1 | //===- SemaChecking.cpp - Extra Semantic Checking -------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements extra semantic analysis beyond what is enforced |
10 | // by the C type system. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "clang/AST/APValue.h" |
15 | #include "clang/AST/ASTContext.h" |
16 | #include "clang/AST/Attr.h" |
17 | #include "clang/AST/AttrIterator.h" |
18 | #include "clang/AST/CharUnits.h" |
19 | #include "clang/AST/Decl.h" |
20 | #include "clang/AST/DeclBase.h" |
21 | #include "clang/AST/DeclCXX.h" |
22 | #include "clang/AST/DeclObjC.h" |
23 | #include "clang/AST/DeclarationName.h" |
24 | #include "clang/AST/EvaluatedExprVisitor.h" |
25 | #include "clang/AST/Expr.h" |
26 | #include "clang/AST/ExprCXX.h" |
27 | #include "clang/AST/ExprObjC.h" |
28 | #include "clang/AST/ExprOpenMP.h" |
29 | #include "clang/AST/FormatString.h" |
30 | #include "clang/AST/IgnoreExpr.h" |
31 | #include "clang/AST/NSAPI.h" |
32 | #include "clang/AST/NonTrivialTypeVisitor.h" |
33 | #include "clang/AST/OperationKinds.h" |
34 | #include "clang/AST/RecordLayout.h" |
35 | #include "clang/AST/Stmt.h" |
36 | #include "clang/AST/TemplateBase.h" |
37 | #include "clang/AST/Type.h" |
38 | #include "clang/AST/TypeLoc.h" |
39 | #include "clang/AST/UnresolvedSet.h" |
40 | #include "clang/Basic/AddressSpaces.h" |
41 | #include "clang/Basic/CharInfo.h" |
42 | #include "clang/Basic/Diagnostic.h" |
43 | #include "clang/Basic/IdentifierTable.h" |
44 | #include "clang/Basic/LLVM.h" |
45 | #include "clang/Basic/LangOptions.h" |
46 | #include "clang/Basic/OpenCLOptions.h" |
47 | #include "clang/Basic/OperatorKinds.h" |
48 | #include "clang/Basic/PartialDiagnostic.h" |
49 | #include "clang/Basic/SourceLocation.h" |
50 | #include "clang/Basic/SourceManager.h" |
51 | #include "clang/Basic/Specifiers.h" |
52 | #include "clang/Basic/SyncScope.h" |
53 | #include "clang/Basic/TargetBuiltins.h" |
54 | #include "clang/Basic/TargetCXXABI.h" |
55 | #include "clang/Basic/TargetInfo.h" |
56 | #include "clang/Basic/TypeTraits.h" |
57 | #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering. |
58 | #include "clang/Sema/Initialization.h" |
59 | #include "clang/Sema/Lookup.h" |
60 | #include "clang/Sema/Ownership.h" |
61 | #include "clang/Sema/Scope.h" |
62 | #include "clang/Sema/ScopeInfo.h" |
63 | #include "clang/Sema/Sema.h" |
64 | #include "clang/Sema/SemaInternal.h" |
65 | #include "llvm/ADT/APFloat.h" |
66 | #include "llvm/ADT/APInt.h" |
67 | #include "llvm/ADT/APSInt.h" |
68 | #include "llvm/ADT/ArrayRef.h" |
69 | #include "llvm/ADT/DenseMap.h" |
70 | #include "llvm/ADT/FoldingSet.h" |
71 | #include "llvm/ADT/STLExtras.h" |
72 | #include "llvm/ADT/SmallBitVector.h" |
73 | #include "llvm/ADT/SmallPtrSet.h" |
74 | #include "llvm/ADT/SmallString.h" |
75 | #include "llvm/ADT/SmallVector.h" |
76 | #include "llvm/ADT/StringExtras.h" |
77 | #include "llvm/ADT/StringRef.h" |
78 | #include "llvm/ADT/StringSet.h" |
79 | #include "llvm/ADT/StringSwitch.h" |
80 | #include "llvm/Support/AtomicOrdering.h" |
81 | #include "llvm/Support/Casting.h" |
82 | #include "llvm/Support/Compiler.h" |
83 | #include "llvm/Support/ConvertUTF.h" |
84 | #include "llvm/Support/ErrorHandling.h" |
85 | #include "llvm/Support/Format.h" |
86 | #include "llvm/Support/Locale.h" |
87 | #include "llvm/Support/MathExtras.h" |
88 | #include "llvm/Support/SaveAndRestore.h" |
89 | #include "llvm/Support/raw_ostream.h" |
90 | #include "llvm/TargetParser/RISCVTargetParser.h" |
91 | #include "llvm/TargetParser/Triple.h" |
92 | #include <algorithm> |
93 | #include <bitset> |
94 | #include <cassert> |
95 | #include <cctype> |
96 | #include <cstddef> |
97 | #include <cstdint> |
98 | #include <functional> |
99 | #include <limits> |
100 | #include <optional> |
101 | #include <string> |
102 | #include <tuple> |
103 | #include <utility> |
104 | |
105 | using namespace clang; |
106 | using namespace sema; |
107 | |
108 | SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL, |
109 | unsigned ByteNo) const { |
110 | return SL->getLocationOfByte(ByteNo, SM: getSourceManager(), Features: LangOpts, |
111 | Target: Context.getTargetInfo()); |
112 | } |
113 | |
114 | static constexpr unsigned short combineFAPK(Sema::FormatArgumentPassingKind A, |
115 | Sema::FormatArgumentPassingKind B) { |
116 | return (A << 8) | B; |
117 | } |
118 | |
119 | /// Checks that a call expression's argument count is at least the desired |
120 | /// number. This is useful when doing custom type-checking on a variadic |
121 | /// function. Returns true on error. |
122 | static bool checkArgCountAtLeast(Sema &S, CallExpr *Call, |
123 | unsigned MinArgCount) { |
124 | unsigned ArgCount = Call->getNumArgs(); |
125 | if (ArgCount >= MinArgCount) |
126 | return false; |
127 | |
128 | return S.Diag(Call->getEndLoc(), diag::err_typecheck_call_too_few_args) |
129 | << 0 /*function call*/ << MinArgCount << ArgCount |
130 | << /*is non object*/ 0 << Call->getSourceRange(); |
131 | } |
132 | |
133 | /// Checks that a call expression's argument count is at most the desired |
134 | /// number. This is useful when doing custom type-checking on a variadic |
135 | /// function. Returns true on error. |
136 | static bool checkArgCountAtMost(Sema &S, CallExpr *Call, unsigned MaxArgCount) { |
137 | unsigned ArgCount = Call->getNumArgs(); |
138 | if (ArgCount <= MaxArgCount) |
139 | return false; |
140 | return S.Diag(Call->getEndLoc(), |
141 | diag::err_typecheck_call_too_many_args_at_most) |
142 | << 0 /*function call*/ << MaxArgCount << ArgCount |
143 | << /*is non object*/ 0 << Call->getSourceRange(); |
144 | } |
145 | |
146 | /// Checks that a call expression's argument count is in the desired range. This |
147 | /// is useful when doing custom type-checking on a variadic function. Returns |
148 | /// true on error. |
149 | static bool checkArgCountRange(Sema &S, CallExpr *Call, unsigned MinArgCount, |
150 | unsigned MaxArgCount) { |
151 | return checkArgCountAtLeast(S, Call, MinArgCount) || |
152 | checkArgCountAtMost(S, Call, MaxArgCount); |
153 | } |
154 | |
155 | /// Checks that a call expression's argument count is the desired number. |
156 | /// This is useful when doing custom type-checking. Returns true on error. |
157 | static bool checkArgCount(Sema &S, CallExpr *Call, unsigned DesiredArgCount) { |
158 | unsigned ArgCount = Call->getNumArgs(); |
159 | if (ArgCount == DesiredArgCount) |
160 | return false; |
161 | |
162 | if (checkArgCountAtLeast(S, Call, MinArgCount: DesiredArgCount)) |
163 | return true; |
164 | assert(ArgCount > DesiredArgCount && "should have diagnosed this" ); |
165 | |
166 | // Highlight all the excess arguments. |
167 | SourceRange Range(Call->getArg(Arg: DesiredArgCount)->getBeginLoc(), |
168 | Call->getArg(Arg: ArgCount - 1)->getEndLoc()); |
169 | |
170 | return S.Diag(Range.getBegin(), diag::err_typecheck_call_too_many_args) |
171 | << 0 /*function call*/ << DesiredArgCount << ArgCount |
172 | << /*is non object*/ 0 << Call->getArg(1)->getSourceRange(); |
173 | } |
174 | |
175 | static bool convertArgumentToType(Sema &S, Expr *&Value, QualType Ty) { |
176 | if (Value->isTypeDependent()) |
177 | return false; |
178 | |
179 | InitializedEntity Entity = |
180 | InitializedEntity::InitializeParameter(Context&: S.Context, Type: Ty, Consumed: false); |
181 | ExprResult Result = |
182 | S.PerformCopyInitialization(Entity, EqualLoc: SourceLocation(), Init: Value); |
183 | if (Result.isInvalid()) |
184 | return true; |
185 | Value = Result.get(); |
186 | return false; |
187 | } |
188 | |
189 | /// Check that the first argument to __builtin_annotation is an integer |
190 | /// and the second argument is a non-wide string literal. |
191 | static bool BuiltinAnnotation(Sema &S, CallExpr *TheCall) { |
192 | if (checkArgCount(S, Call: TheCall, DesiredArgCount: 2)) |
193 | return true; |
194 | |
195 | // First argument should be an integer. |
196 | Expr *ValArg = TheCall->getArg(Arg: 0); |
197 | QualType Ty = ValArg->getType(); |
198 | if (!Ty->isIntegerType()) { |
199 | S.Diag(ValArg->getBeginLoc(), diag::err_builtin_annotation_first_arg) |
200 | << ValArg->getSourceRange(); |
201 | return true; |
202 | } |
203 | |
204 | // Second argument should be a constant string. |
205 | Expr *StrArg = TheCall->getArg(Arg: 1)->IgnoreParenCasts(); |
206 | StringLiteral *Literal = dyn_cast<StringLiteral>(Val: StrArg); |
207 | if (!Literal || !Literal->isOrdinary()) { |
208 | S.Diag(StrArg->getBeginLoc(), diag::err_builtin_annotation_second_arg) |
209 | << StrArg->getSourceRange(); |
210 | return true; |
211 | } |
212 | |
213 | TheCall->setType(Ty); |
214 | return false; |
215 | } |
216 | |
217 | static bool BuiltinMSVCAnnotation(Sema &S, CallExpr *TheCall) { |
218 | // We need at least one argument. |
219 | if (TheCall->getNumArgs() < 1) { |
220 | S.Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) |
221 | << 0 << 1 << TheCall->getNumArgs() << /*is non object*/ 0 |
222 | << TheCall->getCallee()->getSourceRange(); |
223 | return true; |
224 | } |
225 | |
226 | // All arguments should be wide string literals. |
227 | for (Expr *Arg : TheCall->arguments()) { |
228 | auto *Literal = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts()); |
229 | if (!Literal || !Literal->isWide()) { |
230 | S.Diag(Arg->getBeginLoc(), diag::err_msvc_annotation_wide_str) |
231 | << Arg->getSourceRange(); |
232 | return true; |
233 | } |
234 | } |
235 | |
236 | return false; |
237 | } |
238 | |
239 | /// Check that the argument to __builtin_addressof is a glvalue, and set the |
240 | /// result type to the corresponding pointer type. |
241 | static bool BuiltinAddressof(Sema &S, CallExpr *TheCall) { |
242 | if (checkArgCount(S, Call: TheCall, DesiredArgCount: 1)) |
243 | return true; |
244 | |
245 | ExprResult Arg(TheCall->getArg(Arg: 0)); |
246 | QualType ResultType = S.CheckAddressOfOperand(Operand&: Arg, OpLoc: TheCall->getBeginLoc()); |
247 | if (ResultType.isNull()) |
248 | return true; |
249 | |
250 | TheCall->setArg(Arg: 0, ArgExpr: Arg.get()); |
251 | TheCall->setType(ResultType); |
252 | return false; |
253 | } |
254 | |
255 | /// Check that the argument to __builtin_function_start is a function. |
256 | static bool BuiltinFunctionStart(Sema &S, CallExpr *TheCall) { |
257 | if (checkArgCount(S, Call: TheCall, DesiredArgCount: 1)) |
258 | return true; |
259 | |
260 | ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(E: TheCall->getArg(Arg: 0)); |
261 | if (Arg.isInvalid()) |
262 | return true; |
263 | |
264 | TheCall->setArg(Arg: 0, ArgExpr: Arg.get()); |
265 | const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>( |
266 | Val: Arg.get()->getAsBuiltinConstantDeclRef(Context: S.getASTContext())); |
267 | |
268 | if (!FD) { |
269 | S.Diag(TheCall->getBeginLoc(), diag::err_function_start_invalid_type) |
270 | << TheCall->getSourceRange(); |
271 | return true; |
272 | } |
273 | |
274 | return !S.checkAddressOfFunctionIsAvailable(Function: FD, /*Complain=*/true, |
275 | Loc: TheCall->getBeginLoc()); |
276 | } |
277 | |
278 | /// Check the number of arguments and set the result type to |
279 | /// the argument type. |
280 | static bool BuiltinPreserveAI(Sema &S, CallExpr *TheCall) { |
281 | if (checkArgCount(S, Call: TheCall, DesiredArgCount: 1)) |
282 | return true; |
283 | |
284 | TheCall->setType(TheCall->getArg(Arg: 0)->getType()); |
285 | return false; |
286 | } |
287 | |
288 | /// Check that the value argument for __builtin_is_aligned(value, alignment) and |
289 | /// __builtin_aligned_{up,down}(value, alignment) is an integer or a pointer |
290 | /// type (but not a function pointer) and that the alignment is a power-of-two. |
291 | static bool BuiltinAlignment(Sema &S, CallExpr *TheCall, unsigned ID) { |
292 | if (checkArgCount(S, Call: TheCall, DesiredArgCount: 2)) |
293 | return true; |
294 | |
295 | clang::Expr *Source = TheCall->getArg(Arg: 0); |
296 | bool IsBooleanAlignBuiltin = ID == Builtin::BI__builtin_is_aligned; |
297 | |
298 | auto IsValidIntegerType = [](QualType Ty) { |
299 | return Ty->isIntegerType() && !Ty->isEnumeralType() && !Ty->isBooleanType(); |
300 | }; |
301 | QualType SrcTy = Source->getType(); |
302 | // We should also be able to use it with arrays (but not functions!). |
303 | if (SrcTy->canDecayToPointerType() && SrcTy->isArrayType()) { |
304 | SrcTy = S.Context.getDecayedType(T: SrcTy); |
305 | } |
306 | if ((!SrcTy->isPointerType() && !IsValidIntegerType(SrcTy)) || |
307 | SrcTy->isFunctionPointerType()) { |
308 | // FIXME: this is not quite the right error message since we don't allow |
309 | // floating point types, or member pointers. |
310 | S.Diag(Source->getExprLoc(), diag::err_typecheck_expect_scalar_operand) |
311 | << SrcTy; |
312 | return true; |
313 | } |
314 | |
315 | clang::Expr *AlignOp = TheCall->getArg(Arg: 1); |
316 | if (!IsValidIntegerType(AlignOp->getType())) { |
317 | S.Diag(AlignOp->getExprLoc(), diag::err_typecheck_expect_int) |
318 | << AlignOp->getType(); |
319 | return true; |
320 | } |
321 | Expr::EvalResult AlignResult; |
322 | unsigned MaxAlignmentBits = S.Context.getIntWidth(T: SrcTy) - 1; |
323 | // We can't check validity of alignment if it is value dependent. |
324 | if (!AlignOp->isValueDependent() && |
325 | AlignOp->EvaluateAsInt(Result&: AlignResult, Ctx: S.Context, |
326 | AllowSideEffects: Expr::SE_AllowSideEffects)) { |
327 | llvm::APSInt AlignValue = AlignResult.Val.getInt(); |
328 | llvm::APSInt MaxValue( |
329 | llvm::APInt::getOneBitSet(numBits: MaxAlignmentBits + 1, BitNo: MaxAlignmentBits)); |
330 | if (AlignValue < 1) { |
331 | S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_small) << 1; |
332 | return true; |
333 | } |
334 | if (llvm::APSInt::compareValues(I1: AlignValue, I2: MaxValue) > 0) { |
335 | S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_big) |
336 | << toString(MaxValue, 10); |
337 | return true; |
338 | } |
339 | if (!AlignValue.isPowerOf2()) { |
340 | S.Diag(AlignOp->getExprLoc(), diag::err_alignment_not_power_of_two); |
341 | return true; |
342 | } |
343 | if (AlignValue == 1) { |
344 | S.Diag(AlignOp->getExprLoc(), diag::warn_alignment_builtin_useless) |
345 | << IsBooleanAlignBuiltin; |
346 | } |
347 | } |
348 | |
349 | ExprResult SrcArg = S.PerformCopyInitialization( |
350 | Entity: InitializedEntity::InitializeParameter(Context&: S.Context, Type: SrcTy, Consumed: false), |
351 | EqualLoc: SourceLocation(), Init: Source); |
352 | if (SrcArg.isInvalid()) |
353 | return true; |
354 | TheCall->setArg(Arg: 0, ArgExpr: SrcArg.get()); |
355 | ExprResult AlignArg = |
356 | S.PerformCopyInitialization(Entity: InitializedEntity::InitializeParameter( |
357 | Context&: S.Context, Type: AlignOp->getType(), Consumed: false), |
358 | EqualLoc: SourceLocation(), Init: AlignOp); |
359 | if (AlignArg.isInvalid()) |
360 | return true; |
361 | TheCall->setArg(Arg: 1, ArgExpr: AlignArg.get()); |
362 | // For align_up/align_down, the return type is the same as the (potentially |
363 | // decayed) argument type including qualifiers. For is_aligned(), the result |
364 | // is always bool. |
365 | TheCall->setType(IsBooleanAlignBuiltin ? S.Context.BoolTy : SrcTy); |
366 | return false; |
367 | } |
368 | |
369 | static bool BuiltinOverflow(Sema &S, CallExpr *TheCall, unsigned BuiltinID) { |
370 | if (checkArgCount(S, Call: TheCall, DesiredArgCount: 3)) |
371 | return true; |
372 | |
373 | std::pair<unsigned, const char *> Builtins[] = { |
374 | { Builtin::BI__builtin_add_overflow, "ckd_add" }, |
375 | { Builtin::BI__builtin_sub_overflow, "ckd_sub" }, |
376 | { Builtin::BI__builtin_mul_overflow, "ckd_mul" }, |
377 | }; |
378 | |
379 | bool CkdOperation = llvm::any_of(Range&: Builtins, P: [&](const std::pair<unsigned, |
380 | const char *> &P) { |
381 | return BuiltinID == P.first && TheCall->getExprLoc().isMacroID() && |
382 | Lexer::getImmediateMacroName(TheCall->getExprLoc(), |
383 | S.getSourceManager(), S.getLangOpts()) == P.second; |
384 | }); |
385 | |
386 | auto ValidCkdIntType = [](QualType QT) { |
387 | // A valid checked integer type is an integer type other than a plain char, |
388 | // bool, a bit-precise type, or an enumeration type. |
389 | if (const auto *BT = QT.getCanonicalType()->getAs<BuiltinType>()) |
390 | return (BT->getKind() >= BuiltinType::Short && |
391 | BT->getKind() <= BuiltinType::Int128) || ( |
392 | BT->getKind() >= BuiltinType::UShort && |
393 | BT->getKind() <= BuiltinType::UInt128) || |
394 | BT->getKind() == BuiltinType::UChar || |
395 | BT->getKind() == BuiltinType::SChar; |
396 | return false; |
397 | }; |
398 | |
399 | // First two arguments should be integers. |
400 | for (unsigned I = 0; I < 2; ++I) { |
401 | ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(E: TheCall->getArg(Arg: I)); |
402 | if (Arg.isInvalid()) return true; |
403 | TheCall->setArg(Arg: I, ArgExpr: Arg.get()); |
404 | |
405 | QualType Ty = Arg.get()->getType(); |
406 | bool IsValid = CkdOperation ? ValidCkdIntType(Ty) : Ty->isIntegerType(); |
407 | if (!IsValid) { |
408 | S.Diag(Arg.get()->getBeginLoc(), diag::err_overflow_builtin_must_be_int) |
409 | << CkdOperation << Ty << Arg.get()->getSourceRange(); |
410 | return true; |
411 | } |
412 | } |
413 | |
414 | // Third argument should be a pointer to a non-const integer. |
415 | // IRGen correctly handles volatile, restrict, and address spaces, and |
416 | // the other qualifiers aren't possible. |
417 | { |
418 | ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(E: TheCall->getArg(Arg: 2)); |
419 | if (Arg.isInvalid()) return true; |
420 | TheCall->setArg(Arg: 2, ArgExpr: Arg.get()); |
421 | |
422 | QualType Ty = Arg.get()->getType(); |
423 | const auto *PtrTy = Ty->getAs<PointerType>(); |
424 | if (!PtrTy || |
425 | !PtrTy->getPointeeType()->isIntegerType() || |
426 | (!ValidCkdIntType(PtrTy->getPointeeType()) && CkdOperation) || |
427 | PtrTy->getPointeeType().isConstQualified()) { |
428 | S.Diag(Arg.get()->getBeginLoc(), |
429 | diag::err_overflow_builtin_must_be_ptr_int) |
430 | << CkdOperation << Ty << Arg.get()->getSourceRange(); |
431 | return true; |
432 | } |
433 | } |
434 | |
435 | // Disallow signed bit-precise integer args larger than 128 bits to mul |
436 | // function until we improve backend support. |
437 | if (BuiltinID == Builtin::BI__builtin_mul_overflow) { |
438 | for (unsigned I = 0; I < 3; ++I) { |
439 | const auto Arg = TheCall->getArg(Arg: I); |
440 | // Third argument will be a pointer. |
441 | auto Ty = I < 2 ? Arg->getType() : Arg->getType()->getPointeeType(); |
442 | if (Ty->isBitIntType() && Ty->isSignedIntegerType() && |
443 | S.getASTContext().getIntWidth(Ty) > 128) |
444 | return S.Diag(Arg->getBeginLoc(), |
445 | diag::err_overflow_builtin_bit_int_max_size) |
446 | << 128; |
447 | } |
448 | } |
449 | |
450 | return false; |
451 | } |
452 | |
453 | namespace { |
454 | struct BuiltinDumpStructGenerator { |
455 | Sema &S; |
456 | CallExpr *TheCall; |
457 | SourceLocation Loc = TheCall->getBeginLoc(); |
458 | SmallVector<Expr *, 32> Actions; |
459 | DiagnosticErrorTrap ErrorTracker; |
460 | PrintingPolicy Policy; |
461 | |
462 | BuiltinDumpStructGenerator(Sema &S, CallExpr *TheCall) |
463 | : S(S), TheCall(TheCall), ErrorTracker(S.getDiagnostics()), |
464 | Policy(S.Context.getPrintingPolicy()) { |
465 | Policy.AnonymousTagLocations = false; |
466 | } |
467 | |
468 | Expr *makeOpaqueValueExpr(Expr *Inner) { |
469 | auto *OVE = new (S.Context) |
470 | OpaqueValueExpr(Loc, Inner->getType(), Inner->getValueKind(), |
471 | Inner->getObjectKind(), Inner); |
472 | Actions.push_back(OVE); |
473 | return OVE; |
474 | } |
475 | |
476 | Expr *getStringLiteral(llvm::StringRef Str) { |
477 | Expr *Lit = S.Context.getPredefinedStringLiteralFromCache(Key: Str); |
478 | // Wrap the literal in parentheses to attach a source location. |
479 | return new (S.Context) ParenExpr(Loc, Loc, Lit); |
480 | } |
481 | |
482 | bool callPrintFunction(llvm::StringRef Format, |
483 | llvm::ArrayRef<Expr *> Exprs = {}) { |
484 | SmallVector<Expr *, 8> Args; |
485 | assert(TheCall->getNumArgs() >= 2); |
486 | Args.reserve(N: (TheCall->getNumArgs() - 2) + /*Format*/ 1 + Exprs.size()); |
487 | Args.assign(TheCall->arg_begin() + 2, TheCall->arg_end()); |
488 | Args.push_back(Elt: getStringLiteral(Str: Format)); |
489 | Args.insert(I: Args.end(), From: Exprs.begin(), To: Exprs.end()); |
490 | |
491 | // Register a note to explain why we're performing the call. |
492 | Sema::CodeSynthesisContext Ctx; |
493 | Ctx.Kind = Sema::CodeSynthesisContext::BuildingBuiltinDumpStructCall; |
494 | Ctx.PointOfInstantiation = Loc; |
495 | Ctx.CallArgs = Args.data(); |
496 | Ctx.NumCallArgs = Args.size(); |
497 | S.pushCodeSynthesisContext(Ctx); |
498 | |
499 | ExprResult RealCall = |
500 | S.BuildCallExpr(/*Scope=*/S: nullptr, Fn: TheCall->getArg(Arg: 1), |
501 | LParenLoc: TheCall->getBeginLoc(), ArgExprs: Args, RParenLoc: TheCall->getRParenLoc()); |
502 | |
503 | S.popCodeSynthesisContext(); |
504 | if (!RealCall.isInvalid()) |
505 | Actions.push_back(Elt: RealCall.get()); |
506 | // Bail out if we've hit any errors, even if we managed to build the |
507 | // call. We don't want to produce more than one error. |
508 | return RealCall.isInvalid() || ErrorTracker.hasErrorOccurred(); |
509 | } |
510 | |
511 | Expr *getIndentString(unsigned Depth) { |
512 | if (!Depth) |
513 | return nullptr; |
514 | |
515 | llvm::SmallString<32> Indent; |
516 | Indent.resize(N: Depth * Policy.Indentation, NV: ' '); |
517 | return getStringLiteral(Str: Indent); |
518 | } |
519 | |
520 | Expr *getTypeString(QualType T) { |
521 | return getStringLiteral(Str: T.getAsString(Policy)); |
522 | } |
523 | |
524 | bool appendFormatSpecifier(QualType T, llvm::SmallVectorImpl<char> &Str) { |
525 | llvm::raw_svector_ostream OS(Str); |
526 | |
527 | // Format 'bool', 'char', 'signed char', 'unsigned char' as numbers, rather |
528 | // than trying to print a single character. |
529 | if (auto *BT = T->getAs<BuiltinType>()) { |
530 | switch (BT->getKind()) { |
531 | case BuiltinType::Bool: |
532 | OS << "%d" ; |
533 | return true; |
534 | case BuiltinType::Char_U: |
535 | case BuiltinType::UChar: |
536 | OS << "%hhu" ; |
537 | return true; |
538 | case BuiltinType::Char_S: |
539 | case BuiltinType::SChar: |
540 | OS << "%hhd" ; |
541 | return true; |
542 | default: |
543 | break; |
544 | } |
545 | } |
546 | |
547 | analyze_printf::PrintfSpecifier Specifier; |
548 | if (Specifier.fixType(QT: T, LangOpt: S.getLangOpts(), Ctx&: S.Context, /*IsObjCLiteral=*/false)) { |
549 | // We were able to guess how to format this. |
550 | if (Specifier.getConversionSpecifier().getKind() == |
551 | analyze_printf::PrintfConversionSpecifier::sArg) { |
552 | // Wrap double-quotes around a '%s' specifier and limit its maximum |
553 | // length. Ideally we'd also somehow escape special characters in the |
554 | // contents but printf doesn't support that. |
555 | // FIXME: '%s' formatting is not safe in general. |
556 | OS << '"'; |
557 | Specifier.setPrecision(analyze_printf::OptionalAmount(32u)); |
558 | Specifier.toString(os&: OS); |
559 | OS << '"'; |
560 | // FIXME: It would be nice to include a '...' if the string doesn't fit |
561 | // in the length limit. |
562 | } else { |
563 | Specifier.toString(os&: OS); |
564 | } |
565 | return true; |
566 | } |
567 | |
568 | if (T->isPointerType()) { |
569 | // Format all pointers with '%p'. |
570 | OS << "%p" ; |
571 | return true; |
572 | } |
573 | |
574 | return false; |
575 | } |
576 | |
577 | bool dumpUnnamedRecord(const RecordDecl *RD, Expr *E, unsigned Depth) { |
578 | Expr *IndentLit = getIndentString(Depth); |
579 | Expr *TypeLit = getTypeString(T: S.Context.getRecordType(Decl: RD)); |
580 | if (IndentLit ? callPrintFunction(Format: "%s%s" , Exprs: {IndentLit, TypeLit}) |
581 | : callPrintFunction(Format: "%s" , Exprs: {TypeLit})) |
582 | return true; |
583 | |
584 | return dumpRecordValue(RD, E, RecordIndent: IndentLit, Depth); |
585 | } |
586 | |
587 | // Dump a record value. E should be a pointer or lvalue referring to an RD. |
588 | bool dumpRecordValue(const RecordDecl *RD, Expr *E, Expr *RecordIndent, |
589 | unsigned Depth) { |
590 | // FIXME: Decide what to do if RD is a union. At least we should probably |
591 | // turn off printing `const char*` members with `%s`, because that is very |
592 | // likely to crash if that's not the active member. Whatever we decide, we |
593 | // should document it. |
594 | |
595 | // Build an OpaqueValueExpr so we can refer to E more than once without |
596 | // triggering re-evaluation. |
597 | Expr *RecordArg = makeOpaqueValueExpr(Inner: E); |
598 | bool RecordArgIsPtr = RecordArg->getType()->isPointerType(); |
599 | |
600 | if (callPrintFunction(Format: " {\n" )) |
601 | return true; |
602 | |
603 | // Dump each base class, regardless of whether they're aggregates. |
604 | if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD)) { |
605 | for (const auto &Base : CXXRD->bases()) { |
606 | QualType BaseType = |
607 | RecordArgIsPtr ? S.Context.getPointerType(T: Base.getType()) |
608 | : S.Context.getLValueReferenceType(T: Base.getType()); |
609 | ExprResult BasePtr = S.BuildCStyleCastExpr( |
610 | LParenLoc: Loc, Ty: S.Context.getTrivialTypeSourceInfo(T: BaseType, Loc), RParenLoc: Loc, |
611 | Op: RecordArg); |
612 | if (BasePtr.isInvalid() || |
613 | dumpUnnamedRecord(RD: Base.getType()->getAsRecordDecl(), E: BasePtr.get(), |
614 | Depth: Depth + 1)) |
615 | return true; |
616 | } |
617 | } |
618 | |
619 | Expr *FieldIndentArg = getIndentString(Depth: Depth + 1); |
620 | |
621 | // Dump each field. |
622 | for (auto *D : RD->decls()) { |
623 | auto *IFD = dyn_cast<IndirectFieldDecl>(D); |
624 | auto *FD = IFD ? IFD->getAnonField() : dyn_cast<FieldDecl>(D); |
625 | if (!FD || FD->isUnnamedBitField() || FD->isAnonymousStructOrUnion()) |
626 | continue; |
627 | |
628 | llvm::SmallString<20> Format = llvm::StringRef("%s%s %s " ); |
629 | llvm::SmallVector<Expr *, 5> Args = {FieldIndentArg, |
630 | getTypeString(FD->getType()), |
631 | getStringLiteral(FD->getName())}; |
632 | |
633 | if (FD->isBitField()) { |
634 | Format += ": %zu " ; |
635 | QualType SizeT = S.Context.getSizeType(); |
636 | llvm::APInt BitWidth(S.Context.getIntWidth(SizeT), |
637 | FD->getBitWidthValue(S.Context)); |
638 | Args.push_back(IntegerLiteral::Create(S.Context, BitWidth, SizeT, Loc)); |
639 | } |
640 | |
641 | Format += "=" ; |
642 | |
643 | ExprResult Field = |
644 | IFD ? S.BuildAnonymousStructUnionMemberReference( |
645 | CXXScopeSpec(), Loc, IFD, |
646 | DeclAccessPair::make(IFD, AS_public), RecordArg, Loc) |
647 | : S.BuildFieldReferenceExpr( |
648 | RecordArg, RecordArgIsPtr, Loc, CXXScopeSpec(), FD, |
649 | DeclAccessPair::make(FD, AS_public), |
650 | DeclarationNameInfo(FD->getDeclName(), Loc)); |
651 | if (Field.isInvalid()) |
652 | return true; |
653 | |
654 | auto *InnerRD = FD->getType()->getAsRecordDecl(); |
655 | auto *InnerCXXRD = dyn_cast_or_null<CXXRecordDecl>(InnerRD); |
656 | if (InnerRD && (!InnerCXXRD || InnerCXXRD->isAggregate())) { |
657 | // Recursively print the values of members of aggregate record type. |
658 | if (callPrintFunction(Format, Args) || |
659 | dumpRecordValue(InnerRD, Field.get(), FieldIndentArg, Depth + 1)) |
660 | return true; |
661 | } else { |
662 | Format += " " ; |
663 | if (appendFormatSpecifier(FD->getType(), Format)) { |
664 | // We know how to print this field. |
665 | Args.push_back(Field.get()); |
666 | } else { |
667 | // We don't know how to print this field. Print out its address |
668 | // with a format specifier that a smart tool will be able to |
669 | // recognize and treat specially. |
670 | Format += "*%p" ; |
671 | ExprResult FieldAddr = |
672 | S.BuildUnaryOp(nullptr, Loc, UO_AddrOf, Field.get()); |
673 | if (FieldAddr.isInvalid()) |
674 | return true; |
675 | Args.push_back(FieldAddr.get()); |
676 | } |
677 | Format += "\n" ; |
678 | if (callPrintFunction(Format, Args)) |
679 | return true; |
680 | } |
681 | } |
682 | |
683 | return RecordIndent ? callPrintFunction(Format: "%s}\n" , Exprs: RecordIndent) |
684 | : callPrintFunction(Format: "}\n" ); |
685 | } |
686 | |
687 | Expr *buildWrapper() { |
688 | auto *Wrapper = PseudoObjectExpr::Create(S.Context, TheCall, Actions, |
689 | PseudoObjectExpr::NoResult); |
690 | TheCall->setType(Wrapper->getType()); |
691 | TheCall->setValueKind(Wrapper->getValueKind()); |
692 | return Wrapper; |
693 | } |
694 | }; |
695 | } // namespace |
696 | |
697 | static ExprResult BuiltinDumpStruct(Sema &S, CallExpr *TheCall) { |
698 | if (checkArgCountAtLeast(S, Call: TheCall, MinArgCount: 2)) |
699 | return ExprError(); |
700 | |
701 | ExprResult PtrArgResult = S.DefaultLvalueConversion(E: TheCall->getArg(Arg: 0)); |
702 | if (PtrArgResult.isInvalid()) |
703 | return ExprError(); |
704 | TheCall->setArg(Arg: 0, ArgExpr: PtrArgResult.get()); |
705 | |
706 | // First argument should be a pointer to a struct. |
707 | QualType PtrArgType = PtrArgResult.get()->getType(); |
708 | if (!PtrArgType->isPointerType() || |
709 | !PtrArgType->getPointeeType()->isRecordType()) { |
710 | S.Diag(PtrArgResult.get()->getBeginLoc(), |
711 | diag::err_expected_struct_pointer_argument) |
712 | << 1 << TheCall->getDirectCallee() << PtrArgType; |
713 | return ExprError(); |
714 | } |
715 | QualType Pointee = PtrArgType->getPointeeType(); |
716 | const RecordDecl *RD = Pointee->getAsRecordDecl(); |
717 | // Try to instantiate the class template as appropriate; otherwise, access to |
718 | // its data() may lead to a crash. |
719 | if (S.RequireCompleteType(PtrArgResult.get()->getBeginLoc(), Pointee, |
720 | diag::err_incomplete_type)) |
721 | return ExprError(); |
722 | // Second argument is a callable, but we can't fully validate it until we try |
723 | // calling it. |
724 | QualType FnArgType = TheCall->getArg(Arg: 1)->getType(); |
725 | if (!FnArgType->isFunctionType() && !FnArgType->isFunctionPointerType() && |
726 | !FnArgType->isBlockPointerType() && |
727 | !(S.getLangOpts().CPlusPlus && FnArgType->isRecordType())) { |
728 | auto *BT = FnArgType->getAs<BuiltinType>(); |
729 | switch (BT ? BT->getKind() : BuiltinType::Void) { |
730 | case BuiltinType::Dependent: |
731 | case BuiltinType::Overload: |
732 | case BuiltinType::BoundMember: |
733 | case BuiltinType::PseudoObject: |
734 | case BuiltinType::UnknownAny: |
735 | case BuiltinType::BuiltinFn: |
736 | // This might be a callable. |
737 | break; |
738 | |
739 | default: |
740 | S.Diag(TheCall->getArg(1)->getBeginLoc(), |
741 | diag::err_expected_callable_argument) |
742 | << 2 << TheCall->getDirectCallee() << FnArgType; |
743 | return ExprError(); |
744 | } |
745 | } |
746 | |
747 | BuiltinDumpStructGenerator Generator(S, TheCall); |
748 | |
749 | // Wrap parentheses around the given pointer. This is not necessary for |
750 | // correct code generation, but it means that when we pretty-print the call |
751 | // arguments in our diagnostics we will produce '(&s)->n' instead of the |
752 | // incorrect '&s->n'. |
753 | Expr *PtrArg = PtrArgResult.get(); |
754 | PtrArg = new (S.Context) |
755 | ParenExpr(PtrArg->getBeginLoc(), |
756 | S.getLocForEndOfToken(Loc: PtrArg->getEndLoc()), PtrArg); |
757 | if (Generator.dumpUnnamedRecord(RD, E: PtrArg, Depth: 0)) |
758 | return ExprError(); |
759 | |
760 | return Generator.buildWrapper(); |
761 | } |
762 | |
763 | static bool BuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) { |
764 | if (checkArgCount(S, Call: BuiltinCall, DesiredArgCount: 2)) |
765 | return true; |
766 | |
767 | SourceLocation BuiltinLoc = BuiltinCall->getBeginLoc(); |
768 | Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts(); |
769 | Expr *Call = BuiltinCall->getArg(Arg: 0); |
770 | Expr *Chain = BuiltinCall->getArg(Arg: 1); |
771 | |
772 | if (Call->getStmtClass() != Stmt::CallExprClass) { |
773 | S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call) |
774 | << Call->getSourceRange(); |
775 | return true; |
776 | } |
777 | |
778 | auto CE = cast<CallExpr>(Val: Call); |
779 | if (CE->getCallee()->getType()->isBlockPointerType()) { |
780 | S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call) |
781 | << Call->getSourceRange(); |
782 | return true; |
783 | } |
784 | |
785 | const Decl *TargetDecl = CE->getCalleeDecl(); |
786 | if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Val: TargetDecl)) |
787 | if (FD->getBuiltinID()) { |
788 | S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call) |
789 | << Call->getSourceRange(); |
790 | return true; |
791 | } |
792 | |
793 | if (isa<CXXPseudoDestructorExpr>(Val: CE->getCallee()->IgnoreParens())) { |
794 | S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call) |
795 | << Call->getSourceRange(); |
796 | return true; |
797 | } |
798 | |
799 | ExprResult ChainResult = S.UsualUnaryConversions(E: Chain); |
800 | if (ChainResult.isInvalid()) |
801 | return true; |
802 | if (!ChainResult.get()->getType()->isPointerType()) { |
803 | S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer) |
804 | << Chain->getSourceRange(); |
805 | return true; |
806 | } |
807 | |
808 | QualType ReturnTy = CE->getCallReturnType(Ctx: S.Context); |
809 | QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() }; |
810 | QualType BuiltinTy = S.Context.getFunctionType( |
811 | ResultTy: ReturnTy, Args: ArgTys, EPI: FunctionProtoType::ExtProtoInfo()); |
812 | QualType BuiltinPtrTy = S.Context.getPointerType(T: BuiltinTy); |
813 | |
814 | Builtin = |
815 | S.ImpCastExprToType(E: Builtin, Type: BuiltinPtrTy, CK: CK_BuiltinFnToFnPtr).get(); |
816 | |
817 | BuiltinCall->setType(CE->getType()); |
818 | BuiltinCall->setValueKind(CE->getValueKind()); |
819 | BuiltinCall->setObjectKind(CE->getObjectKind()); |
820 | BuiltinCall->setCallee(Builtin); |
821 | BuiltinCall->setArg(Arg: 1, ArgExpr: ChainResult.get()); |
822 | |
823 | return false; |
824 | } |
825 | |
826 | namespace { |
827 | |
828 | class ScanfDiagnosticFormatHandler |
829 | : public analyze_format_string::FormatStringHandler { |
830 | // Accepts the argument index (relative to the first destination index) of the |
831 | // argument whose size we want. |
832 | using ComputeSizeFunction = |
833 | llvm::function_ref<std::optional<llvm::APSInt>(unsigned)>; |
834 | |
835 | // Accepts the argument index (relative to the first destination index), the |
836 | // destination size, and the source size). |
837 | using DiagnoseFunction = |
838 | llvm::function_ref<void(unsigned, unsigned, unsigned)>; |
839 | |
840 | ComputeSizeFunction ComputeSizeArgument; |
841 | DiagnoseFunction Diagnose; |
842 | |
843 | public: |
844 | ScanfDiagnosticFormatHandler(ComputeSizeFunction ComputeSizeArgument, |
845 | DiagnoseFunction Diagnose) |
846 | : ComputeSizeArgument(ComputeSizeArgument), Diagnose(Diagnose) {} |
847 | |
848 | bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS, |
849 | const char *StartSpecifier, |
850 | unsigned specifierLen) override { |
851 | if (!FS.consumesDataArgument()) |
852 | return true; |
853 | |
854 | unsigned NulByte = 0; |
855 | switch ((FS.getConversionSpecifier().getKind())) { |
856 | default: |
857 | return true; |
858 | case analyze_format_string::ConversionSpecifier::sArg: |
859 | case analyze_format_string::ConversionSpecifier::ScanListArg: |
860 | NulByte = 1; |
861 | break; |
862 | case analyze_format_string::ConversionSpecifier::cArg: |
863 | break; |
864 | } |
865 | |
866 | analyze_format_string::OptionalAmount FW = FS.getFieldWidth(); |
867 | if (FW.getHowSpecified() != |
868 | analyze_format_string::OptionalAmount::HowSpecified::Constant) |
869 | return true; |
870 | |
871 | unsigned SourceSize = FW.getConstantAmount() + NulByte; |
872 | |
873 | std::optional<llvm::APSInt> DestSizeAPS = |
874 | ComputeSizeArgument(FS.getArgIndex()); |
875 | if (!DestSizeAPS) |
876 | return true; |
877 | |
878 | unsigned DestSize = DestSizeAPS->getZExtValue(); |
879 | |
880 | if (DestSize < SourceSize) |
881 | Diagnose(FS.getArgIndex(), DestSize, SourceSize); |
882 | |
883 | return true; |
884 | } |
885 | }; |
886 | |
887 | class EstimateSizeFormatHandler |
888 | : public analyze_format_string::FormatStringHandler { |
889 | size_t Size; |
890 | /// Whether the format string contains Linux kernel's format specifier |
891 | /// extension. |
892 | bool IsKernelCompatible = true; |
893 | |
894 | public: |
895 | EstimateSizeFormatHandler(StringRef Format) |
896 | : Size(std::min(a: Format.find(C: 0), b: Format.size()) + |
897 | 1 /* null byte always written by sprintf */) {} |
898 | |
899 | bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS, |
900 | const char *, unsigned SpecifierLen, |
901 | const TargetInfo &) override { |
902 | |
903 | const size_t FieldWidth = computeFieldWidth(FS); |
904 | const size_t Precision = computePrecision(FS); |
905 | |
906 | // The actual format. |
907 | switch (FS.getConversionSpecifier().getKind()) { |
908 | // Just a char. |
909 | case analyze_format_string::ConversionSpecifier::cArg: |
910 | case analyze_format_string::ConversionSpecifier::CArg: |
911 | Size += std::max(a: FieldWidth, b: (size_t)1); |
912 | break; |
913 | // Just an integer. |
914 | case analyze_format_string::ConversionSpecifier::dArg: |
915 | case analyze_format_string::ConversionSpecifier::DArg: |
916 | case analyze_format_string::ConversionSpecifier::iArg: |
917 | case analyze_format_string::ConversionSpecifier::oArg: |
918 | case analyze_format_string::ConversionSpecifier::OArg: |
919 | case analyze_format_string::ConversionSpecifier::uArg: |
920 | case analyze_format_string::ConversionSpecifier::UArg: |
921 | case analyze_format_string::ConversionSpecifier::xArg: |
922 | case analyze_format_string::ConversionSpecifier::XArg: |
923 | Size += std::max(a: FieldWidth, b: Precision); |
924 | break; |
925 | |
926 | // %g style conversion switches between %f or %e style dynamically. |
927 | // %g removes trailing zeros, and does not print decimal point if there are |
928 | // no digits that follow it. Thus %g can print a single digit. |
929 | // FIXME: If it is alternative form: |
930 | // For g and G conversions, trailing zeros are not removed from the result. |
931 | case analyze_format_string::ConversionSpecifier::gArg: |
932 | case analyze_format_string::ConversionSpecifier::GArg: |
933 | Size += 1; |
934 | break; |
935 | |
936 | // Floating point number in the form '[+]ddd.ddd'. |
937 | case analyze_format_string::ConversionSpecifier::fArg: |
938 | case analyze_format_string::ConversionSpecifier::FArg: |
939 | Size += std::max(a: FieldWidth, b: 1 /* integer part */ + |
940 | (Precision ? 1 + Precision |
941 | : 0) /* period + decimal */); |
942 | break; |
943 | |
944 | // Floating point number in the form '[-]d.ddde[+-]dd'. |
945 | case analyze_format_string::ConversionSpecifier::eArg: |
946 | case analyze_format_string::ConversionSpecifier::EArg: |
947 | Size += |
948 | std::max(a: FieldWidth, |
949 | b: 1 /* integer part */ + |
950 | (Precision ? 1 + Precision : 0) /* period + decimal */ + |
951 | 1 /* e or E letter */ + 2 /* exponent */); |
952 | break; |
953 | |
954 | // Floating point number in the form '[-]0xh.hhhhp±dd'. |
955 | case analyze_format_string::ConversionSpecifier::aArg: |
956 | case analyze_format_string::ConversionSpecifier::AArg: |
957 | Size += |
958 | std::max(a: FieldWidth, |
959 | b: 2 /* 0x */ + 1 /* integer part */ + |
960 | (Precision ? 1 + Precision : 0) /* period + decimal */ + |
961 | 1 /* p or P letter */ + 1 /* + or - */ + 1 /* value */); |
962 | break; |
963 | |
964 | // Just a string. |
965 | case analyze_format_string::ConversionSpecifier::sArg: |
966 | case analyze_format_string::ConversionSpecifier::SArg: |
967 | Size += FieldWidth; |
968 | break; |
969 | |
970 | // Just a pointer in the form '0xddd'. |
971 | case analyze_format_string::ConversionSpecifier::pArg: |
972 | // Linux kernel has its own extesion for `%p` specifier. |
973 | // Kernel Document: |
974 | // https://docs.kernel.org/core-api/printk-formats.html#pointer-types |
975 | IsKernelCompatible = false; |
976 | Size += std::max(a: FieldWidth, b: 2 /* leading 0x */ + Precision); |
977 | break; |
978 | |
979 | // A plain percent. |
980 | case analyze_format_string::ConversionSpecifier::PercentArg: |
981 | Size += 1; |
982 | break; |
983 | |
984 | default: |
985 | break; |
986 | } |
987 | |
988 | Size += FS.hasPlusPrefix() || FS.hasSpacePrefix(); |
989 | |
990 | if (FS.hasAlternativeForm()) { |
991 | switch (FS.getConversionSpecifier().getKind()) { |
992 | // For o conversion, it increases the precision, if and only if necessary, |
993 | // to force the first digit of the result to be a zero |
994 | // (if the value and precision are both 0, a single 0 is printed) |
995 | case analyze_format_string::ConversionSpecifier::oArg: |
996 | // For b conversion, a nonzero result has 0b prefixed to it. |
997 | case analyze_format_string::ConversionSpecifier::bArg: |
998 | // For x (or X) conversion, a nonzero result has 0x (or 0X) prefixed to |
999 | // it. |
1000 | case analyze_format_string::ConversionSpecifier::xArg: |
1001 | case analyze_format_string::ConversionSpecifier::XArg: |
1002 | // Note: even when the prefix is added, if |
1003 | // (prefix_width <= FieldWidth - formatted_length) holds, |
1004 | // the prefix does not increase the format |
1005 | // size. e.g.(("%#3x", 0xf) is "0xf") |
1006 | |
1007 | // If the result is zero, o, b, x, X adds nothing. |
1008 | break; |
1009 | // For a, A, e, E, f, F, g, and G conversions, |
1010 | // the result of converting a floating-point number always contains a |
1011 | // decimal-point |
1012 | case analyze_format_string::ConversionSpecifier::aArg: |
1013 | case analyze_format_string::ConversionSpecifier::AArg: |
1014 | case analyze_format_string::ConversionSpecifier::eArg: |
1015 | case analyze_format_string::ConversionSpecifier::EArg: |
1016 | case analyze_format_string::ConversionSpecifier::fArg: |
1017 | case analyze_format_string::ConversionSpecifier::FArg: |
1018 | case analyze_format_string::ConversionSpecifier::gArg: |
1019 | case analyze_format_string::ConversionSpecifier::GArg: |
1020 | Size += (Precision ? 0 : 1); |
1021 | break; |
1022 | // For other conversions, the behavior is undefined. |
1023 | default: |
1024 | break; |
1025 | } |
1026 | } |
1027 | assert(SpecifierLen <= Size && "no underflow" ); |
1028 | Size -= SpecifierLen; |
1029 | return true; |
1030 | } |
1031 | |
1032 | size_t getSizeLowerBound() const { return Size; } |
1033 | bool isKernelCompatible() const { return IsKernelCompatible; } |
1034 | |
1035 | private: |
1036 | static size_t computeFieldWidth(const analyze_printf::PrintfSpecifier &FS) { |
1037 | const analyze_format_string::OptionalAmount &FW = FS.getFieldWidth(); |
1038 | size_t FieldWidth = 0; |
1039 | if (FW.getHowSpecified() == analyze_format_string::OptionalAmount::Constant) |
1040 | FieldWidth = FW.getConstantAmount(); |
1041 | return FieldWidth; |
1042 | } |
1043 | |
1044 | static size_t computePrecision(const analyze_printf::PrintfSpecifier &FS) { |
1045 | const analyze_format_string::OptionalAmount &FW = FS.getPrecision(); |
1046 | size_t Precision = 0; |
1047 | |
1048 | // See man 3 printf for default precision value based on the specifier. |
1049 | switch (FW.getHowSpecified()) { |
1050 | case analyze_format_string::OptionalAmount::NotSpecified: |
1051 | switch (FS.getConversionSpecifier().getKind()) { |
1052 | default: |
1053 | break; |
1054 | case analyze_format_string::ConversionSpecifier::dArg: // %d |
1055 | case analyze_format_string::ConversionSpecifier::DArg: // %D |
1056 | case analyze_format_string::ConversionSpecifier::iArg: // %i |
1057 | Precision = 1; |
1058 | break; |
1059 | case analyze_format_string::ConversionSpecifier::oArg: // %d |
1060 | case analyze_format_string::ConversionSpecifier::OArg: // %D |
1061 | case analyze_format_string::ConversionSpecifier::uArg: // %d |
1062 | case analyze_format_string::ConversionSpecifier::UArg: // %D |
1063 | case analyze_format_string::ConversionSpecifier::xArg: // %d |
1064 | case analyze_format_string::ConversionSpecifier::XArg: // %D |
1065 | Precision = 1; |
1066 | break; |
1067 | case analyze_format_string::ConversionSpecifier::fArg: // %f |
1068 | case analyze_format_string::ConversionSpecifier::FArg: // %F |
1069 | case analyze_format_string::ConversionSpecifier::eArg: // %e |
1070 | case analyze_format_string::ConversionSpecifier::EArg: // %E |
1071 | case analyze_format_string::ConversionSpecifier::gArg: // %g |
1072 | case analyze_format_string::ConversionSpecifier::GArg: // %G |
1073 | Precision = 6; |
1074 | break; |
1075 | case analyze_format_string::ConversionSpecifier::pArg: // %d |
1076 | Precision = 1; |
1077 | break; |
1078 | } |
1079 | break; |
1080 | case analyze_format_string::OptionalAmount::Constant: |
1081 | Precision = FW.getConstantAmount(); |
1082 | break; |
1083 | default: |
1084 | break; |
1085 | } |
1086 | return Precision; |
1087 | } |
1088 | }; |
1089 | |
1090 | } // namespace |
1091 | |
1092 | static bool ProcessFormatStringLiteral(const Expr *FormatExpr, |
1093 | StringRef &FormatStrRef, size_t &StrLen, |
1094 | ASTContext &Context) { |
1095 | if (const auto *Format = dyn_cast<StringLiteral>(Val: FormatExpr); |
1096 | Format && (Format->isOrdinary() || Format->isUTF8())) { |
1097 | FormatStrRef = Format->getString(); |
1098 | const ConstantArrayType *T = |
1099 | Context.getAsConstantArrayType(T: Format->getType()); |
1100 | assert(T && "String literal not of constant array type!" ); |
1101 | size_t TypeSize = T->getZExtSize(); |
1102 | // In case there's a null byte somewhere. |
1103 | StrLen = std::min(a: std::max(a: TypeSize, b: size_t(1)) - 1, b: FormatStrRef.find(C: 0)); |
1104 | return true; |
1105 | } |
1106 | return false; |
1107 | } |
1108 | |
1109 | void Sema::checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD, |
1110 | CallExpr *TheCall) { |
1111 | if (TheCall->isValueDependent() || TheCall->isTypeDependent() || |
1112 | isConstantEvaluatedContext()) |
1113 | return; |
1114 | |
1115 | bool UseDABAttr = false; |
1116 | const FunctionDecl *UseDecl = FD; |
1117 | |
1118 | const auto *DABAttr = FD->getAttr<DiagnoseAsBuiltinAttr>(); |
1119 | if (DABAttr) { |
1120 | UseDecl = DABAttr->getFunction(); |
1121 | assert(UseDecl && "Missing FunctionDecl in DiagnoseAsBuiltin attribute!" ); |
1122 | UseDABAttr = true; |
1123 | } |
1124 | |
1125 | unsigned BuiltinID = UseDecl->getBuiltinID(/*ConsiderWrappers=*/ConsiderWrapperFunctions: true); |
1126 | |
1127 | if (!BuiltinID) |
1128 | return; |
1129 | |
1130 | const TargetInfo &TI = getASTContext().getTargetInfo(); |
1131 | unsigned SizeTypeWidth = TI.getTypeWidth(T: TI.getSizeType()); |
1132 | |
1133 | auto TranslateIndex = [&](unsigned Index) -> std::optional<unsigned> { |
1134 | // If we refer to a diagnose_as_builtin attribute, we need to change the |
1135 | // argument index to refer to the arguments of the called function. Unless |
1136 | // the index is out of bounds, which presumably means it's a variadic |
1137 | // function. |
1138 | if (!UseDABAttr) |
1139 | return Index; |
1140 | unsigned DABIndices = DABAttr->argIndices_size(); |
1141 | unsigned NewIndex = Index < DABIndices |
1142 | ? DABAttr->argIndices_begin()[Index] |
1143 | : Index - DABIndices + FD->getNumParams(); |
1144 | if (NewIndex >= TheCall->getNumArgs()) |
1145 | return std::nullopt; |
1146 | return NewIndex; |
1147 | }; |
1148 | |
1149 | auto ComputeExplicitObjectSizeArgument = |
1150 | [&](unsigned Index) -> std::optional<llvm::APSInt> { |
1151 | std::optional<unsigned> IndexOptional = TranslateIndex(Index); |
1152 | if (!IndexOptional) |
1153 | return std::nullopt; |
1154 | unsigned NewIndex = *IndexOptional; |
1155 | Expr::EvalResult Result; |
1156 | Expr *SizeArg = TheCall->getArg(Arg: NewIndex); |
1157 | if (!SizeArg->EvaluateAsInt(Result, Ctx: getASTContext())) |
1158 | return std::nullopt; |
1159 | llvm::APSInt Integer = Result.Val.getInt(); |
1160 | Integer.setIsUnsigned(true); |
1161 | return Integer; |
1162 | }; |
1163 | |
1164 | auto ComputeSizeArgument = |
1165 | [&](unsigned Index) -> std::optional<llvm::APSInt> { |
1166 | // If the parameter has a pass_object_size attribute, then we should use its |
1167 | // (potentially) more strict checking mode. Otherwise, conservatively assume |
1168 | // type 0. |
1169 | int BOSType = 0; |
1170 | // This check can fail for variadic functions. |
1171 | if (Index < FD->getNumParams()) { |
1172 | if (const auto *POS = |
1173 | FD->getParamDecl(Index)->getAttr<PassObjectSizeAttr>()) |
1174 | BOSType = POS->getType(); |
1175 | } |
1176 | |
1177 | std::optional<unsigned> IndexOptional = TranslateIndex(Index); |
1178 | if (!IndexOptional) |
1179 | return std::nullopt; |
1180 | unsigned NewIndex = *IndexOptional; |
1181 | |
1182 | if (NewIndex >= TheCall->getNumArgs()) |
1183 | return std::nullopt; |
1184 | |
1185 | const Expr *ObjArg = TheCall->getArg(Arg: NewIndex); |
1186 | uint64_t Result; |
1187 | if (!ObjArg->tryEvaluateObjectSize(Result, Ctx&: getASTContext(), Type: BOSType)) |
1188 | return std::nullopt; |
1189 | |
1190 | // Get the object size in the target's size_t width. |
1191 | return llvm::APSInt::getUnsigned(X: Result).extOrTrunc(width: SizeTypeWidth); |
1192 | }; |
1193 | |
1194 | auto ComputeStrLenArgument = |
1195 | [&](unsigned Index) -> std::optional<llvm::APSInt> { |
1196 | std::optional<unsigned> IndexOptional = TranslateIndex(Index); |
1197 | if (!IndexOptional) |
1198 | return std::nullopt; |
1199 | unsigned NewIndex = *IndexOptional; |
1200 | |
1201 | const Expr *ObjArg = TheCall->getArg(Arg: NewIndex); |
1202 | uint64_t Result; |
1203 | if (!ObjArg->tryEvaluateStrLen(Result, Ctx&: getASTContext())) |
1204 | return std::nullopt; |
1205 | // Add 1 for null byte. |
1206 | return llvm::APSInt::getUnsigned(X: Result + 1).extOrTrunc(width: SizeTypeWidth); |
1207 | }; |
1208 | |
1209 | std::optional<llvm::APSInt> SourceSize; |
1210 | std::optional<llvm::APSInt> DestinationSize; |
1211 | unsigned DiagID = 0; |
1212 | bool IsChkVariant = false; |
1213 | |
1214 | auto GetFunctionName = [&]() { |
1215 | StringRef FunctionName = getASTContext().BuiltinInfo.getName(ID: BuiltinID); |
1216 | // Skim off the details of whichever builtin was called to produce a better |
1217 | // diagnostic, as it's unlikely that the user wrote the __builtin |
1218 | // explicitly. |
1219 | if (IsChkVariant) { |
1220 | FunctionName = FunctionName.drop_front(N: std::strlen(s: "__builtin___" )); |
1221 | FunctionName = FunctionName.drop_back(N: std::strlen(s: "_chk" )); |
1222 | } else { |
1223 | FunctionName.consume_front(Prefix: "__builtin_" ); |
1224 | } |
1225 | return FunctionName; |
1226 | }; |
1227 | |
1228 | switch (BuiltinID) { |
1229 | default: |
1230 | return; |
1231 | case Builtin::BI__builtin_strcpy: |
1232 | case Builtin::BIstrcpy: { |
1233 | DiagID = diag::warn_fortify_strlen_overflow; |
1234 | SourceSize = ComputeStrLenArgument(1); |
1235 | DestinationSize = ComputeSizeArgument(0); |
1236 | break; |
1237 | } |
1238 | |
1239 | case Builtin::BI__builtin___strcpy_chk: { |
1240 | DiagID = diag::warn_fortify_strlen_overflow; |
1241 | SourceSize = ComputeStrLenArgument(1); |
1242 | DestinationSize = ComputeExplicitObjectSizeArgument(2); |
1243 | IsChkVariant = true; |
1244 | break; |
1245 | } |
1246 | |
1247 | case Builtin::BIscanf: |
1248 | case Builtin::BIfscanf: |
1249 | case Builtin::BIsscanf: { |
1250 | unsigned FormatIndex = 1; |
1251 | unsigned DataIndex = 2; |
1252 | if (BuiltinID == Builtin::BIscanf) { |
1253 | FormatIndex = 0; |
1254 | DataIndex = 1; |
1255 | } |
1256 | |
1257 | const auto *FormatExpr = |
1258 | TheCall->getArg(Arg: FormatIndex)->IgnoreParenImpCasts(); |
1259 | |
1260 | StringRef FormatStrRef; |
1261 | size_t StrLen; |
1262 | if (!ProcessFormatStringLiteral(FormatExpr, FormatStrRef, StrLen, Context)) |
1263 | return; |
1264 | |
1265 | auto Diagnose = [&](unsigned ArgIndex, unsigned DestSize, |
1266 | unsigned SourceSize) { |
1267 | DiagID = diag::warn_fortify_scanf_overflow; |
1268 | unsigned Index = ArgIndex + DataIndex; |
1269 | StringRef FunctionName = GetFunctionName(); |
1270 | DiagRuntimeBehavior(TheCall->getArg(Arg: Index)->getBeginLoc(), TheCall, |
1271 | PDiag(DiagID) << FunctionName << (Index + 1) |
1272 | << DestSize << SourceSize); |
1273 | }; |
1274 | |
1275 | auto ShiftedComputeSizeArgument = [&](unsigned Index) { |
1276 | return ComputeSizeArgument(Index + DataIndex); |
1277 | }; |
1278 | ScanfDiagnosticFormatHandler H(ShiftedComputeSizeArgument, Diagnose); |
1279 | const char *FormatBytes = FormatStrRef.data(); |
1280 | analyze_format_string::ParseScanfString(H, beg: FormatBytes, |
1281 | end: FormatBytes + StrLen, LO: getLangOpts(), |
1282 | Target: Context.getTargetInfo()); |
1283 | |
1284 | // Unlike the other cases, in this one we have already issued the diagnostic |
1285 | // here, so no need to continue (because unlike the other cases, here the |
1286 | // diagnostic refers to the argument number). |
1287 | return; |
1288 | } |
1289 | |
1290 | case Builtin::BIsprintf: |
1291 | case Builtin::BI__builtin___sprintf_chk: { |
1292 | size_t FormatIndex = BuiltinID == Builtin::BIsprintf ? 1 : 3; |
1293 | auto *FormatExpr = TheCall->getArg(Arg: FormatIndex)->IgnoreParenImpCasts(); |
1294 | |
1295 | StringRef FormatStrRef; |
1296 | size_t StrLen; |
1297 | if (ProcessFormatStringLiteral(FormatExpr, FormatStrRef, StrLen, Context)) { |
1298 | EstimateSizeFormatHandler H(FormatStrRef); |
1299 | const char *FormatBytes = FormatStrRef.data(); |
1300 | if (!analyze_format_string::ParsePrintfString( |
1301 | H, beg: FormatBytes, end: FormatBytes + StrLen, LO: getLangOpts(), |
1302 | Target: Context.getTargetInfo(), isFreeBSDKPrintf: false)) { |
1303 | DiagID = H.isKernelCompatible() |
1304 | ? diag::warn_format_overflow |
1305 | : diag::warn_format_overflow_non_kprintf; |
1306 | SourceSize = llvm::APSInt::getUnsigned(X: H.getSizeLowerBound()) |
1307 | .extOrTrunc(width: SizeTypeWidth); |
1308 | if (BuiltinID == Builtin::BI__builtin___sprintf_chk) { |
1309 | DestinationSize = ComputeExplicitObjectSizeArgument(2); |
1310 | IsChkVariant = true; |
1311 | } else { |
1312 | DestinationSize = ComputeSizeArgument(0); |
1313 | } |
1314 | break; |
1315 | } |
1316 | } |
1317 | return; |
1318 | } |
1319 | case Builtin::BI__builtin___memcpy_chk: |
1320 | case Builtin::BI__builtin___memmove_chk: |
1321 | case Builtin::BI__builtin___memset_chk: |
1322 | case Builtin::BI__builtin___strlcat_chk: |
1323 | case Builtin::BI__builtin___strlcpy_chk: |
1324 | case Builtin::BI__builtin___strncat_chk: |
1325 | case Builtin::BI__builtin___strncpy_chk: |
1326 | case Builtin::BI__builtin___stpncpy_chk: |
1327 | case Builtin::BI__builtin___memccpy_chk: |
1328 | case Builtin::BI__builtin___mempcpy_chk: { |
1329 | DiagID = diag::warn_builtin_chk_overflow; |
1330 | SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 2); |
1331 | DestinationSize = |
1332 | ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1); |
1333 | IsChkVariant = true; |
1334 | break; |
1335 | } |
1336 | |
1337 | case Builtin::BI__builtin___snprintf_chk: |
1338 | case Builtin::BI__builtin___vsnprintf_chk: { |
1339 | DiagID = diag::warn_builtin_chk_overflow; |
1340 | SourceSize = ComputeExplicitObjectSizeArgument(1); |
1341 | DestinationSize = ComputeExplicitObjectSizeArgument(3); |
1342 | IsChkVariant = true; |
1343 | break; |
1344 | } |
1345 | |
1346 | case Builtin::BIstrncat: |
1347 | case Builtin::BI__builtin_strncat: |
1348 | case Builtin::BIstrncpy: |
1349 | case Builtin::BI__builtin_strncpy: |
1350 | case Builtin::BIstpncpy: |
1351 | case Builtin::BI__builtin_stpncpy: { |
1352 | // Whether these functions overflow depends on the runtime strlen of the |
1353 | // string, not just the buffer size, so emitting the "always overflow" |
1354 | // diagnostic isn't quite right. We should still diagnose passing a buffer |
1355 | // size larger than the destination buffer though; this is a runtime abort |
1356 | // in _FORTIFY_SOURCE mode, and is quite suspicious otherwise. |
1357 | DiagID = diag::warn_fortify_source_size_mismatch; |
1358 | SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1); |
1359 | DestinationSize = ComputeSizeArgument(0); |
1360 | break; |
1361 | } |
1362 | |
1363 | case Builtin::BImemcpy: |
1364 | case Builtin::BI__builtin_memcpy: |
1365 | case Builtin::BImemmove: |
1366 | case Builtin::BI__builtin_memmove: |
1367 | case Builtin::BImemset: |
1368 | case Builtin::BI__builtin_memset: |
1369 | case Builtin::BImempcpy: |
1370 | case Builtin::BI__builtin_mempcpy: { |
1371 | DiagID = diag::warn_fortify_source_overflow; |
1372 | SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1); |
1373 | DestinationSize = ComputeSizeArgument(0); |
1374 | break; |
1375 | } |
1376 | case Builtin::BIsnprintf: |
1377 | case Builtin::BI__builtin_snprintf: |
1378 | case Builtin::BIvsnprintf: |
1379 | case Builtin::BI__builtin_vsnprintf: { |
1380 | DiagID = diag::warn_fortify_source_size_mismatch; |
1381 | SourceSize = ComputeExplicitObjectSizeArgument(1); |
1382 | const auto *FormatExpr = TheCall->getArg(Arg: 2)->IgnoreParenImpCasts(); |
1383 | StringRef FormatStrRef; |
1384 | size_t StrLen; |
1385 | if (SourceSize && |
1386 | ProcessFormatStringLiteral(FormatExpr, FormatStrRef, StrLen, Context)) { |
1387 | EstimateSizeFormatHandler H(FormatStrRef); |
1388 | const char *FormatBytes = FormatStrRef.data(); |
1389 | if (!analyze_format_string::ParsePrintfString( |
1390 | H, beg: FormatBytes, end: FormatBytes + StrLen, LO: getLangOpts(), |
1391 | Target: Context.getTargetInfo(), /*isFreeBSDKPrintf=*/false)) { |
1392 | llvm::APSInt FormatSize = |
1393 | llvm::APSInt::getUnsigned(X: H.getSizeLowerBound()) |
1394 | .extOrTrunc(width: SizeTypeWidth); |
1395 | if (FormatSize > *SourceSize && *SourceSize != 0) { |
1396 | unsigned TruncationDiagID = |
1397 | H.isKernelCompatible() ? diag::warn_format_truncation |
1398 | : diag::warn_format_truncation_non_kprintf; |
1399 | SmallString<16> SpecifiedSizeStr; |
1400 | SmallString<16> FormatSizeStr; |
1401 | SourceSize->toString(Str&: SpecifiedSizeStr, /*Radix=*/10); |
1402 | FormatSize.toString(Str&: FormatSizeStr, /*Radix=*/10); |
1403 | DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall, |
1404 | PDiag(DiagID: TruncationDiagID) |
1405 | << GetFunctionName() << SpecifiedSizeStr |
1406 | << FormatSizeStr); |
1407 | } |
1408 | } |
1409 | } |
1410 | DestinationSize = ComputeSizeArgument(0); |
1411 | } |
1412 | } |
1413 | |
1414 | if (!SourceSize || !DestinationSize || |
1415 | llvm::APSInt::compareValues(I1: *SourceSize, I2: *DestinationSize) <= 0) |
1416 | return; |
1417 | |
1418 | StringRef FunctionName = GetFunctionName(); |
1419 | |
1420 | SmallString<16> DestinationStr; |
1421 | SmallString<16> SourceStr; |
1422 | DestinationSize->toString(Str&: DestinationStr, /*Radix=*/10); |
1423 | SourceSize->toString(Str&: SourceStr, /*Radix=*/10); |
1424 | DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall, |
1425 | PDiag(DiagID) |
1426 | << FunctionName << DestinationStr << SourceStr); |
1427 | } |
1428 | |
1429 | static bool BuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall, |
1430 | Scope::ScopeFlags NeededScopeFlags, |
1431 | unsigned DiagID) { |
1432 | // Scopes aren't available during instantiation. Fortunately, builtin |
1433 | // functions cannot be template args so they cannot be formed through template |
1434 | // instantiation. Therefore checking once during the parse is sufficient. |
1435 | if (SemaRef.inTemplateInstantiation()) |
1436 | return false; |
1437 | |
1438 | Scope *S = SemaRef.getCurScope(); |
1439 | while (S && !S->isSEHExceptScope()) |
1440 | S = S->getParent(); |
1441 | if (!S || !(S->getFlags() & NeededScopeFlags)) { |
1442 | auto *DRE = cast<DeclRefExpr>(Val: TheCall->getCallee()->IgnoreParenCasts()); |
1443 | SemaRef.Diag(TheCall->getExprLoc(), DiagID) |
1444 | << DRE->getDecl()->getIdentifier(); |
1445 | return true; |
1446 | } |
1447 | |
1448 | return false; |
1449 | } |
1450 | |
1451 | static inline bool isBlockPointer(Expr *Arg) { |
1452 | return Arg->getType()->isBlockPointerType(); |
1453 | } |
1454 | |
1455 | /// OpenCL C v2.0, s6.13.17.2 - Checks that the block parameters are all local |
1456 | /// void*, which is a requirement of device side enqueue. |
1457 | static bool checkOpenCLBlockArgs(Sema &S, Expr *BlockArg) { |
1458 | const BlockPointerType *BPT = |
1459 | cast<BlockPointerType>(Val: BlockArg->getType().getCanonicalType()); |
1460 | ArrayRef<QualType> Params = |
1461 | BPT->getPointeeType()->castAs<FunctionProtoType>()->getParamTypes(); |
1462 | unsigned ArgCounter = 0; |
1463 | bool IllegalParams = false; |
1464 | // Iterate through the block parameters until either one is found that is not |
1465 | // a local void*, or the block is valid. |
1466 | for (ArrayRef<QualType>::iterator I = Params.begin(), E = Params.end(); |
1467 | I != E; ++I, ++ArgCounter) { |
1468 | if (!(*I)->isPointerType() || !(*I)->getPointeeType()->isVoidType() || |
1469 | (*I)->getPointeeType().getQualifiers().getAddressSpace() != |
1470 | LangAS::opencl_local) { |
1471 | // Get the location of the error. If a block literal has been passed |
1472 | // (BlockExpr) then we can point straight to the offending argument, |
1473 | // else we just point to the variable reference. |
1474 | SourceLocation ErrorLoc; |
1475 | if (isa<BlockExpr>(Val: BlockArg)) { |
1476 | BlockDecl *BD = cast<BlockExpr>(Val: BlockArg)->getBlockDecl(); |
1477 | ErrorLoc = BD->getParamDecl(i: ArgCounter)->getBeginLoc(); |
1478 | } else if (isa<DeclRefExpr>(Val: BlockArg)) { |
1479 | ErrorLoc = cast<DeclRefExpr>(Val: BlockArg)->getBeginLoc(); |
1480 | } |
1481 | S.Diag(ErrorLoc, |
1482 | diag::err_opencl_enqueue_kernel_blocks_non_local_void_args); |
1483 | IllegalParams = true; |
1484 | } |
1485 | } |
1486 | |
1487 | return IllegalParams; |
1488 | } |
1489 | |
1490 | static bool checkOpenCLSubgroupExt(Sema &S, CallExpr *Call) { |
1491 | // OpenCL device can support extension but not the feature as extension |
1492 | // requires subgroup independent forward progress, but subgroup independent |
1493 | // forward progress is optional in OpenCL C 3.0 __opencl_c_subgroups feature. |
1494 | if (!S.getOpenCLOptions().isSupported(Ext: "cl_khr_subgroups" , LO: S.getLangOpts()) && |
1495 | !S.getOpenCLOptions().isSupported(Ext: "__opencl_c_subgroups" , |
1496 | LO: S.getLangOpts())) { |
1497 | S.Diag(Call->getBeginLoc(), diag::err_opencl_requires_extension) |
1498 | << 1 << Call->getDirectCallee() |
1499 | << "cl_khr_subgroups or __opencl_c_subgroups" ; |
1500 | return true; |
1501 | } |
1502 | return false; |
1503 | } |
1504 | |
1505 | static bool OpenCLBuiltinNDRangeAndBlock(Sema &S, CallExpr *TheCall) { |
1506 | if (checkArgCount(S, Call: TheCall, DesiredArgCount: 2)) |
1507 | return true; |
1508 | |
1509 | if (checkOpenCLSubgroupExt(S, Call: TheCall)) |
1510 | return true; |
1511 | |
1512 | // First argument is an ndrange_t type. |
1513 | Expr *NDRangeArg = TheCall->getArg(Arg: 0); |
1514 | if (NDRangeArg->getType().getUnqualifiedType().getAsString() != "ndrange_t" ) { |
1515 | S.Diag(NDRangeArg->getBeginLoc(), diag::err_opencl_builtin_expected_type) |
1516 | << TheCall->getDirectCallee() << "'ndrange_t'" ; |
1517 | return true; |
1518 | } |
1519 | |
1520 | Expr *BlockArg = TheCall->getArg(Arg: 1); |
1521 | if (!isBlockPointer(Arg: BlockArg)) { |
1522 | S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type) |
1523 | << TheCall->getDirectCallee() << "block" ; |
1524 | return true; |
1525 | } |
1526 | return checkOpenCLBlockArgs(S, BlockArg); |
1527 | } |
1528 | |
1529 | /// OpenCL C v2.0, s6.13.17.6 - Check the argument to the |
1530 | /// get_kernel_work_group_size |
1531 | /// and get_kernel_preferred_work_group_size_multiple builtin functions. |
1532 | static bool OpenCLBuiltinKernelWorkGroupSize(Sema &S, CallExpr *TheCall) { |
1533 | if (checkArgCount(S, Call: TheCall, DesiredArgCount: 1)) |
1534 | return true; |
1535 | |
1536 | Expr *BlockArg = TheCall->getArg(Arg: 0); |
1537 | if (!isBlockPointer(Arg: BlockArg)) { |
1538 | S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type) |
1539 | << TheCall->getDirectCallee() << "block" ; |
1540 | return true; |
1541 | } |
1542 | return checkOpenCLBlockArgs(S, BlockArg); |
1543 | } |
1544 | |
1545 | /// Diagnose integer type and any valid implicit conversion to it. |
1546 | static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, |
1547 | const QualType &IntType); |
1548 | |
1549 | static bool checkOpenCLEnqueueLocalSizeArgs(Sema &S, CallExpr *TheCall, |
1550 | unsigned Start, unsigned End) { |
1551 | bool IllegalParams = false; |
1552 | for (unsigned I = Start; I <= End; ++I) |
1553 | IllegalParams |= checkOpenCLEnqueueIntType(S, TheCall->getArg(Arg: I), |
1554 | S.Context.getSizeType()); |
1555 | return IllegalParams; |
1556 | } |
1557 | |
1558 | /// OpenCL v2.0, s6.13.17.1 - Check that sizes are provided for all |
1559 | /// 'local void*' parameter of passed block. |
1560 | static bool checkOpenCLEnqueueVariadicArgs(Sema &S, CallExpr *TheCall, |
1561 | Expr *BlockArg, |
1562 | unsigned NumNonVarArgs) { |
1563 | const BlockPointerType *BPT = |
1564 | cast<BlockPointerType>(Val: BlockArg->getType().getCanonicalType()); |
1565 | unsigned NumBlockParams = |
1566 | BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams(); |
1567 | unsigned TotalNumArgs = TheCall->getNumArgs(); |
1568 | |
1569 | // For each argument passed to the block, a corresponding uint needs to |
1570 | // be passed to describe the size of the local memory. |
1571 | if (TotalNumArgs != NumBlockParams + NumNonVarArgs) { |
1572 | S.Diag(TheCall->getBeginLoc(), |
1573 | diag::err_opencl_enqueue_kernel_local_size_args); |
1574 | return true; |
1575 | } |
1576 | |
1577 | // Check that the sizes of the local memory are specified by integers. |
1578 | return checkOpenCLEnqueueLocalSizeArgs(S, TheCall, Start: NumNonVarArgs, |
1579 | End: TotalNumArgs - 1); |
1580 | } |
1581 | |
1582 | /// OpenCL C v2.0, s6.13.17 - Enqueue kernel function contains four different |
1583 | /// overload formats specified in Table 6.13.17.1. |
1584 | /// int enqueue_kernel(queue_t queue, |
1585 | /// kernel_enqueue_flags_t flags, |
1586 | /// const ndrange_t ndrange, |
1587 | /// void (^block)(void)) |
1588 | /// int enqueue_kernel(queue_t queue, |
1589 | /// kernel_enqueue_flags_t flags, |
1590 | /// const ndrange_t ndrange, |
1591 | /// uint num_events_in_wait_list, |
1592 | /// clk_event_t *event_wait_list, |
1593 | /// clk_event_t *event_ret, |
1594 | /// void (^block)(void)) |
1595 | /// int enqueue_kernel(queue_t queue, |
1596 | /// kernel_enqueue_flags_t flags, |
1597 | /// const ndrange_t ndrange, |
1598 | /// void (^block)(local void*, ...), |
1599 | /// uint size0, ...) |
1600 | /// int enqueue_kernel(queue_t queue, |
1601 | /// kernel_enqueue_flags_t flags, |
1602 | /// const ndrange_t ndrange, |
1603 | /// uint num_events_in_wait_list, |
1604 | /// clk_event_t *event_wait_list, |
1605 | /// clk_event_t *event_ret, |
1606 | /// void (^block)(local void*, ...), |
1607 | /// uint size0, ...) |
1608 | static bool OpenCLBuiltinEnqueueKernel(Sema &S, CallExpr *TheCall) { |
1609 | unsigned NumArgs = TheCall->getNumArgs(); |
1610 | |
1611 | if (NumArgs < 4) { |
1612 | S.Diag(TheCall->getBeginLoc(), |
1613 | diag::err_typecheck_call_too_few_args_at_least) |
1614 | << 0 << 4 << NumArgs << /*is non object*/ 0; |
1615 | return true; |
1616 | } |
1617 | |
1618 | Expr *Arg0 = TheCall->getArg(Arg: 0); |
1619 | Expr *Arg1 = TheCall->getArg(Arg: 1); |
1620 | Expr *Arg2 = TheCall->getArg(Arg: 2); |
1621 | Expr *Arg3 = TheCall->getArg(Arg: 3); |
1622 | |
1623 | // First argument always needs to be a queue_t type. |
1624 | if (!Arg0->getType()->isQueueT()) { |
1625 | S.Diag(TheCall->getArg(0)->getBeginLoc(), |
1626 | diag::err_opencl_builtin_expected_type) |
1627 | << TheCall->getDirectCallee() << S.Context.OCLQueueTy; |
1628 | return true; |
1629 | } |
1630 | |
1631 | // Second argument always needs to be a kernel_enqueue_flags_t enum value. |
1632 | if (!Arg1->getType()->isIntegerType()) { |
1633 | S.Diag(TheCall->getArg(1)->getBeginLoc(), |
1634 | diag::err_opencl_builtin_expected_type) |
1635 | << TheCall->getDirectCallee() << "'kernel_enqueue_flags_t' (i.e. uint)" ; |
1636 | return true; |
1637 | } |
1638 | |
1639 | // Third argument is always an ndrange_t type. |
1640 | if (Arg2->getType().getUnqualifiedType().getAsString() != "ndrange_t" ) { |
1641 | S.Diag(TheCall->getArg(2)->getBeginLoc(), |
1642 | diag::err_opencl_builtin_expected_type) |
1643 | << TheCall->getDirectCallee() << "'ndrange_t'" ; |
1644 | return true; |
1645 | } |
1646 | |
1647 | // With four arguments, there is only one form that the function could be |
1648 | // called in: no events and no variable arguments. |
1649 | if (NumArgs == 4) { |
1650 | // check that the last argument is the right block type. |
1651 | if (!isBlockPointer(Arg: Arg3)) { |
1652 | S.Diag(Arg3->getBeginLoc(), diag::err_opencl_builtin_expected_type) |
1653 | << TheCall->getDirectCallee() << "block" ; |
1654 | return true; |
1655 | } |
1656 | // we have a block type, check the prototype |
1657 | const BlockPointerType *BPT = |
1658 | cast<BlockPointerType>(Val: Arg3->getType().getCanonicalType()); |
1659 | if (BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams() > 0) { |
1660 | S.Diag(Arg3->getBeginLoc(), |
1661 | diag::err_opencl_enqueue_kernel_blocks_no_args); |
1662 | return true; |
1663 | } |
1664 | return false; |
1665 | } |
1666 | // we can have block + varargs. |
1667 | if (isBlockPointer(Arg: Arg3)) |
1668 | return (checkOpenCLBlockArgs(S, BlockArg: Arg3) || |
1669 | checkOpenCLEnqueueVariadicArgs(S, TheCall, BlockArg: Arg3, NumNonVarArgs: 4)); |
1670 | // last two cases with either exactly 7 args or 7 args and varargs. |
1671 | if (NumArgs >= 7) { |
1672 | // check common block argument. |
1673 | Expr *Arg6 = TheCall->getArg(Arg: 6); |
1674 | if (!isBlockPointer(Arg: Arg6)) { |
1675 | S.Diag(Arg6->getBeginLoc(), diag::err_opencl_builtin_expected_type) |
1676 | << TheCall->getDirectCallee() << "block" ; |
1677 | return true; |
1678 | } |
1679 | if (checkOpenCLBlockArgs(S, BlockArg: Arg6)) |
1680 | return true; |
1681 | |
1682 | // Forth argument has to be any integer type. |
1683 | if (!Arg3->getType()->isIntegerType()) { |
1684 | S.Diag(TheCall->getArg(3)->getBeginLoc(), |
1685 | diag::err_opencl_builtin_expected_type) |
1686 | << TheCall->getDirectCallee() << "integer" ; |
1687 | return true; |
1688 | } |
1689 | // check remaining common arguments. |
1690 | Expr *Arg4 = TheCall->getArg(Arg: 4); |
1691 | Expr *Arg5 = TheCall->getArg(Arg: 5); |
1692 | |
1693 | // Fifth argument is always passed as a pointer to clk_event_t. |
1694 | if (!Arg4->isNullPointerConstant(Ctx&: S.Context, |
1695 | NPC: Expr::NPC_ValueDependentIsNotNull) && |
1696 | !Arg4->getType()->getPointeeOrArrayElementType()->isClkEventT()) { |
1697 | S.Diag(TheCall->getArg(4)->getBeginLoc(), |
1698 | diag::err_opencl_builtin_expected_type) |
1699 | << TheCall->getDirectCallee() |
1700 | << S.Context.getPointerType(S.Context.OCLClkEventTy); |
1701 | return true; |
1702 | } |
1703 | |
1704 | // Sixth argument is always passed as a pointer to clk_event_t. |
1705 | if (!Arg5->isNullPointerConstant(Ctx&: S.Context, |
1706 | NPC: Expr::NPC_ValueDependentIsNotNull) && |
1707 | !(Arg5->getType()->isPointerType() && |
1708 | Arg5->getType()->getPointeeType()->isClkEventT())) { |
1709 | S.Diag(TheCall->getArg(5)->getBeginLoc(), |
1710 | diag::err_opencl_builtin_expected_type) |
1711 | << TheCall->getDirectCallee() |
1712 | << S.Context.getPointerType(S.Context.OCLClkEventTy); |
1713 | return true; |
1714 | } |
1715 | |
1716 | if (NumArgs == 7) |
1717 | return false; |
1718 | |
1719 | return checkOpenCLEnqueueVariadicArgs(S, TheCall, BlockArg: Arg6, NumNonVarArgs: 7); |
1720 | } |
1721 | |
1722 | // None of the specific case has been detected, give generic error |
1723 | S.Diag(TheCall->getBeginLoc(), |
1724 | diag::err_opencl_enqueue_kernel_incorrect_args); |
1725 | return true; |
1726 | } |
1727 | |
1728 | /// Returns OpenCL access qual. |
1729 | static OpenCLAccessAttr *getOpenCLArgAccess(const Decl *D) { |
1730 | return D->getAttr<OpenCLAccessAttr>(); |
1731 | } |
1732 | |
1733 | /// Returns true if pipe element type is different from the pointer. |
1734 | static bool checkOpenCLPipeArg(Sema &S, CallExpr *Call) { |
1735 | const Expr *Arg0 = Call->getArg(Arg: 0); |
1736 | // First argument type should always be pipe. |
1737 | if (!Arg0->getType()->isPipeType()) { |
1738 | S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg) |
1739 | << Call->getDirectCallee() << Arg0->getSourceRange(); |
1740 | return true; |
1741 | } |
1742 | OpenCLAccessAttr *AccessQual = |
1743 | getOpenCLArgAccess(cast<DeclRefExpr>(Arg0)->getDecl()); |
1744 | // Validates the access qualifier is compatible with the call. |
1745 | // OpenCL v2.0 s6.13.16 - The access qualifiers for pipe should only be |
1746 | // read_only and write_only, and assumed to be read_only if no qualifier is |
1747 | // specified. |
1748 | switch (Call->getDirectCallee()->getBuiltinID()) { |
1749 | case Builtin::BIread_pipe: |
1750 | case Builtin::BIreserve_read_pipe: |
1751 | case Builtin::BIcommit_read_pipe: |
1752 | case Builtin::BIwork_group_reserve_read_pipe: |
1753 | case Builtin::BIsub_group_reserve_read_pipe: |
1754 | case Builtin::BIwork_group_commit_read_pipe: |
1755 | case Builtin::BIsub_group_commit_read_pipe: |
1756 | if (!(!AccessQual || AccessQual->isReadOnly())) { |
1757 | S.Diag(Arg0->getBeginLoc(), |
1758 | diag::err_opencl_builtin_pipe_invalid_access_modifier) |
1759 | << "read_only" << Arg0->getSourceRange(); |
1760 | return true; |
1761 | } |
1762 | break; |
1763 | case Builtin::BIwrite_pipe: |
1764 | case Builtin::BIreserve_write_pipe: |
1765 | case Builtin::BIcommit_write_pipe: |
1766 | case Builtin::BIwork_group_reserve_write_pipe: |
1767 | case Builtin::BIsub_group_reserve_write_pipe: |
1768 | case Builtin::BIwork_group_commit_write_pipe: |
1769 | case Builtin::BIsub_group_commit_write_pipe: |
1770 | if (!(AccessQual && AccessQual->isWriteOnly())) { |
1771 | S.Diag(Arg0->getBeginLoc(), |
1772 | diag::err_opencl_builtin_pipe_invalid_access_modifier) |
1773 | << "write_only" << Arg0->getSourceRange(); |
1774 | return true; |
1775 | } |
1776 | break; |
1777 | default: |
1778 | break; |
1779 | } |
1780 | return false; |
1781 | } |
1782 | |
1783 | /// Returns true if pipe element type is different from the pointer. |
1784 | static bool checkOpenCLPipePacketType(Sema &S, CallExpr *Call, unsigned Idx) { |
1785 | const Expr *Arg0 = Call->getArg(Arg: 0); |
1786 | const Expr *ArgIdx = Call->getArg(Arg: Idx); |
1787 | const PipeType *PipeTy = cast<PipeType>(Val: Arg0->getType()); |
1788 | const QualType EltTy = PipeTy->getElementType(); |
1789 | const PointerType *ArgTy = ArgIdx->getType()->getAs<PointerType>(); |
1790 | // The Idx argument should be a pointer and the type of the pointer and |
1791 | // the type of pipe element should also be the same. |
1792 | if (!ArgTy || |
1793 | !S.Context.hasSameType( |
1794 | T1: EltTy, T2: ArgTy->getPointeeType()->getCanonicalTypeInternal())) { |
1795 | S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) |
1796 | << Call->getDirectCallee() << S.Context.getPointerType(EltTy) |
1797 | << ArgIdx->getType() << ArgIdx->getSourceRange(); |
1798 | return true; |
1799 | } |
1800 | return false; |
1801 | } |
1802 | |
1803 | // Performs semantic analysis for the read/write_pipe call. |
1804 | // \param S Reference to the semantic analyzer. |
1805 | // \param Call A pointer to the builtin call. |
1806 | // \return True if a semantic error has been found, false otherwise. |
1807 | static bool BuiltinRWPipe(Sema &S, CallExpr *Call) { |
1808 | // OpenCL v2.0 s6.13.16.2 - The built-in read/write |
1809 | // functions have two forms. |
1810 | switch (Call->getNumArgs()) { |
1811 | case 2: |
1812 | if (checkOpenCLPipeArg(S, Call)) |
1813 | return true; |
1814 | // The call with 2 arguments should be |
1815 | // read/write_pipe(pipe T, T*). |
1816 | // Check packet type T. |
1817 | if (checkOpenCLPipePacketType(S, Call, Idx: 1)) |
1818 | return true; |
1819 | break; |
1820 | |
1821 | case 4: { |
1822 | if (checkOpenCLPipeArg(S, Call)) |
1823 | return true; |
1824 | // The call with 4 arguments should be |
1825 | // read/write_pipe(pipe T, reserve_id_t, uint, T*). |
1826 | // Check reserve_id_t. |
1827 | if (!Call->getArg(Arg: 1)->getType()->isReserveIDT()) { |
1828 | S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) |
1829 | << Call->getDirectCallee() << S.Context.OCLReserveIDTy |
1830 | << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange(); |
1831 | return true; |
1832 | } |
1833 | |
1834 | // Check the index. |
1835 | const Expr *Arg2 = Call->getArg(Arg: 2); |
1836 | if (!Arg2->getType()->isIntegerType() && |
1837 | !Arg2->getType()->isUnsignedIntegerType()) { |
1838 | S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) |
1839 | << Call->getDirectCallee() << S.Context.UnsignedIntTy |
1840 | << Arg2->getType() << Arg2->getSourceRange(); |
1841 | return true; |
1842 | } |
1843 | |
1844 | // Check packet type T. |
1845 | if (checkOpenCLPipePacketType(S, Call, Idx: 3)) |
1846 | return true; |
1847 | } break; |
1848 | default: |
1849 | S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_arg_num) |
1850 | << Call->getDirectCallee() << Call->getSourceRange(); |
1851 | return true; |
1852 | } |
1853 | |
1854 | return false; |
1855 | } |
1856 | |
1857 | // Performs a semantic analysis on the {work_group_/sub_group_ |
1858 | // /_}reserve_{read/write}_pipe |
1859 | // \param S Reference to the semantic analyzer. |
1860 | // \param Call The call to the builtin function to be analyzed. |
1861 | // \return True if a semantic error was found, false otherwise. |
1862 | static bool BuiltinReserveRWPipe(Sema &S, CallExpr *Call) { |
1863 | if (checkArgCount(S, Call, DesiredArgCount: 2)) |
1864 | return true; |
1865 | |
1866 | if (checkOpenCLPipeArg(S, Call)) |
1867 | return true; |
1868 | |
1869 | // Check the reserve size. |
1870 | if (!Call->getArg(Arg: 1)->getType()->isIntegerType() && |
1871 | !Call->getArg(Arg: 1)->getType()->isUnsignedIntegerType()) { |
1872 | S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) |
1873 | << Call->getDirectCallee() << S.Context.UnsignedIntTy |
1874 | << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange(); |
1875 | return true; |
1876 | } |
1877 | |
1878 | // Since return type of reserve_read/write_pipe built-in function is |
1879 | // reserve_id_t, which is not defined in the builtin def file , we used int |
1880 | // as return type and need to override the return type of these functions. |
1881 | Call->setType(S.Context.OCLReserveIDTy); |
1882 | |
1883 | return false; |
1884 | } |
1885 | |
1886 | // Performs a semantic analysis on {work_group_/sub_group_ |
1887 | // /_}commit_{read/write}_pipe |
1888 | // \param S Reference to the semantic analyzer. |
1889 | // \param Call The call to the builtin function to be analyzed. |
1890 | // \return True if a semantic error was found, false otherwise. |
1891 | static bool BuiltinCommitRWPipe(Sema &S, CallExpr *Call) { |
1892 | if (checkArgCount(S, Call, DesiredArgCount: 2)) |
1893 | return true; |
1894 | |
1895 | if (checkOpenCLPipeArg(S, Call)) |
1896 | return true; |
1897 | |
1898 | // Check reserve_id_t. |
1899 | if (!Call->getArg(Arg: 1)->getType()->isReserveIDT()) { |
1900 | S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) |
1901 | << Call->getDirectCallee() << S.Context.OCLReserveIDTy |
1902 | << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange(); |
1903 | return true; |
1904 | } |
1905 | |
1906 | return false; |
1907 | } |
1908 | |
1909 | // Performs a semantic analysis on the call to built-in Pipe |
1910 | // Query Functions. |
1911 | // \param S Reference to the semantic analyzer. |
1912 | // \param Call The call to the builtin function to be analyzed. |
1913 | // \return True if a semantic error was found, false otherwise. |
1914 | static bool BuiltinPipePackets(Sema &S, CallExpr *Call) { |
1915 | if (checkArgCount(S, Call, DesiredArgCount: 1)) |
1916 | return true; |
1917 | |
1918 | if (!Call->getArg(Arg: 0)->getType()->isPipeType()) { |
1919 | S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg) |
1920 | << Call->getDirectCallee() << Call->getArg(0)->getSourceRange(); |
1921 | return true; |
1922 | } |
1923 | |
1924 | return false; |
1925 | } |
1926 | |
1927 | // OpenCL v2.0 s6.13.9 - Address space qualifier functions. |
1928 | // Performs semantic analysis for the to_global/local/private call. |
1929 | // \param S Reference to the semantic analyzer. |
1930 | // \param BuiltinID ID of the builtin function. |
1931 | // \param Call A pointer to the builtin call. |
1932 | // \return True if a semantic error has been found, false otherwise. |
1933 | static bool OpenCLBuiltinToAddr(Sema &S, unsigned BuiltinID, CallExpr *Call) { |
1934 | if (checkArgCount(S, Call, DesiredArgCount: 1)) |
1935 | return true; |
1936 | |
1937 | auto RT = Call->getArg(Arg: 0)->getType(); |
1938 | if (!RT->isPointerType() || RT->getPointeeType() |
1939 | .getAddressSpace() == LangAS::opencl_constant) { |
1940 | S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_to_addr_invalid_arg) |
1941 | << Call->getArg(0) << Call->getDirectCallee() << Call->getSourceRange(); |
1942 | return true; |
1943 | } |
1944 | |
1945 | if (RT->getPointeeType().getAddressSpace() != LangAS::opencl_generic) { |
1946 | S.Diag(Call->getArg(0)->getBeginLoc(), |
1947 | diag::warn_opencl_generic_address_space_arg) |
1948 | << Call->getDirectCallee()->getNameInfo().getAsString() |
1949 | << Call->getArg(0)->getSourceRange(); |
1950 | } |
1951 | |
1952 | RT = RT->getPointeeType(); |
1953 | auto Qual = RT.getQualifiers(); |
1954 | switch (BuiltinID) { |
1955 | case Builtin::BIto_global: |
1956 | Qual.setAddressSpace(LangAS::opencl_global); |
1957 | break; |
1958 | case Builtin::BIto_local: |
1959 | Qual.setAddressSpace(LangAS::opencl_local); |
1960 | break; |
1961 | case Builtin::BIto_private: |
1962 | Qual.setAddressSpace(LangAS::opencl_private); |
1963 | break; |
1964 | default: |
1965 | llvm_unreachable("Invalid builtin function" ); |
1966 | } |
1967 | Call->setType(S.Context.getPointerType(T: S.Context.getQualifiedType( |
1968 | T: RT.getUnqualifiedType(), Qs: Qual))); |
1969 | |
1970 | return false; |
1971 | } |
1972 | |
1973 | namespace { |
1974 | enum PointerAuthOpKind { |
1975 | PAO_Strip, |
1976 | PAO_Sign, |
1977 | PAO_Auth, |
1978 | PAO_SignGeneric, |
1979 | PAO_Discriminator, |
1980 | PAO_BlendPointer, |
1981 | PAO_BlendInteger |
1982 | }; |
1983 | } |
1984 | |
1985 | static bool checkPointerAuthEnabled(Sema &S, Expr *E) { |
1986 | if (S.getLangOpts().PointerAuthIntrinsics) |
1987 | return false; |
1988 | |
1989 | S.Diag(E->getExprLoc(), diag::err_ptrauth_disabled) << E->getSourceRange(); |
1990 | return true; |
1991 | } |
1992 | |
1993 | static bool checkPointerAuthKey(Sema &S, Expr *&Arg) { |
1994 | // Convert it to type 'int'. |
1995 | if (convertArgumentToType(S, Arg, S.Context.IntTy)) |
1996 | return true; |
1997 | |
1998 | // Value-dependent expressions are okay; wait for template instantiation. |
1999 | if (Arg->isValueDependent()) |
2000 | return false; |
2001 | |
2002 | unsigned KeyValue; |
2003 | return S.checkConstantPointerAuthKey(keyExpr: Arg, key&: KeyValue); |
2004 | } |
2005 | |
2006 | bool Sema::checkConstantPointerAuthKey(Expr *Arg, unsigned &Result) { |
2007 | // Attempt to constant-evaluate the expression. |
2008 | std::optional<llvm::APSInt> KeyValue = Arg->getIntegerConstantExpr(Ctx: Context); |
2009 | if (!KeyValue) { |
2010 | Diag(Arg->getExprLoc(), diag::err_expr_not_ice) |
2011 | << 0 << Arg->getSourceRange(); |
2012 | return true; |
2013 | } |
2014 | |
2015 | // Ask the target to validate the key parameter. |
2016 | if (!Context.getTargetInfo().validatePointerAuthKey(value: *KeyValue)) { |
2017 | llvm::SmallString<32> Value; |
2018 | { |
2019 | llvm::raw_svector_ostream Str(Value); |
2020 | Str << *KeyValue; |
2021 | } |
2022 | |
2023 | Diag(Arg->getExprLoc(), diag::err_ptrauth_invalid_key) |
2024 | << Value << Arg->getSourceRange(); |
2025 | return true; |
2026 | } |
2027 | |
2028 | Result = KeyValue->getZExtValue(); |
2029 | return false; |
2030 | } |
2031 | |
2032 | static bool checkPointerAuthValue(Sema &S, Expr *&Arg, |
2033 | PointerAuthOpKind OpKind) { |
2034 | if (Arg->hasPlaceholderType()) { |
2035 | ExprResult R = S.CheckPlaceholderExpr(E: Arg); |
2036 | if (R.isInvalid()) |
2037 | return true; |
2038 | Arg = R.get(); |
2039 | } |
2040 | |
2041 | auto AllowsPointer = [](PointerAuthOpKind OpKind) { |
2042 | return OpKind != PAO_BlendInteger; |
2043 | }; |
2044 | auto AllowsInteger = [](PointerAuthOpKind OpKind) { |
2045 | return OpKind == PAO_Discriminator || OpKind == PAO_BlendInteger || |
2046 | OpKind == PAO_SignGeneric; |
2047 | }; |
2048 | |
2049 | // Require the value to have the right range of type. |
2050 | QualType ExpectedTy; |
2051 | if (AllowsPointer(OpKind) && Arg->getType()->isPointerType()) { |
2052 | ExpectedTy = Arg->getType().getUnqualifiedType(); |
2053 | } else if (AllowsPointer(OpKind) && Arg->getType()->isNullPtrType()) { |
2054 | ExpectedTy = S.Context.VoidPtrTy; |
2055 | } else if (AllowsInteger(OpKind) && |
2056 | Arg->getType()->isIntegralOrUnscopedEnumerationType()) { |
2057 | ExpectedTy = S.Context.getUIntPtrType(); |
2058 | |
2059 | } else { |
2060 | // Diagnose the failures. |
2061 | S.Diag(Arg->getExprLoc(), diag::err_ptrauth_value_bad_type) |
2062 | << unsigned(OpKind == PAO_Discriminator ? 1 |
2063 | : OpKind == PAO_BlendPointer ? 2 |
2064 | : OpKind == PAO_BlendInteger ? 3 |
2065 | : 0) |
2066 | << unsigned(AllowsInteger(OpKind) ? (AllowsPointer(OpKind) ? 2 : 1) : 0) |
2067 | << Arg->getType() << Arg->getSourceRange(); |
2068 | return true; |
2069 | } |
2070 | |
2071 | // Convert to that type. This should just be an lvalue-to-rvalue |
2072 | // conversion. |
2073 | if (convertArgumentToType(S, Value&: Arg, Ty: ExpectedTy)) |
2074 | return true; |
2075 | |
2076 | // Warn about null pointers for non-generic sign and auth operations. |
2077 | if ((OpKind == PAO_Sign || OpKind == PAO_Auth) && |
2078 | Arg->isNullPointerConstant(Ctx&: S.Context, NPC: Expr::NPC_ValueDependentIsNull)) { |
2079 | S.Diag(Arg->getExprLoc(), OpKind == PAO_Sign |
2080 | ? diag::warn_ptrauth_sign_null_pointer |
2081 | : diag::warn_ptrauth_auth_null_pointer) |
2082 | << Arg->getSourceRange(); |
2083 | } |
2084 | |
2085 | return false; |
2086 | } |
2087 | |
2088 | static ExprResult PointerAuthStrip(Sema &S, CallExpr *Call) { |
2089 | if (checkArgCount(S, Call, DesiredArgCount: 2)) |
2090 | return ExprError(); |
2091 | if (checkPointerAuthEnabled(S, Call)) |
2092 | return ExprError(); |
2093 | if (checkPointerAuthValue(S, Arg&: Call->getArgs()[0], OpKind: PAO_Strip) || |
2094 | checkPointerAuthKey(S, Arg&: Call->getArgs()[1])) |
2095 | return ExprError(); |
2096 | |
2097 | Call->setType(Call->getArgs()[0]->getType()); |
2098 | return Call; |
2099 | } |
2100 | |
2101 | static ExprResult PointerAuthBlendDiscriminator(Sema &S, CallExpr *Call) { |
2102 | if (checkArgCount(S, Call, DesiredArgCount: 2)) |
2103 | return ExprError(); |
2104 | if (checkPointerAuthEnabled(S, Call)) |
2105 | return ExprError(); |
2106 | if (checkPointerAuthValue(S, Arg&: Call->getArgs()[0], OpKind: PAO_BlendPointer) || |
2107 | checkPointerAuthValue(S, Arg&: Call->getArgs()[1], OpKind: PAO_BlendInteger)) |
2108 | return ExprError(); |
2109 | |
2110 | Call->setType(S.Context.getUIntPtrType()); |
2111 | return Call; |
2112 | } |
2113 | |
2114 | static ExprResult PointerAuthSignGenericData(Sema &S, CallExpr *Call) { |
2115 | if (checkArgCount(S, Call, DesiredArgCount: 2)) |
2116 | return ExprError(); |
2117 | if (checkPointerAuthEnabled(S, Call)) |
2118 | return ExprError(); |
2119 | if (checkPointerAuthValue(S, Arg&: Call->getArgs()[0], OpKind: PAO_SignGeneric) || |
2120 | checkPointerAuthValue(S, Arg&: Call->getArgs()[1], OpKind: PAO_Discriminator)) |
2121 | return ExprError(); |
2122 | |
2123 | Call->setType(S.Context.getUIntPtrType()); |
2124 | return Call; |
2125 | } |
2126 | |
2127 | static ExprResult PointerAuthSignOrAuth(Sema &S, CallExpr *Call, |
2128 | PointerAuthOpKind OpKind) { |
2129 | if (checkArgCount(S, Call, DesiredArgCount: 3)) |
2130 | return ExprError(); |
2131 | if (checkPointerAuthEnabled(S, Call)) |
2132 | return ExprError(); |
2133 | if (checkPointerAuthValue(S, Arg&: Call->getArgs()[0], OpKind) || |
2134 | checkPointerAuthKey(S, Arg&: Call->getArgs()[1]) || |
2135 | checkPointerAuthValue(S, Arg&: Call->getArgs()[2], OpKind: PAO_Discriminator)) |
2136 | return ExprError(); |
2137 | |
2138 | Call->setType(Call->getArgs()[0]->getType()); |
2139 | return Call; |
2140 | } |
2141 | |
2142 | static ExprResult PointerAuthAuthAndResign(Sema &S, CallExpr *Call) { |
2143 | if (checkArgCount(S, Call, DesiredArgCount: 5)) |
2144 | return ExprError(); |
2145 | if (checkPointerAuthEnabled(S, Call)) |
2146 | return ExprError(); |
2147 | if (checkPointerAuthValue(S, Arg&: Call->getArgs()[0], OpKind: PAO_Auth) || |
2148 | checkPointerAuthKey(S, Arg&: Call->getArgs()[1]) || |
2149 | checkPointerAuthValue(S, Arg&: Call->getArgs()[2], OpKind: PAO_Discriminator) || |
2150 | checkPointerAuthKey(S, Arg&: Call->getArgs()[3]) || |
2151 | checkPointerAuthValue(S, Arg&: Call->getArgs()[4], OpKind: PAO_Discriminator)) |
2152 | return ExprError(); |
2153 | |
2154 | Call->setType(Call->getArgs()[0]->getType()); |
2155 | return Call; |
2156 | } |
2157 | |
2158 | static ExprResult BuiltinLaunder(Sema &S, CallExpr *TheCall) { |
2159 | if (checkArgCount(S, Call: TheCall, DesiredArgCount: 1)) |
2160 | return ExprError(); |
2161 | |
2162 | // Compute __builtin_launder's parameter type from the argument. |
2163 | // The parameter type is: |
2164 | // * The type of the argument if it's not an array or function type, |
2165 | // Otherwise, |
2166 | // * The decayed argument type. |
2167 | QualType ParamTy = [&]() { |
2168 | QualType ArgTy = TheCall->getArg(Arg: 0)->getType(); |
2169 | if (const ArrayType *Ty = ArgTy->getAsArrayTypeUnsafe()) |
2170 | return S.Context.getPointerType(Ty->getElementType()); |
2171 | if (ArgTy->isFunctionType()) { |
2172 | return S.Context.getPointerType(ArgTy); |
2173 | } |
2174 | return ArgTy; |
2175 | }(); |
2176 | |
2177 | TheCall->setType(ParamTy); |
2178 | |
2179 | auto DiagSelect = [&]() -> std::optional<unsigned> { |
2180 | if (!ParamTy->isPointerType()) |
2181 | return 0; |
2182 | if (ParamTy->isFunctionPointerType()) |
2183 | return 1; |
2184 | if (ParamTy->isVoidPointerType()) |
2185 | return 2; |
2186 | return std::optional<unsigned>{}; |
2187 | }(); |
2188 | if (DiagSelect) { |
2189 | S.Diag(TheCall->getBeginLoc(), diag::err_builtin_launder_invalid_arg) |
2190 | << *DiagSelect << TheCall->getSourceRange(); |
2191 | return ExprError(); |
2192 | } |
2193 | |
2194 | // We either have an incomplete class type, or we have a class template |
2195 | // whose instantiation has not been forced. Example: |
2196 | // |
2197 | // template <class T> struct Foo { T value; }; |
2198 | // Foo<int> *p = nullptr; |
2199 | // auto *d = __builtin_launder(p); |
2200 | if (S.RequireCompleteType(TheCall->getBeginLoc(), ParamTy->getPointeeType(), |
2201 | diag::err_incomplete_type)) |
2202 | return ExprError(); |
2203 | |
2204 | assert(ParamTy->getPointeeType()->isObjectType() && |
2205 | "Unhandled non-object pointer case" ); |
2206 | |
2207 | InitializedEntity Entity = |
2208 | InitializedEntity::InitializeParameter(Context&: S.Context, Type: ParamTy, Consumed: false); |
2209 | ExprResult Arg = |
2210 | S.PerformCopyInitialization(Entity, EqualLoc: SourceLocation(), Init: TheCall->getArg(Arg: 0)); |
2211 | if (Arg.isInvalid()) |
2212 | return ExprError(); |
2213 | TheCall->setArg(Arg: 0, ArgExpr: Arg.get()); |
2214 | |
2215 | return TheCall; |
2216 | } |
2217 | |
2218 | // Emit an error and return true if the current object format type is in the |
2219 | // list of unsupported types. |
2220 | static bool CheckBuiltinTargetNotInUnsupported( |
2221 | Sema &S, unsigned BuiltinID, CallExpr *TheCall, |
2222 | ArrayRef<llvm::Triple::ObjectFormatType> UnsupportedObjectFormatTypes) { |
2223 | llvm::Triple::ObjectFormatType CurObjFormat = |
2224 | S.getASTContext().getTargetInfo().getTriple().getObjectFormat(); |
2225 | if (llvm::is_contained(Range&: UnsupportedObjectFormatTypes, Element: CurObjFormat)) { |
2226 | S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported) |
2227 | << TheCall->getSourceRange(); |
2228 | return true; |
2229 | } |
2230 | return false; |
2231 | } |
2232 | |
2233 | // Emit an error and return true if the current architecture is not in the list |
2234 | // of supported architectures. |
2235 | static bool |
2236 | CheckBuiltinTargetInSupported(Sema &S, unsigned BuiltinID, CallExpr *TheCall, |
2237 | ArrayRef<llvm::Triple::ArchType> SupportedArchs) { |
2238 | llvm::Triple::ArchType CurArch = |
2239 | S.getASTContext().getTargetInfo().getTriple().getArch(); |
2240 | if (llvm::is_contained(Range&: SupportedArchs, Element: CurArch)) |
2241 | return false; |
2242 | S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported) |
2243 | << TheCall->getSourceRange(); |
2244 | return true; |
2245 | } |
2246 | |
2247 | static void CheckNonNullArgument(Sema &S, const Expr *ArgExpr, |
2248 | SourceLocation CallSiteLoc); |
2249 | |
2250 | bool Sema::CheckTSBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, |
2251 | CallExpr *TheCall) { |
2252 | switch (TI.getTriple().getArch()) { |
2253 | default: |
2254 | // Some builtins don't require additional checking, so just consider these |
2255 | // acceptable. |
2256 | return false; |
2257 | case llvm::Triple::arm: |
2258 | case llvm::Triple::armeb: |
2259 | case llvm::Triple::thumb: |
2260 | case llvm::Triple::thumbeb: |
2261 | return CheckARMBuiltinFunctionCall(TI, BuiltinID, TheCall); |
2262 | case llvm::Triple::aarch64: |
2263 | case llvm::Triple::aarch64_32: |
2264 | case llvm::Triple::aarch64_be: |
2265 | return CheckAArch64BuiltinFunctionCall(TI, BuiltinID, TheCall); |
2266 | case llvm::Triple::bpfeb: |
2267 | case llvm::Triple::bpfel: |
2268 | return CheckBPFBuiltinFunctionCall(BuiltinID, TheCall); |
2269 | case llvm::Triple::hexagon: |
2270 | return CheckHexagonBuiltinFunctionCall(BuiltinID, TheCall); |
2271 | case llvm::Triple::mips: |
2272 | case llvm::Triple::mipsel: |
2273 | case llvm::Triple::mips64: |
2274 | case llvm::Triple::mips64el: |
2275 | return CheckMipsBuiltinFunctionCall(TI, BuiltinID, TheCall); |
2276 | case llvm::Triple::systemz: |
2277 | return CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall); |
2278 | case llvm::Triple::x86: |
2279 | case llvm::Triple::x86_64: |
2280 | return CheckX86BuiltinFunctionCall(TI, BuiltinID, TheCall); |
2281 | case llvm::Triple::ppc: |
2282 | case llvm::Triple::ppcle: |
2283 | case llvm::Triple::ppc64: |
2284 | case llvm::Triple::ppc64le: |
2285 | return CheckPPCBuiltinFunctionCall(TI, BuiltinID, TheCall); |
2286 | case llvm::Triple::amdgcn: |
2287 | return CheckAMDGCNBuiltinFunctionCall(BuiltinID, TheCall); |
2288 | case llvm::Triple::riscv32: |
2289 | case llvm::Triple::riscv64: |
2290 | return CheckRISCVBuiltinFunctionCall(TI, BuiltinID, TheCall); |
2291 | case llvm::Triple::loongarch32: |
2292 | case llvm::Triple::loongarch64: |
2293 | return CheckLoongArchBuiltinFunctionCall(TI, BuiltinID, TheCall); |
2294 | case llvm::Triple::wasm32: |
2295 | case llvm::Triple::wasm64: |
2296 | return CheckWebAssemblyBuiltinFunctionCall(TI, BuiltinID, TheCall); |
2297 | case llvm::Triple::nvptx: |
2298 | case llvm::Triple::nvptx64: |
2299 | return CheckNVPTXBuiltinFunctionCall(TI, BuiltinID, TheCall); |
2300 | } |
2301 | } |
2302 | |
2303 | // Check if \p Ty is a valid type for the elementwise math builtins. If it is |
2304 | // not a valid type, emit an error message and return true. Otherwise return |
2305 | // false. |
2306 | static bool checkMathBuiltinElementType(Sema &S, SourceLocation Loc, |
2307 | QualType ArgTy, int ArgIndex) { |
2308 | if (!ArgTy->getAs<VectorType>() && |
2309 | !ConstantMatrixType::isValidElementType(T: ArgTy)) { |
2310 | return S.Diag(Loc, diag::err_builtin_invalid_arg_type) |
2311 | << ArgIndex << /* vector, integer or float ty*/ 0 << ArgTy; |
2312 | } |
2313 | |
2314 | return false; |
2315 | } |
2316 | |
2317 | static bool checkFPMathBuiltinElementType(Sema &S, SourceLocation Loc, |
2318 | QualType ArgTy, int ArgIndex) { |
2319 | QualType EltTy = ArgTy; |
2320 | if (auto *VecTy = EltTy->getAs<VectorType>()) |
2321 | EltTy = VecTy->getElementType(); |
2322 | |
2323 | if (!EltTy->isRealFloatingType()) { |
2324 | return S.Diag(Loc, diag::err_builtin_invalid_arg_type) |
2325 | << ArgIndex << /* vector or float ty*/ 5 << ArgTy; |
2326 | } |
2327 | |
2328 | return false; |
2329 | } |
2330 | |
2331 | /// BuiltinCpu{Supports|Is} - Handle __builtin_cpu_{supports|is}(char *). |
2332 | /// This checks that the target supports the builtin and that the string |
2333 | /// argument is constant and valid. |
2334 | static bool BuiltinCpu(Sema &S, const TargetInfo &TI, CallExpr *TheCall, |
2335 | const TargetInfo *AuxTI, unsigned BuiltinID) { |
2336 | assert((BuiltinID == Builtin::BI__builtin_cpu_supports || |
2337 | BuiltinID == Builtin::BI__builtin_cpu_is) && |
2338 | "Expecting __builtin_cpu_..." ); |
2339 | |
2340 | bool IsCPUSupports = BuiltinID == Builtin::BI__builtin_cpu_supports; |
2341 | const TargetInfo *TheTI = &TI; |
2342 | auto SupportsBI = [=](const TargetInfo *TInfo) { |
2343 | return TInfo && ((IsCPUSupports && TInfo->supportsCpuSupports()) || |
2344 | (!IsCPUSupports && TInfo->supportsCpuIs())); |
2345 | }; |
2346 | if (!SupportsBI(&TI) && SupportsBI(AuxTI)) |
2347 | TheTI = AuxTI; |
2348 | |
2349 | if (IsCPUSupports && !TheTI->supportsCpuSupports()) |
2350 | return S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported) |
2351 | << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); |
2352 | if (!IsCPUSupports && !TheTI->supportsCpuIs()) |
2353 | return S.Diag(TheCall->getBeginLoc(), |
2354 | TI.getTriple().isOSAIX() |
2355 | ? diag::err_builtin_aix_os_unsupported |
2356 | : diag::err_builtin_target_unsupported) |
2357 | << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); |
2358 | |
2359 | Expr *Arg = TheCall->getArg(Arg: 0)->IgnoreParenImpCasts(); |
2360 | // Check if the argument is a string literal. |
2361 | if (!isa<StringLiteral>(Arg)) |
2362 | return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal) |
2363 | << Arg->getSourceRange(); |
2364 | |
2365 | // Check the contents of the string. |
2366 | StringRef Feature = cast<StringLiteral>(Val: Arg)->getString(); |
2367 | if (IsCPUSupports && !TheTI->validateCpuSupports(Name: Feature)) { |
2368 | S.Diag(TheCall->getBeginLoc(), diag::warn_invalid_cpu_supports) |
2369 | << Arg->getSourceRange(); |
2370 | return false; |
2371 | } |
2372 | if (!IsCPUSupports && !TheTI->validateCpuIs(Feature)) |
2373 | return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_is) |
2374 | << Arg->getSourceRange(); |
2375 | return false; |
2376 | } |
2377 | |
2378 | /// Checks that __builtin_popcountg was called with a single argument, which is |
2379 | /// an unsigned integer. |
2380 | static bool BuiltinPopcountg(Sema &S, CallExpr *TheCall) { |
2381 | if (checkArgCount(S, Call: TheCall, DesiredArgCount: 1)) |
2382 | return true; |
2383 | |
2384 | ExprResult ArgRes = S.DefaultLvalueConversion(E: TheCall->getArg(Arg: 0)); |
2385 | if (ArgRes.isInvalid()) |
2386 | return true; |
2387 | |
2388 | Expr *Arg = ArgRes.get(); |
2389 | TheCall->setArg(Arg: 0, ArgExpr: Arg); |
2390 | |
2391 | QualType ArgTy = Arg->getType(); |
2392 | |
2393 | if (!ArgTy->isUnsignedIntegerType()) { |
2394 | S.Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type) |
2395 | << 1 << /*unsigned integer ty*/ 7 << ArgTy; |
2396 | return true; |
2397 | } |
2398 | return false; |
2399 | } |
2400 | |
2401 | /// Checks that __builtin_{clzg,ctzg} was called with a first argument, which is |
2402 | /// an unsigned integer, and an optional second argument, which is promoted to |
2403 | /// an 'int'. |
2404 | static bool BuiltinCountZeroBitsGeneric(Sema &S, CallExpr *TheCall) { |
2405 | if (checkArgCountRange(S, Call: TheCall, MinArgCount: 1, MaxArgCount: 2)) |
2406 | return true; |
2407 | |
2408 | ExprResult Arg0Res = S.DefaultLvalueConversion(E: TheCall->getArg(Arg: 0)); |
2409 | if (Arg0Res.isInvalid()) |
2410 | return true; |
2411 | |
2412 | Expr *Arg0 = Arg0Res.get(); |
2413 | TheCall->setArg(Arg: 0, ArgExpr: Arg0); |
2414 | |
2415 | QualType Arg0Ty = Arg0->getType(); |
2416 | |
2417 | if (!Arg0Ty->isUnsignedIntegerType()) { |
2418 | S.Diag(Arg0->getBeginLoc(), diag::err_builtin_invalid_arg_type) |
2419 | << 1 << /*unsigned integer ty*/ 7 << Arg0Ty; |
2420 | return true; |
2421 | } |
2422 | |
2423 | if (TheCall->getNumArgs() > 1) { |
2424 | ExprResult Arg1Res = S.UsualUnaryConversions(E: TheCall->getArg(Arg: 1)); |
2425 | if (Arg1Res.isInvalid()) |
2426 | return true; |
2427 | |
2428 | Expr *Arg1 = Arg1Res.get(); |
2429 | TheCall->setArg(Arg: 1, ArgExpr: Arg1); |
2430 | |
2431 | QualType Arg1Ty = Arg1->getType(); |
2432 | |
2433 | if (!Arg1Ty->isSpecificBuiltinType(K: BuiltinType::Int)) { |
2434 | S.Diag(Arg1->getBeginLoc(), diag::err_builtin_invalid_arg_type) |
2435 | << 2 << /*'int' ty*/ 8 << Arg1Ty; |
2436 | return true; |
2437 | } |
2438 | } |
2439 | |
2440 | return false; |
2441 | } |
2442 | |
2443 | ExprResult |
2444 | Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID, |
2445 | CallExpr *TheCall) { |
2446 | ExprResult TheCallResult(TheCall); |
2447 | |
2448 | // Find out if any arguments are required to be integer constant expressions. |
2449 | unsigned ICEArguments = 0; |
2450 | ASTContext::GetBuiltinTypeError Error; |
2451 | Context.GetBuiltinType(ID: BuiltinID, Error, IntegerConstantArgs: &ICEArguments); |
2452 | if (Error != ASTContext::GE_None) |
2453 | ICEArguments = 0; // Don't diagnose previously diagnosed errors. |
2454 | |
2455 | // If any arguments are required to be ICE's, check and diagnose. |
2456 | for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) { |
2457 | // Skip arguments not required to be ICE's. |
2458 | if ((ICEArguments & (1 << ArgNo)) == 0) continue; |
2459 | |
2460 | llvm::APSInt Result; |
2461 | // If we don't have enough arguments, continue so we can issue better |
2462 | // diagnostic in checkArgCount(...) |
2463 | if (ArgNo < TheCall->getNumArgs() && |
2464 | BuiltinConstantArg(TheCall, ArgNum: ArgNo, Result)) |
2465 | return true; |
2466 | ICEArguments &= ~(1 << ArgNo); |
2467 | } |
2468 | |
2469 | FPOptions FPO; |
2470 | switch (BuiltinID) { |
2471 | case Builtin::BI__builtin_cpu_supports: |
2472 | case Builtin::BI__builtin_cpu_is: |
2473 | if (BuiltinCpu(S&: *this, TI: Context.getTargetInfo(), TheCall, |
2474 | AuxTI: Context.getAuxTargetInfo(), BuiltinID)) |
2475 | return ExprError(); |
2476 | break; |
2477 | case Builtin::BI__builtin_cpu_init: |
2478 | if (!Context.getTargetInfo().supportsCpuInit()) { |
2479 | Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported) |
2480 | << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); |
2481 | return ExprError(); |
2482 | } |
2483 | break; |
2484 | case Builtin::BI__builtin___CFStringMakeConstantString: |
2485 | // CFStringMakeConstantString is currently not implemented for GOFF (i.e., |
2486 | // on z/OS) and for XCOFF (i.e., on AIX). Emit unsupported |
2487 | if (CheckBuiltinTargetNotInUnsupported( |
2488 | S&: *this, BuiltinID, TheCall, |
2489 | UnsupportedObjectFormatTypes: {llvm::Triple::GOFF, llvm::Triple::XCOFF})) |
2490 | return ExprError(); |
2491 | assert(TheCall->getNumArgs() == 1 && |
2492 | "Wrong # arguments to builtin CFStringMakeConstantString" ); |
2493 | if (CheckObjCString(Arg: TheCall->getArg(Arg: 0))) |
2494 | return ExprError(); |
2495 | break; |
2496 | case Builtin::BI__builtin_ms_va_start: |
2497 | case Builtin::BI__builtin_stdarg_start: |
2498 | case Builtin::BI__builtin_va_start: |
2499 | if (BuiltinVAStart(BuiltinID, TheCall)) |
2500 | return ExprError(); |
2501 | break; |
2502 | case Builtin::BI__va_start: { |
2503 | switch (Context.getTargetInfo().getTriple().getArch()) { |
2504 | case llvm::Triple::aarch64: |
2505 | case llvm::Triple::arm: |
2506 | case llvm::Triple::thumb: |
2507 | if (BuiltinVAStartARMMicrosoft(Call: TheCall)) |
2508 | return ExprError(); |
2509 | break; |
2510 | default: |
2511 | if (BuiltinVAStart(BuiltinID, TheCall)) |
2512 | return ExprError(); |
2513 | break; |
2514 | } |
2515 | break; |
2516 | } |
2517 | |
2518 | // The acquire, release, and no fence variants are ARM and AArch64 only. |
2519 | case Builtin::BI_interlockedbittestandset_acq: |
2520 | case Builtin::BI_interlockedbittestandset_rel: |
2521 | case Builtin::BI_interlockedbittestandset_nf: |
2522 | case Builtin::BI_interlockedbittestandreset_acq: |
2523 | case Builtin::BI_interlockedbittestandreset_rel: |
2524 | case Builtin::BI_interlockedbittestandreset_nf: |
2525 | if (CheckBuiltinTargetInSupported( |
2526 | S&: *this, BuiltinID, TheCall, |
2527 | SupportedArchs: {llvm::Triple::arm, llvm::Triple::thumb, llvm::Triple::aarch64})) |
2528 | return ExprError(); |
2529 | break; |
2530 | |
2531 | // The 64-bit bittest variants are x64, ARM, and AArch64 only. |
2532 | case Builtin::BI_bittest64: |
2533 | case Builtin::BI_bittestandcomplement64: |
2534 | case Builtin::BI_bittestandreset64: |
2535 | case Builtin::BI_bittestandset64: |
2536 | case Builtin::BI_interlockedbittestandreset64: |
2537 | case Builtin::BI_interlockedbittestandset64: |
2538 | if (CheckBuiltinTargetInSupported(S&: *this, BuiltinID, TheCall, |
2539 | SupportedArchs: {llvm::Triple::x86_64, llvm::Triple::arm, |
2540 | llvm::Triple::thumb, |
2541 | llvm::Triple::aarch64})) |
2542 | return ExprError(); |
2543 | break; |
2544 | |
2545 | case Builtin::BI__builtin_set_flt_rounds: |
2546 | if (CheckBuiltinTargetInSupported(S&: *this, BuiltinID, TheCall, |
2547 | SupportedArchs: {llvm::Triple::x86, llvm::Triple::x86_64, |
2548 | llvm::Triple::arm, llvm::Triple::thumb, |
2549 | llvm::Triple::aarch64})) |
2550 | return ExprError(); |
2551 | break; |
2552 | |
2553 | case Builtin::BI__builtin_isgreater: |
2554 | case Builtin::BI__builtin_isgreaterequal: |
2555 | case Builtin::BI__builtin_isless: |
2556 | case Builtin::BI__builtin_islessequal: |
2557 | case Builtin::BI__builtin_islessgreater: |
2558 | case Builtin::BI__builtin_isunordered: |
2559 | if (BuiltinUnorderedCompare(TheCall, BuiltinID)) |
2560 | return ExprError(); |
2561 | break; |
2562 | case Builtin::BI__builtin_fpclassify: |
2563 | if (BuiltinFPClassification(TheCall, NumArgs: 6, BuiltinID)) |
2564 | return ExprError(); |
2565 | break; |
2566 | case Builtin::BI__builtin_isfpclass: |
2567 | if (BuiltinFPClassification(TheCall, NumArgs: 2, BuiltinID)) |
2568 | return ExprError(); |
2569 | break; |
2570 | case Builtin::BI__builtin_isfinite: |
2571 | case Builtin::BI__builtin_isinf: |
2572 | case Builtin::BI__builtin_isinf_sign: |
2573 | case Builtin::BI__builtin_isnan: |
2574 | case Builtin::BI__builtin_issignaling: |
2575 | case Builtin::BI__builtin_isnormal: |
2576 | case Builtin::BI__builtin_issubnormal: |
2577 | case Builtin::BI__builtin_iszero: |
2578 | case Builtin::BI__builtin_signbit: |
2579 | case Builtin::BI__builtin_signbitf: |
2580 | case Builtin::BI__builtin_signbitl: |
2581 | if (BuiltinFPClassification(TheCall, NumArgs: 1, BuiltinID)) |
2582 | return ExprError(); |
2583 | break; |
2584 | case Builtin::BI__builtin_shufflevector: |
2585 | return BuiltinShuffleVector(TheCall); |
2586 | // TheCall will be freed by the smart pointer here, but that's fine, since |
2587 | // BuiltinShuffleVector guts it, but then doesn't release it. |
2588 | case Builtin::BI__builtin_prefetch: |
2589 | if (BuiltinPrefetch(TheCall)) |
2590 | return ExprError(); |
2591 | break; |
2592 | case Builtin::BI__builtin_alloca_with_align: |
2593 | case Builtin::BI__builtin_alloca_with_align_uninitialized: |
2594 | if (BuiltinAllocaWithAlign(TheCall)) |
2595 | return ExprError(); |
2596 | [[fallthrough]]; |
2597 | case Builtin::BI__builtin_alloca: |
2598 | case Builtin::BI__builtin_alloca_uninitialized: |
2599 | Diag(TheCall->getBeginLoc(), diag::warn_alloca) |
2600 | << TheCall->getDirectCallee(); |
2601 | break; |
2602 | case Builtin::BI__arithmetic_fence: |
2603 | if (BuiltinArithmeticFence(TheCall)) |
2604 | return ExprError(); |
2605 | break; |
2606 | case Builtin::BI__assume: |
2607 | case Builtin::BI__builtin_assume: |
2608 | if (BuiltinAssume(TheCall)) |
2609 | return ExprError(); |
2610 | break; |
2611 | case Builtin::BI__builtin_assume_aligned: |
2612 | if (BuiltinAssumeAligned(TheCall)) |
2613 | return ExprError(); |
2614 | break; |
2615 | case Builtin::BI__builtin_dynamic_object_size: |
2616 | case Builtin::BI__builtin_object_size: |
2617 | if (BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: 3)) |
2618 | return ExprError(); |
2619 | break; |
2620 | case Builtin::BI__builtin_longjmp: |
2621 | if (BuiltinLongjmp(TheCall)) |
2622 | return ExprError(); |
2623 | break; |
2624 | case Builtin::BI__builtin_setjmp: |
2625 | if (BuiltinSetjmp(TheCall)) |
2626 | return ExprError(); |
2627 | break; |
2628 | case Builtin::BI__builtin_classify_type: |
2629 | if (checkArgCount(S&: *this, Call: TheCall, DesiredArgCount: 1)) return true; |
2630 | TheCall->setType(Context.IntTy); |
2631 | break; |
2632 | case Builtin::BI__builtin_complex: |
2633 | if (BuiltinComplex(TheCall)) |
2634 | return ExprError(); |
2635 | break; |
2636 | case Builtin::BI__builtin_constant_p: { |
2637 | if (checkArgCount(S&: *this, Call: TheCall, DesiredArgCount: 1)) return true; |
2638 | ExprResult Arg = DefaultFunctionArrayLvalueConversion(E: TheCall->getArg(Arg: 0)); |
2639 | if (Arg.isInvalid()) return true; |
2640 | TheCall->setArg(Arg: 0, ArgExpr: Arg.get()); |
2641 | TheCall->setType(Context.IntTy); |
2642 | break; |
2643 | } |
2644 | case Builtin::BI__builtin_launder: |
2645 | return BuiltinLaunder(S&: *this, TheCall); |
2646 | case Builtin::BI__sync_fetch_and_add: |
2647 | case Builtin::BI__sync_fetch_and_add_1: |
2648 | case Builtin::BI__sync_fetch_and_add_2: |
2649 | case Builtin::BI__sync_fetch_and_add_4: |
2650 | case Builtin::BI__sync_fetch_and_add_8: |
2651 | case Builtin::BI__sync_fetch_and_add_16: |
2652 | case Builtin::BI__sync_fetch_and_sub: |
2653 | case Builtin::BI__sync_fetch_and_sub_1: |
2654 | case Builtin::BI__sync_fetch_and_sub_2: |
2655 | case Builtin::BI__sync_fetch_and_sub_4: |
2656 | case Builtin::BI__sync_fetch_and_sub_8: |
2657 | case Builtin::BI__sync_fetch_and_sub_16: |
2658 | case Builtin::BI__sync_fetch_and_or: |
2659 | case Builtin::BI__sync_fetch_and_or_1: |
2660 | case Builtin::BI__sync_fetch_and_or_2: |
2661 | case Builtin::BI__sync_fetch_and_or_4: |
2662 | case Builtin::BI__sync_fetch_and_or_8: |
2663 | case Builtin::BI__sync_fetch_and_or_16: |
2664 | case Builtin::BI__sync_fetch_and_and: |
2665 | case Builtin::BI__sync_fetch_and_and_1: |
2666 | case Builtin::BI__sync_fetch_and_and_2: |
2667 | case Builtin::BI__sync_fetch_and_and_4: |
2668 | case Builtin::BI__sync_fetch_and_and_8: |
2669 | case Builtin::BI__sync_fetch_and_and_16: |
2670 | case Builtin::BI__sync_fetch_and_xor: |
2671 | case Builtin::BI__sync_fetch_and_xor_1: |
2672 | case Builtin::BI__sync_fetch_and_xor_2: |
2673 | case Builtin::BI__sync_fetch_and_xor_4: |
2674 | case Builtin::BI__sync_fetch_and_xor_8: |
2675 | case Builtin::BI__sync_fetch_and_xor_16: |
2676 | case Builtin::BI__sync_fetch_and_nand: |
2677 | case Builtin::BI__sync_fetch_and_nand_1: |
2678 | case Builtin::BI__sync_fetch_and_nand_2: |
2679 | case Builtin::BI__sync_fetch_and_nand_4: |
2680 | case Builtin::BI__sync_fetch_and_nand_8: |
2681 | case Builtin::BI__sync_fetch_and_nand_16: |
2682 | case Builtin::BI__sync_add_and_fetch: |
2683 | case Builtin::BI__sync_add_and_fetch_1: |
2684 | case Builtin::BI__sync_add_and_fetch_2: |
2685 | case Builtin::BI__sync_add_and_fetch_4: |
2686 | case Builtin::BI__sync_add_and_fetch_8: |
2687 | case Builtin::BI__sync_add_and_fetch_16: |
2688 | case Builtin::BI__sync_sub_and_fetch: |
2689 | case Builtin::BI__sync_sub_and_fetch_1: |
2690 | case Builtin::BI__sync_sub_and_fetch_2: |
2691 | case Builtin::BI__sync_sub_and_fetch_4: |
2692 | case Builtin::BI__sync_sub_and_fetch_8: |
2693 | case Builtin::BI__sync_sub_and_fetch_16: |
2694 | case Builtin::BI__sync_and_and_fetch: |
2695 | case Builtin::BI__sync_and_and_fetch_1: |
2696 | case Builtin::BI__sync_and_and_fetch_2: |
2697 | case Builtin::BI__sync_and_and_fetch_4: |
2698 | case Builtin::BI__sync_and_and_fetch_8: |
2699 | case Builtin::BI__sync_and_and_fetch_16: |
2700 | case Builtin::BI__sync_or_and_fetch: |
2701 | case Builtin::BI__sync_or_and_fetch_1: |
2702 | case Builtin::BI__sync_or_and_fetch_2: |
2703 | case Builtin::BI__sync_or_and_fetch_4: |
2704 | case Builtin::BI__sync_or_and_fetch_8: |
2705 | case Builtin::BI__sync_or_and_fetch_16: |
2706 | case Builtin::BI__sync_xor_and_fetch: |
2707 | case Builtin::BI__sync_xor_and_fetch_1: |
2708 | case Builtin::BI__sync_xor_and_fetch_2: |
2709 | case Builtin::BI__sync_xor_and_fetch_4: |
2710 | case Builtin::BI__sync_xor_and_fetch_8: |
2711 | case Builtin::BI__sync_xor_and_fetch_16: |
2712 | case Builtin::BI__sync_nand_and_fetch: |
2713 | case Builtin::BI__sync_nand_and_fetch_1: |
2714 | case Builtin::BI__sync_nand_and_fetch_2: |
2715 | case Builtin::BI__sync_nand_and_fetch_4: |
2716 | case Builtin::BI__sync_nand_and_fetch_8: |
2717 | case Builtin::BI__sync_nand_and_fetch_16: |
2718 | case Builtin::BI__sync_val_compare_and_swap: |
2719 | case Builtin::BI__sync_val_compare_and_swap_1: |
2720 | case Builtin::BI__sync_val_compare_and_swap_2: |
2721 | case Builtin::BI__sync_val_compare_and_swap_4: |
2722 | case Builtin::BI__sync_val_compare_and_swap_8: |
2723 | case Builtin::BI__sync_val_compare_and_swap_16: |
2724 | case Builtin::BI__sync_bool_compare_and_swap: |
2725 | case Builtin::BI__sync_bool_compare_and_swap_1: |
2726 | case Builtin::BI__sync_bool_compare_and_swap_2: |
2727 | case Builtin::BI__sync_bool_compare_and_swap_4: |
2728 | case Builtin::BI__sync_bool_compare_and_swap_8: |
2729 | case Builtin::BI__sync_bool_compare_and_swap_16: |
2730 | case Builtin::BI__sync_lock_test_and_set: |
2731 | case Builtin::BI__sync_lock_test_and_set_1: |
2732 | case Builtin::BI__sync_lock_test_and_set_2: |
2733 | case Builtin::BI__sync_lock_test_and_set_4: |
2734 | case Builtin::BI__sync_lock_test_and_set_8: |
2735 | case Builtin::BI__sync_lock_test_and_set_16: |
2736 | case Builtin::BI__sync_lock_release: |
2737 | case Builtin::BI__sync_lock_release_1: |
2738 | case Builtin::BI__sync_lock_release_2: |
2739 | case Builtin::BI__sync_lock_release_4: |
2740 | case Builtin::BI__sync_lock_release_8: |
2741 | case Builtin::BI__sync_lock_release_16: |
2742 | case Builtin::BI__sync_swap: |
2743 | case Builtin::BI__sync_swap_1: |
2744 | case Builtin::BI__sync_swap_2: |
2745 | case Builtin::BI__sync_swap_4: |
2746 | case Builtin::BI__sync_swap_8: |
2747 | case Builtin::BI__sync_swap_16: |
2748 | return BuiltinAtomicOverloaded(TheCallResult); |
2749 | case Builtin::BI__sync_synchronize: |
2750 | Diag(TheCall->getBeginLoc(), diag::warn_atomic_implicit_seq_cst) |
2751 | << TheCall->getCallee()->getSourceRange(); |
2752 | break; |
2753 | case Builtin::BI__builtin_nontemporal_load: |
2754 | case Builtin::BI__builtin_nontemporal_store: |
2755 | return BuiltinNontemporalOverloaded(TheCallResult); |
2756 | case Builtin::BI__builtin_memcpy_inline: { |
2757 | clang::Expr *SizeOp = TheCall->getArg(Arg: 2); |
2758 | // We warn about copying to or from `nullptr` pointers when `size` is |
2759 | // greater than 0. When `size` is value dependent we cannot evaluate its |
2760 | // value so we bail out. |
2761 | if (SizeOp->isValueDependent()) |
2762 | break; |
2763 | if (!SizeOp->EvaluateKnownConstInt(Ctx: Context).isZero()) { |
2764 | CheckNonNullArgument(*this, TheCall->getArg(Arg: 0), TheCall->getExprLoc()); |
2765 | CheckNonNullArgument(*this, TheCall->getArg(Arg: 1), TheCall->getExprLoc()); |
2766 | } |
2767 | break; |
2768 | } |
2769 | case Builtin::BI__builtin_memset_inline: { |
2770 | clang::Expr *SizeOp = TheCall->getArg(Arg: 2); |
2771 | // We warn about filling to `nullptr` pointers when `size` is greater than |
2772 | // 0. When `size` is value dependent we cannot evaluate its value so we bail |
2773 | // out. |
2774 | if (SizeOp->isValueDependent()) |
2775 | break; |
2776 | if (!SizeOp->EvaluateKnownConstInt(Ctx: Context).isZero()) |
2777 | CheckNonNullArgument(*this, TheCall->getArg(Arg: 0), TheCall->getExprLoc()); |
2778 | break; |
2779 | } |
2780 | #define BUILTIN(ID, TYPE, ATTRS) |
2781 | #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \ |
2782 | case Builtin::BI##ID: \ |
2783 | return AtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID); |
2784 | #include "clang/Basic/Builtins.inc" |
2785 | case Builtin::BI__annotation: |
2786 | if (BuiltinMSVCAnnotation(S&: *this, TheCall)) |
2787 | return ExprError(); |
2788 | break; |
2789 | case Builtin::BI__builtin_annotation: |
2790 | if (BuiltinAnnotation(S&: *this, TheCall)) |
2791 | return ExprError(); |
2792 | break; |
2793 | case Builtin::BI__builtin_addressof: |
2794 | if (BuiltinAddressof(S&: *this, TheCall)) |
2795 | return ExprError(); |
2796 | break; |
2797 | case Builtin::BI__builtin_function_start: |
2798 | if (BuiltinFunctionStart(S&: *this, TheCall)) |
2799 | return ExprError(); |
2800 | break; |
2801 | case Builtin::BI__builtin_is_aligned: |
2802 | case Builtin::BI__builtin_align_up: |
2803 | case Builtin::BI__builtin_align_down: |
2804 | if (BuiltinAlignment(S&: *this, TheCall, ID: BuiltinID)) |
2805 | return ExprError(); |
2806 | break; |
2807 | case Builtin::BI__builtin_add_overflow: |
2808 | case Builtin::BI__builtin_sub_overflow: |
2809 | case Builtin::BI__builtin_mul_overflow: |
2810 | if (BuiltinOverflow(S&: *this, TheCall, BuiltinID)) |
2811 | return ExprError(); |
2812 | break; |
2813 | case Builtin::BI__builtin_operator_new: |
2814 | case Builtin::BI__builtin_operator_delete: { |
2815 | bool IsDelete = BuiltinID == Builtin::BI__builtin_operator_delete; |
2816 | ExprResult Res = |
2817 | BuiltinOperatorNewDeleteOverloaded(TheCallResult, IsDelete); |
2818 | if (Res.isInvalid()) |
2819 | CorrectDelayedTyposInExpr(E: TheCallResult.get()); |
2820 | return Res; |
2821 | } |
2822 | case Builtin::BI__builtin_dump_struct: |
2823 | return BuiltinDumpStruct(S&: *this, TheCall); |
2824 | case Builtin::BI__builtin_expect_with_probability: { |
2825 | // We first want to ensure we are called with 3 arguments |
2826 | if (checkArgCount(S&: *this, Call: TheCall, DesiredArgCount: 3)) |
2827 | return ExprError(); |
2828 | // then check probability is constant float in range [0.0, 1.0] |
2829 | const Expr *ProbArg = TheCall->getArg(Arg: 2); |
2830 | SmallVector<PartialDiagnosticAt, 8> Notes; |
2831 | Expr::EvalResult Eval; |
2832 | Eval.Diag = &Notes; |
2833 | if ((!ProbArg->EvaluateAsConstantExpr(Result&: Eval, Ctx: Context)) || |
2834 | !Eval.Val.isFloat()) { |
2835 | Diag(ProbArg->getBeginLoc(), diag::err_probability_not_constant_float) |
2836 | << ProbArg->getSourceRange(); |
2837 | for (const PartialDiagnosticAt &PDiag : Notes) |
2838 | Diag(PDiag.first, PDiag.second); |
2839 | return ExprError(); |
2840 | } |
2841 | llvm::APFloat Probability = Eval.Val.getFloat(); |
2842 | bool LoseInfo = false; |
2843 | Probability.convert(ToSemantics: llvm::APFloat::IEEEdouble(), |
2844 | RM: llvm::RoundingMode::Dynamic, losesInfo: &LoseInfo); |
2845 | if (!(Probability >= llvm::APFloat(0.0) && |
2846 | Probability <= llvm::APFloat(1.0))) { |
2847 | Diag(ProbArg->getBeginLoc(), diag::err_probability_out_of_range) |
2848 | << ProbArg->getSourceRange(); |
2849 | return ExprError(); |
2850 | } |
2851 | break; |
2852 | } |
2853 | case Builtin::BI__builtin_preserve_access_index: |
2854 | if (BuiltinPreserveAI(S&: *this, TheCall)) |
2855 | return ExprError(); |
2856 | break; |
2857 | case Builtin::BI__builtin_call_with_static_chain: |
2858 | if (BuiltinCallWithStaticChain(S&: *this, BuiltinCall: TheCall)) |
2859 | return ExprError(); |
2860 | break; |
2861 | case Builtin::BI__exception_code: |
2862 | case Builtin::BI_exception_code: |
2863 | if (BuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope, |
2864 | diag::err_seh___except_block)) |
2865 | return ExprError(); |
2866 | break; |
2867 | case Builtin::BI__exception_info: |
2868 | case Builtin::BI_exception_info: |
2869 | if (BuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope, |
2870 | diag::err_seh___except_filter)) |
2871 | return ExprError(); |
2872 | break; |
2873 | case Builtin::BI__GetExceptionInfo: |
2874 | if (checkArgCount(S&: *this, Call: TheCall, DesiredArgCount: 1)) |
2875 | return ExprError(); |
2876 | |
2877 | if (CheckCXXThrowOperand( |
2878 | ThrowLoc: TheCall->getBeginLoc(), |
2879 | ThrowTy: Context.getExceptionObjectType(T: FDecl->getParamDecl(i: 0)->getType()), |
2880 | E: TheCall)) |
2881 | return ExprError(); |
2882 | |
2883 | TheCall->setType(Context.VoidPtrTy); |
2884 | break; |
2885 | case Builtin::BIaddressof: |
2886 | case Builtin::BI__addressof: |
2887 | case Builtin::BIforward: |
2888 | case Builtin::BIforward_like: |
2889 | case Builtin::BImove: |
2890 | case Builtin::BImove_if_noexcept: |
2891 | case Builtin::BIas_const: { |
2892 | // These are all expected to be of the form |
2893 | // T &/&&/* f(U &/&&) |
2894 | // where T and U only differ in qualification. |
2895 | if (checkArgCount(S&: *this, Call: TheCall, DesiredArgCount: 1)) |
2896 | return ExprError(); |
2897 | QualType Param = FDecl->getParamDecl(i: 0)->getType(); |
2898 | QualType Result = FDecl->getReturnType(); |
2899 | bool ReturnsPointer = BuiltinID == Builtin::BIaddressof || |
2900 | BuiltinID == Builtin::BI__addressof; |
2901 | if (!(Param->isReferenceType() && |
2902 | (ReturnsPointer ? Result->isAnyPointerType() |
2903 | : Result->isReferenceType()) && |
2904 | Context.hasSameUnqualifiedType(T1: Param->getPointeeType(), |
2905 | T2: Result->getPointeeType()))) { |
2906 | Diag(TheCall->getBeginLoc(), diag::err_builtin_move_forward_unsupported) |
2907 | << FDecl; |
2908 | return ExprError(); |
2909 | } |
2910 | break; |
2911 | } |
2912 | case Builtin::BI__builtin_ptrauth_strip: |
2913 | return PointerAuthStrip(S&: *this, Call: TheCall); |
2914 | case Builtin::BI__builtin_ptrauth_blend_discriminator: |
2915 | return PointerAuthBlendDiscriminator(S&: *this, Call: TheCall); |
2916 | case Builtin::BI__builtin_ptrauth_sign_unauthenticated: |
2917 | return PointerAuthSignOrAuth(S&: *this, Call: TheCall, OpKind: PAO_Sign); |
2918 | case Builtin::BI__builtin_ptrauth_auth: |
2919 | return PointerAuthSignOrAuth(S&: *this, Call: TheCall, OpKind: PAO_Auth); |
2920 | case Builtin::BI__builtin_ptrauth_sign_generic_data: |
2921 | return PointerAuthSignGenericData(S&: *this, Call: TheCall); |
2922 | case Builtin::BI__builtin_ptrauth_auth_and_resign: |
2923 | return PointerAuthAuthAndResign(S&: *this, Call: TheCall); |
2924 | // OpenCL v2.0, s6.13.16 - Pipe functions |
2925 | case Builtin::BIread_pipe: |
2926 | case Builtin::BIwrite_pipe: |
2927 | // Since those two functions are declared with var args, we need a semantic |
2928 | // check for the argument. |
2929 | if (BuiltinRWPipe(S&: *this, Call: TheCall)) |
2930 | return ExprError(); |
2931 | break; |
2932 | case Builtin::BIreserve_read_pipe: |
2933 | case Builtin::BIreserve_write_pipe: |
2934 | case Builtin::BIwork_group_reserve_read_pipe: |
2935 | case Builtin::BIwork_group_reserve_write_pipe: |
2936 | if (BuiltinReserveRWPipe(S&: *this, Call: TheCall)) |
2937 | return ExprError(); |
2938 | break; |
2939 | case Builtin::BIsub_group_reserve_read_pipe: |
2940 | case Builtin::BIsub_group_reserve_write_pipe: |
2941 | if (checkOpenCLSubgroupExt(S&: *this, Call: TheCall) || |
2942 | BuiltinReserveRWPipe(S&: *this, Call: TheCall)) |
2943 | return ExprError(); |
2944 | break; |
2945 | case Builtin::BIcommit_read_pipe: |
2946 | case Builtin::BIcommit_write_pipe: |
2947 | case Builtin::BIwork_group_commit_read_pipe: |
2948 | case Builtin::BIwork_group_commit_write_pipe: |
2949 | if (BuiltinCommitRWPipe(S&: *this, Call: TheCall)) |
2950 | return ExprError(); |
2951 | break; |
2952 | case Builtin::BIsub_group_commit_read_pipe: |
2953 | case Builtin::BIsub_group_commit_write_pipe: |
2954 | if (checkOpenCLSubgroupExt(S&: *this, Call: TheCall) || |
2955 | BuiltinCommitRWPipe(S&: *this, Call: TheCall)) |
2956 | return ExprError(); |
2957 | break; |
2958 | case Builtin::BIget_pipe_num_packets: |
2959 | case Builtin::BIget_pipe_max_packets: |
2960 | if (BuiltinPipePackets(S&: *this, Call: TheCall)) |
2961 | return ExprError(); |
2962 | break; |
2963 | case Builtin::BIto_global: |
2964 | case Builtin::BIto_local: |
2965 | case Builtin::BIto_private: |
2966 | if (OpenCLBuiltinToAddr(S&: *this, BuiltinID, Call: TheCall)) |
2967 | return ExprError(); |
2968 | break; |
2969 | // OpenCL v2.0, s6.13.17 - Enqueue kernel functions. |
2970 | case Builtin::BIenqueue_kernel: |
2971 | if (OpenCLBuiltinEnqueueKernel(S&: *this, TheCall)) |
2972 | return ExprError(); |
2973 | break; |
2974 | case Builtin::BIget_kernel_work_group_size: |
2975 | case Builtin::BIget_kernel_preferred_work_group_size_multiple: |
2976 | if (OpenCLBuiltinKernelWorkGroupSize(S&: *this, TheCall)) |
2977 | return ExprError(); |
2978 | break; |
2979 | case Builtin::BIget_kernel_max_sub_group_size_for_ndrange: |
2980 | case Builtin::BIget_kernel_sub_group_count_for_ndrange: |
2981 | if (OpenCLBuiltinNDRangeAndBlock(S&: *this, TheCall)) |
2982 | return ExprError(); |
2983 | break; |
2984 | case Builtin::BI__builtin_os_log_format: |
2985 | Cleanup.setExprNeedsCleanups(true); |
2986 | [[fallthrough]]; |
2987 | case Builtin::BI__builtin_os_log_format_buffer_size: |
2988 | if (BuiltinOSLogFormat(TheCall)) |
2989 | return ExprError(); |
2990 | break; |
2991 | case Builtin::BI__builtin_frame_address: |
2992 | case Builtin::BI__builtin_return_address: { |
2993 | if (BuiltinConstantArgRange(TheCall, ArgNum: 0, Low: 0, High: 0xFFFF)) |
2994 | return ExprError(); |
2995 | |
2996 | // -Wframe-address warning if non-zero passed to builtin |
2997 | // return/frame address. |
2998 | Expr::EvalResult Result; |
2999 | if (!TheCall->getArg(0)->isValueDependent() && |
3000 | TheCall->getArg(0)->EvaluateAsInt(Result, getASTContext()) && |
3001 | Result.Val.getInt() != 0) |
3002 | Diag(TheCall->getBeginLoc(), diag::warn_frame_address) |
3003 | << ((BuiltinID == Builtin::BI__builtin_return_address) |
3004 | ? "__builtin_return_address" |
3005 | : "__builtin_frame_address" ) |
3006 | << TheCall->getSourceRange(); |
3007 | break; |
3008 | } |
3009 | |
3010 | case Builtin::BI__builtin_nondeterministic_value: { |
3011 | if (BuiltinNonDeterministicValue(TheCall)) |
3012 | return ExprError(); |
3013 | break; |
3014 | } |
3015 | |
3016 | // __builtin_elementwise_abs restricts the element type to signed integers or |
3017 | // floating point types only. |
3018 | case Builtin::BI__builtin_elementwise_abs: { |
3019 | if (PrepareBuiltinElementwiseMathOneArgCall(TheCall)) |
3020 | return ExprError(); |
3021 | |
3022 | QualType ArgTy = TheCall->getArg(Arg: 0)->getType(); |
3023 | QualType EltTy = ArgTy; |
3024 | |
3025 | if (auto *VecTy = EltTy->getAs<VectorType>()) |
3026 | EltTy = VecTy->getElementType(); |
3027 | if (EltTy->isUnsignedIntegerType()) { |
3028 | Diag(TheCall->getArg(0)->getBeginLoc(), |
3029 | diag::err_builtin_invalid_arg_type) |
3030 | << 1 << /* signed integer or float ty*/ 3 << ArgTy; |
3031 | return ExprError(); |
3032 | } |
3033 | break; |
3034 | } |
3035 | |
3036 | // These builtins restrict the element type to floating point |
3037 | // types only. |
3038 | case Builtin::BI__builtin_elementwise_ceil: |
3039 | case Builtin::BI__builtin_elementwise_cos: |
3040 | case Builtin::BI__builtin_elementwise_exp: |
3041 | case Builtin::BI__builtin_elementwise_exp2: |
3042 | case Builtin::BI__builtin_elementwise_floor: |
3043 | case Builtin::BI__builtin_elementwise_log: |
3044 | case Builtin::BI__builtin_elementwise_log2: |
3045 | case Builtin::BI__builtin_elementwise_log10: |
3046 | case Builtin::BI__builtin_elementwise_roundeven: |
3047 | case Builtin::BI__builtin_elementwise_round: |
3048 | case Builtin::BI__builtin_elementwise_rint: |
3049 | case Builtin::BI__builtin_elementwise_nearbyint: |
3050 | case Builtin::BI__builtin_elementwise_sin: |
3051 | case Builtin::BI__builtin_elementwise_sqrt: |
3052 | case Builtin::BI__builtin_elementwise_trunc: |
3053 | case Builtin::BI__builtin_elementwise_canonicalize: { |
3054 | if (PrepareBuiltinElementwiseMathOneArgCall(TheCall)) |
3055 | return ExprError(); |
3056 | |
3057 | QualType ArgTy = TheCall->getArg(Arg: 0)->getType(); |
3058 | if (checkFPMathBuiltinElementType(*this, TheCall->getArg(Arg: 0)->getBeginLoc(), |
3059 | ArgTy, 1)) |
3060 | return ExprError(); |
3061 | break; |
3062 | } |
3063 | case Builtin::BI__builtin_elementwise_fma: { |
3064 | if (BuiltinElementwiseTernaryMath(TheCall)) |
3065 | return ExprError(); |
3066 | break; |
3067 | } |
3068 | |
3069 | // These builtins restrict the element type to floating point |
3070 | // types only, and take in two arguments. |
3071 | case Builtin::BI__builtin_elementwise_pow: { |
3072 | if (BuiltinElementwiseMath(TheCall)) |
3073 | return ExprError(); |
3074 | |
3075 | QualType ArgTy = TheCall->getArg(Arg: 0)->getType(); |
3076 | if (checkFPMathBuiltinElementType(*this, TheCall->getArg(Arg: 0)->getBeginLoc(), |
3077 | ArgTy, 1) || |
3078 | checkFPMathBuiltinElementType(*this, TheCall->getArg(Arg: 1)->getBeginLoc(), |
3079 | ArgTy, 2)) |
3080 | return ExprError(); |
3081 | break; |
3082 | } |
3083 | |
3084 | // These builtins restrict the element type to integer |
3085 | // types only. |
3086 | case Builtin::BI__builtin_elementwise_add_sat: |
3087 | case Builtin::BI__builtin_elementwise_sub_sat: { |
3088 | if (BuiltinElementwiseMath(TheCall)) |
3089 | return ExprError(); |
3090 | |
3091 | const Expr *Arg = TheCall->getArg(Arg: 0); |
3092 | QualType ArgTy = Arg->getType(); |
3093 | QualType EltTy = ArgTy; |
3094 | |
3095 | if (auto *VecTy = EltTy->getAs<VectorType>()) |
3096 | EltTy = VecTy->getElementType(); |
3097 | |
3098 | if (!EltTy->isIntegerType()) { |
3099 | Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type) |
3100 | << 1 << /* integer ty */ 6 << ArgTy; |
3101 | return ExprError(); |
3102 | } |
3103 | break; |
3104 | } |
3105 | |
3106 | case Builtin::BI__builtin_elementwise_min: |
3107 | case Builtin::BI__builtin_elementwise_max: |
3108 | if (BuiltinElementwiseMath(TheCall)) |
3109 | return ExprError(); |
3110 | break; |
3111 | |
3112 | case Builtin::BI__builtin_elementwise_bitreverse: { |
3113 | if (PrepareBuiltinElementwiseMathOneArgCall(TheCall)) |
3114 | return ExprError(); |
3115 | |
3116 | const Expr *Arg = TheCall->getArg(Arg: 0); |
3117 | QualType ArgTy = Arg->getType(); |
3118 | QualType EltTy = ArgTy; |
3119 | |
3120 | if (auto *VecTy = EltTy->getAs<VectorType>()) |
3121 | EltTy = VecTy->getElementType(); |
3122 | |
3123 | if (!EltTy->isIntegerType()) { |
3124 | Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type) |
3125 | << 1 << /* integer ty */ 6 << ArgTy; |
3126 | return ExprError(); |
3127 | } |
3128 | break; |
3129 | } |
3130 | |
3131 | case Builtin::BI__builtin_elementwise_copysign: { |
3132 | if (checkArgCount(S&: *this, Call: TheCall, DesiredArgCount: 2)) |
3133 | return ExprError(); |
3134 | |
3135 | ExprResult Magnitude = UsualUnaryConversions(E: TheCall->getArg(Arg: 0)); |
3136 | ExprResult Sign = UsualUnaryConversions(E: TheCall->getArg(Arg: 1)); |
3137 | if (Magnitude.isInvalid() || Sign.isInvalid()) |
3138 | return ExprError(); |
3139 | |
3140 | QualType MagnitudeTy = Magnitude.get()->getType(); |
3141 | QualType SignTy = Sign.get()->getType(); |
3142 | if (checkFPMathBuiltinElementType(*this, TheCall->getArg(Arg: 0)->getBeginLoc(), |
3143 | MagnitudeTy, 1) || |
3144 | checkFPMathBuiltinElementType(*this, TheCall->getArg(Arg: 1)->getBeginLoc(), |
3145 | SignTy, 2)) { |
3146 | return ExprError(); |
3147 | } |
3148 | |
3149 | if (MagnitudeTy.getCanonicalType() != SignTy.getCanonicalType()) { |
3150 | return Diag(Sign.get()->getBeginLoc(), |
3151 | diag::err_typecheck_call_different_arg_types) |
3152 | << MagnitudeTy << SignTy; |
3153 | } |
3154 | |
3155 | TheCall->setArg(Arg: 0, ArgExpr: Magnitude.get()); |
3156 | TheCall->setArg(Arg: 1, ArgExpr: Sign.get()); |
3157 | TheCall->setType(Magnitude.get()->getType()); |
3158 | break; |
3159 | } |
3160 | case Builtin::BI__builtin_reduce_max: |
3161 | case Builtin::BI__builtin_reduce_min: { |
3162 | if (PrepareBuiltinReduceMathOneArgCall(TheCall)) |
3163 | return ExprError(); |
3164 | |
3165 | const Expr *Arg = TheCall->getArg(Arg: 0); |
3166 | const auto *TyA = Arg->getType()->getAs<VectorType>(); |
3167 | if (!TyA) { |
3168 | Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type) |
3169 | << 1 << /* vector ty*/ 4 << Arg->getType(); |
3170 | return ExprError(); |
3171 | } |
3172 | |
3173 | TheCall->setType(TyA->getElementType()); |
3174 | break; |
3175 | } |
3176 | |
3177 | // These builtins support vectors of integers only. |
3178 | // TODO: ADD/MUL should support floating-point types. |
3179 | case Builtin::BI__builtin_reduce_add: |
3180 | case Builtin::BI__builtin_reduce_mul: |
3181 | case Builtin::BI__builtin_reduce_xor: |
3182 | case Builtin::BI__builtin_reduce_or: |
3183 | case Builtin::BI__builtin_reduce_and: { |
3184 | if (PrepareBuiltinReduceMathOneArgCall(TheCall)) |
3185 | return ExprError(); |
3186 | |
3187 | const Expr *Arg = TheCall->getArg(Arg: 0); |
3188 | const auto *TyA = Arg->getType()->getAs<VectorType>(); |
3189 | if (!TyA || !TyA->getElementType()->isIntegerType()) { |
3190 | Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type) |
3191 | << 1 << /* vector of integers */ 6 << Arg->getType(); |
3192 | return ExprError(); |
3193 | } |
3194 | TheCall->setType(TyA->getElementType()); |
3195 | break; |
3196 | } |
3197 | |
3198 | case Builtin::BI__builtin_matrix_transpose: |
3199 | return BuiltinMatrixTranspose(TheCall, CallResult: TheCallResult); |
3200 | |
3201 | case Builtin::BI__builtin_matrix_column_major_load: |
3202 | return BuiltinMatrixColumnMajorLoad(TheCall, CallResult: TheCallResult); |
3203 | |
3204 | case Builtin::BI__builtin_matrix_column_major_store: |
3205 | return BuiltinMatrixColumnMajorStore(TheCall, CallResult: TheCallResult); |
3206 | |
3207 | case Builtin::BI__builtin_get_device_side_mangled_name: { |
3208 | auto Check = [](CallExpr *TheCall) { |
3209 | if (TheCall->getNumArgs() != 1) |
3210 | return false; |
3211 | auto *DRE = dyn_cast<DeclRefExpr>(TheCall->getArg(Arg: 0)->IgnoreImpCasts()); |
3212 | if (!DRE) |
3213 | return false; |
3214 | auto *D = DRE->getDecl(); |
3215 | if (!isa<FunctionDecl>(D) && !isa<VarDecl>(D)) |
3216 | return false; |
3217 | return D->hasAttr<CUDAGlobalAttr>() || D->hasAttr<CUDADeviceAttr>() || |
3218 | D->hasAttr<CUDAConstantAttr>() || D->hasAttr<HIPManagedAttr>(); |
3219 | }; |
3220 | if (!Check(TheCall)) { |
3221 | Diag(TheCall->getBeginLoc(), |
3222 | diag::err_hip_invalid_args_builtin_mangled_name); |
3223 | return ExprError(); |
3224 | } |
3225 | break; |
3226 | } |
3227 | case Builtin::BI__builtin_popcountg: |
3228 | if (BuiltinPopcountg(S&: *this, TheCall)) |
3229 | return ExprError(); |
3230 | break; |
3231 | case Builtin::BI__builtin_clzg: |
3232 | case Builtin::BI__builtin_ctzg: |
3233 | if (BuiltinCountZeroBitsGeneric(S&: *this, TheCall)) |
3234 | return ExprError(); |
3235 | break; |
3236 | |
3237 | case Builtin::BI__builtin_allow_runtime_check: { |
3238 | Expr *Arg = TheCall->getArg(Arg: 0); |
3239 | // Check if the argument is a string literal. |
3240 | if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts())) { |
3241 | Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal) |
3242 | << Arg->getSourceRange(); |
3243 | return ExprError(); |
3244 | } |
3245 | break; |
3246 | } |
3247 | } |
3248 | |
3249 | if (getLangOpts().HLSL && CheckHLSLBuiltinFunctionCall(BuiltinID, TheCall)) |
3250 | return ExprError(); |
3251 | |
3252 | // Since the target specific builtins for each arch overlap, only check those |
3253 | // of the arch we are compiling for. |
3254 | if (Context.BuiltinInfo.isTSBuiltin(ID: BuiltinID)) { |
3255 | if (Context.BuiltinInfo.isAuxBuiltinID(ID: BuiltinID)) { |
3256 | assert(Context.getAuxTargetInfo() && |
3257 | "Aux Target Builtin, but not an aux target?" ); |
3258 | |
3259 | if (CheckTSBuiltinFunctionCall( |
3260 | TI: *Context.getAuxTargetInfo(), |
3261 | BuiltinID: Context.BuiltinInfo.getAuxBuiltinID(ID: BuiltinID), TheCall)) |
3262 | return ExprError(); |
3263 | } else { |
3264 | if (CheckTSBuiltinFunctionCall(TI: Context.getTargetInfo(), BuiltinID, |
3265 | TheCall)) |
3266 | return ExprError(); |
3267 | } |
3268 | } |
3269 | |
3270 | return TheCallResult; |
3271 | } |
3272 | |
3273 | // Get the valid immediate range for the specified NEON type code. |
3274 | static unsigned RFT(unsigned t, bool shift = false, bool ForceQuad = false) { |
3275 | NeonTypeFlags Type(t); |
3276 | int IsQuad = ForceQuad ? true : Type.isQuad(); |
3277 | switch (Type.getEltType()) { |
3278 | case NeonTypeFlags::Int8: |
3279 | case NeonTypeFlags::Poly8: |
3280 | return shift ? 7 : (8 << IsQuad) - 1; |
3281 | case NeonTypeFlags::Int16: |
3282 | case NeonTypeFlags::Poly16: |
3283 | return shift ? 15 : (4 << IsQuad) - 1; |
3284 | case NeonTypeFlags::Int32: |
3285 | return shift ? 31 : (2 << IsQuad) - 1; |
3286 | case NeonTypeFlags::Int64: |
3287 | case NeonTypeFlags::Poly64: |
3288 | return shift ? 63 : (1 << IsQuad) - 1; |
3289 | case NeonTypeFlags::Poly128: |
3290 | return shift ? 127 : (1 << IsQuad) - 1; |
3291 | case NeonTypeFlags::Float16: |
3292 | assert(!shift && "cannot shift float types!" ); |
3293 | return (4 << IsQuad) - 1; |
3294 | case NeonTypeFlags::Float32: |
3295 | assert(!shift && "cannot shift float types!" ); |
3296 | return (2 << IsQuad) - 1; |
3297 | case NeonTypeFlags::Float64: |
3298 | assert(!shift && "cannot shift float types!" ); |
3299 | return (1 << IsQuad) - 1; |
3300 | case NeonTypeFlags::BFloat16: |
3301 | assert(!shift && "cannot shift float types!" ); |
3302 | return (4 << IsQuad) - 1; |
3303 | } |
3304 | llvm_unreachable("Invalid NeonTypeFlag!" ); |
3305 | } |
3306 | |
3307 | /// getNeonEltType - Return the QualType corresponding to the elements of |
3308 | /// the vector type specified by the NeonTypeFlags. This is used to check |
3309 | /// the pointer arguments for Neon load/store intrinsics. |
3310 | static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context, |
3311 | bool IsPolyUnsigned, bool IsInt64Long) { |
3312 | switch (Flags.getEltType()) { |
3313 | case NeonTypeFlags::Int8: |
3314 | return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy; |
3315 | case NeonTypeFlags::Int16: |
3316 | return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy; |
3317 | case NeonTypeFlags::Int32: |
3318 | return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy; |
3319 | case NeonTypeFlags::Int64: |
3320 | if (IsInt64Long) |
3321 | return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy; |
3322 | else |
3323 | return Flags.isUnsigned() ? Context.UnsignedLongLongTy |
3324 | : Context.LongLongTy; |
3325 | case NeonTypeFlags::Poly8: |
3326 | return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy; |
3327 | case NeonTypeFlags::Poly16: |
3328 | return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy; |
3329 | case NeonTypeFlags::Poly64: |
3330 | if (IsInt64Long) |
3331 | return Context.UnsignedLongTy; |
3332 | else |
3333 | return Context.UnsignedLongLongTy; |
3334 | case NeonTypeFlags::Poly128: |
3335 | break; |
3336 | case NeonTypeFlags::Float16: |
3337 | return Context.HalfTy; |
3338 | case NeonTypeFlags::Float32: |
3339 | return Context.FloatTy; |
3340 | case NeonTypeFlags::Float64: |
3341 | return Context.DoubleTy; |
3342 | case NeonTypeFlags::BFloat16: |
3343 | return Context.BFloat16Ty; |
3344 | } |
3345 | llvm_unreachable("Invalid NeonTypeFlag!" ); |
3346 | } |
3347 | |
3348 | enum ArmStreamingType { |
3349 | ArmNonStreaming, |
3350 | ArmStreaming, |
3351 | ArmStreamingCompatible, |
3352 | ArmStreamingOrSVE2p1 |
3353 | }; |
3354 | |
3355 | enum ArmSMEState : unsigned { |
3356 | ArmNoState = 0, |
3357 | |
3358 | ArmInZA = 0b01, |
3359 | ArmOutZA = 0b10, |
3360 | ArmInOutZA = 0b11, |
3361 | ArmZAMask = 0b11, |
3362 | |
3363 | ArmInZT0 = 0b01 << 2, |
3364 | ArmOutZT0 = 0b10 << 2, |
3365 | ArmInOutZT0 = 0b11 << 2, |
3366 | ArmZT0Mask = 0b11 << 2 |
3367 | }; |
3368 | |
3369 | bool Sema::ParseSVEImmChecks( |
3370 | CallExpr *TheCall, SmallVector<std::tuple<int, int, int>, 3> &ImmChecks) { |
3371 | // Perform all the immediate checks for this builtin call. |
3372 | bool HasError = false; |
3373 | for (auto &I : ImmChecks) { |
3374 | int ArgNum, CheckTy, ElementSizeInBits; |
3375 | std::tie(args&: ArgNum, args&: CheckTy, args&: ElementSizeInBits) = I; |
3376 | |
3377 | typedef bool (*OptionSetCheckFnTy)(int64_t Value); |
3378 | |
3379 | // Function that checks whether the operand (ArgNum) is an immediate |
3380 | // that is one of the predefined values. |
3381 | auto CheckImmediateInSet = [&](OptionSetCheckFnTy CheckImm, |
3382 | int ErrDiag) -> bool { |
3383 | // We can't check the value of a dependent argument. |
3384 | Expr *Arg = TheCall->getArg(Arg: ArgNum); |
3385 | if (Arg->isTypeDependent() || Arg->isValueDependent()) |
3386 | return false; |
3387 | |
3388 | // Check constant-ness first. |
3389 | llvm::APSInt Imm; |
3390 | if (BuiltinConstantArg(TheCall, ArgNum, Result&: Imm)) |
3391 | return true; |
3392 | |
3393 | if (!CheckImm(Imm.getSExtValue())) |
3394 | return Diag(TheCall->getBeginLoc(), ErrDiag) << Arg->getSourceRange(); |
3395 | return false; |
3396 | }; |
3397 | |
3398 | switch ((SVETypeFlags::ImmCheckType)CheckTy) { |
3399 | case SVETypeFlags::ImmCheck0_31: |
3400 | if (BuiltinConstantArgRange(TheCall, ArgNum, Low: 0, High: 31)) |
3401 | HasError = true; |
3402 | break; |
3403 | case SVETypeFlags::ImmCheck0_13: |
3404 | if (BuiltinConstantArgRange(TheCall, ArgNum, Low: 0, High: 13)) |
3405 | HasError = true; |
3406 | break; |
3407 | case SVETypeFlags::ImmCheck1_16: |
3408 | if (BuiltinConstantArgRange(TheCall, ArgNum, Low: 1, High: 16)) |
3409 | HasError = true; |
3410 | break; |
3411 | case SVETypeFlags::ImmCheck0_7: |
3412 | if (BuiltinConstantArgRange(TheCall, ArgNum, Low: 0, High: 7)) |
3413 | HasError = true; |
3414 | break; |
3415 | case SVETypeFlags::ImmCheck1_1: |
3416 | if (BuiltinConstantArgRange(TheCall, ArgNum, Low: 1, High: 1)) |
3417 | HasError = true; |
3418 | break; |
3419 | case SVETypeFlags::ImmCheck1_3: |
3420 | if (BuiltinConstantArgRange(TheCall, ArgNum, Low: 1, High: 3)) |
3421 | HasError = true; |
3422 | break; |
3423 | case SVETypeFlags::ImmCheck1_7: |
3424 | if (BuiltinConstantArgRange(TheCall, ArgNum, Low: 1, High: 7)) |
3425 | HasError = true; |
3426 | break; |
3427 | case SVETypeFlags::ImmCheckExtract: |
3428 | if (BuiltinConstantArgRange(TheCall, ArgNum, Low: 0, |
3429 | High: (2048 / ElementSizeInBits) - 1)) |
3430 | HasError = true; |
3431 | break; |
3432 | case SVETypeFlags::ImmCheckShiftRight: |
3433 | if (BuiltinConstantArgRange(TheCall, ArgNum, Low: 1, High: ElementSizeInBits)) |
3434 | HasError = true; |
3435 | break; |
3436 | case SVETypeFlags::ImmCheckShiftRightNarrow: |
3437 | if (BuiltinConstantArgRange(TheCall, ArgNum, Low: 1, High: ElementSizeInBits / 2)) |
3438 | HasError = true; |
3439 | break; |
3440 | case SVETypeFlags::ImmCheckShiftLeft: |
3441 | if (BuiltinConstantArgRange(TheCall, ArgNum, Low: 0, High: ElementSizeInBits - 1)) |
3442 | HasError = true; |
3443 | break; |
3444 | case SVETypeFlags::ImmCheckLaneIndex: |
3445 | if (BuiltinConstantArgRange(TheCall, ArgNum, Low: 0, |
3446 | High: (128 / (1 * ElementSizeInBits)) - 1)) |
3447 | HasError = true; |
3448 | break; |
3449 | case SVETypeFlags::ImmCheckLaneIndexCompRotate: |
3450 | if (BuiltinConstantArgRange(TheCall, ArgNum, Low: 0, |
3451 | High: (128 / (2 * ElementSizeInBits)) - 1)) |
3452 | HasError = true; |
3453 | break; |
3454 | case SVETypeFlags::ImmCheckLaneIndexDot: |
3455 | if (BuiltinConstantArgRange(TheCall, ArgNum, Low: 0, |
3456 | High: (128 / (4 * ElementSizeInBits)) - 1)) |
3457 | HasError = true; |
3458 | break; |
3459 | case SVETypeFlags::ImmCheckComplexRot90_270: |
3460 | if (CheckImmediateInSet([](int64_t V) { return V == 90 || V == 270; }, |
3461 | diag::err_rotation_argument_to_cadd)) |
3462 | HasError = true; |
3463 | break; |
3464 | case SVETypeFlags::ImmCheckComplexRotAll90: |
3465 | if (CheckImmediateInSet( |
3466 | [](int64_t V) { |
3467 | return V == 0 || V == 90 || V == 180 || V == 270; |
3468 | }, |
3469 | diag::err_rotation_argument_to_cmla)) |
3470 | HasError = true; |
3471 | break; |
3472 | case SVETypeFlags::ImmCheck0_1: |
3473 | if (BuiltinConstantArgRange(TheCall, ArgNum, Low: 0, High: 1)) |
3474 | HasError = true; |
3475 | break; |
3476 | case SVETypeFlags::ImmCheck0_2: |
3477 | if (BuiltinConstantArgRange(TheCall, ArgNum, Low: 0, High: 2)) |
3478 | HasError = true; |
3479 | break; |
3480 | case SVETypeFlags::ImmCheck0_3: |
3481 | if (BuiltinConstantArgRange(TheCall, ArgNum, Low: 0, High: 3)) |
3482 | HasError = true; |
3483 | break; |
3484 | case SVETypeFlags::ImmCheck0_0: |
3485 | if (BuiltinConstantArgRange(TheCall, ArgNum, Low: 0, High: 0)) |
3486 | HasError = true; |
3487 | break; |
3488 | case SVETypeFlags::ImmCheck0_15: |
3489 | if (BuiltinConstantArgRange(TheCall, ArgNum, Low: 0, High: 15)) |
3490 | HasError = true; |
3491 | break; |
3492 | case SVETypeFlags::ImmCheck0_255: |
3493 | if (BuiltinConstantArgRange(TheCall, ArgNum, Low: 0, High: 255)) |
3494 | HasError = true; |
3495 | break; |
3496 | case SVETypeFlags::ImmCheck2_4_Mul2: |
3497 | if (BuiltinConstantArgRange(TheCall, ArgNum, Low: 2, High: 4) || |
3498 | BuiltinConstantArgMultiple(TheCall, ArgNum, Multiple: 2)) |
3499 | HasError = true; |
3500 | break; |
3501 | } |
3502 | } |
3503 | |
3504 | return HasError; |
3505 | } |
3506 | |
3507 | static ArmStreamingType getArmStreamingFnType(const FunctionDecl *FD) { |
3508 | if (FD->hasAttr<ArmLocallyStreamingAttr>()) |
3509 | return ArmStreaming; |
3510 | if (const Type *Ty = FD->getType().getTypePtrOrNull()) { |
3511 | if (const auto *FPT = Ty->getAs<FunctionProtoType>()) { |
3512 | if (FPT->getAArch64SMEAttributes() & |
3513 | FunctionType::SME_PStateSMEnabledMask) |
3514 | return ArmStreaming; |
3515 | if (FPT->getAArch64SMEAttributes() & |
3516 | FunctionType::SME_PStateSMCompatibleMask) |
3517 | return ArmStreamingCompatible; |
3518 | } |
3519 | } |
3520 | return ArmNonStreaming; |
3521 | } |
3522 | |
3523 | static void checkArmStreamingBuiltin(Sema &S, CallExpr *TheCall, |
3524 | const FunctionDecl *FD, |
3525 | ArmStreamingType BuiltinType) { |
3526 | ArmStreamingType FnType = getArmStreamingFnType(FD); |
3527 | if (BuiltinType == ArmStreamingOrSVE2p1) { |
3528 | // Check intrinsics that are available in [sve2p1 or sme/sme2]. |
3529 | llvm::StringMap<bool> CallerFeatureMap; |
3530 | S.Context.getFunctionFeatureMap(FeatureMap&: CallerFeatureMap, FD); |
3531 | if (Builtin::evaluateRequiredTargetFeatures("sve2p1" , CallerFeatureMap)) |
3532 | BuiltinType = ArmStreamingCompatible; |
3533 | else |
3534 | BuiltinType = ArmStreaming; |
3535 | } |
3536 | |
3537 | if (FnType == ArmStreaming && BuiltinType == ArmNonStreaming) { |
3538 | S.Diag(TheCall->getBeginLoc(), diag::warn_attribute_arm_sm_incompat_builtin) |
3539 | << TheCall->getSourceRange() << "streaming" ; |
3540 | } |
3541 | |
3542 | if (FnType == ArmStreamingCompatible && |
3543 | BuiltinType != ArmStreamingCompatible) { |
3544 | S.Diag(TheCall->getBeginLoc(), diag::warn_attribute_arm_sm_incompat_builtin) |
3545 | << TheCall->getSourceRange() << "streaming compatible" ; |
3546 | return; |
3547 | } |
3548 | |
3549 | if (FnType == ArmNonStreaming && BuiltinType == ArmStreaming) { |
3550 | S.Diag(TheCall->getBeginLoc(), diag::warn_attribute_arm_sm_incompat_builtin) |
3551 | << TheCall->getSourceRange() << "non-streaming" ; |
3552 | } |
3553 | } |
3554 | |
3555 | static bool hasArmZAState(const FunctionDecl *FD) { |
3556 | const auto *T = FD->getType()->getAs<FunctionProtoType>(); |
3557 | return (T && FunctionType::getArmZAState(T->getAArch64SMEAttributes()) != |
3558 | FunctionType::ARM_None) || |
3559 | (FD->hasAttr<ArmNewAttr>() && FD->getAttr<ArmNewAttr>()->isNewZA()); |
3560 | } |
3561 | |
3562 | static bool hasArmZT0State(const FunctionDecl *FD) { |
3563 | const auto *T = FD->getType()->getAs<FunctionProtoType>(); |
3564 | return (T && FunctionType::getArmZT0State(T->getAArch64SMEAttributes()) != |
3565 | FunctionType::ARM_None) || |
3566 | (FD->hasAttr<ArmNewAttr>() && FD->getAttr<ArmNewAttr>()->isNewZT0()); |
3567 | } |
3568 | |
3569 | static ArmSMEState getSMEState(unsigned BuiltinID) { |
3570 | switch (BuiltinID) { |
3571 | default: |
3572 | return ArmNoState; |
3573 | #define GET_SME_BUILTIN_GET_STATE |
3574 | #include "clang/Basic/arm_sme_builtins_za_state.inc" |
3575 | #undef GET_SME_BUILTIN_GET_STATE |
3576 | } |
3577 | } |
3578 | |
3579 | bool Sema::CheckSMEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { |
3580 | if (const FunctionDecl *FD = getCurFunctionDecl()) { |
3581 | std::optional<ArmStreamingType> BuiltinType; |
3582 | |
3583 | switch (BuiltinID) { |
3584 | #define GET_SME_STREAMING_ATTRS |
3585 | #include "clang/Basic/arm_sme_streaming_attrs.inc" |
3586 | #undef GET_SME_STREAMING_ATTRS |
3587 | } |
3588 | |
3589 | if (BuiltinType) |
3590 | checkArmStreamingBuiltin(*this, TheCall, FD, *BuiltinType); |
3591 | |
3592 | if ((getSMEState(BuiltinID) & ArmZAMask) && !hasArmZAState(FD)) |
3593 | Diag(TheCall->getBeginLoc(), |
3594 | diag::warn_attribute_arm_za_builtin_no_za_state) |
3595 | << TheCall->getSourceRange(); |
3596 | |
3597 | if ((getSMEState(BuiltinID) & ArmZT0Mask) && !hasArmZT0State(FD)) |
3598 | Diag(TheCall->getBeginLoc(), |
3599 | diag::warn_attribute_arm_zt0_builtin_no_zt0_state) |
3600 | << TheCall->getSourceRange(); |
3601 | } |
3602 | |
3603 | // Range check SME intrinsics that take immediate values. |
3604 | SmallVector<std::tuple<int, int, int>, 3> ImmChecks; |
3605 | |
3606 | switch (BuiltinID) { |
3607 | default: |
3608 | return false; |
3609 | #define GET_SME_IMMEDIATE_CHECK |
3610 | #include "clang/Basic/arm_sme_sema_rangechecks.inc" |
3611 | #undef GET_SME_IMMEDIATE_CHECK |
3612 | } |
3613 | |
3614 | return ParseSVEImmChecks(TheCall, ImmChecks); |
3615 | } |
3616 | |
3617 | bool Sema::CheckSVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { |
3618 | if (const FunctionDecl *FD = getCurFunctionDecl()) { |
3619 | std::optional<ArmStreamingType> BuiltinType; |
3620 | |
3621 | switch (BuiltinID) { |
3622 | #define GET_SVE_STREAMING_ATTRS |
3623 | #include "clang/Basic/arm_sve_streaming_attrs.inc" |
3624 | #undef GET_SVE_STREAMING_ATTRS |
3625 | } |
3626 | if (BuiltinType) |
3627 | checkArmStreamingBuiltin(S&: *this, TheCall, FD, BuiltinType: *BuiltinType); |
3628 | } |
3629 | // Range check SVE intrinsics that take immediate values. |
3630 | SmallVector<std::tuple<int, int, int>, 3> ImmChecks; |
3631 | |
3632 | switch (BuiltinID) { |
3633 | default: |
3634 | return false; |
3635 | #define GET_SVE_IMMEDIATE_CHECK |
3636 | #include "clang/Basic/arm_sve_sema_rangechecks.inc" |
3637 | #undef GET_SVE_IMMEDIATE_CHECK |
3638 | } |
3639 | |
3640 | return ParseSVEImmChecks(TheCall, ImmChecks); |
3641 | } |
3642 | |
3643 | bool Sema::CheckNeonBuiltinFunctionCall(const TargetInfo &TI, |
3644 | unsigned BuiltinID, CallExpr *TheCall) { |
3645 | if (const FunctionDecl *FD = getCurFunctionDecl()) { |
3646 | |
3647 | switch (BuiltinID) { |
3648 | default: |
3649 | break; |
3650 | #define GET_NEON_BUILTINS |
3651 | #define TARGET_BUILTIN(id, ...) case NEON::BI##id: |
3652 | #define BUILTIN(id, ...) case NEON::BI##id: |
3653 | #include "clang/Basic/arm_neon.inc" |
3654 | checkArmStreamingBuiltin(S&: *this, TheCall, FD, BuiltinType: ArmNonStreaming); |
3655 | break; |
3656 | #undef TARGET_BUILTIN |
3657 | #undef BUILTIN |
3658 | #undef GET_NEON_BUILTINS |
3659 | } |
3660 | } |
3661 | |
3662 | llvm::APSInt Result; |
3663 | uint64_t mask = 0; |
3664 | unsigned TV = 0; |
3665 | int PtrArgNum = -1; |
3666 | bool HasConstPtr = false; |
3667 | switch (BuiltinID) { |
3668 | #define GET_NEON_OVERLOAD_CHECK |
3669 | #include "clang/Basic/arm_neon.inc" |
3670 | #include "clang/Basic/arm_fp16.inc" |
3671 | #undef GET_NEON_OVERLOAD_CHECK |
3672 | } |
3673 | |
3674 | // For NEON intrinsics which are overloaded on vector element type, validate |
3675 | // the immediate which specifies which variant to emit. |
3676 | unsigned ImmArg = TheCall->getNumArgs()-1; |
3677 | if (mask) { |
3678 | if (BuiltinConstantArg(TheCall, ArgNum: ImmArg, Result)) |
3679 | return true; |
3680 | |
3681 | TV = Result.getLimitedValue(Limit: 64); |
3682 | if ((TV > 63) || (mask & (1ULL << TV)) == 0) |
3683 | return Diag(TheCall->getBeginLoc(), diag::err_invalid_neon_type_code) |
3684 | << TheCall->getArg(ImmArg)->getSourceRange(); |
3685 | } |
3686 | |
3687 | if (PtrArgNum >= 0) { |
3688 | // Check that pointer arguments have the specified type. |
3689 | Expr *Arg = TheCall->getArg(Arg: PtrArgNum); |
3690 | if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) |
3691 | Arg = ICE->getSubExpr(); |
3692 | ExprResult RHS = DefaultFunctionArrayLvalueConversion(E: Arg); |
3693 | QualType RHSTy = RHS.get()->getType(); |
3694 | |
3695 | llvm::Triple::ArchType Arch = TI.getTriple().getArch(); |
3696 | bool IsPolyUnsigned = Arch == llvm::Triple::aarch64 || |
3697 | Arch == llvm::Triple::aarch64_32 || |
3698 | Arch == llvm::Triple::aarch64_be; |
3699 | bool IsInt64Long = TI.getInt64Type() == TargetInfo::SignedLong; |
3700 | QualType EltTy = |
3701 | getNeonEltType(Flags: NeonTypeFlags(TV), Context, IsPolyUnsigned, IsInt64Long); |
3702 | if (HasConstPtr) |
3703 | EltTy = EltTy.withConst(); |
3704 | QualType LHSTy = Context.getPointerType(T: EltTy); |
3705 | AssignConvertType ConvTy; |
3706 | ConvTy = CheckSingleAssignmentConstraints(LHSType: LHSTy, RHS); |
3707 | if (RHS.isInvalid()) |
3708 | return true; |
3709 | if (DiagnoseAssignmentResult(ConvTy, Loc: Arg->getBeginLoc(), DstType: LHSTy, SrcType: RHSTy, |
3710 | SrcExpr: RHS.get(), Action: AA_Assigning)) |
3711 | return true; |
3712 | } |
3713 | |
3714 | // For NEON intrinsics which take an immediate value as part of the |
3715 | // instruction, range check them here. |
3716 | unsigned i = 0, l = 0, u = 0; |
3717 | switch (BuiltinID) { |
3718 | default: |
3719 | return false; |
3720 | #define GET_NEON_IMMEDIATE_CHECK |
3721 | #include "clang/Basic/arm_neon.inc" |
3722 | #include "clang/Basic/arm_fp16.inc" |
3723 | #undef GET_NEON_IMMEDIATE_CHECK |
3724 | } |
3725 | |
3726 | return BuiltinConstantArgRange(TheCall, ArgNum: i, Low: l, High: u + l); |
3727 | } |
3728 | |
3729 | bool Sema::CheckMVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { |
3730 | switch (BuiltinID) { |
3731 | default: |
3732 | return false; |
3733 | #include "clang/Basic/arm_mve_builtin_sema.inc" |
3734 | } |
3735 | } |
3736 | |
3737 | bool Sema::CheckCDEBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, |
3738 | CallExpr *TheCall) { |
3739 | bool Err = false; |
3740 | switch (BuiltinID) { |
3741 | default: |
3742 | return false; |
3743 | #include "clang/Basic/arm_cde_builtin_sema.inc" |
3744 | } |
3745 | |
3746 | if (Err) |
3747 | return true; |
3748 | |
3749 | return CheckARMCoprocessorImmediate(TI, CoprocArg: TheCall->getArg(Arg: 0), /*WantCDE*/ true); |
3750 | } |
3751 | |
3752 | bool Sema::CheckARMCoprocessorImmediate(const TargetInfo &TI, |
3753 | const Expr *CoprocArg, bool WantCDE) { |
3754 | if (isConstantEvaluatedContext()) |
3755 | return false; |
3756 | |
3757 | // We can't check the value of a dependent argument. |
3758 | if (CoprocArg->isTypeDependent() || CoprocArg->isValueDependent()) |
3759 | return false; |
3760 | |
3761 | llvm::APSInt CoprocNoAP = *CoprocArg->getIntegerConstantExpr(Ctx: Context); |
3762 | int64_t CoprocNo = CoprocNoAP.getExtValue(); |
3763 | assert(CoprocNo >= 0 && "Coprocessor immediate must be non-negative" ); |
3764 | |
3765 | uint32_t CDECoprocMask = TI.getARMCDECoprocMask(); |
3766 | bool IsCDECoproc = CoprocNo <= 7 && (CDECoprocMask & (1 << CoprocNo)); |
3767 | |
3768 | if (IsCDECoproc != WantCDE) |
3769 | return Diag(CoprocArg->getBeginLoc(), diag::err_arm_invalid_coproc) |
3770 | << (int)CoprocNo << (int)WantCDE << CoprocArg->getSourceRange(); |
3771 | |
3772 | return false; |
3773 | } |
3774 | |
3775 | bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall, |
3776 | unsigned MaxWidth) { |
3777 | assert((BuiltinID == ARM::BI__builtin_arm_ldrex || |
3778 | BuiltinID == ARM::BI__builtin_arm_ldaex || |
3779 | BuiltinID == ARM::BI__builtin_arm_strex || |
3780 | BuiltinID == ARM::BI__builtin_arm_stlex || |
3781 | BuiltinID == AArch64::BI__builtin_arm_ldrex || |
3782 | BuiltinID == AArch64::BI__builtin_arm_ldaex || |
3783 | BuiltinID == AArch64::BI__builtin_arm_strex || |
3784 | BuiltinID == AArch64::BI__builtin_arm_stlex) && |
3785 | "unexpected ARM builtin" ); |
3786 | bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex || |
3787 | BuiltinID == ARM::BI__builtin_arm_ldaex || |
3788 | BuiltinID == AArch64::BI__builtin_arm_ldrex || |
3789 | BuiltinID == AArch64::BI__builtin_arm_ldaex; |
3790 | |
3791 | DeclRefExpr *DRE =cast<DeclRefExpr>(Val: TheCall->getCallee()->IgnoreParenCasts()); |
3792 | |
3793 | // Ensure that we have the proper number of arguments. |
3794 | if (checkArgCount(S&: *this, Call: TheCall, DesiredArgCount: IsLdrex ? 1 : 2)) |
3795 | return true; |
3796 | |
3797 | // Inspect the pointer argument of the atomic builtin. This should always be |
3798 | // a pointer type, whose element is an integral scalar or pointer type. |
3799 | // Because it is a pointer type, we don't have to worry about any implicit |
3800 | // casts here. |
3801 | Expr *PointerArg = TheCall->getArg(Arg: IsLdrex ? 0 : 1); |
3802 | ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(E: PointerArg); |
3803 | if (PointerArgRes.isInvalid()) |
3804 | return true; |
3805 | PointerArg = PointerArgRes.get(); |
3806 | |
3807 | const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>(); |
3808 | if (!pointerType) { |
3809 | Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer) |
3810 | << PointerArg->getType() << PointerArg->getSourceRange(); |
3811 | return true; |
3812 | } |
3813 | |
3814 | // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next |
3815 | // task is to insert the appropriate casts into the AST. First work out just |
3816 | // what the appropriate type is. |
3817 | QualType ValType = pointerType->getPointeeType(); |
3818 | QualType AddrType = ValType.getUnqualifiedType().withVolatile(); |
3819 | if (IsLdrex) |
3820 | AddrType.addConst(); |
3821 | |
3822 | // Issue a warning if the cast is dodgy. |
3823 | CastKind CastNeeded = CK_NoOp; |
3824 | if (!AddrType.isAtLeastAsQualifiedAs(other: ValType)) { |
3825 | CastNeeded = CK_BitCast; |
3826 | Diag(DRE->getBeginLoc(), diag::ext_typecheck_convert_discards_qualifiers) |
3827 | << PointerArg->getType() << Context.getPointerType(AddrType) |
3828 | << AA_Passing << PointerArg->getSourceRange(); |
3829 | } |
3830 | |
3831 | // Finally, do the cast and replace the argument with the corrected version. |
3832 | AddrType = Context.getPointerType(T: AddrType); |
3833 | PointerArgRes = ImpCastExprToType(E: PointerArg, Type: AddrType, CK: CastNeeded); |
3834 | if (PointerArgRes.isInvalid()) |
3835 | return true; |
3836 | PointerArg = PointerArgRes.get(); |
3837 | |
3838 | TheCall->setArg(Arg: IsLdrex ? 0 : 1, ArgExpr: PointerArg); |
3839 | |
3840 | // In general, we allow ints, floats and pointers to be loaded and stored. |
3841 | if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && |
3842 | !ValType->isBlockPointerType() && !ValType->isFloatingType()) { |
3843 | Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intfltptr) |
3844 | << PointerArg->getType() << PointerArg->getSourceRange(); |
3845 | return true; |
3846 | } |
3847 | |
3848 | // But ARM doesn't have instructions to deal with 128-bit versions. |
3849 | if (Context.getTypeSize(T: ValType) > MaxWidth) { |
3850 | assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate" ); |
3851 | Diag(DRE->getBeginLoc(), diag::err_atomic_exclusive_builtin_pointer_size) |
3852 | << PointerArg->getType() << PointerArg->getSourceRange(); |
3853 | return true; |
3854 | } |
3855 | |
3856 | switch (ValType.getObjCLifetime()) { |
3857 | case Qualifiers::OCL_None: |
3858 | case Qualifiers::OCL_ExplicitNone: |
3859 | // okay |
3860 | break; |
3861 | |
3862 | case Qualifiers::OCL_Weak: |
3863 | case Qualifiers::OCL_Strong: |
3864 | case Qualifiers::OCL_Autoreleasing: |
3865 | Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership) |
3866 | << ValType << PointerArg->getSourceRange(); |
3867 | return true; |
3868 | } |
3869 | |
3870 | if (IsLdrex) { |
3871 | TheCall->setType(ValType); |
3872 | return false; |
3873 | } |
3874 | |
3875 | // Initialize the argument to be stored. |
3876 | ExprResult ValArg = TheCall->getArg(Arg: 0); |
3877 | InitializedEntity Entity = InitializedEntity::InitializeParameter( |
3878 | Context, Type: ValType, /*consume*/ Consumed: false); |
3879 | ValArg = PerformCopyInitialization(Entity, EqualLoc: SourceLocation(), Init: ValArg); |
3880 | if (ValArg.isInvalid()) |
3881 | return true; |
3882 | TheCall->setArg(Arg: 0, ArgExpr: ValArg.get()); |
3883 | |
3884 | // __builtin_arm_strex always returns an int. It's marked as such in the .def, |
3885 | // but the custom checker bypasses all default analysis. |
3886 | TheCall->setType(Context.IntTy); |
3887 | return false; |
3888 | } |
3889 | |
3890 | bool Sema::CheckARMBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, |
3891 | CallExpr *TheCall) { |
3892 | if (BuiltinID == ARM::BI__builtin_arm_ldrex || |
3893 | BuiltinID == ARM::BI__builtin_arm_ldaex || |
3894 | BuiltinID == ARM::BI__builtin_arm_strex || |
3895 | BuiltinID == ARM::BI__builtin_arm_stlex) { |
3896 | return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, MaxWidth: 64); |
3897 | } |
3898 | |
3899 | if (BuiltinID == ARM::BI__builtin_arm_prefetch) { |
3900 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: 1) || |
3901 | BuiltinConstantArgRange(TheCall, ArgNum: 2, Low: 0, High: 1); |
3902 | } |
3903 | |
3904 | if (BuiltinID == ARM::BI__builtin_arm_rsr64 || |
3905 | BuiltinID == ARM::BI__builtin_arm_wsr64) |
3906 | return BuiltinARMSpecialReg(BuiltinID, TheCall, ArgNum: 0, ExpectedFieldNum: 3, AllowName: false); |
3907 | |
3908 | if (BuiltinID == ARM::BI__builtin_arm_rsr || |
3909 | BuiltinID == ARM::BI__builtin_arm_rsrp || |
3910 | BuiltinID == ARM::BI__builtin_arm_wsr || |
3911 | BuiltinID == ARM::BI__builtin_arm_wsrp) |
3912 | return BuiltinARMSpecialReg(BuiltinID, TheCall, ArgNum: 0, ExpectedFieldNum: 5, AllowName: true); |
3913 | |
3914 | if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall)) |
3915 | return true; |
3916 | if (CheckMVEBuiltinFunctionCall(BuiltinID, TheCall)) |
3917 | return true; |
3918 | if (CheckCDEBuiltinFunctionCall(TI, BuiltinID, TheCall)) |
3919 | return true; |
3920 | |
3921 | // For intrinsics which take an immediate value as part of the instruction, |
3922 | // range check them here. |
3923 | // FIXME: VFP Intrinsics should error if VFP not present. |
3924 | switch (BuiltinID) { |
3925 | default: return false; |
3926 | case ARM::BI__builtin_arm_ssat: |
3927 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 1, High: 32); |
3928 | case ARM::BI__builtin_arm_usat: |
3929 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: 31); |
3930 | case ARM::BI__builtin_arm_ssat16: |
3931 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 1, High: 16); |
3932 | case ARM::BI__builtin_arm_usat16: |
3933 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: 15); |
3934 | case ARM::BI__builtin_arm_vcvtr_f: |
3935 | case ARM::BI__builtin_arm_vcvtr_d: |
3936 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: 1); |
3937 | case ARM::BI__builtin_arm_dmb: |
3938 | case ARM::BI__builtin_arm_dsb: |
3939 | case ARM::BI__builtin_arm_isb: |
3940 | case ARM::BI__builtin_arm_dbg: |
3941 | return BuiltinConstantArgRange(TheCall, ArgNum: 0, Low: 0, High: 15); |
3942 | case ARM::BI__builtin_arm_cdp: |
3943 | case ARM::BI__builtin_arm_cdp2: |
3944 | case ARM::BI__builtin_arm_mcr: |
3945 | case ARM::BI__builtin_arm_mcr2: |
3946 | case ARM::BI__builtin_arm_mrc: |
3947 | case ARM::BI__builtin_arm_mrc2: |
3948 | case ARM::BI__builtin_arm_mcrr: |
3949 | case ARM::BI__builtin_arm_mcrr2: |
3950 | case ARM::BI__builtin_arm_mrrc: |
3951 | case ARM::BI__builtin_arm_mrrc2: |
3952 | case ARM::BI__builtin_arm_ldc: |
3953 | case ARM::BI__builtin_arm_ldcl: |
3954 | case ARM::BI__builtin_arm_ldc2: |
3955 | case ARM::BI__builtin_arm_ldc2l: |
3956 | case ARM::BI__builtin_arm_stc: |
3957 | case ARM::BI__builtin_arm_stcl: |
3958 | case ARM::BI__builtin_arm_stc2: |
3959 | case ARM::BI__builtin_arm_stc2l: |
3960 | return BuiltinConstantArgRange(TheCall, ArgNum: 0, Low: 0, High: 15) || |
3961 | CheckARMCoprocessorImmediate(TI, CoprocArg: TheCall->getArg(Arg: 0), |
3962 | /*WantCDE*/ false); |
3963 | } |
3964 | } |
3965 | |
3966 | bool Sema::CheckAArch64BuiltinFunctionCall(const TargetInfo &TI, |
3967 | unsigned BuiltinID, |
3968 | CallExpr *TheCall) { |
3969 | if (BuiltinID == AArch64::BI__builtin_arm_ldrex || |
3970 | BuiltinID == AArch64::BI__builtin_arm_ldaex || |
3971 | BuiltinID == AArch64::BI__builtin_arm_strex || |
3972 | BuiltinID == AArch64::BI__builtin_arm_stlex) { |
3973 | return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, MaxWidth: 128); |
3974 | } |
3975 | |
3976 | if (BuiltinID == AArch64::BI__builtin_arm_prefetch) { |
3977 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: 1) || |
3978 | BuiltinConstantArgRange(TheCall, ArgNum: 2, Low: 0, High: 3) || |
3979 | BuiltinConstantArgRange(TheCall, ArgNum: 3, Low: 0, High: 1) || |
3980 | BuiltinConstantArgRange(TheCall, ArgNum: 4, Low: 0, High: 1); |
3981 | } |
3982 | |
3983 | if (BuiltinID == AArch64::BI__builtin_arm_rsr64 || |
3984 | BuiltinID == AArch64::BI__builtin_arm_wsr64 || |
3985 | BuiltinID == AArch64::BI__builtin_arm_rsr128 || |
3986 | BuiltinID == AArch64::BI__builtin_arm_wsr128) |
3987 | return BuiltinARMSpecialReg(BuiltinID, TheCall, ArgNum: 0, ExpectedFieldNum: 5, AllowName: true); |
3988 | |
3989 | // Memory Tagging Extensions (MTE) Intrinsics |
3990 | if (BuiltinID == AArch64::BI__builtin_arm_irg || |
3991 | BuiltinID == AArch64::BI__builtin_arm_addg || |
3992 | BuiltinID == AArch64::BI__builtin_arm_gmi || |
3993 | BuiltinID == AArch64::BI__builtin_arm_ldg || |
3994 | BuiltinID == AArch64::BI__builtin_arm_stg || |
3995 | BuiltinID == AArch64::BI__builtin_arm_subp) { |
3996 | return BuiltinARMMemoryTaggingCall(BuiltinID, TheCall); |
3997 | } |
3998 | |
3999 | if (BuiltinID == AArch64::BI__builtin_arm_rsr || |
4000 | BuiltinID == AArch64::BI__builtin_arm_rsrp || |
4001 | BuiltinID == AArch64::BI__builtin_arm_wsr || |
4002 | BuiltinID == AArch64::BI__builtin_arm_wsrp) |
4003 | return BuiltinARMSpecialReg(BuiltinID, TheCall, ArgNum: 0, ExpectedFieldNum: 5, AllowName: true); |
4004 | |
4005 | // Only check the valid encoding range. Any constant in this range would be |
4006 | // converted to a register of the form S1_2_C3_C4_5. Let the hardware throw |
4007 | // an exception for incorrect registers. This matches MSVC behavior. |
4008 | if (BuiltinID == AArch64::BI_ReadStatusReg || |
4009 | BuiltinID == AArch64::BI_WriteStatusReg) |
4010 | return BuiltinConstantArgRange(TheCall, ArgNum: 0, Low: 0, High: 0x7fff); |
4011 | |
4012 | if (BuiltinID == AArch64::BI__getReg) |
4013 | return BuiltinConstantArgRange(TheCall, ArgNum: 0, Low: 0, High: 31); |
4014 | |
4015 | if (BuiltinID == AArch64::BI__break) |
4016 | return BuiltinConstantArgRange(TheCall, ArgNum: 0, Low: 0, High: 0xffff); |
4017 | |
4018 | if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall)) |
4019 | return true; |
4020 | |
4021 | if (CheckSVEBuiltinFunctionCall(BuiltinID, TheCall)) |
4022 | return true; |
4023 | |
4024 | if (CheckSMEBuiltinFunctionCall(BuiltinID, TheCall)) |
4025 | return true; |
4026 | |
4027 | // For intrinsics which take an immediate value as part of the instruction, |
4028 | // range check them here. |
4029 | unsigned i = 0, l = 0, u = 0; |
4030 | switch (BuiltinID) { |
4031 | default: return false; |
4032 | case AArch64::BI__builtin_arm_dmb: |
4033 | case AArch64::BI__builtin_arm_dsb: |
4034 | case AArch64::BI__builtin_arm_isb: l = 0; u = 15; break; |
4035 | case AArch64::BI__builtin_arm_tcancel: l = 0; u = 65535; break; |
4036 | } |
4037 | |
4038 | return BuiltinConstantArgRange(TheCall, ArgNum: i, Low: l, High: u + l); |
4039 | } |
4040 | |
4041 | static bool isValidBPFPreserveFieldInfoArg(Expr *Arg) { |
4042 | if (Arg->getType()->getAsPlaceholderType()) |
4043 | return false; |
4044 | |
4045 | // The first argument needs to be a record field access. |
4046 | // If it is an array element access, we delay decision |
4047 | // to BPF backend to check whether the access is a |
4048 | // field access or not. |
4049 | return (Arg->IgnoreParens()->getObjectKind() == OK_BitField || |
4050 | isa<MemberExpr>(Val: Arg->IgnoreParens()) || |
4051 | isa<ArraySubscriptExpr>(Val: Arg->IgnoreParens())); |
4052 | } |
4053 | |
4054 | static bool isValidBPFPreserveTypeInfoArg(Expr *Arg) { |
4055 | QualType ArgType = Arg->getType(); |
4056 | if (ArgType->getAsPlaceholderType()) |
4057 | return false; |
4058 | |
4059 | // for TYPE_EXISTENCE/TYPE_MATCH/TYPE_SIZEOF reloc type |
4060 | // format: |
4061 | // 1. __builtin_preserve_type_info(*(<type> *)0, flag); |
4062 | // 2. <type> var; |
4063 | // __builtin_preserve_type_info(var, flag); |
4064 | if (!isa<DeclRefExpr>(Val: Arg->IgnoreParens()) && |
4065 | !isa<UnaryOperator>(Val: Arg->IgnoreParens())) |
4066 | return false; |
4067 | |
4068 | // Typedef type. |
4069 | if (ArgType->getAs<TypedefType>()) |
4070 | return true; |
4071 | |
4072 | // Record type or Enum type. |
4073 | const Type *Ty = ArgType->getUnqualifiedDesugaredType(); |
4074 | if (const auto *RT = Ty->getAs<RecordType>()) { |
4075 | if (!RT->getDecl()->getDeclName().isEmpty()) |
4076 | return true; |
4077 | } else if (const auto *ET = Ty->getAs<EnumType>()) { |
4078 | if (!ET->getDecl()->getDeclName().isEmpty()) |
4079 | return true; |
4080 | } |
4081 | |
4082 | return false; |
4083 | } |
4084 | |
4085 | static bool isValidBPFPreserveEnumValueArg(Expr *Arg) { |
4086 | QualType ArgType = Arg->getType(); |
4087 | if (ArgType->getAsPlaceholderType()) |
4088 | return false; |
4089 | |
4090 | // for ENUM_VALUE_EXISTENCE/ENUM_VALUE reloc type |
4091 | // format: |
4092 | // __builtin_preserve_enum_value(*(<enum_type> *)<enum_value>, |
4093 | // flag); |
4094 | const auto *UO = dyn_cast<UnaryOperator>(Val: Arg->IgnoreParens()); |
4095 | if (!UO) |
4096 | return false; |
4097 | |
4098 | const auto *CE = dyn_cast<CStyleCastExpr>(Val: UO->getSubExpr()); |
4099 | if (!CE) |
4100 | return false; |
4101 | if (CE->getCastKind() != CK_IntegralToPointer && |
4102 | CE->getCastKind() != CK_NullToPointer) |
4103 | return false; |
4104 | |
4105 | // The integer must be from an EnumConstantDecl. |
4106 | const auto *DR = dyn_cast<DeclRefExpr>(CE->getSubExpr()); |
4107 | if (!DR) |
4108 | return false; |
4109 | |
4110 | const EnumConstantDecl *Enumerator = |
4111 | dyn_cast<EnumConstantDecl>(DR->getDecl()); |
4112 | if (!Enumerator) |
4113 | return false; |
4114 | |
4115 | // The type must be EnumType. |
4116 | const Type *Ty = ArgType->getUnqualifiedDesugaredType(); |
4117 | const auto *ET = Ty->getAs<EnumType>(); |
4118 | if (!ET) |
4119 | return false; |
4120 | |
4121 | // The enum value must be supported. |
4122 | return llvm::is_contained(Range: ET->getDecl()->enumerators(), Element: Enumerator); |
4123 | } |
4124 | |
4125 | bool Sema::CheckBPFBuiltinFunctionCall(unsigned BuiltinID, |
4126 | CallExpr *TheCall) { |
4127 | assert((BuiltinID == BPF::BI__builtin_preserve_field_info || |
4128 | BuiltinID == BPF::BI__builtin_btf_type_id || |
4129 | BuiltinID == BPF::BI__builtin_preserve_type_info || |
4130 | BuiltinID == BPF::BI__builtin_preserve_enum_value) && |
4131 | "unexpected BPF builtin" ); |
4132 | |
4133 | if (checkArgCount(S&: *this, Call: TheCall, DesiredArgCount: 2)) |
4134 | return true; |
4135 | |
4136 | // The second argument needs to be a constant int |
4137 | Expr *Arg = TheCall->getArg(Arg: 1); |
4138 | std::optional<llvm::APSInt> Value = Arg->getIntegerConstantExpr(Ctx: Context); |
4139 | diag::kind kind; |
4140 | if (!Value) { |
4141 | if (BuiltinID == BPF::BI__builtin_preserve_field_info) |
4142 | kind = diag::err_preserve_field_info_not_const; |
4143 | else if (BuiltinID == BPF::BI__builtin_btf_type_id) |
4144 | kind = diag::err_btf_type_id_not_const; |
4145 | else if (BuiltinID == BPF::BI__builtin_preserve_type_info) |
4146 | kind = diag::err_preserve_type_info_not_const; |
4147 | else |
4148 | kind = diag::err_preserve_enum_value_not_const; |
4149 | Diag(Arg->getBeginLoc(), kind) << 2 << Arg->getSourceRange(); |
4150 | return true; |
4151 | } |
4152 | |
4153 | // The first argument |
4154 | Arg = TheCall->getArg(Arg: 0); |
4155 | bool InvalidArg = false; |
4156 | bool ReturnUnsignedInt = true; |
4157 | if (BuiltinID == BPF::BI__builtin_preserve_field_info) { |
4158 | if (!isValidBPFPreserveFieldInfoArg(Arg)) { |
4159 | InvalidArg = true; |
4160 | kind = diag::err_preserve_field_info_not_field; |
4161 | } |
4162 | } else if (BuiltinID == BPF::BI__builtin_preserve_type_info) { |
4163 | if (!isValidBPFPreserveTypeInfoArg(Arg)) { |
4164 | InvalidArg = true; |
4165 | kind = diag::err_preserve_type_info_invalid; |
4166 | } |
4167 | } else if (BuiltinID == BPF::BI__builtin_preserve_enum_value) { |
4168 | if (!isValidBPFPreserveEnumValueArg(Arg)) { |
4169 | InvalidArg = true; |
4170 | kind = diag::err_preserve_enum_value_invalid; |
4171 | } |
4172 | ReturnUnsignedInt = false; |
4173 | } else if (BuiltinID == BPF::BI__builtin_btf_type_id) { |
4174 | ReturnUnsignedInt = false; |
4175 | } |
4176 | |
4177 | if (InvalidArg) { |
4178 | Diag(Arg->getBeginLoc(), kind) << 1 << Arg->getSourceRange(); |
4179 | return true; |
4180 | } |
4181 | |
4182 | if (ReturnUnsignedInt) |
4183 | TheCall->setType(Context.UnsignedIntTy); |
4184 | else |
4185 | TheCall->setType(Context.UnsignedLongTy); |
4186 | return false; |
4187 | } |
4188 | |
4189 | bool Sema::CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) { |
4190 | struct ArgInfo { |
4191 | uint8_t OpNum; |
4192 | bool IsSigned; |
4193 | uint8_t BitWidth; |
4194 | uint8_t Align; |
4195 | }; |
4196 | struct BuiltinInfo { |
4197 | unsigned BuiltinID; |
4198 | ArgInfo Infos[2]; |
4199 | }; |
4200 | |
4201 | static BuiltinInfo Infos[] = { |
4202 | { .BuiltinID: Hexagon::BI__builtin_circ_ldd, .Infos: {{ .OpNum: 3, .IsSigned: true, .BitWidth: 4, .Align: 3 }} }, |
4203 | { .BuiltinID: Hexagon::BI__builtin_circ_ldw, .Infos: {{ .OpNum: 3, .IsSigned: true, .BitWidth: 4, .Align: 2 }} }, |
4204 | { .BuiltinID: Hexagon::BI__builtin_circ_ldh, .Infos: {{ .OpNum: 3, .IsSigned: true, .BitWidth: 4, .Align: 1 }} }, |
4205 | { .BuiltinID: Hexagon::BI__builtin_circ_lduh, .Infos: {{ .OpNum: 3, .IsSigned: true, .BitWidth: 4, .Align: 1 }} }, |
4206 | { .BuiltinID: Hexagon::BI__builtin_circ_ldb, .Infos: {{ .OpNum: 3, .IsSigned: true, .BitWidth: 4, .Align: 0 }} }, |
4207 | { .BuiltinID: Hexagon::BI__builtin_circ_ldub, .Infos: {{ .OpNum: 3, .IsSigned: true, .BitWidth: 4, .Align: 0 }} }, |
4208 | { .BuiltinID: Hexagon::BI__builtin_circ_std, .Infos: {{ .OpNum: 3, .IsSigned: true, .BitWidth: 4, .Align: 3 }} }, |
4209 | { .BuiltinID: Hexagon::BI__builtin_circ_stw, .Infos: {{ .OpNum: 3, .IsSigned: true, .BitWidth: 4, .Align: 2 }} }, |
4210 | { .BuiltinID: Hexagon::BI__builtin_circ_sth, .Infos: {{ .OpNum: 3, .IsSigned: true, .BitWidth: 4, .Align: 1 }} }, |
4211 | { .BuiltinID: Hexagon::BI__builtin_circ_sthhi, .Infos: {{ .OpNum: 3, .IsSigned: true, .BitWidth: 4, .Align: 1 }} }, |
4212 | { .BuiltinID: Hexagon::BI__builtin_circ_stb, .Infos: {{ .OpNum: 3, .IsSigned: true, .BitWidth: 4, .Align: 0 }} }, |
4213 | |
4214 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci, .Infos: {{ .OpNum: 1, .IsSigned: true, .BitWidth: 4, .Align: 0 }} }, |
4215 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci, .Infos: {{ .OpNum: 1, .IsSigned: true, .BitWidth: 4, .Align: 0 }} }, |
4216 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci, .Infos: {{ .OpNum: 1, .IsSigned: true, .BitWidth: 4, .Align: 1 }} }, |
4217 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci, .Infos: {{ .OpNum: 1, .IsSigned: true, .BitWidth: 4, .Align: 1 }} }, |
4218 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_L2_loadri_pci, .Infos: {{ .OpNum: 1, .IsSigned: true, .BitWidth: 4, .Align: 2 }} }, |
4219 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci, .Infos: {{ .OpNum: 1, .IsSigned: true, .BitWidth: 4, .Align: 3 }} }, |
4220 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_storerb_pci, .Infos: {{ .OpNum: 1, .IsSigned: true, .BitWidth: 4, .Align: 0 }} }, |
4221 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_storerh_pci, .Infos: {{ .OpNum: 1, .IsSigned: true, .BitWidth: 4, .Align: 1 }} }, |
4222 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_storerf_pci, .Infos: {{ .OpNum: 1, .IsSigned: true, .BitWidth: 4, .Align: 1 }} }, |
4223 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_storeri_pci, .Infos: {{ .OpNum: 1, .IsSigned: true, .BitWidth: 4, .Align: 2 }} }, |
4224 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_storerd_pci, .Infos: {{ .OpNum: 1, .IsSigned: true, .BitWidth: 4, .Align: 3 }} }, |
4225 | |
4226 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_A2_combineii, .Infos: {{ .OpNum: 1, .IsSigned: true, .BitWidth: 8, .Align: 0 }} }, |
4227 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_A2_tfrih, .Infos: {{ .OpNum: 1, .IsSigned: false, .BitWidth: 16, .Align: 0 }} }, |
4228 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_A2_tfril, .Infos: {{ .OpNum: 1, .IsSigned: false, .BitWidth: 16, .Align: 0 }} }, |
4229 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_A2_tfrpi, .Infos: {{ .OpNum: 0, .IsSigned: true, .BitWidth: 8, .Align: 0 }} }, |
4230 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_A4_bitspliti, .Infos: {{ .OpNum: 1, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4231 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_A4_cmpbeqi, .Infos: {{ .OpNum: 1, .IsSigned: false, .BitWidth: 8, .Align: 0 }} }, |
4232 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_A4_cmpbgti, .Infos: {{ .OpNum: 1, .IsSigned: true, .BitWidth: 8, .Align: 0 }} }, |
4233 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_A4_cround_ri, .Infos: {{ .OpNum: 1, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4234 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_A4_round_ri, .Infos: {{ .OpNum: 1, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4235 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_A4_round_ri_sat, .Infos: {{ .OpNum: 1, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4236 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_A4_vcmpbeqi, .Infos: {{ .OpNum: 1, .IsSigned: false, .BitWidth: 8, .Align: 0 }} }, |
4237 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_A4_vcmpbgti, .Infos: {{ .OpNum: 1, .IsSigned: true, .BitWidth: 8, .Align: 0 }} }, |
4238 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_A4_vcmpbgtui, .Infos: {{ .OpNum: 1, .IsSigned: false, .BitWidth: 7, .Align: 0 }} }, |
4239 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_A4_vcmpheqi, .Infos: {{ .OpNum: 1, .IsSigned: true, .BitWidth: 8, .Align: 0 }} }, |
4240 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_A4_vcmphgti, .Infos: {{ .OpNum: 1, .IsSigned: true, .BitWidth: 8, .Align: 0 }} }, |
4241 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_A4_vcmphgtui, .Infos: {{ .OpNum: 1, .IsSigned: false, .BitWidth: 7, .Align: 0 }} }, |
4242 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_A4_vcmpweqi, .Infos: {{ .OpNum: 1, .IsSigned: true, .BitWidth: 8, .Align: 0 }} }, |
4243 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_A4_vcmpwgti, .Infos: {{ .OpNum: 1, .IsSigned: true, .BitWidth: 8, .Align: 0 }} }, |
4244 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_A4_vcmpwgtui, .Infos: {{ .OpNum: 1, .IsSigned: false, .BitWidth: 7, .Align: 0 }} }, |
4245 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_C2_bitsclri, .Infos: {{ .OpNum: 1, .IsSigned: false, .BitWidth: 6, .Align: 0 }} }, |
4246 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_C2_muxii, .Infos: {{ .OpNum: 2, .IsSigned: true, .BitWidth: 8, .Align: 0 }} }, |
4247 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_C4_nbitsclri, .Infos: {{ .OpNum: 1, .IsSigned: false, .BitWidth: 6, .Align: 0 }} }, |
4248 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_F2_dfclass, .Infos: {{ .OpNum: 1, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4249 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_F2_dfimm_n, .Infos: {{ .OpNum: 0, .IsSigned: false, .BitWidth: 10, .Align: 0 }} }, |
4250 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_F2_dfimm_p, .Infos: {{ .OpNum: 0, .IsSigned: false, .BitWidth: 10, .Align: 0 }} }, |
4251 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_F2_sfclass, .Infos: {{ .OpNum: 1, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4252 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_F2_sfimm_n, .Infos: {{ .OpNum: 0, .IsSigned: false, .BitWidth: 10, .Align: 0 }} }, |
4253 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_F2_sfimm_p, .Infos: {{ .OpNum: 0, .IsSigned: false, .BitWidth: 10, .Align: 0 }} }, |
4254 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_M4_mpyri_addi, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 6, .Align: 0 }} }, |
4255 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_M4_mpyri_addr_u2, .Infos: {{ .OpNum: 1, .IsSigned: false, .BitWidth: 6, .Align: 2 }} }, |
4256 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_addasl_rrri, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 3, .Align: 0 }} }, |
4257 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_acc, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 6, .Align: 0 }} }, |
4258 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_and, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 6, .Align: 0 }} }, |
4259 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_asl_i_p, .Infos: {{ .OpNum: 1, .IsSigned: false, .BitWidth: 6, .Align: 0 }} }, |
4260 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_nac, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 6, .Align: 0 }} }, |
4261 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_or, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 6, .Align: 0 }} }, |
4262 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_xacc, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 6, .Align: 0 }} }, |
4263 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_acc, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4264 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_and, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4265 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_asl_i_r, .Infos: {{ .OpNum: 1, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4266 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_nac, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4267 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_or, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4268 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_sat, .Infos: {{ .OpNum: 1, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4269 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_xacc, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4270 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_asl_i_vh, .Infos: {{ .OpNum: 1, .IsSigned: false, .BitWidth: 4, .Align: 0 }} }, |
4271 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_asl_i_vw, .Infos: {{ .OpNum: 1, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4272 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_acc, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 6, .Align: 0 }} }, |
4273 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_and, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 6, .Align: 0 }} }, |
4274 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_asr_i_p, .Infos: {{ .OpNum: 1, .IsSigned: false, .BitWidth: 6, .Align: 0 }} }, |
4275 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_nac, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 6, .Align: 0 }} }, |
4276 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_or, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 6, .Align: 0 }} }, |
4277 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd_goodsyntax, |
4278 | .Infos: {{ .OpNum: 1, .IsSigned: false, .BitWidth: 6, .Align: 0 }} }, |
4279 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd, .Infos: {{ .OpNum: 1, .IsSigned: false, .BitWidth: 6, .Align: 0 }} }, |
4280 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_acc, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4281 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_and, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4282 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_asr_i_r, .Infos: {{ .OpNum: 1, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4283 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_nac, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4284 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_or, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4285 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd_goodsyntax, |
4286 | .Infos: {{ .OpNum: 1, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4287 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd, .Infos: {{ .OpNum: 1, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4288 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_asr_i_svw_trun, .Infos: {{ .OpNum: 1, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4289 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_asr_i_vh, .Infos: {{ .OpNum: 1, .IsSigned: false, .BitWidth: 4, .Align: 0 }} }, |
4290 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_asr_i_vw, .Infos: {{ .OpNum: 1, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4291 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_clrbit_i, .Infos: {{ .OpNum: 1, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4292 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_extractu, .Infos: {{ .OpNum: 1, .IsSigned: false, .BitWidth: 5, .Align: 0 }, |
4293 | { .OpNum: 2, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4294 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_extractup, .Infos: {{ .OpNum: 1, .IsSigned: false, .BitWidth: 6, .Align: 0 }, |
4295 | { .OpNum: 2, .IsSigned: false, .BitWidth: 6, .Align: 0 }} }, |
4296 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_insert, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 5, .Align: 0 }, |
4297 | { .OpNum: 3, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4298 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_insertp, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 6, .Align: 0 }, |
4299 | { .OpNum: 3, .IsSigned: false, .BitWidth: 6, .Align: 0 }} }, |
4300 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_acc, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 6, .Align: 0 }} }, |
4301 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_and, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 6, .Align: 0 }} }, |
4302 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p, .Infos: {{ .OpNum: 1, .IsSigned: false, .BitWidth: 6, .Align: 0 }} }, |
4303 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_nac, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 6, .Align: 0 }} }, |
4304 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_or, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 6, .Align: 0 }} }, |
4305 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_xacc, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 6, .Align: 0 }} }, |
4306 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_acc, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4307 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_and, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4308 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r, .Infos: {{ .OpNum: 1, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4309 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_nac, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4310 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_or, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4311 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_xacc, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4312 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vh, .Infos: {{ .OpNum: 1, .IsSigned: false, .BitWidth: 4, .Align: 0 }} }, |
4313 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vw, .Infos: {{ .OpNum: 1, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4314 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_setbit_i, .Infos: {{ .OpNum: 1, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4315 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_tableidxb_goodsyntax, |
4316 | .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 4, .Align: 0 }, |
4317 | { .OpNum: 3, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4318 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_tableidxd_goodsyntax, |
4319 | .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 4, .Align: 0 }, |
4320 | { .OpNum: 3, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4321 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_tableidxh_goodsyntax, |
4322 | .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 4, .Align: 0 }, |
4323 | { .OpNum: 3, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4324 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_tableidxw_goodsyntax, |
4325 | .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 4, .Align: 0 }, |
4326 | { .OpNum: 3, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4327 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_togglebit_i, .Infos: {{ .OpNum: 1, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4328 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_tstbit_i, .Infos: {{ .OpNum: 1, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4329 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_valignib, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 3, .Align: 0 }} }, |
4330 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S2_vspliceib, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 3, .Align: 0 }} }, |
4331 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S4_addi_asl_ri, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4332 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S4_addi_lsr_ri, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4333 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S4_andi_asl_ri, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4334 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S4_andi_lsr_ri, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4335 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S4_clbaddi, .Infos: {{ .OpNum: 1, .IsSigned: true , .BitWidth: 6, .Align: 0 }} }, |
4336 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S4_clbpaddi, .Infos: {{ .OpNum: 1, .IsSigned: true, .BitWidth: 6, .Align: 0 }} }, |
4337 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S4_extract, .Infos: {{ .OpNum: 1, .IsSigned: false, .BitWidth: 5, .Align: 0 }, |
4338 | { .OpNum: 2, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4339 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S4_extractp, .Infos: {{ .OpNum: 1, .IsSigned: false, .BitWidth: 6, .Align: 0 }, |
4340 | { .OpNum: 2, .IsSigned: false, .BitWidth: 6, .Align: 0 }} }, |
4341 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S4_lsli, .Infos: {{ .OpNum: 0, .IsSigned: true, .BitWidth: 6, .Align: 0 }} }, |
4342 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S4_ntstbit_i, .Infos: {{ .OpNum: 1, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4343 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S4_ori_asl_ri, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4344 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S4_ori_lsr_ri, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4345 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S4_subi_asl_ri, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4346 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S4_subi_lsr_ri, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4347 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S4_vrcrotate_acc, .Infos: {{ .OpNum: 3, .IsSigned: false, .BitWidth: 2, .Align: 0 }} }, |
4348 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S4_vrcrotate, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 2, .Align: 0 }} }, |
4349 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S5_asrhub_rnd_sat_goodsyntax, |
4350 | .Infos: {{ .OpNum: 1, .IsSigned: false, .BitWidth: 4, .Align: 0 }} }, |
4351 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S5_asrhub_sat, .Infos: {{ .OpNum: 1, .IsSigned: false, .BitWidth: 4, .Align: 0 }} }, |
4352 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S5_vasrhrnd_goodsyntax, |
4353 | .Infos: {{ .OpNum: 1, .IsSigned: false, .BitWidth: 4, .Align: 0 }} }, |
4354 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S6_rol_i_p, .Infos: {{ .OpNum: 1, .IsSigned: false, .BitWidth: 6, .Align: 0 }} }, |
4355 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_acc, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 6, .Align: 0 }} }, |
4356 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_and, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 6, .Align: 0 }} }, |
4357 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_nac, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 6, .Align: 0 }} }, |
4358 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_or, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 6, .Align: 0 }} }, |
4359 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_xacc, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 6, .Align: 0 }} }, |
4360 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S6_rol_i_r, .Infos: {{ .OpNum: 1, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4361 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_acc, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4362 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_and, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4363 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_nac, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4364 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_or, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4365 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_xacc, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 5, .Align: 0 }} }, |
4366 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_V6_valignbi, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 3, .Align: 0 }} }, |
4367 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_V6_valignbi_128B, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 3, .Align: 0 }} }, |
4368 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_V6_vlalignbi, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 3, .Align: 0 }} }, |
4369 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_V6_vlalignbi_128B, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 3, .Align: 0 }} }, |
4370 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 1, .Align: 0 }} }, |
4371 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_128B, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 1, .Align: 0 }} }, |
4372 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc, .Infos: {{ .OpNum: 3, .IsSigned: false, .BitWidth: 1, .Align: 0 }} }, |
4373 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc_128B, |
4374 | .Infos: {{ .OpNum: 3, .IsSigned: false, .BitWidth: 1, .Align: 0 }} }, |
4375 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 1, .Align: 0 }} }, |
4376 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_128B, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 1, .Align: 0 }} }, |
4377 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc, .Infos: {{ .OpNum: 3, .IsSigned: false, .BitWidth: 1, .Align: 0 }} }, |
4378 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc_128B, |
4379 | .Infos: {{ .OpNum: 3, .IsSigned: false, .BitWidth: 1, .Align: 0 }} }, |
4380 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_V6_vrsadubi, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 1, .Align: 0 }} }, |
4381 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_128B, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 1, .Align: 0 }} }, |
4382 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc, .Infos: {{ .OpNum: 3, .IsSigned: false, .BitWidth: 1, .Align: 0 }} }, |
4383 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc_128B, |
4384 | .Infos: {{ .OpNum: 3, .IsSigned: false, .BitWidth: 1, .Align: 0 }} }, |
4385 | |
4386 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_V6_v6mpyhubs10, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 2, .Align: 0 }} }, |
4387 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_V6_v6mpyhubs10_128B, |
4388 | .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 2, .Align: 0 }} }, |
4389 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_V6_v6mpyhubs10_vxx, |
4390 | .Infos: {{ .OpNum: 3, .IsSigned: false, .BitWidth: 2, .Align: 0 }} }, |
4391 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_V6_v6mpyhubs10_vxx_128B, |
4392 | .Infos: {{ .OpNum: 3, .IsSigned: false, .BitWidth: 2, .Align: 0 }} }, |
4393 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_V6_v6mpyvubs10, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 2, .Align: 0 }} }, |
4394 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_V6_v6mpyvubs10_128B, |
4395 | .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 2, .Align: 0 }} }, |
4396 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_V6_v6mpyvubs10_vxx, |
4397 | .Infos: {{ .OpNum: 3, .IsSigned: false, .BitWidth: 2, .Align: 0 }} }, |
4398 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_V6_v6mpyvubs10_vxx_128B, |
4399 | .Infos: {{ .OpNum: 3, .IsSigned: false, .BitWidth: 2, .Align: 0 }} }, |
4400 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_V6_vlutvvbi, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 3, .Align: 0 }} }, |
4401 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_V6_vlutvvbi_128B, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 3, .Align: 0 }} }, |
4402 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_oracci, .Infos: {{ .OpNum: 3, .IsSigned: false, .BitWidth: 3, .Align: 0 }} }, |
4403 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_oracci_128B, |
4404 | .Infos: {{ .OpNum: 3, .IsSigned: false, .BitWidth: 3, .Align: 0 }} }, |
4405 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_V6_vlutvwhi, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 3, .Align: 0 }} }, |
4406 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_V6_vlutvwhi_128B, .Infos: {{ .OpNum: 2, .IsSigned: false, .BitWidth: 3, .Align: 0 }} }, |
4407 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_oracci, .Infos: {{ .OpNum: 3, .IsSigned: false, .BitWidth: 3, .Align: 0 }} }, |
4408 | { .BuiltinID: Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_oracci_128B, |
4409 | .Infos: {{ .OpNum: 3, .IsSigned: false, .BitWidth: 3, .Align: 0 }} }, |
4410 | }; |
4411 | |
4412 | // Use a dynamically initialized static to sort the table exactly once on |
4413 | // first run. |
4414 | static const bool SortOnce = |
4415 | (llvm::sort(C&: Infos, |
4416 | Comp: [](const BuiltinInfo &LHS, const BuiltinInfo &RHS) { |
4417 | return LHS.BuiltinID < RHS.BuiltinID; |
4418 | }), |
4419 | true); |
4420 | (void)SortOnce; |
4421 | |
4422 | const BuiltinInfo *F = llvm::partition_point( |
4423 | Range&: Infos, P: [=](const BuiltinInfo &BI) { return BI.BuiltinID < BuiltinID; }); |
4424 | if (F == std::end(arr&: Infos) || F->BuiltinID != BuiltinID) |
4425 | return false; |
4426 | |
4427 | bool Error = false; |
4428 | |
4429 | for (const ArgInfo &A : F->Infos) { |
4430 | // Ignore empty ArgInfo elements. |
4431 | if (A.BitWidth == 0) |
4432 | continue; |
4433 | |
4434 | int32_t Min = A.IsSigned ? -(1 << (A.BitWidth - 1)) : 0; |
4435 | int32_t Max = (1 << (A.IsSigned ? A.BitWidth - 1 : A.BitWidth)) - 1; |
4436 | if (!A.Align) { |
4437 | Error |= BuiltinConstantArgRange(TheCall, ArgNum: A.OpNum, Low: Min, High: Max); |
4438 | } else { |
4439 | unsigned M = 1 << A.Align; |
4440 | Min *= M; |
4441 | Max *= M; |
4442 | Error |= BuiltinConstantArgRange(TheCall, ArgNum: A.OpNum, Low: Min, High: Max); |
4443 | Error |= BuiltinConstantArgMultiple(TheCall, ArgNum: A.OpNum, Multiple: M); |
4444 | } |
4445 | } |
4446 | return Error; |
4447 | } |
4448 | |
4449 | bool Sema::CheckHexagonBuiltinFunctionCall(unsigned BuiltinID, |
4450 | CallExpr *TheCall) { |
4451 | return CheckHexagonBuiltinArgument(BuiltinID, TheCall); |
4452 | } |
4453 | |
4454 | bool Sema::CheckLoongArchBuiltinFunctionCall(const TargetInfo &TI, |
4455 | unsigned BuiltinID, |
4456 | CallExpr *TheCall) { |
4457 | switch (BuiltinID) { |
4458 | default: |
4459 | break; |
4460 | // Basic intrinsics. |
4461 | case LoongArch::BI__builtin_loongarch_cacop_d: |
4462 | case LoongArch::BI__builtin_loongarch_cacop_w: { |
4463 | BuiltinConstantArgRange(TheCall, ArgNum: 0, Low: 0, High: llvm::maxUIntN(N: 5)); |
4464 | BuiltinConstantArgRange(TheCall, ArgNum: 2, Low: llvm::minIntN(N: 12), High: llvm::maxIntN(N: 12)); |
4465 | break; |
4466 | } |
4467 | case LoongArch::BI__builtin_loongarch_break: |
4468 | case LoongArch::BI__builtin_loongarch_dbar: |
4469 | case LoongArch::BI__builtin_loongarch_ibar: |
4470 | case LoongArch::BI__builtin_loongarch_syscall: |
4471 | // Check if immediate is in [0, 32767]. |
4472 | return BuiltinConstantArgRange(TheCall, ArgNum: 0, Low: 0, High: 32767); |
4473 | case LoongArch::BI__builtin_loongarch_csrrd_w: |
4474 | case LoongArch::BI__builtin_loongarch_csrrd_d: |
4475 | return BuiltinConstantArgRange(TheCall, ArgNum: 0, Low: 0, High: 16383); |
4476 | case LoongArch::BI__builtin_loongarch_csrwr_w: |
4477 | case LoongArch::BI__builtin_loongarch_csrwr_d: |
4478 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: 16383); |
4479 | case LoongArch::BI__builtin_loongarch_csrxchg_w: |
4480 | case LoongArch::BI__builtin_loongarch_csrxchg_d: |
4481 | return BuiltinConstantArgRange(TheCall, ArgNum: 2, Low: 0, High: 16383); |
4482 | case LoongArch::BI__builtin_loongarch_lddir_d: |
4483 | case LoongArch::BI__builtin_loongarch_ldpte_d: |
4484 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: 31); |
4485 | case LoongArch::BI__builtin_loongarch_movfcsr2gr: |
4486 | case LoongArch::BI__builtin_loongarch_movgr2fcsr: |
4487 | return BuiltinConstantArgRange(TheCall, ArgNum: 0, Low: 0, High: llvm::maxUIntN(N: 2)); |
4488 | |
4489 | // LSX intrinsics. |
4490 | case LoongArch::BI__builtin_lsx_vbitclri_b: |
4491 | case LoongArch::BI__builtin_lsx_vbitrevi_b: |
4492 | case LoongArch::BI__builtin_lsx_vbitseti_b: |
4493 | case LoongArch::BI__builtin_lsx_vsat_b: |
4494 | case LoongArch::BI__builtin_lsx_vsat_bu: |
4495 | case LoongArch::BI__builtin_lsx_vslli_b: |
4496 | case LoongArch::BI__builtin_lsx_vsrai_b: |
4497 | case LoongArch::BI__builtin_lsx_vsrari_b: |
4498 | case LoongArch::BI__builtin_lsx_vsrli_b: |
4499 | case LoongArch::BI__builtin_lsx_vsllwil_h_b: |
4500 | case LoongArch::BI__builtin_lsx_vsllwil_hu_bu: |
4501 | case LoongArch::BI__builtin_lsx_vrotri_b: |
4502 | case LoongArch::BI__builtin_lsx_vsrlri_b: |
4503 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: 7); |
4504 | case LoongArch::BI__builtin_lsx_vbitclri_h: |
4505 | case LoongArch::BI__builtin_lsx_vbitrevi_h: |
4506 | case LoongArch::BI__builtin_lsx_vbitseti_h: |
4507 | case LoongArch::BI__builtin_lsx_vsat_h: |
4508 | case LoongArch::BI__builtin_lsx_vsat_hu: |
4509 | case LoongArch::BI__builtin_lsx_vslli_h: |
4510 | case LoongArch::BI__builtin_lsx_vsrai_h: |
4511 | case LoongArch::BI__builtin_lsx_vsrari_h: |
4512 | case LoongArch::BI__builtin_lsx_vsrli_h: |
4513 | case LoongArch::BI__builtin_lsx_vsllwil_w_h: |
4514 | case LoongArch::BI__builtin_lsx_vsllwil_wu_hu: |
4515 | case LoongArch::BI__builtin_lsx_vrotri_h: |
4516 | case LoongArch::BI__builtin_lsx_vsrlri_h: |
4517 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: 15); |
4518 | case LoongArch::BI__builtin_lsx_vssrarni_b_h: |
4519 | case LoongArch::BI__builtin_lsx_vssrarni_bu_h: |
4520 | case LoongArch::BI__builtin_lsx_vssrani_b_h: |
4521 | case LoongArch::BI__builtin_lsx_vssrani_bu_h: |
4522 | case LoongArch::BI__builtin_lsx_vsrarni_b_h: |
4523 | case LoongArch::BI__builtin_lsx_vsrlni_b_h: |
4524 | case LoongArch::BI__builtin_lsx_vsrlrni_b_h: |
4525 | case LoongArch::BI__builtin_lsx_vssrlni_b_h: |
4526 | case LoongArch::BI__builtin_lsx_vssrlni_bu_h: |
4527 | case LoongArch::BI__builtin_lsx_vssrlrni_b_h: |
4528 | case LoongArch::BI__builtin_lsx_vssrlrni_bu_h: |
4529 | case LoongArch::BI__builtin_lsx_vsrani_b_h: |
4530 | return BuiltinConstantArgRange(TheCall, ArgNum: 2, Low: 0, High: 15); |
4531 | case LoongArch::BI__builtin_lsx_vslei_bu: |
4532 | case LoongArch::BI__builtin_lsx_vslei_hu: |
4533 | case LoongArch::BI__builtin_lsx_vslei_wu: |
4534 | case LoongArch::BI__builtin_lsx_vslei_du: |
4535 | case LoongArch::BI__builtin_lsx_vslti_bu: |
4536 | case LoongArch::BI__builtin_lsx_vslti_hu: |
4537 | case LoongArch::BI__builtin_lsx_vslti_wu: |
4538 | case LoongArch::BI__builtin_lsx_vslti_du: |
4539 | case LoongArch::BI__builtin_lsx_vmaxi_bu: |
4540 | case LoongArch::BI__builtin_lsx_vmaxi_hu: |
4541 | case LoongArch::BI__builtin_lsx_vmaxi_wu: |
4542 | case LoongArch::BI__builtin_lsx_vmaxi_du: |
4543 | case LoongArch::BI__builtin_lsx_vmini_bu: |
4544 | case LoongArch::BI__builtin_lsx_vmini_hu: |
4545 | case LoongArch::BI__builtin_lsx_vmini_wu: |
4546 | case LoongArch::BI__builtin_lsx_vmini_du: |
4547 | case LoongArch::BI__builtin_lsx_vaddi_bu: |
4548 | case LoongArch::BI__builtin_lsx_vaddi_hu: |
4549 | case LoongArch::BI__builtin_lsx_vaddi_wu: |
4550 | case LoongArch::BI__builtin_lsx_vaddi_du: |
4551 | case LoongArch::BI__builtin_lsx_vbitclri_w: |
4552 | case LoongArch::BI__builtin_lsx_vbitrevi_w: |
4553 | case LoongArch::BI__builtin_lsx_vbitseti_w: |
4554 | case LoongArch::BI__builtin_lsx_vsat_w: |
4555 | case LoongArch::BI__builtin_lsx_vsat_wu: |
4556 | case LoongArch::BI__builtin_lsx_vslli_w: |
4557 | case LoongArch::BI__builtin_lsx_vsrai_w: |
4558 | case LoongArch::BI__builtin_lsx_vsrari_w: |
4559 | case LoongArch::BI__builtin_lsx_vsrli_w: |
4560 | case LoongArch::BI__builtin_lsx_vsllwil_d_w: |
4561 | case LoongArch::BI__builtin_lsx_vsllwil_du_wu: |
4562 | case LoongArch::BI__builtin_lsx_vsrlri_w: |
4563 | case LoongArch::BI__builtin_lsx_vrotri_w: |
4564 | case LoongArch::BI__builtin_lsx_vsubi_bu: |
4565 | case LoongArch::BI__builtin_lsx_vsubi_hu: |
4566 | case LoongArch::BI__builtin_lsx_vbsrl_v: |
4567 | case LoongArch::BI__builtin_lsx_vbsll_v: |
4568 | case LoongArch::BI__builtin_lsx_vsubi_wu: |
4569 | case LoongArch::BI__builtin_lsx_vsubi_du: |
4570 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: 31); |
4571 | case LoongArch::BI__builtin_lsx_vssrarni_h_w: |
4572 | case LoongArch::BI__builtin_lsx_vssrarni_hu_w: |
4573 | case LoongArch::BI__builtin_lsx_vssrani_h_w: |
4574 | case LoongArch::BI__builtin_lsx_vssrani_hu_w: |
4575 | case LoongArch::BI__builtin_lsx_vsrarni_h_w: |
4576 | case LoongArch::BI__builtin_lsx_vsrani_h_w: |
4577 | case LoongArch::BI__builtin_lsx_vfrstpi_b: |
4578 | case LoongArch::BI__builtin_lsx_vfrstpi_h: |
4579 | case LoongArch::BI__builtin_lsx_vsrlni_h_w: |
4580 | case LoongArch::BI__builtin_lsx_vsrlrni_h_w: |
4581 | case LoongArch::BI__builtin_lsx_vssrlni_h_w: |
4582 | case LoongArch::BI__builtin_lsx_vssrlni_hu_w: |
4583 | case LoongArch::BI__builtin_lsx_vssrlrni_h_w: |
4584 | case LoongArch::BI__builtin_lsx_vssrlrni_hu_w: |
4585 | return BuiltinConstantArgRange(TheCall, ArgNum: 2, Low: 0, High: 31); |
4586 | case LoongArch::BI__builtin_lsx_vbitclri_d: |
4587 | case LoongArch::BI__builtin_lsx_vbitrevi_d: |
4588 | case LoongArch::BI__builtin_lsx_vbitseti_d: |
4589 | case LoongArch::BI__builtin_lsx_vsat_d: |
4590 | case LoongArch::BI__builtin_lsx_vsat_du: |
4591 | case LoongArch::BI__builtin_lsx_vslli_d: |
4592 | case LoongArch::BI__builtin_lsx_vsrai_d: |
4593 | case LoongArch::BI__builtin_lsx_vsrli_d: |
4594 | case LoongArch::BI__builtin_lsx_vsrari_d: |
4595 | case LoongArch::BI__builtin_lsx_vrotri_d: |
4596 | case LoongArch::BI__builtin_lsx_vsrlri_d: |
4597 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: 63); |
4598 | case LoongArch::BI__builtin_lsx_vssrarni_w_d: |
4599 | case LoongArch::BI__builtin_lsx_vssrarni_wu_d: |
4600 | case LoongArch::BI__builtin_lsx_vssrani_w_d: |
4601 | case LoongArch::BI__builtin_lsx_vssrani_wu_d: |
4602 | case LoongArch::BI__builtin_lsx_vsrarni_w_d: |
4603 | case LoongArch::BI__builtin_lsx_vsrlni_w_d: |
4604 | case LoongArch::BI__builtin_lsx_vsrlrni_w_d: |
4605 | case LoongArch::BI__builtin_lsx_vssrlni_w_d: |
4606 | case LoongArch::BI__builtin_lsx_vssrlni_wu_d: |
4607 | case LoongArch::BI__builtin_lsx_vssrlrni_w_d: |
4608 | case LoongArch::BI__builtin_lsx_vssrlrni_wu_d: |
4609 | case LoongArch::BI__builtin_lsx_vsrani_w_d: |
4610 | return BuiltinConstantArgRange(TheCall, ArgNum: 2, Low: 0, High: 63); |
4611 | case LoongArch::BI__builtin_lsx_vssrarni_d_q: |
4612 | case LoongArch::BI__builtin_lsx_vssrarni_du_q: |
4613 | case LoongArch::BI__builtin_lsx_vssrani_d_q: |
4614 | case LoongArch::BI__builtin_lsx_vssrani_du_q: |
4615 | case LoongArch::BI__builtin_lsx_vsrarni_d_q: |
4616 | case LoongArch::BI__builtin_lsx_vssrlni_d_q: |
4617 | case LoongArch::BI__builtin_lsx_vssrlni_du_q: |
4618 | case LoongArch::BI__builtin_lsx_vssrlrni_d_q: |
4619 | case LoongArch::BI__builtin_lsx_vssrlrni_du_q: |
4620 | case LoongArch::BI__builtin_lsx_vsrani_d_q: |
4621 | case LoongArch::BI__builtin_lsx_vsrlrni_d_q: |
4622 | case LoongArch::BI__builtin_lsx_vsrlni_d_q: |
4623 | return BuiltinConstantArgRange(TheCall, ArgNum: 2, Low: 0, High: 127); |
4624 | case LoongArch::BI__builtin_lsx_vseqi_b: |
4625 | case LoongArch::BI__builtin_lsx_vseqi_h: |
4626 | case LoongArch::BI__builtin_lsx_vseqi_w: |
4627 | case LoongArch::BI__builtin_lsx_vseqi_d: |
4628 | case LoongArch::BI__builtin_lsx_vslti_b: |
4629 | case LoongArch::BI__builtin_lsx_vslti_h: |
4630 | case LoongArch::BI__builtin_lsx_vslti_w: |
4631 | case LoongArch::BI__builtin_lsx_vslti_d: |
4632 | case LoongArch::BI__builtin_lsx_vslei_b: |
4633 | case LoongArch::BI__builtin_lsx_vslei_h: |
4634 | case LoongArch::BI__builtin_lsx_vslei_w: |
4635 | case LoongArch::BI__builtin_lsx_vslei_d: |
4636 | case LoongArch::BI__builtin_lsx_vmaxi_b: |
4637 | case LoongArch::BI__builtin_lsx_vmaxi_h: |
4638 | case LoongArch::BI__builtin_lsx_vmaxi_w: |
4639 | case LoongArch::BI__builtin_lsx_vmaxi_d: |
4640 | case LoongArch::BI__builtin_lsx_vmini_b: |
4641 | case LoongArch::BI__builtin_lsx_vmini_h: |
4642 | case LoongArch::BI__builtin_lsx_vmini_w: |
4643 | case LoongArch::BI__builtin_lsx_vmini_d: |
4644 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: -16, High: 15); |
4645 | case LoongArch::BI__builtin_lsx_vandi_b: |
4646 | case LoongArch::BI__builtin_lsx_vnori_b: |
4647 | case LoongArch::BI__builtin_lsx_vori_b: |
4648 | case LoongArch::BI__builtin_lsx_vshuf4i_b: |
4649 | case LoongArch::BI__builtin_lsx_vshuf4i_h: |
4650 | case LoongArch::BI__builtin_lsx_vshuf4i_w: |
4651 | case LoongArch::BI__builtin_lsx_vxori_b: |
4652 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: 255); |
4653 | case LoongArch::BI__builtin_lsx_vbitseli_b: |
4654 | case LoongArch::BI__builtin_lsx_vshuf4i_d: |
4655 | case LoongArch::BI__builtin_lsx_vextrins_b: |
4656 | case LoongArch::BI__builtin_lsx_vextrins_h: |
4657 | case LoongArch::BI__builtin_lsx_vextrins_w: |
4658 | case LoongArch::BI__builtin_lsx_vextrins_d: |
4659 | case LoongArch::BI__builtin_lsx_vpermi_w: |
4660 | return BuiltinConstantArgRange(TheCall, ArgNum: 2, Low: 0, High: 255); |
4661 | case LoongArch::BI__builtin_lsx_vpickve2gr_b: |
4662 | case LoongArch::BI__builtin_lsx_vpickve2gr_bu: |
4663 | case LoongArch::BI__builtin_lsx_vreplvei_b: |
4664 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: 15); |
4665 | case LoongArch::BI__builtin_lsx_vinsgr2vr_b: |
4666 | return BuiltinConstantArgRange(TheCall, ArgNum: 2, Low: 0, High: 15); |
4667 | case LoongArch::BI__builtin_lsx_vpickve2gr_h: |
4668 | case LoongArch::BI__builtin_lsx_vpickve2gr_hu: |
4669 | case LoongArch::BI__builtin_lsx_vreplvei_h: |
4670 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: 7); |
4671 | case LoongArch::BI__builtin_lsx_vinsgr2vr_h: |
4672 | return BuiltinConstantArgRange(TheCall, ArgNum: 2, Low: 0, High: 7); |
4673 | case LoongArch::BI__builtin_lsx_vpickve2gr_w: |
4674 | case LoongArch::BI__builtin_lsx_vpickve2gr_wu: |
4675 | case LoongArch::BI__builtin_lsx_vreplvei_w: |
4676 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: 3); |
4677 | case LoongArch::BI__builtin_lsx_vinsgr2vr_w: |
4678 | return BuiltinConstantArgRange(TheCall, ArgNum: 2, Low: 0, High: 3); |
4679 | case LoongArch::BI__builtin_lsx_vpickve2gr_d: |
4680 | case LoongArch::BI__builtin_lsx_vpickve2gr_du: |
4681 | case LoongArch::BI__builtin_lsx_vreplvei_d: |
4682 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: 1); |
4683 | case LoongArch::BI__builtin_lsx_vinsgr2vr_d: |
4684 | return BuiltinConstantArgRange(TheCall, ArgNum: 2, Low: 0, High: 1); |
4685 | case LoongArch::BI__builtin_lsx_vstelm_b: |
4686 | return BuiltinConstantArgRange(TheCall, ArgNum: 2, Low: -128, High: 127) || |
4687 | BuiltinConstantArgRange(TheCall, ArgNum: 3, Low: 0, High: 15); |
4688 | case LoongArch::BI__builtin_lsx_vstelm_h: |
4689 | return BuiltinConstantArgRange(TheCall, ArgNum: 2, Low: -256, High: 254) || |
4690 | BuiltinConstantArgRange(TheCall, ArgNum: 3, Low: 0, High: 7); |
4691 | case LoongArch::BI__builtin_lsx_vstelm_w: |
4692 | return BuiltinConstantArgRange(TheCall, ArgNum: 2, Low: -512, High: 508) || |
4693 | BuiltinConstantArgRange(TheCall, ArgNum: 3, Low: 0, High: 3); |
4694 | case LoongArch::BI__builtin_lsx_vstelm_d: |
4695 | return BuiltinConstantArgRange(TheCall, ArgNum: 2, Low: -1024, High: 1016) || |
4696 | BuiltinConstantArgRange(TheCall, ArgNum: 3, Low: 0, High: 1); |
4697 | case LoongArch::BI__builtin_lsx_vldrepl_b: |
4698 | case LoongArch::BI__builtin_lsx_vld: |
4699 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: -2048, High: 2047); |
4700 | case LoongArch::BI__builtin_lsx_vldrepl_h: |
4701 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: -2048, High: 2046); |
4702 | case LoongArch::BI__builtin_lsx_vldrepl_w: |
4703 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: -2048, High: 2044); |
4704 | case LoongArch::BI__builtin_lsx_vldrepl_d: |
4705 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: -2048, High: 2040); |
4706 | case LoongArch::BI__builtin_lsx_vst: |
4707 | return BuiltinConstantArgRange(TheCall, ArgNum: 2, Low: -2048, High: 2047); |
4708 | case LoongArch::BI__builtin_lsx_vldi: |
4709 | return BuiltinConstantArgRange(TheCall, ArgNum: 0, Low: -4096, High: 4095); |
4710 | case LoongArch::BI__builtin_lsx_vrepli_b: |
4711 | case LoongArch::BI__builtin_lsx_vrepli_h: |
4712 | case LoongArch::BI__builtin_lsx_vrepli_w: |
4713 | case LoongArch::BI__builtin_lsx_vrepli_d: |
4714 | return BuiltinConstantArgRange(TheCall, ArgNum: 0, Low: -512, High: 511); |
4715 | |
4716 | // LASX intrinsics. |
4717 | case LoongArch::BI__builtin_lasx_xvbitclri_b: |
4718 | case LoongArch::BI__builtin_lasx_xvbitrevi_b: |
4719 | case LoongArch::BI__builtin_lasx_xvbitseti_b: |
4720 | case LoongArch::BI__builtin_lasx_xvsat_b: |
4721 | case LoongArch::BI__builtin_lasx_xvsat_bu: |
4722 | case LoongArch::BI__builtin_lasx_xvslli_b: |
4723 | case LoongArch::BI__builtin_lasx_xvsrai_b: |
4724 | case LoongArch::BI__builtin_lasx_xvsrari_b: |
4725 | case LoongArch::BI__builtin_lasx_xvsrli_b: |
4726 | case LoongArch::BI__builtin_lasx_xvsllwil_h_b: |
4727 | case LoongArch::BI__builtin_lasx_xvsllwil_hu_bu: |
4728 | case LoongArch::BI__builtin_lasx_xvrotri_b: |
4729 | case LoongArch::BI__builtin_lasx_xvsrlri_b: |
4730 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: 7); |
4731 | case LoongArch::BI__builtin_lasx_xvbitclri_h: |
4732 | case LoongArch::BI__builtin_lasx_xvbitrevi_h: |
4733 | case LoongArch::BI__builtin_lasx_xvbitseti_h: |
4734 | case LoongArch::BI__builtin_lasx_xvsat_h: |
4735 | case LoongArch::BI__builtin_lasx_xvsat_hu: |
4736 | case LoongArch::BI__builtin_lasx_xvslli_h: |
4737 | case LoongArch::BI__builtin_lasx_xvsrai_h: |
4738 | case LoongArch::BI__builtin_lasx_xvsrari_h: |
4739 | case LoongArch::BI__builtin_lasx_xvsrli_h: |
4740 | case LoongArch::BI__builtin_lasx_xvsllwil_w_h: |
4741 | case LoongArch::BI__builtin_lasx_xvsllwil_wu_hu: |
4742 | case LoongArch::BI__builtin_lasx_xvrotri_h: |
4743 | case LoongArch::BI__builtin_lasx_xvsrlri_h: |
4744 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: 15); |
4745 | case LoongArch::BI__builtin_lasx_xvssrarni_b_h: |
4746 | case LoongArch::BI__builtin_lasx_xvssrarni_bu_h: |
4747 | case LoongArch::BI__builtin_lasx_xvssrani_b_h: |
4748 | case LoongArch::BI__builtin_lasx_xvssrani_bu_h: |
4749 | case LoongArch::BI__builtin_lasx_xvsrarni_b_h: |
4750 | case LoongArch::BI__builtin_lasx_xvsrlni_b_h: |
4751 | case LoongArch::BI__builtin_lasx_xvsrlrni_b_h: |
4752 | case LoongArch::BI__builtin_lasx_xvssrlni_b_h: |
4753 | case LoongArch::BI__builtin_lasx_xvssrlni_bu_h: |
4754 | case LoongArch::BI__builtin_lasx_xvssrlrni_b_h: |
4755 | case LoongArch::BI__builtin_lasx_xvssrlrni_bu_h: |
4756 | case LoongArch::BI__builtin_lasx_xvsrani_b_h: |
4757 | return BuiltinConstantArgRange(TheCall, ArgNum: 2, Low: 0, High: 15); |
4758 | case LoongArch::BI__builtin_lasx_xvslei_bu: |
4759 | case LoongArch::BI__builtin_lasx_xvslei_hu: |
4760 | case LoongArch::BI__builtin_lasx_xvslei_wu: |
4761 | case LoongArch::BI__builtin_lasx_xvslei_du: |
4762 | case LoongArch::BI__builtin_lasx_xvslti_bu: |
4763 | case LoongArch::BI__builtin_lasx_xvslti_hu: |
4764 | case LoongArch::BI__builtin_lasx_xvslti_wu: |
4765 | case LoongArch::BI__builtin_lasx_xvslti_du: |
4766 | case LoongArch::BI__builtin_lasx_xvmaxi_bu: |
4767 | case LoongArch::BI__builtin_lasx_xvmaxi_hu: |
4768 | case LoongArch::BI__builtin_lasx_xvmaxi_wu: |
4769 | case LoongArch::BI__builtin_lasx_xvmaxi_du: |
4770 | case LoongArch::BI__builtin_lasx_xvmini_bu: |
4771 | case LoongArch::BI__builtin_lasx_xvmini_hu: |
4772 | case LoongArch::BI__builtin_lasx_xvmini_wu: |
4773 | case LoongArch::BI__builtin_lasx_xvmini_du: |
4774 | case LoongArch::BI__builtin_lasx_xvaddi_bu: |
4775 | case LoongArch::BI__builtin_lasx_xvaddi_hu: |
4776 | case LoongArch::BI__builtin_lasx_xvaddi_wu: |
4777 | case LoongArch::BI__builtin_lasx_xvaddi_du: |
4778 | case LoongArch::BI__builtin_lasx_xvbitclri_w: |
4779 | case LoongArch::BI__builtin_lasx_xvbitrevi_w: |
4780 | case LoongArch::BI__builtin_lasx_xvbitseti_w: |
4781 | case LoongArch::BI__builtin_lasx_xvsat_w: |
4782 | case LoongArch::BI__builtin_lasx_xvsat_wu: |
4783 | case LoongArch::BI__builtin_lasx_xvslli_w: |
4784 | case LoongArch::BI__builtin_lasx_xvsrai_w: |
4785 | case LoongArch::BI__builtin_lasx_xvsrari_w: |
4786 | case LoongArch::BI__builtin_lasx_xvsrli_w: |
4787 | case LoongArch::BI__builtin_lasx_xvsllwil_d_w: |
4788 | case LoongArch::BI__builtin_lasx_xvsllwil_du_wu: |
4789 | case LoongArch::BI__builtin_lasx_xvsrlri_w: |
4790 | case LoongArch::BI__builtin_lasx_xvrotri_w: |
4791 | case LoongArch::BI__builtin_lasx_xvsubi_bu: |
4792 | case LoongArch::BI__builtin_lasx_xvsubi_hu: |
4793 | case LoongArch::BI__builtin_lasx_xvsubi_wu: |
4794 | case LoongArch::BI__builtin_lasx_xvsubi_du: |
4795 | case LoongArch::BI__builtin_lasx_xvbsrl_v: |
4796 | case LoongArch::BI__builtin_lasx_xvbsll_v: |
4797 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: 31); |
4798 | case LoongArch::BI__builtin_lasx_xvssrarni_h_w: |
4799 | case LoongArch::BI__builtin_lasx_xvssrarni_hu_w: |
4800 | case LoongArch::BI__builtin_lasx_xvssrani_h_w: |
4801 | case LoongArch::BI__builtin_lasx_xvssrani_hu_w: |
4802 | case LoongArch::BI__builtin_lasx_xvsrarni_h_w: |
4803 | case LoongArch::BI__builtin_lasx_xvsrani_h_w: |
4804 | case LoongArch::BI__builtin_lasx_xvfrstpi_b: |
4805 | case LoongArch::BI__builtin_lasx_xvfrstpi_h: |
4806 | case LoongArch::BI__builtin_lasx_xvsrlni_h_w: |
4807 | case LoongArch::BI__builtin_lasx_xvsrlrni_h_w: |
4808 | case LoongArch::BI__builtin_lasx_xvssrlni_h_w: |
4809 | case LoongArch::BI__builtin_lasx_xvssrlni_hu_w: |
4810 | case LoongArch::BI__builtin_lasx_xvssrlrni_h_w: |
4811 | case LoongArch::BI__builtin_lasx_xvssrlrni_hu_w: |
4812 | return BuiltinConstantArgRange(TheCall, ArgNum: 2, Low: 0, High: 31); |
4813 | case LoongArch::BI__builtin_lasx_xvbitclri_d: |
4814 | case LoongArch::BI__builtin_lasx_xvbitrevi_d: |
4815 | case LoongArch::BI__builtin_lasx_xvbitseti_d: |
4816 | case LoongArch::BI__builtin_lasx_xvsat_d: |
4817 | case LoongArch::BI__builtin_lasx_xvsat_du: |
4818 | case LoongArch::BI__builtin_lasx_xvslli_d: |
4819 | case LoongArch::BI__builtin_lasx_xvsrai_d: |
4820 | case LoongArch::BI__builtin_lasx_xvsrli_d: |
4821 | case LoongArch::BI__builtin_lasx_xvsrari_d: |
4822 | case LoongArch::BI__builtin_lasx_xvrotri_d: |
4823 | case LoongArch::BI__builtin_lasx_xvsrlri_d: |
4824 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: 63); |
4825 | case LoongArch::BI__builtin_lasx_xvssrarni_w_d: |
4826 | case LoongArch::BI__builtin_lasx_xvssrarni_wu_d: |
4827 | case LoongArch::BI__builtin_lasx_xvssrani_w_d: |
4828 | case LoongArch::BI__builtin_lasx_xvssrani_wu_d: |
4829 | case LoongArch::BI__builtin_lasx_xvsrarni_w_d: |
4830 | case LoongArch::BI__builtin_lasx_xvsrlni_w_d: |
4831 | case LoongArch::BI__builtin_lasx_xvsrlrni_w_d: |
4832 | case LoongArch::BI__builtin_lasx_xvssrlni_w_d: |
4833 | case LoongArch::BI__builtin_lasx_xvssrlni_wu_d: |
4834 | case LoongArch::BI__builtin_lasx_xvssrlrni_w_d: |
4835 | case LoongArch::BI__builtin_lasx_xvssrlrni_wu_d: |
4836 | case LoongArch::BI__builtin_lasx_xvsrani_w_d: |
4837 | return BuiltinConstantArgRange(TheCall, ArgNum: 2, Low: 0, High: 63); |
4838 | case LoongArch::BI__builtin_lasx_xvssrarni_d_q: |
4839 | case LoongArch::BI__builtin_lasx_xvssrarni_du_q: |
4840 | case LoongArch::BI__builtin_lasx_xvssrani_d_q: |
4841 | case LoongArch::BI__builtin_lasx_xvssrani_du_q: |
4842 | case LoongArch::BI__builtin_lasx_xvsrarni_d_q: |
4843 | case LoongArch::BI__builtin_lasx_xvssrlni_d_q: |
4844 | case LoongArch::BI__builtin_lasx_xvssrlni_du_q: |
4845 | case LoongArch::BI__builtin_lasx_xvssrlrni_d_q: |
4846 | case LoongArch::BI__builtin_lasx_xvssrlrni_du_q: |
4847 | case LoongArch::BI__builtin_lasx_xvsrani_d_q: |
4848 | case LoongArch::BI__builtin_lasx_xvsrlni_d_q: |
4849 | case LoongArch::BI__builtin_lasx_xvsrlrni_d_q: |
4850 | return BuiltinConstantArgRange(TheCall, ArgNum: 2, Low: 0, High: 127); |
4851 | case LoongArch::BI__builtin_lasx_xvseqi_b: |
4852 | case LoongArch::BI__builtin_lasx_xvseqi_h: |
4853 | case LoongArch::BI__builtin_lasx_xvseqi_w: |
4854 | case LoongArch::BI__builtin_lasx_xvseqi_d: |
4855 | case LoongArch::BI__builtin_lasx_xvslti_b: |
4856 | case LoongArch::BI__builtin_lasx_xvslti_h: |
4857 | case LoongArch::BI__builtin_lasx_xvslti_w: |
4858 | case LoongArch::BI__builtin_lasx_xvslti_d: |
4859 | case LoongArch::BI__builtin_lasx_xvslei_b: |
4860 | case LoongArch::BI__builtin_lasx_xvslei_h: |
4861 | case LoongArch::BI__builtin_lasx_xvslei_w: |
4862 | case LoongArch::BI__builtin_lasx_xvslei_d: |
4863 | case LoongArch::BI__builtin_lasx_xvmaxi_b: |
4864 | case LoongArch::BI__builtin_lasx_xvmaxi_h: |
4865 | case LoongArch::BI__builtin_lasx_xvmaxi_w: |
4866 | case LoongArch::BI__builtin_lasx_xvmaxi_d: |
4867 | case LoongArch::BI__builtin_lasx_xvmini_b: |
4868 | case LoongArch::BI__builtin_lasx_xvmini_h: |
4869 | case LoongArch::BI__builtin_lasx_xvmini_w: |
4870 | case LoongArch::BI__builtin_lasx_xvmini_d: |
4871 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: -16, High: 15); |
4872 | case LoongArch::BI__builtin_lasx_xvandi_b: |
4873 | case LoongArch::BI__builtin_lasx_xvnori_b: |
4874 | case LoongArch::BI__builtin_lasx_xvori_b: |
4875 | case LoongArch::BI__builtin_lasx_xvshuf4i_b: |
4876 | case LoongArch::BI__builtin_lasx_xvshuf4i_h: |
4877 | case LoongArch::BI__builtin_lasx_xvshuf4i_w: |
4878 | case LoongArch::BI__builtin_lasx_xvxori_b: |
4879 | case LoongArch::BI__builtin_lasx_xvpermi_d: |
4880 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: 255); |
4881 | case LoongArch::BI__builtin_lasx_xvbitseli_b: |
4882 | case LoongArch::BI__builtin_lasx_xvshuf4i_d: |
4883 | case LoongArch::BI__builtin_lasx_xvextrins_b: |
4884 | case LoongArch::BI__builtin_lasx_xvextrins_h: |
4885 | case LoongArch::BI__builtin_lasx_xvextrins_w: |
4886 | case LoongArch::BI__builtin_lasx_xvextrins_d: |
4887 | case LoongArch::BI__builtin_lasx_xvpermi_q: |
4888 | case LoongArch::BI__builtin_lasx_xvpermi_w: |
4889 | return BuiltinConstantArgRange(TheCall, ArgNum: 2, Low: 0, High: 255); |
4890 | case LoongArch::BI__builtin_lasx_xvrepl128vei_b: |
4891 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: 15); |
4892 | case LoongArch::BI__builtin_lasx_xvrepl128vei_h: |
4893 | case LoongArch::BI__builtin_lasx_xvpickve2gr_w: |
4894 | case LoongArch::BI__builtin_lasx_xvpickve2gr_wu: |
4895 | case LoongArch::BI__builtin_lasx_xvpickve_w_f: |
4896 | case LoongArch::BI__builtin_lasx_xvpickve_w: |
4897 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: 7); |
4898 | case LoongArch::BI__builtin_lasx_xvinsgr2vr_w: |
4899 | case LoongArch::BI__builtin_lasx_xvinsve0_w: |
4900 | return BuiltinConstantArgRange(TheCall, ArgNum: 2, Low: 0, High: 7); |
4901 | case LoongArch::BI__builtin_lasx_xvrepl128vei_w: |
4902 | case LoongArch::BI__builtin_lasx_xvpickve2gr_d: |
4903 | case LoongArch::BI__builtin_lasx_xvpickve2gr_du: |
4904 | case LoongArch::BI__builtin_lasx_xvpickve_d_f: |
4905 | case LoongArch::BI__builtin_lasx_xvpickve_d: |
4906 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: 3); |
4907 | case LoongArch::BI__builtin_lasx_xvinsve0_d: |
4908 | case LoongArch::BI__builtin_lasx_xvinsgr2vr_d: |
4909 | return BuiltinConstantArgRange(TheCall, ArgNum: 2, Low: 0, High: 3); |
4910 | case LoongArch::BI__builtin_lasx_xvstelm_b: |
4911 | return BuiltinConstantArgRange(TheCall, ArgNum: 2, Low: -128, High: 127) || |
4912 | BuiltinConstantArgRange(TheCall, ArgNum: 3, Low: 0, High: 31); |
4913 | case LoongArch::BI__builtin_lasx_xvstelm_h: |
4914 | return BuiltinConstantArgRange(TheCall, ArgNum: 2, Low: -256, High: 254) || |
4915 | BuiltinConstantArgRange(TheCall, ArgNum: 3, Low: 0, High: 15); |
4916 | case LoongArch::BI__builtin_lasx_xvstelm_w: |
4917 | return BuiltinConstantArgRange(TheCall, ArgNum: 2, Low: -512, High: 508) || |
4918 | BuiltinConstantArgRange(TheCall, ArgNum: 3, Low: 0, High: 7); |
4919 | case LoongArch::BI__builtin_lasx_xvstelm_d: |
4920 | return BuiltinConstantArgRange(TheCall, ArgNum: 2, Low: -1024, High: 1016) || |
4921 | BuiltinConstantArgRange(TheCall, ArgNum: 3, Low: 0, High: 3); |
4922 | case LoongArch::BI__builtin_lasx_xvrepl128vei_d: |
4923 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: 1); |
4924 | case LoongArch::BI__builtin_lasx_xvldrepl_b: |
4925 | case LoongArch::BI__builtin_lasx_xvld: |
4926 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: -2048, High: 2047); |
4927 | case LoongArch::BI__builtin_lasx_xvldrepl_h: |
4928 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: -2048, High: 2046); |
4929 | case LoongArch::BI__builtin_lasx_xvldrepl_w: |
4930 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: -2048, High: 2044); |
4931 | case LoongArch::BI__builtin_lasx_xvldrepl_d: |
4932 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: -2048, High: 2040); |
4933 | case LoongArch::BI__builtin_lasx_xvst: |
4934 | return BuiltinConstantArgRange(TheCall, ArgNum: 2, Low: -2048, High: 2047); |
4935 | case LoongArch::BI__builtin_lasx_xvldi: |
4936 | return BuiltinConstantArgRange(TheCall, ArgNum: 0, Low: -4096, High: 4095); |
4937 | case LoongArch::BI__builtin_lasx_xvrepli_b: |
4938 | case LoongArch::BI__builtin_lasx_xvrepli_h: |
4939 | case LoongArch::BI__builtin_lasx_xvrepli_w: |
4940 | case LoongArch::BI__builtin_lasx_xvrepli_d: |
4941 | return BuiltinConstantArgRange(TheCall, ArgNum: 0, Low: -512, High: 511); |
4942 | } |
4943 | return false; |
4944 | } |
4945 | |
4946 | bool Sema::CheckMipsBuiltinFunctionCall(const TargetInfo &TI, |
4947 | unsigned BuiltinID, CallExpr *TheCall) { |
4948 | return CheckMipsBuiltinCpu(TI, BuiltinID, TheCall) || |
4949 | CheckMipsBuiltinArgument(BuiltinID, TheCall); |
4950 | } |
4951 | |
4952 | bool Sema::CheckMipsBuiltinCpu(const TargetInfo &TI, unsigned BuiltinID, |
4953 | CallExpr *TheCall) { |
4954 | |
4955 | if (Mips::BI__builtin_mips_addu_qb <= BuiltinID && |
4956 | BuiltinID <= Mips::BI__builtin_mips_lwx) { |
4957 | if (!TI.hasFeature("dsp" )) |
4958 | return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_dsp); |
4959 | } |
4960 | |
4961 | if (Mips::BI__builtin_mips_absq_s_qb <= BuiltinID && |
4962 | BuiltinID <= Mips::BI__builtin_mips_subuh_r_qb) { |
4963 | if (!TI.hasFeature("dspr2" )) |
4964 | return Diag(TheCall->getBeginLoc(), |
4965 | diag::err_mips_builtin_requires_dspr2); |
4966 | } |
4967 | |
4968 | if (Mips::BI__builtin_msa_add_a_b <= BuiltinID && |
4969 | BuiltinID <= Mips::BI__builtin_msa_xori_b) { |
4970 | if (!TI.hasFeature("msa" )) |
4971 | return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_msa); |
4972 | } |
4973 | |
4974 | return false; |
4975 | } |
4976 | |
4977 | // CheckMipsBuiltinArgument - Checks the constant value passed to the |
4978 | // intrinsic is correct. The switch statement is ordered by DSP, MSA. The |
4979 | // ordering for DSP is unspecified. MSA is ordered by the data format used |
4980 | // by the underlying instruction i.e., df/m, df/n and then by size. |
4981 | // |
4982 | // FIXME: The size tests here should instead be tablegen'd along with the |
4983 | // definitions from include/clang/Basic/BuiltinsMips.def. |
4984 | // FIXME: GCC is strict on signedness for some of these intrinsics, we should |
4985 | // be too. |
4986 | bool Sema::CheckMipsBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) { |
4987 | unsigned i = 0, l = 0, u = 0, m = 0; |
4988 | switch (BuiltinID) { |
4989 | default: return false; |
4990 | case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break; |
4991 | case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break; |
4992 | case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break; |
4993 | case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break; |
4994 | case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break; |
4995 | case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break; |
4996 | case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break; |
4997 | // MSA intrinsics. Instructions (which the intrinsics maps to) which use the |
4998 | // df/m field. |
4999 | // These intrinsics take an unsigned 3 bit immediate. |
5000 | case Mips::BI__builtin_msa_bclri_b: |
5001 | case Mips::BI__builtin_msa_bnegi_b: |
5002 | case Mips::BI__builtin_msa_bseti_b: |
5003 | case Mips::BI__builtin_msa_sat_s_b: |
5004 | case Mips::BI__builtin_msa_sat_u_b: |
5005 | case Mips::BI__builtin_msa_slli_b: |
5006 | case Mips::BI__builtin_msa_srai_b: |
5007 | case Mips::BI__builtin_msa_srari_b: |
5008 | case Mips::BI__builtin_msa_srli_b: |
5009 | case Mips::BI__builtin_msa_srlri_b: i = 1; l = 0; u = 7; break; |
5010 | case Mips::BI__builtin_msa_binsli_b: |
5011 | case Mips::BI__builtin_msa_binsri_b: i = 2; l = 0; u = 7; break; |
5012 | // These intrinsics take an unsigned 4 bit immediate. |
5013 | case Mips::BI__builtin_msa_bclri_h: |
5014 | case Mips::BI__builtin_msa_bnegi_h: |
5015 | case Mips::BI__builtin_msa_bseti_h: |
5016 | case Mips::BI__builtin_msa_sat_s_h: |
5017 | case Mips::BI__builtin_msa_sat_u_h: |
5018 | case Mips::BI__builtin_msa_slli_h: |
5019 | case Mips::BI__builtin_msa_srai_h: |
5020 | case Mips::BI__builtin_msa_srari_h: |
5021 | case Mips::BI__builtin_msa_srli_h: |
5022 | case Mips::BI__builtin_msa_srlri_h: i = 1; l = 0; u = 15; break; |
5023 | case Mips::BI__builtin_msa_binsli_h: |
5024 | case Mips::BI__builtin_msa_binsri_h: i = 2; l = 0; u = 15; break; |
5025 | // These intrinsics take an unsigned 5 bit immediate. |
5026 | // The first block of intrinsics actually have an unsigned 5 bit field, |
5027 | // not a df/n field. |
5028 | case Mips::BI__builtin_msa_cfcmsa: |
5029 | case Mips::BI__builtin_msa_ctcmsa: i = 0; l = 0; u = 31; break; |
5030 | case Mips::BI__builtin_msa_clei_u_b: |
5031 | case Mips::BI__builtin_msa_clei_u_h: |
5032 | case Mips::BI__builtin_msa_clei_u_w: |
5033 | case Mips::BI__builtin_msa_clei_u_d: |
5034 | case Mips::BI__builtin_msa_clti_u_b: |
5035 | case Mips::BI__builtin_msa_clti_u_h: |
5036 | case Mips::BI__builtin_msa_clti_u_w: |
5037 | case Mips::BI__builtin_msa_clti_u_d: |
5038 | case Mips::BI__builtin_msa_maxi_u_b: |
5039 | case Mips::BI__builtin_msa_maxi_u_h: |
5040 | case Mips::BI__builtin_msa_maxi_u_w: |
5041 | case Mips::BI__builtin_msa_maxi_u_d: |
5042 | case Mips::BI__builtin_msa_mini_u_b: |
5043 | case Mips::BI__builtin_msa_mini_u_h: |
5044 | case Mips::BI__builtin_msa_mini_u_w: |
5045 | case Mips::BI__builtin_msa_mini_u_d: |
5046 | case Mips::BI__builtin_msa_addvi_b: |
5047 | case Mips::BI__builtin_msa_addvi_h: |
5048 | case Mips::BI__builtin_msa_addvi_w: |
5049 | case Mips::BI__builtin_msa_addvi_d: |
5050 | case Mips::BI__builtin_msa_bclri_w: |
5051 | case Mips::BI__builtin_msa_bnegi_w: |
5052 | case Mips::BI__builtin_msa_bseti_w: |
5053 | case Mips::BI__builtin_msa_sat_s_w: |
5054 | case Mips::BI__builtin_msa_sat_u_w: |
5055 | case Mips::BI__builtin_msa_slli_w: |
5056 | case Mips::BI__builtin_msa_srai_w: |
5057 | case Mips::BI__builtin_msa_srari_w: |
5058 | case Mips::BI__builtin_msa_srli_w: |
5059 | case Mips::BI__builtin_msa_srlri_w: |
5060 | case Mips::BI__builtin_msa_subvi_b: |
5061 | case Mips::BI__builtin_msa_subvi_h: |
5062 | case Mips::BI__builtin_msa_subvi_w: |
5063 | case Mips::BI__builtin_msa_subvi_d: i = 1; l = 0; u = 31; break; |
5064 | case Mips::BI__builtin_msa_binsli_w: |
5065 | case Mips::BI__builtin_msa_binsri_w: i = 2; l = 0; u = 31; break; |
5066 | // These intrinsics take an unsigned 6 bit immediate. |
5067 | case Mips::BI__builtin_msa_bclri_d: |
5068 | case Mips::BI__builtin_msa_bnegi_d: |
5069 | case Mips::BI__builtin_msa_bseti_d: |
5070 | case Mips::BI__builtin_msa_sat_s_d: |
5071 | case Mips::BI__builtin_msa_sat_u_d: |
5072 | case Mips::BI__builtin_msa_slli_d: |
5073 | case Mips::BI__builtin_msa_srai_d: |
5074 | case Mips::BI__builtin_msa_srari_d: |
5075 | case Mips::BI__builtin_msa_srli_d: |
5076 | case Mips::BI__builtin_msa_srlri_d: i = 1; l = 0; u = 63; break; |
5077 | case Mips::BI__builtin_msa_binsli_d: |
5078 | case Mips::BI__builtin_msa_binsri_d: i = 2; l = 0; u = 63; break; |
5079 | // These intrinsics take a signed 5 bit immediate. |
5080 | case Mips::BI__builtin_msa_ceqi_b: |
5081 | case Mips::BI__builtin_msa_ceqi_h: |
5082 | case Mips::BI__builtin_msa_ceqi_w: |
5083 | case Mips::BI__builtin_msa_ceqi_d: |
5084 | case Mips::BI__builtin_msa_clti_s_b: |
5085 | case Mips::BI__builtin_msa_clti_s_h: |
5086 | case Mips::BI__builtin_msa_clti_s_w: |
5087 | case Mips::BI__builtin_msa_clti_s_d: |
5088 | case Mips::BI__builtin_msa_clei_s_b: |
5089 | case Mips::BI__builtin_msa_clei_s_h: |
5090 | case Mips::BI__builtin_msa_clei_s_w: |
5091 | case Mips::BI__builtin_msa_clei_s_d: |
5092 | case Mips::BI__builtin_msa_maxi_s_b: |
5093 | case Mips::BI__builtin_msa_maxi_s_h: |
5094 | case Mips::BI__builtin_msa_maxi_s_w: |
5095 | case Mips::BI__builtin_msa_maxi_s_d: |
5096 | case Mips::BI__builtin_msa_mini_s_b: |
5097 | case Mips::BI__builtin_msa_mini_s_h: |
5098 | case Mips::BI__builtin_msa_mini_s_w: |
5099 | case Mips::BI__builtin_msa_mini_s_d: i = 1; l = -16; u = 15; break; |
5100 | // These intrinsics take an unsigned 8 bit immediate. |
5101 | case Mips::BI__builtin_msa_andi_b: |
5102 | case Mips::BI__builtin_msa_nori_b: |
5103 | case Mips::BI__builtin_msa_ori_b: |
5104 | case Mips::BI__builtin_msa_shf_b: |
5105 | case Mips::BI__builtin_msa_shf_h: |
5106 | case Mips::BI__builtin_msa_shf_w: |
5107 | case Mips::BI__builtin_msa_xori_b: i = 1; l = 0; u = 255; break; |
5108 | case Mips::BI__builtin_msa_bseli_b: |
5109 | case Mips::BI__builtin_msa_bmnzi_b: |
5110 | case Mips::BI__builtin_msa_bmzi_b: i = 2; l = 0; u = 255; break; |
5111 | // df/n format |
5112 | // These intrinsics take an unsigned 4 bit immediate. |
5113 | case Mips::BI__builtin_msa_copy_s_b: |
5114 | case Mips::BI__builtin_msa_copy_u_b: |
5115 | case Mips::BI__builtin_msa_insve_b: |
5116 | case Mips::BI__builtin_msa_splati_b: i = 1; l = 0; u = 15; break; |
5117 | case Mips::BI__builtin_msa_sldi_b: i = 2; l = 0; u = 15; break; |
5118 | // These intrinsics take an unsigned 3 bit immediate. |
5119 | case Mips::BI__builtin_msa_copy_s_h: |
5120 | case Mips::BI__builtin_msa_copy_u_h: |
5121 | case Mips::BI__builtin_msa_insve_h: |
5122 | case Mips::BI__builtin_msa_splati_h: i = 1; l = 0; u = 7; break; |
5123 | case Mips::BI__builtin_msa_sldi_h: i = 2; l = 0; u = 7; break; |
5124 | // These intrinsics take an unsigned 2 bit immediate. |
5125 | case Mips::BI__builtin_msa_copy_s_w: |
5126 | case Mips::BI__builtin_msa_copy_u_w: |
5127 | case Mips::BI__builtin_msa_insve_w: |
5128 | case Mips::BI__builtin_msa_splati_w: i = 1; l = 0; u = 3; break; |
5129 | case Mips::BI__builtin_msa_sldi_w: i = 2; l = 0; u = 3; break; |
5130 | // These intrinsics take an unsigned 1 bit immediate. |
5131 | case Mips::BI__builtin_msa_copy_s_d: |
5132 | case Mips::BI__builtin_msa_copy_u_d: |
5133 | case Mips::BI__builtin_msa_insve_d: |
5134 | case Mips::BI__builtin_msa_splati_d: i = 1; l = 0; u = 1; break; |
5135 | case Mips::BI__builtin_msa_sldi_d: i = 2; l = 0; u = 1; break; |
5136 | // Memory offsets and immediate loads. |
5137 | // These intrinsics take a signed 10 bit immediate. |
5138 | case Mips::BI__builtin_msa_ldi_b: i = 0; l = -128; u = 255; break; |
5139 | case Mips::BI__builtin_msa_ldi_h: |
5140 | case Mips::BI__builtin_msa_ldi_w: |
5141 | case Mips::BI__builtin_msa_ldi_d: i = 0; l = -512; u = 511; break; |
5142 | case Mips::BI__builtin_msa_ld_b: i = 1; l = -512; u = 511; m = 1; break; |
5143 | case Mips::BI__builtin_msa_ld_h: i = 1; l = -1024; u = 1022; m = 2; break; |
5144 | case Mips::BI__builtin_msa_ld_w: i = 1; l = -2048; u = 2044; m = 4; break; |
5145 | case Mips::BI__builtin_msa_ld_d: i = 1; l = -4096; u = 4088; m = 8; break; |
5146 | case Mips::BI__builtin_msa_ldr_d: i = 1; l = -4096; u = 4088; m = 8; break; |
5147 | case Mips::BI__builtin_msa_ldr_w: i = 1; l = -2048; u = 2044; m = 4; break; |
5148 | case Mips::BI__builtin_msa_st_b: i = 2; l = -512; u = 511; m = 1; break; |
5149 | case Mips::BI__builtin_msa_st_h: i = 2; l = -1024; u = 1022; m = 2; break; |
5150 | case Mips::BI__builtin_msa_st_w: i = 2; l = -2048; u = 2044; m = 4; break; |
5151 | case Mips::BI__builtin_msa_st_d: i = 2; l = -4096; u = 4088; m = 8; break; |
5152 | case Mips::BI__builtin_msa_str_d: i = 2; l = -4096; u = 4088; m = 8; break; |
5153 | case Mips::BI__builtin_msa_str_w: i = 2; l = -2048; u = 2044; m = 4; break; |
5154 | } |
5155 | |
5156 | if (!m) |
5157 | return BuiltinConstantArgRange(TheCall, ArgNum: i, Low: l, High: u); |
5158 | |
5159 | return BuiltinConstantArgRange(TheCall, ArgNum: i, Low: l, High: u) || |
5160 | BuiltinConstantArgMultiple(TheCall, ArgNum: i, Multiple: m); |
5161 | } |
5162 | |
5163 | /// DecodePPCMMATypeFromStr - This decodes one PPC MMA type descriptor from Str, |
5164 | /// advancing the pointer over the consumed characters. The decoded type is |
5165 | /// returned. If the decoded type represents a constant integer with a |
5166 | /// constraint on its value then Mask is set to that value. The type descriptors |
5167 | /// used in Str are specific to PPC MMA builtins and are documented in the file |
5168 | /// defining the PPC builtins. |
5169 | static QualType DecodePPCMMATypeFromStr(ASTContext &Context, const char *&Str, |
5170 | unsigned &Mask) { |
5171 | bool RequireICE = false; |
5172 | ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None; |
5173 | switch (*Str++) { |
5174 | case 'V': |
5175 | return Context.getVectorType(VectorType: Context.UnsignedCharTy, NumElts: 16, |
5176 | VecKind: VectorKind::AltiVecVector); |
5177 | case 'i': { |
5178 | char *End; |
5179 | unsigned size = strtoul(nptr: Str, endptr: &End, base: 10); |
5180 | assert(End != Str && "Missing constant parameter constraint" ); |
5181 | Str = End; |
5182 | Mask = size; |
5183 | return Context.IntTy; |
5184 | } |
5185 | case 'W': { |
5186 | char *End; |
5187 | unsigned size = strtoul(nptr: Str, endptr: &End, base: 10); |
5188 | assert(End != Str && "Missing PowerPC MMA type size" ); |
5189 | Str = End; |
5190 | QualType Type; |
5191 | switch (size) { |
5192 | #define PPC_VECTOR_TYPE(typeName, Id, size) \ |
5193 | case size: Type = Context.Id##Ty; break; |
5194 | #include "clang/Basic/PPCTypes.def" |
5195 | default: llvm_unreachable("Invalid PowerPC MMA vector type" ); |
5196 | } |
5197 | bool CheckVectorArgs = false; |
5198 | while (!CheckVectorArgs) { |
5199 | switch (*Str++) { |
5200 | case '*': |
5201 | Type = Context.getPointerType(T: Type); |
5202 | break; |
5203 | case 'C': |
5204 | Type = Type.withConst(); |
5205 | break; |
5206 | default: |
5207 | CheckVectorArgs = true; |
5208 | --Str; |
5209 | break; |
5210 | } |
5211 | } |
5212 | return Type; |
5213 | } |
5214 | default: |
5215 | return Context.DecodeTypeStr(Str&: --Str, Context, Error, RequireICE, AllowTypeModifiers: true); |
5216 | } |
5217 | } |
5218 | |
5219 | static bool isPPC_64Builtin(unsigned BuiltinID) { |
5220 | // These builtins only work on PPC 64bit targets. |
5221 | switch (BuiltinID) { |
5222 | case PPC::BI__builtin_divde: |
5223 | case PPC::BI__builtin_divdeu: |
5224 | case PPC::BI__builtin_bpermd: |
5225 | case PPC::BI__builtin_pdepd: |
5226 | case PPC::BI__builtin_pextd: |
5227 | case PPC::BI__builtin_ppc_ldarx: |
5228 | case PPC::BI__builtin_ppc_stdcx: |
5229 | case PPC::BI__builtin_ppc_tdw: |
5230 | case PPC::BI__builtin_ppc_trapd: |
5231 | case PPC::BI__builtin_ppc_cmpeqb: |
5232 | case PPC::BI__builtin_ppc_setb: |
5233 | case PPC::BI__builtin_ppc_mulhd: |
5234 | case PPC::BI__builtin_ppc_mulhdu: |
5235 | case PPC::BI__builtin_ppc_maddhd: |
5236 | case PPC::BI__builtin_ppc_maddhdu: |
5237 | case PPC::BI__builtin_ppc_maddld: |
5238 | case PPC::BI__builtin_ppc_load8r: |
5239 | case PPC::BI__builtin_ppc_store8r: |
5240 | case PPC::BI__builtin_ppc_insert_exp: |
5241 | case PPC::BI__builtin_ppc_extract_sig: |
5242 | case PPC::BI__builtin_ppc_addex: |
5243 | case PPC::BI__builtin_darn: |
5244 | case PPC::BI__builtin_darn_raw: |
5245 | case PPC::BI__builtin_ppc_compare_and_swaplp: |
5246 | case PPC::BI__builtin_ppc_fetch_and_addlp: |
5247 | case PPC::BI__builtin_ppc_fetch_and_andlp: |
5248 | case PPC::BI__builtin_ppc_fetch_and_orlp: |
5249 | case PPC::BI__builtin_ppc_fetch_and_swaplp: |
5250 | return true; |
5251 | } |
5252 | return false; |
5253 | } |
5254 | |
5255 | /// Returns true if the argument consists of one contiguous run of 1s with any |
5256 | /// number of 0s on either side. The 1s are allowed to wrap from LSB to MSB, so |
5257 | /// 0x000FFF0, 0x0000FFFF, 0xFF0000FF, 0x0 are all runs. 0x0F0F0000 is not, |
5258 | /// since all 1s are not contiguous. |
5259 | bool Sema::ValueIsRunOfOnes(CallExpr *TheCall, unsigned ArgNum) { |
5260 | llvm::APSInt Result; |
5261 | // We can't check the value of a dependent argument. |
5262 | Expr *Arg = TheCall->getArg(Arg: ArgNum); |
5263 | if (Arg->isTypeDependent() || Arg->isValueDependent()) |
5264 | return false; |
5265 | |
5266 | // Check constant-ness first. |
5267 | if (BuiltinConstantArg(TheCall, ArgNum, Result)) |
5268 | return true; |
5269 | |
5270 | // Check contiguous run of 1s, 0xFF0000FF is also a run of 1s. |
5271 | if (Result.isShiftedMask() || (~Result).isShiftedMask()) |
5272 | return false; |
5273 | |
5274 | return Diag(TheCall->getBeginLoc(), |
5275 | diag::err_argument_not_contiguous_bit_field) |
5276 | << ArgNum << Arg->getSourceRange(); |
5277 | } |
5278 | |
5279 | bool Sema::CheckPPCBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, |
5280 | CallExpr *TheCall) { |
5281 | unsigned i = 0, l = 0, u = 0; |
5282 | bool IsTarget64Bit = TI.getTypeWidth(T: TI.getIntPtrType()) == 64; |
5283 | llvm::APSInt Result; |
5284 | |
5285 | if (isPPC_64Builtin(BuiltinID) && !IsTarget64Bit) |
5286 | return Diag(TheCall->getBeginLoc(), diag::err_64_bit_builtin_32_bit_tgt) |
5287 | << TheCall->getSourceRange(); |
5288 | |
5289 | switch (BuiltinID) { |
5290 | default: return false; |
5291 | case PPC::BI__builtin_altivec_crypto_vshasigmaw: |
5292 | case PPC::BI__builtin_altivec_crypto_vshasigmad: |
5293 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: 1) || |
5294 | BuiltinConstantArgRange(TheCall, ArgNum: 2, Low: 0, High: 15); |
5295 | case PPC::BI__builtin_altivec_dss: |
5296 | return BuiltinConstantArgRange(TheCall, ArgNum: 0, Low: 0, High: 3); |
5297 | case PPC::BI__builtin_tbegin: |
5298 | case PPC::BI__builtin_tend: |
5299 | return BuiltinConstantArgRange(TheCall, ArgNum: 0, Low: 0, High: 1); |
5300 | case PPC::BI__builtin_tsr: |
5301 | return BuiltinConstantArgRange(TheCall, ArgNum: 0, Low: 0, High: 7); |
5302 | case PPC::BI__builtin_tabortwc: |
5303 | case PPC::BI__builtin_tabortdc: |
5304 | return BuiltinConstantArgRange(TheCall, ArgNum: 0, Low: 0, High: 31); |
5305 | case PPC::BI__builtin_tabortwci: |
5306 | case PPC::BI__builtin_tabortdci: |
5307 | return BuiltinConstantArgRange(TheCall, ArgNum: 0, Low: 0, High: 31) || |
5308 | BuiltinConstantArgRange(TheCall, ArgNum: 2, Low: 0, High: 31); |
5309 | // According to GCC 'Basic PowerPC Built-in Functions Available on ISA 2.05', |
5310 | // __builtin_(un)pack_longdouble are available only if long double uses IBM |
5311 | // extended double representation. |
5312 | case PPC::BI__builtin_unpack_longdouble: |
5313 | if (BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: 1)) |
5314 | return true; |
5315 | [[fallthrough]]; |
5316 | case PPC::BI__builtin_pack_longdouble: |
5317 | if (&TI.getLongDoubleFormat() != &llvm::APFloat::PPCDoubleDouble()) |
5318 | return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_requires_abi) |
5319 | << "ibmlongdouble" ; |
5320 | return false; |
5321 | case PPC::BI__builtin_altivec_dst: |
5322 | case PPC::BI__builtin_altivec_dstt: |
5323 | case PPC::BI__builtin_altivec_dstst: |
5324 | case PPC::BI__builtin_altivec_dststt: |
5325 | return BuiltinConstantArgRange(TheCall, ArgNum: 2, Low: 0, High: 3); |
5326 | case PPC::BI__builtin_vsx_xxpermdi: |
5327 | case PPC::BI__builtin_vsx_xxsldwi: |
5328 | return BuiltinVSX(TheCall); |
5329 | case PPC::BI__builtin_unpack_vector_int128: |
5330 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: 1); |
5331 | case PPC::BI__builtin_altivec_vgnb: |
5332 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 2, High: 7); |
5333 | case PPC::BI__builtin_vsx_xxeval: |
5334 | return BuiltinConstantArgRange(TheCall, ArgNum: 3, Low: 0, High: 255); |
5335 | case PPC::BI__builtin_altivec_vsldbi: |
5336 | return BuiltinConstantArgRange(TheCall, ArgNum: 2, Low: 0, High: 7); |
5337 | case PPC::BI__builtin_altivec_vsrdbi: |
5338 | return BuiltinConstantArgRange(TheCall, ArgNum: 2, Low: 0, High: 7); |
5339 | case PPC::BI__builtin_vsx_xxpermx: |
5340 | return BuiltinConstantArgRange(TheCall, ArgNum: 3, Low: 0, High: 7); |
5341 | case PPC::BI__builtin_ppc_tw: |
5342 | case PPC::BI__builtin_ppc_tdw: |
5343 | return BuiltinConstantArgRange(TheCall, ArgNum: 2, Low: 1, High: 31); |
5344 | case PPC::BI__builtin_ppc_cmprb: |
5345 | return BuiltinConstantArgRange(TheCall, ArgNum: 0, Low: 0, High: 1); |
5346 | // For __rlwnm, __rlwimi and __rldimi, the last parameter mask must |
5347 | // be a constant that represents a contiguous bit field. |
5348 | case PPC::BI__builtin_ppc_rlwnm: |
5349 | return ValueIsRunOfOnes(TheCall, ArgNum: 2); |
5350 | case PPC::BI__builtin_ppc_rlwimi: |
5351 | return BuiltinConstantArgRange(TheCall, ArgNum: 2, Low: 0, High: 31) || |
5352 | ValueIsRunOfOnes(TheCall, ArgNum: 3); |
5353 | case PPC::BI__builtin_ppc_rldimi: |
5354 | return BuiltinConstantArgRange(TheCall, ArgNum: 2, Low: 0, High: 63) || |
5355 | ValueIsRunOfOnes(TheCall, ArgNum: 3); |
5356 | case PPC::BI__builtin_ppc_addex: { |
5357 | if (BuiltinConstantArgRange(TheCall, ArgNum: 2, Low: 0, High: 3)) |
5358 | return true; |
5359 | // Output warning for reserved values 1 to 3. |
5360 | int ArgValue = |
5361 | TheCall->getArg(Arg: 2)->getIntegerConstantExpr(Ctx: Context)->getSExtValue(); |
5362 | if (ArgValue != 0) |
5363 | Diag(TheCall->getBeginLoc(), diag::warn_argument_undefined_behaviour) |
5364 | << ArgValue; |
5365 | return false; |
5366 | } |
5367 | case PPC::BI__builtin_ppc_mtfsb0: |
5368 | case PPC::BI__builtin_ppc_mtfsb1: |
5369 | return BuiltinConstantArgRange(TheCall, ArgNum: 0, Low: 0, High: 31); |
5370 | case PPC::BI__builtin_ppc_mtfsf: |
5371 | return BuiltinConstantArgRange(TheCall, ArgNum: 0, Low: 0, High: 255); |
5372 | case PPC::BI__builtin_ppc_mtfsfi: |
5373 | return BuiltinConstantArgRange(TheCall, ArgNum: 0, Low: 0, High: 7) || |
5374 | BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: 15); |
5375 | case PPC::BI__builtin_ppc_alignx: |
5376 | return BuiltinConstantArgPower2(TheCall, ArgNum: 0); |
5377 | case PPC::BI__builtin_ppc_rdlam: |
5378 | return ValueIsRunOfOnes(TheCall, ArgNum: 2); |
5379 | case PPC::BI__builtin_vsx_ldrmb: |
5380 | case PPC::BI__builtin_vsx_strmb: |
5381 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 1, High: 16); |
5382 | case PPC::BI__builtin_altivec_vcntmbb: |
5383 | case PPC::BI__builtin_altivec_vcntmbh: |
5384 | case PPC::BI__builtin_altivec_vcntmbw: |
5385 | case PPC::BI__builtin_altivec_vcntmbd: |
5386 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: 1); |
5387 | case PPC::BI__builtin_vsx_xxgenpcvbm: |
5388 | case PPC::BI__builtin_vsx_xxgenpcvhm: |
5389 | case PPC::BI__builtin_vsx_xxgenpcvwm: |
5390 | case PPC::BI__builtin_vsx_xxgenpcvdm: |
5391 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: 3); |
5392 | case PPC::BI__builtin_ppc_test_data_class: { |
5393 | // Check if the first argument of the __builtin_ppc_test_data_class call is |
5394 | // valid. The argument must be 'float' or 'double' or '__float128'. |
5395 | QualType ArgType = TheCall->getArg(Arg: 0)->getType(); |
5396 | if (ArgType != QualType(Context.FloatTy) && |
5397 | ArgType != QualType(Context.DoubleTy) && |
5398 | ArgType != QualType(Context.Float128Ty)) |
5399 | return Diag(TheCall->getBeginLoc(), |
5400 | diag::err_ppc_invalid_test_data_class_type); |
5401 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: 127); |
5402 | } |
5403 | case PPC::BI__builtin_ppc_maxfe: |
5404 | case PPC::BI__builtin_ppc_minfe: |
5405 | case PPC::BI__builtin_ppc_maxfl: |
5406 | case PPC::BI__builtin_ppc_minfl: |
5407 | case PPC::BI__builtin_ppc_maxfs: |
5408 | case PPC::BI__builtin_ppc_minfs: { |
5409 | if (Context.getTargetInfo().getTriple().isOSAIX() && |
5410 | (BuiltinID == PPC::BI__builtin_ppc_maxfe || |
5411 | BuiltinID == PPC::BI__builtin_ppc_minfe)) |
5412 | return Diag(TheCall->getBeginLoc(), diag::err_target_unsupported_type) |
5413 | << "builtin" << true << 128 << QualType(Context.LongDoubleTy) |
5414 | << false << Context.getTargetInfo().getTriple().str(); |
5415 | // Argument type should be exact. |
5416 | QualType ArgType = QualType(Context.LongDoubleTy); |
5417 | if (BuiltinID == PPC::BI__builtin_ppc_maxfl || |
5418 | BuiltinID == PPC::BI__builtin_ppc_minfl) |
5419 | ArgType = QualType(Context.DoubleTy); |
5420 | else if (BuiltinID == PPC::BI__builtin_ppc_maxfs || |
5421 | BuiltinID == PPC::BI__builtin_ppc_minfs) |
5422 | ArgType = QualType(Context.FloatTy); |
5423 | for (unsigned I = 0, E = TheCall->getNumArgs(); I < E; ++I) |
5424 | if (TheCall->getArg(I)->getType() != ArgType) |
5425 | return Diag(TheCall->getBeginLoc(), |
5426 | diag::err_typecheck_convert_incompatible) |
5427 | << TheCall->getArg(I)->getType() << ArgType << 1 << 0 << 0; |
5428 | return false; |
5429 | } |
5430 | #define CUSTOM_BUILTIN(Name, Intr, Types, Acc, Feature) \ |
5431 | case PPC::BI__builtin_##Name: \ |
5432 | return BuiltinPPCMMACall(TheCall, BuiltinID, Types); |
5433 | #include "clang/Basic/BuiltinsPPC.def" |
5434 | } |
5435 | return BuiltinConstantArgRange(TheCall, ArgNum: i, Low: l, High: u); |
5436 | } |
5437 | |
5438 | // Check if the given type is a non-pointer PPC MMA type. This function is used |
5439 | // in Sema to prevent invalid uses of restricted PPC MMA types. |
5440 | bool Sema::CheckPPCMMAType(QualType Type, SourceLocation TypeLoc) { |
5441 | if (Type->isPointerType() || Type->isArrayType()) |
5442 | return false; |
5443 | |
5444 | QualType CoreType = Type.getCanonicalType().getUnqualifiedType(); |
5445 | #define PPC_VECTOR_TYPE(Name, Id, Size) || CoreType == Context.Id##Ty |
5446 | if (false |
5447 | #include "clang/Basic/PPCTypes.def" |
5448 | ) { |
5449 | Diag(TypeLoc, diag::err_ppc_invalid_use_mma_type); |
5450 | return true; |
5451 | } |
5452 | return false; |
5453 | } |
5454 | |
5455 | // Helper function for CheckHLSLBuiltinFunctionCall |
5456 | bool CheckVectorElementCallArgs(Sema *S, CallExpr *TheCall) { |
5457 | assert(TheCall->getNumArgs() > 1); |
5458 | ExprResult A = TheCall->getArg(Arg: 0); |
5459 | |
5460 | QualType ArgTyA = A.get()->getType(); |
5461 | |
5462 | auto *VecTyA = ArgTyA->getAs<VectorType>(); |
5463 | SourceLocation BuiltinLoc = TheCall->getBeginLoc(); |
5464 | |
5465 | for (unsigned i = 1; i < TheCall->getNumArgs(); ++i) { |
5466 | ExprResult B = TheCall->getArg(Arg: i); |
5467 | QualType ArgTyB = B.get()->getType(); |
5468 | auto *VecTyB = ArgTyB->getAs<VectorType>(); |
5469 | if (VecTyA == nullptr && VecTyB == nullptr) |
5470 | return false; |
5471 | |
5472 | if (VecTyA && VecTyB) { |
5473 | bool retValue = false; |
5474 | if (VecTyA->getElementType() != VecTyB->getElementType()) { |
5475 | // Note: type promotion is intended to be handeled via the intrinsics |
5476 | // and not the builtin itself. |
5477 | S->Diag(TheCall->getBeginLoc(), |
5478 | diag::err_vec_builtin_incompatible_vector) |
5479 | << TheCall->getDirectCallee() << /*useAllTerminology*/ true |
5480 | << SourceRange(A.get()->getBeginLoc(), B.get()->getEndLoc()); |
5481 | retValue = true; |
5482 | } |
5483 | if (VecTyA->getNumElements() != VecTyB->getNumElements()) { |
5484 | // You should only be hitting this case if you are calling the builtin |
5485 | // directly. HLSL intrinsics should avoid this case via a |
5486 | // HLSLVectorTruncation. |
5487 | S->Diag(BuiltinLoc, diag::err_vec_builtin_incompatible_vector) |
5488 | << TheCall->getDirectCallee() << /*useAllTerminology*/ true |
5489 | << SourceRange(TheCall->getArg(0)->getBeginLoc(), |
5490 | TheCall->getArg(1)->getEndLoc()); |
5491 | retValue = true; |
5492 | } |
5493 | return retValue; |
5494 | } |
5495 | } |
5496 | |
5497 | // Note: if we get here one of the args is a scalar which |
5498 | // requires a VectorSplat on Arg0 or Arg1 |
5499 | S->Diag(BuiltinLoc, diag::err_vec_builtin_non_vector) |
5500 | << TheCall->getDirectCallee() << /*useAllTerminology*/ true |
5501 | << SourceRange(TheCall->getArg(0)->getBeginLoc(), |
5502 | TheCall->getArg(1)->getEndLoc()); |
5503 | return true; |
5504 | } |
5505 | |
5506 | bool CheckArgsTypesAreCorrect( |
5507 | Sema *S, CallExpr *TheCall, QualType ExpectedType, |
5508 | llvm::function_ref<bool(clang::QualType PassedType)> Check) { |
5509 | for (unsigned i = 0; i < TheCall->getNumArgs(); ++i) { |
5510 | QualType PassedType = TheCall->getArg(Arg: i)->getType(); |
5511 | if (Check(PassedType)) { |
5512 | if (auto *VecTyA = PassedType->getAs<VectorType>()) |
5513 | ExpectedType = S->Context.getVectorType( |
5514 | VectorType: ExpectedType, NumElts: VecTyA->getNumElements(), VecKind: VecTyA->getVectorKind()); |
5515 | S->Diag(TheCall->getArg(0)->getBeginLoc(), |
5516 | diag::err_typecheck_convert_incompatible) |
5517 | << PassedType << ExpectedType << 1 << 0 << 0; |
5518 | return true; |
5519 | } |
5520 | } |
5521 | return false; |
5522 | } |
5523 | |
5524 | bool CheckAllArgsHaveFloatRepresentation(Sema *S, CallExpr *TheCall) { |
5525 | auto checkAllFloatTypes = [](clang::QualType PassedType) -> bool { |
5526 | return !PassedType->hasFloatingRepresentation(); |
5527 | }; |
5528 | return CheckArgsTypesAreCorrect(S, TheCall, S->Context.FloatTy, |
5529 | checkAllFloatTypes); |
5530 | } |
5531 | |
5532 | bool CheckFloatOrHalfRepresentations(Sema *S, CallExpr *TheCall) { |
5533 | auto checkFloatorHalf = [](clang::QualType PassedType) -> bool { |
5534 | clang::QualType BaseType = |
5535 | PassedType->isVectorType() |
5536 | ? PassedType->getAs<clang::VectorType>()->getElementType() |
5537 | : PassedType; |
5538 | return !BaseType->isHalfType() && !BaseType->isFloat32Type(); |
5539 | }; |
5540 | return CheckArgsTypesAreCorrect(S, TheCall, S->Context.FloatTy, |
5541 | checkFloatorHalf); |
5542 | } |
5543 | |
5544 | bool CheckNoDoubleVectors(Sema *S, CallExpr *TheCall) { |
5545 | auto checkDoubleVector = [](clang::QualType PassedType) -> bool { |
5546 | if (const auto *VecTy = PassedType->getAs<VectorType>()) |
5547 | return VecTy->getElementType()->isDoubleType(); |
5548 | return false; |
5549 | }; |
5550 | return CheckArgsTypesAreCorrect(S, TheCall, S->Context.FloatTy, |
5551 | checkDoubleVector); |
5552 | } |
5553 | |
5554 | bool CheckUnsignedIntRepresentation(Sema *S, CallExpr *TheCall) { |
5555 | auto checkAllUnsignedTypes = [](clang::QualType PassedType) -> bool { |
5556 | return !PassedType->hasUnsignedIntegerRepresentation(); |
5557 | }; |
5558 | return CheckArgsTypesAreCorrect(S, TheCall, S->Context.UnsignedIntTy, |
5559 | checkAllUnsignedTypes); |
5560 | } |
5561 | |
5562 | void SetElementTypeAsReturnType(Sema *S, CallExpr *TheCall, |
5563 | QualType ReturnType) { |
5564 | auto *VecTyA = TheCall->getArg(Arg: 0)->getType()->getAs<VectorType>(); |
5565 | if (VecTyA) |
5566 | ReturnType = S->Context.getVectorType(VectorType: ReturnType, NumElts: VecTyA->getNumElements(), |
5567 | VecKind: VectorKind::Generic); |
5568 | TheCall->setType(ReturnType); |
5569 | } |
5570 | |
5571 | // Note: returning true in this case results in CheckBuiltinFunctionCall |
5572 | // returning an ExprError |
5573 | bool Sema::CheckHLSLBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { |
5574 | switch (BuiltinID) { |
5575 | case Builtin::BI__builtin_hlsl_elementwise_all: |
5576 | case Builtin::BI__builtin_hlsl_elementwise_any: { |
5577 | if (checkArgCount(S&: *this, Call: TheCall, DesiredArgCount: 1)) |
5578 | return true; |
5579 | break; |
5580 | } |
5581 | case Builtin::BI__builtin_hlsl_elementwise_clamp: { |
5582 | if (checkArgCount(S&: *this, Call: TheCall, DesiredArgCount: 3)) |
5583 | return true; |
5584 | if (CheckVectorElementCallArgs(S: this, TheCall)) |
5585 | return true; |
5586 | if (BuiltinElementwiseTernaryMath( |
5587 | TheCall, /*CheckForFloatArgs*/ |
5588 | TheCall->getArg(Arg: 0)->getType()->hasFloatingRepresentation())) |
5589 | return true; |
5590 | break; |
5591 | } |
5592 | case Builtin::BI__builtin_hlsl_dot: { |
5593 | if (checkArgCount(S&: *this, Call: TheCall, DesiredArgCount: 2)) |
5594 | return true; |
5595 | if (CheckVectorElementCallArgs(S: this, TheCall)) |
5596 | return true; |
5597 | if (BuiltinVectorToScalarMath(TheCall)) |
5598 | return true; |
5599 | if (CheckNoDoubleVectors(S: this, TheCall)) |
5600 | return true; |
5601 | break; |
5602 | } |
5603 | case Builtin::BI__builtin_hlsl_elementwise_rcp: { |
5604 | if (CheckAllArgsHaveFloatRepresentation(S: this, TheCall)) |
5605 | return true; |
5606 | if (PrepareBuiltinElementwiseMathOneArgCall(TheCall)) |
5607 | return true; |
5608 | break; |
5609 | } |
5610 | case Builtin::BI__builtin_hlsl_elementwise_rsqrt: |
5611 | case Builtin::BI__builtin_hlsl_elementwise_frac: { |
5612 | if (CheckFloatOrHalfRepresentations(S: this, TheCall)) |
5613 | return true; |
5614 | if (PrepareBuiltinElementwiseMathOneArgCall(TheCall)) |
5615 | return true; |
5616 | break; |
5617 | } |
5618 | case Builtin::BI__builtin_hlsl_elementwise_isinf: { |
5619 | if (CheckFloatOrHalfRepresentations(S: this, TheCall)) |
5620 | return true; |
5621 | if (PrepareBuiltinElementwiseMathOneArgCall(TheCall)) |
5622 | return true; |
5623 | SetElementTypeAsReturnType(this, TheCall, this->Context.BoolTy); |
5624 | break; |
5625 | } |
5626 | case Builtin::BI__builtin_hlsl_lerp: { |
5627 | if (checkArgCount(S&: *this, Call: TheCall, DesiredArgCount: 3)) |
5628 | return true; |
5629 | if (CheckVectorElementCallArgs(S: this, TheCall)) |
5630 | return true; |
5631 | if (BuiltinElementwiseTernaryMath(TheCall)) |
5632 | return true; |
5633 | if (CheckFloatOrHalfRepresentations(S: this, TheCall)) |
5634 | return true; |
5635 | break; |
5636 | } |
5637 | case Builtin::BI__builtin_hlsl_mad: { |
5638 | if (checkArgCount(S&: *this, Call: TheCall, DesiredArgCount: 3)) |
5639 | return true; |
5640 | if (CheckVectorElementCallArgs(S: this, TheCall)) |
5641 | return true; |
5642 | if (BuiltinElementwiseTernaryMath( |
5643 | TheCall, /*CheckForFloatArgs*/ |
5644 | TheCall->getArg(Arg: 0)->getType()->hasFloatingRepresentation())) |
5645 | return true; |
5646 | break; |
5647 | } |
5648 | // Note these are llvm builtins that we want to catch invalid intrinsic |
5649 | // generation. Normal handling of these builitns will occur elsewhere. |
5650 | case Builtin::BI__builtin_elementwise_bitreverse: { |
5651 | if (CheckUnsignedIntRepresentation(S: this, TheCall)) |
5652 | return true; |
5653 | break; |
5654 | } |
5655 | case Builtin::BI__builtin_elementwise_ceil: |
5656 | case Builtin::BI__builtin_elementwise_cos: |
5657 | case Builtin::BI__builtin_elementwise_exp: |
5658 | case Builtin::BI__builtin_elementwise_exp2: |
5659 | case Builtin::BI__builtin_elementwise_floor: |
5660 | case Builtin::BI__builtin_elementwise_log: |
5661 | case Builtin::BI__builtin_elementwise_log2: |
5662 | case Builtin::BI__builtin_elementwise_log10: |
5663 | case Builtin::BI__builtin_elementwise_pow: |
5664 | case Builtin::BI__builtin_elementwise_roundeven: |
5665 | case Builtin::BI__builtin_elementwise_sin: |
5666 | case Builtin::BI__builtin_elementwise_sqrt: |
5667 | case Builtin::BI__builtin_elementwise_trunc: { |
5668 | if (CheckFloatOrHalfRepresentations(S: this, TheCall)) |
5669 | return true; |
5670 | break; |
5671 | } |
5672 | } |
5673 | return false; |
5674 | } |
5675 | |
5676 | bool Sema::CheckAMDGCNBuiltinFunctionCall(unsigned BuiltinID, |
5677 | CallExpr *TheCall) { |
5678 | // position of memory order and scope arguments in the builtin |
5679 | unsigned OrderIndex, ScopeIndex; |
5680 | switch (BuiltinID) { |
5681 | case AMDGPU::BI__builtin_amdgcn_get_fpenv: |
5682 | case AMDGPU::BI__builtin_amdgcn_set_fpenv: |
5683 | return false; |
5684 | case AMDGPU::BI__builtin_amdgcn_atomic_inc32: |
5685 | case AMDGPU::BI__builtin_amdgcn_atomic_inc64: |
5686 | case AMDGPU::BI__builtin_amdgcn_atomic_dec32: |
5687 | case AMDGPU::BI__builtin_amdgcn_atomic_dec64: |
5688 | OrderIndex = 2; |
5689 | ScopeIndex = 3; |
5690 | break; |
5691 | case AMDGPU::BI__builtin_amdgcn_fence: |
5692 | OrderIndex = 0; |
5693 | ScopeIndex = 1; |
5694 | break; |
5695 | default: |
5696 | return false; |
5697 | } |
5698 | |
5699 | ExprResult Arg = TheCall->getArg(Arg: OrderIndex); |
5700 | auto ArgExpr = Arg.get(); |
5701 | Expr::EvalResult ArgResult; |
5702 | |
5703 | if (!ArgExpr->EvaluateAsInt(ArgResult, Context)) |
5704 | return Diag(ArgExpr->getExprLoc(), diag::err_typecheck_expect_int) |
5705 | << ArgExpr->getType(); |
5706 | auto Ord = ArgResult.Val.getInt().getZExtValue(); |
5707 | |
5708 | // Check validity of memory ordering as per C11 / C++11's memody model. |
5709 | // Only fence needs check. Atomic dec/inc allow all memory orders. |
5710 | if (!llvm::isValidAtomicOrderingCABI(Ord)) |
5711 | return Diag(ArgExpr->getBeginLoc(), |
5712 | diag::warn_atomic_op_has_invalid_memory_order) |
5713 | << 0 << ArgExpr->getSourceRange(); |
5714 | switch (static_cast<llvm::AtomicOrderingCABI>(Ord)) { |
5715 | case llvm::AtomicOrderingCABI::relaxed: |
5716 | case llvm::AtomicOrderingCABI::consume: |
5717 | if (BuiltinID == AMDGPU::BI__builtin_amdgcn_fence) |
5718 | return Diag(ArgExpr->getBeginLoc(), |
5719 | diag::warn_atomic_op_has_invalid_memory_order) |
5720 | << 0 << ArgExpr->getSourceRange(); |
5721 | break; |
5722 | case llvm::AtomicOrderingCABI::acquire: |
5723 | case llvm::AtomicOrderingCABI::release: |
5724 | case llvm::AtomicOrderingCABI::acq_rel: |
5725 | case llvm::AtomicOrderingCABI::seq_cst: |
5726 | break; |
5727 | } |
5728 | |
5729 | Arg = TheCall->getArg(Arg: ScopeIndex); |
5730 | ArgExpr = Arg.get(); |
5731 | Expr::EvalResult ArgResult1; |
5732 | // Check that sync scope is a constant literal |
5733 | if (!ArgExpr->EvaluateAsConstantExpr(ArgResult1, Context)) |
5734 | return Diag(ArgExpr->getExprLoc(), diag::err_expr_not_string_literal) |
5735 | << ArgExpr->getType(); |
5736 | |
5737 | return false; |
5738 | } |
5739 | |
5740 | bool Sema::CheckRISCVLMUL(CallExpr *TheCall, unsigned ArgNum) { |
5741 | llvm::APSInt Result; |
5742 | |
5743 | // We can't check the value of a dependent argument. |
5744 | Expr *Arg = TheCall->getArg(Arg: ArgNum); |
5745 | if (Arg->isTypeDependent() || Arg->isValueDependent()) |
5746 | return false; |
5747 | |
5748 | // Check constant-ness first. |
5749 | if (BuiltinConstantArg(TheCall, ArgNum, Result)) |
5750 | return true; |
5751 | |
5752 | int64_t Val = Result.getSExtValue(); |
5753 | if ((Val >= 0 && Val <= 3) || (Val >= 5 && Val <= 7)) |
5754 | return false; |
5755 | |
5756 | return Diag(TheCall->getBeginLoc(), diag::err_riscv_builtin_invalid_lmul) |
5757 | << Arg->getSourceRange(); |
5758 | } |
5759 | |
5760 | static bool CheckInvalidVLENandLMUL(const TargetInfo &TI, CallExpr *TheCall, |
5761 | Sema &S, QualType Type, int EGW) { |
5762 | assert((EGW == 128 || EGW == 256) && "EGW can only be 128 or 256 bits" ); |
5763 | |
5764 | // LMUL * VLEN >= EGW |
5765 | ASTContext::BuiltinVectorTypeInfo Info = |
5766 | S.Context.getBuiltinVectorTypeInfo(VecTy: Type->castAs<BuiltinType>()); |
5767 | unsigned ElemSize = S.Context.getTypeSize(Info.ElementType); |
5768 | unsigned MinElemCount = Info.EC.getKnownMinValue(); |
5769 | |
5770 | unsigned EGS = EGW / ElemSize; |
5771 | // If EGS is less than or equal to the minimum number of elements, then the |
5772 | // type is valid. |
5773 | if (EGS <= MinElemCount) |
5774 | return false; |
5775 | |
5776 | // Otherwise, we need vscale to be at least EGS / MinElemCont. |
5777 | assert(EGS % MinElemCount == 0); |
5778 | unsigned VScaleFactor = EGS / MinElemCount; |
5779 | // Vscale is VLEN/RVVBitsPerBlock. |
5780 | unsigned MinRequiredVLEN = VScaleFactor * llvm::RISCV::RVVBitsPerBlock; |
5781 | std::string RequiredExt = "zvl" + std::to_string(val: MinRequiredVLEN) + "b" ; |
5782 | if (!TI.hasFeature(RequiredExt)) |
5783 | return S.Diag(TheCall->getBeginLoc(), |
5784 | diag::err_riscv_type_requires_extension) << Type << RequiredExt; |
5785 | |
5786 | return false; |
5787 | } |
5788 | |
5789 | bool Sema::CheckRISCVBuiltinFunctionCall(const TargetInfo &TI, |
5790 | unsigned BuiltinID, |
5791 | CallExpr *TheCall) { |
5792 | // vmulh.vv, vmulh.vx, vmulhu.vv, vmulhu.vx, vmulhsu.vv, vmulhsu.vx, |
5793 | // vsmul.vv, vsmul.vx are not included for EEW=64 in Zve64*. |
5794 | switch (BuiltinID) { |
5795 | default: |
5796 | break; |
5797 | case RISCVVector::BI__builtin_rvv_vmulhsu_vv: |
5798 | case RISCVVector::BI__builtin_rvv_vmulhsu_vx: |
5799 | case RISCVVector::BI__builtin_rvv_vmulhsu_vv_tu: |
5800 | case RISCVVector::BI__builtin_rvv_vmulhsu_vx_tu: |
5801 | case RISCVVector::BI__builtin_rvv_vmulhsu_vv_m: |
5802 | case RISCVVector::BI__builtin_rvv_vmulhsu_vx_m: |
5803 | case RISCVVector::BI__builtin_rvv_vmulhsu_vv_mu: |
5804 | case RISCVVector::BI__builtin_rvv_vmulhsu_vx_mu: |
5805 | case RISCVVector::BI__builtin_rvv_vmulhsu_vv_tum: |
5806 | case RISCVVector::BI__builtin_rvv_vmulhsu_vx_tum: |
5807 | case RISCVVector::BI__builtin_rvv_vmulhsu_vv_tumu: |
5808 | case RISCVVector::BI__builtin_rvv_vmulhsu_vx_tumu: |
5809 | case RISCVVector::BI__builtin_rvv_vmulhu_vv: |
5810 | case RISCVVector::BI__builtin_rvv_vmulhu_vx: |
5811 | case RISCVVector::BI__builtin_rvv_vmulhu_vv_tu: |
5812 | case RISCVVector::BI__builtin_rvv_vmulhu_vx_tu: |
5813 | case RISCVVector::BI__builtin_rvv_vmulhu_vv_m: |
5814 | case RISCVVector::BI__builtin_rvv_vmulhu_vx_m: |
5815 | case RISCVVector::BI__builtin_rvv_vmulhu_vv_mu: |
5816 | case RISCVVector::BI__builtin_rvv_vmulhu_vx_mu: |
5817 | case RISCVVector::BI__builtin_rvv_vmulhu_vv_tum: |
5818 | case RISCVVector::BI__builtin_rvv_vmulhu_vx_tum: |
5819 | case RISCVVector::BI__builtin_rvv_vmulhu_vv_tumu: |
5820 | case RISCVVector::BI__builtin_rvv_vmulhu_vx_tumu: |
5821 | case RISCVVector::BI__builtin_rvv_vmulh_vv: |
5822 | case RISCVVector::BI__builtin_rvv_vmulh_vx: |
5823 | case RISCVVector::BI__builtin_rvv_vmulh_vv_tu: |
5824 | case RISCVVector::BI__builtin_rvv_vmulh_vx_tu: |
5825 | case RISCVVector::BI__builtin_rvv_vmulh_vv_m: |
5826 | case RISCVVector::BI__builtin_rvv_vmulh_vx_m: |
5827 | case RISCVVector::BI__builtin_rvv_vmulh_vv_mu: |
5828 | case RISCVVector::BI__builtin_rvv_vmulh_vx_mu: |
5829 | case RISCVVector::BI__builtin_rvv_vmulh_vv_tum: |
5830 | case RISCVVector::BI__builtin_rvv_vmulh_vx_tum: |
5831 | case RISCVVector::BI__builtin_rvv_vmulh_vv_tumu: |
5832 | case RISCVVector::BI__builtin_rvv_vmulh_vx_tumu: |
5833 | case RISCVVector::BI__builtin_rvv_vsmul_vv: |
5834 | case RISCVVector::BI__builtin_rvv_vsmul_vx: |
5835 | case RISCVVector::BI__builtin_rvv_vsmul_vv_tu: |
5836 | case RISCVVector::BI__builtin_rvv_vsmul_vx_tu: |
5837 | case RISCVVector::BI__builtin_rvv_vsmul_vv_m: |
5838 | case RISCVVector::BI__builtin_rvv_vsmul_vx_m: |
5839 | case RISCVVector::BI__builtin_rvv_vsmul_vv_mu: |
5840 | case RISCVVector::BI__builtin_rvv_vsmul_vx_mu: |
5841 | case RISCVVector::BI__builtin_rvv_vsmul_vv_tum: |
5842 | case RISCVVector::BI__builtin_rvv_vsmul_vx_tum: |
5843 | case RISCVVector::BI__builtin_rvv_vsmul_vv_tumu: |
5844 | case RISCVVector::BI__builtin_rvv_vsmul_vx_tumu: { |
5845 | ASTContext::BuiltinVectorTypeInfo Info = Context.getBuiltinVectorTypeInfo( |
5846 | VecTy: TheCall->getType()->castAs<BuiltinType>()); |
5847 | |
5848 | if (Context.getTypeSize(Info.ElementType) == 64 && !TI.hasFeature("v" )) |
5849 | return Diag(TheCall->getBeginLoc(), |
5850 | diag::err_riscv_builtin_requires_extension) |
5851 | << /* IsExtension */ true << TheCall->getSourceRange() << "v" ; |
5852 | |
5853 | break; |
5854 | } |
5855 | } |
5856 | |
5857 | switch (BuiltinID) { |
5858 | case RISCVVector::BI__builtin_rvv_vsetvli: |
5859 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: 3) || |
5860 | CheckRISCVLMUL(TheCall, ArgNum: 2); |
5861 | case RISCVVector::BI__builtin_rvv_vsetvlimax: |
5862 | return BuiltinConstantArgRange(TheCall, ArgNum: 0, Low: 0, High: 3) || |
5863 | CheckRISCVLMUL(TheCall, ArgNum: 1); |
5864 | case RISCVVector::BI__builtin_rvv_vget_v: { |
5865 | ASTContext::BuiltinVectorTypeInfo ResVecInfo = |
5866 | Context.getBuiltinVectorTypeInfo(VecTy: cast<BuiltinType>( |
5867 | TheCall->getType().getCanonicalType().getTypePtr())); |
5868 | ASTContext::BuiltinVectorTypeInfo VecInfo = |
5869 | Context.getBuiltinVectorTypeInfo(VecTy: cast<BuiltinType>( |
5870 | Val: TheCall->getArg(Arg: 0)->getType().getCanonicalType().getTypePtr())); |
5871 | unsigned MaxIndex; |
5872 | if (VecInfo.NumVectors != 1) // vget for tuple type |
5873 | MaxIndex = VecInfo.NumVectors; |
5874 | else // vget for non-tuple type |
5875 | MaxIndex = (VecInfo.EC.getKnownMinValue() * VecInfo.NumVectors) / |
5876 | (ResVecInfo.EC.getKnownMinValue() * ResVecInfo.NumVectors); |
5877 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: MaxIndex - 1); |
5878 | } |
5879 | case RISCVVector::BI__builtin_rvv_vset_v: { |
5880 | ASTContext::BuiltinVectorTypeInfo ResVecInfo = |
5881 | Context.getBuiltinVectorTypeInfo(VecTy: cast<BuiltinType>( |
5882 | TheCall->getType().getCanonicalType().getTypePtr())); |
5883 | ASTContext::BuiltinVectorTypeInfo VecInfo = |
5884 | Context.getBuiltinVectorTypeInfo(VecTy: cast<BuiltinType>( |
5885 | Val: TheCall->getArg(Arg: 2)->getType().getCanonicalType().getTypePtr())); |
5886 | unsigned MaxIndex; |
5887 | if (ResVecInfo.NumVectors != 1) // vset for tuple type |
5888 | MaxIndex = ResVecInfo.NumVectors; |
5889 | else // vset fo non-tuple type |
5890 | MaxIndex = (ResVecInfo.EC.getKnownMinValue() * ResVecInfo.NumVectors) / |
5891 | (VecInfo.EC.getKnownMinValue() * VecInfo.NumVectors); |
5892 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: MaxIndex - 1); |
5893 | } |
5894 | // Vector Crypto |
5895 | case RISCVVector::BI__builtin_rvv_vaeskf1_vi_tu: |
5896 | case RISCVVector::BI__builtin_rvv_vaeskf2_vi_tu: |
5897 | case RISCVVector::BI__builtin_rvv_vaeskf2_vi: |
5898 | case RISCVVector::BI__builtin_rvv_vsm4k_vi_tu: { |
5899 | QualType Op1Type = TheCall->getArg(Arg: 0)->getType(); |
5900 | QualType Op2Type = TheCall->getArg(Arg: 1)->getType(); |
5901 | return CheckInvalidVLENandLMUL(TI, TheCall, S&: *this, Type: Op1Type, EGW: 128) || |
5902 | CheckInvalidVLENandLMUL(TI, TheCall, S&: *this, Type: Op2Type, EGW: 128) || |
5903 | BuiltinConstantArgRange(TheCall, ArgNum: 2, Low: 0, High: 31); |
5904 | } |
5905 | case RISCVVector::BI__builtin_rvv_vsm3c_vi_tu: |
5906 | case RISCVVector::BI__builtin_rvv_vsm3c_vi: { |
5907 | QualType Op1Type = TheCall->getArg(Arg: 0)->getType(); |
5908 | return CheckInvalidVLENandLMUL(TI, TheCall, S&: *this, Type: Op1Type, EGW: 256) || |
5909 | BuiltinConstantArgRange(TheCall, ArgNum: 2, Low: 0, High: 31); |
5910 | } |
5911 | case RISCVVector::BI__builtin_rvv_vaeskf1_vi: |
5912 | case RISCVVector::BI__builtin_rvv_vsm4k_vi: { |
5913 | QualType Op1Type = TheCall->getArg(Arg: 0)->getType(); |
5914 | return CheckInvalidVLENandLMUL(TI, TheCall, S&: *this, Type: Op1Type, EGW: 128) || |
5915 | BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: 31); |
5916 | } |
5917 | case RISCVVector::BI__builtin_rvv_vaesdf_vv: |
5918 | case RISCVVector::BI__builtin_rvv_vaesdf_vs: |
5919 | case RISCVVector::BI__builtin_rvv_vaesdm_vv: |
5920 | case RISCVVector::BI__builtin_rvv_vaesdm_vs: |
5921 | case RISCVVector::BI__builtin_rvv_vaesef_vv: |
5922 | case RISCVVector::BI__builtin_rvv_vaesef_vs: |
5923 | case RISCVVector::BI__builtin_rvv_vaesem_vv: |
5924 | case RISCVVector::BI__builtin_rvv_vaesem_vs: |
5925 | case RISCVVector::BI__builtin_rvv_vaesz_vs: |
5926 | case RISCVVector::BI__builtin_rvv_vsm4r_vv: |
5927 | case RISCVVector::BI__builtin_rvv_vsm4r_vs: |
5928 | case RISCVVector::BI__builtin_rvv_vaesdf_vv_tu: |
5929 | case RISCVVector::BI__builtin_rvv_vaesdf_vs_tu: |
5930 | case RISCVVector::BI__builtin_rvv_vaesdm_vv_tu: |
5931 | case RISCVVector::BI__builtin_rvv_vaesdm_vs_tu: |
5932 | case RISCVVector::BI__builtin_rvv_vaesef_vv_tu: |
5933 | case RISCVVector::BI__builtin_rvv_vaesef_vs_tu: |
5934 | case RISCVVector::BI__builtin_rvv_vaesem_vv_tu: |
5935 | case RISCVVector::BI__builtin_rvv_vaesem_vs_tu: |
5936 | case RISCVVector::BI__builtin_rvv_vaesz_vs_tu: |
5937 | case RISCVVector::BI__builtin_rvv_vsm4r_vv_tu: |
5938 | case RISCVVector::BI__builtin_rvv_vsm4r_vs_tu: { |
5939 | QualType Op1Type = TheCall->getArg(Arg: 0)->getType(); |
5940 | QualType Op2Type = TheCall->getArg(Arg: 1)->getType(); |
5941 | return CheckInvalidVLENandLMUL(TI, TheCall, S&: *this, Type: Op1Type, EGW: 128) || |
5942 | CheckInvalidVLENandLMUL(TI, TheCall, S&: *this, Type: Op2Type, EGW: 128); |
5943 | } |
5944 | case RISCVVector::BI__builtin_rvv_vsha2ch_vv: |
5945 | case RISCVVector::BI__builtin_rvv_vsha2cl_vv: |
5946 | case RISCVVector::BI__builtin_rvv_vsha2ms_vv: |
5947 | case RISCVVector::BI__builtin_rvv_vsha2ch_vv_tu: |
5948 | case RISCVVector::BI__builtin_rvv_vsha2cl_vv_tu: |
5949 | case RISCVVector::BI__builtin_rvv_vsha2ms_vv_tu: { |
5950 | QualType Op1Type = TheCall->getArg(Arg: 0)->getType(); |
5951 | QualType Op2Type = TheCall->getArg(Arg: 1)->getType(); |
5952 | QualType Op3Type = TheCall->getArg(Arg: 2)->getType(); |
5953 | ASTContext::BuiltinVectorTypeInfo Info = |
5954 | Context.getBuiltinVectorTypeInfo(VecTy: Op1Type->castAs<BuiltinType>()); |
5955 | uint64_t ElemSize = Context.getTypeSize(Info.ElementType); |
5956 | if (ElemSize == 64 && !TI.hasFeature("zvknhb" )) |
5957 | return Diag(TheCall->getBeginLoc(), |
5958 | diag::err_riscv_builtin_requires_extension) |
5959 | << /* IsExtension */ true << TheCall->getSourceRange() << "zvknb" ; |
5960 | |
5961 | return CheckInvalidVLENandLMUL(TI, TheCall, S&: *this, Type: Op1Type, EGW: ElemSize * 4) || |
5962 | CheckInvalidVLENandLMUL(TI, TheCall, S&: *this, Type: Op2Type, EGW: ElemSize * 4) || |
5963 | CheckInvalidVLENandLMUL(TI, TheCall, S&: *this, Type: Op3Type, EGW: ElemSize * 4); |
5964 | } |
5965 | |
5966 | case RISCVVector::BI__builtin_rvv_sf_vc_i_se: |
5967 | // bit_27_26, bit_24_20, bit_11_7, simm5, sew, log2lmul |
5968 | return BuiltinConstantArgRange(TheCall, ArgNum: 0, Low: 0, High: 3) || |
5969 | BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: 31) || |
5970 | BuiltinConstantArgRange(TheCall, ArgNum: 2, Low: 0, High: 31) || |
5971 | BuiltinConstantArgRange(TheCall, ArgNum: 3, Low: -16, High: 15) || |
5972 | CheckRISCVLMUL(TheCall, ArgNum: 5); |
5973 | case RISCVVector::BI__builtin_rvv_sf_vc_iv_se: |
5974 | // bit_27_26, bit_11_7, vs2, simm5 |
5975 | return BuiltinConstantArgRange(TheCall, ArgNum: 0, Low: 0, High: 3) || |
5976 | BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: 31) || |
5977 | BuiltinConstantArgRange(TheCall, ArgNum: 3, Low: -16, High: 15); |
5978 | case RISCVVector::BI__builtin_rvv_sf_vc_v_i: |
5979 | case RISCVVector::BI__builtin_rvv_sf_vc_v_i_se: |
5980 | // bit_27_26, bit_24_20, simm5 |
5981 | return BuiltinConstantArgRange(TheCall, ArgNum: 0, Low: 0, High: 3) || |
5982 | BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: 31) || |
5983 | BuiltinConstantArgRange(TheCall, ArgNum: 2, Low: -16, High: 15); |
5984 | case RISCVVector::BI__builtin_rvv_sf_vc_v_iv: |
5985 | case RISCVVector::BI__builtin_rvv_sf_vc_v_iv_se: |
5986 | // bit_27_26, vs2, simm5 |
5987 | return BuiltinConstantArgRange(TheCall, ArgNum: 0, Low: 0, High: 3) || |
5988 | BuiltinConstantArgRange(TheCall, ArgNum: 2, Low: -16, High: 15); |
5989 | case RISCVVector::BI__builtin_rvv_sf_vc_ivv_se: |
5990 | case RISCVVector::BI__builtin_rvv_sf_vc_ivw_se: |
5991 | case RISCVVector::BI__builtin_rvv_sf_vc_v_ivv: |
5992 | case RISCVVector::BI__builtin_rvv_sf_vc_v_ivw: |
5993 | case RISCVVector::BI__builtin_rvv_sf_vc_v_ivv_se: |
5994 | case RISCVVector::BI__builtin_rvv_sf_vc_v_ivw_se: |
5995 | // bit_27_26, vd, vs2, simm5 |
5996 | return BuiltinConstantArgRange(TheCall, ArgNum: 0, Low: 0, High: 3) || |
5997 | BuiltinConstantArgRange(TheCall, ArgNum: 3, Low: -16, High: 15); |
5998 | case RISCVVector::BI__builtin_rvv_sf_vc_x_se: |
5999 | // bit_27_26, bit_24_20, bit_11_7, xs1, sew, log2lmul |
6000 | return BuiltinConstantArgRange(TheCall, ArgNum: 0, Low: 0, High: 3) || |
6001 | BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: 31) || |
6002 | BuiltinConstantArgRange(TheCall, ArgNum: 2, Low: 0, High: 31) || |
6003 | CheckRISCVLMUL(TheCall, ArgNum: 5); |
6004 | case RISCVVector::BI__builtin_rvv_sf_vc_xv_se: |
6005 | case RISCVVector::BI__builtin_rvv_sf_vc_vv_se: |
6006 | // bit_27_26, bit_11_7, vs2, xs1/vs1 |
6007 | case RISCVVector::BI__builtin_rvv_sf_vc_v_x: |
6008 | case RISCVVector::BI__builtin_rvv_sf_vc_v_x_se: |
6009 | // bit_27_26, bit_24-20, xs1 |
6010 | return BuiltinConstantArgRange(TheCall, ArgNum: 0, Low: 0, High: 3) || |
6011 | BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: 31); |
6012 | case RISCVVector::BI__builtin_rvv_sf_vc_vvv_se: |
6013 | case RISCVVector::BI__builtin_rvv_sf_vc_xvv_se: |
6014 | case RISCVVector::BI__builtin_rvv_sf_vc_vvw_se: |
6015 | case RISCVVector::BI__builtin_rvv_sf_vc_xvw_se: |
6016 | // bit_27_26, vd, vs2, xs1 |
6017 | case RISCVVector::BI__builtin_rvv_sf_vc_v_xv: |
6018 | case RISCVVector::BI__builtin_rvv_sf_vc_v_vv: |
6019 | case RISCVVector::BI__builtin_rvv_sf_vc_v_xv_se: |
6020 | case RISCVVector::BI__builtin_rvv_sf_vc_v_vv_se: |
6021 | // bit_27_26, vs2, xs1/vs1 |
6022 | case RISCVVector::BI__builtin_rvv_sf_vc_v_xvv: |
6023 | case RISCVVector::BI__builtin_rvv_sf_vc_v_vvv: |
6024 | case RISCVVector::BI__builtin_rvv_sf_vc_v_xvw: |
6025 | case RISCVVector::BI__builtin_rvv_sf_vc_v_vvw: |
6026 | case RISCVVector::BI__builtin_rvv_sf_vc_v_xvv_se: |
6027 | case RISCVVector::BI__builtin_rvv_sf_vc_v_vvv_se: |
6028 | case RISCVVector::BI__builtin_rvv_sf_vc_v_xvw_se: |
6029 | case RISCVVector::BI__builtin_rvv_sf_vc_v_vvw_se: |
6030 | // bit_27_26, vd, vs2, xs1/vs1 |
6031 | return BuiltinConstantArgRange(TheCall, ArgNum: 0, Low: 0, High: 3); |
6032 | case RISCVVector::BI__builtin_rvv_sf_vc_fv_se: |
6033 | // bit_26, bit_11_7, vs2, fs1 |
6034 | return BuiltinConstantArgRange(TheCall, ArgNum: 0, Low: 0, High: 1) || |
6035 | BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: 31); |
6036 | case RISCVVector::BI__builtin_rvv_sf_vc_fvv_se: |
6037 | case RISCVVector::BI__builtin_rvv_sf_vc_fvw_se: |
6038 | case RISCVVector::BI__builtin_rvv_sf_vc_v_fvv: |
6039 | case RISCVVector::BI__builtin_rvv_sf_vc_v_fvw: |
6040 | case RISCVVector::BI__builtin_rvv_sf_vc_v_fvv_se: |
6041 | case RISCVVector::BI__builtin_rvv_sf_vc_v_fvw_se: |
6042 | // bit_26, vd, vs2, fs1 |
6043 | case RISCVVector::BI__builtin_rvv_sf_vc_v_fv: |
6044 | case RISCVVector::BI__builtin_rvv_sf_vc_v_fv_se: |
6045 | // bit_26, vs2, fs1 |
6046 | return BuiltinConstantArgRange(TheCall, ArgNum: 0, Low: 0, High: 1); |
6047 | // Check if byteselect is in [0, 3] |
6048 | case RISCV::BI__builtin_riscv_aes32dsi: |
6049 | case RISCV::BI__builtin_riscv_aes32dsmi: |
6050 | case RISCV::BI__builtin_riscv_aes32esi: |
6051 | case RISCV::BI__builtin_riscv_aes32esmi: |
6052 | case RISCV::BI__builtin_riscv_sm4ks: |
6053 | case RISCV::BI__builtin_riscv_sm4ed: |
6054 | return BuiltinConstantArgRange(TheCall, ArgNum: 2, Low: 0, High: 3); |
6055 | // Check if rnum is in [0, 10] |
6056 | case RISCV::BI__builtin_riscv_aes64ks1i: |
6057 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: 10); |
6058 | // Check if value range for vxrm is in [0, 3] |
6059 | case RISCVVector::BI__builtin_rvv_vaaddu_vv: |
6060 | case RISCVVector::BI__builtin_rvv_vaaddu_vx: |
6061 | case RISCVVector::BI__builtin_rvv_vaadd_vv: |
6062 | case RISCVVector::BI__builtin_rvv_vaadd_vx: |
6063 | case RISCVVector::BI__builtin_rvv_vasubu_vv: |
6064 | case RISCVVector::BI__builtin_rvv_vasubu_vx: |
6065 | case RISCVVector::BI__builtin_rvv_vasub_vv: |
6066 | case RISCVVector::BI__builtin_rvv_vasub_vx: |
6067 | case RISCVVector::BI__builtin_rvv_vsmul_vv: |
6068 | case RISCVVector::BI__builtin_rvv_vsmul_vx: |
6069 | case RISCVVector::BI__builtin_rvv_vssra_vv: |
6070 | case RISCVVector::BI__builtin_rvv_vssra_vx: |
6071 | case RISCVVector::BI__builtin_rvv_vssrl_vv: |
6072 | case RISCVVector::BI__builtin_rvv_vssrl_vx: |
6073 | case RISCVVector::BI__builtin_rvv_vnclip_wv: |
6074 | case RISCVVector::BI__builtin_rvv_vnclip_wx: |
6075 | case RISCVVector::BI__builtin_rvv_vnclipu_wv: |
6076 | case RISCVVector::BI__builtin_rvv_vnclipu_wx: |
6077 | return BuiltinConstantArgRange(TheCall, ArgNum: 2, Low: 0, High: 3); |
6078 | case RISCVVector::BI__builtin_rvv_vaaddu_vv_tu: |
6079 | case RISCVVector::BI__builtin_rvv_vaaddu_vx_tu: |
6080 | case RISCVVector::BI__builtin_rvv_vaadd_vv_tu: |
6081 | case RISCVVector::BI__builtin_rvv_vaadd_vx_tu: |
6082 | case RISCVVector::BI__builtin_rvv_vasubu_vv_tu: |
6083 | case RISCVVector::BI__builtin_rvv_vasubu_vx_tu: |
6084 | case RISCVVector::BI__builtin_rvv_vasub_vv_tu: |
6085 | case RISCVVector::BI__builtin_rvv_vasub_vx_tu: |
6086 | case RISCVVector::BI__builtin_rvv_vsmul_vv_tu: |
6087 | case RISCVVector::BI__builtin_rvv_vsmul_vx_tu: |
6088 | case RISCVVector::BI__builtin_rvv_vssra_vv_tu: |
6089 | case RISCVVector::BI__builtin_rvv_vssra_vx_tu: |
6090 | case RISCVVector::BI__builtin_rvv_vssrl_vv_tu: |
6091 | case RISCVVector::BI__builtin_rvv_vssrl_vx_tu: |
6092 | case RISCVVector::BI__builtin_rvv_vnclip_wv_tu: |
6093 | case RISCVVector::BI__builtin_rvv_vnclip_wx_tu: |
6094 | case RISCVVector::BI__builtin_rvv_vnclipu_wv_tu: |
6095 | case RISCVVector::BI__builtin_rvv_vnclipu_wx_tu: |
6096 | case RISCVVector::BI__builtin_rvv_vaaddu_vv_m: |
6097 | case RISCVVector::BI__builtin_rvv_vaaddu_vx_m: |
6098 | case RISCVVector::BI__builtin_rvv_vaadd_vv_m: |
6099 | case RISCVVector::BI__builtin_rvv_vaadd_vx_m: |
6100 | case RISCVVector::BI__builtin_rvv_vasubu_vv_m: |
6101 | case RISCVVector::BI__builtin_rvv_vasubu_vx_m: |
6102 | case RISCVVector::BI__builtin_rvv_vasub_vv_m: |
6103 | case RISCVVector::BI__builtin_rvv_vasub_vx_m: |
6104 | case RISCVVector::BI__builtin_rvv_vsmul_vv_m: |
6105 | case RISCVVector::BI__builtin_rvv_vsmul_vx_m: |
6106 | case RISCVVector::BI__builtin_rvv_vssra_vv_m: |
6107 | case RISCVVector::BI__builtin_rvv_vssra_vx_m: |
6108 | case RISCVVector::BI__builtin_rvv_vssrl_vv_m: |
6109 | case RISCVVector::BI__builtin_rvv_vssrl_vx_m: |
6110 | case RISCVVector::BI__builtin_rvv_vnclip_wv_m: |
6111 | case RISCVVector::BI__builtin_rvv_vnclip_wx_m: |
6112 | case RISCVVector::BI__builtin_rvv_vnclipu_wv_m: |
6113 | case RISCVVector::BI__builtin_rvv_vnclipu_wx_m: |
6114 | return BuiltinConstantArgRange(TheCall, ArgNum: 3, Low: 0, High: 3); |
6115 | case RISCVVector::BI__builtin_rvv_vaaddu_vv_tum: |
6116 | case RISCVVector::BI__builtin_rvv_vaaddu_vv_tumu: |
6117 | case RISCVVector::BI__builtin_rvv_vaaddu_vv_mu: |
6118 | case RISCVVector::BI__builtin_rvv_vaaddu_vx_tum: |
6119 | case RISCVVector::BI__builtin_rvv_vaaddu_vx_tumu: |
6120 | case RISCVVector::BI__builtin_rvv_vaaddu_vx_mu: |
6121 | case RISCVVector::BI__builtin_rvv_vaadd_vv_tum: |
6122 | case RISCVVector::BI__builtin_rvv_vaadd_vv_tumu: |
6123 | case RISCVVector::BI__builtin_rvv_vaadd_vv_mu: |
6124 | case RISCVVector::BI__builtin_rvv_vaadd_vx_tum: |
6125 | case RISCVVector::BI__builtin_rvv_vaadd_vx_tumu: |
6126 | case RISCVVector::BI__builtin_rvv_vaadd_vx_mu: |
6127 | case RISCVVector::BI__builtin_rvv_vasubu_vv_tum: |
6128 | case RISCVVector::BI__builtin_rvv_vasubu_vv_tumu: |
6129 | case RISCVVector::BI__builtin_rvv_vasubu_vv_mu: |
6130 | case RISCVVector::BI__builtin_rvv_vasubu_vx_tum: |
6131 | case RISCVVector::BI__builtin_rvv_vasubu_vx_tumu: |
6132 | case RISCVVector::BI__builtin_rvv_vasubu_vx_mu: |
6133 | case RISCVVector::BI__builtin_rvv_vasub_vv_tum: |
6134 | case RISCVVector::BI__builtin_rvv_vasub_vv_tumu: |
6135 | case RISCVVector::BI__builtin_rvv_vasub_vv_mu: |
6136 | case RISCVVector::BI__builtin_rvv_vasub_vx_tum: |
6137 | case RISCVVector::BI__builtin_rvv_vasub_vx_tumu: |
6138 | case RISCVVector::BI__builtin_rvv_vasub_vx_mu: |
6139 | case RISCVVector::BI__builtin_rvv_vsmul_vv_mu: |
6140 | case RISCVVector::BI__builtin_rvv_vsmul_vx_mu: |
6141 | case RISCVVector::BI__builtin_rvv_vssra_vv_mu: |
6142 | case RISCVVector::BI__builtin_rvv_vssra_vx_mu: |
6143 | case RISCVVector::BI__builtin_rvv_vssrl_vv_mu: |
6144 | case RISCVVector::BI__builtin_rvv_vssrl_vx_mu: |
6145 | case RISCVVector::BI__builtin_rvv_vnclip_wv_mu: |
6146 | case RISCVVector::BI__builtin_rvv_vnclip_wx_mu: |
6147 | case RISCVVector::BI__builtin_rvv_vnclipu_wv_mu: |
6148 | case RISCVVector::BI__builtin_rvv_vnclipu_wx_mu: |
6149 | case RISCVVector::BI__builtin_rvv_vsmul_vv_tum: |
6150 | case RISCVVector::BI__builtin_rvv_vsmul_vx_tum: |
6151 | case RISCVVector::BI__builtin_rvv_vssra_vv_tum: |
6152 | case RISCVVector::BI__builtin_rvv_vssra_vx_tum: |
6153 | case RISCVVector::BI__builtin_rvv_vssrl_vv_tum: |
6154 | case RISCVVector::BI__builtin_rvv_vssrl_vx_tum: |
6155 | case RISCVVector::BI__builtin_rvv_vnclip_wv_tum: |
6156 | case RISCVVector::BI__builtin_rvv_vnclip_wx_tum: |
6157 | case RISCVVector::BI__builtin_rvv_vnclipu_wv_tum: |
6158 | case RISCVVector::BI__builtin_rvv_vnclipu_wx_tum: |
6159 | case RISCVVector::BI__builtin_rvv_vsmul_vv_tumu: |
6160 | case RISCVVector::BI__builtin_rvv_vsmul_vx_tumu: |
6161 | case RISCVVector::BI__builtin_rvv_vssra_vv_tumu: |
6162 | case RISCVVector::BI__builtin_rvv_vssra_vx_tumu: |
6163 | case RISCVVector::BI__builtin_rvv_vssrl_vv_tumu: |
6164 | case RISCVVector::BI__builtin_rvv_vssrl_vx_tumu: |
6165 | case RISCVVector::BI__builtin_rvv_vnclip_wv_tumu: |
6166 | case RISCVVector::BI__builtin_rvv_vnclip_wx_tumu: |
6167 | case RISCVVector::BI__builtin_rvv_vnclipu_wv_tumu: |
6168 | case RISCVVector::BI__builtin_rvv_vnclipu_wx_tumu: |
6169 | return BuiltinConstantArgRange(TheCall, ArgNum: 4, Low: 0, High: 3); |
6170 | case RISCVVector::BI__builtin_rvv_vfsqrt_v_rm: |
6171 | case RISCVVector::BI__builtin_rvv_vfrec7_v_rm: |
6172 | case RISCVVector::BI__builtin_rvv_vfcvt_x_f_v_rm: |
6173 | case RISCVVector::BI__builtin_rvv_vfcvt_xu_f_v_rm: |
6174 | case RISCVVector::BI__builtin_rvv_vfcvt_f_x_v_rm: |
6175 | case RISCVVector::BI__builtin_rvv_vfcvt_f_xu_v_rm: |
6176 | case RISCVVector::BI__builtin_rvv_vfwcvt_x_f_v_rm: |
6177 | case RISCVVector::BI__builtin_rvv_vfwcvt_xu_f_v_rm: |
6178 | case RISCVVector::BI__builtin_rvv_vfncvt_x_f_w_rm: |
6179 | case RISCVVector::BI__builtin_rvv_vfncvt_xu_f_w_rm: |
6180 | case RISCVVector::BI__builtin_rvv_vfncvt_f_x_w_rm: |
6181 | case RISCVVector::BI__builtin_rvv_vfncvt_f_xu_w_rm: |
6182 | case RISCVVector::BI__builtin_rvv_vfncvt_f_f_w_rm: |
6183 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: 4); |
6184 | case RISCVVector::BI__builtin_rvv_vfadd_vv_rm: |
6185 | case RISCVVector::BI__builtin_rvv_vfadd_vf_rm: |
6186 | case RISCVVector::BI__builtin_rvv_vfsub_vv_rm: |
6187 | case RISCVVector::BI__builtin_rvv_vfsub_vf_rm: |
6188 | case RISCVVector::BI__builtin_rvv_vfrsub_vf_rm: |
6189 | case RISCVVector::BI__builtin_rvv_vfwadd_vv_rm: |
6190 | case RISCVVector::BI__builtin_rvv_vfwadd_vf_rm: |
6191 | case RISCVVector::BI__builtin_rvv_vfwsub_vv_rm: |
6192 | case RISCVVector::BI__builtin_rvv_vfwsub_vf_rm: |
6193 | case RISCVVector::BI__builtin_rvv_vfwadd_wv_rm: |
6194 | case RISCVVector::BI__builtin_rvv_vfwadd_wf_rm: |
6195 | case RISCVVector::BI__builtin_rvv_vfwsub_wv_rm: |
6196 | case RISCVVector::BI__builtin_rvv_vfwsub_wf_rm: |
6197 | case RISCVVector::BI__builtin_rvv_vfmul_vv_rm: |
6198 | case RISCVVector::BI__builtin_rvv_vfmul_vf_rm: |
6199 | case RISCVVector::BI__builtin_rvv_vfdiv_vv_rm: |
6200 | case RISCVVector::BI__builtin_rvv_vfdiv_vf_rm: |
6201 | case RISCVVector::BI__builtin_rvv_vfrdiv_vf_rm: |
6202 | case RISCVVector::BI__builtin_rvv_vfwmul_vv_rm: |
6203 | case RISCVVector::BI__builtin_rvv_vfwmul_vf_rm: |
6204 | case RISCVVector::BI__builtin_rvv_vfredosum_vs_rm: |
6205 | case RISCVVector::BI__builtin_rvv_vfredusum_vs_rm: |
6206 | case RISCVVector::BI__builtin_rvv_vfwredosum_vs_rm: |
6207 | case RISCVVector::BI__builtin_rvv_vfwredusum_vs_rm: |
6208 | case RISCVVector::BI__builtin_rvv_vfsqrt_v_rm_tu: |
6209 | case RISCVVector::BI__builtin_rvv_vfrec7_v_rm_tu: |
6210 | case RISCVVector::BI__builtin_rvv_vfcvt_x_f_v_rm_tu: |
6211 | case RISCVVector::BI__builtin_rvv_vfcvt_xu_f_v_rm_tu: |
6212 | case RISCVVector::BI__builtin_rvv_vfcvt_f_x_v_rm_tu: |
6213 | case RISCVVector::BI__builtin_rvv_vfcvt_f_xu_v_rm_tu: |
6214 | case RISCVVector::BI__builtin_rvv_vfwcvt_x_f_v_rm_tu: |
6215 | case RISCVVector::BI__builtin_rvv_vfwcvt_xu_f_v_rm_tu: |
6216 | case RISCVVector::BI__builtin_rvv_vfncvt_x_f_w_rm_tu: |
6217 | case RISCVVector::BI__builtin_rvv_vfncvt_xu_f_w_rm_tu: |
6218 | case RISCVVector::BI__builtin_rvv_vfncvt_f_x_w_rm_tu: |
6219 | case RISCVVector::BI__builtin_rvv_vfncvt_f_xu_w_rm_tu: |
6220 | case RISCVVector::BI__builtin_rvv_vfncvt_f_f_w_rm_tu: |
6221 | case RISCVVector::BI__builtin_rvv_vfsqrt_v_rm_m: |
6222 | case RISCVVector::BI__builtin_rvv_vfrec7_v_rm_m: |
6223 | case RISCVVector::BI__builtin_rvv_vfcvt_x_f_v_rm_m: |
6224 | case RISCVVector::BI__builtin_rvv_vfcvt_xu_f_v_rm_m: |
6225 | case RISCVVector::BI__builtin_rvv_vfcvt_f_x_v_rm_m: |
6226 | case RISCVVector::BI__builtin_rvv_vfcvt_f_xu_v_rm_m: |
6227 | case RISCVVector::BI__builtin_rvv_vfwcvt_x_f_v_rm_m: |
6228 | case RISCVVector::BI__builtin_rvv_vfwcvt_xu_f_v_rm_m: |
6229 | case RISCVVector::BI__builtin_rvv_vfncvt_x_f_w_rm_m: |
6230 | case RISCVVector::BI__builtin_rvv_vfncvt_xu_f_w_rm_m: |
6231 | case RISCVVector::BI__builtin_rvv_vfncvt_f_x_w_rm_m: |
6232 | case RISCVVector::BI__builtin_rvv_vfncvt_f_xu_w_rm_m: |
6233 | case RISCVVector::BI__builtin_rvv_vfncvt_f_f_w_rm_m: |
6234 | return BuiltinConstantArgRange(TheCall, ArgNum: 2, Low: 0, High: 4); |
6235 | case RISCVVector::BI__builtin_rvv_vfadd_vv_rm_tu: |
6236 | case RISCVVector::BI__builtin_rvv_vfadd_vf_rm_tu: |
6237 | case RISCVVector::BI__builtin_rvv_vfsub_vv_rm_tu: |
6238 | case RISCVVector::BI__builtin_rvv_vfsub_vf_rm_tu: |
6239 | case RISCVVector::BI__builtin_rvv_vfrsub_vf_rm_tu: |
6240 | case RISCVVector::BI__builtin_rvv_vfwadd_vv_rm_tu: |
6241 | case RISCVVector::BI__builtin_rvv_vfwadd_vf_rm_tu: |
6242 | case RISCVVector::BI__builtin_rvv_vfwsub_vv_rm_tu: |
6243 | case RISCVVector::BI__builtin_rvv_vfwsub_vf_rm_tu: |
6244 | case RISCVVector::BI__builtin_rvv_vfwadd_wv_rm_tu: |
6245 | case RISCVVector::BI__builtin_rvv_vfwadd_wf_rm_tu: |
6246 | case RISCVVector::BI__builtin_rvv_vfwsub_wv_rm_tu: |
6247 | case RISCVVector::BI__builtin_rvv_vfwsub_wf_rm_tu: |
6248 | case RISCVVector::BI__builtin_rvv_vfmul_vv_rm_tu: |
6249 | case RISCVVector::BI__builtin_rvv_vfmul_vf_rm_tu: |
6250 | case RISCVVector::BI__builtin_rvv_vfdiv_vv_rm_tu: |
6251 | case RISCVVector::BI__builtin_rvv_vfdiv_vf_rm_tu: |
6252 | case RISCVVector::BI__builtin_rvv_vfrdiv_vf_rm_tu: |
6253 | case RISCVVector::BI__builtin_rvv_vfwmul_vv_rm_tu: |
6254 | case RISCVVector::BI__builtin_rvv_vfwmul_vf_rm_tu: |
6255 | case RISCVVector::BI__builtin_rvv_vfredosum_vs_rm_tu: |
6256 | case RISCVVector::BI__builtin_rvv_vfredusum_vs_rm_tu: |
6257 | case RISCVVector::BI__builtin_rvv_vfwredosum_vs_rm_tu: |
6258 | case RISCVVector::BI__builtin_rvv_vfwredusum_vs_rm_tu: |
6259 | case RISCVVector::BI__builtin_rvv_vfmacc_vv_rm: |
6260 | case RISCVVector::BI__builtin_rvv_vfmacc_vf_rm: |
6261 | case RISCVVector::BI__builtin_rvv_vfnmacc_vv_rm: |
6262 | case RISCVVector::BI__builtin_rvv_vfnmacc_vf_rm: |
6263 | case RISCVVector::BI__builtin_rvv_vfmsac_vv_rm: |
6264 | case RISCVVector::BI__builtin_rvv_vfmsac_vf_rm: |
6265 | case RISCVVector::BI__builtin_rvv_vfnmsac_vv_rm: |
6266 | case RISCVVector::BI__builtin_rvv_vfnmsac_vf_rm: |
6267 | case RISCVVector::BI__builtin_rvv_vfmadd_vv_rm: |
6268 | case RISCVVector::BI__builtin_rvv_vfmadd_vf_rm: |
6269 | case RISCVVector::BI__builtin_rvv_vfnmadd_vv_rm: |
6270 | case RISCVVector::BI__builtin_rvv_vfnmadd_vf_rm: |
6271 | case RISCVVector::BI__builtin_rvv_vfmsub_vv_rm: |
6272 | case RISCVVector::BI__builtin_rvv_vfmsub_vf_rm: |
6273 | case RISCVVector::BI__builtin_rvv_vfnmsub_vv_rm: |
6274 | case RISCVVector::BI__builtin_rvv_vfnmsub_vf_rm: |
6275 | case RISCVVector::BI__builtin_rvv_vfwmacc_vv_rm: |
6276 | case RISCVVector::BI__builtin_rvv_vfwmacc_vf_rm: |
6277 | case RISCVVector::BI__builtin_rvv_vfwnmacc_vv_rm: |
6278 | case RISCVVector::BI__builtin_rvv_vfwnmacc_vf_rm: |
6279 | case RISCVVector::BI__builtin_rvv_vfwmsac_vv_rm: |
6280 | case RISCVVector::BI__builtin_rvv_vfwmsac_vf_rm: |
6281 | case RISCVVector::BI__builtin_rvv_vfwnmsac_vv_rm: |
6282 | case RISCVVector::BI__builtin_rvv_vfwnmsac_vf_rm: |
6283 | case RISCVVector::BI__builtin_rvv_vfmacc_vv_rm_tu: |
6284 | case RISCVVector::BI__builtin_rvv_vfmacc_vf_rm_tu: |
6285 | case RISCVVector::BI__builtin_rvv_vfnmacc_vv_rm_tu: |
6286 | case RISCVVector::BI__builtin_rvv_vfnmacc_vf_rm_tu: |
6287 | case RISCVVector::BI__builtin_rvv_vfmsac_vv_rm_tu: |
6288 | case RISCVVector::BI__builtin_rvv_vfmsac_vf_rm_tu: |
6289 | case RISCVVector::BI__builtin_rvv_vfnmsac_vv_rm_tu: |
6290 | case RISCVVector::BI__builtin_rvv_vfnmsac_vf_rm_tu: |
6291 | case RISCVVector::BI__builtin_rvv_vfmadd_vv_rm_tu: |
6292 | case RISCVVector::BI__builtin_rvv_vfmadd_vf_rm_tu: |
6293 | case RISCVVector::BI__builtin_rvv_vfnmadd_vv_rm_tu: |
6294 | case RISCVVector::BI__builtin_rvv_vfnmadd_vf_rm_tu: |
6295 | case RISCVVector::BI__builtin_rvv_vfmsub_vv_rm_tu: |
6296 | case RISCVVector::BI__builtin_rvv_vfmsub_vf_rm_tu: |
6297 | case RISCVVector::BI__builtin_rvv_vfnmsub_vv_rm_tu: |
6298 | case RISCVVector::BI__builtin_rvv_vfnmsub_vf_rm_tu: |
6299 | case RISCVVector::BI__builtin_rvv_vfwmacc_vv_rm_tu: |
6300 | case RISCVVector::BI__builtin_rvv_vfwmacc_vf_rm_tu: |
6301 | case RISCVVector::BI__builtin_rvv_vfwnmacc_vv_rm_tu: |
6302 | case RISCVVector::BI__builtin_rvv_vfwnmacc_vf_rm_tu: |
6303 | case RISCVVector::BI__builtin_rvv_vfwmsac_vv_rm_tu: |
6304 | case RISCVVector::BI__builtin_rvv_vfwmsac_vf_rm_tu: |
6305 | case RISCVVector::BI__builtin_rvv_vfwnmsac_vv_rm_tu: |
6306 | case RISCVVector::BI__builtin_rvv_vfwnmsac_vf_rm_tu: |
6307 | case RISCVVector::BI__builtin_rvv_vfadd_vv_rm_m: |
6308 | case RISCVVector::BI__builtin_rvv_vfadd_vf_rm_m: |
6309 | case RISCVVector::BI__builtin_rvv_vfsub_vv_rm_m: |
6310 | case RISCVVector::BI__builtin_rvv_vfsub_vf_rm_m: |
6311 | case RISCVVector::BI__builtin_rvv_vfrsub_vf_rm_m: |
6312 | case RISCVVector::BI__builtin_rvv_vfwadd_vv_rm_m: |
6313 | case RISCVVector::BI__builtin_rvv_vfwadd_vf_rm_m: |
6314 | case RISCVVector::BI__builtin_rvv_vfwsub_vv_rm_m: |
6315 | case RISCVVector::BI__builtin_rvv_vfwsub_vf_rm_m: |
6316 | case RISCVVector::BI__builtin_rvv_vfwadd_wv_rm_m: |
6317 | case RISCVVector::BI__builtin_rvv_vfwadd_wf_rm_m: |
6318 | case RISCVVector::BI__builtin_rvv_vfwsub_wv_rm_m: |
6319 | case RISCVVector::BI__builtin_rvv_vfwsub_wf_rm_m: |
6320 | case RISCVVector::BI__builtin_rvv_vfmul_vv_rm_m: |
6321 | case RISCVVector::BI__builtin_rvv_vfmul_vf_rm_m: |
6322 | case RISCVVector::BI__builtin_rvv_vfdiv_vv_rm_m: |
6323 | case RISCVVector::BI__builtin_rvv_vfdiv_vf_rm_m: |
6324 | case RISCVVector::BI__builtin_rvv_vfrdiv_vf_rm_m: |
6325 | case RISCVVector::BI__builtin_rvv_vfwmul_vv_rm_m: |
6326 | case RISCVVector::BI__builtin_rvv_vfwmul_vf_rm_m: |
6327 | case RISCVVector::BI__builtin_rvv_vfredosum_vs_rm_m: |
6328 | case RISCVVector::BI__builtin_rvv_vfredusum_vs_rm_m: |
6329 | case RISCVVector::BI__builtin_rvv_vfwredosum_vs_rm_m: |
6330 | case RISCVVector::BI__builtin_rvv_vfwredusum_vs_rm_m: |
6331 | case RISCVVector::BI__builtin_rvv_vfsqrt_v_rm_tum: |
6332 | case RISCVVector::BI__builtin_rvv_vfrec7_v_rm_tum: |
6333 | case RISCVVector::BI__builtin_rvv_vfcvt_x_f_v_rm_tum: |
6334 | case RISCVVector::BI__builtin_rvv_vfcvt_xu_f_v_rm_tum: |
6335 | case RISCVVector::BI__builtin_rvv_vfcvt_f_x_v_rm_tum: |
6336 | case RISCVVector::BI__builtin_rvv_vfcvt_f_xu_v_rm_tum: |
6337 | case RISCVVector::BI__builtin_rvv_vfwcvt_x_f_v_rm_tum: |
6338 | case RISCVVector::BI__builtin_rvv_vfwcvt_xu_f_v_rm_tum: |
6339 | case RISCVVector::BI__builtin_rvv_vfncvt_x_f_w_rm_tum: |
6340 | case RISCVVector::BI__builtin_rvv_vfncvt_xu_f_w_rm_tum: |
6341 | case RISCVVector::BI__builtin_rvv_vfncvt_f_x_w_rm_tum: |
6342 | case RISCVVector::BI__builtin_rvv_vfncvt_f_xu_w_rm_tum: |
6343 | case RISCVVector::BI__builtin_rvv_vfncvt_f_f_w_rm_tum: |
6344 | case RISCVVector::BI__builtin_rvv_vfsqrt_v_rm_tumu: |
6345 | case RISCVVector::BI__builtin_rvv_vfrec7_v_rm_tumu: |
6346 | case RISCVVector::BI__builtin_rvv_vfcvt_x_f_v_rm_tumu: |
6347 | case RISCVVector::BI__builtin_rvv_vfcvt_xu_f_v_rm_tumu: |
6348 | case RISCVVector::BI__builtin_rvv_vfcvt_f_x_v_rm_tumu: |
6349 | case RISCVVector::BI__builtin_rvv_vfcvt_f_xu_v_rm_tumu: |
6350 | case RISCVVector::BI__builtin_rvv_vfwcvt_x_f_v_rm_tumu: |
6351 | case RISCVVector::BI__builtin_rvv_vfwcvt_xu_f_v_rm_tumu: |
6352 | case RISCVVector::BI__builtin_rvv_vfncvt_x_f_w_rm_tumu: |
6353 | case RISCVVector::BI__builtin_rvv_vfncvt_xu_f_w_rm_tumu: |
6354 | case RISCVVector::BI__builtin_rvv_vfncvt_f_x_w_rm_tumu: |
6355 | case RISCVVector::BI__builtin_rvv_vfncvt_f_xu_w_rm_tumu: |
6356 | case RISCVVector::BI__builtin_rvv_vfncvt_f_f_w_rm_tumu: |
6357 | case RISCVVector::BI__builtin_rvv_vfsqrt_v_rm_mu: |
6358 | case RISCVVector::BI__builtin_rvv_vfrec7_v_rm_mu: |
6359 | case RISCVVector::BI__builtin_rvv_vfcvt_x_f_v_rm_mu: |
6360 | case RISCVVector::BI__builtin_rvv_vfcvt_xu_f_v_rm_mu: |
6361 | case RISCVVector::BI__builtin_rvv_vfcvt_f_x_v_rm_mu: |
6362 | case RISCVVector::BI__builtin_rvv_vfcvt_f_xu_v_rm_mu: |
6363 | case RISCVVector::BI__builtin_rvv_vfwcvt_x_f_v_rm_mu: |
6364 | case RISCVVector::BI__builtin_rvv_vfwcvt_xu_f_v_rm_mu: |
6365 | case RISCVVector::BI__builtin_rvv_vfncvt_x_f_w_rm_mu: |
6366 | case RISCVVector::BI__builtin_rvv_vfncvt_xu_f_w_rm_mu: |
6367 | case RISCVVector::BI__builtin_rvv_vfncvt_f_x_w_rm_mu: |
6368 | case RISCVVector::BI__builtin_rvv_vfncvt_f_xu_w_rm_mu: |
6369 | case RISCVVector::BI__builtin_rvv_vfncvt_f_f_w_rm_mu: |
6370 | return BuiltinConstantArgRange(TheCall, ArgNum: 3, Low: 0, High: 4); |
6371 | case RISCVVector::BI__builtin_rvv_vfmacc_vv_rm_m: |
6372 | case RISCVVector::BI__builtin_rvv_vfmacc_vf_rm_m: |
6373 | case RISCVVector::BI__builtin_rvv_vfnmacc_vv_rm_m: |
6374 | case RISCVVector::BI__builtin_rvv_vfnmacc_vf_rm_m: |
6375 | case RISCVVector::BI__builtin_rvv_vfmsac_vv_rm_m: |
6376 | case RISCVVector::BI__builtin_rvv_vfmsac_vf_rm_m: |
6377 | case RISCVVector::BI__builtin_rvv_vfnmsac_vv_rm_m: |
6378 | case RISCVVector::BI__builtin_rvv_vfnmsac_vf_rm_m: |
6379 | case RISCVVector::BI__builtin_rvv_vfmadd_vv_rm_m: |
6380 | case RISCVVector::BI__builtin_rvv_vfmadd_vf_rm_m: |
6381 | case RISCVVector::BI__builtin_rvv_vfnmadd_vv_rm_m: |
6382 | case RISCVVector::BI__builtin_rvv_vfnmadd_vf_rm_m: |
6383 | case RISCVVector::BI__builtin_rvv_vfmsub_vv_rm_m: |
6384 | case RISCVVector::BI__builtin_rvv_vfmsub_vf_rm_m: |
6385 | case RISCVVector::BI__builtin_rvv_vfnmsub_vv_rm_m: |
6386 | case RISCVVector::BI__builtin_rvv_vfnmsub_vf_rm_m: |
6387 | case RISCVVector::BI__builtin_rvv_vfwmacc_vv_rm_m: |
6388 | case RISCVVector::BI__builtin_rvv_vfwmacc_vf_rm_m: |
6389 | case RISCVVector::BI__builtin_rvv_vfwnmacc_vv_rm_m: |
6390 | case RISCVVector::BI__builtin_rvv_vfwnmacc_vf_rm_m: |
6391 | case RISCVVector::BI__builtin_rvv_vfwmsac_vv_rm_m: |
6392 | case RISCVVector::BI__builtin_rvv_vfwmsac_vf_rm_m: |
6393 | case RISCVVector::BI__builtin_rvv_vfwnmsac_vv_rm_m: |
6394 | case RISCVVector::BI__builtin_rvv_vfwnmsac_vf_rm_m: |
6395 | case RISCVVector::BI__builtin_rvv_vfadd_vv_rm_tum: |
6396 | case RISCVVector::BI__builtin_rvv_vfadd_vf_rm_tum: |
6397 | case RISCVVector::BI__builtin_rvv_vfsub_vv_rm_tum: |
6398 | case RISCVVector::BI__builtin_rvv_vfsub_vf_rm_tum: |
6399 | case RISCVVector::BI__builtin_rvv_vfrsub_vf_rm_tum: |
6400 | case RISCVVector::BI__builtin_rvv_vfwadd_vv_rm_tum: |
6401 | case RISCVVector::BI__builtin_rvv_vfwadd_vf_rm_tum: |
6402 | case RISCVVector::BI__builtin_rvv_vfwsub_vv_rm_tum: |
6403 | case RISCVVector::BI__builtin_rvv_vfwsub_vf_rm_tum: |
6404 | case RISCVVector::BI__builtin_rvv_vfwadd_wv_rm_tum: |
6405 | case RISCVVector::BI__builtin_rvv_vfwadd_wf_rm_tum: |
6406 | case RISCVVector::BI__builtin_rvv_vfwsub_wv_rm_tum: |
6407 | case RISCVVector::BI__builtin_rvv_vfwsub_wf_rm_tum: |
6408 | case RISCVVector::BI__builtin_rvv_vfmul_vv_rm_tum: |
6409 | case RISCVVector::BI__builtin_rvv_vfmul_vf_rm_tum: |
6410 | case RISCVVector::BI__builtin_rvv_vfdiv_vv_rm_tum: |
6411 | case RISCVVector::BI__builtin_rvv_vfdiv_vf_rm_tum: |
6412 | case RISCVVector::BI__builtin_rvv_vfrdiv_vf_rm_tum: |
6413 | case RISCVVector::BI__builtin_rvv_vfwmul_vv_rm_tum: |
6414 | case RISCVVector::BI__builtin_rvv_vfwmul_vf_rm_tum: |
6415 | case RISCVVector::BI__builtin_rvv_vfmacc_vv_rm_tum: |
6416 | case RISCVVector::BI__builtin_rvv_vfmacc_vf_rm_tum: |
6417 | case RISCVVector::BI__builtin_rvv_vfnmacc_vv_rm_tum: |
6418 | case RISCVVector::BI__builtin_rvv_vfnmacc_vf_rm_tum: |
6419 | case RISCVVector::BI__builtin_rvv_vfmsac_vv_rm_tum: |
6420 | case RISCVVector::BI__builtin_rvv_vfmsac_vf_rm_tum: |
6421 | case RISCVVector::BI__builtin_rvv_vfnmsac_vv_rm_tum: |
6422 | case RISCVVector::BI__builtin_rvv_vfnmsac_vf_rm_tum: |
6423 | case RISCVVector::BI__builtin_rvv_vfmadd_vv_rm_tum: |
6424 | case RISCVVector::BI__builtin_rvv_vfmadd_vf_rm_tum: |
6425 | case RISCVVector::BI__builtin_rvv_vfnmadd_vv_rm_tum: |
6426 | case RISCVVector::BI__builtin_rvv_vfnmadd_vf_rm_tum: |
6427 | case RISCVVector::BI__builtin_rvv_vfmsub_vv_rm_tum: |
6428 | case RISCVVector::BI__builtin_rvv_vfmsub_vf_rm_tum: |
6429 | case RISCVVector::BI__builtin_rvv_vfnmsub_vv_rm_tum: |
6430 | case RISCVVector::BI__builtin_rvv_vfnmsub_vf_rm_tum: |
6431 | case RISCVVector::BI__builtin_rvv_vfwmacc_vv_rm_tum: |
6432 | case RISCVVector::BI__builtin_rvv_vfwmacc_vf_rm_tum: |
6433 | case RISCVVector::BI__builtin_rvv_vfwnmacc_vv_rm_tum: |
6434 | case RISCVVector::BI__builtin_rvv_vfwnmacc_vf_rm_tum: |
6435 | case RISCVVector::BI__builtin_rvv_vfwmsac_vv_rm_tum: |
6436 | case RISCVVector::BI__builtin_rvv_vfwmsac_vf_rm_tum: |
6437 | case RISCVVector::BI__builtin_rvv_vfwnmsac_vv_rm_tum: |
6438 | case RISCVVector::BI__builtin_rvv_vfwnmsac_vf_rm_tum: |
6439 | case RISCVVector::BI__builtin_rvv_vfredosum_vs_rm_tum: |
6440 | case RISCVVector::BI__builtin_rvv_vfredusum_vs_rm_tum: |
6441 | case RISCVVector::BI__builtin_rvv_vfwredosum_vs_rm_tum: |
6442 | case RISCVVector::BI__builtin_rvv_vfwredusum_vs_rm_tum: |
6443 | case RISCVVector::BI__builtin_rvv_vfadd_vv_rm_tumu: |
6444 | case RISCVVector::BI__builtin_rvv_vfadd_vf_rm_tumu: |
6445 | case RISCVVector::BI__builtin_rvv_vfsub_vv_rm_tumu: |
6446 | case RISCVVector::BI__builtin_rvv_vfsub_vf_rm_tumu: |
6447 | case RISCVVector::BI__builtin_rvv_vfrsub_vf_rm_tumu: |
6448 | case RISCVVector::BI__builtin_rvv_vfwadd_vv_rm_tumu: |
6449 | case RISCVVector::BI__builtin_rvv_vfwadd_vf_rm_tumu: |
6450 | case RISCVVector::BI__builtin_rvv_vfwsub_vv_rm_tumu: |
6451 | case RISCVVector::BI__builtin_rvv_vfwsub_vf_rm_tumu: |
6452 | case RISCVVector::BI__builtin_rvv_vfwadd_wv_rm_tumu: |
6453 | case RISCVVector::BI__builtin_rvv_vfwadd_wf_rm_tumu: |
6454 | case RISCVVector::BI__builtin_rvv_vfwsub_wv_rm_tumu: |
6455 | case RISCVVector::BI__builtin_rvv_vfwsub_wf_rm_tumu: |
6456 | case RISCVVector::BI__builtin_rvv_vfmul_vv_rm_tumu: |
6457 | case RISCVVector::BI__builtin_rvv_vfmul_vf_rm_tumu: |
6458 | case RISCVVector::BI__builtin_rvv_vfdiv_vv_rm_tumu: |
6459 | case RISCVVector::BI__builtin_rvv_vfdiv_vf_rm_tumu: |
6460 | case RISCVVector::BI__builtin_rvv_vfrdiv_vf_rm_tumu: |
6461 | case RISCVVector::BI__builtin_rvv_vfwmul_vv_rm_tumu: |
6462 | case RISCVVector::BI__builtin_rvv_vfwmul_vf_rm_tumu: |
6463 | case RISCVVector::BI__builtin_rvv_vfmacc_vv_rm_tumu: |
6464 | case RISCVVector::BI__builtin_rvv_vfmacc_vf_rm_tumu: |
6465 | case RISCVVector::BI__builtin_rvv_vfnmacc_vv_rm_tumu: |
6466 | case RISCVVector::BI__builtin_rvv_vfnmacc_vf_rm_tumu: |
6467 | case RISCVVector::BI__builtin_rvv_vfmsac_vv_rm_tumu: |
6468 | case RISCVVector::BI__builtin_rvv_vfmsac_vf_rm_tumu: |
6469 | case RISCVVector::BI__builtin_rvv_vfnmsac_vv_rm_tumu: |
6470 | case RISCVVector::BI__builtin_rvv_vfnmsac_vf_rm_tumu: |
6471 | case RISCVVector::BI__builtin_rvv_vfmadd_vv_rm_tumu: |
6472 | case RISCVVector::BI__builtin_rvv_vfmadd_vf_rm_tumu: |
6473 | case RISCVVector::BI__builtin_rvv_vfnmadd_vv_rm_tumu: |
6474 | case RISCVVector::BI__builtin_rvv_vfnmadd_vf_rm_tumu: |
6475 | case RISCVVector::BI__builtin_rvv_vfmsub_vv_rm_tumu: |
6476 | case RISCVVector::BI__builtin_rvv_vfmsub_vf_rm_tumu: |
6477 | case RISCVVector::BI__builtin_rvv_vfnmsub_vv_rm_tumu: |
6478 | case RISCVVector::BI__builtin_rvv_vfnmsub_vf_rm_tumu: |
6479 | case RISCVVector::BI__builtin_rvv_vfwmacc_vv_rm_tumu: |
6480 | case RISCVVector::BI__builtin_rvv_vfwmacc_vf_rm_tumu: |
6481 | case RISCVVector::BI__builtin_rvv_vfwnmacc_vv_rm_tumu: |
6482 | case RISCVVector::BI__builtin_rvv_vfwnmacc_vf_rm_tumu: |
6483 | case RISCVVector::BI__builtin_rvv_vfwmsac_vv_rm_tumu: |
6484 | case RISCVVector::BI__builtin_rvv_vfwmsac_vf_rm_tumu: |
6485 | case RISCVVector::BI__builtin_rvv_vfwnmsac_vv_rm_tumu: |
6486 | case RISCVVector::BI__builtin_rvv_vfwnmsac_vf_rm_tumu: |
6487 | case RISCVVector::BI__builtin_rvv_vfadd_vv_rm_mu: |
6488 | case RISCVVector::BI__builtin_rvv_vfadd_vf_rm_mu: |
6489 | case RISCVVector::BI__builtin_rvv_vfsub_vv_rm_mu: |
6490 | case RISCVVector::BI__builtin_rvv_vfsub_vf_rm_mu: |
6491 | case RISCVVector::BI__builtin_rvv_vfrsub_vf_rm_mu: |
6492 | case RISCVVector::BI__builtin_rvv_vfwadd_vv_rm_mu: |
6493 | case RISCVVector::BI__builtin_rvv_vfwadd_vf_rm_mu: |
6494 | case RISCVVector::BI__builtin_rvv_vfwsub_vv_rm_mu: |
6495 | case RISCVVector::BI__builtin_rvv_vfwsub_vf_rm_mu: |
6496 | case RISCVVector::BI__builtin_rvv_vfwadd_wv_rm_mu: |
6497 | case RISCVVector::BI__builtin_rvv_vfwadd_wf_rm_mu: |
6498 | case RISCVVector::BI__builtin_rvv_vfwsub_wv_rm_mu: |
6499 | case RISCVVector::BI__builtin_rvv_vfwsub_wf_rm_mu: |
6500 | case RISCVVector::BI__builtin_rvv_vfmul_vv_rm_mu: |
6501 | case RISCVVector::BI__builtin_rvv_vfmul_vf_rm_mu: |
6502 | case RISCVVector::BI__builtin_rvv_vfdiv_vv_rm_mu: |
6503 | case RISCVVector::BI__builtin_rvv_vfdiv_vf_rm_mu: |
6504 | case RISCVVector::BI__builtin_rvv_vfrdiv_vf_rm_mu: |
6505 | case RISCVVector::BI__builtin_rvv_vfwmul_vv_rm_mu: |
6506 | case RISCVVector::BI__builtin_rvv_vfwmul_vf_rm_mu: |
6507 | case RISCVVector::BI__builtin_rvv_vfmacc_vv_rm_mu: |
6508 | case RISCVVector::BI__builtin_rvv_vfmacc_vf_rm_mu: |
6509 | case RISCVVector::BI__builtin_rvv_vfnmacc_vv_rm_mu: |
6510 | case RISCVVector::BI__builtin_rvv_vfnmacc_vf_rm_mu: |
6511 | case RISCVVector::BI__builtin_rvv_vfmsac_vv_rm_mu: |
6512 | case RISCVVector::BI__builtin_rvv_vfmsac_vf_rm_mu: |
6513 | case RISCVVector::BI__builtin_rvv_vfnmsac_vv_rm_mu: |
6514 | case RISCVVector::BI__builtin_rvv_vfnmsac_vf_rm_mu: |
6515 | case RISCVVector::BI__builtin_rvv_vfmadd_vv_rm_mu: |
6516 | case RISCVVector::BI__builtin_rvv_vfmadd_vf_rm_mu: |
6517 | case RISCVVector::BI__builtin_rvv_vfnmadd_vv_rm_mu: |
6518 | case RISCVVector::BI__builtin_rvv_vfnmadd_vf_rm_mu: |
6519 | case RISCVVector::BI__builtin_rvv_vfmsub_vv_rm_mu: |
6520 | case RISCVVector::BI__builtin_rvv_vfmsub_vf_rm_mu: |
6521 | case RISCVVector::BI__builtin_rvv_vfnmsub_vv_rm_mu: |
6522 | case RISCVVector::BI__builtin_rvv_vfnmsub_vf_rm_mu: |
6523 | case RISCVVector::BI__builtin_rvv_vfwmacc_vv_rm_mu: |
6524 | case RISCVVector::BI__builtin_rvv_vfwmacc_vf_rm_mu: |
6525 | case RISCVVector::BI__builtin_rvv_vfwnmacc_vv_rm_mu: |
6526 | case RISCVVector::BI__builtin_rvv_vfwnmacc_vf_rm_mu: |
6527 | case RISCVVector::BI__builtin_rvv_vfwmsac_vv_rm_mu: |
6528 | case RISCVVector::BI__builtin_rvv_vfwmsac_vf_rm_mu: |
6529 | case RISCVVector::BI__builtin_rvv_vfwnmsac_vv_rm_mu: |
6530 | case RISCVVector::BI__builtin_rvv_vfwnmsac_vf_rm_mu: |
6531 | return BuiltinConstantArgRange(TheCall, ArgNum: 4, Low: 0, High: 4); |
6532 | case RISCV::BI__builtin_riscv_ntl_load: |
6533 | case RISCV::BI__builtin_riscv_ntl_store: |
6534 | DeclRefExpr *DRE = |
6535 | cast<DeclRefExpr>(Val: TheCall->getCallee()->IgnoreParenCasts()); |
6536 | assert((BuiltinID == RISCV::BI__builtin_riscv_ntl_store || |
6537 | BuiltinID == RISCV::BI__builtin_riscv_ntl_load) && |
6538 | "Unexpected RISC-V nontemporal load/store builtin!" ); |
6539 | bool IsStore = BuiltinID == RISCV::BI__builtin_riscv_ntl_store; |
6540 | unsigned NumArgs = IsStore ? 3 : 2; |
6541 | |
6542 | if (checkArgCountAtLeast(S&: *this, Call: TheCall, MinArgCount: NumArgs - 1)) |
6543 | return true; |
6544 | |
6545 | if (checkArgCountAtMost(S&: *this, Call: TheCall, MaxArgCount: NumArgs)) |
6546 | return true; |
6547 | |
6548 | // Domain value should be compile-time constant. |
6549 | // 2 <= domain <= 5 |
6550 | if (TheCall->getNumArgs() == NumArgs && |
6551 | BuiltinConstantArgRange(TheCall, ArgNum: NumArgs - 1, Low: 2, High: 5)) |
6552 | return true; |
6553 | |
6554 | Expr *PointerArg = TheCall->getArg(Arg: 0); |
6555 | ExprResult PointerArgResult = |
6556 | DefaultFunctionArrayLvalueConversion(E: PointerArg); |
6557 | |
6558 | if (PointerArgResult.isInvalid()) |
6559 | return true; |
6560 | PointerArg = PointerArgResult.get(); |
6561 | |
6562 | const PointerType *PtrType = PointerArg->getType()->getAs<PointerType>(); |
6563 | if (!PtrType) { |
6564 | Diag(DRE->getBeginLoc(), diag::err_nontemporal_builtin_must_be_pointer) |
6565 | << PointerArg->getType() << PointerArg->getSourceRange(); |
6566 | return true; |
6567 | } |
6568 | |
6569 | QualType ValType = PtrType->getPointeeType(); |
6570 | ValType = ValType.getUnqualifiedType(); |
6571 | if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && |
6572 | !ValType->isBlockPointerType() && !ValType->isFloatingType() && |
6573 | !ValType->isVectorType() && !ValType->isRVVSizelessBuiltinType()) { |
6574 | Diag(DRE->getBeginLoc(), |
6575 | diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector) |
6576 | << PointerArg->getType() << PointerArg->getSourceRange(); |
6577 | return true; |
6578 | } |
6579 | |
6580 | if (!IsStore) { |
6581 | TheCall->setType(ValType); |
6582 | return false; |
6583 | } |
6584 | |
6585 | ExprResult ValArg = TheCall->getArg(Arg: 1); |
6586 | InitializedEntity Entity = InitializedEntity::InitializeParameter( |
6587 | Context, Type: ValType, /*consume*/ Consumed: false); |
6588 | ValArg = PerformCopyInitialization(Entity, EqualLoc: SourceLocation(), Init: ValArg); |
6589 | if (ValArg.isInvalid()) |
6590 | return true; |
6591 | |
6592 | TheCall->setArg(Arg: 1, ArgExpr: ValArg.get()); |
6593 | TheCall->setType(Context.VoidTy); |
6594 | return false; |
6595 | } |
6596 | |
6597 | return false; |
6598 | } |
6599 | |
6600 | bool Sema::CheckSystemZBuiltinFunctionCall(unsigned BuiltinID, |
6601 | CallExpr *TheCall) { |
6602 | if (BuiltinID == SystemZ::BI__builtin_tabort) { |
6603 | Expr *Arg = TheCall->getArg(Arg: 0); |
6604 | if (std::optional<llvm::APSInt> AbortCode = |
6605 | Arg->getIntegerConstantExpr(Context)) |
6606 | if (AbortCode->getSExtValue() >= 0 && AbortCode->getSExtValue() < 256) |
6607 | return Diag(Arg->getBeginLoc(), diag::err_systemz_invalid_tabort_code) |
6608 | << Arg->getSourceRange(); |
6609 | } |
6610 | |
6611 | // For intrinsics which take an immediate value as part of the instruction, |
6612 | // range check them here. |
6613 | unsigned i = 0, l = 0, u = 0; |
6614 | switch (BuiltinID) { |
6615 | default: return false; |
6616 | case SystemZ::BI__builtin_s390_lcbb: i = 1; l = 0; u = 15; break; |
6617 | case SystemZ::BI__builtin_s390_verimb: |
6618 | case SystemZ::BI__builtin_s390_verimh: |
6619 | case SystemZ::BI__builtin_s390_verimf: |
6620 | case SystemZ::BI__builtin_s390_verimg: i = 3; l = 0; u = 255; break; |
6621 | case SystemZ::BI__builtin_s390_vfaeb: |
6622 | case SystemZ::BI__builtin_s390_vfaeh: |
6623 | case SystemZ::BI__builtin_s390_vfaef: |
6624 | case SystemZ::BI__builtin_s390_vfaebs: |
6625 | case SystemZ::BI__builtin_s390_vfaehs: |
6626 | case SystemZ::BI__builtin_s390_vfaefs: |
6627 | case SystemZ::BI__builtin_s390_vfaezb: |
6628 | case SystemZ::BI__builtin_s390_vfaezh: |
6629 | case SystemZ::BI__builtin_s390_vfaezf: |
6630 | case SystemZ::BI__builtin_s390_vfaezbs: |
6631 | case SystemZ::BI__builtin_s390_vfaezhs: |
6632 | case SystemZ::BI__builtin_s390_vfaezfs: i = 2; l = 0; u = 15; break; |
6633 | case SystemZ::BI__builtin_s390_vfisb: |
6634 | case SystemZ::BI__builtin_s390_vfidb: |
6635 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: 15) || |
6636 | BuiltinConstantArgRange(TheCall, ArgNum: 2, Low: 0, High: 15); |
6637 | case SystemZ::BI__builtin_s390_vftcisb: |
6638 | case SystemZ::BI__builtin_s390_vftcidb: i = 1; l = 0; u = 4095; break; |
6639 | case SystemZ::BI__builtin_s390_vlbb: i = 1; l = 0; u = 15; break; |
6640 | case SystemZ::BI__builtin_s390_vpdi: i = 2; l = 0; u = 15; break; |
6641 | case SystemZ::BI__builtin_s390_vsldb: i = 2; l = 0; u = 15; break; |
6642 | case SystemZ::BI__builtin_s390_vstrcb: |
6643 | case SystemZ::BI__builtin_s390_vstrch: |
6644 | case SystemZ::BI__builtin_s390_vstrcf: |
6645 | case SystemZ::BI__builtin_s390_vstrczb: |
6646 | case SystemZ::BI__builtin_s390_vstrczh: |
6647 | case SystemZ::BI__builtin_s390_vstrczf: |
6648 | case SystemZ::BI__builtin_s390_vstrcbs: |
6649 | case SystemZ::BI__builtin_s390_vstrchs: |
6650 | case SystemZ::BI__builtin_s390_vstrcfs: |
6651 | case SystemZ::BI__builtin_s390_vstrczbs: |
6652 | case SystemZ::BI__builtin_s390_vstrczhs: |
6653 | case SystemZ::BI__builtin_s390_vstrczfs: i = 3; l = 0; u = 15; break; |
6654 | case SystemZ::BI__builtin_s390_vmslg: i = 3; l = 0; u = 15; break; |
6655 | case SystemZ::BI__builtin_s390_vfminsb: |
6656 | case SystemZ::BI__builtin_s390_vfmaxsb: |
6657 | case SystemZ::BI__builtin_s390_vfmindb: |
6658 | case SystemZ::BI__builtin_s390_vfmaxdb: i = 2; l = 0; u = 15; break; |
6659 | case SystemZ::BI__builtin_s390_vsld: i = 2; l = 0; u = 7; break; |
6660 | case SystemZ::BI__builtin_s390_vsrd: i = 2; l = 0; u = 7; break; |
6661 | case SystemZ::BI__builtin_s390_vclfnhs: |
6662 | case SystemZ::BI__builtin_s390_vclfnls: |
6663 | case SystemZ::BI__builtin_s390_vcfn: |
6664 | case SystemZ::BI__builtin_s390_vcnf: i = 1; l = 0; u = 15; break; |
6665 | case SystemZ::BI__builtin_s390_vcrnfs: i = 2; l = 0; u = 15; break; |
6666 | } |
6667 | return BuiltinConstantArgRange(TheCall, ArgNum: i, Low: l, High: u); |
6668 | } |
6669 | |
6670 | bool Sema::CheckWebAssemblyBuiltinFunctionCall(const TargetInfo &TI, |
6671 | unsigned BuiltinID, |
6672 | CallExpr *TheCall) { |
6673 | switch (BuiltinID) { |
6674 | case WebAssembly::BI__builtin_wasm_ref_null_extern: |
6675 | return BuiltinWasmRefNullExtern(TheCall); |
6676 | case WebAssembly::BI__builtin_wasm_ref_null_func: |
6677 | return BuiltinWasmRefNullFunc(TheCall); |
6678 | case WebAssembly::BI__builtin_wasm_table_get: |
6679 | return BuiltinWasmTableGet(TheCall); |
6680 | case WebAssembly::BI__builtin_wasm_table_set: |
6681 | return BuiltinWasmTableSet(TheCall); |
6682 | case WebAssembly::BI__builtin_wasm_table_size: |
6683 | return BuiltinWasmTableSize(TheCall); |
6684 | case WebAssembly::BI__builtin_wasm_table_grow: |
6685 | return BuiltinWasmTableGrow(TheCall); |
6686 | case WebAssembly::BI__builtin_wasm_table_fill: |
6687 | return BuiltinWasmTableFill(TheCall); |
6688 | case WebAssembly::BI__builtin_wasm_table_copy: |
6689 | return BuiltinWasmTableCopy(TheCall); |
6690 | } |
6691 | |
6692 | return false; |
6693 | } |
6694 | |
6695 | void Sema::checkRVVTypeSupport(QualType Ty, SourceLocation Loc, Decl *D, |
6696 | const llvm::StringMap<bool> &FeatureMap) { |
6697 | ASTContext::BuiltinVectorTypeInfo Info = |
6698 | Context.getBuiltinVectorTypeInfo(VecTy: Ty->castAs<BuiltinType>()); |
6699 | unsigned EltSize = Context.getTypeSize(Info.ElementType); |
6700 | unsigned MinElts = Info.EC.getKnownMinValue(); |
6701 | |
6702 | if (Info.ElementType->isSpecificBuiltinType(BuiltinType::Double) && |
6703 | !FeatureMap.lookup("zve64d" )) |
6704 | Diag(Loc, diag::err_riscv_type_requires_extension, D) << Ty << "zve64d" ; |
6705 | // (ELEN, LMUL) pairs of (8, mf8), (16, mf4), (32, mf2), (64, m1) requires at |
6706 | // least zve64x |
6707 | else if (((EltSize == 64 && Info.ElementType->isIntegerType()) || |
6708 | MinElts == 1) && |
6709 | !FeatureMap.lookup("zve64x" )) |
6710 | Diag(Loc, diag::err_riscv_type_requires_extension, D) << Ty << "zve64x" ; |
6711 | else if (Info.ElementType->isFloat16Type() && !FeatureMap.lookup("zvfh" ) && |
6712 | !FeatureMap.lookup("zvfhmin" )) |
6713 | Diag(Loc, diag::err_riscv_type_requires_extension, D) |
6714 | << Ty << "zvfh or zvfhmin" ; |
6715 | else if (Info.ElementType->isBFloat16Type() && |
6716 | !FeatureMap.lookup("experimental-zvfbfmin" )) |
6717 | Diag(Loc, diag::err_riscv_type_requires_extension, D) << Ty << "zvfbfmin" ; |
6718 | else if (Info.ElementType->isSpecificBuiltinType(BuiltinType::Float) && |
6719 | !FeatureMap.lookup("zve32f" )) |
6720 | Diag(Loc, diag::err_riscv_type_requires_extension, D) << Ty << "zve32f" ; |
6721 | // Given that caller already checked isRVVType() before calling this function, |
6722 | // if we don't have at least zve32x supported, then we need to emit error. |
6723 | else if (!FeatureMap.lookup("zve32x" )) |
6724 | Diag(Loc, diag::err_riscv_type_requires_extension, D) << Ty << "zve32x" ; |
6725 | } |
6726 | |
6727 | bool Sema::CheckNVPTXBuiltinFunctionCall(const TargetInfo &TI, |
6728 | unsigned BuiltinID, |
6729 | CallExpr *TheCall) { |
6730 | switch (BuiltinID) { |
6731 | case NVPTX::BI__nvvm_cp_async_ca_shared_global_4: |
6732 | case NVPTX::BI__nvvm_cp_async_ca_shared_global_8: |
6733 | case NVPTX::BI__nvvm_cp_async_ca_shared_global_16: |
6734 | case NVPTX::BI__nvvm_cp_async_cg_shared_global_16: |
6735 | return checkArgCountAtMost(S&: *this, Call: TheCall, MaxArgCount: 3); |
6736 | } |
6737 | |
6738 | return false; |
6739 | } |
6740 | |
6741 | // Check if the rounding mode is legal. |
6742 | bool Sema::CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall) { |
6743 | // Indicates if this instruction has rounding control or just SAE. |
6744 | bool HasRC = false; |
6745 | |
6746 | unsigned ArgNum = 0; |
6747 | switch (BuiltinID) { |
6748 | default: |
6749 | return false; |
6750 | case X86::BI__builtin_ia32_vcvttsd2si32: |
6751 | case X86::BI__builtin_ia32_vcvttsd2si64: |
6752 | case X86::BI__builtin_ia32_vcvttsd2usi32: |
6753 | case X86::BI__builtin_ia32_vcvttsd2usi64: |
6754 | case X86::BI__builtin_ia32_vcvttss2si32: |
6755 | case X86::BI__builtin_ia32_vcvttss2si64: |
6756 | case X86::BI__builtin_ia32_vcvttss2usi32: |
6757 | case X86::BI__builtin_ia32_vcvttss2usi64: |
6758 | case X86::BI__builtin_ia32_vcvttsh2si32: |
6759 | case X86::BI__builtin_ia32_vcvttsh2si64: |
6760 | case X86::BI__builtin_ia32_vcvttsh2usi32: |
6761 | case X86::BI__builtin_ia32_vcvttsh2usi64: |
6762 | ArgNum = 1; |
6763 | break; |
6764 | case X86::BI__builtin_ia32_maxpd512: |
6765 | case X86::BI__builtin_ia32_maxps512: |
6766 | case X86::BI__builtin_ia32_minpd512: |
6767 | case X86::BI__builtin_ia32_minps512: |
6768 | case X86::BI__builtin_ia32_maxph512: |
6769 | case X86::BI__builtin_ia32_minph512: |
6770 | ArgNum = 2; |
6771 | break; |
6772 | case X86::BI__builtin_ia32_vcvtph2pd512_mask: |
6773 | case X86::BI__builtin_ia32_vcvtph2psx512_mask: |
6774 | case X86::BI__builtin_ia32_cvtps2pd512_mask: |
6775 | case X86::BI__builtin_ia32_cvttpd2dq512_mask: |
6776 | case X86::BI__builtin_ia32_cvttpd2qq512_mask: |
6777 | case X86::BI__builtin_ia32_cvttpd2udq512_mask: |
6778 | case X86::BI__builtin_ia32_cvttpd2uqq512_mask: |
6779 | case X86::BI__builtin_ia32_cvttps2dq512_mask: |
6780 | case X86::BI__builtin_ia32_cvttps2qq512_mask: |
6781 | case X86::BI__builtin_ia32_cvttps2udq512_mask: |
6782 | case X86::BI__builtin_ia32_cvttps2uqq512_mask: |
6783 | case X86::BI__builtin_ia32_vcvttph2w512_mask: |
6784 | case X86::BI__builtin_ia32_vcvttph2uw512_mask: |
6785 | case X86::BI__builtin_ia32_vcvttph2dq512_mask: |
6786 | case X86::BI__builtin_ia32_vcvttph2udq512_mask: |
6787 | case X86::BI__builtin_ia32_vcvttph2qq512_mask: |
6788 | case X86::BI__builtin_ia32_vcvttph2uqq512_mask: |
6789 | case X86::BI__builtin_ia32_exp2pd_mask: |
6790 | case X86::BI__builtin_ia32_exp2ps_mask: |
6791 | case X86::BI__builtin_ia32_getexppd512_mask: |
6792 | case X86::BI__builtin_ia32_getexpps512_mask: |
6793 | case X86::BI__builtin_ia32_getexpph512_mask: |
6794 | case X86::BI__builtin_ia32_rcp28pd_mask: |
6795 | case X86::BI__builtin_ia32_rcp28ps_mask: |
6796 | case X86::BI__builtin_ia32_rsqrt28pd_mask: |
6797 | case X86::BI__builtin_ia32_rsqrt28ps_mask: |
6798 | case X86::BI__builtin_ia32_vcomisd: |
6799 | case X86::BI__builtin_ia32_vcomiss: |
6800 | case X86::BI__builtin_ia32_vcomish: |
6801 | case X86::BI__builtin_ia32_vcvtph2ps512_mask: |
6802 | ArgNum = 3; |
6803 | break; |
6804 | case X86::BI__builtin_ia32_cmppd512_mask: |
6805 | case X86::BI__builtin_ia32_cmpps512_mask: |
6806 | case X86::BI__builtin_ia32_cmpsd_mask: |
6807 | case X86::BI__builtin_ia32_cmpss_mask: |
6808 | case X86::BI__builtin_ia32_cmpsh_mask: |
6809 | case X86::BI__builtin_ia32_vcvtsh2sd_round_mask: |
6810 | case X86::BI__builtin_ia32_vcvtsh2ss_round_mask: |
6811 | case X86::BI__builtin_ia32_cvtss2sd_round_mask: |
6812 | case X86::BI__builtin_ia32_getexpsd128_round_mask: |
6813 | case X86::BI__builtin_ia32_getexpss128_round_mask: |
6814 | case X86::BI__builtin_ia32_getexpsh128_round_mask: |
6815 | case X86::BI__builtin_ia32_getmantpd512_mask: |
6816 | case X86::BI__builtin_ia32_getmantps512_mask: |
6817 | case X86::BI__builtin_ia32_getmantph512_mask: |
6818 | case X86::BI__builtin_ia32_maxsd_round_mask: |
6819 | case X86::BI__builtin_ia32_maxss_round_mask: |
6820 | case X86::BI__builtin_ia32_maxsh_round_mask: |
6821 | case X86::BI__builtin_ia32_minsd_round_mask: |
6822 | case X86::BI__builtin_ia32_minss_round_mask: |
6823 | case X86::BI__builtin_ia32_minsh_round_mask: |
6824 | case X86::BI__builtin_ia32_rcp28sd_round_mask: |
6825 | case X86::BI__builtin_ia32_rcp28ss_round_mask: |
6826 | case X86::BI__builtin_ia32_reducepd512_mask: |
6827 | case X86::BI__builtin_ia32_reduceps512_mask: |
6828 | case X86::BI__builtin_ia32_reduceph512_mask: |
6829 | case X86::BI__builtin_ia32_rndscalepd_mask: |
6830 | case X86::BI__builtin_ia32_rndscaleps_mask: |
6831 | case X86::BI__builtin_ia32_rndscaleph_mask: |
6832 | case X86::BI__builtin_ia32_rsqrt28sd_round_mask: |
6833 | case X86::BI__builtin_ia32_rsqrt28ss_round_mask: |
6834 | ArgNum = 4; |
6835 | break; |
6836 | case X86::BI__builtin_ia32_fixupimmpd512_mask: |
6837 | case X86::BI__builtin_ia32_fixupimmpd512_maskz: |
6838 | case X86::BI__builtin_ia32_fixupimmps512_mask: |
6839 | case X86::BI__builtin_ia32_fixupimmps512_maskz: |
6840 | case X86::BI__builtin_ia32_fixupimmsd_mask: |
6841 | case X86::BI__builtin_ia32_fixupimmsd_maskz: |
6842 | case X86::BI__builtin_ia32_fixupimmss_mask: |
6843 | case X86::BI__builtin_ia32_fixupimmss_maskz: |
6844 | case X86::BI__builtin_ia32_getmantsd_round_mask: |
6845 | case X86::BI__builtin_ia32_getmantss_round_mask: |
6846 | case X86::BI__builtin_ia32_getmantsh_round_mask: |
6847 | case X86::BI__builtin_ia32_rangepd512_mask: |
6848 | case X86::BI__builtin_ia32_rangeps512_mask: |
6849 | case X86::BI__builtin_ia32_rangesd128_round_mask: |
6850 | case X86::BI__builtin_ia32_rangess128_round_mask: |
6851 | case X86::BI__builtin_ia32_reducesd_mask: |
6852 | case X86::BI__builtin_ia32_reducess_mask: |
6853 | case X86::BI__builtin_ia32_reducesh_mask: |
6854 | case X86::BI__builtin_ia32_rndscalesd_round_mask: |
6855 | case X86::BI__builtin_ia32_rndscaless_round_mask: |
6856 | case X86::BI__builtin_ia32_rndscalesh_round_mask: |
6857 | ArgNum = 5; |
6858 | break; |
6859 | case X86::BI__builtin_ia32_vcvtsd2si64: |
6860 | case X86::BI__builtin_ia32_vcvtsd2si32: |
6861 | case X86::BI__builtin_ia32_vcvtsd2usi32: |
6862 | case X86::BI__builtin_ia32_vcvtsd2usi64: |
6863 | case X86::BI__builtin_ia32_vcvtss2si32: |
6864 | case X86::BI__builtin_ia32_vcvtss2si64: |
6865 | case X86::BI__builtin_ia32_vcvtss2usi32: |
6866 | case X86::BI__builtin_ia32_vcvtss2usi64: |
6867 | case X86::BI__builtin_ia32_vcvtsh2si32: |
6868 | case X86::BI__builtin_ia32_vcvtsh2si64: |
6869 | case X86::BI__builtin_ia32_vcvtsh2usi32: |
6870 | case X86::BI__builtin_ia32_vcvtsh2usi64: |
6871 | case X86::BI__builtin_ia32_sqrtpd512: |
6872 | case X86::BI__builtin_ia32_sqrtps512: |
6873 | case X86::BI__builtin_ia32_sqrtph512: |
6874 | ArgNum = 1; |
6875 | HasRC = true; |
6876 | break; |
6877 | case X86::BI__builtin_ia32_addph512: |
6878 | case X86::BI__builtin_ia32_divph512: |
6879 | case X86::BI__builtin_ia32_mulph512: |
6880 | case X86::BI__builtin_ia32_subph512: |
6881 | case X86::BI__builtin_ia32_addpd512: |
6882 | case X86::BI__builtin_ia32_addps512: |
6883 | case X86::BI__builtin_ia32_divpd512: |
6884 | case X86::BI__builtin_ia32_divps512: |
6885 | case X86::BI__builtin_ia32_mulpd512: |
6886 | case X86::BI__builtin_ia32_mulps512: |
6887 | case X86::BI__builtin_ia32_subpd512: |
6888 | case X86::BI__builtin_ia32_subps512: |
6889 | case X86::BI__builtin_ia32_cvtsi2sd64: |
6890 | case X86::BI__builtin_ia32_cvtsi2ss32: |
6891 | case X86::BI__builtin_ia32_cvtsi2ss64: |
6892 | case X86::BI__builtin_ia32_cvtusi2sd64: |
6893 | case X86::BI__builtin_ia32_cvtusi2ss32: |
6894 | case X86::BI__builtin_ia32_cvtusi2ss64: |
6895 | case X86::BI__builtin_ia32_vcvtusi2sh: |
6896 | case X86::BI__builtin_ia32_vcvtusi642sh: |
6897 | case X86::BI__builtin_ia32_vcvtsi2sh: |
6898 | case X86::BI__builtin_ia32_vcvtsi642sh: |
6899 | ArgNum = 2; |
6900 | HasRC = true; |
6901 | break; |
6902 | case X86::BI__builtin_ia32_cvtdq2ps512_mask: |
6903 | case X86::BI__builtin_ia32_cvtudq2ps512_mask: |
6904 | case X86::BI__builtin_ia32_vcvtpd2ph512_mask: |
6905 | case X86::BI__builtin_ia32_vcvtps2phx512_mask: |
6906 | case X86::BI__builtin_ia32_cvtpd2ps512_mask: |
6907 | case X86::BI__builtin_ia32_cvtpd2dq512_mask: |
6908 | case X86::BI__builtin_ia32_cvtpd2qq512_mask: |
6909 | case X86::BI__builtin_ia32_cvtpd2udq512_mask: |
6910 | case X86::BI__builtin_ia32_cvtpd2uqq512_mask: |
6911 | case X86::BI__builtin_ia32_cvtps2dq512_mask: |
6912 | case X86::BI__builtin_ia32_cvtps2qq512_mask: |
6913 | case X86::BI__builtin_ia32_cvtps2udq512_mask: |
6914 | case X86::BI__builtin_ia32_cvtps2uqq512_mask: |
6915 | case X86::BI__builtin_ia32_cvtqq2pd512_mask: |
6916 | case X86::BI__builtin_ia32_cvtqq2ps512_mask: |
6917 | case X86::BI__builtin_ia32_cvtuqq2pd512_mask: |
6918 | case X86::BI__builtin_ia32_cvtuqq2ps512_mask: |
6919 | case X86::BI__builtin_ia32_vcvtdq2ph512_mask: |
6920 | case X86::BI__builtin_ia32_vcvtudq2ph512_mask: |
6921 | case X86::BI__builtin_ia32_vcvtw2ph512_mask: |
6922 | case X86::BI__builtin_ia32_vcvtuw2ph512_mask: |
6923 | case X86::BI__builtin_ia32_vcvtph2w512_mask: |
6924 | case X86::BI__builtin_ia32_vcvtph2uw512_mask: |
6925 | case X86::BI__builtin_ia32_vcvtph2dq512_mask: |
6926 | case X86::BI__builtin_ia32_vcvtph2udq512_mask: |
6927 | case X86::BI__builtin_ia32_vcvtph2qq512_mask: |
6928 | case X86::BI__builtin_ia32_vcvtph2uqq512_mask: |
6929 | case X86::BI__builtin_ia32_vcvtqq2ph512_mask: |
6930 | case X86::BI__builtin_ia32_vcvtuqq2ph512_mask: |
6931 | ArgNum = 3; |
6932 | HasRC = true; |
6933 | break; |
6934 | case X86::BI__builtin_ia32_addsh_round_mask: |
6935 | case X86::BI__builtin_ia32_addss_round_mask: |
6936 | case X86::BI__builtin_ia32_addsd_round_mask: |
6937 | case X86::BI__builtin_ia32_divsh_round_mask: |
6938 | case X86::BI__builtin_ia32_divss_round_mask: |
6939 | case X86::BI__builtin_ia32_divsd_round_mask: |
6940 | case X86::BI__builtin_ia32_mulsh_round_mask: |
6941 | case X86::BI__builtin_ia32_mulss_round_mask: |
6942 | case X86::BI__builtin_ia32_mulsd_round_mask: |
6943 | case X86::BI__builtin_ia32_subsh_round_mask: |
6944 | case X86::BI__builtin_ia32_subss_round_mask: |
6945 | case X86::BI__builtin_ia32_subsd_round_mask: |
6946 | case X86::BI__builtin_ia32_scalefph512_mask: |
6947 | case X86::BI__builtin_ia32_scalefpd512_mask: |
6948 | case X86::BI__builtin_ia32_scalefps512_mask: |
6949 | case X86::BI__builtin_ia32_scalefsd_round_mask: |
6950 | case X86::BI__builtin_ia32_scalefss_round_mask: |
6951 | case X86::BI__builtin_ia32_scalefsh_round_mask: |
6952 | case X86::BI__builtin_ia32_cvtsd2ss_round_mask: |
6953 | case X86::BI__builtin_ia32_vcvtss2sh_round_mask: |
6954 | case X86::BI__builtin_ia32_vcvtsd2sh_round_mask: |
6955 | case X86::BI__builtin_ia32_sqrtsd_round_mask: |
6956 | case X86::BI__builtin_ia32_sqrtss_round_mask: |
6957 | case X86::BI__builtin_ia32_sqrtsh_round_mask: |
6958 | case X86::BI__builtin_ia32_vfmaddsd3_mask: |
6959 | case X86::BI__builtin_ia32_vfmaddsd3_maskz: |
6960 | case X86::BI__builtin_ia32_vfmaddsd3_mask3: |
6961 | case X86::BI__builtin_ia32_vfmaddss3_mask: |
6962 | case X86::BI__builtin_ia32_vfmaddss3_maskz: |
6963 | case X86::BI__builtin_ia32_vfmaddss3_mask3: |
6964 | case X86::BI__builtin_ia32_vfmaddsh3_mask: |
6965 | case X86::BI__builtin_ia32_vfmaddsh3_maskz: |
6966 | case X86::BI__builtin_ia32_vfmaddsh3_mask3: |
6967 | case X86::BI__builtin_ia32_vfmaddpd512_mask: |
6968 | case X86::BI__builtin_ia32_vfmaddpd512_maskz: |
6969 | case X86::BI__builtin_ia32_vfmaddpd512_mask3: |
6970 | case X86::BI__builtin_ia32_vfmsubpd512_mask3: |
6971 | case X86::BI__builtin_ia32_vfmaddps512_mask: |
6972 | case X86::BI__builtin_ia32_vfmaddps512_maskz: |
6973 | case X86::BI__builtin_ia32_vfmaddps512_mask3: |
6974 | case X86::BI__builtin_ia32_vfmsubps512_mask3: |
6975 | case X86::BI__builtin_ia32_vfmaddph512_mask: |
6976 | case X86::BI__builtin_ia32_vfmaddph512_maskz: |
6977 | case X86::BI__builtin_ia32_vfmaddph512_mask3: |
6978 | case X86::BI__builtin_ia32_vfmsubph512_mask3: |
6979 | case X86::BI__builtin_ia32_vfmaddsubpd512_mask: |
6980 | case X86::BI__builtin_ia32_vfmaddsubpd512_maskz: |
6981 | case X86::BI__builtin_ia32_vfmaddsubpd512_mask3: |
6982 | case X86::BI__builtin_ia32_vfmsubaddpd512_mask3: |
6983 | case X86::BI__builtin_ia32_vfmaddsubps512_mask: |
6984 | case X86::BI__builtin_ia32_vfmaddsubps512_maskz: |
6985 | case X86::BI__builtin_ia32_vfmaddsubps512_mask3: |
6986 | case X86::BI__builtin_ia32_vfmsubaddps512_mask3: |
6987 | case X86::BI__builtin_ia32_vfmaddsubph512_mask: |
6988 | case X86::BI__builtin_ia32_vfmaddsubph512_maskz: |
6989 | case X86::BI__builtin_ia32_vfmaddsubph512_mask3: |
6990 | case X86::BI__builtin_ia32_vfmsubaddph512_mask3: |
6991 | case X86::BI__builtin_ia32_vfmaddcsh_mask: |
6992 | case X86::BI__builtin_ia32_vfmaddcsh_round_mask: |
6993 | case X86::BI__builtin_ia32_vfmaddcsh_round_mask3: |
6994 | case X86::BI__builtin_ia32_vfmaddcph512_mask: |
6995 | case X86::BI__builtin_ia32_vfmaddcph512_maskz: |
6996 | case X86::BI__builtin_ia32_vfmaddcph512_mask3: |
6997 | case X86::BI__builtin_ia32_vfcmaddcsh_mask: |
6998 | case X86::BI__builtin_ia32_vfcmaddcsh_round_mask: |
6999 | case X86::BI__builtin_ia32_vfcmaddcsh_round_mask3: |
7000 | case X86::BI__builtin_ia32_vfcmaddcph512_mask: |
7001 | case X86::BI__builtin_ia32_vfcmaddcph512_maskz: |
7002 | case X86::BI__builtin_ia32_vfcmaddcph512_mask3: |
7003 | case X86::BI__builtin_ia32_vfmulcsh_mask: |
7004 | case X86::BI__builtin_ia32_vfmulcph512_mask: |
7005 | case X86::BI__builtin_ia32_vfcmulcsh_mask: |
7006 | case X86::BI__builtin_ia32_vfcmulcph512_mask: |
7007 | ArgNum = 4; |
7008 | HasRC = true; |
7009 | break; |
7010 | } |
7011 | |
7012 | llvm::APSInt Result; |
7013 | |
7014 | // We can't check the value of a dependent argument. |
7015 | Expr *Arg = TheCall->getArg(Arg: ArgNum); |
7016 | if (Arg->isTypeDependent() || Arg->isValueDependent()) |
7017 | return false; |
7018 | |
7019 | // Check constant-ness first. |
7020 | if (BuiltinConstantArg(TheCall, ArgNum, Result)) |
7021 | return true; |
7022 | |
7023 | // Make sure rounding mode is either ROUND_CUR_DIRECTION or ROUND_NO_EXC bit |
7024 | // is set. If the intrinsic has rounding control(bits 1:0), make sure its only |
7025 | // combined with ROUND_NO_EXC. If the intrinsic does not have rounding |
7026 | // control, allow ROUND_NO_EXC and ROUND_CUR_DIRECTION together. |
7027 | if (Result == 4/*ROUND_CUR_DIRECTION*/ || |
7028 | Result == 8/*ROUND_NO_EXC*/ || |
7029 | (!HasRC && Result == 12/*ROUND_CUR_DIRECTION|ROUND_NO_EXC*/) || |
7030 | (HasRC && Result.getZExtValue() >= 8 && Result.getZExtValue() <= 11)) |
7031 | return false; |
7032 | |
7033 | return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_rounding) |
7034 | << Arg->getSourceRange(); |
7035 | } |
7036 | |
7037 | // Check if the gather/scatter scale is legal. |
7038 | bool Sema::CheckX86BuiltinGatherScatterScale(unsigned BuiltinID, |
7039 | CallExpr *TheCall) { |
7040 | unsigned ArgNum = 0; |
7041 | switch (BuiltinID) { |
7042 | default: |
7043 | return false; |
7044 | case X86::BI__builtin_ia32_gatherpfdpd: |
7045 | case X86::BI__builtin_ia32_gatherpfdps: |
7046 | case X86::BI__builtin_ia32_gatherpfqpd: |
7047 | case X86::BI__builtin_ia32_gatherpfqps: |
7048 | case X86::BI__builtin_ia32_scatterpfdpd: |
7049 | case X86::BI__builtin_ia32_scatterpfdps: |
7050 | case X86::BI__builtin_ia32_scatterpfqpd: |
7051 | case X86::BI__builtin_ia32_scatterpfqps: |
7052 | ArgNum = 3; |
7053 | break; |
7054 | case X86::BI__builtin_ia32_gatherd_pd: |
7055 | case X86::BI__builtin_ia32_gatherd_pd256: |
7056 | case X86::BI__builtin_ia32_gatherq_pd: |
7057 | case X86::BI__builtin_ia32_gatherq_pd256: |
7058 | case X86::BI__builtin_ia32_gatherd_ps: |
7059 | case X86::BI__builtin_ia32_gatherd_ps256: |
7060 | case X86::BI__builtin_ia32_gatherq_ps: |
7061 | case X86::BI__builtin_ia32_gatherq_ps256: |
7062 | case X86::BI__builtin_ia32_gatherd_q: |
7063 | case X86::BI__builtin_ia32_gatherd_q256: |
7064 | case X86::BI__builtin_ia32_gatherq_q: |
7065 | case X86::BI__builtin_ia32_gatherq_q256: |
7066 | case X86::BI__builtin_ia32_gatherd_d: |
7067 | case X86::BI__builtin_ia32_gatherd_d256: |
7068 | case X86::BI__builtin_ia32_gatherq_d: |
7069 | case X86::BI__builtin_ia32_gatherq_d256: |
7070 | case X86::BI__builtin_ia32_gather3div2df: |
7071 | case X86::BI__builtin_ia32_gather3div2di: |
7072 | case X86::BI__builtin_ia32_gather3div4df: |
7073 | case X86::BI__builtin_ia32_gather3div4di: |
7074 | case X86::BI__builtin_ia32_gather3div4sf: |
7075 | case X86::BI__builtin_ia32_gather3div4si: |
7076 | case X86::BI__builtin_ia32_gather3div8sf: |
7077 | case X86::BI__builtin_ia32_gather3div8si: |
7078 | case X86::BI__builtin_ia32_gather3siv2df: |
7079 | case X86::BI__builtin_ia32_gather3siv2di: |
7080 | case X86::BI__builtin_ia32_gather3siv4df: |
7081 | case X86::BI__builtin_ia32_gather3siv4di: |
7082 | case X86::BI__builtin_ia32_gather3siv4sf: |
7083 | case X86::BI__builtin_ia32_gather3siv4si: |
7084 | case X86::BI__builtin_ia32_gather3siv8sf: |
7085 | case X86::BI__builtin_ia32_gather3siv8si: |
7086 | case X86::BI__builtin_ia32_gathersiv8df: |
7087 | case X86::BI__builtin_ia32_gathersiv16sf: |
7088 | case X86::BI__builtin_ia32_gatherdiv8df: |
7089 | case X86::BI__builtin_ia32_gatherdiv16sf: |
7090 | case X86::BI__builtin_ia32_gathersiv8di: |
7091 | case X86::BI__builtin_ia32_gathersiv16si: |
7092 | case X86::BI__builtin_ia32_gatherdiv8di: |
7093 | case X86::BI__builtin_ia32_gatherdiv16si: |
7094 | case X86::BI__builtin_ia32_scatterdiv2df: |
7095 | case X86::BI__builtin_ia32_scatterdiv2di: |
7096 | case X86::BI__builtin_ia32_scatterdiv4df: |
7097 | case X86::BI__builtin_ia32_scatterdiv4di: |
7098 | case X86::BI__builtin_ia32_scatterdiv4sf: |
7099 | case X86::BI__builtin_ia32_scatterdiv4si: |
7100 | case X86::BI__builtin_ia32_scatterdiv8sf: |
7101 | case X86::BI__builtin_ia32_scatterdiv8si: |
7102 | case X86::BI__builtin_ia32_scattersiv2df: |
7103 | case X86::BI__builtin_ia32_scattersiv2di: |
7104 | case X86::BI__builtin_ia32_scattersiv4df: |
7105 | case X86::BI__builtin_ia32_scattersiv4di: |
7106 | case X86::BI__builtin_ia32_scattersiv4sf: |
7107 | case X86::BI__builtin_ia32_scattersiv4si: |
7108 | case X86::BI__builtin_ia32_scattersiv8sf: |
7109 | case X86::BI__builtin_ia32_scattersiv8si: |
7110 | case X86::BI__builtin_ia32_scattersiv8df: |
7111 | case X86::BI__builtin_ia32_scattersiv16sf: |
7112 | case X86::BI__builtin_ia32_scatterdiv8df: |
7113 | case X86::BI__builtin_ia32_scatterdiv16sf: |
7114 | case X86::BI__builtin_ia32_scattersiv8di: |
7115 | case X86::BI__builtin_ia32_scattersiv16si: |
7116 | case X86::BI__builtin_ia32_scatterdiv8di: |
7117 | case X86::BI__builtin_ia32_scatterdiv16si: |
7118 | ArgNum = 4; |
7119 | break; |
7120 | } |
7121 | |
7122 | llvm::APSInt Result; |
7123 | |
7124 | // We can't check the value of a dependent argument. |
7125 | Expr *Arg = TheCall->getArg(Arg: ArgNum); |
7126 | if (Arg->isTypeDependent() || Arg->isValueDependent()) |
7127 | return false; |
7128 | |
7129 | // Check constant-ness first. |
7130 | if (BuiltinConstantArg(TheCall, ArgNum, Result)) |
7131 | return true; |
7132 | |
7133 | if (Result == 1 || Result == 2 || Result == 4 || Result == 8) |
7134 | return false; |
7135 | |
7136 | return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_scale) |
7137 | << Arg->getSourceRange(); |
7138 | } |
7139 | |
7140 | enum { TileRegLow = 0, TileRegHigh = 7 }; |
7141 | |
7142 | bool Sema::CheckX86BuiltinTileArgumentsRange(CallExpr *TheCall, |
7143 | ArrayRef<int> ArgNums) { |
7144 | for (int ArgNum : ArgNums) { |
7145 | if (BuiltinConstantArgRange(TheCall, ArgNum, Low: TileRegLow, High: TileRegHigh)) |
7146 | return true; |
7147 | } |
7148 | return false; |
7149 | } |
7150 | |
7151 | bool Sema::CheckX86BuiltinTileDuplicate(CallExpr *TheCall, |
7152 | ArrayRef<int> ArgNums) { |
7153 | // Because the max number of tile register is TileRegHigh + 1, so here we use |
7154 | // each bit to represent the usage of them in bitset. |
7155 | std::bitset<TileRegHigh + 1> ArgValues; |
7156 | for (int ArgNum : ArgNums) { |
7157 | Expr *Arg = TheCall->getArg(Arg: ArgNum); |
7158 | if (Arg->isTypeDependent() || Arg->isValueDependent()) |
7159 | continue; |
7160 | |
7161 | llvm::APSInt Result; |
7162 | if (BuiltinConstantArg(TheCall, ArgNum, Result)) |
7163 | return true; |
7164 | int ArgExtValue = Result.getExtValue(); |
7165 | assert((ArgExtValue >= TileRegLow && ArgExtValue <= TileRegHigh) && |
7166 | "Incorrect tile register num." ); |
7167 | if (ArgValues.test(ArgExtValue)) |
7168 | return Diag(TheCall->getBeginLoc(), |
7169 | diag::err_x86_builtin_tile_arg_duplicate) |
7170 | << TheCall->getArg(ArgNum)->getSourceRange(); |
7171 | ArgValues.set(position: ArgExtValue); |
7172 | } |
7173 | return false; |
7174 | } |
7175 | |
7176 | bool Sema::CheckX86BuiltinTileRangeAndDuplicate(CallExpr *TheCall, |
7177 | ArrayRef<int> ArgNums) { |
7178 | return CheckX86BuiltinTileArgumentsRange(TheCall, ArgNums) || |
7179 | CheckX86BuiltinTileDuplicate(TheCall, ArgNums); |
7180 | } |
7181 | |
7182 | bool Sema::CheckX86BuiltinTileArguments(unsigned BuiltinID, CallExpr *TheCall) { |
7183 | switch (BuiltinID) { |
7184 | default: |
7185 | return false; |
7186 | case X86::BI__builtin_ia32_tileloadd64: |
7187 | case X86::BI__builtin_ia32_tileloaddt164: |
7188 | case X86::BI__builtin_ia32_tilestored64: |
7189 | case X86::BI__builtin_ia32_tilezero: |
7190 | return CheckX86BuiltinTileArgumentsRange(TheCall, ArgNums: 0); |
7191 | case X86::BI__builtin_ia32_tdpbssd: |
7192 | case X86::BI__builtin_ia32_tdpbsud: |
7193 | case X86::BI__builtin_ia32_tdpbusd: |
7194 | case X86::BI__builtin_ia32_tdpbuud: |
7195 | case X86::BI__builtin_ia32_tdpbf16ps: |
7196 | case X86::BI__builtin_ia32_tdpfp16ps: |
7197 | case X86::BI__builtin_ia32_tcmmimfp16ps: |
7198 | case X86::BI__builtin_ia32_tcmmrlfp16ps: |
7199 | return CheckX86BuiltinTileRangeAndDuplicate(TheCall, ArgNums: {0, 1, 2}); |
7200 | } |
7201 | } |
7202 | static bool isX86_32Builtin(unsigned BuiltinID) { |
7203 | // These builtins only work on x86-32 targets. |
7204 | switch (BuiltinID) { |
7205 | case X86::BI__builtin_ia32_readeflags_u32: |
7206 | case X86::BI__builtin_ia32_writeeflags_u32: |
7207 | return true; |
7208 | } |
7209 | |
7210 | return false; |
7211 | } |
7212 | |
7213 | bool Sema::CheckX86BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, |
7214 | CallExpr *TheCall) { |
7215 | // Check for 32-bit only builtins on a 64-bit target. |
7216 | const llvm::Triple &TT = TI.getTriple(); |
7217 | if (TT.getArch() != llvm::Triple::x86 && isX86_32Builtin(BuiltinID)) |
7218 | return Diag(TheCall->getCallee()->getBeginLoc(), |
7219 | diag::err_32_bit_builtin_64_bit_tgt); |
7220 | |
7221 | // If the intrinsic has rounding or SAE make sure its valid. |
7222 | if (CheckX86BuiltinRoundingOrSAE(BuiltinID, TheCall)) |
7223 | return true; |
7224 | |
7225 | // If the intrinsic has a gather/scatter scale immediate make sure its valid. |
7226 | if (CheckX86BuiltinGatherScatterScale(BuiltinID, TheCall)) |
7227 | return true; |
7228 | |
7229 | // If the intrinsic has a tile arguments, make sure they are valid. |
7230 | if (CheckX86BuiltinTileArguments(BuiltinID, TheCall)) |
7231 | return true; |
7232 | |
7233 | // For intrinsics which take an immediate value as part of the instruction, |
7234 | // range check them here. |
7235 | int i = 0, l = 0, u = 0; |
7236 | switch (BuiltinID) { |
7237 | default: |
7238 | return false; |
7239 | case X86::BI__builtin_ia32_vec_ext_v2si: |
7240 | case X86::BI__builtin_ia32_vec_ext_v2di: |
7241 | case X86::BI__builtin_ia32_vextractf128_pd256: |
7242 | case X86::BI__builtin_ia32_vextractf128_ps256: |
7243 | case X86::BI__builtin_ia32_vextractf128_si256: |
7244 | case X86::BI__builtin_ia32_extract128i256: |
7245 | case X86::BI__builtin_ia32_extractf64x4_mask: |
7246 | case X86::BI__builtin_ia32_extracti64x4_mask: |
7247 | case X86::BI__builtin_ia32_extractf32x8_mask: |
7248 | case X86::BI__builtin_ia32_extracti32x8_mask: |
7249 | case X86::BI__builtin_ia32_extractf64x2_256_mask: |
7250 | case X86::BI__builtin_ia32_extracti64x2_256_mask: |
7251 | case X86::BI__builtin_ia32_extractf32x4_256_mask: |
7252 | case X86::BI__builtin_ia32_extracti32x4_256_mask: |
7253 | i = 1; l = 0; u = 1; |
7254 | break; |
7255 | case X86::BI__builtin_ia32_vec_set_v2di: |
7256 | case X86::BI__builtin_ia32_vinsertf128_pd256: |
7257 | case X86::BI__builtin_ia32_vinsertf128_ps256: |
7258 | case X86::BI__builtin_ia32_vinsertf128_si256: |
7259 | case X86::BI__builtin_ia32_insert128i256: |
7260 | case X86::BI__builtin_ia32_insertf32x8: |
7261 | case X86::BI__builtin_ia32_inserti32x8: |
7262 | case X86::BI__builtin_ia32_insertf64x4: |
7263 | case X86::BI__builtin_ia32_inserti64x4: |
7264 | case X86::BI__builtin_ia32_insertf64x2_256: |
7265 | case X86::BI__builtin_ia32_inserti64x2_256: |
7266 | case X86::BI__builtin_ia32_insertf32x4_256: |
7267 | case X86::BI__builtin_ia32_inserti32x4_256: |
7268 | i = 2; l = 0; u = 1; |
7269 | break; |
7270 | case X86::BI__builtin_ia32_vpermilpd: |
7271 | case X86::BI__builtin_ia32_vec_ext_v4hi: |
7272 | case X86::BI__builtin_ia32_vec_ext_v4si: |
7273 | case X86::BI__builtin_ia32_vec_ext_v4sf: |
7274 | case X86::BI__builtin_ia32_vec_ext_v4di: |
7275 | case X86::BI__builtin_ia32_extractf32x4_mask: |
7276 | case X86::BI__builtin_ia32_extracti32x4_mask: |
7277 | case X86::BI__builtin_ia32_extractf64x2_512_mask: |
7278 | case X86::BI__builtin_ia32_extracti64x2_512_mask: |
7279 | i = 1; l = 0; u = 3; |
7280 | break; |
7281 | case X86::BI_mm_prefetch: |
7282 | case X86::BI__builtin_ia32_vec_ext_v8hi: |
7283 | case X86::BI__builtin_ia32_vec_ext_v8si: |
7284 | i = 1; l = 0; u = 7; |
7285 | break; |
7286 | case X86::BI__builtin_ia32_sha1rnds4: |
7287 | case X86::BI__builtin_ia32_blendpd: |
7288 | case X86::BI__builtin_ia32_shufpd: |
7289 | case X86::BI__builtin_ia32_vec_set_v4hi: |
7290 | case X86::BI__builtin_ia32_vec_set_v4si: |
7291 | case X86::BI__builtin_ia32_vec_set_v4di: |
7292 | case X86::BI__builtin_ia32_shuf_f32x4_256: |
7293 | case X86::BI__builtin_ia32_shuf_f64x2_256: |
7294 | case X86::BI__builtin_ia32_shuf_i32x4_256: |
7295 | case X86::BI__builtin_ia32_shuf_i64x2_256: |
7296 | case X86::BI__builtin_ia32_insertf64x2_512: |
7297 | case X86::BI__builtin_ia32_inserti64x2_512: |
7298 | case X86::BI__builtin_ia32_insertf32x4: |
7299 | case X86::BI__builtin_ia32_inserti32x4: |
7300 | i = 2; l = 0; u = 3; |
7301 | break; |
7302 | case X86::BI__builtin_ia32_vpermil2pd: |
7303 | case X86::BI__builtin_ia32_vpermil2pd256: |
7304 | case X86::BI__builtin_ia32_vpermil2ps: |
7305 | case X86::BI__builtin_ia32_vpermil2ps256: |
7306 | i = 3; l = 0; u = 3; |
7307 | break; |
7308 | case X86::BI__builtin_ia32_cmpb128_mask: |
7309 | case X86::BI__builtin_ia32_cmpw128_mask: |
7310 | case X86::BI__builtin_ia32_cmpd128_mask: |
7311 | case X86::BI__builtin_ia32_cmpq128_mask: |
7312 | case X86::BI__builtin_ia32_cmpb256_mask: |
7313 | case X86::BI__builtin_ia32_cmpw256_mask: |
7314 | case X86::BI__builtin_ia32_cmpd256_mask: |
7315 | case X86::BI__builtin_ia32_cmpq256_mask: |
7316 | case X86::BI__builtin_ia32_cmpb512_mask: |
7317 | case X86::BI__builtin_ia32_cmpw512_mask: |
7318 | case X86::BI__builtin_ia32_cmpd512_mask: |
7319 | case X86::BI__builtin_ia32_cmpq512_mask: |
7320 | case X86::BI__builtin_ia32_ucmpb128_mask: |
7321 | case X86::BI__builtin_ia32_ucmpw128_mask: |
7322 | case X86::BI__builtin_ia32_ucmpd128_mask: |
7323 | case X86::BI__builtin_ia32_ucmpq128_mask: |
7324 | case X86::BI__builtin_ia32_ucmpb256_mask: |
7325 | case X86::BI__builtin_ia32_ucmpw256_mask: |
7326 | case X86::BI__builtin_ia32_ucmpd256_mask: |
7327 | case X86::BI__builtin_ia32_ucmpq256_mask: |
7328 | case X86::BI__builtin_ia32_ucmpb512_mask: |
7329 | case X86::BI__builtin_ia32_ucmpw512_mask: |
7330 | case X86::BI__builtin_ia32_ucmpd512_mask: |
7331 | case X86::BI__builtin_ia32_ucmpq512_mask: |
7332 | case X86::BI__builtin_ia32_vpcomub: |
7333 | case X86::BI__builtin_ia32_vpcomuw: |
7334 | case X86::BI__builtin_ia32_vpcomud: |
7335 | case X86::BI__builtin_ia32_vpcomuq: |
7336 | case X86::BI__builtin_ia32_vpcomb: |
7337 | case X86::BI__builtin_ia32_vpcomw: |
7338 | case X86::BI__builtin_ia32_vpcomd: |
7339 | case X86::BI__builtin_ia32_vpcomq: |
7340 | case X86::BI__builtin_ia32_vec_set_v8hi: |
7341 | case X86::BI__builtin_ia32_vec_set_v8si: |
7342 | i = 2; l = 0; u = 7; |
7343 | break; |
7344 | case X86::BI__builtin_ia32_vpermilpd256: |
7345 | case X86::BI__builtin_ia32_roundps: |
7346 | case X86::BI__builtin_ia32_roundpd: |
7347 | case X86::BI__builtin_ia32_roundps256: |
7348 | case X86::BI__builtin_ia32_roundpd256: |
7349 | case X86::BI__builtin_ia32_getmantpd128_mask: |
7350 | case X86::BI__builtin_ia32_getmantpd256_mask: |
7351 | case X86::BI__builtin_ia32_getmantps128_mask: |
7352 | case X86::BI__builtin_ia32_getmantps256_mask: |
7353 | case X86::BI__builtin_ia32_getmantpd512_mask: |
7354 | case X86::BI__builtin_ia32_getmantps512_mask: |
7355 | case X86::BI__builtin_ia32_getmantph128_mask: |
7356 | case X86::BI__builtin_ia32_getmantph256_mask: |
7357 | case X86::BI__builtin_ia32_getmantph512_mask: |
7358 | case X86::BI__builtin_ia32_vec_ext_v16qi: |
7359 | case X86::BI__builtin_ia32_vec_ext_v16hi: |
7360 | i = 1; l = 0; u = 15; |
7361 | break; |
7362 | case X86::BI__builtin_ia32_pblendd128: |
7363 | case X86::BI__builtin_ia32_blendps: |
7364 | case X86::BI__builtin_ia32_blendpd256: |
7365 | case X86::BI__builtin_ia32_shufpd256: |
7366 | case X86::BI__builtin_ia32_roundss: |
7367 | case X86::BI__builtin_ia32_roundsd: |
7368 | case X86::BI__builtin_ia32_rangepd128_mask: |
7369 | case X86::BI__builtin_ia32_rangepd256_mask: |
7370 | case X86::BI__builtin_ia32_rangepd512_mask: |
7371 | case X86::BI__builtin_ia32_rangeps128_mask: |
7372 | case X86::BI__builtin_ia32_rangeps256_mask: |
7373 | case X86::BI__builtin_ia32_rangeps512_mask: |
7374 | case X86::BI__builtin_ia32_getmantsd_round_mask: |
7375 | case X86::BI__builtin_ia32_getmantss_round_mask: |
7376 | case X86::BI__builtin_ia32_getmantsh_round_mask: |
7377 | case X86::BI__builtin_ia32_vec_set_v16qi: |
7378 | case X86::BI__builtin_ia32_vec_set_v16hi: |
7379 | i = 2; l = 0; u = 15; |
7380 | break; |
7381 | case X86::BI__builtin_ia32_vec_ext_v32qi: |
7382 | i = 1; l = 0; u = 31; |
7383 | break; |
7384 | case X86::BI__builtin_ia32_cmpps: |
7385 | case X86::BI__builtin_ia32_cmpss: |
7386 | case X86::BI__builtin_ia32_cmppd: |
7387 | case X86::BI__builtin_ia32_cmpsd: |
7388 | case X86::BI__builtin_ia32_cmpps256: |
7389 | case X86::BI__builtin_ia32_cmppd256: |
7390 | case X86::BI__builtin_ia32_cmpps128_mask: |
7391 | case X86::BI__builtin_ia32_cmppd128_mask: |
7392 | case X86::BI__builtin_ia32_cmpps256_mask: |
7393 | case X86::BI__builtin_ia32_cmppd256_mask: |
7394 | case X86::BI__builtin_ia32_cmpps512_mask: |
7395 | case X86::BI__builtin_ia32_cmppd512_mask: |
7396 | case X86::BI__builtin_ia32_cmpsd_mask: |
7397 | case X86::BI__builtin_ia32_cmpss_mask: |
7398 | case X86::BI__builtin_ia32_vec_set_v32qi: |
7399 | i = 2; l = 0; u = 31; |
7400 | break; |
7401 | case X86::BI__builtin_ia32_permdf256: |
7402 | case X86::BI__builtin_ia32_permdi256: |
7403 | case X86::BI__builtin_ia32_permdf512: |
7404 | case X86::BI__builtin_ia32_permdi512: |
7405 | case X86::BI__builtin_ia32_vpermilps: |
7406 | case X86::BI__builtin_ia32_vpermilps256: |
7407 | case X86::BI__builtin_ia32_vpermilpd512: |
7408 | case X86::BI__builtin_ia32_vpermilps512: |
7409 | case X86::BI__builtin_ia32_pshufd: |
7410 | case X86::BI__builtin_ia32_pshufd256: |
7411 | case X86::BI__builtin_ia32_pshufd512: |
7412 | case X86::BI__builtin_ia32_pshufhw: |
7413 | case X86::BI__builtin_ia32_pshufhw256: |
7414 | case X86::BI__builtin_ia32_pshufhw512: |
7415 | case X86::BI__builtin_ia32_pshuflw: |
7416 | case X86::BI__builtin_ia32_pshuflw256: |
7417 | case X86::BI__builtin_ia32_pshuflw512: |
7418 | case X86::BI__builtin_ia32_vcvtps2ph: |
7419 | case X86::BI__builtin_ia32_vcvtps2ph_mask: |
7420 | case X86::BI__builtin_ia32_vcvtps2ph256: |
7421 | case X86::BI__builtin_ia32_vcvtps2ph256_mask: |
7422 | case X86::BI__builtin_ia32_vcvtps2ph512_mask: |
7423 | case X86::BI__builtin_ia32_rndscaleps_128_mask: |
7424 | case X86::BI__builtin_ia32_rndscalepd_128_mask: |
7425 | case X86::BI__builtin_ia32_rndscaleps_256_mask: |
7426 | case X86::BI__builtin_ia32_rndscalepd_256_mask: |
7427 | case X86::BI__builtin_ia32_rndscaleps_mask: |
7428 | case X86::BI__builtin_ia32_rndscalepd_mask: |
7429 | case X86::BI__builtin_ia32_rndscaleph_mask: |
7430 | case X86::BI__builtin_ia32_reducepd128_mask: |
7431 | case X86::BI__builtin_ia32_reducepd256_mask: |
7432 | case X86::BI__builtin_ia32_reducepd512_mask: |
7433 | case X86::BI__builtin_ia32_reduceps128_mask: |
7434 | case X86::BI__builtin_ia32_reduceps256_mask: |
7435 | case X86::BI__builtin_ia32_reduceps512_mask: |
7436 | case X86::BI__builtin_ia32_reduceph128_mask: |
7437 | case X86::BI__builtin_ia32_reduceph256_mask: |
7438 | case X86::BI__builtin_ia32_reduceph512_mask: |
7439 | case X86::BI__builtin_ia32_prold512: |
7440 | case X86::BI__builtin_ia32_prolq512: |
7441 | case X86::BI__builtin_ia32_prold128: |
7442 | case X86::BI__builtin_ia32_prold256: |
7443 | case X86::BI__builtin_ia32_prolq128: |
7444 | case X86::BI__builtin_ia32_prolq256: |
7445 | case X86::BI__builtin_ia32_prord512: |
7446 | case X86::BI__builtin_ia32_prorq512: |
7447 | case X86::BI__builtin_ia32_prord128: |
7448 | case X86::BI__builtin_ia32_prord256: |
7449 | case X86::BI__builtin_ia32_prorq128: |
7450 | case X86::BI__builtin_ia32_prorq256: |
7451 | case X86::BI__builtin_ia32_fpclasspd128_mask: |
7452 | case X86::BI__builtin_ia32_fpclasspd256_mask: |
7453 | case X86::BI__builtin_ia32_fpclassps128_mask: |
7454 | case X86::BI__builtin_ia32_fpclassps256_mask: |
7455 | case X86::BI__builtin_ia32_fpclassps512_mask: |
7456 | case X86::BI__builtin_ia32_fpclasspd512_mask: |
7457 | case X86::BI__builtin_ia32_fpclassph128_mask: |
7458 | case X86::BI__builtin_ia32_fpclassph256_mask: |
7459 | case X86::BI__builtin_ia32_fpclassph512_mask: |
7460 | case X86::BI__builtin_ia32_fpclasssd_mask: |
7461 | case X86::BI__builtin_ia32_fpclassss_mask: |
7462 | case X86::BI__builtin_ia32_fpclasssh_mask: |
7463 | case X86::BI__builtin_ia32_pslldqi128_byteshift: |
7464 | case X86::BI__builtin_ia32_pslldqi256_byteshift: |
7465 | case X86::BI__builtin_ia32_pslldqi512_byteshift: |
7466 | case X86::BI__builtin_ia32_psrldqi128_byteshift: |
7467 | case X86::BI__builtin_ia32_psrldqi256_byteshift: |
7468 | case X86::BI__builtin_ia32_psrldqi512_byteshift: |
7469 | case X86::BI__builtin_ia32_kshiftliqi: |
7470 | case X86::BI__builtin_ia32_kshiftlihi: |
7471 | case X86::BI__builtin_ia32_kshiftlisi: |
7472 | case X86::BI__builtin_ia32_kshiftlidi: |
7473 | case X86::BI__builtin_ia32_kshiftriqi: |
7474 | case X86::BI__builtin_ia32_kshiftrihi: |
7475 | case X86::BI__builtin_ia32_kshiftrisi: |
7476 | case X86::BI__builtin_ia32_kshiftridi: |
7477 | i = 1; l = 0; u = 255; |
7478 | break; |
7479 | case X86::BI__builtin_ia32_vperm2f128_pd256: |
7480 | case X86::BI__builtin_ia32_vperm2f128_ps256: |
7481 | case X86::BI__builtin_ia32_vperm2f128_si256: |
7482 | case X86::BI__builtin_ia32_permti256: |
7483 | case X86::BI__builtin_ia32_pblendw128: |
7484 | case X86::BI__builtin_ia32_pblendw256: |
7485 | case X86::BI__builtin_ia32_blendps256: |
7486 | case X86::BI__builtin_ia32_pblendd256: |
7487 | case X86::BI__builtin_ia32_palignr128: |
7488 | case X86::BI__builtin_ia32_palignr256: |
7489 | case X86::BI__builtin_ia32_palignr512: |
7490 | case X86::BI__builtin_ia32_alignq512: |
7491 | case X86::BI__builtin_ia32_alignd512: |
7492 | case X86::BI__builtin_ia32_alignd128: |
7493 | case X86::BI__builtin_ia32_alignd256: |
7494 | case X86::BI__builtin_ia32_alignq128: |
7495 | case X86::BI__builtin_ia32_alignq256: |
7496 | case X86::BI__builtin_ia32_vcomisd: |
7497 | case X86::BI__builtin_ia32_vcomiss: |
7498 | case X86::BI__builtin_ia32_shuf_f32x4: |
7499 | case X86::BI__builtin_ia32_shuf_f64x2: |
7500 | case X86::BI__builtin_ia32_shuf_i32x4: |
7501 | case X86::BI__builtin_ia32_shuf_i64x2: |
7502 | case X86::BI__builtin_ia32_shufpd512: |
7503 | case X86::BI__builtin_ia32_shufps: |
7504 | case X86::BI__builtin_ia32_shufps256: |
7505 | case X86::BI__builtin_ia32_shufps512: |
7506 | case X86::BI__builtin_ia32_dbpsadbw128: |
7507 | case X86::BI__builtin_ia32_dbpsadbw256: |
7508 | case X86::BI__builtin_ia32_dbpsadbw512: |
7509 | case X86::BI__builtin_ia32_vpshldd128: |
7510 | case X86::BI__builtin_ia32_vpshldd256: |
7511 | case X86::BI__builtin_ia32_vpshldd512: |
7512 | case X86::BI__builtin_ia32_vpshldq128: |
7513 | case X86::BI__builtin_ia32_vpshldq256: |
7514 | case X86::BI__builtin_ia32_vpshldq512: |
7515 | case X86::BI__builtin_ia32_vpshldw128: |
7516 | case X86::BI__builtin_ia32_vpshldw256: |
7517 | case X86::BI__builtin_ia32_vpshldw512: |
7518 | case X86::BI__builtin_ia32_vpshrdd128: |
7519 | case X86::BI__builtin_ia32_vpshrdd256: |
7520 | case X86::BI__builtin_ia32_vpshrdd512: |
7521 | case X86::BI__builtin_ia32_vpshrdq128: |
7522 | case X86::BI__builtin_ia32_vpshrdq256: |
7523 | case X86::BI__builtin_ia32_vpshrdq512: |
7524 | case X86::BI__builtin_ia32_vpshrdw128: |
7525 | case X86::BI__builtin_ia32_vpshrdw256: |
7526 | case X86::BI__builtin_ia32_vpshrdw512: |
7527 | i = 2; l = 0; u = 255; |
7528 | break; |
7529 | case X86::BI__builtin_ia32_fixupimmpd512_mask: |
7530 | case X86::BI__builtin_ia32_fixupimmpd512_maskz: |
7531 | case X86::BI__builtin_ia32_fixupimmps512_mask: |
7532 | case X86::BI__builtin_ia32_fixupimmps512_maskz: |
7533 | case X86::BI__builtin_ia32_fixupimmsd_mask: |
7534 | case X86::BI__builtin_ia32_fixupimmsd_maskz: |
7535 | case X86::BI__builtin_ia32_fixupimmss_mask: |
7536 | case X86::BI__builtin_ia32_fixupimmss_maskz: |
7537 | case X86::BI__builtin_ia32_fixupimmpd128_mask: |
7538 | case X86::BI__builtin_ia32_fixupimmpd128_maskz: |
7539 | case X86::BI__builtin_ia32_fixupimmpd256_mask: |
7540 | case X86::BI__builtin_ia32_fixupimmpd256_maskz: |
7541 | case X86::BI__builtin_ia32_fixupimmps128_mask: |
7542 | case X86::BI__builtin_ia32_fixupimmps128_maskz: |
7543 | case X86::BI__builtin_ia32_fixupimmps256_mask: |
7544 | case X86::BI__builtin_ia32_fixupimmps256_maskz: |
7545 | case X86::BI__builtin_ia32_pternlogd512_mask: |
7546 | case X86::BI__builtin_ia32_pternlogd512_maskz: |
7547 | case X86::BI__builtin_ia32_pternlogq512_mask: |
7548 | case X86::BI__builtin_ia32_pternlogq512_maskz: |
7549 | case X86::BI__builtin_ia32_pternlogd128_mask: |
7550 | case X86::BI__builtin_ia32_pternlogd128_maskz: |
7551 | case X86::BI__builtin_ia32_pternlogd256_mask: |
7552 | case X86::BI__builtin_ia32_pternlogd256_maskz: |
7553 | case X86::BI__builtin_ia32_pternlogq128_mask: |
7554 | case X86::BI__builtin_ia32_pternlogq128_maskz: |
7555 | case X86::BI__builtin_ia32_pternlogq256_mask: |
7556 | case X86::BI__builtin_ia32_pternlogq256_maskz: |
7557 | case X86::BI__builtin_ia32_vsm3rnds2: |
7558 | i = 3; l = 0; u = 255; |
7559 | break; |
7560 | case X86::BI__builtin_ia32_gatherpfdpd: |
7561 | case X86::BI__builtin_ia32_gatherpfdps: |
7562 | case X86::BI__builtin_ia32_gatherpfqpd: |
7563 | case X86::BI__builtin_ia32_gatherpfqps: |
7564 | case X86::BI__builtin_ia32_scatterpfdpd: |
7565 | case X86::BI__builtin_ia32_scatterpfdps: |
7566 | case X86::BI__builtin_ia32_scatterpfqpd: |
7567 | case X86::BI__builtin_ia32_scatterpfqps: |
7568 | i = 4; l = 2; u = 3; |
7569 | break; |
7570 | case X86::BI__builtin_ia32_reducesd_mask: |
7571 | case X86::BI__builtin_ia32_reducess_mask: |
7572 | case X86::BI__builtin_ia32_rndscalesd_round_mask: |
7573 | case X86::BI__builtin_ia32_rndscaless_round_mask: |
7574 | case X86::BI__builtin_ia32_rndscalesh_round_mask: |
7575 | case X86::BI__builtin_ia32_reducesh_mask: |
7576 | i = 4; l = 0; u = 255; |
7577 | break; |
7578 | case X86::BI__builtin_ia32_cmpccxadd32: |
7579 | case X86::BI__builtin_ia32_cmpccxadd64: |
7580 | i = 3; l = 0; u = 15; |
7581 | break; |
7582 | } |
7583 | |
7584 | // Note that we don't force a hard error on the range check here, allowing |
7585 | // template-generated or macro-generated dead code to potentially have out-of- |
7586 | // range values. These need to code generate, but don't need to necessarily |
7587 | // make any sense. We use a warning that defaults to an error. |
7588 | return BuiltinConstantArgRange(TheCall, ArgNum: i, Low: l, High: u, /*RangeIsError*/ false); |
7589 | } |
7590 | |
7591 | /// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo |
7592 | /// parameter with the FormatAttr's correct format_idx and firstDataArg. |
7593 | /// Returns true when the format fits the function and the FormatStringInfo has |
7594 | /// been populated. |
7595 | bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember, |
7596 | bool IsVariadic, FormatStringInfo *FSI) { |
7597 | if (Format->getFirstArg() == 0) |
7598 | FSI->ArgPassingKind = FAPK_VAList; |
7599 | else if (IsVariadic) |
7600 | FSI->ArgPassingKind = FAPK_Variadic; |
7601 | else |
7602 | FSI->ArgPassingKind = FAPK_Fixed; |
7603 | FSI->FormatIdx = Format->getFormatIdx() - 1; |
7604 | FSI->FirstDataArg = |
7605 | FSI->ArgPassingKind == FAPK_VAList ? 0 : Format->getFirstArg() - 1; |
7606 | |
7607 | // The way the format attribute works in GCC, the implicit this argument |
7608 | // of member functions is counted. However, it doesn't appear in our own |
7609 | // lists, so decrement format_idx in that case. |
7610 | if (IsCXXMember) { |
7611 | if(FSI->FormatIdx == 0) |
7612 | return false; |
7613 | --FSI->FormatIdx; |
7614 | if (FSI->FirstDataArg != 0) |
7615 | --FSI->FirstDataArg; |
7616 | } |
7617 | return true; |
7618 | } |
7619 | |
7620 | /// Checks if a the given expression evaluates to null. |
7621 | /// |
7622 | /// Returns true if the value evaluates to null. |
7623 | static bool CheckNonNullExpr(Sema &S, const Expr *Expr) { |
7624 | // Treat (smart) pointers constructed from nullptr as null, whether we can |
7625 | // const-evaluate them or not. |
7626 | // This must happen first: the smart pointer expr might have _Nonnull type! |
7627 | if (isa<CXXNullPtrLiteralExpr>( |
7628 | Val: IgnoreExprNodes(E: Expr, Fns&: IgnoreImplicitAsWrittenSingleStep, |
7629 | Fns&: IgnoreElidableImplicitConstructorSingleStep))) |
7630 | return true; |
7631 | |
7632 | // If the expression has non-null type, it doesn't evaluate to null. |
7633 | if (auto nullability = Expr->IgnoreImplicit()->getType()->getNullability()) { |
7634 | if (*nullability == NullabilityKind::NonNull) |
7635 | return false; |
7636 | } |
7637 | |
7638 | // As a special case, transparent unions initialized with zero are |
7639 | // considered null for the purposes of the nonnull attribute. |
7640 | if (const RecordType *UT = Expr->getType()->getAsUnionType(); |
7641 | UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) { |
7642 | if (const auto *CLE = dyn_cast<CompoundLiteralExpr>(Val: Expr)) |
7643 | if (const auto *ILE = dyn_cast<InitListExpr>(Val: CLE->getInitializer())) |
7644 | Expr = ILE->getInit(Init: 0); |
7645 | } |
7646 | |
7647 | bool Result; |
7648 | return (!Expr->isValueDependent() && |
7649 | Expr->EvaluateAsBooleanCondition(Result, Ctx: S.Context) && |
7650 | !Result); |
7651 | } |
7652 | |
7653 | static void CheckNonNullArgument(Sema &S, |
7654 | const Expr *ArgExpr, |
7655 | SourceLocation CallSiteLoc) { |
7656 | if (CheckNonNullExpr(S, ArgExpr)) |
7657 | S.DiagRuntimeBehavior(CallSiteLoc, ArgExpr, |
7658 | S.PDiag(diag::warn_null_arg) |
7659 | << ArgExpr->getSourceRange()); |
7660 | } |
7661 | |
7662 | bool Sema::GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx) { |
7663 | FormatStringInfo FSI; |
7664 | if ((GetFormatStringType(Format) == FST_NSString) && |
7665 | getFormatStringInfo(Format, IsCXXMember: false, IsVariadic: true, FSI: &FSI)) { |
7666 | Idx = FSI.FormatIdx; |
7667 | return true; |
7668 | } |
7669 | return false; |
7670 | } |
7671 | |
7672 | /// Diagnose use of %s directive in an NSString which is being passed |
7673 | /// as formatting string to formatting method. |
7674 | static void |
7675 | DiagnoseCStringFormatDirectiveInCFAPI(Sema &S, |
7676 | const NamedDecl *FDecl, |
7677 | Expr **Args, |
7678 | unsigned NumArgs) { |
7679 | unsigned Idx = 0; |
7680 | bool Format = false; |
7681 | ObjCStringFormatFamily SFFamily = FDecl->getObjCFStringFormattingFamily(); |
7682 | if (SFFamily == ObjCStringFormatFamily::SFF_CFString) { |
7683 | Idx = 2; |
7684 | Format = true; |
7685 | } |
7686 | else |
7687 | for (const auto *I : FDecl->specific_attrs<FormatAttr>()) { |
7688 | if (S.GetFormatNSStringIdx(I, Idx)) { |
7689 | Format = true; |
7690 | break; |
7691 | } |
7692 | } |
7693 | if (!Format || NumArgs <= Idx) |
7694 | return; |
7695 | const Expr *FormatExpr = Args[Idx]; |
7696 | if (const CStyleCastExpr *CSCE = dyn_cast<CStyleCastExpr>(Val: FormatExpr)) |
7697 | FormatExpr = CSCE->getSubExpr(); |
7698 | const StringLiteral *FormatString; |
7699 | if (const ObjCStringLiteral *OSL = |
7700 | dyn_cast<ObjCStringLiteral>(Val: FormatExpr->IgnoreParenImpCasts())) |
7701 | FormatString = OSL->getString(); |
7702 | else |
7703 | FormatString = dyn_cast<StringLiteral>(Val: FormatExpr->IgnoreParenImpCasts()); |
7704 | if (!FormatString) |
7705 | return; |
7706 | if (S.FormatStringHasSArg(FExpr: FormatString)) { |
7707 | S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string) |
7708 | << "%s" << 1 << 1; |
7709 | S.Diag(FDecl->getLocation(), diag::note_entity_declared_at) |
7710 | << FDecl->getDeclName(); |
7711 | } |
7712 | } |
7713 | |
7714 | /// Determine whether the given type has a non-null nullability annotation. |
7715 | static bool isNonNullType(QualType type) { |
7716 | if (auto nullability = type->getNullability()) |
7717 | return *nullability == NullabilityKind::NonNull; |
7718 | |
7719 | return false; |
7720 | } |
7721 | |
7722 | static void CheckNonNullArguments(Sema &S, |
7723 | const NamedDecl *FDecl, |
7724 | const FunctionProtoType *Proto, |
7725 | ArrayRef<const Expr *> Args, |
7726 | SourceLocation CallSiteLoc) { |
7727 | assert((FDecl || Proto) && "Need a function declaration or prototype" ); |
7728 | |
7729 | // Already checked by constant evaluator. |
7730 | if (S.isConstantEvaluatedContext()) |
7731 | return; |
7732 | // Check the attributes attached to the method/function itself. |
7733 | llvm::SmallBitVector NonNullArgs; |
7734 | if (FDecl) { |
7735 | // Handle the nonnull attribute on the function/method declaration itself. |
7736 | for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) { |
7737 | if (!NonNull->args_size()) { |
7738 | // Easy case: all pointer arguments are nonnull. |
7739 | for (const auto *Arg : Args) |
7740 | if (S.isValidPointerAttrType(Arg->getType())) |
7741 | CheckNonNullArgument(S, Arg, CallSiteLoc); |
7742 | return; |
7743 | } |
7744 | |
7745 | for (const ParamIdx &Idx : NonNull->args()) { |
7746 | unsigned IdxAST = Idx.getASTIndex(); |
7747 | if (IdxAST >= Args.size()) |
7748 | continue; |
7749 | if (NonNullArgs.empty()) |
7750 | NonNullArgs.resize(Args.size()); |
7751 | NonNullArgs.set(IdxAST); |
7752 | } |
7753 | } |
7754 | } |
7755 | |
7756 | if (FDecl && (isa<FunctionDecl>(Val: FDecl) || isa<ObjCMethodDecl>(Val: FDecl))) { |
7757 | // Handle the nonnull attribute on the parameters of the |
7758 | // function/method. |
7759 | ArrayRef<ParmVarDecl*> parms; |
7760 | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: FDecl)) |
7761 | parms = FD->parameters(); |
7762 | else |
7763 | parms = cast<ObjCMethodDecl>(Val: FDecl)->parameters(); |
7764 | |
7765 | unsigned ParamIndex = 0; |
7766 | for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end(); |
7767 | I != E; ++I, ++ParamIndex) { |
7768 | const ParmVarDecl *PVD = *I; |
7769 | if (PVD->hasAttr<NonNullAttr>() || isNonNullType(PVD->getType())) { |
7770 | if (NonNullArgs.empty()) |
7771 | NonNullArgs.resize(N: Args.size()); |
7772 | |
7773 | NonNullArgs.set(ParamIndex); |
7774 | } |
7775 | } |
7776 | } else { |
7777 | // If we have a non-function, non-method declaration but no |
7778 | // function prototype, try to dig out the function prototype. |
7779 | if (!Proto) { |
7780 | if (const ValueDecl *VD = dyn_cast<ValueDecl>(Val: FDecl)) { |
7781 | QualType type = VD->getType().getNonReferenceType(); |
7782 | if (auto pointerType = type->getAs<PointerType>()) |
7783 | type = pointerType->getPointeeType(); |
7784 | else if (auto blockType = type->getAs<BlockPointerType>()) |
7785 | type = blockType->getPointeeType(); |
7786 | // FIXME: data member pointers? |
7787 | |
7788 | // Dig out the function prototype, if there is one. |
7789 | Proto = type->getAs<FunctionProtoType>(); |
7790 | } |
7791 | } |
7792 | |
7793 | // Fill in non-null argument information from the nullability |
7794 | // information on the parameter types (if we have them). |
7795 | if (Proto) { |
7796 | unsigned Index = 0; |
7797 | for (auto paramType : Proto->getParamTypes()) { |
7798 | if (isNonNullType(type: paramType)) { |
7799 | if (NonNullArgs.empty()) |
7800 | NonNullArgs.resize(N: Args.size()); |
7801 | |
7802 | NonNullArgs.set(Index); |
7803 | } |
7804 | |
7805 | ++Index; |
7806 | } |
7807 | } |
7808 | } |
7809 | |
7810 | // Check for non-null arguments. |
7811 | for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size(); |
7812 | ArgIndex != ArgIndexEnd; ++ArgIndex) { |
7813 | if (NonNullArgs[ArgIndex]) |
7814 | CheckNonNullArgument(S, ArgExpr: Args[ArgIndex], CallSiteLoc: Args[ArgIndex]->getExprLoc()); |
7815 | } |
7816 | } |
7817 | |
7818 | // 16 byte ByVal alignment not due to a vector member is not honoured by XL |
7819 | // on AIX. Emit a warning here that users are generating binary incompatible |
7820 | // code to be safe. |
7821 | // Here we try to get information about the alignment of the struct member |
7822 | // from the struct passed to the caller function. We only warn when the struct |
7823 | // is passed byval, hence the series of checks and early returns if we are a not |
7824 | // passing a struct byval. |
7825 | void Sema::checkAIXMemberAlignment(SourceLocation Loc, const Expr *Arg) { |
7826 | const auto *ICE = dyn_cast<ImplicitCastExpr>(Val: Arg->IgnoreParens()); |
7827 | if (!ICE) |
7828 | return; |
7829 | |
7830 | const auto *DR = dyn_cast<DeclRefExpr>(ICE->getSubExpr()); |
7831 | if (!DR) |
7832 | return; |
7833 | |
7834 | const auto *PD = dyn_cast<ParmVarDecl>(DR->getDecl()); |
7835 | if (!PD || !PD->getType()->isRecordType()) |
7836 | return; |
7837 | |
7838 | QualType ArgType = Arg->getType(); |
7839 | for (const FieldDecl *FD : |
7840 | ArgType->castAs<RecordType>()->getDecl()->fields()) { |
7841 | if (const auto *AA = FD->getAttr<AlignedAttr>()) { |
7842 | CharUnits Alignment = |
7843 | Context.toCharUnitsFromBits(BitSize: AA->getAlignment(Context)); |
7844 | if (Alignment.getQuantity() == 16) { |
7845 | Diag(FD->getLocation(), diag::warn_not_xl_compatible) << FD; |
7846 | Diag(Loc, diag::note_misaligned_member_used_here) << PD; |
7847 | } |
7848 | } |
7849 | } |
7850 | } |
7851 | |
7852 | /// Warn if a pointer or reference argument passed to a function points to an |
7853 | /// object that is less aligned than the parameter. This can happen when |
7854 | /// creating a typedef with a lower alignment than the original type and then |
7855 | /// calling functions defined in terms of the original type. |
7856 | void Sema::CheckArgAlignment(SourceLocation Loc, NamedDecl *FDecl, |
7857 | StringRef ParamName, QualType ArgTy, |
7858 | QualType ParamTy) { |
7859 | |
7860 | // If a function accepts a pointer or reference type |
7861 | if (!ParamTy->isPointerType() && !ParamTy->isReferenceType()) |
7862 | return; |
7863 | |
7864 | // If the parameter is a pointer type, get the pointee type for the |
7865 | // argument too. If the parameter is a reference type, don't try to get |
7866 | // the pointee type for the argument. |
7867 | if (ParamTy->isPointerType()) |
7868 | ArgTy = ArgTy->getPointeeType(); |
7869 | |
7870 | // Remove reference or pointer |
7871 | ParamTy = ParamTy->getPointeeType(); |
7872 | |
7873 | // Find expected alignment, and the actual alignment of the passed object. |
7874 | // getTypeAlignInChars requires complete types |
7875 | if (ArgTy.isNull() || ParamTy->isDependentType() || |
7876 | ParamTy->isIncompleteType() || ArgTy->isIncompleteType() || |
7877 | ParamTy->isUndeducedType() || ArgTy->isUndeducedType()) |
7878 | return; |
7879 | |
7880 | CharUnits ParamAlign = Context.getTypeAlignInChars(T: ParamTy); |
7881 | CharUnits ArgAlign = Context.getTypeAlignInChars(T: ArgTy); |
7882 | |
7883 | // If the argument is less aligned than the parameter, there is a |
7884 | // potential alignment issue. |
7885 | if (ArgAlign < ParamAlign) |
7886 | Diag(Loc, diag::warn_param_mismatched_alignment) |
7887 | << (int)ArgAlign.getQuantity() << (int)ParamAlign.getQuantity() |
7888 | << ParamName << (FDecl != nullptr) << FDecl; |
7889 | } |
7890 | |
7891 | /// Handles the checks for format strings, non-POD arguments to vararg |
7892 | /// functions, NULL arguments passed to non-NULL parameters, diagnose_if |
7893 | /// attributes and AArch64 SME attributes. |
7894 | void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto, |
7895 | const Expr *ThisArg, ArrayRef<const Expr *> Args, |
7896 | bool IsMemberFunction, SourceLocation Loc, |
7897 | SourceRange Range, VariadicCallType CallType) { |
7898 | // FIXME: We should check as much as we can in the template definition. |
7899 | if (CurContext->isDependentContext()) |
7900 | return; |
7901 | |
7902 | // Printf and scanf checking. |
7903 | llvm::SmallBitVector CheckedVarArgs; |
7904 | if (FDecl) { |
7905 | for (const auto *I : FDecl->specific_attrs<FormatAttr>()) { |
7906 | // Only create vector if there are format attributes. |
7907 | CheckedVarArgs.resize(Args.size()); |
7908 | |
7909 | CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range, |
7910 | CheckedVarArgs); |
7911 | } |
7912 | } |
7913 | |
7914 | // Refuse POD arguments that weren't caught by the format string |
7915 | // checks above. |
7916 | auto *FD = dyn_cast_or_null<FunctionDecl>(Val: FDecl); |
7917 | if (CallType != VariadicDoesNotApply && |
7918 | (!FD || FD->getBuiltinID() != Builtin::BI__noop)) { |
7919 | unsigned NumParams = Proto ? Proto->getNumParams() |
7920 | : FDecl && isa<FunctionDecl>(Val: FDecl) |
7921 | ? cast<FunctionDecl>(Val: FDecl)->getNumParams() |
7922 | : FDecl && isa<ObjCMethodDecl>(Val: FDecl) |
7923 | ? cast<ObjCMethodDecl>(Val: FDecl)->param_size() |
7924 | : 0; |
7925 | |
7926 | for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) { |
7927 | // Args[ArgIdx] can be null in malformed code. |
7928 | if (const Expr *Arg = Args[ArgIdx]) { |
7929 | if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx]) |
7930 | checkVariadicArgument(E: Arg, CT: CallType); |
7931 | } |
7932 | } |
7933 | } |
7934 | |
7935 | if (FDecl || Proto) { |
7936 | CheckNonNullArguments(S&: *this, FDecl, Proto, Args, CallSiteLoc: Loc); |
7937 | |
7938 | // Type safety checking. |
7939 | if (FDecl) { |
7940 | for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>()) |
7941 | CheckArgumentWithTypeTag(I, Args, Loc); |
7942 | } |
7943 | } |
7944 | |
7945 | // Check that passed arguments match the alignment of original arguments. |
7946 | // Try to get the missing prototype from the declaration. |
7947 | if (!Proto && FDecl) { |
7948 | const auto *FT = FDecl->getFunctionType(); |
7949 | if (isa_and_nonnull<FunctionProtoType>(FT)) |
7950 | Proto = cast<FunctionProtoType>(FDecl->getFunctionType()); |
7951 | } |
7952 | if (Proto) { |
7953 | // For variadic functions, we may have more args than parameters. |
7954 | // For some K&R functions, we may have less args than parameters. |
7955 | const auto N = std::min<unsigned>(a: Proto->getNumParams(), b: Args.size()); |
7956 | bool IsScalableRet = Proto->getReturnType()->isSizelessVectorType(); |
7957 | bool IsScalableArg = false; |
7958 | for (unsigned ArgIdx = 0; ArgIdx < N; ++ArgIdx) { |
7959 | // Args[ArgIdx] can be null in malformed code. |
7960 | if (const Expr *Arg = Args[ArgIdx]) { |
7961 | if (Arg->containsErrors()) |
7962 | continue; |
7963 | |
7964 | if (Context.getTargetInfo().getTriple().isOSAIX() && FDecl && Arg && |
7965 | FDecl->hasLinkage() && |
7966 | FDecl->getFormalLinkage() != Linkage::Internal && |
7967 | CallType == VariadicDoesNotApply) |
7968 | checkAIXMemberAlignment(Loc: (Arg->getExprLoc()), Arg); |
7969 | |
7970 | QualType ParamTy = Proto->getParamType(i: ArgIdx); |
7971 | if (ParamTy->isSizelessVectorType()) |
7972 | IsScalableArg = true; |
7973 | QualType ArgTy = Arg->getType(); |
7974 | CheckArgAlignment(Loc: Arg->getExprLoc(), FDecl, ParamName: std::to_string(val: ArgIdx + 1), |
7975 | ArgTy, ParamTy); |
7976 | } |
7977 | } |
7978 | |
7979 | // If the callee has an AArch64 SME attribute to indicate that it is an |
7980 | // __arm_streaming function, then the caller requires SME to be available. |
7981 | FunctionProtoType::ExtProtoInfo ExtInfo = Proto->getExtProtoInfo(); |
7982 | if (ExtInfo.AArch64SMEAttributes & FunctionType::SME_PStateSMEnabledMask) { |
7983 | if (auto *CallerFD = dyn_cast<FunctionDecl>(Val: CurContext)) { |
7984 | llvm::StringMap<bool> CallerFeatureMap; |
7985 | Context.getFunctionFeatureMap(FeatureMap&: CallerFeatureMap, CallerFD); |
7986 | if (!CallerFeatureMap.contains("sme" )) |
7987 | Diag(Loc, diag::err_sme_call_in_non_sme_target); |
7988 | } else if (!Context.getTargetInfo().hasFeature(Feature: "sme" )) { |
7989 | Diag(Loc, diag::err_sme_call_in_non_sme_target); |
7990 | } |
7991 | } |
7992 | |
7993 | // If the call requires a streaming-mode change and has scalable vector |
7994 | // arguments or return values, then warn the user that the streaming and |
7995 | // non-streaming vector lengths may be different. |
7996 | const auto *CallerFD = dyn_cast<FunctionDecl>(Val: CurContext); |
7997 | if (CallerFD && (!FD || !FD->getBuiltinID()) && |
7998 | (IsScalableArg || IsScalableRet)) { |
7999 | bool IsCalleeStreaming = |
8000 | ExtInfo.AArch64SMEAttributes & FunctionType::SME_PStateSMEnabledMask; |
8001 | bool IsCalleeStreamingCompatible = |
8002 | ExtInfo.AArch64SMEAttributes & |
8003 | FunctionType::SME_PStateSMCompatibleMask; |
8004 | ArmStreamingType CallerFnType = getArmStreamingFnType(FD: CallerFD); |
8005 | if (!IsCalleeStreamingCompatible && |
8006 | (CallerFnType == ArmStreamingCompatible || |
8007 | ((CallerFnType == ArmStreaming) ^ IsCalleeStreaming))) { |
8008 | if (IsScalableArg) |
8009 | Diag(Loc, diag::warn_sme_streaming_pass_return_vl_to_non_streaming) |
8010 | << /*IsArg=*/true; |
8011 | if (IsScalableRet) |
8012 | Diag(Loc, diag::warn_sme_streaming_pass_return_vl_to_non_streaming) |
8013 | << /*IsArg=*/false; |
8014 | } |
8015 | } |
8016 | |
8017 | FunctionType::ArmStateValue CalleeArmZAState = |
8018 | FunctionType::getArmZAState(AttrBits: ExtInfo.AArch64SMEAttributes); |
8019 | FunctionType::ArmStateValue CalleeArmZT0State = |
8020 | FunctionType::getArmZT0State(AttrBits: ExtInfo.AArch64SMEAttributes); |
8021 | if (CalleeArmZAState != FunctionType::ARM_None || |
8022 | CalleeArmZT0State != FunctionType::ARM_None) { |
8023 | bool CallerHasZAState = false; |
8024 | bool CallerHasZT0State = false; |
8025 | if (CallerFD) { |
8026 | auto *Attr = CallerFD->getAttr<ArmNewAttr>(); |
8027 | if (Attr && Attr->isNewZA()) |
8028 | CallerHasZAState = true; |
8029 | if (Attr && Attr->isNewZT0()) |
8030 | CallerHasZT0State = true; |
8031 | if (const auto *FPT = CallerFD->getType()->getAs<FunctionProtoType>()) { |
8032 | CallerHasZAState |= |
8033 | FunctionType::getArmZAState( |
8034 | AttrBits: FPT->getExtProtoInfo().AArch64SMEAttributes) != |
8035 | FunctionType::ARM_None; |
8036 | CallerHasZT0State |= |
8037 | FunctionType::getArmZT0State( |
8038 | AttrBits: FPT->getExtProtoInfo().AArch64SMEAttributes) != |
8039 | FunctionType::ARM_None; |
8040 | } |
8041 | } |
8042 | |
8043 | if (CalleeArmZAState != FunctionType::ARM_None && !CallerHasZAState) |
8044 | Diag(Loc, diag::err_sme_za_call_no_za_state); |
8045 | |
8046 | if (CalleeArmZT0State != FunctionType::ARM_None && !CallerHasZT0State) |
8047 | Diag(Loc, diag::err_sme_zt0_call_no_zt0_state); |
8048 | |
8049 | if (CallerHasZAState && CalleeArmZAState == FunctionType::ARM_None && |
8050 | CalleeArmZT0State != FunctionType::ARM_None) { |
8051 | Diag(Loc, diag::err_sme_unimplemented_za_save_restore); |
8052 | Diag(Loc, diag::note_sme_use_preserves_za); |
8053 | } |
8054 | } |
8055 | } |
8056 | |
8057 | if (FDecl && FDecl->hasAttr<AllocAlignAttr>()) { |
8058 | auto *AA = FDecl->getAttr<AllocAlignAttr>(); |
8059 | const Expr *Arg = Args[AA->getParamIndex().getASTIndex()]; |
8060 | if (!Arg->isValueDependent()) { |
8061 | Expr::EvalResult Align; |
8062 | if (Arg->EvaluateAsInt(Result&: Align, Ctx: Context)) { |
8063 | const llvm::APSInt &I = Align.Val.getInt(); |
8064 | if (!I.isPowerOf2()) |
8065 | Diag(Arg->getExprLoc(), diag::warn_alignment_not_power_of_two) |
8066 | << Arg->getSourceRange(); |
8067 | |
8068 | if (I > Sema::MaximumAlignment) |
8069 | Diag(Arg->getExprLoc(), diag::warn_assume_aligned_too_great) |
8070 | << Arg->getSourceRange() << Sema::MaximumAlignment; |
8071 | } |
8072 | } |
8073 | } |
8074 | |
8075 | if (FD) |
8076 | diagnoseArgDependentDiagnoseIfAttrs(Function: FD, ThisArg, Args, Loc); |
8077 | } |
8078 | |
8079 | /// CheckConstructorCall - Check a constructor call for correctness and safety |
8080 | /// properties not enforced by the C type system. |
8081 | void Sema::CheckConstructorCall(FunctionDecl *FDecl, QualType ThisType, |
8082 | ArrayRef<const Expr *> Args, |
8083 | const FunctionProtoType *Proto, |
8084 | SourceLocation Loc) { |
8085 | VariadicCallType CallType = |
8086 | Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply; |
8087 | |
8088 | auto *Ctor = cast<CXXConstructorDecl>(Val: FDecl); |
8089 | CheckArgAlignment( |
8090 | Loc, FDecl, ParamName: "'this'" , ArgTy: Context.getPointerType(T: ThisType), |
8091 | ParamTy: Context.getPointerType(Ctor->getFunctionObjectParameterType())); |
8092 | |
8093 | checkCall(FDecl, Proto, /*ThisArg=*/nullptr, Args, /*IsMemberFunction=*/true, |
8094 | Loc, SourceRange(), CallType); |
8095 | } |
8096 | |
8097 | /// CheckFunctionCall - Check a direct function call for various correctness |
8098 | /// and safety properties not strictly enforced by the C type system. |
8099 | bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall, |
8100 | const FunctionProtoType *Proto) { |
8101 | bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(Val: TheCall) && |
8102 | isa<CXXMethodDecl>(Val: FDecl); |
8103 | bool IsMemberFunction = isa<CXXMemberCallExpr>(Val: TheCall) || |
8104 | IsMemberOperatorCall; |
8105 | VariadicCallType CallType = getVariadicCallType(FDecl, Proto, |
8106 | Fn: TheCall->getCallee()); |
8107 | Expr** Args = TheCall->getArgs(); |
8108 | unsigned NumArgs = TheCall->getNumArgs(); |
8109 | |
8110 | Expr *ImplicitThis = nullptr; |
8111 | if (IsMemberOperatorCall && !FDecl->hasCXXExplicitFunctionObjectParameter()) { |
8112 | // If this is a call to a member operator, hide the first |
8113 | // argument from checkCall. |
8114 | // FIXME: Our choice of AST representation here is less than ideal. |
8115 | ImplicitThis = Args[0]; |
8116 | ++Args; |
8117 | --NumArgs; |
8118 | } else if (IsMemberFunction && !FDecl->isStatic() && |
8119 | !FDecl->hasCXXExplicitFunctionObjectParameter()) |
8120 | ImplicitThis = |
8121 | cast<CXXMemberCallExpr>(Val: TheCall)->getImplicitObjectArgument(); |
8122 | |
8123 | if (ImplicitThis) { |
8124 | // ImplicitThis may or may not be a pointer, depending on whether . or -> is |
8125 | // used. |
8126 | QualType ThisType = ImplicitThis->getType(); |
8127 | if (!ThisType->isPointerType()) { |
8128 | assert(!ThisType->isReferenceType()); |
8129 | ThisType = Context.getPointerType(T: ThisType); |
8130 | } |
8131 | |
8132 | QualType ThisTypeFromDecl = Context.getPointerType( |
8133 | T: cast<CXXMethodDecl>(Val: FDecl)->getFunctionObjectParameterType()); |
8134 | |
8135 | CheckArgAlignment(TheCall->getRParenLoc(), FDecl, "'this'" , ThisType, |
8136 | ThisTypeFromDecl); |
8137 | } |
8138 | |
8139 | checkCall(FDecl, Proto, ThisArg: ImplicitThis, Args: llvm::ArrayRef(Args, NumArgs), |
8140 | IsMemberFunction, Loc: TheCall->getRParenLoc(), |
8141 | Range: TheCall->getCallee()->getSourceRange(), CallType); |
8142 | |
8143 | IdentifierInfo *FnInfo = FDecl->getIdentifier(); |
8144 | // None of the checks below are needed for functions that don't have |
8145 | // simple names (e.g., C++ conversion functions). |
8146 | if (!FnInfo) |
8147 | return false; |
8148 | |
8149 | // Enforce TCB except for builtin calls, which are always allowed. |
8150 | if (FDecl->getBuiltinID() == 0) |
8151 | CheckTCBEnforcement(CallExprLoc: TheCall->getExprLoc(), Callee: FDecl); |
8152 | |
8153 | CheckAbsoluteValueFunction(Call: TheCall, FDecl); |
8154 | CheckMaxUnsignedZero(Call: TheCall, FDecl); |
8155 | CheckInfNaNFunction(Call: TheCall, FDecl); |
8156 | |
8157 | if (getLangOpts().ObjC) |
8158 | DiagnoseCStringFormatDirectiveInCFAPI(*this, FDecl, Args, NumArgs); |
8159 | |
8160 | unsigned CMId = FDecl->getMemoryFunctionKind(); |
8161 | |
8162 | // Handle memory setting and copying functions. |
8163 | switch (CMId) { |
8164 | case 0: |
8165 | return false; |
8166 | case Builtin::BIstrlcpy: // fallthrough |
8167 | case Builtin::BIstrlcat: |
8168 | CheckStrlcpycatArguments(Call: TheCall, FnName: FnInfo); |
8169 | break; |
8170 | case Builtin::BIstrncat: |
8171 | CheckStrncatArguments(Call: TheCall, FnName: FnInfo); |
8172 | break; |
8173 | case Builtin::BIfree: |
8174 | CheckFreeArguments(E: TheCall); |
8175 | break; |
8176 | default: |
8177 | CheckMemaccessArguments(Call: TheCall, BId: CMId, FnName: FnInfo); |
8178 | } |
8179 | |
8180 | return false; |
8181 | } |
8182 | |
8183 | bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac, |
8184 | ArrayRef<const Expr *> Args) { |
8185 | VariadicCallType CallType = |
8186 | Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply; |
8187 | |
8188 | checkCall(Method, nullptr, /*ThisArg=*/nullptr, Args, |
8189 | /*IsMemberFunction=*/false, lbrac, Method->getSourceRange(), |
8190 | CallType); |
8191 | |
8192 | CheckTCBEnforcement(lbrac, Method); |
8193 | |
8194 | return false; |
8195 | } |
8196 | |
8197 | bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall, |
8198 | const FunctionProtoType *Proto) { |
8199 | QualType Ty; |
8200 | if (const auto *V = dyn_cast<VarDecl>(Val: NDecl)) |
8201 | Ty = V->getType().getNonReferenceType(); |
8202 | else if (const auto *F = dyn_cast<FieldDecl>(Val: NDecl)) |
8203 | Ty = F->getType().getNonReferenceType(); |
8204 | else |
8205 | return false; |
8206 | |
8207 | if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() && |
8208 | !Ty->isFunctionProtoType()) |
8209 | return false; |
8210 | |
8211 | VariadicCallType CallType; |
8212 | if (!Proto || !Proto->isVariadic()) { |
8213 | CallType = VariadicDoesNotApply; |
8214 | } else if (Ty->isBlockPointerType()) { |
8215 | CallType = VariadicBlock; |
8216 | } else { // Ty->isFunctionPointerType() |
8217 | CallType = VariadicFunction; |
8218 | } |
8219 | |
8220 | checkCall(FDecl: NDecl, Proto, /*ThisArg=*/nullptr, |
8221 | Args: llvm::ArrayRef(TheCall->getArgs(), TheCall->getNumArgs()), |
8222 | /*IsMemberFunction=*/false, Loc: TheCall->getRParenLoc(), |
8223 | Range: TheCall->getCallee()->getSourceRange(), CallType); |
8224 | |
8225 | return false; |
8226 | } |
8227 | |
8228 | /// Checks function calls when a FunctionDecl or a NamedDecl is not available, |
8229 | /// such as function pointers returned from functions. |
8230 | bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) { |
8231 | VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto, |
8232 | Fn: TheCall->getCallee()); |
8233 | checkCall(/*FDecl=*/nullptr, Proto, /*ThisArg=*/nullptr, |
8234 | Args: llvm::ArrayRef(TheCall->getArgs(), TheCall->getNumArgs()), |
8235 | /*IsMemberFunction=*/false, Loc: TheCall->getRParenLoc(), |
8236 | Range: TheCall->getCallee()->getSourceRange(), CallType); |
8237 | |
8238 | return false; |
8239 | } |
8240 | |
8241 | static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) { |
8242 | if (!llvm::isValidAtomicOrderingCABI(I: Ordering)) |
8243 | return false; |
8244 | |
8245 | auto OrderingCABI = (llvm::AtomicOrderingCABI)Ordering; |
8246 | switch (Op) { |
8247 | case AtomicExpr::AO__c11_atomic_init: |
8248 | case AtomicExpr::AO__opencl_atomic_init: |
8249 | llvm_unreachable("There is no ordering argument for an init" ); |
8250 | |
8251 | case AtomicExpr::AO__c11_atomic_load: |
8252 | case AtomicExpr::AO__opencl_atomic_load: |
8253 | case AtomicExpr::AO__hip_atomic_load: |
8254 | case AtomicExpr::AO__atomic_load_n: |
8255 | case AtomicExpr::AO__atomic_load: |
8256 | case AtomicExpr::AO__scoped_atomic_load_n: |
8257 | case AtomicExpr::AO__scoped_atomic_load: |
8258 | return OrderingCABI != llvm::AtomicOrderingCABI::release && |
8259 | OrderingCABI != llvm::AtomicOrderingCABI::acq_rel; |
8260 | |
8261 | case AtomicExpr::AO__c11_atomic_store: |
8262 | case AtomicExpr::AO__opencl_atomic_store: |
8263 | case AtomicExpr::AO__hip_atomic_store: |
8264 | case AtomicExpr::AO__atomic_store: |
8265 | case AtomicExpr::AO__atomic_store_n: |
8266 | case AtomicExpr::AO__scoped_atomic_store: |
8267 | case AtomicExpr::AO__scoped_atomic_store_n: |
8268 | return OrderingCABI != llvm::AtomicOrderingCABI::consume && |
8269 | OrderingCABI != llvm::AtomicOrderingCABI::acquire && |
8270 | OrderingCABI != llvm::AtomicOrderingCABI::acq_rel; |
8271 | |
8272 | default: |
8273 | return true; |
8274 | } |
8275 | } |
8276 | |
8277 | ExprResult Sema::AtomicOpsOverloaded(ExprResult TheCallResult, |
8278 | AtomicExpr::AtomicOp Op) { |
8279 | CallExpr *TheCall = cast<CallExpr>(Val: TheCallResult.get()); |
8280 | DeclRefExpr *DRE =cast<DeclRefExpr>(Val: TheCall->getCallee()->IgnoreParenCasts()); |
8281 | MultiExprArg Args{TheCall->getArgs(), TheCall->getNumArgs()}; |
8282 | return BuildAtomicExpr(CallRange: {TheCall->getBeginLoc(), TheCall->getEndLoc()}, |
8283 | ExprRange: DRE->getSourceRange(), RParenLoc: TheCall->getRParenLoc(), Args, |
8284 | Op); |
8285 | } |
8286 | |
8287 | ExprResult Sema::BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange, |
8288 | SourceLocation RParenLoc, MultiExprArg Args, |
8289 | AtomicExpr::AtomicOp Op, |
8290 | AtomicArgumentOrder ArgOrder) { |
8291 | // All the non-OpenCL operations take one of the following forms. |
8292 | // The OpenCL operations take the __c11 forms with one extra argument for |
8293 | // synchronization scope. |
8294 | enum { |
8295 | // C __c11_atomic_init(A *, C) |
8296 | Init, |
8297 | |
8298 | // C __c11_atomic_load(A *, int) |
8299 | Load, |
8300 | |
8301 | // void __atomic_load(A *, CP, int) |
8302 | LoadCopy, |
8303 | |
8304 | // void __atomic_store(A *, CP, int) |
8305 | Copy, |
8306 | |
8307 | // C __c11_atomic_add(A *, M, int) |
8308 | Arithmetic, |
8309 | |
8310 | // C __atomic_exchange_n(A *, CP, int) |
8311 | Xchg, |
8312 | |
8313 | // void __atomic_exchange(A *, C *, CP, int) |
8314 | GNUXchg, |
8315 | |
8316 | // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int) |
8317 | C11CmpXchg, |
8318 | |
8319 | // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int) |
8320 | GNUCmpXchg |
8321 | } Form = Init; |
8322 | |
8323 | const unsigned NumForm = GNUCmpXchg + 1; |
8324 | const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 3, 4, 5, 6 }; |
8325 | const unsigned NumVals[] = { 1, 0, 1, 1, 1, 1, 2, 2, 3 }; |
8326 | // where: |
8327 | // C is an appropriate type, |
8328 | // A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins, |
8329 | // CP is C for __c11 builtins and GNU _n builtins and is C * otherwise, |
8330 | // M is C if C is an integer, and ptrdiff_t if C is a pointer, and |
8331 | // the int parameters are for orderings. |
8332 | |
8333 | static_assert(sizeof(NumArgs)/sizeof(NumArgs[0]) == NumForm |
8334 | && sizeof(NumVals)/sizeof(NumVals[0]) == NumForm, |
8335 | "need to update code for modified forms" ); |
8336 | static_assert(AtomicExpr::AO__atomic_add_fetch == 0 && |
8337 | AtomicExpr::AO__atomic_xor_fetch + 1 == |
8338 | AtomicExpr::AO__c11_atomic_compare_exchange_strong, |
8339 | "need to update code for modified C11 atomics" ); |
8340 | bool IsOpenCL = Op >= AtomicExpr::AO__opencl_atomic_compare_exchange_strong && |
8341 | Op <= AtomicExpr::AO__opencl_atomic_store; |
8342 | bool IsHIP = Op >= AtomicExpr::AO__hip_atomic_compare_exchange_strong && |
8343 | Op <= AtomicExpr::AO__hip_atomic_store; |
8344 | bool IsScoped = Op >= AtomicExpr::AO__scoped_atomic_add_fetch && |
8345 | Op <= AtomicExpr::AO__scoped_atomic_xor_fetch; |
8346 | bool IsC11 = (Op >= AtomicExpr::AO__c11_atomic_compare_exchange_strong && |
8347 | Op <= AtomicExpr::AO__c11_atomic_store) || |
8348 | IsOpenCL; |
8349 | bool IsN = Op == AtomicExpr::AO__atomic_load_n || |
8350 | Op == AtomicExpr::AO__atomic_store_n || |
8351 | Op == AtomicExpr::AO__atomic_exchange_n || |
8352 | Op == AtomicExpr::AO__atomic_compare_exchange_n || |
8353 | Op == AtomicExpr::AO__scoped_atomic_load_n || |
8354 | Op == AtomicExpr::AO__scoped_atomic_store_n || |
8355 | Op == AtomicExpr::AO__scoped_atomic_exchange_n || |
8356 | Op == AtomicExpr::AO__scoped_atomic_compare_exchange_n; |
8357 | // Bit mask for extra allowed value types other than integers for atomic |
8358 | // arithmetic operations. Add/sub allow pointer and floating point. Min/max |
8359 | // allow floating point. |
8360 | enum { |
8361 | AOEVT_None = 0, |
8362 | AOEVT_Pointer = 1, |
8363 | AOEVT_FP = 2, |
8364 | }; |
8365 | unsigned ArithAllows = AOEVT_None; |
8366 | |
8367 | switch (Op) { |
8368 | case AtomicExpr::AO__c11_atomic_init: |
8369 | case AtomicExpr::AO__opencl_atomic_init: |
8370 | Form = Init; |
8371 | break; |
8372 | |
8373 | case AtomicExpr::AO__c11_atomic_load: |
8374 | case AtomicExpr::AO__opencl_atomic_load: |
8375 | case AtomicExpr::AO__hip_atomic_load: |
8376 | case AtomicExpr::AO__atomic_load_n: |
8377 | case AtomicExpr::AO__scoped_atomic_load_n: |
8378 | Form = Load; |
8379 | break; |
8380 | |
8381 | case AtomicExpr::AO__atomic_load: |
8382 | case AtomicExpr::AO__scoped_atomic_load: |
8383 | Form = LoadCopy; |
8384 | break; |
8385 | |
8386 | case AtomicExpr::AO__c11_atomic_store: |
8387 | case AtomicExpr::AO__opencl_atomic_store: |
8388 | case AtomicExpr::AO__hip_atomic_store: |
8389 | case AtomicExpr::AO__atomic_store: |
8390 | case AtomicExpr::AO__atomic_store_n: |
8391 | case AtomicExpr::AO__scoped_atomic_store: |
8392 | case AtomicExpr::AO__scoped_atomic_store_n: |
8393 | Form = Copy; |
8394 | break; |
8395 | case AtomicExpr::AO__atomic_fetch_add: |
8396 | case AtomicExpr::AO__atomic_fetch_sub: |
8397 | case AtomicExpr::AO__atomic_add_fetch: |
8398 | case AtomicExpr::AO__atomic_sub_fetch: |
8399 | case AtomicExpr::AO__scoped_atomic_fetch_add: |
8400 | case AtomicExpr::AO__scoped_atomic_fetch_sub: |
8401 | case AtomicExpr::AO__scoped_atomic_add_fetch: |
8402 | case AtomicExpr::AO__scoped_atomic_sub_fetch: |
8403 | case AtomicExpr::AO__c11_atomic_fetch_add: |
8404 | case AtomicExpr::AO__c11_atomic_fetch_sub: |
8405 | case AtomicExpr::AO__opencl_atomic_fetch_add: |
8406 | case AtomicExpr::AO__opencl_atomic_fetch_sub: |
8407 | case AtomicExpr::AO__hip_atomic_fetch_add: |
8408 | case AtomicExpr::AO__hip_atomic_fetch_sub: |
8409 | ArithAllows = AOEVT_Pointer | AOEVT_FP; |
8410 | Form = Arithmetic; |
8411 | break; |
8412 | case AtomicExpr::AO__atomic_fetch_max: |
8413 | case AtomicExpr::AO__atomic_fetch_min: |
8414 | case AtomicExpr::AO__atomic_max_fetch: |
8415 | case AtomicExpr::AO__atomic_min_fetch: |
8416 | case AtomicExpr::AO__scoped_atomic_fetch_max: |
8417 | case AtomicExpr::AO__scoped_atomic_fetch_min: |
8418 | case AtomicExpr::AO__scoped_atomic_max_fetch: |
8419 | case AtomicExpr::AO__scoped_atomic_min_fetch: |
8420 | case AtomicExpr::AO__c11_atomic_fetch_max: |
8421 | case AtomicExpr::AO__c11_atomic_fetch_min: |
8422 | case AtomicExpr::AO__opencl_atomic_fetch_max: |
8423 | case AtomicExpr::AO__opencl_atomic_fetch_min: |
8424 | case AtomicExpr::AO__hip_atomic_fetch_max: |
8425 | case AtomicExpr::AO__hip_atomic_fetch_min: |
8426 | ArithAllows = AOEVT_FP; |
8427 | Form = Arithmetic; |
8428 | break; |
8429 | case AtomicExpr::AO__c11_atomic_fetch_and: |
8430 | case AtomicExpr::AO__c11_atomic_fetch_or: |
8431 | case AtomicExpr::AO__c11_atomic_fetch_xor: |
8432 | case AtomicExpr::AO__hip_atomic_fetch_and: |
8433 | case AtomicExpr::AO__hip_atomic_fetch_or: |
8434 | case AtomicExpr::AO__hip_atomic_fetch_xor: |
8435 | case AtomicExpr::AO__c11_atomic_fetch_nand: |
8436 | case AtomicExpr::AO__opencl_atomic_fetch_and: |
8437 | case AtomicExpr::AO__opencl_atomic_fetch_or: |
8438 | case AtomicExpr::AO__opencl_atomic_fetch_xor: |
8439 | case AtomicExpr::AO__atomic_fetch_and: |
8440 | case AtomicExpr::AO__atomic_fetch_or: |
8441 | case AtomicExpr::AO__atomic_fetch_xor: |
8442 | case AtomicExpr::AO__atomic_fetch_nand: |
8443 | case AtomicExpr::AO__atomic_and_fetch: |
8444 | case AtomicExpr::AO__atomic_or_fetch: |
8445 | case AtomicExpr::AO__atomic_xor_fetch: |
8446 | case AtomicExpr::AO__atomic_nand_fetch: |
8447 | case AtomicExpr::AO__scoped_atomic_fetch_and: |
8448 | case AtomicExpr::AO__scoped_atomic_fetch_or: |
8449 | case AtomicExpr::AO__scoped_atomic_fetch_xor: |
8450 | case AtomicExpr::AO__scoped_atomic_fetch_nand: |
8451 | case AtomicExpr::AO__scoped_atomic_and_fetch: |
8452 | case AtomicExpr::AO__scoped_atomic_or_fetch: |
8453 | case AtomicExpr::AO__scoped_atomic_xor_fetch: |
8454 | case AtomicExpr::AO__scoped_atomic_nand_fetch: |
8455 | Form = Arithmetic; |
8456 | break; |
8457 | |
8458 | case AtomicExpr::AO__c11_atomic_exchange: |
8459 | case AtomicExpr::AO__hip_atomic_exchange: |
8460 | case AtomicExpr::AO__opencl_atomic_exchange: |
8461 | case AtomicExpr::AO__atomic_exchange_n: |
8462 | case AtomicExpr::AO__scoped_atomic_exchange_n: |
8463 | Form = Xchg; |
8464 | break; |
8465 | |
8466 | case AtomicExpr::AO__atomic_exchange: |
8467 | case AtomicExpr::AO__scoped_atomic_exchange: |
8468 | Form = GNUXchg; |
8469 | break; |
8470 | |
8471 | case AtomicExpr::AO__c11_atomic_compare_exchange_strong: |
8472 | case AtomicExpr::AO__c11_atomic_compare_exchange_weak: |
8473 | case AtomicExpr::AO__hip_atomic_compare_exchange_strong: |
8474 | case AtomicExpr::AO__opencl_atomic_compare_exchange_strong: |
8475 | case AtomicExpr::AO__opencl_atomic_compare_exchange_weak: |
8476 | case AtomicExpr::AO__hip_atomic_compare_exchange_weak: |
8477 | Form = C11CmpXchg; |
8478 | break; |
8479 | |
8480 | case AtomicExpr::AO__atomic_compare_exchange: |
8481 | case AtomicExpr::AO__atomic_compare_exchange_n: |
8482 | case AtomicExpr::AO__scoped_atomic_compare_exchange: |
8483 | case AtomicExpr::AO__scoped_atomic_compare_exchange_n: |
8484 | Form = GNUCmpXchg; |
8485 | break; |
8486 | } |
8487 | |
8488 | unsigned AdjustedNumArgs = NumArgs[Form]; |
8489 | if ((IsOpenCL || IsHIP || IsScoped) && |
8490 | Op != AtomicExpr::AO__opencl_atomic_init) |
8491 | ++AdjustedNumArgs; |
8492 | // Check we have the right number of arguments. |
8493 | if (Args.size() < AdjustedNumArgs) { |
8494 | Diag(CallRange.getEnd(), diag::err_typecheck_call_too_few_args) |
8495 | << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size()) |
8496 | << /*is non object*/ 0 << ExprRange; |
8497 | return ExprError(); |
8498 | } else if (Args.size() > AdjustedNumArgs) { |
8499 | Diag(Args[AdjustedNumArgs]->getBeginLoc(), |
8500 | diag::err_typecheck_call_too_many_args) |
8501 | << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size()) |
8502 | << /*is non object*/ 0 << ExprRange; |
8503 | return ExprError(); |
8504 | } |
8505 | |
8506 | // Inspect the first argument of the atomic operation. |
8507 | Expr *Ptr = Args[0]; |
8508 | ExprResult ConvertedPtr = DefaultFunctionArrayLvalueConversion(E: Ptr); |
8509 | if (ConvertedPtr.isInvalid()) |
8510 | return ExprError(); |
8511 | |
8512 | Ptr = ConvertedPtr.get(); |
8513 | const PointerType *pointerType = Ptr->getType()->getAs<PointerType>(); |
8514 | if (!pointerType) { |
8515 | Diag(ExprRange.getBegin(), diag::err_atomic_builtin_must_be_pointer) |
8516 | << Ptr->getType() << Ptr->getSourceRange(); |
8517 | return ExprError(); |
8518 | } |
8519 | |
8520 | // For a __c11 builtin, this should be a pointer to an _Atomic type. |
8521 | QualType AtomTy = pointerType->getPointeeType(); // 'A' |
8522 | QualType ValType = AtomTy; // 'C' |
8523 | if (IsC11) { |
8524 | if (!AtomTy->isAtomicType()) { |
8525 | Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic) |
8526 | << Ptr->getType() << Ptr->getSourceRange(); |
8527 | return ExprError(); |
8528 | } |
8529 | if ((Form != Load && Form != LoadCopy && AtomTy.isConstQualified()) || |
8530 | AtomTy.getAddressSpace() == LangAS::opencl_constant) { |
8531 | Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_atomic) |
8532 | << (AtomTy.isConstQualified() ? 0 : 1) << Ptr->getType() |
8533 | << Ptr->getSourceRange(); |
8534 | return ExprError(); |
8535 | } |
8536 | ValType = AtomTy->castAs<AtomicType>()->getValueType(); |
8537 | } else if (Form != Load && Form != LoadCopy) { |
8538 | if (ValType.isConstQualified()) { |
8539 | Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_pointer) |
8540 | << Ptr->getType() << Ptr->getSourceRange(); |
8541 | return ExprError(); |
8542 | } |
8543 | } |
8544 | |
8545 | // For an arithmetic operation, the implied arithmetic must be well-formed. |
8546 | if (Form == Arithmetic) { |
8547 | // GCC does not enforce these rules for GNU atomics, but we do to help catch |
8548 | // trivial type errors. |
8549 | auto IsAllowedValueType = [&](QualType ValType, |
8550 | unsigned AllowedType) -> bool { |
8551 | if (ValType->isIntegerType()) |
8552 | return true; |
8553 | if (ValType->isPointerType()) |
8554 | return AllowedType & AOEVT_Pointer; |
8555 | if (!(ValType->isFloatingType() && (AllowedType & AOEVT_FP))) |
8556 | return false; |
8557 | // LLVM Parser does not allow atomicrmw with x86_fp80 type. |
8558 | if (ValType->isSpecificBuiltinType(K: BuiltinType::LongDouble) && |
8559 | &Context.getTargetInfo().getLongDoubleFormat() == |
8560 | &llvm::APFloat::x87DoubleExtended()) |
8561 | return false; |
8562 | return true; |
8563 | }; |
8564 | if (!IsAllowedValueType(ValType, ArithAllows)) { |
8565 | auto DID = ArithAllows & AOEVT_FP |
8566 | ? (ArithAllows & AOEVT_Pointer |
8567 | ? diag::err_atomic_op_needs_atomic_int_ptr_or_fp |
8568 | : diag::err_atomic_op_needs_atomic_int_or_fp) |
8569 | : diag::err_atomic_op_needs_atomic_int; |
8570 | Diag(ExprRange.getBegin(), DID) |
8571 | << IsC11 << Ptr->getType() << Ptr->getSourceRange(); |
8572 | return ExprError(); |
8573 | } |
8574 | if (IsC11 && ValType->isPointerType() && |
8575 | RequireCompleteType(Ptr->getBeginLoc(), ValType->getPointeeType(), |
8576 | diag::err_incomplete_type)) { |
8577 | return ExprError(); |
8578 | } |
8579 | } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) { |
8580 | // For __atomic_*_n operations, the value type must be a scalar integral or |
8581 | // pointer type which is 1, 2, 4, 8 or 16 bytes in length. |
8582 | Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr) |
8583 | << IsC11 << Ptr->getType() << Ptr->getSourceRange(); |
8584 | return ExprError(); |
8585 | } |
8586 | |
8587 | if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) && |
8588 | !AtomTy->isScalarType()) { |
8589 | // For GNU atomics, require a trivially-copyable type. This is not part of |
8590 | // the GNU atomics specification but we enforce it for consistency with |
8591 | // other atomics which generally all require a trivially-copyable type. This |
8592 | // is because atomics just copy bits. |
8593 | Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_trivial_copy) |
8594 | << Ptr->getType() << Ptr->getSourceRange(); |
8595 | return ExprError(); |
8596 | } |
8597 | |
8598 | switch (ValType.getObjCLifetime()) { |
8599 | case Qualifiers::OCL_None: |
8600 | case Qualifiers::OCL_ExplicitNone: |
8601 | // okay |
8602 | break; |
8603 | |
8604 | case Qualifiers::OCL_Weak: |
8605 | case Qualifiers::OCL_Strong: |
8606 | case Qualifiers::OCL_Autoreleasing: |
8607 | // FIXME: Can this happen? By this point, ValType should be known |
8608 | // to be trivially copyable. |
8609 | Diag(ExprRange.getBegin(), diag::err_arc_atomic_ownership) |
8610 | << ValType << Ptr->getSourceRange(); |
8611 | return ExprError(); |
8612 | } |
8613 | |
8614 | // All atomic operations have an overload which takes a pointer to a volatile |
8615 | // 'A'. We shouldn't let the volatile-ness of the pointee-type inject itself |
8616 | // into the result or the other operands. Similarly atomic_load takes a |
8617 | // pointer to a const 'A'. |
8618 | ValType.removeLocalVolatile(); |
8619 | ValType.removeLocalConst(); |
8620 | QualType ResultType = ValType; |
8621 | if (Form == Copy || Form == LoadCopy || Form == GNUXchg || |
8622 | Form == Init) |
8623 | ResultType = Context.VoidTy; |
8624 | else if (Form == C11CmpXchg || Form == GNUCmpXchg) |
8625 | ResultType = Context.BoolTy; |
8626 | |
8627 | // The type of a parameter passed 'by value'. In the GNU atomics, such |
8628 | // arguments are actually passed as pointers. |
8629 | QualType ByValType = ValType; // 'CP' |
8630 | bool IsPassedByAddress = false; |
8631 | if (!IsC11 && !IsHIP && !IsN) { |
8632 | ByValType = Ptr->getType(); |
8633 | IsPassedByAddress = true; |
8634 | } |
8635 | |
8636 | SmallVector<Expr *, 5> APIOrderedArgs; |
8637 | if (ArgOrder == Sema::AtomicArgumentOrder::AST) { |
8638 | APIOrderedArgs.push_back(Elt: Args[0]); |
8639 | switch (Form) { |
8640 | case Init: |
8641 | case Load: |
8642 | APIOrderedArgs.push_back(Elt: Args[1]); // Val1/Order |
8643 | break; |
8644 | case LoadCopy: |
8645 | case Copy: |
8646 | case Arithmetic: |
8647 | case Xchg: |
8648 | APIOrderedArgs.push_back(Elt: Args[2]); // Val1 |
8649 | APIOrderedArgs.push_back(Elt: Args[1]); // Order |
8650 | break; |
8651 | case GNUXchg: |
8652 | APIOrderedArgs.push_back(Elt: Args[2]); // Val1 |
8653 | APIOrderedArgs.push_back(Elt: Args[3]); // Val2 |
8654 | APIOrderedArgs.push_back(Elt: Args[1]); // Order |
8655 | break; |
8656 | case C11CmpXchg: |
8657 | APIOrderedArgs.push_back(Elt: Args[2]); // Val1 |
8658 | APIOrderedArgs.push_back(Elt: Args[4]); // Val2 |
8659 | APIOrderedArgs.push_back(Elt: Args[1]); // Order |
8660 | APIOrderedArgs.push_back(Elt: Args[3]); // OrderFail |
8661 | break; |
8662 | case GNUCmpXchg: |
8663 | APIOrderedArgs.push_back(Elt: Args[2]); // Val1 |
8664 | APIOrderedArgs.push_back(Elt: Args[4]); // Val2 |
8665 | APIOrderedArgs.push_back(Elt: Args[5]); // Weak |
8666 | APIOrderedArgs.push_back(Elt: Args[1]); // Order |
8667 | APIOrderedArgs.push_back(Elt: Args[3]); // OrderFail |
8668 | break; |
8669 | } |
8670 | } else |
8671 | APIOrderedArgs.append(in_start: Args.begin(), in_end: Args.end()); |
8672 | |
8673 | // The first argument's non-CV pointer type is used to deduce the type of |
8674 | // subsequent arguments, except for: |
8675 | // - weak flag (always converted to bool) |
8676 | // - memory order (always converted to int) |
8677 | // - scope (always converted to int) |
8678 | for (unsigned i = 0; i != APIOrderedArgs.size(); ++i) { |
8679 | QualType Ty; |
8680 | if (i < NumVals[Form] + 1) { |
8681 | switch (i) { |
8682 | case 0: |
8683 | // The first argument is always a pointer. It has a fixed type. |
8684 | // It is always dereferenced, a nullptr is undefined. |
8685 | CheckNonNullArgument(S&: *this, ArgExpr: APIOrderedArgs[i], CallSiteLoc: ExprRange.getBegin()); |
8686 | // Nothing else to do: we already know all we want about this pointer. |
8687 | continue; |
8688 | case 1: |
8689 | // The second argument is the non-atomic operand. For arithmetic, this |
8690 | // is always passed by value, and for a compare_exchange it is always |
8691 | // passed by address. For the rest, GNU uses by-address and C11 uses |
8692 | // by-value. |
8693 | assert(Form != Load); |
8694 | if (Form == Arithmetic && ValType->isPointerType()) |
8695 | Ty = Context.getPointerDiffType(); |
8696 | else if (Form == Init || Form == Arithmetic) |
8697 | Ty = ValType; |
8698 | else if (Form == Copy || Form == Xchg) { |
8699 | if (IsPassedByAddress) { |
8700 | // The value pointer is always dereferenced, a nullptr is undefined. |
8701 | CheckNonNullArgument(S&: *this, ArgExpr: APIOrderedArgs[i], |
8702 | CallSiteLoc: ExprRange.getBegin()); |
8703 | } |
8704 | Ty = ByValType; |
8705 | } else { |
8706 | Expr *ValArg = APIOrderedArgs[i]; |
8707 | // The value pointer is always dereferenced, a nullptr is undefined. |
8708 | CheckNonNullArgument(S&: *this, ArgExpr: ValArg, CallSiteLoc: ExprRange.getBegin()); |
8709 | LangAS AS = LangAS::Default; |
8710 | // Keep address space of non-atomic pointer type. |
8711 | if (const PointerType *PtrTy = |
8712 | ValArg->getType()->getAs<PointerType>()) { |
8713 | AS = PtrTy->getPointeeType().getAddressSpace(); |
8714 | } |
8715 | Ty = Context.getPointerType( |
8716 | T: Context.getAddrSpaceQualType(T: ValType.getUnqualifiedType(), AddressSpace: AS)); |
8717 | } |
8718 | break; |
8719 | case 2: |
8720 | // The third argument to compare_exchange / GNU exchange is the desired |
8721 | // value, either by-value (for the C11 and *_n variant) or as a pointer. |
8722 | if (IsPassedByAddress) |
8723 | CheckNonNullArgument(S&: *this, ArgExpr: APIOrderedArgs[i], CallSiteLoc: ExprRange.getBegin()); |
8724 | Ty = ByValType; |
8725 | break; |
8726 | case 3: |
8727 | // The fourth argument to GNU compare_exchange is a 'weak' flag. |
8728 | Ty = Context.BoolTy; |
8729 | break; |
8730 | } |
8731 | } else { |
8732 | // The order(s) and scope are always converted to int. |
8733 | Ty = Context.IntTy; |
8734 | } |
8735 | |
8736 | InitializedEntity Entity = |
8737 | InitializedEntity::InitializeParameter(Context, Type: Ty, Consumed: false); |
8738 | ExprResult Arg = APIOrderedArgs[i]; |
8739 | Arg = PerformCopyInitialization(Entity, EqualLoc: SourceLocation(), Init: Arg); |
8740 | if (Arg.isInvalid()) |
8741 | return true; |
8742 | APIOrderedArgs[i] = Arg.get(); |
8743 | } |
8744 | |
8745 | // Permute the arguments into a 'consistent' order. |
8746 | SmallVector<Expr*, 5> SubExprs; |
8747 | SubExprs.push_back(Elt: Ptr); |
8748 | switch (Form) { |
8749 | case Init: |
8750 | // Note, AtomicExpr::getVal1() has a special case for this atomic. |
8751 | SubExprs.push_back(Elt: APIOrderedArgs[1]); // Val1 |
8752 | break; |
8753 | case Load: |
8754 | SubExprs.push_back(Elt: APIOrderedArgs[1]); // Order |
8755 | break; |
8756 | case LoadCopy: |
8757 | case Copy: |
8758 | case Arithmetic: |
8759 | case Xchg: |
8760 | SubExprs.push_back(Elt: APIOrderedArgs[2]); // Order |
8761 | SubExprs.push_back(Elt: APIOrderedArgs[1]); // Val1 |
8762 | break; |
8763 | case GNUXchg: |
8764 | // Note, AtomicExpr::getVal2() has a special case for this atomic. |
8765 | SubExprs.push_back(Elt: APIOrderedArgs[3]); // Order |
8766 | SubExprs.push_back(Elt: APIOrderedArgs[1]); // Val1 |
8767 | SubExprs.push_back(Elt: APIOrderedArgs[2]); // Val2 |
8768 | break; |
8769 | case C11CmpXchg: |
8770 | SubExprs.push_back(Elt: APIOrderedArgs[3]); // Order |
8771 | SubExprs.push_back(Elt: APIOrderedArgs[1]); // Val1 |
8772 | SubExprs.push_back(Elt: APIOrderedArgs[4]); // OrderFail |
8773 | SubExprs.push_back(Elt: APIOrderedArgs[2]); // Val2 |
8774 | break; |
8775 | case GNUCmpXchg: |
8776 | SubExprs.push_back(Elt: APIOrderedArgs[4]); // Order |
8777 | SubExprs.push_back(Elt: APIOrderedArgs[1]); // Val1 |
8778 | SubExprs.push_back(Elt: APIOrderedArgs[5]); // OrderFail |
8779 | SubExprs.push_back(Elt: APIOrderedArgs[2]); // Val2 |
8780 | SubExprs.push_back(Elt: APIOrderedArgs[3]); // Weak |
8781 | break; |
8782 | } |
8783 | |
8784 | // If the memory orders are constants, check they are valid. |
8785 | if (SubExprs.size() >= 2 && Form != Init) { |
8786 | std::optional<llvm::APSInt> Success = |
8787 | SubExprs[1]->getIntegerConstantExpr(Ctx: Context); |
8788 | if (Success && !isValidOrderingForOp(Ordering: Success->getSExtValue(), Op)) { |
8789 | Diag(SubExprs[1]->getBeginLoc(), |
8790 | diag::warn_atomic_op_has_invalid_memory_order) |
8791 | << /*success=*/(Form == C11CmpXchg || Form == GNUCmpXchg) |
8792 | << SubExprs[1]->getSourceRange(); |
8793 | } |
8794 | if (SubExprs.size() >= 5) { |
8795 | if (std::optional<llvm::APSInt> Failure = |
8796 | SubExprs[3]->getIntegerConstantExpr(Ctx: Context)) { |
8797 | if (!llvm::is_contained( |
8798 | Set: {llvm::AtomicOrderingCABI::relaxed, |
8799 | llvm::AtomicOrderingCABI::consume, |
8800 | llvm::AtomicOrderingCABI::acquire, |
8801 | llvm::AtomicOrderingCABI::seq_cst}, |
8802 | Element: (llvm::AtomicOrderingCABI)Failure->getSExtValue())) { |
8803 | Diag(SubExprs[3]->getBeginLoc(), |
8804 | diag::warn_atomic_op_has_invalid_memory_order) |
8805 | << /*failure=*/2 << SubExprs[3]->getSourceRange(); |
8806 | } |
8807 | } |
8808 | } |
8809 | } |
8810 | |
8811 | if (auto ScopeModel = AtomicExpr::getScopeModel(Op)) { |
8812 | auto *Scope = Args[Args.size() - 1]; |
8813 | if (std::optional<llvm::APSInt> Result = |
8814 | Scope->getIntegerConstantExpr(Ctx: Context)) { |
8815 | if (!ScopeModel->isValid(Result->getZExtValue())) |
8816 | Diag(Scope->getBeginLoc(), diag::err_atomic_op_has_invalid_synch_scope) |
8817 | << Scope->getSourceRange(); |
8818 | } |
8819 | SubExprs.push_back(Elt: Scope); |
8820 | } |
8821 | |
8822 | AtomicExpr *AE = new (Context) |
8823 | AtomicExpr(ExprRange.getBegin(), SubExprs, ResultType, Op, RParenLoc); |
8824 | |
8825 | if ((Op == AtomicExpr::AO__c11_atomic_load || |
8826 | Op == AtomicExpr::AO__c11_atomic_store || |
8827 | Op == AtomicExpr::AO__opencl_atomic_load || |
8828 | Op == AtomicExpr::AO__hip_atomic_load || |
8829 | Op == AtomicExpr::AO__opencl_atomic_store || |
8830 | Op == AtomicExpr::AO__hip_atomic_store) && |
8831 | Context.AtomicUsesUnsupportedLibcall(AE)) |
8832 | Diag(AE->getBeginLoc(), diag::err_atomic_load_store_uses_lib) |
8833 | << ((Op == AtomicExpr::AO__c11_atomic_load || |
8834 | Op == AtomicExpr::AO__opencl_atomic_load || |
8835 | Op == AtomicExpr::AO__hip_atomic_load) |
8836 | ? 0 |
8837 | : 1); |
8838 | |
8839 | if (ValType->isBitIntType()) { |
8840 | Diag(Ptr->getExprLoc(), diag::err_atomic_builtin_bit_int_prohibit); |
8841 | return ExprError(); |
8842 | } |
8843 | |
8844 | return AE; |
8845 | } |
8846 | |
8847 | /// checkBuiltinArgument - Given a call to a builtin function, perform |
8848 | /// normal type-checking on the given argument, updating the call in |
8849 | /// place. This is useful when a builtin function requires custom |
8850 | /// type-checking for some of its arguments but not necessarily all of |
8851 | /// them. |
8852 | /// |
8853 | /// Returns true on error. |
8854 | static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) { |
8855 | FunctionDecl *Fn = E->getDirectCallee(); |
8856 | assert(Fn && "builtin call without direct callee!" ); |
8857 | |
8858 | ParmVarDecl *Param = Fn->getParamDecl(i: ArgIndex); |
8859 | InitializedEntity Entity = |
8860 | InitializedEntity::InitializeParameter(Context&: S.Context, Parm: Param); |
8861 | |
8862 | ExprResult Arg = E->getArg(Arg: ArgIndex); |
8863 | Arg = S.PerformCopyInitialization(Entity, EqualLoc: SourceLocation(), Init: Arg); |
8864 | if (Arg.isInvalid()) |
8865 | return true; |
8866 | |
8867 | E->setArg(Arg: ArgIndex, ArgExpr: Arg.get()); |
8868 | return false; |
8869 | } |
8870 | |
8871 | bool Sema::BuiltinWasmRefNullExtern(CallExpr *TheCall) { |
8872 | if (TheCall->getNumArgs() != 0) |
8873 | return true; |
8874 | |
8875 | TheCall->setType(Context.getWebAssemblyExternrefType()); |
8876 | |
8877 | return false; |
8878 | } |
8879 | |
8880 | bool Sema::BuiltinWasmRefNullFunc(CallExpr *TheCall) { |
8881 | if (TheCall->getNumArgs() != 0) { |
8882 | Diag(TheCall->getBeginLoc(), diag::err_typecheck_call_too_many_args) |
8883 | << 0 /*function call*/ << /*expected*/ 0 << TheCall->getNumArgs() |
8884 | << /*is non object*/ 0; |
8885 | return true; |
8886 | } |
8887 | |
8888 | // This custom type checking code ensures that the nodes are as expected |
8889 | // in order to later on generate the necessary builtin. |
8890 | QualType Pointee = Context.getFunctionType(ResultTy: Context.VoidTy, Args: {}, EPI: {}); |
8891 | QualType Type = Context.getPointerType(T: Pointee); |
8892 | Pointee = Context.getAddrSpaceQualType(T: Pointee, AddressSpace: LangAS::wasm_funcref); |
8893 | Type = Context.getAttributedType(attr::WebAssemblyFuncref, Type, |
8894 | Context.getPointerType(Pointee)); |
8895 | TheCall->setType(Type); |
8896 | |
8897 | return false; |
8898 | } |
8899 | |
8900 | /// We have a call to a function like __sync_fetch_and_add, which is an |
8901 | /// overloaded function based on the pointer type of its first argument. |
8902 | /// The main BuildCallExpr routines have already promoted the types of |
8903 | /// arguments because all of these calls are prototyped as void(...). |
8904 | /// |
8905 | /// This function goes through and does final semantic checking for these |
8906 | /// builtins, as well as generating any warnings. |
8907 | ExprResult Sema::BuiltinAtomicOverloaded(ExprResult TheCallResult) { |
8908 | CallExpr *TheCall = static_cast<CallExpr *>(TheCallResult.get()); |
8909 | Expr *Callee = TheCall->getCallee(); |
8910 | DeclRefExpr *DRE = cast<DeclRefExpr>(Val: Callee->IgnoreParenCasts()); |
8911 | FunctionDecl *FDecl = cast<FunctionDecl>(Val: DRE->getDecl()); |
8912 | |
8913 | // Ensure that we have at least one argument to do type inference from. |
8914 | if (TheCall->getNumArgs() < 1) { |
8915 | Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) |
8916 | << 0 << 1 << TheCall->getNumArgs() << /*is non object*/ 0 |
8917 | << Callee->getSourceRange(); |
8918 | return ExprError(); |
8919 | } |
8920 | |
8921 | // Inspect the first argument of the atomic builtin. This should always be |
8922 | // a pointer type, whose element is an integral scalar or pointer type. |
8923 | // Because it is a pointer type, we don't have to worry about any implicit |
8924 | // casts here. |
8925 | // FIXME: We don't allow floating point scalars as input. |
8926 | Expr *FirstArg = TheCall->getArg(Arg: 0); |
8927 | ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(E: FirstArg); |
8928 | if (FirstArgResult.isInvalid()) |
8929 | return ExprError(); |
8930 | FirstArg = FirstArgResult.get(); |
8931 | TheCall->setArg(Arg: 0, ArgExpr: FirstArg); |
8932 | |
8933 | const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>(); |
8934 | if (!pointerType) { |
8935 | Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer) |
8936 | << FirstArg->getType() << FirstArg->getSourceRange(); |
8937 | return ExprError(); |
8938 | } |
8939 | |
8940 | QualType ValType = pointerType->getPointeeType(); |
8941 | if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && |
8942 | !ValType->isBlockPointerType()) { |
8943 | Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intptr) |
8944 | << FirstArg->getType() << FirstArg->getSourceRange(); |
8945 | return ExprError(); |
8946 | } |
8947 | |
8948 | if (ValType.isConstQualified()) { |
8949 | Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_cannot_be_const) |
8950 | << FirstArg->getType() << FirstArg->getSourceRange(); |
8951 | return ExprError(); |
8952 | } |
8953 | |
8954 | switch (ValType.getObjCLifetime()) { |
8955 | case Qualifiers::OCL_None: |
8956 | case Qualifiers::OCL_ExplicitNone: |
8957 | // okay |
8958 | break; |
8959 | |
8960 | case Qualifiers::OCL_Weak: |
8961 | case Qualifiers::OCL_Strong: |
8962 | case Qualifiers::OCL_Autoreleasing: |
8963 | Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership) |
8964 | << ValType << FirstArg->getSourceRange(); |
8965 | return ExprError(); |
8966 | } |
8967 | |
8968 | // Strip any qualifiers off ValType. |
8969 | ValType = ValType.getUnqualifiedType(); |
8970 | |
8971 | // The majority of builtins return a value, but a few have special return |
8972 | // types, so allow them to override appropriately below. |
8973 | QualType ResultType = ValType; |
8974 | |
8975 | // We need to figure out which concrete builtin this maps onto. For example, |
8976 | // __sync_fetch_and_add with a 2 byte object turns into |
8977 | // __sync_fetch_and_add_2. |
8978 | #define BUILTIN_ROW(x) \ |
8979 | { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \ |
8980 | Builtin::BI##x##_8, Builtin::BI##x##_16 } |
8981 | |
8982 | static const unsigned BuiltinIndices[][5] = { |
8983 | BUILTIN_ROW(__sync_fetch_and_add), |
8984 | BUILTIN_ROW(__sync_fetch_and_sub), |
8985 | BUILTIN_ROW(__sync_fetch_and_or), |
8986 | BUILTIN_ROW(__sync_fetch_and_and), |
8987 | BUILTIN_ROW(__sync_fetch_and_xor), |
8988 | BUILTIN_ROW(__sync_fetch_and_nand), |
8989 | |
8990 | BUILTIN_ROW(__sync_add_and_fetch), |
8991 | BUILTIN_ROW(__sync_sub_and_fetch), |
8992 | BUILTIN_ROW(__sync_and_and_fetch), |
8993 | BUILTIN_ROW(__sync_or_and_fetch), |
8994 | BUILTIN_ROW(__sync_xor_and_fetch), |
8995 | BUILTIN_ROW(__sync_nand_and_fetch), |
8996 | |
8997 | BUILTIN_ROW(__sync_val_compare_and_swap), |
8998 | BUILTIN_ROW(__sync_bool_compare_and_swap), |
8999 | BUILTIN_ROW(__sync_lock_test_and_set), |
9000 | BUILTIN_ROW(__sync_lock_release), |
9001 | BUILTIN_ROW(__sync_swap) |
9002 | }; |
9003 | #undef BUILTIN_ROW |
9004 | |
9005 | // Determine the index of the size. |
9006 | unsigned SizeIndex; |
9007 | switch (Context.getTypeSizeInChars(T: ValType).getQuantity()) { |
9008 | case 1: SizeIndex = 0; break; |
9009 | case 2: SizeIndex = 1; break; |
9010 | case 4: SizeIndex = 2; break; |
9011 | case 8: SizeIndex = 3; break; |
9012 | case 16: SizeIndex = 4; break; |
9013 | default: |
9014 | Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_pointer_size) |
9015 | << FirstArg->getType() << FirstArg->getSourceRange(); |
9016 | return ExprError(); |
9017 | } |
9018 | |
9019 | // Each of these builtins has one pointer argument, followed by some number of |
9020 | // values (0, 1 or 2) followed by a potentially empty varags list of stuff |
9021 | // that we ignore. Find out which row of BuiltinIndices to read from as well |
9022 | // as the number of fixed args. |
9023 | unsigned BuiltinID = FDecl->getBuiltinID(); |
9024 | unsigned BuiltinIndex, NumFixed = 1; |
9025 | bool WarnAboutSemanticsChange = false; |
9026 | switch (BuiltinID) { |
9027 | default: llvm_unreachable("Unknown overloaded atomic builtin!" ); |
9028 | case Builtin::BI__sync_fetch_and_add: |
9029 | case Builtin::BI__sync_fetch_and_add_1: |
9030 | case Builtin::BI__sync_fetch_and_add_2: |
9031 | case Builtin::BI__sync_fetch_and_add_4: |
9032 | case Builtin::BI__sync_fetch_and_add_8: |
9033 | case Builtin::BI__sync_fetch_and_add_16: |
9034 | BuiltinIndex = 0; |
9035 | break; |
9036 | |
9037 | case Builtin::BI__sync_fetch_and_sub: |
9038 | case Builtin::BI__sync_fetch_and_sub_1: |
9039 | case Builtin::BI__sync_fetch_and_sub_2: |
9040 | case Builtin::BI__sync_fetch_and_sub_4: |
9041 | case Builtin::BI__sync_fetch_and_sub_8: |
9042 | case Builtin::BI__sync_fetch_and_sub_16: |
9043 | BuiltinIndex = 1; |
9044 | break; |
9045 | |
9046 | case Builtin::BI__sync_fetch_and_or: |
9047 | case Builtin::BI__sync_fetch_and_or_1: |
9048 | case Builtin::BI__sync_fetch_and_or_2: |
9049 | case Builtin::BI__sync_fetch_and_or_4: |
9050 | case Builtin::BI__sync_fetch_and_or_8: |
9051 | case Builtin::BI__sync_fetch_and_or_16: |
9052 | BuiltinIndex = 2; |
9053 | break; |
9054 | |
9055 | case Builtin::BI__sync_fetch_and_and: |
9056 | case Builtin::BI__sync_fetch_and_and_1: |
9057 | case Builtin::BI__sync_fetch_and_and_2: |
9058 | case Builtin::BI__sync_fetch_and_and_4: |
9059 | case Builtin::BI__sync_fetch_and_and_8: |
9060 | case Builtin::BI__sync_fetch_and_and_16: |
9061 | BuiltinIndex = 3; |
9062 | break; |
9063 | |
9064 | case Builtin::BI__sync_fetch_and_xor: |
9065 | case Builtin::BI__sync_fetch_and_xor_1: |
9066 | case Builtin::BI__sync_fetch_and_xor_2: |
9067 | case Builtin::BI__sync_fetch_and_xor_4: |
9068 | case Builtin::BI__sync_fetch_and_xor_8: |
9069 | case Builtin::BI__sync_fetch_and_xor_16: |
9070 | BuiltinIndex = 4; |
9071 | break; |
9072 | |
9073 | case Builtin::BI__sync_fetch_and_nand: |
9074 | case Builtin::BI__sync_fetch_and_nand_1: |
9075 | case Builtin::BI__sync_fetch_and_nand_2: |
9076 | case Builtin::BI__sync_fetch_and_nand_4: |
9077 | case Builtin::BI__sync_fetch_and_nand_8: |
9078 | case Builtin::BI__sync_fetch_and_nand_16: |
9079 | BuiltinIndex = 5; |
9080 | WarnAboutSemanticsChange = true; |
9081 | break; |
9082 | |
9083 | case Builtin::BI__sync_add_and_fetch: |
9084 | case Builtin::BI__sync_add_and_fetch_1: |
9085 | case Builtin::BI__sync_add_and_fetch_2: |
9086 | case Builtin::BI__sync_add_and_fetch_4: |
9087 | case Builtin::BI__sync_add_and_fetch_8: |
9088 | case Builtin::BI__sync_add_and_fetch_16: |
9089 | BuiltinIndex = 6; |
9090 | break; |
9091 | |
9092 | case Builtin::BI__sync_sub_and_fetch: |
9093 | case Builtin::BI__sync_sub_and_fetch_1: |
9094 | case Builtin::BI__sync_sub_and_fetch_2: |
9095 | case Builtin::BI__sync_sub_and_fetch_4: |
9096 | case Builtin::BI__sync_sub_and_fetch_8: |
9097 | case Builtin::BI__sync_sub_and_fetch_16: |
9098 | BuiltinIndex = 7; |
9099 | break; |
9100 | |
9101 | case Builtin::BI__sync_and_and_fetch: |
9102 | case Builtin::BI__sync_and_and_fetch_1: |
9103 | case Builtin::BI__sync_and_and_fetch_2: |
9104 | case Builtin::BI__sync_and_and_fetch_4: |
9105 | case Builtin::BI__sync_and_and_fetch_8: |
9106 | case Builtin::BI__sync_and_and_fetch_16: |
9107 | BuiltinIndex = 8; |
9108 | break; |
9109 | |
9110 | case Builtin::BI__sync_or_and_fetch: |
9111 | case Builtin::BI__sync_or_and_fetch_1: |
9112 | case Builtin::BI__sync_or_and_fetch_2: |
9113 | case Builtin::BI__sync_or_and_fetch_4: |
9114 | case Builtin::BI__sync_or_and_fetch_8: |
9115 | case Builtin::BI__sync_or_and_fetch_16: |
9116 | BuiltinIndex = 9; |
9117 | break; |
9118 | |
9119 | case Builtin::BI__sync_xor_and_fetch: |
9120 | case Builtin::BI__sync_xor_and_fetch_1: |
9121 | case Builtin::BI__sync_xor_and_fetch_2: |
9122 | case Builtin::BI__sync_xor_and_fetch_4: |
9123 | case Builtin::BI__sync_xor_and_fetch_8: |
9124 | case Builtin::BI__sync_xor_and_fetch_16: |
9125 | BuiltinIndex = 10; |
9126 | break; |
9127 | |
9128 | case Builtin::BI__sync_nand_and_fetch: |
9129 | case Builtin::BI__sync_nand_and_fetch_1: |
9130 | case Builtin::BI__sync_nand_and_fetch_2: |
9131 | case Builtin::BI__sync_nand_and_fetch_4: |
9132 | case Builtin::BI__sync_nand_and_fetch_8: |
9133 | case Builtin::BI__sync_nand_and_fetch_16: |
9134 | BuiltinIndex = 11; |
9135 | WarnAboutSemanticsChange = true; |
9136 | break; |
9137 | |
9138 | case Builtin::BI__sync_val_compare_and_swap: |
9139 | case Builtin::BI__sync_val_compare_and_swap_1: |
9140 | case Builtin::BI__sync_val_compare_and_swap_2: |
9141 | case Builtin::BI__sync_val_compare_and_swap_4: |
9142 | case Builtin::BI__sync_val_compare_and_swap_8: |
9143 | case Builtin::BI__sync_val_compare_and_swap_16: |
9144 | BuiltinIndex = 12; |
9145 | NumFixed = 2; |
9146 | break; |
9147 | |
9148 | case Builtin::BI__sync_bool_compare_and_swap: |
9149 | case Builtin::BI__sync_bool_compare_and_swap_1: |
9150 | case Builtin::BI__sync_bool_compare_and_swap_2: |
9151 | case Builtin::BI__sync_bool_compare_and_swap_4: |
9152 | case Builtin::BI__sync_bool_compare_and_swap_8: |
9153 | case Builtin::BI__sync_bool_compare_and_swap_16: |
9154 | BuiltinIndex = 13; |
9155 | NumFixed = 2; |
9156 | ResultType = Context.BoolTy; |
9157 | break; |
9158 | |
9159 | case Builtin::BI__sync_lock_test_and_set: |
9160 | case Builtin::BI__sync_lock_test_and_set_1: |
9161 | case Builtin::BI__sync_lock_test_and_set_2: |
9162 | case Builtin::BI__sync_lock_test_and_set_4: |
9163 | case Builtin::BI__sync_lock_test_and_set_8: |
9164 | case Builtin::BI__sync_lock_test_and_set_16: |
9165 | BuiltinIndex = 14; |
9166 | break; |
9167 | |
9168 | case Builtin::BI__sync_lock_release: |
9169 | case Builtin::BI__sync_lock_release_1: |
9170 | case Builtin::BI__sync_lock_release_2: |
9171 | case Builtin::BI__sync_lock_release_4: |
9172 | case Builtin::BI__sync_lock_release_8: |
9173 | case Builtin::BI__sync_lock_release_16: |
9174 | BuiltinIndex = 15; |
9175 | NumFixed = 0; |
9176 | ResultType = Context.VoidTy; |
9177 | break; |
9178 | |
9179 | case Builtin::BI__sync_swap: |
9180 | case Builtin::BI__sync_swap_1: |
9181 | case Builtin::BI__sync_swap_2: |
9182 | case Builtin::BI__sync_swap_4: |
9183 | case Builtin::BI__sync_swap_8: |
9184 | case Builtin::BI__sync_swap_16: |
9185 | BuiltinIndex = 16; |
9186 | break; |
9187 | } |
9188 | |
9189 | // Now that we know how many fixed arguments we expect, first check that we |
9190 | // have at least that many. |
9191 | if (TheCall->getNumArgs() < 1+NumFixed) { |
9192 | Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) |
9193 | << 0 << 1 + NumFixed << TheCall->getNumArgs() << /*is non object*/ 0 |
9194 | << Callee->getSourceRange(); |
9195 | return ExprError(); |
9196 | } |
9197 | |
9198 | Diag(TheCall->getEndLoc(), diag::warn_atomic_implicit_seq_cst) |
9199 | << Callee->getSourceRange(); |
9200 | |
9201 | if (WarnAboutSemanticsChange) { |
9202 | Diag(TheCall->getEndLoc(), diag::warn_sync_fetch_and_nand_semantics_change) |
9203 | << Callee->getSourceRange(); |
9204 | } |
9205 | |
9206 | // Get the decl for the concrete builtin from this, we can tell what the |
9207 | // concrete integer type we should convert to is. |
9208 | unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex]; |
9209 | StringRef NewBuiltinName = Context.BuiltinInfo.getName(ID: NewBuiltinID); |
9210 | FunctionDecl *NewBuiltinDecl; |
9211 | if (NewBuiltinID == BuiltinID) |
9212 | NewBuiltinDecl = FDecl; |
9213 | else { |
9214 | // Perform builtin lookup to avoid redeclaring it. |
9215 | DeclarationName DN(&Context.Idents.get(Name: NewBuiltinName)); |
9216 | LookupResult Res(*this, DN, DRE->getBeginLoc(), LookupOrdinaryName); |
9217 | LookupName(R&: Res, S: TUScope, /*AllowBuiltinCreation=*/true); |
9218 | assert(Res.getFoundDecl()); |
9219 | NewBuiltinDecl = dyn_cast<FunctionDecl>(Val: Res.getFoundDecl()); |
9220 | if (!NewBuiltinDecl) |
9221 | return ExprError(); |
9222 | } |
9223 | |
9224 | // The first argument --- the pointer --- has a fixed type; we |
9225 | // deduce the types of the rest of the arguments accordingly. Walk |
9226 | // the remaining arguments, converting them to the deduced value type. |
9227 | for (unsigned i = 0; i != NumFixed; ++i) { |
9228 | ExprResult Arg = TheCall->getArg(Arg: i+1); |
9229 | |
9230 | // GCC does an implicit conversion to the pointer or integer ValType. This |
9231 | // can fail in some cases (1i -> int**), check for this error case now. |
9232 | // Initialize the argument. |
9233 | InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, |
9234 | Type: ValType, /*consume*/ Consumed: false); |
9235 | Arg = PerformCopyInitialization(Entity, EqualLoc: SourceLocation(), Init: Arg); |
9236 | if (Arg.isInvalid()) |
9237 | return ExprError(); |
9238 | |
9239 | // Okay, we have something that *can* be converted to the right type. Check |
9240 | // to see if there is a potentially weird extension going on here. This can |
9241 | // happen when you do an atomic operation on something like an char* and |
9242 | // pass in 42. The 42 gets converted to char. This is even more strange |
9243 | // for things like 45.123 -> char, etc. |
9244 | // FIXME: Do this check. |
9245 | TheCall->setArg(Arg: i+1, ArgExpr: Arg.get()); |
9246 | } |
9247 | |
9248 | // Create a new DeclRefExpr to refer to the new decl. |
9249 | DeclRefExpr *NewDRE = DeclRefExpr::Create( |
9250 | Context, DRE->getQualifierLoc(), SourceLocation(), NewBuiltinDecl, |
9251 | /*enclosing*/ false, DRE->getLocation(), Context.BuiltinFnTy, |
9252 | DRE->getValueKind(), nullptr, nullptr, DRE->isNonOdrUse()); |
9253 | |
9254 | // Set the callee in the CallExpr. |
9255 | // FIXME: This loses syntactic information. |
9256 | QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType()); |
9257 | ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy, |
9258 | CK_BuiltinFnToFnPtr); |
9259 | TheCall->setCallee(PromotedCall.get()); |
9260 | |
9261 | // Change the result type of the call to match the original value type. This |
9262 | // is arbitrary, but the codegen for these builtins ins design to handle it |
9263 | // gracefully. |
9264 | TheCall->setType(ResultType); |
9265 | |
9266 | // Prohibit problematic uses of bit-precise integer types with atomic |
9267 | // builtins. The arguments would have already been converted to the first |
9268 | // argument's type, so only need to check the first argument. |
9269 | const auto *BitIntValType = ValType->getAs<BitIntType>(); |
9270 | if (BitIntValType && !llvm::isPowerOf2_64(Value: BitIntValType->getNumBits())) { |
9271 | Diag(FirstArg->getExprLoc(), diag::err_atomic_builtin_ext_int_size); |
9272 | return ExprError(); |
9273 | } |
9274 | |
9275 | return TheCallResult; |
9276 | } |
9277 | |
9278 | /// BuiltinNontemporalOverloaded - We have a call to |
9279 | /// __builtin_nontemporal_store or __builtin_nontemporal_load, which is an |
9280 | /// overloaded function based on the pointer type of its last argument. |
9281 | /// |
9282 | /// This function goes through and does final semantic checking for these |
9283 | /// builtins. |
9284 | ExprResult Sema::BuiltinNontemporalOverloaded(ExprResult TheCallResult) { |
9285 | CallExpr *TheCall = (CallExpr *)TheCallResult.get(); |
9286 | DeclRefExpr *DRE = |
9287 | cast<DeclRefExpr>(Val: TheCall->getCallee()->IgnoreParenCasts()); |
9288 | FunctionDecl *FDecl = cast<FunctionDecl>(Val: DRE->getDecl()); |
9289 | unsigned BuiltinID = FDecl->getBuiltinID(); |
9290 | assert((BuiltinID == Builtin::BI__builtin_nontemporal_store || |
9291 | BuiltinID == Builtin::BI__builtin_nontemporal_load) && |
9292 | "Unexpected nontemporal load/store builtin!" ); |
9293 | bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store; |
9294 | unsigned numArgs = isStore ? 2 : 1; |
9295 | |
9296 | // Ensure that we have the proper number of arguments. |
9297 | if (checkArgCount(S&: *this, Call: TheCall, DesiredArgCount: numArgs)) |
9298 | return ExprError(); |
9299 | |
9300 | // Inspect the last argument of the nontemporal builtin. This should always |
9301 | // be a pointer type, from which we imply the type of the memory access. |
9302 | // Because it is a pointer type, we don't have to worry about any implicit |
9303 | // casts here. |
9304 | Expr *PointerArg = TheCall->getArg(Arg: numArgs - 1); |
9305 | ExprResult PointerArgResult = |
9306 | DefaultFunctionArrayLvalueConversion(E: PointerArg); |
9307 | |
9308 | if (PointerArgResult.isInvalid()) |
9309 | return ExprError(); |
9310 | PointerArg = PointerArgResult.get(); |
9311 | TheCall->setArg(Arg: numArgs - 1, ArgExpr: PointerArg); |
9312 | |
9313 | const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>(); |
9314 | if (!pointerType) { |
9315 | Diag(DRE->getBeginLoc(), diag::err_nontemporal_builtin_must_be_pointer) |
9316 | << PointerArg->getType() << PointerArg->getSourceRange(); |
9317 | return ExprError(); |
9318 | } |
9319 | |
9320 | QualType ValType = pointerType->getPointeeType(); |
9321 | |
9322 | // Strip any qualifiers off ValType. |
9323 | ValType = ValType.getUnqualifiedType(); |
9324 | if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && |
9325 | !ValType->isBlockPointerType() && !ValType->isFloatingType() && |
9326 | !ValType->isVectorType()) { |
9327 | Diag(DRE->getBeginLoc(), |
9328 | diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector) |
9329 | << PointerArg->getType() << PointerArg->getSourceRange(); |
9330 | return ExprError(); |
9331 | } |
9332 | |
9333 | if (!isStore) { |
9334 | TheCall->setType(ValType); |
9335 | return TheCallResult; |
9336 | } |
9337 | |
9338 | ExprResult ValArg = TheCall->getArg(Arg: 0); |
9339 | InitializedEntity Entity = InitializedEntity::InitializeParameter( |
9340 | Context, Type: ValType, /*consume*/ Consumed: false); |
9341 | ValArg = PerformCopyInitialization(Entity, EqualLoc: SourceLocation(), Init: ValArg); |
9342 | if (ValArg.isInvalid()) |
9343 | return ExprError(); |
9344 | |
9345 | TheCall->setArg(Arg: 0, ArgExpr: ValArg.get()); |
9346 | TheCall->setType(Context.VoidTy); |
9347 | return TheCallResult; |
9348 | } |
9349 | |
9350 | /// CheckObjCString - Checks that the argument to the builtin |
9351 | /// CFString constructor is correct |
9352 | /// Note: It might also make sense to do the UTF-16 conversion here (would |
9353 | /// simplify the backend). |
9354 | bool Sema::CheckObjCString(Expr *Arg) { |
9355 | Arg = Arg->IgnoreParenCasts(); |
9356 | StringLiteral *Literal = dyn_cast<StringLiteral>(Val: Arg); |
9357 | |
9358 | if (!Literal || !Literal->isOrdinary()) { |
9359 | Diag(Arg->getBeginLoc(), diag::err_cfstring_literal_not_string_constant) |
9360 | << Arg->getSourceRange(); |
9361 | return true; |
9362 | } |
9363 | |
9364 | if (Literal->containsNonAsciiOrNull()) { |
9365 | StringRef String = Literal->getString(); |
9366 | unsigned NumBytes = String.size(); |
9367 | SmallVector<llvm::UTF16, 128> ToBuf(NumBytes); |
9368 | const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); |
9369 | llvm::UTF16 *ToPtr = &ToBuf[0]; |
9370 | |
9371 | llvm::ConversionResult Result = |
9372 | llvm::ConvertUTF8toUTF16(sourceStart: &FromPtr, sourceEnd: FromPtr + NumBytes, targetStart: &ToPtr, |
9373 | targetEnd: ToPtr + NumBytes, flags: llvm::strictConversion); |
9374 | // Check for conversion failure. |
9375 | if (Result != llvm::conversionOK) |
9376 | Diag(Arg->getBeginLoc(), diag::warn_cfstring_truncated) |
9377 | << Arg->getSourceRange(); |
9378 | } |
9379 | return false; |
9380 | } |
9381 | |
9382 | /// CheckObjCString - Checks that the format string argument to the os_log() |
9383 | /// and os_trace() functions is correct, and converts it to const char *. |
9384 | ExprResult Sema::CheckOSLogFormatStringArg(Expr *Arg) { |
9385 | Arg = Arg->IgnoreParenCasts(); |
9386 | auto *Literal = dyn_cast<StringLiteral>(Val: Arg); |
9387 | if (!Literal) { |
9388 | if (auto *ObjcLiteral = dyn_cast<ObjCStringLiteral>(Val: Arg)) { |
9389 | Literal = ObjcLiteral->getString(); |
9390 | } |
9391 | } |
9392 | |
9393 | if (!Literal || (!Literal->isOrdinary() && !Literal->isUTF8())) { |
9394 | return ExprError( |
9395 | Diag(Arg->getBeginLoc(), diag::err_os_log_format_not_string_constant) |
9396 | << Arg->getSourceRange()); |
9397 | } |
9398 | |
9399 | ExprResult Result(Literal); |
9400 | QualType ResultTy = Context.getPointerType(Context.CharTy.withConst()); |
9401 | InitializedEntity Entity = |
9402 | InitializedEntity::InitializeParameter(Context, Type: ResultTy, Consumed: false); |
9403 | Result = PerformCopyInitialization(Entity, EqualLoc: SourceLocation(), Init: Result); |
9404 | return Result; |
9405 | } |
9406 | |
9407 | /// Check that the user is calling the appropriate va_start builtin for the |
9408 | /// target and calling convention. |
9409 | static bool checkVAStartABI(Sema &S, unsigned BuiltinID, Expr *Fn) { |
9410 | const llvm::Triple &TT = S.Context.getTargetInfo().getTriple(); |
9411 | bool IsX64 = TT.getArch() == llvm::Triple::x86_64; |
9412 | bool IsAArch64 = (TT.getArch() == llvm::Triple::aarch64 || |
9413 | TT.getArch() == llvm::Triple::aarch64_32); |
9414 | bool IsWindows = TT.isOSWindows(); |
9415 | bool IsMSVAStart = BuiltinID == Builtin::BI__builtin_ms_va_start; |
9416 | if (IsX64 || IsAArch64) { |
9417 | CallingConv CC = CC_C; |
9418 | if (const FunctionDecl *FD = S.getCurFunctionDecl()) |
9419 | CC = FD->getType()->castAs<FunctionType>()->getCallConv(); |
9420 | if (IsMSVAStart) { |
9421 | // Don't allow this in System V ABI functions. |
9422 | if (CC == CC_X86_64SysV || (!IsWindows && CC != CC_Win64)) |
9423 | return S.Diag(Fn->getBeginLoc(), |
9424 | diag::err_ms_va_start_used_in_sysv_function); |
9425 | } else { |
9426 | // On x86-64/AArch64 Unix, don't allow this in Win64 ABI functions. |
9427 | // On x64 Windows, don't allow this in System V ABI functions. |
9428 | // (Yes, that means there's no corresponding way to support variadic |
9429 | // System V ABI functions on Windows.) |
9430 | if ((IsWindows && CC == CC_X86_64SysV) || |
9431 | (!IsWindows && CC == CC_Win64)) |
9432 | return S.Diag(Fn->getBeginLoc(), |
9433 | diag::err_va_start_used_in_wrong_abi_function) |
9434 | << !IsWindows; |
9435 | } |
9436 | return false; |
9437 | } |
9438 | |
9439 | if (IsMSVAStart) |
9440 | return S.Diag(Fn->getBeginLoc(), diag::err_builtin_x64_aarch64_only); |
9441 | return false; |
9442 | } |
9443 | |
9444 | static bool checkVAStartIsInVariadicFunction(Sema &S, Expr *Fn, |
9445 | ParmVarDecl **LastParam = nullptr) { |
9446 | // Determine whether the current function, block, or obj-c method is variadic |
9447 | // and get its parameter list. |
9448 | bool IsVariadic = false; |
9449 | ArrayRef<ParmVarDecl *> Params; |
9450 | DeclContext *Caller = S.CurContext; |
9451 | if (auto *Block = dyn_cast<BlockDecl>(Val: Caller)) { |
9452 | IsVariadic = Block->isVariadic(); |
9453 | Params = Block->parameters(); |
9454 | } else if (auto *FD = dyn_cast<FunctionDecl>(Val: Caller)) { |
9455 | IsVariadic = FD->isVariadic(); |
9456 | Params = FD->parameters(); |
9457 | } else if (auto *MD = dyn_cast<ObjCMethodDecl>(Val: Caller)) { |
9458 | IsVariadic = MD->isVariadic(); |
9459 | // FIXME: This isn't correct for methods (results in bogus warning). |
9460 | Params = MD->parameters(); |
9461 | } else if (isa<CapturedDecl>(Val: Caller)) { |
9462 | // We don't support va_start in a CapturedDecl. |
9463 | S.Diag(Fn->getBeginLoc(), diag::err_va_start_captured_stmt); |
9464 | return true; |
9465 | } else { |
9466 | // This must be some other declcontext that parses exprs. |
9467 | S.Diag(Fn->getBeginLoc(), diag::err_va_start_outside_function); |
9468 | return true; |
9469 | } |
9470 | |
9471 | if (!IsVariadic) { |
9472 | S.Diag(Fn->getBeginLoc(), diag::err_va_start_fixed_function); |
9473 | return true; |
9474 | } |
9475 | |
9476 | if (LastParam) |
9477 | *LastParam = Params.empty() ? nullptr : Params.back(); |
9478 | |
9479 | return false; |
9480 | } |
9481 | |
9482 | /// Check the arguments to '__builtin_va_start' or '__builtin_ms_va_start' |
9483 | /// for validity. Emit an error and return true on failure; return false |
9484 | /// on success. |
9485 | bool Sema::BuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall) { |
9486 | Expr *Fn = TheCall->getCallee(); |
9487 | |
9488 | if (checkVAStartABI(S&: *this, BuiltinID, Fn)) |
9489 | return true; |
9490 | |
9491 | // In C23 mode, va_start only needs one argument. However, the builtin still |
9492 | // requires two arguments (which matches the behavior of the GCC builtin), |
9493 | // <stdarg.h> passes `0` as the second argument in C23 mode. |
9494 | if (checkArgCount(S&: *this, Call: TheCall, DesiredArgCount: 2)) |
9495 | return true; |
9496 | |
9497 | // Type-check the first argument normally. |
9498 | if (checkBuiltinArgument(S&: *this, E: TheCall, ArgIndex: 0)) |
9499 | return true; |
9500 | |
9501 | // Check that the current function is variadic, and get its last parameter. |
9502 | ParmVarDecl *LastParam; |
9503 | if (checkVAStartIsInVariadicFunction(S&: *this, Fn, LastParam: &LastParam)) |
9504 | return true; |
9505 | |
9506 | // Verify that the second argument to the builtin is the last argument of the |
9507 | // current function or method. In C23 mode, if the second argument is an |
9508 | // integer constant expression with value 0, then we don't bother with this |
9509 | // check. |
9510 | bool SecondArgIsLastNamedArgument = false; |
9511 | const Expr *Arg = TheCall->getArg(Arg: 1)->IgnoreParenCasts(); |
9512 | if (std::optional<llvm::APSInt> Val = |
9513 | TheCall->getArg(Arg: 1)->getIntegerConstantExpr(Ctx: Context); |
9514 | Val && LangOpts.C23 && *Val == 0) |
9515 | return false; |
9516 | |
9517 | // These are valid if SecondArgIsLastNamedArgument is false after the next |
9518 | // block. |
9519 | QualType Type; |
9520 | SourceLocation ParamLoc; |
9521 | bool IsCRegister = false; |
9522 | |
9523 | if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Val: Arg)) { |
9524 | if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(Val: DR->getDecl())) { |
9525 | SecondArgIsLastNamedArgument = PV == LastParam; |
9526 | |
9527 | Type = PV->getType(); |
9528 | ParamLoc = PV->getLocation(); |
9529 | IsCRegister = |
9530 | PV->getStorageClass() == SC_Register && !getLangOpts().CPlusPlus; |
9531 | } |
9532 | } |
9533 | |
9534 | if (!SecondArgIsLastNamedArgument) |
9535 | Diag(TheCall->getArg(1)->getBeginLoc(), |
9536 | diag::warn_second_arg_of_va_start_not_last_named_param); |
9537 | else if (IsCRegister || Type->isReferenceType() || |
9538 | Type->isSpecificBuiltinType(K: BuiltinType::Float) || [=] { |
9539 | // Promotable integers are UB, but enumerations need a bit of |
9540 | // extra checking to see what their promotable type actually is. |
9541 | if (!Context.isPromotableIntegerType(T: Type)) |
9542 | return false; |
9543 | if (!Type->isEnumeralType()) |
9544 | return true; |
9545 | const EnumDecl *ED = Type->castAs<EnumType>()->getDecl(); |
9546 | return !(ED && |
9547 | Context.typesAreCompatible(T1: ED->getPromotionType(), T2: Type)); |
9548 | }()) { |
9549 | unsigned Reason = 0; |
9550 | if (Type->isReferenceType()) Reason = 1; |
9551 | else if (IsCRegister) Reason = 2; |
9552 | Diag(Arg->getBeginLoc(), diag::warn_va_start_type_is_undefined) << Reason; |
9553 | Diag(ParamLoc, diag::note_parameter_type) << Type; |
9554 | } |
9555 | |
9556 | return false; |
9557 | } |
9558 | |
9559 | bool Sema::BuiltinVAStartARMMicrosoft(CallExpr *Call) { |
9560 | auto IsSuitablyTypedFormatArgument = [this](const Expr *Arg) -> bool { |
9561 | const LangOptions &LO = getLangOpts(); |
9562 | |
9563 | if (LO.CPlusPlus) |
9564 | return Arg->getType() |
9565 | .getCanonicalType() |
9566 | .getTypePtr() |
9567 | ->getPointeeType() |
9568 | .withoutLocalFastQualifiers() == Context.CharTy; |
9569 | |
9570 | // In C, allow aliasing through `char *`, this is required for AArch64 at |
9571 | // least. |
9572 | return true; |
9573 | }; |
9574 | |
9575 | // void __va_start(va_list *ap, const char *named_addr, size_t slot_size, |
9576 | // const char *named_addr); |
9577 | |
9578 | Expr *Func = Call->getCallee(); |
9579 | |
9580 | if (Call->getNumArgs() < 3) |
9581 | return Diag(Call->getEndLoc(), |
9582 | diag::err_typecheck_call_too_few_args_at_least) |
9583 | << 0 /*function call*/ << 3 << Call->getNumArgs() |
9584 | << /*is non object*/ 0; |
9585 | |
9586 | // Type-check the first argument normally. |
9587 | if (checkBuiltinArgument(S&: *this, E: Call, ArgIndex: 0)) |
9588 | return true; |
9589 | |
9590 | // Check that the current function is variadic. |
9591 | if (checkVAStartIsInVariadicFunction(S&: *this, Fn: Func)) |
9592 | return true; |
9593 | |
9594 | // __va_start on Windows does not validate the parameter qualifiers |
9595 | |
9596 | const Expr *Arg1 = Call->getArg(Arg: 1)->IgnoreParens(); |
9597 | const Type *Arg1Ty = Arg1->getType().getCanonicalType().getTypePtr(); |
9598 | |
9599 | const Expr *Arg2 = Call->getArg(Arg: 2)->IgnoreParens(); |
9600 | const Type *Arg2Ty = Arg2->getType().getCanonicalType().getTypePtr(); |
9601 | |
9602 | const QualType &ConstCharPtrTy = |
9603 | Context.getPointerType(Context.CharTy.withConst()); |
9604 | if (!Arg1Ty->isPointerType() || !IsSuitablyTypedFormatArgument(Arg1)) |
9605 | Diag(Arg1->getBeginLoc(), diag::err_typecheck_convert_incompatible) |
9606 | << Arg1->getType() << ConstCharPtrTy << 1 /* different class */ |
9607 | << 0 /* qualifier difference */ |
9608 | << 3 /* parameter mismatch */ |
9609 | << 2 << Arg1->getType() << ConstCharPtrTy; |
9610 | |
9611 | const QualType SizeTy = Context.getSizeType(); |
9612 | if (Arg2Ty->getCanonicalTypeInternal().withoutLocalFastQualifiers() != SizeTy) |
9613 | Diag(Arg2->getBeginLoc(), diag::err_typecheck_convert_incompatible) |
9614 | << Arg2->getType() << SizeTy << 1 /* different class */ |
9615 | << 0 /* qualifier difference */ |
9616 | << 3 /* parameter mismatch */ |
9617 | << 3 << Arg2->getType() << SizeTy; |
9618 | |
9619 | return false; |
9620 | } |
9621 | |
9622 | /// BuiltinUnorderedCompare - Handle functions like __builtin_isgreater and |
9623 | /// friends. This is declared to take (...), so we have to check everything. |
9624 | bool Sema::BuiltinUnorderedCompare(CallExpr *TheCall, unsigned BuiltinID) { |
9625 | if (checkArgCount(S&: *this, Call: TheCall, DesiredArgCount: 2)) |
9626 | return true; |
9627 | |
9628 | if (BuiltinID == Builtin::BI__builtin_isunordered && |
9629 | TheCall->getFPFeaturesInEffect(getLangOpts()).getNoHonorNaNs()) |
9630 | Diag(TheCall->getBeginLoc(), diag::warn_fp_nan_inf_when_disabled) |
9631 | << 1 << 0 << TheCall->getSourceRange(); |
9632 | |
9633 | ExprResult OrigArg0 = TheCall->getArg(Arg: 0); |
9634 | ExprResult OrigArg1 = TheCall->getArg(Arg: 1); |
9635 | |
9636 | // Do standard promotions between the two arguments, returning their common |
9637 | // type. |
9638 | QualType Res = UsualArithmeticConversions( |
9639 | LHS&: OrigArg0, RHS&: OrigArg1, Loc: TheCall->getExprLoc(), ACK: ACK_Comparison); |
9640 | if (OrigArg0.isInvalid() || OrigArg1.isInvalid()) |
9641 | return true; |
9642 | |
9643 | // Make sure any conversions are pushed back into the call; this is |
9644 | // type safe since unordered compare builtins are declared as "_Bool |
9645 | // foo(...)". |
9646 | TheCall->setArg(Arg: 0, ArgExpr: OrigArg0.get()); |
9647 | TheCall->setArg(Arg: 1, ArgExpr: OrigArg1.get()); |
9648 | |
9649 | if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent()) |
9650 | return false; |
9651 | |
9652 | // If the common type isn't a real floating type, then the arguments were |
9653 | // invalid for this operation. |
9654 | if (Res.isNull() || !Res->isRealFloatingType()) |
9655 | return Diag(OrigArg0.get()->getBeginLoc(), |
9656 | diag::err_typecheck_call_invalid_ordered_compare) |
9657 | << OrigArg0.get()->getType() << OrigArg1.get()->getType() |
9658 | << SourceRange(OrigArg0.get()->getBeginLoc(), |
9659 | OrigArg1.get()->getEndLoc()); |
9660 | |
9661 | return false; |
9662 | } |
9663 | |
9664 | /// BuiltinSemaBuiltinFPClassification - Handle functions like |
9665 | /// __builtin_isnan and friends. This is declared to take (...), so we have |
9666 | /// to check everything. |
9667 | bool Sema::BuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs, |
9668 | unsigned BuiltinID) { |
9669 | if (checkArgCount(S&: *this, Call: TheCall, DesiredArgCount: NumArgs)) |
9670 | return true; |
9671 | |
9672 | FPOptions FPO = TheCall->getFPFeaturesInEffect(LO: getLangOpts()); |
9673 | if (FPO.getNoHonorInfs() && (BuiltinID == Builtin::BI__builtin_isfinite || |
9674 | BuiltinID == Builtin::BI__builtin_isinf || |
9675 | BuiltinID == Builtin::BI__builtin_isinf_sign)) |
9676 | Diag(TheCall->getBeginLoc(), diag::warn_fp_nan_inf_when_disabled) |
9677 | << 0 << 0 << TheCall->getSourceRange(); |
9678 | |
9679 | if (FPO.getNoHonorNaNs() && (BuiltinID == Builtin::BI__builtin_isnan || |
9680 | BuiltinID == Builtin::BI__builtin_isunordered)) |
9681 | Diag(TheCall->getBeginLoc(), diag::warn_fp_nan_inf_when_disabled) |
9682 | << 1 << 0 << TheCall->getSourceRange(); |
9683 | |
9684 | bool IsFPClass = NumArgs == 2; |
9685 | |
9686 | // Find out position of floating-point argument. |
9687 | unsigned FPArgNo = IsFPClass ? 0 : NumArgs - 1; |
9688 | |
9689 | // We can count on all parameters preceding the floating-point just being int. |
9690 | // Try all of those. |
9691 | for (unsigned i = 0; i < FPArgNo; ++i) { |
9692 | Expr *Arg = TheCall->getArg(Arg: i); |
9693 | |
9694 | if (Arg->isTypeDependent()) |
9695 | return false; |
9696 | |
9697 | ExprResult Res = PerformImplicitConversion(Arg, Context.IntTy, AA_Passing); |
9698 | |
9699 | if (Res.isInvalid()) |
9700 | return true; |
9701 | TheCall->setArg(Arg: i, ArgExpr: Res.get()); |
9702 | } |
9703 | |
9704 | Expr *OrigArg = TheCall->getArg(Arg: FPArgNo); |
9705 | |
9706 | if (OrigArg->isTypeDependent()) |
9707 | return false; |
9708 | |
9709 | // Usual Unary Conversions will convert half to float, which we want for |
9710 | // machines that use fp16 conversion intrinsics. Else, we wnat to leave the |
9711 | // type how it is, but do normal L->Rvalue conversions. |
9712 | if (Context.getTargetInfo().useFP16ConversionIntrinsics()) |
9713 | OrigArg = UsualUnaryConversions(E: OrigArg).get(); |
9714 | else |
9715 | OrigArg = DefaultFunctionArrayLvalueConversion(E: OrigArg).get(); |
9716 | TheCall->setArg(Arg: FPArgNo, ArgExpr: OrigArg); |
9717 | |
9718 | QualType VectorResultTy; |
9719 | QualType ElementTy = OrigArg->getType(); |
9720 | // TODO: When all classification function are implemented with is_fpclass, |
9721 | // vector argument can be supported in all of them. |
9722 | if (ElementTy->isVectorType() && IsFPClass) { |
9723 | VectorResultTy = GetSignedVectorType(V: ElementTy); |
9724 | ElementTy = ElementTy->castAs<VectorType>()->getElementType(); |
9725 | } |
9726 | |
9727 | // This operation requires a non-_Complex floating-point number. |
9728 | if (!ElementTy->isRealFloatingType()) |
9729 | return Diag(OrigArg->getBeginLoc(), |
9730 | diag::err_typecheck_call_invalid_unary_fp) |
9731 | << OrigArg->getType() << OrigArg->getSourceRange(); |
9732 | |
9733 | // __builtin_isfpclass has integer parameter that specify test mask. It is |
9734 | // passed in (...), so it should be analyzed completely here. |
9735 | if (IsFPClass) |
9736 | if (BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: llvm::fcAllFlags)) |
9737 | return true; |
9738 | |
9739 | // TODO: enable this code to all classification functions. |
9740 | if (IsFPClass) { |
9741 | QualType ResultTy; |
9742 | if (!VectorResultTy.isNull()) |
9743 | ResultTy = VectorResultTy; |
9744 | else |
9745 | ResultTy = Context.IntTy; |
9746 | TheCall->setType(ResultTy); |
9747 | } |
9748 | |
9749 | return false; |
9750 | } |
9751 | |
9752 | /// Perform semantic analysis for a call to __builtin_complex. |
9753 | bool Sema::BuiltinComplex(CallExpr *TheCall) { |
9754 | if (checkArgCount(S&: *this, Call: TheCall, DesiredArgCount: 2)) |
9755 | return true; |
9756 | |
9757 | bool Dependent = false; |
9758 | for (unsigned I = 0; I != 2; ++I) { |
9759 | Expr *Arg = TheCall->getArg(Arg: I); |
9760 | QualType T = Arg->getType(); |
9761 | if (T->isDependentType()) { |
9762 | Dependent = true; |
9763 | continue; |
9764 | } |
9765 | |
9766 | // Despite supporting _Complex int, GCC requires a real floating point type |
9767 | // for the operands of __builtin_complex. |
9768 | if (!T->isRealFloatingType()) { |
9769 | return Diag(Arg->getBeginLoc(), diag::err_typecheck_call_requires_real_fp) |
9770 | << Arg->getType() << Arg->getSourceRange(); |
9771 | } |
9772 | |
9773 | ExprResult Converted = DefaultLvalueConversion(E: Arg); |
9774 | if (Converted.isInvalid()) |
9775 | return true; |
9776 | TheCall->setArg(Arg: I, ArgExpr: Converted.get()); |
9777 | } |
9778 | |
9779 | if (Dependent) { |
9780 | TheCall->setType(Context.DependentTy); |
9781 | return false; |
9782 | } |
9783 | |
9784 | Expr *Real = TheCall->getArg(Arg: 0); |
9785 | Expr *Imag = TheCall->getArg(Arg: 1); |
9786 | if (!Context.hasSameType(T1: Real->getType(), T2: Imag->getType())) { |
9787 | return Diag(Real->getBeginLoc(), |
9788 | diag::err_typecheck_call_different_arg_types) |
9789 | << Real->getType() << Imag->getType() |
9790 | << Real->getSourceRange() << Imag->getSourceRange(); |
9791 | } |
9792 | |
9793 | // We don't allow _Complex _Float16 nor _Complex __fp16 as type specifiers; |
9794 | // don't allow this builtin to form those types either. |
9795 | // FIXME: Should we allow these types? |
9796 | if (Real->getType()->isFloat16Type()) |
9797 | return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec) |
9798 | << "_Float16" ; |
9799 | if (Real->getType()->isHalfType()) |
9800 | return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec) |
9801 | << "half" ; |
9802 | |
9803 | TheCall->setType(Context.getComplexType(T: Real->getType())); |
9804 | return false; |
9805 | } |
9806 | |
9807 | // Customized Sema Checking for VSX builtins that have the following signature: |
9808 | // vector [...] builtinName(vector [...], vector [...], const int); |
9809 | // Which takes the same type of vectors (any legal vector type) for the first |
9810 | // two arguments and takes compile time constant for the third argument. |
9811 | // Example builtins are : |
9812 | // vector double vec_xxpermdi(vector double, vector double, int); |
9813 | // vector short vec_xxsldwi(vector short, vector short, int); |
9814 | bool Sema::BuiltinVSX(CallExpr *TheCall) { |
9815 | unsigned ExpectedNumArgs = 3; |
9816 | if (checkArgCount(S&: *this, Call: TheCall, DesiredArgCount: ExpectedNumArgs)) |
9817 | return true; |
9818 | |
9819 | // Check the third argument is a compile time constant |
9820 | if (!TheCall->getArg(2)->isIntegerConstantExpr(Context)) |
9821 | return Diag(TheCall->getBeginLoc(), |
9822 | diag::err_vsx_builtin_nonconstant_argument) |
9823 | << 3 /* argument index */ << TheCall->getDirectCallee() |
9824 | << SourceRange(TheCall->getArg(2)->getBeginLoc(), |
9825 | TheCall->getArg(2)->getEndLoc()); |
9826 | |
9827 | QualType Arg1Ty = TheCall->getArg(Arg: 0)->getType(); |
9828 | QualType Arg2Ty = TheCall->getArg(Arg: 1)->getType(); |
9829 | |
9830 | // Check the type of argument 1 and argument 2 are vectors. |
9831 | SourceLocation BuiltinLoc = TheCall->getBeginLoc(); |
9832 | if ((!Arg1Ty->isVectorType() && !Arg1Ty->isDependentType()) || |
9833 | (!Arg2Ty->isVectorType() && !Arg2Ty->isDependentType())) { |
9834 | return Diag(BuiltinLoc, diag::err_vec_builtin_non_vector) |
9835 | << TheCall->getDirectCallee() << /*isMorethantwoArgs*/ false |
9836 | << SourceRange(TheCall->getArg(0)->getBeginLoc(), |
9837 | TheCall->getArg(1)->getEndLoc()); |
9838 | } |
9839 | |
9840 | // Check the first two arguments are the same type. |
9841 | if (!Context.hasSameUnqualifiedType(T1: Arg1Ty, T2: Arg2Ty)) { |
9842 | return Diag(BuiltinLoc, diag::err_vec_builtin_incompatible_vector) |
9843 | << TheCall->getDirectCallee() << /*isMorethantwoArgs*/ false |
9844 | << SourceRange(TheCall->getArg(0)->getBeginLoc(), |
9845 | TheCall->getArg(1)->getEndLoc()); |
9846 | } |
9847 | |
9848 | // When default clang type checking is turned off and the customized type |
9849 | // checking is used, the returning type of the function must be explicitly |
9850 | // set. Otherwise it is _Bool by default. |
9851 | TheCall->setType(Arg1Ty); |
9852 | |
9853 | return false; |
9854 | } |
9855 | |
9856 | /// BuiltinShuffleVector - Handle __builtin_shufflevector. |
9857 | // This is declared to take (...), so we have to check everything. |
9858 | ExprResult Sema::BuiltinShuffleVector(CallExpr *TheCall) { |
9859 | if (TheCall->getNumArgs() < 2) |
9860 | return ExprError(Diag(TheCall->getEndLoc(), |
9861 | diag::err_typecheck_call_too_few_args_at_least) |
9862 | << 0 /*function call*/ << 2 << TheCall->getNumArgs() |
9863 | << /*is non object*/ 0 << TheCall->getSourceRange()); |
9864 | |
9865 | // Determine which of the following types of shufflevector we're checking: |
9866 | // 1) unary, vector mask: (lhs, mask) |
9867 | // 2) binary, scalar mask: (lhs, rhs, index, ..., index) |
9868 | QualType resType = TheCall->getArg(Arg: 0)->getType(); |
9869 | unsigned numElements = 0; |
9870 | |
9871 | if (!TheCall->getArg(Arg: 0)->isTypeDependent() && |
9872 | !TheCall->getArg(Arg: 1)->isTypeDependent()) { |
9873 | QualType LHSType = TheCall->getArg(Arg: 0)->getType(); |
9874 | QualType RHSType = TheCall->getArg(Arg: 1)->getType(); |
9875 | |
9876 | if (!LHSType->isVectorType() || !RHSType->isVectorType()) |
9877 | return ExprError( |
9878 | Diag(TheCall->getBeginLoc(), diag::err_vec_builtin_non_vector) |
9879 | << TheCall->getDirectCallee() << /*isMorethantwoArgs*/ false |
9880 | << SourceRange(TheCall->getArg(0)->getBeginLoc(), |
9881 | TheCall->getArg(1)->getEndLoc())); |
9882 | |
9883 | numElements = LHSType->castAs<VectorType>()->getNumElements(); |
9884 | unsigned numResElements = TheCall->getNumArgs() - 2; |
9885 | |
9886 | // Check to see if we have a call with 2 vector arguments, the unary shuffle |
9887 | // with mask. If so, verify that RHS is an integer vector type with the |
9888 | // same number of elts as lhs. |
9889 | if (TheCall->getNumArgs() == 2) { |
9890 | if (!RHSType->hasIntegerRepresentation() || |
9891 | RHSType->castAs<VectorType>()->getNumElements() != numElements) |
9892 | return ExprError(Diag(TheCall->getBeginLoc(), |
9893 | diag::err_vec_builtin_incompatible_vector) |
9894 | << TheCall->getDirectCallee() |
9895 | << /*isMorethantwoArgs*/ false |
9896 | << SourceRange(TheCall->getArg(1)->getBeginLoc(), |
9897 | TheCall->getArg(1)->getEndLoc())); |
9898 | } else if (!Context.hasSameUnqualifiedType(T1: LHSType, T2: RHSType)) { |
9899 | return ExprError(Diag(TheCall->getBeginLoc(), |
9900 | diag::err_vec_builtin_incompatible_vector) |
9901 | << TheCall->getDirectCallee() |
9902 | << /*isMorethantwoArgs*/ false |
9903 | << SourceRange(TheCall->getArg(0)->getBeginLoc(), |
9904 | TheCall->getArg(1)->getEndLoc())); |
9905 | } else if (numElements != numResElements) { |
9906 | QualType eltType = LHSType->castAs<VectorType>()->getElementType(); |
9907 | resType = |
9908 | Context.getVectorType(VectorType: eltType, NumElts: numResElements, VecKind: VectorKind::Generic); |
9909 | } |
9910 | } |
9911 | |
9912 | for (unsigned i = 2; i < TheCall->getNumArgs(); i++) { |
9913 | if (TheCall->getArg(Arg: i)->isTypeDependent() || |
9914 | TheCall->getArg(Arg: i)->isValueDependent()) |
9915 | continue; |
9916 | |
9917 | std::optional<llvm::APSInt> Result; |
9918 | if (!(Result = TheCall->getArg(i)->getIntegerConstantExpr(Context))) |
9919 | return ExprError(Diag(TheCall->getBeginLoc(), |
9920 | diag::err_shufflevector_nonconstant_argument) |
9921 | << TheCall->getArg(i)->getSourceRange()); |
9922 | |
9923 | // Allow -1 which will be translated to undef in the IR. |
9924 | if (Result->isSigned() && Result->isAllOnes()) |
9925 | continue; |
9926 | |
9927 | if (Result->getActiveBits() > 64 || |
9928 | Result->getZExtValue() >= numElements * 2) |
9929 | return ExprError(Diag(TheCall->getBeginLoc(), |
9930 | diag::err_shufflevector_argument_too_large) |
9931 | << TheCall->getArg(i)->getSourceRange()); |
9932 | } |
9933 | |
9934 | SmallVector<Expr*, 32> exprs; |
9935 | |
9936 | for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) { |
9937 | exprs.push_back(Elt: TheCall->getArg(Arg: i)); |
9938 | TheCall->setArg(Arg: i, ArgExpr: nullptr); |
9939 | } |
9940 | |
9941 | return new (Context) ShuffleVectorExpr(Context, exprs, resType, |
9942 | TheCall->getCallee()->getBeginLoc(), |
9943 | TheCall->getRParenLoc()); |
9944 | } |
9945 | |
9946 | /// ConvertVectorExpr - Handle __builtin_convertvector |
9947 | ExprResult Sema::ConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo, |
9948 | SourceLocation BuiltinLoc, |
9949 | SourceLocation RParenLoc) { |
9950 | ExprValueKind VK = VK_PRValue; |
9951 | ExprObjectKind OK = OK_Ordinary; |
9952 | QualType DstTy = TInfo->getType(); |
9953 | QualType SrcTy = E->getType(); |
9954 | |
9955 | if (!SrcTy->isVectorType() && !SrcTy->isDependentType()) |
9956 | return ExprError(Diag(BuiltinLoc, |
9957 | diag::err_convertvector_non_vector) |
9958 | << E->getSourceRange()); |
9959 | if (!DstTy->isVectorType() && !DstTy->isDependentType()) |
9960 | return ExprError(Diag(BuiltinLoc, diag::err_builtin_non_vector_type) |
9961 | << "second" |
9962 | << "__builtin_convertvector" ); |
9963 | |
9964 | if (!SrcTy->isDependentType() && !DstTy->isDependentType()) { |
9965 | unsigned SrcElts = SrcTy->castAs<VectorType>()->getNumElements(); |
9966 | unsigned DstElts = DstTy->castAs<VectorType>()->getNumElements(); |
9967 | if (SrcElts != DstElts) |
9968 | return ExprError(Diag(BuiltinLoc, |
9969 | diag::err_convertvector_incompatible_vector) |
9970 | << E->getSourceRange()); |
9971 | } |
9972 | |
9973 | return new (Context) class ConvertVectorExpr(E, TInfo, DstTy, VK, OK, |
9974 | BuiltinLoc, RParenLoc); |
9975 | } |
9976 | |
9977 | /// BuiltinPrefetch - Handle __builtin_prefetch. |
9978 | // This is declared to take (const void*, ...) and can take two |
9979 | // optional constant int args. |
9980 | bool Sema::BuiltinPrefetch(CallExpr *TheCall) { |
9981 | unsigned NumArgs = TheCall->getNumArgs(); |
9982 | |
9983 | if (NumArgs > 3) |
9984 | return Diag(TheCall->getEndLoc(), |
9985 | diag::err_typecheck_call_too_many_args_at_most) |
9986 | << 0 /*function call*/ << 3 << NumArgs << /*is non object*/ 0 |
9987 | << TheCall->getSourceRange(); |
9988 | |
9989 | // Argument 0 is checked for us and the remaining arguments must be |
9990 | // constant integers. |
9991 | for (unsigned i = 1; i != NumArgs; ++i) |
9992 | if (BuiltinConstantArgRange(TheCall, ArgNum: i, Low: 0, High: i == 1 ? 1 : 3)) |
9993 | return true; |
9994 | |
9995 | return false; |
9996 | } |
9997 | |
9998 | /// BuiltinArithmeticFence - Handle __arithmetic_fence. |
9999 | bool Sema::BuiltinArithmeticFence(CallExpr *TheCall) { |
10000 | if (!Context.getTargetInfo().checkArithmeticFenceSupported()) |
10001 | return Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported) |
10002 | << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); |
10003 | if (checkArgCount(S&: *this, Call: TheCall, DesiredArgCount: 1)) |
10004 | return true; |
10005 | Expr *Arg = TheCall->getArg(Arg: 0); |
10006 | if (Arg->isInstantiationDependent()) |
10007 | return false; |
10008 | |
10009 | QualType ArgTy = Arg->getType(); |
10010 | if (!ArgTy->hasFloatingRepresentation()) |
10011 | return Diag(TheCall->getEndLoc(), diag::err_typecheck_expect_flt_or_vector) |
10012 | << ArgTy; |
10013 | if (Arg->isLValue()) { |
10014 | ExprResult FirstArg = DefaultLvalueConversion(E: Arg); |
10015 | TheCall->setArg(Arg: 0, ArgExpr: FirstArg.get()); |
10016 | } |
10017 | TheCall->setType(TheCall->getArg(Arg: 0)->getType()); |
10018 | return false; |
10019 | } |
10020 | |
10021 | /// BuiltinAssume - Handle __assume (MS Extension). |
10022 | // __assume does not evaluate its arguments, and should warn if its argument |
10023 | // has side effects. |
10024 | bool Sema::BuiltinAssume(CallExpr *TheCall) { |
10025 | Expr *Arg = TheCall->getArg(Arg: 0); |
10026 | if (Arg->isInstantiationDependent()) return false; |
10027 | |
10028 | if (Arg->HasSideEffects(Context)) |
10029 | Diag(Arg->getBeginLoc(), diag::warn_assume_side_effects) |
10030 | << Arg->getSourceRange() |
10031 | << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier(); |
10032 | |
10033 | return false; |
10034 | } |
10035 | |
10036 | /// Handle __builtin_alloca_with_align. This is declared |
10037 | /// as (size_t, size_t) where the second size_t must be a power of 2 greater |
10038 | /// than 8. |
10039 | bool Sema::BuiltinAllocaWithAlign(CallExpr *TheCall) { |
10040 | // The alignment must be a constant integer. |
10041 | Expr *Arg = TheCall->getArg(Arg: 1); |
10042 | |
10043 | // We can't check the value of a dependent argument. |
10044 | if (!Arg->isTypeDependent() && !Arg->isValueDependent()) { |
10045 | if (const auto *UE = |
10046 | dyn_cast<UnaryExprOrTypeTraitExpr>(Arg->IgnoreParenImpCasts())) |
10047 | if (UE->getKind() == UETT_AlignOf || |
10048 | UE->getKind() == UETT_PreferredAlignOf) |
10049 | Diag(TheCall->getBeginLoc(), diag::warn_alloca_align_alignof) |
10050 | << Arg->getSourceRange(); |
10051 | |
10052 | llvm::APSInt Result = Arg->EvaluateKnownConstInt(Ctx: Context); |
10053 | |
10054 | if (!Result.isPowerOf2()) |
10055 | return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two) |
10056 | << Arg->getSourceRange(); |
10057 | |
10058 | if (Result < Context.getCharWidth()) |
10059 | return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_small) |
10060 | << (unsigned)Context.getCharWidth() << Arg->getSourceRange(); |
10061 | |
10062 | if (Result > std::numeric_limits<int32_t>::max()) |
10063 | return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_big) |
10064 | << std::numeric_limits<int32_t>::max() << Arg->getSourceRange(); |
10065 | } |
10066 | |
10067 | return false; |
10068 | } |
10069 | |
10070 | /// Handle __builtin_assume_aligned. This is declared |
10071 | /// as (const void*, size_t, ...) and can take one optional constant int arg. |
10072 | bool Sema::BuiltinAssumeAligned(CallExpr *TheCall) { |
10073 | if (checkArgCountRange(S&: *this, Call: TheCall, MinArgCount: 2, MaxArgCount: 3)) |
10074 | return true; |
10075 | |
10076 | unsigned NumArgs = TheCall->getNumArgs(); |
10077 | Expr *FirstArg = TheCall->getArg(Arg: 0); |
10078 | |
10079 | { |
10080 | ExprResult FirstArgResult = |
10081 | DefaultFunctionArrayLvalueConversion(E: FirstArg); |
10082 | if (checkBuiltinArgument(S&: *this, E: TheCall, ArgIndex: 0)) |
10083 | return true; |
10084 | /// In-place updation of FirstArg by checkBuiltinArgument is ignored. |
10085 | TheCall->setArg(Arg: 0, ArgExpr: FirstArgResult.get()); |
10086 | } |
10087 | |
10088 | // The alignment must be a constant integer. |
10089 | Expr *SecondArg = TheCall->getArg(Arg: 1); |
10090 | |
10091 | // We can't check the value of a dependent argument. |
10092 | if (!SecondArg->isValueDependent()) { |
10093 | llvm::APSInt Result; |
10094 | if (BuiltinConstantArg(TheCall, ArgNum: 1, Result)) |
10095 | return true; |
10096 | |
10097 | if (!Result.isPowerOf2()) |
10098 | return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two) |
10099 | << SecondArg->getSourceRange(); |
10100 | |
10101 | if (Result > Sema::MaximumAlignment) |
10102 | Diag(TheCall->getBeginLoc(), diag::warn_assume_aligned_too_great) |
10103 | << SecondArg->getSourceRange() << Sema::MaximumAlignment; |
10104 | } |
10105 | |
10106 | if (NumArgs > 2) { |
10107 | Expr *ThirdArg = TheCall->getArg(Arg: 2); |
10108 | if (convertArgumentToType(S&: *this, Value&: ThirdArg, Ty: Context.getSizeType())) |
10109 | return true; |
10110 | TheCall->setArg(Arg: 2, ArgExpr: ThirdArg); |
10111 | } |
10112 | |
10113 | return false; |
10114 | } |
10115 | |
10116 | bool Sema::BuiltinOSLogFormat(CallExpr *TheCall) { |
10117 | unsigned BuiltinID = |
10118 | cast<FunctionDecl>(Val: TheCall->getCalleeDecl())->getBuiltinID(); |
10119 | bool IsSizeCall = BuiltinID == Builtin::BI__builtin_os_log_format_buffer_size; |
10120 | |
10121 | unsigned NumArgs = TheCall->getNumArgs(); |
10122 | unsigned NumRequiredArgs = IsSizeCall ? 1 : 2; |
10123 | if (NumArgs < NumRequiredArgs) { |
10124 | return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args) |
10125 | << 0 /* function call */ << NumRequiredArgs << NumArgs |
10126 | << /*is non object*/ 0 << TheCall->getSourceRange(); |
10127 | } |
10128 | if (NumArgs >= NumRequiredArgs + 0x100) { |
10129 | return Diag(TheCall->getEndLoc(), |
10130 | diag::err_typecheck_call_too_many_args_at_most) |
10131 | << 0 /* function call */ << (NumRequiredArgs + 0xff) << NumArgs |
10132 | << /*is non object*/ 0 << TheCall->getSourceRange(); |
10133 | } |
10134 | unsigned i = 0; |
10135 | |
10136 | // For formatting call, check buffer arg. |
10137 | if (!IsSizeCall) { |
10138 | ExprResult Arg(TheCall->getArg(Arg: i)); |
10139 | InitializedEntity Entity = InitializedEntity::InitializeParameter( |
10140 | Context, Context.VoidPtrTy, false); |
10141 | Arg = PerformCopyInitialization(Entity, EqualLoc: SourceLocation(), Init: Arg); |
10142 | if (Arg.isInvalid()) |
10143 | return true; |
10144 | TheCall->setArg(Arg: i, ArgExpr: Arg.get()); |
10145 | i++; |
10146 | } |
10147 | |
10148 | // Check string literal arg. |
10149 | unsigned FormatIdx = i; |
10150 | { |
10151 | ExprResult Arg = CheckOSLogFormatStringArg(Arg: TheCall->getArg(Arg: i)); |
10152 | if (Arg.isInvalid()) |
10153 | return true; |
10154 | TheCall->setArg(Arg: i, ArgExpr: Arg.get()); |
10155 | i++; |
10156 | } |
10157 | |
10158 | // Make sure variadic args are scalar. |
10159 | unsigned FirstDataArg = i; |
10160 | while (i < NumArgs) { |
10161 | ExprResult Arg = DefaultVariadicArgumentPromotion( |
10162 | E: TheCall->getArg(Arg: i), CT: VariadicFunction, FDecl: nullptr); |
10163 | if (Arg.isInvalid()) |
10164 | return true; |
10165 | CharUnits ArgSize = Context.getTypeSizeInChars(T: Arg.get()->getType()); |
10166 | if (ArgSize.getQuantity() >= 0x100) { |
10167 | return Diag(Arg.get()->getEndLoc(), diag::err_os_log_argument_too_big) |
10168 | << i << (int)ArgSize.getQuantity() << 0xff |
10169 | << TheCall->getSourceRange(); |
10170 | } |
10171 | TheCall->setArg(Arg: i, ArgExpr: Arg.get()); |
10172 | i++; |
10173 | } |
10174 | |
10175 | // Check formatting specifiers. NOTE: We're only doing this for the non-size |
10176 | // call to avoid duplicate diagnostics. |
10177 | if (!IsSizeCall) { |
10178 | llvm::SmallBitVector CheckedVarArgs(NumArgs, false); |
10179 | ArrayRef<const Expr *> Args(TheCall->getArgs(), TheCall->getNumArgs()); |
10180 | bool Success = CheckFormatArguments( |
10181 | Args, FAPK: FAPK_Variadic, format_idx: FormatIdx, firstDataArg: FirstDataArg, Type: FST_OSLog, |
10182 | CallType: VariadicFunction, Loc: TheCall->getBeginLoc(), range: SourceRange(), |
10183 | CheckedVarArgs); |
10184 | if (!Success) |
10185 | return true; |
10186 | } |
10187 | |
10188 | if (IsSizeCall) { |
10189 | TheCall->setType(Context.getSizeType()); |
10190 | } else { |
10191 | TheCall->setType(Context.VoidPtrTy); |
10192 | } |
10193 | return false; |
10194 | } |
10195 | |
10196 | /// BuiltinConstantArg - Handle a check if argument ArgNum of CallExpr |
10197 | /// TheCall is a constant expression. |
10198 | bool Sema::BuiltinConstantArg(CallExpr *TheCall, int ArgNum, |
10199 | llvm::APSInt &Result) { |
10200 | Expr *Arg = TheCall->getArg(Arg: ArgNum); |
10201 | DeclRefExpr *DRE =cast<DeclRefExpr>(Val: TheCall->getCallee()->IgnoreParenCasts()); |
10202 | FunctionDecl *FDecl = cast<FunctionDecl>(Val: DRE->getDecl()); |
10203 | |
10204 | if (Arg->isTypeDependent() || Arg->isValueDependent()) return false; |
10205 | |
10206 | std::optional<llvm::APSInt> R; |
10207 | if (!(R = Arg->getIntegerConstantExpr(Context))) |
10208 | return Diag(TheCall->getBeginLoc(), diag::err_constant_integer_arg_type) |
10209 | << FDecl->getDeclName() << Arg->getSourceRange(); |
10210 | Result = *R; |
10211 | return false; |
10212 | } |
10213 | |
10214 | /// BuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr |
10215 | /// TheCall is a constant expression in the range [Low, High]. |
10216 | bool Sema::BuiltinConstantArgRange(CallExpr *TheCall, int ArgNum, int Low, |
10217 | int High, bool RangeIsError) { |
10218 | if (isConstantEvaluatedContext()) |
10219 | return false; |
10220 | llvm::APSInt Result; |
10221 | |
10222 | // We can't check the value of a dependent argument. |
10223 | Expr *Arg = TheCall->getArg(Arg: ArgNum); |
10224 | if (Arg->isTypeDependent() || Arg->isValueDependent()) |
10225 | return false; |
10226 | |
10227 | // Check constant-ness first. |
10228 | if (BuiltinConstantArg(TheCall, ArgNum, Result)) |
10229 | return true; |
10230 | |
10231 | if (Result.getSExtValue() < Low || Result.getSExtValue() > High) { |
10232 | if (RangeIsError) |
10233 | return Diag(TheCall->getBeginLoc(), diag::err_argument_invalid_range) |
10234 | << toString(Result, 10) << Low << High << Arg->getSourceRange(); |
10235 | else |
10236 | // Defer the warning until we know if the code will be emitted so that |
10237 | // dead code can ignore this. |
10238 | DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall, |
10239 | PDiag(diag::warn_argument_invalid_range) |
10240 | << toString(Result, 10) << Low << High |
10241 | << Arg->getSourceRange()); |
10242 | } |
10243 | |
10244 | return false; |
10245 | } |
10246 | |
10247 | /// BuiltinConstantArgMultiple - Handle a check if argument ArgNum of CallExpr |
10248 | /// TheCall is a constant expression is a multiple of Num.. |
10249 | bool Sema::BuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum, |
10250 | unsigned Num) { |
10251 | llvm::APSInt Result; |
10252 | |
10253 | // We can't check the value of a dependent argument. |
10254 | Expr *Arg = TheCall->getArg(Arg: ArgNum); |
10255 | if (Arg->isTypeDependent() || Arg->isValueDependent()) |
10256 | return false; |
10257 | |
10258 | // Check constant-ness first. |
10259 | if (BuiltinConstantArg(TheCall, ArgNum, Result)) |
10260 | return true; |
10261 | |
10262 | if (Result.getSExtValue() % Num != 0) |
10263 | return Diag(TheCall->getBeginLoc(), diag::err_argument_not_multiple) |
10264 | << Num << Arg->getSourceRange(); |
10265 | |
10266 | return false; |
10267 | } |
10268 | |
10269 | /// BuiltinConstantArgPower2 - Check if argument ArgNum of TheCall is a |
10270 | /// constant expression representing a power of 2. |
10271 | bool Sema::BuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum) { |
10272 | llvm::APSInt Result; |
10273 | |
10274 | // We can't check the value of a dependent argument. |
10275 | Expr *Arg = TheCall->getArg(Arg: ArgNum); |
10276 | if (Arg->isTypeDependent() || Arg->isValueDependent()) |
10277 | return false; |
10278 | |
10279 | // Check constant-ness first. |
10280 | if (BuiltinConstantArg(TheCall, ArgNum, Result)) |
10281 | return true; |
10282 | |
10283 | // Bit-twiddling to test for a power of 2: for x > 0, x & (x-1) is zero if |
10284 | // and only if x is a power of 2. |
10285 | if (Result.isStrictlyPositive() && (Result & (Result - 1)) == 0) |
10286 | return false; |
10287 | |
10288 | return Diag(TheCall->getBeginLoc(), diag::err_argument_not_power_of_2) |
10289 | << Arg->getSourceRange(); |
10290 | } |
10291 | |
10292 | static bool IsShiftedByte(llvm::APSInt Value) { |
10293 | if (Value.isNegative()) |
10294 | return false; |
10295 | |
10296 | // Check if it's a shifted byte, by shifting it down |
10297 | while (true) { |
10298 | // If the value fits in the bottom byte, the check passes. |
10299 | if (Value < 0x100) |
10300 | return true; |
10301 | |
10302 | // Otherwise, if the value has _any_ bits in the bottom byte, the check |
10303 | // fails. |
10304 | if ((Value & 0xFF) != 0) |
10305 | return false; |
10306 | |
10307 | // If the bottom 8 bits are all 0, but something above that is nonzero, |
10308 | // then shifting the value right by 8 bits won't affect whether it's a |
10309 | // shifted byte or not. So do that, and go round again. |
10310 | Value >>= 8; |
10311 | } |
10312 | } |
10313 | |
10314 | /// BuiltinConstantArgShiftedByte - Check if argument ArgNum of TheCall is |
10315 | /// a constant expression representing an arbitrary byte value shifted left by |
10316 | /// a multiple of 8 bits. |
10317 | bool Sema::BuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum, |
10318 | unsigned ArgBits) { |
10319 | llvm::APSInt Result; |
10320 | |
10321 | // We can't check the value of a dependent argument. |
10322 | Expr *Arg = TheCall->getArg(Arg: ArgNum); |
10323 | if (Arg->isTypeDependent() || Arg->isValueDependent()) |
10324 | return false; |
10325 | |
10326 | // Check constant-ness first. |
10327 | if (BuiltinConstantArg(TheCall, ArgNum, Result)) |
10328 | return true; |
10329 | |
10330 | // Truncate to the given size. |
10331 | Result = Result.getLoBits(numBits: ArgBits); |
10332 | Result.setIsUnsigned(true); |
10333 | |
10334 | if (IsShiftedByte(Value: Result)) |
10335 | return false; |
10336 | |
10337 | return Diag(TheCall->getBeginLoc(), diag::err_argument_not_shifted_byte) |
10338 | << Arg->getSourceRange(); |
10339 | } |
10340 | |
10341 | /// BuiltinConstantArgShiftedByteOr0xFF - Check if argument ArgNum of |
10342 | /// TheCall is a constant expression representing either a shifted byte value, |
10343 | /// or a value of the form 0x??FF (i.e. a member of the arithmetic progression |
10344 | /// 0x00FF, 0x01FF, ..., 0xFFFF). This strange range check is needed for some |
10345 | /// Arm MVE intrinsics. |
10346 | bool Sema::BuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall, int ArgNum, |
10347 | unsigned ArgBits) { |
10348 | llvm::APSInt Result; |
10349 | |
10350 | // We can't check the value of a dependent argument. |
10351 | Expr *Arg = TheCall->getArg(Arg: ArgNum); |
10352 | if (Arg->isTypeDependent() || Arg->isValueDependent()) |
10353 | return false; |
10354 | |
10355 | // Check constant-ness first. |
10356 | if (BuiltinConstantArg(TheCall, ArgNum, Result)) |
10357 | return true; |
10358 | |
10359 | // Truncate to the given size. |
10360 | Result = Result.getLoBits(numBits: ArgBits); |
10361 | Result.setIsUnsigned(true); |
10362 | |
10363 | // Check to see if it's in either of the required forms. |
10364 | if (IsShiftedByte(Value: Result) || |
10365 | (Result > 0 && Result < 0x10000 && (Result & 0xFF) == 0xFF)) |
10366 | return false; |
10367 | |
10368 | return Diag(TheCall->getBeginLoc(), |
10369 | diag::err_argument_not_shifted_byte_or_xxff) |
10370 | << Arg->getSourceRange(); |
10371 | } |
10372 | |
10373 | /// BuiltinARMMemoryTaggingCall - Handle calls of memory tagging extensions |
10374 | bool Sema::BuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall) { |
10375 | if (BuiltinID == AArch64::BI__builtin_arm_irg) { |
10376 | if (checkArgCount(S&: *this, Call: TheCall, DesiredArgCount: 2)) |
10377 | return true; |
10378 | Expr *Arg0 = TheCall->getArg(Arg: 0); |
10379 | Expr *Arg1 = TheCall->getArg(Arg: 1); |
10380 | |
10381 | ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(E: Arg0); |
10382 | if (FirstArg.isInvalid()) |
10383 | return true; |
10384 | QualType FirstArgType = FirstArg.get()->getType(); |
10385 | if (!FirstArgType->isAnyPointerType()) |
10386 | return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) |
10387 | << "first" << FirstArgType << Arg0->getSourceRange(); |
10388 | TheCall->setArg(Arg: 0, ArgExpr: FirstArg.get()); |
10389 | |
10390 | ExprResult SecArg = DefaultLvalueConversion(E: Arg1); |
10391 | if (SecArg.isInvalid()) |
10392 | return true; |
10393 | QualType SecArgType = SecArg.get()->getType(); |
10394 | if (!SecArgType->isIntegerType()) |
10395 | return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer) |
10396 | << "second" << SecArgType << Arg1->getSourceRange(); |
10397 | |
10398 | // Derive the return type from the pointer argument. |
10399 | TheCall->setType(FirstArgType); |
10400 | return false; |
10401 | } |
10402 | |
10403 | if (BuiltinID == AArch64::BI__builtin_arm_addg) { |
10404 | if (checkArgCount(S&: *this, Call: TheCall, DesiredArgCount: 2)) |
10405 | return true; |
10406 | |
10407 | Expr *Arg0 = TheCall->getArg(Arg: 0); |
10408 | ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(E: Arg0); |
10409 | if (FirstArg.isInvalid()) |
10410 | return true; |
10411 | QualType FirstArgType = FirstArg.get()->getType(); |
10412 | if (!FirstArgType->isAnyPointerType()) |
10413 | return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) |
10414 | << "first" << FirstArgType << Arg0->getSourceRange(); |
10415 | TheCall->setArg(Arg: 0, ArgExpr: FirstArg.get()); |
10416 | |
10417 | // Derive the return type from the pointer argument. |
10418 | TheCall->setType(FirstArgType); |
10419 | |
10420 | // Second arg must be an constant in range [0,15] |
10421 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: 15); |
10422 | } |
10423 | |
10424 | if (BuiltinID == AArch64::BI__builtin_arm_gmi) { |
10425 | if (checkArgCount(S&: *this, Call: TheCall, DesiredArgCount: 2)) |
10426 | return true; |
10427 | Expr *Arg0 = TheCall->getArg(Arg: 0); |
10428 | Expr *Arg1 = TheCall->getArg(Arg: 1); |
10429 | |
10430 | ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(E: Arg0); |
10431 | if (FirstArg.isInvalid()) |
10432 | return true; |
10433 | QualType FirstArgType = FirstArg.get()->getType(); |
10434 | if (!FirstArgType->isAnyPointerType()) |
10435 | return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) |
10436 | << "first" << FirstArgType << Arg0->getSourceRange(); |
10437 | |
10438 | QualType SecArgType = Arg1->getType(); |
10439 | if (!SecArgType->isIntegerType()) |
10440 | return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer) |
10441 | << "second" << SecArgType << Arg1->getSourceRange(); |
10442 | TheCall->setType(Context.IntTy); |
10443 | return false; |
10444 | } |
10445 | |
10446 | if (BuiltinID == AArch64::BI__builtin_arm_ldg || |
10447 | BuiltinID == AArch64::BI__builtin_arm_stg) { |
10448 | if (checkArgCount(S&: *this, Call: TheCall, DesiredArgCount: 1)) |
10449 | return true; |
10450 | Expr *Arg0 = TheCall->getArg(Arg: 0); |
10451 | ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(E: Arg0); |
10452 | if (FirstArg.isInvalid()) |
10453 | return true; |
10454 | |
10455 | QualType FirstArgType = FirstArg.get()->getType(); |
10456 | if (!FirstArgType->isAnyPointerType()) |
10457 | return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) |
10458 | << "first" << FirstArgType << Arg0->getSourceRange(); |
10459 | TheCall->setArg(Arg: 0, ArgExpr: FirstArg.get()); |
10460 | |
10461 | // Derive the return type from the pointer argument. |
10462 | if (BuiltinID == AArch64::BI__builtin_arm_ldg) |
10463 | TheCall->setType(FirstArgType); |
10464 | return false; |
10465 | } |
10466 | |
10467 | if (BuiltinID == AArch64::BI__builtin_arm_subp) { |
10468 | Expr *ArgA = TheCall->getArg(Arg: 0); |
10469 | Expr *ArgB = TheCall->getArg(Arg: 1); |
10470 | |
10471 | ExprResult ArgExprA = DefaultFunctionArrayLvalueConversion(E: ArgA); |
10472 | ExprResult ArgExprB = DefaultFunctionArrayLvalueConversion(E: ArgB); |
10473 | |
10474 | if (ArgExprA.isInvalid() || ArgExprB.isInvalid()) |
10475 | return true; |
10476 | |
10477 | QualType ArgTypeA = ArgExprA.get()->getType(); |
10478 | QualType ArgTypeB = ArgExprB.get()->getType(); |
10479 | |
10480 | auto isNull = [&] (Expr *E) -> bool { |
10481 | return E->isNullPointerConstant( |
10482 | Ctx&: Context, NPC: Expr::NPC_ValueDependentIsNotNull); }; |
10483 | |
10484 | // argument should be either a pointer or null |
10485 | if (!ArgTypeA->isAnyPointerType() && !isNull(ArgA)) |
10486 | return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer) |
10487 | << "first" << ArgTypeA << ArgA->getSourceRange(); |
10488 | |
10489 | if (!ArgTypeB->isAnyPointerType() && !isNull(ArgB)) |
10490 | return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer) |
10491 | << "second" << ArgTypeB << ArgB->getSourceRange(); |
10492 | |
10493 | // Ensure Pointee types are compatible |
10494 | if (ArgTypeA->isAnyPointerType() && !isNull(ArgA) && |
10495 | ArgTypeB->isAnyPointerType() && !isNull(ArgB)) { |
10496 | QualType pointeeA = ArgTypeA->getPointeeType(); |
10497 | QualType pointeeB = ArgTypeB->getPointeeType(); |
10498 | if (!Context.typesAreCompatible( |
10499 | T1: Context.getCanonicalType(T: pointeeA).getUnqualifiedType(), |
10500 | T2: Context.getCanonicalType(T: pointeeB).getUnqualifiedType())) { |
10501 | return Diag(TheCall->getBeginLoc(), diag::err_typecheck_sub_ptr_compatible) |
10502 | << ArgTypeA << ArgTypeB << ArgA->getSourceRange() |
10503 | << ArgB->getSourceRange(); |
10504 | } |
10505 | } |
10506 | |
10507 | // at least one argument should be pointer type |
10508 | if (!ArgTypeA->isAnyPointerType() && !ArgTypeB->isAnyPointerType()) |
10509 | return Diag(TheCall->getBeginLoc(), diag::err_memtag_any2arg_pointer) |
10510 | << ArgTypeA << ArgTypeB << ArgA->getSourceRange(); |
10511 | |
10512 | if (isNull(ArgA)) // adopt type of the other pointer |
10513 | ArgExprA = ImpCastExprToType(E: ArgExprA.get(), Type: ArgTypeB, CK: CK_NullToPointer); |
10514 | |
10515 | if (isNull(ArgB)) |
10516 | ArgExprB = ImpCastExprToType(E: ArgExprB.get(), Type: ArgTypeA, CK: CK_NullToPointer); |
10517 | |
10518 | TheCall->setArg(Arg: 0, ArgExpr: ArgExprA.get()); |
10519 | TheCall->setArg(Arg: 1, ArgExpr: ArgExprB.get()); |
10520 | TheCall->setType(Context.LongLongTy); |
10521 | return false; |
10522 | } |
10523 | assert(false && "Unhandled ARM MTE intrinsic" ); |
10524 | return true; |
10525 | } |
10526 | |
10527 | /// BuiltinARMSpecialReg - Handle a check if argument ArgNum of CallExpr |
10528 | /// TheCall is an ARM/AArch64 special register string literal. |
10529 | bool Sema::BuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall, |
10530 | int ArgNum, unsigned ExpectedFieldNum, |
10531 | bool AllowName) { |
10532 | bool IsARMBuiltin = BuiltinID == ARM::BI__builtin_arm_rsr64 || |
10533 | BuiltinID == ARM::BI__builtin_arm_wsr64 || |
10534 | BuiltinID == ARM::BI__builtin_arm_rsr || |
10535 | BuiltinID == ARM::BI__builtin_arm_rsrp || |
10536 | BuiltinID == ARM::BI__builtin_arm_wsr || |
10537 | BuiltinID == ARM::BI__builtin_arm_wsrp; |
10538 | bool IsAArch64Builtin = BuiltinID == AArch64::BI__builtin_arm_rsr64 || |
10539 | BuiltinID == AArch64::BI__builtin_arm_wsr64 || |
10540 | BuiltinID == AArch64::BI__builtin_arm_rsr128 || |
10541 | BuiltinID == AArch64::BI__builtin_arm_wsr128 || |
10542 | BuiltinID == AArch64::BI__builtin_arm_rsr || |
10543 | BuiltinID == AArch64::BI__builtin_arm_rsrp || |
10544 | BuiltinID == AArch64::BI__builtin_arm_wsr || |
10545 | BuiltinID == AArch64::BI__builtin_arm_wsrp; |
10546 | assert((IsARMBuiltin || IsAArch64Builtin) && "Unexpected ARM builtin." ); |
10547 | |
10548 | // We can't check the value of a dependent argument. |
10549 | Expr *Arg = TheCall->getArg(Arg: ArgNum); |
10550 | if (Arg->isTypeDependent() || Arg->isValueDependent()) |
10551 | return false; |
10552 | |
10553 | // Check if the argument is a string literal. |
10554 | if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts())) |
10555 | return Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal) |
10556 | << Arg->getSourceRange(); |
10557 | |
10558 | // Check the type of special register given. |
10559 | StringRef Reg = cast<StringLiteral>(Val: Arg->IgnoreParenImpCasts())->getString(); |
10560 | SmallVector<StringRef, 6> Fields; |
10561 | Reg.split(A&: Fields, Separator: ":" ); |
10562 | |
10563 | if (Fields.size() != ExpectedFieldNum && !(AllowName && Fields.size() == 1)) |
10564 | return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg) |
10565 | << Arg->getSourceRange(); |
10566 | |
10567 | // If the string is the name of a register then we cannot check that it is |
10568 | // valid here but if the string is of one the forms described in ACLE then we |
10569 | // can check that the supplied fields are integers and within the valid |
10570 | // ranges. |
10571 | if (Fields.size() > 1) { |
10572 | bool FiveFields = Fields.size() == 5; |
10573 | |
10574 | bool ValidString = true; |
10575 | if (IsARMBuiltin) { |
10576 | ValidString &= Fields[0].starts_with_insensitive(Prefix: "cp" ) || |
10577 | Fields[0].starts_with_insensitive(Prefix: "p" ); |
10578 | if (ValidString) |
10579 | Fields[0] = Fields[0].drop_front( |
10580 | N: Fields[0].starts_with_insensitive(Prefix: "cp" ) ? 2 : 1); |
10581 | |
10582 | ValidString &= Fields[2].starts_with_insensitive(Prefix: "c" ); |
10583 | if (ValidString) |
10584 | Fields[2] = Fields[2].drop_front(N: 1); |
10585 | |
10586 | if (FiveFields) { |
10587 | ValidString &= Fields[3].starts_with_insensitive(Prefix: "c" ); |
10588 | if (ValidString) |
10589 | Fields[3] = Fields[3].drop_front(N: 1); |
10590 | } |
10591 | } |
10592 | |
10593 | SmallVector<int, 5> Ranges; |
10594 | if (FiveFields) |
10595 | Ranges.append(IL: {IsAArch64Builtin ? 1 : 15, 7, 15, 15, 7}); |
10596 | else |
10597 | Ranges.append(IL: {15, 7, 15}); |
10598 | |
10599 | for (unsigned i=0; i<Fields.size(); ++i) { |
10600 | int IntField; |
10601 | ValidString &= !Fields[i].getAsInteger(Radix: 10, Result&: IntField); |
10602 | ValidString &= (IntField >= 0 && IntField <= Ranges[i]); |
10603 | } |
10604 | |
10605 | if (!ValidString) |
10606 | return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg) |
10607 | << Arg->getSourceRange(); |
10608 | } else if (IsAArch64Builtin && Fields.size() == 1) { |
10609 | // This code validates writes to PSTATE registers. |
10610 | |
10611 | // Not a write. |
10612 | if (TheCall->getNumArgs() != 2) |
10613 | return false; |
10614 | |
10615 | // The 128-bit system register accesses do not touch PSTATE. |
10616 | if (BuiltinID == AArch64::BI__builtin_arm_rsr128 || |
10617 | BuiltinID == AArch64::BI__builtin_arm_wsr128) |
10618 | return false; |
10619 | |
10620 | // These are the named PSTATE accesses using "MSR (immediate)" instructions, |
10621 | // along with the upper limit on the immediates allowed. |
10622 | auto MaxLimit = llvm::StringSwitch<std::optional<unsigned>>(Reg) |
10623 | .CaseLower(S: "spsel" , Value: 15) |
10624 | .CaseLower(S: "daifclr" , Value: 15) |
10625 | .CaseLower(S: "daifset" , Value: 15) |
10626 | .CaseLower(S: "pan" , Value: 15) |
10627 | .CaseLower(S: "uao" , Value: 15) |
10628 | .CaseLower(S: "dit" , Value: 15) |
10629 | .CaseLower(S: "ssbs" , Value: 15) |
10630 | .CaseLower(S: "tco" , Value: 15) |
10631 | .CaseLower(S: "allint" , Value: 1) |
10632 | .CaseLower(S: "pm" , Value: 1) |
10633 | .Default(Value: std::nullopt); |
10634 | |
10635 | // If this is not a named PSTATE, just continue without validating, as this |
10636 | // will be lowered to an "MSR (register)" instruction directly |
10637 | if (!MaxLimit) |
10638 | return false; |
10639 | |
10640 | // Here we only allow constants in the range for that pstate, as required by |
10641 | // the ACLE. |
10642 | // |
10643 | // While clang also accepts the names of system registers in its ACLE |
10644 | // intrinsics, we prevent this with the PSTATE names used in MSR (immediate) |
10645 | // as the value written via a register is different to the value used as an |
10646 | // immediate to have the same effect. e.g., for the instruction `msr tco, |
10647 | // x0`, it is bit 25 of register x0 that is written into PSTATE.TCO, but |
10648 | // with `msr tco, #imm`, it is bit 0 of xN that is written into PSTATE.TCO. |
10649 | // |
10650 | // If a programmer wants to codegen the MSR (register) form of `msr tco, |
10651 | // xN`, they can still do so by specifying the register using five |
10652 | // colon-separated numbers in a string. |
10653 | return BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: *MaxLimit); |
10654 | } |
10655 | |
10656 | return false; |
10657 | } |
10658 | |
10659 | /// BuiltinPPCMMACall - Check the call to a PPC MMA builtin for validity. |
10660 | /// Emit an error and return true on failure; return false on success. |
10661 | /// TypeStr is a string containing the type descriptor of the value returned by |
10662 | /// the builtin and the descriptors of the expected type of the arguments. |
10663 | bool Sema::BuiltinPPCMMACall(CallExpr *TheCall, unsigned BuiltinID, |
10664 | const char *TypeStr) { |
10665 | |
10666 | assert((TypeStr[0] != '\0') && |
10667 | "Invalid types in PPC MMA builtin declaration" ); |
10668 | |
10669 | unsigned Mask = 0; |
10670 | unsigned ArgNum = 0; |
10671 | |
10672 | // The first type in TypeStr is the type of the value returned by the |
10673 | // builtin. So we first read that type and change the type of TheCall. |
10674 | QualType type = DecodePPCMMATypeFromStr(Context, Str&: TypeStr, Mask); |
10675 | TheCall->setType(type); |
10676 | |
10677 | while (*TypeStr != '\0') { |
10678 | Mask = 0; |
10679 | QualType ExpectedType = DecodePPCMMATypeFromStr(Context, Str&: TypeStr, Mask); |
10680 | if (ArgNum >= TheCall->getNumArgs()) { |
10681 | ArgNum++; |
10682 | break; |
10683 | } |
10684 | |
10685 | Expr *Arg = TheCall->getArg(Arg: ArgNum); |
10686 | QualType PassedType = Arg->getType(); |
10687 | QualType StrippedRVType = PassedType.getCanonicalType(); |
10688 | |
10689 | // Strip Restrict/Volatile qualifiers. |
10690 | if (StrippedRVType.isRestrictQualified() || |
10691 | StrippedRVType.isVolatileQualified()) |
10692 | StrippedRVType = StrippedRVType.getCanonicalType().getUnqualifiedType(); |
10693 | |
10694 | // The only case where the argument type and expected type are allowed to |
10695 | // mismatch is if the argument type is a non-void pointer (or array) and |
10696 | // expected type is a void pointer. |
10697 | if (StrippedRVType != ExpectedType) |
10698 | if (!(ExpectedType->isVoidPointerType() && |
10699 | (StrippedRVType->isPointerType() || StrippedRVType->isArrayType()))) |
10700 | return Diag(Arg->getBeginLoc(), |
10701 | diag::err_typecheck_convert_incompatible) |
10702 | << PassedType << ExpectedType << 1 << 0 << 0; |
10703 | |
10704 | // If the value of the Mask is not 0, we have a constraint in the size of |
10705 | // the integer argument so here we ensure the argument is a constant that |
10706 | // is in the valid range. |
10707 | if (Mask != 0 && BuiltinConstantArgRange(TheCall, ArgNum, Low: 0, High: Mask, RangeIsError: true)) |
10708 | return true; |
10709 | |
10710 | ArgNum++; |
10711 | } |
10712 | |
10713 | // In case we exited early from the previous loop, there are other types to |
10714 | // read from TypeStr. So we need to read them all to ensure we have the right |
10715 | // number of arguments in TheCall and if it is not the case, to display a |
10716 | // better error message. |
10717 | while (*TypeStr != '\0') { |
10718 | (void) DecodePPCMMATypeFromStr(Context, Str&: TypeStr, Mask); |
10719 | ArgNum++; |
10720 | } |
10721 | if (checkArgCount(S&: *this, Call: TheCall, DesiredArgCount: ArgNum)) |
10722 | return true; |
10723 | |
10724 | return false; |
10725 | } |
10726 | |
10727 | /// BuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val). |
10728 | /// This checks that the target supports __builtin_longjmp and |
10729 | /// that val is a constant 1. |
10730 | bool Sema::BuiltinLongjmp(CallExpr *TheCall) { |
10731 | if (!Context.getTargetInfo().hasSjLjLowering()) |
10732 | return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_unsupported) |
10733 | << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); |
10734 | |
10735 | Expr *Arg = TheCall->getArg(Arg: 1); |
10736 | llvm::APSInt Result; |
10737 | |
10738 | // TODO: This is less than ideal. Overload this to take a value. |
10739 | if (BuiltinConstantArg(TheCall, ArgNum: 1, Result)) |
10740 | return true; |
10741 | |
10742 | if (Result != 1) |
10743 | return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_invalid_val) |
10744 | << SourceRange(Arg->getBeginLoc(), Arg->getEndLoc()); |
10745 | |
10746 | return false; |
10747 | } |
10748 | |
10749 | /// BuiltinSetjmp - Handle __builtin_setjmp(void *env[5]). |
10750 | /// This checks that the target supports __builtin_setjmp. |
10751 | bool Sema::BuiltinSetjmp(CallExpr *TheCall) { |
10752 | if (!Context.getTargetInfo().hasSjLjLowering()) |
10753 | return Diag(TheCall->getBeginLoc(), diag::err_builtin_setjmp_unsupported) |
10754 | << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); |
10755 | return false; |
10756 | } |
10757 | |
10758 | namespace { |
10759 | |
10760 | class UncoveredArgHandler { |
10761 | enum { Unknown = -1, AllCovered = -2 }; |
10762 | |
10763 | signed FirstUncoveredArg = Unknown; |
10764 | SmallVector<const Expr *, 4> DiagnosticExprs; |
10765 | |
10766 | public: |
10767 | UncoveredArgHandler() = default; |
10768 | |
10769 | bool hasUncoveredArg() const { |
10770 | return (FirstUncoveredArg >= 0); |
10771 | } |
10772 | |
10773 | unsigned getUncoveredArg() const { |
10774 | assert(hasUncoveredArg() && "no uncovered argument" ); |
10775 | return FirstUncoveredArg; |
10776 | } |
10777 | |
10778 | void setAllCovered() { |
10779 | // A string has been found with all arguments covered, so clear out |
10780 | // the diagnostics. |
10781 | DiagnosticExprs.clear(); |
10782 | FirstUncoveredArg = AllCovered; |
10783 | } |
10784 | |
10785 | void Update(signed NewFirstUncoveredArg, const Expr *StrExpr) { |
10786 | assert(NewFirstUncoveredArg >= 0 && "Outside range" ); |
10787 | |
10788 | // Don't update if a previous string covers all arguments. |
10789 | if (FirstUncoveredArg == AllCovered) |
10790 | return; |
10791 | |
10792 | // UncoveredArgHandler tracks the highest uncovered argument index |
10793 | // and with it all the strings that match this index. |
10794 | if (NewFirstUncoveredArg == FirstUncoveredArg) |
10795 | DiagnosticExprs.push_back(Elt: StrExpr); |
10796 | else if (NewFirstUncoveredArg > FirstUncoveredArg) { |
10797 | DiagnosticExprs.clear(); |
10798 | DiagnosticExprs.push_back(Elt: StrExpr); |
10799 | FirstUncoveredArg = NewFirstUncoveredArg; |
10800 | } |
10801 | } |
10802 | |
10803 | void Diagnose(Sema &S, bool IsFunctionCall, const Expr *ArgExpr); |
10804 | }; |
10805 | |
10806 | enum StringLiteralCheckType { |
10807 | SLCT_NotALiteral, |
10808 | SLCT_UncheckedLiteral, |
10809 | SLCT_CheckedLiteral |
10810 | }; |
10811 | |
10812 | } // namespace |
10813 | |
10814 | static void sumOffsets(llvm::APSInt &Offset, llvm::APSInt Addend, |
10815 | BinaryOperatorKind BinOpKind, |
10816 | bool AddendIsRight) { |
10817 | unsigned BitWidth = Offset.getBitWidth(); |
10818 | unsigned AddendBitWidth = Addend.getBitWidth(); |
10819 | // There might be negative interim results. |
10820 | if (Addend.isUnsigned()) { |
10821 | Addend = Addend.zext(width: ++AddendBitWidth); |
10822 | Addend.setIsSigned(true); |
10823 | } |
10824 | // Adjust the bit width of the APSInts. |
10825 | if (AddendBitWidth > BitWidth) { |
10826 | Offset = Offset.sext(width: AddendBitWidth); |
10827 | BitWidth = AddendBitWidth; |
10828 | } else if (BitWidth > AddendBitWidth) { |
10829 | Addend = Addend.sext(width: BitWidth); |
10830 | } |
10831 | |
10832 | bool Ov = false; |
10833 | llvm::APSInt ResOffset = Offset; |
10834 | if (BinOpKind == BO_Add) |
10835 | ResOffset = Offset.sadd_ov(RHS: Addend, Overflow&: Ov); |
10836 | else { |
10837 | assert(AddendIsRight && BinOpKind == BO_Sub && |
10838 | "operator must be add or sub with addend on the right" ); |
10839 | ResOffset = Offset.ssub_ov(RHS: Addend, Overflow&: Ov); |
10840 | } |
10841 | |
10842 | // We add an offset to a pointer here so we should support an offset as big as |
10843 | // possible. |
10844 | if (Ov) { |
10845 | assert(BitWidth <= std::numeric_limits<unsigned>::max() / 2 && |
10846 | "index (intermediate) result too big" ); |
10847 | Offset = Offset.sext(width: 2 * BitWidth); |
10848 | sumOffsets(Offset, Addend, BinOpKind, AddendIsRight); |
10849 | return; |
10850 | } |
10851 | |
10852 | Offset = ResOffset; |
10853 | } |
10854 | |
10855 | namespace { |
10856 | |
10857 | // This is a wrapper class around StringLiteral to support offsetted string |
10858 | // literals as format strings. It takes the offset into account when returning |
10859 | // the string and its length or the source locations to display notes correctly. |
10860 | class FormatStringLiteral { |
10861 | const StringLiteral *FExpr; |
10862 | int64_t Offset; |
10863 | |
10864 | public: |
10865 | FormatStringLiteral(const StringLiteral *fexpr, int64_t Offset = 0) |
10866 | : FExpr(fexpr), Offset(Offset) {} |
10867 | |
10868 | StringRef getString() const { |
10869 | return FExpr->getString().drop_front(N: Offset); |
10870 | } |
10871 | |
10872 | unsigned getByteLength() const { |
10873 | return FExpr->getByteLength() - getCharByteWidth() * Offset; |
10874 | } |
10875 | |
10876 | unsigned getLength() const { return FExpr->getLength() - Offset; } |
10877 | unsigned getCharByteWidth() const { return FExpr->getCharByteWidth(); } |
10878 | |
10879 | StringLiteralKind getKind() const { return FExpr->getKind(); } |
10880 | |
10881 | QualType getType() const { return FExpr->getType(); } |
10882 | |
10883 | bool isAscii() const { return FExpr->isOrdinary(); } |
10884 | bool isWide() const { return FExpr->isWide(); } |
10885 | bool isUTF8() const { return FExpr->isUTF8(); } |
10886 | bool isUTF16() const { return FExpr->isUTF16(); } |
10887 | bool isUTF32() const { return FExpr->isUTF32(); } |
10888 | bool isPascal() const { return FExpr->isPascal(); } |
10889 | |
10890 | SourceLocation getLocationOfByte( |
10891 | unsigned ByteNo, const SourceManager &SM, const LangOptions &Features, |
10892 | const TargetInfo &Target, unsigned *StartToken = nullptr, |
10893 | unsigned *StartTokenByteOffset = nullptr) const { |
10894 | return FExpr->getLocationOfByte(ByteNo: ByteNo + Offset, SM, Features, Target, |
10895 | StartToken, StartTokenByteOffset); |
10896 | } |
10897 | |
10898 | SourceLocation getBeginLoc() const LLVM_READONLY { |
10899 | return FExpr->getBeginLoc().getLocWithOffset(Offset); |
10900 | } |
10901 | |
10902 | SourceLocation getEndLoc() const LLVM_READONLY { return FExpr->getEndLoc(); } |
10903 | }; |
10904 | |
10905 | } // namespace |
10906 | |
10907 | static void CheckFormatString( |
10908 | Sema &S, const FormatStringLiteral *FExpr, const Expr *OrigFormatExpr, |
10909 | ArrayRef<const Expr *> Args, Sema::FormatArgumentPassingKind APK, |
10910 | unsigned format_idx, unsigned firstDataArg, Sema::FormatStringType Type, |
10911 | bool inFunctionCall, Sema::VariadicCallType CallType, |
10912 | llvm::SmallBitVector &CheckedVarArgs, UncoveredArgHandler &UncoveredArg, |
10913 | bool IgnoreStringsWithoutSpecifiers); |
10914 | |
10915 | static const Expr *maybeConstEvalStringLiteral(ASTContext &Context, |
10916 | const Expr *E); |
10917 | |
10918 | // Determine if an expression is a string literal or constant string. |
10919 | // If this function returns false on the arguments to a function expecting a |
10920 | // format string, we will usually need to emit a warning. |
10921 | // True string literals are then checked by CheckFormatString. |
10922 | static StringLiteralCheckType |
10923 | checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args, |
10924 | Sema::FormatArgumentPassingKind APK, unsigned format_idx, |
10925 | unsigned firstDataArg, Sema::FormatStringType Type, |
10926 | Sema::VariadicCallType CallType, bool InFunctionCall, |
10927 | llvm::SmallBitVector &CheckedVarArgs, |
10928 | UncoveredArgHandler &UncoveredArg, llvm::APSInt Offset, |
10929 | bool IgnoreStringsWithoutSpecifiers = false) { |
10930 | if (S.isConstantEvaluatedContext()) |
10931 | return SLCT_NotALiteral; |
10932 | tryAgain: |
10933 | assert(Offset.isSigned() && "invalid offset" ); |
10934 | |
10935 | if (E->isTypeDependent() || E->isValueDependent()) |
10936 | return SLCT_NotALiteral; |
10937 | |
10938 | E = E->IgnoreParenCasts(); |
10939 | |
10940 | if (E->isNullPointerConstant(Ctx&: S.Context, NPC: Expr::NPC_ValueDependentIsNotNull)) |
10941 | // Technically -Wformat-nonliteral does not warn about this case. |
10942 | // The behavior of printf and friends in this case is implementation |
10943 | // dependent. Ideally if the format string cannot be null then |
10944 | // it should have a 'nonnull' attribute in the function prototype. |
10945 | return SLCT_UncheckedLiteral; |
10946 | |
10947 | switch (E->getStmtClass()) { |
10948 | case Stmt::InitListExprClass: |
10949 | // Handle expressions like {"foobar"}. |
10950 | if (const clang::Expr *SLE = maybeConstEvalStringLiteral(Context&: S.Context, E)) { |
10951 | return checkFormatStringExpr(S, E: SLE, Args, APK, format_idx, firstDataArg, |
10952 | Type, CallType, /*InFunctionCall*/ false, |
10953 | CheckedVarArgs, UncoveredArg, Offset, |
10954 | IgnoreStringsWithoutSpecifiers); |
10955 | } |
10956 | return SLCT_NotALiteral; |
10957 | case Stmt::BinaryConditionalOperatorClass: |
10958 | case Stmt::ConditionalOperatorClass: { |
10959 | // The expression is a literal if both sub-expressions were, and it was |
10960 | // completely checked only if both sub-expressions were checked. |
10961 | const AbstractConditionalOperator *C = |
10962 | cast<AbstractConditionalOperator>(Val: E); |
10963 | |
10964 | // Determine whether it is necessary to check both sub-expressions, for |
10965 | // example, because the condition expression is a constant that can be |
10966 | // evaluated at compile time. |
10967 | bool CheckLeft = true, CheckRight = true; |
10968 | |
10969 | bool Cond; |
10970 | if (C->getCond()->EvaluateAsBooleanCondition( |
10971 | Result&: Cond, Ctx: S.getASTContext(), InConstantContext: S.isConstantEvaluatedContext())) { |
10972 | if (Cond) |
10973 | CheckRight = false; |
10974 | else |
10975 | CheckLeft = false; |
10976 | } |
10977 | |
10978 | // We need to maintain the offsets for the right and the left hand side |
10979 | // separately to check if every possible indexed expression is a valid |
10980 | // string literal. They might have different offsets for different string |
10981 | // literals in the end. |
10982 | StringLiteralCheckType Left; |
10983 | if (!CheckLeft) |
10984 | Left = SLCT_UncheckedLiteral; |
10985 | else { |
10986 | Left = checkFormatStringExpr(S, E: C->getTrueExpr(), Args, APK, format_idx, |
10987 | firstDataArg, Type, CallType, InFunctionCall, |
10988 | CheckedVarArgs, UncoveredArg, Offset, |
10989 | IgnoreStringsWithoutSpecifiers); |
10990 | if (Left == SLCT_NotALiteral || !CheckRight) { |
10991 | return Left; |
10992 | } |
10993 | } |
10994 | |
10995 | StringLiteralCheckType Right = checkFormatStringExpr( |
10996 | S, E: C->getFalseExpr(), Args, APK, format_idx, firstDataArg, Type, |
10997 | CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset, |
10998 | IgnoreStringsWithoutSpecifiers); |
10999 | |
11000 | return (CheckLeft && Left < Right) ? Left : Right; |
11001 | } |
11002 | |
11003 | case Stmt::ImplicitCastExprClass: |
11004 | E = cast<ImplicitCastExpr>(Val: E)->getSubExpr(); |
11005 | goto tryAgain; |
11006 | |
11007 | case Stmt::OpaqueValueExprClass: |
11008 | if (const Expr *src = cast<OpaqueValueExpr>(Val: E)->getSourceExpr()) { |
11009 | E = src; |
11010 | goto tryAgain; |
11011 | } |
11012 | return SLCT_NotALiteral; |
11013 | |
11014 | case Stmt::PredefinedExprClass: |
11015 | // While __func__, etc., are technically not string literals, they |
11016 | // cannot contain format specifiers and thus are not a security |
11017 | // liability. |
11018 | return SLCT_UncheckedLiteral; |
11019 | |
11020 | case Stmt::DeclRefExprClass: { |
11021 | const DeclRefExpr *DR = cast<DeclRefExpr>(Val: E); |
11022 | |
11023 | // As an exception, do not flag errors for variables binding to |
11024 | // const string literals. |
11025 | if (const VarDecl *VD = dyn_cast<VarDecl>(Val: DR->getDecl())) { |
11026 | bool isConstant = false; |
11027 | QualType T = DR->getType(); |
11028 | |
11029 | if (const ArrayType *AT = S.Context.getAsArrayType(T)) { |
11030 | isConstant = AT->getElementType().isConstant(Ctx: S.Context); |
11031 | } else if (const PointerType *PT = T->getAs<PointerType>()) { |
11032 | isConstant = T.isConstant(Ctx: S.Context) && |
11033 | PT->getPointeeType().isConstant(Ctx: S.Context); |
11034 | } else if (T->isObjCObjectPointerType()) { |
11035 | // In ObjC, there is usually no "const ObjectPointer" type, |
11036 | // so don't check if the pointee type is constant. |
11037 | isConstant = T.isConstant(Ctx: S.Context); |
11038 | } |
11039 | |
11040 | if (isConstant) { |
11041 | if (const Expr *Init = VD->getAnyInitializer()) { |
11042 | // Look through initializers like const char c[] = { "foo" } |
11043 | if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Val: Init)) { |
11044 | if (InitList->isStringLiteralInit()) |
11045 | Init = InitList->getInit(Init: 0)->IgnoreParenImpCasts(); |
11046 | } |
11047 | return checkFormatStringExpr( |
11048 | S, E: Init, Args, APK, format_idx, firstDataArg, Type, CallType, |
11049 | /*InFunctionCall*/ false, CheckedVarArgs, UncoveredArg, Offset); |
11050 | } |
11051 | } |
11052 | |
11053 | // When the format argument is an argument of this function, and this |
11054 | // function also has the format attribute, there are several interactions |
11055 | // for which there shouldn't be a warning. For instance, when calling |
11056 | // v*printf from a function that has the printf format attribute, we |
11057 | // should not emit a warning about using `fmt`, even though it's not |
11058 | // constant, because the arguments have already been checked for the |
11059 | // caller of `logmessage`: |
11060 | // |
11061 | // __attribute__((format(printf, 1, 2))) |
11062 | // void logmessage(char const *fmt, ...) { |
11063 | // va_list ap; |
11064 | // va_start(ap, fmt); |
11065 | // vprintf(fmt, ap); /* do not emit a warning about "fmt" */ |
11066 | // ... |
11067 | // } |
11068 | // |
11069 | // Another interaction that we need to support is calling a variadic |
11070 | // format function from a format function that has fixed arguments. For |
11071 | // instance: |
11072 | // |
11073 | // __attribute__((format(printf, 1, 2))) |
11074 | // void logstring(char const *fmt, char const *str) { |
11075 | // printf(fmt, str); /* do not emit a warning about "fmt" */ |
11076 | // } |
11077 | // |
11078 | // Same (and perhaps more relatably) for the variadic template case: |
11079 | // |
11080 | // template<typename... Args> |
11081 | // __attribute__((format(printf, 1, 2))) |
11082 | // void log(const char *fmt, Args&&... args) { |
11083 | // printf(fmt, forward<Args>(args)...); |
11084 | // /* do not emit a warning about "fmt" */ |
11085 | // } |
11086 | // |
11087 | // Due to implementation difficulty, we only check the format, not the |
11088 | // format arguments, in all cases. |
11089 | // |
11090 | if (const auto *PV = dyn_cast<ParmVarDecl>(Val: VD)) { |
11091 | if (const auto *D = dyn_cast<Decl>(PV->getDeclContext())) { |
11092 | for (const auto *PVFormat : D->specific_attrs<FormatAttr>()) { |
11093 | bool IsCXXMember = false; |
11094 | if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) |
11095 | IsCXXMember = MD->isInstance(); |
11096 | |
11097 | bool IsVariadic = false; |
11098 | if (const FunctionType *FnTy = D->getFunctionType()) |
11099 | IsVariadic = cast<FunctionProtoType>(FnTy)->isVariadic(); |
11100 | else if (const auto *BD = dyn_cast<BlockDecl>(D)) |
11101 | IsVariadic = BD->isVariadic(); |
11102 | else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(D)) |
11103 | IsVariadic = OMD->isVariadic(); |
11104 | |
11105 | Sema::FormatStringInfo CallerFSI; |
11106 | if (Sema::getFormatStringInfo(PVFormat, IsCXXMember, IsVariadic, |
11107 | &CallerFSI)) { |
11108 | // We also check if the formats are compatible. |
11109 | // We can't pass a 'scanf' string to a 'printf' function. |
11110 | if (PV->getFunctionScopeIndex() == CallerFSI.FormatIdx && |
11111 | Type == S.GetFormatStringType(PVFormat)) { |
11112 | // Lastly, check that argument passing kinds transition in a |
11113 | // way that makes sense: |
11114 | // from a caller with FAPK_VAList, allow FAPK_VAList |
11115 | // from a caller with FAPK_Fixed, allow FAPK_Fixed |
11116 | // from a caller with FAPK_Fixed, allow FAPK_Variadic |
11117 | // from a caller with FAPK_Variadic, allow FAPK_VAList |
11118 | switch (combineFAPK(CallerFSI.ArgPassingKind, APK)) { |
11119 | case combineFAPK(Sema::FAPK_VAList, Sema::FAPK_VAList): |
11120 | case combineFAPK(Sema::FAPK_Fixed, Sema::FAPK_Fixed): |
11121 | case combineFAPK(Sema::FAPK_Fixed, Sema::FAPK_Variadic): |
11122 | case combineFAPK(Sema::FAPK_Variadic, Sema::FAPK_VAList): |
11123 | return SLCT_UncheckedLiteral; |
11124 | } |
11125 | } |
11126 | } |
11127 | } |
11128 | } |
11129 | } |
11130 | } |
11131 | |
11132 | return SLCT_NotALiteral; |
11133 | } |
11134 | |
11135 | case Stmt::CallExprClass: |
11136 | case Stmt::CXXMemberCallExprClass: { |
11137 | const CallExpr *CE = cast<CallExpr>(Val: E); |
11138 | if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Val: CE->getCalleeDecl())) { |
11139 | bool IsFirst = true; |
11140 | StringLiteralCheckType CommonResult; |
11141 | for (const auto *FA : ND->specific_attrs<FormatArgAttr>()) { |
11142 | const Expr *Arg = CE->getArg(FA->getFormatIdx().getASTIndex()); |
11143 | StringLiteralCheckType Result = checkFormatStringExpr( |
11144 | S, Arg, Args, APK, format_idx, firstDataArg, Type, CallType, |
11145 | InFunctionCall, CheckedVarArgs, UncoveredArg, Offset, |
11146 | IgnoreStringsWithoutSpecifiers); |
11147 | if (IsFirst) { |
11148 | CommonResult = Result; |
11149 | IsFirst = false; |
11150 | } |
11151 | } |
11152 | if (!IsFirst) |
11153 | return CommonResult; |
11154 | |
11155 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: ND)) { |
11156 | unsigned BuiltinID = FD->getBuiltinID(); |
11157 | if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString || |
11158 | BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) { |
11159 | const Expr *Arg = CE->getArg(Arg: 0); |
11160 | return checkFormatStringExpr( |
11161 | S, E: Arg, Args, APK, format_idx, firstDataArg, Type, CallType, |
11162 | InFunctionCall, CheckedVarArgs, UncoveredArg, Offset, |
11163 | IgnoreStringsWithoutSpecifiers); |
11164 | } |
11165 | } |
11166 | } |
11167 | if (const Expr *SLE = maybeConstEvalStringLiteral(Context&: S.Context, E)) |
11168 | return checkFormatStringExpr(S, E: SLE, Args, APK, format_idx, firstDataArg, |
11169 | Type, CallType, /*InFunctionCall*/ false, |
11170 | CheckedVarArgs, UncoveredArg, Offset, |
11171 | IgnoreStringsWithoutSpecifiers); |
11172 | return SLCT_NotALiteral; |
11173 | } |
11174 | case Stmt::ObjCMessageExprClass: { |
11175 | const auto *ME = cast<ObjCMessageExpr>(Val: E); |
11176 | if (const auto *MD = ME->getMethodDecl()) { |
11177 | if (const auto *FA = MD->getAttr<FormatArgAttr>()) { |
11178 | // As a special case heuristic, if we're using the method -[NSBundle |
11179 | // localizedStringForKey:value:table:], ignore any key strings that lack |
11180 | // format specifiers. The idea is that if the key doesn't have any |
11181 | // format specifiers then its probably just a key to map to the |
11182 | // localized strings. If it does have format specifiers though, then its |
11183 | // likely that the text of the key is the format string in the |
11184 | // programmer's language, and should be checked. |
11185 | const ObjCInterfaceDecl *IFace; |
11186 | if (MD->isInstanceMethod() && (IFace = MD->getClassInterface()) && |
11187 | IFace->getIdentifier()->isStr("NSBundle" ) && |
11188 | MD->getSelector().isKeywordSelector( |
11189 | Names: {"localizedStringForKey" , "value" , "table" })) { |
11190 | IgnoreStringsWithoutSpecifiers = true; |
11191 | } |
11192 | |
11193 | const Expr *Arg = ME->getArg(FA->getFormatIdx().getASTIndex()); |
11194 | return checkFormatStringExpr( |
11195 | S, E: Arg, Args, APK, format_idx, firstDataArg, Type, CallType, |
11196 | InFunctionCall, CheckedVarArgs, UncoveredArg, Offset, |
11197 | IgnoreStringsWithoutSpecifiers); |
11198 | } |
11199 | } |
11200 | |
11201 | return SLCT_NotALiteral; |
11202 | } |
11203 | case Stmt::ObjCStringLiteralClass: |
11204 | case Stmt::StringLiteralClass: { |
11205 | const StringLiteral *StrE = nullptr; |
11206 | |
11207 | if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(Val: E)) |
11208 | StrE = ObjCFExpr->getString(); |
11209 | else |
11210 | StrE = cast<StringLiteral>(Val: E); |
11211 | |
11212 | if (StrE) { |
11213 | if (Offset.isNegative() || Offset > StrE->getLength()) { |
11214 | // TODO: It would be better to have an explicit warning for out of |
11215 | // bounds literals. |
11216 | return SLCT_NotALiteral; |
11217 | } |
11218 | FormatStringLiteral FStr(StrE, Offset.sextOrTrunc(width: 64).getSExtValue()); |
11219 | CheckFormatString(S, FExpr: &FStr, OrigFormatExpr: E, Args, APK, format_idx, firstDataArg, Type, |
11220 | inFunctionCall: InFunctionCall, CallType, CheckedVarArgs, UncoveredArg, |
11221 | IgnoreStringsWithoutSpecifiers); |
11222 | return SLCT_CheckedLiteral; |
11223 | } |
11224 | |
11225 | return SLCT_NotALiteral; |
11226 | } |
11227 | case Stmt::BinaryOperatorClass: { |
11228 | const BinaryOperator *BinOp = cast<BinaryOperator>(Val: E); |
11229 | |
11230 | // A string literal + an int offset is still a string literal. |
11231 | if (BinOp->isAdditiveOp()) { |
11232 | Expr::EvalResult LResult, RResult; |
11233 | |
11234 | bool LIsInt = BinOp->getLHS()->EvaluateAsInt( |
11235 | Result&: LResult, Ctx: S.Context, AllowSideEffects: Expr::SE_NoSideEffects, |
11236 | InConstantContext: S.isConstantEvaluatedContext()); |
11237 | bool RIsInt = BinOp->getRHS()->EvaluateAsInt( |
11238 | Result&: RResult, Ctx: S.Context, AllowSideEffects: Expr::SE_NoSideEffects, |
11239 | InConstantContext: S.isConstantEvaluatedContext()); |
11240 | |
11241 | if (LIsInt != RIsInt) { |
11242 | BinaryOperatorKind BinOpKind = BinOp->getOpcode(); |
11243 | |
11244 | if (LIsInt) { |
11245 | if (BinOpKind == BO_Add) { |
11246 | sumOffsets(Offset, Addend: LResult.Val.getInt(), BinOpKind, AddendIsRight: RIsInt); |
11247 | E = BinOp->getRHS(); |
11248 | goto tryAgain; |
11249 | } |
11250 | } else { |
11251 | sumOffsets(Offset, Addend: RResult.Val.getInt(), BinOpKind, AddendIsRight: RIsInt); |
11252 | E = BinOp->getLHS(); |
11253 | goto tryAgain; |
11254 | } |
11255 | } |
11256 | } |
11257 | |
11258 | return SLCT_NotALiteral; |
11259 | } |
11260 | case Stmt::UnaryOperatorClass: { |
11261 | const UnaryOperator *UnaOp = cast<UnaryOperator>(Val: E); |
11262 | auto ASE = dyn_cast<ArraySubscriptExpr>(Val: UnaOp->getSubExpr()); |
11263 | if (UnaOp->getOpcode() == UO_AddrOf && ASE) { |
11264 | Expr::EvalResult IndexResult; |
11265 | if (ASE->getRHS()->EvaluateAsInt(Result&: IndexResult, Ctx: S.Context, |
11266 | AllowSideEffects: Expr::SE_NoSideEffects, |
11267 | InConstantContext: S.isConstantEvaluatedContext())) { |
11268 | sumOffsets(Offset, Addend: IndexResult.Val.getInt(), BinOpKind: BO_Add, |
11269 | /*RHS is int*/ AddendIsRight: true); |
11270 | E = ASE->getBase(); |
11271 | goto tryAgain; |
11272 | } |
11273 | } |
11274 | |
11275 | return SLCT_NotALiteral; |
11276 | } |
11277 | |
11278 | default: |
11279 | return SLCT_NotALiteral; |
11280 | } |
11281 | } |
11282 | |
11283 | // If this expression can be evaluated at compile-time, |
11284 | // check if the result is a StringLiteral and return it |
11285 | // otherwise return nullptr |
11286 | static const Expr *maybeConstEvalStringLiteral(ASTContext &Context, |
11287 | const Expr *E) { |
11288 | Expr::EvalResult Result; |
11289 | if (E->EvaluateAsRValue(Result, Ctx: Context) && Result.Val.isLValue()) { |
11290 | const auto *LVE = Result.Val.getLValueBase().dyn_cast<const Expr *>(); |
11291 | if (isa_and_nonnull<StringLiteral>(Val: LVE)) |
11292 | return LVE; |
11293 | } |
11294 | return nullptr; |
11295 | } |
11296 | |
11297 | Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) { |
11298 | return llvm::StringSwitch<FormatStringType>(Format->getType()->getName()) |
11299 | .Case(S: "scanf" , Value: FST_Scanf) |
11300 | .Cases(S0: "printf" , S1: "printf0" , Value: FST_Printf) |
11301 | .Cases(S0: "NSString" , S1: "CFString" , Value: FST_NSString) |
11302 | .Case(S: "strftime" , Value: FST_Strftime) |
11303 | .Case(S: "strfmon" , Value: FST_Strfmon) |
11304 | .Cases(S0: "kprintf" , S1: "cmn_err" , S2: "vcmn_err" , S3: "zcmn_err" , Value: FST_Kprintf) |
11305 | .Case(S: "freebsd_kprintf" , Value: FST_FreeBSDKPrintf) |
11306 | .Case(S: "os_trace" , Value: FST_OSLog) |
11307 | .Case(S: "os_log" , Value: FST_OSLog) |
11308 | .Default(Value: FST_Unknown); |
11309 | } |
11310 | |
11311 | /// CheckFormatArguments - Check calls to printf and scanf (and similar |
11312 | /// functions) for correct use of format strings. |
11313 | /// Returns true if a format string has been fully checked. |
11314 | bool Sema::CheckFormatArguments(const FormatAttr *Format, |
11315 | ArrayRef<const Expr *> Args, bool IsCXXMember, |
11316 | VariadicCallType CallType, SourceLocation Loc, |
11317 | SourceRange Range, |
11318 | llvm::SmallBitVector &CheckedVarArgs) { |
11319 | FormatStringInfo FSI; |
11320 | if (getFormatStringInfo(Format, IsCXXMember, IsVariadic: CallType != VariadicDoesNotApply, |
11321 | FSI: &FSI)) |
11322 | return CheckFormatArguments(Args, FAPK: FSI.ArgPassingKind, format_idx: FSI.FormatIdx, |
11323 | firstDataArg: FSI.FirstDataArg, Type: GetFormatStringType(Format), |
11324 | CallType, Loc, range: Range, CheckedVarArgs); |
11325 | return false; |
11326 | } |
11327 | |
11328 | bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args, |
11329 | Sema::FormatArgumentPassingKind APK, |
11330 | unsigned format_idx, unsigned firstDataArg, |
11331 | FormatStringType Type, |
11332 | VariadicCallType CallType, SourceLocation Loc, |
11333 | SourceRange Range, |
11334 | llvm::SmallBitVector &CheckedVarArgs) { |
11335 | // CHECK: printf/scanf-like function is called with no format string. |
11336 | if (format_idx >= Args.size()) { |
11337 | Diag(Loc, diag::warn_missing_format_string) << Range; |
11338 | return false; |
11339 | } |
11340 | |
11341 | const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts(); |
11342 | |
11343 | // CHECK: format string is not a string literal. |
11344 | // |
11345 | // Dynamically generated format strings are difficult to |
11346 | // automatically vet at compile time. Requiring that format strings |
11347 | // are string literals: (1) permits the checking of format strings by |
11348 | // the compiler and thereby (2) can practically remove the source of |
11349 | // many format string exploits. |
11350 | |
11351 | // Format string can be either ObjC string (e.g. @"%d") or |
11352 | // C string (e.g. "%d") |
11353 | // ObjC string uses the same format specifiers as C string, so we can use |
11354 | // the same format string checking logic for both ObjC and C strings. |
11355 | UncoveredArgHandler UncoveredArg; |
11356 | StringLiteralCheckType CT = checkFormatStringExpr( |
11357 | S&: *this, E: OrigFormatExpr, Args, APK, format_idx, firstDataArg, Type, |
11358 | CallType, |
11359 | /*IsFunctionCall*/ InFunctionCall: true, CheckedVarArgs, UncoveredArg, |
11360 | /*no string offset*/ Offset: llvm::APSInt(64, false) = 0); |
11361 | |
11362 | // Generate a diagnostic where an uncovered argument is detected. |
11363 | if (UncoveredArg.hasUncoveredArg()) { |
11364 | unsigned ArgIdx = UncoveredArg.getUncoveredArg() + firstDataArg; |
11365 | assert(ArgIdx < Args.size() && "ArgIdx outside bounds" ); |
11366 | UncoveredArg.Diagnose(S&: *this, /*IsFunctionCall*/true, ArgExpr: Args[ArgIdx]); |
11367 | } |
11368 | |
11369 | if (CT != SLCT_NotALiteral) |
11370 | // Literal format string found, check done! |
11371 | return CT == SLCT_CheckedLiteral; |
11372 | |
11373 | // Strftime is particular as it always uses a single 'time' argument, |
11374 | // so it is safe to pass a non-literal string. |
11375 | if (Type == FST_Strftime) |
11376 | return false; |
11377 | |
11378 | // Do not emit diag when the string param is a macro expansion and the |
11379 | // format is either NSString or CFString. This is a hack to prevent |
11380 | // diag when using the NSLocalizedString and CFCopyLocalizedString macros |
11381 | // which are usually used in place of NS and CF string literals. |
11382 | SourceLocation FormatLoc = Args[format_idx]->getBeginLoc(); |
11383 | if (Type == FST_NSString && SourceMgr.isInSystemMacro(loc: FormatLoc)) |
11384 | return false; |
11385 | |
11386 | // If there are no arguments specified, warn with -Wformat-security, otherwise |
11387 | // warn only with -Wformat-nonliteral. |
11388 | if (Args.size() == firstDataArg) { |
11389 | Diag(FormatLoc, diag::warn_format_nonliteral_noargs) |
11390 | << OrigFormatExpr->getSourceRange(); |
11391 | switch (Type) { |
11392 | default: |
11393 | break; |
11394 | case FST_Kprintf: |
11395 | case FST_FreeBSDKPrintf: |
11396 | case FST_Printf: |
11397 | Diag(FormatLoc, diag::note_format_security_fixit) |
11398 | << FixItHint::CreateInsertion(FormatLoc, "\"%s\", " ); |
11399 | break; |
11400 | case FST_NSString: |
11401 | Diag(FormatLoc, diag::note_format_security_fixit) |
11402 | << FixItHint::CreateInsertion(FormatLoc, "@\"%@\", " ); |
11403 | break; |
11404 | } |
11405 | } else { |
11406 | Diag(FormatLoc, diag::warn_format_nonliteral) |
11407 | << OrigFormatExpr->getSourceRange(); |
11408 | } |
11409 | return false; |
11410 | } |
11411 | |
11412 | namespace { |
11413 | |
11414 | class CheckFormatHandler : public analyze_format_string::FormatStringHandler { |
11415 | protected: |
11416 | Sema &S; |
11417 | const FormatStringLiteral *FExpr; |
11418 | const Expr *OrigFormatExpr; |
11419 | const Sema::FormatStringType FSType; |
11420 | const unsigned FirstDataArg; |
11421 | const unsigned NumDataArgs; |
11422 | const char *Beg; // Start of format string. |
11423 | const Sema::FormatArgumentPassingKind ArgPassingKind; |
11424 | ArrayRef<const Expr *> Args; |
11425 | unsigned FormatIdx; |
11426 | llvm::SmallBitVector CoveredArgs; |
11427 | bool usesPositionalArgs = false; |
11428 | bool atFirstArg = true; |
11429 | bool inFunctionCall; |
11430 | Sema::VariadicCallType CallType; |
11431 | llvm::SmallBitVector &CheckedVarArgs; |
11432 | UncoveredArgHandler &UncoveredArg; |
11433 | |
11434 | public: |
11435 | CheckFormatHandler(Sema &s, const FormatStringLiteral *fexpr, |
11436 | const Expr *origFormatExpr, |
11437 | const Sema::FormatStringType type, unsigned firstDataArg, |
11438 | unsigned numDataArgs, const char *beg, |
11439 | Sema::FormatArgumentPassingKind APK, |
11440 | ArrayRef<const Expr *> Args, unsigned formatIdx, |
11441 | bool inFunctionCall, Sema::VariadicCallType callType, |
11442 | llvm::SmallBitVector &CheckedVarArgs, |
11443 | UncoveredArgHandler &UncoveredArg) |
11444 | : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr), FSType(type), |
11445 | FirstDataArg(firstDataArg), NumDataArgs(numDataArgs), Beg(beg), |
11446 | ArgPassingKind(APK), Args(Args), FormatIdx(formatIdx), |
11447 | inFunctionCall(inFunctionCall), CallType(callType), |
11448 | CheckedVarArgs(CheckedVarArgs), UncoveredArg(UncoveredArg) { |
11449 | CoveredArgs.resize(N: numDataArgs); |
11450 | CoveredArgs.reset(); |
11451 | } |
11452 | |
11453 | void DoneProcessing(); |
11454 | |
11455 | void HandleIncompleteSpecifier(const char *startSpecifier, |
11456 | unsigned specifierLen) override; |
11457 | |
11458 | void HandleInvalidLengthModifier( |
11459 | const analyze_format_string::FormatSpecifier &FS, |
11460 | const analyze_format_string::ConversionSpecifier &CS, |
11461 | const char *startSpecifier, unsigned specifierLen, |
11462 | unsigned DiagID); |
11463 | |
11464 | void HandleNonStandardLengthModifier( |
11465 | const analyze_format_string::FormatSpecifier &FS, |
11466 | const char *startSpecifier, unsigned specifierLen); |
11467 | |
11468 | void HandleNonStandardConversionSpecifier( |
11469 | const analyze_format_string::ConversionSpecifier &CS, |
11470 | const char *startSpecifier, unsigned specifierLen); |
11471 | |
11472 | void HandlePosition(const char *startPos, unsigned posLen) override; |
11473 | |
11474 | void HandleInvalidPosition(const char *startSpecifier, |
11475 | unsigned specifierLen, |
11476 | analyze_format_string::PositionContext p) override; |
11477 | |
11478 | void HandleZeroPosition(const char *startPos, unsigned posLen) override; |
11479 | |
11480 | void HandleNullChar(const char *nullCharacter) override; |
11481 | |
11482 | template <typename Range> |
11483 | static void |
11484 | EmitFormatDiagnostic(Sema &S, bool inFunctionCall, const Expr *ArgumentExpr, |
11485 | const PartialDiagnostic &PDiag, SourceLocation StringLoc, |
11486 | bool IsStringLocation, Range StringRange, |
11487 | ArrayRef<FixItHint> Fixit = std::nullopt); |
11488 | |
11489 | protected: |
11490 | bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc, |
11491 | const char *startSpec, |
11492 | unsigned specifierLen, |
11493 | const char *csStart, unsigned csLen); |
11494 | |
11495 | void HandlePositionalNonpositionalArgs(SourceLocation Loc, |
11496 | const char *startSpec, |
11497 | unsigned specifierLen); |
11498 | |
11499 | SourceRange getFormatStringRange(); |
11500 | CharSourceRange getSpecifierRange(const char *startSpecifier, |
11501 | unsigned specifierLen); |
11502 | SourceLocation getLocationOfByte(const char *x); |
11503 | |
11504 | const Expr *getDataArg(unsigned i) const; |
11505 | |
11506 | bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS, |
11507 | const analyze_format_string::ConversionSpecifier &CS, |
11508 | const char *startSpecifier, unsigned specifierLen, |
11509 | unsigned argIndex); |
11510 | |
11511 | template <typename Range> |
11512 | void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc, |
11513 | bool IsStringLocation, Range StringRange, |
11514 | ArrayRef<FixItHint> Fixit = std::nullopt); |
11515 | }; |
11516 | |
11517 | } // namespace |
11518 | |
11519 | SourceRange CheckFormatHandler::getFormatStringRange() { |
11520 | return OrigFormatExpr->getSourceRange(); |
11521 | } |
11522 | |
11523 | CharSourceRange CheckFormatHandler:: |
11524 | getSpecifierRange(const char *startSpecifier, unsigned specifierLen) { |
11525 | SourceLocation Start = getLocationOfByte(x: startSpecifier); |
11526 | SourceLocation End = getLocationOfByte(x: startSpecifier + specifierLen - 1); |
11527 | |
11528 | // Advance the end SourceLocation by one due to half-open ranges. |
11529 | End = End.getLocWithOffset(Offset: 1); |
11530 | |
11531 | return CharSourceRange::getCharRange(B: Start, E: End); |
11532 | } |
11533 | |
11534 | SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) { |
11535 | return FExpr->getLocationOfByte(ByteNo: x - Beg, SM: S.getSourceManager(), |
11536 | Features: S.getLangOpts(), Target: S.Context.getTargetInfo()); |
11537 | } |
11538 | |
11539 | void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier, |
11540 | unsigned specifierLen){ |
11541 | EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier), |
11542 | getLocationOfByte(startSpecifier), |
11543 | /*IsStringLocation*/true, |
11544 | getSpecifierRange(startSpecifier, specifierLen)); |
11545 | } |
11546 | |
11547 | void CheckFormatHandler::HandleInvalidLengthModifier( |
11548 | const analyze_format_string::FormatSpecifier &FS, |
11549 | const analyze_format_string::ConversionSpecifier &CS, |
11550 | const char *startSpecifier, unsigned specifierLen, unsigned DiagID) { |
11551 | using namespace analyze_format_string; |
11552 | |
11553 | const LengthModifier &LM = FS.getLengthModifier(); |
11554 | CharSourceRange LMRange = getSpecifierRange(startSpecifier: LM.getStart(), specifierLen: LM.getLength()); |
11555 | |
11556 | // See if we know how to fix this length modifier. |
11557 | std::optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier(); |
11558 | if (FixedLM) { |
11559 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID) << LM.toString() << CS.toString(), |
11560 | Loc: getLocationOfByte(x: LM.getStart()), |
11561 | /*IsStringLocation*/true, |
11562 | StringRange: getSpecifierRange(startSpecifier, specifierLen)); |
11563 | |
11564 | S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier) |
11565 | << FixedLM->toString() |
11566 | << FixItHint::CreateReplacement(LMRange, FixedLM->toString()); |
11567 | |
11568 | } else { |
11569 | FixItHint Hint; |
11570 | if (DiagID == diag::warn_format_nonsensical_length) |
11571 | Hint = FixItHint::CreateRemoval(RemoveRange: LMRange); |
11572 | |
11573 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID) << LM.toString() << CS.toString(), |
11574 | Loc: getLocationOfByte(x: LM.getStart()), |
11575 | /*IsStringLocation*/true, |
11576 | StringRange: getSpecifierRange(startSpecifier, specifierLen), |
11577 | FixIt: Hint); |
11578 | } |
11579 | } |
11580 | |
11581 | void CheckFormatHandler::HandleNonStandardLengthModifier( |
11582 | const analyze_format_string::FormatSpecifier &FS, |
11583 | const char *startSpecifier, unsigned specifierLen) { |
11584 | using namespace analyze_format_string; |
11585 | |
11586 | const LengthModifier &LM = FS.getLengthModifier(); |
11587 | CharSourceRange LMRange = getSpecifierRange(startSpecifier: LM.getStart(), specifierLen: LM.getLength()); |
11588 | |
11589 | // See if we know how to fix this length modifier. |
11590 | std::optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier(); |
11591 | if (FixedLM) { |
11592 | EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) |
11593 | << LM.toString() << 0, |
11594 | getLocationOfByte(LM.getStart()), |
11595 | /*IsStringLocation*/true, |
11596 | getSpecifierRange(startSpecifier, specifierLen)); |
11597 | |
11598 | S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier) |
11599 | << FixedLM->toString() |
11600 | << FixItHint::CreateReplacement(LMRange, FixedLM->toString()); |
11601 | |
11602 | } else { |
11603 | EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) |
11604 | << LM.toString() << 0, |
11605 | getLocationOfByte(LM.getStart()), |
11606 | /*IsStringLocation*/true, |
11607 | getSpecifierRange(startSpecifier, specifierLen)); |
11608 | } |
11609 | } |
11610 | |
11611 | void CheckFormatHandler::HandleNonStandardConversionSpecifier( |
11612 | const analyze_format_string::ConversionSpecifier &CS, |
11613 | const char *startSpecifier, unsigned specifierLen) { |
11614 | using namespace analyze_format_string; |
11615 | |
11616 | // See if we know how to fix this conversion specifier. |
11617 | std::optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier(); |
11618 | if (FixedCS) { |
11619 | EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) |
11620 | << CS.toString() << /*conversion specifier*/1, |
11621 | getLocationOfByte(CS.getStart()), |
11622 | /*IsStringLocation*/true, |
11623 | getSpecifierRange(startSpecifier, specifierLen)); |
11624 | |
11625 | CharSourceRange CSRange = getSpecifierRange(startSpecifier: CS.getStart(), specifierLen: CS.getLength()); |
11626 | S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier) |
11627 | << FixedCS->toString() |
11628 | << FixItHint::CreateReplacement(CSRange, FixedCS->toString()); |
11629 | } else { |
11630 | EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) |
11631 | << CS.toString() << /*conversion specifier*/1, |
11632 | getLocationOfByte(CS.getStart()), |
11633 | /*IsStringLocation*/true, |
11634 | getSpecifierRange(startSpecifier, specifierLen)); |
11635 | } |
11636 | } |
11637 | |
11638 | void CheckFormatHandler::HandlePosition(const char *startPos, |
11639 | unsigned posLen) { |
11640 | EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg), |
11641 | getLocationOfByte(startPos), |
11642 | /*IsStringLocation*/true, |
11643 | getSpecifierRange(startPos, posLen)); |
11644 | } |
11645 | |
11646 | void CheckFormatHandler::HandleInvalidPosition( |
11647 | const char *startSpecifier, unsigned specifierLen, |
11648 | analyze_format_string::PositionContext p) { |
11649 | EmitFormatDiagnostic( |
11650 | S.PDiag(diag::warn_format_invalid_positional_specifier) << (unsigned)p, |
11651 | getLocationOfByte(startSpecifier), /*IsStringLocation*/ true, |
11652 | getSpecifierRange(startSpecifier, specifierLen)); |
11653 | } |
11654 | |
11655 | void CheckFormatHandler::HandleZeroPosition(const char *startPos, |
11656 | unsigned posLen) { |
11657 | EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier), |
11658 | getLocationOfByte(startPos), |
11659 | /*IsStringLocation*/true, |
11660 | getSpecifierRange(startPos, posLen)); |
11661 | } |
11662 | |
11663 | void CheckFormatHandler::HandleNullChar(const char *nullCharacter) { |
11664 | if (!isa<ObjCStringLiteral>(Val: OrigFormatExpr)) { |
11665 | // The presence of a null character is likely an error. |
11666 | EmitFormatDiagnostic( |
11667 | S.PDiag(diag::warn_printf_format_string_contains_null_char), |
11668 | getLocationOfByte(nullCharacter), /*IsStringLocation*/true, |
11669 | getFormatStringRange()); |
11670 | } |
11671 | } |
11672 | |
11673 | // Note that this may return NULL if there was an error parsing or building |
11674 | // one of the argument expressions. |
11675 | const Expr *CheckFormatHandler::getDataArg(unsigned i) const { |
11676 | return Args[FirstDataArg + i]; |
11677 | } |
11678 | |
11679 | void CheckFormatHandler::DoneProcessing() { |
11680 | // Does the number of data arguments exceed the number of |
11681 | // format conversions in the format string? |
11682 | if (ArgPassingKind != Sema::FAPK_VAList) { |
11683 | // Find any arguments that weren't covered. |
11684 | CoveredArgs.flip(); |
11685 | signed notCoveredArg = CoveredArgs.find_first(); |
11686 | if (notCoveredArg >= 0) { |
11687 | assert((unsigned)notCoveredArg < NumDataArgs); |
11688 | UncoveredArg.Update(NewFirstUncoveredArg: notCoveredArg, StrExpr: OrigFormatExpr); |
11689 | } else { |
11690 | UncoveredArg.setAllCovered(); |
11691 | } |
11692 | } |
11693 | } |
11694 | |
11695 | void UncoveredArgHandler::Diagnose(Sema &S, bool IsFunctionCall, |
11696 | const Expr *ArgExpr) { |
11697 | assert(hasUncoveredArg() && !DiagnosticExprs.empty() && |
11698 | "Invalid state" ); |
11699 | |
11700 | if (!ArgExpr) |
11701 | return; |
11702 | |
11703 | SourceLocation Loc = ArgExpr->getBeginLoc(); |
11704 | |
11705 | if (S.getSourceManager().isInSystemMacro(loc: Loc)) |
11706 | return; |
11707 | |
11708 | PartialDiagnostic PDiag = S.PDiag(diag::warn_printf_data_arg_not_used); |
11709 | for (auto E : DiagnosticExprs) |
11710 | PDiag << E->getSourceRange(); |
11711 | |
11712 | CheckFormatHandler::EmitFormatDiagnostic( |
11713 | S, IsFunctionCall, DiagnosticExprs[0], |
11714 | PDiag, Loc, /*IsStringLocation*/false, |
11715 | DiagnosticExprs[0]->getSourceRange()); |
11716 | } |
11717 | |
11718 | bool |
11719 | CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex, |
11720 | SourceLocation Loc, |
11721 | const char *startSpec, |
11722 | unsigned specifierLen, |
11723 | const char *csStart, |
11724 | unsigned csLen) { |
11725 | bool keepGoing = true; |
11726 | if (argIndex < NumDataArgs) { |
11727 | // Consider the argument coverered, even though the specifier doesn't |
11728 | // make sense. |
11729 | CoveredArgs.set(argIndex); |
11730 | } |
11731 | else { |
11732 | // If argIndex exceeds the number of data arguments we |
11733 | // don't issue a warning because that is just a cascade of warnings (and |
11734 | // they may have intended '%%' anyway). We don't want to continue processing |
11735 | // the format string after this point, however, as we will like just get |
11736 | // gibberish when trying to match arguments. |
11737 | keepGoing = false; |
11738 | } |
11739 | |
11740 | StringRef Specifier(csStart, csLen); |
11741 | |
11742 | // If the specifier in non-printable, it could be the first byte of a UTF-8 |
11743 | // sequence. In that case, print the UTF-8 code point. If not, print the byte |
11744 | // hex value. |
11745 | std::string CodePointStr; |
11746 | if (!llvm::sys::locale::isPrint(c: *csStart)) { |
11747 | llvm::UTF32 CodePoint; |
11748 | const llvm::UTF8 **B = reinterpret_cast<const llvm::UTF8 **>(&csStart); |
11749 | const llvm::UTF8 *E = |
11750 | reinterpret_cast<const llvm::UTF8 *>(csStart + csLen); |
11751 | llvm::ConversionResult Result = |
11752 | llvm::convertUTF8Sequence(source: B, sourceEnd: E, target: &CodePoint, flags: llvm::strictConversion); |
11753 | |
11754 | if (Result != llvm::conversionOK) { |
11755 | unsigned char FirstChar = *csStart; |
11756 | CodePoint = (llvm::UTF32)FirstChar; |
11757 | } |
11758 | |
11759 | llvm::raw_string_ostream OS(CodePointStr); |
11760 | if (CodePoint < 256) |
11761 | OS << "\\x" << llvm::format(Fmt: "%02x" , Vals: CodePoint); |
11762 | else if (CodePoint <= 0xFFFF) |
11763 | OS << "\\u" << llvm::format(Fmt: "%04x" , Vals: CodePoint); |
11764 | else |
11765 | OS << "\\U" << llvm::format(Fmt: "%08x" , Vals: CodePoint); |
11766 | OS.flush(); |
11767 | Specifier = CodePointStr; |
11768 | } |
11769 | |
11770 | EmitFormatDiagnostic( |
11771 | S.PDiag(diag::warn_format_invalid_conversion) << Specifier, Loc, |
11772 | /*IsStringLocation*/ true, getSpecifierRange(startSpec, specifierLen)); |
11773 | |
11774 | return keepGoing; |
11775 | } |
11776 | |
11777 | void |
11778 | CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc, |
11779 | const char *startSpec, |
11780 | unsigned specifierLen) { |
11781 | EmitFormatDiagnostic( |
11782 | S.PDiag(diag::warn_format_mix_positional_nonpositional_args), |
11783 | Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen)); |
11784 | } |
11785 | |
11786 | bool |
11787 | CheckFormatHandler::CheckNumArgs( |
11788 | const analyze_format_string::FormatSpecifier &FS, |
11789 | const analyze_format_string::ConversionSpecifier &CS, |
11790 | const char *startSpecifier, unsigned specifierLen, unsigned argIndex) { |
11791 | |
11792 | if (argIndex >= NumDataArgs) { |
11793 | PartialDiagnostic PDiag = FS.usesPositionalArg() |
11794 | ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args) |
11795 | << (argIndex+1) << NumDataArgs) |
11796 | : S.PDiag(diag::warn_printf_insufficient_data_args); |
11797 | EmitFormatDiagnostic( |
11798 | PDiag, Loc: getLocationOfByte(x: CS.getStart()), /*IsStringLocation*/true, |
11799 | StringRange: getSpecifierRange(startSpecifier, specifierLen)); |
11800 | |
11801 | // Since more arguments than conversion tokens are given, by extension |
11802 | // all arguments are covered, so mark this as so. |
11803 | UncoveredArg.setAllCovered(); |
11804 | return false; |
11805 | } |
11806 | return true; |
11807 | } |
11808 | |
11809 | template<typename Range> |
11810 | void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag, |
11811 | SourceLocation Loc, |
11812 | bool IsStringLocation, |
11813 | Range StringRange, |
11814 | ArrayRef<FixItHint> FixIt) { |
11815 | EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag, |
11816 | Loc, IsStringLocation, StringRange, FixIt); |
11817 | } |
11818 | |
11819 | /// If the format string is not within the function call, emit a note |
11820 | /// so that the function call and string are in diagnostic messages. |
11821 | /// |
11822 | /// \param InFunctionCall if true, the format string is within the function |
11823 | /// call and only one diagnostic message will be produced. Otherwise, an |
11824 | /// extra note will be emitted pointing to location of the format string. |
11825 | /// |
11826 | /// \param ArgumentExpr the expression that is passed as the format string |
11827 | /// argument in the function call. Used for getting locations when two |
11828 | /// diagnostics are emitted. |
11829 | /// |
11830 | /// \param PDiag the callee should already have provided any strings for the |
11831 | /// diagnostic message. This function only adds locations and fixits |
11832 | /// to diagnostics. |
11833 | /// |
11834 | /// \param Loc primary location for diagnostic. If two diagnostics are |
11835 | /// required, one will be at Loc and a new SourceLocation will be created for |
11836 | /// the other one. |
11837 | /// |
11838 | /// \param IsStringLocation if true, Loc points to the format string should be |
11839 | /// used for the note. Otherwise, Loc points to the argument list and will |
11840 | /// be used with PDiag. |
11841 | /// |
11842 | /// \param StringRange some or all of the string to highlight. This is |
11843 | /// templated so it can accept either a CharSourceRange or a SourceRange. |
11844 | /// |
11845 | /// \param FixIt optional fix it hint for the format string. |
11846 | template <typename Range> |
11847 | void CheckFormatHandler::EmitFormatDiagnostic( |
11848 | Sema &S, bool InFunctionCall, const Expr *ArgumentExpr, |
11849 | const PartialDiagnostic &PDiag, SourceLocation Loc, bool IsStringLocation, |
11850 | Range StringRange, ArrayRef<FixItHint> FixIt) { |
11851 | if (InFunctionCall) { |
11852 | const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag); |
11853 | D << StringRange; |
11854 | D << FixIt; |
11855 | } else { |
11856 | S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag) |
11857 | << ArgumentExpr->getSourceRange(); |
11858 | |
11859 | const Sema::SemaDiagnosticBuilder &Note = |
11860 | S.Diag(IsStringLocation ? Loc : StringRange.getBegin(), |
11861 | diag::note_format_string_defined); |
11862 | |
11863 | Note << StringRange; |
11864 | Note << FixIt; |
11865 | } |
11866 | } |
11867 | |
11868 | //===--- CHECK: Printf format string checking -----------------------------===// |
11869 | |
11870 | namespace { |
11871 | |
11872 | class CheckPrintfHandler : public CheckFormatHandler { |
11873 | public: |
11874 | CheckPrintfHandler(Sema &s, const FormatStringLiteral *fexpr, |
11875 | const Expr *origFormatExpr, |
11876 | const Sema::FormatStringType type, unsigned firstDataArg, |
11877 | unsigned numDataArgs, bool isObjC, const char *beg, |
11878 | Sema::FormatArgumentPassingKind APK, |
11879 | ArrayRef<const Expr *> Args, unsigned formatIdx, |
11880 | bool inFunctionCall, Sema::VariadicCallType CallType, |
11881 | llvm::SmallBitVector &CheckedVarArgs, |
11882 | UncoveredArgHandler &UncoveredArg) |
11883 | : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg, |
11884 | numDataArgs, beg, APK, Args, formatIdx, |
11885 | inFunctionCall, CallType, CheckedVarArgs, |
11886 | UncoveredArg) {} |
11887 | |
11888 | bool isObjCContext() const { return FSType == Sema::FST_NSString; } |
11889 | |
11890 | /// Returns true if '%@' specifiers are allowed in the format string. |
11891 | bool allowsObjCArg() const { |
11892 | return FSType == Sema::FST_NSString || FSType == Sema::FST_OSLog || |
11893 | FSType == Sema::FST_OSTrace; |
11894 | } |
11895 | |
11896 | bool HandleInvalidPrintfConversionSpecifier( |
11897 | const analyze_printf::PrintfSpecifier &FS, |
11898 | const char *startSpecifier, |
11899 | unsigned specifierLen) override; |
11900 | |
11901 | void handleInvalidMaskType(StringRef MaskType) override; |
11902 | |
11903 | bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS, |
11904 | const char *startSpecifier, unsigned specifierLen, |
11905 | const TargetInfo &Target) override; |
11906 | bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS, |
11907 | const char *StartSpecifier, |
11908 | unsigned SpecifierLen, |
11909 | const Expr *E); |
11910 | |
11911 | bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k, |
11912 | const char *startSpecifier, unsigned specifierLen); |
11913 | void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS, |
11914 | const analyze_printf::OptionalAmount &Amt, |
11915 | unsigned type, |
11916 | const char *startSpecifier, unsigned specifierLen); |
11917 | void HandleFlag(const analyze_printf::PrintfSpecifier &FS, |
11918 | const analyze_printf::OptionalFlag &flag, |
11919 | const char *startSpecifier, unsigned specifierLen); |
11920 | void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS, |
11921 | const analyze_printf::OptionalFlag &ignoredFlag, |
11922 | const analyze_printf::OptionalFlag &flag, |
11923 | const char *startSpecifier, unsigned specifierLen); |
11924 | bool checkForCStrMembers(const analyze_printf::ArgType &AT, |
11925 | const Expr *E); |
11926 | |
11927 | void HandleEmptyObjCModifierFlag(const char *startFlag, |
11928 | unsigned flagLen) override; |
11929 | |
11930 | void HandleInvalidObjCModifierFlag(const char *startFlag, |
11931 | unsigned flagLen) override; |
11932 | |
11933 | void HandleObjCFlagsWithNonObjCConversion(const char *flagsStart, |
11934 | const char *flagsEnd, |
11935 | const char *conversionPosition) |
11936 | override; |
11937 | }; |
11938 | |
11939 | } // namespace |
11940 | |
11941 | bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier( |
11942 | const analyze_printf::PrintfSpecifier &FS, |
11943 | const char *startSpecifier, |
11944 | unsigned specifierLen) { |
11945 | const analyze_printf::PrintfConversionSpecifier &CS = |
11946 | FS.getConversionSpecifier(); |
11947 | |
11948 | return HandleInvalidConversionSpecifier(argIndex: FS.getArgIndex(), |
11949 | Loc: getLocationOfByte(x: CS.getStart()), |
11950 | startSpec: startSpecifier, specifierLen, |
11951 | csStart: CS.getStart(), csLen: CS.getLength()); |
11952 | } |
11953 | |
11954 | void CheckPrintfHandler::handleInvalidMaskType(StringRef MaskType) { |
11955 | S.Diag(getLocationOfByte(MaskType.data()), diag::err_invalid_mask_type_size); |
11956 | } |
11957 | |
11958 | bool CheckPrintfHandler::HandleAmount( |
11959 | const analyze_format_string::OptionalAmount &Amt, unsigned k, |
11960 | const char *startSpecifier, unsigned specifierLen) { |
11961 | if (Amt.hasDataArgument()) { |
11962 | if (ArgPassingKind != Sema::FAPK_VAList) { |
11963 | unsigned argIndex = Amt.getArgIndex(); |
11964 | if (argIndex >= NumDataArgs) { |
11965 | EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg) |
11966 | << k, |
11967 | getLocationOfByte(Amt.getStart()), |
11968 | /*IsStringLocation*/ true, |
11969 | getSpecifierRange(startSpecifier, specifierLen)); |
11970 | // Don't do any more checking. We will just emit |
11971 | // spurious errors. |
11972 | return false; |
11973 | } |
11974 | |
11975 | // Type check the data argument. It should be an 'int'. |
11976 | // Although not in conformance with C99, we also allow the argument to be |
11977 | // an 'unsigned int' as that is a reasonably safe case. GCC also |
11978 | // doesn't emit a warning for that case. |
11979 | CoveredArgs.set(argIndex); |
11980 | const Expr *Arg = getDataArg(i: argIndex); |
11981 | if (!Arg) |
11982 | return false; |
11983 | |
11984 | QualType T = Arg->getType(); |
11985 | |
11986 | const analyze_printf::ArgType &AT = Amt.getArgType(Ctx&: S.Context); |
11987 | assert(AT.isValid()); |
11988 | |
11989 | if (!AT.matchesType(C&: S.Context, argTy: T)) { |
11990 | EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type) |
11991 | << k << AT.getRepresentativeTypeName(S.Context) |
11992 | << T << Arg->getSourceRange(), |
11993 | getLocationOfByte(Amt.getStart()), |
11994 | /*IsStringLocation*/true, |
11995 | getSpecifierRange(startSpecifier, specifierLen)); |
11996 | // Don't do any more checking. We will just emit |
11997 | // spurious errors. |
11998 | return false; |
11999 | } |
12000 | } |
12001 | } |
12002 | return true; |
12003 | } |
12004 | |
12005 | void CheckPrintfHandler::HandleInvalidAmount( |
12006 | const analyze_printf::PrintfSpecifier &FS, |
12007 | const analyze_printf::OptionalAmount &Amt, |
12008 | unsigned type, |
12009 | const char *startSpecifier, |
12010 | unsigned specifierLen) { |
12011 | const analyze_printf::PrintfConversionSpecifier &CS = |
12012 | FS.getConversionSpecifier(); |
12013 | |
12014 | FixItHint fixit = |
12015 | Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant |
12016 | ? FixItHint::CreateRemoval(RemoveRange: getSpecifierRange(startSpecifier: Amt.getStart(), |
12017 | specifierLen: Amt.getConstantLength())) |
12018 | : FixItHint(); |
12019 | |
12020 | EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount) |
12021 | << type << CS.toString(), |
12022 | getLocationOfByte(Amt.getStart()), |
12023 | /*IsStringLocation*/true, |
12024 | getSpecifierRange(startSpecifier, specifierLen), |
12025 | fixit); |
12026 | } |
12027 | |
12028 | void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS, |
12029 | const analyze_printf::OptionalFlag &flag, |
12030 | const char *startSpecifier, |
12031 | unsigned specifierLen) { |
12032 | // Warn about pointless flag with a fixit removal. |
12033 | const analyze_printf::PrintfConversionSpecifier &CS = |
12034 | FS.getConversionSpecifier(); |
12035 | EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag) |
12036 | << flag.toString() << CS.toString(), |
12037 | getLocationOfByte(flag.getPosition()), |
12038 | /*IsStringLocation*/true, |
12039 | getSpecifierRange(startSpecifier, specifierLen), |
12040 | FixItHint::CreateRemoval( |
12041 | getSpecifierRange(flag.getPosition(), 1))); |
12042 | } |
12043 | |
12044 | void CheckPrintfHandler::HandleIgnoredFlag( |
12045 | const analyze_printf::PrintfSpecifier &FS, |
12046 | const analyze_printf::OptionalFlag &ignoredFlag, |
12047 | const analyze_printf::OptionalFlag &flag, |
12048 | const char *startSpecifier, |
12049 | unsigned specifierLen) { |
12050 | // Warn about ignored flag with a fixit removal. |
12051 | EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag) |
12052 | << ignoredFlag.toString() << flag.toString(), |
12053 | getLocationOfByte(ignoredFlag.getPosition()), |
12054 | /*IsStringLocation*/true, |
12055 | getSpecifierRange(startSpecifier, specifierLen), |
12056 | FixItHint::CreateRemoval( |
12057 | getSpecifierRange(ignoredFlag.getPosition(), 1))); |
12058 | } |
12059 | |
12060 | void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag, |
12061 | unsigned flagLen) { |
12062 | // Warn about an empty flag. |
12063 | EmitFormatDiagnostic(S.PDiag(diag::warn_printf_empty_objc_flag), |
12064 | getLocationOfByte(startFlag), |
12065 | /*IsStringLocation*/true, |
12066 | getSpecifierRange(startFlag, flagLen)); |
12067 | } |
12068 | |
12069 | void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag, |
12070 | unsigned flagLen) { |
12071 | // Warn about an invalid flag. |
12072 | auto Range = getSpecifierRange(startSpecifier: startFlag, specifierLen: flagLen); |
12073 | StringRef flag(startFlag, flagLen); |
12074 | EmitFormatDiagnostic(S.PDiag(diag::warn_printf_invalid_objc_flag) << flag, |
12075 | getLocationOfByte(startFlag), |
12076 | /*IsStringLocation*/true, |
12077 | Range, FixItHint::CreateRemoval(Range)); |
12078 | } |
12079 | |
12080 | void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion( |
12081 | const char *flagsStart, const char *flagsEnd, const char *conversionPosition) { |
12082 | // Warn about using '[...]' without a '@' conversion. |
12083 | auto Range = getSpecifierRange(startSpecifier: flagsStart, specifierLen: flagsEnd - flagsStart + 1); |
12084 | auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion; |
12085 | EmitFormatDiagnostic(S.PDiag(DiagID: diag) << StringRef(conversionPosition, 1), |
12086 | getLocationOfByte(x: conversionPosition), |
12087 | /*IsStringLocation*/true, |
12088 | Range, FixItHint::CreateRemoval(RemoveRange: Range)); |
12089 | } |
12090 | |
12091 | // Determines if the specified is a C++ class or struct containing |
12092 | // a member with the specified name and kind (e.g. a CXXMethodDecl named |
12093 | // "c_str()"). |
12094 | template<typename MemberKind> |
12095 | static llvm::SmallPtrSet<MemberKind*, 1> |
12096 | CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) { |
12097 | const RecordType *RT = Ty->getAs<RecordType>(); |
12098 | llvm::SmallPtrSet<MemberKind*, 1> Results; |
12099 | |
12100 | if (!RT) |
12101 | return Results; |
12102 | const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Val: RT->getDecl()); |
12103 | if (!RD || !RD->getDefinition()) |
12104 | return Results; |
12105 | |
12106 | LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(), |
12107 | Sema::LookupMemberName); |
12108 | R.suppressDiagnostics(); |
12109 | |
12110 | // We just need to include all members of the right kind turned up by the |
12111 | // filter, at this point. |
12112 | if (S.LookupQualifiedName(R, RT->getDecl())) |
12113 | for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { |
12114 | NamedDecl *decl = (*I)->getUnderlyingDecl(); |
12115 | if (MemberKind *FK = dyn_cast<MemberKind>(decl)) |
12116 | Results.insert(FK); |
12117 | } |
12118 | return Results; |
12119 | } |
12120 | |
12121 | /// Check if we could call '.c_str()' on an object. |
12122 | /// |
12123 | /// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't |
12124 | /// allow the call, or if it would be ambiguous). |
12125 | bool Sema::hasCStrMethod(const Expr *E) { |
12126 | using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>; |
12127 | |
12128 | MethodSet Results = |
12129 | CXXRecordMembersNamed<CXXMethodDecl>(Name: "c_str" , S&: *this, Ty: E->getType()); |
12130 | for (MethodSet::iterator MI = Results.begin(), ME = Results.end(); |
12131 | MI != ME; ++MI) |
12132 | if ((*MI)->getMinRequiredArguments() == 0) |
12133 | return true; |
12134 | return false; |
12135 | } |
12136 | |
12137 | // Check if a (w)string was passed when a (w)char* was needed, and offer a |
12138 | // better diagnostic if so. AT is assumed to be valid. |
12139 | // Returns true when a c_str() conversion method is found. |
12140 | bool CheckPrintfHandler::checkForCStrMembers( |
12141 | const analyze_printf::ArgType &AT, const Expr *E) { |
12142 | using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>; |
12143 | |
12144 | MethodSet Results = |
12145 | CXXRecordMembersNamed<CXXMethodDecl>(Name: "c_str" , S, Ty: E->getType()); |
12146 | |
12147 | for (MethodSet::iterator MI = Results.begin(), ME = Results.end(); |
12148 | MI != ME; ++MI) { |
12149 | const CXXMethodDecl *Method = *MI; |
12150 | if (Method->getMinRequiredArguments() == 0 && |
12151 | AT.matchesType(C&: S.Context, argTy: Method->getReturnType())) { |
12152 | // FIXME: Suggest parens if the expression needs them. |
12153 | SourceLocation EndLoc = S.getLocForEndOfToken(Loc: E->getEndLoc()); |
12154 | S.Diag(E->getBeginLoc(), diag::note_printf_c_str) |
12155 | << "c_str()" << FixItHint::CreateInsertion(EndLoc, ".c_str()" ); |
12156 | return true; |
12157 | } |
12158 | } |
12159 | |
12160 | return false; |
12161 | } |
12162 | |
12163 | bool CheckPrintfHandler::HandlePrintfSpecifier( |
12164 | const analyze_printf::PrintfSpecifier &FS, const char *startSpecifier, |
12165 | unsigned specifierLen, const TargetInfo &Target) { |
12166 | using namespace analyze_format_string; |
12167 | using namespace analyze_printf; |
12168 | |
12169 | const PrintfConversionSpecifier &CS = FS.getConversionSpecifier(); |
12170 | |
12171 | if (FS.consumesDataArgument()) { |
12172 | if (atFirstArg) { |
12173 | atFirstArg = false; |
12174 | usesPositionalArgs = FS.usesPositionalArg(); |
12175 | } |
12176 | else if (usesPositionalArgs != FS.usesPositionalArg()) { |
12177 | HandlePositionalNonpositionalArgs(Loc: getLocationOfByte(x: CS.getStart()), |
12178 | startSpec: startSpecifier, specifierLen); |
12179 | return false; |
12180 | } |
12181 | } |
12182 | |
12183 | // First check if the field width, precision, and conversion specifier |
12184 | // have matching data arguments. |
12185 | if (!HandleAmount(Amt: FS.getFieldWidth(), /* field width */ k: 0, |
12186 | startSpecifier, specifierLen)) { |
12187 | return false; |
12188 | } |
12189 | |
12190 | if (!HandleAmount(Amt: FS.getPrecision(), /* precision */ k: 1, |
12191 | startSpecifier, specifierLen)) { |
12192 | return false; |
12193 | } |
12194 | |
12195 | if (!CS.consumesDataArgument()) { |
12196 | // FIXME: Technically specifying a precision or field width here |
12197 | // makes no sense. Worth issuing a warning at some point. |
12198 | return true; |
12199 | } |
12200 | |
12201 | // Consume the argument. |
12202 | unsigned argIndex = FS.getArgIndex(); |
12203 | if (argIndex < NumDataArgs) { |
12204 | // The check to see if the argIndex is valid will come later. |
12205 | // We set the bit here because we may exit early from this |
12206 | // function if we encounter some other error. |
12207 | CoveredArgs.set(argIndex); |
12208 | } |
12209 | |
12210 | // FreeBSD kernel extensions. |
12211 | if (CS.getKind() == ConversionSpecifier::FreeBSDbArg || |
12212 | CS.getKind() == ConversionSpecifier::FreeBSDDArg) { |
12213 | // We need at least two arguments. |
12214 | if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex: argIndex + 1)) |
12215 | return false; |
12216 | |
12217 | // Claim the second argument. |
12218 | CoveredArgs.set(argIndex + 1); |
12219 | |
12220 | // Type check the first argument (int for %b, pointer for %D) |
12221 | const Expr *Ex = getDataArg(i: argIndex); |
12222 | const analyze_printf::ArgType &AT = |
12223 | (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ? |
12224 | ArgType(S.Context.IntTy) : ArgType::CPointerTy; |
12225 | if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType())) |
12226 | EmitFormatDiagnostic( |
12227 | S.PDiag(diag::warn_format_conversion_argument_type_mismatch) |
12228 | << AT.getRepresentativeTypeName(S.Context) << Ex->getType() |
12229 | << false << Ex->getSourceRange(), |
12230 | Ex->getBeginLoc(), /*IsStringLocation*/ false, |
12231 | getSpecifierRange(startSpecifier, specifierLen)); |
12232 | |
12233 | // Type check the second argument (char * for both %b and %D) |
12234 | Ex = getDataArg(i: argIndex + 1); |
12235 | const analyze_printf::ArgType &AT2 = ArgType::CStrTy; |
12236 | if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType())) |
12237 | EmitFormatDiagnostic( |
12238 | S.PDiag(diag::warn_format_conversion_argument_type_mismatch) |
12239 | << AT2.getRepresentativeTypeName(S.Context) << Ex->getType() |
12240 | << false << Ex->getSourceRange(), |
12241 | Ex->getBeginLoc(), /*IsStringLocation*/ false, |
12242 | getSpecifierRange(startSpecifier, specifierLen)); |
12243 | |
12244 | return true; |
12245 | } |
12246 | |
12247 | // Check for using an Objective-C specific conversion specifier |
12248 | // in a non-ObjC literal. |
12249 | if (!allowsObjCArg() && CS.isObjCArg()) { |
12250 | return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, |
12251 | specifierLen); |
12252 | } |
12253 | |
12254 | // %P can only be used with os_log. |
12255 | if (FSType != Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::PArg) { |
12256 | return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, |
12257 | specifierLen); |
12258 | } |
12259 | |
12260 | // %n is not allowed with os_log. |
12261 | if (FSType == Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::nArg) { |
12262 | EmitFormatDiagnostic(S.PDiag(diag::warn_os_log_format_narg), |
12263 | getLocationOfByte(CS.getStart()), |
12264 | /*IsStringLocation*/ false, |
12265 | getSpecifierRange(startSpecifier, specifierLen)); |
12266 | |
12267 | return true; |
12268 | } |
12269 | |
12270 | // Only scalars are allowed for os_trace. |
12271 | if (FSType == Sema::FST_OSTrace && |
12272 | (CS.getKind() == ConversionSpecifier::PArg || |
12273 | CS.getKind() == ConversionSpecifier::sArg || |
12274 | CS.getKind() == ConversionSpecifier::ObjCObjArg)) { |
12275 | return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, |
12276 | specifierLen); |
12277 | } |
12278 | |
12279 | // Check for use of public/private annotation outside of os_log(). |
12280 | if (FSType != Sema::FST_OSLog) { |
12281 | if (FS.isPublic().isSet()) { |
12282 | EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation) |
12283 | << "public" , |
12284 | getLocationOfByte(FS.isPublic().getPosition()), |
12285 | /*IsStringLocation*/ false, |
12286 | getSpecifierRange(startSpecifier, specifierLen)); |
12287 | } |
12288 | if (FS.isPrivate().isSet()) { |
12289 | EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation) |
12290 | << "private" , |
12291 | getLocationOfByte(FS.isPrivate().getPosition()), |
12292 | /*IsStringLocation*/ false, |
12293 | getSpecifierRange(startSpecifier, specifierLen)); |
12294 | } |
12295 | } |
12296 | |
12297 | const llvm::Triple &Triple = Target.getTriple(); |
12298 | if (CS.getKind() == ConversionSpecifier::nArg && |
12299 | (Triple.isAndroid() || Triple.isOSFuchsia())) { |
12300 | EmitFormatDiagnostic(S.PDiag(diag::warn_printf_narg_not_supported), |
12301 | getLocationOfByte(CS.getStart()), |
12302 | /*IsStringLocation*/ false, |
12303 | getSpecifierRange(startSpecifier, specifierLen)); |
12304 | } |
12305 | |
12306 | // Check for invalid use of field width |
12307 | if (!FS.hasValidFieldWidth()) { |
12308 | HandleInvalidAmount(FS, Amt: FS.getFieldWidth(), /* field width */ type: 0, |
12309 | startSpecifier, specifierLen); |
12310 | } |
12311 | |
12312 | // Check for invalid use of precision |
12313 | if (!FS.hasValidPrecision()) { |
12314 | HandleInvalidAmount(FS, Amt: FS.getPrecision(), /* precision */ type: 1, |
12315 | startSpecifier, specifierLen); |
12316 | } |
12317 | |
12318 | // Precision is mandatory for %P specifier. |
12319 | if (CS.getKind() == ConversionSpecifier::PArg && |
12320 | FS.getPrecision().getHowSpecified() == OptionalAmount::NotSpecified) { |
12321 | EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_no_precision), |
12322 | getLocationOfByte(startSpecifier), |
12323 | /*IsStringLocation*/ false, |
12324 | getSpecifierRange(startSpecifier, specifierLen)); |
12325 | } |
12326 | |
12327 | // Check each flag does not conflict with any other component. |
12328 | if (!FS.hasValidThousandsGroupingPrefix()) |
12329 | HandleFlag(FS, flag: FS.hasThousandsGrouping(), startSpecifier, specifierLen); |
12330 | if (!FS.hasValidLeadingZeros()) |
12331 | HandleFlag(FS, flag: FS.hasLeadingZeros(), startSpecifier, specifierLen); |
12332 | if (!FS.hasValidPlusPrefix()) |
12333 | HandleFlag(FS, flag: FS.hasPlusPrefix(), startSpecifier, specifierLen); |
12334 | if (!FS.hasValidSpacePrefix()) |
12335 | HandleFlag(FS, flag: FS.hasSpacePrefix(), startSpecifier, specifierLen); |
12336 | if (!FS.hasValidAlternativeForm()) |
12337 | HandleFlag(FS, flag: FS.hasAlternativeForm(), startSpecifier, specifierLen); |
12338 | if (!FS.hasValidLeftJustified()) |
12339 | HandleFlag(FS, flag: FS.isLeftJustified(), startSpecifier, specifierLen); |
12340 | |
12341 | // Check that flags are not ignored by another flag |
12342 | if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+' |
12343 | HandleIgnoredFlag(FS, ignoredFlag: FS.hasSpacePrefix(), flag: FS.hasPlusPrefix(), |
12344 | startSpecifier, specifierLen); |
12345 | if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-' |
12346 | HandleIgnoredFlag(FS, ignoredFlag: FS.hasLeadingZeros(), flag: FS.isLeftJustified(), |
12347 | startSpecifier, specifierLen); |
12348 | |
12349 | // Check the length modifier is valid with the given conversion specifier. |
12350 | if (!FS.hasValidLengthModifier(Target: S.getASTContext().getTargetInfo(), |
12351 | LO: S.getLangOpts())) |
12352 | HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, |
12353 | diag::warn_format_nonsensical_length); |
12354 | else if (!FS.hasStandardLengthModifier()) |
12355 | HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen); |
12356 | else if (!FS.hasStandardLengthConversionCombination()) |
12357 | HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, |
12358 | diag::warn_format_non_standard_conversion_spec); |
12359 | |
12360 | if (!FS.hasStandardConversionSpecifier(LangOpt: S.getLangOpts())) |
12361 | HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen); |
12362 | |
12363 | // The remaining checks depend on the data arguments. |
12364 | if (ArgPassingKind == Sema::FAPK_VAList) |
12365 | return true; |
12366 | |
12367 | if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex)) |
12368 | return false; |
12369 | |
12370 | const Expr *Arg = getDataArg(i: argIndex); |
12371 | if (!Arg) |
12372 | return true; |
12373 | |
12374 | return checkFormatExpr(FS, StartSpecifier: startSpecifier, SpecifierLen: specifierLen, E: Arg); |
12375 | } |
12376 | |
12377 | static bool requiresParensToAddCast(const Expr *E) { |
12378 | // FIXME: We should have a general way to reason about operator |
12379 | // precedence and whether parens are actually needed here. |
12380 | // Take care of a few common cases where they aren't. |
12381 | const Expr *Inside = E->IgnoreImpCasts(); |
12382 | if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Val: Inside)) |
12383 | Inside = POE->getSyntacticForm()->IgnoreImpCasts(); |
12384 | |
12385 | switch (Inside->getStmtClass()) { |
12386 | case Stmt::ArraySubscriptExprClass: |
12387 | case Stmt::CallExprClass: |
12388 | case Stmt::CharacterLiteralClass: |
12389 | case Stmt::CXXBoolLiteralExprClass: |
12390 | case Stmt::DeclRefExprClass: |
12391 | case Stmt::FloatingLiteralClass: |
12392 | case Stmt::IntegerLiteralClass: |
12393 | case Stmt::MemberExprClass: |
12394 | case Stmt::ObjCArrayLiteralClass: |
12395 | case Stmt::ObjCBoolLiteralExprClass: |
12396 | case Stmt::ObjCBoxedExprClass: |
12397 | case Stmt::ObjCDictionaryLiteralClass: |
12398 | case Stmt::ObjCEncodeExprClass: |
12399 | case Stmt::ObjCIvarRefExprClass: |
12400 | case Stmt::ObjCMessageExprClass: |
12401 | case Stmt::ObjCPropertyRefExprClass: |
12402 | case Stmt::ObjCStringLiteralClass: |
12403 | case Stmt::ObjCSubscriptRefExprClass: |
12404 | case Stmt::ParenExprClass: |
12405 | case Stmt::StringLiteralClass: |
12406 | case Stmt::UnaryOperatorClass: |
12407 | return false; |
12408 | default: |
12409 | return true; |
12410 | } |
12411 | } |
12412 | |
12413 | static std::pair<QualType, StringRef> |
12414 | shouldNotPrintDirectly(const ASTContext &Context, |
12415 | QualType IntendedTy, |
12416 | const Expr *E) { |
12417 | // Use a 'while' to peel off layers of typedefs. |
12418 | QualType TyTy = IntendedTy; |
12419 | while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) { |
12420 | StringRef Name = UserTy->getDecl()->getName(); |
12421 | QualType CastTy = llvm::StringSwitch<QualType>(Name) |
12422 | .Case(S: "CFIndex" , Value: Context.getNSIntegerType()) |
12423 | .Case(S: "NSInteger" , Value: Context.getNSIntegerType()) |
12424 | .Case(S: "NSUInteger" , Value: Context.getNSUIntegerType()) |
12425 | .Case(S: "SInt32" , Value: Context.IntTy) |
12426 | .Case("UInt32" , Context.UnsignedIntTy) |
12427 | .Default(QualType()); |
12428 | |
12429 | if (!CastTy.isNull()) |
12430 | return std::make_pair(x&: CastTy, y&: Name); |
12431 | |
12432 | TyTy = UserTy->desugar(); |
12433 | } |
12434 | |
12435 | // Strip parens if necessary. |
12436 | if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) |
12437 | return shouldNotPrintDirectly(Context, |
12438 | PE->getSubExpr()->getType(), |
12439 | PE->getSubExpr()); |
12440 | |
12441 | // If this is a conditional expression, then its result type is constructed |
12442 | // via usual arithmetic conversions and thus there might be no necessary |
12443 | // typedef sugar there. Recurse to operands to check for NSInteger & |
12444 | // Co. usage condition. |
12445 | if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(Val: E)) { |
12446 | QualType TrueTy, FalseTy; |
12447 | StringRef TrueName, FalseName; |
12448 | |
12449 | std::tie(TrueTy, TrueName) = |
12450 | shouldNotPrintDirectly(Context, |
12451 | CO->getTrueExpr()->getType(), |
12452 | CO->getTrueExpr()); |
12453 | std::tie(FalseTy, FalseName) = |
12454 | shouldNotPrintDirectly(Context, |
12455 | CO->getFalseExpr()->getType(), |
12456 | CO->getFalseExpr()); |
12457 | |
12458 | if (TrueTy == FalseTy) |
12459 | return std::make_pair(x&: TrueTy, y&: TrueName); |
12460 | else if (TrueTy.isNull()) |
12461 | return std::make_pair(x&: FalseTy, y&: FalseName); |
12462 | else if (FalseTy.isNull()) |
12463 | return std::make_pair(x&: TrueTy, y&: TrueName); |
12464 | } |
12465 | |
12466 | return std::make_pair(x: QualType(), y: StringRef()); |
12467 | } |
12468 | |
12469 | /// Return true if \p ICE is an implicit argument promotion of an arithmetic |
12470 | /// type. Bit-field 'promotions' from a higher ranked type to a lower ranked |
12471 | /// type do not count. |
12472 | static bool |
12473 | isArithmeticArgumentPromotion(Sema &S, const ImplicitCastExpr *ICE) { |
12474 | QualType From = ICE->getSubExpr()->getType(); |
12475 | QualType To = ICE->getType(); |
12476 | // It's an integer promotion if the destination type is the promoted |
12477 | // source type. |
12478 | if (ICE->getCastKind() == CK_IntegralCast && |
12479 | S.Context.isPromotableIntegerType(T: From) && |
12480 | S.Context.getPromotedIntegerType(PromotableType: From) == To) |
12481 | return true; |
12482 | // Look through vector types, since we do default argument promotion for |
12483 | // those in OpenCL. |
12484 | if (const auto *VecTy = From->getAs<ExtVectorType>()) |
12485 | From = VecTy->getElementType(); |
12486 | if (const auto *VecTy = To->getAs<ExtVectorType>()) |
12487 | To = VecTy->getElementType(); |
12488 | // It's a floating promotion if the source type is a lower rank. |
12489 | return ICE->getCastKind() == CK_FloatingCast && |
12490 | S.Context.getFloatingTypeOrder(LHS: From, RHS: To) < 0; |
12491 | } |
12492 | |
12493 | static analyze_format_string::ArgType::MatchKind |
12494 | handleFormatSignedness(analyze_format_string::ArgType::MatchKind Match, |
12495 | DiagnosticsEngine &Diags, SourceLocation Loc) { |
12496 | if (Match == analyze_format_string::ArgType::NoMatchSignedness) { |
12497 | Match = |
12498 | Diags.isIgnored( |
12499 | diag::warn_format_conversion_argument_type_mismatch_signedness, Loc) |
12500 | ? analyze_format_string::ArgType::Match |
12501 | : analyze_format_string::ArgType::NoMatch; |
12502 | } |
12503 | return Match; |
12504 | } |
12505 | |
12506 | bool |
12507 | CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS, |
12508 | const char *StartSpecifier, |
12509 | unsigned SpecifierLen, |
12510 | const Expr *E) { |
12511 | using namespace analyze_format_string; |
12512 | using namespace analyze_printf; |
12513 | |
12514 | // Now type check the data expression that matches the |
12515 | // format specifier. |
12516 | const analyze_printf::ArgType &AT = FS.getArgType(Ctx&: S.Context, IsObjCLiteral: isObjCContext()); |
12517 | if (!AT.isValid()) |
12518 | return true; |
12519 | |
12520 | QualType ExprTy = E->getType(); |
12521 | while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(Val&: ExprTy)) { |
12522 | ExprTy = TET->getUnderlyingExpr()->getType(); |
12523 | } |
12524 | |
12525 | // When using the format attribute in C++, you can receive a function or an |
12526 | // array that will necessarily decay to a pointer when passed to the final |
12527 | // format consumer. Apply decay before type comparison. |
12528 | if (ExprTy->canDecayToPointerType()) |
12529 | ExprTy = S.Context.getDecayedType(T: ExprTy); |
12530 | |
12531 | // Diagnose attempts to print a boolean value as a character. Unlike other |
12532 | // -Wformat diagnostics, this is fine from a type perspective, but it still |
12533 | // doesn't make sense. |
12534 | if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::cArg && |
12535 | E->isKnownToHaveBooleanValue()) { |
12536 | const CharSourceRange &CSR = |
12537 | getSpecifierRange(startSpecifier: StartSpecifier, specifierLen: SpecifierLen); |
12538 | SmallString<4> FSString; |
12539 | llvm::raw_svector_ostream os(FSString); |
12540 | FS.toString(os); |
12541 | EmitFormatDiagnostic(S.PDiag(diag::warn_format_bool_as_character) |
12542 | << FSString, |
12543 | E->getExprLoc(), false, CSR); |
12544 | return true; |
12545 | } |
12546 | |
12547 | ArgType::MatchKind ImplicitMatch = ArgType::NoMatch; |
12548 | ArgType::MatchKind Match = AT.matchesType(C&: S.Context, argTy: ExprTy); |
12549 | ArgType::MatchKind OrigMatch = Match; |
12550 | |
12551 | Match = handleFormatSignedness(Match, Diags&: S.getDiagnostics(), Loc: E->getExprLoc()); |
12552 | if (Match == ArgType::Match) |
12553 | return true; |
12554 | |
12555 | // NoMatchPromotionTypeConfusion should be only returned in ImplictCastExpr |
12556 | assert(Match != ArgType::NoMatchPromotionTypeConfusion); |
12557 | |
12558 | // Look through argument promotions for our error message's reported type. |
12559 | // This includes the integral and floating promotions, but excludes array |
12560 | // and function pointer decay (seeing that an argument intended to be a |
12561 | // string has type 'char [6]' is probably more confusing than 'char *') and |
12562 | // certain bitfield promotions (bitfields can be 'demoted' to a lesser type). |
12563 | if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) { |
12564 | if (isArithmeticArgumentPromotion(S, ICE)) { |
12565 | E = ICE->getSubExpr(); |
12566 | ExprTy = E->getType(); |
12567 | |
12568 | // Check if we didn't match because of an implicit cast from a 'char' |
12569 | // or 'short' to an 'int'. This is done because printf is a varargs |
12570 | // function. |
12571 | if (ICE->getType() == S.Context.IntTy || |
12572 | ICE->getType() == S.Context.UnsignedIntTy) { |
12573 | // All further checking is done on the subexpression |
12574 | ImplicitMatch = AT.matchesType(C&: S.Context, argTy: ExprTy); |
12575 | if (OrigMatch == ArgType::NoMatchSignedness && |
12576 | ImplicitMatch != ArgType::NoMatchSignedness) |
12577 | // If the original match was a signedness match this match on the |
12578 | // implicit cast type also need to be signedness match otherwise we |
12579 | // might introduce new unexpected warnings from -Wformat-signedness. |
12580 | return true; |
12581 | ImplicitMatch = handleFormatSignedness( |
12582 | Match: ImplicitMatch, Diags&: S.getDiagnostics(), Loc: E->getExprLoc()); |
12583 | if (ImplicitMatch == ArgType::Match) |
12584 | return true; |
12585 | } |
12586 | } |
12587 | } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(Val: E)) { |
12588 | // Special case for 'a', which has type 'int' in C. |
12589 | // Note, however, that we do /not/ want to treat multibyte constants like |
12590 | // 'MooV' as characters! This form is deprecated but still exists. In |
12591 | // addition, don't treat expressions as of type 'char' if one byte length |
12592 | // modifier is provided. |
12593 | if (ExprTy == S.Context.IntTy && |
12594 | FS.getLengthModifier().getKind() != LengthModifier::AsChar) |
12595 | if (llvm::isUIntN(N: S.Context.getCharWidth(), x: CL->getValue())) { |
12596 | ExprTy = S.Context.CharTy; |
12597 | // To improve check results, we consider a character literal in C |
12598 | // to be a 'char' rather than an 'int'. 'printf("%hd", 'a');' is |
12599 | // more likely a type confusion situation, so we will suggest to |
12600 | // use '%hhd' instead by discarding the MatchPromotion. |
12601 | if (Match == ArgType::MatchPromotion) |
12602 | Match = ArgType::NoMatch; |
12603 | } |
12604 | } |
12605 | if (Match == ArgType::MatchPromotion) { |
12606 | // WG14 N2562 only clarified promotions in *printf |
12607 | // For NSLog in ObjC, just preserve -Wformat behavior |
12608 | if (!S.getLangOpts().ObjC && |
12609 | ImplicitMatch != ArgType::NoMatchPromotionTypeConfusion && |
12610 | ImplicitMatch != ArgType::NoMatchTypeConfusion) |
12611 | return true; |
12612 | Match = ArgType::NoMatch; |
12613 | } |
12614 | if (ImplicitMatch == ArgType::NoMatchPedantic || |
12615 | ImplicitMatch == ArgType::NoMatchTypeConfusion) |
12616 | Match = ImplicitMatch; |
12617 | assert(Match != ArgType::MatchPromotion); |
12618 | |
12619 | // Look through unscoped enums to their underlying type. |
12620 | bool IsEnum = false; |
12621 | bool IsScopedEnum = false; |
12622 | QualType IntendedTy = ExprTy; |
12623 | if (auto EnumTy = ExprTy->getAs<EnumType>()) { |
12624 | IntendedTy = EnumTy->getDecl()->getIntegerType(); |
12625 | if (EnumTy->isUnscopedEnumerationType()) { |
12626 | ExprTy = IntendedTy; |
12627 | // This controls whether we're talking about the underlying type or not, |
12628 | // which we only want to do when it's an unscoped enum. |
12629 | IsEnum = true; |
12630 | } else { |
12631 | IsScopedEnum = true; |
12632 | } |
12633 | } |
12634 | |
12635 | // %C in an Objective-C context prints a unichar, not a wchar_t. |
12636 | // If the argument is an integer of some kind, believe the %C and suggest |
12637 | // a cast instead of changing the conversion specifier. |
12638 | if (isObjCContext() && |
12639 | FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) { |
12640 | if (ExprTy->isIntegralOrUnscopedEnumerationType() && |
12641 | !ExprTy->isCharType()) { |
12642 | // 'unichar' is defined as a typedef of unsigned short, but we should |
12643 | // prefer using the typedef if it is visible. |
12644 | IntendedTy = S.Context.UnsignedShortTy; |
12645 | |
12646 | // While we are here, check if the value is an IntegerLiteral that happens |
12647 | // to be within the valid range. |
12648 | if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(Val: E)) { |
12649 | const llvm::APInt &V = IL->getValue(); |
12650 | if (V.getActiveBits() <= S.Context.getTypeSize(T: IntendedTy)) |
12651 | return true; |
12652 | } |
12653 | |
12654 | LookupResult Result(S, &S.Context.Idents.get(Name: "unichar" ), E->getBeginLoc(), |
12655 | Sema::LookupOrdinaryName); |
12656 | if (S.LookupName(R&: Result, S: S.getCurScope())) { |
12657 | NamedDecl *ND = Result.getFoundDecl(); |
12658 | if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(Val: ND)) |
12659 | if (TD->getUnderlyingType() == IntendedTy) |
12660 | IntendedTy = S.Context.getTypedefType(Decl: TD); |
12661 | } |
12662 | } |
12663 | } |
12664 | |
12665 | // Special-case some of Darwin's platform-independence types by suggesting |
12666 | // casts to primitive types that are known to be large enough. |
12667 | bool ShouldNotPrintDirectly = false; StringRef CastTyName; |
12668 | if (S.Context.getTargetInfo().getTriple().isOSDarwin()) { |
12669 | QualType CastTy; |
12670 | std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E); |
12671 | if (!CastTy.isNull()) { |
12672 | // %zi/%zu and %td/%tu are OK to use for NSInteger/NSUInteger of type int |
12673 | // (long in ASTContext). Only complain to pedants or when they're the |
12674 | // underlying type of a scoped enum (which always needs a cast). |
12675 | if (!IsScopedEnum && |
12676 | (CastTyName == "NSInteger" || CastTyName == "NSUInteger" ) && |
12677 | (AT.isSizeT() || AT.isPtrdiffT()) && |
12678 | AT.matchesType(C&: S.Context, argTy: CastTy)) |
12679 | Match = ArgType::NoMatchPedantic; |
12680 | IntendedTy = CastTy; |
12681 | ShouldNotPrintDirectly = true; |
12682 | } |
12683 | } |
12684 | |
12685 | // We may be able to offer a FixItHint if it is a supported type. |
12686 | PrintfSpecifier fixedFS = FS; |
12687 | bool Success = |
12688 | fixedFS.fixType(QT: IntendedTy, LangOpt: S.getLangOpts(), Ctx&: S.Context, IsObjCLiteral: isObjCContext()); |
12689 | |
12690 | if (Success) { |
12691 | // Get the fix string from the fixed format specifier |
12692 | SmallString<16> buf; |
12693 | llvm::raw_svector_ostream os(buf); |
12694 | fixedFS.toString(os); |
12695 | |
12696 | CharSourceRange SpecRange = getSpecifierRange(startSpecifier: StartSpecifier, specifierLen: SpecifierLen); |
12697 | |
12698 | if (IntendedTy == ExprTy && !ShouldNotPrintDirectly && !IsScopedEnum) { |
12699 | unsigned Diag; |
12700 | switch (Match) { |
12701 | case ArgType::Match: |
12702 | case ArgType::MatchPromotion: |
12703 | case ArgType::NoMatchPromotionTypeConfusion: |
12704 | case ArgType::NoMatchSignedness: |
12705 | llvm_unreachable("expected non-matching" ); |
12706 | case ArgType::NoMatchPedantic: |
12707 | Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic; |
12708 | break; |
12709 | case ArgType::NoMatchTypeConfusion: |
12710 | Diag = diag::warn_format_conversion_argument_type_mismatch_confusion; |
12711 | break; |
12712 | case ArgType::NoMatch: |
12713 | Diag = diag::warn_format_conversion_argument_type_mismatch; |
12714 | break; |
12715 | } |
12716 | |
12717 | // In this case, the specifier is wrong and should be changed to match |
12718 | // the argument. |
12719 | EmitFormatDiagnostic(S.PDiag(DiagID: Diag) |
12720 | << AT.getRepresentativeTypeName(C&: S.Context) |
12721 | << IntendedTy << IsEnum << E->getSourceRange(), |
12722 | E->getBeginLoc(), |
12723 | /*IsStringLocation*/ false, SpecRange, |
12724 | FixItHint::CreateReplacement(RemoveRange: SpecRange, Code: os.str())); |
12725 | } else { |
12726 | // The canonical type for formatting this value is different from the |
12727 | // actual type of the expression. (This occurs, for example, with Darwin's |
12728 | // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but |
12729 | // should be printed as 'long' for 64-bit compatibility.) |
12730 | // Rather than emitting a normal format/argument mismatch, we want to |
12731 | // add a cast to the recommended type (and correct the format string |
12732 | // if necessary). We should also do so for scoped enumerations. |
12733 | SmallString<16> CastBuf; |
12734 | llvm::raw_svector_ostream CastFix(CastBuf); |
12735 | CastFix << (S.LangOpts.CPlusPlus ? "static_cast<" : "(" ); |
12736 | IntendedTy.print(OS&: CastFix, Policy: S.Context.getPrintingPolicy()); |
12737 | CastFix << (S.LangOpts.CPlusPlus ? ">" : ")" ); |
12738 | |
12739 | SmallVector<FixItHint,4> Hints; |
12740 | ArgType::MatchKind IntendedMatch = AT.matchesType(C&: S.Context, argTy: IntendedTy); |
12741 | IntendedMatch = handleFormatSignedness(Match: IntendedMatch, Diags&: S.getDiagnostics(), |
12742 | Loc: E->getExprLoc()); |
12743 | if ((IntendedMatch != ArgType::Match) || ShouldNotPrintDirectly) |
12744 | Hints.push_back(Elt: FixItHint::CreateReplacement(RemoveRange: SpecRange, Code: os.str())); |
12745 | |
12746 | if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(Val: E)) { |
12747 | // If there's already a cast present, just replace it. |
12748 | SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc()); |
12749 | Hints.push_back(Elt: FixItHint::CreateReplacement(RemoveRange: CastRange, Code: CastFix.str())); |
12750 | |
12751 | } else if (!requiresParensToAddCast(E) && !S.LangOpts.CPlusPlus) { |
12752 | // If the expression has high enough precedence, |
12753 | // just write the C-style cast. |
12754 | Hints.push_back( |
12755 | FixItHint::CreateInsertion(InsertionLoc: E->getBeginLoc(), Code: CastFix.str())); |
12756 | } else { |
12757 | // Otherwise, add parens around the expression as well as the cast. |
12758 | CastFix << "(" ; |
12759 | Hints.push_back( |
12760 | FixItHint::CreateInsertion(InsertionLoc: E->getBeginLoc(), Code: CastFix.str())); |
12761 | |
12762 | // We don't use getLocForEndOfToken because it returns invalid source |
12763 | // locations for macro expansions (by design). |
12764 | SourceLocation EndLoc = S.SourceMgr.getSpellingLoc(Loc: E->getEndLoc()); |
12765 | SourceLocation After = EndLoc.getLocWithOffset( |
12766 | Offset: Lexer::MeasureTokenLength(Loc: EndLoc, SM: S.SourceMgr, LangOpts: S.LangOpts)); |
12767 | Hints.push_back(Elt: FixItHint::CreateInsertion(InsertionLoc: After, Code: ")" )); |
12768 | } |
12769 | |
12770 | if (ShouldNotPrintDirectly && !IsScopedEnum) { |
12771 | // The expression has a type that should not be printed directly. |
12772 | // We extract the name from the typedef because we don't want to show |
12773 | // the underlying type in the diagnostic. |
12774 | StringRef Name; |
12775 | if (const auto *TypedefTy = ExprTy->getAs<TypedefType>()) |
12776 | Name = TypedefTy->getDecl()->getName(); |
12777 | else |
12778 | Name = CastTyName; |
12779 | unsigned Diag = Match == ArgType::NoMatchPedantic |
12780 | ? diag::warn_format_argument_needs_cast_pedantic |
12781 | : diag::warn_format_argument_needs_cast; |
12782 | EmitFormatDiagnostic(S.PDiag(DiagID: Diag) << Name << IntendedTy << IsEnum |
12783 | << E->getSourceRange(), |
12784 | E->getBeginLoc(), /*IsStringLocation=*/false, |
12785 | SpecRange, Hints); |
12786 | } else { |
12787 | // In this case, the expression could be printed using a different |
12788 | // specifier, but we've decided that the specifier is probably correct |
12789 | // and we should cast instead. Just use the normal warning message. |
12790 | |
12791 | unsigned Diag = |
12792 | IsScopedEnum |
12793 | ? diag::warn_format_conversion_argument_type_mismatch_pedantic |
12794 | : diag::warn_format_conversion_argument_type_mismatch; |
12795 | |
12796 | EmitFormatDiagnostic( |
12797 | S.PDiag(DiagID: Diag) << AT.getRepresentativeTypeName(C&: S.Context) << ExprTy |
12798 | << IsEnum << E->getSourceRange(), |
12799 | E->getBeginLoc(), /*IsStringLocation*/ false, SpecRange, Hints); |
12800 | } |
12801 | } |
12802 | } else { |
12803 | const CharSourceRange &CSR = getSpecifierRange(startSpecifier: StartSpecifier, |
12804 | specifierLen: SpecifierLen); |
12805 | // Since the warning for passing non-POD types to variadic functions |
12806 | // was deferred until now, we emit a warning for non-POD |
12807 | // arguments here. |
12808 | bool EmitTypeMismatch = false; |
12809 | switch (S.isValidVarArgType(Ty: ExprTy)) { |
12810 | case Sema::VAK_Valid: |
12811 | case Sema::VAK_ValidInCXX11: { |
12812 | unsigned Diag; |
12813 | switch (Match) { |
12814 | case ArgType::Match: |
12815 | case ArgType::MatchPromotion: |
12816 | case ArgType::NoMatchPromotionTypeConfusion: |
12817 | case ArgType::NoMatchSignedness: |
12818 | llvm_unreachable("expected non-matching" ); |
12819 | case ArgType::NoMatchPedantic: |
12820 | Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic; |
12821 | break; |
12822 | case ArgType::NoMatchTypeConfusion: |
12823 | Diag = diag::warn_format_conversion_argument_type_mismatch_confusion; |
12824 | break; |
12825 | case ArgType::NoMatch: |
12826 | Diag = diag::warn_format_conversion_argument_type_mismatch; |
12827 | break; |
12828 | } |
12829 | |
12830 | EmitFormatDiagnostic( |
12831 | S.PDiag(DiagID: Diag) << AT.getRepresentativeTypeName(C&: S.Context) << ExprTy |
12832 | << IsEnum << CSR << E->getSourceRange(), |
12833 | E->getBeginLoc(), /*IsStringLocation*/ false, CSR); |
12834 | break; |
12835 | } |
12836 | case Sema::VAK_Undefined: |
12837 | case Sema::VAK_MSVCUndefined: |
12838 | if (CallType == Sema::VariadicDoesNotApply) { |
12839 | EmitTypeMismatch = true; |
12840 | } else { |
12841 | EmitFormatDiagnostic( |
12842 | S.PDiag(diag::warn_non_pod_vararg_with_format_string) |
12843 | << S.getLangOpts().CPlusPlus11 << ExprTy << CallType |
12844 | << AT.getRepresentativeTypeName(S.Context) << CSR |
12845 | << E->getSourceRange(), |
12846 | E->getBeginLoc(), /*IsStringLocation*/ false, CSR); |
12847 | checkForCStrMembers(AT, E); |
12848 | } |
12849 | break; |
12850 | |
12851 | case Sema::VAK_Invalid: |
12852 | if (CallType == Sema::VariadicDoesNotApply) |
12853 | EmitTypeMismatch = true; |
12854 | else if (ExprTy->isObjCObjectType()) |
12855 | EmitFormatDiagnostic( |
12856 | S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format) |
12857 | << S.getLangOpts().CPlusPlus11 << ExprTy << CallType |
12858 | << AT.getRepresentativeTypeName(S.Context) << CSR |
12859 | << E->getSourceRange(), |
12860 | E->getBeginLoc(), /*IsStringLocation*/ false, CSR); |
12861 | else |
12862 | // FIXME: If this is an initializer list, suggest removing the braces |
12863 | // or inserting a cast to the target type. |
12864 | S.Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg_format) |
12865 | << isa<InitListExpr>(E) << ExprTy << CallType |
12866 | << AT.getRepresentativeTypeName(S.Context) << E->getSourceRange(); |
12867 | break; |
12868 | } |
12869 | |
12870 | if (EmitTypeMismatch) { |
12871 | // The function is not variadic, so we do not generate warnings about |
12872 | // being allowed to pass that object as a variadic argument. Instead, |
12873 | // since there are inherently no printf specifiers for types which cannot |
12874 | // be passed as variadic arguments, emit a plain old specifier mismatch |
12875 | // argument. |
12876 | EmitFormatDiagnostic( |
12877 | S.PDiag(diag::warn_format_conversion_argument_type_mismatch) |
12878 | << AT.getRepresentativeTypeName(S.Context) << ExprTy << false |
12879 | << E->getSourceRange(), |
12880 | E->getBeginLoc(), false, CSR); |
12881 | } |
12882 | |
12883 | assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() && |
12884 | "format string specifier index out of range" ); |
12885 | CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true; |
12886 | } |
12887 | |
12888 | return true; |
12889 | } |
12890 | |
12891 | //===--- CHECK: Scanf format string checking ------------------------------===// |
12892 | |
12893 | namespace { |
12894 | |
12895 | class CheckScanfHandler : public CheckFormatHandler { |
12896 | public: |
12897 | CheckScanfHandler(Sema &s, const FormatStringLiteral *fexpr, |
12898 | const Expr *origFormatExpr, Sema::FormatStringType type, |
12899 | unsigned firstDataArg, unsigned numDataArgs, |
12900 | const char *beg, Sema::FormatArgumentPassingKind APK, |
12901 | ArrayRef<const Expr *> Args, unsigned formatIdx, |
12902 | bool inFunctionCall, Sema::VariadicCallType CallType, |
12903 | llvm::SmallBitVector &CheckedVarArgs, |
12904 | UncoveredArgHandler &UncoveredArg) |
12905 | : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg, |
12906 | numDataArgs, beg, APK, Args, formatIdx, |
12907 | inFunctionCall, CallType, CheckedVarArgs, |
12908 | UncoveredArg) {} |
12909 | |
12910 | bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS, |
12911 | const char *startSpecifier, |
12912 | unsigned specifierLen) override; |
12913 | |
12914 | bool HandleInvalidScanfConversionSpecifier( |
12915 | const analyze_scanf::ScanfSpecifier &FS, |
12916 | const char *startSpecifier, |
12917 | unsigned specifierLen) override; |
12918 | |
12919 | void HandleIncompleteScanList(const char *start, const char *end) override; |
12920 | }; |
12921 | |
12922 | } // namespace |
12923 | |
12924 | void CheckScanfHandler::HandleIncompleteScanList(const char *start, |
12925 | const char *end) { |
12926 | EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete), |
12927 | getLocationOfByte(end), /*IsStringLocation*/true, |
12928 | getSpecifierRange(start, end - start)); |
12929 | } |
12930 | |
12931 | bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier( |
12932 | const analyze_scanf::ScanfSpecifier &FS, |
12933 | const char *startSpecifier, |
12934 | unsigned specifierLen) { |
12935 | const analyze_scanf::ScanfConversionSpecifier &CS = |
12936 | FS.getConversionSpecifier(); |
12937 | |
12938 | return HandleInvalidConversionSpecifier(argIndex: FS.getArgIndex(), |
12939 | Loc: getLocationOfByte(x: CS.getStart()), |
12940 | startSpec: startSpecifier, specifierLen, |
12941 | csStart: CS.getStart(), csLen: CS.getLength()); |
12942 | } |
12943 | |
12944 | bool CheckScanfHandler::HandleScanfSpecifier( |
12945 | const analyze_scanf::ScanfSpecifier &FS, |
12946 | const char *startSpecifier, |
12947 | unsigned specifierLen) { |
12948 | using namespace analyze_scanf; |
12949 | using namespace analyze_format_string; |
12950 | |
12951 | const ScanfConversionSpecifier &CS = FS.getConversionSpecifier(); |
12952 | |
12953 | // Handle case where '%' and '*' don't consume an argument. These shouldn't |
12954 | // be used to decide if we are using positional arguments consistently. |
12955 | if (FS.consumesDataArgument()) { |
12956 | if (atFirstArg) { |
12957 | atFirstArg = false; |
12958 | usesPositionalArgs = FS.usesPositionalArg(); |
12959 | } |
12960 | else if (usesPositionalArgs != FS.usesPositionalArg()) { |
12961 | HandlePositionalNonpositionalArgs(Loc: getLocationOfByte(x: CS.getStart()), |
12962 | startSpec: startSpecifier, specifierLen); |
12963 | return false; |
12964 | } |
12965 | } |
12966 | |
12967 | // Check if the field with is non-zero. |
12968 | const OptionalAmount &Amt = FS.getFieldWidth(); |
12969 | if (Amt.getHowSpecified() == OptionalAmount::Constant) { |
12970 | if (Amt.getConstantAmount() == 0) { |
12971 | const CharSourceRange &R = getSpecifierRange(startSpecifier: Amt.getStart(), |
12972 | specifierLen: Amt.getConstantLength()); |
12973 | EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width), |
12974 | getLocationOfByte(Amt.getStart()), |
12975 | /*IsStringLocation*/true, R, |
12976 | FixItHint::CreateRemoval(R)); |
12977 | } |
12978 | } |
12979 | |
12980 | if (!FS.consumesDataArgument()) { |
12981 | // FIXME: Technically specifying a precision or field width here |
12982 | // makes no sense. Worth issuing a warning at some point. |
12983 | return true; |
12984 | } |
12985 | |
12986 | // Consume the argument. |
12987 | unsigned argIndex = FS.getArgIndex(); |
12988 | if (argIndex < NumDataArgs) { |
12989 | // The check to see if the argIndex is valid will come later. |
12990 | // We set the bit here because we may exit early from this |
12991 | // function if we encounter some other error. |
12992 | CoveredArgs.set(argIndex); |
12993 | } |
12994 | |
12995 | // Check the length modifier is valid with the given conversion specifier. |
12996 | if (!FS.hasValidLengthModifier(Target: S.getASTContext().getTargetInfo(), |
12997 | LO: S.getLangOpts())) |
12998 | HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, |
12999 | diag::warn_format_nonsensical_length); |
13000 | else if (!FS.hasStandardLengthModifier()) |
13001 | HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen); |
13002 | else if (!FS.hasStandardLengthConversionCombination()) |
13003 | HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, |
13004 | diag::warn_format_non_standard_conversion_spec); |
13005 | |
13006 | if (!FS.hasStandardConversionSpecifier(LangOpt: S.getLangOpts())) |
13007 | HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen); |
13008 | |
13009 | // The remaining checks depend on the data arguments. |
13010 | if (ArgPassingKind == Sema::FAPK_VAList) |
13011 | return true; |
13012 | |
13013 | if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex)) |
13014 | return false; |
13015 | |
13016 | // Check that the argument type matches the format specifier. |
13017 | const Expr *Ex = getDataArg(i: argIndex); |
13018 | if (!Ex) |
13019 | return true; |
13020 | |
13021 | const analyze_format_string::ArgType &AT = FS.getArgType(Ctx&: S.Context); |
13022 | |
13023 | if (!AT.isValid()) { |
13024 | return true; |
13025 | } |
13026 | |
13027 | analyze_format_string::ArgType::MatchKind Match = |
13028 | AT.matchesType(C&: S.Context, argTy: Ex->getType()); |
13029 | Match = handleFormatSignedness(Match, Diags&: S.getDiagnostics(), Loc: Ex->getExprLoc()); |
13030 | bool Pedantic = Match == analyze_format_string::ArgType::NoMatchPedantic; |
13031 | if (Match == analyze_format_string::ArgType::Match) |
13032 | return true; |
13033 | |
13034 | ScanfSpecifier fixedFS = FS; |
13035 | bool Success = fixedFS.fixType(QT: Ex->getType(), RawQT: Ex->IgnoreImpCasts()->getType(), |
13036 | LangOpt: S.getLangOpts(), Ctx&: S.Context); |
13037 | |
13038 | unsigned Diag = |
13039 | Pedantic ? diag::warn_format_conversion_argument_type_mismatch_pedantic |
13040 | : diag::warn_format_conversion_argument_type_mismatch; |
13041 | |
13042 | if (Success) { |
13043 | // Get the fix string from the fixed format specifier. |
13044 | SmallString<128> buf; |
13045 | llvm::raw_svector_ostream os(buf); |
13046 | fixedFS.toString(os); |
13047 | |
13048 | EmitFormatDiagnostic( |
13049 | S.PDiag(DiagID: Diag) << AT.getRepresentativeTypeName(C&: S.Context) |
13050 | << Ex->getType() << false << Ex->getSourceRange(), |
13051 | Ex->getBeginLoc(), |
13052 | /*IsStringLocation*/ false, |
13053 | getSpecifierRange(startSpecifier, specifierLen), |
13054 | FixItHint::CreateReplacement( |
13055 | RemoveRange: getSpecifierRange(startSpecifier, specifierLen), Code: os.str())); |
13056 | } else { |
13057 | EmitFormatDiagnostic(S.PDiag(DiagID: Diag) |
13058 | << AT.getRepresentativeTypeName(C&: S.Context) |
13059 | << Ex->getType() << false << Ex->getSourceRange(), |
13060 | Ex->getBeginLoc(), |
13061 | /*IsStringLocation*/ false, |
13062 | getSpecifierRange(startSpecifier, specifierLen)); |
13063 | } |
13064 | |
13065 | return true; |
13066 | } |
13067 | |
13068 | static void CheckFormatString( |
13069 | Sema &S, const FormatStringLiteral *FExpr, const Expr *OrigFormatExpr, |
13070 | ArrayRef<const Expr *> Args, Sema::FormatArgumentPassingKind APK, |
13071 | unsigned format_idx, unsigned firstDataArg, Sema::FormatStringType Type, |
13072 | bool inFunctionCall, Sema::VariadicCallType CallType, |
13073 | llvm::SmallBitVector &CheckedVarArgs, UncoveredArgHandler &UncoveredArg, |
13074 | bool IgnoreStringsWithoutSpecifiers) { |
13075 | // CHECK: is the format string a wide literal? |
13076 | if (!FExpr->isAscii() && !FExpr->isUTF8()) { |
13077 | CheckFormatHandler::EmitFormatDiagnostic( |
13078 | S, inFunctionCall, Args[format_idx], |
13079 | S.PDiag(diag::warn_format_string_is_wide_literal), FExpr->getBeginLoc(), |
13080 | /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange()); |
13081 | return; |
13082 | } |
13083 | |
13084 | // Str - The format string. NOTE: this is NOT null-terminated! |
13085 | StringRef StrRef = FExpr->getString(); |
13086 | const char *Str = StrRef.data(); |
13087 | // Account for cases where the string literal is truncated in a declaration. |
13088 | const ConstantArrayType *T = |
13089 | S.Context.getAsConstantArrayType(T: FExpr->getType()); |
13090 | assert(T && "String literal not of constant array type!" ); |
13091 | size_t TypeSize = T->getZExtSize(); |
13092 | size_t StrLen = std::min(a: std::max(a: TypeSize, b: size_t(1)) - 1, b: StrRef.size()); |
13093 | const unsigned numDataArgs = Args.size() - firstDataArg; |
13094 | |
13095 | if (IgnoreStringsWithoutSpecifiers && |
13096 | !analyze_format_string::parseFormatStringHasFormattingSpecifiers( |
13097 | Begin: Str, End: Str + StrLen, LO: S.getLangOpts(), Target: S.Context.getTargetInfo())) |
13098 | return; |
13099 | |
13100 | // Emit a warning if the string literal is truncated and does not contain an |
13101 | // embedded null character. |
13102 | if (TypeSize <= StrRef.size() && !StrRef.substr(Start: 0, N: TypeSize).contains(C: '\0')) { |
13103 | CheckFormatHandler::EmitFormatDiagnostic( |
13104 | S, inFunctionCall, Args[format_idx], |
13105 | S.PDiag(diag::warn_printf_format_string_not_null_terminated), |
13106 | FExpr->getBeginLoc(), |
13107 | /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange()); |
13108 | return; |
13109 | } |
13110 | |
13111 | // CHECK: empty format string? |
13112 | if (StrLen == 0 && numDataArgs > 0) { |
13113 | CheckFormatHandler::EmitFormatDiagnostic( |
13114 | S, inFunctionCall, Args[format_idx], |
13115 | S.PDiag(diag::warn_empty_format_string), FExpr->getBeginLoc(), |
13116 | /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange()); |
13117 | return; |
13118 | } |
13119 | |
13120 | if (Type == Sema::FST_Printf || Type == Sema::FST_NSString || |
13121 | Type == Sema::FST_FreeBSDKPrintf || Type == Sema::FST_OSLog || |
13122 | Type == Sema::FST_OSTrace) { |
13123 | CheckPrintfHandler H( |
13124 | S, FExpr, OrigFormatExpr, Type, firstDataArg, numDataArgs, |
13125 | (Type == Sema::FST_NSString || Type == Sema::FST_OSTrace), Str, APK, |
13126 | Args, format_idx, inFunctionCall, CallType, CheckedVarArgs, |
13127 | UncoveredArg); |
13128 | |
13129 | if (!analyze_format_string::ParsePrintfString( |
13130 | H, beg: Str, end: Str + StrLen, LO: S.getLangOpts(), Target: S.Context.getTargetInfo(), |
13131 | isFreeBSDKPrintf: Type == Sema::FST_FreeBSDKPrintf)) |
13132 | H.DoneProcessing(); |
13133 | } else if (Type == Sema::FST_Scanf) { |
13134 | CheckScanfHandler H(S, FExpr, OrigFormatExpr, Type, firstDataArg, |
13135 | numDataArgs, Str, APK, Args, format_idx, inFunctionCall, |
13136 | CallType, CheckedVarArgs, UncoveredArg); |
13137 | |
13138 | if (!analyze_format_string::ParseScanfString( |
13139 | H, beg: Str, end: Str + StrLen, LO: S.getLangOpts(), Target: S.Context.getTargetInfo())) |
13140 | H.DoneProcessing(); |
13141 | } // TODO: handle other formats |
13142 | } |
13143 | |
13144 | bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) { |
13145 | // Str - The format string. NOTE: this is NOT null-terminated! |
13146 | StringRef StrRef = FExpr->getString(); |
13147 | const char *Str = StrRef.data(); |
13148 | // Account for cases where the string literal is truncated in a declaration. |
13149 | const ConstantArrayType *T = Context.getAsConstantArrayType(T: FExpr->getType()); |
13150 | assert(T && "String literal not of constant array type!" ); |
13151 | size_t TypeSize = T->getZExtSize(); |
13152 | size_t StrLen = std::min(a: std::max(a: TypeSize, b: size_t(1)) - 1, b: StrRef.size()); |
13153 | return analyze_format_string::ParseFormatStringHasSArg(beg: Str, end: Str + StrLen, |
13154 | LO: getLangOpts(), |
13155 | Target: Context.getTargetInfo()); |
13156 | } |
13157 | |
13158 | //===--- CHECK: Warn on use of wrong absolute value function. -------------===// |
13159 | |
13160 | // Returns the related absolute value function that is larger, of 0 if one |
13161 | // does not exist. |
13162 | static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) { |
13163 | switch (AbsFunction) { |
13164 | default: |
13165 | return 0; |
13166 | |
13167 | case Builtin::BI__builtin_abs: |
13168 | return Builtin::BI__builtin_labs; |
13169 | case Builtin::BI__builtin_labs: |
13170 | return Builtin::BI__builtin_llabs; |
13171 | case Builtin::BI__builtin_llabs: |
13172 | return 0; |
13173 | |
13174 | case Builtin::BI__builtin_fabsf: |
13175 | return Builtin::BI__builtin_fabs; |
13176 | case Builtin::BI__builtin_fabs: |
13177 | return Builtin::BI__builtin_fabsl; |
13178 | case Builtin::BI__builtin_fabsl: |
13179 | return 0; |
13180 | |
13181 | case Builtin::BI__builtin_cabsf: |
13182 | return Builtin::BI__builtin_cabs; |
13183 | case Builtin::BI__builtin_cabs: |
13184 | return Builtin::BI__builtin_cabsl; |
13185 | case Builtin::BI__builtin_cabsl: |
13186 | return 0; |
13187 | |
13188 | case Builtin::BIabs: |
13189 | return Builtin::BIlabs; |
13190 | case Builtin::BIlabs: |
13191 | return Builtin::BIllabs; |
13192 | case Builtin::BIllabs: |
13193 | return 0; |
13194 | |
13195 | case Builtin::BIfabsf: |
13196 | return Builtin::BIfabs; |
13197 | case Builtin::BIfabs: |
13198 | return Builtin::BIfabsl; |
13199 | case Builtin::BIfabsl: |
13200 | return 0; |
13201 | |
13202 | case Builtin::BIcabsf: |
13203 | return Builtin::BIcabs; |
13204 | case Builtin::BIcabs: |
13205 | return Builtin::BIcabsl; |
13206 | case Builtin::BIcabsl: |
13207 | return 0; |
13208 | } |
13209 | } |
13210 | |
13211 | // Returns the argument type of the absolute value function. |
13212 | static QualType getAbsoluteValueArgumentType(ASTContext &Context, |
13213 | unsigned AbsType) { |
13214 | if (AbsType == 0) |
13215 | return QualType(); |
13216 | |
13217 | ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None; |
13218 | QualType BuiltinType = Context.GetBuiltinType(ID: AbsType, Error); |
13219 | if (Error != ASTContext::GE_None) |
13220 | return QualType(); |
13221 | |
13222 | const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>(); |
13223 | if (!FT) |
13224 | return QualType(); |
13225 | |
13226 | if (FT->getNumParams() != 1) |
13227 | return QualType(); |
13228 | |
13229 | return FT->getParamType(i: 0); |
13230 | } |
13231 | |
13232 | // Returns the best absolute value function, or zero, based on type and |
13233 | // current absolute value function. |
13234 | static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType, |
13235 | unsigned AbsFunctionKind) { |
13236 | unsigned BestKind = 0; |
13237 | uint64_t ArgSize = Context.getTypeSize(T: ArgType); |
13238 | for (unsigned Kind = AbsFunctionKind; Kind != 0; |
13239 | Kind = getLargerAbsoluteValueFunction(AbsFunction: Kind)) { |
13240 | QualType ParamType = getAbsoluteValueArgumentType(Context, AbsType: Kind); |
13241 | if (Context.getTypeSize(T: ParamType) >= ArgSize) { |
13242 | if (BestKind == 0) |
13243 | BestKind = Kind; |
13244 | else if (Context.hasSameType(T1: ParamType, T2: ArgType)) { |
13245 | BestKind = Kind; |
13246 | break; |
13247 | } |
13248 | } |
13249 | } |
13250 | return BestKind; |
13251 | } |
13252 | |
13253 | enum AbsoluteValueKind { |
13254 | AVK_Integer, |
13255 | AVK_Floating, |
13256 | AVK_Complex |
13257 | }; |
13258 | |
13259 | static AbsoluteValueKind getAbsoluteValueKind(QualType T) { |
13260 | if (T->isIntegralOrEnumerationType()) |
13261 | return AVK_Integer; |
13262 | if (T->isRealFloatingType()) |
13263 | return AVK_Floating; |
13264 | if (T->isAnyComplexType()) |
13265 | return AVK_Complex; |
13266 | |
13267 | llvm_unreachable("Type not integer, floating, or complex" ); |
13268 | } |
13269 | |
13270 | // Changes the absolute value function to a different type. Preserves whether |
13271 | // the function is a builtin. |
13272 | static unsigned changeAbsFunction(unsigned AbsKind, |
13273 | AbsoluteValueKind ValueKind) { |
13274 | switch (ValueKind) { |
13275 | case AVK_Integer: |
13276 | switch (AbsKind) { |
13277 | default: |
13278 | return 0; |
13279 | case Builtin::BI__builtin_fabsf: |
13280 | case Builtin::BI__builtin_fabs: |
13281 | case Builtin::BI__builtin_fabsl: |
13282 | case Builtin::BI__builtin_cabsf: |
13283 | case Builtin::BI__builtin_cabs: |
13284 | case Builtin::BI__builtin_cabsl: |
13285 | return Builtin::BI__builtin_abs; |
13286 | case Builtin::BIfabsf: |
13287 | case Builtin::BIfabs: |
13288 | case Builtin::BIfabsl: |
13289 | case Builtin::BIcabsf: |
13290 | case Builtin::BIcabs: |
13291 | case Builtin::BIcabsl: |
13292 | return Builtin::BIabs; |
13293 | } |
13294 | case AVK_Floating: |
13295 | switch (AbsKind) { |
13296 | default: |
13297 | return 0; |
13298 | case Builtin::BI__builtin_abs: |
13299 | case Builtin::BI__builtin_labs: |
13300 | case Builtin::BI__builtin_llabs: |
13301 | case Builtin::BI__builtin_cabsf: |
13302 | case Builtin::BI__builtin_cabs: |
13303 | case Builtin::BI__builtin_cabsl: |
13304 | return Builtin::BI__builtin_fabsf; |
13305 | case Builtin::BIabs: |
13306 | case Builtin::BIlabs: |
13307 | case Builtin::BIllabs: |
13308 | case Builtin::BIcabsf: |
13309 | case Builtin::BIcabs: |
13310 | case Builtin::BIcabsl: |
13311 | return Builtin::BIfabsf; |
13312 | } |
13313 | case AVK_Complex: |
13314 | switch (AbsKind) { |
13315 | default: |
13316 | return 0; |
13317 | case Builtin::BI__builtin_abs: |
13318 | case Builtin::BI__builtin_labs: |
13319 | case Builtin::BI__builtin_llabs: |
13320 | case Builtin::BI__builtin_fabsf: |
13321 | case Builtin::BI__builtin_fabs: |
13322 | case Builtin::BI__builtin_fabsl: |
13323 | return Builtin::BI__builtin_cabsf; |
13324 | case Builtin::BIabs: |
13325 | case Builtin::BIlabs: |
13326 | case Builtin::BIllabs: |
13327 | case Builtin::BIfabsf: |
13328 | case Builtin::BIfabs: |
13329 | case Builtin::BIfabsl: |
13330 | return Builtin::BIcabsf; |
13331 | } |
13332 | } |
13333 | llvm_unreachable("Unable to convert function" ); |
13334 | } |
13335 | |
13336 | static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) { |
13337 | const IdentifierInfo *FnInfo = FDecl->getIdentifier(); |
13338 | if (!FnInfo) |
13339 | return 0; |
13340 | |
13341 | switch (FDecl->getBuiltinID()) { |
13342 | default: |
13343 | return 0; |
13344 | case Builtin::BI__builtin_abs: |
13345 | case Builtin::BI__builtin_fabs: |
13346 | case Builtin::BI__builtin_fabsf: |
13347 | case Builtin::BI__builtin_fabsl: |
13348 | case Builtin::BI__builtin_labs: |
13349 | case Builtin::BI__builtin_llabs: |
13350 | case Builtin::BI__builtin_cabs: |
13351 | case Builtin::BI__builtin_cabsf: |
13352 | case Builtin::BI__builtin_cabsl: |
13353 | case Builtin::BIabs: |
13354 | case Builtin::BIlabs: |
13355 | case Builtin::BIllabs: |
13356 | case Builtin::BIfabs: |
13357 | case Builtin::BIfabsf: |
13358 | case Builtin::BIfabsl: |
13359 | case Builtin::BIcabs: |
13360 | case Builtin::BIcabsf: |
13361 | case Builtin::BIcabsl: |
13362 | return FDecl->getBuiltinID(); |
13363 | } |
13364 | llvm_unreachable("Unknown Builtin type" ); |
13365 | } |
13366 | |
13367 | // If the replacement is valid, emit a note with replacement function. |
13368 | // Additionally, suggest including the proper header if not already included. |
13369 | static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range, |
13370 | unsigned AbsKind, QualType ArgType) { |
13371 | bool = true; |
13372 | const char * = nullptr; |
13373 | StringRef FunctionName; |
13374 | if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) { |
13375 | FunctionName = "std::abs" ; |
13376 | if (ArgType->isIntegralOrEnumerationType()) { |
13377 | HeaderName = "cstdlib" ; |
13378 | } else if (ArgType->isRealFloatingType()) { |
13379 | HeaderName = "cmath" ; |
13380 | } else { |
13381 | llvm_unreachable("Invalid Type" ); |
13382 | } |
13383 | |
13384 | // Lookup all std::abs |
13385 | if (NamespaceDecl *Std = S.getStdNamespace()) { |
13386 | LookupResult R(S, &S.Context.Idents.get(Name: "abs" ), Loc, Sema::LookupAnyName); |
13387 | R.suppressDiagnostics(); |
13388 | S.LookupQualifiedName(R, Std); |
13389 | |
13390 | for (const auto *I : R) { |
13391 | const FunctionDecl *FDecl = nullptr; |
13392 | if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(Val: I)) { |
13393 | FDecl = dyn_cast<FunctionDecl>(Val: UsingD->getTargetDecl()); |
13394 | } else { |
13395 | FDecl = dyn_cast<FunctionDecl>(Val: I); |
13396 | } |
13397 | if (!FDecl) |
13398 | continue; |
13399 | |
13400 | // Found std::abs(), check that they are the right ones. |
13401 | if (FDecl->getNumParams() != 1) |
13402 | continue; |
13403 | |
13404 | // Check that the parameter type can handle the argument. |
13405 | QualType ParamType = FDecl->getParamDecl(i: 0)->getType(); |
13406 | if (getAbsoluteValueKind(T: ArgType) == getAbsoluteValueKind(T: ParamType) && |
13407 | S.Context.getTypeSize(T: ArgType) <= |
13408 | S.Context.getTypeSize(T: ParamType)) { |
13409 | // Found a function, don't need the header hint. |
13410 | EmitHeaderHint = false; |
13411 | break; |
13412 | } |
13413 | } |
13414 | } |
13415 | } else { |
13416 | FunctionName = S.Context.BuiltinInfo.getName(ID: AbsKind); |
13417 | HeaderName = S.Context.BuiltinInfo.getHeaderName(ID: AbsKind); |
13418 | |
13419 | if (HeaderName) { |
13420 | DeclarationName DN(&S.Context.Idents.get(Name: FunctionName)); |
13421 | LookupResult R(S, DN, Loc, Sema::LookupAnyName); |
13422 | R.suppressDiagnostics(); |
13423 | S.LookupName(R, S: S.getCurScope()); |
13424 | |
13425 | if (R.isSingleResult()) { |
13426 | FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: R.getFoundDecl()); |
13427 | if (FD && FD->getBuiltinID() == AbsKind) { |
13428 | EmitHeaderHint = false; |
13429 | } else { |
13430 | return; |
13431 | } |
13432 | } else if (!R.empty()) { |
13433 | return; |
13434 | } |
13435 | } |
13436 | } |
13437 | |
13438 | S.Diag(Loc, diag::note_replace_abs_function) |
13439 | << FunctionName << FixItHint::CreateReplacement(Range, FunctionName); |
13440 | |
13441 | if (!HeaderName) |
13442 | return; |
13443 | |
13444 | if (!EmitHeaderHint) |
13445 | return; |
13446 | |
13447 | S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName |
13448 | << FunctionName; |
13449 | } |
13450 | |
13451 | template <std::size_t StrLen> |
13452 | static bool IsStdFunction(const FunctionDecl *FDecl, |
13453 | const char (&Str)[StrLen]) { |
13454 | if (!FDecl) |
13455 | return false; |
13456 | if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr(Str)) |
13457 | return false; |
13458 | if (!FDecl->isInStdNamespace()) |
13459 | return false; |
13460 | |
13461 | return true; |
13462 | } |
13463 | |
13464 | void Sema::CheckInfNaNFunction(const CallExpr *Call, |
13465 | const FunctionDecl *FDecl) { |
13466 | FPOptions FPO = Call->getFPFeaturesInEffect(LO: getLangOpts()); |
13467 | if ((IsStdFunction(FDecl, "isnan" ) || IsStdFunction(FDecl, "isunordered" ) || |
13468 | (Call->getBuiltinCallee() == Builtin::BI__builtin_nanf)) && |
13469 | FPO.getNoHonorNaNs()) |
13470 | Diag(Call->getBeginLoc(), diag::warn_fp_nan_inf_when_disabled) |
13471 | << 1 << 0 << Call->getSourceRange(); |
13472 | else if ((IsStdFunction(FDecl, "isinf" ) || |
13473 | (IsStdFunction(FDecl, "isfinite" ) || |
13474 | (FDecl->getIdentifier() && FDecl->getName() == "infinity" ))) && |
13475 | FPO.getNoHonorInfs()) |
13476 | Diag(Call->getBeginLoc(), diag::warn_fp_nan_inf_when_disabled) |
13477 | << 0 << 0 << Call->getSourceRange(); |
13478 | } |
13479 | |
13480 | // Warn when using the wrong abs() function. |
13481 | void Sema::CheckAbsoluteValueFunction(const CallExpr *Call, |
13482 | const FunctionDecl *FDecl) { |
13483 | if (Call->getNumArgs() != 1) |
13484 | return; |
13485 | |
13486 | unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl); |
13487 | bool IsStdAbs = IsStdFunction(FDecl, Str: "abs" ); |
13488 | if (AbsKind == 0 && !IsStdAbs) |
13489 | return; |
13490 | |
13491 | QualType ArgType = Call->getArg(Arg: 0)->IgnoreParenImpCasts()->getType(); |
13492 | QualType ParamType = Call->getArg(Arg: 0)->getType(); |
13493 | |
13494 | // Unsigned types cannot be negative. Suggest removing the absolute value |
13495 | // function call. |
13496 | if (ArgType->isUnsignedIntegerType()) { |
13497 | StringRef FunctionName = |
13498 | IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(ID: AbsKind); |
13499 | Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType; |
13500 | Diag(Call->getExprLoc(), diag::note_remove_abs) |
13501 | << FunctionName |
13502 | << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange()); |
13503 | return; |
13504 | } |
13505 | |
13506 | // Taking the absolute value of a pointer is very suspicious, they probably |
13507 | // wanted to index into an array, dereference a pointer, call a function, etc. |
13508 | if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) { |
13509 | unsigned DiagType = 0; |
13510 | if (ArgType->isFunctionType()) |
13511 | DiagType = 1; |
13512 | else if (ArgType->isArrayType()) |
13513 | DiagType = 2; |
13514 | |
13515 | Diag(Call->getExprLoc(), diag::warn_pointer_abs) << DiagType << ArgType; |
13516 | return; |
13517 | } |
13518 | |
13519 | // std::abs has overloads which prevent most of the absolute value problems |
13520 | // from occurring. |
13521 | if (IsStdAbs) |
13522 | return; |
13523 | |
13524 | AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(T: ArgType); |
13525 | AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(T: ParamType); |
13526 | |
13527 | // The argument and parameter are the same kind. Check if they are the right |
13528 | // size. |
13529 | if (ArgValueKind == ParamValueKind) { |
13530 | if (Context.getTypeSize(T: ArgType) <= Context.getTypeSize(T: ParamType)) |
13531 | return; |
13532 | |
13533 | unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsFunctionKind: AbsKind); |
13534 | Diag(Call->getExprLoc(), diag::warn_abs_too_small) |
13535 | << FDecl << ArgType << ParamType; |
13536 | |
13537 | if (NewAbsKind == 0) |
13538 | return; |
13539 | |
13540 | emitReplacement(*this, Call->getExprLoc(), |
13541 | Call->getCallee()->getSourceRange(), NewAbsKind, ArgType); |
13542 | return; |
13543 | } |
13544 | |
13545 | // ArgValueKind != ParamValueKind |
13546 | // The wrong type of absolute value function was used. Attempt to find the |
13547 | // proper one. |
13548 | unsigned NewAbsKind = changeAbsFunction(AbsKind, ValueKind: ArgValueKind); |
13549 | NewAbsKind = getBestAbsFunction(Context, ArgType, AbsFunctionKind: NewAbsKind); |
13550 | if (NewAbsKind == 0) |
13551 | return; |
13552 | |
13553 | Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type) |
13554 | << FDecl << ParamValueKind << ArgValueKind; |
13555 | |
13556 | emitReplacement(*this, Call->getExprLoc(), |
13557 | Call->getCallee()->getSourceRange(), NewAbsKind, ArgType); |
13558 | } |
13559 | |
13560 | //===--- CHECK: Warn on use of std::max and unsigned zero. r---------------===// |
13561 | void Sema::CheckMaxUnsignedZero(const CallExpr *Call, |
13562 | const FunctionDecl *FDecl) { |
13563 | if (!Call || !FDecl) return; |
13564 | |
13565 | // Ignore template specializations and macros. |
13566 | if (inTemplateInstantiation()) return; |
13567 | if (Call->getExprLoc().isMacroID()) return; |
13568 | |
13569 | // Only care about the one template argument, two function parameter std::max |
13570 | if (Call->getNumArgs() != 2) return; |
13571 | if (!IsStdFunction(FDecl, Str: "max" )) return; |
13572 | const auto * ArgList = FDecl->getTemplateSpecializationArgs(); |
13573 | if (!ArgList) return; |
13574 | if (ArgList->size() != 1) return; |
13575 | |
13576 | // Check that template type argument is unsigned integer. |
13577 | const auto& TA = ArgList->get(Idx: 0); |
13578 | if (TA.getKind() != TemplateArgument::Type) return; |
13579 | QualType ArgType = TA.getAsType(); |
13580 | if (!ArgType->isUnsignedIntegerType()) return; |
13581 | |
13582 | // See if either argument is a literal zero. |
13583 | auto IsLiteralZeroArg = [](const Expr* E) -> bool { |
13584 | const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Val: E); |
13585 | if (!MTE) return false; |
13586 | const auto *Num = dyn_cast<IntegerLiteral>(Val: MTE->getSubExpr()); |
13587 | if (!Num) return false; |
13588 | if (Num->getValue() != 0) return false; |
13589 | return true; |
13590 | }; |
13591 | |
13592 | const Expr *FirstArg = Call->getArg(Arg: 0); |
13593 | const Expr *SecondArg = Call->getArg(Arg: 1); |
13594 | const bool IsFirstArgZero = IsLiteralZeroArg(FirstArg); |
13595 | const bool IsSecondArgZero = IsLiteralZeroArg(SecondArg); |
13596 | |
13597 | // Only warn when exactly one argument is zero. |
13598 | if (IsFirstArgZero == IsSecondArgZero) return; |
13599 | |
13600 | SourceRange FirstRange = FirstArg->getSourceRange(); |
13601 | SourceRange SecondRange = SecondArg->getSourceRange(); |
13602 | |
13603 | SourceRange ZeroRange = IsFirstArgZero ? FirstRange : SecondRange; |
13604 | |
13605 | Diag(Call->getExprLoc(), diag::warn_max_unsigned_zero) |
13606 | << IsFirstArgZero << Call->getCallee()->getSourceRange() << ZeroRange; |
13607 | |
13608 | // Deduce what parts to remove so that "std::max(0u, foo)" becomes "(foo)". |
13609 | SourceRange RemovalRange; |
13610 | if (IsFirstArgZero) { |
13611 | RemovalRange = SourceRange(FirstRange.getBegin(), |
13612 | SecondRange.getBegin().getLocWithOffset(Offset: -1)); |
13613 | } else { |
13614 | RemovalRange = SourceRange(getLocForEndOfToken(Loc: FirstRange.getEnd()), |
13615 | SecondRange.getEnd()); |
13616 | } |
13617 | |
13618 | Diag(Call->getExprLoc(), diag::note_remove_max_call) |
13619 | << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange()) |
13620 | << FixItHint::CreateRemoval(RemovalRange); |
13621 | } |
13622 | |
13623 | //===--- CHECK: Standard memory functions ---------------------------------===// |
13624 | |
13625 | /// Takes the expression passed to the size_t parameter of functions |
13626 | /// such as memcmp, strncat, etc and warns if it's a comparison. |
13627 | /// |
13628 | /// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`. |
13629 | static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E, |
13630 | IdentifierInfo *FnName, |
13631 | SourceLocation FnLoc, |
13632 | SourceLocation RParenLoc) { |
13633 | const BinaryOperator *Size = dyn_cast<BinaryOperator>(Val: E); |
13634 | if (!Size) |
13635 | return false; |
13636 | |
13637 | // if E is binop and op is <=>, >, <, >=, <=, ==, &&, ||: |
13638 | if (!Size->isComparisonOp() && !Size->isLogicalOp()) |
13639 | return false; |
13640 | |
13641 | SourceRange SizeRange = Size->getSourceRange(); |
13642 | S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison) |
13643 | << SizeRange << FnName; |
13644 | S.Diag(FnLoc, diag::note_memsize_comparison_paren) |
13645 | << FnName |
13646 | << FixItHint::CreateInsertion( |
13647 | S.getLocForEndOfToken(Size->getLHS()->getEndLoc()), ")" ) |
13648 | << FixItHint::CreateRemoval(RParenLoc); |
13649 | S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence) |
13650 | << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(" ) |
13651 | << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()), |
13652 | ")" ); |
13653 | |
13654 | return true; |
13655 | } |
13656 | |
13657 | /// Determine whether the given type is or contains a dynamic class type |
13658 | /// (e.g., whether it has a vtable). |
13659 | static const CXXRecordDecl *getContainedDynamicClass(QualType T, |
13660 | bool &IsContained) { |
13661 | // Look through array types while ignoring qualifiers. |
13662 | const Type *Ty = T->getBaseElementTypeUnsafe(); |
13663 | IsContained = false; |
13664 | |
13665 | const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); |
13666 | RD = RD ? RD->getDefinition() : nullptr; |
13667 | if (!RD || RD->isInvalidDecl()) |
13668 | return nullptr; |
13669 | |
13670 | if (RD->isDynamicClass()) |
13671 | return RD; |
13672 | |
13673 | // Check all the fields. If any bases were dynamic, the class is dynamic. |
13674 | // It's impossible for a class to transitively contain itself by value, so |
13675 | // infinite recursion is impossible. |
13676 | for (auto *FD : RD->fields()) { |
13677 | bool SubContained; |
13678 | if (const CXXRecordDecl *ContainedRD = |
13679 | getContainedDynamicClass(FD->getType(), SubContained)) { |
13680 | IsContained = true; |
13681 | return ContainedRD; |
13682 | } |
13683 | } |
13684 | |
13685 | return nullptr; |
13686 | } |
13687 | |
13688 | static const UnaryExprOrTypeTraitExpr *getAsSizeOfExpr(const Expr *E) { |
13689 | if (const auto *Unary = dyn_cast<UnaryExprOrTypeTraitExpr>(Val: E)) |
13690 | if (Unary->getKind() == UETT_SizeOf) |
13691 | return Unary; |
13692 | return nullptr; |
13693 | } |
13694 | |
13695 | /// If E is a sizeof expression, returns its argument expression, |
13696 | /// otherwise returns NULL. |
13697 | static const Expr *getSizeOfExprArg(const Expr *E) { |
13698 | if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E)) |
13699 | if (!SizeOf->isArgumentType()) |
13700 | return SizeOf->getArgumentExpr()->IgnoreParenImpCasts(); |
13701 | return nullptr; |
13702 | } |
13703 | |
13704 | /// If E is a sizeof expression, returns its argument type. |
13705 | static QualType getSizeOfArgType(const Expr *E) { |
13706 | if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E)) |
13707 | return SizeOf->getTypeOfArgument(); |
13708 | return QualType(); |
13709 | } |
13710 | |
13711 | namespace { |
13712 | |
13713 | struct SearchNonTrivialToInitializeField |
13714 | : DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField> { |
13715 | using Super = |
13716 | DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField>; |
13717 | |
13718 | SearchNonTrivialToInitializeField(const Expr *E, Sema &S) : E(E), S(S) {} |
13719 | |
13720 | void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType FT, |
13721 | SourceLocation SL) { |
13722 | if (const auto *AT = asDerived().getContext().getAsArrayType(T: FT)) { |
13723 | asDerived().visitArray(PDIK, AT, SL); |
13724 | return; |
13725 | } |
13726 | |
13727 | Super::visitWithKind(PDIK, FT, Args&: SL); |
13728 | } |
13729 | |
13730 | void visitARCStrong(QualType FT, SourceLocation SL) { |
13731 | S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1); |
13732 | } |
13733 | void visitARCWeak(QualType FT, SourceLocation SL) { |
13734 | S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1); |
13735 | } |
13736 | void visitStruct(QualType FT, SourceLocation SL) { |
13737 | for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields()) |
13738 | visit(FD->getType(), FD->getLocation()); |
13739 | } |
13740 | void visitArray(QualType::PrimitiveDefaultInitializeKind PDIK, |
13741 | const ArrayType *AT, SourceLocation SL) { |
13742 | visit(FT: getContext().getBaseElementType(VAT: AT), Args&: SL); |
13743 | } |
13744 | void visitTrivial(QualType FT, SourceLocation SL) {} |
13745 | |
13746 | static void diag(QualType RT, const Expr *E, Sema &S) { |
13747 | SearchNonTrivialToInitializeField(E, S).visitStruct(FT: RT, SL: SourceLocation()); |
13748 | } |
13749 | |
13750 | ASTContext &getContext() { return S.getASTContext(); } |
13751 | |
13752 | const Expr *E; |
13753 | Sema &S; |
13754 | }; |
13755 | |
13756 | struct SearchNonTrivialToCopyField |
13757 | : CopiedTypeVisitor<SearchNonTrivialToCopyField, false> { |
13758 | using Super = CopiedTypeVisitor<SearchNonTrivialToCopyField, false>; |
13759 | |
13760 | SearchNonTrivialToCopyField(const Expr *E, Sema &S) : E(E), S(S) {} |
13761 | |
13762 | void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType FT, |
13763 | SourceLocation SL) { |
13764 | if (const auto *AT = asDerived().getContext().getAsArrayType(T: FT)) { |
13765 | asDerived().visitArray(PCK, AT, SL); |
13766 | return; |
13767 | } |
13768 | |
13769 | Super::visitWithKind(PCK, FT, Args&: SL); |
13770 | } |
13771 | |
13772 | void visitARCStrong(QualType FT, SourceLocation SL) { |
13773 | S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0); |
13774 | } |
13775 | void visitARCWeak(QualType FT, SourceLocation SL) { |
13776 | S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0); |
13777 | } |
13778 | void visitStruct(QualType FT, SourceLocation SL) { |
13779 | for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields()) |
13780 | visit(FD->getType(), FD->getLocation()); |
13781 | } |
13782 | void visitArray(QualType::PrimitiveCopyKind PCK, const ArrayType *AT, |
13783 | SourceLocation SL) { |
13784 | visit(FT: getContext().getBaseElementType(VAT: AT), Args&: SL); |
13785 | } |
13786 | void preVisit(QualType::PrimitiveCopyKind PCK, QualType FT, |
13787 | SourceLocation SL) {} |
13788 | void visitTrivial(QualType FT, SourceLocation SL) {} |
13789 | void visitVolatileTrivial(QualType FT, SourceLocation SL) {} |
13790 | |
13791 | static void diag(QualType RT, const Expr *E, Sema &S) { |
13792 | SearchNonTrivialToCopyField(E, S).visitStruct(FT: RT, SL: SourceLocation()); |
13793 | } |
13794 | |
13795 | ASTContext &getContext() { return S.getASTContext(); } |
13796 | |
13797 | const Expr *E; |
13798 | Sema &S; |
13799 | }; |
13800 | |
13801 | } |
13802 | |
13803 | /// Detect if \c SizeofExpr is likely to calculate the sizeof an object. |
13804 | static bool doesExprLikelyComputeSize(const Expr *SizeofExpr) { |
13805 | SizeofExpr = SizeofExpr->IgnoreParenImpCasts(); |
13806 | |
13807 | if (const auto *BO = dyn_cast<BinaryOperator>(Val: SizeofExpr)) { |
13808 | if (BO->getOpcode() != BO_Mul && BO->getOpcode() != BO_Add) |
13809 | return false; |
13810 | |
13811 | return doesExprLikelyComputeSize(SizeofExpr: BO->getLHS()) || |
13812 | doesExprLikelyComputeSize(SizeofExpr: BO->getRHS()); |
13813 | } |
13814 | |
13815 | return getAsSizeOfExpr(E: SizeofExpr) != nullptr; |
13816 | } |
13817 | |
13818 | /// Check if the ArgLoc originated from a macro passed to the call at CallLoc. |
13819 | /// |
13820 | /// \code |
13821 | /// #define MACRO 0 |
13822 | /// foo(MACRO); |
13823 | /// foo(0); |
13824 | /// \endcode |
13825 | /// |
13826 | /// This should return true for the first call to foo, but not for the second |
13827 | /// (regardless of whether foo is a macro or function). |
13828 | static bool isArgumentExpandedFromMacro(SourceManager &SM, |
13829 | SourceLocation CallLoc, |
13830 | SourceLocation ArgLoc) { |
13831 | if (!CallLoc.isMacroID()) |
13832 | return SM.getFileID(SpellingLoc: CallLoc) != SM.getFileID(SpellingLoc: ArgLoc); |
13833 | |
13834 | return SM.getFileID(SpellingLoc: SM.getImmediateMacroCallerLoc(Loc: CallLoc)) != |
13835 | SM.getFileID(SpellingLoc: SM.getImmediateMacroCallerLoc(Loc: ArgLoc)); |
13836 | } |
13837 | |
13838 | /// Diagnose cases like 'memset(buf, sizeof(buf), 0)', which should have the |
13839 | /// last two arguments transposed. |
13840 | static void CheckMemaccessSize(Sema &S, unsigned BId, const CallExpr *Call) { |
13841 | if (BId != Builtin::BImemset && BId != Builtin::BIbzero) |
13842 | return; |
13843 | |
13844 | const Expr *SizeArg = |
13845 | Call->getArg(BId == Builtin::BImemset ? 2 : 1)->IgnoreImpCasts(); |
13846 | |
13847 | auto isLiteralZero = [](const Expr *E) { |
13848 | return (isa<IntegerLiteral>(E) && |
13849 | cast<IntegerLiteral>(E)->getValue() == 0) || |
13850 | (isa<CharacterLiteral>(E) && |
13851 | cast<CharacterLiteral>(E)->getValue() == 0); |
13852 | }; |
13853 | |
13854 | // If we're memsetting or bzeroing 0 bytes, then this is likely an error. |
13855 | SourceLocation CallLoc = Call->getRParenLoc(); |
13856 | SourceManager &SM = S.getSourceManager(); |
13857 | if (isLiteralZero(SizeArg) && |
13858 | !isArgumentExpandedFromMacro(SM, CallLoc, ArgLoc: SizeArg->getExprLoc())) { |
13859 | |
13860 | SourceLocation DiagLoc = SizeArg->getExprLoc(); |
13861 | |
13862 | // Some platforms #define bzero to __builtin_memset. See if this is the |
13863 | // case, and if so, emit a better diagnostic. |
13864 | if (BId == Builtin::BIbzero || |
13865 | (CallLoc.isMacroID() && Lexer::getImmediateMacroName( |
13866 | CallLoc, SM, S.getLangOpts()) == "bzero" )) { |
13867 | S.Diag(DiagLoc, diag::warn_suspicious_bzero_size); |
13868 | S.Diag(DiagLoc, diag::note_suspicious_bzero_size_silence); |
13869 | } else if (!isLiteralZero(Call->getArg(Arg: 1)->IgnoreImpCasts())) { |
13870 | S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 0; |
13871 | S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 0; |
13872 | } |
13873 | return; |
13874 | } |
13875 | |
13876 | // If the second argument to a memset is a sizeof expression and the third |
13877 | // isn't, this is also likely an error. This should catch |
13878 | // 'memset(buf, sizeof(buf), 0xff)'. |
13879 | if (BId == Builtin::BImemset && |
13880 | doesExprLikelyComputeSize(Call->getArg(1)) && |
13881 | !doesExprLikelyComputeSize(Call->getArg(2))) { |
13882 | SourceLocation DiagLoc = Call->getArg(Arg: 1)->getExprLoc(); |
13883 | S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 1; |
13884 | S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 1; |
13885 | return; |
13886 | } |
13887 | } |
13888 | |
13889 | /// Check for dangerous or invalid arguments to memset(). |
13890 | /// |
13891 | /// This issues warnings on known problematic, dangerous or unspecified |
13892 | /// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp' |
13893 | /// function calls. |
13894 | /// |
13895 | /// \param Call The call expression to diagnose. |
13896 | void Sema::CheckMemaccessArguments(const CallExpr *Call, |
13897 | unsigned BId, |
13898 | IdentifierInfo *FnName) { |
13899 | assert(BId != 0); |
13900 | |
13901 | // It is possible to have a non-standard definition of memset. Validate |
13902 | // we have enough arguments, and if not, abort further checking. |
13903 | unsigned ExpectedNumArgs = |
13904 | (BId == Builtin::BIstrndup || BId == Builtin::BIbzero ? 2 : 3); |
13905 | if (Call->getNumArgs() < ExpectedNumArgs) |
13906 | return; |
13907 | |
13908 | unsigned LastArg = (BId == Builtin::BImemset || BId == Builtin::BIbzero || |
13909 | BId == Builtin::BIstrndup ? 1 : 2); |
13910 | unsigned LenArg = |
13911 | (BId == Builtin::BIbzero || BId == Builtin::BIstrndup ? 1 : 2); |
13912 | const Expr *LenExpr = Call->getArg(Arg: LenArg)->IgnoreParenImpCasts(); |
13913 | |
13914 | if (CheckMemorySizeofForComparison(S&: *this, E: LenExpr, FnName, |
13915 | FnLoc: Call->getBeginLoc(), RParenLoc: Call->getRParenLoc())) |
13916 | return; |
13917 | |
13918 | // Catch cases like 'memset(buf, sizeof(buf), 0)'. |
13919 | CheckMemaccessSize(S&: *this, BId, Call); |
13920 | |
13921 | // We have special checking when the length is a sizeof expression. |
13922 | QualType SizeOfArgTy = getSizeOfArgType(E: LenExpr); |
13923 | const Expr *SizeOfArg = getSizeOfExprArg(E: LenExpr); |
13924 | llvm::FoldingSetNodeID SizeOfArgID; |
13925 | |
13926 | // Although widely used, 'bzero' is not a standard function. Be more strict |
13927 | // with the argument types before allowing diagnostics and only allow the |
13928 | // form bzero(ptr, sizeof(...)). |
13929 | QualType FirstArgTy = Call->getArg(Arg: 0)->IgnoreParenImpCasts()->getType(); |
13930 | if (BId == Builtin::BIbzero && !FirstArgTy->getAs<PointerType>()) |
13931 | return; |
13932 | |
13933 | for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) { |
13934 | const Expr *Dest = Call->getArg(Arg: ArgIdx)->IgnoreParenImpCasts(); |
13935 | SourceRange ArgRange = Call->getArg(Arg: ArgIdx)->getSourceRange(); |
13936 | |
13937 | QualType DestTy = Dest->getType(); |
13938 | QualType PointeeTy; |
13939 | if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) { |
13940 | PointeeTy = DestPtrTy->getPointeeType(); |
13941 | |
13942 | // Never warn about void type pointers. This can be used to suppress |
13943 | // false positives. |
13944 | if (PointeeTy->isVoidType()) |
13945 | continue; |
13946 | |
13947 | // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by |
13948 | // actually comparing the expressions for equality. Because computing the |
13949 | // expression IDs can be expensive, we only do this if the diagnostic is |
13950 | // enabled. |
13951 | if (SizeOfArg && |
13952 | !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, |
13953 | SizeOfArg->getExprLoc())) { |
13954 | // We only compute IDs for expressions if the warning is enabled, and |
13955 | // cache the sizeof arg's ID. |
13956 | if (SizeOfArgID == llvm::FoldingSetNodeID()) |
13957 | SizeOfArg->Profile(SizeOfArgID, Context, true); |
13958 | llvm::FoldingSetNodeID DestID; |
13959 | Dest->Profile(DestID, Context, true); |
13960 | if (DestID == SizeOfArgID) { |
13961 | // TODO: For strncpy() and friends, this could suggest sizeof(dst) |
13962 | // over sizeof(src) as well. |
13963 | unsigned ActionIdx = 0; // Default is to suggest dereferencing. |
13964 | StringRef ReadableName = FnName->getName(); |
13965 | |
13966 | if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Val: Dest)) |
13967 | if (UnaryOp->getOpcode() == UO_AddrOf) |
13968 | ActionIdx = 1; // If its an address-of operator, just remove it. |
13969 | if (!PointeeTy->isIncompleteType() && |
13970 | (Context.getTypeSize(T: PointeeTy) == Context.getCharWidth())) |
13971 | ActionIdx = 2; // If the pointee's size is sizeof(char), |
13972 | // suggest an explicit length. |
13973 | |
13974 | // If the function is defined as a builtin macro, do not show macro |
13975 | // expansion. |
13976 | SourceLocation SL = SizeOfArg->getExprLoc(); |
13977 | SourceRange DSR = Dest->getSourceRange(); |
13978 | SourceRange SSR = SizeOfArg->getSourceRange(); |
13979 | SourceManager &SM = getSourceManager(); |
13980 | |
13981 | if (SM.isMacroArgExpansion(Loc: SL)) { |
13982 | ReadableName = Lexer::getImmediateMacroName(Loc: SL, SM, LangOpts); |
13983 | SL = SM.getSpellingLoc(Loc: SL); |
13984 | DSR = SourceRange(SM.getSpellingLoc(Loc: DSR.getBegin()), |
13985 | SM.getSpellingLoc(Loc: DSR.getEnd())); |
13986 | SSR = SourceRange(SM.getSpellingLoc(Loc: SSR.getBegin()), |
13987 | SM.getSpellingLoc(Loc: SSR.getEnd())); |
13988 | } |
13989 | |
13990 | DiagRuntimeBehavior(SL, SizeOfArg, |
13991 | PDiag(diag::warn_sizeof_pointer_expr_memaccess) |
13992 | << ReadableName |
13993 | << PointeeTy |
13994 | << DestTy |
13995 | << DSR |
13996 | << SSR); |
13997 | DiagRuntimeBehavior(SL, SizeOfArg, |
13998 | PDiag(diag::warn_sizeof_pointer_expr_memaccess_note) |
13999 | << ActionIdx |
14000 | << SSR); |
14001 | |
14002 | break; |
14003 | } |
14004 | } |
14005 | |
14006 | // Also check for cases where the sizeof argument is the exact same |
14007 | // type as the memory argument, and where it points to a user-defined |
14008 | // record type. |
14009 | if (SizeOfArgTy != QualType()) { |
14010 | if (PointeeTy->isRecordType() && |
14011 | Context.typesAreCompatible(T1: SizeOfArgTy, T2: DestTy)) { |
14012 | DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest, |
14013 | PDiag(diag::warn_sizeof_pointer_type_memaccess) |
14014 | << FnName << SizeOfArgTy << ArgIdx |
14015 | << PointeeTy << Dest->getSourceRange() |
14016 | << LenExpr->getSourceRange()); |
14017 | break; |
14018 | } |
14019 | } |
14020 | } else if (DestTy->isArrayType()) { |
14021 | PointeeTy = DestTy; |
14022 | } |
14023 | |
14024 | if (PointeeTy == QualType()) |
14025 | continue; |
14026 | |
14027 | // Always complain about dynamic classes. |
14028 | bool IsContained; |
14029 | if (const CXXRecordDecl *ContainedRD = |
14030 | getContainedDynamicClass(T: PointeeTy, IsContained)) { |
14031 | |
14032 | unsigned OperationType = 0; |
14033 | const bool IsCmp = BId == Builtin::BImemcmp || BId == Builtin::BIbcmp; |
14034 | // "overwritten" if we're warning about the destination for any call |
14035 | // but memcmp; otherwise a verb appropriate to the call. |
14036 | if (ArgIdx != 0 || IsCmp) { |
14037 | if (BId == Builtin::BImemcpy) |
14038 | OperationType = 1; |
14039 | else if(BId == Builtin::BImemmove) |
14040 | OperationType = 2; |
14041 | else if (IsCmp) |
14042 | OperationType = 3; |
14043 | } |
14044 | |
14045 | DiagRuntimeBehavior(Dest->getExprLoc(), Dest, |
14046 | PDiag(diag::warn_dyn_class_memaccess) |
14047 | << (IsCmp ? ArgIdx + 2 : ArgIdx) << FnName |
14048 | << IsContained << ContainedRD << OperationType |
14049 | << Call->getCallee()->getSourceRange()); |
14050 | } else if (PointeeTy.hasNonTrivialObjCLifetime() && |
14051 | BId != Builtin::BImemset) |
14052 | DiagRuntimeBehavior( |
14053 | Dest->getExprLoc(), Dest, |
14054 | PDiag(diag::warn_arc_object_memaccess) |
14055 | << ArgIdx << FnName << PointeeTy |
14056 | << Call->getCallee()->getSourceRange()); |
14057 | else if (const auto *RT = PointeeTy->getAs<RecordType>()) { |
14058 | if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) && |
14059 | RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize()) { |
14060 | DiagRuntimeBehavior(Dest->getExprLoc(), Dest, |
14061 | PDiag(diag::warn_cstruct_memaccess) |
14062 | << ArgIdx << FnName << PointeeTy << 0); |
14063 | SearchNonTrivialToInitializeField::diag(RT: PointeeTy, E: Dest, S&: *this); |
14064 | } else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) && |
14065 | RT->getDecl()->isNonTrivialToPrimitiveCopy()) { |
14066 | DiagRuntimeBehavior(Dest->getExprLoc(), Dest, |
14067 | PDiag(diag::warn_cstruct_memaccess) |
14068 | << ArgIdx << FnName << PointeeTy << 1); |
14069 | SearchNonTrivialToCopyField::diag(RT: PointeeTy, E: Dest, S&: *this); |
14070 | } else { |
14071 | continue; |
14072 | } |
14073 | } else |
14074 | continue; |
14075 | |
14076 | DiagRuntimeBehavior( |
14077 | Dest->getExprLoc(), Dest, |
14078 | PDiag(diag::note_bad_memaccess_silence) |
14079 | << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)" )); |
14080 | break; |
14081 | } |
14082 | } |
14083 | |
14084 | // A little helper routine: ignore addition and subtraction of integer literals. |
14085 | // This intentionally does not ignore all integer constant expressions because |
14086 | // we don't want to remove sizeof(). |
14087 | static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) { |
14088 | Ex = Ex->IgnoreParenCasts(); |
14089 | |
14090 | while (true) { |
14091 | const BinaryOperator * BO = dyn_cast<BinaryOperator>(Val: Ex); |
14092 | if (!BO || !BO->isAdditiveOp()) |
14093 | break; |
14094 | |
14095 | const Expr *RHS = BO->getRHS()->IgnoreParenCasts(); |
14096 | const Expr *LHS = BO->getLHS()->IgnoreParenCasts(); |
14097 | |
14098 | if (isa<IntegerLiteral>(Val: RHS)) |
14099 | Ex = LHS; |
14100 | else if (isa<IntegerLiteral>(Val: LHS)) |
14101 | Ex = RHS; |
14102 | else |
14103 | break; |
14104 | } |
14105 | |
14106 | return Ex; |
14107 | } |
14108 | |
14109 | static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty, |
14110 | ASTContext &Context) { |
14111 | // Only handle constant-sized or VLAs, but not flexible members. |
14112 | if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T: Ty)) { |
14113 | // Only issue the FIXIT for arrays of size > 1. |
14114 | if (CAT->getZExtSize() <= 1) |
14115 | return false; |
14116 | } else if (!Ty->isVariableArrayType()) { |
14117 | return false; |
14118 | } |
14119 | return true; |
14120 | } |
14121 | |
14122 | // Warn if the user has made the 'size' argument to strlcpy or strlcat |
14123 | // be the size of the source, instead of the destination. |
14124 | void Sema::CheckStrlcpycatArguments(const CallExpr *Call, |
14125 | IdentifierInfo *FnName) { |
14126 | |
14127 | // Don't crash if the user has the wrong number of arguments |
14128 | unsigned NumArgs = Call->getNumArgs(); |
14129 | if ((NumArgs != 3) && (NumArgs != 4)) |
14130 | return; |
14131 | |
14132 | const Expr *SrcArg = ignoreLiteralAdditions(Ex: Call->getArg(Arg: 1), Ctx&: Context); |
14133 | const Expr *SizeArg = ignoreLiteralAdditions(Ex: Call->getArg(Arg: 2), Ctx&: Context); |
14134 | const Expr *CompareWithSrc = nullptr; |
14135 | |
14136 | if (CheckMemorySizeofForComparison(S&: *this, E: SizeArg, FnName, |
14137 | FnLoc: Call->getBeginLoc(), RParenLoc: Call->getRParenLoc())) |
14138 | return; |
14139 | |
14140 | // Look for 'strlcpy(dst, x, sizeof(x))' |
14141 | if (const Expr *Ex = getSizeOfExprArg(E: SizeArg)) |
14142 | CompareWithSrc = Ex; |
14143 | else { |
14144 | // Look for 'strlcpy(dst, x, strlen(x))' |
14145 | if (const CallExpr *SizeCall = dyn_cast<CallExpr>(Val: SizeArg)) { |
14146 | if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen && |
14147 | SizeCall->getNumArgs() == 1) |
14148 | CompareWithSrc = ignoreLiteralAdditions(Ex: SizeCall->getArg(Arg: 0), Ctx&: Context); |
14149 | } |
14150 | } |
14151 | |
14152 | if (!CompareWithSrc) |
14153 | return; |
14154 | |
14155 | // Determine if the argument to sizeof/strlen is equal to the source |
14156 | // argument. In principle there's all kinds of things you could do |
14157 | // here, for instance creating an == expression and evaluating it with |
14158 | // EvaluateAsBooleanCondition, but this uses a more direct technique: |
14159 | const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(Val: SrcArg); |
14160 | if (!SrcArgDRE) |
14161 | return; |
14162 | |
14163 | const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(Val: CompareWithSrc); |
14164 | if (!CompareWithSrcDRE || |
14165 | SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl()) |
14166 | return; |
14167 | |
14168 | const Expr *OriginalSizeArg = Call->getArg(Arg: 2); |
14169 | Diag(CompareWithSrcDRE->getBeginLoc(), diag::warn_strlcpycat_wrong_size) |
14170 | << OriginalSizeArg->getSourceRange() << FnName; |
14171 | |
14172 | // Output a FIXIT hint if the destination is an array (rather than a |
14173 | // pointer to an array). This could be enhanced to handle some |
14174 | // pointers if we know the actual size, like if DstArg is 'array+2' |
14175 | // we could say 'sizeof(array)-2'. |
14176 | const Expr *DstArg = Call->getArg(Arg: 0)->IgnoreParenImpCasts(); |
14177 | if (!isConstantSizeArrayWithMoreThanOneElement(Ty: DstArg->getType(), Context)) |
14178 | return; |
14179 | |
14180 | SmallString<128> sizeString; |
14181 | llvm::raw_svector_ostream OS(sizeString); |
14182 | OS << "sizeof(" ; |
14183 | DstArg->printPretty(OS, nullptr, getPrintingPolicy()); |
14184 | OS << ")" ; |
14185 | |
14186 | Diag(OriginalSizeArg->getBeginLoc(), diag::note_strlcpycat_wrong_size) |
14187 | << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(), |
14188 | OS.str()); |
14189 | } |
14190 | |
14191 | /// Check if two expressions refer to the same declaration. |
14192 | static bool referToTheSameDecl(const Expr *E1, const Expr *E2) { |
14193 | if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(Val: E1)) |
14194 | if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(Val: E2)) |
14195 | return D1->getDecl() == D2->getDecl(); |
14196 | return false; |
14197 | } |
14198 | |
14199 | static const Expr *getStrlenExprArg(const Expr *E) { |
14200 | if (const CallExpr *CE = dyn_cast<CallExpr>(Val: E)) { |
14201 | const FunctionDecl *FD = CE->getDirectCallee(); |
14202 | if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen) |
14203 | return nullptr; |
14204 | return CE->getArg(Arg: 0)->IgnoreParenCasts(); |
14205 | } |
14206 | return nullptr; |
14207 | } |
14208 | |
14209 | // Warn on anti-patterns as the 'size' argument to strncat. |
14210 | // The correct size argument should look like following: |
14211 | // strncat(dst, src, sizeof(dst) - strlen(dest) - 1); |
14212 | void Sema::CheckStrncatArguments(const CallExpr *CE, |
14213 | IdentifierInfo *FnName) { |
14214 | // Don't crash if the user has the wrong number of arguments. |
14215 | if (CE->getNumArgs() < 3) |
14216 | return; |
14217 | const Expr *DstArg = CE->getArg(Arg: 0)->IgnoreParenCasts(); |
14218 | const Expr *SrcArg = CE->getArg(Arg: 1)->IgnoreParenCasts(); |
14219 | const Expr *LenArg = CE->getArg(Arg: 2)->IgnoreParenCasts(); |
14220 | |
14221 | if (CheckMemorySizeofForComparison(S&: *this, E: LenArg, FnName, FnLoc: CE->getBeginLoc(), |
14222 | RParenLoc: CE->getRParenLoc())) |
14223 | return; |
14224 | |
14225 | // Identify common expressions, which are wrongly used as the size argument |
14226 | // to strncat and may lead to buffer overflows. |
14227 | unsigned PatternType = 0; |
14228 | if (const Expr *SizeOfArg = getSizeOfExprArg(E: LenArg)) { |
14229 | // - sizeof(dst) |
14230 | if (referToTheSameDecl(E1: SizeOfArg, E2: DstArg)) |
14231 | PatternType = 1; |
14232 | // - sizeof(src) |
14233 | else if (referToTheSameDecl(E1: SizeOfArg, E2: SrcArg)) |
14234 | PatternType = 2; |
14235 | } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Val: LenArg)) { |
14236 | if (BE->getOpcode() == BO_Sub) { |
14237 | const Expr *L = BE->getLHS()->IgnoreParenCasts(); |
14238 | const Expr *R = BE->getRHS()->IgnoreParenCasts(); |
14239 | // - sizeof(dst) - strlen(dst) |
14240 | if (referToTheSameDecl(E1: DstArg, E2: getSizeOfExprArg(E: L)) && |
14241 | referToTheSameDecl(E1: DstArg, E2: getStrlenExprArg(E: R))) |
14242 | PatternType = 1; |
14243 | // - sizeof(src) - (anything) |
14244 | else if (referToTheSameDecl(E1: SrcArg, E2: getSizeOfExprArg(E: L))) |
14245 | PatternType = 2; |
14246 | } |
14247 | } |
14248 | |
14249 | if (PatternType == 0) |
14250 | return; |
14251 | |
14252 | // Generate the diagnostic. |
14253 | SourceLocation SL = LenArg->getBeginLoc(); |
14254 | SourceRange SR = LenArg->getSourceRange(); |
14255 | SourceManager &SM = getSourceManager(); |
14256 | |
14257 | // If the function is defined as a builtin macro, do not show macro expansion. |
14258 | if (SM.isMacroArgExpansion(Loc: SL)) { |
14259 | SL = SM.getSpellingLoc(Loc: SL); |
14260 | SR = SourceRange(SM.getSpellingLoc(Loc: SR.getBegin()), |
14261 | SM.getSpellingLoc(Loc: SR.getEnd())); |
14262 | } |
14263 | |
14264 | // Check if the destination is an array (rather than a pointer to an array). |
14265 | QualType DstTy = DstArg->getType(); |
14266 | bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(Ty: DstTy, |
14267 | Context); |
14268 | if (!isKnownSizeArray) { |
14269 | if (PatternType == 1) |
14270 | Diag(SL, diag::warn_strncat_wrong_size) << SR; |
14271 | else |
14272 | Diag(SL, diag::warn_strncat_src_size) << SR; |
14273 | return; |
14274 | } |
14275 | |
14276 | if (PatternType == 1) |
14277 | Diag(SL, diag::warn_strncat_large_size) << SR; |
14278 | else |
14279 | Diag(SL, diag::warn_strncat_src_size) << SR; |
14280 | |
14281 | SmallString<128> sizeString; |
14282 | llvm::raw_svector_ostream OS(sizeString); |
14283 | OS << "sizeof(" ; |
14284 | DstArg->printPretty(OS, nullptr, getPrintingPolicy()); |
14285 | OS << ") - " ; |
14286 | OS << "strlen(" ; |
14287 | DstArg->printPretty(OS, nullptr, getPrintingPolicy()); |
14288 | OS << ") - 1" ; |
14289 | |
14290 | Diag(SL, diag::note_strncat_wrong_size) |
14291 | << FixItHint::CreateReplacement(SR, OS.str()); |
14292 | } |
14293 | |
14294 | namespace { |
14295 | void CheckFreeArgumentsOnLvalue(Sema &S, const std::string &CalleeName, |
14296 | const UnaryOperator *UnaryExpr, const Decl *D) { |
14297 | if (isa<FieldDecl, FunctionDecl, VarDecl>(Val: D)) { |
14298 | S.Diag(UnaryExpr->getBeginLoc(), diag::warn_free_nonheap_object) |
14299 | << CalleeName << 0 /*object: */ << cast<NamedDecl>(D); |
14300 | return; |
14301 | } |
14302 | } |
14303 | |
14304 | void CheckFreeArgumentsAddressof(Sema &S, const std::string &CalleeName, |
14305 | const UnaryOperator *UnaryExpr) { |
14306 | if (const auto *Lvalue = dyn_cast<DeclRefExpr>(Val: UnaryExpr->getSubExpr())) { |
14307 | const Decl *D = Lvalue->getDecl(); |
14308 | if (isa<DeclaratorDecl>(Val: D)) |
14309 | if (!dyn_cast<DeclaratorDecl>(Val: D)->getType()->isReferenceType()) |
14310 | return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr, D); |
14311 | } |
14312 | |
14313 | if (const auto *Lvalue = dyn_cast<MemberExpr>(Val: UnaryExpr->getSubExpr())) |
14314 | return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr, |
14315 | Lvalue->getMemberDecl()); |
14316 | } |
14317 | |
14318 | void CheckFreeArgumentsPlus(Sema &S, const std::string &CalleeName, |
14319 | const UnaryOperator *UnaryExpr) { |
14320 | const auto *Lambda = dyn_cast<LambdaExpr>( |
14321 | Val: UnaryExpr->getSubExpr()->IgnoreImplicitAsWritten()->IgnoreParens()); |
14322 | if (!Lambda) |
14323 | return; |
14324 | |
14325 | S.Diag(Lambda->getBeginLoc(), diag::warn_free_nonheap_object) |
14326 | << CalleeName << 2 /*object: lambda expression*/; |
14327 | } |
14328 | |
14329 | void CheckFreeArgumentsStackArray(Sema &S, const std::string &CalleeName, |
14330 | const DeclRefExpr *Lvalue) { |
14331 | const auto *Var = dyn_cast<VarDecl>(Val: Lvalue->getDecl()); |
14332 | if (Var == nullptr) |
14333 | return; |
14334 | |
14335 | S.Diag(Lvalue->getBeginLoc(), diag::warn_free_nonheap_object) |
14336 | << CalleeName << 0 /*object: */ << Var; |
14337 | } |
14338 | |
14339 | void CheckFreeArgumentsCast(Sema &S, const std::string &CalleeName, |
14340 | const CastExpr *Cast) { |
14341 | SmallString<128> SizeString; |
14342 | llvm::raw_svector_ostream OS(SizeString); |
14343 | |
14344 | clang::CastKind Kind = Cast->getCastKind(); |
14345 | if (Kind == clang::CK_BitCast && |
14346 | !Cast->getSubExpr()->getType()->isFunctionPointerType()) |
14347 | return; |
14348 | if (Kind == clang::CK_IntegralToPointer && |
14349 | !isa<IntegerLiteral>( |
14350 | Val: Cast->getSubExpr()->IgnoreParenImpCasts()->IgnoreParens())) |
14351 | return; |
14352 | |
14353 | switch (Cast->getCastKind()) { |
14354 | case clang::CK_BitCast: |
14355 | case clang::CK_IntegralToPointer: |
14356 | case clang::CK_FunctionToPointerDecay: |
14357 | OS << '\''; |
14358 | Cast->printPretty(OS, nullptr, S.getPrintingPolicy()); |
14359 | OS << '\''; |
14360 | break; |
14361 | default: |
14362 | return; |
14363 | } |
14364 | |
14365 | S.Diag(Cast->getBeginLoc(), diag::warn_free_nonheap_object) |
14366 | << CalleeName << 0 /*object: */ << OS.str(); |
14367 | } |
14368 | } // namespace |
14369 | |
14370 | /// Alerts the user that they are attempting to free a non-malloc'd object. |
14371 | void Sema::CheckFreeArguments(const CallExpr *E) { |
14372 | const std::string CalleeName = |
14373 | cast<FunctionDecl>(Val: E->getCalleeDecl())->getQualifiedNameAsString(); |
14374 | |
14375 | { // Prefer something that doesn't involve a cast to make things simpler. |
14376 | const Expr *Arg = E->getArg(Arg: 0)->IgnoreParenCasts(); |
14377 | if (const auto *UnaryExpr = dyn_cast<UnaryOperator>(Val: Arg)) |
14378 | switch (UnaryExpr->getOpcode()) { |
14379 | case UnaryOperator::Opcode::UO_AddrOf: |
14380 | return CheckFreeArgumentsAddressof(S&: *this, CalleeName, UnaryExpr); |
14381 | case UnaryOperator::Opcode::UO_Plus: |
14382 | return CheckFreeArgumentsPlus(S&: *this, CalleeName, UnaryExpr); |
14383 | default: |
14384 | break; |
14385 | } |
14386 | |
14387 | if (const auto *Lvalue = dyn_cast<DeclRefExpr>(Val: Arg)) |
14388 | if (Lvalue->getType()->isArrayType()) |
14389 | return CheckFreeArgumentsStackArray(S&: *this, CalleeName, Lvalue); |
14390 | |
14391 | if (const auto *Label = dyn_cast<AddrLabelExpr>(Val: Arg)) { |
14392 | Diag(Label->getBeginLoc(), diag::warn_free_nonheap_object) |
14393 | << CalleeName << 0 /*object: */ << Label->getLabel()->getIdentifier(); |
14394 | return; |
14395 | } |
14396 | |
14397 | if (isa<BlockExpr>(Val: Arg)) { |
14398 | Diag(Arg->getBeginLoc(), diag::warn_free_nonheap_object) |
14399 | << CalleeName << 1 /*object: block*/; |
14400 | return; |
14401 | } |
14402 | } |
14403 | // Maybe the cast was important, check after the other cases. |
14404 | if (const auto *Cast = dyn_cast<CastExpr>(Val: E->getArg(Arg: 0))) |
14405 | return CheckFreeArgumentsCast(S&: *this, CalleeName, Cast); |
14406 | } |
14407 | |
14408 | void |
14409 | Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType, |
14410 | SourceLocation ReturnLoc, |
14411 | bool isObjCMethod, |
14412 | const AttrVec *Attrs, |
14413 | const FunctionDecl *FD) { |
14414 | // Check if the return value is null but should not be. |
14415 | if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs)) || |
14416 | (!isObjCMethod && isNonNullType(lhsType))) && |
14417 | CheckNonNullExpr(*this, RetValExp)) |
14418 | Diag(ReturnLoc, diag::warn_null_ret) |
14419 | << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange(); |
14420 | |
14421 | // C++11 [basic.stc.dynamic.allocation]p4: |
14422 | // If an allocation function declared with a non-throwing |
14423 | // exception-specification fails to allocate storage, it shall return |
14424 | // a null pointer. Any other allocation function that fails to allocate |
14425 | // storage shall indicate failure only by throwing an exception [...] |
14426 | if (FD) { |
14427 | OverloadedOperatorKind Op = FD->getOverloadedOperator(); |
14428 | if (Op == OO_New || Op == OO_Array_New) { |
14429 | const FunctionProtoType *Proto |
14430 | = FD->getType()->castAs<FunctionProtoType>(); |
14431 | if (!Proto->isNothrow(/*ResultIfDependent*/true) && |
14432 | CheckNonNullExpr(*this, RetValExp)) |
14433 | Diag(ReturnLoc, diag::warn_operator_new_returns_null) |
14434 | << FD << getLangOpts().CPlusPlus11; |
14435 | } |
14436 | } |
14437 | |
14438 | if (RetValExp && RetValExp->getType()->isWebAssemblyTableType()) { |
14439 | Diag(ReturnLoc, diag::err_wasm_table_art) << 1; |
14440 | } |
14441 | |
14442 | // PPC MMA non-pointer types are not allowed as return type. Checking the type |
14443 | // here prevent the user from using a PPC MMA type as trailing return type. |
14444 | if (Context.getTargetInfo().getTriple().isPPC64()) |
14445 | CheckPPCMMAType(Type: RetValExp->getType(), TypeLoc: ReturnLoc); |
14446 | } |
14447 | |
14448 | /// Check for comparisons of floating-point values using == and !=. Issue a |
14449 | /// warning if the comparison is not likely to do what the programmer intended. |
14450 | void Sema::CheckFloatComparison(SourceLocation Loc, Expr *LHS, Expr *RHS, |
14451 | BinaryOperatorKind Opcode) { |
14452 | if (!BinaryOperator::isEqualityOp(Opc: Opcode)) |
14453 | return; |
14454 | |
14455 | // Match and capture subexpressions such as "(float) X == 0.1". |
14456 | FloatingLiteral *FPLiteral; |
14457 | CastExpr *FPCast; |
14458 | auto getCastAndLiteral = [&FPLiteral, &FPCast](Expr *L, Expr *R) { |
14459 | FPLiteral = dyn_cast<FloatingLiteral>(Val: L->IgnoreParens()); |
14460 | FPCast = dyn_cast<CastExpr>(Val: R->IgnoreParens()); |
14461 | return FPLiteral && FPCast; |
14462 | }; |
14463 | |
14464 | if (getCastAndLiteral(LHS, RHS) || getCastAndLiteral(RHS, LHS)) { |
14465 | auto *SourceTy = FPCast->getSubExpr()->getType()->getAs<BuiltinType>(); |
14466 | auto *TargetTy = FPLiteral->getType()->getAs<BuiltinType>(); |
14467 | if (SourceTy && TargetTy && SourceTy->isFloatingPoint() && |
14468 | TargetTy->isFloatingPoint()) { |
14469 | bool Lossy; |
14470 | llvm::APFloat TargetC = FPLiteral->getValue(); |
14471 | TargetC.convert(ToSemantics: Context.getFloatTypeSemantics(T: QualType(SourceTy, 0)), |
14472 | RM: llvm::APFloat::rmNearestTiesToEven, losesInfo: &Lossy); |
14473 | if (Lossy) { |
14474 | // If the literal cannot be represented in the source type, then a |
14475 | // check for == is always false and check for != is always true. |
14476 | Diag(Loc, diag::warn_float_compare_literal) |
14477 | << (Opcode == BO_EQ) << QualType(SourceTy, 0) |
14478 | << LHS->getSourceRange() << RHS->getSourceRange(); |
14479 | return; |
14480 | } |
14481 | } |
14482 | } |
14483 | |
14484 | // Match a more general floating-point equality comparison (-Wfloat-equal). |
14485 | Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts(); |
14486 | Expr* RightExprSansParen = RHS->IgnoreParenImpCasts(); |
14487 | |
14488 | // Special case: check for x == x (which is OK). |
14489 | // Do not emit warnings for such cases. |
14490 | if (auto *DRL = dyn_cast<DeclRefExpr>(Val: LeftExprSansParen)) |
14491 | if (auto *DRR = dyn_cast<DeclRefExpr>(Val: RightExprSansParen)) |
14492 | if (DRL->getDecl() == DRR->getDecl()) |
14493 | return; |
14494 | |
14495 | // Special case: check for comparisons against literals that can be exactly |
14496 | // represented by APFloat. In such cases, do not emit a warning. This |
14497 | // is a heuristic: often comparison against such literals are used to |
14498 | // detect if a value in a variable has not changed. This clearly can |
14499 | // lead to false negatives. |
14500 | if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(Val: LeftExprSansParen)) { |
14501 | if (FLL->isExact()) |
14502 | return; |
14503 | } else |
14504 | if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(Val: RightExprSansParen)) |
14505 | if (FLR->isExact()) |
14506 | return; |
14507 | |
14508 | // Check for comparisons with builtin types. |
14509 | if (CallExpr* CL = dyn_cast<CallExpr>(Val: LeftExprSansParen)) |
14510 | if (CL->getBuiltinCallee()) |
14511 | return; |
14512 | |
14513 | if (CallExpr* CR = dyn_cast<CallExpr>(Val: RightExprSansParen)) |
14514 | if (CR->getBuiltinCallee()) |
14515 | return; |
14516 | |
14517 | // Emit the diagnostic. |
14518 | Diag(Loc, diag::warn_floatingpoint_eq) |
14519 | << LHS->getSourceRange() << RHS->getSourceRange(); |
14520 | } |
14521 | |
14522 | //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===// |
14523 | //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===// |
14524 | |
14525 | namespace { |
14526 | |
14527 | /// Structure recording the 'active' range of an integer-valued |
14528 | /// expression. |
14529 | struct IntRange { |
14530 | /// The number of bits active in the int. Note that this includes exactly one |
14531 | /// sign bit if !NonNegative. |
14532 | unsigned Width; |
14533 | |
14534 | /// True if the int is known not to have negative values. If so, all leading |
14535 | /// bits before Width are known zero, otherwise they are known to be the |
14536 | /// same as the MSB within Width. |
14537 | bool NonNegative; |
14538 | |
14539 | IntRange(unsigned Width, bool NonNegative) |
14540 | : Width(Width), NonNegative(NonNegative) {} |
14541 | |
14542 | /// Number of bits excluding the sign bit. |
14543 | unsigned valueBits() const { |
14544 | return NonNegative ? Width : Width - 1; |
14545 | } |
14546 | |
14547 | /// Returns the range of the bool type. |
14548 | static IntRange forBoolType() { |
14549 | return IntRange(1, true); |
14550 | } |
14551 | |
14552 | /// Returns the range of an opaque value of the given integral type. |
14553 | static IntRange forValueOfType(ASTContext &C, QualType T) { |
14554 | return forValueOfCanonicalType(C, |
14555 | T: T->getCanonicalTypeInternal().getTypePtr()); |
14556 | } |
14557 | |
14558 | /// Returns the range of an opaque value of a canonical integral type. |
14559 | static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) { |
14560 | assert(T->isCanonicalUnqualified()); |
14561 | |
14562 | if (const VectorType *VT = dyn_cast<VectorType>(Val: T)) |
14563 | T = VT->getElementType().getTypePtr(); |
14564 | if (const ComplexType *CT = dyn_cast<ComplexType>(Val: T)) |
14565 | T = CT->getElementType().getTypePtr(); |
14566 | if (const AtomicType *AT = dyn_cast<AtomicType>(Val: T)) |
14567 | T = AT->getValueType().getTypePtr(); |
14568 | |
14569 | if (!C.getLangOpts().CPlusPlus) { |
14570 | // For enum types in C code, use the underlying datatype. |
14571 | if (const EnumType *ET = dyn_cast<EnumType>(Val: T)) |
14572 | T = ET->getDecl()->getIntegerType().getDesugaredType(Context: C).getTypePtr(); |
14573 | } else if (const EnumType *ET = dyn_cast<EnumType>(Val: T)) { |
14574 | // For enum types in C++, use the known bit width of the enumerators. |
14575 | EnumDecl *Enum = ET->getDecl(); |
14576 | // In C++11, enums can have a fixed underlying type. Use this type to |
14577 | // compute the range. |
14578 | if (Enum->isFixed()) { |
14579 | return IntRange(C.getIntWidth(T: QualType(T, 0)), |
14580 | !ET->isSignedIntegerOrEnumerationType()); |
14581 | } |
14582 | |
14583 | unsigned NumPositive = Enum->getNumPositiveBits(); |
14584 | unsigned NumNegative = Enum->getNumNegativeBits(); |
14585 | |
14586 | if (NumNegative == 0) |
14587 | return IntRange(NumPositive, true/*NonNegative*/); |
14588 | else |
14589 | return IntRange(std::max(a: NumPositive + 1, b: NumNegative), |
14590 | false/*NonNegative*/); |
14591 | } |
14592 | |
14593 | if (const auto *EIT = dyn_cast<BitIntType>(Val: T)) |
14594 | return IntRange(EIT->getNumBits(), EIT->isUnsigned()); |
14595 | |
14596 | const BuiltinType *BT = cast<BuiltinType>(Val: T); |
14597 | assert(BT->isInteger()); |
14598 | |
14599 | return IntRange(C.getIntWidth(T: QualType(T, 0)), BT->isUnsignedInteger()); |
14600 | } |
14601 | |
14602 | /// Returns the "target" range of a canonical integral type, i.e. |
14603 | /// the range of values expressible in the type. |
14604 | /// |
14605 | /// This matches forValueOfCanonicalType except that enums have the |
14606 | /// full range of their type, not the range of their enumerators. |
14607 | static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) { |
14608 | assert(T->isCanonicalUnqualified()); |
14609 | |
14610 | if (const VectorType *VT = dyn_cast<VectorType>(Val: T)) |
14611 | T = VT->getElementType().getTypePtr(); |
14612 | if (const ComplexType *CT = dyn_cast<ComplexType>(Val: T)) |
14613 | T = CT->getElementType().getTypePtr(); |
14614 | if (const AtomicType *AT = dyn_cast<AtomicType>(Val: T)) |
14615 | T = AT->getValueType().getTypePtr(); |
14616 | if (const EnumType *ET = dyn_cast<EnumType>(Val: T)) |
14617 | T = C.getCanonicalType(T: ET->getDecl()->getIntegerType()).getTypePtr(); |
14618 | |
14619 | if (const auto *EIT = dyn_cast<BitIntType>(Val: T)) |
14620 | return IntRange(EIT->getNumBits(), EIT->isUnsigned()); |
14621 | |
14622 | const BuiltinType *BT = cast<BuiltinType>(Val: T); |
14623 | assert(BT->isInteger()); |
14624 | |
14625 | return IntRange(C.getIntWidth(T: QualType(T, 0)), BT->isUnsignedInteger()); |
14626 | } |
14627 | |
14628 | /// Returns the supremum of two ranges: i.e. their conservative merge. |
14629 | static IntRange join(IntRange L, IntRange R) { |
14630 | bool Unsigned = L.NonNegative && R.NonNegative; |
14631 | return IntRange(std::max(a: L.valueBits(), b: R.valueBits()) + !Unsigned, |
14632 | L.NonNegative && R.NonNegative); |
14633 | } |
14634 | |
14635 | /// Return the range of a bitwise-AND of the two ranges. |
14636 | static IntRange bit_and(IntRange L, IntRange R) { |
14637 | unsigned Bits = std::max(a: L.Width, b: R.Width); |
14638 | bool NonNegative = false; |
14639 | if (L.NonNegative) { |
14640 | Bits = std::min(a: Bits, b: L.Width); |
14641 | NonNegative = true; |
14642 | } |
14643 | if (R.NonNegative) { |
14644 | Bits = std::min(a: Bits, b: R.Width); |
14645 | NonNegative = true; |
14646 | } |
14647 | return IntRange(Bits, NonNegative); |
14648 | } |
14649 | |
14650 | /// Return the range of a sum of the two ranges. |
14651 | static IntRange sum(IntRange L, IntRange R) { |
14652 | bool Unsigned = L.NonNegative && R.NonNegative; |
14653 | return IntRange(std::max(a: L.valueBits(), b: R.valueBits()) + 1 + !Unsigned, |
14654 | Unsigned); |
14655 | } |
14656 | |
14657 | /// Return the range of a difference of the two ranges. |
14658 | static IntRange difference(IntRange L, IntRange R) { |
14659 | // We need a 1-bit-wider range if: |
14660 | // 1) LHS can be negative: least value can be reduced. |
14661 | // 2) RHS can be negative: greatest value can be increased. |
14662 | bool CanWiden = !L.NonNegative || !R.NonNegative; |
14663 | bool Unsigned = L.NonNegative && R.Width == 0; |
14664 | return IntRange(std::max(a: L.valueBits(), b: R.valueBits()) + CanWiden + |
14665 | !Unsigned, |
14666 | Unsigned); |
14667 | } |
14668 | |
14669 | /// Return the range of a product of the two ranges. |
14670 | static IntRange product(IntRange L, IntRange R) { |
14671 | // If both LHS and RHS can be negative, we can form |
14672 | // -2^L * -2^R = 2^(L + R) |
14673 | // which requires L + R + 1 value bits to represent. |
14674 | bool CanWiden = !L.NonNegative && !R.NonNegative; |
14675 | bool Unsigned = L.NonNegative && R.NonNegative; |
14676 | return IntRange(L.valueBits() + R.valueBits() + CanWiden + !Unsigned, |
14677 | Unsigned); |
14678 | } |
14679 | |
14680 | /// Return the range of a remainder operation between the two ranges. |
14681 | static IntRange rem(IntRange L, IntRange R) { |
14682 | // The result of a remainder can't be larger than the result of |
14683 | // either side. The sign of the result is the sign of the LHS. |
14684 | bool Unsigned = L.NonNegative; |
14685 | return IntRange(std::min(a: L.valueBits(), b: R.valueBits()) + !Unsigned, |
14686 | Unsigned); |
14687 | } |
14688 | }; |
14689 | |
14690 | } // namespace |
14691 | |
14692 | static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, |
14693 | unsigned MaxWidth) { |
14694 | if (value.isSigned() && value.isNegative()) |
14695 | return IntRange(value.getSignificantBits(), false); |
14696 | |
14697 | if (value.getBitWidth() > MaxWidth) |
14698 | value = value.trunc(width: MaxWidth); |
14699 | |
14700 | // isNonNegative() just checks the sign bit without considering |
14701 | // signedness. |
14702 | return IntRange(value.getActiveBits(), true); |
14703 | } |
14704 | |
14705 | static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty, |
14706 | unsigned MaxWidth) { |
14707 | if (result.isInt()) |
14708 | return GetValueRange(C, value&: result.getInt(), MaxWidth); |
14709 | |
14710 | if (result.isVector()) { |
14711 | IntRange R = GetValueRange(C, result&: result.getVectorElt(I: 0), Ty, MaxWidth); |
14712 | for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) { |
14713 | IntRange El = GetValueRange(C, result&: result.getVectorElt(I: i), Ty, MaxWidth); |
14714 | R = IntRange::join(L: R, R: El); |
14715 | } |
14716 | return R; |
14717 | } |
14718 | |
14719 | if (result.isComplexInt()) { |
14720 | IntRange R = GetValueRange(C, value&: result.getComplexIntReal(), MaxWidth); |
14721 | IntRange I = GetValueRange(C, value&: result.getComplexIntImag(), MaxWidth); |
14722 | return IntRange::join(L: R, R: I); |
14723 | } |
14724 | |
14725 | // This can happen with lossless casts to intptr_t of "based" lvalues. |
14726 | // Assume it might use arbitrary bits. |
14727 | // FIXME: The only reason we need to pass the type in here is to get |
14728 | // the sign right on this one case. It would be nice if APValue |
14729 | // preserved this. |
14730 | assert(result.isLValue() || result.isAddrLabelDiff()); |
14731 | return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType()); |
14732 | } |
14733 | |
14734 | static QualType GetExprType(const Expr *E) { |
14735 | QualType Ty = E->getType(); |
14736 | if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>()) |
14737 | Ty = AtomicRHS->getValueType(); |
14738 | return Ty; |
14739 | } |
14740 | |
14741 | /// Pseudo-evaluate the given integer expression, estimating the |
14742 | /// range of values it might take. |
14743 | /// |
14744 | /// \param MaxWidth The width to which the value will be truncated. |
14745 | /// \param Approximate If \c true, return a likely range for the result: in |
14746 | /// particular, assume that arithmetic on narrower types doesn't leave |
14747 | /// those types. If \c false, return a range including all possible |
14748 | /// result values. |
14749 | static IntRange GetExprRange(ASTContext &C, const Expr *E, unsigned MaxWidth, |
14750 | bool InConstantContext, bool Approximate) { |
14751 | E = E->IgnoreParens(); |
14752 | |
14753 | // Try a full evaluation first. |
14754 | Expr::EvalResult result; |
14755 | if (E->EvaluateAsRValue(Result&: result, Ctx: C, InConstantContext)) |
14756 | return GetValueRange(C, result&: result.Val, Ty: GetExprType(E), MaxWidth); |
14757 | |
14758 | // I think we only want to look through implicit casts here; if the |
14759 | // user has an explicit widening cast, we should treat the value as |
14760 | // being of the new, wider type. |
14761 | if (const auto *CE = dyn_cast<ImplicitCastExpr>(Val: E)) { |
14762 | if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue) |
14763 | return GetExprRange(C, CE->getSubExpr(), MaxWidth, InConstantContext, |
14764 | Approximate); |
14765 | |
14766 | IntRange OutputTypeRange = IntRange::forValueOfType(C, T: GetExprType(CE)); |
14767 | |
14768 | bool isIntegerCast = CE->getCastKind() == CK_IntegralCast || |
14769 | CE->getCastKind() == CK_BooleanToSignedIntegral; |
14770 | |
14771 | // Assume that non-integer casts can span the full range of the type. |
14772 | if (!isIntegerCast) |
14773 | return OutputTypeRange; |
14774 | |
14775 | IntRange SubRange = GetExprRange(C, CE->getSubExpr(), |
14776 | std::min(a: MaxWidth, b: OutputTypeRange.Width), |
14777 | InConstantContext, Approximate); |
14778 | |
14779 | // Bail out if the subexpr's range is as wide as the cast type. |
14780 | if (SubRange.Width >= OutputTypeRange.Width) |
14781 | return OutputTypeRange; |
14782 | |
14783 | // Otherwise, we take the smaller width, and we're non-negative if |
14784 | // either the output type or the subexpr is. |
14785 | return IntRange(SubRange.Width, |
14786 | SubRange.NonNegative || OutputTypeRange.NonNegative); |
14787 | } |
14788 | |
14789 | if (const auto *CO = dyn_cast<ConditionalOperator>(Val: E)) { |
14790 | // If we can fold the condition, just take that operand. |
14791 | bool CondResult; |
14792 | if (CO->getCond()->EvaluateAsBooleanCondition(Result&: CondResult, Ctx: C)) |
14793 | return GetExprRange(C, |
14794 | E: CondResult ? CO->getTrueExpr() : CO->getFalseExpr(), |
14795 | MaxWidth, InConstantContext, Approximate); |
14796 | |
14797 | // Otherwise, conservatively merge. |
14798 | // GetExprRange requires an integer expression, but a throw expression |
14799 | // results in a void type. |
14800 | Expr *E = CO->getTrueExpr(); |
14801 | IntRange L = E->getType()->isVoidType() |
14802 | ? IntRange{0, true} |
14803 | : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate); |
14804 | E = CO->getFalseExpr(); |
14805 | IntRange R = E->getType()->isVoidType() |
14806 | ? IntRange{0, true} |
14807 | : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate); |
14808 | return IntRange::join(L, R); |
14809 | } |
14810 | |
14811 | if (const auto *BO = dyn_cast<BinaryOperator>(Val: E)) { |
14812 | IntRange (*Combine)(IntRange, IntRange) = IntRange::join; |
14813 | |
14814 | switch (BO->getOpcode()) { |
14815 | case BO_Cmp: |
14816 | llvm_unreachable("builtin <=> should have class type" ); |
14817 | |
14818 | // Boolean-valued operations are single-bit and positive. |
14819 | case BO_LAnd: |
14820 | case BO_LOr: |
14821 | case BO_LT: |
14822 | case BO_GT: |
14823 | case BO_LE: |
14824 | case BO_GE: |
14825 | case BO_EQ: |
14826 | case BO_NE: |
14827 | return IntRange::forBoolType(); |
14828 | |
14829 | // The type of the assignments is the type of the LHS, so the RHS |
14830 | // is not necessarily the same type. |
14831 | case BO_MulAssign: |
14832 | case BO_DivAssign: |
14833 | case BO_RemAssign: |
14834 | case BO_AddAssign: |
14835 | case BO_SubAssign: |
14836 | case BO_XorAssign: |
14837 | case BO_OrAssign: |
14838 | // TODO: bitfields? |
14839 | return IntRange::forValueOfType(C, T: GetExprType(E)); |
14840 | |
14841 | // Simple assignments just pass through the RHS, which will have |
14842 | // been coerced to the LHS type. |
14843 | case BO_Assign: |
14844 | // TODO: bitfields? |
14845 | return GetExprRange(C, E: BO->getRHS(), MaxWidth, InConstantContext, |
14846 | Approximate); |
14847 | |
14848 | // Operations with opaque sources are black-listed. |
14849 | case BO_PtrMemD: |
14850 | case BO_PtrMemI: |
14851 | return IntRange::forValueOfType(C, T: GetExprType(E)); |
14852 | |
14853 | // Bitwise-and uses the *infinum* of the two source ranges. |
14854 | case BO_And: |
14855 | case BO_AndAssign: |
14856 | Combine = IntRange::bit_and; |
14857 | break; |
14858 | |
14859 | // Left shift gets black-listed based on a judgement call. |
14860 | case BO_Shl: |
14861 | // ...except that we want to treat '1 << (blah)' as logically |
14862 | // positive. It's an important idiom. |
14863 | if (IntegerLiteral *I |
14864 | = dyn_cast<IntegerLiteral>(Val: BO->getLHS()->IgnoreParenCasts())) { |
14865 | if (I->getValue() == 1) { |
14866 | IntRange R = IntRange::forValueOfType(C, T: GetExprType(E)); |
14867 | return IntRange(R.Width, /*NonNegative*/ true); |
14868 | } |
14869 | } |
14870 | [[fallthrough]]; |
14871 | |
14872 | case BO_ShlAssign: |
14873 | return IntRange::forValueOfType(C, T: GetExprType(E)); |
14874 | |
14875 | // Right shift by a constant can narrow its left argument. |
14876 | case BO_Shr: |
14877 | case BO_ShrAssign: { |
14878 | IntRange L = GetExprRange(C, E: BO->getLHS(), MaxWidth, InConstantContext, |
14879 | Approximate); |
14880 | |
14881 | // If the shift amount is a positive constant, drop the width by |
14882 | // that much. |
14883 | if (std::optional<llvm::APSInt> shift = |
14884 | BO->getRHS()->getIntegerConstantExpr(Ctx: C)) { |
14885 | if (shift->isNonNegative()) { |
14886 | if (shift->uge(RHS: L.Width)) |
14887 | L.Width = (L.NonNegative ? 0 : 1); |
14888 | else |
14889 | L.Width -= shift->getZExtValue(); |
14890 | } |
14891 | } |
14892 | |
14893 | return L; |
14894 | } |
14895 | |
14896 | // Comma acts as its right operand. |
14897 | case BO_Comma: |
14898 | return GetExprRange(C, E: BO->getRHS(), MaxWidth, InConstantContext, |
14899 | Approximate); |
14900 | |
14901 | case BO_Add: |
14902 | if (!Approximate) |
14903 | Combine = IntRange::sum; |
14904 | break; |
14905 | |
14906 | case BO_Sub: |
14907 | if (BO->getLHS()->getType()->isPointerType()) |
14908 | return IntRange::forValueOfType(C, T: GetExprType(E)); |
14909 | if (!Approximate) |
14910 | Combine = IntRange::difference; |
14911 | break; |
14912 | |
14913 | case BO_Mul: |
14914 | if (!Approximate) |
14915 | Combine = IntRange::product; |
14916 | break; |
14917 | |
14918 | // The width of a division result is mostly determined by the size |
14919 | // of the LHS. |
14920 | case BO_Div: { |
14921 | // Don't 'pre-truncate' the operands. |
14922 | unsigned opWidth = C.getIntWidth(T: GetExprType(E)); |
14923 | IntRange L = GetExprRange(C, E: BO->getLHS(), MaxWidth: opWidth, InConstantContext, |
14924 | Approximate); |
14925 | |
14926 | // If the divisor is constant, use that. |
14927 | if (std::optional<llvm::APSInt> divisor = |
14928 | BO->getRHS()->getIntegerConstantExpr(Ctx: C)) { |
14929 | unsigned log2 = divisor->logBase2(); // floor(log_2(divisor)) |
14930 | if (log2 >= L.Width) |
14931 | L.Width = (L.NonNegative ? 0 : 1); |
14932 | else |
14933 | L.Width = std::min(a: L.Width - log2, b: MaxWidth); |
14934 | return L; |
14935 | } |
14936 | |
14937 | // Otherwise, just use the LHS's width. |
14938 | // FIXME: This is wrong if the LHS could be its minimal value and the RHS |
14939 | // could be -1. |
14940 | IntRange R = GetExprRange(C, E: BO->getRHS(), MaxWidth: opWidth, InConstantContext, |
14941 | Approximate); |
14942 | return IntRange(L.Width, L.NonNegative && R.NonNegative); |
14943 | } |
14944 | |
14945 | case BO_Rem: |
14946 | Combine = IntRange::rem; |
14947 | break; |
14948 | |
14949 | // The default behavior is okay for these. |
14950 | case BO_Xor: |
14951 | case BO_Or: |
14952 | break; |
14953 | } |
14954 | |
14955 | // Combine the two ranges, but limit the result to the type in which we |
14956 | // performed the computation. |
14957 | QualType T = GetExprType(E); |
14958 | unsigned opWidth = C.getIntWidth(T); |
14959 | IntRange L = |
14960 | GetExprRange(C, E: BO->getLHS(), MaxWidth: opWidth, InConstantContext, Approximate); |
14961 | IntRange R = |
14962 | GetExprRange(C, E: BO->getRHS(), MaxWidth: opWidth, InConstantContext, Approximate); |
14963 | IntRange C = Combine(L, R); |
14964 | C.NonNegative |= T->isUnsignedIntegerOrEnumerationType(); |
14965 | C.Width = std::min(a: C.Width, b: MaxWidth); |
14966 | return C; |
14967 | } |
14968 | |
14969 | if (const auto *UO = dyn_cast<UnaryOperator>(Val: E)) { |
14970 | switch (UO->getOpcode()) { |
14971 | // Boolean-valued operations are white-listed. |
14972 | case UO_LNot: |
14973 | return IntRange::forBoolType(); |
14974 | |
14975 | // Operations with opaque sources are black-listed. |
14976 | case UO_Deref: |
14977 | case UO_AddrOf: // should be impossible |
14978 | return IntRange::forValueOfType(C, T: GetExprType(E)); |
14979 | |
14980 | default: |
14981 | return GetExprRange(C, E: UO->getSubExpr(), MaxWidth, InConstantContext, |
14982 | Approximate); |
14983 | } |
14984 | } |
14985 | |
14986 | if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Val: E)) |
14987 | return GetExprRange(C, E: OVE->getSourceExpr(), MaxWidth, InConstantContext, |
14988 | Approximate); |
14989 | |
14990 | if (const auto *BitField = E->getSourceBitField()) |
14991 | return IntRange(BitField->getBitWidthValue(Ctx: C), |
14992 | BitField->getType()->isUnsignedIntegerOrEnumerationType()); |
14993 | |
14994 | return IntRange::forValueOfType(C, T: GetExprType(E)); |
14995 | } |
14996 | |
14997 | static IntRange GetExprRange(ASTContext &C, const Expr *E, |
14998 | bool InConstantContext, bool Approximate) { |
14999 | return GetExprRange(C, E, MaxWidth: C.getIntWidth(T: GetExprType(E)), InConstantContext, |
15000 | Approximate); |
15001 | } |
15002 | |
15003 | /// Checks whether the given value, which currently has the given |
15004 | /// source semantics, has the same value when coerced through the |
15005 | /// target semantics. |
15006 | static bool IsSameFloatAfterCast(const llvm::APFloat &value, |
15007 | const llvm::fltSemantics &Src, |
15008 | const llvm::fltSemantics &Tgt) { |
15009 | llvm::APFloat truncated = value; |
15010 | |
15011 | bool ignored; |
15012 | truncated.convert(ToSemantics: Src, RM: llvm::APFloat::rmNearestTiesToEven, losesInfo: &ignored); |
15013 | truncated.convert(ToSemantics: Tgt, RM: llvm::APFloat::rmNearestTiesToEven, losesInfo: &ignored); |
15014 | |
15015 | return truncated.bitwiseIsEqual(RHS: value); |
15016 | } |
15017 | |
15018 | /// Checks whether the given value, which currently has the given |
15019 | /// source semantics, has the same value when coerced through the |
15020 | /// target semantics. |
15021 | /// |
15022 | /// The value might be a vector of floats (or a complex number). |
15023 | static bool IsSameFloatAfterCast(const APValue &value, |
15024 | const llvm::fltSemantics &Src, |
15025 | const llvm::fltSemantics &Tgt) { |
15026 | if (value.isFloat()) |
15027 | return IsSameFloatAfterCast(value: value.getFloat(), Src, Tgt); |
15028 | |
15029 | if (value.isVector()) { |
15030 | for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i) |
15031 | if (!IsSameFloatAfterCast(value: value.getVectorElt(I: i), Src, Tgt)) |
15032 | return false; |
15033 | return true; |
15034 | } |
15035 | |
15036 | assert(value.isComplexFloat()); |
15037 | return (IsSameFloatAfterCast(value: value.getComplexFloatReal(), Src, Tgt) && |
15038 | IsSameFloatAfterCast(value: value.getComplexFloatImag(), Src, Tgt)); |
15039 | } |
15040 | |
15041 | static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC, |
15042 | bool IsListInit = false); |
15043 | |
15044 | static bool IsEnumConstOrFromMacro(Sema &S, Expr *E) { |
15045 | // Suppress cases where we are comparing against an enum constant. |
15046 | if (const DeclRefExpr *DR = |
15047 | dyn_cast<DeclRefExpr>(Val: E->IgnoreParenImpCasts())) |
15048 | if (isa<EnumConstantDecl>(Val: DR->getDecl())) |
15049 | return true; |
15050 | |
15051 | // Suppress cases where the value is expanded from a macro, unless that macro |
15052 | // is how a language represents a boolean literal. This is the case in both C |
15053 | // and Objective-C. |
15054 | SourceLocation BeginLoc = E->getBeginLoc(); |
15055 | if (BeginLoc.isMacroID()) { |
15056 | StringRef MacroName = Lexer::getImmediateMacroName( |
15057 | Loc: BeginLoc, SM: S.getSourceManager(), LangOpts: S.getLangOpts()); |
15058 | return MacroName != "YES" && MacroName != "NO" && |
15059 | MacroName != "true" && MacroName != "false" ; |
15060 | } |
15061 | |
15062 | return false; |
15063 | } |
15064 | |
15065 | static bool isKnownToHaveUnsignedValue(Expr *E) { |
15066 | return E->getType()->isIntegerType() && |
15067 | (!E->getType()->isSignedIntegerType() || |
15068 | !E->IgnoreParenImpCasts()->getType()->isSignedIntegerType()); |
15069 | } |
15070 | |
15071 | namespace { |
15072 | /// The promoted range of values of a type. In general this has the |
15073 | /// following structure: |
15074 | /// |
15075 | /// |-----------| . . . |-----------| |
15076 | /// ^ ^ ^ ^ |
15077 | /// Min HoleMin HoleMax Max |
15078 | /// |
15079 | /// ... where there is only a hole if a signed type is promoted to unsigned |
15080 | /// (in which case Min and Max are the smallest and largest representable |
15081 | /// values). |
15082 | struct PromotedRange { |
15083 | // Min, or HoleMax if there is a hole. |
15084 | llvm::APSInt PromotedMin; |
15085 | // Max, or HoleMin if there is a hole. |
15086 | llvm::APSInt PromotedMax; |
15087 | |
15088 | PromotedRange(IntRange R, unsigned BitWidth, bool Unsigned) { |
15089 | if (R.Width == 0) |
15090 | PromotedMin = PromotedMax = llvm::APSInt(BitWidth, Unsigned); |
15091 | else if (R.Width >= BitWidth && !Unsigned) { |
15092 | // Promotion made the type *narrower*. This happens when promoting |
15093 | // a < 32-bit unsigned / <= 32-bit signed bit-field to 'signed int'. |
15094 | // Treat all values of 'signed int' as being in range for now. |
15095 | PromotedMin = llvm::APSInt::getMinValue(numBits: BitWidth, Unsigned); |
15096 | PromotedMax = llvm::APSInt::getMaxValue(numBits: BitWidth, Unsigned); |
15097 | } else { |
15098 | PromotedMin = llvm::APSInt::getMinValue(numBits: R.Width, Unsigned: R.NonNegative) |
15099 | .extOrTrunc(width: BitWidth); |
15100 | PromotedMin.setIsUnsigned(Unsigned); |
15101 | |
15102 | PromotedMax = llvm::APSInt::getMaxValue(numBits: R.Width, Unsigned: R.NonNegative) |
15103 | .extOrTrunc(width: BitWidth); |
15104 | PromotedMax.setIsUnsigned(Unsigned); |
15105 | } |
15106 | } |
15107 | |
15108 | // Determine whether this range is contiguous (has no hole). |
15109 | bool isContiguous() const { return PromotedMin <= PromotedMax; } |
15110 | |
15111 | // Where a constant value is within the range. |
15112 | enum ComparisonResult { |
15113 | LT = 0x1, |
15114 | LE = 0x2, |
15115 | GT = 0x4, |
15116 | GE = 0x8, |
15117 | EQ = 0x10, |
15118 | NE = 0x20, |
15119 | InRangeFlag = 0x40, |
15120 | |
15121 | Less = LE | LT | NE, |
15122 | Min = LE | InRangeFlag, |
15123 | InRange = InRangeFlag, |
15124 | Max = GE | InRangeFlag, |
15125 | Greater = GE | GT | NE, |
15126 | |
15127 | OnlyValue = LE | GE | EQ | InRangeFlag, |
15128 | InHole = NE |
15129 | }; |
15130 | |
15131 | ComparisonResult compare(const llvm::APSInt &Value) const { |
15132 | assert(Value.getBitWidth() == PromotedMin.getBitWidth() && |
15133 | Value.isUnsigned() == PromotedMin.isUnsigned()); |
15134 | if (!isContiguous()) { |
15135 | assert(Value.isUnsigned() && "discontiguous range for signed compare" ); |
15136 | if (Value.isMinValue()) return Min; |
15137 | if (Value.isMaxValue()) return Max; |
15138 | if (Value >= PromotedMin) return InRange; |
15139 | if (Value <= PromotedMax) return InRange; |
15140 | return InHole; |
15141 | } |
15142 | |
15143 | switch (llvm::APSInt::compareValues(I1: Value, I2: PromotedMin)) { |
15144 | case -1: return Less; |
15145 | case 0: return PromotedMin == PromotedMax ? OnlyValue : Min; |
15146 | case 1: |
15147 | switch (llvm::APSInt::compareValues(I1: Value, I2: PromotedMax)) { |
15148 | case -1: return InRange; |
15149 | case 0: return Max; |
15150 | case 1: return Greater; |
15151 | } |
15152 | } |
15153 | |
15154 | llvm_unreachable("impossible compare result" ); |
15155 | } |
15156 | |
15157 | static std::optional<StringRef> |
15158 | constantValue(BinaryOperatorKind Op, ComparisonResult R, bool ConstantOnRHS) { |
15159 | if (Op == BO_Cmp) { |
15160 | ComparisonResult LTFlag = LT, GTFlag = GT; |
15161 | if (ConstantOnRHS) std::swap(a&: LTFlag, b&: GTFlag); |
15162 | |
15163 | if (R & EQ) return StringRef("'std::strong_ordering::equal'" ); |
15164 | if (R & LTFlag) return StringRef("'std::strong_ordering::less'" ); |
15165 | if (R & GTFlag) return StringRef("'std::strong_ordering::greater'" ); |
15166 | return std::nullopt; |
15167 | } |
15168 | |
15169 | ComparisonResult TrueFlag, FalseFlag; |
15170 | if (Op == BO_EQ) { |
15171 | TrueFlag = EQ; |
15172 | FalseFlag = NE; |
15173 | } else if (Op == BO_NE) { |
15174 | TrueFlag = NE; |
15175 | FalseFlag = EQ; |
15176 | } else { |
15177 | if ((Op == BO_LT || Op == BO_GE) ^ ConstantOnRHS) { |
15178 | TrueFlag = LT; |
15179 | FalseFlag = GE; |
15180 | } else { |
15181 | TrueFlag = GT; |
15182 | FalseFlag = LE; |
15183 | } |
15184 | if (Op == BO_GE || Op == BO_LE) |
15185 | std::swap(a&: TrueFlag, b&: FalseFlag); |
15186 | } |
15187 | if (R & TrueFlag) |
15188 | return StringRef("true" ); |
15189 | if (R & FalseFlag) |
15190 | return StringRef("false" ); |
15191 | return std::nullopt; |
15192 | } |
15193 | }; |
15194 | } |
15195 | |
15196 | static bool HasEnumType(Expr *E) { |
15197 | // Strip off implicit integral promotions. |
15198 | while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) { |
15199 | if (ICE->getCastKind() != CK_IntegralCast && |
15200 | ICE->getCastKind() != CK_NoOp) |
15201 | break; |
15202 | E = ICE->getSubExpr(); |
15203 | } |
15204 | |
15205 | return E->getType()->isEnumeralType(); |
15206 | } |
15207 | |
15208 | static int classifyConstantValue(Expr *Constant) { |
15209 | // The values of this enumeration are used in the diagnostics |
15210 | // diag::warn_out_of_range_compare and diag::warn_tautological_bool_compare. |
15211 | enum ConstantValueKind { |
15212 | Miscellaneous = 0, |
15213 | LiteralTrue, |
15214 | LiteralFalse |
15215 | }; |
15216 | if (auto *BL = dyn_cast<CXXBoolLiteralExpr>(Val: Constant)) |
15217 | return BL->getValue() ? ConstantValueKind::LiteralTrue |
15218 | : ConstantValueKind::LiteralFalse; |
15219 | return ConstantValueKind::Miscellaneous; |
15220 | } |
15221 | |
15222 | static bool CheckTautologicalComparison(Sema &S, BinaryOperator *E, |
15223 | Expr *Constant, Expr *Other, |
15224 | const llvm::APSInt &Value, |
15225 | bool RhsConstant) { |
15226 | if (S.inTemplateInstantiation()) |
15227 | return false; |
15228 | |
15229 | Expr *OriginalOther = Other; |
15230 | |
15231 | Constant = Constant->IgnoreParenImpCasts(); |
15232 | Other = Other->IgnoreParenImpCasts(); |
15233 | |
15234 | // Suppress warnings on tautological comparisons between values of the same |
15235 | // enumeration type. There are only two ways we could warn on this: |
15236 | // - If the constant is outside the range of representable values of |
15237 | // the enumeration. In such a case, we should warn about the cast |
15238 | // to enumeration type, not about the comparison. |
15239 | // - If the constant is the maximum / minimum in-range value. For an |
15240 | // enumeratin type, such comparisons can be meaningful and useful. |
15241 | if (Constant->getType()->isEnumeralType() && |
15242 | S.Context.hasSameUnqualifiedType(T1: Constant->getType(), T2: Other->getType())) |
15243 | return false; |
15244 | |
15245 | IntRange OtherValueRange = GetExprRange( |
15246 | C&: S.Context, E: Other, InConstantContext: S.isConstantEvaluatedContext(), /*Approximate=*/false); |
15247 | |
15248 | QualType OtherT = Other->getType(); |
15249 | if (const auto *AT = OtherT->getAs<AtomicType>()) |
15250 | OtherT = AT->getValueType(); |
15251 | IntRange OtherTypeRange = IntRange::forValueOfType(C&: S.Context, T: OtherT); |
15252 | |
15253 | // Special case for ObjC BOOL on targets where its a typedef for a signed char |
15254 | // (Namely, macOS). FIXME: IntRange::forValueOfType should do this. |
15255 | bool IsObjCSignedCharBool = S.getLangOpts().ObjC && |
15256 | S.NSAPIObj->isObjCBOOLType(T: OtherT) && |
15257 | OtherT->isSpecificBuiltinType(K: BuiltinType::SChar); |
15258 | |
15259 | // Whether we're treating Other as being a bool because of the form of |
15260 | // expression despite it having another type (typically 'int' in C). |
15261 | bool OtherIsBooleanDespiteType = |
15262 | !OtherT->isBooleanType() && Other->isKnownToHaveBooleanValue(); |
15263 | if (OtherIsBooleanDespiteType || IsObjCSignedCharBool) |
15264 | OtherTypeRange = OtherValueRange = IntRange::forBoolType(); |
15265 | |
15266 | // Check if all values in the range of possible values of this expression |
15267 | // lead to the same comparison outcome. |
15268 | PromotedRange OtherPromotedValueRange(OtherValueRange, Value.getBitWidth(), |
15269 | Value.isUnsigned()); |
15270 | auto Cmp = OtherPromotedValueRange.compare(Value); |
15271 | auto Result = PromotedRange::constantValue(Op: E->getOpcode(), R: Cmp, ConstantOnRHS: RhsConstant); |
15272 | if (!Result) |
15273 | return false; |
15274 | |
15275 | // Also consider the range determined by the type alone. This allows us to |
15276 | // classify the warning under the proper diagnostic group. |
15277 | bool TautologicalTypeCompare = false; |
15278 | { |
15279 | PromotedRange OtherPromotedTypeRange(OtherTypeRange, Value.getBitWidth(), |
15280 | Value.isUnsigned()); |
15281 | auto TypeCmp = OtherPromotedTypeRange.compare(Value); |
15282 | if (auto TypeResult = PromotedRange::constantValue(Op: E->getOpcode(), R: TypeCmp, |
15283 | ConstantOnRHS: RhsConstant)) { |
15284 | TautologicalTypeCompare = true; |
15285 | Cmp = TypeCmp; |
15286 | Result = TypeResult; |
15287 | } |
15288 | } |
15289 | |
15290 | // Don't warn if the non-constant operand actually always evaluates to the |
15291 | // same value. |
15292 | if (!TautologicalTypeCompare && OtherValueRange.Width == 0) |
15293 | return false; |
15294 | |
15295 | // Suppress the diagnostic for an in-range comparison if the constant comes |
15296 | // from a macro or enumerator. We don't want to diagnose |
15297 | // |
15298 | // some_long_value <= INT_MAX |
15299 | // |
15300 | // when sizeof(int) == sizeof(long). |
15301 | bool InRange = Cmp & PromotedRange::InRangeFlag; |
15302 | if (InRange && IsEnumConstOrFromMacro(S, E: Constant)) |
15303 | return false; |
15304 | |
15305 | // A comparison of an unsigned bit-field against 0 is really a type problem, |
15306 | // even though at the type level the bit-field might promote to 'signed int'. |
15307 | if (Other->refersToBitField() && InRange && Value == 0 && |
15308 | Other->getType()->isUnsignedIntegerOrEnumerationType()) |
15309 | TautologicalTypeCompare = true; |
15310 | |
15311 | // If this is a comparison to an enum constant, include that |
15312 | // constant in the diagnostic. |
15313 | const EnumConstantDecl *ED = nullptr; |
15314 | if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Val: Constant)) |
15315 | ED = dyn_cast<EnumConstantDecl>(Val: DR->getDecl()); |
15316 | |
15317 | // Should be enough for uint128 (39 decimal digits) |
15318 | SmallString<64> PrettySourceValue; |
15319 | llvm::raw_svector_ostream OS(PrettySourceValue); |
15320 | if (ED) { |
15321 | OS << '\'' << *ED << "' (" << Value << ")" ; |
15322 | } else if (auto *BL = dyn_cast<ObjCBoolLiteralExpr>( |
15323 | Val: Constant->IgnoreParenImpCasts())) { |
15324 | OS << (BL->getValue() ? "YES" : "NO" ); |
15325 | } else { |
15326 | OS << Value; |
15327 | } |
15328 | |
15329 | if (!TautologicalTypeCompare) { |
15330 | S.Diag(E->getOperatorLoc(), diag::warn_tautological_compare_value_range) |
15331 | << RhsConstant << OtherValueRange.Width << OtherValueRange.NonNegative |
15332 | << E->getOpcodeStr() << OS.str() << *Result |
15333 | << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange(); |
15334 | return true; |
15335 | } |
15336 | |
15337 | if (IsObjCSignedCharBool) { |
15338 | S.DiagRuntimeBehavior(E->getOperatorLoc(), E, |
15339 | S.PDiag(diag::warn_tautological_compare_objc_bool) |
15340 | << OS.str() << *Result); |
15341 | return true; |
15342 | } |
15343 | |
15344 | // FIXME: We use a somewhat different formatting for the in-range cases and |
15345 | // cases involving boolean values for historical reasons. We should pick a |
15346 | // consistent way of presenting these diagnostics. |
15347 | if (!InRange || Other->isKnownToHaveBooleanValue()) { |
15348 | |
15349 | S.DiagRuntimeBehavior( |
15350 | E->getOperatorLoc(), E, |
15351 | S.PDiag(!InRange ? diag::warn_out_of_range_compare |
15352 | : diag::warn_tautological_bool_compare) |
15353 | << OS.str() << classifyConstantValue(Constant) << OtherT |
15354 | << OtherIsBooleanDespiteType << *Result |
15355 | << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange()); |
15356 | } else { |
15357 | bool IsCharTy = OtherT.withoutLocalFastQualifiers() == S.Context.CharTy; |
15358 | unsigned Diag = |
15359 | (isKnownToHaveUnsignedValue(OriginalOther) && Value == 0) |
15360 | ? (HasEnumType(OriginalOther) |
15361 | ? diag::warn_unsigned_enum_always_true_comparison |
15362 | : IsCharTy ? diag::warn_unsigned_char_always_true_comparison |
15363 | : diag::warn_unsigned_always_true_comparison) |
15364 | : diag::warn_tautological_constant_compare; |
15365 | |
15366 | S.Diag(E->getOperatorLoc(), Diag) |
15367 | << RhsConstant << OtherT << E->getOpcodeStr() << OS.str() << *Result |
15368 | << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange(); |
15369 | } |
15370 | |
15371 | return true; |
15372 | } |
15373 | |
15374 | /// Analyze the operands of the given comparison. Implements the |
15375 | /// fallback case from AnalyzeComparison. |
15376 | static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) { |
15377 | AnalyzeImplicitConversions(S, E: E->getLHS(), CC: E->getOperatorLoc()); |
15378 | AnalyzeImplicitConversions(S, E: E->getRHS(), CC: E->getOperatorLoc()); |
15379 | } |
15380 | |
15381 | /// Implements -Wsign-compare. |
15382 | /// |
15383 | /// \param E the binary operator to check for warnings |
15384 | static void AnalyzeComparison(Sema &S, BinaryOperator *E) { |
15385 | // The type the comparison is being performed in. |
15386 | QualType T = E->getLHS()->getType(); |
15387 | |
15388 | // Only analyze comparison operators where both sides have been converted to |
15389 | // the same type. |
15390 | if (!S.Context.hasSameUnqualifiedType(T1: T, T2: E->getRHS()->getType())) |
15391 | return AnalyzeImpConvsInComparison(S, E); |
15392 | |
15393 | // Don't analyze value-dependent comparisons directly. |
15394 | if (E->isValueDependent()) |
15395 | return AnalyzeImpConvsInComparison(S, E); |
15396 | |
15397 | Expr *LHS = E->getLHS(); |
15398 | Expr *RHS = E->getRHS(); |
15399 | |
15400 | if (T->isIntegralType(Ctx: S.Context)) { |
15401 | std::optional<llvm::APSInt> RHSValue = |
15402 | RHS->getIntegerConstantExpr(Ctx: S.Context); |
15403 | std::optional<llvm::APSInt> LHSValue = |
15404 | LHS->getIntegerConstantExpr(Ctx: S.Context); |
15405 | |
15406 | // We don't care about expressions whose result is a constant. |
15407 | if (RHSValue && LHSValue) |
15408 | return AnalyzeImpConvsInComparison(S, E); |
15409 | |
15410 | // We only care about expressions where just one side is literal |
15411 | if ((bool)RHSValue ^ (bool)LHSValue) { |
15412 | // Is the constant on the RHS or LHS? |
15413 | const bool RhsConstant = (bool)RHSValue; |
15414 | Expr *Const = RhsConstant ? RHS : LHS; |
15415 | Expr *Other = RhsConstant ? LHS : RHS; |
15416 | const llvm::APSInt &Value = RhsConstant ? *RHSValue : *LHSValue; |
15417 | |
15418 | // Check whether an integer constant comparison results in a value |
15419 | // of 'true' or 'false'. |
15420 | if (CheckTautologicalComparison(S, E, Constant: Const, Other, Value, RhsConstant)) |
15421 | return AnalyzeImpConvsInComparison(S, E); |
15422 | } |
15423 | } |
15424 | |
15425 | if (!T->hasUnsignedIntegerRepresentation()) { |
15426 | // We don't do anything special if this isn't an unsigned integral |
15427 | // comparison: we're only interested in integral comparisons, and |
15428 | // signed comparisons only happen in cases we don't care to warn about. |
15429 | return AnalyzeImpConvsInComparison(S, E); |
15430 | } |
15431 | |
15432 | LHS = LHS->IgnoreParenImpCasts(); |
15433 | RHS = RHS->IgnoreParenImpCasts(); |
15434 | |
15435 | if (!S.getLangOpts().CPlusPlus) { |
15436 | // Avoid warning about comparison of integers with different signs when |
15437 | // RHS/LHS has a `typeof(E)` type whose sign is different from the sign of |
15438 | // the type of `E`. |
15439 | if (const auto *TET = dyn_cast<TypeOfExprType>(Val: LHS->getType())) |
15440 | LHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts(); |
15441 | if (const auto *TET = dyn_cast<TypeOfExprType>(Val: RHS->getType())) |
15442 | RHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts(); |
15443 | } |
15444 | |
15445 | // Check to see if one of the (unmodified) operands is of different |
15446 | // signedness. |
15447 | Expr *signedOperand, *unsignedOperand; |
15448 | if (LHS->getType()->hasSignedIntegerRepresentation()) { |
15449 | assert(!RHS->getType()->hasSignedIntegerRepresentation() && |
15450 | "unsigned comparison between two signed integer expressions?" ); |
15451 | signedOperand = LHS; |
15452 | unsignedOperand = RHS; |
15453 | } else if (RHS->getType()->hasSignedIntegerRepresentation()) { |
15454 | signedOperand = RHS; |
15455 | unsignedOperand = LHS; |
15456 | } else { |
15457 | return AnalyzeImpConvsInComparison(S, E); |
15458 | } |
15459 | |
15460 | // Otherwise, calculate the effective range of the signed operand. |
15461 | IntRange signedRange = |
15462 | GetExprRange(C&: S.Context, E: signedOperand, InConstantContext: S.isConstantEvaluatedContext(), |
15463 | /*Approximate=*/true); |
15464 | |
15465 | // Go ahead and analyze implicit conversions in the operands. Note |
15466 | // that we skip the implicit conversions on both sides. |
15467 | AnalyzeImplicitConversions(S, E: LHS, CC: E->getOperatorLoc()); |
15468 | AnalyzeImplicitConversions(S, E: RHS, CC: E->getOperatorLoc()); |
15469 | |
15470 | // If the signed range is non-negative, -Wsign-compare won't fire. |
15471 | if (signedRange.NonNegative) |
15472 | return; |
15473 | |
15474 | // For (in)equality comparisons, if the unsigned operand is a |
15475 | // constant which cannot collide with a overflowed signed operand, |
15476 | // then reinterpreting the signed operand as unsigned will not |
15477 | // change the result of the comparison. |
15478 | if (E->isEqualityOp()) { |
15479 | unsigned comparisonWidth = S.Context.getIntWidth(T); |
15480 | IntRange unsignedRange = |
15481 | GetExprRange(C&: S.Context, E: unsignedOperand, InConstantContext: S.isConstantEvaluatedContext(), |
15482 | /*Approximate=*/true); |
15483 | |
15484 | // We should never be unable to prove that the unsigned operand is |
15485 | // non-negative. |
15486 | assert(unsignedRange.NonNegative && "unsigned range includes negative?" ); |
15487 | |
15488 | if (unsignedRange.Width < comparisonWidth) |
15489 | return; |
15490 | } |
15491 | |
15492 | S.DiagRuntimeBehavior(E->getOperatorLoc(), E, |
15493 | S.PDiag(diag::warn_mixed_sign_comparison) |
15494 | << LHS->getType() << RHS->getType() |
15495 | << LHS->getSourceRange() << RHS->getSourceRange()); |
15496 | } |
15497 | |
15498 | /// Analyzes an attempt to assign the given value to a bitfield. |
15499 | /// |
15500 | /// Returns true if there was something fishy about the attempt. |
15501 | static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init, |
15502 | SourceLocation InitLoc) { |
15503 | assert(Bitfield->isBitField()); |
15504 | if (Bitfield->isInvalidDecl()) |
15505 | return false; |
15506 | |
15507 | // White-list bool bitfields. |
15508 | QualType BitfieldType = Bitfield->getType(); |
15509 | if (BitfieldType->isBooleanType()) |
15510 | return false; |
15511 | |
15512 | if (BitfieldType->isEnumeralType()) { |
15513 | EnumDecl *BitfieldEnumDecl = BitfieldType->castAs<EnumType>()->getDecl(); |
15514 | // If the underlying enum type was not explicitly specified as an unsigned |
15515 | // type and the enum contain only positive values, MSVC++ will cause an |
15516 | // inconsistency by storing this as a signed type. |
15517 | if (S.getLangOpts().CPlusPlus11 && |
15518 | !BitfieldEnumDecl->getIntegerTypeSourceInfo() && |
15519 | BitfieldEnumDecl->getNumPositiveBits() > 0 && |
15520 | BitfieldEnumDecl->getNumNegativeBits() == 0) { |
15521 | S.Diag(InitLoc, diag::warn_no_underlying_type_specified_for_enum_bitfield) |
15522 | << BitfieldEnumDecl; |
15523 | } |
15524 | } |
15525 | |
15526 | // Ignore value- or type-dependent expressions. |
15527 | if (Bitfield->getBitWidth()->isValueDependent() || |
15528 | Bitfield->getBitWidth()->isTypeDependent() || |
15529 | Init->isValueDependent() || |
15530 | Init->isTypeDependent()) |
15531 | return false; |
15532 | |
15533 | Expr *OriginalInit = Init->IgnoreParenImpCasts(); |
15534 | unsigned FieldWidth = Bitfield->getBitWidthValue(Ctx: S.Context); |
15535 | |
15536 | Expr::EvalResult Result; |
15537 | if (!OriginalInit->EvaluateAsInt(Result, Ctx: S.Context, |
15538 | AllowSideEffects: Expr::SE_AllowSideEffects)) { |
15539 | // The RHS is not constant. If the RHS has an enum type, make sure the |
15540 | // bitfield is wide enough to hold all the values of the enum without |
15541 | // truncation. |
15542 | if (const auto *EnumTy = OriginalInit->getType()->getAs<EnumType>()) { |
15543 | EnumDecl *ED = EnumTy->getDecl(); |
15544 | bool SignedBitfield = BitfieldType->isSignedIntegerType(); |
15545 | |
15546 | // Enum types are implicitly signed on Windows, so check if there are any |
15547 | // negative enumerators to see if the enum was intended to be signed or |
15548 | // not. |
15549 | bool SignedEnum = ED->getNumNegativeBits() > 0; |
15550 | |
15551 | // Check for surprising sign changes when assigning enum values to a |
15552 | // bitfield of different signedness. If the bitfield is signed and we |
15553 | // have exactly the right number of bits to store this unsigned enum, |
15554 | // suggest changing the enum to an unsigned type. This typically happens |
15555 | // on Windows where unfixed enums always use an underlying type of 'int'. |
15556 | unsigned DiagID = 0; |
15557 | if (SignedEnum && !SignedBitfield) { |
15558 | DiagID = diag::warn_unsigned_bitfield_assigned_signed_enum; |
15559 | } else if (SignedBitfield && !SignedEnum && |
15560 | ED->getNumPositiveBits() == FieldWidth) { |
15561 | DiagID = diag::warn_signed_bitfield_enum_conversion; |
15562 | } |
15563 | |
15564 | if (DiagID) { |
15565 | S.Diag(InitLoc, DiagID) << Bitfield << ED; |
15566 | TypeSourceInfo *TSI = Bitfield->getTypeSourceInfo(); |
15567 | SourceRange TypeRange = |
15568 | TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange(); |
15569 | S.Diag(Bitfield->getTypeSpecStartLoc(), diag::note_change_bitfield_sign) |
15570 | << SignedEnum << TypeRange; |
15571 | } |
15572 | |
15573 | // Compute the required bitwidth. If the enum has negative values, we need |
15574 | // one more bit than the normal number of positive bits to represent the |
15575 | // sign bit. |
15576 | unsigned BitsNeeded = SignedEnum ? std::max(a: ED->getNumPositiveBits() + 1, |
15577 | b: ED->getNumNegativeBits()) |
15578 | : ED->getNumPositiveBits(); |
15579 | |
15580 | // Check the bitwidth. |
15581 | if (BitsNeeded > FieldWidth) { |
15582 | Expr *WidthExpr = Bitfield->getBitWidth(); |
15583 | S.Diag(InitLoc, diag::warn_bitfield_too_small_for_enum) |
15584 | << Bitfield << ED; |
15585 | S.Diag(WidthExpr->getExprLoc(), diag::note_widen_bitfield) |
15586 | << BitsNeeded << ED << WidthExpr->getSourceRange(); |
15587 | } |
15588 | } |
15589 | |
15590 | return false; |
15591 | } |
15592 | |
15593 | llvm::APSInt Value = Result.Val.getInt(); |
15594 | |
15595 | unsigned OriginalWidth = Value.getBitWidth(); |
15596 | |
15597 | // In C, the macro 'true' from stdbool.h will evaluate to '1'; To reduce |
15598 | // false positives where the user is demonstrating they intend to use the |
15599 | // bit-field as a Boolean, check to see if the value is 1 and we're assigning |
15600 | // to a one-bit bit-field to see if the value came from a macro named 'true'. |
15601 | bool OneAssignedToOneBitBitfield = FieldWidth == 1 && Value == 1; |
15602 | if (OneAssignedToOneBitBitfield && !S.LangOpts.CPlusPlus) { |
15603 | SourceLocation MaybeMacroLoc = OriginalInit->getBeginLoc(); |
15604 | if (S.SourceMgr.isInSystemMacro(loc: MaybeMacroLoc) && |
15605 | S.findMacroSpelling(loc&: MaybeMacroLoc, name: "true" )) |
15606 | return false; |
15607 | } |
15608 | |
15609 | if (!Value.isSigned() || Value.isNegative()) |
15610 | if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Val: OriginalInit)) |
15611 | if (UO->getOpcode() == UO_Minus || UO->getOpcode() == UO_Not) |
15612 | OriginalWidth = Value.getSignificantBits(); |
15613 | |
15614 | if (OriginalWidth <= FieldWidth) |
15615 | return false; |
15616 | |
15617 | // Compute the value which the bitfield will contain. |
15618 | llvm::APSInt TruncatedValue = Value.trunc(width: FieldWidth); |
15619 | TruncatedValue.setIsSigned(BitfieldType->isSignedIntegerType()); |
15620 | |
15621 | // Check whether the stored value is equal to the original value. |
15622 | TruncatedValue = TruncatedValue.extend(width: OriginalWidth); |
15623 | if (llvm::APSInt::isSameValue(I1: Value, I2: TruncatedValue)) |
15624 | return false; |
15625 | |
15626 | std::string PrettyValue = toString(I: Value, Radix: 10); |
15627 | std::string PrettyTrunc = toString(I: TruncatedValue, Radix: 10); |
15628 | |
15629 | S.Diag(InitLoc, OneAssignedToOneBitBitfield |
15630 | ? diag::warn_impcast_single_bit_bitield_precision_constant |
15631 | : diag::warn_impcast_bitfield_precision_constant) |
15632 | << PrettyValue << PrettyTrunc << OriginalInit->getType() |
15633 | << Init->getSourceRange(); |
15634 | |
15635 | return true; |
15636 | } |
15637 | |
15638 | /// Analyze the given simple or compound assignment for warning-worthy |
15639 | /// operations. |
15640 | static void AnalyzeAssignment(Sema &S, BinaryOperator *E) { |
15641 | // Just recurse on the LHS. |
15642 | AnalyzeImplicitConversions(S, E: E->getLHS(), CC: E->getOperatorLoc()); |
15643 | |
15644 | // We want to recurse on the RHS as normal unless we're assigning to |
15645 | // a bitfield. |
15646 | if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) { |
15647 | if (AnalyzeBitFieldAssignment(S, Bitfield, Init: E->getRHS(), |
15648 | InitLoc: E->getOperatorLoc())) { |
15649 | // Recurse, ignoring any implicit conversions on the RHS. |
15650 | return AnalyzeImplicitConversions(S, E: E->getRHS()->IgnoreParenImpCasts(), |
15651 | CC: E->getOperatorLoc()); |
15652 | } |
15653 | } |
15654 | |
15655 | AnalyzeImplicitConversions(S, E: E->getRHS(), CC: E->getOperatorLoc()); |
15656 | |
15657 | // Diagnose implicitly sequentially-consistent atomic assignment. |
15658 | if (E->getLHS()->getType()->isAtomicType()) |
15659 | S.Diag(E->getRHS()->getBeginLoc(), diag::warn_atomic_implicit_seq_cst); |
15660 | } |
15661 | |
15662 | /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion. |
15663 | static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T, |
15664 | SourceLocation CContext, unsigned diag, |
15665 | bool pruneControlFlow = false) { |
15666 | if (pruneControlFlow) { |
15667 | S.DiagRuntimeBehavior(E->getExprLoc(), E, |
15668 | S.PDiag(DiagID: diag) |
15669 | << SourceType << T << E->getSourceRange() |
15670 | << SourceRange(CContext)); |
15671 | return; |
15672 | } |
15673 | S.Diag(E->getExprLoc(), diag) |
15674 | << SourceType << T << E->getSourceRange() << SourceRange(CContext); |
15675 | } |
15676 | |
15677 | /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion. |
15678 | static void DiagnoseImpCast(Sema &S, Expr *E, QualType T, |
15679 | SourceLocation CContext, |
15680 | unsigned diag, bool pruneControlFlow = false) { |
15681 | DiagnoseImpCast(S, E, SourceType: E->getType(), T, CContext, diag, pruneControlFlow); |
15682 | } |
15683 | |
15684 | static bool isObjCSignedCharBool(Sema &S, QualType Ty) { |
15685 | return Ty->isSpecificBuiltinType(K: BuiltinType::SChar) && |
15686 | S.getLangOpts().ObjC && S.NSAPIObj->isObjCBOOLType(T: Ty); |
15687 | } |
15688 | |
15689 | static void adornObjCBoolConversionDiagWithTernaryFixit( |
15690 | Sema &S, Expr *SourceExpr, const Sema::SemaDiagnosticBuilder &Builder) { |
15691 | Expr *Ignored = SourceExpr->IgnoreImplicit(); |
15692 | if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Val: Ignored)) |
15693 | Ignored = OVE->getSourceExpr(); |
15694 | bool NeedsParens = isa<AbstractConditionalOperator>(Val: Ignored) || |
15695 | isa<BinaryOperator>(Val: Ignored) || |
15696 | isa<CXXOperatorCallExpr>(Val: Ignored); |
15697 | SourceLocation EndLoc = S.getLocForEndOfToken(Loc: SourceExpr->getEndLoc()); |
15698 | if (NeedsParens) |
15699 | Builder << FixItHint::CreateInsertion(InsertionLoc: SourceExpr->getBeginLoc(), Code: "(" ) |
15700 | << FixItHint::CreateInsertion(InsertionLoc: EndLoc, Code: ")" ); |
15701 | Builder << FixItHint::CreateInsertion(InsertionLoc: EndLoc, Code: " ? YES : NO" ); |
15702 | } |
15703 | |
15704 | /// Diagnose an implicit cast from a floating point value to an integer value. |
15705 | static void DiagnoseFloatingImpCast(Sema &S, Expr *E, QualType T, |
15706 | SourceLocation CContext) { |
15707 | const bool IsBool = T->isSpecificBuiltinType(K: BuiltinType::Bool); |
15708 | const bool PruneWarnings = S.inTemplateInstantiation(); |
15709 | |
15710 | Expr *InnerE = E->IgnoreParenImpCasts(); |
15711 | // We also want to warn on, e.g., "int i = -1.234" |
15712 | if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(Val: InnerE)) |
15713 | if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus) |
15714 | InnerE = UOp->getSubExpr()->IgnoreParenImpCasts(); |
15715 | |
15716 | const bool IsLiteral = |
15717 | isa<FloatingLiteral>(Val: E) || isa<FloatingLiteral>(Val: InnerE); |
15718 | |
15719 | llvm::APFloat Value(0.0); |
15720 | bool IsConstant = |
15721 | E->EvaluateAsFloat(Result&: Value, Ctx: S.Context, AllowSideEffects: Expr::SE_AllowSideEffects); |
15722 | if (!IsConstant) { |
15723 | if (isObjCSignedCharBool(S, Ty: T)) { |
15724 | return adornObjCBoolConversionDiagWithTernaryFixit( |
15725 | S, E, |
15726 | S.Diag(CContext, diag::warn_impcast_float_to_objc_signed_char_bool) |
15727 | << E->getType()); |
15728 | } |
15729 | |
15730 | return DiagnoseImpCast(S, E, T, CContext, |
15731 | diag::warn_impcast_float_integer, PruneWarnings); |
15732 | } |
15733 | |
15734 | bool isExact = false; |
15735 | |
15736 | llvm::APSInt IntegerValue(S.Context.getIntWidth(T), |
15737 | T->hasUnsignedIntegerRepresentation()); |
15738 | llvm::APFloat::opStatus Result = Value.convertToInteger( |
15739 | Result&: IntegerValue, RM: llvm::APFloat::rmTowardZero, IsExact: &isExact); |
15740 | |
15741 | // FIXME: Force the precision of the source value down so we don't print |
15742 | // digits which are usually useless (we don't really care here if we |
15743 | // truncate a digit by accident in edge cases). Ideally, APFloat::toString |
15744 | // would automatically print the shortest representation, but it's a bit |
15745 | // tricky to implement. |
15746 | SmallString<16> PrettySourceValue; |
15747 | unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics()); |
15748 | precision = (precision * 59 + 195) / 196; |
15749 | Value.toString(Str&: PrettySourceValue, FormatPrecision: precision); |
15750 | |
15751 | if (isObjCSignedCharBool(S, Ty: T) && IntegerValue != 0 && IntegerValue != 1) { |
15752 | return adornObjCBoolConversionDiagWithTernaryFixit( |
15753 | S, E, |
15754 | S.Diag(CContext, diag::warn_impcast_constant_value_to_objc_bool) |
15755 | << PrettySourceValue); |
15756 | } |
15757 | |
15758 | if (Result == llvm::APFloat::opOK && isExact) { |
15759 | if (IsLiteral) return; |
15760 | return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer, |
15761 | PruneWarnings); |
15762 | } |
15763 | |
15764 | // Conversion of a floating-point value to a non-bool integer where the |
15765 | // integral part cannot be represented by the integer type is undefined. |
15766 | if (!IsBool && Result == llvm::APFloat::opInvalidOp) |
15767 | return DiagnoseImpCast( |
15768 | S, E, T, CContext, |
15769 | IsLiteral ? diag::warn_impcast_literal_float_to_integer_out_of_range |
15770 | : diag::warn_impcast_float_to_integer_out_of_range, |
15771 | PruneWarnings); |
15772 | |
15773 | unsigned DiagID = 0; |
15774 | if (IsLiteral) { |
15775 | // Warn on floating point literal to integer. |
15776 | DiagID = diag::warn_impcast_literal_float_to_integer; |
15777 | } else if (IntegerValue == 0) { |
15778 | if (Value.isZero()) { // Skip -0.0 to 0 conversion. |
15779 | return DiagnoseImpCast(S, E, T, CContext, |
15780 | diag::warn_impcast_float_integer, PruneWarnings); |
15781 | } |
15782 | // Warn on non-zero to zero conversion. |
15783 | DiagID = diag::warn_impcast_float_to_integer_zero; |
15784 | } else { |
15785 | if (IntegerValue.isUnsigned()) { |
15786 | if (!IntegerValue.isMaxValue()) { |
15787 | return DiagnoseImpCast(S, E, T, CContext, |
15788 | diag::warn_impcast_float_integer, PruneWarnings); |
15789 | } |
15790 | } else { // IntegerValue.isSigned() |
15791 | if (!IntegerValue.isMaxSignedValue() && |
15792 | !IntegerValue.isMinSignedValue()) { |
15793 | return DiagnoseImpCast(S, E, T, CContext, |
15794 | diag::warn_impcast_float_integer, PruneWarnings); |
15795 | } |
15796 | } |
15797 | // Warn on evaluatable floating point expression to integer conversion. |
15798 | DiagID = diag::warn_impcast_float_to_integer; |
15799 | } |
15800 | |
15801 | SmallString<16> PrettyTargetValue; |
15802 | if (IsBool) |
15803 | PrettyTargetValue = Value.isZero() ? "false" : "true" ; |
15804 | else |
15805 | IntegerValue.toString(Str&: PrettyTargetValue); |
15806 | |
15807 | if (PruneWarnings) { |
15808 | S.DiagRuntimeBehavior(E->getExprLoc(), E, |
15809 | S.PDiag(DiagID) |
15810 | << E->getType() << T.getUnqualifiedType() |
15811 | << PrettySourceValue << PrettyTargetValue |
15812 | << E->getSourceRange() << SourceRange(CContext)); |
15813 | } else { |
15814 | S.Diag(E->getExprLoc(), DiagID) |
15815 | << E->getType() << T.getUnqualifiedType() << PrettySourceValue |
15816 | << PrettyTargetValue << E->getSourceRange() << SourceRange(CContext); |
15817 | } |
15818 | } |
15819 | |
15820 | /// Analyze the given compound assignment for the possible losing of |
15821 | /// floating-point precision. |
15822 | static void AnalyzeCompoundAssignment(Sema &S, BinaryOperator *E) { |
15823 | assert(isa<CompoundAssignOperator>(E) && |
15824 | "Must be compound assignment operation" ); |
15825 | // Recurse on the LHS and RHS in here |
15826 | AnalyzeImplicitConversions(S, E: E->getLHS(), CC: E->getOperatorLoc()); |
15827 | AnalyzeImplicitConversions(S, E: E->getRHS(), CC: E->getOperatorLoc()); |
15828 | |
15829 | if (E->getLHS()->getType()->isAtomicType()) |
15830 | S.Diag(E->getOperatorLoc(), diag::warn_atomic_implicit_seq_cst); |
15831 | |
15832 | // Now check the outermost expression |
15833 | const auto *ResultBT = E->getLHS()->getType()->getAs<BuiltinType>(); |
15834 | const auto *RBT = cast<CompoundAssignOperator>(Val: E) |
15835 | ->getComputationResultType() |
15836 | ->getAs<BuiltinType>(); |
15837 | |
15838 | // The below checks assume source is floating point. |
15839 | if (!ResultBT || !RBT || !RBT->isFloatingPoint()) return; |
15840 | |
15841 | // If source is floating point but target is an integer. |
15842 | if (ResultBT->isInteger()) |
15843 | return DiagnoseImpCast(S, E, E->getRHS()->getType(), E->getLHS()->getType(), |
15844 | E->getExprLoc(), diag::warn_impcast_float_integer); |
15845 | |
15846 | if (!ResultBT->isFloatingPoint()) |
15847 | return; |
15848 | |
15849 | // If both source and target are floating points, warn about losing precision. |
15850 | int Order = S.getASTContext().getFloatingTypeSemanticOrder( |
15851 | LHS: QualType(ResultBT, 0), RHS: QualType(RBT, 0)); |
15852 | if (Order < 0 && !S.SourceMgr.isInSystemMacro(E->getOperatorLoc())) |
15853 | // warn about dropping FP rank. |
15854 | DiagnoseImpCast(S, E->getRHS(), E->getLHS()->getType(), E->getOperatorLoc(), |
15855 | diag::warn_impcast_float_result_precision); |
15856 | } |
15857 | |
15858 | static std::string PrettyPrintInRange(const llvm::APSInt &Value, |
15859 | IntRange Range) { |
15860 | if (!Range.Width) return "0" ; |
15861 | |
15862 | llvm::APSInt ValueInRange = Value; |
15863 | ValueInRange.setIsSigned(!Range.NonNegative); |
15864 | ValueInRange = ValueInRange.trunc(width: Range.Width); |
15865 | return toString(I: ValueInRange, Radix: 10); |
15866 | } |
15867 | |
15868 | static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) { |
15869 | if (!isa<ImplicitCastExpr>(Val: Ex)) |
15870 | return false; |
15871 | |
15872 | Expr *InnerE = Ex->IgnoreParenImpCasts(); |
15873 | const Type *Target = S.Context.getCanonicalType(T: Ex->getType()).getTypePtr(); |
15874 | const Type *Source = |
15875 | S.Context.getCanonicalType(T: InnerE->getType()).getTypePtr(); |
15876 | if (Target->isDependentType()) |
15877 | return false; |
15878 | |
15879 | const BuiltinType *FloatCandidateBT = |
15880 | dyn_cast<BuiltinType>(Val: ToBool ? Source : Target); |
15881 | const Type *BoolCandidateType = ToBool ? Target : Source; |
15882 | |
15883 | return (BoolCandidateType->isSpecificBuiltinType(K: BuiltinType::Bool) && |
15884 | FloatCandidateBT && (FloatCandidateBT->isFloatingPoint())); |
15885 | } |
15886 | |
15887 | static void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall, |
15888 | SourceLocation CC) { |
15889 | unsigned NumArgs = TheCall->getNumArgs(); |
15890 | for (unsigned i = 0; i < NumArgs; ++i) { |
15891 | Expr *CurrA = TheCall->getArg(Arg: i); |
15892 | if (!IsImplicitBoolFloatConversion(S, Ex: CurrA, ToBool: true)) |
15893 | continue; |
15894 | |
15895 | bool IsSwapped = ((i > 0) && |
15896 | IsImplicitBoolFloatConversion(S, Ex: TheCall->getArg(Arg: i - 1), ToBool: false)); |
15897 | IsSwapped |= ((i < (NumArgs - 1)) && |
15898 | IsImplicitBoolFloatConversion(S, Ex: TheCall->getArg(Arg: i + 1), ToBool: false)); |
15899 | if (IsSwapped) { |
15900 | // Warn on this floating-point to bool conversion. |
15901 | DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(), |
15902 | CurrA->getType(), CC, |
15903 | diag::warn_impcast_floating_point_to_bool); |
15904 | } |
15905 | } |
15906 | } |
15907 | |
15908 | static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T, |
15909 | SourceLocation CC) { |
15910 | if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer, |
15911 | E->getExprLoc())) |
15912 | return; |
15913 | |
15914 | // Don't warn on functions which have return type nullptr_t. |
15915 | if (isa<CallExpr>(Val: E)) |
15916 | return; |
15917 | |
15918 | // Check for NULL (GNUNull) or nullptr (CXX11_nullptr). |
15919 | const Expr *NewE = E->IgnoreParenImpCasts(); |
15920 | bool IsGNUNullExpr = isa<GNUNullExpr>(Val: NewE); |
15921 | bool HasNullPtrType = NewE->getType()->isNullPtrType(); |
15922 | if (!IsGNUNullExpr && !HasNullPtrType) |
15923 | return; |
15924 | |
15925 | // Return if target type is a safe conversion. |
15926 | if (T->isAnyPointerType() || T->isBlockPointerType() || |
15927 | T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType()) |
15928 | return; |
15929 | |
15930 | SourceLocation Loc = E->getSourceRange().getBegin(); |
15931 | |
15932 | // Venture through the macro stacks to get to the source of macro arguments. |
15933 | // The new location is a better location than the complete location that was |
15934 | // passed in. |
15935 | Loc = S.SourceMgr.getTopMacroCallerLoc(Loc); |
15936 | CC = S.SourceMgr.getTopMacroCallerLoc(Loc: CC); |
15937 | |
15938 | // __null is usually wrapped in a macro. Go up a macro if that is the case. |
15939 | if (IsGNUNullExpr && Loc.isMacroID()) { |
15940 | StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics( |
15941 | Loc, SM: S.SourceMgr, LangOpts: S.getLangOpts()); |
15942 | if (MacroName == "NULL" ) |
15943 | Loc = S.SourceMgr.getImmediateExpansionRange(Loc).getBegin(); |
15944 | } |
15945 | |
15946 | // Only warn if the null and context location are in the same macro expansion. |
15947 | if (S.SourceMgr.getFileID(SpellingLoc: Loc) != S.SourceMgr.getFileID(SpellingLoc: CC)) |
15948 | return; |
15949 | |
15950 | S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer) |
15951 | << HasNullPtrType << T << SourceRange(CC) |
15952 | << FixItHint::CreateReplacement(Loc, |
15953 | S.getFixItZeroLiteralForType(T, Loc)); |
15954 | } |
15955 | |
15956 | static void checkObjCArrayLiteral(Sema &S, QualType TargetType, |
15957 | ObjCArrayLiteral *ArrayLiteral); |
15958 | |
15959 | static void |
15960 | checkObjCDictionaryLiteral(Sema &S, QualType TargetType, |
15961 | ObjCDictionaryLiteral *DictionaryLiteral); |
15962 | |
15963 | /// Check a single element within a collection literal against the |
15964 | /// target element type. |
15965 | static void checkObjCCollectionLiteralElement(Sema &S, |
15966 | QualType TargetElementType, |
15967 | Expr *Element, |
15968 | unsigned ElementKind) { |
15969 | // Skip a bitcast to 'id' or qualified 'id'. |
15970 | if (auto ICE = dyn_cast<ImplicitCastExpr>(Val: Element)) { |
15971 | if (ICE->getCastKind() == CK_BitCast && |
15972 | ICE->getSubExpr()->getType()->getAs<ObjCObjectPointerType>()) |
15973 | Element = ICE->getSubExpr(); |
15974 | } |
15975 | |
15976 | QualType ElementType = Element->getType(); |
15977 | ExprResult ElementResult(Element); |
15978 | if (ElementType->getAs<ObjCObjectPointerType>() && |
15979 | S.CheckSingleAssignmentConstraints(LHSType: TargetElementType, |
15980 | RHS&: ElementResult, |
15981 | Diagnose: false, DiagnoseCFAudited: false) |
15982 | != Sema::Compatible) { |
15983 | S.Diag(Element->getBeginLoc(), diag::warn_objc_collection_literal_element) |
15984 | << ElementType << ElementKind << TargetElementType |
15985 | << Element->getSourceRange(); |
15986 | } |
15987 | |
15988 | if (auto ArrayLiteral = dyn_cast<ObjCArrayLiteral>(Val: Element)) |
15989 | checkObjCArrayLiteral(S, TargetType: TargetElementType, ArrayLiteral); |
15990 | else if (auto DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(Val: Element)) |
15991 | checkObjCDictionaryLiteral(S, TargetType: TargetElementType, DictionaryLiteral); |
15992 | } |
15993 | |
15994 | /// Check an Objective-C array literal being converted to the given |
15995 | /// target type. |
15996 | static void checkObjCArrayLiteral(Sema &S, QualType TargetType, |
15997 | ObjCArrayLiteral *ArrayLiteral) { |
15998 | if (!S.NSArrayDecl) |
15999 | return; |
16000 | |
16001 | const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>(); |
16002 | if (!TargetObjCPtr) |
16003 | return; |
16004 | |
16005 | if (TargetObjCPtr->isUnspecialized() || |
16006 | TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl() |
16007 | != S.NSArrayDecl->getCanonicalDecl()) |
16008 | return; |
16009 | |
16010 | auto TypeArgs = TargetObjCPtr->getTypeArgs(); |
16011 | if (TypeArgs.size() != 1) |
16012 | return; |
16013 | |
16014 | QualType TargetElementType = TypeArgs[0]; |
16015 | for (unsigned I = 0, N = ArrayLiteral->getNumElements(); I != N; ++I) { |
16016 | checkObjCCollectionLiteralElement(S, TargetElementType, |
16017 | Element: ArrayLiteral->getElement(Index: I), |
16018 | ElementKind: 0); |
16019 | } |
16020 | } |
16021 | |
16022 | /// Check an Objective-C dictionary literal being converted to the given |
16023 | /// target type. |
16024 | static void |
16025 | checkObjCDictionaryLiteral(Sema &S, QualType TargetType, |
16026 | ObjCDictionaryLiteral *DictionaryLiteral) { |
16027 | if (!S.NSDictionaryDecl) |
16028 | return; |
16029 | |
16030 | const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>(); |
16031 | if (!TargetObjCPtr) |
16032 | return; |
16033 | |
16034 | if (TargetObjCPtr->isUnspecialized() || |
16035 | TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl() |
16036 | != S.NSDictionaryDecl->getCanonicalDecl()) |
16037 | return; |
16038 | |
16039 | auto TypeArgs = TargetObjCPtr->getTypeArgs(); |
16040 | if (TypeArgs.size() != 2) |
16041 | return; |
16042 | |
16043 | QualType TargetKeyType = TypeArgs[0]; |
16044 | QualType TargetObjectType = TypeArgs[1]; |
16045 | for (unsigned I = 0, N = DictionaryLiteral->getNumElements(); I != N; ++I) { |
16046 | auto Element = DictionaryLiteral->getKeyValueElement(Index: I); |
16047 | checkObjCCollectionLiteralElement(S, TargetElementType: TargetKeyType, Element: Element.Key, ElementKind: 1); |
16048 | checkObjCCollectionLiteralElement(S, TargetElementType: TargetObjectType, Element: Element.Value, ElementKind: 2); |
16049 | } |
16050 | } |
16051 | |
16052 | // Helper function to filter out cases for constant width constant conversion. |
16053 | // Don't warn on char array initialization or for non-decimal values. |
16054 | static bool isSameWidthConstantConversion(Sema &S, Expr *E, QualType T, |
16055 | SourceLocation CC) { |
16056 | // If initializing from a constant, and the constant starts with '0', |
16057 | // then it is a binary, octal, or hexadecimal. Allow these constants |
16058 | // to fill all the bits, even if there is a sign change. |
16059 | if (auto *IntLit = dyn_cast<IntegerLiteral>(Val: E->IgnoreParenImpCasts())) { |
16060 | const char FirstLiteralCharacter = |
16061 | S.getSourceManager().getCharacterData(SL: IntLit->getBeginLoc())[0]; |
16062 | if (FirstLiteralCharacter == '0') |
16063 | return false; |
16064 | } |
16065 | |
16066 | // If the CC location points to a '{', and the type is char, then assume |
16067 | // assume it is an array initialization. |
16068 | if (CC.isValid() && T->isCharType()) { |
16069 | const char FirstContextCharacter = |
16070 | S.getSourceManager().getCharacterData(SL: CC)[0]; |
16071 | if (FirstContextCharacter == '{') |
16072 | return false; |
16073 | } |
16074 | |
16075 | return true; |
16076 | } |
16077 | |
16078 | static const IntegerLiteral *getIntegerLiteral(Expr *E) { |
16079 | const auto *IL = dyn_cast<IntegerLiteral>(Val: E); |
16080 | if (!IL) { |
16081 | if (auto *UO = dyn_cast<UnaryOperator>(Val: E)) { |
16082 | if (UO->getOpcode() == UO_Minus) |
16083 | return dyn_cast<IntegerLiteral>(Val: UO->getSubExpr()); |
16084 | } |
16085 | } |
16086 | |
16087 | return IL; |
16088 | } |
16089 | |
16090 | static void DiagnoseIntInBoolContext(Sema &S, Expr *E) { |
16091 | E = E->IgnoreParenImpCasts(); |
16092 | SourceLocation ExprLoc = E->getExprLoc(); |
16093 | |
16094 | if (const auto *BO = dyn_cast<BinaryOperator>(Val: E)) { |
16095 | BinaryOperator::Opcode Opc = BO->getOpcode(); |
16096 | Expr::EvalResult Result; |
16097 | // Do not diagnose unsigned shifts. |
16098 | if (Opc == BO_Shl) { |
16099 | const auto *LHS = getIntegerLiteral(E: BO->getLHS()); |
16100 | const auto *RHS = getIntegerLiteral(E: BO->getRHS()); |
16101 | if (LHS && LHS->getValue() == 0) |
16102 | S.Diag(ExprLoc, diag::warn_left_shift_always) << 0; |
16103 | else if (!E->isValueDependent() && LHS && RHS && |
16104 | RHS->getValue().isNonNegative() && |
16105 | E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) |
16106 | S.Diag(ExprLoc, diag::warn_left_shift_always) |
16107 | << (Result.Val.getInt() != 0); |
16108 | else if (E->getType()->isSignedIntegerType()) |
16109 | S.Diag(ExprLoc, diag::warn_left_shift_in_bool_context) << E; |
16110 | } |
16111 | } |
16112 | |
16113 | if (const auto *CO = dyn_cast<ConditionalOperator>(Val: E)) { |
16114 | const auto *LHS = getIntegerLiteral(E: CO->getTrueExpr()); |
16115 | const auto *RHS = getIntegerLiteral(E: CO->getFalseExpr()); |
16116 | if (!LHS || !RHS) |
16117 | return; |
16118 | if ((LHS->getValue() == 0 || LHS->getValue() == 1) && |
16119 | (RHS->getValue() == 0 || RHS->getValue() == 1)) |
16120 | // Do not diagnose common idioms. |
16121 | return; |
16122 | if (LHS->getValue() != 0 && RHS->getValue() != 0) |
16123 | S.Diag(ExprLoc, diag::warn_integer_constants_in_conditional_always_true); |
16124 | } |
16125 | } |
16126 | |
16127 | static void CheckImplicitConversion(Sema &S, Expr *E, QualType T, |
16128 | SourceLocation CC, |
16129 | bool *ICContext = nullptr, |
16130 | bool IsListInit = false) { |
16131 | if (E->isTypeDependent() || E->isValueDependent()) return; |
16132 | |
16133 | const Type *Source = S.Context.getCanonicalType(T: E->getType()).getTypePtr(); |
16134 | const Type *Target = S.Context.getCanonicalType(T).getTypePtr(); |
16135 | if (Source == Target) return; |
16136 | if (Target->isDependentType()) return; |
16137 | |
16138 | // If the conversion context location is invalid don't complain. We also |
16139 | // don't want to emit a warning if the issue occurs from the expansion of |
16140 | // a system macro. The problem is that 'getSpellingLoc()' is slow, so we |
16141 | // delay this check as long as possible. Once we detect we are in that |
16142 | // scenario, we just return. |
16143 | if (CC.isInvalid()) |
16144 | return; |
16145 | |
16146 | if (Source->isAtomicType()) |
16147 | S.Diag(E->getExprLoc(), diag::warn_atomic_implicit_seq_cst); |
16148 | |
16149 | // Diagnose implicit casts to bool. |
16150 | if (Target->isSpecificBuiltinType(K: BuiltinType::Bool)) { |
16151 | if (isa<StringLiteral>(E)) |
16152 | // Warn on string literal to bool. Checks for string literals in logical |
16153 | // and expressions, for instance, assert(0 && "error here"), are |
16154 | // prevented by a check in AnalyzeImplicitConversions(). |
16155 | return DiagnoseImpCast(S, E, T, CC, |
16156 | diag::warn_impcast_string_literal_to_bool); |
16157 | if (isa<ObjCStringLiteral>(Val: E) || isa<ObjCArrayLiteral>(Val: E) || |
16158 | isa<ObjCDictionaryLiteral>(Val: E) || isa<ObjCBoxedExpr>(Val: E)) { |
16159 | // This covers the literal expressions that evaluate to Objective-C |
16160 | // objects. |
16161 | return DiagnoseImpCast(S, E, T, CC, |
16162 | diag::warn_impcast_objective_c_literal_to_bool); |
16163 | } |
16164 | if (Source->isPointerType() || Source->canDecayToPointerType()) { |
16165 | // Warn on pointer to bool conversion that is always true. |
16166 | S.DiagnoseAlwaysNonNullPointer(E, NullType: Expr::NPCK_NotNull, /*IsEqual*/ false, |
16167 | Range: SourceRange(CC)); |
16168 | } |
16169 | } |
16170 | |
16171 | // If the we're converting a constant to an ObjC BOOL on a platform where BOOL |
16172 | // is a typedef for signed char (macOS), then that constant value has to be 1 |
16173 | // or 0. |
16174 | if (isObjCSignedCharBool(S, Ty: T) && Source->isIntegralType(Ctx: S.Context)) { |
16175 | Expr::EvalResult Result; |
16176 | if (E->EvaluateAsInt(Result, Ctx: S.getASTContext(), |
16177 | AllowSideEffects: Expr::SE_AllowSideEffects)) { |
16178 | if (Result.Val.getInt() != 1 && Result.Val.getInt() != 0) { |
16179 | adornObjCBoolConversionDiagWithTernaryFixit( |
16180 | S, E, |
16181 | S.Diag(CC, diag::warn_impcast_constant_value_to_objc_bool) |
16182 | << toString(Result.Val.getInt(), 10)); |
16183 | } |
16184 | return; |
16185 | } |
16186 | } |
16187 | |
16188 | // Check implicit casts from Objective-C collection literals to specialized |
16189 | // collection types, e.g., NSArray<NSString *> *. |
16190 | if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(Val: E)) |
16191 | checkObjCArrayLiteral(S, TargetType: QualType(Target, 0), ArrayLiteral); |
16192 | else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(Val: E)) |
16193 | checkObjCDictionaryLiteral(S, TargetType: QualType(Target, 0), DictionaryLiteral); |
16194 | |
16195 | // Strip vector types. |
16196 | if (isa<VectorType>(Val: Source)) { |
16197 | if (Target->isSveVLSBuiltinType() && |
16198 | (S.Context.areCompatibleSveTypes(FirstType: QualType(Target, 0), |
16199 | SecondType: QualType(Source, 0)) || |
16200 | S.Context.areLaxCompatibleSveTypes(FirstType: QualType(Target, 0), |
16201 | SecondType: QualType(Source, 0)))) |
16202 | return; |
16203 | |
16204 | if (Target->isRVVVLSBuiltinType() && |
16205 | (S.Context.areCompatibleRVVTypes(FirstType: QualType(Target, 0), |
16206 | SecondType: QualType(Source, 0)) || |
16207 | S.Context.areLaxCompatibleRVVTypes(FirstType: QualType(Target, 0), |
16208 | SecondType: QualType(Source, 0)))) |
16209 | return; |
16210 | |
16211 | if (!isa<VectorType>(Val: Target)) { |
16212 | if (S.SourceMgr.isInSystemMacro(loc: CC)) |
16213 | return; |
16214 | return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar); |
16215 | } else if (S.getLangOpts().HLSL && |
16216 | Target->castAs<VectorType>()->getNumElements() < |
16217 | Source->castAs<VectorType>()->getNumElements()) { |
16218 | // Diagnose vector truncation but don't return. We may also want to |
16219 | // diagnose an element conversion. |
16220 | DiagnoseImpCast(S, E, T, CC, diag::warn_hlsl_impcast_vector_truncation); |
16221 | } |
16222 | |
16223 | // If the vector cast is cast between two vectors of the same size, it is |
16224 | // a bitcast, not a conversion, except under HLSL where it is a conversion. |
16225 | if (!S.getLangOpts().HLSL && |
16226 | S.Context.getTypeSize(T: Source) == S.Context.getTypeSize(T: Target)) |
16227 | return; |
16228 | |
16229 | Source = cast<VectorType>(Val: Source)->getElementType().getTypePtr(); |
16230 | Target = cast<VectorType>(Val: Target)->getElementType().getTypePtr(); |
16231 | } |
16232 | if (auto VecTy = dyn_cast<VectorType>(Val: Target)) |
16233 | Target = VecTy->getElementType().getTypePtr(); |
16234 | |
16235 | // Strip complex types. |
16236 | if (isa<ComplexType>(Val: Source)) { |
16237 | if (!isa<ComplexType>(Val: Target)) { |
16238 | if (S.SourceMgr.isInSystemMacro(loc: CC) || Target->isBooleanType()) |
16239 | return; |
16240 | |
16241 | return DiagnoseImpCast(S, E, T, CC, |
16242 | S.getLangOpts().CPlusPlus |
16243 | ? diag::err_impcast_complex_scalar |
16244 | : diag::warn_impcast_complex_scalar); |
16245 | } |
16246 | |
16247 | Source = cast<ComplexType>(Val: Source)->getElementType().getTypePtr(); |
16248 | Target = cast<ComplexType>(Val: Target)->getElementType().getTypePtr(); |
16249 | } |
16250 | |
16251 | const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Val: Source); |
16252 | const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Val: Target); |
16253 | |
16254 | // Strip SVE vector types |
16255 | if (SourceBT && SourceBT->isSveVLSBuiltinType()) { |
16256 | // Need the original target type for vector type checks |
16257 | const Type *OriginalTarget = S.Context.getCanonicalType(T).getTypePtr(); |
16258 | // Handle conversion from scalable to fixed when msve-vector-bits is |
16259 | // specified |
16260 | if (S.Context.areCompatibleSveTypes(FirstType: QualType(OriginalTarget, 0), |
16261 | SecondType: QualType(Source, 0)) || |
16262 | S.Context.areLaxCompatibleSveTypes(FirstType: QualType(OriginalTarget, 0), |
16263 | SecondType: QualType(Source, 0))) |
16264 | return; |
16265 | |
16266 | // If the vector cast is cast between two vectors of the same size, it is |
16267 | // a bitcast, not a conversion. |
16268 | if (S.Context.getTypeSize(T: Source) == S.Context.getTypeSize(T: Target)) |
16269 | return; |
16270 | |
16271 | Source = SourceBT->getSveEltType(S.Context).getTypePtr(); |
16272 | } |
16273 | |
16274 | if (TargetBT && TargetBT->isSveVLSBuiltinType()) |
16275 | Target = TargetBT->getSveEltType(S.Context).getTypePtr(); |
16276 | |
16277 | // If the source is floating point... |
16278 | if (SourceBT && SourceBT->isFloatingPoint()) { |
16279 | // ...and the target is floating point... |
16280 | if (TargetBT && TargetBT->isFloatingPoint()) { |
16281 | // ...then warn if we're dropping FP rank. |
16282 | |
16283 | int Order = S.getASTContext().getFloatingTypeSemanticOrder( |
16284 | LHS: QualType(SourceBT, 0), RHS: QualType(TargetBT, 0)); |
16285 | if (Order > 0) { |
16286 | // Don't warn about float constants that are precisely |
16287 | // representable in the target type. |
16288 | Expr::EvalResult result; |
16289 | if (E->EvaluateAsRValue(Result&: result, Ctx: S.Context)) { |
16290 | // Value might be a float, a float vector, or a float complex. |
16291 | if (IsSameFloatAfterCast(value: result.Val, |
16292 | Src: S.Context.getFloatTypeSemantics(T: QualType(TargetBT, 0)), |
16293 | Tgt: S.Context.getFloatTypeSemantics(T: QualType(SourceBT, 0)))) |
16294 | return; |
16295 | } |
16296 | |
16297 | if (S.SourceMgr.isInSystemMacro(loc: CC)) |
16298 | return; |
16299 | |
16300 | DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision); |
16301 | } |
16302 | // ... or possibly if we're increasing rank, too |
16303 | else if (Order < 0) { |
16304 | if (S.SourceMgr.isInSystemMacro(loc: CC)) |
16305 | return; |
16306 | |
16307 | DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_double_promotion); |
16308 | } |
16309 | return; |
16310 | } |
16311 | |
16312 | // If the target is integral, always warn. |
16313 | if (TargetBT && TargetBT->isInteger()) { |
16314 | if (S.SourceMgr.isInSystemMacro(loc: CC)) |
16315 | return; |
16316 | |
16317 | DiagnoseFloatingImpCast(S, E, T, CContext: CC); |
16318 | } |
16319 | |
16320 | // Detect the case where a call result is converted from floating-point to |
16321 | // to bool, and the final argument to the call is converted from bool, to |
16322 | // discover this typo: |
16323 | // |
16324 | // bool b = fabs(x < 1.0); // should be "bool b = fabs(x) < 1.0;" |
16325 | // |
16326 | // FIXME: This is an incredibly special case; is there some more general |
16327 | // way to detect this class of misplaced-parentheses bug? |
16328 | if (Target->isBooleanType() && isa<CallExpr>(Val: E)) { |
16329 | // Check last argument of function call to see if it is an |
16330 | // implicit cast from a type matching the type the result |
16331 | // is being cast to. |
16332 | CallExpr *CEx = cast<CallExpr>(Val: E); |
16333 | if (unsigned NumArgs = CEx->getNumArgs()) { |
16334 | Expr *LastA = CEx->getArg(Arg: NumArgs - 1); |
16335 | Expr *InnerE = LastA->IgnoreParenImpCasts(); |
16336 | if (isa<ImplicitCastExpr>(Val: LastA) && |
16337 | InnerE->getType()->isBooleanType()) { |
16338 | // Warn on this floating-point to bool conversion |
16339 | DiagnoseImpCast(S, E, T, CC, |
16340 | diag::warn_impcast_floating_point_to_bool); |
16341 | } |
16342 | } |
16343 | } |
16344 | return; |
16345 | } |
16346 | |
16347 | // Valid casts involving fixed point types should be accounted for here. |
16348 | if (Source->isFixedPointType()) { |
16349 | if (Target->isUnsaturatedFixedPointType()) { |
16350 | Expr::EvalResult Result; |
16351 | if (E->EvaluateAsFixedPoint(Result, Ctx: S.Context, AllowSideEffects: Expr::SE_AllowSideEffects, |
16352 | InConstantContext: S.isConstantEvaluatedContext())) { |
16353 | llvm::APFixedPoint Value = Result.Val.getFixedPoint(); |
16354 | llvm::APFixedPoint MaxVal = S.Context.getFixedPointMax(Ty: T); |
16355 | llvm::APFixedPoint MinVal = S.Context.getFixedPointMin(Ty: T); |
16356 | if (Value > MaxVal || Value < MinVal) { |
16357 | S.DiagRuntimeBehavior(E->getExprLoc(), E, |
16358 | S.PDiag(diag::warn_impcast_fixed_point_range) |
16359 | << Value.toString() << T |
16360 | << E->getSourceRange() |
16361 | << clang::SourceRange(CC)); |
16362 | return; |
16363 | } |
16364 | } |
16365 | } else if (Target->isIntegerType()) { |
16366 | Expr::EvalResult Result; |
16367 | if (!S.isConstantEvaluatedContext() && |
16368 | E->EvaluateAsFixedPoint(Result, Ctx: S.Context, |
16369 | AllowSideEffects: Expr::SE_AllowSideEffects)) { |
16370 | llvm::APFixedPoint FXResult = Result.Val.getFixedPoint(); |
16371 | |
16372 | bool Overflowed; |
16373 | llvm::APSInt IntResult = FXResult.convertToInt( |
16374 | DstWidth: S.Context.getIntWidth(T), |
16375 | DstSign: Target->isSignedIntegerOrEnumerationType(), Overflow: &Overflowed); |
16376 | |
16377 | if (Overflowed) { |
16378 | S.DiagRuntimeBehavior(E->getExprLoc(), E, |
16379 | S.PDiag(diag::warn_impcast_fixed_point_range) |
16380 | << FXResult.toString() << T |
16381 | << E->getSourceRange() |
16382 | << clang::SourceRange(CC)); |
16383 | return; |
16384 | } |
16385 | } |
16386 | } |
16387 | } else if (Target->isUnsaturatedFixedPointType()) { |
16388 | if (Source->isIntegerType()) { |
16389 | Expr::EvalResult Result; |
16390 | if (!S.isConstantEvaluatedContext() && |
16391 | E->EvaluateAsInt(Result, Ctx: S.Context, AllowSideEffects: Expr::SE_AllowSideEffects)) { |
16392 | llvm::APSInt Value = Result.Val.getInt(); |
16393 | |
16394 | bool Overflowed; |
16395 | llvm::APFixedPoint IntResult = llvm::APFixedPoint::getFromIntValue( |
16396 | Value, DstFXSema: S.Context.getFixedPointSemantics(Ty: T), Overflow: &Overflowed); |
16397 | |
16398 | if (Overflowed) { |
16399 | S.DiagRuntimeBehavior(E->getExprLoc(), E, |
16400 | S.PDiag(diag::warn_impcast_fixed_point_range) |
16401 | << toString(Value, /*Radix=*/10) << T |
16402 | << E->getSourceRange() |
16403 | << clang::SourceRange(CC)); |
16404 | return; |
16405 | } |
16406 | } |
16407 | } |
16408 | } |
16409 | |
16410 | // If we are casting an integer type to a floating point type without |
16411 | // initialization-list syntax, we might lose accuracy if the floating |
16412 | // point type has a narrower significand than the integer type. |
16413 | if (SourceBT && TargetBT && SourceBT->isIntegerType() && |
16414 | TargetBT->isFloatingType() && !IsListInit) { |
16415 | // Determine the number of precision bits in the source integer type. |
16416 | IntRange SourceRange = |
16417 | GetExprRange(C&: S.Context, E, InConstantContext: S.isConstantEvaluatedContext(), |
16418 | /*Approximate=*/true); |
16419 | unsigned int SourcePrecision = SourceRange.Width; |
16420 | |
16421 | // Determine the number of precision bits in the |
16422 | // target floating point type. |
16423 | unsigned int TargetPrecision = llvm::APFloatBase::semanticsPrecision( |
16424 | S.Context.getFloatTypeSemantics(T: QualType(TargetBT, 0))); |
16425 | |
16426 | if (SourcePrecision > 0 && TargetPrecision > 0 && |
16427 | SourcePrecision > TargetPrecision) { |
16428 | |
16429 | if (std::optional<llvm::APSInt> SourceInt = |
16430 | E->getIntegerConstantExpr(Ctx: S.Context)) { |
16431 | // If the source integer is a constant, convert it to the target |
16432 | // floating point type. Issue a warning if the value changes |
16433 | // during the whole conversion. |
16434 | llvm::APFloat TargetFloatValue( |
16435 | S.Context.getFloatTypeSemantics(T: QualType(TargetBT, 0))); |
16436 | llvm::APFloat::opStatus ConversionStatus = |
16437 | TargetFloatValue.convertFromAPInt( |
16438 | Input: *SourceInt, IsSigned: SourceBT->isSignedInteger(), |
16439 | RM: llvm::APFloat::rmNearestTiesToEven); |
16440 | |
16441 | if (ConversionStatus != llvm::APFloat::opOK) { |
16442 | SmallString<32> PrettySourceValue; |
16443 | SourceInt->toString(Str&: PrettySourceValue, Radix: 10); |
16444 | SmallString<32> PrettyTargetValue; |
16445 | TargetFloatValue.toString(Str&: PrettyTargetValue, FormatPrecision: TargetPrecision); |
16446 | |
16447 | S.DiagRuntimeBehavior( |
16448 | E->getExprLoc(), E, |
16449 | S.PDiag(diag::warn_impcast_integer_float_precision_constant) |
16450 | << PrettySourceValue << PrettyTargetValue << E->getType() << T |
16451 | << E->getSourceRange() << clang::SourceRange(CC)); |
16452 | } |
16453 | } else { |
16454 | // Otherwise, the implicit conversion may lose precision. |
16455 | DiagnoseImpCast(S, E, T, CC, |
16456 | diag::warn_impcast_integer_float_precision); |
16457 | } |
16458 | } |
16459 | } |
16460 | |
16461 | DiagnoseNullConversion(S, E, T, CC); |
16462 | |
16463 | S.DiscardMisalignedMemberAddress(T: Target, E); |
16464 | |
16465 | if (Target->isBooleanType()) |
16466 | DiagnoseIntInBoolContext(S, E); |
16467 | |
16468 | if (!Source->isIntegerType() || !Target->isIntegerType()) |
16469 | return; |
16470 | |
16471 | // TODO: remove this early return once the false positives for constant->bool |
16472 | // in templates, macros, etc, are reduced or removed. |
16473 | if (Target->isSpecificBuiltinType(K: BuiltinType::Bool)) |
16474 | return; |
16475 | |
16476 | if (isObjCSignedCharBool(S, Ty: T) && !Source->isCharType() && |
16477 | !E->isKnownToHaveBooleanValue(/*Semantic=*/false)) { |
16478 | return adornObjCBoolConversionDiagWithTernaryFixit( |
16479 | S, E, |
16480 | S.Diag(CC, diag::warn_impcast_int_to_objc_signed_char_bool) |
16481 | << E->getType()); |
16482 | } |
16483 | |
16484 | IntRange SourceTypeRange = |
16485 | IntRange::forTargetOfCanonicalType(C&: S.Context, T: Source); |
16486 | IntRange LikelySourceRange = GetExprRange( |
16487 | C&: S.Context, E, InConstantContext: S.isConstantEvaluatedContext(), /*Approximate=*/true); |
16488 | IntRange TargetRange = IntRange::forTargetOfCanonicalType(C&: S.Context, T: Target); |
16489 | |
16490 | if (LikelySourceRange.Width > TargetRange.Width) { |
16491 | // If the source is a constant, use a default-on diagnostic. |
16492 | // TODO: this should happen for bitfield stores, too. |
16493 | Expr::EvalResult Result; |
16494 | if (E->EvaluateAsInt(Result, Ctx: S.Context, AllowSideEffects: Expr::SE_AllowSideEffects, |
16495 | InConstantContext: S.isConstantEvaluatedContext())) { |
16496 | llvm::APSInt Value(32); |
16497 | Value = Result.Val.getInt(); |
16498 | |
16499 | if (S.SourceMgr.isInSystemMacro(loc: CC)) |
16500 | return; |
16501 | |
16502 | std::string PrettySourceValue = toString(I: Value, Radix: 10); |
16503 | std::string PrettyTargetValue = PrettyPrintInRange(Value, Range: TargetRange); |
16504 | |
16505 | S.DiagRuntimeBehavior( |
16506 | E->getExprLoc(), E, |
16507 | S.PDiag(diag::warn_impcast_integer_precision_constant) |
16508 | << PrettySourceValue << PrettyTargetValue << E->getType() << T |
16509 | << E->getSourceRange() << SourceRange(CC)); |
16510 | return; |
16511 | } |
16512 | |
16513 | // People want to build with -Wshorten-64-to-32 and not -Wconversion. |
16514 | if (S.SourceMgr.isInSystemMacro(loc: CC)) |
16515 | return; |
16516 | |
16517 | if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64) |
16518 | return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32, |
16519 | /* pruneControlFlow */ true); |
16520 | return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision); |
16521 | } |
16522 | |
16523 | if (TargetRange.Width > SourceTypeRange.Width) { |
16524 | if (auto *UO = dyn_cast<UnaryOperator>(Val: E)) |
16525 | if (UO->getOpcode() == UO_Minus) |
16526 | if (Source->isUnsignedIntegerType()) { |
16527 | if (Target->isUnsignedIntegerType()) |
16528 | return DiagnoseImpCast(S, E, T, CC, |
16529 | diag::warn_impcast_high_order_zero_bits); |
16530 | if (Target->isSignedIntegerType()) |
16531 | return DiagnoseImpCast(S, E, T, CC, |
16532 | diag::warn_impcast_nonnegative_result); |
16533 | } |
16534 | } |
16535 | |
16536 | if (TargetRange.Width == LikelySourceRange.Width && |
16537 | !TargetRange.NonNegative && LikelySourceRange.NonNegative && |
16538 | Source->isSignedIntegerType()) { |
16539 | // Warn when doing a signed to signed conversion, warn if the positive |
16540 | // source value is exactly the width of the target type, which will |
16541 | // cause a negative value to be stored. |
16542 | |
16543 | Expr::EvalResult Result; |
16544 | if (E->EvaluateAsInt(Result, Ctx: S.Context, AllowSideEffects: Expr::SE_AllowSideEffects) && |
16545 | !S.SourceMgr.isInSystemMacro(loc: CC)) { |
16546 | llvm::APSInt Value = Result.Val.getInt(); |
16547 | if (isSameWidthConstantConversion(S, E, T, CC)) { |
16548 | std::string PrettySourceValue = toString(I: Value, Radix: 10); |
16549 | std::string PrettyTargetValue = PrettyPrintInRange(Value, Range: TargetRange); |
16550 | |
16551 | S.DiagRuntimeBehavior( |
16552 | E->getExprLoc(), E, |
16553 | S.PDiag(diag::warn_impcast_integer_precision_constant) |
16554 | << PrettySourceValue << PrettyTargetValue << E->getType() << T |
16555 | << E->getSourceRange() << SourceRange(CC)); |
16556 | return; |
16557 | } |
16558 | } |
16559 | |
16560 | // Fall through for non-constants to give a sign conversion warning. |
16561 | } |
16562 | |
16563 | if ((!isa<EnumType>(Val: Target) || !isa<EnumType>(Val: Source)) && |
16564 | ((TargetRange.NonNegative && !LikelySourceRange.NonNegative) || |
16565 | (!TargetRange.NonNegative && LikelySourceRange.NonNegative && |
16566 | LikelySourceRange.Width == TargetRange.Width))) { |
16567 | if (S.SourceMgr.isInSystemMacro(loc: CC)) |
16568 | return; |
16569 | |
16570 | if (SourceBT && SourceBT->isInteger() && TargetBT && |
16571 | TargetBT->isInteger() && |
16572 | Source->isSignedIntegerType() == Target->isSignedIntegerType()) { |
16573 | return; |
16574 | } |
16575 | |
16576 | unsigned DiagID = diag::warn_impcast_integer_sign; |
16577 | |
16578 | // Traditionally, gcc has warned about this under -Wsign-compare. |
16579 | // We also want to warn about it in -Wconversion. |
16580 | // So if -Wconversion is off, use a completely identical diagnostic |
16581 | // in the sign-compare group. |
16582 | // The conditional-checking code will |
16583 | if (ICContext) { |
16584 | DiagID = diag::warn_impcast_integer_sign_conditional; |
16585 | *ICContext = true; |
16586 | } |
16587 | |
16588 | return DiagnoseImpCast(S, E, T, CContext: CC, diag: DiagID); |
16589 | } |
16590 | |
16591 | // Diagnose conversions between different enumeration types. |
16592 | // In C, we pretend that the type of an EnumConstantDecl is its enumeration |
16593 | // type, to give us better diagnostics. |
16594 | QualType SourceType = E->getEnumCoercedType(Ctx: S.Context); |
16595 | Source = S.Context.getCanonicalType(T: SourceType).getTypePtr(); |
16596 | |
16597 | if (const EnumType *SourceEnum = Source->getAs<EnumType>()) |
16598 | if (const EnumType *TargetEnum = Target->getAs<EnumType>()) |
16599 | if (SourceEnum->getDecl()->hasNameForLinkage() && |
16600 | TargetEnum->getDecl()->hasNameForLinkage() && |
16601 | SourceEnum != TargetEnum) { |
16602 | if (S.SourceMgr.isInSystemMacro(loc: CC)) |
16603 | return; |
16604 | |
16605 | return DiagnoseImpCast(S, E, SourceType, T, CC, |
16606 | diag::warn_impcast_different_enum_types); |
16607 | } |
16608 | } |
16609 | |
16610 | static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E, |
16611 | SourceLocation CC, QualType T); |
16612 | |
16613 | static void CheckConditionalOperand(Sema &S, Expr *E, QualType T, |
16614 | SourceLocation CC, bool &ICContext) { |
16615 | E = E->IgnoreParenImpCasts(); |
16616 | // Diagnose incomplete type for second or third operand in C. |
16617 | if (!S.getLangOpts().CPlusPlus && E->getType()->isRecordType()) |
16618 | S.RequireCompleteExprType(E, diag::err_incomplete_type); |
16619 | |
16620 | if (auto *CO = dyn_cast<AbstractConditionalOperator>(Val: E)) |
16621 | return CheckConditionalOperator(S, E: CO, CC, T); |
16622 | |
16623 | AnalyzeImplicitConversions(S, E, CC); |
16624 | if (E->getType() != T) |
16625 | return CheckImplicitConversion(S, E, T, CC, ICContext: &ICContext); |
16626 | } |
16627 | |
16628 | static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E, |
16629 | SourceLocation CC, QualType T) { |
16630 | AnalyzeImplicitConversions(S, E: E->getCond(), CC: E->getQuestionLoc()); |
16631 | |
16632 | Expr *TrueExpr = E->getTrueExpr(); |
16633 | if (auto *BCO = dyn_cast<BinaryConditionalOperator>(Val: E)) |
16634 | TrueExpr = BCO->getCommon(); |
16635 | |
16636 | bool Suspicious = false; |
16637 | CheckConditionalOperand(S, E: TrueExpr, T, CC, ICContext&: Suspicious); |
16638 | CheckConditionalOperand(S, E: E->getFalseExpr(), T, CC, ICContext&: Suspicious); |
16639 | |
16640 | if (T->isBooleanType()) |
16641 | DiagnoseIntInBoolContext(S, E); |
16642 | |
16643 | // If -Wconversion would have warned about either of the candidates |
16644 | // for a signedness conversion to the context type... |
16645 | if (!Suspicious) return; |
16646 | |
16647 | // ...but it's currently ignored... |
16648 | if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC)) |
16649 | return; |
16650 | |
16651 | // ...then check whether it would have warned about either of the |
16652 | // candidates for a signedness conversion to the condition type. |
16653 | if (E->getType() == T) return; |
16654 | |
16655 | Suspicious = false; |
16656 | CheckImplicitConversion(S, TrueExpr->IgnoreParenImpCasts(), |
16657 | E->getType(), CC, &Suspicious); |
16658 | if (!Suspicious) |
16659 | CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(), |
16660 | E->getType(), CC, &Suspicious); |
16661 | } |
16662 | |
16663 | /// Check conversion of given expression to boolean. |
16664 | /// Input argument E is a logical expression. |
16665 | static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) { |
16666 | // Run the bool-like conversion checks only for C since there bools are |
16667 | // still not used as the return type from "boolean" operators or as the input |
16668 | // type for conditional operators. |
16669 | if (S.getLangOpts().CPlusPlus) |
16670 | return; |
16671 | if (E->IgnoreParenImpCasts()->getType()->isAtomicType()) |
16672 | return; |
16673 | CheckImplicitConversion(S, E->IgnoreParenImpCasts(), S.Context.BoolTy, CC); |
16674 | } |
16675 | |
16676 | namespace { |
16677 | struct AnalyzeImplicitConversionsWorkItem { |
16678 | Expr *E; |
16679 | SourceLocation CC; |
16680 | bool IsListInit; |
16681 | }; |
16682 | } |
16683 | |
16684 | /// Data recursive variant of AnalyzeImplicitConversions. Subexpressions |
16685 | /// that should be visited are added to WorkList. |
16686 | static void AnalyzeImplicitConversions( |
16687 | Sema &S, AnalyzeImplicitConversionsWorkItem Item, |
16688 | llvm::SmallVectorImpl<AnalyzeImplicitConversionsWorkItem> &WorkList) { |
16689 | Expr *OrigE = Item.E; |
16690 | SourceLocation CC = Item.CC; |
16691 | |
16692 | QualType T = OrigE->getType(); |
16693 | Expr *E = OrigE->IgnoreParenImpCasts(); |
16694 | |
16695 | // Propagate whether we are in a C++ list initialization expression. |
16696 | // If so, we do not issue warnings for implicit int-float conversion |
16697 | // precision loss, because C++11 narrowing already handles it. |
16698 | bool IsListInit = Item.IsListInit || |
16699 | (isa<InitListExpr>(Val: OrigE) && S.getLangOpts().CPlusPlus); |
16700 | |
16701 | if (E->isTypeDependent() || E->isValueDependent()) |
16702 | return; |
16703 | |
16704 | Expr *SourceExpr = E; |
16705 | // Examine, but don't traverse into the source expression of an |
16706 | // OpaqueValueExpr, since it may have multiple parents and we don't want to |
16707 | // emit duplicate diagnostics. Its fine to examine the form or attempt to |
16708 | // evaluate it in the context of checking the specific conversion to T though. |
16709 | if (auto *OVE = dyn_cast<OpaqueValueExpr>(Val: E)) |
16710 | if (auto *Src = OVE->getSourceExpr()) |
16711 | SourceExpr = Src; |
16712 | |
16713 | if (const auto *UO = dyn_cast<UnaryOperator>(SourceExpr)) |
16714 | if (UO->getOpcode() == UO_Not && |
16715 | UO->getSubExpr()->isKnownToHaveBooleanValue()) |
16716 | S.Diag(UO->getBeginLoc(), diag::warn_bitwise_negation_bool) |
16717 | << OrigE->getSourceRange() << T->isBooleanType() |
16718 | << FixItHint::CreateReplacement(UO->getBeginLoc(), "!" ); |
16719 | |
16720 | if (const auto *BO = dyn_cast<BinaryOperator>(Val: SourceExpr)) |
16721 | if ((BO->getOpcode() == BO_And || BO->getOpcode() == BO_Or) && |
16722 | BO->getLHS()->isKnownToHaveBooleanValue() && |
16723 | BO->getRHS()->isKnownToHaveBooleanValue() && |
16724 | BO->getLHS()->HasSideEffects(Ctx: S.Context) && |
16725 | BO->getRHS()->HasSideEffects(Ctx: S.Context)) { |
16726 | SourceManager &SM = S.getSourceManager(); |
16727 | const LangOptions &LO = S.getLangOpts(); |
16728 | SourceLocation BLoc = BO->getOperatorLoc(); |
16729 | SourceLocation ELoc = Lexer::getLocForEndOfToken(Loc: BLoc, Offset: 0, SM, LangOpts: LO); |
16730 | StringRef SR = clang::Lexer::getSourceText( |
16731 | Range: clang::CharSourceRange::getTokenRange(B: BLoc, E: ELoc), SM, LangOpts: LO); |
16732 | // To reduce false positives, only issue the diagnostic if the operator |
16733 | // is explicitly spelled as a punctuator. This suppresses the diagnostic |
16734 | // when using 'bitand' or 'bitor' either as keywords in C++ or as macros |
16735 | // in C, along with other macro spellings the user might invent. |
16736 | if (SR.str() == "&" || SR.str() == "|" ) { |
16737 | |
16738 | S.Diag(BO->getBeginLoc(), diag::warn_bitwise_instead_of_logical) |
16739 | << (BO->getOpcode() == BO_And ? "&" : "|" ) |
16740 | << OrigE->getSourceRange() |
16741 | << FixItHint::CreateReplacement( |
16742 | BO->getOperatorLoc(), |
16743 | (BO->getOpcode() == BO_And ? "&&" : "||" )); |
16744 | S.Diag(BO->getBeginLoc(), diag::note_cast_operand_to_int); |
16745 | } |
16746 | } |
16747 | |
16748 | // For conditional operators, we analyze the arguments as if they |
16749 | // were being fed directly into the output. |
16750 | if (auto *CO = dyn_cast<AbstractConditionalOperator>(Val: SourceExpr)) { |
16751 | CheckConditionalOperator(S, E: CO, CC, T); |
16752 | return; |
16753 | } |
16754 | |
16755 | // Check implicit argument conversions for function calls. |
16756 | if (CallExpr *Call = dyn_cast<CallExpr>(Val: SourceExpr)) |
16757 | CheckImplicitArgumentConversions(S, TheCall: Call, CC); |
16758 | |
16759 | // Go ahead and check any implicit conversions we might have skipped. |
16760 | // The non-canonical typecheck is just an optimization; |
16761 | // CheckImplicitConversion will filter out dead implicit conversions. |
16762 | if (SourceExpr->getType() != T) |
16763 | CheckImplicitConversion(S, E: SourceExpr, T, CC, ICContext: nullptr, IsListInit); |
16764 | |
16765 | // Now continue drilling into this expression. |
16766 | |
16767 | if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Val: E)) { |
16768 | // The bound subexpressions in a PseudoObjectExpr are not reachable |
16769 | // as transitive children. |
16770 | // FIXME: Use a more uniform representation for this. |
16771 | for (auto *SE : POE->semantics()) |
16772 | if (auto *OVE = dyn_cast<OpaqueValueExpr>(Val: SE)) |
16773 | WorkList.push_back(Elt: {.E: OVE->getSourceExpr(), .CC: CC, .IsListInit: IsListInit}); |
16774 | } |
16775 | |
16776 | // Skip past explicit casts. |
16777 | if (auto *CE = dyn_cast<ExplicitCastExpr>(Val: E)) { |
16778 | E = CE->getSubExpr()->IgnoreParenImpCasts(); |
16779 | if (!CE->getType()->isVoidType() && E->getType()->isAtomicType()) |
16780 | S.Diag(E->getBeginLoc(), diag::warn_atomic_implicit_seq_cst); |
16781 | WorkList.push_back(Elt: {.E: E, .CC: CC, .IsListInit: IsListInit}); |
16782 | return; |
16783 | } |
16784 | |
16785 | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: E)) { |
16786 | // Do a somewhat different check with comparison operators. |
16787 | if (BO->isComparisonOp()) |
16788 | return AnalyzeComparison(S, E: BO); |
16789 | |
16790 | // And with simple assignments. |
16791 | if (BO->getOpcode() == BO_Assign) |
16792 | return AnalyzeAssignment(S, E: BO); |
16793 | // And with compound assignments. |
16794 | if (BO->isAssignmentOp()) |
16795 | return AnalyzeCompoundAssignment(S, E: BO); |
16796 | } |
16797 | |
16798 | // These break the otherwise-useful invariant below. Fortunately, |
16799 | // we don't really need to recurse into them, because any internal |
16800 | // expressions should have been analyzed already when they were |
16801 | // built into statements. |
16802 | if (isa<StmtExpr>(Val: E)) return; |
16803 | |
16804 | // Don't descend into unevaluated contexts. |
16805 | if (isa<UnaryExprOrTypeTraitExpr>(Val: E)) return; |
16806 | |
16807 | // Now just recurse over the expression's children. |
16808 | CC = E->getExprLoc(); |
16809 | BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: E); |
16810 | bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd; |
16811 | for (Stmt *SubStmt : E->children()) { |
16812 | Expr *ChildExpr = dyn_cast_or_null<Expr>(SubStmt); |
16813 | if (!ChildExpr) |
16814 | continue; |
16815 | |
16816 | if (auto *CSE = dyn_cast<CoroutineSuspendExpr>(E)) |
16817 | if (ChildExpr == CSE->getOperand()) |
16818 | // Do not recurse over a CoroutineSuspendExpr's operand. |
16819 | // The operand is also a subexpression of getCommonExpr(), and |
16820 | // recursing into it directly would produce duplicate diagnostics. |
16821 | continue; |
16822 | |
16823 | if (IsLogicalAndOperator && |
16824 | isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts())) |
16825 | // Ignore checking string literals that are in logical and operators. |
16826 | // This is a common pattern for asserts. |
16827 | continue; |
16828 | WorkList.push_back({ChildExpr, CC, IsListInit}); |
16829 | } |
16830 | |
16831 | if (BO && BO->isLogicalOp()) { |
16832 | Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts(); |
16833 | if (!IsLogicalAndOperator || !isa<StringLiteral>(Val: SubExpr)) |
16834 | ::CheckBoolLikeConversion(S, E: SubExpr, CC: BO->getExprLoc()); |
16835 | |
16836 | SubExpr = BO->getRHS()->IgnoreParenImpCasts(); |
16837 | if (!IsLogicalAndOperator || !isa<StringLiteral>(Val: SubExpr)) |
16838 | ::CheckBoolLikeConversion(S, E: SubExpr, CC: BO->getExprLoc()); |
16839 | } |
16840 | |
16841 | if (const UnaryOperator *U = dyn_cast<UnaryOperator>(Val: E)) { |
16842 | if (U->getOpcode() == UO_LNot) { |
16843 | ::CheckBoolLikeConversion(S, E: U->getSubExpr(), CC); |
16844 | } else if (U->getOpcode() != UO_AddrOf) { |
16845 | if (U->getSubExpr()->getType()->isAtomicType()) |
16846 | S.Diag(U->getSubExpr()->getBeginLoc(), |
16847 | diag::warn_atomic_implicit_seq_cst); |
16848 | } |
16849 | } |
16850 | } |
16851 | |
16852 | /// AnalyzeImplicitConversions - Find and report any interesting |
16853 | /// implicit conversions in the given expression. There are a couple |
16854 | /// of competing diagnostics here, -Wconversion and -Wsign-compare. |
16855 | static void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC, |
16856 | bool IsListInit/*= false*/) { |
16857 | llvm::SmallVector<AnalyzeImplicitConversionsWorkItem, 16> WorkList; |
16858 | WorkList.push_back(Elt: {.E: OrigE, .CC: CC, .IsListInit: IsListInit}); |
16859 | while (!WorkList.empty()) |
16860 | AnalyzeImplicitConversions(S, Item: WorkList.pop_back_val(), WorkList); |
16861 | } |
16862 | |
16863 | /// Diagnose integer type and any valid implicit conversion to it. |
16864 | static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, const QualType &IntT) { |
16865 | // Taking into account implicit conversions, |
16866 | // allow any integer. |
16867 | if (!E->getType()->isIntegerType()) { |
16868 | S.Diag(E->getBeginLoc(), |
16869 | diag::err_opencl_enqueue_kernel_invalid_local_size_type); |
16870 | return true; |
16871 | } |
16872 | // Potentially emit standard warnings for implicit conversions if enabled |
16873 | // using -Wconversion. |
16874 | CheckImplicitConversion(S, E, IntT, E->getBeginLoc()); |
16875 | return false; |
16876 | } |
16877 | |
16878 | // Helper function for Sema::DiagnoseAlwaysNonNullPointer. |
16879 | // Returns true when emitting a warning about taking the address of a reference. |
16880 | static bool CheckForReference(Sema &SemaRef, const Expr *E, |
16881 | const PartialDiagnostic &PD) { |
16882 | E = E->IgnoreParenImpCasts(); |
16883 | |
16884 | const FunctionDecl *FD = nullptr; |
16885 | |
16886 | if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E)) { |
16887 | if (!DRE->getDecl()->getType()->isReferenceType()) |
16888 | return false; |
16889 | } else if (const MemberExpr *M = dyn_cast<MemberExpr>(Val: E)) { |
16890 | if (!M->getMemberDecl()->getType()->isReferenceType()) |
16891 | return false; |
16892 | } else if (const CallExpr *Call = dyn_cast<CallExpr>(Val: E)) { |
16893 | if (!Call->getCallReturnType(Ctx: SemaRef.Context)->isReferenceType()) |
16894 | return false; |
16895 | FD = Call->getDirectCallee(); |
16896 | } else { |
16897 | return false; |
16898 | } |
16899 | |
16900 | SemaRef.Diag(E->getExprLoc(), PD); |
16901 | |
16902 | // If possible, point to location of function. |
16903 | if (FD) { |
16904 | SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD; |
16905 | } |
16906 | |
16907 | return true; |
16908 | } |
16909 | |
16910 | // Returns true if the SourceLocation is expanded from any macro body. |
16911 | // Returns false if the SourceLocation is invalid, is from not in a macro |
16912 | // expansion, or is from expanded from a top-level macro argument. |
16913 | static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) { |
16914 | if (Loc.isInvalid()) |
16915 | return false; |
16916 | |
16917 | while (Loc.isMacroID()) { |
16918 | if (SM.isMacroBodyExpansion(Loc)) |
16919 | return true; |
16920 | Loc = SM.getImmediateMacroCallerLoc(Loc); |
16921 | } |
16922 | |
16923 | return false; |
16924 | } |
16925 | |
16926 | /// Diagnose pointers that are always non-null. |
16927 | /// \param E the expression containing the pointer |
16928 | /// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is |
16929 | /// compared to a null pointer |
16930 | /// \param IsEqual True when the comparison is equal to a null pointer |
16931 | /// \param Range Extra SourceRange to highlight in the diagnostic |
16932 | void Sema::DiagnoseAlwaysNonNullPointer(Expr *E, |
16933 | Expr::NullPointerConstantKind NullKind, |
16934 | bool IsEqual, SourceRange Range) { |
16935 | if (!E) |
16936 | return; |
16937 | |
16938 | // Don't warn inside macros. |
16939 | if (E->getExprLoc().isMacroID()) { |
16940 | const SourceManager &SM = getSourceManager(); |
16941 | if (IsInAnyMacroBody(SM, Loc: E->getExprLoc()) || |
16942 | IsInAnyMacroBody(SM, Loc: Range.getBegin())) |
16943 | return; |
16944 | } |
16945 | E = E->IgnoreImpCasts(); |
16946 | |
16947 | const bool IsCompare = NullKind != Expr::NPCK_NotNull; |
16948 | |
16949 | if (isa<CXXThisExpr>(Val: E)) { |
16950 | unsigned DiagID = IsCompare ? diag::warn_this_null_compare |
16951 | : diag::warn_this_bool_conversion; |
16952 | Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual; |
16953 | return; |
16954 | } |
16955 | |
16956 | bool IsAddressOf = false; |
16957 | |
16958 | if (auto *UO = dyn_cast<UnaryOperator>(Val: E->IgnoreParens())) { |
16959 | if (UO->getOpcode() != UO_AddrOf) |
16960 | return; |
16961 | IsAddressOf = true; |
16962 | E = UO->getSubExpr(); |
16963 | } |
16964 | |
16965 | if (IsAddressOf) { |
16966 | unsigned DiagID = IsCompare |
16967 | ? diag::warn_address_of_reference_null_compare |
16968 | : diag::warn_address_of_reference_bool_conversion; |
16969 | PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range |
16970 | << IsEqual; |
16971 | if (CheckForReference(SemaRef&: *this, E, PD)) { |
16972 | return; |
16973 | } |
16974 | } |
16975 | |
16976 | auto ComplainAboutNonnullParamOrCall = [&](const Attr *NonnullAttr) { |
16977 | bool IsParam = isa<NonNullAttr>(NonnullAttr); |
16978 | std::string Str; |
16979 | llvm::raw_string_ostream S(Str); |
16980 | E->printPretty(S, nullptr, getPrintingPolicy()); |
16981 | unsigned DiagID = IsCompare ? diag::warn_nonnull_expr_compare |
16982 | : diag::warn_cast_nonnull_to_bool; |
16983 | Diag(E->getExprLoc(), DiagID) << IsParam << S.str() |
16984 | << E->getSourceRange() << Range << IsEqual; |
16985 | Diag(NonnullAttr->getLocation(), diag::note_declared_nonnull) << IsParam; |
16986 | }; |
16987 | |
16988 | // If we have a CallExpr that is tagged with returns_nonnull, we can complain. |
16989 | if (auto *Call = dyn_cast<CallExpr>(Val: E->IgnoreParenImpCasts())) { |
16990 | if (auto *Callee = Call->getDirectCallee()) { |
16991 | if (const Attr *A = Callee->getAttr<ReturnsNonNullAttr>()) { |
16992 | ComplainAboutNonnullParamOrCall(A); |
16993 | return; |
16994 | } |
16995 | } |
16996 | } |
16997 | |
16998 | // Complain if we are converting a lambda expression to a boolean value |
16999 | // outside of instantiation. |
17000 | if (!inTemplateInstantiation()) { |
17001 | if (const auto *MCallExpr = dyn_cast<CXXMemberCallExpr>(Val: E)) { |
17002 | if (const auto *MRecordDecl = MCallExpr->getRecordDecl(); |
17003 | MRecordDecl && MRecordDecl->isLambda()) { |
17004 | Diag(E->getExprLoc(), diag::warn_impcast_pointer_to_bool) |
17005 | << /*LambdaPointerConversionOperatorType=*/3 |
17006 | << MRecordDecl->getSourceRange() << Range << IsEqual; |
17007 | return; |
17008 | } |
17009 | } |
17010 | } |
17011 | |
17012 | // Expect to find a single Decl. Skip anything more complicated. |
17013 | ValueDecl *D = nullptr; |
17014 | if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(Val: E)) { |
17015 | D = R->getDecl(); |
17016 | } else if (MemberExpr *M = dyn_cast<MemberExpr>(Val: E)) { |
17017 | D = M->getMemberDecl(); |
17018 | } |
17019 | |
17020 | // Weak Decls can be null. |
17021 | if (!D || D->isWeak()) |
17022 | return; |
17023 | |
17024 | // Check for parameter decl with nonnull attribute |
17025 | if (const auto* PV = dyn_cast<ParmVarDecl>(Val: D)) { |
17026 | if (getCurFunction() && |
17027 | !getCurFunction()->ModifiedNonNullParams.count(Ptr: PV)) { |
17028 | if (const Attr *A = PV->getAttr<NonNullAttr>()) { |
17029 | ComplainAboutNonnullParamOrCall(A); |
17030 | return; |
17031 | } |
17032 | |
17033 | if (const auto *FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) { |
17034 | // Skip function template not specialized yet. |
17035 | if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate) |
17036 | return; |
17037 | auto ParamIter = llvm::find(FD->parameters(), PV); |
17038 | assert(ParamIter != FD->param_end()); |
17039 | unsigned ParamNo = std::distance(FD->param_begin(), ParamIter); |
17040 | |
17041 | for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) { |
17042 | if (!NonNull->args_size()) { |
17043 | ComplainAboutNonnullParamOrCall(NonNull); |
17044 | return; |
17045 | } |
17046 | |
17047 | for (const ParamIdx &ArgNo : NonNull->args()) { |
17048 | if (ArgNo.getASTIndex() == ParamNo) { |
17049 | ComplainAboutNonnullParamOrCall(NonNull); |
17050 | return; |
17051 | } |
17052 | } |
17053 | } |
17054 | } |
17055 | } |
17056 | } |
17057 | |
17058 | QualType T = D->getType(); |
17059 | const bool IsArray = T->isArrayType(); |
17060 | const bool IsFunction = T->isFunctionType(); |
17061 | |
17062 | // Address of function is used to silence the function warning. |
17063 | if (IsAddressOf && IsFunction) { |
17064 | return; |
17065 | } |
17066 | |
17067 | // Found nothing. |
17068 | if (!IsAddressOf && !IsFunction && !IsArray) |
17069 | return; |
17070 | |
17071 | // Pretty print the expression for the diagnostic. |
17072 | std::string Str; |
17073 | llvm::raw_string_ostream S(Str); |
17074 | E->printPretty(S, nullptr, getPrintingPolicy()); |
17075 | |
17076 | unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare |
17077 | : diag::warn_impcast_pointer_to_bool; |
17078 | enum { |
17079 | AddressOf, |
17080 | FunctionPointer, |
17081 | ArrayPointer |
17082 | } DiagType; |
17083 | if (IsAddressOf) |
17084 | DiagType = AddressOf; |
17085 | else if (IsFunction) |
17086 | DiagType = FunctionPointer; |
17087 | else if (IsArray) |
17088 | DiagType = ArrayPointer; |
17089 | else |
17090 | llvm_unreachable("Could not determine diagnostic." ); |
17091 | Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange() |
17092 | << Range << IsEqual; |
17093 | |
17094 | if (!IsFunction) |
17095 | return; |
17096 | |
17097 | // Suggest '&' to silence the function warning. |
17098 | Diag(E->getExprLoc(), diag::note_function_warning_silence) |
17099 | << FixItHint::CreateInsertion(E->getBeginLoc(), "&" ); |
17100 | |
17101 | // Check to see if '()' fixit should be emitted. |
17102 | QualType ReturnType; |
17103 | UnresolvedSet<4> NonTemplateOverloads; |
17104 | tryExprAsCall(E&: *E, ZeroArgCallReturnTy&: ReturnType, NonTemplateOverloads); |
17105 | if (ReturnType.isNull()) |
17106 | return; |
17107 | |
17108 | if (IsCompare) { |
17109 | // There are two cases here. If there is null constant, the only suggest |
17110 | // for a pointer return type. If the null is 0, then suggest if the return |
17111 | // type is a pointer or an integer type. |
17112 | if (!ReturnType->isPointerType()) { |
17113 | if (NullKind == Expr::NPCK_ZeroExpression || |
17114 | NullKind == Expr::NPCK_ZeroLiteral) { |
17115 | if (!ReturnType->isIntegerType()) |
17116 | return; |
17117 | } else { |
17118 | return; |
17119 | } |
17120 | } |
17121 | } else { // !IsCompare |
17122 | // For function to bool, only suggest if the function pointer has bool |
17123 | // return type. |
17124 | if (!ReturnType->isSpecificBuiltinType(K: BuiltinType::Bool)) |
17125 | return; |
17126 | } |
17127 | Diag(E->getExprLoc(), diag::note_function_to_function_call) |
17128 | << FixItHint::CreateInsertion(getLocForEndOfToken(E->getEndLoc()), "()" ); |
17129 | } |
17130 | |
17131 | /// Diagnoses "dangerous" implicit conversions within the given |
17132 | /// expression (which is a full expression). Implements -Wconversion |
17133 | /// and -Wsign-compare. |
17134 | /// |
17135 | /// \param CC the "context" location of the implicit conversion, i.e. |
17136 | /// the most location of the syntactic entity requiring the implicit |
17137 | /// conversion |
17138 | void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) { |
17139 | // Don't diagnose in unevaluated contexts. |
17140 | if (isUnevaluatedContext()) |
17141 | return; |
17142 | |
17143 | // Don't diagnose for value- or type-dependent expressions. |
17144 | if (E->isTypeDependent() || E->isValueDependent()) |
17145 | return; |
17146 | |
17147 | // Check for array bounds violations in cases where the check isn't triggered |
17148 | // elsewhere for other Expr types (like BinaryOperators), e.g. when an |
17149 | // ArraySubscriptExpr is on the RHS of a variable initialization. |
17150 | CheckArrayAccess(E); |
17151 | |
17152 | // This is not the right CC for (e.g.) a variable initialization. |
17153 | AnalyzeImplicitConversions(S&: *this, OrigE: E, CC); |
17154 | } |
17155 | |
17156 | /// CheckBoolLikeConversion - Check conversion of given expression to boolean. |
17157 | /// Input argument E is a logical expression. |
17158 | void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) { |
17159 | ::CheckBoolLikeConversion(S&: *this, E, CC); |
17160 | } |
17161 | |
17162 | /// Diagnose when expression is an integer constant expression and its evaluation |
17163 | /// results in integer overflow |
17164 | void Sema::CheckForIntOverflow (const Expr *E) { |
17165 | // Use a work list to deal with nested struct initializers. |
17166 | SmallVector<const Expr *, 2> Exprs(1, E); |
17167 | |
17168 | do { |
17169 | const Expr *OriginalE = Exprs.pop_back_val(); |
17170 | const Expr *E = OriginalE->IgnoreParenCasts(); |
17171 | |
17172 | if (isa<BinaryOperator, UnaryOperator>(Val: E)) { |
17173 | E->EvaluateForOverflow(Ctx: Context); |
17174 | continue; |
17175 | } |
17176 | |
17177 | if (const auto *InitList = dyn_cast<InitListExpr>(Val: OriginalE)) |
17178 | Exprs.append(in_start: InitList->inits().begin(), in_end: InitList->inits().end()); |
17179 | else if (isa<ObjCBoxedExpr>(Val: OriginalE)) |
17180 | E->EvaluateForOverflow(Ctx: Context); |
17181 | else if (const auto *Call = dyn_cast<CallExpr>(Val: E)) |
17182 | Exprs.append(Call->arg_begin(), Call->arg_end()); |
17183 | else if (const auto *Message = dyn_cast<ObjCMessageExpr>(Val: E)) |
17184 | Exprs.append(Message->arg_begin(), Message->arg_end()); |
17185 | else if (const auto *Construct = dyn_cast<CXXConstructExpr>(Val: E)) |
17186 | Exprs.append(Construct->arg_begin(), Construct->arg_end()); |
17187 | else if (const auto *Temporary = dyn_cast<CXXBindTemporaryExpr>(Val: E)) |
17188 | Exprs.push_back(Elt: Temporary->getSubExpr()); |
17189 | else if (const auto *Array = dyn_cast<ArraySubscriptExpr>(Val: E)) |
17190 | Exprs.push_back(Elt: Array->getIdx()); |
17191 | else if (const auto *Compound = dyn_cast<CompoundLiteralExpr>(Val: E)) |
17192 | Exprs.push_back(Elt: Compound->getInitializer()); |
17193 | else if (const auto *New = dyn_cast<CXXNewExpr>(Val: E); |
17194 | New && New->isArray()) { |
17195 | if (auto ArraySize = New->getArraySize()) |
17196 | Exprs.push_back(Elt: *ArraySize); |
17197 | } |
17198 | } while (!Exprs.empty()); |
17199 | } |
17200 | |
17201 | namespace { |
17202 | |
17203 | /// Visitor for expressions which looks for unsequenced operations on the |
17204 | /// same object. |
17205 | class SequenceChecker : public ConstEvaluatedExprVisitor<SequenceChecker> { |
17206 | using Base = ConstEvaluatedExprVisitor<SequenceChecker>; |
17207 | |
17208 | /// A tree of sequenced regions within an expression. Two regions are |
17209 | /// unsequenced if one is an ancestor or a descendent of the other. When we |
17210 | /// finish processing an expression with sequencing, such as a comma |
17211 | /// expression, we fold its tree nodes into its parent, since they are |
17212 | /// unsequenced with respect to nodes we will visit later. |
17213 | class SequenceTree { |
17214 | struct Value { |
17215 | explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {} |
17216 | unsigned Parent : 31; |
17217 | LLVM_PREFERRED_TYPE(bool) |
17218 | unsigned Merged : 1; |
17219 | }; |
17220 | SmallVector<Value, 8> Values; |
17221 | |
17222 | public: |
17223 | /// A region within an expression which may be sequenced with respect |
17224 | /// to some other region. |
17225 | class Seq { |
17226 | friend class SequenceTree; |
17227 | |
17228 | unsigned Index; |
17229 | |
17230 | explicit Seq(unsigned N) : Index(N) {} |
17231 | |
17232 | public: |
17233 | Seq() : Index(0) {} |
17234 | }; |
17235 | |
17236 | SequenceTree() { Values.push_back(Elt: Value(0)); } |
17237 | Seq root() const { return Seq(0); } |
17238 | |
17239 | /// Create a new sequence of operations, which is an unsequenced |
17240 | /// subset of \p Parent. This sequence of operations is sequenced with |
17241 | /// respect to other children of \p Parent. |
17242 | Seq allocate(Seq Parent) { |
17243 | Values.push_back(Elt: Value(Parent.Index)); |
17244 | return Seq(Values.size() - 1); |
17245 | } |
17246 | |
17247 | /// Merge a sequence of operations into its parent. |
17248 | void merge(Seq S) { |
17249 | Values[S.Index].Merged = true; |
17250 | } |
17251 | |
17252 | /// Determine whether two operations are unsequenced. This operation |
17253 | /// is asymmetric: \p Cur should be the more recent sequence, and \p Old |
17254 | /// should have been merged into its parent as appropriate. |
17255 | bool isUnsequenced(Seq Cur, Seq Old) { |
17256 | unsigned C = representative(K: Cur.Index); |
17257 | unsigned Target = representative(K: Old.Index); |
17258 | while (C >= Target) { |
17259 | if (C == Target) |
17260 | return true; |
17261 | C = Values[C].Parent; |
17262 | } |
17263 | return false; |
17264 | } |
17265 | |
17266 | private: |
17267 | /// Pick a representative for a sequence. |
17268 | unsigned representative(unsigned K) { |
17269 | if (Values[K].Merged) |
17270 | // Perform path compression as we go. |
17271 | return Values[K].Parent = representative(K: Values[K].Parent); |
17272 | return K; |
17273 | } |
17274 | }; |
17275 | |
17276 | /// An object for which we can track unsequenced uses. |
17277 | using Object = const NamedDecl *; |
17278 | |
17279 | /// Different flavors of object usage which we track. We only track the |
17280 | /// least-sequenced usage of each kind. |
17281 | enum UsageKind { |
17282 | /// A read of an object. Multiple unsequenced reads are OK. |
17283 | UK_Use, |
17284 | |
17285 | /// A modification of an object which is sequenced before the value |
17286 | /// computation of the expression, such as ++n in C++. |
17287 | UK_ModAsValue, |
17288 | |
17289 | /// A modification of an object which is not sequenced before the value |
17290 | /// computation of the expression, such as n++. |
17291 | UK_ModAsSideEffect, |
17292 | |
17293 | UK_Count = UK_ModAsSideEffect + 1 |
17294 | }; |
17295 | |
17296 | /// Bundle together a sequencing region and the expression corresponding |
17297 | /// to a specific usage. One Usage is stored for each usage kind in UsageInfo. |
17298 | struct Usage { |
17299 | const Expr *UsageExpr = nullptr; |
17300 | SequenceTree::Seq Seq; |
17301 | |
17302 | Usage() = default; |
17303 | }; |
17304 | |
17305 | struct UsageInfo { |
17306 | Usage Uses[UK_Count]; |
17307 | |
17308 | /// Have we issued a diagnostic for this object already? |
17309 | bool Diagnosed = false; |
17310 | |
17311 | UsageInfo(); |
17312 | }; |
17313 | using UsageInfoMap = llvm::SmallDenseMap<Object, UsageInfo, 16>; |
17314 | |
17315 | Sema &SemaRef; |
17316 | |
17317 | /// Sequenced regions within the expression. |
17318 | SequenceTree Tree; |
17319 | |
17320 | /// Declaration modifications and references which we have seen. |
17321 | UsageInfoMap UsageMap; |
17322 | |
17323 | /// The region we are currently within. |
17324 | SequenceTree::Seq Region; |
17325 | |
17326 | /// Filled in with declarations which were modified as a side-effect |
17327 | /// (that is, post-increment operations). |
17328 | SmallVectorImpl<std::pair<Object, Usage>> *ModAsSideEffect = nullptr; |
17329 | |
17330 | /// Expressions to check later. We defer checking these to reduce |
17331 | /// stack usage. |
17332 | SmallVectorImpl<const Expr *> &WorkList; |
17333 | |
17334 | /// RAII object wrapping the visitation of a sequenced subexpression of an |
17335 | /// expression. At the end of this process, the side-effects of the evaluation |
17336 | /// become sequenced with respect to the value computation of the result, so |
17337 | /// we downgrade any UK_ModAsSideEffect within the evaluation to |
17338 | /// UK_ModAsValue. |
17339 | struct SequencedSubexpression { |
17340 | SequencedSubexpression(SequenceChecker &Self) |
17341 | : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) { |
17342 | Self.ModAsSideEffect = &ModAsSideEffect; |
17343 | } |
17344 | |
17345 | ~SequencedSubexpression() { |
17346 | for (const std::pair<Object, Usage> &M : llvm::reverse(C&: ModAsSideEffect)) { |
17347 | // Add a new usage with usage kind UK_ModAsValue, and then restore |
17348 | // the previous usage with UK_ModAsSideEffect (thus clearing it if |
17349 | // the previous one was empty). |
17350 | UsageInfo &UI = Self.UsageMap[M.first]; |
17351 | auto &SideEffectUsage = UI.Uses[UK_ModAsSideEffect]; |
17352 | Self.addUsage(O: M.first, UI, UsageExpr: SideEffectUsage.UsageExpr, UK: UK_ModAsValue); |
17353 | SideEffectUsage = M.second; |
17354 | } |
17355 | Self.ModAsSideEffect = OldModAsSideEffect; |
17356 | } |
17357 | |
17358 | SequenceChecker &Self; |
17359 | SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect; |
17360 | SmallVectorImpl<std::pair<Object, Usage>> *OldModAsSideEffect; |
17361 | }; |
17362 | |
17363 | /// RAII object wrapping the visitation of a subexpression which we might |
17364 | /// choose to evaluate as a constant. If any subexpression is evaluated and |
17365 | /// found to be non-constant, this allows us to suppress the evaluation of |
17366 | /// the outer expression. |
17367 | class EvaluationTracker { |
17368 | public: |
17369 | EvaluationTracker(SequenceChecker &Self) |
17370 | : Self(Self), Prev(Self.EvalTracker) { |
17371 | Self.EvalTracker = this; |
17372 | } |
17373 | |
17374 | ~EvaluationTracker() { |
17375 | Self.EvalTracker = Prev; |
17376 | if (Prev) |
17377 | Prev->EvalOK &= EvalOK; |
17378 | } |
17379 | |
17380 | bool evaluate(const Expr *E, bool &Result) { |
17381 | if (!EvalOK || E->isValueDependent()) |
17382 | return false; |
17383 | EvalOK = E->EvaluateAsBooleanCondition( |
17384 | Result, Ctx: Self.SemaRef.Context, |
17385 | InConstantContext: Self.SemaRef.isConstantEvaluatedContext()); |
17386 | return EvalOK; |
17387 | } |
17388 | |
17389 | private: |
17390 | SequenceChecker &Self; |
17391 | EvaluationTracker *Prev; |
17392 | bool EvalOK = true; |
17393 | } *EvalTracker = nullptr; |
17394 | |
17395 | /// Find the object which is produced by the specified expression, |
17396 | /// if any. |
17397 | Object getObject(const Expr *E, bool Mod) const { |
17398 | E = E->IgnoreParenCasts(); |
17399 | if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(Val: E)) { |
17400 | if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec)) |
17401 | return getObject(E: UO->getSubExpr(), Mod); |
17402 | } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: E)) { |
17403 | if (BO->getOpcode() == BO_Comma) |
17404 | return getObject(E: BO->getRHS(), Mod); |
17405 | if (Mod && BO->isAssignmentOp()) |
17406 | return getObject(E: BO->getLHS(), Mod); |
17407 | } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(Val: E)) { |
17408 | // FIXME: Check for more interesting cases, like "x.n = ++x.n". |
17409 | if (isa<CXXThisExpr>(Val: ME->getBase()->IgnoreParenCasts())) |
17410 | return ME->getMemberDecl(); |
17411 | } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E)) |
17412 | // FIXME: If this is a reference, map through to its value. |
17413 | return DRE->getDecl(); |
17414 | return nullptr; |
17415 | } |
17416 | |
17417 | /// Note that an object \p O was modified or used by an expression |
17418 | /// \p UsageExpr with usage kind \p UK. \p UI is the \p UsageInfo for |
17419 | /// the object \p O as obtained via the \p UsageMap. |
17420 | void addUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, UsageKind UK) { |
17421 | // Get the old usage for the given object and usage kind. |
17422 | Usage &U = UI.Uses[UK]; |
17423 | if (!U.UsageExpr || !Tree.isUnsequenced(Cur: Region, Old: U.Seq)) { |
17424 | // If we have a modification as side effect and are in a sequenced |
17425 | // subexpression, save the old Usage so that we can restore it later |
17426 | // in SequencedSubexpression::~SequencedSubexpression. |
17427 | if (UK == UK_ModAsSideEffect && ModAsSideEffect) |
17428 | ModAsSideEffect->push_back(Elt: std::make_pair(x&: O, y&: U)); |
17429 | // Then record the new usage with the current sequencing region. |
17430 | U.UsageExpr = UsageExpr; |
17431 | U.Seq = Region; |
17432 | } |
17433 | } |
17434 | |
17435 | /// Check whether a modification or use of an object \p O in an expression |
17436 | /// \p UsageExpr conflicts with a prior usage of kind \p OtherKind. \p UI is |
17437 | /// the \p UsageInfo for the object \p O as obtained via the \p UsageMap. |
17438 | /// \p IsModMod is true when we are checking for a mod-mod unsequenced |
17439 | /// usage and false we are checking for a mod-use unsequenced usage. |
17440 | void checkUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, |
17441 | UsageKind OtherKind, bool IsModMod) { |
17442 | if (UI.Diagnosed) |
17443 | return; |
17444 | |
17445 | const Usage &U = UI.Uses[OtherKind]; |
17446 | if (!U.UsageExpr || !Tree.isUnsequenced(Cur: Region, Old: U.Seq)) |
17447 | return; |
17448 | |
17449 | const Expr *Mod = U.UsageExpr; |
17450 | const Expr *ModOrUse = UsageExpr; |
17451 | if (OtherKind == UK_Use) |
17452 | std::swap(a&: Mod, b&: ModOrUse); |
17453 | |
17454 | SemaRef.DiagRuntimeBehavior( |
17455 | Mod->getExprLoc(), {Mod, ModOrUse}, |
17456 | SemaRef.PDiag(IsModMod ? diag::warn_unsequenced_mod_mod |
17457 | : diag::warn_unsequenced_mod_use) |
17458 | << O << SourceRange(ModOrUse->getExprLoc())); |
17459 | UI.Diagnosed = true; |
17460 | } |
17461 | |
17462 | // A note on note{Pre, Post}{Use, Mod}: |
17463 | // |
17464 | // (It helps to follow the algorithm with an expression such as |
17465 | // "((++k)++, k) = k" or "k = (k++, k++)". Both contain unsequenced |
17466 | // operations before C++17 and both are well-defined in C++17). |
17467 | // |
17468 | // When visiting a node which uses/modify an object we first call notePreUse |
17469 | // or notePreMod before visiting its sub-expression(s). At this point the |
17470 | // children of the current node have not yet been visited and so the eventual |
17471 | // uses/modifications resulting from the children of the current node have not |
17472 | // been recorded yet. |
17473 | // |
17474 | // We then visit the children of the current node. After that notePostUse or |
17475 | // notePostMod is called. These will 1) detect an unsequenced modification |
17476 | // as side effect (as in "k++ + k") and 2) add a new usage with the |
17477 | // appropriate usage kind. |
17478 | // |
17479 | // We also have to be careful that some operation sequences modification as |
17480 | // side effect as well (for example: || or ,). To account for this we wrap |
17481 | // the visitation of such a sub-expression (for example: the LHS of || or ,) |
17482 | // with SequencedSubexpression. SequencedSubexpression is an RAII object |
17483 | // which record usages which are modifications as side effect, and then |
17484 | // downgrade them (or more accurately restore the previous usage which was a |
17485 | // modification as side effect) when exiting the scope of the sequenced |
17486 | // subexpression. |
17487 | |
17488 | void notePreUse(Object O, const Expr *UseExpr) { |
17489 | UsageInfo &UI = UsageMap[O]; |
17490 | // Uses conflict with other modifications. |
17491 | checkUsage(O, UI, UsageExpr: UseExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/false); |
17492 | } |
17493 | |
17494 | void notePostUse(Object O, const Expr *UseExpr) { |
17495 | UsageInfo &UI = UsageMap[O]; |
17496 | checkUsage(O, UI, UsageExpr: UseExpr, /*OtherKind=*/UK_ModAsSideEffect, |
17497 | /*IsModMod=*/false); |
17498 | addUsage(O, UI, UsageExpr: UseExpr, /*UsageKind=*/UK: UK_Use); |
17499 | } |
17500 | |
17501 | void notePreMod(Object O, const Expr *ModExpr) { |
17502 | UsageInfo &UI = UsageMap[O]; |
17503 | // Modifications conflict with other modifications and with uses. |
17504 | checkUsage(O, UI, UsageExpr: ModExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/true); |
17505 | checkUsage(O, UI, UsageExpr: ModExpr, /*OtherKind=*/UK_Use, /*IsModMod=*/false); |
17506 | } |
17507 | |
17508 | void notePostMod(Object O, const Expr *ModExpr, UsageKind UK) { |
17509 | UsageInfo &UI = UsageMap[O]; |
17510 | checkUsage(O, UI, UsageExpr: ModExpr, /*OtherKind=*/UK_ModAsSideEffect, |
17511 | /*IsModMod=*/true); |
17512 | addUsage(O, UI, UsageExpr: ModExpr, /*UsageKind=*/UK); |
17513 | } |
17514 | |
17515 | public: |
17516 | SequenceChecker(Sema &S, const Expr *E, |
17517 | SmallVectorImpl<const Expr *> &WorkList) |
17518 | : Base(S.Context), SemaRef(S), Region(Tree.root()), WorkList(WorkList) { |
17519 | Visit(E); |
17520 | // Silence a -Wunused-private-field since WorkList is now unused. |
17521 | // TODO: Evaluate if it can be used, and if not remove it. |
17522 | (void)this->WorkList; |
17523 | } |
17524 | |
17525 | void VisitStmt(const Stmt *S) { |
17526 | // Skip all statements which aren't expressions for now. |
17527 | } |
17528 | |
17529 | void VisitExpr(const Expr *E) { |
17530 | // By default, just recurse to evaluated subexpressions. |
17531 | Base::VisitStmt(E); |
17532 | } |
17533 | |
17534 | void VisitCoroutineSuspendExpr(const CoroutineSuspendExpr *CSE) { |
17535 | for (auto *Sub : CSE->children()) { |
17536 | const Expr *ChildExpr = dyn_cast_or_null<Expr>(Val: Sub); |
17537 | if (!ChildExpr) |
17538 | continue; |
17539 | |
17540 | if (ChildExpr == CSE->getOperand()) |
17541 | // Do not recurse over a CoroutineSuspendExpr's operand. |
17542 | // The operand is also a subexpression of getCommonExpr(), and |
17543 | // recursing into it directly could confuse object management |
17544 | // for the sake of sequence tracking. |
17545 | continue; |
17546 | |
17547 | Visit(S: Sub); |
17548 | } |
17549 | } |
17550 | |
17551 | void VisitCastExpr(const CastExpr *E) { |
17552 | Object O = Object(); |
17553 | if (E->getCastKind() == CK_LValueToRValue) |
17554 | O = getObject(E: E->getSubExpr(), Mod: false); |
17555 | |
17556 | if (O) |
17557 | notePreUse(O, E); |
17558 | VisitExpr(E); |
17559 | if (O) |
17560 | notePostUse(O, E); |
17561 | } |
17562 | |
17563 | void VisitSequencedExpressions(const Expr *SequencedBefore, |
17564 | const Expr *SequencedAfter) { |
17565 | SequenceTree::Seq BeforeRegion = Tree.allocate(Parent: Region); |
17566 | SequenceTree::Seq AfterRegion = Tree.allocate(Parent: Region); |
17567 | SequenceTree::Seq OldRegion = Region; |
17568 | |
17569 | { |
17570 | SequencedSubexpression SeqBefore(*this); |
17571 | Region = BeforeRegion; |
17572 | Visit(SequencedBefore); |
17573 | } |
17574 | |
17575 | Region = AfterRegion; |
17576 | Visit(SequencedAfter); |
17577 | |
17578 | Region = OldRegion; |
17579 | |
17580 | Tree.merge(S: BeforeRegion); |
17581 | Tree.merge(S: AfterRegion); |
17582 | } |
17583 | |
17584 | void VisitArraySubscriptExpr(const ArraySubscriptExpr *ASE) { |
17585 | // C++17 [expr.sub]p1: |
17586 | // The expression E1[E2] is identical (by definition) to *((E1)+(E2)). The |
17587 | // expression E1 is sequenced before the expression E2. |
17588 | if (SemaRef.getLangOpts().CPlusPlus17) |
17589 | VisitSequencedExpressions(SequencedBefore: ASE->getLHS(), SequencedAfter: ASE->getRHS()); |
17590 | else { |
17591 | Visit(ASE->getLHS()); |
17592 | Visit(ASE->getRHS()); |
17593 | } |
17594 | } |
17595 | |
17596 | void VisitBinPtrMemD(const BinaryOperator *BO) { VisitBinPtrMem(BO); } |
17597 | void VisitBinPtrMemI(const BinaryOperator *BO) { VisitBinPtrMem(BO); } |
17598 | void VisitBinPtrMem(const BinaryOperator *BO) { |
17599 | // C++17 [expr.mptr.oper]p4: |
17600 | // Abbreviating pm-expression.*cast-expression as E1.*E2, [...] |
17601 | // the expression E1 is sequenced before the expression E2. |
17602 | if (SemaRef.getLangOpts().CPlusPlus17) |
17603 | VisitSequencedExpressions(SequencedBefore: BO->getLHS(), SequencedAfter: BO->getRHS()); |
17604 | else { |
17605 | Visit(BO->getLHS()); |
17606 | Visit(BO->getRHS()); |
17607 | } |
17608 | } |
17609 | |
17610 | void VisitBinShl(const BinaryOperator *BO) { VisitBinShlShr(BO); } |
17611 | void VisitBinShr(const BinaryOperator *BO) { VisitBinShlShr(BO); } |
17612 | void VisitBinShlShr(const BinaryOperator *BO) { |
17613 | // C++17 [expr.shift]p4: |
17614 | // The expression E1 is sequenced before the expression E2. |
17615 | if (SemaRef.getLangOpts().CPlusPlus17) |
17616 | VisitSequencedExpressions(SequencedBefore: BO->getLHS(), SequencedAfter: BO->getRHS()); |
17617 | else { |
17618 | Visit(BO->getLHS()); |
17619 | Visit(BO->getRHS()); |
17620 | } |
17621 | } |
17622 | |
17623 | void VisitBinComma(const BinaryOperator *BO) { |
17624 | // C++11 [expr.comma]p1: |
17625 | // Every value computation and side effect associated with the left |
17626 | // expression is sequenced before every value computation and side |
17627 | // effect associated with the right expression. |
17628 | VisitSequencedExpressions(SequencedBefore: BO->getLHS(), SequencedAfter: BO->getRHS()); |
17629 | } |
17630 | |
17631 | void VisitBinAssign(const BinaryOperator *BO) { |
17632 | SequenceTree::Seq RHSRegion; |
17633 | SequenceTree::Seq LHSRegion; |
17634 | if (SemaRef.getLangOpts().CPlusPlus17) { |
17635 | RHSRegion = Tree.allocate(Parent: Region); |
17636 | LHSRegion = Tree.allocate(Parent: Region); |
17637 | } else { |
17638 | RHSRegion = Region; |
17639 | LHSRegion = Region; |
17640 | } |
17641 | SequenceTree::Seq OldRegion = Region; |
17642 | |
17643 | // C++11 [expr.ass]p1: |
17644 | // [...] the assignment is sequenced after the value computation |
17645 | // of the right and left operands, [...] |
17646 | // |
17647 | // so check it before inspecting the operands and update the |
17648 | // map afterwards. |
17649 | Object O = getObject(E: BO->getLHS(), /*Mod=*/true); |
17650 | if (O) |
17651 | notePreMod(O, BO); |
17652 | |
17653 | if (SemaRef.getLangOpts().CPlusPlus17) { |
17654 | // C++17 [expr.ass]p1: |
17655 | // [...] The right operand is sequenced before the left operand. [...] |
17656 | { |
17657 | SequencedSubexpression SeqBefore(*this); |
17658 | Region = RHSRegion; |
17659 | Visit(BO->getRHS()); |
17660 | } |
17661 | |
17662 | Region = LHSRegion; |
17663 | Visit(BO->getLHS()); |
17664 | |
17665 | if (O && isa<CompoundAssignOperator>(Val: BO)) |
17666 | notePostUse(O, BO); |
17667 | |
17668 | } else { |
17669 | // C++11 does not specify any sequencing between the LHS and RHS. |
17670 | Region = LHSRegion; |
17671 | Visit(BO->getLHS()); |
17672 | |
17673 | if (O && isa<CompoundAssignOperator>(Val: BO)) |
17674 | notePostUse(O, BO); |
17675 | |
17676 | Region = RHSRegion; |
17677 | Visit(BO->getRHS()); |
17678 | } |
17679 | |
17680 | // C++11 [expr.ass]p1: |
17681 | // the assignment is sequenced [...] before the value computation of the |
17682 | // assignment expression. |
17683 | // C11 6.5.16/3 has no such rule. |
17684 | Region = OldRegion; |
17685 | if (O) |
17686 | notePostMod(O, BO, |
17687 | SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue |
17688 | : UK_ModAsSideEffect); |
17689 | if (SemaRef.getLangOpts().CPlusPlus17) { |
17690 | Tree.merge(S: RHSRegion); |
17691 | Tree.merge(S: LHSRegion); |
17692 | } |
17693 | } |
17694 | |
17695 | void VisitCompoundAssignOperator(const CompoundAssignOperator *CAO) { |
17696 | VisitBinAssign(CAO); |
17697 | } |
17698 | |
17699 | void VisitUnaryPreInc(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); } |
17700 | void VisitUnaryPreDec(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); } |
17701 | void VisitUnaryPreIncDec(const UnaryOperator *UO) { |
17702 | Object O = getObject(E: UO->getSubExpr(), Mod: true); |
17703 | if (!O) |
17704 | return VisitExpr(UO); |
17705 | |
17706 | notePreMod(O, UO); |
17707 | Visit(UO->getSubExpr()); |
17708 | // C++11 [expr.pre.incr]p1: |
17709 | // the expression ++x is equivalent to x+=1 |
17710 | notePostMod(O, UO, |
17711 | SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue |
17712 | : UK_ModAsSideEffect); |
17713 | } |
17714 | |
17715 | void VisitUnaryPostInc(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); } |
17716 | void VisitUnaryPostDec(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); } |
17717 | void VisitUnaryPostIncDec(const UnaryOperator *UO) { |
17718 | Object O = getObject(E: UO->getSubExpr(), Mod: true); |
17719 | if (!O) |
17720 | return VisitExpr(UO); |
17721 | |
17722 | notePreMod(O, UO); |
17723 | Visit(UO->getSubExpr()); |
17724 | notePostMod(O, UO, UK_ModAsSideEffect); |
17725 | } |
17726 | |
17727 | void VisitBinLOr(const BinaryOperator *BO) { |
17728 | // C++11 [expr.log.or]p2: |
17729 | // If the second expression is evaluated, every value computation and |
17730 | // side effect associated with the first expression is sequenced before |
17731 | // every value computation and side effect associated with the |
17732 | // second expression. |
17733 | SequenceTree::Seq LHSRegion = Tree.allocate(Parent: Region); |
17734 | SequenceTree::Seq RHSRegion = Tree.allocate(Parent: Region); |
17735 | SequenceTree::Seq OldRegion = Region; |
17736 | |
17737 | EvaluationTracker Eval(*this); |
17738 | { |
17739 | SequencedSubexpression Sequenced(*this); |
17740 | Region = LHSRegion; |
17741 | Visit(BO->getLHS()); |
17742 | } |
17743 | |
17744 | // C++11 [expr.log.or]p1: |
17745 | // [...] the second operand is not evaluated if the first operand |
17746 | // evaluates to true. |
17747 | bool EvalResult = false; |
17748 | bool EvalOK = Eval.evaluate(E: BO->getLHS(), Result&: EvalResult); |
17749 | bool ShouldVisitRHS = !EvalOK || !EvalResult; |
17750 | if (ShouldVisitRHS) { |
17751 | Region = RHSRegion; |
17752 | Visit(BO->getRHS()); |
17753 | } |
17754 | |
17755 | Region = OldRegion; |
17756 | Tree.merge(S: LHSRegion); |
17757 | Tree.merge(S: RHSRegion); |
17758 | } |
17759 | |
17760 | void VisitBinLAnd(const BinaryOperator *BO) { |
17761 | // C++11 [expr.log.and]p2: |
17762 | // If the second expression is evaluated, every value computation and |
17763 | // side effect associated with the first expression is sequenced before |
17764 | // every value computation and side effect associated with the |
17765 | // second expression. |
17766 | SequenceTree::Seq LHSRegion = Tree.allocate(Parent: Region); |
17767 | SequenceTree::Seq RHSRegion = Tree.allocate(Parent: Region); |
17768 | SequenceTree::Seq OldRegion = Region; |
17769 | |
17770 | EvaluationTracker Eval(*this); |
17771 | { |
17772 | SequencedSubexpression Sequenced(*this); |
17773 | Region = LHSRegion; |
17774 | Visit(BO->getLHS()); |
17775 | } |
17776 | |
17777 | // C++11 [expr.log.and]p1: |
17778 | // [...] the second operand is not evaluated if the first operand is false. |
17779 | bool EvalResult = false; |
17780 | bool EvalOK = Eval.evaluate(E: BO->getLHS(), Result&: EvalResult); |
17781 | bool ShouldVisitRHS = !EvalOK || EvalResult; |
17782 | if (ShouldVisitRHS) { |
17783 | Region = RHSRegion; |
17784 | Visit(BO->getRHS()); |
17785 | } |
17786 | |
17787 | Region = OldRegion; |
17788 | Tree.merge(S: LHSRegion); |
17789 | Tree.merge(S: RHSRegion); |
17790 | } |
17791 | |
17792 | void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO) { |
17793 | // C++11 [expr.cond]p1: |
17794 | // [...] Every value computation and side effect associated with the first |
17795 | // expression is sequenced before every value computation and side effect |
17796 | // associated with the second or third expression. |
17797 | SequenceTree::Seq ConditionRegion = Tree.allocate(Parent: Region); |
17798 | |
17799 | // No sequencing is specified between the true and false expression. |
17800 | // However since exactly one of both is going to be evaluated we can |
17801 | // consider them to be sequenced. This is needed to avoid warning on |
17802 | // something like "x ? y+= 1 : y += 2;" in the case where we will visit |
17803 | // both the true and false expressions because we can't evaluate x. |
17804 | // This will still allow us to detect an expression like (pre C++17) |
17805 | // "(x ? y += 1 : y += 2) = y". |
17806 | // |
17807 | // We don't wrap the visitation of the true and false expression with |
17808 | // SequencedSubexpression because we don't want to downgrade modifications |
17809 | // as side effect in the true and false expressions after the visition |
17810 | // is done. (for example in the expression "(x ? y++ : y++) + y" we should |
17811 | // not warn between the two "y++", but we should warn between the "y++" |
17812 | // and the "y". |
17813 | SequenceTree::Seq TrueRegion = Tree.allocate(Parent: Region); |
17814 | SequenceTree::Seq FalseRegion = Tree.allocate(Parent: Region); |
17815 | SequenceTree::Seq OldRegion = Region; |
17816 | |
17817 | EvaluationTracker Eval(*this); |
17818 | { |
17819 | SequencedSubexpression Sequenced(*this); |
17820 | Region = ConditionRegion; |
17821 | Visit(CO->getCond()); |
17822 | } |
17823 | |
17824 | // C++11 [expr.cond]p1: |
17825 | // [...] The first expression is contextually converted to bool (Clause 4). |
17826 | // It is evaluated and if it is true, the result of the conditional |
17827 | // expression is the value of the second expression, otherwise that of the |
17828 | // third expression. Only one of the second and third expressions is |
17829 | // evaluated. [...] |
17830 | bool EvalResult = false; |
17831 | bool EvalOK = Eval.evaluate(E: CO->getCond(), Result&: EvalResult); |
17832 | bool ShouldVisitTrueExpr = !EvalOK || EvalResult; |
17833 | bool ShouldVisitFalseExpr = !EvalOK || !EvalResult; |
17834 | if (ShouldVisitTrueExpr) { |
17835 | Region = TrueRegion; |
17836 | Visit(CO->getTrueExpr()); |
17837 | } |
17838 | if (ShouldVisitFalseExpr) { |
17839 | Region = FalseRegion; |
17840 | Visit(CO->getFalseExpr()); |
17841 | } |
17842 | |
17843 | Region = OldRegion; |
17844 | Tree.merge(S: ConditionRegion); |
17845 | Tree.merge(S: TrueRegion); |
17846 | Tree.merge(S: FalseRegion); |
17847 | } |
17848 | |
17849 | void VisitCallExpr(const CallExpr *CE) { |
17850 | // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions. |
17851 | |
17852 | if (CE->isUnevaluatedBuiltinCall(Ctx: Context)) |
17853 | return; |
17854 | |
17855 | // C++11 [intro.execution]p15: |
17856 | // When calling a function [...], every value computation and side effect |
17857 | // associated with any argument expression, or with the postfix expression |
17858 | // designating the called function, is sequenced before execution of every |
17859 | // expression or statement in the body of the function [and thus before |
17860 | // the value computation of its result]. |
17861 | SequencedSubexpression Sequenced(*this); |
17862 | SemaRef.runWithSufficientStackSpace(Loc: CE->getExprLoc(), Fn: [&] { |
17863 | // C++17 [expr.call]p5 |
17864 | // The postfix-expression is sequenced before each expression in the |
17865 | // expression-list and any default argument. [...] |
17866 | SequenceTree::Seq CalleeRegion; |
17867 | SequenceTree::Seq OtherRegion; |
17868 | if (SemaRef.getLangOpts().CPlusPlus17) { |
17869 | CalleeRegion = Tree.allocate(Parent: Region); |
17870 | OtherRegion = Tree.allocate(Parent: Region); |
17871 | } else { |
17872 | CalleeRegion = Region; |
17873 | OtherRegion = Region; |
17874 | } |
17875 | SequenceTree::Seq OldRegion = Region; |
17876 | |
17877 | // Visit the callee expression first. |
17878 | Region = CalleeRegion; |
17879 | if (SemaRef.getLangOpts().CPlusPlus17) { |
17880 | SequencedSubexpression Sequenced(*this); |
17881 | Visit(CE->getCallee()); |
17882 | } else { |
17883 | Visit(CE->getCallee()); |
17884 | } |
17885 | |
17886 | // Then visit the argument expressions. |
17887 | Region = OtherRegion; |
17888 | for (const Expr *Argument : CE->arguments()) |
17889 | Visit(Argument); |
17890 | |
17891 | Region = OldRegion; |
17892 | if (SemaRef.getLangOpts().CPlusPlus17) { |
17893 | Tree.merge(S: CalleeRegion); |
17894 | Tree.merge(S: OtherRegion); |
17895 | } |
17896 | }); |
17897 | } |
17898 | |
17899 | void VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *CXXOCE) { |
17900 | // C++17 [over.match.oper]p2: |
17901 | // [...] the operator notation is first transformed to the equivalent |
17902 | // function-call notation as summarized in Table 12 (where @ denotes one |
17903 | // of the operators covered in the specified subclause). However, the |
17904 | // operands are sequenced in the order prescribed for the built-in |
17905 | // operator (Clause 8). |
17906 | // |
17907 | // From the above only overloaded binary operators and overloaded call |
17908 | // operators have sequencing rules in C++17 that we need to handle |
17909 | // separately. |
17910 | if (!SemaRef.getLangOpts().CPlusPlus17 || |
17911 | (CXXOCE->getNumArgs() != 2 && CXXOCE->getOperator() != OO_Call)) |
17912 | return VisitCallExpr(CXXOCE); |
17913 | |
17914 | enum { |
17915 | NoSequencing, |
17916 | LHSBeforeRHS, |
17917 | RHSBeforeLHS, |
17918 | LHSBeforeRest |
17919 | } SequencingKind; |
17920 | switch (CXXOCE->getOperator()) { |
17921 | case OO_Equal: |
17922 | case OO_PlusEqual: |
17923 | case OO_MinusEqual: |
17924 | case OO_StarEqual: |
17925 | case OO_SlashEqual: |
17926 | case OO_PercentEqual: |
17927 | case OO_CaretEqual: |
17928 | case OO_AmpEqual: |
17929 | case OO_PipeEqual: |
17930 | case OO_LessLessEqual: |
17931 | case OO_GreaterGreaterEqual: |
17932 | SequencingKind = RHSBeforeLHS; |
17933 | break; |
17934 | |
17935 | case OO_LessLess: |
17936 | case OO_GreaterGreater: |
17937 | case OO_AmpAmp: |
17938 | case OO_PipePipe: |
17939 | case OO_Comma: |
17940 | case OO_ArrowStar: |
17941 | case OO_Subscript: |
17942 | SequencingKind = LHSBeforeRHS; |
17943 | break; |
17944 | |
17945 | case OO_Call: |
17946 | SequencingKind = LHSBeforeRest; |
17947 | break; |
17948 | |
17949 | default: |
17950 | SequencingKind = NoSequencing; |
17951 | break; |
17952 | } |
17953 | |
17954 | if (SequencingKind == NoSequencing) |
17955 | return VisitCallExpr(CXXOCE); |
17956 | |
17957 | // This is a call, so all subexpressions are sequenced before the result. |
17958 | SequencedSubexpression Sequenced(*this); |
17959 | |
17960 | SemaRef.runWithSufficientStackSpace(CXXOCE->getExprLoc(), [&] { |
17961 | assert(SemaRef.getLangOpts().CPlusPlus17 && |
17962 | "Should only get there with C++17 and above!" ); |
17963 | assert((CXXOCE->getNumArgs() == 2 || CXXOCE->getOperator() == OO_Call) && |
17964 | "Should only get there with an overloaded binary operator" |
17965 | " or an overloaded call operator!" ); |
17966 | |
17967 | if (SequencingKind == LHSBeforeRest) { |
17968 | assert(CXXOCE->getOperator() == OO_Call && |
17969 | "We should only have an overloaded call operator here!" ); |
17970 | |
17971 | // This is very similar to VisitCallExpr, except that we only have the |
17972 | // C++17 case. The postfix-expression is the first argument of the |
17973 | // CXXOperatorCallExpr. The expressions in the expression-list, if any, |
17974 | // are in the following arguments. |
17975 | // |
17976 | // Note that we intentionally do not visit the callee expression since |
17977 | // it is just a decayed reference to a function. |
17978 | SequenceTree::Seq PostfixExprRegion = Tree.allocate(Parent: Region); |
17979 | SequenceTree::Seq ArgsRegion = Tree.allocate(Parent: Region); |
17980 | SequenceTree::Seq OldRegion = Region; |
17981 | |
17982 | assert(CXXOCE->getNumArgs() >= 1 && |
17983 | "An overloaded call operator must have at least one argument" |
17984 | " for the postfix-expression!" ); |
17985 | const Expr *PostfixExpr = CXXOCE->getArgs()[0]; |
17986 | llvm::ArrayRef<const Expr *> Args(CXXOCE->getArgs() + 1, |
17987 | CXXOCE->getNumArgs() - 1); |
17988 | |
17989 | // Visit the postfix-expression first. |
17990 | { |
17991 | Region = PostfixExprRegion; |
17992 | SequencedSubexpression Sequenced(*this); |
17993 | Visit(PostfixExpr); |
17994 | } |
17995 | |
17996 | // Then visit the argument expressions. |
17997 | Region = ArgsRegion; |
17998 | for (const Expr *Arg : Args) |
17999 | Visit(Arg); |
18000 | |
18001 | Region = OldRegion; |
18002 | Tree.merge(S: PostfixExprRegion); |
18003 | Tree.merge(S: ArgsRegion); |
18004 | } else { |
18005 | assert(CXXOCE->getNumArgs() == 2 && |
18006 | "Should only have two arguments here!" ); |
18007 | assert((SequencingKind == LHSBeforeRHS || |
18008 | SequencingKind == RHSBeforeLHS) && |
18009 | "Unexpected sequencing kind!" ); |
18010 | |
18011 | // We do not visit the callee expression since it is just a decayed |
18012 | // reference to a function. |
18013 | const Expr *E1 = CXXOCE->getArg(0); |
18014 | const Expr *E2 = CXXOCE->getArg(1); |
18015 | if (SequencingKind == RHSBeforeLHS) |
18016 | std::swap(a&: E1, b&: E2); |
18017 | |
18018 | return VisitSequencedExpressions(E1, E2); |
18019 | } |
18020 | }); |
18021 | } |
18022 | |
18023 | void VisitCXXConstructExpr(const CXXConstructExpr *CCE) { |
18024 | // This is a call, so all subexpressions are sequenced before the result. |
18025 | SequencedSubexpression Sequenced(*this); |
18026 | |
18027 | if (!CCE->isListInitialization()) |
18028 | return VisitExpr(CCE); |
18029 | |
18030 | // In C++11, list initializations are sequenced. |
18031 | SequenceExpressionsInOrder( |
18032 | ExpressionList: llvm::ArrayRef(CCE->getArgs(), CCE->getNumArgs())); |
18033 | } |
18034 | |
18035 | void VisitInitListExpr(const InitListExpr *ILE) { |
18036 | if (!SemaRef.getLangOpts().CPlusPlus11) |
18037 | return VisitExpr(ILE); |
18038 | |
18039 | // In C++11, list initializations are sequenced. |
18040 | SequenceExpressionsInOrder(ExpressionList: ILE->inits()); |
18041 | } |
18042 | |
18043 | void VisitCXXParenListInitExpr(const CXXParenListInitExpr *PLIE) { |
18044 | // C++20 parenthesized list initializations are sequenced. See C++20 |
18045 | // [decl.init.general]p16.5 and [decl.init.general]p16.6.2.2. |
18046 | SequenceExpressionsInOrder(ExpressionList: PLIE->getInitExprs()); |
18047 | } |
18048 | |
18049 | private: |
18050 | void SequenceExpressionsInOrder(ArrayRef<const Expr *> ExpressionList) { |
18051 | SmallVector<SequenceTree::Seq, 32> Elts; |
18052 | SequenceTree::Seq Parent = Region; |
18053 | for (const Expr *E : ExpressionList) { |
18054 | if (!E) |
18055 | continue; |
18056 | Region = Tree.allocate(Parent); |
18057 | Elts.push_back(Elt: Region); |
18058 | Visit(E); |
18059 | } |
18060 | |
18061 | // Forget that the initializers are sequenced. |
18062 | Region = Parent; |
18063 | for (unsigned I = 0; I < Elts.size(); ++I) |
18064 | Tree.merge(S: Elts[I]); |
18065 | } |
18066 | }; |
18067 | |
18068 | SequenceChecker::UsageInfo::UsageInfo() = default; |
18069 | |
18070 | } // namespace |
18071 | |
18072 | void Sema::CheckUnsequencedOperations(const Expr *E) { |
18073 | SmallVector<const Expr *, 8> WorkList; |
18074 | WorkList.push_back(Elt: E); |
18075 | while (!WorkList.empty()) { |
18076 | const Expr *Item = WorkList.pop_back_val(); |
18077 | SequenceChecker(*this, Item, WorkList); |
18078 | } |
18079 | } |
18080 | |
18081 | void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc, |
18082 | bool IsConstexpr) { |
18083 | llvm::SaveAndRestore ConstantContext(isConstantEvaluatedOverride, |
18084 | IsConstexpr || isa<ConstantExpr>(Val: E)); |
18085 | CheckImplicitConversions(E, CC: CheckLoc); |
18086 | if (!E->isInstantiationDependent()) |
18087 | CheckUnsequencedOperations(E); |
18088 | if (!IsConstexpr && !E->isValueDependent()) |
18089 | CheckForIntOverflow(E); |
18090 | DiagnoseMisalignedMembers(); |
18091 | } |
18092 | |
18093 | void Sema::CheckBitFieldInitialization(SourceLocation InitLoc, |
18094 | FieldDecl *BitField, |
18095 | Expr *Init) { |
18096 | (void) AnalyzeBitFieldAssignment(S&: *this, Bitfield: BitField, Init, InitLoc); |
18097 | } |
18098 | |
18099 | static void diagnoseArrayStarInParamType(Sema &S, QualType PType, |
18100 | SourceLocation Loc) { |
18101 | if (!PType->isVariablyModifiedType()) |
18102 | return; |
18103 | if (const auto *PointerTy = dyn_cast<PointerType>(Val&: PType)) { |
18104 | diagnoseArrayStarInParamType(S, PType: PointerTy->getPointeeType(), Loc); |
18105 | return; |
18106 | } |
18107 | if (const auto *ReferenceTy = dyn_cast<ReferenceType>(Val&: PType)) { |
18108 | diagnoseArrayStarInParamType(S, PType: ReferenceTy->getPointeeType(), Loc); |
18109 | return; |
18110 | } |
18111 | if (const auto *ParenTy = dyn_cast<ParenType>(Val&: PType)) { |
18112 | diagnoseArrayStarInParamType(S, PType: ParenTy->getInnerType(), Loc); |
18113 | return; |
18114 | } |
18115 | |
18116 | const ArrayType *AT = S.Context.getAsArrayType(T: PType); |
18117 | if (!AT) |
18118 | return; |
18119 | |
18120 | if (AT->getSizeModifier() != ArraySizeModifier::Star) { |
18121 | diagnoseArrayStarInParamType(S, PType: AT->getElementType(), Loc); |
18122 | return; |
18123 | } |
18124 | |
18125 | S.Diag(Loc, diag::err_array_star_in_function_definition); |
18126 | } |
18127 | |
18128 | /// CheckParmsForFunctionDef - Check that the parameters of the given |
18129 | /// function are appropriate for the definition of a function. This |
18130 | /// takes care of any checks that cannot be performed on the |
18131 | /// declaration itself, e.g., that the types of each of the function |
18132 | /// parameters are complete. |
18133 | bool Sema::CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters, |
18134 | bool CheckParameterNames) { |
18135 | bool HasInvalidParm = false; |
18136 | for (ParmVarDecl *Param : Parameters) { |
18137 | assert(Param && "null in a parameter list" ); |
18138 | // C99 6.7.5.3p4: the parameters in a parameter type list in a |
18139 | // function declarator that is part of a function definition of |
18140 | // that function shall not have incomplete type. |
18141 | // |
18142 | // C++23 [dcl.fct.def.general]/p2 |
18143 | // The type of a parameter [...] for a function definition |
18144 | // shall not be a (possibly cv-qualified) class type that is incomplete |
18145 | // or abstract within the function body unless the function is deleted. |
18146 | if (!Param->isInvalidDecl() && |
18147 | (RequireCompleteType(Param->getLocation(), Param->getType(), |
18148 | diag::err_typecheck_decl_incomplete_type) || |
18149 | RequireNonAbstractType(Param->getBeginLoc(), Param->getOriginalType(), |
18150 | diag::err_abstract_type_in_decl, |
18151 | AbstractParamType))) { |
18152 | Param->setInvalidDecl(); |
18153 | HasInvalidParm = true; |
18154 | } |
18155 | |
18156 | // C99 6.9.1p5: If the declarator includes a parameter type list, the |
18157 | // declaration of each parameter shall include an identifier. |
18158 | if (CheckParameterNames && Param->getIdentifier() == nullptr && |
18159 | !Param->isImplicit() && !getLangOpts().CPlusPlus) { |
18160 | // Diagnose this as an extension in C17 and earlier. |
18161 | if (!getLangOpts().C23) |
18162 | Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c23); |
18163 | } |
18164 | |
18165 | // C99 6.7.5.3p12: |
18166 | // If the function declarator is not part of a definition of that |
18167 | // function, parameters may have incomplete type and may use the [*] |
18168 | // notation in their sequences of declarator specifiers to specify |
18169 | // variable length array types. |
18170 | QualType PType = Param->getOriginalType(); |
18171 | // FIXME: This diagnostic should point the '[*]' if source-location |
18172 | // information is added for it. |
18173 | diagnoseArrayStarInParamType(*this, PType, Param->getLocation()); |
18174 | |
18175 | // If the parameter is a c++ class type and it has to be destructed in the |
18176 | // callee function, declare the destructor so that it can be called by the |
18177 | // callee function. Do not perform any direct access check on the dtor here. |
18178 | if (!Param->isInvalidDecl()) { |
18179 | if (CXXRecordDecl *ClassDecl = Param->getType()->getAsCXXRecordDecl()) { |
18180 | if (!ClassDecl->isInvalidDecl() && |
18181 | !ClassDecl->hasIrrelevantDestructor() && |
18182 | !ClassDecl->isDependentContext() && |
18183 | ClassDecl->isParamDestroyedInCallee()) { |
18184 | CXXDestructorDecl *Destructor = LookupDestructor(Class: ClassDecl); |
18185 | MarkFunctionReferenced(Loc: Param->getLocation(), Func: Destructor); |
18186 | DiagnoseUseOfDecl(D: Destructor, Locs: Param->getLocation()); |
18187 | } |
18188 | } |
18189 | } |
18190 | |
18191 | // Parameters with the pass_object_size attribute only need to be marked |
18192 | // constant at function definitions. Because we lack information about |
18193 | // whether we're on a declaration or definition when we're instantiating the |
18194 | // attribute, we need to check for constness here. |
18195 | if (const auto *Attr = Param->getAttr<PassObjectSizeAttr>()) |
18196 | if (!Param->getType().isConstQualified()) |
18197 | Diag(Param->getLocation(), diag::err_attribute_pointers_only) |
18198 | << Attr->getSpelling() << 1; |
18199 | |
18200 | // Check for parameter names shadowing fields from the class. |
18201 | if (LangOpts.CPlusPlus && !Param->isInvalidDecl()) { |
18202 | // The owning context for the parameter should be the function, but we |
18203 | // want to see if this function's declaration context is a record. |
18204 | DeclContext *DC = Param->getDeclContext(); |
18205 | if (DC && DC->isFunctionOrMethod()) { |
18206 | if (auto *RD = dyn_cast<CXXRecordDecl>(DC->getParent())) |
18207 | CheckShadowInheritedFields(Loc: Param->getLocation(), FieldName: Param->getDeclName(), |
18208 | RD: RD, /*DeclIsField*/ false); |
18209 | } |
18210 | } |
18211 | |
18212 | if (!Param->isInvalidDecl() && |
18213 | Param->getOriginalType()->isWebAssemblyTableType()) { |
18214 | Param->setInvalidDecl(); |
18215 | HasInvalidParm = true; |
18216 | Diag(Param->getLocation(), diag::err_wasm_table_as_function_parameter); |
18217 | } |
18218 | } |
18219 | |
18220 | return HasInvalidParm; |
18221 | } |
18222 | |
18223 | std::optional<std::pair< |
18224 | CharUnits, CharUnits>> static getBaseAlignmentAndOffsetFromPtr(const Expr |
18225 | *E, |
18226 | ASTContext |
18227 | &Ctx); |
18228 | |
18229 | /// Compute the alignment and offset of the base class object given the |
18230 | /// derived-to-base cast expression and the alignment and offset of the derived |
18231 | /// class object. |
18232 | static std::pair<CharUnits, CharUnits> |
18233 | getDerivedToBaseAlignmentAndOffset(const CastExpr *CE, QualType DerivedType, |
18234 | CharUnits BaseAlignment, CharUnits Offset, |
18235 | ASTContext &Ctx) { |
18236 | for (auto PathI = CE->path_begin(), PathE = CE->path_end(); PathI != PathE; |
18237 | ++PathI) { |
18238 | const CXXBaseSpecifier *Base = *PathI; |
18239 | const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl(); |
18240 | if (Base->isVirtual()) { |
18241 | // The complete object may have a lower alignment than the non-virtual |
18242 | // alignment of the base, in which case the base may be misaligned. Choose |
18243 | // the smaller of the non-virtual alignment and BaseAlignment, which is a |
18244 | // conservative lower bound of the complete object alignment. |
18245 | CharUnits NonVirtualAlignment = |
18246 | Ctx.getASTRecordLayout(BaseDecl).getNonVirtualAlignment(); |
18247 | BaseAlignment = std::min(a: BaseAlignment, b: NonVirtualAlignment); |
18248 | Offset = CharUnits::Zero(); |
18249 | } else { |
18250 | const ASTRecordLayout &RL = |
18251 | Ctx.getASTRecordLayout(DerivedType->getAsCXXRecordDecl()); |
18252 | Offset += RL.getBaseClassOffset(Base: BaseDecl); |
18253 | } |
18254 | DerivedType = Base->getType(); |
18255 | } |
18256 | |
18257 | return std::make_pair(x&: BaseAlignment, y&: Offset); |
18258 | } |
18259 | |
18260 | /// Compute the alignment and offset of a binary additive operator. |
18261 | static std::optional<std::pair<CharUnits, CharUnits>> |
18262 | getAlignmentAndOffsetFromBinAddOrSub(const Expr *PtrE, const Expr *IntE, |
18263 | bool IsSub, ASTContext &Ctx) { |
18264 | QualType PointeeType = PtrE->getType()->getPointeeType(); |
18265 | |
18266 | if (!PointeeType->isConstantSizeType()) |
18267 | return std::nullopt; |
18268 | |
18269 | auto P = getBaseAlignmentAndOffsetFromPtr(E: PtrE, Ctx); |
18270 | |
18271 | if (!P) |
18272 | return std::nullopt; |
18273 | |
18274 | CharUnits EltSize = Ctx.getTypeSizeInChars(T: PointeeType); |
18275 | if (std::optional<llvm::APSInt> IdxRes = IntE->getIntegerConstantExpr(Ctx)) { |
18276 | CharUnits Offset = EltSize * IdxRes->getExtValue(); |
18277 | if (IsSub) |
18278 | Offset = -Offset; |
18279 | return std::make_pair(x&: P->first, y: P->second + Offset); |
18280 | } |
18281 | |
18282 | // If the integer expression isn't a constant expression, compute the lower |
18283 | // bound of the alignment using the alignment and offset of the pointer |
18284 | // expression and the element size. |
18285 | return std::make_pair( |
18286 | x: P->first.alignmentAtOffset(offset: P->second).alignmentAtOffset(offset: EltSize), |
18287 | y: CharUnits::Zero()); |
18288 | } |
18289 | |
18290 | /// This helper function takes an lvalue expression and returns the alignment of |
18291 | /// a VarDecl and a constant offset from the VarDecl. |
18292 | std::optional<std::pair< |
18293 | CharUnits, |
18294 | CharUnits>> static getBaseAlignmentAndOffsetFromLValue(const Expr *E, |
18295 | ASTContext &Ctx) { |
18296 | E = E->IgnoreParens(); |
18297 | switch (E->getStmtClass()) { |
18298 | default: |
18299 | break; |
18300 | case Stmt::CStyleCastExprClass: |
18301 | case Stmt::CXXStaticCastExprClass: |
18302 | case Stmt::ImplicitCastExprClass: { |
18303 | auto *CE = cast<CastExpr>(Val: E); |
18304 | const Expr *From = CE->getSubExpr(); |
18305 | switch (CE->getCastKind()) { |
18306 | default: |
18307 | break; |
18308 | case CK_NoOp: |
18309 | return getBaseAlignmentAndOffsetFromLValue(E: From, Ctx); |
18310 | case CK_UncheckedDerivedToBase: |
18311 | case CK_DerivedToBase: { |
18312 | auto P = getBaseAlignmentAndOffsetFromLValue(E: From, Ctx); |
18313 | if (!P) |
18314 | break; |
18315 | return getDerivedToBaseAlignmentAndOffset(CE, DerivedType: From->getType(), BaseAlignment: P->first, |
18316 | Offset: P->second, Ctx); |
18317 | } |
18318 | } |
18319 | break; |
18320 | } |
18321 | case Stmt::ArraySubscriptExprClass: { |
18322 | auto *ASE = cast<ArraySubscriptExpr>(Val: E); |
18323 | return getAlignmentAndOffsetFromBinAddOrSub(PtrE: ASE->getBase(), IntE: ASE->getIdx(), |
18324 | IsSub: false, Ctx); |
18325 | } |
18326 | case Stmt::DeclRefExprClass: { |
18327 | if (auto *VD = dyn_cast<VarDecl>(Val: cast<DeclRefExpr>(Val: E)->getDecl())) { |
18328 | // FIXME: If VD is captured by copy or is an escaping __block variable, |
18329 | // use the alignment of VD's type. |
18330 | if (!VD->getType()->isReferenceType()) { |
18331 | // Dependent alignment cannot be resolved -> bail out. |
18332 | if (VD->hasDependentAlignment()) |
18333 | break; |
18334 | return std::make_pair(x: Ctx.getDeclAlign(VD), y: CharUnits::Zero()); |
18335 | } |
18336 | if (VD->hasInit()) |
18337 | return getBaseAlignmentAndOffsetFromLValue(E: VD->getInit(), Ctx); |
18338 | } |
18339 | break; |
18340 | } |
18341 | case Stmt::MemberExprClass: { |
18342 | auto *ME = cast<MemberExpr>(Val: E); |
18343 | auto *FD = dyn_cast<FieldDecl>(Val: ME->getMemberDecl()); |
18344 | if (!FD || FD->getType()->isReferenceType() || |
18345 | FD->getParent()->isInvalidDecl()) |
18346 | break; |
18347 | std::optional<std::pair<CharUnits, CharUnits>> P; |
18348 | if (ME->isArrow()) |
18349 | P = getBaseAlignmentAndOffsetFromPtr(E: ME->getBase(), Ctx); |
18350 | else |
18351 | P = getBaseAlignmentAndOffsetFromLValue(E: ME->getBase(), Ctx); |
18352 | if (!P) |
18353 | break; |
18354 | const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(D: FD->getParent()); |
18355 | uint64_t Offset = Layout.getFieldOffset(FieldNo: FD->getFieldIndex()); |
18356 | return std::make_pair(x&: P->first, |
18357 | y: P->second + CharUnits::fromQuantity(Quantity: Offset)); |
18358 | } |
18359 | case Stmt::UnaryOperatorClass: { |
18360 | auto *UO = cast<UnaryOperator>(Val: E); |
18361 | switch (UO->getOpcode()) { |
18362 | default: |
18363 | break; |
18364 | case UO_Deref: |
18365 | return getBaseAlignmentAndOffsetFromPtr(E: UO->getSubExpr(), Ctx); |
18366 | } |
18367 | break; |
18368 | } |
18369 | case Stmt::BinaryOperatorClass: { |
18370 | auto *BO = cast<BinaryOperator>(Val: E); |
18371 | auto Opcode = BO->getOpcode(); |
18372 | switch (Opcode) { |
18373 | default: |
18374 | break; |
18375 | case BO_Comma: |
18376 | return getBaseAlignmentAndOffsetFromLValue(E: BO->getRHS(), Ctx); |
18377 | } |
18378 | break; |
18379 | } |
18380 | } |
18381 | return std::nullopt; |
18382 | } |
18383 | |
18384 | /// This helper function takes a pointer expression and returns the alignment of |
18385 | /// a VarDecl and a constant offset from the VarDecl. |
18386 | std::optional<std::pair< |
18387 | CharUnits, CharUnits>> static getBaseAlignmentAndOffsetFromPtr(const Expr |
18388 | *E, |
18389 | ASTContext |
18390 | &Ctx) { |
18391 | E = E->IgnoreParens(); |
18392 | switch (E->getStmtClass()) { |
18393 | default: |
18394 | break; |
18395 | case Stmt::CStyleCastExprClass: |
18396 | case Stmt::CXXStaticCastExprClass: |
18397 | case Stmt::ImplicitCastExprClass: { |
18398 | auto *CE = cast<CastExpr>(Val: E); |
18399 | const Expr *From = CE->getSubExpr(); |
18400 | switch (CE->getCastKind()) { |
18401 | default: |
18402 | break; |
18403 | case CK_NoOp: |
18404 | return getBaseAlignmentAndOffsetFromPtr(E: From, Ctx); |
18405 | case CK_ArrayToPointerDecay: |
18406 | return getBaseAlignmentAndOffsetFromLValue(E: From, Ctx); |
18407 | case CK_UncheckedDerivedToBase: |
18408 | case CK_DerivedToBase: { |
18409 | auto P = getBaseAlignmentAndOffsetFromPtr(E: From, Ctx); |
18410 | if (!P) |
18411 | break; |
18412 | return getDerivedToBaseAlignmentAndOffset( |
18413 | CE, DerivedType: From->getType()->getPointeeType(), BaseAlignment: P->first, Offset: P->second, Ctx); |
18414 | } |
18415 | } |
18416 | break; |
18417 | } |
18418 | case Stmt::CXXThisExprClass: { |
18419 | auto *RD = E->getType()->getPointeeType()->getAsCXXRecordDecl(); |
18420 | CharUnits Alignment = Ctx.getASTRecordLayout(RD).getNonVirtualAlignment(); |
18421 | return std::make_pair(x&: Alignment, y: CharUnits::Zero()); |
18422 | } |
18423 | case Stmt::UnaryOperatorClass: { |
18424 | auto *UO = cast<UnaryOperator>(Val: E); |
18425 | if (UO->getOpcode() == UO_AddrOf) |
18426 | return getBaseAlignmentAndOffsetFromLValue(E: UO->getSubExpr(), Ctx); |
18427 | break; |
18428 | } |
18429 | case Stmt::BinaryOperatorClass: { |
18430 | auto *BO = cast<BinaryOperator>(Val: E); |
18431 | auto Opcode = BO->getOpcode(); |
18432 | switch (Opcode) { |
18433 | default: |
18434 | break; |
18435 | case BO_Add: |
18436 | case BO_Sub: { |
18437 | const Expr *LHS = BO->getLHS(), *RHS = BO->getRHS(); |
18438 | if (Opcode == BO_Add && !RHS->getType()->isIntegralOrEnumerationType()) |
18439 | std::swap(a&: LHS, b&: RHS); |
18440 | return getAlignmentAndOffsetFromBinAddOrSub(PtrE: LHS, IntE: RHS, IsSub: Opcode == BO_Sub, |
18441 | Ctx); |
18442 | } |
18443 | case BO_Comma: |
18444 | return getBaseAlignmentAndOffsetFromPtr(E: BO->getRHS(), Ctx); |
18445 | } |
18446 | break; |
18447 | } |
18448 | } |
18449 | return std::nullopt; |
18450 | } |
18451 | |
18452 | static CharUnits getPresumedAlignmentOfPointer(const Expr *E, Sema &S) { |
18453 | // See if we can compute the alignment of a VarDecl and an offset from it. |
18454 | std::optional<std::pair<CharUnits, CharUnits>> P = |
18455 | getBaseAlignmentAndOffsetFromPtr(E, Ctx&: S.Context); |
18456 | |
18457 | if (P) |
18458 | return P->first.alignmentAtOffset(offset: P->second); |
18459 | |
18460 | // If that failed, return the type's alignment. |
18461 | return S.Context.getTypeAlignInChars(T: E->getType()->getPointeeType()); |
18462 | } |
18463 | |
18464 | /// CheckCastAlign - Implements -Wcast-align, which warns when a |
18465 | /// pointer cast increases the alignment requirements. |
18466 | void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) { |
18467 | // This is actually a lot of work to potentially be doing on every |
18468 | // cast; don't do it if we're ignoring -Wcast_align (as is the default). |
18469 | if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin())) |
18470 | return; |
18471 | |
18472 | // Ignore dependent types. |
18473 | if (T->isDependentType() || Op->getType()->isDependentType()) |
18474 | return; |
18475 | |
18476 | // Require that the destination be a pointer type. |
18477 | const PointerType *DestPtr = T->getAs<PointerType>(); |
18478 | if (!DestPtr) return; |
18479 | |
18480 | // If the destination has alignment 1, we're done. |
18481 | QualType DestPointee = DestPtr->getPointeeType(); |
18482 | if (DestPointee->isIncompleteType()) return; |
18483 | CharUnits DestAlign = Context.getTypeAlignInChars(T: DestPointee); |
18484 | if (DestAlign.isOne()) return; |
18485 | |
18486 | // Require that the source be a pointer type. |
18487 | const PointerType *SrcPtr = Op->getType()->getAs<PointerType>(); |
18488 | if (!SrcPtr) return; |
18489 | QualType SrcPointee = SrcPtr->getPointeeType(); |
18490 | |
18491 | // Explicitly allow casts from cv void*. We already implicitly |
18492 | // allowed casts to cv void*, since they have alignment 1. |
18493 | // Also allow casts involving incomplete types, which implicitly |
18494 | // includes 'void'. |
18495 | if (SrcPointee->isIncompleteType()) return; |
18496 | |
18497 | CharUnits SrcAlign = getPresumedAlignmentOfPointer(E: Op, S&: *this); |
18498 | |
18499 | if (SrcAlign >= DestAlign) return; |
18500 | |
18501 | Diag(TRange.getBegin(), diag::warn_cast_align) |
18502 | << Op->getType() << T |
18503 | << static_cast<unsigned>(SrcAlign.getQuantity()) |
18504 | << static_cast<unsigned>(DestAlign.getQuantity()) |
18505 | << TRange << Op->getSourceRange(); |
18506 | } |
18507 | |
18508 | void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr, |
18509 | const ArraySubscriptExpr *ASE, |
18510 | bool AllowOnePastEnd, bool IndexNegated) { |
18511 | // Already diagnosed by the constant evaluator. |
18512 | if (isConstantEvaluatedContext()) |
18513 | return; |
18514 | |
18515 | IndexExpr = IndexExpr->IgnoreParenImpCasts(); |
18516 | if (IndexExpr->isValueDependent()) |
18517 | return; |
18518 | |
18519 | const Type *EffectiveType = |
18520 | BaseExpr->getType()->getPointeeOrArrayElementType(); |
18521 | BaseExpr = BaseExpr->IgnoreParenCasts(); |
18522 | const ConstantArrayType *ArrayTy = |
18523 | Context.getAsConstantArrayType(T: BaseExpr->getType()); |
18524 | |
18525 | LangOptions::StrictFlexArraysLevelKind |
18526 | StrictFlexArraysLevel = getLangOpts().getStrictFlexArraysLevel(); |
18527 | |
18528 | const Type *BaseType = |
18529 | ArrayTy == nullptr ? nullptr : ArrayTy->getElementType().getTypePtr(); |
18530 | bool IsUnboundedArray = |
18531 | BaseType == nullptr || BaseExpr->isFlexibleArrayMemberLike( |
18532 | Context, StrictFlexArraysLevel, |
18533 | /*IgnoreTemplateOrMacroSubstitution=*/true); |
18534 | if (EffectiveType->isDependentType() || |
18535 | (!IsUnboundedArray && BaseType->isDependentType())) |
18536 | return; |
18537 | |
18538 | Expr::EvalResult Result; |
18539 | if (!IndexExpr->EvaluateAsInt(Result, Ctx: Context, AllowSideEffects: Expr::SE_AllowSideEffects)) |
18540 | return; |
18541 | |
18542 | llvm::APSInt index = Result.Val.getInt(); |
18543 | if (IndexNegated) { |
18544 | index.setIsUnsigned(false); |
18545 | index = -index; |
18546 | } |
18547 | |
18548 | if (IsUnboundedArray) { |
18549 | if (EffectiveType->isFunctionType()) |
18550 | return; |
18551 | if (index.isUnsigned() || !index.isNegative()) { |
18552 | const auto &ASTC = getASTContext(); |
18553 | unsigned AddrBits = ASTC.getTargetInfo().getPointerWidth( |
18554 | AddrSpace: EffectiveType->getCanonicalTypeInternal().getAddressSpace()); |
18555 | if (index.getBitWidth() < AddrBits) |
18556 | index = index.zext(width: AddrBits); |
18557 | std::optional<CharUnits> ElemCharUnits = |
18558 | ASTC.getTypeSizeInCharsIfKnown(Ty: EffectiveType); |
18559 | // PR50741 - If EffectiveType has unknown size (e.g., if it's a void |
18560 | // pointer) bounds-checking isn't meaningful. |
18561 | if (!ElemCharUnits || ElemCharUnits->isZero()) |
18562 | return; |
18563 | llvm::APInt ElemBytes(index.getBitWidth(), ElemCharUnits->getQuantity()); |
18564 | // If index has more active bits than address space, we already know |
18565 | // we have a bounds violation to warn about. Otherwise, compute |
18566 | // address of (index + 1)th element, and warn about bounds violation |
18567 | // only if that address exceeds address space. |
18568 | if (index.getActiveBits() <= AddrBits) { |
18569 | bool Overflow; |
18570 | llvm::APInt Product(index); |
18571 | Product += 1; |
18572 | Product = Product.umul_ov(RHS: ElemBytes, Overflow); |
18573 | if (!Overflow && Product.getActiveBits() <= AddrBits) |
18574 | return; |
18575 | } |
18576 | |
18577 | // Need to compute max possible elements in address space, since that |
18578 | // is included in diag message. |
18579 | llvm::APInt MaxElems = llvm::APInt::getMaxValue(numBits: AddrBits); |
18580 | MaxElems = MaxElems.zext(width: std::max(a: AddrBits + 1, b: ElemBytes.getBitWidth())); |
18581 | MaxElems += 1; |
18582 | ElemBytes = ElemBytes.zextOrTrunc(width: MaxElems.getBitWidth()); |
18583 | MaxElems = MaxElems.udiv(RHS: ElemBytes); |
18584 | |
18585 | unsigned DiagID = |
18586 | ASE ? diag::warn_array_index_exceeds_max_addressable_bounds |
18587 | : diag::warn_ptr_arith_exceeds_max_addressable_bounds; |
18588 | |
18589 | // Diag message shows element size in bits and in "bytes" (platform- |
18590 | // dependent CharUnits) |
18591 | DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr, |
18592 | PDiag(DiagID) |
18593 | << toString(I: index, Radix: 10, Signed: true) << AddrBits |
18594 | << (unsigned)ASTC.toBits(CharSize: *ElemCharUnits) |
18595 | << toString(I: ElemBytes, Radix: 10, Signed: false) |
18596 | << toString(I: MaxElems, Radix: 10, Signed: false) |
18597 | << (unsigned)MaxElems.getLimitedValue(Limit: ~0U) |
18598 | << IndexExpr->getSourceRange()); |
18599 | |
18600 | const NamedDecl *ND = nullptr; |
18601 | // Try harder to find a NamedDecl to point at in the note. |
18602 | while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Val: BaseExpr)) |
18603 | BaseExpr = ASE->getBase()->IgnoreParenCasts(); |
18604 | if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: BaseExpr)) |
18605 | ND = DRE->getDecl(); |
18606 | if (const auto *ME = dyn_cast<MemberExpr>(Val: BaseExpr)) |
18607 | ND = ME->getMemberDecl(); |
18608 | |
18609 | if (ND) |
18610 | DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr, |
18611 | PDiag(diag::note_array_declared_here) << ND); |
18612 | } |
18613 | return; |
18614 | } |
18615 | |
18616 | if (index.isUnsigned() || !index.isNegative()) { |
18617 | // It is possible that the type of the base expression after |
18618 | // IgnoreParenCasts is incomplete, even though the type of the base |
18619 | // expression before IgnoreParenCasts is complete (see PR39746 for an |
18620 | // example). In this case we have no information about whether the array |
18621 | // access exceeds the array bounds. However we can still diagnose an array |
18622 | // access which precedes the array bounds. |
18623 | if (BaseType->isIncompleteType()) |
18624 | return; |
18625 | |
18626 | llvm::APInt size = ArrayTy->getSize(); |
18627 | |
18628 | if (BaseType != EffectiveType) { |
18629 | // Make sure we're comparing apples to apples when comparing index to |
18630 | // size. |
18631 | uint64_t ptrarith_typesize = Context.getTypeSize(T: EffectiveType); |
18632 | uint64_t array_typesize = Context.getTypeSize(T: BaseType); |
18633 | |
18634 | // Handle ptrarith_typesize being zero, such as when casting to void*. |
18635 | // Use the size in bits (what "getTypeSize()" returns) rather than bytes. |
18636 | if (!ptrarith_typesize) |
18637 | ptrarith_typesize = Context.getCharWidth(); |
18638 | |
18639 | if (ptrarith_typesize != array_typesize) { |
18640 | // There's a cast to a different size type involved. |
18641 | uint64_t ratio = array_typesize / ptrarith_typesize; |
18642 | |
18643 | // TODO: Be smarter about handling cases where array_typesize is not a |
18644 | // multiple of ptrarith_typesize. |
18645 | if (ptrarith_typesize * ratio == array_typesize) |
18646 | size *= llvm::APInt(size.getBitWidth(), ratio); |
18647 | } |
18648 | } |
18649 | |
18650 | if (size.getBitWidth() > index.getBitWidth()) |
18651 | index = index.zext(width: size.getBitWidth()); |
18652 | else if (size.getBitWidth() < index.getBitWidth()) |
18653 | size = size.zext(width: index.getBitWidth()); |
18654 | |
18655 | // For array subscripting the index must be less than size, but for pointer |
18656 | // arithmetic also allow the index (offset) to be equal to size since |
18657 | // computing the next address after the end of the array is legal and |
18658 | // commonly done e.g. in C++ iterators and range-based for loops. |
18659 | if (AllowOnePastEnd ? index.ule(RHS: size) : index.ult(RHS: size)) |
18660 | return; |
18661 | |
18662 | // Suppress the warning if the subscript expression (as identified by the |
18663 | // ']' location) and the index expression are both from macro expansions |
18664 | // within a system header. |
18665 | if (ASE) { |
18666 | SourceLocation RBracketLoc = SourceMgr.getSpellingLoc( |
18667 | Loc: ASE->getRBracketLoc()); |
18668 | if (SourceMgr.isInSystemHeader(Loc: RBracketLoc)) { |
18669 | SourceLocation IndexLoc = |
18670 | SourceMgr.getSpellingLoc(Loc: IndexExpr->getBeginLoc()); |
18671 | if (SourceMgr.isWrittenInSameFile(Loc1: RBracketLoc, Loc2: IndexLoc)) |
18672 | return; |
18673 | } |
18674 | } |
18675 | |
18676 | unsigned DiagID = ASE ? diag::warn_array_index_exceeds_bounds |
18677 | : diag::warn_ptr_arith_exceeds_bounds; |
18678 | unsigned CastMsg = (!ASE || BaseType == EffectiveType) ? 0 : 1; |
18679 | QualType CastMsgTy = ASE ? ASE->getLHS()->getType() : QualType(); |
18680 | |
18681 | DiagRuntimeBehavior( |
18682 | BaseExpr->getBeginLoc(), BaseExpr, |
18683 | PDiag(DiagID) << toString(I: index, Radix: 10, Signed: true) << ArrayTy->desugar() |
18684 | << CastMsg << CastMsgTy << IndexExpr->getSourceRange()); |
18685 | } else { |
18686 | unsigned DiagID = diag::warn_array_index_precedes_bounds; |
18687 | if (!ASE) { |
18688 | DiagID = diag::warn_ptr_arith_precedes_bounds; |
18689 | if (index.isNegative()) index = -index; |
18690 | } |
18691 | |
18692 | DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr, |
18693 | PDiag(DiagID) << toString(I: index, Radix: 10, Signed: true) |
18694 | << IndexExpr->getSourceRange()); |
18695 | } |
18696 | |
18697 | const NamedDecl *ND = nullptr; |
18698 | // Try harder to find a NamedDecl to point at in the note. |
18699 | while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Val: BaseExpr)) |
18700 | BaseExpr = ASE->getBase()->IgnoreParenCasts(); |
18701 | if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: BaseExpr)) |
18702 | ND = DRE->getDecl(); |
18703 | if (const auto *ME = dyn_cast<MemberExpr>(Val: BaseExpr)) |
18704 | ND = ME->getMemberDecl(); |
18705 | |
18706 | if (ND) |
18707 | DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr, |
18708 | PDiag(diag::note_array_declared_here) << ND); |
18709 | } |
18710 | |
18711 | void Sema::CheckArrayAccess(const Expr *expr) { |
18712 | int AllowOnePastEnd = 0; |
18713 | while (expr) { |
18714 | expr = expr->IgnoreParenImpCasts(); |
18715 | switch (expr->getStmtClass()) { |
18716 | case Stmt::ArraySubscriptExprClass: { |
18717 | const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Val: expr); |
18718 | CheckArrayAccess(BaseExpr: ASE->getBase(), IndexExpr: ASE->getIdx(), ASE, |
18719 | AllowOnePastEnd: AllowOnePastEnd > 0); |
18720 | expr = ASE->getBase(); |
18721 | break; |
18722 | } |
18723 | case Stmt::MemberExprClass: { |
18724 | expr = cast<MemberExpr>(Val: expr)->getBase(); |
18725 | break; |
18726 | } |
18727 | case Stmt::OMPArraySectionExprClass: { |
18728 | const OMPArraySectionExpr *ASE = cast<OMPArraySectionExpr>(Val: expr); |
18729 | if (ASE->getLowerBound()) |
18730 | CheckArrayAccess(BaseExpr: ASE->getBase(), IndexExpr: ASE->getLowerBound(), |
18731 | /*ASE=*/nullptr, AllowOnePastEnd: AllowOnePastEnd > 0); |
18732 | return; |
18733 | } |
18734 | case Stmt::UnaryOperatorClass: { |
18735 | // Only unwrap the * and & unary operators |
18736 | const UnaryOperator *UO = cast<UnaryOperator>(Val: expr); |
18737 | expr = UO->getSubExpr(); |
18738 | switch (UO->getOpcode()) { |
18739 | case UO_AddrOf: |
18740 | AllowOnePastEnd++; |
18741 | break; |
18742 | case UO_Deref: |
18743 | AllowOnePastEnd--; |
18744 | break; |
18745 | default: |
18746 | return; |
18747 | } |
18748 | break; |
18749 | } |
18750 | case Stmt::ConditionalOperatorClass: { |
18751 | const ConditionalOperator *cond = cast<ConditionalOperator>(Val: expr); |
18752 | if (const Expr *lhs = cond->getLHS()) |
18753 | CheckArrayAccess(expr: lhs); |
18754 | if (const Expr *rhs = cond->getRHS()) |
18755 | CheckArrayAccess(expr: rhs); |
18756 | return; |
18757 | } |
18758 | case Stmt::CXXOperatorCallExprClass: { |
18759 | const auto *OCE = cast<CXXOperatorCallExpr>(Val: expr); |
18760 | for (const auto *Arg : OCE->arguments()) |
18761 | CheckArrayAccess(Arg); |
18762 | return; |
18763 | } |
18764 | default: |
18765 | return; |
18766 | } |
18767 | } |
18768 | } |
18769 | |
18770 | //===--- CHECK: Objective-C retain cycles ----------------------------------// |
18771 | |
18772 | namespace { |
18773 | |
18774 | struct RetainCycleOwner { |
18775 | VarDecl *Variable = nullptr; |
18776 | SourceRange Range; |
18777 | SourceLocation Loc; |
18778 | bool Indirect = false; |
18779 | |
18780 | RetainCycleOwner() = default; |
18781 | |
18782 | void setLocsFrom(Expr *e) { |
18783 | Loc = e->getExprLoc(); |
18784 | Range = e->getSourceRange(); |
18785 | } |
18786 | }; |
18787 | |
18788 | } // namespace |
18789 | |
18790 | /// Consider whether capturing the given variable can possibly lead to |
18791 | /// a retain cycle. |
18792 | static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) { |
18793 | // In ARC, it's captured strongly iff the variable has __strong |
18794 | // lifetime. In MRR, it's captured strongly if the variable is |
18795 | // __block and has an appropriate type. |
18796 | if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong) |
18797 | return false; |
18798 | |
18799 | owner.Variable = var; |
18800 | if (ref) |
18801 | owner.setLocsFrom(ref); |
18802 | return true; |
18803 | } |
18804 | |
18805 | static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) { |
18806 | while (true) { |
18807 | e = e->IgnoreParens(); |
18808 | if (CastExpr *cast = dyn_cast<CastExpr>(Val: e)) { |
18809 | switch (cast->getCastKind()) { |
18810 | case CK_BitCast: |
18811 | case CK_LValueBitCast: |
18812 | case CK_LValueToRValue: |
18813 | case CK_ARCReclaimReturnedObject: |
18814 | e = cast->getSubExpr(); |
18815 | continue; |
18816 | |
18817 | default: |
18818 | return false; |
18819 | } |
18820 | } |
18821 | |
18822 | if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(Val: e)) { |
18823 | ObjCIvarDecl *ivar = ref->getDecl(); |
18824 | if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong) |
18825 | return false; |
18826 | |
18827 | // Try to find a retain cycle in the base. |
18828 | if (!findRetainCycleOwner(S, e: ref->getBase(), owner)) |
18829 | return false; |
18830 | |
18831 | if (ref->isFreeIvar()) owner.setLocsFrom(ref); |
18832 | owner.Indirect = true; |
18833 | return true; |
18834 | } |
18835 | |
18836 | if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(Val: e)) { |
18837 | VarDecl *var = dyn_cast<VarDecl>(Val: ref->getDecl()); |
18838 | if (!var) return false; |
18839 | return considerVariable(var, ref, owner); |
18840 | } |
18841 | |
18842 | if (MemberExpr *member = dyn_cast<MemberExpr>(Val: e)) { |
18843 | if (member->isArrow()) return false; |
18844 | |
18845 | // Don't count this as an indirect ownership. |
18846 | e = member->getBase(); |
18847 | continue; |
18848 | } |
18849 | |
18850 | if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(Val: e)) { |
18851 | // Only pay attention to pseudo-objects on property references. |
18852 | ObjCPropertyRefExpr *pre |
18853 | = dyn_cast<ObjCPropertyRefExpr>(Val: pseudo->getSyntacticForm() |
18854 | ->IgnoreParens()); |
18855 | if (!pre) return false; |
18856 | if (pre->isImplicitProperty()) return false; |
18857 | ObjCPropertyDecl *property = pre->getExplicitProperty(); |
18858 | if (!property->isRetaining() && |
18859 | !(property->getPropertyIvarDecl() && |
18860 | property->getPropertyIvarDecl()->getType() |
18861 | .getObjCLifetime() == Qualifiers::OCL_Strong)) |
18862 | return false; |
18863 | |
18864 | owner.Indirect = true; |
18865 | if (pre->isSuperReceiver()) { |
18866 | owner.Variable = S.getCurMethodDecl()->getSelfDecl(); |
18867 | if (!owner.Variable) |
18868 | return false; |
18869 | owner.Loc = pre->getLocation(); |
18870 | owner.Range = pre->getSourceRange(); |
18871 | return true; |
18872 | } |
18873 | e = const_cast<Expr*>(cast<OpaqueValueExpr>(Val: pre->getBase()) |
18874 | ->getSourceExpr()); |
18875 | continue; |
18876 | } |
18877 | |
18878 | // Array ivars? |
18879 | |
18880 | return false; |
18881 | } |
18882 | } |
18883 | |
18884 | namespace { |
18885 | |
18886 | struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> { |
18887 | VarDecl *Variable; |
18888 | Expr *Capturer = nullptr; |
18889 | bool VarWillBeReased = false; |
18890 | |
18891 | FindCaptureVisitor(ASTContext &Context, VarDecl *variable) |
18892 | : EvaluatedExprVisitor<FindCaptureVisitor>(Context), |
18893 | Variable(variable) {} |
18894 | |
18895 | void VisitDeclRefExpr(DeclRefExpr *ref) { |
18896 | if (ref->getDecl() == Variable && !Capturer) |
18897 | Capturer = ref; |
18898 | } |
18899 | |
18900 | void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) { |
18901 | if (Capturer) return; |
18902 | Visit(ref->getBase()); |
18903 | if (Capturer && ref->isFreeIvar()) |
18904 | Capturer = ref; |
18905 | } |
18906 | |
18907 | void VisitBlockExpr(BlockExpr *block) { |
18908 | // Look inside nested blocks |
18909 | if (block->getBlockDecl()->capturesVariable(var: Variable)) |
18910 | Visit(S: block->getBlockDecl()->getBody()); |
18911 | } |
18912 | |
18913 | void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) { |
18914 | if (Capturer) return; |
18915 | if (OVE->getSourceExpr()) |
18916 | Visit(OVE->getSourceExpr()); |
18917 | } |
18918 | |
18919 | void VisitBinaryOperator(BinaryOperator *BinOp) { |
18920 | if (!Variable || VarWillBeReased || BinOp->getOpcode() != BO_Assign) |
18921 | return; |
18922 | Expr *LHS = BinOp->getLHS(); |
18923 | if (const DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(Val: LHS)) { |
18924 | if (DRE->getDecl() != Variable) |
18925 | return; |
18926 | if (Expr *RHS = BinOp->getRHS()) { |
18927 | RHS = RHS->IgnoreParenCasts(); |
18928 | std::optional<llvm::APSInt> Value; |
18929 | VarWillBeReased = |
18930 | (RHS && (Value = RHS->getIntegerConstantExpr(Ctx: Context)) && |
18931 | *Value == 0); |
18932 | } |
18933 | } |
18934 | } |
18935 | }; |
18936 | |
18937 | } // namespace |
18938 | |
18939 | /// Check whether the given argument is a block which captures a |
18940 | /// variable. |
18941 | static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) { |
18942 | assert(owner.Variable && owner.Loc.isValid()); |
18943 | |
18944 | e = e->IgnoreParenCasts(); |
18945 | |
18946 | // Look through [^{...} copy] and Block_copy(^{...}). |
18947 | if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Val: e)) { |
18948 | Selector Cmd = ME->getSelector(); |
18949 | if (Cmd.isUnarySelector() && Cmd.getNameForSlot(argIndex: 0) == "copy" ) { |
18950 | e = ME->getInstanceReceiver(); |
18951 | if (!e) |
18952 | return nullptr; |
18953 | e = e->IgnoreParenCasts(); |
18954 | } |
18955 | } else if (CallExpr *CE = dyn_cast<CallExpr>(Val: e)) { |
18956 | if (CE->getNumArgs() == 1) { |
18957 | FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Val: CE->getCalleeDecl()); |
18958 | if (Fn) { |
18959 | const IdentifierInfo *FnI = Fn->getIdentifier(); |
18960 | if (FnI && FnI->isStr(Str: "_Block_copy" )) { |
18961 | e = CE->getArg(Arg: 0)->IgnoreParenCasts(); |
18962 | } |
18963 | } |
18964 | } |
18965 | } |
18966 | |
18967 | BlockExpr *block = dyn_cast<BlockExpr>(Val: e); |
18968 | if (!block || !block->getBlockDecl()->capturesVariable(var: owner.Variable)) |
18969 | return nullptr; |
18970 | |
18971 | FindCaptureVisitor visitor(S.Context, owner.Variable); |
18972 | visitor.Visit(S: block->getBlockDecl()->getBody()); |
18973 | return visitor.VarWillBeReased ? nullptr : visitor.Capturer; |
18974 | } |
18975 | |
18976 | static void diagnoseRetainCycle(Sema &S, Expr *capturer, |
18977 | RetainCycleOwner &owner) { |
18978 | assert(capturer); |
18979 | assert(owner.Variable && owner.Loc.isValid()); |
18980 | |
18981 | S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle) |
18982 | << owner.Variable << capturer->getSourceRange(); |
18983 | S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner) |
18984 | << owner.Indirect << owner.Range; |
18985 | } |
18986 | |
18987 | /// Check for a keyword selector that starts with the word 'add' or |
18988 | /// 'set'. |
18989 | static bool isSetterLikeSelector(Selector sel) { |
18990 | if (sel.isUnarySelector()) return false; |
18991 | |
18992 | StringRef str = sel.getNameForSlot(argIndex: 0); |
18993 | str = str.ltrim(Char: '_'); |
18994 | if (str.starts_with(Prefix: "set" )) |
18995 | str = str.substr(Start: 3); |
18996 | else if (str.starts_with(Prefix: "add" )) { |
18997 | // Specially allow 'addOperationWithBlock:'. |
18998 | if (sel.getNumArgs() == 1 && str.starts_with(Prefix: "addOperationWithBlock" )) |
18999 | return false; |
19000 | str = str.substr(Start: 3); |
19001 | } else |
19002 | return false; |
19003 | |
19004 | if (str.empty()) return true; |
19005 | return !isLowercase(c: str.front()); |
19006 | } |
19007 | |
19008 | static std::optional<int> |
19009 | GetNSMutableArrayArgumentIndex(Sema &S, ObjCMessageExpr *Message) { |
19010 | bool IsMutableArray = S.NSAPIObj->isSubclassOfNSClass( |
19011 | InterfaceDecl: Message->getReceiverInterface(), |
19012 | NSClassKind: NSAPI::ClassId_NSMutableArray); |
19013 | if (!IsMutableArray) { |
19014 | return std::nullopt; |
19015 | } |
19016 | |
19017 | Selector Sel = Message->getSelector(); |
19018 | |
19019 | std::optional<NSAPI::NSArrayMethodKind> MKOpt = |
19020 | S.NSAPIObj->getNSArrayMethodKind(Sel); |
19021 | if (!MKOpt) { |
19022 | return std::nullopt; |
19023 | } |
19024 | |
19025 | NSAPI::NSArrayMethodKind MK = *MKOpt; |
19026 | |
19027 | switch (MK) { |
19028 | case NSAPI::NSMutableArr_addObject: |
19029 | case NSAPI::NSMutableArr_insertObjectAtIndex: |
19030 | case NSAPI::NSMutableArr_setObjectAtIndexedSubscript: |
19031 | return 0; |
19032 | case NSAPI::NSMutableArr_replaceObjectAtIndex: |
19033 | return 1; |
19034 | |
19035 | default: |
19036 | return std::nullopt; |
19037 | } |
19038 | |
19039 | return std::nullopt; |
19040 | } |
19041 | |
19042 | static std::optional<int> |
19043 | GetNSMutableDictionaryArgumentIndex(Sema &S, ObjCMessageExpr *Message) { |
19044 | bool IsMutableDictionary = S.NSAPIObj->isSubclassOfNSClass( |
19045 | InterfaceDecl: Message->getReceiverInterface(), |
19046 | NSClassKind: NSAPI::ClassId_NSMutableDictionary); |
19047 | if (!IsMutableDictionary) { |
19048 | return std::nullopt; |
19049 | } |
19050 | |
19051 | Selector Sel = Message->getSelector(); |
19052 | |
19053 | std::optional<NSAPI::NSDictionaryMethodKind> MKOpt = |
19054 | S.NSAPIObj->getNSDictionaryMethodKind(Sel); |
19055 | if (!MKOpt) { |
19056 | return std::nullopt; |
19057 | } |
19058 | |
19059 | NSAPI::NSDictionaryMethodKind MK = *MKOpt; |
19060 | |
19061 | switch (MK) { |
19062 | case NSAPI::NSMutableDict_setObjectForKey: |
19063 | case NSAPI::NSMutableDict_setValueForKey: |
19064 | case NSAPI::NSMutableDict_setObjectForKeyedSubscript: |
19065 | return 0; |
19066 | |
19067 | default: |
19068 | return std::nullopt; |
19069 | } |
19070 | |
19071 | return std::nullopt; |
19072 | } |
19073 | |
19074 | static std::optional<int> GetNSSetArgumentIndex(Sema &S, |
19075 | ObjCMessageExpr *Message) { |
19076 | bool IsMutableSet = S.NSAPIObj->isSubclassOfNSClass( |
19077 | InterfaceDecl: Message->getReceiverInterface(), |
19078 | NSClassKind: NSAPI::ClassId_NSMutableSet); |
19079 | |
19080 | bool IsMutableOrderedSet = S.NSAPIObj->isSubclassOfNSClass( |
19081 | InterfaceDecl: Message->getReceiverInterface(), |
19082 | NSClassKind: NSAPI::ClassId_NSMutableOrderedSet); |
19083 | if (!IsMutableSet && !IsMutableOrderedSet) { |
19084 | return std::nullopt; |
19085 | } |
19086 | |
19087 | Selector Sel = Message->getSelector(); |
19088 | |
19089 | std::optional<NSAPI::NSSetMethodKind> MKOpt = |
19090 | S.NSAPIObj->getNSSetMethodKind(Sel); |
19091 | if (!MKOpt) { |
19092 | return std::nullopt; |
19093 | } |
19094 | |
19095 | NSAPI::NSSetMethodKind MK = *MKOpt; |
19096 | |
19097 | switch (MK) { |
19098 | case NSAPI::NSMutableSet_addObject: |
19099 | case NSAPI::NSOrderedSet_setObjectAtIndex: |
19100 | case NSAPI::NSOrderedSet_setObjectAtIndexedSubscript: |
19101 | case NSAPI::NSOrderedSet_insertObjectAtIndex: |
19102 | return 0; |
19103 | case NSAPI::NSOrderedSet_replaceObjectAtIndexWithObject: |
19104 | return 1; |
19105 | } |
19106 | |
19107 | return std::nullopt; |
19108 | } |
19109 | |
19110 | void Sema::CheckObjCCircularContainer(ObjCMessageExpr *Message) { |
19111 | if (!Message->isInstanceMessage()) { |
19112 | return; |
19113 | } |
19114 | |
19115 | std::optional<int> ArgOpt; |
19116 | |
19117 | if (!(ArgOpt = GetNSMutableArrayArgumentIndex(S&: *this, Message)) && |
19118 | !(ArgOpt = GetNSMutableDictionaryArgumentIndex(S&: *this, Message)) && |
19119 | !(ArgOpt = GetNSSetArgumentIndex(S&: *this, Message))) { |
19120 | return; |
19121 | } |
19122 | |
19123 | int ArgIndex = *ArgOpt; |
19124 | |
19125 | Expr *Arg = Message->getArg(Arg: ArgIndex)->IgnoreImpCasts(); |
19126 | if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Val: Arg)) { |
19127 | Arg = OE->getSourceExpr()->IgnoreImpCasts(); |
19128 | } |
19129 | |
19130 | if (Message->getReceiverKind() == ObjCMessageExpr::SuperInstance) { |
19131 | if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Val: Arg)) { |
19132 | if (ArgRE->isObjCSelfExpr()) { |
19133 | Diag(Message->getSourceRange().getBegin(), |
19134 | diag::warn_objc_circular_container) |
19135 | << ArgRE->getDecl() << StringRef("'super'" ); |
19136 | } |
19137 | } |
19138 | } else { |
19139 | Expr *Receiver = Message->getInstanceReceiver()->IgnoreImpCasts(); |
19140 | |
19141 | if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Val: Receiver)) { |
19142 | Receiver = OE->getSourceExpr()->IgnoreImpCasts(); |
19143 | } |
19144 | |
19145 | if (DeclRefExpr *ReceiverRE = dyn_cast<DeclRefExpr>(Val: Receiver)) { |
19146 | if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Val: Arg)) { |
19147 | if (ReceiverRE->getDecl() == ArgRE->getDecl()) { |
19148 | ValueDecl *Decl = ReceiverRE->getDecl(); |
19149 | Diag(Message->getSourceRange().getBegin(), |
19150 | diag::warn_objc_circular_container) |
19151 | << Decl << Decl; |
19152 | if (!ArgRE->isObjCSelfExpr()) { |
19153 | Diag(Decl->getLocation(), |
19154 | diag::note_objc_circular_container_declared_here) |
19155 | << Decl; |
19156 | } |
19157 | } |
19158 | } |
19159 | } else if (ObjCIvarRefExpr *IvarRE = dyn_cast<ObjCIvarRefExpr>(Val: Receiver)) { |
19160 | if (ObjCIvarRefExpr *IvarArgRE = dyn_cast<ObjCIvarRefExpr>(Val: Arg)) { |
19161 | if (IvarRE->getDecl() == IvarArgRE->getDecl()) { |
19162 | ObjCIvarDecl *Decl = IvarRE->getDecl(); |
19163 | Diag(Message->getSourceRange().getBegin(), |
19164 | diag::warn_objc_circular_container) |
19165 | << Decl << Decl; |
19166 | Diag(Decl->getLocation(), |
19167 | diag::note_objc_circular_container_declared_here) |
19168 | << Decl; |
19169 | } |
19170 | } |
19171 | } |
19172 | } |
19173 | } |
19174 | |
19175 | /// Check a message send to see if it's likely to cause a retain cycle. |
19176 | void Sema::checkRetainCycles(ObjCMessageExpr *msg) { |
19177 | // Only check instance methods whose selector looks like a setter. |
19178 | if (!msg->isInstanceMessage() || !isSetterLikeSelector(sel: msg->getSelector())) |
19179 | return; |
19180 | |
19181 | // Try to find a variable that the receiver is strongly owned by. |
19182 | RetainCycleOwner owner; |
19183 | if (msg->getReceiverKind() == ObjCMessageExpr::Instance) { |
19184 | if (!findRetainCycleOwner(S&: *this, e: msg->getInstanceReceiver(), owner)) |
19185 | return; |
19186 | } else { |
19187 | assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance); |
19188 | owner.Variable = getCurMethodDecl()->getSelfDecl(); |
19189 | owner.Loc = msg->getSuperLoc(); |
19190 | owner.Range = msg->getSuperLoc(); |
19191 | } |
19192 | |
19193 | // Check whether the receiver is captured by any of the arguments. |
19194 | const ObjCMethodDecl *MD = msg->getMethodDecl(); |
19195 | for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i) { |
19196 | if (Expr *capturer = findCapturingExpr(S&: *this, e: msg->getArg(Arg: i), owner)) { |
19197 | // noescape blocks should not be retained by the method. |
19198 | if (MD && MD->parameters()[i]->hasAttr<NoEscapeAttr>()) |
19199 | continue; |
19200 | return diagnoseRetainCycle(S&: *this, capturer, owner); |
19201 | } |
19202 | } |
19203 | } |
19204 | |
19205 | /// Check a property assign to see if it's likely to cause a retain cycle. |
19206 | void Sema::checkRetainCycles(Expr *receiver, Expr *argument) { |
19207 | RetainCycleOwner owner; |
19208 | if (!findRetainCycleOwner(S&: *this, e: receiver, owner)) |
19209 | return; |
19210 | |
19211 | if (Expr *capturer = findCapturingExpr(S&: *this, e: argument, owner)) |
19212 | diagnoseRetainCycle(S&: *this, capturer, owner); |
19213 | } |
19214 | |
19215 | void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) { |
19216 | RetainCycleOwner Owner; |
19217 | if (!considerVariable(var: Var, /*DeclRefExpr=*/ref: nullptr, owner&: Owner)) |
19218 | return; |
19219 | |
19220 | // Because we don't have an expression for the variable, we have to set the |
19221 | // location explicitly here. |
19222 | Owner.Loc = Var->getLocation(); |
19223 | Owner.Range = Var->getSourceRange(); |
19224 | |
19225 | if (Expr *Capturer = findCapturingExpr(S&: *this, e: Init, owner&: Owner)) |
19226 | diagnoseRetainCycle(S&: *this, capturer: Capturer, owner&: Owner); |
19227 | } |
19228 | |
19229 | static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc, |
19230 | Expr *RHS, bool isProperty) { |
19231 | // Check if RHS is an Objective-C object literal, which also can get |
19232 | // immediately zapped in a weak reference. Note that we explicitly |
19233 | // allow ObjCStringLiterals, since those are designed to never really die. |
19234 | RHS = RHS->IgnoreParenImpCasts(); |
19235 | |
19236 | // This enum needs to match with the 'select' in |
19237 | // warn_objc_arc_literal_assign (off-by-1). |
19238 | Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(FromE: RHS); |
19239 | if (Kind == Sema::LK_String || Kind == Sema::LK_None) |
19240 | return false; |
19241 | |
19242 | S.Diag(Loc, diag::warn_arc_literal_assign) |
19243 | << (unsigned) Kind |
19244 | << (isProperty ? 0 : 1) |
19245 | << RHS->getSourceRange(); |
19246 | |
19247 | return true; |
19248 | } |
19249 | |
19250 | static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc, |
19251 | Qualifiers::ObjCLifetime LT, |
19252 | Expr *RHS, bool isProperty) { |
19253 | // Strip off any implicit cast added to get to the one ARC-specific. |
19254 | while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(Val: RHS)) { |
19255 | if (cast->getCastKind() == CK_ARCConsumeObject) { |
19256 | S.Diag(Loc, diag::warn_arc_retained_assign) |
19257 | << (LT == Qualifiers::OCL_ExplicitNone) |
19258 | << (isProperty ? 0 : 1) |
19259 | << RHS->getSourceRange(); |
19260 | return true; |
19261 | } |
19262 | RHS = cast->getSubExpr(); |
19263 | } |
19264 | |
19265 | if (LT == Qualifiers::OCL_Weak && |
19266 | checkUnsafeAssignLiteral(S, Loc, RHS, isProperty)) |
19267 | return true; |
19268 | |
19269 | return false; |
19270 | } |
19271 | |
19272 | bool Sema::checkUnsafeAssigns(SourceLocation Loc, |
19273 | QualType LHS, Expr *RHS) { |
19274 | Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime(); |
19275 | |
19276 | if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone) |
19277 | return false; |
19278 | |
19279 | if (checkUnsafeAssignObject(S&: *this, Loc, LT, RHS, isProperty: false)) |
19280 | return true; |
19281 | |
19282 | return false; |
19283 | } |
19284 | |
19285 | void Sema::checkUnsafeExprAssigns(SourceLocation Loc, |
19286 | Expr *LHS, Expr *RHS) { |
19287 | QualType LHSType; |
19288 | // PropertyRef on LHS type need be directly obtained from |
19289 | // its declaration as it has a PseudoType. |
19290 | ObjCPropertyRefExpr *PRE |
19291 | = dyn_cast<ObjCPropertyRefExpr>(Val: LHS->IgnoreParens()); |
19292 | if (PRE && !PRE->isImplicitProperty()) { |
19293 | const ObjCPropertyDecl *PD = PRE->getExplicitProperty(); |
19294 | if (PD) |
19295 | LHSType = PD->getType(); |
19296 | } |
19297 | |
19298 | if (LHSType.isNull()) |
19299 | LHSType = LHS->getType(); |
19300 | |
19301 | Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime(); |
19302 | |
19303 | if (LT == Qualifiers::OCL_Weak) { |
19304 | if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc)) |
19305 | getCurFunction()->markSafeWeakUse(E: LHS); |
19306 | } |
19307 | |
19308 | if (checkUnsafeAssigns(Loc, LHS: LHSType, RHS)) |
19309 | return; |
19310 | |
19311 | // FIXME. Check for other life times. |
19312 | if (LT != Qualifiers::OCL_None) |
19313 | return; |
19314 | |
19315 | if (PRE) { |
19316 | if (PRE->isImplicitProperty()) |
19317 | return; |
19318 | const ObjCPropertyDecl *PD = PRE->getExplicitProperty(); |
19319 | if (!PD) |
19320 | return; |
19321 | |
19322 | unsigned Attributes = PD->getPropertyAttributes(); |
19323 | if (Attributes & ObjCPropertyAttribute::kind_assign) { |
19324 | // when 'assign' attribute was not explicitly specified |
19325 | // by user, ignore it and rely on property type itself |
19326 | // for lifetime info. |
19327 | unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten(); |
19328 | if (!(AsWrittenAttr & ObjCPropertyAttribute::kind_assign) && |
19329 | LHSType->isObjCRetainableType()) |
19330 | return; |
19331 | |
19332 | while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(Val: RHS)) { |
19333 | if (cast->getCastKind() == CK_ARCConsumeObject) { |
19334 | Diag(Loc, diag::warn_arc_retained_property_assign) |
19335 | << RHS->getSourceRange(); |
19336 | return; |
19337 | } |
19338 | RHS = cast->getSubExpr(); |
19339 | } |
19340 | } else if (Attributes & ObjCPropertyAttribute::kind_weak) { |
19341 | if (checkUnsafeAssignObject(S&: *this, Loc, LT: Qualifiers::OCL_Weak, RHS, isProperty: true)) |
19342 | return; |
19343 | } |
19344 | } |
19345 | } |
19346 | |
19347 | //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===// |
19348 | |
19349 | static bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr, |
19350 | SourceLocation StmtLoc, |
19351 | const NullStmt *Body) { |
19352 | // Do not warn if the body is a macro that expands to nothing, e.g: |
19353 | // |
19354 | // #define CALL(x) |
19355 | // if (condition) |
19356 | // CALL(0); |
19357 | if (Body->hasLeadingEmptyMacro()) |
19358 | return false; |
19359 | |
19360 | // Get line numbers of statement and body. |
19361 | bool StmtLineInvalid; |
19362 | unsigned StmtLine = SourceMgr.getPresumedLineNumber(Loc: StmtLoc, |
19363 | Invalid: &StmtLineInvalid); |
19364 | if (StmtLineInvalid) |
19365 | return false; |
19366 | |
19367 | bool BodyLineInvalid; |
19368 | unsigned BodyLine = SourceMgr.getSpellingLineNumber(Loc: Body->getSemiLoc(), |
19369 | Invalid: &BodyLineInvalid); |
19370 | if (BodyLineInvalid) |
19371 | return false; |
19372 | |
19373 | // Warn if null statement and body are on the same line. |
19374 | if (StmtLine != BodyLine) |
19375 | return false; |
19376 | |
19377 | return true; |
19378 | } |
19379 | |
19380 | void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc, |
19381 | const Stmt *Body, |
19382 | unsigned DiagID) { |
19383 | // Since this is a syntactic check, don't emit diagnostic for template |
19384 | // instantiations, this just adds noise. |
19385 | if (CurrentInstantiationScope) |
19386 | return; |
19387 | |
19388 | // The body should be a null statement. |
19389 | const NullStmt *NBody = dyn_cast<NullStmt>(Val: Body); |
19390 | if (!NBody) |
19391 | return; |
19392 | |
19393 | // Do the usual checks. |
19394 | if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, Body: NBody)) |
19395 | return; |
19396 | |
19397 | Diag(NBody->getSemiLoc(), DiagID); |
19398 | Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line); |
19399 | } |
19400 | |
19401 | void Sema::DiagnoseEmptyLoopBody(const Stmt *S, |
19402 | const Stmt *PossibleBody) { |
19403 | assert(!CurrentInstantiationScope); // Ensured by caller |
19404 | |
19405 | SourceLocation StmtLoc; |
19406 | const Stmt *Body; |
19407 | unsigned DiagID; |
19408 | if (const ForStmt *FS = dyn_cast<ForStmt>(Val: S)) { |
19409 | StmtLoc = FS->getRParenLoc(); |
19410 | Body = FS->getBody(); |
19411 | DiagID = diag::warn_empty_for_body; |
19412 | } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Val: S)) { |
19413 | StmtLoc = WS->getRParenLoc(); |
19414 | Body = WS->getBody(); |
19415 | DiagID = diag::warn_empty_while_body; |
19416 | } else |
19417 | return; // Neither `for' nor `while'. |
19418 | |
19419 | // The body should be a null statement. |
19420 | const NullStmt *NBody = dyn_cast<NullStmt>(Val: Body); |
19421 | if (!NBody) |
19422 | return; |
19423 | |
19424 | // Skip expensive checks if diagnostic is disabled. |
19425 | if (Diags.isIgnored(DiagID, Loc: NBody->getSemiLoc())) |
19426 | return; |
19427 | |
19428 | // Do the usual checks. |
19429 | if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, Body: NBody)) |
19430 | return; |
19431 | |
19432 | // `for(...);' and `while(...);' are popular idioms, so in order to keep |
19433 | // noise level low, emit diagnostics only if for/while is followed by a |
19434 | // CompoundStmt, e.g.: |
19435 | // for (int i = 0; i < n; i++); |
19436 | // { |
19437 | // a(i); |
19438 | // } |
19439 | // or if for/while is followed by a statement with more indentation |
19440 | // than for/while itself: |
19441 | // for (int i = 0; i < n; i++); |
19442 | // a(i); |
19443 | bool ProbableTypo = isa<CompoundStmt>(Val: PossibleBody); |
19444 | if (!ProbableTypo) { |
19445 | bool BodyColInvalid; |
19446 | unsigned BodyCol = SourceMgr.getPresumedColumnNumber( |
19447 | Loc: PossibleBody->getBeginLoc(), Invalid: &BodyColInvalid); |
19448 | if (BodyColInvalid) |
19449 | return; |
19450 | |
19451 | bool StmtColInvalid; |
19452 | unsigned StmtCol = |
19453 | SourceMgr.getPresumedColumnNumber(Loc: S->getBeginLoc(), Invalid: &StmtColInvalid); |
19454 | if (StmtColInvalid) |
19455 | return; |
19456 | |
19457 | if (BodyCol > StmtCol) |
19458 | ProbableTypo = true; |
19459 | } |
19460 | |
19461 | if (ProbableTypo) { |
19462 | Diag(NBody->getSemiLoc(), DiagID); |
19463 | Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line); |
19464 | } |
19465 | } |
19466 | |
19467 | //===--- CHECK: Warn on self move with std::move. -------------------------===// |
19468 | |
19469 | /// DiagnoseSelfMove - Emits a warning if a value is moved to itself. |
19470 | void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr, |
19471 | SourceLocation OpLoc) { |
19472 | if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc)) |
19473 | return; |
19474 | |
19475 | if (inTemplateInstantiation()) |
19476 | return; |
19477 | |
19478 | // Strip parens and casts away. |
19479 | LHSExpr = LHSExpr->IgnoreParenImpCasts(); |
19480 | RHSExpr = RHSExpr->IgnoreParenImpCasts(); |
19481 | |
19482 | // Check for a call to std::move or for a static_cast<T&&>(..) to an xvalue |
19483 | // which we can treat as an inlined std::move |
19484 | if (const auto *CE = dyn_cast<CallExpr>(Val: RHSExpr); |
19485 | CE && CE->getNumArgs() == 1 && CE->isCallToStdMove()) |
19486 | RHSExpr = CE->getArg(Arg: 0); |
19487 | else if (const auto *CXXSCE = dyn_cast<CXXStaticCastExpr>(Val: RHSExpr); |
19488 | CXXSCE && CXXSCE->isXValue()) |
19489 | RHSExpr = CXXSCE->getSubExpr(); |
19490 | else |
19491 | return; |
19492 | |
19493 | const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(Val: LHSExpr); |
19494 | const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(Val: RHSExpr); |
19495 | |
19496 | // Two DeclRefExpr's, check that the decls are the same. |
19497 | if (LHSDeclRef && RHSDeclRef) { |
19498 | if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl()) |
19499 | return; |
19500 | if (LHSDeclRef->getDecl()->getCanonicalDecl() != |
19501 | RHSDeclRef->getDecl()->getCanonicalDecl()) |
19502 | return; |
19503 | |
19504 | auto D = Diag(OpLoc, diag::warn_self_move) |
19505 | << LHSExpr->getType() << LHSExpr->getSourceRange() |
19506 | << RHSExpr->getSourceRange(); |
19507 | if (const FieldDecl *F = |
19508 | getSelfAssignmentClassMemberCandidate(SelfAssigned: RHSDeclRef->getDecl())) |
19509 | D << 1 << F |
19510 | << FixItHint::CreateInsertion(InsertionLoc: LHSDeclRef->getBeginLoc(), Code: "this->" ); |
19511 | else |
19512 | D << 0; |
19513 | return; |
19514 | } |
19515 | |
19516 | // Member variables require a different approach to check for self moves. |
19517 | // MemberExpr's are the same if every nested MemberExpr refers to the same |
19518 | // Decl and that the base Expr's are DeclRefExpr's with the same Decl or |
19519 | // the base Expr's are CXXThisExpr's. |
19520 | const Expr *LHSBase = LHSExpr; |
19521 | const Expr *RHSBase = RHSExpr; |
19522 | const MemberExpr *LHSME = dyn_cast<MemberExpr>(Val: LHSExpr); |
19523 | const MemberExpr *RHSME = dyn_cast<MemberExpr>(Val: RHSExpr); |
19524 | if (!LHSME || !RHSME) |
19525 | return; |
19526 | |
19527 | while (LHSME && RHSME) { |
19528 | if (LHSME->getMemberDecl()->getCanonicalDecl() != |
19529 | RHSME->getMemberDecl()->getCanonicalDecl()) |
19530 | return; |
19531 | |
19532 | LHSBase = LHSME->getBase(); |
19533 | RHSBase = RHSME->getBase(); |
19534 | LHSME = dyn_cast<MemberExpr>(Val: LHSBase); |
19535 | RHSME = dyn_cast<MemberExpr>(Val: RHSBase); |
19536 | } |
19537 | |
19538 | LHSDeclRef = dyn_cast<DeclRefExpr>(Val: LHSBase); |
19539 | RHSDeclRef = dyn_cast<DeclRefExpr>(Val: RHSBase); |
19540 | if (LHSDeclRef && RHSDeclRef) { |
19541 | if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl()) |
19542 | return; |
19543 | if (LHSDeclRef->getDecl()->getCanonicalDecl() != |
19544 | RHSDeclRef->getDecl()->getCanonicalDecl()) |
19545 | return; |
19546 | |
19547 | Diag(OpLoc, diag::warn_self_move) |
19548 | << LHSExpr->getType() << 0 << LHSExpr->getSourceRange() |
19549 | << RHSExpr->getSourceRange(); |
19550 | return; |
19551 | } |
19552 | |
19553 | if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase)) |
19554 | Diag(OpLoc, diag::warn_self_move) |
19555 | << LHSExpr->getType() << 0 << LHSExpr->getSourceRange() |
19556 | << RHSExpr->getSourceRange(); |
19557 | } |
19558 | |
19559 | //===--- Layout compatibility ----------------------------------------------// |
19560 | |
19561 | static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2); |
19562 | |
19563 | /// Check if two enumeration types are layout-compatible. |
19564 | static bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) { |
19565 | // C++11 [dcl.enum] p8: |
19566 | // Two enumeration types are layout-compatible if they have the same |
19567 | // underlying type. |
19568 | return ED1->isComplete() && ED2->isComplete() && |
19569 | C.hasSameType(T1: ED1->getIntegerType(), T2: ED2->getIntegerType()); |
19570 | } |
19571 | |
19572 | /// Check if two fields are layout-compatible. |
19573 | /// Can be used on union members, which are exempt from alignment requirement |
19574 | /// of common initial sequence. |
19575 | static bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1, |
19576 | FieldDecl *Field2, |
19577 | bool AreUnionMembers = false) { |
19578 | [[maybe_unused]] const Type *Field1Parent = |
19579 | Field1->getParent()->getTypeForDecl(); |
19580 | [[maybe_unused]] const Type *Field2Parent = |
19581 | Field2->getParent()->getTypeForDecl(); |
19582 | assert(((Field1Parent->isStructureOrClassType() && |
19583 | Field2Parent->isStructureOrClassType()) || |
19584 | (Field1Parent->isUnionType() && Field2Parent->isUnionType())) && |
19585 | "Can't evaluate layout compatibility between a struct field and a " |
19586 | "union field." ); |
19587 | assert(((!AreUnionMembers && Field1Parent->isStructureOrClassType()) || |
19588 | (AreUnionMembers && Field1Parent->isUnionType())) && |
19589 | "AreUnionMembers should be 'true' for union fields (only)." ); |
19590 | |
19591 | if (!isLayoutCompatible(C, Field1->getType(), Field2->getType())) |
19592 | return false; |
19593 | |
19594 | if (Field1->isBitField() != Field2->isBitField()) |
19595 | return false; |
19596 | |
19597 | if (Field1->isBitField()) { |
19598 | // Make sure that the bit-fields are the same length. |
19599 | unsigned Bits1 = Field1->getBitWidthValue(Ctx: C); |
19600 | unsigned Bits2 = Field2->getBitWidthValue(Ctx: C); |
19601 | |
19602 | if (Bits1 != Bits2) |
19603 | return false; |
19604 | } |
19605 | |
19606 | if (Field1->hasAttr<clang::NoUniqueAddressAttr>() || |
19607 | Field2->hasAttr<clang::NoUniqueAddressAttr>()) |
19608 | return false; |
19609 | |
19610 | if (!AreUnionMembers && |
19611 | Field1->getMaxAlignment() != Field2->getMaxAlignment()) |
19612 | return false; |
19613 | |
19614 | return true; |
19615 | } |
19616 | |
19617 | /// Check if two standard-layout structs are layout-compatible. |
19618 | /// (C++11 [class.mem] p17) |
19619 | static bool isLayoutCompatibleStruct(ASTContext &C, RecordDecl *RD1, |
19620 | RecordDecl *RD2) { |
19621 | // If both records are C++ classes, check that base classes match. |
19622 | if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(Val: RD1)) { |
19623 | // If one of records is a CXXRecordDecl we are in C++ mode, |
19624 | // thus the other one is a CXXRecordDecl, too. |
19625 | const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(Val: RD2); |
19626 | // Check number of base classes. |
19627 | if (D1CXX->getNumBases() != D2CXX->getNumBases()) |
19628 | return false; |
19629 | |
19630 | // Check the base classes. |
19631 | for (CXXRecordDecl::base_class_const_iterator |
19632 | Base1 = D1CXX->bases_begin(), |
19633 | BaseEnd1 = D1CXX->bases_end(), |
19634 | Base2 = D2CXX->bases_begin(); |
19635 | Base1 != BaseEnd1; |
19636 | ++Base1, ++Base2) { |
19637 | if (!isLayoutCompatible(C, T1: Base1->getType(), T2: Base2->getType())) |
19638 | return false; |
19639 | } |
19640 | } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(Val: RD2)) { |
19641 | // If only RD2 is a C++ class, it should have zero base classes. |
19642 | if (D2CXX->getNumBases() > 0) |
19643 | return false; |
19644 | } |
19645 | |
19646 | // Check the fields. |
19647 | RecordDecl::field_iterator Field2 = RD2->field_begin(), |
19648 | Field2End = RD2->field_end(), |
19649 | Field1 = RD1->field_begin(), |
19650 | Field1End = RD1->field_end(); |
19651 | for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) { |
19652 | if (!isLayoutCompatible(C, Field1: *Field1, Field2: *Field2)) |
19653 | return false; |
19654 | } |
19655 | if (Field1 != Field1End || Field2 != Field2End) |
19656 | return false; |
19657 | |
19658 | return true; |
19659 | } |
19660 | |
19661 | /// Check if two standard-layout unions are layout-compatible. |
19662 | /// (C++11 [class.mem] p18) |
19663 | static bool isLayoutCompatibleUnion(ASTContext &C, RecordDecl *RD1, |
19664 | RecordDecl *RD2) { |
19665 | llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields; |
19666 | for (auto *Field2 : RD2->fields()) |
19667 | UnmatchedFields.insert(Ptr: Field2); |
19668 | |
19669 | for (auto *Field1 : RD1->fields()) { |
19670 | llvm::SmallPtrSet<FieldDecl *, 8>::iterator |
19671 | I = UnmatchedFields.begin(), |
19672 | E = UnmatchedFields.end(); |
19673 | |
19674 | for ( ; I != E; ++I) { |
19675 | if (isLayoutCompatible(C, Field1, Field2: *I, /*IsUnionMember=*/AreUnionMembers: true)) { |
19676 | bool Result = UnmatchedFields.erase(Ptr: *I); |
19677 | (void) Result; |
19678 | assert(Result); |
19679 | break; |
19680 | } |
19681 | } |
19682 | if (I == E) |
19683 | return false; |
19684 | } |
19685 | |
19686 | return UnmatchedFields.empty(); |
19687 | } |
19688 | |
19689 | static bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1, |
19690 | RecordDecl *RD2) { |
19691 | if (RD1->isUnion() != RD2->isUnion()) |
19692 | return false; |
19693 | |
19694 | if (RD1->isUnion()) |
19695 | return isLayoutCompatibleUnion(C, RD1, RD2); |
19696 | else |
19697 | return isLayoutCompatibleStruct(C, RD1, RD2); |
19698 | } |
19699 | |
19700 | /// Check if two types are layout-compatible in C++11 sense. |
19701 | static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) { |
19702 | if (T1.isNull() || T2.isNull()) |
19703 | return false; |
19704 | |
19705 | // C++20 [basic.types] p11: |
19706 | // Two types cv1 T1 and cv2 T2 are layout-compatible types |
19707 | // if T1 and T2 are the same type, layout-compatible enumerations (9.7.1), |
19708 | // or layout-compatible standard-layout class types (11.4). |
19709 | T1 = T1.getCanonicalType().getUnqualifiedType(); |
19710 | T2 = T2.getCanonicalType().getUnqualifiedType(); |
19711 | |
19712 | if (C.hasSameType(T1, T2)) |
19713 | return true; |
19714 | |
19715 | const Type::TypeClass TC1 = T1->getTypeClass(); |
19716 | const Type::TypeClass TC2 = T2->getTypeClass(); |
19717 | |
19718 | if (TC1 != TC2) |
19719 | return false; |
19720 | |
19721 | if (TC1 == Type::Enum) { |
19722 | return isLayoutCompatible(C, |
19723 | ED1: cast<EnumType>(Val&: T1)->getDecl(), |
19724 | ED2: cast<EnumType>(Val&: T2)->getDecl()); |
19725 | } else if (TC1 == Type::Record) { |
19726 | if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType()) |
19727 | return false; |
19728 | |
19729 | return isLayoutCompatible(C, |
19730 | RD1: cast<RecordType>(Val&: T1)->getDecl(), |
19731 | RD2: cast<RecordType>(Val&: T2)->getDecl()); |
19732 | } |
19733 | |
19734 | return false; |
19735 | } |
19736 | |
19737 | bool Sema::IsLayoutCompatible(QualType T1, QualType T2) const { |
19738 | return isLayoutCompatible(C&: getASTContext(), T1, T2); |
19739 | } |
19740 | |
19741 | //===-------------- Pointer interconvertibility ----------------------------// |
19742 | |
19743 | bool Sema::IsPointerInterconvertibleBaseOf(const TypeSourceInfo *Base, |
19744 | const TypeSourceInfo *Derived) { |
19745 | QualType BaseT = Base->getType()->getCanonicalTypeUnqualified(); |
19746 | QualType DerivedT = Derived->getType()->getCanonicalTypeUnqualified(); |
19747 | |
19748 | if (BaseT->isStructureOrClassType() && DerivedT->isStructureOrClassType() && |
19749 | getASTContext().hasSameType(T1: BaseT, T2: DerivedT)) |
19750 | return true; |
19751 | |
19752 | if (!IsDerivedFrom(Loc: Derived->getTypeLoc().getBeginLoc(), Derived: DerivedT, Base: BaseT)) |
19753 | return false; |
19754 | |
19755 | // Per [basic.compound]/4.3, containing object has to be standard-layout. |
19756 | if (DerivedT->getAsCXXRecordDecl()->isStandardLayout()) |
19757 | return true; |
19758 | |
19759 | return false; |
19760 | } |
19761 | |
19762 | //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----// |
19763 | |
19764 | /// Given a type tag expression find the type tag itself. |
19765 | /// |
19766 | /// \param TypeExpr Type tag expression, as it appears in user's code. |
19767 | /// |
19768 | /// \param VD Declaration of an identifier that appears in a type tag. |
19769 | /// |
19770 | /// \param MagicValue Type tag magic value. |
19771 | /// |
19772 | /// \param isConstantEvaluated whether the evalaution should be performed in |
19773 | |
19774 | /// constant context. |
19775 | static bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx, |
19776 | const ValueDecl **VD, uint64_t *MagicValue, |
19777 | bool isConstantEvaluated) { |
19778 | while(true) { |
19779 | if (!TypeExpr) |
19780 | return false; |
19781 | |
19782 | TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts(); |
19783 | |
19784 | switch (TypeExpr->getStmtClass()) { |
19785 | case Stmt::UnaryOperatorClass: { |
19786 | const UnaryOperator *UO = cast<UnaryOperator>(Val: TypeExpr); |
19787 | if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) { |
19788 | TypeExpr = UO->getSubExpr(); |
19789 | continue; |
19790 | } |
19791 | return false; |
19792 | } |
19793 | |
19794 | case Stmt::DeclRefExprClass: { |
19795 | const DeclRefExpr *DRE = cast<DeclRefExpr>(Val: TypeExpr); |
19796 | *VD = DRE->getDecl(); |
19797 | return true; |
19798 | } |
19799 | |
19800 | case Stmt::IntegerLiteralClass: { |
19801 | const IntegerLiteral *IL = cast<IntegerLiteral>(Val: TypeExpr); |
19802 | llvm::APInt MagicValueAPInt = IL->getValue(); |
19803 | if (MagicValueAPInt.getActiveBits() <= 64) { |
19804 | *MagicValue = MagicValueAPInt.getZExtValue(); |
19805 | return true; |
19806 | } else |
19807 | return false; |
19808 | } |
19809 | |
19810 | case Stmt::BinaryConditionalOperatorClass: |
19811 | case Stmt::ConditionalOperatorClass: { |
19812 | const AbstractConditionalOperator *ACO = |
19813 | cast<AbstractConditionalOperator>(Val: TypeExpr); |
19814 | bool Result; |
19815 | if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx, |
19816 | InConstantContext: isConstantEvaluated)) { |
19817 | if (Result) |
19818 | TypeExpr = ACO->getTrueExpr(); |
19819 | else |
19820 | TypeExpr = ACO->getFalseExpr(); |
19821 | continue; |
19822 | } |
19823 | return false; |
19824 | } |
19825 | |
19826 | case Stmt::BinaryOperatorClass: { |
19827 | const BinaryOperator *BO = cast<BinaryOperator>(Val: TypeExpr); |
19828 | if (BO->getOpcode() == BO_Comma) { |
19829 | TypeExpr = BO->getRHS(); |
19830 | continue; |
19831 | } |
19832 | return false; |
19833 | } |
19834 | |
19835 | default: |
19836 | return false; |
19837 | } |
19838 | } |
19839 | } |
19840 | |
19841 | /// Retrieve the C type corresponding to type tag TypeExpr. |
19842 | /// |
19843 | /// \param TypeExpr Expression that specifies a type tag. |
19844 | /// |
19845 | /// \param MagicValues Registered magic values. |
19846 | /// |
19847 | /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong |
19848 | /// kind. |
19849 | /// |
19850 | /// \param TypeInfo Information about the corresponding C type. |
19851 | /// |
19852 | /// \param isConstantEvaluated whether the evalaution should be performed in |
19853 | /// constant context. |
19854 | /// |
19855 | /// \returns true if the corresponding C type was found. |
19856 | static bool GetMatchingCType( |
19857 | const IdentifierInfo *ArgumentKind, const Expr *TypeExpr, |
19858 | const ASTContext &Ctx, |
19859 | const llvm::DenseMap<Sema::TypeTagMagicValue, Sema::TypeTagData> |
19860 | *MagicValues, |
19861 | bool &FoundWrongKind, Sema::TypeTagData &TypeInfo, |
19862 | bool isConstantEvaluated) { |
19863 | FoundWrongKind = false; |
19864 | |
19865 | // Variable declaration that has type_tag_for_datatype attribute. |
19866 | const ValueDecl *VD = nullptr; |
19867 | |
19868 | uint64_t MagicValue; |
19869 | |
19870 | if (!FindTypeTagExpr(TypeExpr, Ctx, VD: &VD, MagicValue: &MagicValue, isConstantEvaluated)) |
19871 | return false; |
19872 | |
19873 | if (VD) { |
19874 | if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) { |
19875 | if (I->getArgumentKind() != ArgumentKind) { |
19876 | FoundWrongKind = true; |
19877 | return false; |
19878 | } |
19879 | TypeInfo.Type = I->getMatchingCType(); |
19880 | TypeInfo.LayoutCompatible = I->getLayoutCompatible(); |
19881 | TypeInfo.MustBeNull = I->getMustBeNull(); |
19882 | return true; |
19883 | } |
19884 | return false; |
19885 | } |
19886 | |
19887 | if (!MagicValues) |
19888 | return false; |
19889 | |
19890 | llvm::DenseMap<Sema::TypeTagMagicValue, |
19891 | Sema::TypeTagData>::const_iterator I = |
19892 | MagicValues->find(Val: std::make_pair(x&: ArgumentKind, y&: MagicValue)); |
19893 | if (I == MagicValues->end()) |
19894 | return false; |
19895 | |
19896 | TypeInfo = I->second; |
19897 | return true; |
19898 | } |
19899 | |
19900 | void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind, |
19901 | uint64_t MagicValue, QualType Type, |
19902 | bool LayoutCompatible, |
19903 | bool MustBeNull) { |
19904 | if (!TypeTagForDatatypeMagicValues) |
19905 | TypeTagForDatatypeMagicValues.reset( |
19906 | p: new llvm::DenseMap<TypeTagMagicValue, TypeTagData>); |
19907 | |
19908 | TypeTagMagicValue Magic(ArgumentKind, MagicValue); |
19909 | (*TypeTagForDatatypeMagicValues)[Magic] = |
19910 | TypeTagData(Type, LayoutCompatible, MustBeNull); |
19911 | } |
19912 | |
19913 | static bool IsSameCharType(QualType T1, QualType T2) { |
19914 | const BuiltinType *BT1 = T1->getAs<BuiltinType>(); |
19915 | if (!BT1) |
19916 | return false; |
19917 | |
19918 | const BuiltinType *BT2 = T2->getAs<BuiltinType>(); |
19919 | if (!BT2) |
19920 | return false; |
19921 | |
19922 | BuiltinType::Kind T1Kind = BT1->getKind(); |
19923 | BuiltinType::Kind T2Kind = BT2->getKind(); |
19924 | |
19925 | return (T1Kind == BuiltinType::SChar && T2Kind == BuiltinType::Char_S) || |
19926 | (T1Kind == BuiltinType::UChar && T2Kind == BuiltinType::Char_U) || |
19927 | (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) || |
19928 | (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar); |
19929 | } |
19930 | |
19931 | void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr, |
19932 | const ArrayRef<const Expr *> ExprArgs, |
19933 | SourceLocation CallSiteLoc) { |
19934 | const IdentifierInfo *ArgumentKind = Attr->getArgumentKind(); |
19935 | bool IsPointerAttr = Attr->getIsPointer(); |
19936 | |
19937 | // Retrieve the argument representing the 'type_tag'. |
19938 | unsigned TypeTagIdxAST = Attr->getTypeTagIdx().getASTIndex(); |
19939 | if (TypeTagIdxAST >= ExprArgs.size()) { |
19940 | Diag(CallSiteLoc, diag::err_tag_index_out_of_range) |
19941 | << 0 << Attr->getTypeTagIdx().getSourceIndex(); |
19942 | return; |
19943 | } |
19944 | const Expr *TypeTagExpr = ExprArgs[TypeTagIdxAST]; |
19945 | bool FoundWrongKind; |
19946 | TypeTagData TypeInfo; |
19947 | if (!GetMatchingCType(ArgumentKind, TypeExpr: TypeTagExpr, Ctx: Context, |
19948 | MagicValues: TypeTagForDatatypeMagicValues.get(), FoundWrongKind, |
19949 | TypeInfo, isConstantEvaluated: isConstantEvaluatedContext())) { |
19950 | if (FoundWrongKind) |
19951 | Diag(TypeTagExpr->getExprLoc(), |
19952 | diag::warn_type_tag_for_datatype_wrong_kind) |
19953 | << TypeTagExpr->getSourceRange(); |
19954 | return; |
19955 | } |
19956 | |
19957 | // Retrieve the argument representing the 'arg_idx'. |
19958 | unsigned ArgumentIdxAST = Attr->getArgumentIdx().getASTIndex(); |
19959 | if (ArgumentIdxAST >= ExprArgs.size()) { |
19960 | Diag(CallSiteLoc, diag::err_tag_index_out_of_range) |
19961 | << 1 << Attr->getArgumentIdx().getSourceIndex(); |
19962 | return; |
19963 | } |
19964 | const Expr *ArgumentExpr = ExprArgs[ArgumentIdxAST]; |
19965 | if (IsPointerAttr) { |
19966 | // Skip implicit cast of pointer to `void *' (as a function argument). |
19967 | if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: ArgumentExpr)) |
19968 | if (ICE->getType()->isVoidPointerType() && |
19969 | ICE->getCastKind() == CK_BitCast) |
19970 | ArgumentExpr = ICE->getSubExpr(); |
19971 | } |
19972 | QualType ArgumentType = ArgumentExpr->getType(); |
19973 | |
19974 | // Passing a `void*' pointer shouldn't trigger a warning. |
19975 | if (IsPointerAttr && ArgumentType->isVoidPointerType()) |
19976 | return; |
19977 | |
19978 | if (TypeInfo.MustBeNull) { |
19979 | // Type tag with matching void type requires a null pointer. |
19980 | if (!ArgumentExpr->isNullPointerConstant(Ctx&: Context, |
19981 | NPC: Expr::NPC_ValueDependentIsNotNull)) { |
19982 | Diag(ArgumentExpr->getExprLoc(), |
19983 | diag::warn_type_safety_null_pointer_required) |
19984 | << ArgumentKind->getName() |
19985 | << ArgumentExpr->getSourceRange() |
19986 | << TypeTagExpr->getSourceRange(); |
19987 | } |
19988 | return; |
19989 | } |
19990 | |
19991 | QualType RequiredType = TypeInfo.Type; |
19992 | if (IsPointerAttr) |
19993 | RequiredType = Context.getPointerType(T: RequiredType); |
19994 | |
19995 | bool mismatch = false; |
19996 | if (!TypeInfo.LayoutCompatible) { |
19997 | mismatch = !Context.hasSameType(T1: ArgumentType, T2: RequiredType); |
19998 | |
19999 | // C++11 [basic.fundamental] p1: |
20000 | // Plain char, signed char, and unsigned char are three distinct types. |
20001 | // |
20002 | // But we treat plain `char' as equivalent to `signed char' or `unsigned |
20003 | // char' depending on the current char signedness mode. |
20004 | if (mismatch) |
20005 | if ((IsPointerAttr && IsSameCharType(T1: ArgumentType->getPointeeType(), |
20006 | T2: RequiredType->getPointeeType())) || |
20007 | (!IsPointerAttr && IsSameCharType(T1: ArgumentType, T2: RequiredType))) |
20008 | mismatch = false; |
20009 | } else |
20010 | if (IsPointerAttr) |
20011 | mismatch = !isLayoutCompatible(C&: Context, |
20012 | T1: ArgumentType->getPointeeType(), |
20013 | T2: RequiredType->getPointeeType()); |
20014 | else |
20015 | mismatch = !isLayoutCompatible(C&: Context, T1: ArgumentType, T2: RequiredType); |
20016 | |
20017 | if (mismatch) |
20018 | Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch) |
20019 | << ArgumentType << ArgumentKind |
20020 | << TypeInfo.LayoutCompatible << RequiredType |
20021 | << ArgumentExpr->getSourceRange() |
20022 | << TypeTagExpr->getSourceRange(); |
20023 | } |
20024 | |
20025 | void Sema::AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD, |
20026 | CharUnits Alignment) { |
20027 | MisalignedMembers.emplace_back(Args&: E, Args&: RD, Args&: MD, Args&: Alignment); |
20028 | } |
20029 | |
20030 | void Sema::DiagnoseMisalignedMembers() { |
20031 | for (MisalignedMember &m : MisalignedMembers) { |
20032 | const NamedDecl *ND = m.RD; |
20033 | if (ND->getName().empty()) { |
20034 | if (const TypedefNameDecl *TD = m.RD->getTypedefNameForAnonDecl()) |
20035 | ND = TD; |
20036 | } |
20037 | Diag(m.E->getBeginLoc(), diag::warn_taking_address_of_packed_member) |
20038 | << m.MD << ND << m.E->getSourceRange(); |
20039 | } |
20040 | MisalignedMembers.clear(); |
20041 | } |
20042 | |
20043 | void Sema::DiscardMisalignedMemberAddress(const Type *T, Expr *E) { |
20044 | E = E->IgnoreParens(); |
20045 | if (!T->isPointerType() && !T->isIntegerType() && !T->isDependentType()) |
20046 | return; |
20047 | if (isa<UnaryOperator>(Val: E) && |
20048 | cast<UnaryOperator>(Val: E)->getOpcode() == UO_AddrOf) { |
20049 | auto *Op = cast<UnaryOperator>(Val: E)->getSubExpr()->IgnoreParens(); |
20050 | if (isa<MemberExpr>(Val: Op)) { |
20051 | auto *MA = llvm::find(Range&: MisalignedMembers, Val: MisalignedMember(Op)); |
20052 | if (MA != MisalignedMembers.end() && |
20053 | (T->isDependentType() || T->isIntegerType() || |
20054 | (T->isPointerType() && (T->getPointeeType()->isIncompleteType() || |
20055 | Context.getTypeAlignInChars( |
20056 | T: T->getPointeeType()) <= MA->Alignment)))) |
20057 | MisalignedMembers.erase(CI: MA); |
20058 | } |
20059 | } |
20060 | } |
20061 | |
20062 | void Sema::RefersToMemberWithReducedAlignment( |
20063 | Expr *E, |
20064 | llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)> |
20065 | Action) { |
20066 | const auto *ME = dyn_cast<MemberExpr>(Val: E); |
20067 | if (!ME) |
20068 | return; |
20069 | |
20070 | // No need to check expressions with an __unaligned-qualified type. |
20071 | if (E->getType().getQualifiers().hasUnaligned()) |
20072 | return; |
20073 | |
20074 | // For a chain of MemberExpr like "a.b.c.d" this list |
20075 | // will keep FieldDecl's like [d, c, b]. |
20076 | SmallVector<FieldDecl *, 4> ReverseMemberChain; |
20077 | const MemberExpr *TopME = nullptr; |
20078 | bool AnyIsPacked = false; |
20079 | do { |
20080 | QualType BaseType = ME->getBase()->getType(); |
20081 | if (BaseType->isDependentType()) |
20082 | return; |
20083 | if (ME->isArrow()) |
20084 | BaseType = BaseType->getPointeeType(); |
20085 | RecordDecl *RD = BaseType->castAs<RecordType>()->getDecl(); |
20086 | if (RD->isInvalidDecl()) |
20087 | return; |
20088 | |
20089 | ValueDecl *MD = ME->getMemberDecl(); |
20090 | auto *FD = dyn_cast<FieldDecl>(Val: MD); |
20091 | // We do not care about non-data members. |
20092 | if (!FD || FD->isInvalidDecl()) |
20093 | return; |
20094 | |
20095 | AnyIsPacked = |
20096 | AnyIsPacked || (RD->hasAttr<PackedAttr>() || MD->hasAttr<PackedAttr>()); |
20097 | ReverseMemberChain.push_back(Elt: FD); |
20098 | |
20099 | TopME = ME; |
20100 | ME = dyn_cast<MemberExpr>(Val: ME->getBase()->IgnoreParens()); |
20101 | } while (ME); |
20102 | assert(TopME && "We did not compute a topmost MemberExpr!" ); |
20103 | |
20104 | // Not the scope of this diagnostic. |
20105 | if (!AnyIsPacked) |
20106 | return; |
20107 | |
20108 | const Expr *TopBase = TopME->getBase()->IgnoreParenImpCasts(); |
20109 | const auto *DRE = dyn_cast<DeclRefExpr>(Val: TopBase); |
20110 | // TODO: The innermost base of the member expression may be too complicated. |
20111 | // For now, just disregard these cases. This is left for future |
20112 | // improvement. |
20113 | if (!DRE && !isa<CXXThisExpr>(Val: TopBase)) |
20114 | return; |
20115 | |
20116 | // Alignment expected by the whole expression. |
20117 | CharUnits ExpectedAlignment = Context.getTypeAlignInChars(T: E->getType()); |
20118 | |
20119 | // No need to do anything else with this case. |
20120 | if (ExpectedAlignment.isOne()) |
20121 | return; |
20122 | |
20123 | // Synthesize offset of the whole access. |
20124 | CharUnits Offset; |
20125 | for (const FieldDecl *FD : llvm::reverse(C&: ReverseMemberChain)) |
20126 | Offset += Context.toCharUnitsFromBits(BitSize: Context.getFieldOffset(FD)); |
20127 | |
20128 | // Compute the CompleteObjectAlignment as the alignment of the whole chain. |
20129 | CharUnits CompleteObjectAlignment = Context.getTypeAlignInChars( |
20130 | ReverseMemberChain.back()->getParent()->getTypeForDecl()); |
20131 | |
20132 | // The base expression of the innermost MemberExpr may give |
20133 | // stronger guarantees than the class containing the member. |
20134 | if (DRE && !TopME->isArrow()) { |
20135 | const ValueDecl *VD = DRE->getDecl(); |
20136 | if (!VD->getType()->isReferenceType()) |
20137 | CompleteObjectAlignment = |
20138 | std::max(a: CompleteObjectAlignment, b: Context.getDeclAlign(VD)); |
20139 | } |
20140 | |
20141 | // Check if the synthesized offset fulfills the alignment. |
20142 | if (Offset % ExpectedAlignment != 0 || |
20143 | // It may fulfill the offset it but the effective alignment may still be |
20144 | // lower than the expected expression alignment. |
20145 | CompleteObjectAlignment < ExpectedAlignment) { |
20146 | // If this happens, we want to determine a sensible culprit of this. |
20147 | // Intuitively, watching the chain of member expressions from right to |
20148 | // left, we start with the required alignment (as required by the field |
20149 | // type) but some packed attribute in that chain has reduced the alignment. |
20150 | // It may happen that another packed structure increases it again. But if |
20151 | // we are here such increase has not been enough. So pointing the first |
20152 | // FieldDecl that either is packed or else its RecordDecl is, |
20153 | // seems reasonable. |
20154 | FieldDecl *FD = nullptr; |
20155 | CharUnits Alignment; |
20156 | for (FieldDecl *FDI : ReverseMemberChain) { |
20157 | if (FDI->hasAttr<PackedAttr>() || |
20158 | FDI->getParent()->hasAttr<PackedAttr>()) { |
20159 | FD = FDI; |
20160 | Alignment = std::min( |
20161 | Context.getTypeAlignInChars(FD->getType()), |
20162 | Context.getTypeAlignInChars(FD->getParent()->getTypeForDecl())); |
20163 | break; |
20164 | } |
20165 | } |
20166 | assert(FD && "We did not find a packed FieldDecl!" ); |
20167 | Action(E, FD->getParent(), FD, Alignment); |
20168 | } |
20169 | } |
20170 | |
20171 | void Sema::CheckAddressOfPackedMember(Expr *rhs) { |
20172 | using namespace std::placeholders; |
20173 | |
20174 | RefersToMemberWithReducedAlignment( |
20175 | rhs, std::bind(f: &Sema::AddPotentialMisalignedMembers, args: std::ref(t&: *this), args: _1, |
20176 | args: _2, args: _3, args: _4)); |
20177 | } |
20178 | |
20179 | bool Sema::PrepareBuiltinElementwiseMathOneArgCall(CallExpr *TheCall) { |
20180 | if (checkArgCount(S&: *this, Call: TheCall, DesiredArgCount: 1)) |
20181 | return true; |
20182 | |
20183 | ExprResult A = UsualUnaryConversions(E: TheCall->getArg(Arg: 0)); |
20184 | if (A.isInvalid()) |
20185 | return true; |
20186 | |
20187 | TheCall->setArg(Arg: 0, ArgExpr: A.get()); |
20188 | QualType TyA = A.get()->getType(); |
20189 | |
20190 | if (checkMathBuiltinElementType(*this, A.get()->getBeginLoc(), TyA, 1)) |
20191 | return true; |
20192 | |
20193 | TheCall->setType(TyA); |
20194 | return false; |
20195 | } |
20196 | |
20197 | bool Sema::BuiltinElementwiseMath(CallExpr *TheCall) { |
20198 | QualType Res; |
20199 | if (BuiltinVectorMath(TheCall, Res)) |
20200 | return true; |
20201 | TheCall->setType(Res); |
20202 | return false; |
20203 | } |
20204 | |
20205 | bool Sema::BuiltinVectorToScalarMath(CallExpr *TheCall) { |
20206 | QualType Res; |
20207 | if (BuiltinVectorMath(TheCall, Res)) |
20208 | return true; |
20209 | |
20210 | if (auto *VecTy0 = Res->getAs<VectorType>()) |
20211 | TheCall->setType(VecTy0->getElementType()); |
20212 | else |
20213 | TheCall->setType(Res); |
20214 | |
20215 | return false; |
20216 | } |
20217 | |
20218 | bool Sema::BuiltinVectorMath(CallExpr *TheCall, QualType &Res) { |
20219 | if (checkArgCount(S&: *this, Call: TheCall, DesiredArgCount: 2)) |
20220 | return true; |
20221 | |
20222 | ExprResult A = TheCall->getArg(Arg: 0); |
20223 | ExprResult B = TheCall->getArg(Arg: 1); |
20224 | // Do standard promotions between the two arguments, returning their common |
20225 | // type. |
20226 | Res = UsualArithmeticConversions(LHS&: A, RHS&: B, Loc: TheCall->getExprLoc(), ACK: ACK_Comparison); |
20227 | if (A.isInvalid() || B.isInvalid()) |
20228 | return true; |
20229 | |
20230 | QualType TyA = A.get()->getType(); |
20231 | QualType TyB = B.get()->getType(); |
20232 | |
20233 | if (Res.isNull() || TyA.getCanonicalType() != TyB.getCanonicalType()) |
20234 | return Diag(A.get()->getBeginLoc(), |
20235 | diag::err_typecheck_call_different_arg_types) |
20236 | << TyA << TyB; |
20237 | |
20238 | if (checkMathBuiltinElementType(*this, A.get()->getBeginLoc(), TyA, 1)) |
20239 | return true; |
20240 | |
20241 | TheCall->setArg(Arg: 0, ArgExpr: A.get()); |
20242 | TheCall->setArg(Arg: 1, ArgExpr: B.get()); |
20243 | return false; |
20244 | } |
20245 | |
20246 | bool Sema::BuiltinElementwiseTernaryMath(CallExpr *TheCall, |
20247 | bool CheckForFloatArgs) { |
20248 | if (checkArgCount(S&: *this, Call: TheCall, DesiredArgCount: 3)) |
20249 | return true; |
20250 | |
20251 | Expr *Args[3]; |
20252 | for (int I = 0; I < 3; ++I) { |
20253 | ExprResult Converted = UsualUnaryConversions(E: TheCall->getArg(Arg: I)); |
20254 | if (Converted.isInvalid()) |
20255 | return true; |
20256 | Args[I] = Converted.get(); |
20257 | } |
20258 | |
20259 | if (CheckForFloatArgs) { |
20260 | int ArgOrdinal = 1; |
20261 | for (Expr *Arg : Args) { |
20262 | if (checkFPMathBuiltinElementType(*this, Arg->getBeginLoc(), |
20263 | Arg->getType(), ArgOrdinal++)) |
20264 | return true; |
20265 | } |
20266 | } else { |
20267 | int ArgOrdinal = 1; |
20268 | for (Expr *Arg : Args) { |
20269 | if (checkMathBuiltinElementType(*this, Arg->getBeginLoc(), Arg->getType(), |
20270 | ArgOrdinal++)) |
20271 | return true; |
20272 | } |
20273 | } |
20274 | |
20275 | for (int I = 1; I < 3; ++I) { |
20276 | if (Args[0]->getType().getCanonicalType() != |
20277 | Args[I]->getType().getCanonicalType()) { |
20278 | return Diag(Args[0]->getBeginLoc(), |
20279 | diag::err_typecheck_call_different_arg_types) |
20280 | << Args[0]->getType() << Args[I]->getType(); |
20281 | } |
20282 | |
20283 | TheCall->setArg(Arg: I, ArgExpr: Args[I]); |
20284 | } |
20285 | |
20286 | TheCall->setType(Args[0]->getType()); |
20287 | return false; |
20288 | } |
20289 | |
20290 | bool Sema::PrepareBuiltinReduceMathOneArgCall(CallExpr *TheCall) { |
20291 | if (checkArgCount(S&: *this, Call: TheCall, DesiredArgCount: 1)) |
20292 | return true; |
20293 | |
20294 | ExprResult A = UsualUnaryConversions(E: TheCall->getArg(Arg: 0)); |
20295 | if (A.isInvalid()) |
20296 | return true; |
20297 | |
20298 | TheCall->setArg(Arg: 0, ArgExpr: A.get()); |
20299 | return false; |
20300 | } |
20301 | |
20302 | bool Sema::BuiltinNonDeterministicValue(CallExpr *TheCall) { |
20303 | if (checkArgCount(S&: *this, Call: TheCall, DesiredArgCount: 1)) |
20304 | return true; |
20305 | |
20306 | ExprResult Arg = TheCall->getArg(Arg: 0); |
20307 | QualType TyArg = Arg.get()->getType(); |
20308 | |
20309 | if (!TyArg->isBuiltinType() && !TyArg->isVectorType()) |
20310 | return Diag(TheCall->getArg(0)->getBeginLoc(), diag::err_builtin_invalid_arg_type) |
20311 | << 1 << /*vector, integer or floating point ty*/ 0 << TyArg; |
20312 | |
20313 | TheCall->setType(TyArg); |
20314 | return false; |
20315 | } |
20316 | |
20317 | ExprResult Sema::BuiltinMatrixTranspose(CallExpr *TheCall, |
20318 | ExprResult CallResult) { |
20319 | if (checkArgCount(S&: *this, Call: TheCall, DesiredArgCount: 1)) |
20320 | return ExprError(); |
20321 | |
20322 | ExprResult MatrixArg = DefaultLvalueConversion(E: TheCall->getArg(Arg: 0)); |
20323 | if (MatrixArg.isInvalid()) |
20324 | return MatrixArg; |
20325 | Expr *Matrix = MatrixArg.get(); |
20326 | |
20327 | auto *MType = Matrix->getType()->getAs<ConstantMatrixType>(); |
20328 | if (!MType) { |
20329 | Diag(Matrix->getBeginLoc(), diag::err_builtin_invalid_arg_type) |
20330 | << 1 << /* matrix ty*/ 1 << Matrix->getType(); |
20331 | return ExprError(); |
20332 | } |
20333 | |
20334 | // Create returned matrix type by swapping rows and columns of the argument |
20335 | // matrix type. |
20336 | QualType ResultType = Context.getConstantMatrixType( |
20337 | ElementType: MType->getElementType(), NumRows: MType->getNumColumns(), NumColumns: MType->getNumRows()); |
20338 | |
20339 | // Change the return type to the type of the returned matrix. |
20340 | TheCall->setType(ResultType); |
20341 | |
20342 | // Update call argument to use the possibly converted matrix argument. |
20343 | TheCall->setArg(Arg: 0, ArgExpr: Matrix); |
20344 | return CallResult; |
20345 | } |
20346 | |
20347 | // Get and verify the matrix dimensions. |
20348 | static std::optional<unsigned> |
20349 | getAndVerifyMatrixDimension(Expr *Expr, StringRef Name, Sema &S) { |
20350 | SourceLocation ErrorPos; |
20351 | std::optional<llvm::APSInt> Value = |
20352 | Expr->getIntegerConstantExpr(Ctx: S.Context, Loc: &ErrorPos); |
20353 | if (!Value) { |
20354 | S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_scalar_unsigned_arg) |
20355 | << Name; |
20356 | return {}; |
20357 | } |
20358 | uint64_t Dim = Value->getZExtValue(); |
20359 | if (!ConstantMatrixType::isDimensionValid(NumElements: Dim)) { |
20360 | S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_invalid_dimension) |
20361 | << Name << ConstantMatrixType::getMaxElementsPerDimension(); |
20362 | return {}; |
20363 | } |
20364 | return Dim; |
20365 | } |
20366 | |
20367 | ExprResult Sema::BuiltinMatrixColumnMajorLoad(CallExpr *TheCall, |
20368 | ExprResult CallResult) { |
20369 | if (!getLangOpts().MatrixTypes) { |
20370 | Diag(TheCall->getBeginLoc(), diag::err_builtin_matrix_disabled); |
20371 | return ExprError(); |
20372 | } |
20373 | |
20374 | if (checkArgCount(S&: *this, Call: TheCall, DesiredArgCount: 4)) |
20375 | return ExprError(); |
20376 | |
20377 | unsigned PtrArgIdx = 0; |
20378 | Expr *PtrExpr = TheCall->getArg(Arg: PtrArgIdx); |
20379 | Expr *RowsExpr = TheCall->getArg(Arg: 1); |
20380 | Expr *ColumnsExpr = TheCall->getArg(Arg: 2); |
20381 | Expr *StrideExpr = TheCall->getArg(Arg: 3); |
20382 | |
20383 | bool ArgError = false; |
20384 | |
20385 | // Check pointer argument. |
20386 | { |
20387 | ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(E: PtrExpr); |
20388 | if (PtrConv.isInvalid()) |
20389 | return PtrConv; |
20390 | PtrExpr = PtrConv.get(); |
20391 | TheCall->setArg(Arg: 0, ArgExpr: PtrExpr); |
20392 | if (PtrExpr->isTypeDependent()) { |
20393 | TheCall->setType(Context.DependentTy); |
20394 | return TheCall; |
20395 | } |
20396 | } |
20397 | |
20398 | auto *PtrTy = PtrExpr->getType()->getAs<PointerType>(); |
20399 | QualType ElementTy; |
20400 | if (!PtrTy) { |
20401 | Diag(PtrExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type) |
20402 | << PtrArgIdx + 1 << /*pointer to element ty*/ 2 << PtrExpr->getType(); |
20403 | ArgError = true; |
20404 | } else { |
20405 | ElementTy = PtrTy->getPointeeType().getUnqualifiedType(); |
20406 | |
20407 | if (!ConstantMatrixType::isValidElementType(T: ElementTy)) { |
20408 | Diag(PtrExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type) |
20409 | << PtrArgIdx + 1 << /* pointer to element ty*/ 2 |
20410 | << PtrExpr->getType(); |
20411 | ArgError = true; |
20412 | } |
20413 | } |
20414 | |
20415 | // Apply default Lvalue conversions and convert the expression to size_t. |
20416 | auto ApplyArgumentConversions = [this](Expr *E) { |
20417 | ExprResult Conv = DefaultLvalueConversion(E); |
20418 | if (Conv.isInvalid()) |
20419 | return Conv; |
20420 | |
20421 | return tryConvertExprToType(E: Conv.get(), Ty: Context.getSizeType()); |
20422 | }; |
20423 | |
20424 | // Apply conversion to row and column expressions. |
20425 | ExprResult RowsConv = ApplyArgumentConversions(RowsExpr); |
20426 | if (!RowsConv.isInvalid()) { |
20427 | RowsExpr = RowsConv.get(); |
20428 | TheCall->setArg(Arg: 1, ArgExpr: RowsExpr); |
20429 | } else |
20430 | RowsExpr = nullptr; |
20431 | |
20432 | ExprResult ColumnsConv = ApplyArgumentConversions(ColumnsExpr); |
20433 | if (!ColumnsConv.isInvalid()) { |
20434 | ColumnsExpr = ColumnsConv.get(); |
20435 | TheCall->setArg(Arg: 2, ArgExpr: ColumnsExpr); |
20436 | } else |
20437 | ColumnsExpr = nullptr; |
20438 | |
20439 | // If any part of the result matrix type is still pending, just use |
20440 | // Context.DependentTy, until all parts are resolved. |
20441 | if ((RowsExpr && RowsExpr->isTypeDependent()) || |
20442 | (ColumnsExpr && ColumnsExpr->isTypeDependent())) { |
20443 | TheCall->setType(Context.DependentTy); |
20444 | return CallResult; |
20445 | } |
20446 | |
20447 | // Check row and column dimensions. |
20448 | std::optional<unsigned> MaybeRows; |
20449 | if (RowsExpr) |
20450 | MaybeRows = getAndVerifyMatrixDimension(Expr: RowsExpr, Name: "row" , S&: *this); |
20451 | |
20452 | std::optional<unsigned> MaybeColumns; |
20453 | if (ColumnsExpr) |
20454 | MaybeColumns = getAndVerifyMatrixDimension(Expr: ColumnsExpr, Name: "column" , S&: *this); |
20455 | |
20456 | // Check stride argument. |
20457 | ExprResult StrideConv = ApplyArgumentConversions(StrideExpr); |
20458 | if (StrideConv.isInvalid()) |
20459 | return ExprError(); |
20460 | StrideExpr = StrideConv.get(); |
20461 | TheCall->setArg(Arg: 3, ArgExpr: StrideExpr); |
20462 | |
20463 | if (MaybeRows) { |
20464 | if (std::optional<llvm::APSInt> Value = |
20465 | StrideExpr->getIntegerConstantExpr(Ctx: Context)) { |
20466 | uint64_t Stride = Value->getZExtValue(); |
20467 | if (Stride < *MaybeRows) { |
20468 | Diag(StrideExpr->getBeginLoc(), |
20469 | diag::err_builtin_matrix_stride_too_small); |
20470 | ArgError = true; |
20471 | } |
20472 | } |
20473 | } |
20474 | |
20475 | if (ArgError || !MaybeRows || !MaybeColumns) |
20476 | return ExprError(); |
20477 | |
20478 | TheCall->setType( |
20479 | Context.getConstantMatrixType(ElementType: ElementTy, NumRows: *MaybeRows, NumColumns: *MaybeColumns)); |
20480 | return CallResult; |
20481 | } |
20482 | |
20483 | ExprResult Sema::BuiltinMatrixColumnMajorStore(CallExpr *TheCall, |
20484 | ExprResult CallResult) { |
20485 | if (checkArgCount(S&: *this, Call: TheCall, DesiredArgCount: 3)) |
20486 | return ExprError(); |
20487 | |
20488 | unsigned PtrArgIdx = 1; |
20489 | Expr *MatrixExpr = TheCall->getArg(Arg: 0); |
20490 | Expr *PtrExpr = TheCall->getArg(Arg: PtrArgIdx); |
20491 | Expr *StrideExpr = TheCall->getArg(Arg: 2); |
20492 | |
20493 | bool ArgError = false; |
20494 | |
20495 | { |
20496 | ExprResult MatrixConv = DefaultLvalueConversion(E: MatrixExpr); |
20497 | if (MatrixConv.isInvalid()) |
20498 | return MatrixConv; |
20499 | MatrixExpr = MatrixConv.get(); |
20500 | TheCall->setArg(Arg: 0, ArgExpr: MatrixExpr); |
20501 | } |
20502 | if (MatrixExpr->isTypeDependent()) { |
20503 | TheCall->setType(Context.DependentTy); |
20504 | return TheCall; |
20505 | } |
20506 | |
20507 | auto *MatrixTy = MatrixExpr->getType()->getAs<ConstantMatrixType>(); |
20508 | if (!MatrixTy) { |
20509 | Diag(MatrixExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type) |
20510 | << 1 << /*matrix ty */ 1 << MatrixExpr->getType(); |
20511 | ArgError = true; |
20512 | } |
20513 | |
20514 | { |
20515 | ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(E: PtrExpr); |
20516 | if (PtrConv.isInvalid()) |
20517 | return PtrConv; |
20518 | PtrExpr = PtrConv.get(); |
20519 | TheCall->setArg(Arg: 1, ArgExpr: PtrExpr); |
20520 | if (PtrExpr->isTypeDependent()) { |
20521 | TheCall->setType(Context.DependentTy); |
20522 | return TheCall; |
20523 | } |
20524 | } |
20525 | |
20526 | // Check pointer argument. |
20527 | auto *PtrTy = PtrExpr->getType()->getAs<PointerType>(); |
20528 | if (!PtrTy) { |
20529 | Diag(PtrExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type) |
20530 | << PtrArgIdx + 1 << /*pointer to element ty*/ 2 << PtrExpr->getType(); |
20531 | ArgError = true; |
20532 | } else { |
20533 | QualType ElementTy = PtrTy->getPointeeType(); |
20534 | if (ElementTy.isConstQualified()) { |
20535 | Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_store_to_const); |
20536 | ArgError = true; |
20537 | } |
20538 | ElementTy = ElementTy.getUnqualifiedType().getCanonicalType(); |
20539 | if (MatrixTy && |
20540 | !Context.hasSameType(ElementTy, MatrixTy->getElementType())) { |
20541 | Diag(PtrExpr->getBeginLoc(), |
20542 | diag::err_builtin_matrix_pointer_arg_mismatch) |
20543 | << ElementTy << MatrixTy->getElementType(); |
20544 | ArgError = true; |
20545 | } |
20546 | } |
20547 | |
20548 | // Apply default Lvalue conversions and convert the stride expression to |
20549 | // size_t. |
20550 | { |
20551 | ExprResult StrideConv = DefaultLvalueConversion(E: StrideExpr); |
20552 | if (StrideConv.isInvalid()) |
20553 | return StrideConv; |
20554 | |
20555 | StrideConv = tryConvertExprToType(E: StrideConv.get(), Ty: Context.getSizeType()); |
20556 | if (StrideConv.isInvalid()) |
20557 | return StrideConv; |
20558 | StrideExpr = StrideConv.get(); |
20559 | TheCall->setArg(Arg: 2, ArgExpr: StrideExpr); |
20560 | } |
20561 | |
20562 | // Check stride argument. |
20563 | if (MatrixTy) { |
20564 | if (std::optional<llvm::APSInt> Value = |
20565 | StrideExpr->getIntegerConstantExpr(Ctx: Context)) { |
20566 | uint64_t Stride = Value->getZExtValue(); |
20567 | if (Stride < MatrixTy->getNumRows()) { |
20568 | Diag(StrideExpr->getBeginLoc(), |
20569 | diag::err_builtin_matrix_stride_too_small); |
20570 | ArgError = true; |
20571 | } |
20572 | } |
20573 | } |
20574 | |
20575 | if (ArgError) |
20576 | return ExprError(); |
20577 | |
20578 | return CallResult; |
20579 | } |
20580 | |
20581 | /// Checks the argument at the given index is a WebAssembly table and if it |
20582 | /// is, sets ElTy to the element type. |
20583 | static bool CheckWasmBuiltinArgIsTable(Sema &S, CallExpr *E, unsigned ArgIndex, |
20584 | QualType &ElTy) { |
20585 | Expr *ArgExpr = E->getArg(Arg: ArgIndex); |
20586 | const auto *ATy = dyn_cast<ArrayType>(Val: ArgExpr->getType()); |
20587 | if (!ATy || !ATy->getElementType().isWebAssemblyReferenceType()) { |
20588 | return S.Diag(ArgExpr->getBeginLoc(), |
20589 | diag::err_wasm_builtin_arg_must_be_table_type) |
20590 | << ArgIndex + 1 << ArgExpr->getSourceRange(); |
20591 | } |
20592 | ElTy = ATy->getElementType(); |
20593 | return false; |
20594 | } |
20595 | |
20596 | /// Checks the argument at the given index is an integer. |
20597 | static bool CheckWasmBuiltinArgIsInteger(Sema &S, CallExpr *E, |
20598 | unsigned ArgIndex) { |
20599 | Expr *ArgExpr = E->getArg(Arg: ArgIndex); |
20600 | if (!ArgExpr->getType()->isIntegerType()) { |
20601 | return S.Diag(ArgExpr->getBeginLoc(), |
20602 | diag::err_wasm_builtin_arg_must_be_integer_type) |
20603 | << ArgIndex + 1 << ArgExpr->getSourceRange(); |
20604 | } |
20605 | return false; |
20606 | } |
20607 | |
20608 | /// Check that the first argument is a WebAssembly table, and the second |
20609 | /// is an index to use as index into the table. |
20610 | bool Sema::BuiltinWasmTableGet(CallExpr *TheCall) { |
20611 | if (checkArgCount(S&: *this, Call: TheCall, DesiredArgCount: 2)) |
20612 | return true; |
20613 | |
20614 | QualType ElTy; |
20615 | if (CheckWasmBuiltinArgIsTable(S&: *this, E: TheCall, ArgIndex: 0, ElTy)) |
20616 | return true; |
20617 | |
20618 | if (CheckWasmBuiltinArgIsInteger(S&: *this, E: TheCall, ArgIndex: 1)) |
20619 | return true; |
20620 | |
20621 | // If all is well, we set the type of TheCall to be the type of the |
20622 | // element of the table. |
20623 | // i.e. a table.get on an externref table has type externref, |
20624 | // or whatever the type of the table element is. |
20625 | TheCall->setType(ElTy); |
20626 | |
20627 | return false; |
20628 | } |
20629 | |
20630 | /// Check that the first argumnet is a WebAssembly table, the second is |
20631 | /// an index to use as index into the table and the third is the reference |
20632 | /// type to set into the table. |
20633 | bool Sema::BuiltinWasmTableSet(CallExpr *TheCall) { |
20634 | if (checkArgCount(S&: *this, Call: TheCall, DesiredArgCount: 3)) |
20635 | return true; |
20636 | |
20637 | QualType ElTy; |
20638 | if (CheckWasmBuiltinArgIsTable(S&: *this, E: TheCall, ArgIndex: 0, ElTy)) |
20639 | return true; |
20640 | |
20641 | if (CheckWasmBuiltinArgIsInteger(S&: *this, E: TheCall, ArgIndex: 1)) |
20642 | return true; |
20643 | |
20644 | if (!Context.hasSameType(T1: ElTy, T2: TheCall->getArg(Arg: 2)->getType())) |
20645 | return true; |
20646 | |
20647 | return false; |
20648 | } |
20649 | |
20650 | /// Check that the argument is a WebAssembly table. |
20651 | bool Sema::BuiltinWasmTableSize(CallExpr *TheCall) { |
20652 | if (checkArgCount(S&: *this, Call: TheCall, DesiredArgCount: 1)) |
20653 | return true; |
20654 | |
20655 | QualType ElTy; |
20656 | if (CheckWasmBuiltinArgIsTable(S&: *this, E: TheCall, ArgIndex: 0, ElTy)) |
20657 | return true; |
20658 | |
20659 | return false; |
20660 | } |
20661 | |
20662 | /// Check that the first argument is a WebAssembly table, the second is the |
20663 | /// value to use for new elements (of a type matching the table type), the |
20664 | /// third value is an integer. |
20665 | bool Sema::BuiltinWasmTableGrow(CallExpr *TheCall) { |
20666 | if (checkArgCount(S&: *this, Call: TheCall, DesiredArgCount: 3)) |
20667 | return true; |
20668 | |
20669 | QualType ElTy; |
20670 | if (CheckWasmBuiltinArgIsTable(S&: *this, E: TheCall, ArgIndex: 0, ElTy)) |
20671 | return true; |
20672 | |
20673 | Expr *NewElemArg = TheCall->getArg(Arg: 1); |
20674 | if (!Context.hasSameType(T1: ElTy, T2: NewElemArg->getType())) { |
20675 | return Diag(NewElemArg->getBeginLoc(), |
20676 | diag::err_wasm_builtin_arg_must_match_table_element_type) |
20677 | << 2 << 1 << NewElemArg->getSourceRange(); |
20678 | } |
20679 | |
20680 | if (CheckWasmBuiltinArgIsInteger(S&: *this, E: TheCall, ArgIndex: 2)) |
20681 | return true; |
20682 | |
20683 | return false; |
20684 | } |
20685 | |
20686 | /// Check that the first argument is a WebAssembly table, the second is an |
20687 | /// integer, the third is the value to use to fill the table (of a type |
20688 | /// matching the table type), and the fourth is an integer. |
20689 | bool Sema::BuiltinWasmTableFill(CallExpr *TheCall) { |
20690 | if (checkArgCount(S&: *this, Call: TheCall, DesiredArgCount: 4)) |
20691 | return true; |
20692 | |
20693 | QualType ElTy; |
20694 | if (CheckWasmBuiltinArgIsTable(S&: *this, E: TheCall, ArgIndex: 0, ElTy)) |
20695 | return true; |
20696 | |
20697 | if (CheckWasmBuiltinArgIsInteger(S&: *this, E: TheCall, ArgIndex: 1)) |
20698 | return true; |
20699 | |
20700 | Expr *NewElemArg = TheCall->getArg(Arg: 2); |
20701 | if (!Context.hasSameType(T1: ElTy, T2: NewElemArg->getType())) { |
20702 | return Diag(NewElemArg->getBeginLoc(), |
20703 | diag::err_wasm_builtin_arg_must_match_table_element_type) |
20704 | << 3 << 1 << NewElemArg->getSourceRange(); |
20705 | } |
20706 | |
20707 | if (CheckWasmBuiltinArgIsInteger(S&: *this, E: TheCall, ArgIndex: 3)) |
20708 | return true; |
20709 | |
20710 | return false; |
20711 | } |
20712 | |
20713 | /// Check that the first argument is a WebAssembly table, the second is also a |
20714 | /// WebAssembly table (of the same element type), and the third to fifth |
20715 | /// arguments are integers. |
20716 | bool Sema::BuiltinWasmTableCopy(CallExpr *TheCall) { |
20717 | if (checkArgCount(S&: *this, Call: TheCall, DesiredArgCount: 5)) |
20718 | return true; |
20719 | |
20720 | QualType XElTy; |
20721 | if (CheckWasmBuiltinArgIsTable(S&: *this, E: TheCall, ArgIndex: 0, ElTy&: XElTy)) |
20722 | return true; |
20723 | |
20724 | QualType YElTy; |
20725 | if (CheckWasmBuiltinArgIsTable(S&: *this, E: TheCall, ArgIndex: 1, ElTy&: YElTy)) |
20726 | return true; |
20727 | |
20728 | Expr *TableYArg = TheCall->getArg(Arg: 1); |
20729 | if (!Context.hasSameType(T1: XElTy, T2: YElTy)) { |
20730 | return Diag(TableYArg->getBeginLoc(), |
20731 | diag::err_wasm_builtin_arg_must_match_table_element_type) |
20732 | << 2 << 1 << TableYArg->getSourceRange(); |
20733 | } |
20734 | |
20735 | for (int I = 2; I <= 4; I++) { |
20736 | if (CheckWasmBuiltinArgIsInteger(S&: *this, E: TheCall, ArgIndex: I)) |
20737 | return true; |
20738 | } |
20739 | |
20740 | return false; |
20741 | } |
20742 | |
20743 | /// \brief Enforce the bounds of a TCB |
20744 | /// CheckTCBEnforcement - Enforces that every function in a named TCB only |
20745 | /// directly calls other functions in the same TCB as marked by the enforce_tcb |
20746 | /// and enforce_tcb_leaf attributes. |
20747 | void Sema::CheckTCBEnforcement(const SourceLocation CallExprLoc, |
20748 | const NamedDecl *Callee) { |
20749 | // This warning does not make sense in code that has no runtime behavior. |
20750 | if (isUnevaluatedContext()) |
20751 | return; |
20752 | |
20753 | const NamedDecl *Caller = getCurFunctionOrMethodDecl(); |
20754 | |
20755 | if (!Caller || !Caller->hasAttr<EnforceTCBAttr>()) |
20756 | return; |
20757 | |
20758 | // Search through the enforce_tcb and enforce_tcb_leaf attributes to find |
20759 | // all TCBs the callee is a part of. |
20760 | llvm::StringSet<> CalleeTCBs; |
20761 | for (const auto *A : Callee->specific_attrs<EnforceTCBAttr>()) |
20762 | CalleeTCBs.insert(A->getTCBName()); |
20763 | for (const auto *A : Callee->specific_attrs<EnforceTCBLeafAttr>()) |
20764 | CalleeTCBs.insert(A->getTCBName()); |
20765 | |
20766 | // Go through the TCBs the caller is a part of and emit warnings if Caller |
20767 | // is in a TCB that the Callee is not. |
20768 | for (const auto *A : Caller->specific_attrs<EnforceTCBAttr>()) { |
20769 | StringRef CallerTCB = A->getTCBName(); |
20770 | if (CalleeTCBs.count(CallerTCB) == 0) { |
20771 | this->Diag(CallExprLoc, diag::warn_tcb_enforcement_violation) |
20772 | << Callee << CallerTCB; |
20773 | } |
20774 | } |
20775 | } |
20776 | |