1 | //===--- CheckExprLifetime.cpp --------------------------------------------===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "CheckExprLifetime.h" |
10 | #include "clang/AST/Decl.h" |
11 | #include "clang/AST/Expr.h" |
12 | #include "clang/AST/Type.h" |
13 | #include "clang/Basic/DiagnosticSema.h" |
14 | #include "clang/Sema/Initialization.h" |
15 | #include "clang/Sema/Sema.h" |
16 | #include "llvm/ADT/PointerIntPair.h" |
17 | |
18 | namespace clang::sema { |
19 | namespace { |
20 | enum LifetimeKind { |
21 | /// The lifetime of a temporary bound to this entity ends at the end of the |
22 | /// full-expression, and that's (probably) fine. |
23 | LK_FullExpression, |
24 | |
25 | /// The lifetime of a temporary bound to this entity is extended to the |
26 | /// lifeitme of the entity itself. |
27 | LK_Extended, |
28 | |
29 | /// The lifetime of a temporary bound to this entity probably ends too soon, |
30 | /// because the entity is allocated in a new-expression. |
31 | LK_New, |
32 | |
33 | /// The lifetime of a temporary bound to this entity ends too soon, because |
34 | /// the entity is a return object. |
35 | LK_Return, |
36 | |
37 | /// The lifetime of a temporary bound to this entity ends too soon, because |
38 | /// the entity passed to a musttail function call. |
39 | LK_MustTail, |
40 | |
41 | /// The lifetime of a temporary bound to this entity ends too soon, because |
42 | /// the entity is the result of a statement expression. |
43 | LK_StmtExprResult, |
44 | |
45 | /// This is a mem-initializer: if it would extend a temporary (other than via |
46 | /// a default member initializer), the program is ill-formed. |
47 | LK_MemInitializer, |
48 | |
49 | /// The lifetime of a temporary bound to this entity may end too soon, |
50 | /// because the entity is a pointer and we assign the address of a temporary |
51 | /// object to it. |
52 | LK_Assignment, |
53 | |
54 | /// The lifetime of a temporary bound to this entity may end too soon, |
55 | /// because the entity may capture the reference to a temporary object. |
56 | LK_LifetimeCapture, |
57 | }; |
58 | using LifetimeResult = |
59 | llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>; |
60 | } // namespace |
61 | |
62 | /// Determine the declaration which an initialized entity ultimately refers to, |
63 | /// for the purpose of lifetime-extending a temporary bound to a reference in |
64 | /// the initialization of \p Entity. |
65 | static LifetimeResult |
66 | getEntityLifetime(const InitializedEntity *Entity, |
67 | const InitializedEntity *InitField = nullptr) { |
68 | // C++11 [class.temporary]p5: |
69 | switch (Entity->getKind()) { |
70 | case InitializedEntity::EK_Variable: |
71 | // The temporary [...] persists for the lifetime of the reference |
72 | return {Entity, LK_Extended}; |
73 | |
74 | case InitializedEntity::EK_Member: |
75 | // For subobjects, we look at the complete object. |
76 | if (Entity->getParent()) |
77 | return getEntityLifetime(Entity: Entity->getParent(), InitField: Entity); |
78 | |
79 | // except: |
80 | // C++17 [class.base.init]p8: |
81 | // A temporary expression bound to a reference member in a |
82 | // mem-initializer is ill-formed. |
83 | // C++17 [class.base.init]p11: |
84 | // A temporary expression bound to a reference member from a |
85 | // default member initializer is ill-formed. |
86 | // |
87 | // The context of p11 and its example suggest that it's only the use of a |
88 | // default member initializer from a constructor that makes the program |
89 | // ill-formed, not its mere existence, and that it can even be used by |
90 | // aggregate initialization. |
91 | return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended |
92 | : LK_MemInitializer}; |
93 | |
94 | case InitializedEntity::EK_Binding: |
95 | // Per [dcl.decomp]p3, the binding is treated as a variable of reference |
96 | // type. |
97 | return {Entity, LK_Extended}; |
98 | |
99 | case InitializedEntity::EK_Parameter: |
100 | case InitializedEntity::EK_Parameter_CF_Audited: |
101 | // -- A temporary bound to a reference parameter in a function call |
102 | // persists until the completion of the full-expression containing |
103 | // the call. |
104 | return {nullptr, LK_FullExpression}; |
105 | |
106 | case InitializedEntity::EK_TemplateParameter: |
107 | // FIXME: This will always be ill-formed; should we eagerly diagnose it |
108 | // here? |
109 | return {nullptr, LK_FullExpression}; |
110 | |
111 | case InitializedEntity::EK_Result: |
112 | // -- The lifetime of a temporary bound to the returned value in a |
113 | // function return statement is not extended; the temporary is |
114 | // destroyed at the end of the full-expression in the return statement. |
115 | return {nullptr, LK_Return}; |
116 | |
117 | case InitializedEntity::EK_StmtExprResult: |
118 | // FIXME: Should we lifetime-extend through the result of a statement |
119 | // expression? |
120 | return {nullptr, LK_StmtExprResult}; |
121 | |
122 | case InitializedEntity::EK_New: |
123 | // -- A temporary bound to a reference in a new-initializer persists |
124 | // until the completion of the full-expression containing the |
125 | // new-initializer. |
126 | return {nullptr, LK_New}; |
127 | |
128 | case InitializedEntity::EK_Temporary: |
129 | case InitializedEntity::EK_CompoundLiteralInit: |
130 | case InitializedEntity::EK_RelatedResult: |
131 | // We don't yet know the storage duration of the surrounding temporary. |
132 | // Assume it's got full-expression duration for now, it will patch up our |
133 | // storage duration if that's not correct. |
134 | return {nullptr, LK_FullExpression}; |
135 | |
136 | case InitializedEntity::EK_ArrayElement: |
137 | // For subobjects, we look at the complete object. |
138 | return getEntityLifetime(Entity: Entity->getParent(), InitField); |
139 | |
140 | case InitializedEntity::EK_Base: |
141 | // For subobjects, we look at the complete object. |
142 | if (Entity->getParent()) |
143 | return getEntityLifetime(Entity: Entity->getParent(), InitField); |
144 | return {InitField, LK_MemInitializer}; |
145 | |
146 | case InitializedEntity::EK_Delegating: |
147 | // We can reach this case for aggregate initialization in a constructor: |
148 | // struct A { int &&r; }; |
149 | // struct B : A { B() : A{0} {} }; |
150 | // In this case, use the outermost field decl as the context. |
151 | return {InitField, LK_MemInitializer}; |
152 | |
153 | case InitializedEntity::EK_BlockElement: |
154 | case InitializedEntity::EK_LambdaToBlockConversionBlockElement: |
155 | case InitializedEntity::EK_LambdaCapture: |
156 | case InitializedEntity::EK_VectorElement: |
157 | case InitializedEntity::EK_ComplexElement: |
158 | return {nullptr, LK_FullExpression}; |
159 | |
160 | case InitializedEntity::EK_Exception: |
161 | // FIXME: Can we diagnose lifetime problems with exceptions? |
162 | return {nullptr, LK_FullExpression}; |
163 | |
164 | case InitializedEntity::EK_ParenAggInitMember: |
165 | // -- A temporary object bound to a reference element of an aggregate of |
166 | // class type initialized from a parenthesized expression-list |
167 | // [dcl.init, 9.3] persists until the completion of the full-expression |
168 | // containing the expression-list. |
169 | return {nullptr, LK_FullExpression}; |
170 | } |
171 | |
172 | llvm_unreachable("unknown entity kind"); |
173 | } |
174 | |
175 | namespace { |
176 | enum ReferenceKind { |
177 | /// Lifetime would be extended by a reference binding to a temporary. |
178 | RK_ReferenceBinding, |
179 | /// Lifetime would be extended by a std::initializer_list object binding to |
180 | /// its backing array. |
181 | RK_StdInitializerList, |
182 | }; |
183 | |
184 | /// A temporary or local variable. This will be one of: |
185 | /// * A MaterializeTemporaryExpr. |
186 | /// * A DeclRefExpr whose declaration is a local. |
187 | /// * An AddrLabelExpr. |
188 | /// * A BlockExpr for a block with captures. |
189 | using Local = Expr *; |
190 | |
191 | /// Expressions we stepped over when looking for the local state. Any steps |
192 | /// that would inhibit lifetime extension or take us out of subexpressions of |
193 | /// the initializer are included. |
194 | struct IndirectLocalPathEntry { |
195 | enum EntryKind { |
196 | DefaultInit, |
197 | AddressOf, |
198 | VarInit, |
199 | LValToRVal, |
200 | LifetimeBoundCall, |
201 | TemporaryCopy, |
202 | LambdaCaptureInit, |
203 | MemberExpr, |
204 | GslReferenceInit, |
205 | GslPointerInit, |
206 | GslPointerAssignment, |
207 | DefaultArg, |
208 | ParenAggInit, |
209 | } Kind; |
210 | Expr *E; |
211 | union { |
212 | const Decl *D = nullptr; |
213 | const LambdaCapture *Capture; |
214 | }; |
215 | IndirectLocalPathEntry() {} |
216 | IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {} |
217 | IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D) |
218 | : Kind(K), E(E), D(D) {} |
219 | IndirectLocalPathEntry(EntryKind K, Expr *E, const LambdaCapture *Capture) |
220 | : Kind(K), E(E), Capture(Capture) {} |
221 | }; |
222 | |
223 | using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>; |
224 | |
225 | struct RevertToOldSizeRAII { |
226 | IndirectLocalPath &Path; |
227 | unsigned OldSize = Path.size(); |
228 | RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {} |
229 | ~RevertToOldSizeRAII() { Path.resize(N: OldSize); } |
230 | }; |
231 | |
232 | using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L, |
233 | ReferenceKind RK)>; |
234 | } // namespace |
235 | |
236 | static bool isVarOnPath(const IndirectLocalPath &Path, VarDecl *VD) { |
237 | for (auto E : Path) |
238 | if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD) |
239 | return true; |
240 | return false; |
241 | } |
242 | |
243 | static bool pathContainsInit(const IndirectLocalPath &Path) { |
244 | return llvm::any_of(Range: Path, P: [=](IndirectLocalPathEntry E) { |
245 | return E.Kind == IndirectLocalPathEntry::DefaultInit || |
246 | E.Kind == IndirectLocalPathEntry::VarInit; |
247 | }); |
248 | } |
249 | |
250 | static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path, |
251 | Expr *Init, LocalVisitor Visit, |
252 | bool RevisitSubinits); |
253 | |
254 | static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path, |
255 | Expr *Init, ReferenceKind RK, |
256 | LocalVisitor Visit); |
257 | |
258 | template <typename T> static bool isRecordWithAttr(QualType Type) { |
259 | auto *RD = Type->getAsCXXRecordDecl(); |
260 | if (!RD) |
261 | return false; |
262 | // Generally, if a primary template class declaration is annotated with an |
263 | // attribute, all its specializations generated from template instantiations |
264 | // should inherit the attribute. |
265 | // |
266 | // However, since lifetime analysis occurs during parsing, we may encounter |
267 | // cases where a full definition of the specialization is not required. In |
268 | // such cases, the specialization declaration remains incomplete and lacks the |
269 | // attribute. Therefore, we fall back to checking the primary template class. |
270 | // |
271 | // Note: it is possible for a specialization declaration to have an attribute |
272 | // even if the primary template does not. |
273 | // |
274 | // FIXME: What if the primary template and explicit specialization |
275 | // declarations have conflicting attributes? We should consider diagnosing |
276 | // this scenario. |
277 | bool Result = RD->hasAttr<T>(); |
278 | |
279 | if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Val: RD)) |
280 | Result |= CTSD->getSpecializedTemplate()->getTemplatedDecl()->hasAttr<T>(); |
281 | |
282 | return Result; |
283 | } |
284 | |
285 | // Tells whether the type is annotated with [[gsl::Pointer]]. |
286 | bool isGLSPointerType(QualType QT) { return isRecordWithAttr<PointerAttr>(QT); } |
287 | |
288 | static bool isPointerLikeType(QualType QT) { |
289 | return isGLSPointerType(QT) || QT->isPointerType() || QT->isNullPtrType(); |
290 | } |
291 | |
292 | // Decl::isInStdNamespace will return false for iterators in some STL |
293 | // implementations due to them being defined in a namespace outside of the std |
294 | // namespace. |
295 | static bool isInStlNamespace(const Decl *D) { |
296 | const DeclContext *DC = D->getDeclContext(); |
297 | if (!DC) |
298 | return false; |
299 | if (const auto *ND = dyn_cast<NamespaceDecl>(Val: DC)) |
300 | if (const IdentifierInfo *II = ND->getIdentifier()) { |
301 | StringRef Name = II->getName(); |
302 | if (Name.size() >= 2 && Name.front() == '_' && |
303 | (Name[1] == '_' || isUppercase(c: Name[1]))) |
304 | return true; |
305 | } |
306 | |
307 | return DC->isStdNamespace(); |
308 | } |
309 | |
310 | // Returns true if the given Record decl is a form of `GSLOwner<Pointer>` |
311 | // type, e.g. std::vector<string_view>, std::optional<string_view>. |
312 | static bool isContainerOfPointer(const RecordDecl *Container) { |
313 | if (const auto *CTSD = |
314 | dyn_cast_if_present<ClassTemplateSpecializationDecl>(Val: Container)) { |
315 | if (!CTSD->hasAttr<OwnerAttr>()) // Container must be a GSL owner type. |
316 | return false; |
317 | const auto &TAs = CTSD->getTemplateArgs(); |
318 | return TAs.size() > 0 && TAs[0].getKind() == TemplateArgument::Type && |
319 | isPointerLikeType(QT: TAs[0].getAsType()); |
320 | } |
321 | return false; |
322 | } |
323 | static bool isContainerOfOwner(const RecordDecl *Container) { |
324 | const auto *CTSD = |
325 | dyn_cast_if_present<ClassTemplateSpecializationDecl>(Val: Container); |
326 | if (!CTSD) |
327 | return false; |
328 | if (!CTSD->hasAttr<OwnerAttr>()) // Container must be a GSL owner type. |
329 | return false; |
330 | const auto &TAs = CTSD->getTemplateArgs(); |
331 | return TAs.size() > 0 && TAs[0].getKind() == TemplateArgument::Type && |
332 | isRecordWithAttr<OwnerAttr>(TAs[0].getAsType()); |
333 | } |
334 | |
335 | // Returns true if the given Record is `std::initializer_list<pointer>`. |
336 | static bool isStdInitializerListOfPointer(const RecordDecl *RD) { |
337 | if (const auto *CTSD = |
338 | dyn_cast_if_present<ClassTemplateSpecializationDecl>(Val: RD)) { |
339 | const auto &TAs = CTSD->getTemplateArgs(); |
340 | return isInStlNamespace(RD) && RD->getIdentifier() && |
341 | RD->getName() == "initializer_list"&& TAs.size() > 0 && |
342 | TAs[0].getKind() == TemplateArgument::Type && |
343 | isPointerLikeType(QT: TAs[0].getAsType()); |
344 | } |
345 | return false; |
346 | } |
347 | |
348 | static bool shouldTrackImplicitObjectArg(const CXXMethodDecl *Callee) { |
349 | if (auto *Conv = dyn_cast_or_null<CXXConversionDecl>(Val: Callee)) |
350 | if (isRecordWithAttr<PointerAttr>(Conv->getConversionType()) && |
351 | Callee->getParent()->hasAttr<OwnerAttr>()) |
352 | return true; |
353 | if (!isInStlNamespace(Callee->getParent())) |
354 | return false; |
355 | if (!isRecordWithAttr<PointerAttr>( |
356 | Callee->getFunctionObjectParameterType()) && |
357 | !isRecordWithAttr<OwnerAttr>(Callee->getFunctionObjectParameterType())) |
358 | return false; |
359 | if (isPointerLikeType(Callee->getReturnType())) { |
360 | if (!Callee->getIdentifier()) |
361 | return false; |
362 | return llvm::StringSwitch<bool>(Callee->getName()) |
363 | .Cases(S0: "begin", S1: "rbegin", S2: "cbegin", S3: "crbegin", Value: true) |
364 | .Cases(S0: "end", S1: "rend", S2: "cend", S3: "crend", Value: true) |
365 | .Cases(S0: "c_str", S1: "data", S2: "get", Value: true) |
366 | // Map and set types. |
367 | .Cases(S0: "find", S1: "equal_range", S2: "lower_bound", S3: "upper_bound", Value: true) |
368 | .Default(Value: false); |
369 | } |
370 | if (Callee->getReturnType()->isReferenceType()) { |
371 | if (!Callee->getIdentifier()) { |
372 | auto OO = Callee->getOverloadedOperator(); |
373 | if (!Callee->getParent()->hasAttr<OwnerAttr>()) |
374 | return false; |
375 | return OO == OverloadedOperatorKind::OO_Subscript || |
376 | OO == OverloadedOperatorKind::OO_Star; |
377 | } |
378 | return llvm::StringSwitch<bool>(Callee->getName()) |
379 | .Cases(S0: "front", S1: "back", S2: "at", S3: "top", S4: "value", Value: true) |
380 | .Default(Value: false); |
381 | } |
382 | return false; |
383 | } |
384 | |
385 | static bool shouldTrackFirstArgument(const FunctionDecl *FD) { |
386 | if (!FD->getIdentifier() || FD->getNumParams() != 1) |
387 | return false; |
388 | const auto *RD = FD->getParamDecl(i: 0)->getType()->getPointeeCXXRecordDecl(); |
389 | if (!FD->isInStdNamespace() || !RD || !RD->isInStdNamespace()) |
390 | return false; |
391 | if (!RD->hasAttr<PointerAttr>() && !RD->hasAttr<OwnerAttr>()) |
392 | return false; |
393 | if (FD->getReturnType()->isPointerType() || |
394 | isRecordWithAttr<PointerAttr>(FD->getReturnType())) { |
395 | return llvm::StringSwitch<bool>(FD->getName()) |
396 | .Cases(S0: "begin", S1: "rbegin", S2: "cbegin", S3: "crbegin", Value: true) |
397 | .Cases(S0: "end", S1: "rend", S2: "cend", S3: "crend", Value: true) |
398 | .Case(S: "data", Value: true) |
399 | .Default(Value: false); |
400 | } |
401 | if (FD->getReturnType()->isReferenceType()) { |
402 | return llvm::StringSwitch<bool>(FD->getName()) |
403 | .Cases(S0: "get", S1: "any_cast", Value: true) |
404 | .Default(Value: false); |
405 | } |
406 | return false; |
407 | } |
408 | |
409 | // Returns true if the given constructor is a copy-like constructor, such as |
410 | // `Ctor(Owner<U>&&)` or `Ctor(const Owner<U>&)`. |
411 | static bool isCopyLikeConstructor(const CXXConstructorDecl *Ctor) { |
412 | if (!Ctor || Ctor->param_size() != 1) |
413 | return false; |
414 | const auto *ParamRefType = |
415 | Ctor->getParamDecl(0)->getType()->getAs<ReferenceType>(); |
416 | if (!ParamRefType) |
417 | return false; |
418 | |
419 | // Check if the first parameter type is "Owner<U>". |
420 | if (const auto *TST = |
421 | ParamRefType->getPointeeType()->getAs<TemplateSpecializationType>()) |
422 | return TST->getTemplateName() |
423 | .getAsTemplateDecl() |
424 | ->getTemplatedDecl() |
425 | ->hasAttr<OwnerAttr>(); |
426 | return false; |
427 | } |
428 | |
429 | // Returns true if we should perform the GSL analysis on the first argument for |
430 | // the given constructor. |
431 | static bool |
432 | shouldTrackFirstArgumentForConstructor(const CXXConstructExpr *Ctor) { |
433 | const auto *LHSRecordDecl = Ctor->getConstructor()->getParent(); |
434 | |
435 | // Case 1, construct a GSL pointer, e.g. std::string_view |
436 | // Always inspect when LHS is a pointer. |
437 | if (LHSRecordDecl->hasAttr<PointerAttr>()) |
438 | return true; |
439 | |
440 | if (Ctor->getConstructor()->param_empty() || |
441 | !isContainerOfPointer(LHSRecordDecl)) |
442 | return false; |
443 | |
444 | // Now, the LHS is an Owner<Pointer> type, e.g., std::vector<string_view>. |
445 | // |
446 | // At a high level, we cannot precisely determine what the nested pointer |
447 | // owns. However, by analyzing the RHS owner type, we can use heuristics to |
448 | // infer ownership information. These heuristics are designed to be |
449 | // conservative, minimizing false positives while still providing meaningful |
450 | // diagnostics. |
451 | // |
452 | // While this inference isn't perfect, it helps catch common use-after-free |
453 | // patterns. |
454 | auto RHSArgType = Ctor->getArg(Arg: 0)->getType(); |
455 | const auto *RHSRD = RHSArgType->getAsRecordDecl(); |
456 | // LHS is constructed from an intializer_list. |
457 | // |
458 | // std::initializer_list is a proxy object that provides access to the backing |
459 | // array. We perform analysis on it to determine if there are any dangling |
460 | // temporaries in the backing array. |
461 | // E.g. std::vector<string_view> abc = {string()}; |
462 | if (isStdInitializerListOfPointer(RD: RHSRD)) |
463 | return true; |
464 | |
465 | // RHS must be an owner. |
466 | if (!isRecordWithAttr<OwnerAttr>(RHSArgType)) |
467 | return false; |
468 | |
469 | // Bail out if the RHS is Owner<Pointer>. |
470 | // |
471 | // We cannot reliably determine what the LHS nested pointer owns -- it could |
472 | // be the entire RHS or the nested pointer in RHS. To avoid false positives, |
473 | // we skip this case, such as: |
474 | // std::stack<std::string_view> s(std::deque<std::string_view>{}); |
475 | // |
476 | // TODO: this also has a false negative, it doesn't catch the case like: |
477 | // std::optional<span<int*>> os = std::vector<int*>{} |
478 | if (isContainerOfPointer(Container: RHSRD)) |
479 | return false; |
480 | |
481 | // Assume that the nested Pointer is constructed from the nested Owner. |
482 | // E.g. std::optional<string_view> sv = std::optional<string>(s); |
483 | if (isContainerOfOwner(Container: RHSRD)) |
484 | return true; |
485 | |
486 | // Now, the LHS is an Owner<Pointer> and the RHS is an Owner<X>, where X is |
487 | // neither an `Owner` nor a `Pointer`. |
488 | // |
489 | // Use the constructor's signature as a hint. If it is a copy-like constructor |
490 | // `Owner1<Pointer>(Owner2<X>&&)`, we assume that the nested pointer is |
491 | // constructed from X. In such cases, we do not diagnose, as `X` is not an |
492 | // owner, e.g. |
493 | // std::optional<string_view> sv = std::optional<Foo>(); |
494 | if (const auto *PrimaryCtorTemplate = |
495 | Ctor->getConstructor()->getPrimaryTemplate(); |
496 | PrimaryCtorTemplate && |
497 | isCopyLikeConstructor(dyn_cast_if_present<CXXConstructorDecl>( |
498 | PrimaryCtorTemplate->getTemplatedDecl()))) { |
499 | return false; |
500 | } |
501 | // Assume that the nested pointer is constructed from the whole RHS. |
502 | // E.g. optional<string_view> s = std::string(); |
503 | return true; |
504 | } |
505 | |
506 | // Return true if this is an "normal" assignment operator. |
507 | // We assume that a normal assignment operator always returns *this, that is, |
508 | // an lvalue reference that is the same type as the implicit object parameter |
509 | // (or the LHS for a non-member operator$=). |
510 | static bool isNormalAssignmentOperator(const FunctionDecl *FD) { |
511 | OverloadedOperatorKind OO = FD->getDeclName().getCXXOverloadedOperator(); |
512 | if (OO == OO_Equal || isCompoundAssignmentOperator(Kind: OO)) { |
513 | QualType RetT = FD->getReturnType(); |
514 | if (RetT->isLValueReferenceType()) { |
515 | ASTContext &Ctx = FD->getASTContext(); |
516 | QualType LHST; |
517 | auto *MD = dyn_cast<CXXMethodDecl>(Val: FD); |
518 | if (MD && MD->isCXXInstanceMember()) |
519 | LHST = Ctx.getLValueReferenceType(T: MD->getFunctionObjectParameterType()); |
520 | else |
521 | LHST = FD->getParamDecl(i: 0)->getType(); |
522 | if (Ctx.hasSameType(T1: RetT, T2: LHST)) |
523 | return true; |
524 | } |
525 | } |
526 | return false; |
527 | } |
528 | |
529 | static const FunctionDecl * |
530 | getDeclWithMergedLifetimeBoundAttrs(const FunctionDecl *FD) { |
531 | return FD != nullptr ? FD->getMostRecentDecl() : nullptr; |
532 | } |
533 | |
534 | static const CXXMethodDecl * |
535 | getDeclWithMergedLifetimeBoundAttrs(const CXXMethodDecl *CMD) { |
536 | const FunctionDecl *FD = CMD; |
537 | return cast_if_present<CXXMethodDecl>( |
538 | Val: getDeclWithMergedLifetimeBoundAttrs(FD)); |
539 | } |
540 | |
541 | bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) { |
542 | FD = getDeclWithMergedLifetimeBoundAttrs(FD); |
543 | const TypeSourceInfo *TSI = FD->getTypeSourceInfo(); |
544 | if (!TSI) |
545 | return false; |
546 | // Don't declare this variable in the second operand of the for-statement; |
547 | // GCC miscompiles that by ending its lifetime before evaluating the |
548 | // third operand. See gcc.gnu.org/PR86769. |
549 | AttributedTypeLoc ATL; |
550 | for (TypeLoc TL = TSI->getTypeLoc(); |
551 | (ATL = TL.getAsAdjusted<AttributedTypeLoc>()); |
552 | TL = ATL.getModifiedLoc()) { |
553 | if (ATL.getAttrAs<LifetimeBoundAttr>()) |
554 | return true; |
555 | } |
556 | |
557 | return isNormalAssignmentOperator(FD); |
558 | } |
559 | |
560 | // Visit lifetimebound or gsl-pointer arguments. |
561 | static void visitFunctionCallArguments(IndirectLocalPath &Path, Expr *Call, |
562 | LocalVisitor Visit) { |
563 | const FunctionDecl *Callee; |
564 | ArrayRef<Expr *> Args; |
565 | |
566 | if (auto *CE = dyn_cast<CallExpr>(Val: Call)) { |
567 | Callee = CE->getDirectCallee(); |
568 | Args = llvm::ArrayRef(CE->getArgs(), CE->getNumArgs()); |
569 | } else { |
570 | auto *CCE = cast<CXXConstructExpr>(Val: Call); |
571 | Callee = CCE->getConstructor(); |
572 | Args = llvm::ArrayRef(CCE->getArgs(), CCE->getNumArgs()); |
573 | } |
574 | if (!Callee) |
575 | return; |
576 | |
577 | bool EnableGSLAnalysis = !Callee->getASTContext().getDiagnostics().isIgnored( |
578 | diag::warn_dangling_lifetime_pointer, SourceLocation()); |
579 | Expr *ObjectArg = nullptr; |
580 | if (isa<CXXOperatorCallExpr>(Val: Call) && Callee->isCXXInstanceMember()) { |
581 | ObjectArg = Args[0]; |
582 | Args = Args.slice(N: 1); |
583 | } else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Val: Call)) { |
584 | ObjectArg = MCE->getImplicitObjectArgument(); |
585 | } |
586 | |
587 | auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) { |
588 | Path.push_back(Elt: {IndirectLocalPathEntry::LifetimeBoundCall, Arg, D}); |
589 | if (Arg->isGLValue()) |
590 | visitLocalsRetainedByReferenceBinding(Path, Init: Arg, RK: RK_ReferenceBinding, |
591 | Visit); |
592 | else |
593 | visitLocalsRetainedByInitializer(Path, Init: Arg, Visit, RevisitSubinits: true); |
594 | Path.pop_back(); |
595 | }; |
596 | auto VisitGSLPointerArg = [&](const FunctionDecl *Callee, Expr *Arg) { |
597 | auto ReturnType = Callee->getReturnType(); |
598 | |
599 | // Once we initialized a value with a non gsl-owner reference, it can no |
600 | // longer dangle. |
601 | if (ReturnType->isReferenceType() && |
602 | !isRecordWithAttr<OwnerAttr>(ReturnType->getPointeeType())) { |
603 | for (const IndirectLocalPathEntry &PE : llvm::reverse(C&: Path)) { |
604 | if (PE.Kind == IndirectLocalPathEntry::GslReferenceInit || |
605 | PE.Kind == IndirectLocalPathEntry::LifetimeBoundCall) |
606 | continue; |
607 | if (PE.Kind == IndirectLocalPathEntry::GslPointerInit || |
608 | PE.Kind == IndirectLocalPathEntry::GslPointerAssignment) |
609 | return; |
610 | break; |
611 | } |
612 | } |
613 | Path.push_back({ReturnType->isReferenceType() |
614 | ? IndirectLocalPathEntry::GslReferenceInit |
615 | : IndirectLocalPathEntry::GslPointerInit, |
616 | Arg, Callee}); |
617 | if (Arg->isGLValue()) |
618 | visitLocalsRetainedByReferenceBinding(Path, Init: Arg, RK: RK_ReferenceBinding, |
619 | Visit); |
620 | else |
621 | visitLocalsRetainedByInitializer(Path, Init: Arg, Visit, RevisitSubinits: true); |
622 | Path.pop_back(); |
623 | }; |
624 | |
625 | bool CheckCoroCall = false; |
626 | if (const auto *RD = Callee->getReturnType()->getAsRecordDecl()) { |
627 | CheckCoroCall = RD->hasAttr<CoroLifetimeBoundAttr>() && |
628 | RD->hasAttr<CoroReturnTypeAttr>() && |
629 | !Callee->hasAttr<CoroDisableLifetimeBoundAttr>(); |
630 | } |
631 | |
632 | if (ObjectArg) { |
633 | bool CheckCoroObjArg = CheckCoroCall; |
634 | // Coroutine lambda objects with empty capture list are not lifetimebound. |
635 | if (auto *LE = dyn_cast<LambdaExpr>(Val: ObjectArg->IgnoreImplicit()); |
636 | LE && LE->captures().empty()) |
637 | CheckCoroObjArg = false; |
638 | // Allow `get_return_object()` as the object param (__promise) is not |
639 | // lifetimebound. |
640 | if (Sema::CanBeGetReturnObject(FD: Callee)) |
641 | CheckCoroObjArg = false; |
642 | if (implicitObjectParamIsLifetimeBound(FD: Callee) || CheckCoroObjArg) |
643 | VisitLifetimeBoundArg(Callee, ObjectArg); |
644 | else if (EnableGSLAnalysis) { |
645 | if (auto *CME = dyn_cast<CXXMethodDecl>(Val: Callee); |
646 | CME && shouldTrackImplicitObjectArg(Callee: CME)) |
647 | VisitGSLPointerArg(Callee, ObjectArg); |
648 | } |
649 | } |
650 | |
651 | const FunctionDecl *CanonCallee = getDeclWithMergedLifetimeBoundAttrs(FD: Callee); |
652 | unsigned NP = std::min(a: Callee->getNumParams(), b: CanonCallee->getNumParams()); |
653 | for (unsigned I = 0, N = std::min<unsigned>(a: NP, b: Args.size()); I != N; ++I) { |
654 | Expr *Arg = Args[I]; |
655 | RevertToOldSizeRAII RAII(Path); |
656 | if (auto *DAE = dyn_cast<CXXDefaultArgExpr>(Val: Arg)) { |
657 | Path.push_back( |
658 | {IndirectLocalPathEntry::DefaultArg, DAE, DAE->getParam()}); |
659 | Arg = DAE->getExpr(); |
660 | } |
661 | if (CheckCoroCall || |
662 | CanonCallee->getParamDecl(I)->hasAttr<LifetimeBoundAttr>()) |
663 | VisitLifetimeBoundArg(CanonCallee->getParamDecl(i: I), Arg); |
664 | else if (const auto *CaptureAttr = |
665 | CanonCallee->getParamDecl(I)->getAttr<LifetimeCaptureByAttr>(); |
666 | CaptureAttr && isa<CXXConstructorDecl>(Val: CanonCallee) && |
667 | llvm::any_of(CaptureAttr->params(), [](int ArgIdx) { |
668 | return ArgIdx == LifetimeCaptureByAttr::This; |
669 | })) |
670 | // `lifetime_capture_by(this)` in a class constructor has the same |
671 | // semantics as `lifetimebound`: |
672 | // |
673 | // struct Foo { |
674 | // const int& a; |
675 | // // Equivalent to Foo(const int& t [[clang::lifetimebound]]) |
676 | // Foo(const int& t [[clang::lifetime_capture_by(this)]]) : a(t) {} |
677 | // }; |
678 | // |
679 | // In the implementation, `lifetime_capture_by` is treated as an alias for |
680 | // `lifetimebound` and shares the same code path. This implies the emitted |
681 | // diagnostics will be emitted under `-Wdangling`, not |
682 | // `-Wdangling-capture`. |
683 | VisitLifetimeBoundArg(CanonCallee->getParamDecl(i: I), Arg); |
684 | else if (EnableGSLAnalysis && I == 0) { |
685 | // Perform GSL analysis for the first argument |
686 | if (shouldTrackFirstArgument(FD: CanonCallee)) { |
687 | VisitGSLPointerArg(CanonCallee, Arg); |
688 | } else if (auto *Ctor = dyn_cast<CXXConstructExpr>(Val: Call); |
689 | Ctor && shouldTrackFirstArgumentForConstructor(Ctor)) { |
690 | VisitGSLPointerArg(Ctor->getConstructor(), Arg); |
691 | } |
692 | } |
693 | } |
694 | } |
695 | |
696 | /// Visit the locals that would be reachable through a reference bound to the |
697 | /// glvalue expression \c Init. |
698 | static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path, |
699 | Expr *Init, ReferenceKind RK, |
700 | LocalVisitor Visit) { |
701 | RevertToOldSizeRAII RAII(Path); |
702 | |
703 | // Walk past any constructs which we can lifetime-extend across. |
704 | Expr *Old; |
705 | do { |
706 | Old = Init; |
707 | |
708 | if (auto *FE = dyn_cast<FullExpr>(Val: Init)) |
709 | Init = FE->getSubExpr(); |
710 | |
711 | if (InitListExpr *ILE = dyn_cast<InitListExpr>(Val: Init)) { |
712 | // If this is just redundant braces around an initializer, step over it. |
713 | if (ILE->isTransparent()) |
714 | Init = ILE->getInit(Init: 0); |
715 | } |
716 | |
717 | if (MemberExpr *ME = dyn_cast<MemberExpr>(Val: Init->IgnoreImpCasts())) |
718 | Path.push_back( |
719 | {IndirectLocalPathEntry::MemberExpr, ME, ME->getMemberDecl()}); |
720 | // Step over any subobject adjustments; we may have a materialized |
721 | // temporary inside them. |
722 | Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments()); |
723 | |
724 | // Per current approach for DR1376, look through casts to reference type |
725 | // when performing lifetime extension. |
726 | if (CastExpr *CE = dyn_cast<CastExpr>(Val: Init)) |
727 | if (CE->getSubExpr()->isGLValue()) |
728 | Init = CE->getSubExpr(); |
729 | |
730 | // Per the current approach for DR1299, look through array element access |
731 | // on array glvalues when performing lifetime extension. |
732 | if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Val: Init)) { |
733 | Init = ASE->getBase(); |
734 | auto *ICE = dyn_cast<ImplicitCastExpr>(Val: Init); |
735 | if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay) |
736 | Init = ICE->getSubExpr(); |
737 | else |
738 | // We can't lifetime extend through this but we might still find some |
739 | // retained temporaries. |
740 | return visitLocalsRetainedByInitializer(Path, Init, Visit, RevisitSubinits: true); |
741 | } |
742 | |
743 | // Step into CXXDefaultInitExprs so we can diagnose cases where a |
744 | // constructor inherits one as an implicit mem-initializer. |
745 | if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Val: Init)) { |
746 | Path.push_back( |
747 | {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()}); |
748 | Init = DIE->getExpr(); |
749 | } |
750 | } while (Init != Old); |
751 | |
752 | if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Val: Init)) { |
753 | if (Visit(Path, Local(MTE), RK)) |
754 | visitLocalsRetainedByInitializer(Path, Init: MTE->getSubExpr(), Visit, RevisitSubinits: true); |
755 | } |
756 | |
757 | if (auto *M = dyn_cast<MemberExpr>(Val: Init)) { |
758 | // Lifetime of a non-reference type field is same as base object. |
759 | if (auto *F = dyn_cast<FieldDecl>(Val: M->getMemberDecl()); |
760 | F && !F->getType()->isReferenceType()) |
761 | visitLocalsRetainedByInitializer(Path, Init: M->getBase(), Visit, RevisitSubinits: true); |
762 | } |
763 | |
764 | if (isa<CallExpr>(Val: Init)) |
765 | return visitFunctionCallArguments(Path, Call: Init, Visit); |
766 | |
767 | switch (Init->getStmtClass()) { |
768 | case Stmt::DeclRefExprClass: { |
769 | // If we find the name of a local non-reference parameter, we could have a |
770 | // lifetime problem. |
771 | auto *DRE = cast<DeclRefExpr>(Val: Init); |
772 | auto *VD = dyn_cast<VarDecl>(Val: DRE->getDecl()); |
773 | if (VD && VD->hasLocalStorage() && |
774 | !DRE->refersToEnclosingVariableOrCapture()) { |
775 | if (!VD->getType()->isReferenceType()) { |
776 | Visit(Path, Local(DRE), RK); |
777 | } else if (isa<ParmVarDecl>(Val: DRE->getDecl())) { |
778 | // The lifetime of a reference parameter is unknown; assume it's OK |
779 | // for now. |
780 | break; |
781 | } else if (VD->getInit() && !isVarOnPath(Path, VD)) { |
782 | Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD}); |
783 | visitLocalsRetainedByReferenceBinding(Path, Init: VD->getInit(), |
784 | RK: RK_ReferenceBinding, Visit); |
785 | } |
786 | } |
787 | break; |
788 | } |
789 | |
790 | case Stmt::UnaryOperatorClass: { |
791 | // The only unary operator that make sense to handle here |
792 | // is Deref. All others don't resolve to a "name." This includes |
793 | // handling all sorts of rvalues passed to a unary operator. |
794 | const UnaryOperator *U = cast<UnaryOperator>(Val: Init); |
795 | if (U->getOpcode() == UO_Deref) |
796 | visitLocalsRetainedByInitializer(Path, Init: U->getSubExpr(), Visit, RevisitSubinits: true); |
797 | break; |
798 | } |
799 | |
800 | case Stmt::ArraySectionExprClass: { |
801 | visitLocalsRetainedByInitializer( |
802 | Path, Init: cast<ArraySectionExpr>(Val: Init)->getBase(), Visit, RevisitSubinits: true); |
803 | break; |
804 | } |
805 | |
806 | case Stmt::ConditionalOperatorClass: |
807 | case Stmt::BinaryConditionalOperatorClass: { |
808 | auto *C = cast<AbstractConditionalOperator>(Val: Init); |
809 | if (!C->getTrueExpr()->getType()->isVoidType()) |
810 | visitLocalsRetainedByReferenceBinding(Path, Init: C->getTrueExpr(), RK, Visit); |
811 | if (!C->getFalseExpr()->getType()->isVoidType()) |
812 | visitLocalsRetainedByReferenceBinding(Path, Init: C->getFalseExpr(), RK, Visit); |
813 | break; |
814 | } |
815 | |
816 | case Stmt::CompoundLiteralExprClass: { |
817 | if (auto *CLE = dyn_cast<CompoundLiteralExpr>(Val: Init)) { |
818 | if (!CLE->isFileScope()) |
819 | Visit(Path, Local(CLE), RK); |
820 | } |
821 | break; |
822 | } |
823 | |
824 | // FIXME: Visit the left-hand side of an -> or ->*. |
825 | |
826 | default: |
827 | break; |
828 | } |
829 | } |
830 | |
831 | /// Visit the locals that would be reachable through an object initialized by |
832 | /// the prvalue expression \c Init. |
833 | static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path, |
834 | Expr *Init, LocalVisitor Visit, |
835 | bool RevisitSubinits) { |
836 | RevertToOldSizeRAII RAII(Path); |
837 | |
838 | Expr *Old; |
839 | do { |
840 | Old = Init; |
841 | |
842 | // Step into CXXDefaultInitExprs so we can diagnose cases where a |
843 | // constructor inherits one as an implicit mem-initializer. |
844 | if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Val: Init)) { |
845 | Path.push_back( |
846 | {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()}); |
847 | Init = DIE->getExpr(); |
848 | } |
849 | |
850 | if (auto *FE = dyn_cast<FullExpr>(Val: Init)) |
851 | Init = FE->getSubExpr(); |
852 | |
853 | // Dig out the expression which constructs the extended temporary. |
854 | Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments()); |
855 | |
856 | if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Val: Init)) |
857 | Init = BTE->getSubExpr(); |
858 | |
859 | Init = Init->IgnoreParens(); |
860 | |
861 | // Step over value-preserving rvalue casts. |
862 | if (auto *CE = dyn_cast<CastExpr>(Val: Init)) { |
863 | switch (CE->getCastKind()) { |
864 | case CK_LValueToRValue: |
865 | // If we can match the lvalue to a const object, we can look at its |
866 | // initializer. |
867 | Path.push_back({IndirectLocalPathEntry::LValToRVal, CE}); |
868 | return visitLocalsRetainedByReferenceBinding( |
869 | Path, Init, RK: RK_ReferenceBinding, |
870 | Visit: [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool { |
871 | if (auto *DRE = dyn_cast<DeclRefExpr>(Val: L)) { |
872 | auto *VD = dyn_cast<VarDecl>(Val: DRE->getDecl()); |
873 | if (VD && VD->getType().isConstQualified() && VD->getInit() && |
874 | !isVarOnPath(Path, VD)) { |
875 | Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD}); |
876 | visitLocalsRetainedByInitializer(Path, Init: VD->getInit(), Visit, |
877 | RevisitSubinits: true); |
878 | } |
879 | } else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Val: L)) { |
880 | if (MTE->getType().isConstQualified()) |
881 | visitLocalsRetainedByInitializer(Path, Init: MTE->getSubExpr(), |
882 | Visit, RevisitSubinits: true); |
883 | } |
884 | return false; |
885 | }); |
886 | |
887 | // We assume that objects can be retained by pointers cast to integers, |
888 | // but not if the integer is cast to floating-point type or to _Complex. |
889 | // We assume that casts to 'bool' do not preserve enough information to |
890 | // retain a local object. |
891 | case CK_NoOp: |
892 | case CK_BitCast: |
893 | case CK_BaseToDerived: |
894 | case CK_DerivedToBase: |
895 | case CK_UncheckedDerivedToBase: |
896 | case CK_Dynamic: |
897 | case CK_ToUnion: |
898 | case CK_UserDefinedConversion: |
899 | case CK_ConstructorConversion: |
900 | case CK_IntegralToPointer: |
901 | case CK_PointerToIntegral: |
902 | case CK_VectorSplat: |
903 | case CK_IntegralCast: |
904 | case CK_CPointerToObjCPointerCast: |
905 | case CK_BlockPointerToObjCPointerCast: |
906 | case CK_AnyPointerToBlockPointerCast: |
907 | case CK_AddressSpaceConversion: |
908 | break; |
909 | |
910 | case CK_ArrayToPointerDecay: |
911 | // Model array-to-pointer decay as taking the address of the array |
912 | // lvalue. |
913 | Path.push_back({IndirectLocalPathEntry::AddressOf, CE}); |
914 | return visitLocalsRetainedByReferenceBinding( |
915 | Path, Init: CE->getSubExpr(), RK: RK_ReferenceBinding, Visit); |
916 | |
917 | default: |
918 | return; |
919 | } |
920 | |
921 | Init = CE->getSubExpr(); |
922 | } |
923 | } while (Old != Init); |
924 | |
925 | // C++17 [dcl.init.list]p6: |
926 | // initializing an initializer_list object from the array extends the |
927 | // lifetime of the array exactly like binding a reference to a temporary. |
928 | if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Val: Init)) |
929 | return visitLocalsRetainedByReferenceBinding(Path, Init: ILE->getSubExpr(), |
930 | RK: RK_StdInitializerList, Visit); |
931 | |
932 | if (InitListExpr *ILE = dyn_cast<InitListExpr>(Val: Init)) { |
933 | // We already visited the elements of this initializer list while |
934 | // performing the initialization. Don't visit them again unless we've |
935 | // changed the lifetime of the initialized entity. |
936 | if (!RevisitSubinits) |
937 | return; |
938 | |
939 | if (ILE->isTransparent()) |
940 | return visitLocalsRetainedByInitializer(Path, Init: ILE->getInit(Init: 0), Visit, |
941 | RevisitSubinits); |
942 | |
943 | if (ILE->getType()->isArrayType()) { |
944 | for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I) |
945 | visitLocalsRetainedByInitializer(Path, Init: ILE->getInit(Init: I), Visit, |
946 | RevisitSubinits); |
947 | return; |
948 | } |
949 | |
950 | if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) { |
951 | assert(RD->isAggregate() && "aggregate init on non-aggregate"); |
952 | |
953 | // If we lifetime-extend a braced initializer which is initializing an |
954 | // aggregate, and that aggregate contains reference members which are |
955 | // bound to temporaries, those temporaries are also lifetime-extended. |
956 | if (RD->isUnion() && ILE->getInitializedFieldInUnion() && |
957 | ILE->getInitializedFieldInUnion()->getType()->isReferenceType()) |
958 | visitLocalsRetainedByReferenceBinding(Path, Init: ILE->getInit(Init: 0), |
959 | RK: RK_ReferenceBinding, Visit); |
960 | else { |
961 | unsigned Index = 0; |
962 | for (; Index < RD->getNumBases() && Index < ILE->getNumInits(); ++Index) |
963 | visitLocalsRetainedByInitializer(Path, Init: ILE->getInit(Init: Index), Visit, |
964 | RevisitSubinits); |
965 | for (const auto *I : RD->fields()) { |
966 | if (Index >= ILE->getNumInits()) |
967 | break; |
968 | if (I->isUnnamedBitField()) |
969 | continue; |
970 | Expr *SubInit = ILE->getInit(Index); |
971 | if (I->getType()->isReferenceType()) |
972 | visitLocalsRetainedByReferenceBinding(Path, SubInit, |
973 | RK_ReferenceBinding, Visit); |
974 | else |
975 | // This might be either aggregate-initialization of a member or |
976 | // initialization of a std::initializer_list object. Regardless, |
977 | // we should recursively lifetime-extend that initializer. |
978 | visitLocalsRetainedByInitializer(Path, SubInit, Visit, |
979 | RevisitSubinits); |
980 | ++Index; |
981 | } |
982 | } |
983 | } |
984 | return; |
985 | } |
986 | |
987 | // The lifetime of an init-capture is that of the closure object constructed |
988 | // by a lambda-expression. |
989 | if (auto *LE = dyn_cast<LambdaExpr>(Val: Init)) { |
990 | LambdaExpr::capture_iterator CapI = LE->capture_begin(); |
991 | for (Expr *E : LE->capture_inits()) { |
992 | assert(CapI != LE->capture_end()); |
993 | const LambdaCapture &Cap = *CapI++; |
994 | if (!E) |
995 | continue; |
996 | if (Cap.capturesVariable()) |
997 | Path.push_back(Elt: {IndirectLocalPathEntry::LambdaCaptureInit, E, &Cap}); |
998 | if (E->isGLValue()) |
999 | visitLocalsRetainedByReferenceBinding(Path, Init: E, RK: RK_ReferenceBinding, |
1000 | Visit); |
1001 | else |
1002 | visitLocalsRetainedByInitializer(Path, Init: E, Visit, RevisitSubinits: true); |
1003 | if (Cap.capturesVariable()) |
1004 | Path.pop_back(); |
1005 | } |
1006 | } |
1007 | |
1008 | // Assume that a copy or move from a temporary references the same objects |
1009 | // that the temporary does. |
1010 | if (auto *CCE = dyn_cast<CXXConstructExpr>(Val: Init)) { |
1011 | if (CCE->getConstructor()->isCopyOrMoveConstructor()) { |
1012 | if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Val: CCE->getArg(Arg: 0))) { |
1013 | Expr *Arg = MTE->getSubExpr(); |
1014 | Path.push_back({IndirectLocalPathEntry::TemporaryCopy, Arg, |
1015 | CCE->getConstructor()}); |
1016 | visitLocalsRetainedByInitializer(Path, Init: Arg, Visit, RevisitSubinits: true); |
1017 | Path.pop_back(); |
1018 | } |
1019 | } |
1020 | } |
1021 | |
1022 | if (isa<CallExpr>(Val: Init) || isa<CXXConstructExpr>(Val: Init)) |
1023 | return visitFunctionCallArguments(Path, Call: Init, Visit); |
1024 | |
1025 | if (auto *CPE = dyn_cast<CXXParenListInitExpr>(Val: Init)) { |
1026 | RevertToOldSizeRAII RAII(Path); |
1027 | Path.push_back({IndirectLocalPathEntry::ParenAggInit, CPE}); |
1028 | for (auto *I : CPE->getInitExprs()) { |
1029 | if (I->isGLValue()) |
1030 | visitLocalsRetainedByReferenceBinding(Path, Init: I, RK: RK_ReferenceBinding, |
1031 | Visit); |
1032 | else |
1033 | visitLocalsRetainedByInitializer(Path, Init: I, Visit, RevisitSubinits: true); |
1034 | } |
1035 | } |
1036 | switch (Init->getStmtClass()) { |
1037 | case Stmt::UnaryOperatorClass: { |
1038 | auto *UO = cast<UnaryOperator>(Val: Init); |
1039 | // If the initializer is the address of a local, we could have a lifetime |
1040 | // problem. |
1041 | if (UO->getOpcode() == UO_AddrOf) { |
1042 | // If this is &rvalue, then it's ill-formed and we have already diagnosed |
1043 | // it. Don't produce a redundant warning about the lifetime of the |
1044 | // temporary. |
1045 | if (isa<MaterializeTemporaryExpr>(Val: UO->getSubExpr())) |
1046 | return; |
1047 | |
1048 | Path.push_back({IndirectLocalPathEntry::AddressOf, UO}); |
1049 | visitLocalsRetainedByReferenceBinding(Path, Init: UO->getSubExpr(), |
1050 | RK: RK_ReferenceBinding, Visit); |
1051 | } |
1052 | break; |
1053 | } |
1054 | |
1055 | case Stmt::BinaryOperatorClass: { |
1056 | // Handle pointer arithmetic. |
1057 | auto *BO = cast<BinaryOperator>(Val: Init); |
1058 | BinaryOperatorKind BOK = BO->getOpcode(); |
1059 | if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub)) |
1060 | break; |
1061 | |
1062 | if (BO->getLHS()->getType()->isPointerType()) |
1063 | visitLocalsRetainedByInitializer(Path, Init: BO->getLHS(), Visit, RevisitSubinits: true); |
1064 | else if (BO->getRHS()->getType()->isPointerType()) |
1065 | visitLocalsRetainedByInitializer(Path, Init: BO->getRHS(), Visit, RevisitSubinits: true); |
1066 | break; |
1067 | } |
1068 | |
1069 | case Stmt::ConditionalOperatorClass: |
1070 | case Stmt::BinaryConditionalOperatorClass: { |
1071 | auto *C = cast<AbstractConditionalOperator>(Val: Init); |
1072 | // In C++, we can have a throw-expression operand, which has 'void' type |
1073 | // and isn't interesting from a lifetime perspective. |
1074 | if (!C->getTrueExpr()->getType()->isVoidType()) |
1075 | visitLocalsRetainedByInitializer(Path, Init: C->getTrueExpr(), Visit, RevisitSubinits: true); |
1076 | if (!C->getFalseExpr()->getType()->isVoidType()) |
1077 | visitLocalsRetainedByInitializer(Path, Init: C->getFalseExpr(), Visit, RevisitSubinits: true); |
1078 | break; |
1079 | } |
1080 | |
1081 | case Stmt::BlockExprClass: |
1082 | if (cast<BlockExpr>(Val: Init)->getBlockDecl()->hasCaptures()) { |
1083 | // This is a local block, whose lifetime is that of the function. |
1084 | Visit(Path, Local(cast<BlockExpr>(Val: Init)), RK_ReferenceBinding); |
1085 | } |
1086 | break; |
1087 | |
1088 | case Stmt::AddrLabelExprClass: |
1089 | // We want to warn if the address of a label would escape the function. |
1090 | Visit(Path, Local(cast<AddrLabelExpr>(Val: Init)), RK_ReferenceBinding); |
1091 | break; |
1092 | |
1093 | default: |
1094 | break; |
1095 | } |
1096 | } |
1097 | |
1098 | /// Whether a path to an object supports lifetime extension. |
1099 | enum PathLifetimeKind { |
1100 | /// Lifetime-extend along this path. |
1101 | Extend, |
1102 | /// Do not lifetime extend along this path. |
1103 | NoExtend |
1104 | }; |
1105 | |
1106 | /// Determine whether this is an indirect path to a temporary that we are |
1107 | /// supposed to lifetime-extend along. |
1108 | static PathLifetimeKind |
1109 | shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) { |
1110 | for (auto Elem : Path) { |
1111 | if (Elem.Kind == IndirectLocalPathEntry::MemberExpr || |
1112 | Elem.Kind == IndirectLocalPathEntry::LambdaCaptureInit) |
1113 | continue; |
1114 | return Elem.Kind == IndirectLocalPathEntry::DefaultInit |
1115 | ? PathLifetimeKind::Extend |
1116 | : PathLifetimeKind::NoExtend; |
1117 | } |
1118 | return PathLifetimeKind::Extend; |
1119 | } |
1120 | |
1121 | /// Find the range for the first interesting entry in the path at or after I. |
1122 | static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I, |
1123 | Expr *E) { |
1124 | for (unsigned N = Path.size(); I != N; ++I) { |
1125 | switch (Path[I].Kind) { |
1126 | case IndirectLocalPathEntry::AddressOf: |
1127 | case IndirectLocalPathEntry::LValToRVal: |
1128 | case IndirectLocalPathEntry::LifetimeBoundCall: |
1129 | case IndirectLocalPathEntry::TemporaryCopy: |
1130 | case IndirectLocalPathEntry::GslReferenceInit: |
1131 | case IndirectLocalPathEntry::GslPointerInit: |
1132 | case IndirectLocalPathEntry::GslPointerAssignment: |
1133 | case IndirectLocalPathEntry::ParenAggInit: |
1134 | case IndirectLocalPathEntry::MemberExpr: |
1135 | // These exist primarily to mark the path as not permitting or |
1136 | // supporting lifetime extension. |
1137 | break; |
1138 | |
1139 | case IndirectLocalPathEntry::VarInit: |
1140 | if (cast<VarDecl>(Val: Path[I].D)->isImplicit()) |
1141 | return SourceRange(); |
1142 | [[fallthrough]]; |
1143 | case IndirectLocalPathEntry::DefaultInit: |
1144 | return Path[I].E->getSourceRange(); |
1145 | |
1146 | case IndirectLocalPathEntry::LambdaCaptureInit: |
1147 | if (!Path[I].Capture->capturesVariable()) |
1148 | continue; |
1149 | return Path[I].E->getSourceRange(); |
1150 | |
1151 | case IndirectLocalPathEntry::DefaultArg: |
1152 | return cast<CXXDefaultArgExpr>(Val: Path[I].E)->getUsedLocation(); |
1153 | } |
1154 | } |
1155 | return E->getSourceRange(); |
1156 | } |
1157 | |
1158 | static bool pathOnlyHandlesGslPointer(const IndirectLocalPath &Path) { |
1159 | for (const auto &It : llvm::reverse(C: Path)) { |
1160 | switch (It.Kind) { |
1161 | case IndirectLocalPathEntry::VarInit: |
1162 | case IndirectLocalPathEntry::AddressOf: |
1163 | case IndirectLocalPathEntry::LifetimeBoundCall: |
1164 | case IndirectLocalPathEntry::MemberExpr: |
1165 | continue; |
1166 | case IndirectLocalPathEntry::GslPointerInit: |
1167 | case IndirectLocalPathEntry::GslReferenceInit: |
1168 | case IndirectLocalPathEntry::GslPointerAssignment: |
1169 | return true; |
1170 | default: |
1171 | return false; |
1172 | } |
1173 | } |
1174 | return false; |
1175 | } |
1176 | // Result of analyzing the Path for GSLPointer. |
1177 | enum AnalysisResult { |
1178 | // Path does not correspond to a GSLPointer. |
1179 | NotGSLPointer, |
1180 | |
1181 | // A relevant case was identified. |
1182 | Report, |
1183 | // Stop the entire traversal. |
1184 | Abandon, |
1185 | // Skip this step and continue traversing inner AST nodes. |
1186 | Skip, |
1187 | }; |
1188 | // Analyze cases where a GSLPointer is initialized or assigned from a |
1189 | // temporary owner object. |
1190 | static AnalysisResult analyzePathForGSLPointer(const IndirectLocalPath &Path, |
1191 | Local L, LifetimeKind LK) { |
1192 | if (!pathOnlyHandlesGslPointer(Path)) |
1193 | return NotGSLPointer; |
1194 | |
1195 | // At this point, Path represents a series of operations involving a |
1196 | // GSLPointer, either in the process of initialization or assignment. |
1197 | |
1198 | // Process temporary base objects for MemberExpr cases, e.g. Temp().field. |
1199 | for (const auto &E : Path) { |
1200 | if (E.Kind == IndirectLocalPathEntry::MemberExpr) { |
1201 | // Avoid interfering with the local base object. |
1202 | if (pathContainsInit(Path)) |
1203 | return Abandon; |
1204 | |
1205 | // We are not interested in the temporary base objects of gsl Pointers: |
1206 | // auto p1 = Temp().ptr; // Here p1 might not dangle. |
1207 | // However, we want to diagnose for gsl owner fields: |
1208 | // auto p2 = Temp().owner; // Here p2 is dangling. |
1209 | if (const auto *FD = llvm::dyn_cast_or_null<FieldDecl>(Val: E.D); |
1210 | FD && !FD->getType()->isReferenceType() && |
1211 | isRecordWithAttr<OwnerAttr>(FD->getType()) && |
1212 | LK != LK_MemInitializer) { |
1213 | return Report; |
1214 | } |
1215 | return Abandon; |
1216 | } |
1217 | } |
1218 | |
1219 | // Note: A LifetimeBoundCall can appear interleaved in this sequence. |
1220 | // For example: |
1221 | // const std::string& Ref(const std::string& a [[clang::lifetimebound]]); |
1222 | // string_view abc = Ref(std::string()); |
1223 | // The "Path" is [GSLPointerInit, LifetimeboundCall], where "L" is the |
1224 | // temporary "std::string()" object. We need to check the return type of the |
1225 | // function with the lifetimebound attribute. |
1226 | if (Path.back().Kind == IndirectLocalPathEntry::LifetimeBoundCall) { |
1227 | // The lifetimebound applies to the implicit object parameter of a method. |
1228 | const FunctionDecl *FD = |
1229 | llvm::dyn_cast_or_null<FunctionDecl>(Val: Path.back().D); |
1230 | // The lifetimebound applies to a function parameter. |
1231 | if (const auto *PD = llvm::dyn_cast<ParmVarDecl>(Val: Path.back().D)) |
1232 | FD = llvm::dyn_cast<FunctionDecl>(PD->getDeclContext()); |
1233 | |
1234 | if (isa_and_present<CXXConstructorDecl>(Val: FD)) { |
1235 | // Constructor case: the parameter is annotated with lifetimebound |
1236 | // e.g., GSLPointer(const S& s [[clang::lifetimebound]]) |
1237 | // We still respect this case even the type S is not an owner. |
1238 | return Report; |
1239 | } |
1240 | // Check the return type, e.g. |
1241 | // const GSLOwner& func(const Foo& foo [[clang::lifetimebound]]) |
1242 | // GSLOwner* func(cosnt Foo& foo [[clang::lifetimebound]]) |
1243 | // GSLPointer func(const Foo& foo [[clang::lifetimebound]]) |
1244 | if (FD && |
1245 | ((FD->getReturnType()->isPointerOrReferenceType() && |
1246 | isRecordWithAttr<OwnerAttr>(FD->getReturnType()->getPointeeType())) || |
1247 | isGLSPointerType(FD->getReturnType()))) |
1248 | return Report; |
1249 | |
1250 | return Abandon; |
1251 | } |
1252 | |
1253 | if (isa<DeclRefExpr>(Val: L)) { |
1254 | // We do not want to follow the references when returning a pointer |
1255 | // originating from a local owner to avoid the following false positive: |
1256 | // int &p = *localUniquePtr; |
1257 | // someContainer.add(std::move(localUniquePtr)); |
1258 | // return p; |
1259 | if (!pathContainsInit(Path) && isRecordWithAttr<OwnerAttr>(L->getType())) |
1260 | return Report; |
1261 | return Abandon; |
1262 | } |
1263 | |
1264 | // The GSLPointer is from a temporary object. |
1265 | auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Val: L); |
1266 | |
1267 | bool IsGslPtrValueFromGslTempOwner = |
1268 | MTE && !MTE->getExtendingDecl() && |
1269 | isRecordWithAttr<OwnerAttr>(MTE->getType()); |
1270 | // Skipping a chain of initializing gsl::Pointer annotated objects. |
1271 | // We are looking only for the final source to find out if it was |
1272 | // a local or temporary owner or the address of a local |
1273 | // variable/param. |
1274 | if (!IsGslPtrValueFromGslTempOwner) |
1275 | return Skip; |
1276 | return Report; |
1277 | } |
1278 | |
1279 | static bool isAssignmentOperatorLifetimeBound(const CXXMethodDecl *CMD) { |
1280 | CMD = getDeclWithMergedLifetimeBoundAttrs(CMD); |
1281 | return CMD && isNormalAssignmentOperator(CMD) && CMD->param_size() == 1 && |
1282 | CMD->getParamDecl(0)->hasAttr<LifetimeBoundAttr>(); |
1283 | } |
1284 | |
1285 | static bool shouldRunGSLAssignmentAnalysis(const Sema &SemaRef, |
1286 | const AssignedEntity &Entity) { |
1287 | bool EnableGSLAssignmentWarnings = !SemaRef.getDiagnostics().isIgnored( |
1288 | diag::warn_dangling_lifetime_pointer_assignment, SourceLocation()); |
1289 | return (EnableGSLAssignmentWarnings && |
1290 | (isRecordWithAttr<PointerAttr>(Entity.LHS->getType()) || |
1291 | isAssignmentOperatorLifetimeBound(Entity.AssignmentOperator))); |
1292 | } |
1293 | |
1294 | static void |
1295 | checkExprLifetimeImpl(Sema &SemaRef, const InitializedEntity *InitEntity, |
1296 | const InitializedEntity *ExtendingEntity, LifetimeKind LK, |
1297 | const AssignedEntity *AEntity, |
1298 | const CapturingEntity *CapEntity, Expr *Init) { |
1299 | assert(!AEntity || LK == LK_Assignment); |
1300 | assert(!CapEntity || LK == LK_LifetimeCapture); |
1301 | assert(!InitEntity || (LK != LK_Assignment && LK != LK_LifetimeCapture)); |
1302 | // If this entity doesn't have an interesting lifetime, don't bother looking |
1303 | // for temporaries within its initializer. |
1304 | if (LK == LK_FullExpression) |
1305 | return; |
1306 | |
1307 | // FIXME: consider moving the TemporaryVisitor and visitLocalsRetained* |
1308 | // functions to a dedicated class. |
1309 | auto TemporaryVisitor = [&](const IndirectLocalPath &Path, Local L, |
1310 | ReferenceKind RK) -> bool { |
1311 | SourceRange DiagRange = nextPathEntryRange(Path, I: 0, E: L); |
1312 | SourceLocation DiagLoc = DiagRange.getBegin(); |
1313 | |
1314 | auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Val: L); |
1315 | |
1316 | bool IsGslPtrValueFromGslTempOwner = true; |
1317 | switch (analyzePathForGSLPointer(Path, L, LK)) { |
1318 | case Abandon: |
1319 | return false; |
1320 | case Skip: |
1321 | return true; |
1322 | case NotGSLPointer: |
1323 | IsGslPtrValueFromGslTempOwner = false; |
1324 | LLVM_FALLTHROUGH; |
1325 | case Report: |
1326 | break; |
1327 | } |
1328 | |
1329 | switch (LK) { |
1330 | case LK_FullExpression: |
1331 | llvm_unreachable("already handled this"); |
1332 | |
1333 | case LK_Extended: { |
1334 | if (!MTE) { |
1335 | // The initialized entity has lifetime beyond the full-expression, |
1336 | // and the local entity does too, so don't warn. |
1337 | // |
1338 | // FIXME: We should consider warning if a static / thread storage |
1339 | // duration variable retains an automatic storage duration local. |
1340 | return false; |
1341 | } |
1342 | |
1343 | if (IsGslPtrValueFromGslTempOwner && DiagLoc.isValid()) { |
1344 | SemaRef.Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) |
1345 | << DiagRange; |
1346 | return false; |
1347 | } |
1348 | |
1349 | switch (shouldLifetimeExtendThroughPath(Path)) { |
1350 | case PathLifetimeKind::Extend: |
1351 | // Update the storage duration of the materialized temporary. |
1352 | // FIXME: Rebuild the expression instead of mutating it. |
1353 | MTE->setExtendingDecl(ExtendedBy: ExtendingEntity->getDecl(), |
1354 | ManglingNumber: ExtendingEntity->allocateManglingNumber()); |
1355 | // Also visit the temporaries lifetime-extended by this initializer. |
1356 | return true; |
1357 | |
1358 | case PathLifetimeKind::NoExtend: |
1359 | // If the path goes through the initialization of a variable or field, |
1360 | // it can't possibly reach a temporary created in this full-expression. |
1361 | // We will have already diagnosed any problems with the initializer. |
1362 | if (pathContainsInit(Path)) |
1363 | return false; |
1364 | |
1365 | SemaRef.Diag(DiagLoc, diag::warn_dangling_variable) |
1366 | << RK << !InitEntity->getParent() |
1367 | << ExtendingEntity->getDecl()->isImplicit() |
1368 | << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange; |
1369 | break; |
1370 | } |
1371 | break; |
1372 | } |
1373 | |
1374 | case LK_LifetimeCapture: { |
1375 | // The captured entity has lifetime beyond the full-expression, |
1376 | // and the capturing entity does too, so don't warn. |
1377 | if (!MTE) |
1378 | return false; |
1379 | if (CapEntity->Entity) |
1380 | SemaRef.Diag(DiagLoc, diag::warn_dangling_reference_captured) |
1381 | << CapEntity->Entity << DiagRange; |
1382 | else |
1383 | SemaRef.Diag(DiagLoc, diag::warn_dangling_reference_captured_by_unknown) |
1384 | << DiagRange; |
1385 | return false; |
1386 | } |
1387 | |
1388 | case LK_Assignment: { |
1389 | if (!MTE || pathContainsInit(Path)) |
1390 | return false; |
1391 | if (IsGslPtrValueFromGslTempOwner) |
1392 | SemaRef.Diag(DiagLoc, diag::warn_dangling_lifetime_pointer_assignment) |
1393 | << AEntity->LHS << DiagRange; |
1394 | else |
1395 | SemaRef.Diag(DiagLoc, diag::warn_dangling_pointer_assignment) |
1396 | << AEntity->LHS->getType()->isPointerType() << AEntity->LHS |
1397 | << DiagRange; |
1398 | return false; |
1399 | } |
1400 | case LK_MemInitializer: { |
1401 | if (MTE) { |
1402 | // Under C++ DR1696, if a mem-initializer (or a default member |
1403 | // initializer used by the absence of one) would lifetime-extend a |
1404 | // temporary, the program is ill-formed. |
1405 | if (auto *ExtendingDecl = |
1406 | ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) { |
1407 | if (IsGslPtrValueFromGslTempOwner) { |
1408 | SemaRef.Diag(DiagLoc, diag::warn_dangling_lifetime_pointer_member) |
1409 | << ExtendingDecl << DiagRange; |
1410 | SemaRef.Diag(ExtendingDecl->getLocation(), |
1411 | diag::note_ref_or_ptr_member_declared_here) |
1412 | << true; |
1413 | return false; |
1414 | } |
1415 | bool IsSubobjectMember = ExtendingEntity != InitEntity; |
1416 | SemaRef.Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path) != |
1417 | PathLifetimeKind::NoExtend |
1418 | ? diag::err_dangling_member |
1419 | : diag::warn_dangling_member) |
1420 | << ExtendingDecl << IsSubobjectMember << RK << DiagRange; |
1421 | // Don't bother adding a note pointing to the field if we're inside |
1422 | // its default member initializer; our primary diagnostic points to |
1423 | // the same place in that case. |
1424 | if (Path.empty() || |
1425 | Path.back().Kind != IndirectLocalPathEntry::DefaultInit) { |
1426 | SemaRef.Diag(ExtendingDecl->getLocation(), |
1427 | diag::note_lifetime_extending_member_declared_here) |
1428 | << RK << IsSubobjectMember; |
1429 | } |
1430 | } else { |
1431 | // We have a mem-initializer but no particular field within it; this |
1432 | // is either a base class or a delegating initializer directly |
1433 | // initializing the base-class from something that doesn't live long |
1434 | // enough. |
1435 | // |
1436 | // FIXME: Warn on this. |
1437 | return false; |
1438 | } |
1439 | } else { |
1440 | // Paths via a default initializer can only occur during error recovery |
1441 | // (there's no other way that a default initializer can refer to a |
1442 | // local). Don't produce a bogus warning on those cases. |
1443 | if (pathContainsInit(Path)) |
1444 | return false; |
1445 | |
1446 | auto *DRE = dyn_cast<DeclRefExpr>(Val: L); |
1447 | // Suppress false positives for code like the one below: |
1448 | // Ctor(unique_ptr<T> up) : pointer(up.get()), owner(move(up)) {} |
1449 | // FIXME: move this logic to analyzePathForGSLPointer. |
1450 | if (DRE && isRecordWithAttr<OwnerAttr>(DRE->getType())) |
1451 | return false; |
1452 | |
1453 | auto *VD = DRE ? dyn_cast<VarDecl>(Val: DRE->getDecl()) : nullptr; |
1454 | if (!VD) { |
1455 | // A member was initialized to a local block. |
1456 | // FIXME: Warn on this. |
1457 | return false; |
1458 | } |
1459 | |
1460 | if (auto *Member = |
1461 | ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) { |
1462 | bool IsPointer = !Member->getType()->isReferenceType(); |
1463 | SemaRef.Diag(DiagLoc, |
1464 | IsPointer ? diag::warn_init_ptr_member_to_parameter_addr |
1465 | : diag::warn_bind_ref_member_to_parameter) |
1466 | << Member << VD << isa<ParmVarDecl>(VD) << DiagRange; |
1467 | SemaRef.Diag(Member->getLocation(), |
1468 | diag::note_ref_or_ptr_member_declared_here) |
1469 | << (unsigned)IsPointer; |
1470 | } |
1471 | } |
1472 | break; |
1473 | } |
1474 | |
1475 | case LK_New: |
1476 | if (isa<MaterializeTemporaryExpr>(Val: L)) { |
1477 | if (IsGslPtrValueFromGslTempOwner) |
1478 | SemaRef.Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) |
1479 | << DiagRange; |
1480 | else |
1481 | SemaRef.Diag(DiagLoc, RK == RK_ReferenceBinding |
1482 | ? diag::warn_new_dangling_reference |
1483 | : diag::warn_new_dangling_initializer_list) |
1484 | << !InitEntity->getParent() << DiagRange; |
1485 | } else { |
1486 | // We can't determine if the allocation outlives the local declaration. |
1487 | return false; |
1488 | } |
1489 | break; |
1490 | |
1491 | case LK_Return: |
1492 | case LK_MustTail: |
1493 | case LK_StmtExprResult: |
1494 | if (auto *DRE = dyn_cast<DeclRefExpr>(Val: L)) { |
1495 | // We can't determine if the local variable outlives the statement |
1496 | // expression. |
1497 | if (LK == LK_StmtExprResult) |
1498 | return false; |
1499 | SemaRef.Diag(DiagLoc, diag::warn_ret_stack_addr_ref) |
1500 | << InitEntity->getType()->isReferenceType() << DRE->getDecl() |
1501 | << isa<ParmVarDecl>(DRE->getDecl()) << (LK == LK_MustTail) |
1502 | << DiagRange; |
1503 | } else if (isa<BlockExpr>(Val: L)) { |
1504 | SemaRef.Diag(DiagLoc, diag::err_ret_local_block) << DiagRange; |
1505 | } else if (isa<AddrLabelExpr>(Val: L)) { |
1506 | // Don't warn when returning a label from a statement expression. |
1507 | // Leaving the scope doesn't end its lifetime. |
1508 | if (LK == LK_StmtExprResult) |
1509 | return false; |
1510 | SemaRef.Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange; |
1511 | } else if (auto *CLE = dyn_cast<CompoundLiteralExpr>(Val: L)) { |
1512 | SemaRef.Diag(DiagLoc, diag::warn_ret_stack_addr_ref) |
1513 | << InitEntity->getType()->isReferenceType() << CLE->getInitializer() |
1514 | << 2 << (LK == LK_MustTail) << DiagRange; |
1515 | } else { |
1516 | // P2748R5: Disallow Binding a Returned Glvalue to a Temporary. |
1517 | // [stmt.return]/p6: In a function whose return type is a reference, |
1518 | // other than an invented function for std::is_convertible ([meta.rel]), |
1519 | // a return statement that binds the returned reference to a temporary |
1520 | // expression ([class.temporary]) is ill-formed. |
1521 | if (SemaRef.getLangOpts().CPlusPlus26 && |
1522 | InitEntity->getType()->isReferenceType()) |
1523 | SemaRef.Diag(DiagLoc, diag::err_ret_local_temp_ref) |
1524 | << InitEntity->getType()->isReferenceType() << DiagRange; |
1525 | else if (LK == LK_MustTail) |
1526 | SemaRef.Diag(DiagLoc, diag::warn_musttail_local_temp_addr_ref) |
1527 | << InitEntity->getType()->isReferenceType() << DiagRange; |
1528 | else |
1529 | SemaRef.Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref) |
1530 | << InitEntity->getType()->isReferenceType() << DiagRange; |
1531 | } |
1532 | break; |
1533 | } |
1534 | |
1535 | for (unsigned I = 0; I != Path.size(); ++I) { |
1536 | auto Elem = Path[I]; |
1537 | |
1538 | switch (Elem.Kind) { |
1539 | case IndirectLocalPathEntry::AddressOf: |
1540 | case IndirectLocalPathEntry::LValToRVal: |
1541 | case IndirectLocalPathEntry::ParenAggInit: |
1542 | // These exist primarily to mark the path as not permitting or |
1543 | // supporting lifetime extension. |
1544 | break; |
1545 | |
1546 | case IndirectLocalPathEntry::LifetimeBoundCall: |
1547 | case IndirectLocalPathEntry::TemporaryCopy: |
1548 | case IndirectLocalPathEntry::MemberExpr: |
1549 | case IndirectLocalPathEntry::GslPointerInit: |
1550 | case IndirectLocalPathEntry::GslReferenceInit: |
1551 | case IndirectLocalPathEntry::GslPointerAssignment: |
1552 | // FIXME: Consider adding a note for these. |
1553 | break; |
1554 | |
1555 | case IndirectLocalPathEntry::DefaultInit: { |
1556 | auto *FD = cast<FieldDecl>(Val: Elem.D); |
1557 | SemaRef.Diag(FD->getLocation(), |
1558 | diag::note_init_with_default_member_initializer) |
1559 | << FD << nextPathEntryRange(Path, I + 1, L); |
1560 | break; |
1561 | } |
1562 | |
1563 | case IndirectLocalPathEntry::VarInit: { |
1564 | const VarDecl *VD = cast<VarDecl>(Val: Elem.D); |
1565 | SemaRef.Diag(VD->getLocation(), diag::note_local_var_initializer) |
1566 | << VD->getType()->isReferenceType() << VD->isImplicit() |
1567 | << VD->getDeclName() << nextPathEntryRange(Path, I + 1, L); |
1568 | break; |
1569 | } |
1570 | |
1571 | case IndirectLocalPathEntry::LambdaCaptureInit: { |
1572 | if (!Elem.Capture->capturesVariable()) |
1573 | break; |
1574 | // FIXME: We can't easily tell apart an init-capture from a nested |
1575 | // capture of an init-capture. |
1576 | const ValueDecl *VD = Elem.Capture->getCapturedVar(); |
1577 | SemaRef.Diag(Elem.Capture->getLocation(), |
1578 | diag::note_lambda_capture_initializer) |
1579 | << VD << VD->isInitCapture() << Elem.Capture->isExplicit() |
1580 | << (Elem.Capture->getCaptureKind() == LCK_ByRef) << VD |
1581 | << nextPathEntryRange(Path, I + 1, L); |
1582 | break; |
1583 | } |
1584 | |
1585 | case IndirectLocalPathEntry::DefaultArg: { |
1586 | const auto *DAE = cast<CXXDefaultArgExpr>(Val: Elem.E); |
1587 | const ParmVarDecl *Param = DAE->getParam(); |
1588 | SemaRef.Diag(Param->getDefaultArgRange().getBegin(), |
1589 | diag::note_init_with_default_argument) |
1590 | << Param << nextPathEntryRange(Path, I + 1, L); |
1591 | break; |
1592 | } |
1593 | } |
1594 | } |
1595 | |
1596 | // We didn't lifetime-extend, so don't go any further; we don't need more |
1597 | // warnings or errors on inner temporaries within this one's initializer. |
1598 | return false; |
1599 | }; |
1600 | |
1601 | llvm::SmallVector<IndirectLocalPathEntry, 8> Path; |
1602 | switch (LK) { |
1603 | case LK_Assignment: { |
1604 | if (shouldRunGSLAssignmentAnalysis(SemaRef, Entity: *AEntity)) |
1605 | Path.push_back( |
1606 | Elt: {isAssignmentOperatorLifetimeBound(CMD: AEntity->AssignmentOperator) |
1607 | ? IndirectLocalPathEntry::LifetimeBoundCall |
1608 | : IndirectLocalPathEntry::GslPointerAssignment, |
1609 | Init}); |
1610 | break; |
1611 | } |
1612 | case LK_LifetimeCapture: { |
1613 | if (isPointerLikeType(QT: Init->getType())) |
1614 | Path.push_back(Elt: {IndirectLocalPathEntry::GslPointerInit, Init}); |
1615 | break; |
1616 | } |
1617 | default: |
1618 | break; |
1619 | } |
1620 | |
1621 | if (Init->isGLValue()) |
1622 | visitLocalsRetainedByReferenceBinding(Path, Init, RK: RK_ReferenceBinding, |
1623 | Visit: TemporaryVisitor); |
1624 | else |
1625 | visitLocalsRetainedByInitializer( |
1626 | Path, Init, Visit: TemporaryVisitor, |
1627 | // Don't revisit the sub inits for the intialization case. |
1628 | /*RevisitSubinits=*/!InitEntity); |
1629 | } |
1630 | |
1631 | void checkInitLifetime(Sema &SemaRef, const InitializedEntity &Entity, |
1632 | Expr *Init) { |
1633 | auto LTResult = getEntityLifetime(Entity: &Entity); |
1634 | LifetimeKind LK = LTResult.getInt(); |
1635 | const InitializedEntity *ExtendingEntity = LTResult.getPointer(); |
1636 | checkExprLifetimeImpl(SemaRef, InitEntity: &Entity, ExtendingEntity, LK, |
1637 | /*AEntity=*/nullptr, /*CapEntity=*/nullptr, Init); |
1638 | } |
1639 | |
1640 | void checkExprLifetimeMustTailArg(Sema &SemaRef, |
1641 | const InitializedEntity &Entity, Expr *Init) { |
1642 | checkExprLifetimeImpl(SemaRef, InitEntity: &Entity, ExtendingEntity: nullptr, LK: LK_MustTail, |
1643 | /*AEntity=*/nullptr, /*CapEntity=*/nullptr, Init); |
1644 | } |
1645 | |
1646 | void checkAssignmentLifetime(Sema &SemaRef, const AssignedEntity &Entity, |
1647 | Expr *Init) { |
1648 | bool EnableDanglingPointerAssignment = !SemaRef.getDiagnostics().isIgnored( |
1649 | diag::warn_dangling_pointer_assignment, SourceLocation()); |
1650 | bool RunAnalysis = (EnableDanglingPointerAssignment && |
1651 | Entity.LHS->getType()->isPointerType()) || |
1652 | shouldRunGSLAssignmentAnalysis(SemaRef, Entity); |
1653 | |
1654 | if (!RunAnalysis) |
1655 | return; |
1656 | |
1657 | checkExprLifetimeImpl(SemaRef, /*InitEntity=*/nullptr, |
1658 | /*ExtendingEntity=*/nullptr, LK: LK_Assignment, AEntity: &Entity, |
1659 | /*CapEntity=*/nullptr, Init); |
1660 | } |
1661 | |
1662 | void checkCaptureByLifetime(Sema &SemaRef, const CapturingEntity &Entity, |
1663 | Expr *Init) { |
1664 | if (SemaRef.getDiagnostics().isIgnored(diag::warn_dangling_reference_captured, |
1665 | SourceLocation()) && |
1666 | SemaRef.getDiagnostics().isIgnored( |
1667 | diag::warn_dangling_reference_captured_by_unknown, SourceLocation())) |
1668 | return; |
1669 | return checkExprLifetimeImpl(SemaRef, /*InitEntity=*/nullptr, |
1670 | /*ExtendingEntity=*/nullptr, LK: LK_LifetimeCapture, |
1671 | /*AEntity=*/nullptr, |
1672 | /*CapEntity=*/&Entity, Init); |
1673 | } |
1674 | |
1675 | } // namespace clang::sema |
1676 |
Definitions
- LifetimeKind
- getEntityLifetime
- ReferenceKind
- IndirectLocalPathEntry
- EntryKind
- IndirectLocalPathEntry
- IndirectLocalPathEntry
- IndirectLocalPathEntry
- IndirectLocalPathEntry
- RevertToOldSizeRAII
- RevertToOldSizeRAII
- ~RevertToOldSizeRAII
- isVarOnPath
- pathContainsInit
- isRecordWithAttr
- isGLSPointerType
- isPointerLikeType
- isInStlNamespace
- isContainerOfPointer
- isContainerOfOwner
- isStdInitializerListOfPointer
- shouldTrackImplicitObjectArg
- shouldTrackFirstArgument
- isCopyLikeConstructor
- shouldTrackFirstArgumentForConstructor
- isNormalAssignmentOperator
- getDeclWithMergedLifetimeBoundAttrs
- getDeclWithMergedLifetimeBoundAttrs
- implicitObjectParamIsLifetimeBound
- visitFunctionCallArguments
- visitLocalsRetainedByReferenceBinding
- visitLocalsRetainedByInitializer
- PathLifetimeKind
- shouldLifetimeExtendThroughPath
- nextPathEntryRange
- pathOnlyHandlesGslPointer
- AnalysisResult
- analyzePathForGSLPointer
- isAssignmentOperatorLifetimeBound
- shouldRunGSLAssignmentAnalysis
- checkExprLifetimeImpl
- checkInitLifetime
- checkExprLifetimeMustTailArg
- checkAssignmentLifetime
Update your C++ knowledge – Modern C++11/14/17 Training
Find out more