1//===--- LiteralSupport.cpp - Code to parse and process literals ----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the NumericLiteralParser, CharLiteralParser, and
10// StringLiteralParser interfaces.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Lex/LiteralSupport.h"
15#include "clang/Basic/CharInfo.h"
16#include "clang/Basic/LangOptions.h"
17#include "clang/Basic/SourceLocation.h"
18#include "clang/Basic/TargetInfo.h"
19#include "clang/Lex/LexDiagnostic.h"
20#include "clang/Lex/Lexer.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Lex/Token.h"
23#include "llvm/ADT/APInt.h"
24#include "llvm/ADT/ScopeExit.h"
25#include "llvm/ADT/SmallVector.h"
26#include "llvm/ADT/StringExtras.h"
27#include "llvm/ADT/StringSwitch.h"
28#include "llvm/Support/ConvertUTF.h"
29#include "llvm/Support/Error.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/Unicode.h"
32#include <algorithm>
33#include <cassert>
34#include <cstddef>
35#include <cstdint>
36#include <cstring>
37#include <string>
38
39using namespace clang;
40
41static unsigned getCharWidth(tok::TokenKind kind, const TargetInfo &Target) {
42 switch (kind) {
43 default: llvm_unreachable("Unknown token type!");
44 case tok::char_constant:
45 case tok::string_literal:
46 case tok::utf8_char_constant:
47 case tok::utf8_string_literal:
48 return Target.getCharWidth();
49 case tok::wide_char_constant:
50 case tok::wide_string_literal:
51 return Target.getWCharWidth();
52 case tok::utf16_char_constant:
53 case tok::utf16_string_literal:
54 return Target.getChar16Width();
55 case tok::utf32_char_constant:
56 case tok::utf32_string_literal:
57 return Target.getChar32Width();
58 }
59}
60
61static unsigned getEncodingPrefixLen(tok::TokenKind kind) {
62 switch (kind) {
63 default:
64 llvm_unreachable("Unknown token type!");
65 case tok::char_constant:
66 case tok::string_literal:
67 return 0;
68 case tok::utf8_char_constant:
69 case tok::utf8_string_literal:
70 return 2;
71 case tok::wide_char_constant:
72 case tok::wide_string_literal:
73 case tok::utf16_char_constant:
74 case tok::utf16_string_literal:
75 case tok::utf32_char_constant:
76 case tok::utf32_string_literal:
77 return 1;
78 }
79}
80
81static CharSourceRange MakeCharSourceRange(const LangOptions &Features,
82 FullSourceLoc TokLoc,
83 const char *TokBegin,
84 const char *TokRangeBegin,
85 const char *TokRangeEnd) {
86 SourceLocation Begin =
87 Lexer::AdvanceToTokenCharacter(TokStart: TokLoc, Characters: TokRangeBegin - TokBegin,
88 SM: TokLoc.getManager(), LangOpts: Features);
89 SourceLocation End =
90 Lexer::AdvanceToTokenCharacter(TokStart: Begin, Characters: TokRangeEnd - TokRangeBegin,
91 SM: TokLoc.getManager(), LangOpts: Features);
92 return CharSourceRange::getCharRange(B: Begin, E: End);
93}
94
95/// Produce a diagnostic highlighting some portion of a literal.
96///
97/// Emits the diagnostic \p DiagID, highlighting the range of characters from
98/// \p TokRangeBegin (inclusive) to \p TokRangeEnd (exclusive), which must be
99/// a substring of a spelling buffer for the token beginning at \p TokBegin.
100static DiagnosticBuilder Diag(DiagnosticsEngine *Diags,
101 const LangOptions &Features, FullSourceLoc TokLoc,
102 const char *TokBegin, const char *TokRangeBegin,
103 const char *TokRangeEnd, unsigned DiagID) {
104 SourceLocation Begin =
105 Lexer::AdvanceToTokenCharacter(TokStart: TokLoc, Characters: TokRangeBegin - TokBegin,
106 SM: TokLoc.getManager(), LangOpts: Features);
107 return Diags->Report(Loc: Begin, DiagID) <<
108 MakeCharSourceRange(Features, TokLoc, TokBegin, TokRangeBegin, TokRangeEnd);
109}
110
111static bool IsEscapeValidInUnevaluatedStringLiteral(char Escape) {
112 switch (Escape) {
113 case '\'':
114 case '"':
115 case '?':
116 case '\\':
117 case 'a':
118 case 'b':
119 case 'f':
120 case 'n':
121 case 'r':
122 case 't':
123 case 'v':
124 return true;
125 }
126 return false;
127}
128
129/// ProcessCharEscape - Parse a standard C escape sequence, which can occur in
130/// either a character or a string literal.
131static unsigned ProcessCharEscape(const char *ThisTokBegin,
132 const char *&ThisTokBuf,
133 const char *ThisTokEnd, bool &HadError,
134 FullSourceLoc Loc, unsigned CharWidth,
135 DiagnosticsEngine *Diags,
136 const LangOptions &Features,
137 StringLiteralEvalMethod EvalMethod) {
138 const char *EscapeBegin = ThisTokBuf;
139 bool Delimited = false;
140 bool EndDelimiterFound = false;
141
142 // Skip the '\' char.
143 ++ThisTokBuf;
144
145 // We know that this character can't be off the end of the buffer, because
146 // that would have been \", which would not have been the end of string.
147 unsigned ResultChar = *ThisTokBuf++;
148 char Escape = ResultChar;
149 switch (ResultChar) {
150 // These map to themselves.
151 case '\\': case '\'': case '"': case '?': break;
152
153 // These have fixed mappings.
154 case 'a':
155 // TODO: K&R: the meaning of '\\a' is different in traditional C
156 ResultChar = 7;
157 break;
158 case 'b':
159 ResultChar = 8;
160 break;
161 case 'e':
162 if (Diags)
163 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
164 diag::ext_nonstandard_escape) << "e";
165 ResultChar = 27;
166 break;
167 case 'E':
168 if (Diags)
169 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
170 diag::ext_nonstandard_escape) << "E";
171 ResultChar = 27;
172 break;
173 case 'f':
174 ResultChar = 12;
175 break;
176 case 'n':
177 ResultChar = 10;
178 break;
179 case 'r':
180 ResultChar = 13;
181 break;
182 case 't':
183 ResultChar = 9;
184 break;
185 case 'v':
186 ResultChar = 11;
187 break;
188 case 'x': { // Hex escape.
189 ResultChar = 0;
190 if (ThisTokBuf != ThisTokEnd && *ThisTokBuf == '{') {
191 Delimited = true;
192 ThisTokBuf++;
193 if (*ThisTokBuf == '}') {
194 HadError = true;
195 if (Diags)
196 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
197 diag::err_delimited_escape_empty);
198 }
199 } else if (ThisTokBuf == ThisTokEnd || !isHexDigit(c: *ThisTokBuf)) {
200 if (Diags)
201 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
202 diag::err_hex_escape_no_digits) << "x";
203 return ResultChar;
204 }
205
206 // Hex escapes are a maximal series of hex digits.
207 bool Overflow = false;
208 for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) {
209 if (Delimited && *ThisTokBuf == '}') {
210 ThisTokBuf++;
211 EndDelimiterFound = true;
212 break;
213 }
214 int CharVal = llvm::hexDigitValue(C: *ThisTokBuf);
215 if (CharVal == -1) {
216 // Non delimited hex escape sequences stop at the first non-hex digit.
217 if (!Delimited)
218 break;
219 HadError = true;
220 if (Diags)
221 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
222 diag::err_delimited_escape_invalid)
223 << StringRef(ThisTokBuf, 1);
224 continue;
225 }
226 // About to shift out a digit?
227 if (ResultChar & 0xF0000000)
228 Overflow = true;
229 ResultChar <<= 4;
230 ResultChar |= CharVal;
231 }
232 // See if any bits will be truncated when evaluated as a character.
233 if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
234 Overflow = true;
235 ResultChar &= ~0U >> (32-CharWidth);
236 }
237
238 // Check for overflow.
239 if (!HadError && Overflow) { // Too many digits to fit in
240 HadError = true;
241 if (Diags)
242 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
243 diag::err_escape_too_large)
244 << 0;
245 }
246 break;
247 }
248 case '0': case '1': case '2': case '3':
249 case '4': case '5': case '6': case '7': {
250 // Octal escapes.
251 --ThisTokBuf;
252 ResultChar = 0;
253
254 // Octal escapes are a series of octal digits with maximum length 3.
255 // "\0123" is a two digit sequence equal to "\012" "3".
256 unsigned NumDigits = 0;
257 do {
258 ResultChar <<= 3;
259 ResultChar |= *ThisTokBuf++ - '0';
260 ++NumDigits;
261 } while (ThisTokBuf != ThisTokEnd && NumDigits < 3 &&
262 ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7');
263
264 // Check for overflow. Reject '\777', but not L'\777'.
265 if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
266 if (Diags)
267 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
268 diag::err_escape_too_large) << 1;
269 ResultChar &= ~0U >> (32-CharWidth);
270 }
271 break;
272 }
273 case 'o': {
274 bool Overflow = false;
275 if (ThisTokBuf == ThisTokEnd || *ThisTokBuf != '{') {
276 HadError = true;
277 if (Diags)
278 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
279 diag::err_delimited_escape_missing_brace)
280 << "o";
281
282 break;
283 }
284 ResultChar = 0;
285 Delimited = true;
286 ++ThisTokBuf;
287 if (*ThisTokBuf == '}') {
288 HadError = true;
289 if (Diags)
290 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
291 diag::err_delimited_escape_empty);
292 }
293
294 while (ThisTokBuf != ThisTokEnd) {
295 if (*ThisTokBuf == '}') {
296 EndDelimiterFound = true;
297 ThisTokBuf++;
298 break;
299 }
300 if (*ThisTokBuf < '0' || *ThisTokBuf > '7') {
301 HadError = true;
302 if (Diags)
303 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
304 diag::err_delimited_escape_invalid)
305 << StringRef(ThisTokBuf, 1);
306 ThisTokBuf++;
307 continue;
308 }
309 // Check if one of the top three bits is set before shifting them out.
310 if (ResultChar & 0xE0000000)
311 Overflow = true;
312
313 ResultChar <<= 3;
314 ResultChar |= *ThisTokBuf++ - '0';
315 }
316 // Check for overflow. Reject '\777', but not L'\777'.
317 if (!HadError &&
318 (Overflow || (CharWidth != 32 && (ResultChar >> CharWidth) != 0))) {
319 HadError = true;
320 if (Diags)
321 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
322 diag::err_escape_too_large)
323 << 1;
324 ResultChar &= ~0U >> (32 - CharWidth);
325 }
326 break;
327 }
328 // Otherwise, these are not valid escapes.
329 case '(': case '{': case '[': case '%':
330 // GCC accepts these as extensions. We warn about them as such though.
331 if (Diags)
332 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
333 diag::ext_nonstandard_escape)
334 << std::string(1, ResultChar);
335 break;
336 default:
337 if (!Diags)
338 break;
339
340 if (isPrintable(c: ResultChar))
341 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
342 diag::ext_unknown_escape)
343 << std::string(1, ResultChar);
344 else
345 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
346 diag::ext_unknown_escape)
347 << "x" + llvm::utohexstr(X: ResultChar);
348 break;
349 }
350
351 if (Delimited && Diags) {
352 if (!EndDelimiterFound)
353 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
354 diag::err_expected)
355 << tok::r_brace;
356 else if (!HadError) {
357 Lexer::DiagnoseDelimitedOrNamedEscapeSequence(Loc, Named: false, Opts: Features,
358 Diags&: *Diags);
359 }
360 }
361
362 if (EvalMethod == StringLiteralEvalMethod::Unevaluated &&
363 !IsEscapeValidInUnevaluatedStringLiteral(Escape)) {
364 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
365 diag::err_unevaluated_string_invalid_escape_sequence)
366 << StringRef(EscapeBegin, ThisTokBuf - EscapeBegin);
367 HadError = true;
368 }
369
370 return ResultChar;
371}
372
373static void appendCodePoint(unsigned Codepoint,
374 llvm::SmallVectorImpl<char> &Str) {
375 char ResultBuf[4];
376 char *ResultPtr = ResultBuf;
377 if (llvm::ConvertCodePointToUTF8(Source: Codepoint, ResultPtr))
378 Str.append(in_start: ResultBuf, in_end: ResultPtr);
379}
380
381void clang::expandUCNs(SmallVectorImpl<char> &Buf, StringRef Input) {
382 for (StringRef::iterator I = Input.begin(), E = Input.end(); I != E; ++I) {
383 if (*I != '\\') {
384 Buf.push_back(Elt: *I);
385 continue;
386 }
387
388 ++I;
389 char Kind = *I;
390 ++I;
391
392 assert(Kind == 'u' || Kind == 'U' || Kind == 'N');
393 uint32_t CodePoint = 0;
394
395 if (Kind == 'u' && *I == '{') {
396 for (++I; *I != '}'; ++I) {
397 unsigned Value = llvm::hexDigitValue(C: *I);
398 assert(Value != -1U);
399 CodePoint <<= 4;
400 CodePoint += Value;
401 }
402 appendCodePoint(Codepoint: CodePoint, Str&: Buf);
403 continue;
404 }
405
406 if (Kind == 'N') {
407 assert(*I == '{');
408 ++I;
409 auto Delim = std::find(first: I, last: Input.end(), val: '}');
410 assert(Delim != Input.end());
411 StringRef Name(I, std::distance(first: I, last: Delim));
412 std::optional<llvm::sys::unicode::LooseMatchingResult> Res =
413 llvm::sys::unicode::nameToCodepointLooseMatching(Name);
414 assert(Res && "could not find a codepoint that was previously found");
415 CodePoint = Res->CodePoint;
416 assert(CodePoint != 0xFFFFFFFF);
417 appendCodePoint(Codepoint: CodePoint, Str&: Buf);
418 I = Delim;
419 continue;
420 }
421
422 unsigned NumHexDigits;
423 if (Kind == 'u')
424 NumHexDigits = 4;
425 else
426 NumHexDigits = 8;
427
428 assert(I + NumHexDigits <= E);
429
430 for (; NumHexDigits != 0; ++I, --NumHexDigits) {
431 unsigned Value = llvm::hexDigitValue(C: *I);
432 assert(Value != -1U);
433
434 CodePoint <<= 4;
435 CodePoint += Value;
436 }
437
438 appendCodePoint(Codepoint: CodePoint, Str&: Buf);
439 --I;
440 }
441}
442
443bool clang::isFunctionLocalStringLiteralMacro(tok::TokenKind K,
444 const LangOptions &LO) {
445 return LO.MicrosoftExt &&
446 (K == tok::kw___FUNCTION__ || K == tok::kw_L__FUNCTION__ ||
447 K == tok::kw___FUNCSIG__ || K == tok::kw_L__FUNCSIG__ ||
448 K == tok::kw___FUNCDNAME__);
449}
450
451bool clang::tokenIsLikeStringLiteral(const Token &Tok, const LangOptions &LO) {
452 return tok::isStringLiteral(K: Tok.getKind()) ||
453 isFunctionLocalStringLiteralMacro(K: Tok.getKind(), LO);
454}
455
456static bool ProcessNumericUCNEscape(const char *ThisTokBegin,
457 const char *&ThisTokBuf,
458 const char *ThisTokEnd, uint32_t &UcnVal,
459 unsigned short &UcnLen, bool &Delimited,
460 FullSourceLoc Loc, DiagnosticsEngine *Diags,
461 const LangOptions &Features,
462 bool in_char_string_literal = false) {
463 const char *UcnBegin = ThisTokBuf;
464 bool HasError = false;
465 bool EndDelimiterFound = false;
466
467 // Skip the '\u' char's.
468 ThisTokBuf += 2;
469 Delimited = false;
470 if (UcnBegin[1] == 'u' && in_char_string_literal &&
471 ThisTokBuf != ThisTokEnd && *ThisTokBuf == '{') {
472 Delimited = true;
473 ThisTokBuf++;
474 } else if (ThisTokBuf == ThisTokEnd || !isHexDigit(c: *ThisTokBuf)) {
475 if (Diags)
476 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
477 diag::err_hex_escape_no_digits)
478 << StringRef(&ThisTokBuf[-1], 1);
479 return false;
480 }
481 UcnLen = (ThisTokBuf[-1] == 'u' ? 4 : 8);
482
483 bool Overflow = false;
484 unsigned short Count = 0;
485 for (; ThisTokBuf != ThisTokEnd && (Delimited || Count != UcnLen);
486 ++ThisTokBuf) {
487 if (Delimited && *ThisTokBuf == '}') {
488 ++ThisTokBuf;
489 EndDelimiterFound = true;
490 break;
491 }
492 int CharVal = llvm::hexDigitValue(C: *ThisTokBuf);
493 if (CharVal == -1) {
494 HasError = true;
495 if (!Delimited)
496 break;
497 if (Diags) {
498 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
499 diag::err_delimited_escape_invalid)
500 << StringRef(ThisTokBuf, 1);
501 }
502 Count++;
503 continue;
504 }
505 if (UcnVal & 0xF0000000) {
506 Overflow = true;
507 continue;
508 }
509 UcnVal <<= 4;
510 UcnVal |= CharVal;
511 Count++;
512 }
513
514 if (Overflow) {
515 if (Diags)
516 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
517 diag::err_escape_too_large)
518 << 0;
519 return false;
520 }
521
522 if (Delimited && !EndDelimiterFound) {
523 if (Diags) {
524 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
525 diag::err_expected)
526 << tok::r_brace;
527 }
528 return false;
529 }
530
531 // If we didn't consume the proper number of digits, there is a problem.
532 if (Count == 0 || (!Delimited && Count != UcnLen)) {
533 if (Diags)
534 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
535 Delimited ? diag::err_delimited_escape_empty
536 : diag::err_ucn_escape_incomplete);
537 return false;
538 }
539 return !HasError;
540}
541
542static void DiagnoseInvalidUnicodeCharacterName(
543 DiagnosticsEngine *Diags, const LangOptions &Features, FullSourceLoc Loc,
544 const char *TokBegin, const char *TokRangeBegin, const char *TokRangeEnd,
545 llvm::StringRef Name) {
546
547 Diag(Diags, Features, Loc, TokBegin, TokRangeBegin, TokRangeEnd,
548 diag::err_invalid_ucn_name)
549 << Name;
550
551 namespace u = llvm::sys::unicode;
552
553 std::optional<u::LooseMatchingResult> Res =
554 u::nameToCodepointLooseMatching(Name);
555 if (Res) {
556 Diag(Diags, Features, Loc, TokBegin, TokRangeBegin, TokRangeEnd,
557 diag::note_invalid_ucn_name_loose_matching)
558 << FixItHint::CreateReplacement(
559 RemoveRange: MakeCharSourceRange(Features, TokLoc: Loc, TokBegin, TokRangeBegin,
560 TokRangeEnd),
561 Code: Res->Name);
562 return;
563 }
564
565 unsigned Distance = 0;
566 SmallVector<u::MatchForCodepointName> Matches =
567 u::nearestMatchesForCodepointName(Pattern: Name, MaxMatchesCount: 5);
568 assert(!Matches.empty() && "No unicode characters found");
569
570 for (const auto &Match : Matches) {
571 if (Distance == 0)
572 Distance = Match.Distance;
573 if (std::max(a: Distance, b: Match.Distance) -
574 std::min(a: Distance, b: Match.Distance) >
575 3)
576 break;
577 Distance = Match.Distance;
578
579 std::string Str;
580 llvm::UTF32 V = Match.Value;
581 bool Converted =
582 llvm::convertUTF32ToUTF8String(Src: llvm::ArrayRef<llvm::UTF32>(&V, 1), Out&: Str);
583 (void)Converted;
584 assert(Converted && "Found a match wich is not a unicode character");
585
586 Diag(Diags, Features, Loc, TokBegin, TokRangeBegin, TokRangeEnd,
587 diag::note_invalid_ucn_name_candidate)
588 << Match.Name << llvm::utohexstr(X: Match.Value)
589 << Str // FIXME: Fix the rendering of non printable characters
590 << FixItHint::CreateReplacement(
591 RemoveRange: MakeCharSourceRange(Features, TokLoc: Loc, TokBegin, TokRangeBegin,
592 TokRangeEnd),
593 Code: Match.Name);
594 }
595}
596
597static bool ProcessNamedUCNEscape(const char *ThisTokBegin,
598 const char *&ThisTokBuf,
599 const char *ThisTokEnd, uint32_t &UcnVal,
600 unsigned short &UcnLen, FullSourceLoc Loc,
601 DiagnosticsEngine *Diags,
602 const LangOptions &Features) {
603 const char *UcnBegin = ThisTokBuf;
604 assert(UcnBegin[0] == '\\' && UcnBegin[1] == 'N');
605 ThisTokBuf += 2;
606 if (ThisTokBuf == ThisTokEnd || *ThisTokBuf != '{') {
607 if (Diags) {
608 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
609 diag::err_delimited_escape_missing_brace)
610 << StringRef(&ThisTokBuf[-1], 1);
611 }
612 return false;
613 }
614 ThisTokBuf++;
615 const char *ClosingBrace = std::find_if(first: ThisTokBuf, last: ThisTokEnd, pred: [](char C) {
616 return C == '}' || isVerticalWhitespace(c: C);
617 });
618 bool Incomplete = ClosingBrace == ThisTokEnd;
619 bool Empty = ClosingBrace == ThisTokBuf;
620 if (Incomplete || Empty) {
621 if (Diags) {
622 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
623 Incomplete ? diag::err_ucn_escape_incomplete
624 : diag::err_delimited_escape_empty)
625 << StringRef(&UcnBegin[1], 1);
626 }
627 ThisTokBuf = ClosingBrace == ThisTokEnd ? ClosingBrace : ClosingBrace + 1;
628 return false;
629 }
630 StringRef Name(ThisTokBuf, ClosingBrace - ThisTokBuf);
631 ThisTokBuf = ClosingBrace + 1;
632 std::optional<char32_t> Res = llvm::sys::unicode::nameToCodepointStrict(Name);
633 if (!Res) {
634 if (Diags)
635 DiagnoseInvalidUnicodeCharacterName(Diags, Features, Loc, TokBegin: ThisTokBegin,
636 TokRangeBegin: &UcnBegin[3], TokRangeEnd: ClosingBrace, Name);
637 return false;
638 }
639 UcnVal = *Res;
640 UcnLen = UcnVal > 0xFFFF ? 8 : 4;
641 return true;
642}
643
644/// ProcessUCNEscape - Read the Universal Character Name, check constraints and
645/// return the UTF32.
646static bool ProcessUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
647 const char *ThisTokEnd, uint32_t &UcnVal,
648 unsigned short &UcnLen, FullSourceLoc Loc,
649 DiagnosticsEngine *Diags,
650 const LangOptions &Features,
651 bool in_char_string_literal = false) {
652
653 bool HasError;
654 const char *UcnBegin = ThisTokBuf;
655 bool IsDelimitedEscapeSequence = false;
656 bool IsNamedEscapeSequence = false;
657 if (ThisTokBuf[1] == 'N') {
658 IsNamedEscapeSequence = true;
659 HasError = !ProcessNamedUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd,
660 UcnVal, UcnLen, Loc, Diags, Features);
661 } else {
662 HasError =
663 !ProcessNumericUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal,
664 UcnLen, Delimited&: IsDelimitedEscapeSequence, Loc, Diags,
665 Features, in_char_string_literal);
666 }
667 if (HasError)
668 return false;
669
670 // Check UCN constraints (C99 6.4.3p2) [C++11 lex.charset p2]
671 if ((0xD800 <= UcnVal && UcnVal <= 0xDFFF) || // surrogate codepoints
672 UcnVal > 0x10FFFF) { // maximum legal UTF32 value
673 if (Diags)
674 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
675 diag::err_ucn_escape_invalid);
676 return false;
677 }
678
679 // C23 and C++11 allow UCNs that refer to control characters
680 // and basic source characters inside character and string literals
681 if (UcnVal < 0xa0 &&
682 // $, @, ` are allowed in all language modes
683 (UcnVal != 0x24 && UcnVal != 0x40 && UcnVal != 0x60)) {
684 bool IsError =
685 (!(Features.CPlusPlus11 || Features.C23) || !in_char_string_literal);
686 if (Diags) {
687 char BasicSCSChar = UcnVal;
688 if (UcnVal >= 0x20 && UcnVal < 0x7f)
689 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
690 IsError ? diag::err_ucn_escape_basic_scs
691 : Features.CPlusPlus
692 ? diag::warn_cxx98_compat_literal_ucn_escape_basic_scs
693 : diag::warn_c23_compat_literal_ucn_escape_basic_scs)
694 << StringRef(&BasicSCSChar, 1);
695 else
696 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
697 IsError ? diag::err_ucn_control_character
698 : Features.CPlusPlus
699 ? diag::warn_cxx98_compat_literal_ucn_control_character
700 : diag::warn_c23_compat_literal_ucn_control_character);
701 }
702 if (IsError)
703 return false;
704 }
705
706 if (!Features.CPlusPlus && !Features.C99 && Diags)
707 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
708 diag::warn_ucn_not_valid_in_c89_literal);
709
710 if ((IsDelimitedEscapeSequence || IsNamedEscapeSequence) && Diags)
711 Lexer::DiagnoseDelimitedOrNamedEscapeSequence(Loc, Named: IsNamedEscapeSequence,
712 Opts: Features, Diags&: *Diags);
713 return true;
714}
715
716/// MeasureUCNEscape - Determine the number of bytes within the resulting string
717/// which this UCN will occupy.
718static int MeasureUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
719 const char *ThisTokEnd, unsigned CharByteWidth,
720 const LangOptions &Features, bool &HadError) {
721 // UTF-32: 4 bytes per escape.
722 if (CharByteWidth == 4)
723 return 4;
724
725 uint32_t UcnVal = 0;
726 unsigned short UcnLen = 0;
727 FullSourceLoc Loc;
728
729 if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal,
730 UcnLen, Loc, Diags: nullptr, Features, in_char_string_literal: true)) {
731 HadError = true;
732 return 0;
733 }
734
735 // UTF-16: 2 bytes for BMP, 4 bytes otherwise.
736 if (CharByteWidth == 2)
737 return UcnVal <= 0xFFFF ? 2 : 4;
738
739 // UTF-8.
740 if (UcnVal < 0x80)
741 return 1;
742 if (UcnVal < 0x800)
743 return 2;
744 if (UcnVal < 0x10000)
745 return 3;
746 return 4;
747}
748
749/// EncodeUCNEscape - Read the Universal Character Name, check constraints and
750/// convert the UTF32 to UTF8 or UTF16. This is a subroutine of
751/// StringLiteralParser. When we decide to implement UCN's for identifiers,
752/// we will likely rework our support for UCN's.
753static void EncodeUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
754 const char *ThisTokEnd,
755 char *&ResultBuf, bool &HadError,
756 FullSourceLoc Loc, unsigned CharByteWidth,
757 DiagnosticsEngine *Diags,
758 const LangOptions &Features) {
759 typedef uint32_t UTF32;
760 UTF32 UcnVal = 0;
761 unsigned short UcnLen = 0;
762 if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, UcnLen,
763 Loc, Diags, Features, in_char_string_literal: true)) {
764 HadError = true;
765 return;
766 }
767
768 assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
769 "only character widths of 1, 2, or 4 bytes supported");
770
771 (void)UcnLen;
772 assert((UcnLen== 4 || UcnLen== 8) && "only ucn length of 4 or 8 supported");
773
774 if (CharByteWidth == 4) {
775 // FIXME: Make the type of the result buffer correct instead of
776 // using reinterpret_cast.
777 llvm::UTF32 *ResultPtr = reinterpret_cast<llvm::UTF32*>(ResultBuf);
778 *ResultPtr = UcnVal;
779 ResultBuf += 4;
780 return;
781 }
782
783 if (CharByteWidth == 2) {
784 // FIXME: Make the type of the result buffer correct instead of
785 // using reinterpret_cast.
786 llvm::UTF16 *ResultPtr = reinterpret_cast<llvm::UTF16*>(ResultBuf);
787
788 if (UcnVal <= (UTF32)0xFFFF) {
789 *ResultPtr = UcnVal;
790 ResultBuf += 2;
791 return;
792 }
793
794 // Convert to UTF16.
795 UcnVal -= 0x10000;
796 *ResultPtr = 0xD800 + (UcnVal >> 10);
797 *(ResultPtr+1) = 0xDC00 + (UcnVal & 0x3FF);
798 ResultBuf += 4;
799 return;
800 }
801
802 assert(CharByteWidth == 1 && "UTF-8 encoding is only for 1 byte characters");
803
804 // Now that we've parsed/checked the UCN, we convert from UTF32->UTF8.
805 // The conversion below was inspired by:
806 // http://www.unicode.org/Public/PROGRAMS/CVTUTF/ConvertUTF.c
807 // First, we determine how many bytes the result will require.
808 typedef uint8_t UTF8;
809
810 unsigned short bytesToWrite = 0;
811 if (UcnVal < (UTF32)0x80)
812 bytesToWrite = 1;
813 else if (UcnVal < (UTF32)0x800)
814 bytesToWrite = 2;
815 else if (UcnVal < (UTF32)0x10000)
816 bytesToWrite = 3;
817 else
818 bytesToWrite = 4;
819
820 const unsigned byteMask = 0xBF;
821 const unsigned byteMark = 0x80;
822
823 // Once the bits are split out into bytes of UTF8, this is a mask OR-ed
824 // into the first byte, depending on how many bytes follow.
825 static const UTF8 firstByteMark[5] = {
826 0x00, 0x00, 0xC0, 0xE0, 0xF0
827 };
828 // Finally, we write the bytes into ResultBuf.
829 ResultBuf += bytesToWrite;
830 switch (bytesToWrite) { // note: everything falls through.
831 case 4:
832 *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
833 [[fallthrough]];
834 case 3:
835 *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
836 [[fallthrough]];
837 case 2:
838 *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
839 [[fallthrough]];
840 case 1:
841 *--ResultBuf = (UTF8) (UcnVal | firstByteMark[bytesToWrite]);
842 }
843 // Update the buffer.
844 ResultBuf += bytesToWrite;
845}
846
847/// integer-constant: [C99 6.4.4.1]
848/// decimal-constant integer-suffix
849/// octal-constant integer-suffix
850/// hexadecimal-constant integer-suffix
851/// binary-literal integer-suffix [GNU, C++1y]
852/// user-defined-integer-literal: [C++11 lex.ext]
853/// decimal-literal ud-suffix
854/// octal-literal ud-suffix
855/// hexadecimal-literal ud-suffix
856/// binary-literal ud-suffix [GNU, C++1y]
857/// decimal-constant:
858/// nonzero-digit
859/// decimal-constant digit
860/// octal-constant:
861/// 0
862/// octal-constant octal-digit
863/// hexadecimal-constant:
864/// hexadecimal-prefix hexadecimal-digit
865/// hexadecimal-constant hexadecimal-digit
866/// hexadecimal-prefix: one of
867/// 0x 0X
868/// binary-literal:
869/// 0b binary-digit
870/// 0B binary-digit
871/// binary-literal binary-digit
872/// integer-suffix:
873/// unsigned-suffix [long-suffix]
874/// unsigned-suffix [long-long-suffix]
875/// long-suffix [unsigned-suffix]
876/// long-long-suffix [unsigned-sufix]
877/// nonzero-digit:
878/// 1 2 3 4 5 6 7 8 9
879/// octal-digit:
880/// 0 1 2 3 4 5 6 7
881/// hexadecimal-digit:
882/// 0 1 2 3 4 5 6 7 8 9
883/// a b c d e f
884/// A B C D E F
885/// binary-digit:
886/// 0
887/// 1
888/// unsigned-suffix: one of
889/// u U
890/// long-suffix: one of
891/// l L
892/// long-long-suffix: one of
893/// ll LL
894///
895/// floating-constant: [C99 6.4.4.2]
896/// TODO: add rules...
897///
898NumericLiteralParser::NumericLiteralParser(StringRef TokSpelling,
899 SourceLocation TokLoc,
900 const SourceManager &SM,
901 const LangOptions &LangOpts,
902 const TargetInfo &Target,
903 DiagnosticsEngine &Diags)
904 : SM(SM), LangOpts(LangOpts), Diags(Diags),
905 ThisTokBegin(TokSpelling.begin()), ThisTokEnd(TokSpelling.end()) {
906
907 s = DigitsBegin = ThisTokBegin;
908 saw_exponent = false;
909 saw_period = false;
910 saw_ud_suffix = false;
911 saw_fixed_point_suffix = false;
912 isLong = false;
913 isUnsigned = false;
914 isLongLong = false;
915 isSizeT = false;
916 isHalf = false;
917 isFloat = false;
918 isImaginary = false;
919 isFloat16 = false;
920 isFloat128 = false;
921 MicrosoftInteger = 0;
922 isFract = false;
923 isAccum = false;
924 hadError = false;
925 isBitInt = false;
926
927 // This routine assumes that the range begin/end matches the regex for integer
928 // and FP constants (specifically, the 'pp-number' regex), and assumes that
929 // the byte at "*end" is both valid and not part of the regex. Because of
930 // this, it doesn't have to check for 'overscan' in various places.
931 // Note: For HLSL, the end token is allowed to be '.' which would be in the
932 // 'pp-number' regex. This is required to support vector swizzles on numeric
933 // constants (i.e. 1.xx or 1.5f.rrr).
934 if (isPreprocessingNumberBody(c: *ThisTokEnd) &&
935 !(LangOpts.HLSL && *ThisTokEnd == '.')) {
936 Diags.Report(TokLoc, diag::err_lexing_numeric);
937 hadError = true;
938 return;
939 }
940
941 if (*s == '0') { // parse radix
942 ParseNumberStartingWithZero(TokLoc);
943 if (hadError)
944 return;
945 } else { // the first digit is non-zero
946 radix = 10;
947 s = SkipDigits(ptr: s);
948 if (s == ThisTokEnd) {
949 // Done.
950 } else {
951 ParseDecimalOrOctalCommon(TokLoc);
952 if (hadError)
953 return;
954 }
955 }
956
957 SuffixBegin = s;
958 checkSeparator(TokLoc, Pos: s, IsAfterDigits: CSK_AfterDigits);
959
960 // Initial scan to lookahead for fixed point suffix.
961 if (LangOpts.FixedPoint) {
962 for (const char *c = s; c != ThisTokEnd; ++c) {
963 if (*c == 'r' || *c == 'k' || *c == 'R' || *c == 'K') {
964 saw_fixed_point_suffix = true;
965 break;
966 }
967 }
968 }
969
970 // Parse the suffix. At this point we can classify whether we have an FP or
971 // integer constant.
972 bool isFixedPointConstant = isFixedPointLiteral();
973 bool isFPConstant = isFloatingLiteral();
974 bool HasSize = false;
975 bool DoubleUnderscore = false;
976
977 // Loop over all of the characters of the suffix. If we see something bad,
978 // we break out of the loop.
979 for (; s != ThisTokEnd; ++s) {
980 switch (*s) {
981 case 'R':
982 case 'r':
983 if (!LangOpts.FixedPoint)
984 break;
985 if (isFract || isAccum) break;
986 if (!(saw_period || saw_exponent)) break;
987 isFract = true;
988 continue;
989 case 'K':
990 case 'k':
991 if (!LangOpts.FixedPoint)
992 break;
993 if (isFract || isAccum) break;
994 if (!(saw_period || saw_exponent)) break;
995 isAccum = true;
996 continue;
997 case 'h': // FP Suffix for "half".
998 case 'H':
999 // OpenCL Extension v1.2 s9.5 - h or H suffix for half type.
1000 if (!(LangOpts.Half || LangOpts.FixedPoint))
1001 break;
1002 if (isIntegerLiteral()) break; // Error for integer constant.
1003 if (HasSize)
1004 break;
1005 HasSize = true;
1006 isHalf = true;
1007 continue; // Success.
1008 case 'f': // FP Suffix for "float"
1009 case 'F':
1010 if (!isFPConstant) break; // Error for integer constant.
1011 if (HasSize)
1012 break;
1013 HasSize = true;
1014
1015 // CUDA host and device may have different _Float16 support, therefore
1016 // allows f16 literals to avoid false alarm.
1017 // When we compile for OpenMP target offloading on NVPTX, f16 suffix
1018 // should also be supported.
1019 // ToDo: more precise check for CUDA.
1020 // TODO: AMDGPU might also support it in the future.
1021 if ((Target.hasFloat16Type() || LangOpts.CUDA ||
1022 (LangOpts.OpenMPIsTargetDevice && Target.getTriple().isNVPTX())) &&
1023 s + 2 < ThisTokEnd && s[1] == '1' && s[2] == '6') {
1024 s += 2; // success, eat up 2 characters.
1025 isFloat16 = true;
1026 continue;
1027 }
1028
1029 isFloat = true;
1030 continue; // Success.
1031 case 'q': // FP Suffix for "__float128"
1032 case 'Q':
1033 if (!isFPConstant) break; // Error for integer constant.
1034 if (HasSize)
1035 break;
1036 HasSize = true;
1037 isFloat128 = true;
1038 continue; // Success.
1039 case 'u':
1040 case 'U':
1041 if (isFPConstant) break; // Error for floating constant.
1042 if (isUnsigned) break; // Cannot be repeated.
1043 isUnsigned = true;
1044 continue; // Success.
1045 case 'l':
1046 case 'L':
1047 if (HasSize)
1048 break;
1049 HasSize = true;
1050
1051 // Check for long long. The L's need to be adjacent and the same case.
1052 if (s[1] == s[0]) {
1053 assert(s + 1 < ThisTokEnd && "didn't maximally munch?");
1054 if (isFPConstant) break; // long long invalid for floats.
1055 isLongLong = true;
1056 ++s; // Eat both of them.
1057 } else {
1058 isLong = true;
1059 }
1060 continue; // Success.
1061 case 'z':
1062 case 'Z':
1063 if (isFPConstant)
1064 break; // Invalid for floats.
1065 if (HasSize)
1066 break;
1067 HasSize = true;
1068 isSizeT = true;
1069 continue;
1070 case 'i':
1071 case 'I':
1072 if (LangOpts.MicrosoftExt && s + 1 < ThisTokEnd && !isFPConstant) {
1073 // Allow i8, i16, i32, i64, and i128. First, look ahead and check if
1074 // suffixes are Microsoft integers and not the imaginary unit.
1075 uint8_t Bits = 0;
1076 size_t ToSkip = 0;
1077 switch (s[1]) {
1078 case '8': // i8 suffix
1079 Bits = 8;
1080 ToSkip = 2;
1081 break;
1082 case '1':
1083 if (s + 2 < ThisTokEnd && s[2] == '6') { // i16 suffix
1084 Bits = 16;
1085 ToSkip = 3;
1086 } else if (s + 3 < ThisTokEnd && s[2] == '2' &&
1087 s[3] == '8') { // i128 suffix
1088 Bits = 128;
1089 ToSkip = 4;
1090 }
1091 break;
1092 case '3':
1093 if (s + 2 < ThisTokEnd && s[2] == '2') { // i32 suffix
1094 Bits = 32;
1095 ToSkip = 3;
1096 }
1097 break;
1098 case '6':
1099 if (s + 2 < ThisTokEnd && s[2] == '4') { // i64 suffix
1100 Bits = 64;
1101 ToSkip = 3;
1102 }
1103 break;
1104 default:
1105 break;
1106 }
1107 if (Bits) {
1108 if (HasSize)
1109 break;
1110 HasSize = true;
1111 MicrosoftInteger = Bits;
1112 s += ToSkip;
1113 assert(s <= ThisTokEnd && "didn't maximally munch?");
1114 break;
1115 }
1116 }
1117 [[fallthrough]];
1118 case 'j':
1119 case 'J':
1120 if (isImaginary) break; // Cannot be repeated.
1121 isImaginary = true;
1122 continue; // Success.
1123 case '_':
1124 if (isFPConstant)
1125 break; // Invalid for floats
1126 if (HasSize)
1127 break;
1128 // There is currently no way to reach this with DoubleUnderscore set.
1129 // If new double underscope literals are added handle it here as above.
1130 assert(!DoubleUnderscore && "unhandled double underscore case");
1131 if (LangOpts.CPlusPlus && s + 2 < ThisTokEnd &&
1132 s[1] == '_') { // s + 2 < ThisTokEnd to ensure some character exists
1133 // after __
1134 DoubleUnderscore = true;
1135 s += 2; // Skip both '_'
1136 if (s + 1 < ThisTokEnd &&
1137 (*s == 'u' || *s == 'U')) { // Ensure some character after 'u'/'U'
1138 isUnsigned = true;
1139 ++s;
1140 }
1141 if (s + 1 < ThisTokEnd &&
1142 ((*s == 'w' && *(++s) == 'b') || (*s == 'W' && *(++s) == 'B'))) {
1143 isBitInt = true;
1144 HasSize = true;
1145 continue;
1146 }
1147 }
1148 break;
1149 case 'w':
1150 case 'W':
1151 if (isFPConstant)
1152 break; // Invalid for floats.
1153 if (HasSize)
1154 break; // Invalid if we already have a size for the literal.
1155
1156 // wb and WB are allowed, but a mixture of cases like Wb or wB is not. We
1157 // explicitly do not support the suffix in C++ as an extension because a
1158 // library-based UDL that resolves to a library type may be more
1159 // appropriate there. The same rules apply for __wb/__WB.
1160 if ((!LangOpts.CPlusPlus || DoubleUnderscore) && s + 1 < ThisTokEnd &&
1161 ((s[0] == 'w' && s[1] == 'b') || (s[0] == 'W' && s[1] == 'B'))) {
1162 isBitInt = true;
1163 HasSize = true;
1164 ++s; // Skip both characters (2nd char skipped on continue).
1165 continue; // Success.
1166 }
1167 }
1168 // If we reached here, there was an error or a ud-suffix.
1169 break;
1170 }
1171
1172 // "i", "if", and "il" are user-defined suffixes in C++1y.
1173 if (s != ThisTokEnd || isImaginary) {
1174 // FIXME: Don't bother expanding UCNs if !tok.hasUCN().
1175 expandUCNs(Buf&: UDSuffixBuf, Input: StringRef(SuffixBegin, ThisTokEnd - SuffixBegin));
1176 if (isValidUDSuffix(LangOpts, Suffix: UDSuffixBuf)) {
1177 if (!isImaginary) {
1178 // Any suffix pieces we might have parsed are actually part of the
1179 // ud-suffix.
1180 isLong = false;
1181 isUnsigned = false;
1182 isLongLong = false;
1183 isSizeT = false;
1184 isFloat = false;
1185 isFloat16 = false;
1186 isHalf = false;
1187 isImaginary = false;
1188 isBitInt = false;
1189 MicrosoftInteger = 0;
1190 saw_fixed_point_suffix = false;
1191 isFract = false;
1192 isAccum = false;
1193 }
1194
1195 saw_ud_suffix = true;
1196 return;
1197 }
1198
1199 if (s != ThisTokEnd) {
1200 // Report an error if there are any.
1201 Diags.Report(Lexer::AdvanceToTokenCharacter(
1202 TokStart: TokLoc, Characters: SuffixBegin - ThisTokBegin, SM, LangOpts),
1203 diag::err_invalid_suffix_constant)
1204 << StringRef(SuffixBegin, ThisTokEnd - SuffixBegin)
1205 << (isFixedPointConstant ? 2 : isFPConstant);
1206 hadError = true;
1207 }
1208 }
1209
1210 if (!hadError && saw_fixed_point_suffix) {
1211 assert(isFract || isAccum);
1212 }
1213}
1214
1215/// ParseDecimalOrOctalCommon - This method is called for decimal or octal
1216/// numbers. It issues an error for illegal digits, and handles floating point
1217/// parsing. If it detects a floating point number, the radix is set to 10.
1218void NumericLiteralParser::ParseDecimalOrOctalCommon(SourceLocation TokLoc){
1219 assert((radix == 8 || radix == 10) && "Unexpected radix");
1220
1221 // If we have a hex digit other than 'e' (which denotes a FP exponent) then
1222 // the code is using an incorrect base.
1223 if (isHexDigit(c: *s) && *s != 'e' && *s != 'E' &&
1224 !isValidUDSuffix(LangOpts, Suffix: StringRef(s, ThisTokEnd - s))) {
1225 Diags.Report(
1226 Lexer::AdvanceToTokenCharacter(TokStart: TokLoc, Characters: s - ThisTokBegin, SM, LangOpts),
1227 diag::err_invalid_digit)
1228 << StringRef(s, 1) << (radix == 8 ? 1 : 0);
1229 hadError = true;
1230 return;
1231 }
1232
1233 if (*s == '.') {
1234 checkSeparator(TokLoc, Pos: s, IsAfterDigits: CSK_AfterDigits);
1235 s++;
1236 radix = 10;
1237 saw_period = true;
1238 checkSeparator(TokLoc, Pos: s, IsAfterDigits: CSK_BeforeDigits);
1239 s = SkipDigits(ptr: s); // Skip suffix.
1240 }
1241 if (*s == 'e' || *s == 'E') { // exponent
1242 checkSeparator(TokLoc, Pos: s, IsAfterDigits: CSK_AfterDigits);
1243 const char *Exponent = s;
1244 s++;
1245 radix = 10;
1246 saw_exponent = true;
1247 if (s != ThisTokEnd && (*s == '+' || *s == '-')) s++; // sign
1248 const char *first_non_digit = SkipDigits(ptr: s);
1249 if (containsDigits(Start: s, End: first_non_digit)) {
1250 checkSeparator(TokLoc, Pos: s, IsAfterDigits: CSK_BeforeDigits);
1251 s = first_non_digit;
1252 } else {
1253 if (!hadError) {
1254 Diags.Report(Lexer::AdvanceToTokenCharacter(
1255 TokStart: TokLoc, Characters: Exponent - ThisTokBegin, SM, LangOpts),
1256 diag::err_exponent_has_no_digits);
1257 hadError = true;
1258 }
1259 return;
1260 }
1261 }
1262}
1263
1264/// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved
1265/// suffixes as ud-suffixes, because the diagnostic experience is better if we
1266/// treat it as an invalid suffix.
1267bool NumericLiteralParser::isValidUDSuffix(const LangOptions &LangOpts,
1268 StringRef Suffix) {
1269 if (!LangOpts.CPlusPlus11 || Suffix.empty())
1270 return false;
1271
1272 // By C++11 [lex.ext]p10, ud-suffixes starting with an '_' are always valid.
1273 // Suffixes starting with '__' (double underscore) are for use by
1274 // the implementation.
1275 if (Suffix.starts_with(Prefix: "_") && !Suffix.starts_with(Prefix: "__"))
1276 return true;
1277
1278 // In C++11, there are no library suffixes.
1279 if (!LangOpts.CPlusPlus14)
1280 return false;
1281
1282 // In C++14, "s", "h", "min", "ms", "us", and "ns" are used in the library.
1283 // Per tweaked N3660, "il", "i", and "if" are also used in the library.
1284 // In C++2a "d" and "y" are used in the library.
1285 return llvm::StringSwitch<bool>(Suffix)
1286 .Cases(S0: "h", S1: "min", S2: "s", Value: true)
1287 .Cases(S0: "ms", S1: "us", S2: "ns", Value: true)
1288 .Cases(S0: "il", S1: "i", S2: "if", Value: true)
1289 .Cases(S0: "d", S1: "y", Value: LangOpts.CPlusPlus20)
1290 .Default(Value: false);
1291}
1292
1293void NumericLiteralParser::checkSeparator(SourceLocation TokLoc,
1294 const char *Pos,
1295 CheckSeparatorKind IsAfterDigits) {
1296 if (IsAfterDigits == CSK_AfterDigits) {
1297 if (Pos == ThisTokBegin)
1298 return;
1299 --Pos;
1300 } else if (Pos == ThisTokEnd)
1301 return;
1302
1303 if (isDigitSeparator(C: *Pos)) {
1304 Diags.Report(Lexer::AdvanceToTokenCharacter(TokStart: TokLoc, Characters: Pos - ThisTokBegin, SM,
1305 LangOpts),
1306 diag::err_digit_separator_not_between_digits)
1307 << IsAfterDigits;
1308 hadError = true;
1309 }
1310}
1311
1312/// ParseNumberStartingWithZero - This method is called when the first character
1313/// of the number is found to be a zero. This means it is either an octal
1314/// number (like '04') or a hex number ('0x123a') a binary number ('0b1010') or
1315/// a floating point number (01239.123e4). Eat the prefix, determining the
1316/// radix etc.
1317void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) {
1318 assert(s[0] == '0' && "Invalid method call");
1319 s++;
1320
1321 int c1 = s[0];
1322
1323 // Handle a hex number like 0x1234.
1324 if ((c1 == 'x' || c1 == 'X') && (isHexDigit(c: s[1]) || s[1] == '.')) {
1325 s++;
1326 assert(s < ThisTokEnd && "didn't maximally munch?");
1327 radix = 16;
1328 DigitsBegin = s;
1329 s = SkipHexDigits(ptr: s);
1330 bool HasSignificandDigits = containsDigits(Start: DigitsBegin, End: s);
1331 if (s == ThisTokEnd) {
1332 // Done.
1333 } else if (*s == '.') {
1334 s++;
1335 saw_period = true;
1336 const char *floatDigitsBegin = s;
1337 s = SkipHexDigits(ptr: s);
1338 if (containsDigits(Start: floatDigitsBegin, End: s))
1339 HasSignificandDigits = true;
1340 if (HasSignificandDigits)
1341 checkSeparator(TokLoc, Pos: floatDigitsBegin, IsAfterDigits: CSK_BeforeDigits);
1342 }
1343
1344 if (!HasSignificandDigits) {
1345 Diags.Report(Lexer::AdvanceToTokenCharacter(TokStart: TokLoc, Characters: s - ThisTokBegin, SM,
1346 LangOpts),
1347 diag::err_hex_constant_requires)
1348 << LangOpts.CPlusPlus << 1;
1349 hadError = true;
1350 return;
1351 }
1352
1353 // A binary exponent can appear with or with a '.'. If dotted, the
1354 // binary exponent is required.
1355 if (*s == 'p' || *s == 'P') {
1356 checkSeparator(TokLoc, Pos: s, IsAfterDigits: CSK_AfterDigits);
1357 const char *Exponent = s;
1358 s++;
1359 saw_exponent = true;
1360 if (s != ThisTokEnd && (*s == '+' || *s == '-')) s++; // sign
1361 const char *first_non_digit = SkipDigits(ptr: s);
1362 if (!containsDigits(Start: s, End: first_non_digit)) {
1363 if (!hadError) {
1364 Diags.Report(Lexer::AdvanceToTokenCharacter(
1365 TokStart: TokLoc, Characters: Exponent - ThisTokBegin, SM, LangOpts),
1366 diag::err_exponent_has_no_digits);
1367 hadError = true;
1368 }
1369 return;
1370 }
1371 checkSeparator(TokLoc, Pos: s, IsAfterDigits: CSK_BeforeDigits);
1372 s = first_non_digit;
1373
1374 if (!LangOpts.HexFloats)
1375 Diags.Report(TokLoc, LangOpts.CPlusPlus
1376 ? diag::ext_hex_literal_invalid
1377 : diag::ext_hex_constant_invalid);
1378 else if (LangOpts.CPlusPlus17)
1379 Diags.Report(TokLoc, diag::warn_cxx17_hex_literal);
1380 } else if (saw_period) {
1381 Diags.Report(Lexer::AdvanceToTokenCharacter(TokStart: TokLoc, Characters: s - ThisTokBegin, SM,
1382 LangOpts),
1383 diag::err_hex_constant_requires)
1384 << LangOpts.CPlusPlus << 0;
1385 hadError = true;
1386 }
1387 return;
1388 }
1389
1390 // Handle simple binary numbers 0b01010
1391 if ((c1 == 'b' || c1 == 'B') && (s[1] == '0' || s[1] == '1')) {
1392 // 0b101010 is a C++14 and C23 extension.
1393 unsigned DiagId;
1394 if (LangOpts.CPlusPlus14)
1395 DiagId = diag::warn_cxx11_compat_binary_literal;
1396 else if (LangOpts.C23)
1397 DiagId = diag::warn_c23_compat_binary_literal;
1398 else if (LangOpts.CPlusPlus)
1399 DiagId = diag::ext_binary_literal_cxx14;
1400 else
1401 DiagId = diag::ext_binary_literal;
1402 Diags.Report(Loc: TokLoc, DiagID: DiagId);
1403 ++s;
1404 assert(s < ThisTokEnd && "didn't maximally munch?");
1405 radix = 2;
1406 DigitsBegin = s;
1407 s = SkipBinaryDigits(ptr: s);
1408 if (s == ThisTokEnd) {
1409 // Done.
1410 } else if (isHexDigit(c: *s) &&
1411 !isValidUDSuffix(LangOpts, Suffix: StringRef(s, ThisTokEnd - s))) {
1412 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM,
1413 LangOpts),
1414 diag::err_invalid_digit)
1415 << StringRef(s, 1) << 2;
1416 hadError = true;
1417 }
1418 // Other suffixes will be diagnosed by the caller.
1419 return;
1420 }
1421
1422 // Parse a potential octal literal prefix.
1423 bool IsSingleZero = false;
1424 if ((c1 == 'O' || c1 == 'o') && (s[1] >= '0' && s[1] <= '7')) {
1425 unsigned DiagId;
1426 if (LangOpts.C2y)
1427 DiagId = diag::warn_c2y_compat_octal_literal;
1428 else if (LangOpts.CPlusPlus)
1429 DiagId = diag::ext_cpp_octal_literal;
1430 else
1431 DiagId = diag::ext_octal_literal;
1432 Diags.Report(Loc: TokLoc, DiagID: DiagId);
1433 ++s;
1434 DigitsBegin = s;
1435 radix = 8;
1436 s = SkipOctalDigits(ptr: s);
1437 if (s == ThisTokEnd) {
1438 // Done
1439 } else if ((isHexDigit(c: *s) && *s != 'e' && *s != 'E' && *s != '.') &&
1440 !isValidUDSuffix(LangOpts, Suffix: StringRef(s, ThisTokEnd - s))) {
1441 auto InvalidDigitLoc = Lexer::AdvanceToTokenCharacter(
1442 TokStart: TokLoc, Characters: s - ThisTokBegin, SM, LangOpts);
1443 Diags.Report(InvalidDigitLoc, diag::err_invalid_digit)
1444 << StringRef(s, 1) << 1;
1445 hadError = true;
1446 }
1447 // Other suffixes will be diagnosed by the caller.
1448 return;
1449 }
1450
1451 auto _ = llvm::make_scope_exit(F: [&] {
1452 // If we still have an octal value but we did not see an octal prefix,
1453 // diagnose as being an obsolescent feature starting in C2y.
1454 if (radix == 8 && LangOpts.C2y && !hadError && !IsSingleZero)
1455 Diags.Report(TokLoc, diag::warn_unprefixed_octal_deprecated);
1456 });
1457
1458 // For now, the radix is set to 8. If we discover that we have a
1459 // floating point constant, the radix will change to 10. Octal floating
1460 // point constants are not permitted (only decimal and hexadecimal).
1461 radix = 8;
1462 const char *PossibleNewDigitStart = s;
1463 s = SkipOctalDigits(ptr: s);
1464 // When the value is 0 followed by a suffix (like 0wb), we want to leave 0
1465 // as the start of the digits. So if skipping octal digits does not skip
1466 // anything, we leave the digit start where it was.
1467 if (s != PossibleNewDigitStart)
1468 DigitsBegin = PossibleNewDigitStart;
1469 else
1470 IsSingleZero = (s == ThisTokEnd); // Is the only thing we've seen a 0?
1471
1472 if (s == ThisTokEnd)
1473 return; // Done, simple octal number like 01234
1474
1475 // If we have some other non-octal digit that *is* a decimal digit, see if
1476 // this is part of a floating point number like 094.123 or 09e1.
1477 if (isDigit(c: *s)) {
1478 const char *EndDecimal = SkipDigits(ptr: s);
1479 if (EndDecimal[0] == '.' || EndDecimal[0] == 'e' || EndDecimal[0] == 'E') {
1480 s = EndDecimal;
1481 radix = 10;
1482 }
1483 }
1484
1485 ParseDecimalOrOctalCommon(TokLoc);
1486}
1487
1488static bool alwaysFitsInto64Bits(unsigned Radix, unsigned NumDigits) {
1489 switch (Radix) {
1490 case 2:
1491 return NumDigits <= 64;
1492 case 8:
1493 return NumDigits <= 64 / 3; // Digits are groups of 3 bits.
1494 case 10:
1495 return NumDigits <= 19; // floor(log10(2^64))
1496 case 16:
1497 return NumDigits <= 64 / 4; // Digits are groups of 4 bits.
1498 default:
1499 llvm_unreachable("impossible Radix");
1500 }
1501}
1502
1503/// GetIntegerValue - Convert this numeric literal value to an APInt that
1504/// matches Val's input width. If there is an overflow, set Val to the low bits
1505/// of the result and return true. Otherwise, return false.
1506bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) {
1507 // Fast path: Compute a conservative bound on the maximum number of
1508 // bits per digit in this radix. If we can't possibly overflow a
1509 // uint64 based on that bound then do the simple conversion to
1510 // integer. This avoids the expensive overflow checking below, and
1511 // handles the common cases that matter (small decimal integers and
1512 // hex/octal values which don't overflow).
1513 const unsigned NumDigits = SuffixBegin - DigitsBegin;
1514 if (alwaysFitsInto64Bits(Radix: radix, NumDigits)) {
1515 uint64_t N = 0;
1516 for (const char *Ptr = DigitsBegin; Ptr != SuffixBegin; ++Ptr)
1517 if (!isDigitSeparator(C: *Ptr))
1518 N = N * radix + llvm::hexDigitValue(C: *Ptr);
1519
1520 // This will truncate the value to Val's input width. Simply check
1521 // for overflow by comparing.
1522 Val = N;
1523 return Val.getZExtValue() != N;
1524 }
1525
1526 Val = 0;
1527 const char *Ptr = DigitsBegin;
1528
1529 llvm::APInt RadixVal(Val.getBitWidth(), radix);
1530 llvm::APInt CharVal(Val.getBitWidth(), 0);
1531 llvm::APInt OldVal = Val;
1532
1533 bool OverflowOccurred = false;
1534 while (Ptr < SuffixBegin) {
1535 if (isDigitSeparator(C: *Ptr)) {
1536 ++Ptr;
1537 continue;
1538 }
1539
1540 unsigned C = llvm::hexDigitValue(C: *Ptr++);
1541
1542 // If this letter is out of bound for this radix, reject it.
1543 assert(C < radix && "NumericLiteralParser ctor should have rejected this");
1544
1545 CharVal = C;
1546
1547 // Add the digit to the value in the appropriate radix. If adding in digits
1548 // made the value smaller, then this overflowed.
1549 OldVal = Val;
1550
1551 // Multiply by radix, did overflow occur on the multiply?
1552 Val *= RadixVal;
1553 OverflowOccurred |= Val.udiv(RHS: RadixVal) != OldVal;
1554
1555 // Add value, did overflow occur on the value?
1556 // (a + b) ult b <=> overflow
1557 Val += CharVal;
1558 OverflowOccurred |= Val.ult(RHS: CharVal);
1559 }
1560 return OverflowOccurred;
1561}
1562
1563llvm::APFloat::opStatus
1564NumericLiteralParser::GetFloatValue(llvm::APFloat &Result,
1565 llvm::RoundingMode RM) {
1566 using llvm::APFloat;
1567
1568 unsigned n = std::min(a: SuffixBegin - ThisTokBegin, b: ThisTokEnd - ThisTokBegin);
1569
1570 llvm::SmallString<16> Buffer;
1571 StringRef Str(ThisTokBegin, n);
1572 if (Str.contains(C: '\'')) {
1573 Buffer.reserve(N: n);
1574 std::remove_copy_if(first: Str.begin(), last: Str.end(), result: std::back_inserter(x&: Buffer),
1575 pred: &isDigitSeparator);
1576 Str = Buffer;
1577 }
1578
1579 auto StatusOrErr = Result.convertFromString(Str, RM);
1580 assert(StatusOrErr && "Invalid floating point representation");
1581 return !errorToBool(Err: StatusOrErr.takeError()) ? *StatusOrErr
1582 : APFloat::opInvalidOp;
1583}
1584
1585static inline bool IsExponentPart(char c, bool isHex) {
1586 if (isHex)
1587 return c == 'p' || c == 'P';
1588 return c == 'e' || c == 'E';
1589}
1590
1591bool NumericLiteralParser::GetFixedPointValue(llvm::APInt &StoreVal, unsigned Scale) {
1592 assert(radix == 16 || radix == 10);
1593
1594 // Find how many digits are needed to store the whole literal.
1595 unsigned NumDigits = SuffixBegin - DigitsBegin;
1596 if (saw_period) --NumDigits;
1597
1598 // Initial scan of the exponent if it exists
1599 bool ExpOverflowOccurred = false;
1600 bool NegativeExponent = false;
1601 const char *ExponentBegin;
1602 uint64_t Exponent = 0;
1603 int64_t BaseShift = 0;
1604 if (saw_exponent) {
1605 const char *Ptr = DigitsBegin;
1606
1607 while (!IsExponentPart(c: *Ptr, isHex: radix == 16))
1608 ++Ptr;
1609 ExponentBegin = Ptr;
1610 ++Ptr;
1611 NegativeExponent = *Ptr == '-';
1612 if (NegativeExponent) ++Ptr;
1613
1614 unsigned NumExpDigits = SuffixBegin - Ptr;
1615 if (alwaysFitsInto64Bits(Radix: radix, NumDigits: NumExpDigits)) {
1616 llvm::StringRef ExpStr(Ptr, NumExpDigits);
1617 llvm::APInt ExpInt(/*numBits=*/64, ExpStr, /*radix=*/10);
1618 Exponent = ExpInt.getZExtValue();
1619 } else {
1620 ExpOverflowOccurred = true;
1621 }
1622
1623 if (NegativeExponent) BaseShift -= Exponent;
1624 else BaseShift += Exponent;
1625 }
1626
1627 // Number of bits needed for decimal literal is
1628 // ceil(NumDigits * log2(10)) Integral part
1629 // + Scale Fractional part
1630 // + ceil(Exponent * log2(10)) Exponent
1631 // --------------------------------------------------
1632 // ceil((NumDigits + Exponent) * log2(10)) + Scale
1633 //
1634 // But for simplicity in handling integers, we can round up log2(10) to 4,
1635 // making:
1636 // 4 * (NumDigits + Exponent) + Scale
1637 //
1638 // Number of digits needed for hexadecimal literal is
1639 // 4 * NumDigits Integral part
1640 // + Scale Fractional part
1641 // + Exponent Exponent
1642 // --------------------------------------------------
1643 // (4 * NumDigits) + Scale + Exponent
1644 uint64_t NumBitsNeeded;
1645 if (radix == 10)
1646 NumBitsNeeded = 4 * (NumDigits + Exponent) + Scale;
1647 else
1648 NumBitsNeeded = 4 * NumDigits + Exponent + Scale;
1649
1650 if (NumBitsNeeded > std::numeric_limits<unsigned>::max())
1651 ExpOverflowOccurred = true;
1652 llvm::APInt Val(static_cast<unsigned>(NumBitsNeeded), 0, /*isSigned=*/false);
1653
1654 bool FoundDecimal = false;
1655
1656 int64_t FractBaseShift = 0;
1657 const char *End = saw_exponent ? ExponentBegin : SuffixBegin;
1658 for (const char *Ptr = DigitsBegin; Ptr < End; ++Ptr) {
1659 if (*Ptr == '.') {
1660 FoundDecimal = true;
1661 continue;
1662 }
1663
1664 // Normal reading of an integer
1665 unsigned C = llvm::hexDigitValue(C: *Ptr);
1666 assert(C < radix && "NumericLiteralParser ctor should have rejected this");
1667
1668 Val *= radix;
1669 Val += C;
1670
1671 if (FoundDecimal)
1672 // Keep track of how much we will need to adjust this value by from the
1673 // number of digits past the radix point.
1674 --FractBaseShift;
1675 }
1676
1677 // For a radix of 16, we will be multiplying by 2 instead of 16.
1678 if (radix == 16) FractBaseShift *= 4;
1679 BaseShift += FractBaseShift;
1680
1681 Val <<= Scale;
1682
1683 uint64_t Base = (radix == 16) ? 2 : 10;
1684 if (BaseShift > 0) {
1685 for (int64_t i = 0; i < BaseShift; ++i) {
1686 Val *= Base;
1687 }
1688 } else if (BaseShift < 0) {
1689 for (int64_t i = BaseShift; i < 0 && !Val.isZero(); ++i)
1690 Val = Val.udiv(RHS: Base);
1691 }
1692
1693 bool IntOverflowOccurred = false;
1694 auto MaxVal = llvm::APInt::getMaxValue(numBits: StoreVal.getBitWidth());
1695 if (Val.getBitWidth() > StoreVal.getBitWidth()) {
1696 IntOverflowOccurred |= Val.ugt(RHS: MaxVal.zext(width: Val.getBitWidth()));
1697 StoreVal = Val.trunc(width: StoreVal.getBitWidth());
1698 } else if (Val.getBitWidth() < StoreVal.getBitWidth()) {
1699 IntOverflowOccurred |= Val.zext(width: MaxVal.getBitWidth()).ugt(RHS: MaxVal);
1700 StoreVal = Val.zext(width: StoreVal.getBitWidth());
1701 } else {
1702 StoreVal = Val;
1703 }
1704
1705 return IntOverflowOccurred || ExpOverflowOccurred;
1706}
1707
1708/// \verbatim
1709/// user-defined-character-literal: [C++11 lex.ext]
1710/// character-literal ud-suffix
1711/// ud-suffix:
1712/// identifier
1713/// character-literal: [C++11 lex.ccon]
1714/// ' c-char-sequence '
1715/// u' c-char-sequence '
1716/// U' c-char-sequence '
1717/// L' c-char-sequence '
1718/// u8' c-char-sequence ' [C++1z lex.ccon]
1719/// c-char-sequence:
1720/// c-char
1721/// c-char-sequence c-char
1722/// c-char:
1723/// any member of the source character set except the single-quote ',
1724/// backslash \, or new-line character
1725/// escape-sequence
1726/// universal-character-name
1727/// escape-sequence:
1728/// simple-escape-sequence
1729/// octal-escape-sequence
1730/// hexadecimal-escape-sequence
1731/// simple-escape-sequence:
1732/// one of \' \" \? \\ \a \b \f \n \r \t \v
1733/// octal-escape-sequence:
1734/// \ octal-digit
1735/// \ octal-digit octal-digit
1736/// \ octal-digit octal-digit octal-digit
1737/// hexadecimal-escape-sequence:
1738/// \x hexadecimal-digit
1739/// hexadecimal-escape-sequence hexadecimal-digit
1740/// universal-character-name: [C++11 lex.charset]
1741/// \u hex-quad
1742/// \U hex-quad hex-quad
1743/// hex-quad:
1744/// hex-digit hex-digit hex-digit hex-digit
1745/// \endverbatim
1746///
1747CharLiteralParser::CharLiteralParser(const char *begin, const char *end,
1748 SourceLocation Loc, Preprocessor &PP,
1749 tok::TokenKind kind) {
1750 // At this point we know that the character matches the regex "(L|u|U)?'.*'".
1751 HadError = false;
1752
1753 Kind = kind;
1754
1755 const char *TokBegin = begin;
1756
1757 // Skip over wide character determinant.
1758 if (Kind != tok::char_constant)
1759 ++begin;
1760 if (Kind == tok::utf8_char_constant)
1761 ++begin;
1762
1763 // Skip over the entry quote.
1764 if (begin[0] != '\'') {
1765 PP.Diag(Loc, diag::err_lexing_char);
1766 HadError = true;
1767 return;
1768 }
1769
1770 ++begin;
1771
1772 // Remove an optional ud-suffix.
1773 if (end[-1] != '\'') {
1774 const char *UDSuffixEnd = end;
1775 do {
1776 --end;
1777 } while (end[-1] != '\'');
1778 // FIXME: Don't bother with this if !tok.hasUCN().
1779 expandUCNs(Buf&: UDSuffixBuf, Input: StringRef(end, UDSuffixEnd - end));
1780 UDSuffixOffset = end - TokBegin;
1781 }
1782
1783 // Trim the ending quote.
1784 assert(end != begin && "Invalid token lexed");
1785 --end;
1786
1787 // FIXME: The "Value" is an uint64_t so we can handle char literals of
1788 // up to 64-bits.
1789 // FIXME: This extensively assumes that 'char' is 8-bits.
1790 assert(PP.getTargetInfo().getCharWidth() == 8 &&
1791 "Assumes char is 8 bits");
1792 assert(PP.getTargetInfo().getIntWidth() <= 64 &&
1793 (PP.getTargetInfo().getIntWidth() & 7) == 0 &&
1794 "Assumes sizeof(int) on target is <= 64 and a multiple of char");
1795 assert(PP.getTargetInfo().getWCharWidth() <= 64 &&
1796 "Assumes sizeof(wchar) on target is <= 64");
1797
1798 SmallVector<uint32_t, 4> codepoint_buffer;
1799 codepoint_buffer.resize(N: end - begin);
1800 uint32_t *buffer_begin = &codepoint_buffer.front();
1801 uint32_t *buffer_end = buffer_begin + codepoint_buffer.size();
1802
1803 // Unicode escapes representing characters that cannot be correctly
1804 // represented in a single code unit are disallowed in character literals
1805 // by this implementation.
1806 uint32_t largest_character_for_kind;
1807 if (tok::wide_char_constant == Kind) {
1808 largest_character_for_kind =
1809 0xFFFFFFFFu >> (32-PP.getTargetInfo().getWCharWidth());
1810 } else if (tok::utf8_char_constant == Kind) {
1811 largest_character_for_kind = 0x7F;
1812 } else if (tok::utf16_char_constant == Kind) {
1813 largest_character_for_kind = 0xFFFF;
1814 } else if (tok::utf32_char_constant == Kind) {
1815 largest_character_for_kind = 0x10FFFF;
1816 } else {
1817 largest_character_for_kind = 0x7Fu;
1818 }
1819
1820 while (begin != end) {
1821 // Is this a span of non-escape characters?
1822 if (begin[0] != '\\') {
1823 char const *start = begin;
1824 do {
1825 ++begin;
1826 } while (begin != end && *begin != '\\');
1827
1828 char const *tmp_in_start = start;
1829 uint32_t *tmp_out_start = buffer_begin;
1830 llvm::ConversionResult res =
1831 llvm::ConvertUTF8toUTF32(sourceStart: reinterpret_cast<llvm::UTF8 const **>(&start),
1832 sourceEnd: reinterpret_cast<llvm::UTF8 const *>(begin),
1833 targetStart: &buffer_begin, targetEnd: buffer_end, flags: llvm::strictConversion);
1834 if (res != llvm::conversionOK) {
1835 // If we see bad encoding for unprefixed character literals, warn and
1836 // simply copy the byte values, for compatibility with gcc and
1837 // older versions of clang.
1838 bool NoErrorOnBadEncoding = isOrdinary();
1839 unsigned Msg = diag::err_bad_character_encoding;
1840 if (NoErrorOnBadEncoding)
1841 Msg = diag::warn_bad_character_encoding;
1842 PP.Diag(Loc, DiagID: Msg);
1843 if (NoErrorOnBadEncoding) {
1844 start = tmp_in_start;
1845 buffer_begin = tmp_out_start;
1846 for (; start != begin; ++start, ++buffer_begin)
1847 *buffer_begin = static_cast<uint8_t>(*start);
1848 } else {
1849 HadError = true;
1850 }
1851 } else {
1852 for (; tmp_out_start < buffer_begin; ++tmp_out_start) {
1853 if (*tmp_out_start > largest_character_for_kind) {
1854 HadError = true;
1855 PP.Diag(Loc, diag::err_character_too_large);
1856 }
1857 }
1858 }
1859
1860 continue;
1861 }
1862 // Is this a Universal Character Name escape?
1863 if (begin[1] == 'u' || begin[1] == 'U' || begin[1] == 'N') {
1864 unsigned short UcnLen = 0;
1865 if (!ProcessUCNEscape(ThisTokBegin: TokBegin, ThisTokBuf&: begin, ThisTokEnd: end, UcnVal&: *buffer_begin, UcnLen,
1866 Loc: FullSourceLoc(Loc, PP.getSourceManager()),
1867 Diags: &PP.getDiagnostics(), Features: PP.getLangOpts(), in_char_string_literal: true)) {
1868 HadError = true;
1869 } else if (*buffer_begin > largest_character_for_kind) {
1870 HadError = true;
1871 PP.Diag(Loc, diag::err_character_too_large);
1872 }
1873
1874 ++buffer_begin;
1875 continue;
1876 }
1877 unsigned CharWidth = getCharWidth(kind: Kind, Target: PP.getTargetInfo());
1878 uint64_t result =
1879 ProcessCharEscape(ThisTokBegin: TokBegin, ThisTokBuf&: begin, ThisTokEnd: end, HadError,
1880 Loc: FullSourceLoc(Loc, PP.getSourceManager()), CharWidth,
1881 Diags: &PP.getDiagnostics(), Features: PP.getLangOpts(),
1882 EvalMethod: StringLiteralEvalMethod::Evaluated);
1883 *buffer_begin++ = result;
1884 }
1885
1886 unsigned NumCharsSoFar = buffer_begin - &codepoint_buffer.front();
1887
1888 if (NumCharsSoFar > 1) {
1889 if (isOrdinary() && NumCharsSoFar == 4)
1890 PP.Diag(Loc, diag::warn_four_char_character_literal);
1891 else if (isOrdinary())
1892 PP.Diag(Loc, diag::warn_multichar_character_literal);
1893 else {
1894 PP.Diag(Loc, diag::err_multichar_character_literal) << (isWide() ? 0 : 1);
1895 HadError = true;
1896 }
1897 IsMultiChar = true;
1898 } else {
1899 IsMultiChar = false;
1900 }
1901
1902 llvm::APInt LitVal(PP.getTargetInfo().getIntWidth(), 0);
1903
1904 // Narrow character literals act as though their value is concatenated
1905 // in this implementation, but warn on overflow.
1906 bool multi_char_too_long = false;
1907 if (isOrdinary() && isMultiChar()) {
1908 LitVal = 0;
1909 for (size_t i = 0; i < NumCharsSoFar; ++i) {
1910 // check for enough leading zeros to shift into
1911 multi_char_too_long |= (LitVal.countl_zero() < 8);
1912 LitVal <<= 8;
1913 LitVal = LitVal + (codepoint_buffer[i] & 0xFF);
1914 }
1915 } else if (NumCharsSoFar > 0) {
1916 // otherwise just take the last character
1917 LitVal = buffer_begin[-1];
1918 }
1919
1920 if (!HadError && multi_char_too_long) {
1921 PP.Diag(Loc, diag::warn_char_constant_too_large);
1922 }
1923
1924 // Transfer the value from APInt to uint64_t
1925 Value = LitVal.getZExtValue();
1926
1927 // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1")
1928 // if 'char' is signed for this target (C99 6.4.4.4p10). Note that multiple
1929 // character constants are not sign extended in the this implementation:
1930 // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC.
1931 if (isOrdinary() && NumCharsSoFar == 1 && (Value & 128) &&
1932 PP.getLangOpts().CharIsSigned)
1933 Value = (signed char)Value;
1934}
1935
1936/// \verbatim
1937/// string-literal: [C++0x lex.string]
1938/// encoding-prefix " [s-char-sequence] "
1939/// encoding-prefix R raw-string
1940/// encoding-prefix:
1941/// u8
1942/// u
1943/// U
1944/// L
1945/// s-char-sequence:
1946/// s-char
1947/// s-char-sequence s-char
1948/// s-char:
1949/// any member of the source character set except the double-quote ",
1950/// backslash \, or new-line character
1951/// escape-sequence
1952/// universal-character-name
1953/// raw-string:
1954/// " d-char-sequence ( r-char-sequence ) d-char-sequence "
1955/// r-char-sequence:
1956/// r-char
1957/// r-char-sequence r-char
1958/// r-char:
1959/// any member of the source character set, except a right parenthesis )
1960/// followed by the initial d-char-sequence (which may be empty)
1961/// followed by a double quote ".
1962/// d-char-sequence:
1963/// d-char
1964/// d-char-sequence d-char
1965/// d-char:
1966/// any member of the basic source character set except:
1967/// space, the left parenthesis (, the right parenthesis ),
1968/// the backslash \, and the control characters representing horizontal
1969/// tab, vertical tab, form feed, and newline.
1970/// escape-sequence: [C++0x lex.ccon]
1971/// simple-escape-sequence
1972/// octal-escape-sequence
1973/// hexadecimal-escape-sequence
1974/// simple-escape-sequence:
1975/// one of \' \" \? \\ \a \b \f \n \r \t \v
1976/// octal-escape-sequence:
1977/// \ octal-digit
1978/// \ octal-digit octal-digit
1979/// \ octal-digit octal-digit octal-digit
1980/// hexadecimal-escape-sequence:
1981/// \x hexadecimal-digit
1982/// hexadecimal-escape-sequence hexadecimal-digit
1983/// universal-character-name:
1984/// \u hex-quad
1985/// \U hex-quad hex-quad
1986/// hex-quad:
1987/// hex-digit hex-digit hex-digit hex-digit
1988/// \endverbatim
1989///
1990StringLiteralParser::StringLiteralParser(ArrayRef<Token> StringToks,
1991 Preprocessor &PP,
1992 StringLiteralEvalMethod EvalMethod)
1993 : SM(PP.getSourceManager()), Features(PP.getLangOpts()),
1994 Target(PP.getTargetInfo()), Diags(&PP.getDiagnostics()),
1995 MaxTokenLength(0), SizeBound(0), CharByteWidth(0), Kind(tok::unknown),
1996 ResultPtr(ResultBuf.data()), EvalMethod(EvalMethod), hadError(false),
1997 Pascal(false) {
1998 init(StringToks);
1999}
2000
2001void StringLiteralParser::init(ArrayRef<Token> StringToks){
2002 // The literal token may have come from an invalid source location (e.g. due
2003 // to a PCH error), in which case the token length will be 0.
2004 if (StringToks.empty() || StringToks[0].getLength() < 2)
2005 return DiagnoseLexingError(Loc: SourceLocation());
2006
2007 // Scan all of the string portions, remember the max individual token length,
2008 // computing a bound on the concatenated string length, and see whether any
2009 // piece is a wide-string. If any of the string portions is a wide-string
2010 // literal, the result is a wide-string literal [C99 6.4.5p4].
2011 assert(!StringToks.empty() && "expected at least one token");
2012 MaxTokenLength = StringToks[0].getLength();
2013 assert(StringToks[0].getLength() >= 2 && "literal token is invalid!");
2014 SizeBound = StringToks[0].getLength() - 2; // -2 for "".
2015 hadError = false;
2016
2017 // Determines the kind of string from the prefix
2018 Kind = tok::string_literal;
2019
2020 /// (C99 5.1.1.2p1). The common case is only one string fragment.
2021 for (const Token &Tok : StringToks) {
2022 if (Tok.getLength() < 2)
2023 return DiagnoseLexingError(Loc: Tok.getLocation());
2024
2025 // The string could be shorter than this if it needs cleaning, but this is a
2026 // reasonable bound, which is all we need.
2027 assert(Tok.getLength() >= 2 && "literal token is invalid!");
2028 SizeBound += Tok.getLength() - 2; // -2 for "".
2029
2030 // Remember maximum string piece length.
2031 if (Tok.getLength() > MaxTokenLength)
2032 MaxTokenLength = Tok.getLength();
2033
2034 // Remember if we see any wide or utf-8/16/32 strings.
2035 // Also check for illegal concatenations.
2036 if (isUnevaluated() && Tok.getKind() != tok::string_literal) {
2037 if (Diags) {
2038 SourceLocation PrefixEndLoc = Lexer::AdvanceToTokenCharacter(
2039 TokStart: Tok.getLocation(), Characters: getEncodingPrefixLen(kind: Tok.getKind()), SM,
2040 LangOpts: Features);
2041 CharSourceRange Range =
2042 CharSourceRange::getCharRange(R: {Tok.getLocation(), PrefixEndLoc});
2043 StringRef Prefix(SM.getCharacterData(SL: Tok.getLocation()),
2044 getEncodingPrefixLen(kind: Tok.getKind()));
2045 Diags->Report(Tok.getLocation(),
2046 Features.CPlusPlus26
2047 ? diag::err_unevaluated_string_prefix
2048 : diag::warn_unevaluated_string_prefix)
2049 << Prefix << Features.CPlusPlus << FixItHint::CreateRemoval(Range);
2050 }
2051 if (Features.CPlusPlus26)
2052 hadError = true;
2053 } else if (Tok.isNot(K: Kind) && Tok.isNot(K: tok::string_literal)) {
2054 if (isOrdinary()) {
2055 Kind = Tok.getKind();
2056 } else {
2057 if (Diags)
2058 Diags->Report(Tok.getLocation(), diag::err_unsupported_string_concat);
2059 hadError = true;
2060 }
2061 }
2062 }
2063
2064 // Include space for the null terminator.
2065 ++SizeBound;
2066
2067 // TODO: K&R warning: "traditional C rejects string constant concatenation"
2068
2069 // Get the width in bytes of char/wchar_t/char16_t/char32_t
2070 CharByteWidth = getCharWidth(kind: Kind, Target);
2071 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
2072 CharByteWidth /= 8;
2073
2074 // The output buffer size needs to be large enough to hold wide characters.
2075 // This is a worst-case assumption which basically corresponds to L"" "long".
2076 SizeBound *= CharByteWidth;
2077
2078 // Size the temporary buffer to hold the result string data.
2079 ResultBuf.resize(N: SizeBound);
2080
2081 // Likewise, but for each string piece.
2082 SmallString<512> TokenBuf;
2083 TokenBuf.resize(N: MaxTokenLength);
2084
2085 // Loop over all the strings, getting their spelling, and expanding them to
2086 // wide strings as appropriate.
2087 ResultPtr = &ResultBuf[0]; // Next byte to fill in.
2088
2089 Pascal = false;
2090
2091 SourceLocation UDSuffixTokLoc;
2092
2093 for (unsigned i = 0, e = StringToks.size(); i != e; ++i) {
2094 const char *ThisTokBuf = &TokenBuf[0];
2095 // Get the spelling of the token, which eliminates trigraphs, etc. We know
2096 // that ThisTokBuf points to a buffer that is big enough for the whole token
2097 // and 'spelled' tokens can only shrink.
2098 bool StringInvalid = false;
2099 unsigned ThisTokLen =
2100 Lexer::getSpelling(Tok: StringToks[i], Buffer&: ThisTokBuf, SourceMgr: SM, LangOpts: Features,
2101 Invalid: &StringInvalid);
2102 if (StringInvalid)
2103 return DiagnoseLexingError(Loc: StringToks[i].getLocation());
2104
2105 const char *ThisTokBegin = ThisTokBuf;
2106 const char *ThisTokEnd = ThisTokBuf+ThisTokLen;
2107
2108 // Remove an optional ud-suffix.
2109 if (ThisTokEnd[-1] != '"') {
2110 const char *UDSuffixEnd = ThisTokEnd;
2111 do {
2112 --ThisTokEnd;
2113 } while (ThisTokEnd[-1] != '"');
2114
2115 StringRef UDSuffix(ThisTokEnd, UDSuffixEnd - ThisTokEnd);
2116
2117 if (UDSuffixBuf.empty()) {
2118 if (StringToks[i].hasUCN())
2119 expandUCNs(Buf&: UDSuffixBuf, Input: UDSuffix);
2120 else
2121 UDSuffixBuf.assign(RHS: UDSuffix);
2122 UDSuffixToken = i;
2123 UDSuffixOffset = ThisTokEnd - ThisTokBuf;
2124 UDSuffixTokLoc = StringToks[i].getLocation();
2125 } else {
2126 SmallString<32> ExpandedUDSuffix;
2127 if (StringToks[i].hasUCN()) {
2128 expandUCNs(Buf&: ExpandedUDSuffix, Input: UDSuffix);
2129 UDSuffix = ExpandedUDSuffix;
2130 }
2131
2132 // C++11 [lex.ext]p8: At the end of phase 6, if a string literal is the
2133 // result of a concatenation involving at least one user-defined-string-
2134 // literal, all the participating user-defined-string-literals shall
2135 // have the same ud-suffix.
2136 bool UnevaluatedStringHasUDL = isUnevaluated() && !UDSuffix.empty();
2137 if (UDSuffixBuf != UDSuffix || UnevaluatedStringHasUDL) {
2138 if (Diags) {
2139 SourceLocation TokLoc = StringToks[i].getLocation();
2140 if (UnevaluatedStringHasUDL) {
2141 Diags->Report(TokLoc, diag::err_unevaluated_string_udl)
2142 << SourceRange(TokLoc, TokLoc);
2143 } else {
2144 Diags->Report(TokLoc, diag::err_string_concat_mixed_suffix)
2145 << UDSuffixBuf << UDSuffix
2146 << SourceRange(UDSuffixTokLoc, UDSuffixTokLoc);
2147 }
2148 }
2149 hadError = true;
2150 }
2151 }
2152 }
2153
2154 // Strip the end quote.
2155 --ThisTokEnd;
2156
2157 // TODO: Input character set mapping support.
2158
2159 // Skip marker for wide or unicode strings.
2160 if (ThisTokBuf[0] == 'L' || ThisTokBuf[0] == 'u' || ThisTokBuf[0] == 'U') {
2161 ++ThisTokBuf;
2162 // Skip 8 of u8 marker for utf8 strings.
2163 if (ThisTokBuf[0] == '8')
2164 ++ThisTokBuf;
2165 }
2166
2167 // Check for raw string
2168 if (ThisTokBuf[0] == 'R') {
2169 if (ThisTokBuf[1] != '"') {
2170 // The file may have come from PCH and then changed after loading the
2171 // PCH; Fail gracefully.
2172 return DiagnoseLexingError(Loc: StringToks[i].getLocation());
2173 }
2174 ThisTokBuf += 2; // skip R"
2175
2176 // C++11 [lex.string]p2: A `d-char-sequence` shall consist of at most 16
2177 // characters.
2178 constexpr unsigned MaxRawStrDelimLen = 16;
2179
2180 const char *Prefix = ThisTokBuf;
2181 while (static_cast<unsigned>(ThisTokBuf - Prefix) < MaxRawStrDelimLen &&
2182 ThisTokBuf[0] != '(')
2183 ++ThisTokBuf;
2184 if (ThisTokBuf[0] != '(')
2185 return DiagnoseLexingError(Loc: StringToks[i].getLocation());
2186 ++ThisTokBuf; // skip '('
2187
2188 // Remove same number of characters from the end
2189 ThisTokEnd -= ThisTokBuf - Prefix;
2190 if (ThisTokEnd < ThisTokBuf)
2191 return DiagnoseLexingError(Loc: StringToks[i].getLocation());
2192
2193 // C++14 [lex.string]p4: A source-file new-line in a raw string literal
2194 // results in a new-line in the resulting execution string-literal.
2195 StringRef RemainingTokenSpan(ThisTokBuf, ThisTokEnd - ThisTokBuf);
2196 while (!RemainingTokenSpan.empty()) {
2197 // Split the string literal on \r\n boundaries.
2198 size_t CRLFPos = RemainingTokenSpan.find(Str: "\r\n");
2199 StringRef BeforeCRLF = RemainingTokenSpan.substr(Start: 0, N: CRLFPos);
2200 StringRef AfterCRLF = RemainingTokenSpan.substr(Start: CRLFPos);
2201
2202 // Copy everything before the \r\n sequence into the string literal.
2203 if (CopyStringFragment(Tok: StringToks[i], TokBegin: ThisTokBegin, Fragment: BeforeCRLF))
2204 hadError = true;
2205
2206 // Point into the \n inside the \r\n sequence and operate on the
2207 // remaining portion of the literal.
2208 RemainingTokenSpan = AfterCRLF.substr(Start: 1);
2209 }
2210 } else {
2211 if (ThisTokBuf[0] != '"') {
2212 // The file may have come from PCH and then changed after loading the
2213 // PCH; Fail gracefully.
2214 return DiagnoseLexingError(Loc: StringToks[i].getLocation());
2215 }
2216 ++ThisTokBuf; // skip "
2217
2218 // Check if this is a pascal string
2219 if (!isUnevaluated() && Features.PascalStrings &&
2220 ThisTokBuf + 1 != ThisTokEnd && ThisTokBuf[0] == '\\' &&
2221 ThisTokBuf[1] == 'p') {
2222
2223 // If the \p sequence is found in the first token, we have a pascal string
2224 // Otherwise, if we already have a pascal string, ignore the first \p
2225 if (i == 0) {
2226 ++ThisTokBuf;
2227 Pascal = true;
2228 } else if (Pascal)
2229 ThisTokBuf += 2;
2230 }
2231
2232 while (ThisTokBuf != ThisTokEnd) {
2233 // Is this a span of non-escape characters?
2234 if (ThisTokBuf[0] != '\\') {
2235 const char *InStart = ThisTokBuf;
2236 do {
2237 ++ThisTokBuf;
2238 } while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\');
2239
2240 // Copy the character span over.
2241 if (CopyStringFragment(Tok: StringToks[i], TokBegin: ThisTokBegin,
2242 Fragment: StringRef(InStart, ThisTokBuf - InStart)))
2243 hadError = true;
2244 continue;
2245 }
2246 // Is this a Universal Character Name escape?
2247 if (ThisTokBuf[1] == 'u' || ThisTokBuf[1] == 'U' ||
2248 ThisTokBuf[1] == 'N') {
2249 EncodeUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd,
2250 ResultBuf&: ResultPtr, HadError&: hadError,
2251 Loc: FullSourceLoc(StringToks[i].getLocation(), SM),
2252 CharByteWidth, Diags, Features);
2253 continue;
2254 }
2255 // Otherwise, this is a non-UCN escape character. Process it.
2256 unsigned ResultChar =
2257 ProcessCharEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, HadError&: hadError,
2258 Loc: FullSourceLoc(StringToks[i].getLocation(), SM),
2259 CharWidth: CharByteWidth * 8, Diags, Features, EvalMethod);
2260
2261 if (CharByteWidth == 4) {
2262 // FIXME: Make the type of the result buffer correct instead of
2263 // using reinterpret_cast.
2264 llvm::UTF32 *ResultWidePtr = reinterpret_cast<llvm::UTF32*>(ResultPtr);
2265 *ResultWidePtr = ResultChar;
2266 ResultPtr += 4;
2267 } else if (CharByteWidth == 2) {
2268 // FIXME: Make the type of the result buffer correct instead of
2269 // using reinterpret_cast.
2270 llvm::UTF16 *ResultWidePtr = reinterpret_cast<llvm::UTF16*>(ResultPtr);
2271 *ResultWidePtr = ResultChar & 0xFFFF;
2272 ResultPtr += 2;
2273 } else {
2274 assert(CharByteWidth == 1 && "Unexpected char width");
2275 *ResultPtr++ = ResultChar & 0xFF;
2276 }
2277 }
2278 }
2279 }
2280
2281 assert((!Pascal || !isUnevaluated()) &&
2282 "Pascal string in unevaluated context");
2283 if (Pascal) {
2284 if (CharByteWidth == 4) {
2285 // FIXME: Make the type of the result buffer correct instead of
2286 // using reinterpret_cast.
2287 llvm::UTF32 *ResultWidePtr = reinterpret_cast<llvm::UTF32*>(ResultBuf.data());
2288 ResultWidePtr[0] = GetNumStringChars() - 1;
2289 } else if (CharByteWidth == 2) {
2290 // FIXME: Make the type of the result buffer correct instead of
2291 // using reinterpret_cast.
2292 llvm::UTF16 *ResultWidePtr = reinterpret_cast<llvm::UTF16*>(ResultBuf.data());
2293 ResultWidePtr[0] = GetNumStringChars() - 1;
2294 } else {
2295 assert(CharByteWidth == 1 && "Unexpected char width");
2296 ResultBuf[0] = GetNumStringChars() - 1;
2297 }
2298
2299 // Verify that pascal strings aren't too large.
2300 if (GetStringLength() > 256) {
2301 if (Diags)
2302 Diags->Report(StringToks.front().getLocation(),
2303 diag::err_pascal_string_too_long)
2304 << SourceRange(StringToks.front().getLocation(),
2305 StringToks.back().getLocation());
2306 hadError = true;
2307 return;
2308 }
2309 } else if (Diags) {
2310 // Complain if this string literal has too many characters.
2311 unsigned MaxChars = Features.CPlusPlus? 65536 : Features.C99 ? 4095 : 509;
2312
2313 if (GetNumStringChars() > MaxChars)
2314 Diags->Report(StringToks.front().getLocation(),
2315 diag::ext_string_too_long)
2316 << GetNumStringChars() << MaxChars
2317 << (Features.CPlusPlus ? 2 : Features.C99 ? 1 : 0)
2318 << SourceRange(StringToks.front().getLocation(),
2319 StringToks.back().getLocation());
2320 }
2321}
2322
2323static const char *resyncUTF8(const char *Err, const char *End) {
2324 if (Err == End)
2325 return End;
2326 End = Err + std::min<unsigned>(a: llvm::getNumBytesForUTF8(firstByte: *Err), b: End-Err);
2327 while (++Err != End && (*Err & 0xC0) == 0x80)
2328 ;
2329 return Err;
2330}
2331
2332/// This function copies from Fragment, which is a sequence of bytes
2333/// within Tok's contents (which begin at TokBegin) into ResultPtr.
2334/// Performs widening for multi-byte characters.
2335bool StringLiteralParser::CopyStringFragment(const Token &Tok,
2336 const char *TokBegin,
2337 StringRef Fragment) {
2338 const llvm::UTF8 *ErrorPtrTmp;
2339 if (ConvertUTF8toWide(WideCharWidth: CharByteWidth, Source: Fragment, ResultPtr, ErrorPtr&: ErrorPtrTmp))
2340 return false;
2341
2342 // If we see bad encoding for unprefixed string literals, warn and
2343 // simply copy the byte values, for compatibility with gcc and older
2344 // versions of clang.
2345 bool NoErrorOnBadEncoding = isOrdinary();
2346 if (NoErrorOnBadEncoding) {
2347 memcpy(dest: ResultPtr, src: Fragment.data(), n: Fragment.size());
2348 ResultPtr += Fragment.size();
2349 }
2350
2351 if (Diags) {
2352 const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
2353
2354 FullSourceLoc SourceLoc(Tok.getLocation(), SM);
2355 const DiagnosticBuilder &Builder =
2356 Diag(Diags, Features, SourceLoc, TokBegin,
2357 ErrorPtr, resyncUTF8(ErrorPtr, Fragment.end()),
2358 NoErrorOnBadEncoding ? diag::warn_bad_string_encoding
2359 : diag::err_bad_string_encoding);
2360
2361 const char *NextStart = resyncUTF8(Err: ErrorPtr, End: Fragment.end());
2362 StringRef NextFragment(NextStart, Fragment.end()-NextStart);
2363
2364 // Decode into a dummy buffer.
2365 SmallString<512> Dummy;
2366 Dummy.reserve(N: Fragment.size() * CharByteWidth);
2367 char *Ptr = Dummy.data();
2368
2369 while (!ConvertUTF8toWide(WideCharWidth: CharByteWidth, Source: NextFragment, ResultPtr&: Ptr, ErrorPtr&: ErrorPtrTmp)) {
2370 const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
2371 NextStart = resyncUTF8(Err: ErrorPtr, End: Fragment.end());
2372 Builder << MakeCharSourceRange(Features, TokLoc: SourceLoc, TokBegin,
2373 TokRangeBegin: ErrorPtr, TokRangeEnd: NextStart);
2374 NextFragment = StringRef(NextStart, Fragment.end()-NextStart);
2375 }
2376 }
2377 return !NoErrorOnBadEncoding;
2378}
2379
2380void StringLiteralParser::DiagnoseLexingError(SourceLocation Loc) {
2381 hadError = true;
2382 if (Diags)
2383 Diags->Report(Loc, diag::err_lexing_string);
2384}
2385
2386/// getOffsetOfStringByte - This function returns the offset of the
2387/// specified byte of the string data represented by Token. This handles
2388/// advancing over escape sequences in the string.
2389unsigned StringLiteralParser::getOffsetOfStringByte(const Token &Tok,
2390 unsigned ByteNo) const {
2391 // Get the spelling of the token.
2392 SmallString<32> SpellingBuffer;
2393 SpellingBuffer.resize(N: Tok.getLength());
2394
2395 bool StringInvalid = false;
2396 const char *SpellingPtr = &SpellingBuffer[0];
2397 unsigned TokLen = Lexer::getSpelling(Tok, Buffer&: SpellingPtr, SourceMgr: SM, LangOpts: Features,
2398 Invalid: &StringInvalid);
2399 if (StringInvalid)
2400 return 0;
2401
2402 const char *SpellingStart = SpellingPtr;
2403 const char *SpellingEnd = SpellingPtr+TokLen;
2404
2405 // Handle UTF-8 strings just like narrow strings.
2406 if (SpellingPtr[0] == 'u' && SpellingPtr[1] == '8')
2407 SpellingPtr += 2;
2408
2409 assert(SpellingPtr[0] != 'L' && SpellingPtr[0] != 'u' &&
2410 SpellingPtr[0] != 'U' && "Doesn't handle wide or utf strings yet");
2411
2412 // For raw string literals, this is easy.
2413 if (SpellingPtr[0] == 'R') {
2414 assert(SpellingPtr[1] == '"' && "Should be a raw string literal!");
2415 // Skip 'R"'.
2416 SpellingPtr += 2;
2417 while (*SpellingPtr != '(') {
2418 ++SpellingPtr;
2419 assert(SpellingPtr < SpellingEnd && "Missing ( for raw string literal");
2420 }
2421 // Skip '('.
2422 ++SpellingPtr;
2423 return SpellingPtr - SpellingStart + ByteNo;
2424 }
2425
2426 // Skip over the leading quote
2427 assert(SpellingPtr[0] == '"' && "Should be a string literal!");
2428 ++SpellingPtr;
2429
2430 // Skip over bytes until we find the offset we're looking for.
2431 while (ByteNo) {
2432 assert(SpellingPtr < SpellingEnd && "Didn't find byte offset!");
2433
2434 // Step over non-escapes simply.
2435 if (*SpellingPtr != '\\') {
2436 ++SpellingPtr;
2437 --ByteNo;
2438 continue;
2439 }
2440
2441 // Otherwise, this is an escape character. Advance over it.
2442 bool HadError = false;
2443 if (SpellingPtr[1] == 'u' || SpellingPtr[1] == 'U' ||
2444 SpellingPtr[1] == 'N') {
2445 const char *EscapePtr = SpellingPtr;
2446 unsigned Len = MeasureUCNEscape(ThisTokBegin: SpellingStart, ThisTokBuf&: SpellingPtr, ThisTokEnd: SpellingEnd,
2447 CharByteWidth: 1, Features, HadError);
2448 if (Len > ByteNo) {
2449 // ByteNo is somewhere within the escape sequence.
2450 SpellingPtr = EscapePtr;
2451 break;
2452 }
2453 ByteNo -= Len;
2454 } else {
2455 ProcessCharEscape(ThisTokBegin: SpellingStart, ThisTokBuf&: SpellingPtr, ThisTokEnd: SpellingEnd, HadError,
2456 Loc: FullSourceLoc(Tok.getLocation(), SM), CharWidth: CharByteWidth * 8,
2457 Diags, Features, EvalMethod: StringLiteralEvalMethod::Evaluated);
2458 --ByteNo;
2459 }
2460 assert(!HadError && "This method isn't valid on erroneous strings");
2461 }
2462
2463 return SpellingPtr-SpellingStart;
2464}
2465
2466/// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved
2467/// suffixes as ud-suffixes, because the diagnostic experience is better if we
2468/// treat it as an invalid suffix.
2469bool StringLiteralParser::isValidUDSuffix(const LangOptions &LangOpts,
2470 StringRef Suffix) {
2471 return NumericLiteralParser::isValidUDSuffix(LangOpts, Suffix) ||
2472 Suffix == "sv";
2473}
2474

Provided by KDAB

Privacy Policy
Improve your Profiling and Debugging skills
Find out more

source code of clang/lib/Lex/LiteralSupport.cpp