1//===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements C++ semantic analysis for scope specifiers.
10//
11//===----------------------------------------------------------------------===//
12
13#include "TypeLocBuilder.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclTemplate.h"
16#include "clang/AST/ExprCXX.h"
17#include "clang/AST/NestedNameSpecifier.h"
18#include "clang/Basic/PartialDiagnostic.h"
19#include "clang/Sema/DeclSpec.h"
20#include "clang/Sema/Lookup.h"
21#include "clang/Sema/SemaInternal.h"
22#include "clang/Sema/Template.h"
23#include "llvm/ADT/STLExtras.h"
24using namespace clang;
25
26/// Find the current instantiation that associated with the given type.
27static CXXRecordDecl *getCurrentInstantiationOf(QualType T,
28 DeclContext *CurContext) {
29 if (T.isNull())
30 return nullptr;
31
32 const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
33 if (const RecordType *RecordTy = dyn_cast<RecordType>(Val: Ty)) {
34 CXXRecordDecl *Record = cast<CXXRecordDecl>(Val: RecordTy->getDecl());
35 if (!Record->isDependentContext() ||
36 Record->isCurrentInstantiation(CurContext))
37 return Record;
38
39 return nullptr;
40 } else if (isa<InjectedClassNameType>(Val: Ty))
41 return cast<InjectedClassNameType>(Val: Ty)->getDecl();
42 else
43 return nullptr;
44}
45
46/// Compute the DeclContext that is associated with the given type.
47///
48/// \param T the type for which we are attempting to find a DeclContext.
49///
50/// \returns the declaration context represented by the type T,
51/// or NULL if the declaration context cannot be computed (e.g., because it is
52/// dependent and not the current instantiation).
53DeclContext *Sema::computeDeclContext(QualType T) {
54 if (!T->isDependentType())
55 if (const TagType *Tag = T->getAs<TagType>())
56 return Tag->getDecl();
57
58 return ::getCurrentInstantiationOf(T, CurContext);
59}
60
61/// Compute the DeclContext that is associated with the given
62/// scope specifier.
63///
64/// \param SS the C++ scope specifier as it appears in the source
65///
66/// \param EnteringContext when true, we will be entering the context of
67/// this scope specifier, so we can retrieve the declaration context of a
68/// class template or class template partial specialization even if it is
69/// not the current instantiation.
70///
71/// \returns the declaration context represented by the scope specifier @p SS,
72/// or NULL if the declaration context cannot be computed (e.g., because it is
73/// dependent and not the current instantiation).
74DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
75 bool EnteringContext) {
76 if (!SS.isSet() || SS.isInvalid())
77 return nullptr;
78
79 NestedNameSpecifier *NNS = SS.getScopeRep();
80 if (NNS->isDependent()) {
81 // If this nested-name-specifier refers to the current
82 // instantiation, return its DeclContext.
83 if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
84 return Record;
85
86 if (EnteringContext) {
87 const Type *NNSType = NNS->getAsType();
88 if (!NNSType) {
89 return nullptr;
90 }
91
92 // Look through type alias templates, per C++0x [temp.dep.type]p1.
93 NNSType = Context.getCanonicalType(T: NNSType);
94 if (const TemplateSpecializationType *SpecType
95 = NNSType->getAs<TemplateSpecializationType>()) {
96 // We are entering the context of the nested name specifier, so try to
97 // match the nested name specifier to either a primary class template
98 // or a class template partial specialization.
99 if (ClassTemplateDecl *ClassTemplate
100 = dyn_cast_or_null<ClassTemplateDecl>(
101 Val: SpecType->getTemplateName().getAsTemplateDecl())) {
102 QualType ContextType =
103 Context.getCanonicalType(T: QualType(SpecType, 0));
104
105 // FIXME: The fallback on the search of partial
106 // specialization using ContextType should be eventually removed since
107 // it doesn't handle the case of constrained template parameters
108 // correctly. Currently removing this fallback would change the
109 // diagnostic output for invalid code in a number of tests.
110 ClassTemplatePartialSpecializationDecl *PartialSpec = nullptr;
111 ArrayRef<TemplateParameterList *> TemplateParamLists =
112 SS.getTemplateParamLists();
113 if (!TemplateParamLists.empty()) {
114 unsigned Depth = ClassTemplate->getTemplateParameters()->getDepth();
115 auto L = find_if(Range&: TemplateParamLists,
116 P: [Depth](TemplateParameterList *TPL) {
117 return TPL->getDepth() == Depth;
118 });
119 if (L != TemplateParamLists.end()) {
120 void *Pos = nullptr;
121 PartialSpec = ClassTemplate->findPartialSpecialization(
122 Args: SpecType->template_arguments(), TPL: *L, InsertPos&: Pos);
123 }
124 } else {
125 PartialSpec = ClassTemplate->findPartialSpecialization(T: ContextType);
126 }
127
128 if (PartialSpec) {
129 // A declaration of the partial specialization must be visible.
130 // We can always recover here, because this only happens when we're
131 // entering the context, and that can't happen in a SFINAE context.
132 assert(!isSFINAEContext() && "partial specialization scope "
133 "specifier in SFINAE context?");
134 if (PartialSpec->hasDefinition() &&
135 !hasReachableDefinition(PartialSpec))
136 diagnoseMissingImport(SS.getLastQualifierNameLoc(), PartialSpec,
137 MissingImportKind::PartialSpecialization,
138 true);
139 return PartialSpec;
140 }
141
142 // If the type of the nested name specifier is the same as the
143 // injected class name of the named class template, we're entering
144 // into that class template definition.
145 QualType Injected =
146 ClassTemplate->getInjectedClassNameSpecialization();
147 if (Context.hasSameType(T1: Injected, T2: ContextType))
148 return ClassTemplate->getTemplatedDecl();
149 }
150 } else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) {
151 // The nested name specifier refers to a member of a class template.
152 return RecordT->getDecl();
153 }
154 }
155
156 return nullptr;
157 }
158
159 switch (NNS->getKind()) {
160 case NestedNameSpecifier::Identifier:
161 llvm_unreachable("Dependent nested-name-specifier has no DeclContext");
162
163 case NestedNameSpecifier::Namespace:
164 return NNS->getAsNamespace();
165
166 case NestedNameSpecifier::NamespaceAlias:
167 return NNS->getAsNamespaceAlias()->getNamespace();
168
169 case NestedNameSpecifier::TypeSpec:
170 case NestedNameSpecifier::TypeSpecWithTemplate: {
171 const TagType *Tag = NNS->getAsType()->getAs<TagType>();
172 assert(Tag && "Non-tag type in nested-name-specifier");
173 return Tag->getDecl();
174 }
175
176 case NestedNameSpecifier::Global:
177 return Context.getTranslationUnitDecl();
178
179 case NestedNameSpecifier::Super:
180 return NNS->getAsRecordDecl();
181 }
182
183 llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
184}
185
186bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
187 if (!SS.isSet() || SS.isInvalid())
188 return false;
189
190 return SS.getScopeRep()->isDependent();
191}
192
193/// If the given nested name specifier refers to the current
194/// instantiation, return the declaration that corresponds to that
195/// current instantiation (C++0x [temp.dep.type]p1).
196///
197/// \param NNS a dependent nested name specifier.
198CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
199 assert(getLangOpts().CPlusPlus && "Only callable in C++");
200 assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
201
202 if (!NNS->getAsType())
203 return nullptr;
204
205 QualType T = QualType(NNS->getAsType(), 0);
206 return ::getCurrentInstantiationOf(T, CurContext);
207}
208
209/// Require that the context specified by SS be complete.
210///
211/// If SS refers to a type, this routine checks whether the type is
212/// complete enough (or can be made complete enough) for name lookup
213/// into the DeclContext. A type that is not yet completed can be
214/// considered "complete enough" if it is a class/struct/union/enum
215/// that is currently being defined. Or, if we have a type that names
216/// a class template specialization that is not a complete type, we
217/// will attempt to instantiate that class template.
218bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS,
219 DeclContext *DC) {
220 assert(DC && "given null context");
221
222 TagDecl *tag = dyn_cast<TagDecl>(Val: DC);
223
224 // If this is a dependent type, then we consider it complete.
225 // FIXME: This is wrong; we should require a (visible) definition to
226 // exist in this case too.
227 if (!tag || tag->isDependentContext())
228 return false;
229
230 // Grab the tag definition, if there is one.
231 QualType type = Context.getTypeDeclType(tag);
232 tag = type->getAsTagDecl();
233
234 // If we're currently defining this type, then lookup into the
235 // type is okay: don't complain that it isn't complete yet.
236 if (tag->isBeingDefined())
237 return false;
238
239 SourceLocation loc = SS.getLastQualifierNameLoc();
240 if (loc.isInvalid()) loc = SS.getRange().getBegin();
241
242 // The type must be complete.
243 if (RequireCompleteType(loc, type, diag::err_incomplete_nested_name_spec,
244 SS.getRange())) {
245 SS.SetInvalid(SS.getRange());
246 return true;
247 }
248
249 if (auto *EnumD = dyn_cast<EnumDecl>(Val: tag))
250 // Fixed enum types and scoped enum instantiations are complete, but they
251 // aren't valid as scopes until we see or instantiate their definition.
252 return RequireCompleteEnumDecl(D: EnumD, L: loc, SS: &SS);
253
254 return false;
255}
256
257/// Require that the EnumDecl is completed with its enumerators defined or
258/// instantiated. SS, if provided, is the ScopeRef parsed.
259///
260bool Sema::RequireCompleteEnumDecl(EnumDecl *EnumD, SourceLocation L,
261 CXXScopeSpec *SS) {
262 if (EnumD->isCompleteDefinition()) {
263 // If we know about the definition but it is not visible, complain.
264 NamedDecl *SuggestedDef = nullptr;
265 if (!hasReachableDefinition(EnumD, &SuggestedDef,
266 /*OnlyNeedComplete*/ false)) {
267 // If the user is going to see an error here, recover by making the
268 // definition visible.
269 bool TreatAsComplete = !isSFINAEContext();
270 diagnoseMissingImport(Loc: L, Decl: SuggestedDef, MIK: MissingImportKind::Definition,
271 /*Recover*/ TreatAsComplete);
272 return !TreatAsComplete;
273 }
274 return false;
275 }
276
277 // Try to instantiate the definition, if this is a specialization of an
278 // enumeration temploid.
279 if (EnumDecl *Pattern = EnumD->getInstantiatedFromMemberEnum()) {
280 MemberSpecializationInfo *MSI = EnumD->getMemberSpecializationInfo();
281 if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) {
282 if (InstantiateEnum(PointOfInstantiation: L, Instantiation: EnumD, Pattern,
283 TemplateArgs: getTemplateInstantiationArgs(EnumD),
284 TSK: TSK_ImplicitInstantiation)) {
285 if (SS)
286 SS->SetInvalid(SS->getRange());
287 return true;
288 }
289 return false;
290 }
291 }
292
293 if (SS) {
294 Diag(L, diag::err_incomplete_nested_name_spec)
295 << QualType(EnumD->getTypeForDecl(), 0) << SS->getRange();
296 SS->SetInvalid(SS->getRange());
297 } else {
298 Diag(L, diag::err_incomplete_enum) << QualType(EnumD->getTypeForDecl(), 0);
299 Diag(EnumD->getLocation(), diag::note_declared_at);
300 }
301
302 return true;
303}
304
305bool Sema::ActOnCXXGlobalScopeSpecifier(SourceLocation CCLoc,
306 CXXScopeSpec &SS) {
307 SS.MakeGlobal(Context, ColonColonLoc: CCLoc);
308 return false;
309}
310
311bool Sema::ActOnSuperScopeSpecifier(SourceLocation SuperLoc,
312 SourceLocation ColonColonLoc,
313 CXXScopeSpec &SS) {
314 if (getCurLambda()) {
315 Diag(SuperLoc, diag::err_super_in_lambda_unsupported);
316 return true;
317 }
318
319 CXXRecordDecl *RD = nullptr;
320 for (Scope *S = getCurScope(); S; S = S->getParent()) {
321 if (S->isFunctionScope()) {
322 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: S->getEntity()))
323 RD = MD->getParent();
324 break;
325 }
326 if (S->isClassScope()) {
327 RD = cast<CXXRecordDecl>(Val: S->getEntity());
328 break;
329 }
330 }
331
332 if (!RD) {
333 Diag(SuperLoc, diag::err_invalid_super_scope);
334 return true;
335 } else if (RD->getNumBases() == 0) {
336 Diag(SuperLoc, diag::err_no_base_classes) << RD->getName();
337 return true;
338 }
339
340 SS.MakeSuper(Context, RD, SuperLoc, ColonColonLoc);
341 return false;
342}
343
344/// Determines whether the given declaration is an valid acceptable
345/// result for name lookup of a nested-name-specifier.
346/// \param SD Declaration checked for nested-name-specifier.
347/// \param IsExtension If not null and the declaration is accepted as an
348/// extension, the pointed variable is assigned true.
349bool Sema::isAcceptableNestedNameSpecifier(const NamedDecl *SD,
350 bool *IsExtension) {
351 if (!SD)
352 return false;
353
354 SD = SD->getUnderlyingDecl();
355
356 // Namespace and namespace aliases are fine.
357 if (isa<NamespaceDecl>(Val: SD))
358 return true;
359
360 if (!isa<TypeDecl>(Val: SD))
361 return false;
362
363 // Determine whether we have a class (or, in C++11, an enum) or
364 // a typedef thereof. If so, build the nested-name-specifier.
365 QualType T = Context.getTypeDeclType(Decl: cast<TypeDecl>(Val: SD));
366 if (T->isDependentType())
367 return true;
368 if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(Val: SD)) {
369 if (TD->getUnderlyingType()->isRecordType())
370 return true;
371 if (TD->getUnderlyingType()->isEnumeralType()) {
372 if (Context.getLangOpts().CPlusPlus11)
373 return true;
374 if (IsExtension)
375 *IsExtension = true;
376 }
377 } else if (isa<RecordDecl>(Val: SD)) {
378 return true;
379 } else if (isa<EnumDecl>(Val: SD)) {
380 if (Context.getLangOpts().CPlusPlus11)
381 return true;
382 if (IsExtension)
383 *IsExtension = true;
384 }
385
386 return false;
387}
388
389/// If the given nested-name-specifier begins with a bare identifier
390/// (e.g., Base::), perform name lookup for that identifier as a
391/// nested-name-specifier within the given scope, and return the result of that
392/// name lookup.
393NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
394 if (!S || !NNS)
395 return nullptr;
396
397 while (NNS->getPrefix())
398 NNS = NNS->getPrefix();
399
400 if (NNS->getKind() != NestedNameSpecifier::Identifier)
401 return nullptr;
402
403 LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
404 LookupNestedNameSpecifierName);
405 LookupName(R&: Found, S);
406 assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
407
408 if (!Found.isSingleResult())
409 return nullptr;
410
411 NamedDecl *Result = Found.getFoundDecl();
412 if (isAcceptableNestedNameSpecifier(SD: Result))
413 return Result;
414
415 return nullptr;
416}
417
418namespace {
419
420// Callback to only accept typo corrections that can be a valid C++ member
421// initializer: either a non-static field member or a base class.
422class NestedNameSpecifierValidatorCCC final
423 : public CorrectionCandidateCallback {
424public:
425 explicit NestedNameSpecifierValidatorCCC(Sema &SRef)
426 : SRef(SRef) {}
427
428 bool ValidateCandidate(const TypoCorrection &candidate) override {
429 return SRef.isAcceptableNestedNameSpecifier(SD: candidate.getCorrectionDecl());
430 }
431
432 std::unique_ptr<CorrectionCandidateCallback> clone() override {
433 return std::make_unique<NestedNameSpecifierValidatorCCC>(args&: *this);
434 }
435
436 private:
437 Sema &SRef;
438};
439
440}
441
442/// Build a new nested-name-specifier for "identifier::", as described
443/// by ActOnCXXNestedNameSpecifier.
444///
445/// \param S Scope in which the nested-name-specifier occurs.
446/// \param IdInfo Parser information about an identifier in the
447/// nested-name-spec.
448/// \param EnteringContext If true, enter the context specified by the
449/// nested-name-specifier.
450/// \param SS Optional nested name specifier preceding the identifier.
451/// \param ScopeLookupResult Provides the result of name lookup within the
452/// scope of the nested-name-specifier that was computed at template
453/// definition time.
454/// \param ErrorRecoveryLookup Specifies if the method is called to improve
455/// error recovery and what kind of recovery is performed.
456/// \param IsCorrectedToColon If not null, suggestion of replace '::' -> ':'
457/// are allowed. The bool value pointed by this parameter is set to
458/// 'true' if the identifier is treated as if it was followed by ':',
459/// not '::'.
460/// \param OnlyNamespace If true, only considers namespaces in lookup.
461///
462/// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
463/// that it contains an extra parameter \p ScopeLookupResult, which provides
464/// the result of name lookup within the scope of the nested-name-specifier
465/// that was computed at template definition time.
466///
467/// If ErrorRecoveryLookup is true, then this call is used to improve error
468/// recovery. This means that it should not emit diagnostics, it should
469/// just return true on failure. It also means it should only return a valid
470/// scope if it *knows* that the result is correct. It should not return in a
471/// dependent context, for example. Nor will it extend \p SS with the scope
472/// specifier.
473bool Sema::BuildCXXNestedNameSpecifier(Scope *S, NestedNameSpecInfo &IdInfo,
474 bool EnteringContext, CXXScopeSpec &SS,
475 NamedDecl *ScopeLookupResult,
476 bool ErrorRecoveryLookup,
477 bool *IsCorrectedToColon,
478 bool OnlyNamespace) {
479 if (IdInfo.Identifier->isEditorPlaceholder())
480 return true;
481 LookupResult Found(*this, IdInfo.Identifier, IdInfo.IdentifierLoc,
482 OnlyNamespace ? LookupNamespaceName
483 : LookupNestedNameSpecifierName);
484 QualType ObjectType = GetTypeFromParser(Ty: IdInfo.ObjectType);
485
486 // Determine where to perform name lookup
487 DeclContext *LookupCtx = nullptr;
488 bool isDependent = false;
489 if (IsCorrectedToColon)
490 *IsCorrectedToColon = false;
491 if (!ObjectType.isNull()) {
492 // This nested-name-specifier occurs in a member access expression, e.g.,
493 // x->B::f, and we are looking into the type of the object.
494 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
495 LookupCtx = computeDeclContext(T: ObjectType);
496 isDependent = ObjectType->isDependentType();
497 } else if (SS.isSet()) {
498 // This nested-name-specifier occurs after another nested-name-specifier,
499 // so look into the context associated with the prior nested-name-specifier.
500 LookupCtx = computeDeclContext(SS, EnteringContext);
501 isDependent = isDependentScopeSpecifier(SS);
502 Found.setContextRange(SS.getRange());
503 }
504
505 bool ObjectTypeSearchedInScope = false;
506 if (LookupCtx) {
507 // Perform "qualified" name lookup into the declaration context we
508 // computed, which is either the type of the base of a member access
509 // expression or the declaration context associated with a prior
510 // nested-name-specifier.
511
512 // The declaration context must be complete.
513 if (!LookupCtx->isDependentContext() &&
514 RequireCompleteDeclContext(SS, DC: LookupCtx))
515 return true;
516
517 LookupQualifiedName(R&: Found, LookupCtx);
518
519 if (!ObjectType.isNull() && Found.empty()) {
520 // C++ [basic.lookup.classref]p4:
521 // If the id-expression in a class member access is a qualified-id of
522 // the form
523 //
524 // class-name-or-namespace-name::...
525 //
526 // the class-name-or-namespace-name following the . or -> operator is
527 // looked up both in the context of the entire postfix-expression and in
528 // the scope of the class of the object expression. If the name is found
529 // only in the scope of the class of the object expression, the name
530 // shall refer to a class-name. If the name is found only in the
531 // context of the entire postfix-expression, the name shall refer to a
532 // class-name or namespace-name. [...]
533 //
534 // Qualified name lookup into a class will not find a namespace-name,
535 // so we do not need to diagnose that case specifically. However,
536 // this qualified name lookup may find nothing. In that case, perform
537 // unqualified name lookup in the given scope (if available) or
538 // reconstruct the result from when name lookup was performed at template
539 // definition time.
540 if (S)
541 LookupName(R&: Found, S);
542 else if (ScopeLookupResult)
543 Found.addDecl(D: ScopeLookupResult);
544
545 ObjectTypeSearchedInScope = true;
546 }
547 } else if (!isDependent) {
548 // Perform unqualified name lookup in the current scope.
549 LookupName(R&: Found, S);
550 }
551
552 if (Found.isAmbiguous())
553 return true;
554
555 // If we performed lookup into a dependent context and did not find anything,
556 // that's fine: just build a dependent nested-name-specifier.
557 if (Found.empty() && isDependent &&
558 !(LookupCtx && LookupCtx->isRecord() &&
559 (!cast<CXXRecordDecl>(Val: LookupCtx)->hasDefinition() ||
560 !cast<CXXRecordDecl>(Val: LookupCtx)->hasAnyDependentBases()))) {
561 // Don't speculate if we're just trying to improve error recovery.
562 if (ErrorRecoveryLookup)
563 return true;
564
565 // We were not able to compute the declaration context for a dependent
566 // base object type or prior nested-name-specifier, so this
567 // nested-name-specifier refers to an unknown specialization. Just build
568 // a dependent nested-name-specifier.
569 SS.Extend(Context, Identifier: IdInfo.Identifier, IdentifierLoc: IdInfo.IdentifierLoc, ColonColonLoc: IdInfo.CCLoc);
570 return false;
571 }
572
573 if (Found.empty() && !ErrorRecoveryLookup) {
574 // If identifier is not found as class-name-or-namespace-name, but is found
575 // as other entity, don't look for typos.
576 LookupResult R(*this, Found.getLookupNameInfo(), LookupOrdinaryName);
577 if (LookupCtx)
578 LookupQualifiedName(R, LookupCtx);
579 else if (S && !isDependent)
580 LookupName(R, S);
581 if (!R.empty()) {
582 // Don't diagnose problems with this speculative lookup.
583 R.suppressDiagnostics();
584 // The identifier is found in ordinary lookup. If correction to colon is
585 // allowed, suggest replacement to ':'.
586 if (IsCorrectedToColon) {
587 *IsCorrectedToColon = true;
588 Diag(IdInfo.CCLoc, diag::err_nested_name_spec_is_not_class)
589 << IdInfo.Identifier << getLangOpts().CPlusPlus
590 << FixItHint::CreateReplacement(IdInfo.CCLoc, ":");
591 if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
592 Diag(ND->getLocation(), diag::note_declared_at);
593 return true;
594 }
595 // Replacement '::' -> ':' is not allowed, just issue respective error.
596 Diag(R.getNameLoc(), OnlyNamespace
597 ? unsigned(diag::err_expected_namespace_name)
598 : unsigned(diag::err_expected_class_or_namespace))
599 << IdInfo.Identifier << getLangOpts().CPlusPlus;
600 if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
601 Diag(ND->getLocation(), diag::note_entity_declared_at)
602 << IdInfo.Identifier;
603 return true;
604 }
605 }
606
607 if (Found.empty() && !ErrorRecoveryLookup && !getLangOpts().MSVCCompat) {
608 // We haven't found anything, and we're not recovering from a
609 // different kind of error, so look for typos.
610 DeclarationName Name = Found.getLookupName();
611 Found.clear();
612 NestedNameSpecifierValidatorCCC CCC(*this);
613 if (TypoCorrection Corrected = CorrectTypo(
614 Typo: Found.getLookupNameInfo(), LookupKind: Found.getLookupKind(), S, SS: &SS, CCC,
615 Mode: CTK_ErrorRecovery, MemberContext: LookupCtx, EnteringContext)) {
616 if (LookupCtx) {
617 bool DroppedSpecifier =
618 Corrected.WillReplaceSpecifier() &&
619 Name.getAsString() == Corrected.getAsString(LO: getLangOpts());
620 if (DroppedSpecifier)
621 SS.clear();
622 diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
623 << Name << LookupCtx << DroppedSpecifier
624 << SS.getRange());
625 } else
626 diagnoseTypo(Corrected, PDiag(diag::err_undeclared_var_use_suggest)
627 << Name);
628
629 if (Corrected.getCorrectionSpecifier())
630 SS.MakeTrivial(Context, Qualifier: Corrected.getCorrectionSpecifier(),
631 R: SourceRange(Found.getNameLoc()));
632
633 if (NamedDecl *ND = Corrected.getFoundDecl())
634 Found.addDecl(D: ND);
635 Found.setLookupName(Corrected.getCorrection());
636 } else {
637 Found.setLookupName(IdInfo.Identifier);
638 }
639 }
640
641 NamedDecl *SD =
642 Found.isSingleResult() ? Found.getRepresentativeDecl() : nullptr;
643 bool IsExtension = false;
644 bool AcceptSpec = isAcceptableNestedNameSpecifier(SD, IsExtension: &IsExtension);
645 if (!AcceptSpec && IsExtension) {
646 AcceptSpec = true;
647 Diag(IdInfo.IdentifierLoc, diag::ext_nested_name_spec_is_enum);
648 }
649 if (AcceptSpec) {
650 if (!ObjectType.isNull() && !ObjectTypeSearchedInScope &&
651 !getLangOpts().CPlusPlus11) {
652 // C++03 [basic.lookup.classref]p4:
653 // [...] If the name is found in both contexts, the
654 // class-name-or-namespace-name shall refer to the same entity.
655 //
656 // We already found the name in the scope of the object. Now, look
657 // into the current scope (the scope of the postfix-expression) to
658 // see if we can find the same name there. As above, if there is no
659 // scope, reconstruct the result from the template instantiation itself.
660 //
661 // Note that C++11 does *not* perform this redundant lookup.
662 NamedDecl *OuterDecl;
663 if (S) {
664 LookupResult FoundOuter(*this, IdInfo.Identifier, IdInfo.IdentifierLoc,
665 LookupNestedNameSpecifierName);
666 LookupName(R&: FoundOuter, S);
667 OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
668 } else
669 OuterDecl = ScopeLookupResult;
670
671 if (isAcceptableNestedNameSpecifier(SD: OuterDecl) &&
672 OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
673 (!isa<TypeDecl>(Val: OuterDecl) || !isa<TypeDecl>(Val: SD) ||
674 !Context.hasSameType(
675 T1: Context.getTypeDeclType(Decl: cast<TypeDecl>(Val: OuterDecl)),
676 T2: Context.getTypeDeclType(Decl: cast<TypeDecl>(Val: SD))))) {
677 if (ErrorRecoveryLookup)
678 return true;
679
680 Diag(IdInfo.IdentifierLoc,
681 diag::err_nested_name_member_ref_lookup_ambiguous)
682 << IdInfo.Identifier;
683 Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
684 << ObjectType;
685 Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
686
687 // Fall through so that we'll pick the name we found in the object
688 // type, since that's probably what the user wanted anyway.
689 }
690 }
691
692 if (auto *TD = dyn_cast_or_null<TypedefNameDecl>(Val: SD))
693 MarkAnyDeclReferenced(Loc: TD->getLocation(), D: TD, /*OdrUse=*/MightBeOdrUse: false);
694
695 // If we're just performing this lookup for error-recovery purposes,
696 // don't extend the nested-name-specifier. Just return now.
697 if (ErrorRecoveryLookup)
698 return false;
699
700 // The use of a nested name specifier may trigger deprecation warnings.
701 DiagnoseUseOfDecl(D: SD, Locs: IdInfo.CCLoc);
702
703 if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(Val: SD)) {
704 SS.Extend(Context, Namespace, NamespaceLoc: IdInfo.IdentifierLoc, ColonColonLoc: IdInfo.CCLoc);
705 return false;
706 }
707
708 if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(Val: SD)) {
709 SS.Extend(Context, Alias, AliasLoc: IdInfo.IdentifierLoc, ColonColonLoc: IdInfo.CCLoc);
710 return false;
711 }
712
713 QualType T =
714 Context.getTypeDeclType(Decl: cast<TypeDecl>(Val: SD->getUnderlyingDecl()));
715
716 if (T->isEnumeralType())
717 Diag(IdInfo.IdentifierLoc, diag::warn_cxx98_compat_enum_nested_name_spec);
718
719 TypeLocBuilder TLB;
720 if (const auto *USD = dyn_cast<UsingShadowDecl>(Val: SD)) {
721 T = Context.getUsingType(Found: USD, Underlying: T);
722 TLB.pushTypeSpec(T).setNameLoc(IdInfo.IdentifierLoc);
723 } else if (isa<InjectedClassNameType>(Val: T)) {
724 InjectedClassNameTypeLoc InjectedTL
725 = TLB.push<InjectedClassNameTypeLoc>(T);
726 InjectedTL.setNameLoc(IdInfo.IdentifierLoc);
727 } else if (isa<RecordType>(Val: T)) {
728 RecordTypeLoc RecordTL = TLB.push<RecordTypeLoc>(T);
729 RecordTL.setNameLoc(IdInfo.IdentifierLoc);
730 } else if (isa<TypedefType>(Val: T)) {
731 TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(T);
732 TypedefTL.setNameLoc(IdInfo.IdentifierLoc);
733 } else if (isa<EnumType>(Val: T)) {
734 EnumTypeLoc EnumTL = TLB.push<EnumTypeLoc>(T);
735 EnumTL.setNameLoc(IdInfo.IdentifierLoc);
736 } else if (isa<TemplateTypeParmType>(Val: T)) {
737 TemplateTypeParmTypeLoc TemplateTypeTL
738 = TLB.push<TemplateTypeParmTypeLoc>(T);
739 TemplateTypeTL.setNameLoc(IdInfo.IdentifierLoc);
740 } else if (isa<UnresolvedUsingType>(Val: T)) {
741 UnresolvedUsingTypeLoc UnresolvedTL
742 = TLB.push<UnresolvedUsingTypeLoc>(T);
743 UnresolvedTL.setNameLoc(IdInfo.IdentifierLoc);
744 } else if (isa<SubstTemplateTypeParmType>(Val: T)) {
745 SubstTemplateTypeParmTypeLoc TL
746 = TLB.push<SubstTemplateTypeParmTypeLoc>(T);
747 TL.setNameLoc(IdInfo.IdentifierLoc);
748 } else if (isa<SubstTemplateTypeParmPackType>(Val: T)) {
749 SubstTemplateTypeParmPackTypeLoc TL
750 = TLB.push<SubstTemplateTypeParmPackTypeLoc>(T);
751 TL.setNameLoc(IdInfo.IdentifierLoc);
752 } else {
753 llvm_unreachable("Unhandled TypeDecl node in nested-name-specifier");
754 }
755
756 SS.Extend(Context, TemplateKWLoc: SourceLocation(), TL: TLB.getTypeLocInContext(Context, T),
757 ColonColonLoc: IdInfo.CCLoc);
758 return false;
759 }
760
761 // Otherwise, we have an error case. If we don't want diagnostics, just
762 // return an error now.
763 if (ErrorRecoveryLookup)
764 return true;
765
766 // If we didn't find anything during our lookup, try again with
767 // ordinary name lookup, which can help us produce better error
768 // messages.
769 if (Found.empty()) {
770 Found.clear(Kind: LookupOrdinaryName);
771 LookupName(R&: Found, S);
772 }
773
774 // In Microsoft mode, if we are within a templated function and we can't
775 // resolve Identifier, then extend the SS with Identifier. This will have
776 // the effect of resolving Identifier during template instantiation.
777 // The goal is to be able to resolve a function call whose
778 // nested-name-specifier is located inside a dependent base class.
779 // Example:
780 //
781 // class C {
782 // public:
783 // static void foo2() { }
784 // };
785 // template <class T> class A { public: typedef C D; };
786 //
787 // template <class T> class B : public A<T> {
788 // public:
789 // void foo() { D::foo2(); }
790 // };
791 if (getLangOpts().MSVCCompat) {
792 DeclContext *DC = LookupCtx ? LookupCtx : CurContext;
793 if (DC->isDependentContext() && DC->isFunctionOrMethod()) {
794 CXXRecordDecl *ContainingClass = dyn_cast<CXXRecordDecl>(Val: DC->getParent());
795 if (ContainingClass && ContainingClass->hasAnyDependentBases()) {
796 Diag(IdInfo.IdentifierLoc,
797 diag::ext_undeclared_unqual_id_with_dependent_base)
798 << IdInfo.Identifier << ContainingClass;
799 SS.Extend(Context, Identifier: IdInfo.Identifier, IdentifierLoc: IdInfo.IdentifierLoc,
800 ColonColonLoc: IdInfo.CCLoc);
801 return false;
802 }
803 }
804 }
805
806 if (!Found.empty()) {
807 if (TypeDecl *TD = Found.getAsSingle<TypeDecl>()) {
808 Diag(IdInfo.IdentifierLoc, diag::err_expected_class_or_namespace)
809 << Context.getTypeDeclType(TD) << getLangOpts().CPlusPlus;
810 } else if (Found.getAsSingle<TemplateDecl>()) {
811 ParsedType SuggestedType;
812 DiagnoseUnknownTypeName(II&: IdInfo.Identifier, IILoc: IdInfo.IdentifierLoc, S, SS: &SS,
813 SuggestedType);
814 } else {
815 Diag(IdInfo.IdentifierLoc, diag::err_expected_class_or_namespace)
816 << IdInfo.Identifier << getLangOpts().CPlusPlus;
817 if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
818 Diag(ND->getLocation(), diag::note_entity_declared_at)
819 << IdInfo.Identifier;
820 }
821 } else if (SS.isSet())
822 Diag(IdInfo.IdentifierLoc, diag::err_no_member) << IdInfo.Identifier
823 << LookupCtx << SS.getRange();
824 else
825 Diag(IdInfo.IdentifierLoc, diag::err_undeclared_var_use)
826 << IdInfo.Identifier;
827
828 return true;
829}
830
831bool Sema::ActOnCXXNestedNameSpecifier(Scope *S, NestedNameSpecInfo &IdInfo,
832 bool EnteringContext, CXXScopeSpec &SS,
833 bool *IsCorrectedToColon,
834 bool OnlyNamespace) {
835 if (SS.isInvalid())
836 return true;
837
838 return BuildCXXNestedNameSpecifier(S, IdInfo, EnteringContext, SS,
839 /*ScopeLookupResult=*/nullptr, ErrorRecoveryLookup: false,
840 IsCorrectedToColon, OnlyNamespace);
841}
842
843bool Sema::ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS,
844 const DeclSpec &DS,
845 SourceLocation ColonColonLoc) {
846 if (SS.isInvalid() || DS.getTypeSpecType() == DeclSpec::TST_error)
847 return true;
848
849 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype);
850
851 QualType T = BuildDecltypeType(E: DS.getRepAsExpr());
852 if (T.isNull())
853 return true;
854
855 if (!T->isDependentType() && !T->getAs<TagType>()) {
856 Diag(DS.getTypeSpecTypeLoc(), diag::err_expected_class_or_namespace)
857 << T << getLangOpts().CPlusPlus;
858 return true;
859 }
860
861 TypeLocBuilder TLB;
862 DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
863 DecltypeTL.setDecltypeLoc(DS.getTypeSpecTypeLoc());
864 DecltypeTL.setRParenLoc(DS.getTypeofParensRange().getEnd());
865 SS.Extend(Context, TemplateKWLoc: SourceLocation(), TL: TLB.getTypeLocInContext(Context, T),
866 ColonColonLoc);
867 return false;
868}
869
870bool Sema::ActOnCXXNestedNameSpecifierIndexedPack(CXXScopeSpec &SS,
871 const DeclSpec &DS,
872 SourceLocation ColonColonLoc,
873 QualType Type) {
874 if (SS.isInvalid() || DS.getTypeSpecType() == DeclSpec::TST_error)
875 return true;
876
877 assert(DS.getTypeSpecType() == DeclSpec::TST_typename_pack_indexing);
878
879 if (Type.isNull())
880 return true;
881
882 TypeLocBuilder TLB;
883 TLB.pushTrivial(Context&: getASTContext(),
884 T: cast<PackIndexingType>(Val: Type.getTypePtr())->getPattern(),
885 Loc: DS.getBeginLoc());
886 PackIndexingTypeLoc PIT = TLB.push<PackIndexingTypeLoc>(T: Type);
887 PIT.setEllipsisLoc(DS.getEllipsisLoc());
888 SS.Extend(Context, TemplateKWLoc: SourceLocation(), TL: TLB.getTypeLocInContext(Context, T: Type),
889 ColonColonLoc);
890 return false;
891}
892
893/// IsInvalidUnlessNestedName - This method is used for error recovery
894/// purposes to determine whether the specified identifier is only valid as
895/// a nested name specifier, for example a namespace name. It is
896/// conservatively correct to always return false from this method.
897///
898/// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
899bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
900 NestedNameSpecInfo &IdInfo,
901 bool EnteringContext) {
902 if (SS.isInvalid())
903 return false;
904
905 return !BuildCXXNestedNameSpecifier(S, IdInfo, EnteringContext, SS,
906 /*ScopeLookupResult=*/nullptr, ErrorRecoveryLookup: true);
907}
908
909bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
910 CXXScopeSpec &SS,
911 SourceLocation TemplateKWLoc,
912 TemplateTy OpaqueTemplate,
913 SourceLocation TemplateNameLoc,
914 SourceLocation LAngleLoc,
915 ASTTemplateArgsPtr TemplateArgsIn,
916 SourceLocation RAngleLoc,
917 SourceLocation CCLoc,
918 bool EnteringContext) {
919 if (SS.isInvalid())
920 return true;
921
922 TemplateName Template = OpaqueTemplate.get();
923
924 // Translate the parser's template argument list in our AST format.
925 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
926 translateTemplateArguments(In: TemplateArgsIn, Out&: TemplateArgs);
927
928 DependentTemplateName *DTN = Template.getAsDependentTemplateName();
929 if (DTN && DTN->isIdentifier()) {
930 // Handle a dependent template specialization for which we cannot resolve
931 // the template name.
932 assert(DTN->getQualifier() == SS.getScopeRep());
933 QualType T = Context.getDependentTemplateSpecializationType(
934 Keyword: ElaboratedTypeKeyword::None, NNS: DTN->getQualifier(), Name: DTN->getIdentifier(),
935 Args: TemplateArgs.arguments());
936
937 // Create source-location information for this type.
938 TypeLocBuilder Builder;
939 DependentTemplateSpecializationTypeLoc SpecTL
940 = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
941 SpecTL.setElaboratedKeywordLoc(SourceLocation());
942 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
943 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
944 SpecTL.setTemplateNameLoc(TemplateNameLoc);
945 SpecTL.setLAngleLoc(LAngleLoc);
946 SpecTL.setRAngleLoc(RAngleLoc);
947 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
948 SpecTL.setArgLocInfo(i: I, AI: TemplateArgs[I].getLocInfo());
949
950 SS.Extend(Context, TemplateKWLoc, TL: Builder.getTypeLocInContext(Context, T),
951 ColonColonLoc: CCLoc);
952 return false;
953 }
954
955 // If we assumed an undeclared identifier was a template name, try to
956 // typo-correct it now.
957 if (Template.getAsAssumedTemplateName() &&
958 resolveAssumedTemplateNameAsType(S, Name&: Template, NameLoc: TemplateNameLoc))
959 return true;
960
961 TemplateDecl *TD = Template.getAsTemplateDecl();
962 if (Template.getAsOverloadedTemplate() || DTN ||
963 isa<FunctionTemplateDecl>(Val: TD) || isa<VarTemplateDecl>(Val: TD)) {
964 SourceRange R(TemplateNameLoc, RAngleLoc);
965 if (SS.getRange().isValid())
966 R.setBegin(SS.getRange().getBegin());
967
968 Diag(CCLoc, diag::err_non_type_template_in_nested_name_specifier)
969 << (TD && isa<VarTemplateDecl>(TD)) << Template << R;
970 NoteAllFoundTemplates(Name: Template);
971 return true;
972 }
973
974 // We were able to resolve the template name to an actual template.
975 // Build an appropriate nested-name-specifier.
976 QualType T = CheckTemplateIdType(Template, TemplateLoc: TemplateNameLoc, TemplateArgs);
977 if (T.isNull())
978 return true;
979
980 // Alias template specializations can produce types which are not valid
981 // nested name specifiers.
982 if (!T->isDependentType() && !T->getAs<TagType>()) {
983 Diag(TemplateNameLoc, diag::err_nested_name_spec_non_tag) << T;
984 NoteAllFoundTemplates(Name: Template);
985 return true;
986 }
987
988 // Provide source-location information for the template specialization type.
989 TypeLocBuilder Builder;
990 TemplateSpecializationTypeLoc SpecTL
991 = Builder.push<TemplateSpecializationTypeLoc>(T);
992 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
993 SpecTL.setTemplateNameLoc(TemplateNameLoc);
994 SpecTL.setLAngleLoc(LAngleLoc);
995 SpecTL.setRAngleLoc(RAngleLoc);
996 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
997 SpecTL.setArgLocInfo(i: I, AI: TemplateArgs[I].getLocInfo());
998
999
1000 SS.Extend(Context, TemplateKWLoc, TL: Builder.getTypeLocInContext(Context, T),
1001 ColonColonLoc: CCLoc);
1002 return false;
1003}
1004
1005namespace {
1006 /// A structure that stores a nested-name-specifier annotation,
1007 /// including both the nested-name-specifier
1008 struct NestedNameSpecifierAnnotation {
1009 NestedNameSpecifier *NNS;
1010 };
1011}
1012
1013void *Sema::SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS) {
1014 if (SS.isEmpty() || SS.isInvalid())
1015 return nullptr;
1016
1017 void *Mem = Context.Allocate(
1018 Size: (sizeof(NestedNameSpecifierAnnotation) + SS.location_size()),
1019 Align: alignof(NestedNameSpecifierAnnotation));
1020 NestedNameSpecifierAnnotation *Annotation
1021 = new (Mem) NestedNameSpecifierAnnotation;
1022 Annotation->NNS = SS.getScopeRep();
1023 memcpy(dest: Annotation + 1, src: SS.location_data(), n: SS.location_size());
1024 return Annotation;
1025}
1026
1027void Sema::RestoreNestedNameSpecifierAnnotation(void *AnnotationPtr,
1028 SourceRange AnnotationRange,
1029 CXXScopeSpec &SS) {
1030 if (!AnnotationPtr) {
1031 SS.SetInvalid(AnnotationRange);
1032 return;
1033 }
1034
1035 NestedNameSpecifierAnnotation *Annotation
1036 = static_cast<NestedNameSpecifierAnnotation *>(AnnotationPtr);
1037 SS.Adopt(Other: NestedNameSpecifierLoc(Annotation->NNS, Annotation + 1));
1038}
1039
1040bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
1041 assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
1042
1043 // Don't enter a declarator context when the current context is an Objective-C
1044 // declaration.
1045 if (isa<ObjCContainerDecl>(Val: CurContext) || isa<ObjCMethodDecl>(Val: CurContext))
1046 return false;
1047
1048 NestedNameSpecifier *Qualifier = SS.getScopeRep();
1049
1050 // There are only two places a well-formed program may qualify a
1051 // declarator: first, when defining a namespace or class member
1052 // out-of-line, and second, when naming an explicitly-qualified
1053 // friend function. The latter case is governed by
1054 // C++03 [basic.lookup.unqual]p10:
1055 // In a friend declaration naming a member function, a name used
1056 // in the function declarator and not part of a template-argument
1057 // in a template-id is first looked up in the scope of the member
1058 // function's class. If it is not found, or if the name is part of
1059 // a template-argument in a template-id, the look up is as
1060 // described for unqualified names in the definition of the class
1061 // granting friendship.
1062 // i.e. we don't push a scope unless it's a class member.
1063
1064 switch (Qualifier->getKind()) {
1065 case NestedNameSpecifier::Global:
1066 case NestedNameSpecifier::Namespace:
1067 case NestedNameSpecifier::NamespaceAlias:
1068 // These are always namespace scopes. We never want to enter a
1069 // namespace scope from anything but a file context.
1070 return CurContext->getRedeclContext()->isFileContext();
1071
1072 case NestedNameSpecifier::Identifier:
1073 case NestedNameSpecifier::TypeSpec:
1074 case NestedNameSpecifier::TypeSpecWithTemplate:
1075 case NestedNameSpecifier::Super:
1076 // These are never namespace scopes.
1077 return true;
1078 }
1079
1080 llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
1081}
1082
1083/// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
1084/// scope or nested-name-specifier) is parsed, part of a declarator-id.
1085/// After this method is called, according to [C++ 3.4.3p3], names should be
1086/// looked up in the declarator-id's scope, until the declarator is parsed and
1087/// ActOnCXXExitDeclaratorScope is called.
1088/// The 'SS' should be a non-empty valid CXXScopeSpec.
1089bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) {
1090 assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
1091
1092 if (SS.isInvalid()) return true;
1093
1094 DeclContext *DC = computeDeclContext(SS, EnteringContext: true);
1095 if (!DC) return true;
1096
1097 // Before we enter a declarator's context, we need to make sure that
1098 // it is a complete declaration context.
1099 if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC))
1100 return true;
1101
1102 EnterDeclaratorContext(S, DC);
1103
1104 // Rebuild the nested name specifier for the new scope.
1105 if (DC->isDependentContext())
1106 RebuildNestedNameSpecifierInCurrentInstantiation(SS);
1107
1108 return false;
1109}
1110
1111/// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
1112/// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
1113/// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
1114/// Used to indicate that names should revert to being looked up in the
1115/// defining scope.
1116void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
1117 assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
1118 if (SS.isInvalid())
1119 return;
1120 assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
1121 "exiting declarator scope we never really entered");
1122 ExitDeclaratorContext(S);
1123}
1124

source code of clang/lib/Sema/SemaCXXScopeSpec.cpp