1//===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the Expression parsing implementation for C++.
10//
11//===----------------------------------------------------------------------===//
12#include "clang/AST/ASTContext.h"
13#include "clang/AST/Decl.h"
14#include "clang/AST/DeclTemplate.h"
15#include "clang/AST/ExprCXX.h"
16#include "clang/Basic/PrettyStackTrace.h"
17#include "clang/Basic/TokenKinds.h"
18#include "clang/Lex/LiteralSupport.h"
19#include "clang/Parse/ParseDiagnostic.h"
20#include "clang/Parse/Parser.h"
21#include "clang/Parse/RAIIObjectsForParser.h"
22#include "clang/Sema/DeclSpec.h"
23#include "clang/Sema/EnterExpressionEvaluationContext.h"
24#include "clang/Sema/ParsedTemplate.h"
25#include "clang/Sema/Scope.h"
26#include "llvm/Support/Compiler.h"
27#include "llvm/Support/ErrorHandling.h"
28#include <numeric>
29
30using namespace clang;
31
32static int SelectDigraphErrorMessage(tok::TokenKind Kind) {
33 switch (Kind) {
34 // template name
35 case tok::unknown: return 0;
36 // casts
37 case tok::kw_addrspace_cast: return 1;
38 case tok::kw_const_cast: return 2;
39 case tok::kw_dynamic_cast: return 3;
40 case tok::kw_reinterpret_cast: return 4;
41 case tok::kw_static_cast: return 5;
42 default:
43 llvm_unreachable("Unknown type for digraph error message.");
44 }
45}
46
47// Are the two tokens adjacent in the same source file?
48bool Parser::areTokensAdjacent(const Token &First, const Token &Second) {
49 SourceManager &SM = PP.getSourceManager();
50 SourceLocation FirstLoc = SM.getSpellingLoc(Loc: First.getLocation());
51 SourceLocation FirstEnd = FirstLoc.getLocWithOffset(Offset: First.getLength());
52 return FirstEnd == SM.getSpellingLoc(Loc: Second.getLocation());
53}
54
55// Suggest fixit for "<::" after a cast.
56static void FixDigraph(Parser &P, Preprocessor &PP, Token &DigraphToken,
57 Token &ColonToken, tok::TokenKind Kind, bool AtDigraph) {
58 // Pull '<:' and ':' off token stream.
59 if (!AtDigraph)
60 PP.Lex(Result&: DigraphToken);
61 PP.Lex(Result&: ColonToken);
62
63 SourceRange Range;
64 Range.setBegin(DigraphToken.getLocation());
65 Range.setEnd(ColonToken.getLocation());
66 P.Diag(DigraphToken.getLocation(), diag::err_missing_whitespace_digraph)
67 << SelectDigraphErrorMessage(Kind)
68 << FixItHint::CreateReplacement(Range, "< ::");
69
70 // Update token information to reflect their change in token type.
71 ColonToken.setKind(tok::coloncolon);
72 ColonToken.setLocation(ColonToken.getLocation().getLocWithOffset(Offset: -1));
73 ColonToken.setLength(2);
74 DigraphToken.setKind(tok::less);
75 DigraphToken.setLength(1);
76
77 // Push new tokens back to token stream.
78 PP.EnterToken(Tok: ColonToken, /*IsReinject*/ true);
79 if (!AtDigraph)
80 PP.EnterToken(Tok: DigraphToken, /*IsReinject*/ true);
81}
82
83// Check for '<::' which should be '< ::' instead of '[:' when following
84// a template name.
85void Parser::CheckForTemplateAndDigraph(Token &Next, ParsedType ObjectType,
86 bool EnteringContext,
87 IdentifierInfo &II, CXXScopeSpec &SS) {
88 if (!Next.is(K: tok::l_square) || Next.getLength() != 2)
89 return;
90
91 Token SecondToken = GetLookAheadToken(N: 2);
92 if (!SecondToken.is(K: tok::colon) || !areTokensAdjacent(First: Next, Second: SecondToken))
93 return;
94
95 TemplateTy Template;
96 UnqualifiedId TemplateName;
97 TemplateName.setIdentifier(Id: &II, IdLoc: Tok.getLocation());
98 bool MemberOfUnknownSpecialization;
99 if (!Actions.isTemplateName(S: getCurScope(), SS, /*hasTemplateKeyword=*/false,
100 Name: TemplateName, ObjectType, EnteringContext,
101 Template, MemberOfUnknownSpecialization))
102 return;
103
104 FixDigraph(P&: *this, PP, DigraphToken&: Next, ColonToken&: SecondToken, Kind: tok::unknown,
105 /*AtDigraph*/false);
106}
107
108/// Parse global scope or nested-name-specifier if present.
109///
110/// Parses a C++ global scope specifier ('::') or nested-name-specifier (which
111/// may be preceded by '::'). Note that this routine will not parse ::new or
112/// ::delete; it will just leave them in the token stream.
113///
114/// '::'[opt] nested-name-specifier
115/// '::'
116///
117/// nested-name-specifier:
118/// type-name '::'
119/// namespace-name '::'
120/// nested-name-specifier identifier '::'
121/// nested-name-specifier 'template'[opt] simple-template-id '::'
122///
123///
124/// \param SS the scope specifier that will be set to the parsed
125/// nested-name-specifier (or empty)
126///
127/// \param ObjectType if this nested-name-specifier is being parsed following
128/// the "." or "->" of a member access expression, this parameter provides the
129/// type of the object whose members are being accessed.
130///
131/// \param ObjectHadErrors if this unqualified-id occurs within a member access
132/// expression, indicates whether the original subexpressions had any errors.
133/// When true, diagnostics for missing 'template' keyword will be supressed.
134///
135/// \param EnteringContext whether we will be entering into the context of
136/// the nested-name-specifier after parsing it.
137///
138/// \param MayBePseudoDestructor When non-NULL, points to a flag that
139/// indicates whether this nested-name-specifier may be part of a
140/// pseudo-destructor name. In this case, the flag will be set false
141/// if we don't actually end up parsing a destructor name. Moreover,
142/// if we do end up determining that we are parsing a destructor name,
143/// the last component of the nested-name-specifier is not parsed as
144/// part of the scope specifier.
145///
146/// \param IsTypename If \c true, this nested-name-specifier is known to be
147/// part of a type name. This is used to improve error recovery.
148///
149/// \param LastII When non-NULL, points to an IdentifierInfo* that will be
150/// filled in with the leading identifier in the last component of the
151/// nested-name-specifier, if any.
152///
153/// \param OnlyNamespace If true, only considers namespaces in lookup.
154///
155///
156/// \returns true if there was an error parsing a scope specifier
157bool Parser::ParseOptionalCXXScopeSpecifier(
158 CXXScopeSpec &SS, ParsedType ObjectType, bool ObjectHadErrors,
159 bool EnteringContext, bool *MayBePseudoDestructor, bool IsTypename,
160 IdentifierInfo **LastII, bool OnlyNamespace, bool InUsingDeclaration) {
161 assert(getLangOpts().CPlusPlus &&
162 "Call sites of this function should be guarded by checking for C++");
163
164 if (Tok.is(K: tok::annot_cxxscope)) {
165 assert(!LastII && "want last identifier but have already annotated scope");
166 assert(!MayBePseudoDestructor && "unexpected annot_cxxscope");
167 Actions.RestoreNestedNameSpecifierAnnotation(Annotation: Tok.getAnnotationValue(),
168 AnnotationRange: Tok.getAnnotationRange(),
169 SS);
170 ConsumeAnnotationToken();
171 return false;
172 }
173
174 // Has to happen before any "return false"s in this function.
175 bool CheckForDestructor = false;
176 if (MayBePseudoDestructor && *MayBePseudoDestructor) {
177 CheckForDestructor = true;
178 *MayBePseudoDestructor = false;
179 }
180
181 if (LastII)
182 *LastII = nullptr;
183
184 bool HasScopeSpecifier = false;
185
186 if (Tok.is(K: tok::coloncolon)) {
187 // ::new and ::delete aren't nested-name-specifiers.
188 tok::TokenKind NextKind = NextToken().getKind();
189 if (NextKind == tok::kw_new || NextKind == tok::kw_delete)
190 return false;
191
192 if (NextKind == tok::l_brace) {
193 // It is invalid to have :: {, consume the scope qualifier and pretend
194 // like we never saw it.
195 Diag(ConsumeToken(), diag::err_expected) << tok::identifier;
196 } else {
197 // '::' - Global scope qualifier.
198 if (Actions.ActOnCXXGlobalScopeSpecifier(CCLoc: ConsumeToken(), SS))
199 return true;
200
201 HasScopeSpecifier = true;
202 }
203 }
204
205 if (Tok.is(K: tok::kw___super)) {
206 SourceLocation SuperLoc = ConsumeToken();
207 if (!Tok.is(K: tok::coloncolon)) {
208 Diag(Tok.getLocation(), diag::err_expected_coloncolon_after_super);
209 return true;
210 }
211
212 return Actions.ActOnSuperScopeSpecifier(SuperLoc, ColonColonLoc: ConsumeToken(), SS);
213 }
214
215 if (!HasScopeSpecifier &&
216 Tok.isOneOf(K1: tok::kw_decltype, K2: tok::annot_decltype)) {
217 DeclSpec DS(AttrFactory);
218 SourceLocation DeclLoc = Tok.getLocation();
219 SourceLocation EndLoc = ParseDecltypeSpecifier(DS);
220
221 SourceLocation CCLoc;
222 // Work around a standard defect: 'decltype(auto)::' is not a
223 // nested-name-specifier.
224 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto ||
225 !TryConsumeToken(Expected: tok::coloncolon, Loc&: CCLoc)) {
226 AnnotateExistingDecltypeSpecifier(DS, StartLoc: DeclLoc, EndLoc);
227 return false;
228 }
229
230 if (Actions.ActOnCXXNestedNameSpecifierDecltype(SS, DS, ColonColonLoc: CCLoc))
231 SS.SetInvalid(SourceRange(DeclLoc, CCLoc));
232
233 HasScopeSpecifier = true;
234 }
235
236 else if (!HasScopeSpecifier && Tok.is(K: tok::identifier) &&
237 GetLookAheadToken(N: 1).is(K: tok::ellipsis) &&
238 GetLookAheadToken(N: 2).is(K: tok::l_square)) {
239 SourceLocation Start = Tok.getLocation();
240 DeclSpec DS(AttrFactory);
241 SourceLocation CCLoc;
242 SourceLocation EndLoc = ParsePackIndexingType(DS);
243 if (DS.getTypeSpecType() == DeclSpec::TST_error)
244 return false;
245
246 QualType Type = Actions.ActOnPackIndexingType(
247 Pattern: DS.getRepAsType().get(), IndexExpr: DS.getPackIndexingExpr(), Loc: DS.getBeginLoc(),
248 EllipsisLoc: DS.getEllipsisLoc());
249
250 if (Type.isNull())
251 return false;
252
253 if (!TryConsumeToken(Expected: tok::coloncolon, Loc&: CCLoc)) {
254 AnnotateExistingIndexedTypeNamePack(T: ParsedType::make(P: Type), StartLoc: Start,
255 EndLoc);
256 return false;
257 }
258 if (Actions.ActOnCXXNestedNameSpecifierIndexedPack(SS, DS, ColonColonLoc: CCLoc,
259 Type: std::move(Type)))
260 SS.SetInvalid(SourceRange(Start, CCLoc));
261 HasScopeSpecifier = true;
262 }
263
264 // Preferred type might change when parsing qualifiers, we need the original.
265 auto SavedType = PreferredType;
266 while (true) {
267 if (HasScopeSpecifier) {
268 if (Tok.is(K: tok::code_completion)) {
269 cutOffParsing();
270 // Code completion for a nested-name-specifier, where the code
271 // completion token follows the '::'.
272 Actions.CodeCompleteQualifiedId(S: getCurScope(), SS, EnteringContext,
273 IsUsingDeclaration: InUsingDeclaration, BaseType: ObjectType.get(),
274 PreferredType: SavedType.get(SS.getBeginLoc()));
275 // Include code completion token into the range of the scope otherwise
276 // when we try to annotate the scope tokens the dangling code completion
277 // token will cause assertion in
278 // Preprocessor::AnnotatePreviousCachedTokens.
279 SS.setEndLoc(Tok.getLocation());
280 return true;
281 }
282
283 // C++ [basic.lookup.classref]p5:
284 // If the qualified-id has the form
285 //
286 // ::class-name-or-namespace-name::...
287 //
288 // the class-name-or-namespace-name is looked up in global scope as a
289 // class-name or namespace-name.
290 //
291 // To implement this, we clear out the object type as soon as we've
292 // seen a leading '::' or part of a nested-name-specifier.
293 ObjectType = nullptr;
294 }
295
296 // nested-name-specifier:
297 // nested-name-specifier 'template'[opt] simple-template-id '::'
298
299 // Parse the optional 'template' keyword, then make sure we have
300 // 'identifier <' after it.
301 if (Tok.is(K: tok::kw_template)) {
302 // If we don't have a scope specifier or an object type, this isn't a
303 // nested-name-specifier, since they aren't allowed to start with
304 // 'template'.
305 if (!HasScopeSpecifier && !ObjectType)
306 break;
307
308 TentativeParsingAction TPA(*this);
309 SourceLocation TemplateKWLoc = ConsumeToken();
310
311 UnqualifiedId TemplateName;
312 if (Tok.is(K: tok::identifier)) {
313 // Consume the identifier.
314 TemplateName.setIdentifier(Id: Tok.getIdentifierInfo(), IdLoc: Tok.getLocation());
315 ConsumeToken();
316 } else if (Tok.is(K: tok::kw_operator)) {
317 // We don't need to actually parse the unqualified-id in this case,
318 // because a simple-template-id cannot start with 'operator', but
319 // go ahead and parse it anyway for consistency with the case where
320 // we already annotated the template-id.
321 if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType,
322 Result&: TemplateName)) {
323 TPA.Commit();
324 break;
325 }
326
327 if (TemplateName.getKind() != UnqualifiedIdKind::IK_OperatorFunctionId &&
328 TemplateName.getKind() != UnqualifiedIdKind::IK_LiteralOperatorId) {
329 Diag(TemplateName.getSourceRange().getBegin(),
330 diag::err_id_after_template_in_nested_name_spec)
331 << TemplateName.getSourceRange();
332 TPA.Commit();
333 break;
334 }
335 } else {
336 TPA.Revert();
337 break;
338 }
339
340 // If the next token is not '<', we have a qualified-id that refers
341 // to a template name, such as T::template apply, but is not a
342 // template-id.
343 if (Tok.isNot(K: tok::less)) {
344 TPA.Revert();
345 break;
346 }
347
348 // Commit to parsing the template-id.
349 TPA.Commit();
350 TemplateTy Template;
351 TemplateNameKind TNK = Actions.ActOnTemplateName(
352 S: getCurScope(), SS, TemplateKWLoc, Name: TemplateName, ObjectType,
353 EnteringContext, Template, /*AllowInjectedClassName*/ true);
354 if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateKWLoc,
355 TemplateName, AllowTypeAnnotation: false))
356 return true;
357
358 continue;
359 }
360
361 if (Tok.is(K: tok::annot_template_id) && NextToken().is(K: tok::coloncolon)) {
362 // We have
363 //
364 // template-id '::'
365 //
366 // So we need to check whether the template-id is a simple-template-id of
367 // the right kind (it should name a type or be dependent), and then
368 // convert it into a type within the nested-name-specifier.
369 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(tok: Tok);
370 if (CheckForDestructor && GetLookAheadToken(N: 2).is(K: tok::tilde)) {
371 *MayBePseudoDestructor = true;
372 return false;
373 }
374
375 if (LastII)
376 *LastII = TemplateId->Name;
377
378 // Consume the template-id token.
379 ConsumeAnnotationToken();
380
381 assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!");
382 SourceLocation CCLoc = ConsumeToken();
383
384 HasScopeSpecifier = true;
385
386 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
387 TemplateId->NumArgs);
388
389 if (TemplateId->isInvalid() ||
390 Actions.ActOnCXXNestedNameSpecifier(S: getCurScope(),
391 SS,
392 TemplateKWLoc: TemplateId->TemplateKWLoc,
393 TemplateName: TemplateId->Template,
394 TemplateNameLoc: TemplateId->TemplateNameLoc,
395 LAngleLoc: TemplateId->LAngleLoc,
396 TemplateArgs: TemplateArgsPtr,
397 RAngleLoc: TemplateId->RAngleLoc,
398 CCLoc,
399 EnteringContext)) {
400 SourceLocation StartLoc
401 = SS.getBeginLoc().isValid()? SS.getBeginLoc()
402 : TemplateId->TemplateNameLoc;
403 SS.SetInvalid(SourceRange(StartLoc, CCLoc));
404 }
405
406 continue;
407 }
408
409 // The rest of the nested-name-specifier possibilities start with
410 // tok::identifier.
411 if (Tok.isNot(K: tok::identifier))
412 break;
413
414 IdentifierInfo &II = *Tok.getIdentifierInfo();
415
416 // nested-name-specifier:
417 // type-name '::'
418 // namespace-name '::'
419 // nested-name-specifier identifier '::'
420 Token Next = NextToken();
421 Sema::NestedNameSpecInfo IdInfo(&II, Tok.getLocation(), Next.getLocation(),
422 ObjectType);
423
424 // If we get foo:bar, this is almost certainly a typo for foo::bar. Recover
425 // and emit a fixit hint for it.
426 if (Next.is(K: tok::colon) && !ColonIsSacred) {
427 if (Actions.IsInvalidUnlessNestedName(S: getCurScope(), SS, IdInfo,
428 EnteringContext) &&
429 // If the token after the colon isn't an identifier, it's still an
430 // error, but they probably meant something else strange so don't
431 // recover like this.
432 PP.LookAhead(N: 1).is(K: tok::identifier)) {
433 Diag(Next, diag::err_unexpected_colon_in_nested_name_spec)
434 << FixItHint::CreateReplacement(Next.getLocation(), "::");
435 // Recover as if the user wrote '::'.
436 Next.setKind(tok::coloncolon);
437 }
438 }
439
440 if (Next.is(K: tok::coloncolon) && GetLookAheadToken(N: 2).is(K: tok::l_brace)) {
441 // It is invalid to have :: {, consume the scope qualifier and pretend
442 // like we never saw it.
443 Token Identifier = Tok; // Stash away the identifier.
444 ConsumeToken(); // Eat the identifier, current token is now '::'.
445 Diag(PP.getLocForEndOfToken(ConsumeToken()), diag::err_expected)
446 << tok::identifier;
447 UnconsumeToken(Consumed&: Identifier); // Stick the identifier back.
448 Next = NextToken(); // Point Next at the '{' token.
449 }
450
451 if (Next.is(K: tok::coloncolon)) {
452 if (CheckForDestructor && GetLookAheadToken(N: 2).is(K: tok::tilde)) {
453 *MayBePseudoDestructor = true;
454 return false;
455 }
456
457 if (ColonIsSacred) {
458 const Token &Next2 = GetLookAheadToken(N: 2);
459 if (Next2.is(K: tok::kw_private) || Next2.is(K: tok::kw_protected) ||
460 Next2.is(K: tok::kw_public) || Next2.is(K: tok::kw_virtual)) {
461 Diag(Next2, diag::err_unexpected_token_in_nested_name_spec)
462 << Next2.getName()
463 << FixItHint::CreateReplacement(Next.getLocation(), ":");
464 Token ColonColon;
465 PP.Lex(Result&: ColonColon);
466 ColonColon.setKind(tok::colon);
467 PP.EnterToken(Tok: ColonColon, /*IsReinject*/ true);
468 break;
469 }
470 }
471
472 if (LastII)
473 *LastII = &II;
474
475 // We have an identifier followed by a '::'. Lookup this name
476 // as the name in a nested-name-specifier.
477 Token Identifier = Tok;
478 SourceLocation IdLoc = ConsumeToken();
479 assert(Tok.isOneOf(tok::coloncolon, tok::colon) &&
480 "NextToken() not working properly!");
481 Token ColonColon = Tok;
482 SourceLocation CCLoc = ConsumeToken();
483
484 bool IsCorrectedToColon = false;
485 bool *CorrectionFlagPtr = ColonIsSacred ? &IsCorrectedToColon : nullptr;
486 if (Actions.ActOnCXXNestedNameSpecifier(
487 S: getCurScope(), IdInfo, EnteringContext, SS, IsCorrectedToColon: CorrectionFlagPtr,
488 OnlyNamespace)) {
489 // Identifier is not recognized as a nested name, but we can have
490 // mistyped '::' instead of ':'.
491 if (CorrectionFlagPtr && IsCorrectedToColon) {
492 ColonColon.setKind(tok::colon);
493 PP.EnterToken(Tok, /*IsReinject*/ true);
494 PP.EnterToken(Tok: ColonColon, /*IsReinject*/ true);
495 Tok = Identifier;
496 break;
497 }
498 SS.SetInvalid(SourceRange(IdLoc, CCLoc));
499 }
500 HasScopeSpecifier = true;
501 continue;
502 }
503
504 CheckForTemplateAndDigraph(Next, ObjectType, EnteringContext, II, SS);
505
506 // nested-name-specifier:
507 // type-name '<'
508 if (Next.is(K: tok::less)) {
509
510 TemplateTy Template;
511 UnqualifiedId TemplateName;
512 TemplateName.setIdentifier(Id: &II, IdLoc: Tok.getLocation());
513 bool MemberOfUnknownSpecialization;
514 if (TemplateNameKind TNK = Actions.isTemplateName(S: getCurScope(), SS,
515 /*hasTemplateKeyword=*/false,
516 Name: TemplateName,
517 ObjectType,
518 EnteringContext,
519 Template,
520 MemberOfUnknownSpecialization)) {
521 // If lookup didn't find anything, we treat the name as a template-name
522 // anyway. C++20 requires this, and in prior language modes it improves
523 // error recovery. But before we commit to this, check that we actually
524 // have something that looks like a template-argument-list next.
525 if (!IsTypename && TNK == TNK_Undeclared_template &&
526 isTemplateArgumentList(TokensToSkip: 1) == TPResult::False)
527 break;
528
529 // We have found a template name, so annotate this token
530 // with a template-id annotation. We do not permit the
531 // template-id to be translated into a type annotation,
532 // because some clients (e.g., the parsing of class template
533 // specializations) still want to see the original template-id
534 // token, and it might not be a type at all (e.g. a concept name in a
535 // type-constraint).
536 ConsumeToken();
537 if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateKWLoc: SourceLocation(),
538 TemplateName, AllowTypeAnnotation: false))
539 return true;
540 continue;
541 }
542
543 if (MemberOfUnknownSpecialization && (ObjectType || SS.isSet()) &&
544 (IsTypename || isTemplateArgumentList(TokensToSkip: 1) == TPResult::True)) {
545 // If we had errors before, ObjectType can be dependent even without any
546 // templates. Do not report missing template keyword in that case.
547 if (!ObjectHadErrors) {
548 // We have something like t::getAs<T>, where getAs is a
549 // member of an unknown specialization. However, this will only
550 // parse correctly as a template, so suggest the keyword 'template'
551 // before 'getAs' and treat this as a dependent template name.
552 unsigned DiagID = diag::err_missing_dependent_template_keyword;
553 if (getLangOpts().MicrosoftExt)
554 DiagID = diag::warn_missing_dependent_template_keyword;
555
556 Diag(Loc: Tok.getLocation(), DiagID)
557 << II.getName()
558 << FixItHint::CreateInsertion(InsertionLoc: Tok.getLocation(), Code: "template ");
559 }
560
561 SourceLocation TemplateNameLoc = ConsumeToken();
562
563 TemplateNameKind TNK = Actions.ActOnTemplateName(
564 S: getCurScope(), SS, TemplateKWLoc: TemplateNameLoc, Name: TemplateName, ObjectType,
565 EnteringContext, Template, /*AllowInjectedClassName*/ true);
566 if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateKWLoc: SourceLocation(),
567 TemplateName, AllowTypeAnnotation: false))
568 return true;
569
570 continue;
571 }
572 }
573
574 // We don't have any tokens that form the beginning of a
575 // nested-name-specifier, so we're done.
576 break;
577 }
578
579 // Even if we didn't see any pieces of a nested-name-specifier, we
580 // still check whether there is a tilde in this position, which
581 // indicates a potential pseudo-destructor.
582 if (CheckForDestructor && !HasScopeSpecifier && Tok.is(K: tok::tilde))
583 *MayBePseudoDestructor = true;
584
585 return false;
586}
587
588ExprResult Parser::tryParseCXXIdExpression(CXXScopeSpec &SS,
589 bool isAddressOfOperand,
590 Token &Replacement) {
591 ExprResult E;
592
593 // We may have already annotated this id-expression.
594 switch (Tok.getKind()) {
595 case tok::annot_non_type: {
596 NamedDecl *ND = getNonTypeAnnotation(Tok);
597 SourceLocation Loc = ConsumeAnnotationToken();
598 E = Actions.ActOnNameClassifiedAsNonType(S: getCurScope(), SS, Found: ND, NameLoc: Loc, NextToken: Tok);
599 break;
600 }
601
602 case tok::annot_non_type_dependent: {
603 IdentifierInfo *II = getIdentifierAnnotation(Tok);
604 SourceLocation Loc = ConsumeAnnotationToken();
605
606 // This is only the direct operand of an & operator if it is not
607 // followed by a postfix-expression suffix.
608 if (isAddressOfOperand && isPostfixExpressionSuffixStart())
609 isAddressOfOperand = false;
610
611 E = Actions.ActOnNameClassifiedAsDependentNonType(SS, Name: II, NameLoc: Loc,
612 IsAddressOfOperand: isAddressOfOperand);
613 break;
614 }
615
616 case tok::annot_non_type_undeclared: {
617 assert(SS.isEmpty() &&
618 "undeclared non-type annotation should be unqualified");
619 IdentifierInfo *II = getIdentifierAnnotation(Tok);
620 SourceLocation Loc = ConsumeAnnotationToken();
621 E = Actions.ActOnNameClassifiedAsUndeclaredNonType(Name: II, NameLoc: Loc);
622 break;
623 }
624
625 default:
626 SourceLocation TemplateKWLoc;
627 UnqualifiedId Name;
628 if (ParseUnqualifiedId(SS, /*ObjectType=*/nullptr,
629 /*ObjectHadErrors=*/false,
630 /*EnteringContext=*/false,
631 /*AllowDestructorName=*/false,
632 /*AllowConstructorName=*/false,
633 /*AllowDeductionGuide=*/false, TemplateKWLoc: &TemplateKWLoc, Result&: Name))
634 return ExprError();
635
636 // This is only the direct operand of an & operator if it is not
637 // followed by a postfix-expression suffix.
638 if (isAddressOfOperand && isPostfixExpressionSuffixStart())
639 isAddressOfOperand = false;
640
641 E = Actions.ActOnIdExpression(
642 S: getCurScope(), SS, TemplateKWLoc, Id&: Name, HasTrailingLParen: Tok.is(K: tok::l_paren),
643 IsAddressOfOperand: isAddressOfOperand, /*CCC=*/nullptr, /*IsInlineAsmIdentifier=*/false,
644 KeywordReplacement: &Replacement);
645 break;
646 }
647
648 // Might be a pack index expression!
649 E = tryParseCXXPackIndexingExpression(PackIdExpression: E);
650
651 if (!E.isInvalid() && !E.isUnset() && Tok.is(K: tok::less))
652 checkPotentialAngleBracket(PotentialTemplateName&: E);
653 return E;
654}
655
656ExprResult Parser::ParseCXXPackIndexingExpression(ExprResult PackIdExpression) {
657 assert(Tok.is(tok::ellipsis) && NextToken().is(tok::l_square) &&
658 "expected ...[");
659 SourceLocation EllipsisLoc = ConsumeToken();
660 BalancedDelimiterTracker T(*this, tok::l_square);
661 T.consumeOpen();
662 ExprResult IndexExpr = ParseConstantExpression();
663 if (T.consumeClose() || IndexExpr.isInvalid())
664 return ExprError();
665 return Actions.ActOnPackIndexingExpr(S: getCurScope(), PackExpression: PackIdExpression.get(),
666 EllipsisLoc, LSquareLoc: T.getOpenLocation(),
667 IndexExpr: IndexExpr.get(), RSquareLoc: T.getCloseLocation());
668}
669
670ExprResult
671Parser::tryParseCXXPackIndexingExpression(ExprResult PackIdExpression) {
672 ExprResult E = PackIdExpression;
673 if (!PackIdExpression.isInvalid() && !PackIdExpression.isUnset() &&
674 Tok.is(K: tok::ellipsis) && NextToken().is(K: tok::l_square)) {
675 E = ParseCXXPackIndexingExpression(PackIdExpression: E);
676 }
677 return E;
678}
679
680/// ParseCXXIdExpression - Handle id-expression.
681///
682/// id-expression:
683/// unqualified-id
684/// qualified-id
685///
686/// qualified-id:
687/// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
688/// '::' identifier
689/// '::' operator-function-id
690/// '::' template-id
691///
692/// NOTE: The standard specifies that, for qualified-id, the parser does not
693/// expect:
694///
695/// '::' conversion-function-id
696/// '::' '~' class-name
697///
698/// This may cause a slight inconsistency on diagnostics:
699///
700/// class C {};
701/// namespace A {}
702/// void f() {
703/// :: A :: ~ C(); // Some Sema error about using destructor with a
704/// // namespace.
705/// :: ~ C(); // Some Parser error like 'unexpected ~'.
706/// }
707///
708/// We simplify the parser a bit and make it work like:
709///
710/// qualified-id:
711/// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
712/// '::' unqualified-id
713///
714/// That way Sema can handle and report similar errors for namespaces and the
715/// global scope.
716///
717/// The isAddressOfOperand parameter indicates that this id-expression is a
718/// direct operand of the address-of operator. This is, besides member contexts,
719/// the only place where a qualified-id naming a non-static class member may
720/// appear.
721///
722ExprResult Parser::ParseCXXIdExpression(bool isAddressOfOperand) {
723 // qualified-id:
724 // '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
725 // '::' unqualified-id
726 //
727 CXXScopeSpec SS;
728 ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr,
729 /*ObjectHasErrors=*/ObjectHadErrors: false,
730 /*EnteringContext=*/false);
731
732 Token Replacement;
733 ExprResult Result =
734 tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
735 if (Result.isUnset()) {
736 // If the ExprResult is valid but null, then typo correction suggested a
737 // keyword replacement that needs to be reparsed.
738 UnconsumeToken(Consumed&: Replacement);
739 Result = tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
740 }
741 assert(!Result.isUnset() && "Typo correction suggested a keyword replacement "
742 "for a previous keyword suggestion");
743 return Result;
744}
745
746/// ParseLambdaExpression - Parse a C++11 lambda expression.
747///
748/// lambda-expression:
749/// lambda-introducer lambda-declarator compound-statement
750/// lambda-introducer '<' template-parameter-list '>'
751/// requires-clause[opt] lambda-declarator compound-statement
752///
753/// lambda-introducer:
754/// '[' lambda-capture[opt] ']'
755///
756/// lambda-capture:
757/// capture-default
758/// capture-list
759/// capture-default ',' capture-list
760///
761/// capture-default:
762/// '&'
763/// '='
764///
765/// capture-list:
766/// capture
767/// capture-list ',' capture
768///
769/// capture:
770/// simple-capture
771/// init-capture [C++1y]
772///
773/// simple-capture:
774/// identifier
775/// '&' identifier
776/// 'this'
777///
778/// init-capture: [C++1y]
779/// identifier initializer
780/// '&' identifier initializer
781///
782/// lambda-declarator:
783/// lambda-specifiers [C++23]
784/// '(' parameter-declaration-clause ')' lambda-specifiers
785/// requires-clause[opt]
786///
787/// lambda-specifiers:
788/// decl-specifier-seq[opt] noexcept-specifier[opt]
789/// attribute-specifier-seq[opt] trailing-return-type[opt]
790///
791ExprResult Parser::ParseLambdaExpression() {
792 // Parse lambda-introducer.
793 LambdaIntroducer Intro;
794 if (ParseLambdaIntroducer(Intro)) {
795 SkipUntil(T: tok::r_square, Flags: StopAtSemi);
796 SkipUntil(T: tok::l_brace, Flags: StopAtSemi);
797 SkipUntil(T: tok::r_brace, Flags: StopAtSemi);
798 return ExprError();
799 }
800
801 return ParseLambdaExpressionAfterIntroducer(Intro);
802}
803
804/// Use lookahead and potentially tentative parsing to determine if we are
805/// looking at a C++11 lambda expression, and parse it if we are.
806///
807/// If we are not looking at a lambda expression, returns ExprError().
808ExprResult Parser::TryParseLambdaExpression() {
809 assert(getLangOpts().CPlusPlus11
810 && Tok.is(tok::l_square)
811 && "Not at the start of a possible lambda expression.");
812
813 const Token Next = NextToken();
814 if (Next.is(K: tok::eof)) // Nothing else to lookup here...
815 return ExprEmpty();
816
817 const Token After = GetLookAheadToken(N: 2);
818 // If lookahead indicates this is a lambda...
819 if (Next.is(K: tok::r_square) || // []
820 Next.is(K: tok::equal) || // [=
821 (Next.is(K: tok::amp) && // [&] or [&,
822 After.isOneOf(K1: tok::r_square, K2: tok::comma)) ||
823 (Next.is(K: tok::identifier) && // [identifier]
824 After.is(K: tok::r_square)) ||
825 Next.is(K: tok::ellipsis)) { // [...
826 return ParseLambdaExpression();
827 }
828
829 // If lookahead indicates an ObjC message send...
830 // [identifier identifier
831 if (Next.is(K: tok::identifier) && After.is(K: tok::identifier))
832 return ExprEmpty();
833
834 // Here, we're stuck: lambda introducers and Objective-C message sends are
835 // unambiguous, but it requires arbitrary lookhead. [a,b,c,d,e,f,g] is a
836 // lambda, and [a,b,c,d,e,f,g h] is a Objective-C message send. Instead of
837 // writing two routines to parse a lambda introducer, just try to parse
838 // a lambda introducer first, and fall back if that fails.
839 LambdaIntroducer Intro;
840 {
841 TentativeParsingAction TPA(*this);
842 LambdaIntroducerTentativeParse Tentative;
843 if (ParseLambdaIntroducer(Intro, Tentative: &Tentative)) {
844 TPA.Commit();
845 return ExprError();
846 }
847
848 switch (Tentative) {
849 case LambdaIntroducerTentativeParse::Success:
850 TPA.Commit();
851 break;
852
853 case LambdaIntroducerTentativeParse::Incomplete:
854 // Didn't fully parse the lambda-introducer, try again with a
855 // non-tentative parse.
856 TPA.Revert();
857 Intro = LambdaIntroducer();
858 if (ParseLambdaIntroducer(Intro))
859 return ExprError();
860 break;
861
862 case LambdaIntroducerTentativeParse::MessageSend:
863 case LambdaIntroducerTentativeParse::Invalid:
864 // Not a lambda-introducer, might be a message send.
865 TPA.Revert();
866 return ExprEmpty();
867 }
868 }
869
870 return ParseLambdaExpressionAfterIntroducer(Intro);
871}
872
873/// Parse a lambda introducer.
874/// \param Intro A LambdaIntroducer filled in with information about the
875/// contents of the lambda-introducer.
876/// \param Tentative If non-null, we are disambiguating between a
877/// lambda-introducer and some other construct. In this mode, we do not
878/// produce any diagnostics or take any other irreversible action unless
879/// we're sure that this is a lambda-expression.
880/// \return \c true if parsing (or disambiguation) failed with a diagnostic and
881/// the caller should bail out / recover.
882bool Parser::ParseLambdaIntroducer(LambdaIntroducer &Intro,
883 LambdaIntroducerTentativeParse *Tentative) {
884 if (Tentative)
885 *Tentative = LambdaIntroducerTentativeParse::Success;
886
887 assert(Tok.is(tok::l_square) && "Lambda expressions begin with '['.");
888 BalancedDelimiterTracker T(*this, tok::l_square);
889 T.consumeOpen();
890
891 Intro.Range.setBegin(T.getOpenLocation());
892
893 bool First = true;
894
895 // Produce a diagnostic if we're not tentatively parsing; otherwise track
896 // that our parse has failed.
897 auto Invalid = [&](llvm::function_ref<void()> Action) {
898 if (Tentative) {
899 *Tentative = LambdaIntroducerTentativeParse::Invalid;
900 return false;
901 }
902 Action();
903 return true;
904 };
905
906 // Perform some irreversible action if this is a non-tentative parse;
907 // otherwise note that our actions were incomplete.
908 auto NonTentativeAction = [&](llvm::function_ref<void()> Action) {
909 if (Tentative)
910 *Tentative = LambdaIntroducerTentativeParse::Incomplete;
911 else
912 Action();
913 };
914
915 // Parse capture-default.
916 if (Tok.is(K: tok::amp) &&
917 (NextToken().is(K: tok::comma) || NextToken().is(K: tok::r_square))) {
918 Intro.Default = LCD_ByRef;
919 Intro.DefaultLoc = ConsumeToken();
920 First = false;
921 if (!Tok.getIdentifierInfo()) {
922 // This can only be a lambda; no need for tentative parsing any more.
923 // '[[and]]' can still be an attribute, though.
924 Tentative = nullptr;
925 }
926 } else if (Tok.is(K: tok::equal)) {
927 Intro.Default = LCD_ByCopy;
928 Intro.DefaultLoc = ConsumeToken();
929 First = false;
930 Tentative = nullptr;
931 }
932
933 while (Tok.isNot(K: tok::r_square)) {
934 if (!First) {
935 if (Tok.isNot(K: tok::comma)) {
936 // Provide a completion for a lambda introducer here. Except
937 // in Objective-C, where this is Almost Surely meant to be a message
938 // send. In that case, fail here and let the ObjC message
939 // expression parser perform the completion.
940 if (Tok.is(K: tok::code_completion) &&
941 !(getLangOpts().ObjC && Tentative)) {
942 cutOffParsing();
943 Actions.CodeCompleteLambdaIntroducer(S: getCurScope(), Intro,
944 /*AfterAmpersand=*/false);
945 break;
946 }
947
948 return Invalid([&] {
949 Diag(Tok.getLocation(), diag::err_expected_comma_or_rsquare);
950 });
951 }
952 ConsumeToken();
953 }
954
955 if (Tok.is(K: tok::code_completion)) {
956 cutOffParsing();
957 // If we're in Objective-C++ and we have a bare '[', then this is more
958 // likely to be a message receiver.
959 if (getLangOpts().ObjC && Tentative && First)
960 Actions.CodeCompleteObjCMessageReceiver(S: getCurScope());
961 else
962 Actions.CodeCompleteLambdaIntroducer(S: getCurScope(), Intro,
963 /*AfterAmpersand=*/false);
964 break;
965 }
966
967 First = false;
968
969 // Parse capture.
970 LambdaCaptureKind Kind = LCK_ByCopy;
971 LambdaCaptureInitKind InitKind = LambdaCaptureInitKind::NoInit;
972 SourceLocation Loc;
973 IdentifierInfo *Id = nullptr;
974 SourceLocation EllipsisLocs[4];
975 ExprResult Init;
976 SourceLocation LocStart = Tok.getLocation();
977
978 if (Tok.is(K: tok::star)) {
979 Loc = ConsumeToken();
980 if (Tok.is(K: tok::kw_this)) {
981 ConsumeToken();
982 Kind = LCK_StarThis;
983 } else {
984 return Invalid([&] {
985 Diag(Tok.getLocation(), diag::err_expected_star_this_capture);
986 });
987 }
988 } else if (Tok.is(K: tok::kw_this)) {
989 Kind = LCK_This;
990 Loc = ConsumeToken();
991 } else if (Tok.isOneOf(K1: tok::amp, K2: tok::equal) &&
992 NextToken().isOneOf(K1: tok::comma, K2: tok::r_square) &&
993 Intro.Default == LCD_None) {
994 // We have a lone "&" or "=" which is either a misplaced capture-default
995 // or the start of a capture (in the "&" case) with the rest of the
996 // capture missing. Both are an error but a misplaced capture-default
997 // is more likely if we don't already have a capture default.
998 return Invalid(
999 [&] { Diag(Tok.getLocation(), diag::err_capture_default_first); });
1000 } else {
1001 TryConsumeToken(Expected: tok::ellipsis, Loc&: EllipsisLocs[0]);
1002
1003 if (Tok.is(K: tok::amp)) {
1004 Kind = LCK_ByRef;
1005 ConsumeToken();
1006
1007 if (Tok.is(K: tok::code_completion)) {
1008 cutOffParsing();
1009 Actions.CodeCompleteLambdaIntroducer(S: getCurScope(), Intro,
1010 /*AfterAmpersand=*/true);
1011 break;
1012 }
1013 }
1014
1015 TryConsumeToken(Expected: tok::ellipsis, Loc&: EllipsisLocs[1]);
1016
1017 if (Tok.is(K: tok::identifier)) {
1018 Id = Tok.getIdentifierInfo();
1019 Loc = ConsumeToken();
1020 } else if (Tok.is(K: tok::kw_this)) {
1021 return Invalid([&] {
1022 // FIXME: Suggest a fixit here.
1023 Diag(Tok.getLocation(), diag::err_this_captured_by_reference);
1024 });
1025 } else {
1026 return Invalid([&] {
1027 Diag(Tok.getLocation(), diag::err_expected_capture);
1028 });
1029 }
1030
1031 TryConsumeToken(Expected: tok::ellipsis, Loc&: EllipsisLocs[2]);
1032
1033 if (Tok.is(K: tok::l_paren)) {
1034 BalancedDelimiterTracker Parens(*this, tok::l_paren);
1035 Parens.consumeOpen();
1036
1037 InitKind = LambdaCaptureInitKind::DirectInit;
1038
1039 ExprVector Exprs;
1040 if (Tentative) {
1041 Parens.skipToEnd();
1042 *Tentative = LambdaIntroducerTentativeParse::Incomplete;
1043 } else if (ParseExpressionList(Exprs)) {
1044 Parens.skipToEnd();
1045 Init = ExprError();
1046 } else {
1047 Parens.consumeClose();
1048 Init = Actions.ActOnParenListExpr(L: Parens.getOpenLocation(),
1049 R: Parens.getCloseLocation(),
1050 Val: Exprs);
1051 }
1052 } else if (Tok.isOneOf(K1: tok::l_brace, K2: tok::equal)) {
1053 // Each lambda init-capture forms its own full expression, which clears
1054 // Actions.MaybeODRUseExprs. So create an expression evaluation context
1055 // to save the necessary state, and restore it later.
1056 EnterExpressionEvaluationContext EC(
1057 Actions, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
1058
1059 if (TryConsumeToken(Expected: tok::equal))
1060 InitKind = LambdaCaptureInitKind::CopyInit;
1061 else
1062 InitKind = LambdaCaptureInitKind::ListInit;
1063
1064 if (!Tentative) {
1065 Init = ParseInitializer();
1066 } else if (Tok.is(K: tok::l_brace)) {
1067 BalancedDelimiterTracker Braces(*this, tok::l_brace);
1068 Braces.consumeOpen();
1069 Braces.skipToEnd();
1070 *Tentative = LambdaIntroducerTentativeParse::Incomplete;
1071 } else {
1072 // We're disambiguating this:
1073 //
1074 // [..., x = expr
1075 //
1076 // We need to find the end of the following expression in order to
1077 // determine whether this is an Obj-C message send's receiver, a
1078 // C99 designator, or a lambda init-capture.
1079 //
1080 // Parse the expression to find where it ends, and annotate it back
1081 // onto the tokens. We would have parsed this expression the same way
1082 // in either case: both the RHS of an init-capture and the RHS of an
1083 // assignment expression are parsed as an initializer-clause, and in
1084 // neither case can anything be added to the scope between the '[' and
1085 // here.
1086 //
1087 // FIXME: This is horrible. Adding a mechanism to skip an expression
1088 // would be much cleaner.
1089 // FIXME: If there is a ',' before the next ']' or ':', we can skip to
1090 // that instead. (And if we see a ':' with no matching '?', we can
1091 // classify this as an Obj-C message send.)
1092 SourceLocation StartLoc = Tok.getLocation();
1093 InMessageExpressionRAIIObject MaybeInMessageExpression(*this, true);
1094 Init = ParseInitializer();
1095 if (!Init.isInvalid())
1096 Init = Actions.CorrectDelayedTyposInExpr(E: Init.get());
1097
1098 if (Tok.getLocation() != StartLoc) {
1099 // Back out the lexing of the token after the initializer.
1100 PP.RevertCachedTokens(N: 1);
1101
1102 // Replace the consumed tokens with an appropriate annotation.
1103 Tok.setLocation(StartLoc);
1104 Tok.setKind(tok::annot_primary_expr);
1105 setExprAnnotation(Tok, ER: Init);
1106 Tok.setAnnotationEndLoc(PP.getLastCachedTokenLocation());
1107 PP.AnnotateCachedTokens(Tok);
1108
1109 // Consume the annotated initializer.
1110 ConsumeAnnotationToken();
1111 }
1112 }
1113 }
1114
1115 TryConsumeToken(Expected: tok::ellipsis, Loc&: EllipsisLocs[3]);
1116 }
1117
1118 // Check if this is a message send before we act on a possible init-capture.
1119 if (Tentative && Tok.is(K: tok::identifier) &&
1120 NextToken().isOneOf(K1: tok::colon, K2: tok::r_square)) {
1121 // This can only be a message send. We're done with disambiguation.
1122 *Tentative = LambdaIntroducerTentativeParse::MessageSend;
1123 return false;
1124 }
1125
1126 // Ensure that any ellipsis was in the right place.
1127 SourceLocation EllipsisLoc;
1128 if (llvm::any_of(Range&: EllipsisLocs,
1129 P: [](SourceLocation Loc) { return Loc.isValid(); })) {
1130 // The '...' should appear before the identifier in an init-capture, and
1131 // after the identifier otherwise.
1132 bool InitCapture = InitKind != LambdaCaptureInitKind::NoInit;
1133 SourceLocation *ExpectedEllipsisLoc =
1134 !InitCapture ? &EllipsisLocs[2] :
1135 Kind == LCK_ByRef ? &EllipsisLocs[1] :
1136 &EllipsisLocs[0];
1137 EllipsisLoc = *ExpectedEllipsisLoc;
1138
1139 unsigned DiagID = 0;
1140 if (EllipsisLoc.isInvalid()) {
1141 DiagID = diag::err_lambda_capture_misplaced_ellipsis;
1142 for (SourceLocation Loc : EllipsisLocs) {
1143 if (Loc.isValid())
1144 EllipsisLoc = Loc;
1145 }
1146 } else {
1147 unsigned NumEllipses = std::accumulate(
1148 first: std::begin(arr&: EllipsisLocs), last: std::end(arr&: EllipsisLocs), init: 0,
1149 binary_op: [](int N, SourceLocation Loc) { return N + Loc.isValid(); });
1150 if (NumEllipses > 1)
1151 DiagID = diag::err_lambda_capture_multiple_ellipses;
1152 }
1153 if (DiagID) {
1154 NonTentativeAction([&] {
1155 // Point the diagnostic at the first misplaced ellipsis.
1156 SourceLocation DiagLoc;
1157 for (SourceLocation &Loc : EllipsisLocs) {
1158 if (&Loc != ExpectedEllipsisLoc && Loc.isValid()) {
1159 DiagLoc = Loc;
1160 break;
1161 }
1162 }
1163 assert(DiagLoc.isValid() && "no location for diagnostic");
1164
1165 // Issue the diagnostic and produce fixits showing where the ellipsis
1166 // should have been written.
1167 auto &&D = Diag(Loc: DiagLoc, DiagID);
1168 if (DiagID == diag::err_lambda_capture_misplaced_ellipsis) {
1169 SourceLocation ExpectedLoc =
1170 InitCapture ? Loc
1171 : Lexer::getLocForEndOfToken(
1172 Loc, Offset: 0, SM: PP.getSourceManager(), LangOpts: getLangOpts());
1173 D << InitCapture << FixItHint::CreateInsertion(InsertionLoc: ExpectedLoc, Code: "...");
1174 }
1175 for (SourceLocation &Loc : EllipsisLocs) {
1176 if (&Loc != ExpectedEllipsisLoc && Loc.isValid())
1177 D << FixItHint::CreateRemoval(RemoveRange: Loc);
1178 }
1179 });
1180 }
1181 }
1182
1183 // Process the init-capture initializers now rather than delaying until we
1184 // form the lambda-expression so that they can be handled in the context
1185 // enclosing the lambda-expression, rather than in the context of the
1186 // lambda-expression itself.
1187 ParsedType InitCaptureType;
1188 if (Init.isUsable())
1189 Init = Actions.CorrectDelayedTyposInExpr(E: Init.get());
1190 if (Init.isUsable()) {
1191 NonTentativeAction([&] {
1192 // Get the pointer and store it in an lvalue, so we can use it as an
1193 // out argument.
1194 Expr *InitExpr = Init.get();
1195 // This performs any lvalue-to-rvalue conversions if necessary, which
1196 // can affect what gets captured in the containing decl-context.
1197 InitCaptureType = Actions.actOnLambdaInitCaptureInitialization(
1198 Loc, ByRef: Kind == LCK_ByRef, EllipsisLoc, Id, InitKind, Init&: InitExpr);
1199 Init = InitExpr;
1200 });
1201 }
1202
1203 SourceLocation LocEnd = PrevTokLocation;
1204
1205 Intro.addCapture(Kind, Loc, Id, EllipsisLoc, InitKind, Init,
1206 InitCaptureType, ExplicitRange: SourceRange(LocStart, LocEnd));
1207 }
1208
1209 T.consumeClose();
1210 Intro.Range.setEnd(T.getCloseLocation());
1211 return false;
1212}
1213
1214static void tryConsumeLambdaSpecifierToken(Parser &P,
1215 SourceLocation &MutableLoc,
1216 SourceLocation &StaticLoc,
1217 SourceLocation &ConstexprLoc,
1218 SourceLocation &ConstevalLoc,
1219 SourceLocation &DeclEndLoc) {
1220 assert(MutableLoc.isInvalid());
1221 assert(StaticLoc.isInvalid());
1222 assert(ConstexprLoc.isInvalid());
1223 assert(ConstevalLoc.isInvalid());
1224 // Consume constexpr-opt mutable-opt in any sequence, and set the DeclEndLoc
1225 // to the final of those locations. Emit an error if we have multiple
1226 // copies of those keywords and recover.
1227
1228 auto ConsumeLocation = [&P, &DeclEndLoc](SourceLocation &SpecifierLoc,
1229 int DiagIndex) {
1230 if (SpecifierLoc.isValid()) {
1231 P.Diag(P.getCurToken().getLocation(),
1232 diag::err_lambda_decl_specifier_repeated)
1233 << DiagIndex
1234 << FixItHint::CreateRemoval(P.getCurToken().getLocation());
1235 }
1236 SpecifierLoc = P.ConsumeToken();
1237 DeclEndLoc = SpecifierLoc;
1238 };
1239
1240 while (true) {
1241 switch (P.getCurToken().getKind()) {
1242 case tok::kw_mutable:
1243 ConsumeLocation(MutableLoc, 0);
1244 break;
1245 case tok::kw_static:
1246 ConsumeLocation(StaticLoc, 1);
1247 break;
1248 case tok::kw_constexpr:
1249 ConsumeLocation(ConstexprLoc, 2);
1250 break;
1251 case tok::kw_consteval:
1252 ConsumeLocation(ConstevalLoc, 3);
1253 break;
1254 default:
1255 return;
1256 }
1257 }
1258}
1259
1260static void addStaticToLambdaDeclSpecifier(Parser &P, SourceLocation StaticLoc,
1261 DeclSpec &DS) {
1262 if (StaticLoc.isValid()) {
1263 P.Diag(StaticLoc, !P.getLangOpts().CPlusPlus23
1264 ? diag::err_static_lambda
1265 : diag::warn_cxx20_compat_static_lambda);
1266 const char *PrevSpec = nullptr;
1267 unsigned DiagID = 0;
1268 DS.SetStorageClassSpec(S&: P.getActions(), SC: DeclSpec::SCS_static, Loc: StaticLoc,
1269 PrevSpec, DiagID,
1270 Policy: P.getActions().getASTContext().getPrintingPolicy());
1271 assert(PrevSpec == nullptr && DiagID == 0 &&
1272 "Static cannot have been set previously!");
1273 }
1274}
1275
1276static void
1277addConstexprToLambdaDeclSpecifier(Parser &P, SourceLocation ConstexprLoc,
1278 DeclSpec &DS) {
1279 if (ConstexprLoc.isValid()) {
1280 P.Diag(ConstexprLoc, !P.getLangOpts().CPlusPlus17
1281 ? diag::ext_constexpr_on_lambda_cxx17
1282 : diag::warn_cxx14_compat_constexpr_on_lambda);
1283 const char *PrevSpec = nullptr;
1284 unsigned DiagID = 0;
1285 DS.SetConstexprSpec(ConstexprKind: ConstexprSpecKind::Constexpr, Loc: ConstexprLoc, PrevSpec,
1286 DiagID);
1287 assert(PrevSpec == nullptr && DiagID == 0 &&
1288 "Constexpr cannot have been set previously!");
1289 }
1290}
1291
1292static void addConstevalToLambdaDeclSpecifier(Parser &P,
1293 SourceLocation ConstevalLoc,
1294 DeclSpec &DS) {
1295 if (ConstevalLoc.isValid()) {
1296 P.Diag(ConstevalLoc, diag::warn_cxx20_compat_consteval);
1297 const char *PrevSpec = nullptr;
1298 unsigned DiagID = 0;
1299 DS.SetConstexprSpec(ConstexprKind: ConstexprSpecKind::Consteval, Loc: ConstevalLoc, PrevSpec,
1300 DiagID);
1301 if (DiagID != 0)
1302 P.Diag(Loc: ConstevalLoc, DiagID) << PrevSpec;
1303 }
1304}
1305
1306static void DiagnoseStaticSpecifierRestrictions(Parser &P,
1307 SourceLocation StaticLoc,
1308 SourceLocation MutableLoc,
1309 const LambdaIntroducer &Intro) {
1310 if (StaticLoc.isInvalid())
1311 return;
1312
1313 // [expr.prim.lambda.general] p4
1314 // The lambda-specifier-seq shall not contain both mutable and static.
1315 // If the lambda-specifier-seq contains static, there shall be no
1316 // lambda-capture.
1317 if (MutableLoc.isValid())
1318 P.Diag(StaticLoc, diag::err_static_mutable_lambda);
1319 if (Intro.hasLambdaCapture()) {
1320 P.Diag(StaticLoc, diag::err_static_lambda_captures);
1321 }
1322}
1323
1324/// ParseLambdaExpressionAfterIntroducer - Parse the rest of a lambda
1325/// expression.
1326ExprResult Parser::ParseLambdaExpressionAfterIntroducer(
1327 LambdaIntroducer &Intro) {
1328 SourceLocation LambdaBeginLoc = Intro.Range.getBegin();
1329 Diag(LambdaBeginLoc, diag::warn_cxx98_compat_lambda);
1330
1331 PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), LambdaBeginLoc,
1332 "lambda expression parsing");
1333
1334 // Parse lambda-declarator[opt].
1335 DeclSpec DS(AttrFactory);
1336 Declarator D(DS, ParsedAttributesView::none(), DeclaratorContext::LambdaExpr);
1337 TemplateParameterDepthRAII CurTemplateDepthTracker(TemplateParameterDepth);
1338
1339 ParseScope LambdaScope(this, Scope::LambdaScope | Scope::DeclScope |
1340 Scope::FunctionDeclarationScope |
1341 Scope::FunctionPrototypeScope);
1342
1343 Actions.PushLambdaScope();
1344 Actions.ActOnLambdaExpressionAfterIntroducer(Intro, CurContext: getCurScope());
1345
1346 ParsedAttributes Attributes(AttrFactory);
1347 if (getLangOpts().CUDA) {
1348 // In CUDA code, GNU attributes are allowed to appear immediately after the
1349 // "[...]", even if there is no "(...)" before the lambda body.
1350 //
1351 // Note that we support __noinline__ as a keyword in this mode and thus
1352 // it has to be separately handled.
1353 while (true) {
1354 if (Tok.is(K: tok::kw___noinline__)) {
1355 IdentifierInfo *AttrName = Tok.getIdentifierInfo();
1356 SourceLocation AttrNameLoc = ConsumeToken();
1357 Attributes.addNew(attrName: AttrName, attrRange: AttrNameLoc, /*ScopeName=*/scopeName: nullptr,
1358 scopeLoc: AttrNameLoc, /*ArgsUnion=*/args: nullptr,
1359 /*numArgs=*/0, form: tok::kw___noinline__);
1360 } else if (Tok.is(K: tok::kw___attribute))
1361 ParseGNUAttributes(Attrs&: Attributes, /*LatePArsedAttrList=*/LateAttrs: nullptr, D: &D);
1362 else
1363 break;
1364 }
1365
1366 D.takeAttributes(attrs&: Attributes);
1367 }
1368
1369 MultiParseScope TemplateParamScope(*this);
1370 if (Tok.is(K: tok::less)) {
1371 Diag(Tok, getLangOpts().CPlusPlus20
1372 ? diag::warn_cxx17_compat_lambda_template_parameter_list
1373 : diag::ext_lambda_template_parameter_list);
1374
1375 SmallVector<NamedDecl*, 4> TemplateParams;
1376 SourceLocation LAngleLoc, RAngleLoc;
1377 if (ParseTemplateParameters(TemplateScopes&: TemplateParamScope,
1378 Depth: CurTemplateDepthTracker.getDepth(),
1379 TemplateParams, LAngleLoc, RAngleLoc)) {
1380 Actions.ActOnLambdaError(StartLoc: LambdaBeginLoc, CurScope: getCurScope());
1381 return ExprError();
1382 }
1383
1384 if (TemplateParams.empty()) {
1385 Diag(RAngleLoc,
1386 diag::err_lambda_template_parameter_list_empty);
1387 } else {
1388 ExprResult RequiresClause;
1389 if (TryConsumeToken(Expected: tok::kw_requires)) {
1390 RequiresClause =
1391 Actions.ActOnRequiresClause(ConstraintExpr: ParseConstraintLogicalOrExpression(
1392 /*IsTrailingRequiresClause=*/false));
1393 if (RequiresClause.isInvalid())
1394 SkipUntil(Toks: {tok::l_brace, tok::l_paren}, Flags: StopAtSemi | StopBeforeMatch);
1395 }
1396
1397 Actions.ActOnLambdaExplicitTemplateParameterList(
1398 Intro, LAngleLoc, TParams: TemplateParams, RAngleLoc, RequiresClause);
1399 ++CurTemplateDepthTracker;
1400 }
1401 }
1402
1403 // Implement WG21 P2173, which allows attributes immediately before the
1404 // lambda declarator and applies them to the corresponding function operator
1405 // or operator template declaration. We accept this as a conforming extension
1406 // in all language modes that support lambdas.
1407 if (isCXX11AttributeSpecifier()) {
1408 Diag(Tok, getLangOpts().CPlusPlus23
1409 ? diag::warn_cxx20_compat_decl_attrs_on_lambda
1410 : diag::ext_decl_attrs_on_lambda)
1411 << Tok.getIdentifierInfo() << Tok.isRegularKeywordAttribute();
1412 MaybeParseCXX11Attributes(D);
1413 }
1414
1415 TypeResult TrailingReturnType;
1416 SourceLocation TrailingReturnTypeLoc;
1417 SourceLocation LParenLoc, RParenLoc;
1418 SourceLocation DeclEndLoc;
1419 bool HasParentheses = false;
1420 bool HasSpecifiers = false;
1421 SourceLocation MutableLoc;
1422
1423 ParseScope Prototype(this, Scope::FunctionPrototypeScope |
1424 Scope::FunctionDeclarationScope |
1425 Scope::DeclScope);
1426
1427 // Parse parameter-declaration-clause.
1428 SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
1429 SourceLocation EllipsisLoc;
1430
1431 if (Tok.is(K: tok::l_paren)) {
1432 BalancedDelimiterTracker T(*this, tok::l_paren);
1433 T.consumeOpen();
1434 LParenLoc = T.getOpenLocation();
1435
1436 if (Tok.isNot(K: tok::r_paren)) {
1437 Actions.RecordParsingTemplateParameterDepth(
1438 Depth: CurTemplateDepthTracker.getOriginalDepth());
1439
1440 ParseParameterDeclarationClause(D, attrs&: Attributes, ParamInfo, EllipsisLoc);
1441 // For a generic lambda, each 'auto' within the parameter declaration
1442 // clause creates a template type parameter, so increment the depth.
1443 // If we've parsed any explicit template parameters, then the depth will
1444 // have already been incremented. So we make sure that at most a single
1445 // depth level is added.
1446 if (Actions.getCurGenericLambda())
1447 CurTemplateDepthTracker.setAddedDepth(1);
1448 }
1449
1450 T.consumeClose();
1451 DeclEndLoc = RParenLoc = T.getCloseLocation();
1452 HasParentheses = true;
1453 }
1454
1455 HasSpecifiers =
1456 Tok.isOneOf(K1: tok::kw_mutable, Ks: tok::arrow, Ks: tok::kw___attribute,
1457 Ks: tok::kw_constexpr, Ks: tok::kw_consteval, Ks: tok::kw_static,
1458 Ks: tok::kw___private, Ks: tok::kw___global, Ks: tok::kw___local,
1459 Ks: tok::kw___constant, Ks: tok::kw___generic, Ks: tok::kw_groupshared,
1460 Ks: tok::kw_requires, Ks: tok::kw_noexcept) ||
1461 Tok.isRegularKeywordAttribute() ||
1462 (Tok.is(K: tok::l_square) && NextToken().is(K: tok::l_square));
1463
1464 if (HasSpecifiers && !HasParentheses && !getLangOpts().CPlusPlus23) {
1465 // It's common to forget that one needs '()' before 'mutable', an
1466 // attribute specifier, the result type, or the requires clause. Deal with
1467 // this.
1468 Diag(Tok, diag::ext_lambda_missing_parens)
1469 << FixItHint::CreateInsertion(Tok.getLocation(), "() ");
1470 }
1471
1472 if (HasParentheses || HasSpecifiers) {
1473 // GNU-style attributes must be parsed before the mutable specifier to
1474 // be compatible with GCC. MSVC-style attributes must be parsed before
1475 // the mutable specifier to be compatible with MSVC.
1476 MaybeParseAttributes(WhichAttrKinds: PAKM_GNU | PAKM_Declspec, Attrs&: Attributes);
1477 // Parse mutable-opt and/or constexpr-opt or consteval-opt, and update
1478 // the DeclEndLoc.
1479 SourceLocation ConstexprLoc;
1480 SourceLocation ConstevalLoc;
1481 SourceLocation StaticLoc;
1482
1483 tryConsumeLambdaSpecifierToken(P&: *this, MutableLoc, StaticLoc, ConstexprLoc,
1484 ConstevalLoc, DeclEndLoc);
1485
1486 DiagnoseStaticSpecifierRestrictions(P&: *this, StaticLoc, MutableLoc, Intro);
1487
1488 addStaticToLambdaDeclSpecifier(P&: *this, StaticLoc, DS);
1489 addConstexprToLambdaDeclSpecifier(P&: *this, ConstexprLoc, DS);
1490 addConstevalToLambdaDeclSpecifier(P&: *this, ConstevalLoc, DS);
1491 }
1492
1493 Actions.ActOnLambdaClosureParameters(LambdaScope: getCurScope(), ParamInfo);
1494
1495 if (!HasParentheses)
1496 Actions.ActOnLambdaClosureQualifiers(Intro, MutableLoc);
1497
1498 if (HasSpecifiers || HasParentheses) {
1499 // Parse exception-specification[opt].
1500 ExceptionSpecificationType ESpecType = EST_None;
1501 SourceRange ESpecRange;
1502 SmallVector<ParsedType, 2> DynamicExceptions;
1503 SmallVector<SourceRange, 2> DynamicExceptionRanges;
1504 ExprResult NoexceptExpr;
1505 CachedTokens *ExceptionSpecTokens;
1506
1507 ESpecType = tryParseExceptionSpecification(
1508 /*Delayed=*/false, SpecificationRange&: ESpecRange, DynamicExceptions,
1509 DynamicExceptionRanges, NoexceptExpr, ExceptionSpecTokens);
1510
1511 if (ESpecType != EST_None)
1512 DeclEndLoc = ESpecRange.getEnd();
1513
1514 // Parse attribute-specifier[opt].
1515 if (MaybeParseCXX11Attributes(Attrs&: Attributes))
1516 DeclEndLoc = Attributes.Range.getEnd();
1517
1518 // Parse OpenCL addr space attribute.
1519 if (Tok.isOneOf(K1: tok::kw___private, Ks: tok::kw___global, Ks: tok::kw___local,
1520 Ks: tok::kw___constant, Ks: tok::kw___generic)) {
1521 ParseOpenCLQualifiers(Attrs&: DS.getAttributes());
1522 ConsumeToken();
1523 }
1524
1525 SourceLocation FunLocalRangeEnd = DeclEndLoc;
1526
1527 // Parse trailing-return-type[opt].
1528 if (Tok.is(K: tok::arrow)) {
1529 FunLocalRangeEnd = Tok.getLocation();
1530 SourceRange Range;
1531 TrailingReturnType =
1532 ParseTrailingReturnType(Range, /*MayBeFollowedByDirectInit=*/false);
1533 TrailingReturnTypeLoc = Range.getBegin();
1534 if (Range.getEnd().isValid())
1535 DeclEndLoc = Range.getEnd();
1536 }
1537
1538 SourceLocation NoLoc;
1539 D.AddTypeInfo(TI: DeclaratorChunk::getFunction(
1540 /*HasProto=*/true,
1541 /*IsAmbiguous=*/false, LParenLoc, Params: ParamInfo.data(),
1542 NumParams: ParamInfo.size(), EllipsisLoc, RParenLoc,
1543 /*RefQualifierIsLvalueRef=*/true,
1544 /*RefQualifierLoc=*/NoLoc, MutableLoc, ESpecType,
1545 ESpecRange, Exceptions: DynamicExceptions.data(),
1546 ExceptionRanges: DynamicExceptionRanges.data(), NumExceptions: DynamicExceptions.size(),
1547 NoexceptExpr: NoexceptExpr.isUsable() ? NoexceptExpr.get() : nullptr,
1548 /*ExceptionSpecTokens*/ nullptr,
1549 /*DeclsInPrototype=*/std::nullopt, LocalRangeBegin: LParenLoc,
1550 LocalRangeEnd: FunLocalRangeEnd, TheDeclarator&: D, TrailingReturnType,
1551 TrailingReturnTypeLoc, MethodQualifiers: &DS),
1552 attrs: std::move(Attributes), EndLoc: DeclEndLoc);
1553
1554 Actions.ActOnLambdaClosureQualifiers(Intro, MutableLoc);
1555
1556 if (HasParentheses && Tok.is(K: tok::kw_requires))
1557 ParseTrailingRequiresClause(D);
1558 }
1559
1560 // Emit a warning if we see a CUDA host/device/global attribute
1561 // after '(...)'. nvcc doesn't accept this.
1562 if (getLangOpts().CUDA) {
1563 for (const ParsedAttr &A : Attributes)
1564 if (A.getKind() == ParsedAttr::AT_CUDADevice ||
1565 A.getKind() == ParsedAttr::AT_CUDAHost ||
1566 A.getKind() == ParsedAttr::AT_CUDAGlobal)
1567 Diag(A.getLoc(), diag::warn_cuda_attr_lambda_position)
1568 << A.getAttrName()->getName();
1569 }
1570
1571 Prototype.Exit();
1572
1573 // FIXME: Rename BlockScope -> ClosureScope if we decide to continue using
1574 // it.
1575 unsigned ScopeFlags = Scope::BlockScope | Scope::FnScope | Scope::DeclScope |
1576 Scope::CompoundStmtScope;
1577 ParseScope BodyScope(this, ScopeFlags);
1578
1579 Actions.ActOnStartOfLambdaDefinition(Intro, ParamInfo&: D, DS);
1580
1581 // Parse compound-statement.
1582 if (!Tok.is(K: tok::l_brace)) {
1583 Diag(Tok, diag::err_expected_lambda_body);
1584 Actions.ActOnLambdaError(StartLoc: LambdaBeginLoc, CurScope: getCurScope());
1585 return ExprError();
1586 }
1587
1588 StmtResult Stmt(ParseCompoundStatementBody());
1589 BodyScope.Exit();
1590 TemplateParamScope.Exit();
1591 LambdaScope.Exit();
1592
1593 if (!Stmt.isInvalid() && !TrailingReturnType.isInvalid() &&
1594 !D.isInvalidType())
1595 return Actions.ActOnLambdaExpr(StartLoc: LambdaBeginLoc, Body: Stmt.get());
1596
1597 Actions.ActOnLambdaError(StartLoc: LambdaBeginLoc, CurScope: getCurScope());
1598 return ExprError();
1599}
1600
1601/// ParseCXXCasts - This handles the various ways to cast expressions to another
1602/// type.
1603///
1604/// postfix-expression: [C++ 5.2p1]
1605/// 'dynamic_cast' '<' type-name '>' '(' expression ')'
1606/// 'static_cast' '<' type-name '>' '(' expression ')'
1607/// 'reinterpret_cast' '<' type-name '>' '(' expression ')'
1608/// 'const_cast' '<' type-name '>' '(' expression ')'
1609///
1610/// C++ for OpenCL s2.3.1 adds:
1611/// 'addrspace_cast' '<' type-name '>' '(' expression ')'
1612ExprResult Parser::ParseCXXCasts() {
1613 tok::TokenKind Kind = Tok.getKind();
1614 const char *CastName = nullptr; // For error messages
1615
1616 switch (Kind) {
1617 default: llvm_unreachable("Unknown C++ cast!");
1618 case tok::kw_addrspace_cast: CastName = "addrspace_cast"; break;
1619 case tok::kw_const_cast: CastName = "const_cast"; break;
1620 case tok::kw_dynamic_cast: CastName = "dynamic_cast"; break;
1621 case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break;
1622 case tok::kw_static_cast: CastName = "static_cast"; break;
1623 }
1624
1625 SourceLocation OpLoc = ConsumeToken();
1626 SourceLocation LAngleBracketLoc = Tok.getLocation();
1627
1628 // Check for "<::" which is parsed as "[:". If found, fix token stream,
1629 // diagnose error, suggest fix, and recover parsing.
1630 if (Tok.is(K: tok::l_square) && Tok.getLength() == 2) {
1631 Token Next = NextToken();
1632 if (Next.is(K: tok::colon) && areTokensAdjacent(First: Tok, Second: Next))
1633 FixDigraph(P&: *this, PP, DigraphToken&: Tok, ColonToken&: Next, Kind, /*AtDigraph*/true);
1634 }
1635
1636 if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName))
1637 return ExprError();
1638
1639 // Parse the common declaration-specifiers piece.
1640 DeclSpec DS(AttrFactory);
1641 ParseSpecifierQualifierList(DS, /*AccessSpecifier=*/AS: AS_none,
1642 DSC: DeclSpecContext::DSC_type_specifier);
1643
1644 // Parse the abstract-declarator, if present.
1645 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
1646 DeclaratorContext::TypeName);
1647 ParseDeclarator(D&: DeclaratorInfo);
1648
1649 SourceLocation RAngleBracketLoc = Tok.getLocation();
1650
1651 if (ExpectAndConsume(tok::greater))
1652 return ExprError(Diag(LAngleBracketLoc, diag::note_matching) << tok::less);
1653
1654 BalancedDelimiterTracker T(*this, tok::l_paren);
1655
1656 if (T.expectAndConsume(diag::err_expected_lparen_after, CastName))
1657 return ExprError();
1658
1659 ExprResult Result = ParseExpression();
1660
1661 // Match the ')'.
1662 T.consumeClose();
1663
1664 if (!Result.isInvalid() && !DeclaratorInfo.isInvalidType())
1665 Result = Actions.ActOnCXXNamedCast(OpLoc, Kind,
1666 LAngleBracketLoc, D&: DeclaratorInfo,
1667 RAngleBracketLoc,
1668 LParenLoc: T.getOpenLocation(), E: Result.get(),
1669 RParenLoc: T.getCloseLocation());
1670
1671 return Result;
1672}
1673
1674/// ParseCXXTypeid - This handles the C++ typeid expression.
1675///
1676/// postfix-expression: [C++ 5.2p1]
1677/// 'typeid' '(' expression ')'
1678/// 'typeid' '(' type-id ')'
1679///
1680ExprResult Parser::ParseCXXTypeid() {
1681 assert(Tok.is(tok::kw_typeid) && "Not 'typeid'!");
1682
1683 SourceLocation OpLoc = ConsumeToken();
1684 SourceLocation LParenLoc, RParenLoc;
1685 BalancedDelimiterTracker T(*this, tok::l_paren);
1686
1687 // typeid expressions are always parenthesized.
1688 if (T.expectAndConsume(diag::err_expected_lparen_after, "typeid"))
1689 return ExprError();
1690 LParenLoc = T.getOpenLocation();
1691
1692 ExprResult Result;
1693
1694 // C++0x [expr.typeid]p3:
1695 // When typeid is applied to an expression other than an lvalue of a
1696 // polymorphic class type [...] The expression is an unevaluated
1697 // operand (Clause 5).
1698 //
1699 // Note that we can't tell whether the expression is an lvalue of a
1700 // polymorphic class type until after we've parsed the expression; we
1701 // speculatively assume the subexpression is unevaluated, and fix it up
1702 // later.
1703 //
1704 // We enter the unevaluated context before trying to determine whether we
1705 // have a type-id, because the tentative parse logic will try to resolve
1706 // names, and must treat them as unevaluated.
1707 EnterExpressionEvaluationContext Unevaluated(
1708 Actions, Sema::ExpressionEvaluationContext::Unevaluated,
1709 Sema::ReuseLambdaContextDecl);
1710
1711 if (isTypeIdInParens()) {
1712 TypeResult Ty = ParseTypeName();
1713
1714 // Match the ')'.
1715 T.consumeClose();
1716 RParenLoc = T.getCloseLocation();
1717 if (Ty.isInvalid() || RParenLoc.isInvalid())
1718 return ExprError();
1719
1720 Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/true,
1721 TyOrExpr: Ty.get().getAsOpaquePtr(), RParenLoc);
1722 } else {
1723 Result = ParseExpression();
1724
1725 // Match the ')'.
1726 if (Result.isInvalid())
1727 SkipUntil(T: tok::r_paren, Flags: StopAtSemi);
1728 else {
1729 T.consumeClose();
1730 RParenLoc = T.getCloseLocation();
1731 if (RParenLoc.isInvalid())
1732 return ExprError();
1733
1734 Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/false,
1735 TyOrExpr: Result.get(), RParenLoc);
1736 }
1737 }
1738
1739 return Result;
1740}
1741
1742/// ParseCXXUuidof - This handles the Microsoft C++ __uuidof expression.
1743///
1744/// '__uuidof' '(' expression ')'
1745/// '__uuidof' '(' type-id ')'
1746///
1747ExprResult Parser::ParseCXXUuidof() {
1748 assert(Tok.is(tok::kw___uuidof) && "Not '__uuidof'!");
1749
1750 SourceLocation OpLoc = ConsumeToken();
1751 BalancedDelimiterTracker T(*this, tok::l_paren);
1752
1753 // __uuidof expressions are always parenthesized.
1754 if (T.expectAndConsume(diag::err_expected_lparen_after, "__uuidof"))
1755 return ExprError();
1756
1757 ExprResult Result;
1758
1759 if (isTypeIdInParens()) {
1760 TypeResult Ty = ParseTypeName();
1761
1762 // Match the ')'.
1763 T.consumeClose();
1764
1765 if (Ty.isInvalid())
1766 return ExprError();
1767
1768 Result = Actions.ActOnCXXUuidof(OpLoc, LParenLoc: T.getOpenLocation(), /*isType=*/true,
1769 TyOrExpr: Ty.get().getAsOpaquePtr(),
1770 RParenLoc: T.getCloseLocation());
1771 } else {
1772 EnterExpressionEvaluationContext Unevaluated(
1773 Actions, Sema::ExpressionEvaluationContext::Unevaluated);
1774 Result = ParseExpression();
1775
1776 // Match the ')'.
1777 if (Result.isInvalid())
1778 SkipUntil(T: tok::r_paren, Flags: StopAtSemi);
1779 else {
1780 T.consumeClose();
1781
1782 Result = Actions.ActOnCXXUuidof(OpLoc, LParenLoc: T.getOpenLocation(),
1783 /*isType=*/false,
1784 TyOrExpr: Result.get(), RParenLoc: T.getCloseLocation());
1785 }
1786 }
1787
1788 return Result;
1789}
1790
1791/// Parse a C++ pseudo-destructor expression after the base,
1792/// . or -> operator, and nested-name-specifier have already been
1793/// parsed. We're handling this fragment of the grammar:
1794///
1795/// postfix-expression: [C++2a expr.post]
1796/// postfix-expression . template[opt] id-expression
1797/// postfix-expression -> template[opt] id-expression
1798///
1799/// id-expression:
1800/// qualified-id
1801/// unqualified-id
1802///
1803/// qualified-id:
1804/// nested-name-specifier template[opt] unqualified-id
1805///
1806/// nested-name-specifier:
1807/// type-name ::
1808/// decltype-specifier :: FIXME: not implemented, but probably only
1809/// allowed in C++ grammar by accident
1810/// nested-name-specifier identifier ::
1811/// nested-name-specifier template[opt] simple-template-id ::
1812/// [...]
1813///
1814/// unqualified-id:
1815/// ~ type-name
1816/// ~ decltype-specifier
1817/// [...]
1818///
1819/// ... where the all but the last component of the nested-name-specifier
1820/// has already been parsed, and the base expression is not of a non-dependent
1821/// class type.
1822ExprResult
1823Parser::ParseCXXPseudoDestructor(Expr *Base, SourceLocation OpLoc,
1824 tok::TokenKind OpKind,
1825 CXXScopeSpec &SS,
1826 ParsedType ObjectType) {
1827 // If the last component of the (optional) nested-name-specifier is
1828 // template[opt] simple-template-id, it has already been annotated.
1829 UnqualifiedId FirstTypeName;
1830 SourceLocation CCLoc;
1831 if (Tok.is(K: tok::identifier)) {
1832 FirstTypeName.setIdentifier(Id: Tok.getIdentifierInfo(), IdLoc: Tok.getLocation());
1833 ConsumeToken();
1834 assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
1835 CCLoc = ConsumeToken();
1836 } else if (Tok.is(K: tok::annot_template_id)) {
1837 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(tok: Tok);
1838 // FIXME: Carry on and build an AST representation for tooling.
1839 if (TemplateId->isInvalid())
1840 return ExprError();
1841 FirstTypeName.setTemplateId(TemplateId);
1842 ConsumeAnnotationToken();
1843 assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
1844 CCLoc = ConsumeToken();
1845 } else {
1846 assert(SS.isEmpty() && "missing last component of nested name specifier");
1847 FirstTypeName.setIdentifier(Id: nullptr, IdLoc: SourceLocation());
1848 }
1849
1850 // Parse the tilde.
1851 assert(Tok.is(tok::tilde) && "ParseOptionalCXXScopeSpecifier fail");
1852 SourceLocation TildeLoc = ConsumeToken();
1853
1854 if (Tok.is(K: tok::kw_decltype) && !FirstTypeName.isValid()) {
1855 DeclSpec DS(AttrFactory);
1856 ParseDecltypeSpecifier(DS);
1857 if (DS.getTypeSpecType() == TST_error)
1858 return ExprError();
1859 return Actions.ActOnPseudoDestructorExpr(S: getCurScope(), Base, OpLoc, OpKind,
1860 TildeLoc, DS);
1861 }
1862
1863 if (!Tok.is(K: tok::identifier)) {
1864 Diag(Tok, diag::err_destructor_tilde_identifier);
1865 return ExprError();
1866 }
1867
1868 // pack-index-specifier
1869 if (GetLookAheadToken(N: 1).is(K: tok::ellipsis) &&
1870 GetLookAheadToken(N: 2).is(K: tok::l_square)) {
1871 DeclSpec DS(AttrFactory);
1872 ParsePackIndexingType(DS);
1873 return Actions.ActOnPseudoDestructorExpr(S: getCurScope(), Base, OpLoc, OpKind,
1874 TildeLoc, DS);
1875 }
1876
1877 // Parse the second type.
1878 UnqualifiedId SecondTypeName;
1879 IdentifierInfo *Name = Tok.getIdentifierInfo();
1880 SourceLocation NameLoc = ConsumeToken();
1881 SecondTypeName.setIdentifier(Id: Name, IdLoc: NameLoc);
1882
1883 // If there is a '<', the second type name is a template-id. Parse
1884 // it as such.
1885 //
1886 // FIXME: This is not a context in which a '<' is assumed to start a template
1887 // argument list. This affects examples such as
1888 // void f(auto *p) { p->~X<int>(); }
1889 // ... but there's no ambiguity, and nowhere to write 'template' in such an
1890 // example, so we accept it anyway.
1891 if (Tok.is(K: tok::less) &&
1892 ParseUnqualifiedIdTemplateId(
1893 SS, ObjectType, ObjectHadErrors: Base && Base->containsErrors(), TemplateKWLoc: SourceLocation(),
1894 Name, NameLoc, EnteringContext: false, Id&: SecondTypeName,
1895 /*AssumeTemplateId=*/true))
1896 return ExprError();
1897
1898 return Actions.ActOnPseudoDestructorExpr(S: getCurScope(), Base, OpLoc, OpKind,
1899 SS, FirstTypeName, CCLoc, TildeLoc,
1900 SecondTypeName);
1901}
1902
1903/// ParseCXXBoolLiteral - This handles the C++ Boolean literals.
1904///
1905/// boolean-literal: [C++ 2.13.5]
1906/// 'true'
1907/// 'false'
1908ExprResult Parser::ParseCXXBoolLiteral() {
1909 tok::TokenKind Kind = Tok.getKind();
1910 return Actions.ActOnCXXBoolLiteral(OpLoc: ConsumeToken(), Kind);
1911}
1912
1913/// ParseThrowExpression - This handles the C++ throw expression.
1914///
1915/// throw-expression: [C++ 15]
1916/// 'throw' assignment-expression[opt]
1917ExprResult Parser::ParseThrowExpression() {
1918 assert(Tok.is(tok::kw_throw) && "Not throw!");
1919 SourceLocation ThrowLoc = ConsumeToken(); // Eat the throw token.
1920
1921 // If the current token isn't the start of an assignment-expression,
1922 // then the expression is not present. This handles things like:
1923 // "C ? throw : (void)42", which is crazy but legal.
1924 switch (Tok.getKind()) { // FIXME: move this predicate somewhere common.
1925 case tok::semi:
1926 case tok::r_paren:
1927 case tok::r_square:
1928 case tok::r_brace:
1929 case tok::colon:
1930 case tok::comma:
1931 return Actions.ActOnCXXThrow(S: getCurScope(), OpLoc: ThrowLoc, expr: nullptr);
1932
1933 default:
1934 ExprResult Expr(ParseAssignmentExpression());
1935 if (Expr.isInvalid()) return Expr;
1936 return Actions.ActOnCXXThrow(S: getCurScope(), OpLoc: ThrowLoc, expr: Expr.get());
1937 }
1938}
1939
1940/// Parse the C++ Coroutines co_yield expression.
1941///
1942/// co_yield-expression:
1943/// 'co_yield' assignment-expression[opt]
1944ExprResult Parser::ParseCoyieldExpression() {
1945 assert(Tok.is(tok::kw_co_yield) && "Not co_yield!");
1946
1947 SourceLocation Loc = ConsumeToken();
1948 ExprResult Expr = Tok.is(K: tok::l_brace) ? ParseBraceInitializer()
1949 : ParseAssignmentExpression();
1950 if (!Expr.isInvalid())
1951 Expr = Actions.ActOnCoyieldExpr(S: getCurScope(), KwLoc: Loc, E: Expr.get());
1952 return Expr;
1953}
1954
1955/// ParseCXXThis - This handles the C++ 'this' pointer.
1956///
1957/// C++ 9.3.2: In the body of a non-static member function, the keyword this is
1958/// a non-lvalue expression whose value is the address of the object for which
1959/// the function is called.
1960ExprResult Parser::ParseCXXThis() {
1961 assert(Tok.is(tok::kw_this) && "Not 'this'!");
1962 SourceLocation ThisLoc = ConsumeToken();
1963 return Actions.ActOnCXXThis(loc: ThisLoc);
1964}
1965
1966/// ParseCXXTypeConstructExpression - Parse construction of a specified type.
1967/// Can be interpreted either as function-style casting ("int(x)")
1968/// or class type construction ("ClassType(x,y,z)")
1969/// or creation of a value-initialized type ("int()").
1970/// See [C++ 5.2.3].
1971///
1972/// postfix-expression: [C++ 5.2p1]
1973/// simple-type-specifier '(' expression-list[opt] ')'
1974/// [C++0x] simple-type-specifier braced-init-list
1975/// typename-specifier '(' expression-list[opt] ')'
1976/// [C++0x] typename-specifier braced-init-list
1977///
1978/// In C++1z onwards, the type specifier can also be a template-name.
1979ExprResult
1980Parser::ParseCXXTypeConstructExpression(const DeclSpec &DS) {
1981 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
1982 DeclaratorContext::FunctionalCast);
1983 ParsedType TypeRep = Actions.ActOnTypeName(D&: DeclaratorInfo).get();
1984
1985 assert((Tok.is(tok::l_paren) ||
1986 (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)))
1987 && "Expected '(' or '{'!");
1988
1989 if (Tok.is(K: tok::l_brace)) {
1990 PreferredType.enterTypeCast(Tok.getLocation(), TypeRep.get());
1991 ExprResult Init = ParseBraceInitializer();
1992 if (Init.isInvalid())
1993 return Init;
1994 Expr *InitList = Init.get();
1995 return Actions.ActOnCXXTypeConstructExpr(
1996 TypeRep, LParenOrBraceLoc: InitList->getBeginLoc(), Exprs: MultiExprArg(&InitList, 1),
1997 RParenOrBraceLoc: InitList->getEndLoc(), /*ListInitialization=*/true);
1998 } else {
1999 BalancedDelimiterTracker T(*this, tok::l_paren);
2000 T.consumeOpen();
2001
2002 PreferredType.enterTypeCast(Tok.getLocation(), TypeRep.get());
2003
2004 ExprVector Exprs;
2005
2006 auto RunSignatureHelp = [&]() {
2007 QualType PreferredType;
2008 if (TypeRep)
2009 PreferredType = Actions.ProduceConstructorSignatureHelp(
2010 Type: TypeRep.get()->getCanonicalTypeInternal(), Loc: DS.getEndLoc(), Args: Exprs,
2011 OpenParLoc: T.getOpenLocation(), /*Braced=*/false);
2012 CalledSignatureHelp = true;
2013 return PreferredType;
2014 };
2015
2016 if (Tok.isNot(K: tok::r_paren)) {
2017 if (ParseExpressionList(Exprs, ExpressionStarts: [&] {
2018 PreferredType.enterFunctionArgument(Tok.getLocation(),
2019 RunSignatureHelp);
2020 })) {
2021 if (PP.isCodeCompletionReached() && !CalledSignatureHelp)
2022 RunSignatureHelp();
2023 SkipUntil(T: tok::r_paren, Flags: StopAtSemi);
2024 return ExprError();
2025 }
2026 }
2027
2028 // Match the ')'.
2029 T.consumeClose();
2030
2031 // TypeRep could be null, if it references an invalid typedef.
2032 if (!TypeRep)
2033 return ExprError();
2034
2035 return Actions.ActOnCXXTypeConstructExpr(TypeRep, LParenOrBraceLoc: T.getOpenLocation(),
2036 Exprs, RParenOrBraceLoc: T.getCloseLocation(),
2037 /*ListInitialization=*/false);
2038 }
2039}
2040
2041Parser::DeclGroupPtrTy
2042Parser::ParseAliasDeclarationInInitStatement(DeclaratorContext Context,
2043 ParsedAttributes &Attrs) {
2044 assert(Tok.is(tok::kw_using) && "Expected using");
2045 assert((Context == DeclaratorContext::ForInit ||
2046 Context == DeclaratorContext::SelectionInit) &&
2047 "Unexpected Declarator Context");
2048 DeclGroupPtrTy DG;
2049 SourceLocation DeclStart = ConsumeToken(), DeclEnd;
2050
2051 DG = ParseUsingDeclaration(Context, TemplateInfo: {}, UsingLoc: DeclStart, DeclEnd, Attrs, AS: AS_none);
2052 if (!DG)
2053 return DG;
2054
2055 Diag(DeclStart, !getLangOpts().CPlusPlus23
2056 ? diag::ext_alias_in_init_statement
2057 : diag::warn_cxx20_alias_in_init_statement)
2058 << SourceRange(DeclStart, DeclEnd);
2059
2060 return DG;
2061}
2062
2063/// ParseCXXCondition - if/switch/while condition expression.
2064///
2065/// condition:
2066/// expression
2067/// type-specifier-seq declarator '=' assignment-expression
2068/// [C++11] type-specifier-seq declarator '=' initializer-clause
2069/// [C++11] type-specifier-seq declarator braced-init-list
2070/// [Clang] type-specifier-seq ref-qualifier[opt] '[' identifier-list ']'
2071/// brace-or-equal-initializer
2072/// [GNU] type-specifier-seq declarator simple-asm-expr[opt] attributes[opt]
2073/// '=' assignment-expression
2074///
2075/// In C++1z, a condition may in some contexts be preceded by an
2076/// optional init-statement. This function will parse that too.
2077///
2078/// \param InitStmt If non-null, an init-statement is permitted, and if present
2079/// will be parsed and stored here.
2080///
2081/// \param Loc The location of the start of the statement that requires this
2082/// condition, e.g., the "for" in a for loop.
2083///
2084/// \param MissingOK Whether an empty condition is acceptable here. Otherwise
2085/// it is considered an error to be recovered from.
2086///
2087/// \param FRI If non-null, a for range declaration is permitted, and if
2088/// present will be parsed and stored here, and a null result will be returned.
2089///
2090/// \param EnterForConditionScope If true, enter a continue/break scope at the
2091/// appropriate moment for a 'for' loop.
2092///
2093/// \returns The parsed condition.
2094Sema::ConditionResult
2095Parser::ParseCXXCondition(StmtResult *InitStmt, SourceLocation Loc,
2096 Sema::ConditionKind CK, bool MissingOK,
2097 ForRangeInfo *FRI, bool EnterForConditionScope) {
2098 // Helper to ensure we always enter a continue/break scope if requested.
2099 struct ForConditionScopeRAII {
2100 Scope *S;
2101 void enter(bool IsConditionVariable) {
2102 if (S) {
2103 S->AddFlags(Flags: Scope::BreakScope | Scope::ContinueScope);
2104 S->setIsConditionVarScope(IsConditionVariable);
2105 }
2106 }
2107 ~ForConditionScopeRAII() {
2108 if (S)
2109 S->setIsConditionVarScope(false);
2110 }
2111 } ForConditionScope{.S: EnterForConditionScope ? getCurScope() : nullptr};
2112
2113 ParenBraceBracketBalancer BalancerRAIIObj(*this);
2114 PreferredType.enterCondition(Actions, Tok.getLocation());
2115
2116 if (Tok.is(K: tok::code_completion)) {
2117 cutOffParsing();
2118 Actions.CodeCompleteOrdinaryName(S: getCurScope(), CompletionContext: Sema::PCC_Condition);
2119 return Sema::ConditionError();
2120 }
2121
2122 ParsedAttributes attrs(AttrFactory);
2123 MaybeParseCXX11Attributes(Attrs&: attrs);
2124
2125 const auto WarnOnInit = [this, &CK] {
2126 Diag(Tok.getLocation(), getLangOpts().CPlusPlus17
2127 ? diag::warn_cxx14_compat_init_statement
2128 : diag::ext_init_statement)
2129 << (CK == Sema::ConditionKind::Switch);
2130 };
2131
2132 // Determine what kind of thing we have.
2133 switch (isCXXConditionDeclarationOrInitStatement(CanBeInitStmt: InitStmt, CanBeForRangeDecl: FRI)) {
2134 case ConditionOrInitStatement::Expression: {
2135 // If this is a for loop, we're entering its condition.
2136 ForConditionScope.enter(/*IsConditionVariable=*/false);
2137
2138 ProhibitAttributes(Attrs&: attrs);
2139
2140 // We can have an empty expression here.
2141 // if (; true);
2142 if (InitStmt && Tok.is(K: tok::semi)) {
2143 WarnOnInit();
2144 SourceLocation SemiLoc = Tok.getLocation();
2145 if (!Tok.hasLeadingEmptyMacro() && !SemiLoc.isMacroID()) {
2146 Diag(SemiLoc, diag::warn_empty_init_statement)
2147 << (CK == Sema::ConditionKind::Switch)
2148 << FixItHint::CreateRemoval(SemiLoc);
2149 }
2150 ConsumeToken();
2151 *InitStmt = Actions.ActOnNullStmt(SemiLoc);
2152 return ParseCXXCondition(InitStmt: nullptr, Loc, CK, MissingOK);
2153 }
2154
2155 // Parse the expression.
2156 ExprResult Expr = ParseExpression(); // expression
2157 if (Expr.isInvalid())
2158 return Sema::ConditionError();
2159
2160 if (InitStmt && Tok.is(K: tok::semi)) {
2161 WarnOnInit();
2162 *InitStmt = Actions.ActOnExprStmt(Arg: Expr.get());
2163 ConsumeToken();
2164 return ParseCXXCondition(InitStmt: nullptr, Loc, CK, MissingOK);
2165 }
2166
2167 return Actions.ActOnCondition(S: getCurScope(), Loc, SubExpr: Expr.get(), CK,
2168 MissingOK);
2169 }
2170
2171 case ConditionOrInitStatement::InitStmtDecl: {
2172 WarnOnInit();
2173 DeclGroupPtrTy DG;
2174 SourceLocation DeclStart = Tok.getLocation(), DeclEnd;
2175 if (Tok.is(K: tok::kw_using))
2176 DG = ParseAliasDeclarationInInitStatement(
2177 Context: DeclaratorContext::SelectionInit, Attrs&: attrs);
2178 else {
2179 ParsedAttributes DeclSpecAttrs(AttrFactory);
2180 DG = ParseSimpleDeclaration(Context: DeclaratorContext::SelectionInit, DeclEnd,
2181 DeclAttrs&: attrs, DeclSpecAttrs, /*RequireSemi=*/true);
2182 }
2183 *InitStmt = Actions.ActOnDeclStmt(Decl: DG, StartLoc: DeclStart, EndLoc: DeclEnd);
2184 return ParseCXXCondition(InitStmt: nullptr, Loc, CK, MissingOK);
2185 }
2186
2187 case ConditionOrInitStatement::ForRangeDecl: {
2188 // This is 'for (init-stmt; for-range-decl : range-expr)'.
2189 // We're not actually in a for loop yet, so 'break' and 'continue' aren't
2190 // permitted here.
2191 assert(FRI && "should not parse a for range declaration here");
2192 SourceLocation DeclStart = Tok.getLocation(), DeclEnd;
2193 ParsedAttributes DeclSpecAttrs(AttrFactory);
2194 DeclGroupPtrTy DG = ParseSimpleDeclaration(
2195 Context: DeclaratorContext::ForInit, DeclEnd, DeclAttrs&: attrs, DeclSpecAttrs, RequireSemi: false, FRI);
2196 FRI->LoopVar = Actions.ActOnDeclStmt(Decl: DG, StartLoc: DeclStart, EndLoc: Tok.getLocation());
2197 return Sema::ConditionResult();
2198 }
2199
2200 case ConditionOrInitStatement::ConditionDecl:
2201 case ConditionOrInitStatement::Error:
2202 break;
2203 }
2204
2205 // If this is a for loop, we're entering its condition.
2206 ForConditionScope.enter(/*IsConditionVariable=*/true);
2207
2208 // type-specifier-seq
2209 DeclSpec DS(AttrFactory);
2210 ParseSpecifierQualifierList(DS, AS: AS_none, DSC: DeclSpecContext::DSC_condition);
2211
2212 // declarator
2213 Declarator DeclaratorInfo(DS, attrs, DeclaratorContext::Condition);
2214 ParseDeclarator(D&: DeclaratorInfo);
2215
2216 // simple-asm-expr[opt]
2217 if (Tok.is(K: tok::kw_asm)) {
2218 SourceLocation Loc;
2219 ExprResult AsmLabel(ParseSimpleAsm(/*ForAsmLabel*/ true, EndLoc: &Loc));
2220 if (AsmLabel.isInvalid()) {
2221 SkipUntil(T: tok::semi, Flags: StopAtSemi);
2222 return Sema::ConditionError();
2223 }
2224 DeclaratorInfo.setAsmLabel(AsmLabel.get());
2225 DeclaratorInfo.SetRangeEnd(Loc);
2226 }
2227
2228 // If attributes are present, parse them.
2229 MaybeParseGNUAttributes(D&: DeclaratorInfo);
2230
2231 // Type-check the declaration itself.
2232 DeclResult Dcl = Actions.ActOnCXXConditionDeclaration(S: getCurScope(),
2233 D&: DeclaratorInfo);
2234 if (Dcl.isInvalid())
2235 return Sema::ConditionError();
2236 Decl *DeclOut = Dcl.get();
2237
2238 // '=' assignment-expression
2239 // If a '==' or '+=' is found, suggest a fixit to '='.
2240 bool CopyInitialization = isTokenEqualOrEqualTypo();
2241 if (CopyInitialization)
2242 ConsumeToken();
2243
2244 ExprResult InitExpr = ExprError();
2245 if (getLangOpts().CPlusPlus11 && Tok.is(K: tok::l_brace)) {
2246 Diag(Tok.getLocation(),
2247 diag::warn_cxx98_compat_generalized_initializer_lists);
2248 InitExpr = ParseBraceInitializer();
2249 } else if (CopyInitialization) {
2250 PreferredType.enterVariableInit(Tok.getLocation(), DeclOut);
2251 InitExpr = ParseAssignmentExpression();
2252 } else if (Tok.is(K: tok::l_paren)) {
2253 // This was probably an attempt to initialize the variable.
2254 SourceLocation LParen = ConsumeParen(), RParen = LParen;
2255 if (SkipUntil(T: tok::r_paren, Flags: StopAtSemi | StopBeforeMatch))
2256 RParen = ConsumeParen();
2257 Diag(DeclOut->getLocation(),
2258 diag::err_expected_init_in_condition_lparen)
2259 << SourceRange(LParen, RParen);
2260 } else {
2261 Diag(DeclOut->getLocation(), diag::err_expected_init_in_condition);
2262 }
2263
2264 if (!InitExpr.isInvalid())
2265 Actions.AddInitializerToDecl(dcl: DeclOut, init: InitExpr.get(), DirectInit: !CopyInitialization);
2266 else
2267 Actions.ActOnInitializerError(Dcl: DeclOut);
2268
2269 Actions.FinalizeDeclaration(D: DeclOut);
2270 return Actions.ActOnConditionVariable(ConditionVar: DeclOut, StmtLoc: Loc, CK);
2271}
2272
2273/// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers.
2274/// This should only be called when the current token is known to be part of
2275/// simple-type-specifier.
2276///
2277/// simple-type-specifier:
2278/// '::'[opt] nested-name-specifier[opt] type-name
2279/// '::'[opt] nested-name-specifier 'template' simple-template-id [TODO]
2280/// char
2281/// wchar_t
2282/// bool
2283/// short
2284/// int
2285/// long
2286/// signed
2287/// unsigned
2288/// float
2289/// double
2290/// void
2291/// [GNU] typeof-specifier
2292/// [C++0x] auto [TODO]
2293///
2294/// type-name:
2295/// class-name
2296/// enum-name
2297/// typedef-name
2298///
2299void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec &DS) {
2300 DS.SetRangeStart(Tok.getLocation());
2301 const char *PrevSpec;
2302 unsigned DiagID;
2303 SourceLocation Loc = Tok.getLocation();
2304 const clang::PrintingPolicy &Policy =
2305 Actions.getASTContext().getPrintingPolicy();
2306
2307 switch (Tok.getKind()) {
2308 case tok::identifier: // foo::bar
2309 case tok::coloncolon: // ::foo::bar
2310 llvm_unreachable("Annotation token should already be formed!");
2311 default:
2312 llvm_unreachable("Not a simple-type-specifier token!");
2313
2314 // type-name
2315 case tok::annot_typename: {
2316 DS.SetTypeSpecType(T: DeclSpec::TST_typename, Loc, PrevSpec, DiagID,
2317 Rep: getTypeAnnotation(Tok), Policy);
2318 DS.SetRangeEnd(Tok.getAnnotationEndLoc());
2319 ConsumeAnnotationToken();
2320 DS.Finish(S&: Actions, Policy);
2321 return;
2322 }
2323
2324 case tok::kw__ExtInt:
2325 case tok::kw__BitInt: {
2326 DiagnoseBitIntUse(Tok);
2327 ExprResult ER = ParseExtIntegerArgument();
2328 if (ER.isInvalid())
2329 DS.SetTypeSpecError();
2330 else
2331 DS.SetBitIntType(KWLoc: Loc, BitWidth: ER.get(), PrevSpec, DiagID, Policy);
2332
2333 // Do this here because we have already consumed the close paren.
2334 DS.SetRangeEnd(PrevTokLocation);
2335 DS.Finish(S&: Actions, Policy);
2336 return;
2337 }
2338
2339 // builtin types
2340 case tok::kw_short:
2341 DS.SetTypeSpecWidth(W: TypeSpecifierWidth::Short, Loc, PrevSpec, DiagID,
2342 Policy);
2343 break;
2344 case tok::kw_long:
2345 DS.SetTypeSpecWidth(W: TypeSpecifierWidth::Long, Loc, PrevSpec, DiagID,
2346 Policy);
2347 break;
2348 case tok::kw___int64:
2349 DS.SetTypeSpecWidth(W: TypeSpecifierWidth::LongLong, Loc, PrevSpec, DiagID,
2350 Policy);
2351 break;
2352 case tok::kw_signed:
2353 DS.SetTypeSpecSign(S: TypeSpecifierSign::Signed, Loc, PrevSpec, DiagID);
2354 break;
2355 case tok::kw_unsigned:
2356 DS.SetTypeSpecSign(S: TypeSpecifierSign::Unsigned, Loc, PrevSpec, DiagID);
2357 break;
2358 case tok::kw_void:
2359 DS.SetTypeSpecType(T: DeclSpec::TST_void, Loc, PrevSpec, DiagID, Policy);
2360 break;
2361 case tok::kw_auto:
2362 DS.SetTypeSpecType(T: DeclSpec::TST_auto, Loc, PrevSpec, DiagID, Policy);
2363 break;
2364 case tok::kw_char:
2365 DS.SetTypeSpecType(T: DeclSpec::TST_char, Loc, PrevSpec, DiagID, Policy);
2366 break;
2367 case tok::kw_int:
2368 DS.SetTypeSpecType(T: DeclSpec::TST_int, Loc, PrevSpec, DiagID, Policy);
2369 break;
2370 case tok::kw___int128:
2371 DS.SetTypeSpecType(T: DeclSpec::TST_int128, Loc, PrevSpec, DiagID, Policy);
2372 break;
2373 case tok::kw___bf16:
2374 DS.SetTypeSpecType(T: DeclSpec::TST_BFloat16, Loc, PrevSpec, DiagID, Policy);
2375 break;
2376 case tok::kw_half:
2377 DS.SetTypeSpecType(T: DeclSpec::TST_half, Loc, PrevSpec, DiagID, Policy);
2378 break;
2379 case tok::kw_float:
2380 DS.SetTypeSpecType(T: DeclSpec::TST_float, Loc, PrevSpec, DiagID, Policy);
2381 break;
2382 case tok::kw_double:
2383 DS.SetTypeSpecType(T: DeclSpec::TST_double, Loc, PrevSpec, DiagID, Policy);
2384 break;
2385 case tok::kw__Float16:
2386 DS.SetTypeSpecType(T: DeclSpec::TST_float16, Loc, PrevSpec, DiagID, Policy);
2387 break;
2388 case tok::kw___float128:
2389 DS.SetTypeSpecType(T: DeclSpec::TST_float128, Loc, PrevSpec, DiagID, Policy);
2390 break;
2391 case tok::kw___ibm128:
2392 DS.SetTypeSpecType(T: DeclSpec::TST_ibm128, Loc, PrevSpec, DiagID, Policy);
2393 break;
2394 case tok::kw_wchar_t:
2395 DS.SetTypeSpecType(T: DeclSpec::TST_wchar, Loc, PrevSpec, DiagID, Policy);
2396 break;
2397 case tok::kw_char8_t:
2398 DS.SetTypeSpecType(T: DeclSpec::TST_char8, Loc, PrevSpec, DiagID, Policy);
2399 break;
2400 case tok::kw_char16_t:
2401 DS.SetTypeSpecType(T: DeclSpec::TST_char16, Loc, PrevSpec, DiagID, Policy);
2402 break;
2403 case tok::kw_char32_t:
2404 DS.SetTypeSpecType(T: DeclSpec::TST_char32, Loc, PrevSpec, DiagID, Policy);
2405 break;
2406 case tok::kw_bool:
2407 DS.SetTypeSpecType(T: DeclSpec::TST_bool, Loc, PrevSpec, DiagID, Policy);
2408 break;
2409 case tok::kw__Accum:
2410 DS.SetTypeSpecType(T: DeclSpec::TST_accum, Loc, PrevSpec, DiagID, Policy);
2411 break;
2412 case tok::kw__Fract:
2413 DS.SetTypeSpecType(T: DeclSpec::TST_fract, Loc, PrevSpec, DiagID, Policy);
2414 break;
2415 case tok::kw__Sat:
2416 DS.SetTypeSpecSat(Loc, PrevSpec, DiagID);
2417 break;
2418#define GENERIC_IMAGE_TYPE(ImgType, Id) \
2419 case tok::kw_##ImgType##_t: \
2420 DS.SetTypeSpecType(DeclSpec::TST_##ImgType##_t, Loc, PrevSpec, DiagID, \
2421 Policy); \
2422 break;
2423#include "clang/Basic/OpenCLImageTypes.def"
2424
2425 case tok::annot_decltype:
2426 case tok::kw_decltype:
2427 DS.SetRangeEnd(ParseDecltypeSpecifier(DS));
2428 return DS.Finish(S&: Actions, Policy);
2429
2430 case tok::annot_pack_indexing_type:
2431 DS.SetRangeEnd(ParsePackIndexingType(DS));
2432 return DS.Finish(S&: Actions, Policy);
2433
2434 // GNU typeof support.
2435 case tok::kw_typeof:
2436 ParseTypeofSpecifier(DS);
2437 DS.Finish(S&: Actions, Policy);
2438 return;
2439 }
2440 ConsumeAnyToken();
2441 DS.SetRangeEnd(PrevTokLocation);
2442 DS.Finish(S&: Actions, Policy);
2443}
2444
2445/// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++
2446/// [dcl.name]), which is a non-empty sequence of type-specifiers,
2447/// e.g., "const short int". Note that the DeclSpec is *not* finished
2448/// by parsing the type-specifier-seq, because these sequences are
2449/// typically followed by some form of declarator. Returns true and
2450/// emits diagnostics if this is not a type-specifier-seq, false
2451/// otherwise.
2452///
2453/// type-specifier-seq: [C++ 8.1]
2454/// type-specifier type-specifier-seq[opt]
2455///
2456bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec &DS, DeclaratorContext Context) {
2457 ParseSpecifierQualifierList(DS, AS: AS_none,
2458 DSC: getDeclSpecContextFromDeclaratorContext(Context));
2459 DS.Finish(S&: Actions, Policy: Actions.getASTContext().getPrintingPolicy());
2460 return false;
2461}
2462
2463/// Finish parsing a C++ unqualified-id that is a template-id of
2464/// some form.
2465///
2466/// This routine is invoked when a '<' is encountered after an identifier or
2467/// operator-function-id is parsed by \c ParseUnqualifiedId() to determine
2468/// whether the unqualified-id is actually a template-id. This routine will
2469/// then parse the template arguments and form the appropriate template-id to
2470/// return to the caller.
2471///
2472/// \param SS the nested-name-specifier that precedes this template-id, if
2473/// we're actually parsing a qualified-id.
2474///
2475/// \param ObjectType if this unqualified-id occurs within a member access
2476/// expression, the type of the base object whose member is being accessed.
2477///
2478/// \param ObjectHadErrors this unqualified-id occurs within a member access
2479/// expression, indicates whether the original subexpressions had any errors.
2480///
2481/// \param Name for constructor and destructor names, this is the actual
2482/// identifier that may be a template-name.
2483///
2484/// \param NameLoc the location of the class-name in a constructor or
2485/// destructor.
2486///
2487/// \param EnteringContext whether we're entering the scope of the
2488/// nested-name-specifier.
2489///
2490/// \param Id as input, describes the template-name or operator-function-id
2491/// that precedes the '<'. If template arguments were parsed successfully,
2492/// will be updated with the template-id.
2493///
2494/// \param AssumeTemplateId When true, this routine will assume that the name
2495/// refers to a template without performing name lookup to verify.
2496///
2497/// \returns true if a parse error occurred, false otherwise.
2498bool Parser::ParseUnqualifiedIdTemplateId(
2499 CXXScopeSpec &SS, ParsedType ObjectType, bool ObjectHadErrors,
2500 SourceLocation TemplateKWLoc, IdentifierInfo *Name, SourceLocation NameLoc,
2501 bool EnteringContext, UnqualifiedId &Id, bool AssumeTemplateId) {
2502 assert(Tok.is(tok::less) && "Expected '<' to finish parsing a template-id");
2503
2504 TemplateTy Template;
2505 TemplateNameKind TNK = TNK_Non_template;
2506 switch (Id.getKind()) {
2507 case UnqualifiedIdKind::IK_Identifier:
2508 case UnqualifiedIdKind::IK_OperatorFunctionId:
2509 case UnqualifiedIdKind::IK_LiteralOperatorId:
2510 if (AssumeTemplateId) {
2511 // We defer the injected-class-name checks until we've found whether
2512 // this template-id is used to form a nested-name-specifier or not.
2513 TNK = Actions.ActOnTemplateName(S: getCurScope(), SS, TemplateKWLoc, Name: Id,
2514 ObjectType, EnteringContext, Template,
2515 /*AllowInjectedClassName*/ true);
2516 } else {
2517 bool MemberOfUnknownSpecialization;
2518 TNK = Actions.isTemplateName(S: getCurScope(), SS,
2519 hasTemplateKeyword: TemplateKWLoc.isValid(), Name: Id,
2520 ObjectType, EnteringContext, Template,
2521 MemberOfUnknownSpecialization);
2522 // If lookup found nothing but we're assuming that this is a template
2523 // name, double-check that makes sense syntactically before committing
2524 // to it.
2525 if (TNK == TNK_Undeclared_template &&
2526 isTemplateArgumentList(TokensToSkip: 0) == TPResult::False)
2527 return false;
2528
2529 if (TNK == TNK_Non_template && MemberOfUnknownSpecialization &&
2530 ObjectType && isTemplateArgumentList(TokensToSkip: 0) == TPResult::True) {
2531 // If we had errors before, ObjectType can be dependent even without any
2532 // templates, do not report missing template keyword in that case.
2533 if (!ObjectHadErrors) {
2534 // We have something like t->getAs<T>(), where getAs is a
2535 // member of an unknown specialization. However, this will only
2536 // parse correctly as a template, so suggest the keyword 'template'
2537 // before 'getAs' and treat this as a dependent template name.
2538 std::string Name;
2539 if (Id.getKind() == UnqualifiedIdKind::IK_Identifier)
2540 Name = std::string(Id.Identifier->getName());
2541 else {
2542 Name = "operator ";
2543 if (Id.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId)
2544 Name += getOperatorSpelling(Operator: Id.OperatorFunctionId.Operator);
2545 else
2546 Name += Id.Identifier->getName();
2547 }
2548 Diag(Id.StartLocation, diag::err_missing_dependent_template_keyword)
2549 << Name
2550 << FixItHint::CreateInsertion(Id.StartLocation, "template ");
2551 }
2552 TNK = Actions.ActOnTemplateName(
2553 S: getCurScope(), SS, TemplateKWLoc, Name: Id, ObjectType, EnteringContext,
2554 Template, /*AllowInjectedClassName*/ true);
2555 } else if (TNK == TNK_Non_template) {
2556 return false;
2557 }
2558 }
2559 break;
2560
2561 case UnqualifiedIdKind::IK_ConstructorName: {
2562 UnqualifiedId TemplateName;
2563 bool MemberOfUnknownSpecialization;
2564 TemplateName.setIdentifier(Id: Name, IdLoc: NameLoc);
2565 TNK = Actions.isTemplateName(S: getCurScope(), SS, hasTemplateKeyword: TemplateKWLoc.isValid(),
2566 Name: TemplateName, ObjectType,
2567 EnteringContext, Template,
2568 MemberOfUnknownSpecialization);
2569 if (TNK == TNK_Non_template)
2570 return false;
2571 break;
2572 }
2573
2574 case UnqualifiedIdKind::IK_DestructorName: {
2575 UnqualifiedId TemplateName;
2576 bool MemberOfUnknownSpecialization;
2577 TemplateName.setIdentifier(Id: Name, IdLoc: NameLoc);
2578 if (ObjectType) {
2579 TNK = Actions.ActOnTemplateName(
2580 S: getCurScope(), SS, TemplateKWLoc, Name: TemplateName, ObjectType,
2581 EnteringContext, Template, /*AllowInjectedClassName*/ true);
2582 } else {
2583 TNK = Actions.isTemplateName(S: getCurScope(), SS, hasTemplateKeyword: TemplateKWLoc.isValid(),
2584 Name: TemplateName, ObjectType,
2585 EnteringContext, Template,
2586 MemberOfUnknownSpecialization);
2587
2588 if (TNK == TNK_Non_template && !Id.DestructorName.get()) {
2589 Diag(NameLoc, diag::err_destructor_template_id)
2590 << Name << SS.getRange();
2591 // Carry on to parse the template arguments before bailing out.
2592 }
2593 }
2594 break;
2595 }
2596
2597 default:
2598 return false;
2599 }
2600
2601 // Parse the enclosed template argument list.
2602 SourceLocation LAngleLoc, RAngleLoc;
2603 TemplateArgList TemplateArgs;
2604 if (ParseTemplateIdAfterTemplateName(ConsumeLastToken: true, LAngleLoc, TemplateArgs, RAngleLoc,
2605 NameHint: Template))
2606 return true;
2607
2608 // If this is a non-template, we already issued a diagnostic.
2609 if (TNK == TNK_Non_template)
2610 return true;
2611
2612 if (Id.getKind() == UnqualifiedIdKind::IK_Identifier ||
2613 Id.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId ||
2614 Id.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId) {
2615 // Form a parsed representation of the template-id to be stored in the
2616 // UnqualifiedId.
2617
2618 // FIXME: Store name for literal operator too.
2619 IdentifierInfo *TemplateII =
2620 Id.getKind() == UnqualifiedIdKind::IK_Identifier ? Id.Identifier
2621 : nullptr;
2622 OverloadedOperatorKind OpKind =
2623 Id.getKind() == UnqualifiedIdKind::IK_Identifier
2624 ? OO_None
2625 : Id.OperatorFunctionId.Operator;
2626
2627 TemplateIdAnnotation *TemplateId = TemplateIdAnnotation::Create(
2628 TemplateKWLoc, TemplateNameLoc: Id.StartLocation, Name: TemplateII, OperatorKind: OpKind, OpaqueTemplateName: Template, TemplateKind: TNK,
2629 LAngleLoc, RAngleLoc, TemplateArgs, /*ArgsInvalid*/false, CleanupList&: TemplateIds);
2630
2631 Id.setTemplateId(TemplateId);
2632 return false;
2633 }
2634
2635 // Bundle the template arguments together.
2636 ASTTemplateArgsPtr TemplateArgsPtr(TemplateArgs);
2637
2638 // Constructor and destructor names.
2639 TypeResult Type = Actions.ActOnTemplateIdType(
2640 S: getCurScope(), SS, TemplateKWLoc, Template, TemplateII: Name, TemplateIILoc: NameLoc, LAngleLoc,
2641 TemplateArgs: TemplateArgsPtr, RAngleLoc, /*IsCtorOrDtorName=*/true);
2642 if (Type.isInvalid())
2643 return true;
2644
2645 if (Id.getKind() == UnqualifiedIdKind::IK_ConstructorName)
2646 Id.setConstructorName(ClassType: Type.get(), ClassNameLoc: NameLoc, EndLoc: RAngleLoc);
2647 else
2648 Id.setDestructorName(TildeLoc: Id.StartLocation, ClassType: Type.get(), EndLoc: RAngleLoc);
2649
2650 return false;
2651}
2652
2653/// Parse an operator-function-id or conversion-function-id as part
2654/// of a C++ unqualified-id.
2655///
2656/// This routine is responsible only for parsing the operator-function-id or
2657/// conversion-function-id; it does not handle template arguments in any way.
2658///
2659/// \code
2660/// operator-function-id: [C++ 13.5]
2661/// 'operator' operator
2662///
2663/// operator: one of
2664/// new delete new[] delete[]
2665/// + - * / % ^ & | ~
2666/// ! = < > += -= *= /= %=
2667/// ^= &= |= << >> >>= <<= == !=
2668/// <= >= && || ++ -- , ->* ->
2669/// () [] <=>
2670///
2671/// conversion-function-id: [C++ 12.3.2]
2672/// operator conversion-type-id
2673///
2674/// conversion-type-id:
2675/// type-specifier-seq conversion-declarator[opt]
2676///
2677/// conversion-declarator:
2678/// ptr-operator conversion-declarator[opt]
2679/// \endcode
2680///
2681/// \param SS The nested-name-specifier that preceded this unqualified-id. If
2682/// non-empty, then we are parsing the unqualified-id of a qualified-id.
2683///
2684/// \param EnteringContext whether we are entering the scope of the
2685/// nested-name-specifier.
2686///
2687/// \param ObjectType if this unqualified-id occurs within a member access
2688/// expression, the type of the base object whose member is being accessed.
2689///
2690/// \param Result on a successful parse, contains the parsed unqualified-id.
2691///
2692/// \returns true if parsing fails, false otherwise.
2693bool Parser::ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext,
2694 ParsedType ObjectType,
2695 UnqualifiedId &Result) {
2696 assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword");
2697
2698 // Consume the 'operator' keyword.
2699 SourceLocation KeywordLoc = ConsumeToken();
2700
2701 // Determine what kind of operator name we have.
2702 unsigned SymbolIdx = 0;
2703 SourceLocation SymbolLocations[3];
2704 OverloadedOperatorKind Op = OO_None;
2705 switch (Tok.getKind()) {
2706 case tok::kw_new:
2707 case tok::kw_delete: {
2708 bool isNew = Tok.getKind() == tok::kw_new;
2709 // Consume the 'new' or 'delete'.
2710 SymbolLocations[SymbolIdx++] = ConsumeToken();
2711 // Check for array new/delete.
2712 if (Tok.is(K: tok::l_square) &&
2713 (!getLangOpts().CPlusPlus11 || NextToken().isNot(K: tok::l_square))) {
2714 // Consume the '[' and ']'.
2715 BalancedDelimiterTracker T(*this, tok::l_square);
2716 T.consumeOpen();
2717 T.consumeClose();
2718 if (T.getCloseLocation().isInvalid())
2719 return true;
2720
2721 SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2722 SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2723 Op = isNew? OO_Array_New : OO_Array_Delete;
2724 } else {
2725 Op = isNew? OO_New : OO_Delete;
2726 }
2727 break;
2728 }
2729
2730#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2731 case tok::Token: \
2732 SymbolLocations[SymbolIdx++] = ConsumeToken(); \
2733 Op = OO_##Name; \
2734 break;
2735#define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
2736#include "clang/Basic/OperatorKinds.def"
2737
2738 case tok::l_paren: {
2739 // Consume the '(' and ')'.
2740 BalancedDelimiterTracker T(*this, tok::l_paren);
2741 T.consumeOpen();
2742 T.consumeClose();
2743 if (T.getCloseLocation().isInvalid())
2744 return true;
2745
2746 SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2747 SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2748 Op = OO_Call;
2749 break;
2750 }
2751
2752 case tok::l_square: {
2753 // Consume the '[' and ']'.
2754 BalancedDelimiterTracker T(*this, tok::l_square);
2755 T.consumeOpen();
2756 T.consumeClose();
2757 if (T.getCloseLocation().isInvalid())
2758 return true;
2759
2760 SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2761 SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2762 Op = OO_Subscript;
2763 break;
2764 }
2765
2766 case tok::code_completion: {
2767 // Don't try to parse any further.
2768 cutOffParsing();
2769 // Code completion for the operator name.
2770 Actions.CodeCompleteOperatorName(S: getCurScope());
2771 return true;
2772 }
2773
2774 default:
2775 break;
2776 }
2777
2778 if (Op != OO_None) {
2779 // We have parsed an operator-function-id.
2780 Result.setOperatorFunctionId(OperatorLoc: KeywordLoc, Op, SymbolLocations);
2781 return false;
2782 }
2783
2784 // Parse a literal-operator-id.
2785 //
2786 // literal-operator-id: C++11 [over.literal]
2787 // operator string-literal identifier
2788 // operator user-defined-string-literal
2789
2790 if (getLangOpts().CPlusPlus11 && isTokenStringLiteral()) {
2791 Diag(Tok.getLocation(), diag::warn_cxx98_compat_literal_operator);
2792
2793 SourceLocation DiagLoc;
2794 unsigned DiagId = 0;
2795
2796 // We're past translation phase 6, so perform string literal concatenation
2797 // before checking for "".
2798 SmallVector<Token, 4> Toks;
2799 SmallVector<SourceLocation, 4> TokLocs;
2800 while (isTokenStringLiteral()) {
2801 if (!Tok.is(K: tok::string_literal) && !DiagId) {
2802 // C++11 [over.literal]p1:
2803 // The string-literal or user-defined-string-literal in a
2804 // literal-operator-id shall have no encoding-prefix [...].
2805 DiagLoc = Tok.getLocation();
2806 DiagId = diag::err_literal_operator_string_prefix;
2807 }
2808 Toks.push_back(Elt: Tok);
2809 TokLocs.push_back(Elt: ConsumeStringToken());
2810 }
2811
2812 StringLiteralParser Literal(Toks, PP);
2813 if (Literal.hadError)
2814 return true;
2815
2816 // Grab the literal operator's suffix, which will be either the next token
2817 // or a ud-suffix from the string literal.
2818 bool IsUDSuffix = !Literal.getUDSuffix().empty();
2819 IdentifierInfo *II = nullptr;
2820 SourceLocation SuffixLoc;
2821 if (IsUDSuffix) {
2822 II = &PP.getIdentifierTable().get(Name: Literal.getUDSuffix());
2823 SuffixLoc =
2824 Lexer::AdvanceToTokenCharacter(TokStart: TokLocs[Literal.getUDSuffixToken()],
2825 Characters: Literal.getUDSuffixOffset(),
2826 SM: PP.getSourceManager(), LangOpts: getLangOpts());
2827 } else if (Tok.is(K: tok::identifier)) {
2828 II = Tok.getIdentifierInfo();
2829 SuffixLoc = ConsumeToken();
2830 TokLocs.push_back(Elt: SuffixLoc);
2831 } else {
2832 Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
2833 return true;
2834 }
2835
2836 // The string literal must be empty.
2837 if (!Literal.GetString().empty() || Literal.Pascal) {
2838 // C++11 [over.literal]p1:
2839 // The string-literal or user-defined-string-literal in a
2840 // literal-operator-id shall [...] contain no characters
2841 // other than the implicit terminating '\0'.
2842 DiagLoc = TokLocs.front();
2843 DiagId = diag::err_literal_operator_string_not_empty;
2844 }
2845
2846 if (DiagId) {
2847 // This isn't a valid literal-operator-id, but we think we know
2848 // what the user meant. Tell them what they should have written.
2849 SmallString<32> Str;
2850 Str += "\"\"";
2851 Str += II->getName();
2852 Diag(Loc: DiagLoc, DiagID: DiagId) << FixItHint::CreateReplacement(
2853 RemoveRange: SourceRange(TokLocs.front(), TokLocs.back()), Code: Str);
2854 }
2855
2856 Result.setLiteralOperatorId(Id: II, OpLoc: KeywordLoc, IdLoc: SuffixLoc);
2857
2858 return Actions.checkLiteralOperatorId(SS, Id: Result, IsUDSuffix);
2859 }
2860
2861 // Parse a conversion-function-id.
2862 //
2863 // conversion-function-id: [C++ 12.3.2]
2864 // operator conversion-type-id
2865 //
2866 // conversion-type-id:
2867 // type-specifier-seq conversion-declarator[opt]
2868 //
2869 // conversion-declarator:
2870 // ptr-operator conversion-declarator[opt]
2871
2872 // Parse the type-specifier-seq.
2873 DeclSpec DS(AttrFactory);
2874 if (ParseCXXTypeSpecifierSeq(
2875 DS, Context: DeclaratorContext::ConversionId)) // FIXME: ObjectType?
2876 return true;
2877
2878 // Parse the conversion-declarator, which is merely a sequence of
2879 // ptr-operators.
2880 Declarator D(DS, ParsedAttributesView::none(),
2881 DeclaratorContext::ConversionId);
2882 ParseDeclaratorInternal(D, /*DirectDeclParser=*/nullptr);
2883
2884 // Finish up the type.
2885 TypeResult Ty = Actions.ActOnTypeName(D);
2886 if (Ty.isInvalid())
2887 return true;
2888
2889 // Note that this is a conversion-function-id.
2890 Result.setConversionFunctionId(OperatorLoc: KeywordLoc, Ty: Ty.get(),
2891 EndLoc: D.getSourceRange().getEnd());
2892 return false;
2893}
2894
2895/// Parse a C++ unqualified-id (or a C identifier), which describes the
2896/// name of an entity.
2897///
2898/// \code
2899/// unqualified-id: [C++ expr.prim.general]
2900/// identifier
2901/// operator-function-id
2902/// conversion-function-id
2903/// [C++0x] literal-operator-id [TODO]
2904/// ~ class-name
2905/// template-id
2906///
2907/// \endcode
2908///
2909/// \param SS The nested-name-specifier that preceded this unqualified-id. If
2910/// non-empty, then we are parsing the unqualified-id of a qualified-id.
2911///
2912/// \param ObjectType if this unqualified-id occurs within a member access
2913/// expression, the type of the base object whose member is being accessed.
2914///
2915/// \param ObjectHadErrors if this unqualified-id occurs within a member access
2916/// expression, indicates whether the original subexpressions had any errors.
2917/// When true, diagnostics for missing 'template' keyword will be supressed.
2918///
2919/// \param EnteringContext whether we are entering the scope of the
2920/// nested-name-specifier.
2921///
2922/// \param AllowDestructorName whether we allow parsing of a destructor name.
2923///
2924/// \param AllowConstructorName whether we allow parsing a constructor name.
2925///
2926/// \param AllowDeductionGuide whether we allow parsing a deduction guide name.
2927///
2928/// \param Result on a successful parse, contains the parsed unqualified-id.
2929///
2930/// \returns true if parsing fails, false otherwise.
2931bool Parser::ParseUnqualifiedId(CXXScopeSpec &SS, ParsedType ObjectType,
2932 bool ObjectHadErrors, bool EnteringContext,
2933 bool AllowDestructorName,
2934 bool AllowConstructorName,
2935 bool AllowDeductionGuide,
2936 SourceLocation *TemplateKWLoc,
2937 UnqualifiedId &Result) {
2938 if (TemplateKWLoc)
2939 *TemplateKWLoc = SourceLocation();
2940
2941 // Handle 'A::template B'. This is for template-ids which have not
2942 // already been annotated by ParseOptionalCXXScopeSpecifier().
2943 bool TemplateSpecified = false;
2944 if (Tok.is(K: tok::kw_template)) {
2945 if (TemplateKWLoc && (ObjectType || SS.isSet())) {
2946 TemplateSpecified = true;
2947 *TemplateKWLoc = ConsumeToken();
2948 } else {
2949 SourceLocation TemplateLoc = ConsumeToken();
2950 Diag(TemplateLoc, diag::err_unexpected_template_in_unqualified_id)
2951 << FixItHint::CreateRemoval(TemplateLoc);
2952 }
2953 }
2954
2955 // unqualified-id:
2956 // identifier
2957 // template-id (when it hasn't already been annotated)
2958 if (Tok.is(K: tok::identifier)) {
2959 ParseIdentifier:
2960 // Consume the identifier.
2961 IdentifierInfo *Id = Tok.getIdentifierInfo();
2962 SourceLocation IdLoc = ConsumeToken();
2963
2964 if (!getLangOpts().CPlusPlus) {
2965 // If we're not in C++, only identifiers matter. Record the
2966 // identifier and return.
2967 Result.setIdentifier(Id, IdLoc);
2968 return false;
2969 }
2970
2971 ParsedTemplateTy TemplateName;
2972 if (AllowConstructorName &&
2973 Actions.isCurrentClassName(II: *Id, S: getCurScope(), SS: &SS)) {
2974 // We have parsed a constructor name.
2975 ParsedType Ty = Actions.getConstructorName(II&: *Id, NameLoc: IdLoc, S: getCurScope(), SS,
2976 EnteringContext);
2977 if (!Ty)
2978 return true;
2979 Result.setConstructorName(ClassType: Ty, ClassNameLoc: IdLoc, EndLoc: IdLoc);
2980 } else if (getLangOpts().CPlusPlus17 && AllowDeductionGuide &&
2981 SS.isEmpty() &&
2982 Actions.isDeductionGuideName(S: getCurScope(), Name: *Id, NameLoc: IdLoc, SS,
2983 Template: &TemplateName)) {
2984 // We have parsed a template-name naming a deduction guide.
2985 Result.setDeductionGuideName(Template: TemplateName, TemplateLoc: IdLoc);
2986 } else {
2987 // We have parsed an identifier.
2988 Result.setIdentifier(Id, IdLoc);
2989 }
2990
2991 // If the next token is a '<', we may have a template.
2992 TemplateTy Template;
2993 if (Tok.is(K: tok::less))
2994 return ParseUnqualifiedIdTemplateId(
2995 SS, ObjectType, ObjectHadErrors,
2996 TemplateKWLoc: TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), Name: Id, NameLoc: IdLoc,
2997 EnteringContext, Id&: Result, AssumeTemplateId: TemplateSpecified);
2998 else if (TemplateSpecified &&
2999 Actions.ActOnTemplateName(
3000 S: getCurScope(), SS, TemplateKWLoc: *TemplateKWLoc, Name: Result, ObjectType,
3001 EnteringContext, Template,
3002 /*AllowInjectedClassName*/ true) == TNK_Non_template)
3003 return true;
3004
3005 return false;
3006 }
3007
3008 // unqualified-id:
3009 // template-id (already parsed and annotated)
3010 if (Tok.is(K: tok::annot_template_id)) {
3011 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(tok: Tok);
3012
3013 // FIXME: Consider passing invalid template-ids on to callers; they may
3014 // be able to recover better than we can.
3015 if (TemplateId->isInvalid()) {
3016 ConsumeAnnotationToken();
3017 return true;
3018 }
3019
3020 // If the template-name names the current class, then this is a constructor
3021 if (AllowConstructorName && TemplateId->Name &&
3022 Actions.isCurrentClassName(II: *TemplateId->Name, S: getCurScope(), SS: &SS)) {
3023 if (SS.isSet()) {
3024 // C++ [class.qual]p2 specifies that a qualified template-name
3025 // is taken as the constructor name where a constructor can be
3026 // declared. Thus, the template arguments are extraneous, so
3027 // complain about them and remove them entirely.
3028 Diag(TemplateId->TemplateNameLoc,
3029 diag::err_out_of_line_constructor_template_id)
3030 << TemplateId->Name
3031 << FixItHint::CreateRemoval(
3032 SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc));
3033 ParsedType Ty = Actions.getConstructorName(
3034 II&: *TemplateId->Name, NameLoc: TemplateId->TemplateNameLoc, S: getCurScope(), SS,
3035 EnteringContext);
3036 if (!Ty)
3037 return true;
3038 Result.setConstructorName(ClassType: Ty, ClassNameLoc: TemplateId->TemplateNameLoc,
3039 EndLoc: TemplateId->RAngleLoc);
3040 ConsumeAnnotationToken();
3041 return false;
3042 }
3043
3044 Result.setConstructorTemplateId(TemplateId);
3045 ConsumeAnnotationToken();
3046 return false;
3047 }
3048
3049 // We have already parsed a template-id; consume the annotation token as
3050 // our unqualified-id.
3051 Result.setTemplateId(TemplateId);
3052 SourceLocation TemplateLoc = TemplateId->TemplateKWLoc;
3053 if (TemplateLoc.isValid()) {
3054 if (TemplateKWLoc && (ObjectType || SS.isSet()))
3055 *TemplateKWLoc = TemplateLoc;
3056 else
3057 Diag(TemplateLoc, diag::err_unexpected_template_in_unqualified_id)
3058 << FixItHint::CreateRemoval(TemplateLoc);
3059 }
3060 ConsumeAnnotationToken();
3061 return false;
3062 }
3063
3064 // unqualified-id:
3065 // operator-function-id
3066 // conversion-function-id
3067 if (Tok.is(K: tok::kw_operator)) {
3068 if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, Result))
3069 return true;
3070
3071 // If we have an operator-function-id or a literal-operator-id and the next
3072 // token is a '<', we may have a
3073 //
3074 // template-id:
3075 // operator-function-id < template-argument-list[opt] >
3076 TemplateTy Template;
3077 if ((Result.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId ||
3078 Result.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId) &&
3079 Tok.is(K: tok::less))
3080 return ParseUnqualifiedIdTemplateId(
3081 SS, ObjectType, ObjectHadErrors,
3082 TemplateKWLoc: TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), Name: nullptr,
3083 NameLoc: SourceLocation(), EnteringContext, Id&: Result, AssumeTemplateId: TemplateSpecified);
3084 else if (TemplateSpecified &&
3085 Actions.ActOnTemplateName(
3086 S: getCurScope(), SS, TemplateKWLoc: *TemplateKWLoc, Name: Result, ObjectType,
3087 EnteringContext, Template,
3088 /*AllowInjectedClassName*/ true) == TNK_Non_template)
3089 return true;
3090
3091 return false;
3092 }
3093
3094 if (getLangOpts().CPlusPlus &&
3095 (AllowDestructorName || SS.isSet()) && Tok.is(K: tok::tilde)) {
3096 // C++ [expr.unary.op]p10:
3097 // There is an ambiguity in the unary-expression ~X(), where X is a
3098 // class-name. The ambiguity is resolved in favor of treating ~ as a
3099 // unary complement rather than treating ~X as referring to a destructor.
3100
3101 // Parse the '~'.
3102 SourceLocation TildeLoc = ConsumeToken();
3103
3104 if (TemplateSpecified) {
3105 // C++ [temp.names]p3:
3106 // A name prefixed by the keyword template shall be a template-id [...]
3107 //
3108 // A template-id cannot begin with a '~' token. This would never work
3109 // anyway: x.~A<int>() would specify that the destructor is a template,
3110 // not that 'A' is a template.
3111 //
3112 // FIXME: Suggest replacing the attempted destructor name with a correct
3113 // destructor name and recover. (This is not trivial if this would become
3114 // a pseudo-destructor name).
3115 Diag(*TemplateKWLoc, diag::err_unexpected_template_in_destructor_name)
3116 << Tok.getLocation();
3117 return true;
3118 }
3119
3120 if (SS.isEmpty() && Tok.is(K: tok::kw_decltype)) {
3121 DeclSpec DS(AttrFactory);
3122 SourceLocation EndLoc = ParseDecltypeSpecifier(DS);
3123 if (ParsedType Type =
3124 Actions.getDestructorTypeForDecltype(DS, ObjectType)) {
3125 Result.setDestructorName(TildeLoc, ClassType: Type, EndLoc);
3126 return false;
3127 }
3128 return true;
3129 }
3130
3131 // Parse the class-name.
3132 if (Tok.isNot(K: tok::identifier)) {
3133 Diag(Tok, diag::err_destructor_tilde_identifier);
3134 return true;
3135 }
3136
3137 // If the user wrote ~T::T, correct it to T::~T.
3138 DeclaratorScopeObj DeclScopeObj(*this, SS);
3139 if (NextToken().is(K: tok::coloncolon)) {
3140 // Don't let ParseOptionalCXXScopeSpecifier() "correct"
3141 // `int A; struct { ~A::A(); };` to `int A; struct { ~A:A(); };`,
3142 // it will confuse this recovery logic.
3143 ColonProtectionRAIIObject ColonRAII(*this, false);
3144
3145 if (SS.isSet()) {
3146 AnnotateScopeToken(SS, /*NewAnnotation*/IsNewAnnotation: true);
3147 SS.clear();
3148 }
3149 if (ParseOptionalCXXScopeSpecifier(SS, ObjectType, ObjectHadErrors,
3150 EnteringContext))
3151 return true;
3152 if (SS.isNotEmpty())
3153 ObjectType = nullptr;
3154 if (Tok.isNot(K: tok::identifier) || NextToken().is(K: tok::coloncolon) ||
3155 !SS.isSet()) {
3156 Diag(TildeLoc, diag::err_destructor_tilde_scope);
3157 return true;
3158 }
3159
3160 // Recover as if the tilde had been written before the identifier.
3161 Diag(TildeLoc, diag::err_destructor_tilde_scope)
3162 << FixItHint::CreateRemoval(TildeLoc)
3163 << FixItHint::CreateInsertion(Tok.getLocation(), "~");
3164
3165 // Temporarily enter the scope for the rest of this function.
3166 if (Actions.ShouldEnterDeclaratorScope(S: getCurScope(), SS))
3167 DeclScopeObj.EnterDeclaratorScope();
3168 }
3169
3170 // Parse the class-name (or template-name in a simple-template-id).
3171 IdentifierInfo *ClassName = Tok.getIdentifierInfo();
3172 SourceLocation ClassNameLoc = ConsumeToken();
3173
3174 if (Tok.is(K: tok::less)) {
3175 Result.setDestructorName(TildeLoc, ClassType: nullptr, EndLoc: ClassNameLoc);
3176 return ParseUnqualifiedIdTemplateId(
3177 SS, ObjectType, ObjectHadErrors,
3178 TemplateKWLoc: TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), Name: ClassName,
3179 NameLoc: ClassNameLoc, EnteringContext, Id&: Result, AssumeTemplateId: TemplateSpecified);
3180 }
3181
3182 // Note that this is a destructor name.
3183 ParsedType Ty =
3184 Actions.getDestructorName(II&: *ClassName, NameLoc: ClassNameLoc, S: getCurScope(), SS,
3185 ObjectType, EnteringContext);
3186 if (!Ty)
3187 return true;
3188
3189 Result.setDestructorName(TildeLoc, ClassType: Ty, EndLoc: ClassNameLoc);
3190 return false;
3191 }
3192
3193 switch (Tok.getKind()) {
3194#define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case tok::kw___##Trait:
3195#include "clang/Basic/TransformTypeTraits.def"
3196 if (!NextToken().is(K: tok::l_paren)) {
3197 Tok.setKind(tok::identifier);
3198 Diag(Tok, diag::ext_keyword_as_ident)
3199 << Tok.getIdentifierInfo()->getName() << 0;
3200 goto ParseIdentifier;
3201 }
3202 [[fallthrough]];
3203 default:
3204 Diag(Tok, diag::err_expected_unqualified_id) << getLangOpts().CPlusPlus;
3205 return true;
3206 }
3207}
3208
3209/// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate
3210/// memory in a typesafe manner and call constructors.
3211///
3212/// This method is called to parse the new expression after the optional :: has
3213/// been already parsed. If the :: was present, "UseGlobal" is true and "Start"
3214/// is its location. Otherwise, "Start" is the location of the 'new' token.
3215///
3216/// new-expression:
3217/// '::'[opt] 'new' new-placement[opt] new-type-id
3218/// new-initializer[opt]
3219/// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
3220/// new-initializer[opt]
3221///
3222/// new-placement:
3223/// '(' expression-list ')'
3224///
3225/// new-type-id:
3226/// type-specifier-seq new-declarator[opt]
3227/// [GNU] attributes type-specifier-seq new-declarator[opt]
3228///
3229/// new-declarator:
3230/// ptr-operator new-declarator[opt]
3231/// direct-new-declarator
3232///
3233/// new-initializer:
3234/// '(' expression-list[opt] ')'
3235/// [C++0x] braced-init-list
3236///
3237ExprResult
3238Parser::ParseCXXNewExpression(bool UseGlobal, SourceLocation Start) {
3239 assert(Tok.is(tok::kw_new) && "expected 'new' token");
3240 ConsumeToken(); // Consume 'new'
3241
3242 // A '(' now can be a new-placement or the '(' wrapping the type-id in the
3243 // second form of new-expression. It can't be a new-type-id.
3244
3245 ExprVector PlacementArgs;
3246 SourceLocation PlacementLParen, PlacementRParen;
3247
3248 SourceRange TypeIdParens;
3249 DeclSpec DS(AttrFactory);
3250 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
3251 DeclaratorContext::CXXNew);
3252 if (Tok.is(K: tok::l_paren)) {
3253 // If it turns out to be a placement, we change the type location.
3254 BalancedDelimiterTracker T(*this, tok::l_paren);
3255 T.consumeOpen();
3256 PlacementLParen = T.getOpenLocation();
3257 if (ParseExpressionListOrTypeId(Exprs&: PlacementArgs, D&: DeclaratorInfo)) {
3258 SkipUntil(T: tok::semi, Flags: StopAtSemi | StopBeforeMatch);
3259 return ExprError();
3260 }
3261
3262 T.consumeClose();
3263 PlacementRParen = T.getCloseLocation();
3264 if (PlacementRParen.isInvalid()) {
3265 SkipUntil(T: tok::semi, Flags: StopAtSemi | StopBeforeMatch);
3266 return ExprError();
3267 }
3268
3269 if (PlacementArgs.empty()) {
3270 // Reset the placement locations. There was no placement.
3271 TypeIdParens = T.getRange();
3272 PlacementLParen = PlacementRParen = SourceLocation();
3273 } else {
3274 // We still need the type.
3275 if (Tok.is(K: tok::l_paren)) {
3276 BalancedDelimiterTracker T(*this, tok::l_paren);
3277 T.consumeOpen();
3278 MaybeParseGNUAttributes(D&: DeclaratorInfo);
3279 ParseSpecifierQualifierList(DS);
3280 DeclaratorInfo.SetSourceRange(DS.getSourceRange());
3281 ParseDeclarator(D&: DeclaratorInfo);
3282 T.consumeClose();
3283 TypeIdParens = T.getRange();
3284 } else {
3285 MaybeParseGNUAttributes(D&: DeclaratorInfo);
3286 if (ParseCXXTypeSpecifierSeq(DS))
3287 DeclaratorInfo.setInvalidType(true);
3288 else {
3289 DeclaratorInfo.SetSourceRange(DS.getSourceRange());
3290 ParseDeclaratorInternal(D&: DeclaratorInfo,
3291 DirectDeclParser: &Parser::ParseDirectNewDeclarator);
3292 }
3293 }
3294 }
3295 } else {
3296 // A new-type-id is a simplified type-id, where essentially the
3297 // direct-declarator is replaced by a direct-new-declarator.
3298 MaybeParseGNUAttributes(D&: DeclaratorInfo);
3299 if (ParseCXXTypeSpecifierSeq(DS, Context: DeclaratorContext::CXXNew))
3300 DeclaratorInfo.setInvalidType(true);
3301 else {
3302 DeclaratorInfo.SetSourceRange(DS.getSourceRange());
3303 ParseDeclaratorInternal(D&: DeclaratorInfo,
3304 DirectDeclParser: &Parser::ParseDirectNewDeclarator);
3305 }
3306 }
3307 if (DeclaratorInfo.isInvalidType()) {
3308 SkipUntil(T: tok::semi, Flags: StopAtSemi | StopBeforeMatch);
3309 return ExprError();
3310 }
3311
3312 ExprResult Initializer;
3313
3314 if (Tok.is(K: tok::l_paren)) {
3315 SourceLocation ConstructorLParen, ConstructorRParen;
3316 ExprVector ConstructorArgs;
3317 BalancedDelimiterTracker T(*this, tok::l_paren);
3318 T.consumeOpen();
3319 ConstructorLParen = T.getOpenLocation();
3320 if (Tok.isNot(K: tok::r_paren)) {
3321 auto RunSignatureHelp = [&]() {
3322 ParsedType TypeRep = Actions.ActOnTypeName(D&: DeclaratorInfo).get();
3323 QualType PreferredType;
3324 // ActOnTypeName might adjust DeclaratorInfo and return a null type even
3325 // the passing DeclaratorInfo is valid, e.g. running SignatureHelp on
3326 // `new decltype(invalid) (^)`.
3327 if (TypeRep)
3328 PreferredType = Actions.ProduceConstructorSignatureHelp(
3329 Type: TypeRep.get()->getCanonicalTypeInternal(),
3330 Loc: DeclaratorInfo.getEndLoc(), Args: ConstructorArgs, OpenParLoc: ConstructorLParen,
3331 /*Braced=*/false);
3332 CalledSignatureHelp = true;
3333 return PreferredType;
3334 };
3335 if (ParseExpressionList(Exprs&: ConstructorArgs, ExpressionStarts: [&] {
3336 PreferredType.enterFunctionArgument(Tok.getLocation(),
3337 RunSignatureHelp);
3338 })) {
3339 if (PP.isCodeCompletionReached() && !CalledSignatureHelp)
3340 RunSignatureHelp();
3341 SkipUntil(T: tok::semi, Flags: StopAtSemi | StopBeforeMatch);
3342 return ExprError();
3343 }
3344 }
3345 T.consumeClose();
3346 ConstructorRParen = T.getCloseLocation();
3347 if (ConstructorRParen.isInvalid()) {
3348 SkipUntil(T: tok::semi, Flags: StopAtSemi | StopBeforeMatch);
3349 return ExprError();
3350 }
3351 Initializer = Actions.ActOnParenListExpr(L: ConstructorLParen,
3352 R: ConstructorRParen,
3353 Val: ConstructorArgs);
3354 } else if (Tok.is(K: tok::l_brace) && getLangOpts().CPlusPlus11) {
3355 Diag(Tok.getLocation(),
3356 diag::warn_cxx98_compat_generalized_initializer_lists);
3357 Initializer = ParseBraceInitializer();
3358 }
3359 if (Initializer.isInvalid())
3360 return Initializer;
3361
3362 return Actions.ActOnCXXNew(StartLoc: Start, UseGlobal, PlacementLParen,
3363 PlacementArgs, PlacementRParen,
3364 TypeIdParens, D&: DeclaratorInfo, Initializer: Initializer.get());
3365}
3366
3367/// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be
3368/// passed to ParseDeclaratorInternal.
3369///
3370/// direct-new-declarator:
3371/// '[' expression[opt] ']'
3372/// direct-new-declarator '[' constant-expression ']'
3373///
3374void Parser::ParseDirectNewDeclarator(Declarator &D) {
3375 // Parse the array dimensions.
3376 bool First = true;
3377 while (Tok.is(K: tok::l_square)) {
3378 // An array-size expression can't start with a lambda.
3379 if (CheckProhibitedCXX11Attribute())
3380 continue;
3381
3382 BalancedDelimiterTracker T(*this, tok::l_square);
3383 T.consumeOpen();
3384
3385 ExprResult Size =
3386 First ? (Tok.is(K: tok::r_square) ? ExprResult() : ParseExpression())
3387 : ParseConstantExpression();
3388 if (Size.isInvalid()) {
3389 // Recover
3390 SkipUntil(T: tok::r_square, Flags: StopAtSemi);
3391 return;
3392 }
3393 First = false;
3394
3395 T.consumeClose();
3396
3397 // Attributes here appertain to the array type. C++11 [expr.new]p5.
3398 ParsedAttributes Attrs(AttrFactory);
3399 MaybeParseCXX11Attributes(Attrs);
3400
3401 D.AddTypeInfo(TI: DeclaratorChunk::getArray(TypeQuals: 0,
3402 /*isStatic=*/false, /*isStar=*/false,
3403 NumElts: Size.get(), LBLoc: T.getOpenLocation(),
3404 RBLoc: T.getCloseLocation()),
3405 attrs: std::move(Attrs), EndLoc: T.getCloseLocation());
3406
3407 if (T.getCloseLocation().isInvalid())
3408 return;
3409 }
3410}
3411
3412/// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id.
3413/// This ambiguity appears in the syntax of the C++ new operator.
3414///
3415/// new-expression:
3416/// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
3417/// new-initializer[opt]
3418///
3419/// new-placement:
3420/// '(' expression-list ')'
3421///
3422bool Parser::ParseExpressionListOrTypeId(
3423 SmallVectorImpl<Expr*> &PlacementArgs,
3424 Declarator &D) {
3425 // The '(' was already consumed.
3426 if (isTypeIdInParens()) {
3427 ParseSpecifierQualifierList(DS&: D.getMutableDeclSpec());
3428 D.SetSourceRange(D.getDeclSpec().getSourceRange());
3429 ParseDeclarator(D);
3430 return D.isInvalidType();
3431 }
3432
3433 // It's not a type, it has to be an expression list.
3434 return ParseExpressionList(Exprs&: PlacementArgs);
3435}
3436
3437/// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used
3438/// to free memory allocated by new.
3439///
3440/// This method is called to parse the 'delete' expression after the optional
3441/// '::' has been already parsed. If the '::' was present, "UseGlobal" is true
3442/// and "Start" is its location. Otherwise, "Start" is the location of the
3443/// 'delete' token.
3444///
3445/// delete-expression:
3446/// '::'[opt] 'delete' cast-expression
3447/// '::'[opt] 'delete' '[' ']' cast-expression
3448ExprResult
3449Parser::ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start) {
3450 assert(Tok.is(tok::kw_delete) && "Expected 'delete' keyword");
3451 ConsumeToken(); // Consume 'delete'
3452
3453 // Array delete?
3454 bool ArrayDelete = false;
3455 if (Tok.is(K: tok::l_square) && NextToken().is(K: tok::r_square)) {
3456 // C++11 [expr.delete]p1:
3457 // Whenever the delete keyword is followed by empty square brackets, it
3458 // shall be interpreted as [array delete].
3459 // [Footnote: A lambda expression with a lambda-introducer that consists
3460 // of empty square brackets can follow the delete keyword if
3461 // the lambda expression is enclosed in parentheses.]
3462
3463 const Token Next = GetLookAheadToken(N: 2);
3464
3465 // Basic lookahead to check if we have a lambda expression.
3466 if (Next.isOneOf(K1: tok::l_brace, K2: tok::less) ||
3467 (Next.is(K: tok::l_paren) &&
3468 (GetLookAheadToken(N: 3).is(K: tok::r_paren) ||
3469 (GetLookAheadToken(N: 3).is(K: tok::identifier) &&
3470 GetLookAheadToken(N: 4).is(K: tok::identifier))))) {
3471 TentativeParsingAction TPA(*this);
3472 SourceLocation LSquareLoc = Tok.getLocation();
3473 SourceLocation RSquareLoc = NextToken().getLocation();
3474
3475 // SkipUntil can't skip pairs of </*...*/>; don't emit a FixIt in this
3476 // case.
3477 SkipUntil(Toks: {tok::l_brace, tok::less}, Flags: StopBeforeMatch);
3478 SourceLocation RBraceLoc;
3479 bool EmitFixIt = false;
3480 if (Tok.is(K: tok::l_brace)) {
3481 ConsumeBrace();
3482 SkipUntil(T: tok::r_brace, Flags: StopBeforeMatch);
3483 RBraceLoc = Tok.getLocation();
3484 EmitFixIt = true;
3485 }
3486
3487 TPA.Revert();
3488
3489 if (EmitFixIt)
3490 Diag(Start, diag::err_lambda_after_delete)
3491 << SourceRange(Start, RSquareLoc)
3492 << FixItHint::CreateInsertion(LSquareLoc, "(")
3493 << FixItHint::CreateInsertion(
3494 Lexer::getLocForEndOfToken(
3495 RBraceLoc, 0, Actions.getSourceManager(), getLangOpts()),
3496 ")");
3497 else
3498 Diag(Start, diag::err_lambda_after_delete)
3499 << SourceRange(Start, RSquareLoc);
3500
3501 // Warn that the non-capturing lambda isn't surrounded by parentheses
3502 // to disambiguate it from 'delete[]'.
3503 ExprResult Lambda = ParseLambdaExpression();
3504 if (Lambda.isInvalid())
3505 return ExprError();
3506
3507 // Evaluate any postfix expressions used on the lambda.
3508 Lambda = ParsePostfixExpressionSuffix(LHS: Lambda);
3509 if (Lambda.isInvalid())
3510 return ExprError();
3511 return Actions.ActOnCXXDelete(StartLoc: Start, UseGlobal, /*ArrayForm=*/false,
3512 Operand: Lambda.get());
3513 }
3514
3515 ArrayDelete = true;
3516 BalancedDelimiterTracker T(*this, tok::l_square);
3517
3518 T.consumeOpen();
3519 T.consumeClose();
3520 if (T.getCloseLocation().isInvalid())
3521 return ExprError();
3522 }
3523
3524 ExprResult Operand(ParseCastExpression(ParseKind: AnyCastExpr));
3525 if (Operand.isInvalid())
3526 return Operand;
3527
3528 return Actions.ActOnCXXDelete(StartLoc: Start, UseGlobal, ArrayForm: ArrayDelete, Operand: Operand.get());
3529}
3530
3531/// ParseRequiresExpression - Parse a C++2a requires-expression.
3532/// C++2a [expr.prim.req]p1
3533/// A requires-expression provides a concise way to express requirements on
3534/// template arguments. A requirement is one that can be checked by name
3535/// lookup (6.4) or by checking properties of types and expressions.
3536///
3537/// requires-expression:
3538/// 'requires' requirement-parameter-list[opt] requirement-body
3539///
3540/// requirement-parameter-list:
3541/// '(' parameter-declaration-clause[opt] ')'
3542///
3543/// requirement-body:
3544/// '{' requirement-seq '}'
3545///
3546/// requirement-seq:
3547/// requirement
3548/// requirement-seq requirement
3549///
3550/// requirement:
3551/// simple-requirement
3552/// type-requirement
3553/// compound-requirement
3554/// nested-requirement
3555ExprResult Parser::ParseRequiresExpression() {
3556 assert(Tok.is(tok::kw_requires) && "Expected 'requires' keyword");
3557 SourceLocation RequiresKWLoc = ConsumeToken(); // Consume 'requires'
3558
3559 llvm::SmallVector<ParmVarDecl *, 2> LocalParameterDecls;
3560 BalancedDelimiterTracker Parens(*this, tok::l_paren);
3561 if (Tok.is(K: tok::l_paren)) {
3562 // requirement parameter list is present.
3563 ParseScope LocalParametersScope(this, Scope::FunctionPrototypeScope |
3564 Scope::DeclScope);
3565 Parens.consumeOpen();
3566 if (!Tok.is(K: tok::r_paren)) {
3567 ParsedAttributes FirstArgAttrs(getAttrFactory());
3568 SourceLocation EllipsisLoc;
3569 llvm::SmallVector<DeclaratorChunk::ParamInfo, 2> LocalParameters;
3570 ParseParameterDeclarationClause(DeclaratorContext: DeclaratorContext::RequiresExpr,
3571 attrs&: FirstArgAttrs, ParamInfo&: LocalParameters,
3572 EllipsisLoc);
3573 if (EllipsisLoc.isValid())
3574 Diag(EllipsisLoc, diag::err_requires_expr_parameter_list_ellipsis);
3575 for (auto &ParamInfo : LocalParameters)
3576 LocalParameterDecls.push_back(Elt: cast<ParmVarDecl>(Val: ParamInfo.Param));
3577 }
3578 Parens.consumeClose();
3579 }
3580
3581 BalancedDelimiterTracker Braces(*this, tok::l_brace);
3582 if (Braces.expectAndConsume())
3583 return ExprError();
3584
3585 // Start of requirement list
3586 llvm::SmallVector<concepts::Requirement *, 2> Requirements;
3587
3588 // C++2a [expr.prim.req]p2
3589 // Expressions appearing within a requirement-body are unevaluated operands.
3590 EnterExpressionEvaluationContext Ctx(
3591 Actions, Sema::ExpressionEvaluationContext::Unevaluated);
3592
3593 ParseScope BodyScope(this, Scope::DeclScope);
3594 // Create a separate diagnostic pool for RequiresExprBodyDecl.
3595 // Dependent diagnostics are attached to this Decl and non-depenedent
3596 // diagnostics are surfaced after this parse.
3597 ParsingDeclRAIIObject ParsingBodyDecl(*this, ParsingDeclRAIIObject::NoParent);
3598 RequiresExprBodyDecl *Body = Actions.ActOnStartRequiresExpr(
3599 RequiresKWLoc, LocalParameters: LocalParameterDecls, BodyScope: getCurScope());
3600
3601 if (Tok.is(K: tok::r_brace)) {
3602 // Grammar does not allow an empty body.
3603 // requirement-body:
3604 // { requirement-seq }
3605 // requirement-seq:
3606 // requirement
3607 // requirement-seq requirement
3608 Diag(Tok, diag::err_empty_requires_expr);
3609 // Continue anyway and produce a requires expr with no requirements.
3610 } else {
3611 while (!Tok.is(K: tok::r_brace)) {
3612 switch (Tok.getKind()) {
3613 case tok::l_brace: {
3614 // Compound requirement
3615 // C++ [expr.prim.req.compound]
3616 // compound-requirement:
3617 // '{' expression '}' 'noexcept'[opt]
3618 // return-type-requirement[opt] ';'
3619 // return-type-requirement:
3620 // trailing-return-type
3621 // '->' cv-qualifier-seq[opt] constrained-parameter
3622 // cv-qualifier-seq[opt] abstract-declarator[opt]
3623 BalancedDelimiterTracker ExprBraces(*this, tok::l_brace);
3624 ExprBraces.consumeOpen();
3625 ExprResult Expression =
3626 Actions.CorrectDelayedTyposInExpr(ER: ParseExpression());
3627 if (!Expression.isUsable()) {
3628 ExprBraces.skipToEnd();
3629 SkipUntil(T1: tok::semi, T2: tok::r_brace, Flags: SkipUntilFlags::StopBeforeMatch);
3630 break;
3631 }
3632 if (ExprBraces.consumeClose())
3633 ExprBraces.skipToEnd();
3634
3635 concepts::Requirement *Req = nullptr;
3636 SourceLocation NoexceptLoc;
3637 TryConsumeToken(Expected: tok::kw_noexcept, Loc&: NoexceptLoc);
3638 if (Tok.is(K: tok::semi)) {
3639 Req = Actions.ActOnCompoundRequirement(E: Expression.get(), NoexceptLoc);
3640 if (Req)
3641 Requirements.push_back(Elt: Req);
3642 break;
3643 }
3644 if (!TryConsumeToken(tok::arrow))
3645 // User probably forgot the arrow, remind them and try to continue.
3646 Diag(Tok, diag::err_requires_expr_missing_arrow)
3647 << FixItHint::CreateInsertion(Tok.getLocation(), "->");
3648 // Try to parse a 'type-constraint'
3649 if (TryAnnotateTypeConstraint()) {
3650 SkipUntil(T1: tok::semi, T2: tok::r_brace, Flags: SkipUntilFlags::StopBeforeMatch);
3651 break;
3652 }
3653 if (!isTypeConstraintAnnotation()) {
3654 Diag(Tok, diag::err_requires_expr_expected_type_constraint);
3655 SkipUntil(T1: tok::semi, T2: tok::r_brace, Flags: SkipUntilFlags::StopBeforeMatch);
3656 break;
3657 }
3658 CXXScopeSpec SS;
3659 if (Tok.is(K: tok::annot_cxxscope)) {
3660 Actions.RestoreNestedNameSpecifierAnnotation(Annotation: Tok.getAnnotationValue(),
3661 AnnotationRange: Tok.getAnnotationRange(),
3662 SS);
3663 ConsumeAnnotationToken();
3664 }
3665
3666 Req = Actions.ActOnCompoundRequirement(
3667 E: Expression.get(), NoexceptLoc, SS, TypeConstraint: takeTemplateIdAnnotation(tok: Tok),
3668 Depth: TemplateParameterDepth);
3669 ConsumeAnnotationToken();
3670 if (Req)
3671 Requirements.push_back(Elt: Req);
3672 break;
3673 }
3674 default: {
3675 bool PossibleRequiresExprInSimpleRequirement = false;
3676 if (Tok.is(K: tok::kw_requires)) {
3677 auto IsNestedRequirement = [&] {
3678 RevertingTentativeParsingAction TPA(*this);
3679 ConsumeToken(); // 'requires'
3680 if (Tok.is(K: tok::l_brace))
3681 // This is a requires expression
3682 // requires (T t) {
3683 // requires { t++; };
3684 // ... ^
3685 // }
3686 return false;
3687 if (Tok.is(K: tok::l_paren)) {
3688 // This might be the parameter list of a requires expression
3689 ConsumeParen();
3690 auto Res = TryParseParameterDeclarationClause();
3691 if (Res != TPResult::False) {
3692 // Skip to the closing parenthesis
3693 unsigned Depth = 1;
3694 while (Depth != 0) {
3695 bool FoundParen = SkipUntil(T1: tok::l_paren, T2: tok::r_paren,
3696 Flags: SkipUntilFlags::StopBeforeMatch);
3697 if (!FoundParen)
3698 break;
3699 if (Tok.is(K: tok::l_paren))
3700 Depth++;
3701 else if (Tok.is(K: tok::r_paren))
3702 Depth--;
3703 ConsumeAnyToken();
3704 }
3705 // requires (T t) {
3706 // requires () ?
3707 // ... ^
3708 // - OR -
3709 // requires (int x) ?
3710 // ... ^
3711 // }
3712 if (Tok.is(K: tok::l_brace))
3713 // requires (...) {
3714 // ^ - a requires expression as a
3715 // simple-requirement.
3716 return false;
3717 }
3718 }
3719 return true;
3720 };
3721 if (IsNestedRequirement()) {
3722 ConsumeToken();
3723 // Nested requirement
3724 // C++ [expr.prim.req.nested]
3725 // nested-requirement:
3726 // 'requires' constraint-expression ';'
3727 ExprResult ConstraintExpr =
3728 Actions.CorrectDelayedTyposInExpr(ER: ParseConstraintExpression());
3729 if (ConstraintExpr.isInvalid() || !ConstraintExpr.isUsable()) {
3730 SkipUntil(T1: tok::semi, T2: tok::r_brace,
3731 Flags: SkipUntilFlags::StopBeforeMatch);
3732 break;
3733 }
3734 if (auto *Req =
3735 Actions.ActOnNestedRequirement(Constraint: ConstraintExpr.get()))
3736 Requirements.push_back(Elt: Req);
3737 else {
3738 SkipUntil(T1: tok::semi, T2: tok::r_brace,
3739 Flags: SkipUntilFlags::StopBeforeMatch);
3740 break;
3741 }
3742 break;
3743 } else
3744 PossibleRequiresExprInSimpleRequirement = true;
3745 } else if (Tok.is(K: tok::kw_typename)) {
3746 // This might be 'typename T::value_type;' (a type requirement) or
3747 // 'typename T::value_type{};' (a simple requirement).
3748 TentativeParsingAction TPA(*this);
3749
3750 // We need to consume the typename to allow 'requires { typename a; }'
3751 SourceLocation TypenameKWLoc = ConsumeToken();
3752 if (TryAnnotateOptionalCXXScopeToken()) {
3753 TPA.Commit();
3754 SkipUntil(T1: tok::semi, T2: tok::r_brace, Flags: SkipUntilFlags::StopBeforeMatch);
3755 break;
3756 }
3757 CXXScopeSpec SS;
3758 if (Tok.is(K: tok::annot_cxxscope)) {
3759 Actions.RestoreNestedNameSpecifierAnnotation(
3760 Annotation: Tok.getAnnotationValue(), AnnotationRange: Tok.getAnnotationRange(), SS);
3761 ConsumeAnnotationToken();
3762 }
3763
3764 if (Tok.isOneOf(K1: tok::identifier, K2: tok::annot_template_id) &&
3765 !NextToken().isOneOf(K1: tok::l_brace, K2: tok::l_paren)) {
3766 TPA.Commit();
3767 SourceLocation NameLoc = Tok.getLocation();
3768 IdentifierInfo *II = nullptr;
3769 TemplateIdAnnotation *TemplateId = nullptr;
3770 if (Tok.is(K: tok::identifier)) {
3771 II = Tok.getIdentifierInfo();
3772 ConsumeToken();
3773 } else {
3774 TemplateId = takeTemplateIdAnnotation(tok: Tok);
3775 ConsumeAnnotationToken();
3776 if (TemplateId->isInvalid())
3777 break;
3778 }
3779
3780 if (auto *Req = Actions.ActOnTypeRequirement(TypenameKWLoc, SS,
3781 NameLoc, TypeName: II,
3782 TemplateId)) {
3783 Requirements.push_back(Elt: Req);
3784 }
3785 break;
3786 }
3787 TPA.Revert();
3788 }
3789 // Simple requirement
3790 // C++ [expr.prim.req.simple]
3791 // simple-requirement:
3792 // expression ';'
3793 SourceLocation StartLoc = Tok.getLocation();
3794 ExprResult Expression =
3795 Actions.CorrectDelayedTyposInExpr(ER: ParseExpression());
3796 if (!Expression.isUsable()) {
3797 SkipUntil(T1: tok::semi, T2: tok::r_brace, Flags: SkipUntilFlags::StopBeforeMatch);
3798 break;
3799 }
3800 if (!Expression.isInvalid() && PossibleRequiresExprInSimpleRequirement)
3801 Diag(StartLoc, diag::err_requires_expr_in_simple_requirement)
3802 << FixItHint::CreateInsertion(StartLoc, "requires");
3803 if (auto *Req = Actions.ActOnSimpleRequirement(E: Expression.get()))
3804 Requirements.push_back(Elt: Req);
3805 else {
3806 SkipUntil(T1: tok::semi, T2: tok::r_brace, Flags: SkipUntilFlags::StopBeforeMatch);
3807 break;
3808 }
3809 // User may have tried to put some compound requirement stuff here
3810 if (Tok.is(K: tok::kw_noexcept)) {
3811 Diag(Tok, diag::err_requires_expr_simple_requirement_noexcept)
3812 << FixItHint::CreateInsertion(StartLoc, "{")
3813 << FixItHint::CreateInsertion(Tok.getLocation(), "}");
3814 SkipUntil(T1: tok::semi, T2: tok::r_brace, Flags: SkipUntilFlags::StopBeforeMatch);
3815 break;
3816 }
3817 break;
3818 }
3819 }
3820 if (ExpectAndConsumeSemi(diag::err_expected_semi_requirement)) {
3821 SkipUntil(T1: tok::semi, T2: tok::r_brace, Flags: SkipUntilFlags::StopBeforeMatch);
3822 TryConsumeToken(Expected: tok::semi);
3823 break;
3824 }
3825 }
3826 if (Requirements.empty()) {
3827 // Don't emit an empty requires expr here to avoid confusing the user with
3828 // other diagnostics quoting an empty requires expression they never
3829 // wrote.
3830 Braces.consumeClose();
3831 Actions.ActOnFinishRequiresExpr();
3832 return ExprError();
3833 }
3834 }
3835 Braces.consumeClose();
3836 Actions.ActOnFinishRequiresExpr();
3837 ParsingBodyDecl.complete(Body);
3838 return Actions.ActOnRequiresExpr(
3839 RequiresKWLoc, Body, LParenLoc: Parens.getOpenLocation(), LocalParameters: LocalParameterDecls,
3840 RParenLoc: Parens.getCloseLocation(), Requirements, ClosingBraceLoc: Braces.getCloseLocation());
3841}
3842
3843static TypeTrait TypeTraitFromTokKind(tok::TokenKind kind) {
3844 switch (kind) {
3845 default: llvm_unreachable("Not a known type trait");
3846#define TYPE_TRAIT_1(Spelling, Name, Key) \
3847case tok::kw_ ## Spelling: return UTT_ ## Name;
3848#define TYPE_TRAIT_2(Spelling, Name, Key) \
3849case tok::kw_ ## Spelling: return BTT_ ## Name;
3850#include "clang/Basic/TokenKinds.def"
3851#define TYPE_TRAIT_N(Spelling, Name, Key) \
3852 case tok::kw_ ## Spelling: return TT_ ## Name;
3853#include "clang/Basic/TokenKinds.def"
3854 }
3855}
3856
3857static ArrayTypeTrait ArrayTypeTraitFromTokKind(tok::TokenKind kind) {
3858 switch (kind) {
3859 default:
3860 llvm_unreachable("Not a known array type trait");
3861#define ARRAY_TYPE_TRAIT(Spelling, Name, Key) \
3862 case tok::kw_##Spelling: \
3863 return ATT_##Name;
3864#include "clang/Basic/TokenKinds.def"
3865 }
3866}
3867
3868static ExpressionTrait ExpressionTraitFromTokKind(tok::TokenKind kind) {
3869 switch (kind) {
3870 default:
3871 llvm_unreachable("Not a known unary expression trait.");
3872#define EXPRESSION_TRAIT(Spelling, Name, Key) \
3873 case tok::kw_##Spelling: \
3874 return ET_##Name;
3875#include "clang/Basic/TokenKinds.def"
3876 }
3877}
3878
3879/// Parse the built-in type-trait pseudo-functions that allow
3880/// implementation of the TR1/C++11 type traits templates.
3881///
3882/// primary-expression:
3883/// unary-type-trait '(' type-id ')'
3884/// binary-type-trait '(' type-id ',' type-id ')'
3885/// type-trait '(' type-id-seq ')'
3886///
3887/// type-id-seq:
3888/// type-id ...[opt] type-id-seq[opt]
3889///
3890ExprResult Parser::ParseTypeTrait() {
3891 tok::TokenKind Kind = Tok.getKind();
3892
3893 SourceLocation Loc = ConsumeToken();
3894
3895 BalancedDelimiterTracker Parens(*this, tok::l_paren);
3896 if (Parens.expectAndConsume())
3897 return ExprError();
3898
3899 SmallVector<ParsedType, 2> Args;
3900 do {
3901 // Parse the next type.
3902 TypeResult Ty = ParseTypeName();
3903 if (Ty.isInvalid()) {
3904 Parens.skipToEnd();
3905 return ExprError();
3906 }
3907
3908 // Parse the ellipsis, if present.
3909 if (Tok.is(K: tok::ellipsis)) {
3910 Ty = Actions.ActOnPackExpansion(Type: Ty.get(), EllipsisLoc: ConsumeToken());
3911 if (Ty.isInvalid()) {
3912 Parens.skipToEnd();
3913 return ExprError();
3914 }
3915 }
3916
3917 // Add this type to the list of arguments.
3918 Args.push_back(Elt: Ty.get());
3919 } while (TryConsumeToken(Expected: tok::comma));
3920
3921 if (Parens.consumeClose())
3922 return ExprError();
3923
3924 SourceLocation EndLoc = Parens.getCloseLocation();
3925
3926 return Actions.ActOnTypeTrait(Kind: TypeTraitFromTokKind(kind: Kind), KWLoc: Loc, Args, RParenLoc: EndLoc);
3927}
3928
3929/// ParseArrayTypeTrait - Parse the built-in array type-trait
3930/// pseudo-functions.
3931///
3932/// primary-expression:
3933/// [Embarcadero] '__array_rank' '(' type-id ')'
3934/// [Embarcadero] '__array_extent' '(' type-id ',' expression ')'
3935///
3936ExprResult Parser::ParseArrayTypeTrait() {
3937 ArrayTypeTrait ATT = ArrayTypeTraitFromTokKind(kind: Tok.getKind());
3938 SourceLocation Loc = ConsumeToken();
3939
3940 BalancedDelimiterTracker T(*this, tok::l_paren);
3941 if (T.expectAndConsume())
3942 return ExprError();
3943
3944 TypeResult Ty = ParseTypeName();
3945 if (Ty.isInvalid()) {
3946 SkipUntil(T: tok::comma, Flags: StopAtSemi);
3947 SkipUntil(T: tok::r_paren, Flags: StopAtSemi);
3948 return ExprError();
3949 }
3950
3951 switch (ATT) {
3952 case ATT_ArrayRank: {
3953 T.consumeClose();
3954 return Actions.ActOnArrayTypeTrait(ATT, KWLoc: Loc, LhsTy: Ty.get(), DimExpr: nullptr,
3955 RParen: T.getCloseLocation());
3956 }
3957 case ATT_ArrayExtent: {
3958 if (ExpectAndConsume(ExpectedTok: tok::comma)) {
3959 SkipUntil(T: tok::r_paren, Flags: StopAtSemi);
3960 return ExprError();
3961 }
3962
3963 ExprResult DimExpr = ParseExpression();
3964 T.consumeClose();
3965
3966 return Actions.ActOnArrayTypeTrait(ATT, KWLoc: Loc, LhsTy: Ty.get(), DimExpr: DimExpr.get(),
3967 RParen: T.getCloseLocation());
3968 }
3969 }
3970 llvm_unreachable("Invalid ArrayTypeTrait!");
3971}
3972
3973/// ParseExpressionTrait - Parse built-in expression-trait
3974/// pseudo-functions like __is_lvalue_expr( xxx ).
3975///
3976/// primary-expression:
3977/// [Embarcadero] expression-trait '(' expression ')'
3978///
3979ExprResult Parser::ParseExpressionTrait() {
3980 ExpressionTrait ET = ExpressionTraitFromTokKind(kind: Tok.getKind());
3981 SourceLocation Loc = ConsumeToken();
3982
3983 BalancedDelimiterTracker T(*this, tok::l_paren);
3984 if (T.expectAndConsume())
3985 return ExprError();
3986
3987 ExprResult Expr = ParseExpression();
3988
3989 T.consumeClose();
3990
3991 return Actions.ActOnExpressionTrait(OET: ET, KWLoc: Loc, Queried: Expr.get(),
3992 RParen: T.getCloseLocation());
3993}
3994
3995
3996/// ParseCXXAmbiguousParenExpression - We have parsed the left paren of a
3997/// parenthesized ambiguous type-id. This uses tentative parsing to disambiguate
3998/// based on the context past the parens.
3999ExprResult
4000Parser::ParseCXXAmbiguousParenExpression(ParenParseOption &ExprType,
4001 ParsedType &CastTy,
4002 BalancedDelimiterTracker &Tracker,
4003 ColonProtectionRAIIObject &ColonProt) {
4004 assert(getLangOpts().CPlusPlus && "Should only be called for C++!");
4005 assert(ExprType == CastExpr && "Compound literals are not ambiguous!");
4006 assert(isTypeIdInParens() && "Not a type-id!");
4007
4008 ExprResult Result(true);
4009 CastTy = nullptr;
4010
4011 // We need to disambiguate a very ugly part of the C++ syntax:
4012 //
4013 // (T())x; - type-id
4014 // (T())*x; - type-id
4015 // (T())/x; - expression
4016 // (T()); - expression
4017 //
4018 // The bad news is that we cannot use the specialized tentative parser, since
4019 // it can only verify that the thing inside the parens can be parsed as
4020 // type-id, it is not useful for determining the context past the parens.
4021 //
4022 // The good news is that the parser can disambiguate this part without
4023 // making any unnecessary Action calls.
4024 //
4025 // It uses a scheme similar to parsing inline methods. The parenthesized
4026 // tokens are cached, the context that follows is determined (possibly by
4027 // parsing a cast-expression), and then we re-introduce the cached tokens
4028 // into the token stream and parse them appropriately.
4029
4030 ParenParseOption ParseAs;
4031 CachedTokens Toks;
4032
4033 // Store the tokens of the parentheses. We will parse them after we determine
4034 // the context that follows them.
4035 if (!ConsumeAndStoreUntil(T1: tok::r_paren, Toks)) {
4036 // We didn't find the ')' we expected.
4037 Tracker.consumeClose();
4038 return ExprError();
4039 }
4040
4041 if (Tok.is(K: tok::l_brace)) {
4042 ParseAs = CompoundLiteral;
4043 } else {
4044 bool NotCastExpr;
4045 if (Tok.is(K: tok::l_paren) && NextToken().is(K: tok::r_paren)) {
4046 NotCastExpr = true;
4047 } else {
4048 // Try parsing the cast-expression that may follow.
4049 // If it is not a cast-expression, NotCastExpr will be true and no token
4050 // will be consumed.
4051 ColonProt.restore();
4052 Result = ParseCastExpression(ParseKind: AnyCastExpr,
4053 isAddressOfOperand: false/*isAddressofOperand*/,
4054 NotCastExpr,
4055 // type-id has priority.
4056 isTypeCast: IsTypeCast);
4057 }
4058
4059 // If we parsed a cast-expression, it's really a type-id, otherwise it's
4060 // an expression.
4061 ParseAs = NotCastExpr ? SimpleExpr : CastExpr;
4062 }
4063
4064 // Create a fake EOF to mark end of Toks buffer.
4065 Token AttrEnd;
4066 AttrEnd.startToken();
4067 AttrEnd.setKind(tok::eof);
4068 AttrEnd.setLocation(Tok.getLocation());
4069 AttrEnd.setEofData(Toks.data());
4070 Toks.push_back(Elt: AttrEnd);
4071
4072 // The current token should go after the cached tokens.
4073 Toks.push_back(Elt: Tok);
4074 // Re-enter the stored parenthesized tokens into the token stream, so we may
4075 // parse them now.
4076 PP.EnterTokenStream(Toks, /*DisableMacroExpansion*/ true,
4077 /*IsReinject*/ true);
4078 // Drop the current token and bring the first cached one. It's the same token
4079 // as when we entered this function.
4080 ConsumeAnyToken();
4081
4082 if (ParseAs >= CompoundLiteral) {
4083 // Parse the type declarator.
4084 DeclSpec DS(AttrFactory);
4085 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
4086 DeclaratorContext::TypeName);
4087 {
4088 ColonProtectionRAIIObject InnerColonProtection(*this);
4089 ParseSpecifierQualifierList(DS);
4090 ParseDeclarator(D&: DeclaratorInfo);
4091 }
4092
4093 // Match the ')'.
4094 Tracker.consumeClose();
4095 ColonProt.restore();
4096
4097 // Consume EOF marker for Toks buffer.
4098 assert(Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData());
4099 ConsumeAnyToken();
4100
4101 if (ParseAs == CompoundLiteral) {
4102 ExprType = CompoundLiteral;
4103 if (DeclaratorInfo.isInvalidType())
4104 return ExprError();
4105
4106 TypeResult Ty = Actions.ActOnTypeName(D&: DeclaratorInfo);
4107 return ParseCompoundLiteralExpression(Ty: Ty.get(),
4108 LParenLoc: Tracker.getOpenLocation(),
4109 RParenLoc: Tracker.getCloseLocation());
4110 }
4111
4112 // We parsed '(' type-id ')' and the thing after it wasn't a '{'.
4113 assert(ParseAs == CastExpr);
4114
4115 if (DeclaratorInfo.isInvalidType())
4116 return ExprError();
4117
4118 // Result is what ParseCastExpression returned earlier.
4119 if (!Result.isInvalid())
4120 Result = Actions.ActOnCastExpr(S: getCurScope(), LParenLoc: Tracker.getOpenLocation(),
4121 D&: DeclaratorInfo, Ty&: CastTy,
4122 RParenLoc: Tracker.getCloseLocation(), CastExpr: Result.get());
4123 return Result;
4124 }
4125
4126 // Not a compound literal, and not followed by a cast-expression.
4127 assert(ParseAs == SimpleExpr);
4128
4129 ExprType = SimpleExpr;
4130 Result = ParseExpression();
4131 if (!Result.isInvalid() && Tok.is(K: tok::r_paren))
4132 Result = Actions.ActOnParenExpr(L: Tracker.getOpenLocation(),
4133 R: Tok.getLocation(), E: Result.get());
4134
4135 // Match the ')'.
4136 if (Result.isInvalid()) {
4137 while (Tok.isNot(K: tok::eof))
4138 ConsumeAnyToken();
4139 assert(Tok.getEofData() == AttrEnd.getEofData());
4140 ConsumeAnyToken();
4141 return ExprError();
4142 }
4143
4144 Tracker.consumeClose();
4145 // Consume EOF marker for Toks buffer.
4146 assert(Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData());
4147 ConsumeAnyToken();
4148 return Result;
4149}
4150
4151/// Parse a __builtin_bit_cast(T, E).
4152ExprResult Parser::ParseBuiltinBitCast() {
4153 SourceLocation KWLoc = ConsumeToken();
4154
4155 BalancedDelimiterTracker T(*this, tok::l_paren);
4156 if (T.expectAndConsume(diag::err_expected_lparen_after, "__builtin_bit_cast"))
4157 return ExprError();
4158
4159 // Parse the common declaration-specifiers piece.
4160 DeclSpec DS(AttrFactory);
4161 ParseSpecifierQualifierList(DS);
4162
4163 // Parse the abstract-declarator, if present.
4164 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
4165 DeclaratorContext::TypeName);
4166 ParseDeclarator(D&: DeclaratorInfo);
4167
4168 if (ExpectAndConsume(ExpectedTok: tok::comma)) {
4169 Diag(Tok.getLocation(), diag::err_expected) << tok::comma;
4170 SkipUntil(T: tok::r_paren, Flags: StopAtSemi);
4171 return ExprError();
4172 }
4173
4174 ExprResult Operand = ParseExpression();
4175
4176 if (T.consumeClose())
4177 return ExprError();
4178
4179 if (Operand.isInvalid() || DeclaratorInfo.isInvalidType())
4180 return ExprError();
4181
4182 return Actions.ActOnBuiltinBitCastExpr(KWLoc, Dcl&: DeclaratorInfo, Operand,
4183 RParenLoc: T.getCloseLocation());
4184}
4185

source code of clang/lib/Parse/ParseExprCXX.cpp