDigits < 3 && |
262 | ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7'); |
263 | |
264 | // Check for overflow. Reject '\777', but not L'\777'. |
265 | if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) { |
266 | if (Diags) |
267 | Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, |
268 | diag::err_escape_too_large) << 1; |
269 | ResultChar &= ~0U >> (32-CharWidth); |
270 | } |
271 | break; |
272 | } |
273 | case 'o': { |
274 | bool Overflow = false; |
275 | if (ThisTokBuf == ThisTokEnd || *ThisTokBuf != '{') { |
276 | HadError = true; |
277 | if (Diags) |
278 | Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, |
279 | diag::err_delimited_escape_missing_brace) |
280 | << "o"; |
281 | |
282 | break; |
283 | } |
284 | ResultChar = 0; |
285 | Delimited = true; |
286 | ++ThisTokBuf; |
287 | if (*ThisTokBuf == '}') { |
288 | HadError = true; |
289 | if (Diags) |
290 | Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, |
291 | diag::err_delimited_escape_empty); |
292 | } |
293 | |
294 | while (ThisTokBuf != ThisTokEnd) { |
295 | if (*ThisTokBuf == '}') { |
296 | EndDelimiterFound = true; |
297 | ThisTokBuf++; |
298 | break; |
299 | } |
300 | if (*ThisTokBuf < '0' || *ThisTokBuf > '7') { |
301 | HadError = true; |
302 | if (Diags) |
303 | Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, |
304 | diag::err_delimited_escape_invalid) |
305 | << StringRef(ThisTokBuf, 1); |
306 | ThisTokBuf++; |
307 | continue; |
308 | } |
309 | // Check if one of the top three bits is set before shifting them out. |
310 | if (ResultChar & 0xE0000000) |
311 | Overflow = true; |
312 | |
313 | ResultChar <<= 3; |
314 | ResultChar |= *ThisTokBuf++ - '0'; |
315 | } |
316 | // Check for overflow. Reject '\777', but not L'\777'. |
317 | if (!HadError && |
318 | (Overflow || (CharWidth != 32 && (ResultChar >> CharWidth) != 0))) { |
319 | HadError = true; |
320 | if (Diags) |
321 | Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, |
322 | diag::err_escape_too_large) |
323 | << 1; |
324 | ResultChar &= ~0U >> (32 - CharWidth); |
325 | } |
326 | break; |
327 | } |
328 | // Otherwise, these are not valid escapes. |
329 | case '(': case '{': case '[': case '%': |
330 | // GCC accepts these as extensions. We warn about them as such though. |
331 | if (Diags) |
332 | Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, |
333 | diag::ext_nonstandard_escape) |
334 | << std::string(1, ResultChar); |
335 | break; |
336 | default: |
337 | if (!Diags) |
338 | break; |
339 | |
340 | if (isPrintable(c: ResultChar)) |
341 | Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, |
342 | diag::ext_unknown_escape) |
343 | << std::string(1, ResultChar); |
344 | else |
345 | Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, |
346 | diag::ext_unknown_escape) |
347 | << "x"+ llvm::utohexstr(X: ResultChar); |
348 | break; |
349 | } |
350 | |
351 | if (Delimited && Diags) { |
352 | if (!EndDelimiterFound) |
353 | Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, |
354 | diag::err_expected) |
355 | << tok::r_brace; |
356 | else if (!HadError) { |
357 | Lexer::DiagnoseDelimitedOrNamedEscapeSequence(Loc, Named: false, Opts: Features, |
358 | Diags&: *Diags); |
359 | } |
360 | } |
361 | |
362 | if (EvalMethod == StringLiteralEvalMethod::Unevaluated && |
363 | !IsEscapeValidInUnevaluatedStringLiteral(Escape)) { |
364 | Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, |
365 | diag::err_unevaluated_string_invalid_escape_sequence) |
366 | << StringRef(EscapeBegin, ThisTokBuf - EscapeBegin); |
367 | HadError = true; |
368 | } |
369 | |
370 | return ResultChar; |
371 | } |
372 | |
373 | static void appendCodePoint(unsigned Codepoint, |
374 | llvm::SmallVectorImpl<char> &Str) { |
375 | char ResultBuf[4]; |
376 | char *ResultPtr = ResultBuf; |
377 | if (llvm::ConvertCodePointToUTF8(Source: Codepoint, ResultPtr)) |
378 | Str.append(in_start: ResultBuf, in_end: ResultPtr); |
379 | } |
380 | |
381 | void clang::expandUCNs(SmallVectorImpl<char> &Buf, StringRef Input) { |
382 | for (StringRef::iterator I = Input.begin(), E = Input.end(); I != E; ++I) { |
383 | if (*I != '\\') { |
384 | Buf.push_back(Elt: *I); |
385 | continue; |
386 | } |
387 | |
388 | ++I; |
389 | char Kind = *I; |
390 | ++I; |
391 | |
392 | assert(Kind == 'u' || Kind == 'U' || Kind == 'N'); |
393 | uint32_t CodePoint = 0; |
394 | |
395 | if (Kind == 'u' && *I == '{') { |
396 | for (++I; *I != '}'; ++I) { |
397 | unsigned Value = llvm::hexDigitValue(C: *I); |
398 | assert(Value != -1U); |
399 | CodePoint <<= 4; |
400 | CodePoint += Value; |
401 | } |
402 | appendCodePoint(Codepoint: CodePoint, Str&: Buf); |
403 | continue; |
404 | } |
405 | |
406 | if (Kind == 'N') { |
407 | assert(*I == '{'); |
408 | ++I; |
409 | auto Delim = std::find(first: I, last: Input.end(), val: '}'); |
410 | assert(Delim != Input.end()); |
411 | StringRef Name(I, std::distance(first: I, last: Delim)); |
412 | std::optional<llvm::sys::unicode::LooseMatchingResult> Res = |
413 | llvm::sys::unicode::nameToCodepointLooseMatching(Name); |
414 | assert(Res && "could not find a codepoint that was previously found"); |
415 | CodePoint = Res->CodePoint; |
416 | assert(CodePoint != 0xFFFFFFFF); |
417 | appendCodePoint(Codepoint: CodePoint, Str&: Buf); |
418 | I = Delim; |
419 | continue; |
420 | } |
421 | |
422 | unsigned NumHexDigits; |
423 | if (Kind == 'u') |
424 | NumHexDigits = 4; |
425 | else |
426 | NumHexDigits = 8; |
427 | |
428 | assert(I + NumHexDigits <= E); |
429 | |
430 | for (; NumHexDigits != 0; ++I, --NumHexDigits) { |
431 | unsigned Value = llvm::hexDigitValue(C: *I); |
432 | assert(Value != -1U); |
433 | |
434 | CodePoint <<= 4; |
435 | CodePoint += Value; |
436 | } |
437 | |
438 | appendCodePoint(Codepoint: CodePoint, Str&: Buf); |
439 | --I; |
440 | } |
441 | } |
442 | |
443 | bool clang::isFunctionLocalStringLiteralMacro(tok::TokenKind K, |
444 | const LangOptions &LO) { |
445 | return LO.MicrosoftExt && |
446 | (K == tok::kw___FUNCTION__ || K == tok::kw_L__FUNCTION__ || |
447 | K == tok::kw___FUNCSIG__ || K == tok::kw_L__FUNCSIG__ || |
448 | K == tok::kw___FUNCDNAME__); |
449 | } |
450 | |
451 | bool clang::tokenIsLikeStringLiteral(const Token &Tok, const LangOptions &LO) { |
452 | return tok::isStringLiteral(K: Tok.getKind()) || |
453 | isFunctionLocalStringLiteralMacro(K: Tok.getKind(), LO); |
454 | } |
455 | |
456 | static bool ProcessNumericUCNEscape(const char *ThisTokBegin, |
457 | const char *&ThisTokBuf, |
458 | const char *ThisTokEnd, uint32_t &UcnVal, |
459 | unsigned short &UcnLen, bool &Delimited, |
460 | FullSourceLoc Loc, DiagnosticsEngine *Diags, |
461 | const LangOptions &Features, |
462 | bool in_char_string_literal = false) { |
463 | const char *UcnBegin = ThisTokBuf; |
464 | bool HasError = false; |
465 | bool EndDelimiterFound = false; |
466 | |
467 | // Skip the '\u' char's. |
468 | ThisTokBuf += 2; |
469 | Delimited = false; |
470 | if (UcnBegin[1] == 'u' && in_char_string_literal && |
471 | ThisTokBuf != ThisTokEnd && *ThisTokBuf == '{') { |
472 | Delimited = true; |
473 | ThisTokBuf++; |
474 | } else if (ThisTokBuf == ThisTokEnd || !isHexDigit(c: *ThisTokBuf)) { |
475 | if (Diags) |
476 | Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, |
477 | diag::err_hex_escape_no_digits) |
478 | << StringRef(&ThisTokBuf[-1], 1); |
479 | return false; |
480 | } |
481 | UcnLen = (ThisTokBuf[-1] == 'u' ? 4 : 8); |
482 | |
483 | bool Overflow = false; |
484 | unsigned short Count = 0; |
485 | for (; ThisTokBuf != ThisTokEnd && (Delimited || Count != UcnLen); |
486 | ++ThisTokBuf) { |
487 | if (Delimited && *ThisTokBuf == '}') { |
488 | ++ThisTokBuf; |
489 | EndDelimiterFound = true; |
490 | break; |
491 | } |
492 | int CharVal = llvm::hexDigitValue(C: *ThisTokBuf); |
493 | if (CharVal == -1) { |
494 | HasError = true; |
495 | if (!Delimited) |
496 | break; |
497 | if (Diags) { |
498 | Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, |
499 | diag::err_delimited_escape_invalid) |
500 | << StringRef(ThisTokBuf, 1); |
501 | } |
502 | Count++; |
503 | continue; |
504 | } |
505 | if (UcnVal & 0xF0000000) { |
506 | Overflow = true; |
507 | continue; |
508 | } |
509 | UcnVal <<= 4; |
510 | UcnVal |= CharVal; |
511 | Count++; |
512 | } |
513 | |
514 | if (Overflow) { |
515 | if (Diags) |
516 | Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, |
517 | diag::err_escape_too_large) |
518 | << 0; |
519 | return false; |
520 | } |
521 | |
522 | if (Delimited && !EndDelimiterFound) { |
523 | if (Diags) { |
524 | Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, |
525 | diag::err_expected) |
526 | << tok::r_brace; |
527 | } |
528 | return false; |
529 | } |
530 | |
531 | // If we didn't consume the proper number of digits, there is a problem. |
532 | if (Count == 0 || (!Delimited && Count != UcnLen)) { |
533 | if (Diags) |
534 | Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, |
535 | Delimited ? diag::err_delimited_escape_empty |
536 | : diag::err_ucn_escape_incomplete); |
537 | return false; |
538 | } |
539 | return !HasError; |
540 | } |
541 | |
542 | static void DiagnoseInvalidUnicodeCharacterName( |
543 | DiagnosticsEngine *Diags, const LangOptions &Features, FullSourceLoc Loc, |
544 | const char *TokBegin, const char *TokRangeBegin, const char *TokRangeEnd, |
545 | llvm::StringRef Name) { |
546 | |
547 | Diag(Diags, Features, Loc, TokBegin, TokRangeBegin, TokRangeEnd, |
548 | diag::err_invalid_ucn_name) |
549 | << Name; |
550 | |
551 | namespace u = llvm::sys::unicode; |
552 | |
553 | std::optional<u::LooseMatchingResult> Res = |
554 | u::nameToCodepointLooseMatching(Name); |
555 | if (Res) { |
556 | Diag(Diags, Features, Loc, TokBegin, TokRangeBegin, TokRangeEnd, |
557 | diag::note_invalid_ucn_name_loose_matching) |
558 | << FixItHint::CreateReplacement( |
559 | RemoveRange: MakeCharSourceRange(Features, TokLoc: Loc, TokBegin, TokRangeBegin, |
560 | TokRangeEnd), |
561 | Code: Res->Name); |
562 | return; |
563 | } |
564 | |
565 | unsigned Distance = 0; |
566 | SmallVector<u::MatchForCodepointName> Matches = |
567 | u::nearestMatchesForCodepointName(Pattern: Name, MaxMatchesCount: 5); |
568 | assert(!Matches.empty() && "No unicode characters found"); |
569 | |
570 | for (const auto &Match : Matches) { |
571 | if (Distance == 0) |
572 | Distance = Match.Distance; |
573 | if (std::max(a: Distance, b: Match.Distance) - |
574 | std::min(a: Distance, b: Match.Distance) > |
575 | 3) |
576 | break; |
577 | Distance = Match.Distance; |
578 | |
579 | std::string Str; |
580 | llvm::UTF32 V = Match.Value; |
581 | bool Converted = |
582 | llvm::convertUTF32ToUTF8String(Src: llvm::ArrayRef<llvm::UTF32>(&V, 1), Out&: Str); |
583 | (void)Converted; |
584 | assert(Converted && "Found a match wich is not a unicode character"); |
585 | |
586 | Diag(Diags, Features, Loc, TokBegin, TokRangeBegin, TokRangeEnd, |
587 | diag::note_invalid_ucn_name_candidate) |
588 | << Match.Name << llvm::utohexstr(X: Match.Value) |
589 | << Str // FIXME: Fix the rendering of non printable characters |
590 | << FixItHint::CreateReplacement( |
591 | RemoveRange: MakeCharSourceRange(Features, TokLoc: Loc, TokBegin, TokRangeBegin, |
592 | TokRangeEnd), |
593 | Code: Match.Name); |
594 | } |
595 | } |
596 | |
597 | static bool ProcessNamedUCNEscape(const char *ThisTokBegin, |
598 | const char *&ThisTokBuf, |
599 | const char *ThisTokEnd, uint32_t &UcnVal, |
600 | unsigned short &UcnLen, FullSourceLoc Loc, |
601 | DiagnosticsEngine *Diags, |
602 | const LangOptions &Features) { |
603 | const char *UcnBegin = ThisTokBuf; |
604 | assert(UcnBegin[0] == '\\' && UcnBegin[1] == 'N'); |
605 | ThisTokBuf += 2; |
606 | if (ThisTokBuf == ThisTokEnd || *ThisTokBuf != '{') { |
607 | if (Diags) { |
608 | Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, |
609 | diag::err_delimited_escape_missing_brace) |
610 | << StringRef(&ThisTokBuf[-1], 1); |
611 | } |
612 | return false; |
613 | } |
614 | ThisTokBuf++; |
615 | const char *ClosingBrace = std::find_if(first: ThisTokBuf, last: ThisTokEnd, pred: [](char C) { |
616 | return C == '}' || isVerticalWhitespace(c: C); |
617 | }); |
618 | bool Incomplete = ClosingBrace == ThisTokEnd; |
619 | bool Empty = ClosingBrace == ThisTokBuf; |
620 | if (Incomplete || Empty) { |
621 | if (Diags) { |
622 | Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, |
623 | Incomplete ? diag::err_ucn_escape_incomplete |
624 | : diag::err_delimited_escape_empty) |
625 | << StringRef(&UcnBegin[1], 1); |
626 | } |
627 | ThisTokBuf = ClosingBrace == ThisTokEnd ? ClosingBrace : ClosingBrace + 1; |
628 | return false; |
629 | } |
630 | StringRef Name(ThisTokBuf, ClosingBrace - ThisTokBuf); |
631 | ThisTokBuf = ClosingBrace + 1; |
632 | std::optional<char32_t> Res = llvm::sys::unicode::nameToCodepointStrict(Name); |
633 | if (!Res) { |
634 | if (Diags) |
635 | DiagnoseInvalidUnicodeCharacterName(Diags, Features, Loc, TokBegin: ThisTokBegin, |
636 | TokRangeBegin: &UcnBegin[3], TokRangeEnd: ClosingBrace, Name); |
637 | return false; |
638 | } |
639 | UcnVal = *Res; |
640 | UcnLen = UcnVal > 0xFFFF ? 8 : 4; |
641 | return true; |
642 | } |
643 | |
644 | /// ProcessUCNEscape - Read the Universal Character Name, check constraints and |
645 | /// return the UTF32. |
646 | static bool ProcessUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf, |
647 | const char *ThisTokEnd, uint32_t &UcnVal, |
648 | unsigned short &UcnLen, FullSourceLoc Loc, |
649 | DiagnosticsEngine *Diags, |
650 | const LangOptions &Features, |
651 | bool in_char_string_literal = false) { |
652 | |
653 | bool HasError; |
654 | const char *UcnBegin = ThisTokBuf; |
655 | bool IsDelimitedEscapeSequence = false; |
656 | bool IsNamedEscapeSequence = false; |
657 | if (ThisTokBuf[1] == 'N') { |
658 | IsNamedEscapeSequence = true; |
659 | HasError = !ProcessNamedUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, |
660 | UcnVal, UcnLen, Loc, Diags, Features); |
661 | } else { |
662 | HasError = |
663 | !ProcessNumericUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, |
664 | UcnLen, Delimited&: IsDelimitedEscapeSequence, Loc, Diags, |
665 | Features, in_char_string_literal); |
666 | } |
667 | if (HasError) |
668 | return false; |
669 | |
670 | // Check UCN constraints (C99 6.4.3p2) [C++11 lex.charset p2] |
671 | if ((0xD800 <= UcnVal && UcnVal <= 0xDFFF) || // surrogate codepoints |
672 | UcnVal > 0x10FFFF) { // maximum legal UTF32 value |
673 | if (Diags) |
674 | Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, |
675 | diag::err_ucn_escape_invalid); |
676 | return false; |
677 | } |
678 | |
679 | // C23 and C++11 allow UCNs that refer to control characters |
680 | // and basic source characters inside character and string literals |
681 | if (UcnVal < 0xa0 && |
682 | // $, @, ` are allowed in all language modes |
683 | (UcnVal != 0x24 && UcnVal != 0x40 && UcnVal != 0x60)) { |
684 | bool IsError = |
685 | (!(Features.CPlusPlus11 || Features.C23) || !in_char_string_literal); |
686 | if (Diags) { |
687 | char BasicSCSChar = UcnVal; |
688 | if (UcnVal >= 0x20 && UcnVal < 0x7f) |
689 | Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, |
690 | IsError ? diag::err_ucn_escape_basic_scs |
691 | : Features.CPlusPlus |
692 | ? diag::warn_cxx98_compat_literal_ucn_escape_basic_scs |
693 | : diag::warn_c23_compat_literal_ucn_escape_basic_scs) |
694 | << StringRef(&BasicSCSChar, 1); |
695 | else |
696 | Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, |
697 | IsError ? diag::err_ucn_control_character |
698 | : Features.CPlusPlus |
699 | ? diag::warn_cxx98_compat_literal_ucn_control_character |
700 | : diag::warn_c23_compat_literal_ucn_control_character); |
701 | } |
702 | if (IsError) |
703 | return false; |
704 | } |
705 | |
706 | if (!Features.CPlusPlus && !Features.C99 && Diags) |
707 | Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, |
708 | diag::warn_ucn_not_valid_in_c89_literal); |
709 | |
710 | if ((IsDelimitedEscapeSequence || IsNamedEscapeSequence) && Diags) |
711 | Lexer::DiagnoseDelimitedOrNamedEscapeSequence(Loc, Named: IsNamedEscapeSequence, |
712 | Opts: Features, Diags&: *Diags); |
713 | return true; |
714 | } |
715 | |
716 | /// MeasureUCNEscape - Determine the number of bytes within the resulting string |
717 | /// which this UCN will occupy. |
718 | static int MeasureUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf, |
719 | const char *ThisTokEnd, unsigned CharByteWidth, |
720 | const LangOptions &Features, bool &HadError) { |
721 | // UTF-32: 4 bytes per escape. |
722 | if (CharByteWidth == 4) |
723 | return 4; |
724 | |
725 | uint32_t UcnVal = 0; |
726 | unsigned short UcnLen = 0; |
727 | FullSourceLoc Loc; |
728 | |
729 | if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, |
730 | UcnLen, Loc, Diags: nullptr, Features, in_char_string_literal: true)) { |
731 | HadError = true; |
732 | return 0; |
733 | } |
734 | |
735 | // UTF-16: 2 bytes for BMP, 4 bytes otherwise. |
736 | if (CharByteWidth == 2) |
737 | return UcnVal <= 0xFFFF ? 2 : 4; |
738 | |
739 | // UTF-8. |
740 | if (UcnVal < 0x80) |
741 | return 1; |
742 | if (UcnVal < 0x800) |
743 | return 2; |
744 | if (UcnVal < 0x10000) |
745 | return 3; |
746 | return 4; |
747 | } |
748 | |
749 | /// EncodeUCNEscape - Read the Universal Character Name, check constraints and |
750 | /// convert the UTF32 to UTF8 or UTF16. This is a subroutine of |
751 | /// StringLiteralParser. When we decide to implement UCN's for identifiers, |
752 | /// we will likely rework our support for UCN's. |
753 | static void EncodeUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf, |
754 | const char *ThisTokEnd, |
755 | char *&ResultBuf, bool &HadError, |
756 | FullSourceLoc Loc, unsigned CharByteWidth, |
757 | DiagnosticsEngine *Diags, |
758 | const LangOptions &Features) { |
759 | typedef uint32_t UTF32; |
760 | UTF32 UcnVal = 0; |
761 | unsigned short UcnLen = 0; |
762 | if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, UcnLen, |
763 | Loc, Diags, Features, in_char_string_literal: true)) { |
764 | HadError = true; |
765 | return; |
766 | } |
767 | |
768 | assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) && |
769 | "only character widths of 1, 2, or 4 bytes supported"); |
770 | |
771 | (void)UcnLen; |
772 | assert((UcnLen== 4 || UcnLen== 8) && "only ucn length of 4 or 8 supported"); |
773 | |
774 | if (CharByteWidth == 4) { |
775 | // FIXME: Make the type of the result buffer correct instead of |
776 | // using reinterpret_cast. |
777 | llvm::UTF32 *ResultPtr = reinterpret_cast<llvm::UTF32*>(ResultBuf); |
778 | *ResultPtr = UcnVal; |
779 | ResultBuf += 4; |
780 | return; |
781 | } |
782 | |
783 | if (CharByteWidth == 2) { |
784 | // FIXME: Make the type of the result buffer correct instead of |
785 | // using reinterpret_cast. |
786 | llvm::UTF16 *ResultPtr = reinterpret_cast<llvm::UTF16*>(ResultBuf); |
787 | |
788 | if (UcnVal <= (UTF32)0xFFFF) { |
789 | *ResultPtr = UcnVal; |
790 | ResultBuf += 2; |
791 | return; |
792 | } |
793 | |
794 | // Convert to UTF16. |
795 | UcnVal -= 0x10000; |
796 | *ResultPtr = 0xD800 + (UcnVal >> 10); |
797 | *(ResultPtr+1) = 0xDC00 + (UcnVal & 0x3FF); |
798 | ResultBuf += 4; |
799 | return; |
800 | } |
801 | |
802 | assert(CharByteWidth == 1 && "UTF-8 encoding is only for 1 byte characters"); |
803 | |
804 | // Now that we've parsed/checked the UCN, we convert from UTF32->UTF8. |
805 | // The conversion below was inspired by: |
806 | // http://www.unicode.org/Public/PROGRAMS/CVTUTF/ConvertUTF.c |
807 | // First, we determine how many bytes the result will require. |
808 | typedef uint8_t UTF8; |
809 | |
810 | unsigned short bytesToWrite = 0; |
811 | if (UcnVal < (UTF32)0x80) |
812 | bytesToWrite = 1; |
813 | else if (UcnVal < (UTF32)0x800) |
814 | bytesToWrite = 2; |
815 | else if (UcnVal < (UTF32)0x10000) |
816 | bytesToWrite = 3; |
817 | else |
818 | bytesToWrite = 4; |
819 | |
820 | const unsigned byteMask = 0xBF; |
821 | const unsigned byteMark = 0x80; |
822 | |
823 | // Once the bits are split out into bytes of UTF8, this is a mask OR-ed |
824 | // into the first byte, depending on how many bytes follow. |
825 | static const UTF8 firstByteMark[5] = { |
826 | 0x00, 0x00, 0xC0, 0xE0, 0xF0 |
827 | }; |
828 | // Finally, we write the bytes into ResultBuf. |
829 | ResultBuf += bytesToWrite; |
830 | switch (bytesToWrite) { // note: everything falls through. |
831 | case 4: |
832 | *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6; |
833 | [[fallthrough]]; |
834 | case 3: |
835 | *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6; |
836 | [[fallthrough]]; |
837 | case 2: |
838 | *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6; |
839 | [[fallthrough]]; |
840 | case 1: |
841 | *--ResultBuf = (UTF8) (UcnVal | firstByteMark[bytesToWrite]); |
842 | } |
843 | // Update the buffer. |
844 | ResultBuf += bytesToWrite; |
845 | } |
846 | |
847 | /// integer-constant: [C99 6.4.4.1] |
848 | /// decimal-constant integer-suffix |
849 | /// octal-constant integer-suffix |
850 | /// hexadecimal-constant integer-suffix |
851 | /// binary-literal integer-suffix [GNU, C++1y] |
852 | /// user-defined-integer-literal: [C++11 lex.ext] |
853 | /// decimal-literal ud-suffix |
854 | /// octal-literal ud-suffix |
855 | /// hexadecimal-literal ud-suffix |
856 | /// binary-literal ud-suffix [GNU, C++1y] |
857 | /// decimal-constant: |
858 | /// nonzero-digit |
859 | /// decimal-constant digit |
860 | /// octal-constant: |
861 | /// 0 |
862 | /// octal-constant octal-digit |
863 | /// hexadecimal-constant: |
864 | /// hexadecimal-prefix hexadecimal-digit |
865 | /// hexadecimal-constant hexadecimal-digit |
866 | /// hexadecimal-prefix: one of |
867 | /// 0x 0X |
868 | /// binary-literal: |
869 | /// 0b binary-digit |
870 | /// 0B binary-digit |
871 | /// binary-literal binary-digit |
872 | /// integer-suffix: |
873 | /// unsigned-suffix [long-suffix] |
874 | /// unsigned-suffix [long-long-suffix] |
875 | /// long-suffix [unsigned-suffix] |
876 | /// long-long-suffix [unsigned-sufix] |
877 | /// nonzero-digit: |
878 | /// 1 2 3 4 5 6 7 8 9 |
879 | /// octal-digit: |
880 | /// 0 1 2 3 4 5 6 7 |
881 | /// hexadecimal-digit: |
882 | /// 0 1 2 3 4 5 6 7 8 9 |
883 | /// a b c d e f |
884 | /// A B C D E F |
885 | /// binary-digit: |
886 | /// 0 |
887 | /// 1 |
888 | /// unsigned-suffix: one of |
889 | /// u U |
890 | /// long-suffix: one of |
891 | /// l L |
892 | /// long-long-suffix: one of |
893 | /// ll LL |
894 | /// |
895 | /// floating-constant: [C99 6.4.4.2] |
896 | /// TODO: add rules... |
897 | /// |
898 | NumericLiteralParser::NumericLiteralParser(StringRef TokSpelling, |
899 | SourceLocation TokLoc, |
900 | const SourceManager &SM, |
901 | const LangOptions &LangOpts, |
902 | const TargetInfo &Target, |
903 | DiagnosticsEngine &Diags) |
904 | : SM(SM), LangOpts(LangOpts), Diags(Diags), |
905 | ThisTokBegin(TokSpelling.begin()), ThisTokEnd(TokSpelling.end()) { |
906 | |
907 | s = DigitsBegin = ThisTokBegin; |
908 | saw_exponent = false; |
909 | saw_period = false; |
910 | saw_ud_suffix = false; |
911 | saw_fixed_point_suffix = false; |
912 | isLong = false; |
913 | isUnsigned = false; |
914 | isLongLong = false; |
915 | isSizeT = false; |
916 | isHalf = false; |
917 | isFloat = false; |
918 | isImaginary = false; |
919 | isFloat16 = false; |
920 | isFloat128 = false; |
921 | MicrosoftInteger = 0; |
922 | isFract = false; |
923 | isAccum = false; |
924 | hadError = false; |
925 | isBitInt = false; |
926 | |
927 | // This routine assumes that the range begin/end matches the regex for integer |
928 | // and FP constants (specifically, the 'pp-number' regex), and assumes that |
929 | // the byte at "*end" is both valid and not part of the regex. Because of |
930 | // this, it doesn't have to check for 'overscan' in various places. |
931 | // Note: For HLSL, the end token is allowed to be '.' which would be in the |
932 | // 'pp-number' regex. This is required to support vector swizzles on numeric |
933 | // constants (i.e. 1.xx or 1.5f.rrr). |
934 | if (isPreprocessingNumberBody(c: *ThisTokEnd) && |
935 | !(LangOpts.HLSL && *ThisTokEnd == '.')) { |
936 | Diags.Report(TokLoc, diag::err_lexing_numeric); |
937 | hadError = true; |
938 | return; |
939 | } |
940 | |
941 | if (*s == '0') { // parse radix |
942 | ParseNumberStartingWithZero(TokLoc); |
943 | if (hadError) |
944 | return; |
945 | } else { // the first digit is non-zero |
946 | radix = 10; |
947 | s = SkipDigits(ptr: s); |
948 | if (s == ThisTokEnd) { |
949 | // Done. |
950 | } else { |
951 | ParseDecimalOrOctalCommon(TokLoc); |
952 | if (hadError) |
953 | return; |
954 | } |
955 | } |
956 | |
957 | SuffixBegin = s; |
958 | checkSeparator(TokLoc, Pos: s, IsAfterDigits: CSK_AfterDigits); |
959 | |
960 | // Initial scan to lookahead for fixed point suffix. |
961 | if (LangOpts.FixedPoint) { |
962 | for (const char *c = s; c != ThisTokEnd; ++c) { |
963 | if (*c == 'r' || *c == 'k' || *c == 'R' || *c == 'K') { |
964 | saw_fixed_point_suffix = true; |
965 | break; |
966 | } |
967 | } |
968 | } |
969 | |
970 | // Parse the suffix. At this point we can classify whether we have an FP or |
971 | // integer constant. |
972 | bool isFixedPointConstant = isFixedPointLiteral(); |
973 | bool isFPConstant = isFloatingLiteral(); |
974 | bool HasSize = false; |
975 | bool DoubleUnderscore = false; |
976 | |
977 | // Loop over all of the characters of the suffix. If we see something bad, |
978 | // we break out of the loop. |
979 | for (; s != ThisTokEnd; ++s) { |
980 | switch (*s) { |
981 | case 'R': |
982 | case 'r': |
983 | if (!LangOpts.FixedPoint) |
984 | break; |
985 | if (isFract || isAccum) break; |
986 | if (!(saw_period || saw_exponent)) break; |
987 | isFract = true; |
988 | continue; |
989 | case 'K': |
990 | case 'k': |
991 | if (!LangOpts.FixedPoint) |
992 | break; |
993 | if (isFract || isAccum) break; |
994 | if (!(saw_period || saw_exponent)) break; |
995 | isAccum = true; |
996 | continue; |
997 | case 'h': // FP Suffix for "half". |
998 | case 'H': |
999 | // OpenCL Extension v1.2 s9.5 - h or H suffix for half type. |
1000 | if (!(LangOpts.Half || LangOpts.FixedPoint)) |
1001 | break; |
1002 | if (isIntegerLiteral()) break; // Error for integer constant. |
1003 | if (HasSize) |
1004 | break; |
1005 | HasSize = true; |
1006 | isHalf = true; |
1007 | continue; // Success. |
1008 | case 'f': // FP Suffix for "float" |
1009 | case 'F': |
1010 | if (!isFPConstant) break; // Error for integer constant. |
1011 | if (HasSize) |
1012 | break; |
1013 | HasSize = true; |
1014 | |
1015 | // CUDA host and device may have different _Float16 support, therefore |
1016 | // allows f16 literals to avoid false alarm. |
1017 | // When we compile for OpenMP target offloading on NVPTX, f16 suffix |
1018 | // should also be supported. |
1019 | // ToDo: more precise check for CUDA. |
1020 | // TODO: AMDGPU might also support it in the future. |
1021 | if ((Target.hasFloat16Type() || LangOpts.CUDA || |
1022 | (LangOpts.OpenMPIsTargetDevice && Target.getTriple().isNVPTX())) && |
1023 | s + 2 < ThisTokEnd && s[1] == '1' && s[2] == '6') { |
1024 | s += 2; // success, eat up 2 characters. |
1025 | isFloat16 = true; |
1026 | continue; |
1027 | } |
1028 | |
1029 | isFloat = true; |
1030 | continue; // Success. |
1031 | case 'q': // FP Suffix for "__float128" |
1032 | case 'Q': |
1033 | if (!isFPConstant) break; // Error for integer constant. |
1034 | if (HasSize) |
1035 | break; |
1036 | HasSize = true; |
1037 | isFloat128 = true; |
1038 | continue; // Success. |
1039 | case 'u': |
1040 | case 'U': |
1041 | if (isFPConstant) break; // Error for floating constant. |
1042 | if (isUnsigned) break; // Cannot be repeated. |
1043 | isUnsigned = true; |
1044 | continue; // Success. |
1045 | case 'l': |
1046 | case 'L': |
1047 | if (HasSize) |
1048 | break; |
1049 | HasSize = true; |
1050 | |
1051 | // Check for long long. The L's need to be adjacent and the same case. |
1052 | if (s[1] == s[0]) { |
1053 | assert(s + 1 < ThisTokEnd && "didn't maximally munch?"); |
1054 | if (isFPConstant) break; // long long invalid for floats. |
1055 | isLongLong = true; |
1056 | ++s; // Eat both of them. |
1057 | } else { |
1058 | isLong = true; |
1059 | } |
1060 | continue; // Success. |
1061 | case 'z': |
1062 | case 'Z': |
1063 | if (isFPConstant) |
1064 | break; // Invalid for floats. |
1065 | if (HasSize) |
1066 | break; |
1067 | HasSize = true; |
1068 | isSizeT = true; |
1069 | continue; |
1070 | case 'i': |
1071 | case 'I': |
1072 | if (LangOpts.MicrosoftExt && s + 1 < ThisTokEnd && !isFPConstant) { |
1073 | // Allow i8, i16, i32, i64, and i128. First, look ahead and check if |
1074 | // suffixes are Microsoft integers and not the imaginary unit. |
1075 | uint8_t Bits = 0; |
1076 | size_t ToSkip = 0; |
1077 | switch (s[1]) { |
1078 | case '8': // i8 suffix |
1079 | Bits = 8; |
1080 | ToSkip = 2; |
1081 | break; |
1082 | case '1': |
1083 | if (s + 2 < ThisTokEnd && s[2] == '6') { // i16 suffix |
1084 | Bits = 16; |
1085 | ToSkip = 3; |
1086 | } else if (s + 3 < ThisTokEnd && s[2] == '2' && |
1087 | s[3] == '8') { // i128 suffix |
1088 | Bits = 128; |
1089 | ToSkip = 4; |
1090 | } |
1091 | break; |
1092 | case '3': |
1093 | if (s + 2 < ThisTokEnd && s[2] == '2') { // i32 suffix |
1094 | Bits = 32; |
1095 | ToSkip = 3; |
1096 | } |
1097 | break; |
1098 | case '6': |
1099 | if (s + 2 < ThisTokEnd && s[2] == '4') { // i64 suffix |
1100 | Bits = 64; |
1101 | ToSkip = 3; |
1102 | } |
1103 | break; |
1104 | default: |
1105 | break; |
1106 | } |
1107 | if (Bits) { |
1108 | if (HasSize) |
1109 | break; |
1110 | HasSize = true; |
1111 | MicrosoftInteger = Bits; |
1112 | s += ToSkip; |
1113 | assert(s <= ThisTokEnd && "didn't maximally munch?"); |
1114 | break; |
1115 | } |
1116 | } |
1117 | [[fallthrough]]; |
1118 | case 'j': |
1119 | case 'J': |
1120 | if (isImaginary) break; // Cannot be repeated. |
1121 | isImaginary = true; |
1122 | continue; // Success. |
1123 | case '_': |
1124 | if (isFPConstant) |
1125 | break; // Invalid for floats |
1126 | if (HasSize) |
1127 | break; |
1128 | // There is currently no way to reach this with DoubleUnderscore set. |
1129 | // If new double underscope literals are added handle it here as above. |
1130 | assert(!DoubleUnderscore && "unhandled double underscore case"); |
1131 | if (LangOpts.CPlusPlus && s + 2 < ThisTokEnd && |
1132 | s[1] == '_') { // s + 2 < ThisTokEnd to ensure some character exists |
1133 | // after __ |
1134 | DoubleUnderscore = true; |
1135 | s += 2; // Skip both '_' |
1136 | if (s + 1 < ThisTokEnd && |
1137 | (*s == 'u' || *s == 'U')) { // Ensure some character after 'u'/'U' |
1138 | isUnsigned = true; |
1139 | ++s; |
1140 | } |
1141 | if (s + 1 < ThisTokEnd && |
1142 | ((*s == 'w' && *(++s) == 'b') || (*s == 'W' && *(++s) == 'B'))) { |
1143 | isBitInt = true; |
1144 | HasSize = true; |
1145 | continue; |
1146 | } |
1147 | } |
1148 | break; |
1149 | case 'w': |
1150 | case 'W': |
1151 | if (isFPConstant) |
1152 | break; // Invalid for floats. |
1153 | if (HasSize) |
1154 | break; // Invalid if we already have a size for the literal. |
1155 | |
1156 | // wb and WB are allowed, but a mixture of cases like Wb or wB is not. We |
1157 | // explicitly do not support the suffix in C++ as an extension because a |
1158 | // library-based UDL that resolves to a library type may be more |
1159 | // appropriate there. The same rules apply for __wb/__WB. |
1160 | if ((!LangOpts.CPlusPlus || DoubleUnderscore) && s + 1 < ThisTokEnd && |
1161 | ((s[0] == 'w' && s[1] == 'b') || (s[0] == 'W' && s[1] == 'B'))) { |
1162 | isBitInt = true; |
1163 | HasSize = true; |
1164 | ++s; // Skip both characters (2nd char skipped on continue). |
1165 | continue; // Success. |
1166 | } |
1167 | } |
1168 | // If we reached here, there was an error or a ud-suffix. |
1169 | break; |
1170 | } |
1171 | |
1172 | // "i", "if", and "il" are user-defined suffixes in C++1y. |
1173 | if (s != ThisTokEnd || isImaginary) { |
1174 | // FIXME: Don't bother expanding UCNs if !tok.hasUCN(). |
1175 | expandUCNs(Buf&: UDSuffixBuf, Input: StringRef(SuffixBegin, ThisTokEnd - SuffixBegin)); |
1176 | if (isValidUDSuffix(LangOpts, Suffix: UDSuffixBuf)) { |
1177 | if (!isImaginary) { |
1178 | // Any suffix pieces we might have parsed are actually part of the |
1179 | // ud-suffix. |
1180 | isLong = false; |
1181 | isUnsigned = false; |
1182 | isLongLong = false; |
1183 | isSizeT = false; |
1184 | isFloat = false; |
1185 | isFloat16 = false; |
1186 | isHalf = false; |
1187 | isImaginary = false; |
1188 | isBitInt = false; |
1189 | MicrosoftInteger = 0; |
1190 | saw_fixed_point_suffix = false; |
1191 | isFract = false; |
1192 | isAccum = false; |
1193 | } |
1194 | |
1195 | saw_ud_suffix = true; |
1196 | return; |
1197 | } |
1198 | |
1199 | if (s != ThisTokEnd) { |
1200 | // Report an error if there are any. |
1201 | Diags.Report(Lexer::AdvanceToTokenCharacter( |
1202 | TokStart: TokLoc, Characters: SuffixBegin - ThisTokBegin, SM, LangOpts), |
1203 | diag::err_invalid_suffix_constant) |
1204 | << StringRef(SuffixBegin, ThisTokEnd - SuffixBegin) |
1205 | << (isFixedPointConstant ? 2 : isFPConstant); |
1206 | hadError = true; |
1207 | } |
1208 | } |
1209 | |
1210 | if (!hadError && saw_fixed_point_suffix) { |
1211 | assert(isFract || isAccum); |
1212 | } |
1213 | } |
1214 | |
1215 | /// ParseDecimalOrOctalCommon - This method is called for decimal or octal |
1216 | /// numbers. It issues an error for illegal digits, and handles floating point |
1217 | /// parsing. If it detects a floating point number, the radix is set to 10. |
1218 | void NumericLiteralParser::ParseDecimalOrOctalCommon(SourceLocation TokLoc){ |
1219 | assert((radix == 8 || radix == 10) && "Unexpected radix"); |
1220 | |
1221 | // If we have a hex digit other than 'e' (which denotes a FP exponent) then |
1222 | // the code is using an incorrect base. |
1223 | if (isHexDigit(c: *s) && *s != 'e' && *s != 'E' && |
1224 | !isValidUDSuffix(LangOpts, Suffix: StringRef(s, ThisTokEnd - s))) { |
1225 | Diags.Report( |
1226 | Lexer::AdvanceToTokenCharacter(TokStart: TokLoc, Characters: s - ThisTokBegin, SM, LangOpts), |
1227 | diag::err_invalid_digit) |
1228 | << StringRef(s, 1) << (radix == 8 ? 1 : 0); |
1229 | hadError = true; |
1230 | return; |
1231 | } |
1232 | |
1233 | if (*s == '.') { |
1234 | checkSeparator(TokLoc, Pos: s, IsAfterDigits: CSK_AfterDigits); |
1235 | s++; |
1236 | radix = 10; |
1237 | saw_period = true; |
1238 | checkSeparator(TokLoc, Pos: s, IsAfterDigits: CSK_BeforeDigits); |
1239 | s = SkipDigits(ptr: s); // Skip suffix. |
1240 | } |
1241 | if (*s == 'e' || *s == 'E') { // exponent |
1242 | checkSeparator(TokLoc, Pos: s, IsAfterDigits: CSK_AfterDigits); |
1243 | const char *Exponent = s; |
1244 | s++; |
1245 | radix = 10; |
1246 | saw_exponent = true; |
1247 | if (s != ThisTokEnd && (*s == '+' || *s == '-')) s++; // sign |
1248 | const char *first_non_digit = SkipDigits(ptr: s); |
1249 | if (containsDigits(Start: s, End: first_non_digit)) { |
1250 | checkSeparator(TokLoc, Pos: s, IsAfterDigits: CSK_BeforeDigits); |
1251 | s = first_non_digit; |
1252 | } else { |
1253 | if (!hadError) { |
1254 | Diags.Report(Lexer::AdvanceToTokenCharacter( |
1255 | TokStart: TokLoc, Characters: Exponent - ThisTokBegin, SM, LangOpts), |
1256 | diag::err_exponent_has_no_digits); |
1257 | hadError = true; |
1258 | } |
1259 | return; |
1260 | } |
1261 | } |
1262 | } |
1263 | |
1264 | /// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved |
1265 | /// suffixes as ud-suffixes, because the diagnostic experience is better if we |
1266 | /// treat it as an invalid suffix. |
1267 | bool NumericLiteralParser::isValidUDSuffix(const LangOptions &LangOpts, |
1268 | StringRef Suffix) { |
1269 | if (!LangOpts.CPlusPlus11 || Suffix.empty()) |
1270 | return false; |
1271 | |
1272 | // By C++11 [lex.ext]p10, ud-suffixes starting with an '_' are always valid. |
1273 | // Suffixes starting with '__' (double underscore) are for use by |
1274 | // the implementation. |
1275 | if (Suffix.starts_with(Prefix: "_") && !Suffix.starts_with(Prefix: "__")) |
1276 | return true; |
1277 | |
1278 | // In C++11, there are no library suffixes. |
1279 | if (!LangOpts.CPlusPlus14) |
1280 | return false; |
1281 | |
1282 | // In C++14, "s", "h", "min", "ms", "us", and "ns" are used in the library. |
1283 | // Per tweaked N3660, "il", "i", and "if" are also used in the library. |
1284 | // In C++2a "d" and "y" are used in the library. |
1285 | return llvm::StringSwitch<bool>(Suffix) |
1286 | .Cases(S0: "h", S1: "min", S2: "s", Value: true) |
1287 | .Cases(S0: "ms", S1: "us", S2: "ns", Value: true) |
1288 | .Cases(S0: "il", S1: "i", S2: "if", Value: true) |
1289 | .Cases(S0: "d", S1: "y", Value: LangOpts.CPlusPlus20) |
1290 | .Default(Value: false); |
1291 | } |
1292 | |
1293 | void NumericLiteralParser::checkSeparator(SourceLocation TokLoc, |
1294 | const char *Pos, |
1295 | CheckSeparatorKind IsAfterDigits) { |
1296 | if (IsAfterDigits == CSK_AfterDigits) { |
1297 | if (Pos == ThisTokBegin) |
1298 | return; |
1299 | --Pos; |
1300 | } else if (Pos == ThisTokEnd) |
1301 | return; |
1302 | |
1303 | if (isDigitSeparator(C: *Pos)) { |
1304 | Diags.Report(Lexer::AdvanceToTokenCharacter(TokStart: TokLoc, Characters: Pos - ThisTokBegin, SM, |
1305 | LangOpts), |
1306 | diag::err_digit_separator_not_between_digits) |
1307 | << IsAfterDigits; |
1308 | hadError = true; |
1309 | } |
1310 | } |
1311 | |
1312 | /// ParseNumberStartingWithZero - This method is called when the first character |
1313 | /// of the number is found to be a zero. This means it is either an octal |
1314 | /// number (like '04') or a hex number ('0x123a') a binary number ('0b1010') or |
1315 | /// a floating point number (01239.123e4). Eat the prefix, determining the |
1316 | /// radix etc. |
1317 | void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) { |
1318 | assert(s[0] == '0' && "Invalid method call"); |
1319 | s++; |
1320 | |
1321 | int c1 = s[0]; |
1322 | |
1323 | // Handle a hex number like 0x1234. |
1324 | if ((c1 == 'x' || c1 == 'X') && (isHexDigit(c: s[1]) || s[1] == '.')) { |
1325 | s++; |
1326 | assert(s < ThisTokEnd && "didn't maximally munch?"); |
1327 | radix = 16; |
1328 | DigitsBegin = s; |
1329 | s = SkipHexDigits(ptr: s); |
1330 | bool HasSignificandDigits = containsDigits(Start: DigitsBegin, End: s); |
1331 | if (s == ThisTokEnd) { |
1332 | // Done. |
1333 | } else if (*s == '.') { |
1334 | s++; |
1335 | saw_period = true; |
1336 | const char *floatDigitsBegin = s; |
1337 | s = SkipHexDigits(ptr: s); |
1338 | if (containsDigits(Start: floatDigitsBegin, End: s)) |
1339 | HasSignificandDigits = true; |
1340 | if (HasSignificandDigits) |
1341 | checkSeparator(TokLoc, Pos: floatDigitsBegin, IsAfterDigits: CSK_BeforeDigits); |
1342 | } |
1343 | |
1344 | if (!HasSignificandDigits) { |
1345 | Diags.Report(Lexer::AdvanceToTokenCharacter(TokStart: TokLoc, Characters: s - ThisTokBegin, SM, |
1346 | LangOpts), |
1347 | diag::err_hex_constant_requires) |
1348 | << LangOpts.CPlusPlus << 1; |
1349 | hadError = true; |
1350 | return; |
1351 | } |
1352 | |
1353 | // A binary exponent can appear with or with a '.'. If dotted, the |
1354 | // binary exponent is required. |
1355 | if (*s == 'p' || *s == 'P') { |
1356 | checkSeparator(TokLoc, Pos: s, IsAfterDigits: CSK_AfterDigits); |
1357 | const char *Exponent = s; |
1358 | s++; |
1359 | saw_exponent = true; |
1360 | if (s != ThisTokEnd && (*s == '+' || *s == '-')) s++; // sign |
1361 | const char *first_non_digit = SkipDigits(ptr: s); |
1362 | if (!containsDigits(Start: s, End: first_non_digit)) { |
1363 | if (!hadError) { |
1364 | Diags.Report(Lexer::AdvanceToTokenCharacter( |
1365 | TokStart: TokLoc, Characters: Exponent - ThisTokBegin, SM, LangOpts), |
1366 | diag::err_exponent_has_no_digits); |
1367 | hadError = true; |
1368 | } |
1369 | return; |
1370 | } |
1371 | checkSeparator(TokLoc, Pos: s, IsAfterDigits: CSK_BeforeDigits); |
1372 | s = first_non_digit; |
1373 | |
1374 | if (!LangOpts.HexFloats) |
1375 | Diags.Report(TokLoc, LangOpts.CPlusPlus |
1376 | ? diag::ext_hex_literal_invalid |
1377 | : diag::ext_hex_constant_invalid); |
1378 | else if (LangOpts.CPlusPlus17) |
1379 | Diags.Report(TokLoc, diag::warn_cxx17_hex_literal); |
1380 | } else if (saw_period) { |
1381 | Diags.Report(Lexer::AdvanceToTokenCharacter(TokStart: TokLoc, Characters: s - ThisTokBegin, SM, |
1382 | LangOpts), |
1383 | diag::err_hex_constant_requires) |
1384 | << LangOpts.CPlusPlus << 0; |
1385 | hadError = true; |
1386 | } |
1387 | return; |
1388 | } |
1389 | |
1390 | // Handle simple binary numbers 0b01010 |
1391 | if ((c1 == 'b' || c1 == 'B') && (s[1] == '0' || s[1] == '1')) { |
1392 | // 0b101010 is a C++14 and C23 extension. |
1393 | unsigned DiagId; |
1394 | if (LangOpts.CPlusPlus14) |
1395 | DiagId = diag::warn_cxx11_compat_binary_literal; |
1396 | else if (LangOpts.C23) |
1397 | DiagId = diag::warn_c23_compat_binary_literal; |
1398 | else if (LangOpts.CPlusPlus) |
1399 | DiagId = diag::ext_binary_literal_cxx14; |
1400 | else |
1401 | DiagId = diag::ext_binary_literal; |
1402 | Diags.Report(Loc: TokLoc, DiagID: DiagId); |
1403 | ++s; |
1404 | assert(s < ThisTokEnd && "didn't maximally munch?"); |
1405 | radix = 2; |
1406 | DigitsBegin = s; |
1407 | s = SkipBinaryDigits(ptr: s); |
1408 | if (s == ThisTokEnd) { |
1409 | // Done. |
1410 | } else if (isHexDigit(c: *s) && |
1411 | !isValidUDSuffix(LangOpts, Suffix: StringRef(s, ThisTokEnd - s))) { |
1412 | Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM, |
1413 | LangOpts), |
1414 | diag::err_invalid_digit) |
1415 | << StringRef(s, 1) << 2; |
1416 | hadError = true; |
1417 | } |
1418 | // Other suffixes will be diagnosed by the caller. |
1419 | return; |
1420 | } |
1421 | |
1422 | // Parse a potential octal literal prefix. |
1423 | bool IsSingleZero = false; |
1424 | if ((c1 == 'O' || c1 == 'o') && (s[1] >= '0' && s[1] <= '7')) { |
1425 | unsigned DiagId; |
1426 | if (LangOpts.C2y) |
1427 | DiagId = diag::warn_c2y_compat_octal_literal; |
1428 | else if (LangOpts.CPlusPlus) |
1429 | DiagId = diag::ext_cpp_octal_literal; |
1430 | else |
1431 | DiagId = diag::ext_octal_literal; |
1432 | Diags.Report(Loc: TokLoc, DiagID: DiagId); |
1433 | ++s; |
1434 | DigitsBegin = s; |
1435 | radix = 8; |
1436 | s = SkipOctalDigits(ptr: s); |
1437 | if (s == ThisTokEnd) { |
1438 | // Done |
1439 | } else if ((isHexDigit(c: *s) && *s != 'e' && *s != 'E' && *s != '.') && |
1440 | !isValidUDSuffix(LangOpts, Suffix: StringRef(s, ThisTokEnd - s))) { |
1441 | auto InvalidDigitLoc = Lexer::AdvanceToTokenCharacter( |
1442 | TokStart: TokLoc, Characters: s - ThisTokBegin, SM, LangOpts); |
1443 | Diags.Report(InvalidDigitLoc, diag::err_invalid_digit) |
1444 | << StringRef(s, 1) << 1; |
1445 | hadError = true; |
1446 | } |
1447 | // Other suffixes will be diagnosed by the caller. |
1448 | return; |
1449 | } |
1450 | |
1451 | auto _ = llvm::make_scope_exit(F: [&] { |
1452 | // If we still have an octal value but we did not see an octal prefix, |
1453 | // diagnose as being an obsolescent feature starting in C2y. |
1454 | if (radix == 8 && LangOpts.C2y && !hadError && !IsSingleZero) |
1455 | Diags.Report(TokLoc, diag::warn_unprefixed_octal_deprecated); |
1456 | }); |
1457 | |
1458 | // For now, the radix is set to 8. If we discover that we have a |
1459 | // floating point constant, the radix will change to 10. Octal floating |
1460 | // point constants are not permitted (only decimal and hexadecimal). |
1461 | radix = 8; |
1462 | const char *PossibleNewDigitStart = s; |
1463 | s = SkipOctalDigits(ptr: s); |
1464 | // When the value is 0 followed by a suffix (like 0wb), we want to leave 0 |
1465 | // as the start of the digits. So if skipping octal digits does not skip |
1466 | // anything, we leave the digit start where it was. |
1467 | if (s != PossibleNewDigitStart) |
1468 | DigitsBegin = PossibleNewDigitStart; |
1469 | else |
1470 | IsSingleZero = (s == ThisTokEnd); // Is the only thing we've seen a 0? |
1471 | |
1472 | if (s == ThisTokEnd) |
1473 | return; // Done, simple octal number like 01234 |
1474 | |
1475 | // If we have some other non-octal digit that *is* a decimal digit, see if |
1476 | // this is part of a floating point number like 094.123 or 09e1. |
1477 | if (isDigit(c: *s)) { |
1478 | const char *EndDecimal = SkipDigits(ptr: s); |
1479 | if (EndDecimal[0] == '.' || EndDecimal[0] == 'e' || EndDecimal[0] == 'E') { |
1480 | s = EndDecimal; |
1481 | radix = 10; |
1482 | } |
1483 | } |
1484 | |
1485 | ParseDecimalOrOctalCommon(TokLoc); |
1486 | } |
1487 | |
1488 | static bool alwaysFitsInto64Bits(unsigned Radix, unsigned NumDigits) { |
1489 | switch (Radix) { |
1490 | case 2: |
1491 | return NumDigits <= 64; |
1492 | case 8: |
1493 | return NumDigits <= 64 / 3; // Digits are groups of 3 bits. |
1494 | case 10: |
1495 | return NumDigits <= 19; // floor(log10(2^64)) |
1496 | case 16: |
1497 | return NumDigits <= 64 / 4; // Digits are groups of 4 bits. |
1498 | default: |
1499 | llvm_unreachable("impossible Radix"); |
1500 | } |
1501 | } |
1502 | |
1503 | /// GetIntegerValue - Convert this numeric literal value to an APInt that |
1504 | /// matches Val's input width. If there is an overflow, set Val to the low bits |
1505 | /// of the result and return true. Otherwise, return false. |
1506 | bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) { |
1507 | // Fast path: Compute a conservative bound on the maximum number of |
1508 | // bits per digit in this radix. If we can't possibly overflow a |
1509 | // uint64 based on that bound then do the simple conversion to |
1510 | // integer. This avoids the expensive overflow checking below, and |
1511 | // handles the common cases that matter (small decimal integers and |
1512 | // hex/octal values which don't overflow). |
1513 | const unsigned NumDigits = SuffixBegin - DigitsBegin; |
1514 | if (alwaysFitsInto64Bits(Radix: radix, NumDigits)) { |
1515 | uint64_t N = 0; |
1516 | for (const char *Ptr = DigitsBegin; Ptr != SuffixBegin; ++Ptr) |
1517 | if (!isDigitSeparator(C: *Ptr)) |
1518 | N = N * radix + llvm::hexDigitValue(C: *Ptr); |
1519 | |
1520 | // This will truncate the value to Val's input width. Simply check |
1521 | // for overflow by comparing. |
1522 | Val = N; |
1523 | return Val.getZExtValue() != N; |
1524 | } |
1525 | |
1526 | Val = 0; |
1527 | const char *Ptr = DigitsBegin; |
1528 | |
1529 | llvm::APInt RadixVal(Val.getBitWidth(), radix); |
1530 | llvm::APInt CharVal(Val.getBitWidth(), 0); |
1531 | llvm::APInt OldVal = Val; |
1532 | |
1533 | bool OverflowOccurred = false; |
1534 | while (Ptr < SuffixBegin) { |
1535 | if (isDigitSeparator(C: *Ptr)) { |
1536 | ++Ptr; |
1537 | continue; |
1538 | } |
1539 | |
1540 | unsigned C = llvm::hexDigitValue(C: *Ptr++); |
1541 | |
1542 | // If this letter is out of bound for this radix, reject it. |
1543 | assert(C < radix && "NumericLiteralParser ctor should have rejected this"); |
1544 | |
1545 | CharVal = C; |
1546 | |
1547 | // Add the digit to the value in the appropriate radix. If adding in digits |
1548 | // made the value smaller, then this overflowed. |
1549 | OldVal = Val; |
1550 | |
1551 | // Multiply by radix, did overflow occur on the multiply? |
1552 | Val *= RadixVal; |
1553 | OverflowOccurred |= Val.udiv(RHS: RadixVal) != OldVal; |
1554 | |
1555 | // Add value, did overflow occur on the value? |
1556 | // (a + b) ult b <=> overflow |
1557 | Val += CharVal; |
1558 | OverflowOccurred |= Val.ult(RHS: CharVal); |
1559 | } |
1560 | return OverflowOccurred; |
1561 | } |
1562 | |
1563 | llvm::APFloat::opStatus |
1564 | NumericLiteralParser::GetFloatValue(llvm::APFloat &Result, |
1565 | llvm::RoundingMode RM) { |
1566 | using llvm::APFloat; |
1567 | |
1568 | unsigned n = std::min(a: SuffixBegin - ThisTokBegin, b: ThisTokEnd - ThisTokBegin); |
1569 | |
1570 | llvm::SmallString<16> Buffer; |
1571 | StringRef Str(ThisTokBegin, n); |
1572 | if (Str.contains(C: '\'')) { |
1573 | Buffer.reserve(N: n); |
1574 | std::remove_copy_if(first: Str.begin(), last: Str.end(), result: std::back_inserter(x&: Buffer), |
1575 | pred: &isDigitSeparator); |
1576 | Str = Buffer; |
1577 | } |
1578 | |
1579 | auto StatusOrErr = Result.convertFromString(Str, RM); |
1580 | assert(StatusOrErr && "Invalid floating point representation"); |
1581 | return !errorToBool(Err: StatusOrErr.takeError()) ? *StatusOrErr |
1582 | : APFloat::opInvalidOp; |
1583 | } |
1584 | |
1585 | static inline bool IsExponentPart(char c, bool isHex) { |
1586 | if (isHex) |
1587 | return c == 'p' || c == 'P'; |
1588 | return c == 'e' || c == 'E'; |
1589 | } |
1590 | |
1591 | bool NumericLiteralParser::GetFixedPointValue(llvm::APInt &StoreVal, unsigned Scale) { |
1592 | assert(radix == 16 || radix == 10); |
1593 | |
1594 | // Find how many digits are needed to store the whole literal. |
1595 | unsigned NumDigits = SuffixBegin - DigitsBegin; |
1596 | if (saw_period) --NumDigits; |
1597 | |
1598 | // Initial scan of the exponent if it exists |
1599 | bool ExpOverflowOccurred = false; |
1600 | bool NegativeExponent = false; |
1601 | const char *ExponentBegin; |
1602 | uint64_t Exponent = 0; |
1603 | int64_t BaseShift = 0; |
1604 | if (saw_exponent) { |
1605 | const char *Ptr = DigitsBegin; |
1606 | |
1607 | while (!IsExponentPart(c: *Ptr, isHex: radix == 16)) |
1608 | ++Ptr; |
1609 | ExponentBegin = Ptr; |
1610 | ++Ptr; |
1611 | NegativeExponent = *Ptr == '-'; |
1612 | if (NegativeExponent) ++Ptr; |
1613 | |
1614 | unsigned NumExpDigits = SuffixBegin - Ptr; |
1615 | if (alwaysFitsInto64Bits(Radix: radix, NumDigits: NumExpDigits)) { |
1616 | llvm::StringRef ExpStr(Ptr, NumExpDigits); |
1617 | llvm::APInt ExpInt(/*numBits=*/64, ExpStr, /*radix=*/10); |
1618 | Exponent = ExpInt.getZExtValue(); |
1619 | } else { |
1620 | ExpOverflowOccurred = true; |
1621 | } |
1622 | |
1623 | if (NegativeExponent) BaseShift -= Exponent; |
1624 | else BaseShift += Exponent; |
1625 | } |
1626 | |
1627 | // Number of bits needed for decimal literal is |
1628 | // ceil(NumDigits * log2(10)) Integral part |
1629 | // + Scale Fractional part |
1630 | // + ceil(Exponent * log2(10)) Exponent |
1631 | // -------------------------------------------------- |
1632 | // ceil((NumDigits + Exponent) * log2(10)) + Scale |
1633 | // |
1634 | // But for simplicity in handling integers, we can round up log2(10) to 4, |
1635 | // making: |
1636 | // 4 * (NumDigits + Exponent) + Scale |
1637 | // |
1638 | // Number of digits needed for hexadecimal literal is |
1639 | // 4 * NumDigits Integral part |
1640 | // + Scale Fractional part |
1641 | // + Exponent Exponent |
1642 | // -------------------------------------------------- |
1643 | // (4 * NumDigits) + Scale + Exponent |
1644 | uint64_t NumBitsNeeded; |
1645 | if (radix == 10) |
1646 | NumBitsNeeded = 4 * (NumDigits + Exponent) + Scale; |
1647 | else |
1648 | NumBitsNeeded = 4 * NumDigits + Exponent + Scale; |
1649 | |
1650 | if (NumBitsNeeded > std::numeric_limits<unsigned>::max()) |
1651 | ExpOverflowOccurred = true; |
1652 | llvm::APInt Val(static_cast<unsigned>(NumBitsNeeded), 0, /*isSigned=*/false); |
1653 | |
1654 | bool FoundDecimal = false; |
1655 | |
1656 | int64_t FractBaseShift = 0; |
1657 | const char *End = saw_exponent ? ExponentBegin : SuffixBegin; |
1658 | for (const char *Ptr = DigitsBegin; Ptr < End; ++Ptr) { |
1659 | if (*Ptr == '.') { |
1660 | FoundDecimal = true; |
1661 | continue; |
1662 | } |
1663 | |
1664 | // Normal reading of an integer |
1665 | unsigned C = llvm::hexDigitValue(C: *Ptr); |
1666 | assert(C < radix && "NumericLiteralParser ctor should have rejected this"); |
1667 | |
1668 | Val *= radix; |
1669 | Val += C; |
1670 | |
1671 | if (FoundDecimal) |
1672 | // Keep track of how much we will need to adjust this value by from the |
1673 | // number of digits past the radix point. |
1674 | --FractBaseShift; |
1675 | } |
1676 | |
1677 | // For a radix of 16, we will be multiplying by 2 instead of 16. |
1678 | if (radix == 16) FractBaseShift *= 4; |
1679 | BaseShift += FractBaseShift; |
1680 | |
1681 | Val <<= Scale; |
1682 | |
1683 | uint64_t Base = (radix == 16) ? 2 : 10; |
1684 | if (BaseShift > 0) { |
1685 | for (int64_t i = 0; i < BaseShift; ++i) { |
1686 | Val *= Base; |
1687 | } |
1688 | } else if (BaseShift < 0) { |
1689 | for (int64_t i = BaseShift; i < 0 && !Val.isZero(); ++i) |
1690 | Val = Val.udiv(RHS: Base); |
1691 | } |
1692 | |
1693 | bool IntOverflowOccurred = false; |
1694 | auto MaxVal = llvm::APInt::getMaxValue(numBits: StoreVal.getBitWidth()); |
1695 | if (Val.getBitWidth() > StoreVal.getBitWidth()) { |
1696 | IntOverflowOccurred |= Val.ugt(RHS: MaxVal.zext(width: Val.getBitWidth())); |
1697 | StoreVal = Val.trunc(width: StoreVal.getBitWidth()); |
1698 | } else if (Val.getBitWidth() < StoreVal.getBitWidth()) { |
1699 | IntOverflowOccurred |= Val.zext(width: MaxVal.getBitWidth()).ugt(RHS: MaxVal); |
1700 | StoreVal = Val.zext(width: StoreVal.getBitWidth()); |
1701 | } else { |
1702 | StoreVal = Val; |
1703 | } |
1704 | |
1705 | return IntOverflowOccurred || ExpOverflowOccurred; |
1706 | } |
1707 | |
1708 | /// \verbatim |
1709 | /// user-defined-character-literal: [C++11 lex.ext] |
1710 | /// character-literal ud-suffix |
1711 | /// ud-suffix: |
1712 | /// identifier |
1713 | /// character-literal: [C++11 lex.ccon] |
1714 | /// ' c-char-sequence ' |
1715 | /// u' c-char-sequence ' |
1716 | /// U' c-char-sequence ' |
1717 | /// L' c-char-sequence ' |
1718 | /// u8' c-char-sequence ' [C++1z lex.ccon] |
1719 | /// c-char-sequence: |
1720 | /// c-char |
1721 | /// c-char-sequence c-char |
1722 | /// c-char: |
1723 | /// any member of the source character set except the single-quote ', |
1724 | /// backslash \, or new-line character |
1725 | /// escape-sequence |
1726 | /// universal-character-name |
1727 | /// escape-sequence: |
1728 | /// simple-escape-sequence |
1729 | /// octal-escape-sequence |
1730 | /// hexadecimal-escape-sequence |
1731 | /// simple-escape-sequence: |
1732 | /// one of \' \" \? \\ \a \b \f \n \r \t \v |
1733 | /// octal-escape-sequence: |
1734 | /// \ octal-digit |
1735 | /// \ octal-digit octal-digit |
1736 | /// \ octal-digit octal-digit octal-digit |
1737 | /// hexadecimal-escape-sequence: |
1738 | /// \x hexadecimal-digit |
1739 | /// hexadecimal-escape-sequence hexadecimal-digit |
1740 | /// universal-character-name: [C++11 lex.charset] |
1741 | /// \u hex-quad |
1742 | /// \U hex-quad hex-quad |
1743 | /// hex-quad: |
1744 | /// hex-digit hex-digit hex-digit hex-digit |
1745 | /// \endverbatim |
1746 | /// |
1747 | CharLiteralParser::CharLiteralParser(const char *begin, const char *end, |
1748 | SourceLocation Loc, Preprocessor &PP, |
1749 | tok::TokenKind kind) { |
1750 | // At this point we know that the character matches the regex "(L|u|U)?'.*'". |
1751 | HadError = false; |
1752 | |
1753 | Kind = kind; |
1754 | |
1755 | const char *TokBegin = begin; |
1756 | |
1757 | // Skip over wide character determinant. |
1758 | if (Kind != tok::char_constant) |
1759 | ++begin; |
1760 | if (Kind == tok::utf8_char_constant) |
1761 | ++begin; |
1762 | |
1763 | // Skip over the entry quote. |
1764 | if (begin[0] != '\'') { |
1765 | PP.Diag(Loc, diag::err_lexing_char); |
1766 | HadError = true; |
1767 | return; |
1768 | } |
1769 | |
1770 | ++begin; |
1771 | |
1772 | // Remove an optional ud-suffix. |
1773 | if (end[-1] != '\'') { |
1774 | const char *UDSuffixEnd = end; |
1775 | do { |
1776 | --end; |
1777 | } while (end[-1] != '\''); |
1778 | // FIXME: Don't bother with this if !tok.hasUCN(). |
1779 | expandUCNs(Buf&: UDSuffixBuf, Input: StringRef(end, UDSuffixEnd - end)); |
1780 | UDSuffixOffset = end - TokBegin; |
1781 | } |
1782 | |
1783 | // Trim the ending quote. |
1784 | assert(end != begin && "Invalid token lexed"); |
1785 | --end; |
1786 | |
1787 | // FIXME: The "Value" is an uint64_t so we can handle char literals of |
1788 | // up to 64-bits. |
1789 | // FIXME: This extensively assumes that 'char' is 8-bits. |
1790 | assert(PP.getTargetInfo().getCharWidth() == 8 && |
1791 | "Assumes char is 8 bits"); |
1792 | assert(PP.getTargetInfo().getIntWidth() <= 64 && |
1793 | (PP.getTargetInfo().getIntWidth() & 7) == 0 && |
1794 | "Assumes sizeof(int) on target is <= 64 and a multiple of char"); |
1795 | assert(PP.getTargetInfo().getWCharWidth() <= 64 && |
1796 | "Assumes sizeof(wchar) on target is <= 64"); |
1797 | |
1798 | SmallVector<uint32_t, 4> codepoint_buffer; |
1799 | codepoint_buffer.resize(N: end - begin); |
1800 | uint32_t *buffer_begin = &codepoint_buffer.front(); |
1801 | uint32_t *buffer_end = buffer_begin + codepoint_buffer.size(); |
1802 | |
1803 | // Unicode escapes representing characters that cannot be correctly |
1804 | // represented in a single code unit are disallowed in character literals |
1805 | // by this implementation. |
1806 | uint32_t largest_character_for_kind; |
1807 | if (tok::wide_char_constant == Kind) { |
1808 | largest_character_for_kind = |
1809 | 0xFFFFFFFFu >> (32-PP.getTargetInfo().getWCharWidth()); |
1810 | } else if (tok::utf8_char_constant == Kind) { |
1811 | largest_character_for_kind = 0x7F; |
1812 | } else if (tok::utf16_char_constant == Kind) { |
1813 | largest_character_for_kind = 0xFFFF; |
1814 | } else if (tok::utf32_char_constant == Kind) { |
1815 | largest_character_for_kind = 0x10FFFF; |
1816 | } else { |
1817 | largest_character_for_kind = 0x7Fu; |
1818 | } |
1819 | |
1820 | while (begin != end) { |
1821 | // Is this a span of non-escape characters? |
1822 | if (begin[0] != '\\') { |
1823 | char const *start = begin; |
1824 | do { |
1825 | ++begin; |
1826 | } while (begin != end && *begin != '\\'); |
1827 | |
1828 | char const *tmp_in_start = start; |
1829 | uint32_t *tmp_out_start = buffer_begin; |
1830 | llvm::ConversionResult res = |
1831 | llvm::ConvertUTF8toUTF32(sourceStart: reinterpret_cast<llvm::UTF8 const **>(&start), |
1832 | sourceEnd: reinterpret_cast<llvm::UTF8 const *>(begin), |
1833 | targetStart: &buffer_begin, targetEnd: buffer_end, flags: llvm::strictConversion); |
1834 | if (res != llvm::conversionOK) { |
1835 | // If we see bad encoding for unprefixed character literals, warn and |
1836 | // simply copy the byte values, for compatibility with gcc and |
1837 | // older versions of clang. |
1838 | bool NoErrorOnBadEncoding = isOrdinary(); |
1839 | unsigned Msg = diag::err_bad_character_encoding; |
1840 | if (NoErrorOnBadEncoding) |
1841 | Msg = diag::warn_bad_character_encoding; |
1842 | PP.Diag(Loc, DiagID: Msg); |
1843 | if (NoErrorOnBadEncoding) { |
1844 | start = tmp_in_start; |
1845 | buffer_begin = tmp_out_start; |
1846 | for (; start != begin; ++start, ++buffer_begin) |
1847 | *buffer_begin = static_cast<uint8_t>(*start); |
1848 | } else { |
1849 | HadError = true; |
1850 | } |
1851 | } else { |
1852 | for (; tmp_out_start < buffer_begin; ++tmp_out_start) { |
1853 | if (*tmp_out_start > largest_character_for_kind) { |
1854 | HadError = true; |
1855 | PP.Diag(Loc, diag::err_character_too_large); |
1856 | } |
1857 | } |
1858 | } |
1859 | |
1860 | continue; |
1861 | } |
1862 | // Is this a Universal Character Name escape? |
1863 | if (begin[1] == 'u' || begin[1] == 'U' || begin[1] == 'N') { |
1864 | unsigned short UcnLen = 0; |
1865 | if (!ProcessUCNEscape(ThisTokBegin: TokBegin, ThisTokBuf&: begin, ThisTokEnd: end, UcnVal&: *buffer_begin, UcnLen, |
1866 | Loc: FullSourceLoc(Loc, PP.getSourceManager()), |
1867 | Diags: &PP.getDiagnostics(), Features: PP.getLangOpts(), in_char_string_literal: true)) { |
1868 | HadError = true; |
1869 | } else if (*buffer_begin > largest_character_for_kind) { |
1870 | HadError = true; |
1871 | PP.Diag(Loc, diag::err_character_too_large); |
1872 | } |
1873 | |
1874 | ++buffer_begin; |
1875 | continue; |
1876 | } |
1877 | unsigned CharWidth = getCharWidth(kind: Kind, Target: PP.getTargetInfo()); |
1878 | uint64_t result = |
1879 | ProcessCharEscape(ThisTokBegin: TokBegin, ThisTokBuf&: begin, ThisTokEnd: end, HadError, |
1880 | Loc: FullSourceLoc(Loc, PP.getSourceManager()), CharWidth, |
1881 | Diags: &PP.getDiagnostics(), Features: PP.getLangOpts(), |
1882 | EvalMethod: StringLiteralEvalMethod::Evaluated); |
1883 | *buffer_begin++ = result; |
1884 | } |
1885 | |
1886 | unsigned NumCharsSoFar = buffer_begin - &codepoint_buffer.front(); |
1887 | |
1888 | if (NumCharsSoFar > 1) { |
1889 | if (isOrdinary() && NumCharsSoFar == 4) |
1890 | PP.Diag(Loc, diag::warn_four_char_character_literal); |
1891 | else if (isOrdinary()) |
1892 | PP.Diag(Loc, diag::warn_multichar_character_literal); |
1893 | else { |
1894 | PP.Diag(Loc, diag::err_multichar_character_literal) << (isWide() ? 0 : 1); |
1895 | HadError = true; |
1896 | } |
1897 | IsMultiChar = true; |
1898 | } else { |
1899 | IsMultiChar = false; |
1900 | } |
1901 | |
1902 | llvm::APInt LitVal(PP.getTargetInfo().getIntWidth(), 0); |
1903 | |
1904 | // Narrow character literals act as though their value is concatenated |
1905 | // in this implementation, but warn on overflow. |
1906 | bool multi_char_too_long = false; |
1907 | if (isOrdinary() && isMultiChar()) { |
1908 | LitVal = 0; |
1909 | for (size_t i = 0; i < NumCharsSoFar; ++i) { |
1910 | // check for enough leading zeros to shift into |
1911 | multi_char_too_long |= (LitVal.countl_zero() < 8); |
1912 | LitVal <<= 8; |
1913 | LitVal = LitVal + (codepoint_buffer[i] & 0xFF); |
1914 | } |
1915 | } else if (NumCharsSoFar > 0) { |
1916 | // otherwise just take the last character |
1917 | LitVal = buffer_begin[-1]; |
1918 | } |
1919 | |
1920 | if (!HadError && multi_char_too_long) { |
1921 | PP.Diag(Loc, diag::warn_char_constant_too_large); |
1922 | } |
1923 | |
1924 | // Transfer the value from APInt to uint64_t |
1925 | Value = LitVal.getZExtValue(); |
1926 | |
1927 | // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1") |
1928 | // if 'char' is signed for this target (C99 6.4.4.4p10). Note that multiple |
1929 | // character constants are not sign extended in the this implementation: |
1930 | // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC. |
1931 | if (isOrdinary() && NumCharsSoFar == 1 && (Value & 128) && |
1932 | PP.getLangOpts().CharIsSigned) |
1933 | Value = (signed char)Value; |
1934 | } |
1935 | |
1936 | /// \verbatim |
1937 | /// string-literal: [C++0x lex.string] |
1938 | /// encoding-prefix " [s-char-sequence] " |
1939 | /// encoding-prefix R raw-string |
1940 | /// encoding-prefix: |
1941 | /// u8 |
1942 | /// u |
1943 | /// U |
1944 | /// L |
1945 | /// s-char-sequence: |
1946 | /// s-char |
1947 | /// s-char-sequence s-char |
1948 | /// s-char: |
1949 | /// any member of the source character set except the double-quote ", |
1950 | /// backslash \, or new-line character |
1951 | /// escape-sequence |
1952 | /// universal-character-name |
1953 | /// raw-string: |
1954 | /// " d-char-sequence ( r-char-sequence ) d-char-sequence " |
1955 | /// r-char-sequence: |
1956 | /// r-char |
1957 | /// r-char-sequence r-char |
1958 | /// r-char: |
1959 | /// any member of the source character set, except a right parenthesis ) |
1960 | /// followed by the initial d-char-sequence (which may be empty) |
1961 | /// followed by a double quote ". |
1962 | /// d-char-sequence: |
1963 | /// d-char |
1964 | /// d-char-sequence d-char |
1965 | /// d-char: |
1966 | /// any member of the basic source character set except: |
1967 | /// space, the left parenthesis (, the right parenthesis ), |
1968 | /// the backslash \, and the control characters representing horizontal |
1969 | /// tab, vertical tab, form feed, and newline. |
1970 | /// escape-sequence: [C++0x lex.ccon] |
1971 | /// simple-escape-sequence |
1972 | /// octal-escape-sequence |
1973 | /// hexadecimal-escape-sequence |
1974 | /// simple-escape-sequence: |
1975 | /// one of \' \" \? \\ \a \b \f \n \r \t \v |
1976 | /// octal-escape-sequence: |
1977 | /// \ octal-digit |
1978 | /// \ octal-digit octal-digit |
1979 | /// \ octal-digit octal-digit octal-digit |
1980 | /// hexadecimal-escape-sequence: |
1981 | /// \x hexadecimal-digit |
1982 | /// hexadecimal-escape-sequence hexadecimal-digit |
1983 | /// universal-character-name: |
1984 | /// \u hex-quad |
1985 | /// \U hex-quad hex-quad |
1986 | /// hex-quad: |
1987 | /// hex-digit hex-digit hex-digit hex-digit |
1988 | /// \endverbatim |
1989 | /// |
1990 | StringLiteralParser::StringLiteralParser(ArrayRef<Token> StringToks, |
1991 | Preprocessor &PP, |
1992 | StringLiteralEvalMethod EvalMethod) |
1993 | : SM(PP.getSourceManager()), Features(PP.getLangOpts()), |
1994 | Target(PP.getTargetInfo()), Diags(&PP.getDiagnostics()), |
1995 | MaxTokenLength(0), SizeBound(0), CharByteWidth(0), Kind(tok::unknown), |
1996 | ResultPtr(ResultBuf.data()), EvalMethod(EvalMethod), hadError(false), |
1997 | Pascal(false) { |
1998 | init(StringToks); |
1999 | } |
2000 | |
2001 | void StringLiteralParser::init(ArrayRef<Token> StringToks){ |
2002 | // The literal token may have come from an invalid source location (e.g. due |
2003 | // to a PCH error), in which case the token length will be 0. |
2004 | if (StringToks.empty() || StringToks[0].getLength() < 2) |
2005 | return DiagnoseLexingError(Loc: SourceLocation()); |
2006 | |
2007 | // Scan all of the string portions, remember the max individual token length, |
2008 | // computing a bound on the concatenated string length, and see whether any |
2009 | // piece is a wide-string. If any of the string portions is a wide-string |
2010 | // literal, the result is a wide-string literal [C99 6.4.5p4]. |
2011 | assert(!StringToks.empty() && "expected at least one token"); |
2012 | MaxTokenLength = StringToks[0].getLength(); |
2013 | assert(StringToks[0].getLength() >= 2 && "literal token is invalid!"); |
2014 | SizeBound = StringToks[0].getLength() - 2; // -2 for "". |
2015 | hadError = false; |
2016 | |
2017 | // Determines the kind of string from the prefix |
2018 | Kind = tok::string_literal; |
2019 | |
2020 | /// (C99 5.1.1.2p1). The common case is only one string fragment. |
2021 | for (const Token &Tok : StringToks) { |
2022 | if (Tok.getLength() < 2) |
2023 | return DiagnoseLexingError(Loc: Tok.getLocation()); |
2024 | |
2025 | // The string could be shorter than this if it needs cleaning, but this is a |
2026 | // reasonable bound, which is all we need. |
2027 | assert(Tok.getLength() >= 2 && "literal token is invalid!"); |
2028 | SizeBound += Tok.getLength() - 2; // -2 for "". |
2029 | |
2030 | // Remember maximum string piece length. |
2031 | if (Tok.getLength() > MaxTokenLength) |
2032 | MaxTokenLength = Tok.getLength(); |
2033 | |
2034 | // Remember if we see any wide or utf-8/16/32 strings. |
2035 | // Also check for illegal concatenations. |
2036 | if (isUnevaluated() && Tok.getKind() != tok::string_literal) { |
2037 | if (Diags) { |
2038 | SourceLocation PrefixEndLoc = Lexer::AdvanceToTokenCharacter( |
2039 | TokStart: Tok.getLocation(), Characters: getEncodingPrefixLen(kind: Tok.getKind()), SM, |
2040 | LangOpts: Features); |
2041 | CharSourceRange Range = |
2042 | CharSourceRange::getCharRange(R: {Tok.getLocation(), PrefixEndLoc}); |
2043 | StringRef Prefix(SM.getCharacterData(SL: Tok.getLocation()), |
2044 | getEncodingPrefixLen(kind: Tok.getKind())); |
2045 | Diags->Report(Tok.getLocation(), |
2046 | Features.CPlusPlus26 |
2047 | ? diag::err_unevaluated_string_prefix |
2048 | : diag::warn_unevaluated_string_prefix) |
2049 | << Prefix << Features.CPlusPlus << FixItHint::CreateRemoval(Range); |
2050 | } |
2051 | if (Features.CPlusPlus26) |
2052 | hadError = true; |
2053 | } else if (Tok.isNot(K: Kind) && Tok.isNot(K: tok::string_literal)) { |
2054 | if (isOrdinary()) { |
2055 | Kind = Tok.getKind(); |
2056 | } else { |
2057 | if (Diags) |
2058 | Diags->Report(Tok.getLocation(), diag::err_unsupported_string_concat); |
2059 | hadError = true; |
2060 | } |
2061 | } |
2062 | } |
2063 | |
2064 | // Include space for the null terminator. |
2065 | ++SizeBound; |
2066 | |
2067 | // TODO: K&R warning: "traditional C rejects string constant concatenation" |
2068 | |
2069 | // Get the width in bytes of char/wchar_t/char16_t/char32_t |
2070 | CharByteWidth = getCharWidth(kind: Kind, Target); |
2071 | assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple"); |
2072 | CharByteWidth /= 8; |
2073 | |
2074 | // The output buffer size needs to be large enough to hold wide characters. |
2075 | // This is a worst-case assumption which basically corresponds to L"" "long". |
2076 | SizeBound *= CharByteWidth; |
2077 | |
2078 | // Size the temporary buffer to hold the result string data. |
2079 | ResultBuf.resize(N: SizeBound); |
2080 | |
2081 | // Likewise, but for each string piece. |
2082 | SmallString<512> TokenBuf; |
2083 | TokenBuf.resize(N: MaxTokenLength); |
2084 | |
2085 | // Loop over all the strings, getting their spelling, and expanding them to |
2086 | // wide strings as appropriate. |
2087 | ResultPtr = &ResultBuf[0]; // Next byte to fill in. |
2088 | |
2089 | Pascal = false; |
2090 | |
2091 | SourceLocation UDSuffixTokLoc; |
2092 | |
2093 | for (unsigned i = 0, e = StringToks.size(); i != e; ++i) { |
2094 | const char *ThisTokBuf = &TokenBuf[0]; |
2095 | // Get the spelling of the token, which eliminates trigraphs, etc. We know |
2096 | // that ThisTokBuf points to a buffer that is big enough for the whole token |
2097 | // and 'spelled' tokens can only shrink. |
2098 | bool StringInvalid = false; |
2099 | unsigned ThisTokLen = |
2100 | Lexer::getSpelling(Tok: StringToks[i], Buffer&: ThisTokBuf, SourceMgr: SM, LangOpts: Features, |
2101 | Invalid: &StringInvalid); |
2102 | if (StringInvalid) |
2103 | return DiagnoseLexingError(Loc: StringToks[i].getLocation()); |
2104 | |
2105 | const char *ThisTokBegin = ThisTokBuf; |
2106 | const char *ThisTokEnd = ThisTokBuf+ThisTokLen; |
2107 | |
2108 | // Remove an optional ud-suffix. |
2109 | if (ThisTokEnd[-1] != '"') { |
2110 | const char *UDSuffixEnd = ThisTokEnd; |
2111 | do { |
2112 | --ThisTokEnd; |
2113 | } while (ThisTokEnd[-1] != '"'); |
2114 | |
2115 | StringRef UDSuffix(ThisTokEnd, UDSuffixEnd - ThisTokEnd); |
2116 | |
2117 | if (UDSuffixBuf.empty()) { |
2118 | if (StringToks[i].hasUCN()) |
2119 | expandUCNs(Buf&: UDSuffixBuf, Input: UDSuffix); |
2120 | else |
2121 | UDSuffixBuf.assign(RHS: UDSuffix); |
2122 | UDSuffixToken = i; |
2123 | UDSuffixOffset = ThisTokEnd - ThisTokBuf; |
2124 | UDSuffixTokLoc = StringToks[i].getLocation(); |
2125 | } else { |
2126 | SmallString<32> ExpandedUDSuffix; |
2127 | if (StringToks[i].hasUCN()) { |
2128 | expandUCNs(Buf&: ExpandedUDSuffix, Input: UDSuffix); |
2129 | UDSuffix = ExpandedUDSuffix; |
2130 | } |
2131 | |
2132 | // C++11 [lex.ext]p8: At the end of phase 6, if a string literal is the |
2133 | // result of a concatenation involving at least one user-defined-string- |
2134 | // literal, all the participating user-defined-string-literals shall |
2135 | // have the same ud-suffix. |
2136 | bool UnevaluatedStringHasUDL = isUnevaluated() && !UDSuffix.empty(); |
2137 | if (UDSuffixBuf != UDSuffix || UnevaluatedStringHasUDL) { |
2138 | if (Diags) { |
2139 | SourceLocation TokLoc = StringToks[i].getLocation(); |
2140 | if (UnevaluatedStringHasUDL) { |
2141 | Diags->Report(TokLoc, diag::err_unevaluated_string_udl) |
2142 | << SourceRange(TokLoc, TokLoc); |
2143 | } else { |
2144 | Diags->Report(TokLoc, diag::err_string_concat_mixed_suffix) |
2145 | << UDSuffixBuf << UDSuffix |
2146 | << SourceRange(UDSuffixTokLoc, UDSuffixTokLoc); |
2147 | } |
2148 | } |
2149 | hadError = true; |
2150 | } |
2151 | } |
2152 | } |
2153 | |
2154 | // Strip the end quote. |
2155 | --ThisTokEnd; |
2156 | |
2157 | // TODO: Input character set mapping support. |
2158 | |
2159 | // Skip marker for wide or unicode strings. |
2160 | if (ThisTokBuf[0] == 'L' || ThisTokBuf[0] == 'u' || ThisTokBuf[0] == 'U') { |
2161 | ++ThisTokBuf; |
2162 | // Skip 8 of u8 marker for utf8 strings. |
2163 | if (ThisTokBuf[0] == '8') |
2164 | ++ThisTokBuf; |
2165 | } |
2166 | |
2167 | // Check for raw string |
2168 | if (ThisTokBuf[0] == 'R') { |
2169 | if (ThisTokBuf[1] != '"') { |
2170 | // The file may have come from PCH and then changed after loading the |
2171 | // PCH; Fail gracefully. |
2172 | return DiagnoseLexingError(Loc: StringToks[i].getLocation()); |
2173 | } |
2174 | ThisTokBuf += 2; // skip R" |
2175 | |
2176 | // C++11 [lex.string]p2: A `d-char-sequence` shall consist of at most 16 |
2177 | // characters. |
2178 | constexpr unsigned MaxRawStrDelimLen = 16; |
2179 | |
2180 | const char *Prefix = ThisTokBuf; |
2181 | while (static_cast<unsigned>(ThisTokBuf - Prefix) < MaxRawStrDelimLen && |
2182 | ThisTokBuf[0] != '(') |
2183 | ++ThisTokBuf; |
2184 | if (ThisTokBuf[0] != '(') |
2185 | return DiagnoseLexingError(Loc: StringToks[i].getLocation()); |
2186 | ++ThisTokBuf; // skip '(' |
2187 | |
2188 | // Remove same number of characters from the end |
2189 | ThisTokEnd -= ThisTokBuf - Prefix; |
2190 | if (ThisTokEnd < ThisTokBuf) |
2191 | return DiagnoseLexingError(Loc: StringToks[i].getLocation()); |
2192 | |
2193 | // C++14 [lex.string]p4: A source-file new-line in a raw string literal |
2194 | // results in a new-line in the resulting execution string-literal. |
2195 | StringRef RemainingTokenSpan(ThisTokBuf, ThisTokEnd - ThisTokBuf); |
2196 | while (!RemainingTokenSpan.empty()) { |
2197 | // Split the string literal on \r\n boundaries. |
2198 | size_t CRLFPos = RemainingTokenSpan.find(Str: "\r\n"); |
2199 | StringRef BeforeCRLF = RemainingTokenSpan.substr(Start: 0, N: CRLFPos); |
2200 | StringRef AfterCRLF = RemainingTokenSpan.substr(Start: CRLFPos); |
2201 | |
2202 | // Copy everything before the \r\n sequence into the string literal. |
2203 | if (CopyStringFragment(Tok: StringToks[i], TokBegin: ThisTokBegin, Fragment: BeforeCRLF)) |
2204 | hadError = true; |
2205 | |
2206 | // Point into the \n inside the \r\n sequence and operate on the |
2207 | // remaining portion of the literal. |
2208 | RemainingTokenSpan = AfterCRLF.substr(Start: 1); |
2209 | } |
2210 | } else { |
2211 | if (ThisTokBuf[0] != '"') { |
2212 | // The file may have come from PCH and then changed after loading the |
2213 | // PCH; Fail gracefully. |
2214 | return DiagnoseLexingError(Loc: StringToks[i].getLocation()); |
2215 | } |
2216 | ++ThisTokBuf; // skip " |
2217 | |
2218 | // Check if this is a pascal string |
2219 | if (!isUnevaluated() && Features.PascalStrings && |
2220 | ThisTokBuf + 1 != ThisTokEnd && ThisTokBuf[0] == '\\' && |
2221 | ThisTokBuf[1] == 'p') { |
2222 | |
2223 | // If the \p sequence is found in the first token, we have a pascal string |
2224 | // Otherwise, if we already have a pascal string, ignore the first \p |
2225 | if (i == 0) { |
2226 | ++ThisTokBuf; |
2227 | Pascal = true; |
2228 | } else if (Pascal) |
2229 | ThisTokBuf += 2; |
2230 | } |
2231 | |
2232 | while (ThisTokBuf != ThisTokEnd) { |
2233 | // Is this a span of non-escape characters? |
2234 | if (ThisTokBuf[0] != '\\') { |
2235 | const char *InStart = ThisTokBuf; |
2236 | do { |
2237 | ++ThisTokBuf; |
2238 | } while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\'); |
2239 | |
2240 | // Copy the character span over. |
2241 | if (CopyStringFragment(Tok: StringToks[i], TokBegin: ThisTokBegin, |
2242 | Fragment: StringRef(InStart, ThisTokBuf - InStart))) |
2243 | hadError = true; |
2244 | continue; |
2245 | } |
2246 | // Is this a Universal Character Name escape? |
2247 | if (ThisTokBuf[1] == 'u' || ThisTokBuf[1] == 'U' || |
2248 | ThisTokBuf[1] == 'N') { |
2249 | EncodeUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, |
2250 | ResultBuf&: ResultPtr, HadError&: hadError, |
2251 | Loc: FullSourceLoc(StringToks[i].getLocation(), SM), |
2252 | CharByteWidth, Diags, Features); |
2253 | continue; |
2254 | } |
2255 | // Otherwise, this is a non-UCN escape character. Process it. |
2256 | unsigned ResultChar = |
2257 | ProcessCharEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, HadError&: hadError, |
2258 | Loc: FullSourceLoc(StringToks[i].getLocation(), SM), |
2259 | CharWidth: CharByteWidth * 8, Diags, Features, EvalMethod); |
2260 | |
2261 | if (CharByteWidth == 4) { |
2262 | // FIXME: Make the type of the result buffer correct instead of |
2263 | // using reinterpret_cast. |
2264 | llvm::UTF32 *ResultWidePtr = reinterpret_cast<llvm::UTF32*>(ResultPtr); |
2265 | *ResultWidePtr = ResultChar; |
2266 | ResultPtr += 4; |
2267 | } else if (CharByteWidth == 2) { |
2268 | // FIXME: Make the type of the result buffer correct instead of |
2269 | // using reinterpret_cast. |
2270 | llvm::UTF16 *ResultWidePtr = reinterpret_cast<llvm::UTF16*>(ResultPtr); |
2271 | *ResultWidePtr = ResultChar & 0xFFFF; |
2272 | ResultPtr += 2; |
2273 | } else { |
2274 | assert(CharByteWidth == 1 && "Unexpected char width"); |
2275 | *ResultPtr++ = ResultChar & 0xFF; |
2276 | } |
2277 | } |
2278 | } |
2279 | } |
2280 | |
2281 | assert((!Pascal || !isUnevaluated()) && |
2282 | "Pascal string in unevaluated context"); |
2283 | if (Pascal) { |
2284 | if (CharByteWidth == 4) { |
2285 | // FIXME: Make the type of the result buffer correct instead of |
2286 | // using reinterpret_cast. |
2287 | llvm::UTF32 *ResultWidePtr = reinterpret_cast<llvm::UTF32*>(ResultBuf.data()); |
2288 | ResultWidePtr[0] = GetNumStringChars() - 1; |
2289 | } else if (CharByteWidth == 2) { |
2290 | // FIXME: Make the type of the result buffer correct instead of |
2291 | // using reinterpret_cast. |
2292 | llvm::UTF16 *ResultWidePtr = reinterpret_cast<llvm::UTF16*>(ResultBuf.data()); |
2293 | ResultWidePtr[0] = GetNumStringChars() - 1; |
2294 | } else { |
2295 | assert(CharByteWidth == 1 && "Unexpected char width"); |
2296 | ResultBuf[0] = GetNumStringChars() - 1; |
2297 | } |
2298 | |
2299 | // Verify that pascal strings aren't too large. |
2300 | if (GetStringLength() > 256) { |
2301 | if (Diags) |
2302 | Diags->Report(StringToks.front().getLocation(), |
2303 | diag::err_pascal_string_too_long) |
2304 | << SourceRange(StringToks.front().getLocation(), |
2305 | StringToks.back().getLocation()); |
2306 | hadError = true; |
2307 | return; |
2308 | } |
2309 | } else if (Diags) { |
2310 | // Complain if this string literal has too many characters. |
2311 | unsigned MaxChars = Features.CPlusPlus? 65536 : Features.C99 ? 4095 : 509; |
2312 | |
2313 | if (GetNumStringChars() > MaxChars) |
2314 | Diags->Report(StringToks.front().getLocation(), |
2315 | diag::ext_string_too_long) |
2316 | << GetNumStringChars() << MaxChars |
2317 | << (Features.CPlusPlus ? 2 : Features.C99 ? 1 : 0) |
2318 | << SourceRange(StringToks.front().getLocation(), |
2319 | StringToks.back().getLocation()); |
2320 | } |
2321 | } |
2322 | |
2323 | static const char *resyncUTF8(const char *Err, const char *End) { |
2324 | if (Err == End) |
2325 | return End; |
2326 | End = Err + std::min<unsigned>(a: llvm::getNumBytesForUTF8(firstByte: *Err), b: End-Err); |
2327 | while (++Err != End && (*Err & 0xC0) == 0x80) |
2328 | ; |
2329 | return Err; |
2330 | } |
2331 | |
2332 | /// This function copies from Fragment, which is a sequence of bytes |
2333 | /// within Tok's contents (which begin at TokBegin) into ResultPtr. |
2334 | /// Performs widening for multi-byte characters. |
2335 | bool StringLiteralParser::CopyStringFragment(const Token &Tok, |
2336 | const char *TokBegin, |
2337 | StringRef Fragment) { |
2338 | const llvm::UTF8 *ErrorPtrTmp; |
2339 | if (ConvertUTF8toWide(WideCharWidth: CharByteWidth, Source: Fragment, ResultPtr, ErrorPtr&: ErrorPtrTmp)) |
2340 | return false; |
2341 | |
2342 | // If we see bad encoding for unprefixed string literals, warn and |
2343 | // simply copy the byte values, for compatibility with gcc and older |
2344 | // versions of clang. |
2345 | bool NoErrorOnBadEncoding = isOrdinary(); |
2346 | if (NoErrorOnBadEncoding) { |
2347 | memcpy(dest: ResultPtr, src: Fragment.data(), n: Fragment.size()); |
2348 | ResultPtr += Fragment.size(); |
2349 | } |
2350 | |
2351 | if (Diags) { |
2352 | const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp); |
2353 | |
2354 | FullSourceLoc SourceLoc(Tok.getLocation(), SM); |
2355 | const DiagnosticBuilder &Builder = |
2356 | Diag(Diags, Features, SourceLoc, TokBegin, |
2357 | ErrorPtr, resyncUTF8(ErrorPtr, Fragment.end()), |
2358 | NoErrorOnBadEncoding ? diag::warn_bad_string_encoding |
2359 | : diag::err_bad_string_encoding); |
2360 | |
2361 | const char *NextStart = resyncUTF8(Err: ErrorPtr, End: Fragment.end()); |
2362 | StringRef NextFragment(NextStart, Fragment.end()-NextStart); |
2363 | |
2364 | // Decode into a dummy buffer. |
2365 | SmallString<512> Dummy; |
2366 | Dummy.reserve(N: Fragment.size() * CharByteWidth); |
2367 | char *Ptr = Dummy.data(); |
2368 | |
2369 | while (!ConvertUTF8toWide(WideCharWidth: CharByteWidth, Source: NextFragment, ResultPtr&: Ptr, ErrorPtr&: ErrorPtrTmp)) { |
2370 | const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp); |
2371 | NextStart = resyncUTF8(Err: ErrorPtr, End: Fragment.end()); |
2372 | Builder << MakeCharSourceRange(Features, TokLoc: SourceLoc, TokBegin, |
2373 | TokRangeBegin: ErrorPtr, TokRangeEnd: NextStart); |
2374 | NextFragment = StringRef(NextStart, Fragment.end()-NextStart); |
2375 | } |
2376 | } |
2377 | return !NoErrorOnBadEncoding; |
2378 | } |
2379 | |
2380 | void StringLiteralParser::DiagnoseLexingError(SourceLocation Loc) { |
2381 | hadError = true; |
2382 | if (Diags) |
2383 | Diags->Report(Loc, diag::err_lexing_string); |
2384 | } |
2385 | |
2386 | /// getOffsetOfStringByte - This function returns the offset of the |
2387 | /// specified byte of the string data represented by Token. This handles |
2388 | /// advancing over escape sequences in the string. |
2389 | unsigned StringLiteralParser::getOffsetOfStringByte(const Token &Tok, |
2390 | unsigned ByteNo) const { |
2391 | // Get the spelling of the token. |
2392 | SmallString<32> SpellingBuffer; |
2393 | SpellingBuffer.resize(N: Tok.getLength()); |
2394 | |
2395 | bool StringInvalid = false; |
2396 | const char *SpellingPtr = &SpellingBuffer[0]; |
2397 | unsigned TokLen = Lexer::getSpelling(Tok, Buffer&: SpellingPtr, SourceMgr: SM, LangOpts: Features, |
2398 | Invalid: &StringInvalid); |
2399 | if (StringInvalid) |
2400 | return 0; |
2401 | |
2402 | const char *SpellingStart = SpellingPtr; |
2403 | const char *SpellingEnd = SpellingPtr+TokLen; |
2404 | |
2405 | // Handle UTF-8 strings just like narrow strings. |
2406 | if (SpellingPtr[0] == 'u' && SpellingPtr[1] == '8') |
2407 | SpellingPtr += 2; |
2408 | |
2409 | assert(SpellingPtr[0] != 'L' && SpellingPtr[0] != 'u' && |
2410 | SpellingPtr[0] != 'U' && "Doesn't handle wide or utf strings yet"); |
2411 | |
2412 | // For raw string literals, this is easy. |
2413 | if (SpellingPtr[0] == 'R') { |
2414 | assert(SpellingPtr[1] == '"' && "Should be a raw string literal!"); |
2415 | // Skip 'R"'. |
2416 | SpellingPtr += 2; |
2417 | while (*SpellingPtr != '(') { |
2418 | ++SpellingPtr; |
2419 | assert(SpellingPtr < SpellingEnd && "Missing ( for raw string literal"); |
2420 | } |
2421 | // Skip '('. |
2422 | ++SpellingPtr; |
2423 | return SpellingPtr - SpellingStart + ByteNo; |
2424 | } |
2425 | |
2426 | // Skip over the leading quote |
2427 | assert(SpellingPtr[0] == '"' && "Should be a string literal!"); |
2428 | ++SpellingPtr; |
2429 | |
2430 | // Skip over bytes until we find the offset we're looking for. |
2431 | while (ByteNo) { |
2432 | assert(SpellingPtr < SpellingEnd && "Didn't find byte offset!"); |
2433 | |
2434 | // Step over non-escapes simply. |
2435 | if (*SpellingPtr != '\\') { |
2436 | ++SpellingPtr; |
2437 | --ByteNo; |
2438 | continue; |
2439 | } |
2440 | |
2441 | // Otherwise, this is an escape character. Advance over it. |
2442 | bool HadError = false; |
2443 | if (SpellingPtr[1] == 'u' || SpellingPtr[1] == 'U' || |
2444 | SpellingPtr[1] == 'N') { |
2445 | const char *EscapePtr = SpellingPtr; |
2446 | unsigned Len = MeasureUCNEscape(ThisTokBegin: SpellingStart, ThisTokBuf&: SpellingPtr, ThisTokEnd: SpellingEnd, |
2447 | CharByteWidth: 1, Features, HadError); |
2448 | if (Len > ByteNo) { |
2449 | // ByteNo is somewhere within the escape sequence. |
2450 | SpellingPtr = EscapePtr; |
2451 | break; |
2452 | } |
2453 | ByteNo -= Len; |
2454 | } else { |
2455 | ProcessCharEscape(ThisTokBegin: SpellingStart, ThisTokBuf&: SpellingPtr, ThisTokEnd: SpellingEnd, HadError, |
2456 | Loc: FullSourceLoc(Tok.getLocation(), SM), CharWidth: CharByteWidth * 8, |
2457 | Diags, Features, EvalMethod: StringLiteralEvalMethod::Evaluated); |
2458 | --ByteNo; |
2459 | } |
2460 | assert(!HadError && "This method isn't valid on erroneous strings"); |
2461 | } |
2462 | |
2463 | return SpellingPtr-SpellingStart; |
2464 | } |
2465 | |
2466 | /// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved |
2467 | /// suffixes as ud-suffixes, because the diagnostic experience is better if we |
2468 | /// treat it as an invalid suffix. |
2469 | bool StringLiteralParser::isValidUDSuffix(const LangOptions &LangOpts, |
2470 | StringRef Suffix) { |
2471 | return NumericLiteralParser::isValidUDSuffix(LangOpts, Suffix) || |
2472 | Suffix == "sv"; |
2473 | } |
2474 |
Definitions
- getCharWidth
- getEncodingPrefixLen
- MakeCharSourceRange
- Diag
- IsEscapeValidInUnevaluatedStringLiteral
- ProcessCharEscape
- appendCodePoint
- expandUCNs
- isFunctionLocalStringLiteralMacro
- tokenIsLikeStringLiteral
- ProcessNumericUCNEscape
- DiagnoseInvalidUnicodeCharacterName
- ProcessNamedUCNEscape
- ProcessUCNEscape
- MeasureUCNEscape
- EncodeUCNEscape
- NumericLiteralParser
- ParseDecimalOrOctalCommon
- isValidUDSuffix
- checkSeparator
- ParseNumberStartingWithZero
- alwaysFitsInto64Bits
- GetIntegerValue
- GetFloatValue
- IsExponentPart
- GetFixedPointValue
- CharLiteralParser
- StringLiteralParser
- init
- resyncUTF8
- CopyStringFragment
- DiagnoseLexingError
- getOffsetOfStringByte
Improve your Profiling and Debugging skills
Find out more