1 | //=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file defines a variety of memory management related checkers, such as |
10 | // leak, double free, and use-after-free. |
11 | // |
12 | // The following checkers are defined here: |
13 | // |
14 | // * MallocChecker |
15 | // Despite its name, it models all sorts of memory allocations and |
16 | // de- or reallocation, including but not limited to malloc, free, |
17 | // relloc, new, delete. It also reports on a variety of memory misuse |
18 | // errors. |
19 | // Many other checkers interact very closely with this checker, in fact, |
20 | // most are merely options to this one. Other checkers may register |
21 | // MallocChecker, but do not enable MallocChecker's reports (more details |
22 | // to follow around its field, ChecksEnabled). |
23 | // It also has a boolean "Optimistic" checker option, which if set to true |
24 | // will cause the checker to model user defined memory management related |
25 | // functions annotated via the attribute ownership_takes, ownership_holds |
26 | // and ownership_returns. |
27 | // |
28 | // * NewDeleteChecker |
29 | // Enables the modeling of new, new[], delete, delete[] in MallocChecker, |
30 | // and checks for related double-free and use-after-free errors. |
31 | // |
32 | // * NewDeleteLeaksChecker |
33 | // Checks for leaks related to new, new[], delete, delete[]. |
34 | // Depends on NewDeleteChecker. |
35 | // |
36 | // * MismatchedDeallocatorChecker |
37 | // Enables checking whether memory is deallocated with the correspending |
38 | // allocation function in MallocChecker, such as malloc() allocated |
39 | // regions are only freed by free(), new by delete, new[] by delete[]. |
40 | // |
41 | // InnerPointerChecker interacts very closely with MallocChecker, but unlike |
42 | // the above checkers, it has it's own file, hence the many InnerPointerChecker |
43 | // related headers and non-static functions. |
44 | // |
45 | //===----------------------------------------------------------------------===// |
46 | |
47 | #include "AllocationState.h" |
48 | #include "InterCheckerAPI.h" |
49 | #include "clang/AST/Attr.h" |
50 | #include "clang/AST/DeclCXX.h" |
51 | #include "clang/AST/DeclTemplate.h" |
52 | #include "clang/AST/Expr.h" |
53 | #include "clang/AST/ExprCXX.h" |
54 | #include "clang/AST/ParentMap.h" |
55 | #include "clang/ASTMatchers/ASTMatchFinder.h" |
56 | #include "clang/ASTMatchers/ASTMatchers.h" |
57 | #include "clang/Analysis/ProgramPoint.h" |
58 | #include "clang/Basic/LLVM.h" |
59 | #include "clang/Basic/SourceManager.h" |
60 | #include "clang/Basic/TargetInfo.h" |
61 | #include "clang/Lex/Lexer.h" |
62 | #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" |
63 | #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" |
64 | #include "clang/StaticAnalyzer/Core/BugReporter/CommonBugCategories.h" |
65 | #include "clang/StaticAnalyzer/Core/Checker.h" |
66 | #include "clang/StaticAnalyzer/Core/CheckerManager.h" |
67 | #include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h" |
68 | #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" |
69 | #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" |
70 | #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h" |
71 | #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h" |
72 | #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" |
73 | #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" |
74 | #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" |
75 | #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h" |
76 | #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" |
77 | #include "clang/StaticAnalyzer/Core/PathSensitive/StoreRef.h" |
78 | #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" |
79 | #include "llvm/ADT/STLExtras.h" |
80 | #include "llvm/ADT/SetOperations.h" |
81 | #include "llvm/ADT/SmallString.h" |
82 | #include "llvm/ADT/StringExtras.h" |
83 | #include "llvm/Support/Casting.h" |
84 | #include "llvm/Support/Compiler.h" |
85 | #include "llvm/Support/ErrorHandling.h" |
86 | #include "llvm/Support/raw_ostream.h" |
87 | #include <climits> |
88 | #include <functional> |
89 | #include <optional> |
90 | #include <utility> |
91 | |
92 | using namespace clang; |
93 | using namespace ento; |
94 | using namespace std::placeholders; |
95 | |
96 | //===----------------------------------------------------------------------===// |
97 | // The types of allocation we're modeling. This is used to check whether a |
98 | // dynamically allocated object is deallocated with the correct function, like |
99 | // not using operator delete on an object created by malloc(), or alloca regions |
100 | // aren't ever deallocated manually. |
101 | //===----------------------------------------------------------------------===// |
102 | |
103 | namespace { |
104 | |
105 | // Used to check correspondence between allocators and deallocators. |
106 | enum AllocationFamily { |
107 | AF_None, |
108 | AF_Malloc, |
109 | AF_CXXNew, |
110 | AF_CXXNewArray, |
111 | AF_IfNameIndex, |
112 | AF_Alloca, |
113 | AF_InnerBuffer |
114 | }; |
115 | |
116 | } // end of anonymous namespace |
117 | |
118 | /// Print names of allocators and deallocators. |
119 | /// |
120 | /// \returns true on success. |
121 | static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E); |
122 | |
123 | /// Print expected name of an allocator based on the deallocator's family |
124 | /// derived from the DeallocExpr. |
125 | static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family); |
126 | |
127 | /// Print expected name of a deallocator based on the allocator's |
128 | /// family. |
129 | static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family); |
130 | |
131 | //===----------------------------------------------------------------------===// |
132 | // The state of a symbol, in terms of memory management. |
133 | //===----------------------------------------------------------------------===// |
134 | |
135 | namespace { |
136 | |
137 | class RefState { |
138 | enum Kind { |
139 | // Reference to allocated memory. |
140 | Allocated, |
141 | // Reference to zero-allocated memory. |
142 | AllocatedOfSizeZero, |
143 | // Reference to released/freed memory. |
144 | Released, |
145 | // The responsibility for freeing resources has transferred from |
146 | // this reference. A relinquished symbol should not be freed. |
147 | Relinquished, |
148 | // We are no longer guaranteed to have observed all manipulations |
149 | // of this pointer/memory. For example, it could have been |
150 | // passed as a parameter to an opaque function. |
151 | Escaped |
152 | }; |
153 | |
154 | const Stmt *S; |
155 | |
156 | Kind K; |
157 | AllocationFamily Family; |
158 | |
159 | RefState(Kind k, const Stmt *s, AllocationFamily family) |
160 | : S(s), K(k), Family(family) { |
161 | assert(family != AF_None); |
162 | } |
163 | |
164 | public: |
165 | bool isAllocated() const { return K == Allocated; } |
166 | bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; } |
167 | bool isReleased() const { return K == Released; } |
168 | bool isRelinquished() const { return K == Relinquished; } |
169 | bool isEscaped() const { return K == Escaped; } |
170 | AllocationFamily getAllocationFamily() const { return Family; } |
171 | const Stmt *getStmt() const { return S; } |
172 | |
173 | bool operator==(const RefState &X) const { |
174 | return K == X.K && S == X.S && Family == X.Family; |
175 | } |
176 | |
177 | static RefState getAllocated(AllocationFamily family, const Stmt *s) { |
178 | return RefState(Allocated, s, family); |
179 | } |
180 | static RefState getAllocatedOfSizeZero(const RefState *RS) { |
181 | return RefState(AllocatedOfSizeZero, RS->getStmt(), |
182 | RS->getAllocationFamily()); |
183 | } |
184 | static RefState getReleased(AllocationFamily family, const Stmt *s) { |
185 | return RefState(Released, s, family); |
186 | } |
187 | static RefState getRelinquished(AllocationFamily family, const Stmt *s) { |
188 | return RefState(Relinquished, s, family); |
189 | } |
190 | static RefState getEscaped(const RefState *RS) { |
191 | return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily()); |
192 | } |
193 | |
194 | void Profile(llvm::FoldingSetNodeID &ID) const { |
195 | ID.AddInteger(I: K); |
196 | ID.AddPointer(Ptr: S); |
197 | ID.AddInteger(I: Family); |
198 | } |
199 | |
200 | LLVM_DUMP_METHOD void dump(raw_ostream &OS) const { |
201 | switch (K) { |
202 | #define CASE(ID) case ID: OS << #ID; break; |
203 | CASE(Allocated) |
204 | CASE(AllocatedOfSizeZero) |
205 | CASE(Released) |
206 | CASE(Relinquished) |
207 | CASE(Escaped) |
208 | } |
209 | } |
210 | |
211 | LLVM_DUMP_METHOD void dump() const { dump(OS&: llvm::errs()); } |
212 | }; |
213 | |
214 | } // end of anonymous namespace |
215 | |
216 | REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState) |
217 | |
218 | /// Check if the memory associated with this symbol was released. |
219 | static bool isReleased(SymbolRef Sym, CheckerContext &C); |
220 | |
221 | /// Update the RefState to reflect the new memory allocation. |
222 | /// The optional \p RetVal parameter specifies the newly allocated pointer |
223 | /// value; if unspecified, the value of expression \p E is used. |
224 | static ProgramStateRef |
225 | MallocUpdateRefState(CheckerContext &C, const Expr *E, ProgramStateRef State, |
226 | AllocationFamily Family, |
227 | std::optional<SVal> RetVal = std::nullopt); |
228 | |
229 | //===----------------------------------------------------------------------===// |
230 | // The modeling of memory reallocation. |
231 | // |
232 | // The terminology 'toPtr' and 'fromPtr' will be used: |
233 | // toPtr = realloc(fromPtr, 20); |
234 | //===----------------------------------------------------------------------===// |
235 | |
236 | REGISTER_SET_WITH_PROGRAMSTATE(ReallocSizeZeroSymbols, SymbolRef) |
237 | |
238 | namespace { |
239 | |
240 | /// The state of 'fromPtr' after reallocation is known to have failed. |
241 | enum OwnershipAfterReallocKind { |
242 | // The symbol needs to be freed (e.g.: realloc) |
243 | OAR_ToBeFreedAfterFailure, |
244 | // The symbol has been freed (e.g.: reallocf) |
245 | OAR_FreeOnFailure, |
246 | // The symbol doesn't have to freed (e.g.: we aren't sure if, how and where |
247 | // 'fromPtr' was allocated: |
248 | // void Haha(int *ptr) { |
249 | // ptr = realloc(ptr, 67); |
250 | // // ... |
251 | // } |
252 | // ). |
253 | OAR_DoNotTrackAfterFailure |
254 | }; |
255 | |
256 | /// Stores information about the 'fromPtr' symbol after reallocation. |
257 | /// |
258 | /// This is important because realloc may fail, and that needs special modeling. |
259 | /// Whether reallocation failed or not will not be known until later, so we'll |
260 | /// store whether upon failure 'fromPtr' will be freed, or needs to be freed |
261 | /// later, etc. |
262 | struct ReallocPair { |
263 | |
264 | // The 'fromPtr'. |
265 | SymbolRef ReallocatedSym; |
266 | OwnershipAfterReallocKind Kind; |
267 | |
268 | ReallocPair(SymbolRef S, OwnershipAfterReallocKind K) |
269 | : ReallocatedSym(S), Kind(K) {} |
270 | void Profile(llvm::FoldingSetNodeID &ID) const { |
271 | ID.AddInteger(I: Kind); |
272 | ID.AddPointer(Ptr: ReallocatedSym); |
273 | } |
274 | bool operator==(const ReallocPair &X) const { |
275 | return ReallocatedSym == X.ReallocatedSym && |
276 | Kind == X.Kind; |
277 | } |
278 | }; |
279 | |
280 | } // end of anonymous namespace |
281 | |
282 | REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair) |
283 | |
284 | /// Tells if the callee is one of the builtin new/delete operators, including |
285 | /// placement operators and other standard overloads. |
286 | static bool isStandardNewDelete(const FunctionDecl *FD); |
287 | static bool isStandardNewDelete(const CallEvent &Call) { |
288 | if (!Call.getDecl() || !isa<FunctionDecl>(Val: Call.getDecl())) |
289 | return false; |
290 | return isStandardNewDelete(FD: cast<FunctionDecl>(Val: Call.getDecl())); |
291 | } |
292 | |
293 | //===----------------------------------------------------------------------===// |
294 | // Definition of the MallocChecker class. |
295 | //===----------------------------------------------------------------------===// |
296 | |
297 | namespace { |
298 | |
299 | class MallocChecker |
300 | : public Checker<check::DeadSymbols, check::PointerEscape, |
301 | check::ConstPointerEscape, check::PreStmt<ReturnStmt>, |
302 | check::EndFunction, check::PreCall, check::PostCall, |
303 | check::NewAllocator, check::PostStmt<BlockExpr>, |
304 | check::PostObjCMessage, check::Location, eval::Assume> { |
305 | public: |
306 | /// In pessimistic mode, the checker assumes that it does not know which |
307 | /// functions might free the memory. |
308 | /// In optimistic mode, the checker assumes that all user-defined functions |
309 | /// which might free a pointer are annotated. |
310 | bool ShouldIncludeOwnershipAnnotatedFunctions = false; |
311 | |
312 | bool ShouldRegisterNoOwnershipChangeVisitor = false; |
313 | |
314 | /// Many checkers are essentially built into this one, so enabling them will |
315 | /// make MallocChecker perform additional modeling and reporting. |
316 | enum CheckKind { |
317 | /// When a subchecker is enabled but MallocChecker isn't, model memory |
318 | /// management but do not emit warnings emitted with MallocChecker only |
319 | /// enabled. |
320 | CK_MallocChecker, |
321 | CK_NewDeleteChecker, |
322 | CK_NewDeleteLeaksChecker, |
323 | CK_MismatchedDeallocatorChecker, |
324 | CK_InnerPointerChecker, |
325 | CK_NumCheckKinds |
326 | }; |
327 | |
328 | using LeakInfo = std::pair<const ExplodedNode *, const MemRegion *>; |
329 | |
330 | bool ChecksEnabled[CK_NumCheckKinds] = {false}; |
331 | CheckerNameRef CheckNames[CK_NumCheckKinds]; |
332 | |
333 | void checkPreCall(const CallEvent &Call, CheckerContext &C) const; |
334 | void checkPostCall(const CallEvent &Call, CheckerContext &C) const; |
335 | void checkNewAllocator(const CXXAllocatorCall &Call, CheckerContext &C) const; |
336 | void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const; |
337 | void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const; |
338 | void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const; |
339 | void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; |
340 | void checkEndFunction(const ReturnStmt *S, CheckerContext &C) const; |
341 | ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond, |
342 | bool Assumption) const; |
343 | void checkLocation(SVal l, bool isLoad, const Stmt *S, |
344 | CheckerContext &C) const; |
345 | |
346 | ProgramStateRef checkPointerEscape(ProgramStateRef State, |
347 | const InvalidatedSymbols &Escaped, |
348 | const CallEvent *Call, |
349 | PointerEscapeKind Kind) const; |
350 | ProgramStateRef checkConstPointerEscape(ProgramStateRef State, |
351 | const InvalidatedSymbols &Escaped, |
352 | const CallEvent *Call, |
353 | PointerEscapeKind Kind) const; |
354 | |
355 | void printState(raw_ostream &Out, ProgramStateRef State, |
356 | const char *NL, const char *Sep) const override; |
357 | |
358 | private: |
359 | mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds]; |
360 | mutable std::unique_ptr<BugType> BT_DoubleDelete; |
361 | mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds]; |
362 | mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds]; |
363 | mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds]; |
364 | mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds]; |
365 | mutable std::unique_ptr<BugType> BT_MismatchedDealloc; |
366 | mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds]; |
367 | mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds]; |
368 | |
369 | #define CHECK_FN(NAME) \ |
370 | void NAME(const CallEvent &Call, CheckerContext &C) const; |
371 | |
372 | CHECK_FN(checkFree) |
373 | CHECK_FN(checkIfNameIndex) |
374 | CHECK_FN(checkBasicAlloc) |
375 | CHECK_FN(checkKernelMalloc) |
376 | CHECK_FN(checkCalloc) |
377 | CHECK_FN(checkAlloca) |
378 | CHECK_FN(checkStrdup) |
379 | CHECK_FN(checkIfFreeNameIndex) |
380 | CHECK_FN(checkCXXNewOrCXXDelete) |
381 | CHECK_FN(checkGMalloc0) |
382 | CHECK_FN(checkGMemdup) |
383 | CHECK_FN(checkGMallocN) |
384 | CHECK_FN(checkGMallocN0) |
385 | CHECK_FN(preGetdelim) |
386 | CHECK_FN(checkGetdelim) |
387 | CHECK_FN(checkReallocN) |
388 | CHECK_FN(checkOwnershipAttr) |
389 | |
390 | void checkRealloc(const CallEvent &Call, CheckerContext &C, |
391 | bool ShouldFreeOnFail) const; |
392 | |
393 | using CheckFn = std::function<void(const MallocChecker *, |
394 | const CallEvent &Call, CheckerContext &C)>; |
395 | |
396 | const CallDescriptionMap<CheckFn> PreFnMap{ |
397 | // NOTE: the following CallDescription also matches the C++ standard |
398 | // library function std::getline(); the callback will filter it out. |
399 | {{CDM::CLibrary, {"getline" }, 3}, &MallocChecker::preGetdelim}, |
400 | {{CDM::CLibrary, {"getdelim" }, 4}, &MallocChecker::preGetdelim}, |
401 | }; |
402 | |
403 | const CallDescriptionMap<CheckFn> FreeingMemFnMap{ |
404 | {{CDM::CLibrary, {"free" }, 1}, &MallocChecker::checkFree}, |
405 | {{CDM::CLibrary, {"if_freenameindex" }, 1}, |
406 | &MallocChecker::checkIfFreeNameIndex}, |
407 | {{CDM::CLibrary, {"kfree" }, 1}, &MallocChecker::checkFree}, |
408 | {{CDM::CLibrary, {"g_free" }, 1}, &MallocChecker::checkFree}, |
409 | }; |
410 | |
411 | bool isFreeingCall(const CallEvent &Call) const; |
412 | static bool isFreeingOwnershipAttrCall(const FunctionDecl *Func); |
413 | |
414 | friend class NoOwnershipChangeVisitor; |
415 | |
416 | CallDescriptionMap<CheckFn> AllocatingMemFnMap{ |
417 | {{CDM::CLibrary, {"alloca" }, 1}, &MallocChecker::checkAlloca}, |
418 | {{CDM::CLibrary, {"_alloca" }, 1}, &MallocChecker::checkAlloca}, |
419 | // The line for "alloca" also covers "__builtin_alloca", but the |
420 | // _with_align variant must be listed separately because it takes an |
421 | // extra argument: |
422 | {{CDM::CLibrary, {"__builtin_alloca_with_align" }, 2}, |
423 | &MallocChecker::checkAlloca}, |
424 | {{CDM::CLibrary, {"malloc" }, 1}, &MallocChecker::checkBasicAlloc}, |
425 | {{CDM::CLibrary, {"malloc" }, 3}, &MallocChecker::checkKernelMalloc}, |
426 | {{CDM::CLibrary, {"calloc" }, 2}, &MallocChecker::checkCalloc}, |
427 | {{CDM::CLibrary, {"valloc" }, 1}, &MallocChecker::checkBasicAlloc}, |
428 | {{CDM::CLibrary, {"strndup" }, 2}, &MallocChecker::checkStrdup}, |
429 | {{CDM::CLibrary, {"strdup" }, 1}, &MallocChecker::checkStrdup}, |
430 | {{CDM::CLibrary, {"_strdup" }, 1}, &MallocChecker::checkStrdup}, |
431 | {{CDM::CLibrary, {"kmalloc" }, 2}, &MallocChecker::checkKernelMalloc}, |
432 | {{CDM::CLibrary, {"if_nameindex" }, 1}, &MallocChecker::checkIfNameIndex}, |
433 | {{CDM::CLibrary, {"wcsdup" }, 1}, &MallocChecker::checkStrdup}, |
434 | {{CDM::CLibrary, {"_wcsdup" }, 1}, &MallocChecker::checkStrdup}, |
435 | {{CDM::CLibrary, {"g_malloc" }, 1}, &MallocChecker::checkBasicAlloc}, |
436 | {{CDM::CLibrary, {"g_malloc0" }, 1}, &MallocChecker::checkGMalloc0}, |
437 | {{CDM::CLibrary, {"g_try_malloc" }, 1}, &MallocChecker::checkBasicAlloc}, |
438 | {{CDM::CLibrary, {"g_try_malloc0" }, 1}, &MallocChecker::checkGMalloc0}, |
439 | {{CDM::CLibrary, {"g_memdup" }, 2}, &MallocChecker::checkGMemdup}, |
440 | {{CDM::CLibrary, {"g_malloc_n" }, 2}, &MallocChecker::checkGMallocN}, |
441 | {{CDM::CLibrary, {"g_malloc0_n" }, 2}, &MallocChecker::checkGMallocN0}, |
442 | {{CDM::CLibrary, {"g_try_malloc_n" }, 2}, &MallocChecker::checkGMallocN}, |
443 | {{CDM::CLibrary, {"g_try_malloc0_n" }, 2}, &MallocChecker::checkGMallocN0}, |
444 | }; |
445 | |
446 | CallDescriptionMap<CheckFn> ReallocatingMemFnMap{ |
447 | {{CDM::CLibrary, {"realloc" }, 2}, |
448 | std::bind(f: &MallocChecker::checkRealloc, args: _1, args: _2, args: _3, args: false)}, |
449 | {{CDM::CLibrary, {"reallocf" }, 2}, |
450 | std::bind(f: &MallocChecker::checkRealloc, args: _1, args: _2, args: _3, args: true)}, |
451 | {{CDM::CLibrary, {"g_realloc" }, 2}, |
452 | std::bind(f: &MallocChecker::checkRealloc, args: _1, args: _2, args: _3, args: false)}, |
453 | {{CDM::CLibrary, {"g_try_realloc" }, 2}, |
454 | std::bind(f: &MallocChecker::checkRealloc, args: _1, args: _2, args: _3, args: false)}, |
455 | {{CDM::CLibrary, {"g_realloc_n" }, 3}, &MallocChecker::checkReallocN}, |
456 | {{CDM::CLibrary, {"g_try_realloc_n" }, 3}, &MallocChecker::checkReallocN}, |
457 | |
458 | // NOTE: the following CallDescription also matches the C++ standard |
459 | // library function std::getline(); the callback will filter it out. |
460 | {{CDM::CLibrary, {"getline" }, 3}, &MallocChecker::checkGetdelim}, |
461 | {{CDM::CLibrary, {"getdelim" }, 4}, &MallocChecker::checkGetdelim}, |
462 | }; |
463 | |
464 | bool isMemCall(const CallEvent &Call) const; |
465 | |
466 | // TODO: Remove mutable by moving the initializtaion to the registry function. |
467 | mutable std::optional<uint64_t> KernelZeroFlagVal; |
468 | |
469 | using KernelZeroSizePtrValueTy = std::optional<int>; |
470 | /// Store the value of macro called `ZERO_SIZE_PTR`. |
471 | /// The value is initialized at first use, before first use the outer |
472 | /// Optional is empty, afterwards it contains another Optional that indicates |
473 | /// if the macro value could be determined, and if yes the value itself. |
474 | mutable std::optional<KernelZeroSizePtrValueTy> KernelZeroSizePtrValue; |
475 | |
476 | /// Process C++ operator new()'s allocation, which is the part of C++ |
477 | /// new-expression that goes before the constructor. |
478 | [[nodiscard]] ProgramStateRef |
479 | processNewAllocation(const CXXAllocatorCall &Call, CheckerContext &C, |
480 | AllocationFamily Family) const; |
481 | |
482 | /// Perform a zero-allocation check. |
483 | /// |
484 | /// \param [in] Call The expression that allocates memory. |
485 | /// \param [in] IndexOfSizeArg Index of the argument that specifies the size |
486 | /// of the memory that needs to be allocated. E.g. for malloc, this would be |
487 | /// 0. |
488 | /// \param [in] RetVal Specifies the newly allocated pointer value; |
489 | /// if unspecified, the value of expression \p E is used. |
490 | [[nodiscard]] static ProgramStateRef |
491 | ProcessZeroAllocCheck(const CallEvent &Call, const unsigned IndexOfSizeArg, |
492 | ProgramStateRef State, |
493 | std::optional<SVal> RetVal = std::nullopt); |
494 | |
495 | /// Model functions with the ownership_returns attribute. |
496 | /// |
497 | /// User-defined function may have the ownership_returns attribute, which |
498 | /// annotates that the function returns with an object that was allocated on |
499 | /// the heap, and passes the ownertship to the callee. |
500 | /// |
501 | /// void __attribute((ownership_returns(malloc, 1))) *my_malloc(size_t); |
502 | /// |
503 | /// It has two parameters: |
504 | /// - first: name of the resource (e.g. 'malloc') |
505 | /// - (OPTIONAL) second: size of the allocated region |
506 | /// |
507 | /// \param [in] Call The expression that allocates memory. |
508 | /// \param [in] Att The ownership_returns attribute. |
509 | /// \param [in] State The \c ProgramState right before allocation. |
510 | /// \returns The ProgramState right after allocation. |
511 | [[nodiscard]] ProgramStateRef |
512 | MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call, |
513 | const OwnershipAttr *Att, ProgramStateRef State) const; |
514 | |
515 | /// Models memory allocation. |
516 | /// |
517 | /// \param [in] Call The expression that allocates memory. |
518 | /// \param [in] SizeEx Size of the memory that needs to be allocated. |
519 | /// \param [in] Init The value the allocated memory needs to be initialized. |
520 | /// with. For example, \c calloc initializes the allocated memory to 0, |
521 | /// malloc leaves it undefined. |
522 | /// \param [in] State The \c ProgramState right before allocation. |
523 | /// \returns The ProgramState right after allocation. |
524 | [[nodiscard]] static ProgramStateRef |
525 | MallocMemAux(CheckerContext &C, const CallEvent &Call, const Expr *SizeEx, |
526 | SVal Init, ProgramStateRef State, AllocationFamily Family); |
527 | |
528 | /// Models memory allocation. |
529 | /// |
530 | /// \param [in] Call The expression that allocates memory. |
531 | /// \param [in] Size Size of the memory that needs to be allocated. |
532 | /// \param [in] Init The value the allocated memory needs to be initialized. |
533 | /// with. For example, \c calloc initializes the allocated memory to 0, |
534 | /// malloc leaves it undefined. |
535 | /// \param [in] State The \c ProgramState right before allocation. |
536 | /// \returns The ProgramState right after allocation. |
537 | [[nodiscard]] static ProgramStateRef |
538 | MallocMemAux(CheckerContext &C, const CallEvent &Call, SVal Size, SVal Init, |
539 | ProgramStateRef State, AllocationFamily Family); |
540 | |
541 | // Check if this malloc() for special flags. At present that means M_ZERO or |
542 | // __GFP_ZERO (in which case, treat it like calloc). |
543 | [[nodiscard]] std::optional<ProgramStateRef> |
544 | performKernelMalloc(const CallEvent &Call, CheckerContext &C, |
545 | const ProgramStateRef &State) const; |
546 | |
547 | /// Model functions with the ownership_takes and ownership_holds attributes. |
548 | /// |
549 | /// User-defined function may have the ownership_takes and/or ownership_holds |
550 | /// attributes, which annotates that the function frees the memory passed as a |
551 | /// parameter. |
552 | /// |
553 | /// void __attribute((ownership_takes(malloc, 1))) my_free(void *); |
554 | /// void __attribute((ownership_holds(malloc, 1))) my_hold(void *); |
555 | /// |
556 | /// They have two parameters: |
557 | /// - first: name of the resource (e.g. 'malloc') |
558 | /// - second: index of the parameter the attribute applies to |
559 | /// |
560 | /// \param [in] Call The expression that frees memory. |
561 | /// \param [in] Att The ownership_takes or ownership_holds attribute. |
562 | /// \param [in] State The \c ProgramState right before allocation. |
563 | /// \returns The ProgramState right after deallocation. |
564 | [[nodiscard]] ProgramStateRef FreeMemAttr(CheckerContext &C, |
565 | const CallEvent &Call, |
566 | const OwnershipAttr *Att, |
567 | ProgramStateRef State) const; |
568 | |
569 | /// Models memory deallocation. |
570 | /// |
571 | /// \param [in] Call The expression that frees memory. |
572 | /// \param [in] State The \c ProgramState right before allocation. |
573 | /// \param [in] Num Index of the argument that needs to be freed. This is |
574 | /// normally 0, but for custom free functions it may be different. |
575 | /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds |
576 | /// attribute. |
577 | /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known |
578 | /// to have been allocated, or in other words, the symbol to be freed was |
579 | /// registered as allocated by this checker. In the following case, \c ptr |
580 | /// isn't known to be allocated. |
581 | /// void Haha(int *ptr) { |
582 | /// ptr = realloc(ptr, 67); |
583 | /// // ... |
584 | /// } |
585 | /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function |
586 | /// we're modeling returns with Null on failure. |
587 | /// \returns The ProgramState right after deallocation. |
588 | [[nodiscard]] ProgramStateRef |
589 | FreeMemAux(CheckerContext &C, const CallEvent &Call, ProgramStateRef State, |
590 | unsigned Num, bool Hold, bool &IsKnownToBeAllocated, |
591 | AllocationFamily Family, bool ReturnsNullOnFailure = false) const; |
592 | |
593 | /// Models memory deallocation. |
594 | /// |
595 | /// \param [in] ArgExpr The variable who's pointee needs to be freed. |
596 | /// \param [in] Call The expression that frees the memory. |
597 | /// \param [in] State The \c ProgramState right before allocation. |
598 | /// normally 0, but for custom free functions it may be different. |
599 | /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds |
600 | /// attribute. |
601 | /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known |
602 | /// to have been allocated, or in other words, the symbol to be freed was |
603 | /// registered as allocated by this checker. In the following case, \c ptr |
604 | /// isn't known to be allocated. |
605 | /// void Haha(int *ptr) { |
606 | /// ptr = realloc(ptr, 67); |
607 | /// // ... |
608 | /// } |
609 | /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function |
610 | /// we're modeling returns with Null on failure. |
611 | /// \param [in] ArgValOpt Optional value to use for the argument instead of |
612 | /// the one obtained from ArgExpr. |
613 | /// \returns The ProgramState right after deallocation. |
614 | [[nodiscard]] ProgramStateRef |
615 | FreeMemAux(CheckerContext &C, const Expr *ArgExpr, const CallEvent &Call, |
616 | ProgramStateRef State, bool Hold, bool &IsKnownToBeAllocated, |
617 | AllocationFamily Family, bool ReturnsNullOnFailure = false, |
618 | std::optional<SVal> ArgValOpt = {}) const; |
619 | |
620 | // TODO: Needs some refactoring, as all other deallocation modeling |
621 | // functions are suffering from out parameters and messy code due to how |
622 | // realloc is handled. |
623 | // |
624 | /// Models memory reallocation. |
625 | /// |
626 | /// \param [in] Call The expression that reallocated memory |
627 | /// \param [in] ShouldFreeOnFail Whether if reallocation fails, the supplied |
628 | /// memory should be freed. |
629 | /// \param [in] State The \c ProgramState right before reallocation. |
630 | /// \param [in] SuffixWithN Whether the reallocation function we're modeling |
631 | /// has an '_n' suffix, such as g_realloc_n. |
632 | /// \returns The ProgramState right after reallocation. |
633 | [[nodiscard]] ProgramStateRef |
634 | ReallocMemAux(CheckerContext &C, const CallEvent &Call, bool ShouldFreeOnFail, |
635 | ProgramStateRef State, AllocationFamily Family, |
636 | bool SuffixWithN = false) const; |
637 | |
638 | /// Evaluates the buffer size that needs to be allocated. |
639 | /// |
640 | /// \param [in] Blocks The amount of blocks that needs to be allocated. |
641 | /// \param [in] BlockBytes The size of a block. |
642 | /// \returns The symbolic value of \p Blocks * \p BlockBytes. |
643 | [[nodiscard]] static SVal evalMulForBufferSize(CheckerContext &C, |
644 | const Expr *Blocks, |
645 | const Expr *BlockBytes); |
646 | |
647 | /// Models zero initialized array allocation. |
648 | /// |
649 | /// \param [in] Call The expression that reallocated memory |
650 | /// \param [in] State The \c ProgramState right before reallocation. |
651 | /// \returns The ProgramState right after allocation. |
652 | [[nodiscard]] static ProgramStateRef |
653 | CallocMem(CheckerContext &C, const CallEvent &Call, ProgramStateRef State); |
654 | |
655 | /// See if deallocation happens in a suspicious context. If so, escape the |
656 | /// pointers that otherwise would have been deallocated and return true. |
657 | bool suppressDeallocationsInSuspiciousContexts(const CallEvent &Call, |
658 | CheckerContext &C) const; |
659 | |
660 | /// If in \p S \p Sym is used, check whether \p Sym was already freed. |
661 | bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const; |
662 | |
663 | /// If in \p S \p Sym is used, check whether \p Sym was allocated as a zero |
664 | /// sized memory region. |
665 | void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, |
666 | const Stmt *S) const; |
667 | |
668 | /// If in \p S \p Sym is being freed, check whether \p Sym was already freed. |
669 | bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const; |
670 | |
671 | /// Check if the function is known to free memory, or if it is |
672 | /// "interesting" and should be modeled explicitly. |
673 | /// |
674 | /// \param [out] EscapingSymbol A function might not free memory in general, |
675 | /// but could be known to free a particular symbol. In this case, false is |
676 | /// returned and the single escaping symbol is returned through the out |
677 | /// parameter. |
678 | /// |
679 | /// We assume that pointers do not escape through calls to system functions |
680 | /// not handled by this checker. |
681 | bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call, |
682 | ProgramStateRef State, |
683 | SymbolRef &EscapingSymbol) const; |
684 | |
685 | /// Implementation of the checkPointerEscape callbacks. |
686 | [[nodiscard]] ProgramStateRef |
687 | checkPointerEscapeAux(ProgramStateRef State, |
688 | const InvalidatedSymbols &Escaped, |
689 | const CallEvent *Call, PointerEscapeKind Kind, |
690 | bool IsConstPointerEscape) const; |
691 | |
692 | // Implementation of the checkPreStmt and checkEndFunction callbacks. |
693 | void checkEscapeOnReturn(const ReturnStmt *S, CheckerContext &C) const; |
694 | |
695 | ///@{ |
696 | /// Tells if a given family/call/symbol is tracked by the current checker. |
697 | /// Sets CheckKind to the kind of the checker responsible for this |
698 | /// family/call/symbol. |
699 | std::optional<CheckKind> getCheckIfTracked(AllocationFamily Family, |
700 | bool IsALeakCheck = false) const; |
701 | |
702 | std::optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym, |
703 | bool IsALeakCheck = false) const; |
704 | ///@} |
705 | static bool SummarizeValue(raw_ostream &os, SVal V); |
706 | static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR); |
707 | |
708 | void HandleNonHeapDealloc(CheckerContext &C, SVal ArgVal, SourceRange Range, |
709 | const Expr *DeallocExpr, |
710 | AllocationFamily Family) const; |
711 | |
712 | void HandleFreeAlloca(CheckerContext &C, SVal ArgVal, |
713 | SourceRange Range) const; |
714 | |
715 | void HandleMismatchedDealloc(CheckerContext &C, SourceRange Range, |
716 | const Expr *DeallocExpr, const RefState *RS, |
717 | SymbolRef Sym, bool OwnershipTransferred) const; |
718 | |
719 | void HandleOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range, |
720 | const Expr *DeallocExpr, AllocationFamily Family, |
721 | const Expr *AllocExpr = nullptr) const; |
722 | |
723 | void HandleUseAfterFree(CheckerContext &C, SourceRange Range, |
724 | SymbolRef Sym) const; |
725 | |
726 | void HandleDoubleFree(CheckerContext &C, SourceRange Range, bool Released, |
727 | SymbolRef Sym, SymbolRef PrevSym) const; |
728 | |
729 | void HandleDoubleDelete(CheckerContext &C, SymbolRef Sym) const; |
730 | |
731 | void HandleUseZeroAlloc(CheckerContext &C, SourceRange Range, |
732 | SymbolRef Sym) const; |
733 | |
734 | void HandleFunctionPtrFree(CheckerContext &C, SVal ArgVal, SourceRange Range, |
735 | const Expr *FreeExpr, |
736 | AllocationFamily Family) const; |
737 | |
738 | /// Find the location of the allocation for Sym on the path leading to the |
739 | /// exploded node N. |
740 | static LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym, |
741 | CheckerContext &C); |
742 | |
743 | void HandleLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const; |
744 | |
745 | /// Test if value in ArgVal equals to value in macro `ZERO_SIZE_PTR`. |
746 | bool isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C, |
747 | SVal ArgVal) const; |
748 | }; |
749 | } // end anonymous namespace |
750 | |
751 | //===----------------------------------------------------------------------===// |
752 | // Definition of NoOwnershipChangeVisitor. |
753 | //===----------------------------------------------------------------------===// |
754 | |
755 | namespace { |
756 | class NoOwnershipChangeVisitor final : public NoStateChangeFuncVisitor { |
757 | // The symbol whose (lack of) ownership change we are interested in. |
758 | SymbolRef Sym; |
759 | const MallocChecker &Checker; |
760 | using OwnerSet = llvm::SmallPtrSet<const MemRegion *, 8>; |
761 | |
762 | // Collect which entities point to the allocated memory, and could be |
763 | // responsible for deallocating it. |
764 | class OwnershipBindingsHandler : public StoreManager::BindingsHandler { |
765 | SymbolRef Sym; |
766 | OwnerSet &Owners; |
767 | |
768 | public: |
769 | OwnershipBindingsHandler(SymbolRef Sym, OwnerSet &Owners) |
770 | : Sym(Sym), Owners(Owners) {} |
771 | |
772 | bool HandleBinding(StoreManager &SMgr, Store Store, const MemRegion *Region, |
773 | SVal Val) override { |
774 | if (Val.getAsSymbol() == Sym) |
775 | Owners.insert(Ptr: Region); |
776 | return true; |
777 | } |
778 | |
779 | LLVM_DUMP_METHOD void dump() const { dumpToStream(out&: llvm::errs()); } |
780 | LLVM_DUMP_METHOD void dumpToStream(llvm::raw_ostream &out) const { |
781 | out << "Owners: {\n" ; |
782 | for (const MemRegion *Owner : Owners) { |
783 | out << " " ; |
784 | Owner->dumpToStream(os&: out); |
785 | out << ",\n" ; |
786 | } |
787 | out << "}\n" ; |
788 | } |
789 | }; |
790 | |
791 | protected: |
792 | OwnerSet getOwnersAtNode(const ExplodedNode *N) { |
793 | OwnerSet Ret; |
794 | |
795 | ProgramStateRef State = N->getState(); |
796 | OwnershipBindingsHandler Handler{Sym, Ret}; |
797 | State->getStateManager().getStoreManager().iterBindings(store: State->getStore(), |
798 | f&: Handler); |
799 | return Ret; |
800 | } |
801 | |
802 | LLVM_DUMP_METHOD static std::string |
803 | getFunctionName(const ExplodedNode *CallEnterN) { |
804 | if (const CallExpr *CE = llvm::dyn_cast_or_null<CallExpr>( |
805 | Val: CallEnterN->getLocationAs<CallEnter>()->getCallExpr())) |
806 | if (const FunctionDecl *FD = CE->getDirectCallee()) |
807 | return FD->getQualifiedNameAsString(); |
808 | return "" ; |
809 | } |
810 | |
811 | /// Syntactically checks whether the callee is a deallocating function. Since |
812 | /// we have no path-sensitive information on this call (we would need a |
813 | /// CallEvent instead of a CallExpr for that), its possible that a |
814 | /// deallocation function was called indirectly through a function pointer, |
815 | /// but we are not able to tell, so this is a best effort analysis. |
816 | /// See namespace `memory_passed_to_fn_call_free_through_fn_ptr` in |
817 | /// clang/test/Analysis/NewDeleteLeaks.cpp. |
818 | bool isFreeingCallAsWritten(const CallExpr &Call) const { |
819 | if (Checker.FreeingMemFnMap.lookupAsWritten(Call) || |
820 | Checker.ReallocatingMemFnMap.lookupAsWritten(Call)) |
821 | return true; |
822 | |
823 | if (const auto *Func = |
824 | llvm::dyn_cast_or_null<FunctionDecl>(Val: Call.getCalleeDecl())) |
825 | return MallocChecker::isFreeingOwnershipAttrCall(Func); |
826 | |
827 | return false; |
828 | } |
829 | |
830 | /// Heuristically guess whether the callee intended to free memory. This is |
831 | /// done syntactically, because we are trying to argue about alternative |
832 | /// paths of execution, and as a consequence we don't have path-sensitive |
833 | /// information. |
834 | bool doesFnIntendToHandleOwnership(const Decl *Callee, ASTContext &ACtx) { |
835 | using namespace clang::ast_matchers; |
836 | const FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: Callee); |
837 | |
838 | // Given that the stack frame was entered, the body should always be |
839 | // theoretically obtainable. In case of body farms, the synthesized body |
840 | // is not attached to declaration, thus triggering the '!FD->hasBody()' |
841 | // branch. That said, would a synthesized body ever intend to handle |
842 | // ownership? As of today they don't. And if they did, how would we |
843 | // put notes inside it, given that it doesn't match any source locations? |
844 | if (!FD || !FD->hasBody()) |
845 | return false; |
846 | |
847 | auto Matches = match(Matcher: findAll(Matcher: stmt(anyOf(cxxDeleteExpr().bind(ID: "delete" ), |
848 | callExpr().bind(ID: "call" )))), |
849 | Node: *FD->getBody(), Context&: ACtx); |
850 | for (BoundNodes Match : Matches) { |
851 | if (Match.getNodeAs<CXXDeleteExpr>(ID: "delete" )) |
852 | return true; |
853 | |
854 | if (const auto *Call = Match.getNodeAs<CallExpr>(ID: "call" )) |
855 | if (isFreeingCallAsWritten(Call: *Call)) |
856 | return true; |
857 | } |
858 | // TODO: Ownership might change with an attempt to store the allocated |
859 | // memory, not only through deallocation. Check for attempted stores as |
860 | // well. |
861 | return false; |
862 | } |
863 | |
864 | bool wasModifiedInFunction(const ExplodedNode *CallEnterN, |
865 | const ExplodedNode *CallExitEndN) override { |
866 | if (!doesFnIntendToHandleOwnership( |
867 | Callee: CallExitEndN->getFirstPred()->getLocationContext()->getDecl(), |
868 | ACtx&: CallExitEndN->getState()->getAnalysisManager().getASTContext())) |
869 | return true; |
870 | |
871 | if (CallEnterN->getState()->get<RegionState>(key: Sym) != |
872 | CallExitEndN->getState()->get<RegionState>(key: Sym)) |
873 | return true; |
874 | |
875 | OwnerSet CurrOwners = getOwnersAtNode(N: CallEnterN); |
876 | OwnerSet ExitOwners = getOwnersAtNode(N: CallExitEndN); |
877 | |
878 | // Owners in the current set may be purged from the analyzer later on. |
879 | // If a variable is dead (is not referenced directly or indirectly after |
880 | // some point), it will be removed from the Store before the end of its |
881 | // actual lifetime. |
882 | // This means that if the ownership status didn't change, CurrOwners |
883 | // must be a superset of, but not necessarily equal to ExitOwners. |
884 | return !llvm::set_is_subset(S1: ExitOwners, S2: CurrOwners); |
885 | } |
886 | |
887 | static PathDiagnosticPieceRef emitNote(const ExplodedNode *N) { |
888 | PathDiagnosticLocation L = PathDiagnosticLocation::create( |
889 | P: N->getLocation(), |
890 | SMng: N->getState()->getStateManager().getContext().getSourceManager()); |
891 | return std::make_shared<PathDiagnosticEventPiece>( |
892 | args&: L, args: "Returning without deallocating memory or storing the pointer for " |
893 | "later deallocation" ); |
894 | } |
895 | |
896 | PathDiagnosticPieceRef |
897 | maybeEmitNoteForObjCSelf(PathSensitiveBugReport &R, |
898 | const ObjCMethodCall &Call, |
899 | const ExplodedNode *N) override { |
900 | // TODO: Implement. |
901 | return nullptr; |
902 | } |
903 | |
904 | PathDiagnosticPieceRef |
905 | maybeEmitNoteForCXXThis(PathSensitiveBugReport &R, |
906 | const CXXConstructorCall &Call, |
907 | const ExplodedNode *N) override { |
908 | // TODO: Implement. |
909 | return nullptr; |
910 | } |
911 | |
912 | PathDiagnosticPieceRef |
913 | maybeEmitNoteForParameters(PathSensitiveBugReport &R, const CallEvent &Call, |
914 | const ExplodedNode *N) override { |
915 | // TODO: Factor the logic of "what constitutes as an entity being passed |
916 | // into a function call" out by reusing the code in |
917 | // NoStoreFuncVisitor::maybeEmitNoteForParameters, maybe by incorporating |
918 | // the printing technology in UninitializedObject's FieldChainInfo. |
919 | ArrayRef<ParmVarDecl *> Parameters = Call.parameters(); |
920 | for (unsigned I = 0; I < Call.getNumArgs() && I < Parameters.size(); ++I) { |
921 | SVal V = Call.getArgSVal(Index: I); |
922 | if (V.getAsSymbol() == Sym) |
923 | return emitNote(N); |
924 | } |
925 | return nullptr; |
926 | } |
927 | |
928 | public: |
929 | NoOwnershipChangeVisitor(SymbolRef Sym, const MallocChecker *Checker) |
930 | : NoStateChangeFuncVisitor(bugreporter::TrackingKind::Thorough), Sym(Sym), |
931 | Checker(*Checker) {} |
932 | |
933 | void Profile(llvm::FoldingSetNodeID &ID) const override { |
934 | static int Tag = 0; |
935 | ID.AddPointer(Ptr: &Tag); |
936 | ID.AddPointer(Ptr: Sym); |
937 | } |
938 | }; |
939 | |
940 | } // end anonymous namespace |
941 | |
942 | //===----------------------------------------------------------------------===// |
943 | // Definition of MallocBugVisitor. |
944 | //===----------------------------------------------------------------------===// |
945 | |
946 | namespace { |
947 | /// The bug visitor which allows us to print extra diagnostics along the |
948 | /// BugReport path. For example, showing the allocation site of the leaked |
949 | /// region. |
950 | class MallocBugVisitor final : public BugReporterVisitor { |
951 | protected: |
952 | enum NotificationMode { Normal, ReallocationFailed }; |
953 | |
954 | // The allocated region symbol tracked by the main analysis. |
955 | SymbolRef Sym; |
956 | |
957 | // The mode we are in, i.e. what kind of diagnostics will be emitted. |
958 | NotificationMode Mode; |
959 | |
960 | // A symbol from when the primary region should have been reallocated. |
961 | SymbolRef FailedReallocSymbol; |
962 | |
963 | // A C++ destructor stack frame in which memory was released. Used for |
964 | // miscellaneous false positive suppression. |
965 | const StackFrameContext *ReleaseDestructorLC; |
966 | |
967 | bool IsLeak; |
968 | |
969 | public: |
970 | MallocBugVisitor(SymbolRef S, bool isLeak = false) |
971 | : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr), |
972 | ReleaseDestructorLC(nullptr), IsLeak(isLeak) {} |
973 | |
974 | static void *getTag() { |
975 | static int Tag = 0; |
976 | return &Tag; |
977 | } |
978 | |
979 | void Profile(llvm::FoldingSetNodeID &ID) const override { |
980 | ID.AddPointer(Ptr: getTag()); |
981 | ID.AddPointer(Ptr: Sym); |
982 | } |
983 | |
984 | /// Did not track -> allocated. Other state (released) -> allocated. |
985 | static inline bool isAllocated(const RefState *RSCurr, const RefState *RSPrev, |
986 | const Stmt *Stmt) { |
987 | return (isa_and_nonnull<CallExpr, CXXNewExpr>(Val: Stmt) && |
988 | (RSCurr && |
989 | (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) && |
990 | (!RSPrev || |
991 | !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero()))); |
992 | } |
993 | |
994 | /// Did not track -> released. Other state (allocated) -> released. |
995 | /// The statement associated with the release might be missing. |
996 | static inline bool isReleased(const RefState *RSCurr, const RefState *RSPrev, |
997 | const Stmt *Stmt) { |
998 | bool IsReleased = |
999 | (RSCurr && RSCurr->isReleased()) && (!RSPrev || !RSPrev->isReleased()); |
1000 | assert(!IsReleased || (isa_and_nonnull<CallExpr, CXXDeleteExpr>(Stmt)) || |
1001 | (!Stmt && RSCurr->getAllocationFamily() == AF_InnerBuffer)); |
1002 | return IsReleased; |
1003 | } |
1004 | |
1005 | /// Did not track -> relinquished. Other state (allocated) -> relinquished. |
1006 | static inline bool isRelinquished(const RefState *RSCurr, |
1007 | const RefState *RSPrev, const Stmt *Stmt) { |
1008 | return ( |
1009 | isa_and_nonnull<CallExpr, ObjCMessageExpr, ObjCPropertyRefExpr>(Val: Stmt) && |
1010 | (RSCurr && RSCurr->isRelinquished()) && |
1011 | (!RSPrev || !RSPrev->isRelinquished())); |
1012 | } |
1013 | |
1014 | /// If the expression is not a call, and the state change is |
1015 | /// released -> allocated, it must be the realloc return value |
1016 | /// check. If we have to handle more cases here, it might be cleaner just |
1017 | /// to track this extra bit in the state itself. |
1018 | static inline bool hasReallocFailed(const RefState *RSCurr, |
1019 | const RefState *RSPrev, |
1020 | const Stmt *Stmt) { |
1021 | return ((!isa_and_nonnull<CallExpr>(Val: Stmt)) && |
1022 | (RSCurr && |
1023 | (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) && |
1024 | (RSPrev && |
1025 | !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero()))); |
1026 | } |
1027 | |
1028 | PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, |
1029 | BugReporterContext &BRC, |
1030 | PathSensitiveBugReport &BR) override; |
1031 | |
1032 | PathDiagnosticPieceRef getEndPath(BugReporterContext &BRC, |
1033 | const ExplodedNode *EndPathNode, |
1034 | PathSensitiveBugReport &BR) override { |
1035 | if (!IsLeak) |
1036 | return nullptr; |
1037 | |
1038 | PathDiagnosticLocation L = BR.getLocation(); |
1039 | // Do not add the statement itself as a range in case of leak. |
1040 | return std::make_shared<PathDiagnosticEventPiece>(args&: L, args: BR.getDescription(), |
1041 | args: false); |
1042 | } |
1043 | |
1044 | private: |
1045 | class StackHintGeneratorForReallocationFailed |
1046 | : public StackHintGeneratorForSymbol { |
1047 | public: |
1048 | StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M) |
1049 | : StackHintGeneratorForSymbol(S, M) {} |
1050 | |
1051 | std::string getMessageForArg(const Expr *ArgE, unsigned ArgIndex) override { |
1052 | // Printed parameters start at 1, not 0. |
1053 | ++ArgIndex; |
1054 | |
1055 | SmallString<200> buf; |
1056 | llvm::raw_svector_ostream os(buf); |
1057 | |
1058 | os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(Val: ArgIndex) |
1059 | << " parameter failed" ; |
1060 | |
1061 | return std::string(os.str()); |
1062 | } |
1063 | |
1064 | std::string getMessageForReturn(const CallExpr *CallExpr) override { |
1065 | return "Reallocation of returned value failed" ; |
1066 | } |
1067 | }; |
1068 | }; |
1069 | } // end anonymous namespace |
1070 | |
1071 | // A map from the freed symbol to the symbol representing the return value of |
1072 | // the free function. |
1073 | REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef) |
1074 | |
1075 | namespace { |
1076 | class StopTrackingCallback final : public SymbolVisitor { |
1077 | ProgramStateRef state; |
1078 | |
1079 | public: |
1080 | StopTrackingCallback(ProgramStateRef st) : state(std::move(st)) {} |
1081 | ProgramStateRef getState() const { return state; } |
1082 | |
1083 | bool VisitSymbol(SymbolRef sym) override { |
1084 | state = state->remove<RegionState>(K: sym); |
1085 | return true; |
1086 | } |
1087 | }; |
1088 | } // end anonymous namespace |
1089 | |
1090 | static bool isStandardNewDelete(const FunctionDecl *FD) { |
1091 | if (!FD) |
1092 | return false; |
1093 | |
1094 | OverloadedOperatorKind Kind = FD->getOverloadedOperator(); |
1095 | if (Kind != OO_New && Kind != OO_Array_New && Kind != OO_Delete && |
1096 | Kind != OO_Array_Delete) |
1097 | return false; |
1098 | |
1099 | // This is standard if and only if it's not defined in a user file. |
1100 | SourceLocation L = FD->getLocation(); |
1101 | // If the header for operator delete is not included, it's still defined |
1102 | // in an invalid source location. Check to make sure we don't crash. |
1103 | return !L.isValid() || |
1104 | FD->getASTContext().getSourceManager().isInSystemHeader(L); |
1105 | } |
1106 | |
1107 | //===----------------------------------------------------------------------===// |
1108 | // Methods of MallocChecker and MallocBugVisitor. |
1109 | //===----------------------------------------------------------------------===// |
1110 | |
1111 | bool MallocChecker::isFreeingOwnershipAttrCall(const FunctionDecl *Func) { |
1112 | if (Func->hasAttrs()) { |
1113 | for (const auto *I : Func->specific_attrs<OwnershipAttr>()) { |
1114 | OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind(); |
1115 | if (OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds) |
1116 | return true; |
1117 | } |
1118 | } |
1119 | return false; |
1120 | } |
1121 | |
1122 | bool MallocChecker::isFreeingCall(const CallEvent &Call) const { |
1123 | if (FreeingMemFnMap.lookup(Call) || ReallocatingMemFnMap.lookup(Call)) |
1124 | return true; |
1125 | |
1126 | if (const auto *Func = dyn_cast_or_null<FunctionDecl>(Val: Call.getDecl())) |
1127 | return isFreeingOwnershipAttrCall(Func); |
1128 | |
1129 | return false; |
1130 | } |
1131 | |
1132 | bool MallocChecker::isMemCall(const CallEvent &Call) const { |
1133 | if (FreeingMemFnMap.lookup(Call) || AllocatingMemFnMap.lookup(Call) || |
1134 | ReallocatingMemFnMap.lookup(Call)) |
1135 | return true; |
1136 | |
1137 | if (!ShouldIncludeOwnershipAnnotatedFunctions) |
1138 | return false; |
1139 | |
1140 | const auto *Func = dyn_cast<FunctionDecl>(Val: Call.getDecl()); |
1141 | return Func && Func->hasAttr<OwnershipAttr>(); |
1142 | } |
1143 | |
1144 | std::optional<ProgramStateRef> |
1145 | MallocChecker::performKernelMalloc(const CallEvent &Call, CheckerContext &C, |
1146 | const ProgramStateRef &State) const { |
1147 | // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels: |
1148 | // |
1149 | // void *malloc(unsigned long size, struct malloc_type *mtp, int flags); |
1150 | // |
1151 | // One of the possible flags is M_ZERO, which means 'give me back an |
1152 | // allocation which is already zeroed', like calloc. |
1153 | |
1154 | // 2-argument kmalloc(), as used in the Linux kernel: |
1155 | // |
1156 | // void *kmalloc(size_t size, gfp_t flags); |
1157 | // |
1158 | // Has the similar flag value __GFP_ZERO. |
1159 | |
1160 | // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some |
1161 | // code could be shared. |
1162 | |
1163 | ASTContext &Ctx = C.getASTContext(); |
1164 | llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS(); |
1165 | |
1166 | if (!KernelZeroFlagVal) { |
1167 | switch (OS) { |
1168 | case llvm::Triple::FreeBSD: |
1169 | KernelZeroFlagVal = 0x0100; |
1170 | break; |
1171 | case llvm::Triple::NetBSD: |
1172 | KernelZeroFlagVal = 0x0002; |
1173 | break; |
1174 | case llvm::Triple::OpenBSD: |
1175 | KernelZeroFlagVal = 0x0008; |
1176 | break; |
1177 | case llvm::Triple::Linux: |
1178 | // __GFP_ZERO |
1179 | KernelZeroFlagVal = 0x8000; |
1180 | break; |
1181 | default: |
1182 | // FIXME: We need a more general way of getting the M_ZERO value. |
1183 | // See also: O_CREAT in UnixAPIChecker.cpp. |
1184 | |
1185 | // Fall back to normal malloc behavior on platforms where we don't |
1186 | // know M_ZERO. |
1187 | return std::nullopt; |
1188 | } |
1189 | } |
1190 | |
1191 | // We treat the last argument as the flags argument, and callers fall-back to |
1192 | // normal malloc on a None return. This works for the FreeBSD kernel malloc |
1193 | // as well as Linux kmalloc. |
1194 | if (Call.getNumArgs() < 2) |
1195 | return std::nullopt; |
1196 | |
1197 | const Expr *FlagsEx = Call.getArgExpr(Index: Call.getNumArgs() - 1); |
1198 | const SVal V = C.getSVal(FlagsEx); |
1199 | if (!isa<NonLoc>(Val: V)) { |
1200 | // The case where 'V' can be a location can only be due to a bad header, |
1201 | // so in this case bail out. |
1202 | return std::nullopt; |
1203 | } |
1204 | |
1205 | NonLoc Flags = V.castAs<NonLoc>(); |
1206 | NonLoc ZeroFlag = C.getSValBuilder() |
1207 | .makeIntVal(integer: *KernelZeroFlagVal, type: FlagsEx->getType()) |
1208 | .castAs<NonLoc>(); |
1209 | SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(state: State, op: BO_And, |
1210 | lhs: Flags, rhs: ZeroFlag, |
1211 | resultTy: FlagsEx->getType()); |
1212 | if (MaskedFlagsUC.isUnknownOrUndef()) |
1213 | return std::nullopt; |
1214 | DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>(); |
1215 | |
1216 | // Check if maskedFlags is non-zero. |
1217 | ProgramStateRef TrueState, FalseState; |
1218 | std::tie(args&: TrueState, args&: FalseState) = State->assume(Cond: MaskedFlags); |
1219 | |
1220 | // If M_ZERO is set, treat this like calloc (initialized). |
1221 | if (TrueState && !FalseState) { |
1222 | SVal ZeroVal = C.getSValBuilder().makeZeroVal(type: Ctx.CharTy); |
1223 | return MallocMemAux(C, Call, SizeEx: Call.getArgExpr(Index: 0), Init: ZeroVal, State: TrueState, |
1224 | Family: AF_Malloc); |
1225 | } |
1226 | |
1227 | return std::nullopt; |
1228 | } |
1229 | |
1230 | SVal MallocChecker::evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, |
1231 | const Expr *BlockBytes) { |
1232 | SValBuilder &SB = C.getSValBuilder(); |
1233 | SVal BlocksVal = C.getSVal(Blocks); |
1234 | SVal BlockBytesVal = C.getSVal(BlockBytes); |
1235 | ProgramStateRef State = C.getState(); |
1236 | SVal TotalSize = SB.evalBinOp(state: State, op: BO_Mul, lhs: BlocksVal, rhs: BlockBytesVal, |
1237 | type: SB.getContext().getSizeType()); |
1238 | return TotalSize; |
1239 | } |
1240 | |
1241 | void MallocChecker::checkBasicAlloc(const CallEvent &Call, |
1242 | CheckerContext &C) const { |
1243 | ProgramStateRef State = C.getState(); |
1244 | State = MallocMemAux(C, Call, SizeEx: Call.getArgExpr(Index: 0), Init: UndefinedVal(), State, |
1245 | Family: AF_Malloc); |
1246 | State = ProcessZeroAllocCheck(Call, IndexOfSizeArg: 0, State); |
1247 | C.addTransition(State); |
1248 | } |
1249 | |
1250 | void MallocChecker::checkKernelMalloc(const CallEvent &Call, |
1251 | CheckerContext &C) const { |
1252 | ProgramStateRef State = C.getState(); |
1253 | std::optional<ProgramStateRef> MaybeState = |
1254 | performKernelMalloc(Call, C, State); |
1255 | if (MaybeState) |
1256 | State = *MaybeState; |
1257 | else |
1258 | State = MallocMemAux(C, Call, SizeEx: Call.getArgExpr(Index: 0), Init: UndefinedVal(), State, |
1259 | Family: AF_Malloc); |
1260 | C.addTransition(State); |
1261 | } |
1262 | |
1263 | static bool isStandardRealloc(const CallEvent &Call) { |
1264 | const FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: Call.getDecl()); |
1265 | assert(FD); |
1266 | ASTContext &AC = FD->getASTContext(); |
1267 | |
1268 | return FD->getDeclaredReturnType().getDesugaredType(Context: AC) == AC.VoidPtrTy && |
1269 | FD->getParamDecl(i: 0)->getType().getDesugaredType(AC) == AC.VoidPtrTy && |
1270 | FD->getParamDecl(i: 1)->getType().getDesugaredType(AC) == |
1271 | AC.getSizeType(); |
1272 | } |
1273 | |
1274 | static bool isGRealloc(const CallEvent &Call) { |
1275 | const FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: Call.getDecl()); |
1276 | assert(FD); |
1277 | ASTContext &AC = FD->getASTContext(); |
1278 | |
1279 | return FD->getDeclaredReturnType().getDesugaredType(Context: AC) == AC.VoidPtrTy && |
1280 | FD->getParamDecl(i: 0)->getType().getDesugaredType(AC) == AC.VoidPtrTy && |
1281 | FD->getParamDecl(i: 1)->getType().getDesugaredType(AC) == |
1282 | AC.UnsignedLongTy; |
1283 | } |
1284 | |
1285 | void MallocChecker::checkRealloc(const CallEvent &Call, CheckerContext &C, |
1286 | bool ShouldFreeOnFail) const { |
1287 | // Ignore calls to functions whose type does not match the expected type of |
1288 | // either the standard realloc or g_realloc from GLib. |
1289 | // FIXME: Should we perform this kind of checking consistently for each |
1290 | // function? If yes, then perhaps extend the `CallDescription` interface to |
1291 | // handle this. |
1292 | if (!isStandardRealloc(Call) && !isGRealloc(Call)) |
1293 | return; |
1294 | |
1295 | ProgramStateRef State = C.getState(); |
1296 | State = ReallocMemAux(C, Call, ShouldFreeOnFail, State, Family: AF_Malloc); |
1297 | State = ProcessZeroAllocCheck(Call, IndexOfSizeArg: 1, State); |
1298 | C.addTransition(State); |
1299 | } |
1300 | |
1301 | void MallocChecker::checkCalloc(const CallEvent &Call, |
1302 | CheckerContext &C) const { |
1303 | ProgramStateRef State = C.getState(); |
1304 | State = CallocMem(C, Call, State); |
1305 | State = ProcessZeroAllocCheck(Call, IndexOfSizeArg: 0, State); |
1306 | State = ProcessZeroAllocCheck(Call, IndexOfSizeArg: 1, State); |
1307 | C.addTransition(State); |
1308 | } |
1309 | |
1310 | void MallocChecker::checkFree(const CallEvent &Call, CheckerContext &C) const { |
1311 | ProgramStateRef State = C.getState(); |
1312 | bool IsKnownToBeAllocatedMemory = false; |
1313 | if (suppressDeallocationsInSuspiciousContexts(Call, C)) |
1314 | return; |
1315 | State = FreeMemAux(C, Call, State, Num: 0, Hold: false, IsKnownToBeAllocated&: IsKnownToBeAllocatedMemory, |
1316 | Family: AF_Malloc); |
1317 | C.addTransition(State); |
1318 | } |
1319 | |
1320 | void MallocChecker::checkAlloca(const CallEvent &Call, |
1321 | CheckerContext &C) const { |
1322 | ProgramStateRef State = C.getState(); |
1323 | State = MallocMemAux(C, Call, SizeEx: Call.getArgExpr(Index: 0), Init: UndefinedVal(), State, |
1324 | Family: AF_Alloca); |
1325 | State = ProcessZeroAllocCheck(Call, IndexOfSizeArg: 0, State); |
1326 | C.addTransition(State); |
1327 | } |
1328 | |
1329 | void MallocChecker::checkStrdup(const CallEvent &Call, |
1330 | CheckerContext &C) const { |
1331 | ProgramStateRef State = C.getState(); |
1332 | const auto *CE = dyn_cast_or_null<CallExpr>(Val: Call.getOriginExpr()); |
1333 | if (!CE) |
1334 | return; |
1335 | State = MallocUpdateRefState(C, CE, State, AF_Malloc); |
1336 | |
1337 | C.addTransition(State); |
1338 | } |
1339 | |
1340 | void MallocChecker::checkIfNameIndex(const CallEvent &Call, |
1341 | CheckerContext &C) const { |
1342 | ProgramStateRef State = C.getState(); |
1343 | // Should we model this differently? We can allocate a fixed number of |
1344 | // elements with zeros in the last one. |
1345 | State = |
1346 | MallocMemAux(C, Call, Size: UnknownVal(), Init: UnknownVal(), State, Family: AF_IfNameIndex); |
1347 | |
1348 | C.addTransition(State); |
1349 | } |
1350 | |
1351 | void MallocChecker::checkIfFreeNameIndex(const CallEvent &Call, |
1352 | CheckerContext &C) const { |
1353 | ProgramStateRef State = C.getState(); |
1354 | bool IsKnownToBeAllocatedMemory = false; |
1355 | State = FreeMemAux(C, Call, State, Num: 0, Hold: false, IsKnownToBeAllocated&: IsKnownToBeAllocatedMemory, |
1356 | Family: AF_IfNameIndex); |
1357 | C.addTransition(State); |
1358 | } |
1359 | |
1360 | void MallocChecker::checkCXXNewOrCXXDelete(const CallEvent &Call, |
1361 | CheckerContext &C) const { |
1362 | ProgramStateRef State = C.getState(); |
1363 | bool IsKnownToBeAllocatedMemory = false; |
1364 | const auto *CE = dyn_cast_or_null<CallExpr>(Val: Call.getOriginExpr()); |
1365 | if (!CE) |
1366 | return; |
1367 | |
1368 | assert(isStandardNewDelete(Call)); |
1369 | |
1370 | // Process direct calls to operator new/new[]/delete/delete[] functions |
1371 | // as distinct from new/new[]/delete/delete[] expressions that are |
1372 | // processed by the checkPostStmt callbacks for CXXNewExpr and |
1373 | // CXXDeleteExpr. |
1374 | const FunctionDecl *FD = C.getCalleeDecl(CE); |
1375 | switch (FD->getOverloadedOperator()) { |
1376 | case OO_New: |
1377 | State = |
1378 | MallocMemAux(C, Call, SizeEx: CE->getArg(Arg: 0), Init: UndefinedVal(), State, Family: AF_CXXNew); |
1379 | State = ProcessZeroAllocCheck(Call, IndexOfSizeArg: 0, State); |
1380 | break; |
1381 | case OO_Array_New: |
1382 | State = MallocMemAux(C, Call, SizeEx: CE->getArg(Arg: 0), Init: UndefinedVal(), State, |
1383 | Family: AF_CXXNewArray); |
1384 | State = ProcessZeroAllocCheck(Call, IndexOfSizeArg: 0, State); |
1385 | break; |
1386 | case OO_Delete: |
1387 | State = FreeMemAux(C, Call, State, Num: 0, Hold: false, IsKnownToBeAllocated&: IsKnownToBeAllocatedMemory, |
1388 | Family: AF_CXXNew); |
1389 | break; |
1390 | case OO_Array_Delete: |
1391 | State = FreeMemAux(C, Call, State, Num: 0, Hold: false, IsKnownToBeAllocated&: IsKnownToBeAllocatedMemory, |
1392 | Family: AF_CXXNewArray); |
1393 | break; |
1394 | default: |
1395 | llvm_unreachable("not a new/delete operator" ); |
1396 | } |
1397 | |
1398 | C.addTransition(State); |
1399 | } |
1400 | |
1401 | void MallocChecker::checkGMalloc0(const CallEvent &Call, |
1402 | CheckerContext &C) const { |
1403 | ProgramStateRef State = C.getState(); |
1404 | SValBuilder &svalBuilder = C.getSValBuilder(); |
1405 | SVal zeroVal = svalBuilder.makeZeroVal(type: svalBuilder.getContext().CharTy); |
1406 | State = MallocMemAux(C, Call, SizeEx: Call.getArgExpr(Index: 0), Init: zeroVal, State, Family: AF_Malloc); |
1407 | State = ProcessZeroAllocCheck(Call, IndexOfSizeArg: 0, State); |
1408 | C.addTransition(State); |
1409 | } |
1410 | |
1411 | void MallocChecker::checkGMemdup(const CallEvent &Call, |
1412 | CheckerContext &C) const { |
1413 | ProgramStateRef State = C.getState(); |
1414 | State = |
1415 | MallocMemAux(C, Call, SizeEx: Call.getArgExpr(Index: 1), Init: UnknownVal(), State, Family: AF_Malloc); |
1416 | State = ProcessZeroAllocCheck(Call, IndexOfSizeArg: 1, State); |
1417 | C.addTransition(State); |
1418 | } |
1419 | |
1420 | void MallocChecker::checkGMallocN(const CallEvent &Call, |
1421 | CheckerContext &C) const { |
1422 | ProgramStateRef State = C.getState(); |
1423 | SVal Init = UndefinedVal(); |
1424 | SVal TotalSize = evalMulForBufferSize(C, Blocks: Call.getArgExpr(Index: 0), BlockBytes: Call.getArgExpr(Index: 1)); |
1425 | State = MallocMemAux(C, Call, Size: TotalSize, Init, State, Family: AF_Malloc); |
1426 | State = ProcessZeroAllocCheck(Call, IndexOfSizeArg: 0, State); |
1427 | State = ProcessZeroAllocCheck(Call, IndexOfSizeArg: 1, State); |
1428 | C.addTransition(State); |
1429 | } |
1430 | |
1431 | void MallocChecker::checkGMallocN0(const CallEvent &Call, |
1432 | CheckerContext &C) const { |
1433 | ProgramStateRef State = C.getState(); |
1434 | SValBuilder &SB = C.getSValBuilder(); |
1435 | SVal Init = SB.makeZeroVal(type: SB.getContext().CharTy); |
1436 | SVal TotalSize = evalMulForBufferSize(C, Blocks: Call.getArgExpr(Index: 0), BlockBytes: Call.getArgExpr(Index: 1)); |
1437 | State = MallocMemAux(C, Call, Size: TotalSize, Init, State, Family: AF_Malloc); |
1438 | State = ProcessZeroAllocCheck(Call, IndexOfSizeArg: 0, State); |
1439 | State = ProcessZeroAllocCheck(Call, IndexOfSizeArg: 1, State); |
1440 | C.addTransition(State); |
1441 | } |
1442 | |
1443 | static bool isFromStdNamespace(const CallEvent &Call) { |
1444 | const Decl *FD = Call.getDecl(); |
1445 | assert(FD && "a CallDescription cannot match a call without a Decl" ); |
1446 | return FD->isInStdNamespace(); |
1447 | } |
1448 | |
1449 | void MallocChecker::preGetdelim(const CallEvent &Call, |
1450 | CheckerContext &C) const { |
1451 | // Discard calls to the C++ standard library function std::getline(), which |
1452 | // is completely unrelated to the POSIX getline() that we're checking. |
1453 | if (isFromStdNamespace(Call)) |
1454 | return; |
1455 | |
1456 | ProgramStateRef State = C.getState(); |
1457 | const auto LinePtr = getPointeeVal(PtrSVal: Call.getArgSVal(Index: 0), State); |
1458 | if (!LinePtr) |
1459 | return; |
1460 | |
1461 | // FreeMemAux takes IsKnownToBeAllocated as an output parameter, and it will |
1462 | // be true after the call if the symbol was registered by this checker. |
1463 | // We do not need this value here, as FreeMemAux will take care |
1464 | // of reporting any violation of the preconditions. |
1465 | bool IsKnownToBeAllocated = false; |
1466 | State = FreeMemAux(C, ArgExpr: Call.getArgExpr(Index: 0), Call, State, Hold: false, |
1467 | IsKnownToBeAllocated, Family: AF_Malloc, ReturnsNullOnFailure: false, ArgValOpt: LinePtr); |
1468 | if (State) |
1469 | C.addTransition(State); |
1470 | } |
1471 | |
1472 | void MallocChecker::checkGetdelim(const CallEvent &Call, |
1473 | CheckerContext &C) const { |
1474 | // Discard calls to the C++ standard library function std::getline(), which |
1475 | // is completely unrelated to the POSIX getline() that we're checking. |
1476 | if (isFromStdNamespace(Call)) |
1477 | return; |
1478 | |
1479 | ProgramStateRef State = C.getState(); |
1480 | // Handle the post-conditions of getline and getdelim: |
1481 | // Register the new conjured value as an allocated buffer. |
1482 | const CallExpr *CE = dyn_cast_or_null<CallExpr>(Val: Call.getOriginExpr()); |
1483 | if (!CE) |
1484 | return; |
1485 | |
1486 | SValBuilder &SVB = C.getSValBuilder(); |
1487 | |
1488 | const auto LinePtr = |
1489 | getPointeeVal(PtrSVal: Call.getArgSVal(Index: 0), State)->getAs<DefinedSVal>(); |
1490 | const auto Size = |
1491 | getPointeeVal(PtrSVal: Call.getArgSVal(Index: 1), State)->getAs<DefinedSVal>(); |
1492 | if (!LinePtr || !Size || !LinePtr->getAsRegion()) |
1493 | return; |
1494 | |
1495 | State = setDynamicExtent(State, MR: LinePtr->getAsRegion(), Extent: *Size, SVB); |
1496 | C.addTransition(State: MallocUpdateRefState(C, CE, State, AF_Malloc, *LinePtr)); |
1497 | } |
1498 | |
1499 | void MallocChecker::checkReallocN(const CallEvent &Call, |
1500 | CheckerContext &C) const { |
1501 | ProgramStateRef State = C.getState(); |
1502 | State = ReallocMemAux(C, Call, /*ShouldFreeOnFail=*/false, State, Family: AF_Malloc, |
1503 | /*SuffixWithN=*/true); |
1504 | State = ProcessZeroAllocCheck(Call, IndexOfSizeArg: 1, State); |
1505 | State = ProcessZeroAllocCheck(Call, IndexOfSizeArg: 2, State); |
1506 | C.addTransition(State); |
1507 | } |
1508 | |
1509 | void MallocChecker::checkOwnershipAttr(const CallEvent &Call, |
1510 | CheckerContext &C) const { |
1511 | ProgramStateRef State = C.getState(); |
1512 | const auto *CE = dyn_cast_or_null<CallExpr>(Val: Call.getOriginExpr()); |
1513 | if (!CE) |
1514 | return; |
1515 | const FunctionDecl *FD = C.getCalleeDecl(CE); |
1516 | if (!FD) |
1517 | return; |
1518 | if (ShouldIncludeOwnershipAnnotatedFunctions || |
1519 | ChecksEnabled[CK_MismatchedDeallocatorChecker]) { |
1520 | // Check all the attributes, if there are any. |
1521 | // There can be multiple of these attributes. |
1522 | if (FD->hasAttrs()) |
1523 | for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { |
1524 | switch (I->getOwnKind()) { |
1525 | case OwnershipAttr::Returns: |
1526 | State = MallocMemReturnsAttr(C, Call, I, State); |
1527 | break; |
1528 | case OwnershipAttr::Takes: |
1529 | case OwnershipAttr::Holds: |
1530 | State = FreeMemAttr(C, Call, I, State); |
1531 | break; |
1532 | } |
1533 | } |
1534 | } |
1535 | C.addTransition(State); |
1536 | } |
1537 | |
1538 | void MallocChecker::checkPostCall(const CallEvent &Call, |
1539 | CheckerContext &C) const { |
1540 | if (C.wasInlined) |
1541 | return; |
1542 | if (!Call.getOriginExpr()) |
1543 | return; |
1544 | |
1545 | ProgramStateRef State = C.getState(); |
1546 | |
1547 | if (const CheckFn *Callback = FreeingMemFnMap.lookup(Call)) { |
1548 | (*Callback)(this, Call, C); |
1549 | return; |
1550 | } |
1551 | |
1552 | if (const CheckFn *Callback = AllocatingMemFnMap.lookup(Call)) { |
1553 | (*Callback)(this, Call, C); |
1554 | return; |
1555 | } |
1556 | |
1557 | if (const CheckFn *Callback = ReallocatingMemFnMap.lookup(Call)) { |
1558 | (*Callback)(this, Call, C); |
1559 | return; |
1560 | } |
1561 | |
1562 | if (isStandardNewDelete(Call)) { |
1563 | checkCXXNewOrCXXDelete(Call, C); |
1564 | return; |
1565 | } |
1566 | |
1567 | checkOwnershipAttr(Call, C); |
1568 | } |
1569 | |
1570 | // Performs a 0-sized allocations check. |
1571 | ProgramStateRef MallocChecker::ProcessZeroAllocCheck( |
1572 | const CallEvent &Call, const unsigned IndexOfSizeArg, ProgramStateRef State, |
1573 | std::optional<SVal> RetVal) { |
1574 | if (!State) |
1575 | return nullptr; |
1576 | |
1577 | if (!RetVal) |
1578 | RetVal = Call.getReturnValue(); |
1579 | |
1580 | const Expr *Arg = nullptr; |
1581 | |
1582 | if (const CallExpr *CE = dyn_cast<CallExpr>(Val: Call.getOriginExpr())) { |
1583 | Arg = CE->getArg(Arg: IndexOfSizeArg); |
1584 | } else if (const CXXNewExpr *NE = |
1585 | dyn_cast<CXXNewExpr>(Val: Call.getOriginExpr())) { |
1586 | if (NE->isArray()) { |
1587 | Arg = *NE->getArraySize(); |
1588 | } else { |
1589 | return State; |
1590 | } |
1591 | } else |
1592 | llvm_unreachable("not a CallExpr or CXXNewExpr" ); |
1593 | |
1594 | assert(Arg); |
1595 | |
1596 | auto DefArgVal = |
1597 | State->getSVal(Arg, Call.getLocationContext()).getAs<DefinedSVal>(); |
1598 | |
1599 | if (!DefArgVal) |
1600 | return State; |
1601 | |
1602 | // Check if the allocation size is 0. |
1603 | ProgramStateRef TrueState, FalseState; |
1604 | SValBuilder &SvalBuilder = State->getStateManager().getSValBuilder(); |
1605 | DefinedSVal Zero = |
1606 | SvalBuilder.makeZeroVal(type: Arg->getType()).castAs<DefinedSVal>(); |
1607 | |
1608 | std::tie(args&: TrueState, args&: FalseState) = |
1609 | State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero)); |
1610 | |
1611 | if (TrueState && !FalseState) { |
1612 | SymbolRef Sym = RetVal->getAsLocSymbol(); |
1613 | if (!Sym) |
1614 | return State; |
1615 | |
1616 | const RefState *RS = State->get<RegionState>(key: Sym); |
1617 | if (RS) { |
1618 | if (RS->isAllocated()) |
1619 | return TrueState->set<RegionState>(K: Sym, |
1620 | E: RefState::getAllocatedOfSizeZero(RS)); |
1621 | else |
1622 | return State; |
1623 | } else { |
1624 | // Case of zero-size realloc. Historically 'realloc(ptr, 0)' is treated as |
1625 | // 'free(ptr)' and the returned value from 'realloc(ptr, 0)' is not |
1626 | // tracked. Add zero-reallocated Sym to the state to catch references |
1627 | // to zero-allocated memory. |
1628 | return TrueState->add<ReallocSizeZeroSymbols>(K: Sym); |
1629 | } |
1630 | } |
1631 | |
1632 | // Assume the value is non-zero going forward. |
1633 | assert(FalseState); |
1634 | return FalseState; |
1635 | } |
1636 | |
1637 | static QualType getDeepPointeeType(QualType T) { |
1638 | QualType Result = T, PointeeType = T->getPointeeType(); |
1639 | while (!PointeeType.isNull()) { |
1640 | Result = PointeeType; |
1641 | PointeeType = PointeeType->getPointeeType(); |
1642 | } |
1643 | return Result; |
1644 | } |
1645 | |
1646 | /// \returns true if the constructor invoked by \p NE has an argument of a |
1647 | /// pointer/reference to a record type. |
1648 | static bool hasNonTrivialConstructorCall(const CXXNewExpr *NE) { |
1649 | |
1650 | const CXXConstructExpr *ConstructE = NE->getConstructExpr(); |
1651 | if (!ConstructE) |
1652 | return false; |
1653 | |
1654 | if (!NE->getAllocatedType()->getAsCXXRecordDecl()) |
1655 | return false; |
1656 | |
1657 | const CXXConstructorDecl *CtorD = ConstructE->getConstructor(); |
1658 | |
1659 | // Iterate over the constructor parameters. |
1660 | for (const auto *CtorParam : CtorD->parameters()) { |
1661 | |
1662 | QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType(); |
1663 | if (CtorParamPointeeT.isNull()) |
1664 | continue; |
1665 | |
1666 | CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT); |
1667 | |
1668 | if (CtorParamPointeeT->getAsCXXRecordDecl()) |
1669 | return true; |
1670 | } |
1671 | |
1672 | return false; |
1673 | } |
1674 | |
1675 | ProgramStateRef |
1676 | MallocChecker::processNewAllocation(const CXXAllocatorCall &Call, |
1677 | CheckerContext &C, |
1678 | AllocationFamily Family) const { |
1679 | if (!isStandardNewDelete(Call)) |
1680 | return nullptr; |
1681 | |
1682 | const CXXNewExpr *NE = Call.getOriginExpr(); |
1683 | const ParentMap &PM = C.getLocationContext()->getParentMap(); |
1684 | ProgramStateRef State = C.getState(); |
1685 | |
1686 | // Non-trivial constructors have a chance to escape 'this', but marking all |
1687 | // invocations of trivial constructors as escaped would cause too great of |
1688 | // reduction of true positives, so let's just do that for constructors that |
1689 | // have an argument of a pointer-to-record type. |
1690 | if (!PM.isConsumedExpr(NE) && hasNonTrivialConstructorCall(NE)) |
1691 | return State; |
1692 | |
1693 | // The return value from operator new is bound to a specified initialization |
1694 | // value (if any) and we don't want to loose this value. So we call |
1695 | // MallocUpdateRefState() instead of MallocMemAux() which breaks the |
1696 | // existing binding. |
1697 | SVal Target = Call.getObjectUnderConstruction(); |
1698 | State = MallocUpdateRefState(C, NE, State, Family, Target); |
1699 | State = ProcessZeroAllocCheck(Call, IndexOfSizeArg: 0, State, RetVal: Target); |
1700 | return State; |
1701 | } |
1702 | |
1703 | void MallocChecker::checkNewAllocator(const CXXAllocatorCall &Call, |
1704 | CheckerContext &C) const { |
1705 | if (!C.wasInlined) { |
1706 | ProgramStateRef State = processNewAllocation( |
1707 | Call, C, |
1708 | Family: (Call.getOriginExpr()->isArray() ? AF_CXXNewArray : AF_CXXNew)); |
1709 | C.addTransition(State); |
1710 | } |
1711 | } |
1712 | |
1713 | static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) { |
1714 | // If the first selector piece is one of the names below, assume that the |
1715 | // object takes ownership of the memory, promising to eventually deallocate it |
1716 | // with free(). |
1717 | // Ex: [NSData dataWithBytesNoCopy:bytes length:10]; |
1718 | // (...unless a 'freeWhenDone' parameter is false, but that's checked later.) |
1719 | StringRef FirstSlot = Call.getSelector().getNameForSlot(argIndex: 0); |
1720 | return FirstSlot == "dataWithBytesNoCopy" || |
1721 | FirstSlot == "initWithBytesNoCopy" || |
1722 | FirstSlot == "initWithCharactersNoCopy" ; |
1723 | } |
1724 | |
1725 | static std::optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) { |
1726 | Selector S = Call.getSelector(); |
1727 | |
1728 | // FIXME: We should not rely on fully-constrained symbols being folded. |
1729 | for (unsigned i = 1; i < S.getNumArgs(); ++i) |
1730 | if (S.getNameForSlot(argIndex: i).equals(RHS: "freeWhenDone" )) |
1731 | return !Call.getArgSVal(Index: i).isZeroConstant(); |
1732 | |
1733 | return std::nullopt; |
1734 | } |
1735 | |
1736 | void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call, |
1737 | CheckerContext &C) const { |
1738 | if (C.wasInlined) |
1739 | return; |
1740 | |
1741 | if (!isKnownDeallocObjCMethodName(Call)) |
1742 | return; |
1743 | |
1744 | if (std::optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call)) |
1745 | if (!*FreeWhenDone) |
1746 | return; |
1747 | |
1748 | if (Call.hasNonZeroCallbackArg()) |
1749 | return; |
1750 | |
1751 | bool IsKnownToBeAllocatedMemory; |
1752 | ProgramStateRef State = |
1753 | FreeMemAux(C, ArgExpr: Call.getArgExpr(Index: 0), Call, State: C.getState(), |
1754 | /*Hold=*/true, IsKnownToBeAllocated&: IsKnownToBeAllocatedMemory, Family: AF_Malloc, |
1755 | /*ReturnsNullOnFailure=*/true); |
1756 | |
1757 | C.addTransition(State); |
1758 | } |
1759 | |
1760 | ProgramStateRef |
1761 | MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call, |
1762 | const OwnershipAttr *Att, |
1763 | ProgramStateRef State) const { |
1764 | if (!State) |
1765 | return nullptr; |
1766 | |
1767 | if (Att->getModule()->getName() != "malloc" ) |
1768 | return nullptr; |
1769 | |
1770 | if (!Att->args().empty()) { |
1771 | return MallocMemAux(C, Call, |
1772 | Call.getArgExpr(Index: Att->args_begin()->getASTIndex()), |
1773 | UndefinedVal(), State, AF_Malloc); |
1774 | } |
1775 | return MallocMemAux(C, Call, Size: UnknownVal(), Init: UndefinedVal(), State, Family: AF_Malloc); |
1776 | } |
1777 | |
1778 | ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, |
1779 | const CallEvent &Call, |
1780 | const Expr *SizeEx, SVal Init, |
1781 | ProgramStateRef State, |
1782 | AllocationFamily Family) { |
1783 | if (!State) |
1784 | return nullptr; |
1785 | |
1786 | assert(SizeEx); |
1787 | return MallocMemAux(C, Call, Size: C.getSVal(SizeEx), Init, State, Family); |
1788 | } |
1789 | |
1790 | ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, |
1791 | const CallEvent &Call, SVal Size, |
1792 | SVal Init, ProgramStateRef State, |
1793 | AllocationFamily Family) { |
1794 | if (!State) |
1795 | return nullptr; |
1796 | |
1797 | const Expr *CE = Call.getOriginExpr(); |
1798 | |
1799 | // We expect the malloc functions to return a pointer. |
1800 | if (!Loc::isLocType(T: CE->getType())) |
1801 | return nullptr; |
1802 | |
1803 | // Bind the return value to the symbolic value from the heap region. |
1804 | // TODO: move use of this functions to an EvalCall callback, becasue |
1805 | // BindExpr() should'nt be used elsewhere. |
1806 | unsigned Count = C.blockCount(); |
1807 | SValBuilder &SVB = C.getSValBuilder(); |
1808 | const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); |
1809 | DefinedSVal RetVal = |
1810 | ((Family == AF_Alloca) ? SVB.getAllocaRegionVal(E: CE, LCtx, Count) |
1811 | : SVB.getConjuredHeapSymbolVal(E: CE, LCtx, Count) |
1812 | .castAs<DefinedSVal>()); |
1813 | State = State->BindExpr(CE, C.getLocationContext(), RetVal); |
1814 | |
1815 | // Fill the region with the initialization value. |
1816 | State = State->bindDefaultInitial(loc: RetVal, V: Init, LCtx); |
1817 | |
1818 | // If Size is somehow undefined at this point, this line prevents a crash. |
1819 | if (Size.isUndef()) |
1820 | Size = UnknownVal(); |
1821 | |
1822 | // Set the region's extent. |
1823 | State = setDynamicExtent(State, MR: RetVal.getAsRegion(), |
1824 | Extent: Size.castAs<DefinedOrUnknownSVal>(), SVB); |
1825 | |
1826 | return MallocUpdateRefState(C, E: CE, State, Family); |
1827 | } |
1828 | |
1829 | static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E, |
1830 | ProgramStateRef State, |
1831 | AllocationFamily Family, |
1832 | std::optional<SVal> RetVal) { |
1833 | if (!State) |
1834 | return nullptr; |
1835 | |
1836 | // Get the return value. |
1837 | if (!RetVal) |
1838 | RetVal = C.getSVal(E); |
1839 | |
1840 | // We expect the malloc functions to return a pointer. |
1841 | if (!RetVal->getAs<Loc>()) |
1842 | return nullptr; |
1843 | |
1844 | SymbolRef Sym = RetVal->getAsLocSymbol(); |
1845 | |
1846 | // This is a return value of a function that was not inlined, such as malloc() |
1847 | // or new(). We've checked that in the caller. Therefore, it must be a symbol. |
1848 | assert(Sym); |
1849 | // FIXME: In theory this assertion should fail for `alloca()` calls (because |
1850 | // `AllocaRegion`s are not symbolic); but in practice this does not happen. |
1851 | // As the current code appears to work correctly, I'm not touching this issue |
1852 | // now, but it would be good to investigate and clarify this. |
1853 | // Also note that perhaps the special `AllocaRegion` should be replaced by |
1854 | // `SymbolicRegion` (or turned into a subclass of `SymbolicRegion`) to enable |
1855 | // proper tracking of memory allocated by `alloca()` -- and after that change |
1856 | // this assertion would become valid again. |
1857 | |
1858 | // Set the symbol's state to Allocated. |
1859 | return State->set<RegionState>(Sym, RefState::getAllocated(Family, E)); |
1860 | } |
1861 | |
1862 | ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C, |
1863 | const CallEvent &Call, |
1864 | const OwnershipAttr *Att, |
1865 | ProgramStateRef State) const { |
1866 | if (!State) |
1867 | return nullptr; |
1868 | |
1869 | if (Att->getModule()->getName() != "malloc" ) |
1870 | return nullptr; |
1871 | |
1872 | bool IsKnownToBeAllocated = false; |
1873 | |
1874 | for (const auto &Arg : Att->args()) { |
1875 | ProgramStateRef StateI = |
1876 | FreeMemAux(C, Call, State, Arg.getASTIndex(), |
1877 | Att->getOwnKind() == OwnershipAttr::Holds, |
1878 | IsKnownToBeAllocated, AF_Malloc); |
1879 | if (StateI) |
1880 | State = StateI; |
1881 | } |
1882 | return State; |
1883 | } |
1884 | |
1885 | ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, |
1886 | const CallEvent &Call, |
1887 | ProgramStateRef State, unsigned Num, |
1888 | bool Hold, bool &IsKnownToBeAllocated, |
1889 | AllocationFamily Family, |
1890 | bool ReturnsNullOnFailure) const { |
1891 | if (!State) |
1892 | return nullptr; |
1893 | |
1894 | if (Call.getNumArgs() < (Num + 1)) |
1895 | return nullptr; |
1896 | |
1897 | return FreeMemAux(C, ArgExpr: Call.getArgExpr(Index: Num), Call, State, Hold, |
1898 | IsKnownToBeAllocated, Family, ReturnsNullOnFailure); |
1899 | } |
1900 | |
1901 | /// Checks if the previous call to free on the given symbol failed - if free |
1902 | /// failed, returns true. Also, returns the corresponding return value symbol. |
1903 | static bool didPreviousFreeFail(ProgramStateRef State, |
1904 | SymbolRef Sym, SymbolRef &RetStatusSymbol) { |
1905 | const SymbolRef *Ret = State->get<FreeReturnValue>(key: Sym); |
1906 | if (Ret) { |
1907 | assert(*Ret && "We should not store the null return symbol" ); |
1908 | ConstraintManager &CMgr = State->getConstraintManager(); |
1909 | ConditionTruthVal FreeFailed = CMgr.isNull(State, Sym: *Ret); |
1910 | RetStatusSymbol = *Ret; |
1911 | return FreeFailed.isConstrainedTrue(); |
1912 | } |
1913 | return false; |
1914 | } |
1915 | |
1916 | static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E) { |
1917 | if (const CallExpr *CE = dyn_cast<CallExpr>(Val: E)) { |
1918 | // FIXME: This doesn't handle indirect calls. |
1919 | const FunctionDecl *FD = CE->getDirectCallee(); |
1920 | if (!FD) |
1921 | return false; |
1922 | |
1923 | os << *FD; |
1924 | if (!FD->isOverloadedOperator()) |
1925 | os << "()" ; |
1926 | return true; |
1927 | } |
1928 | |
1929 | if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(Val: E)) { |
1930 | if (Msg->isInstanceMessage()) |
1931 | os << "-" ; |
1932 | else |
1933 | os << "+" ; |
1934 | Msg->getSelector().print(OS&: os); |
1935 | return true; |
1936 | } |
1937 | |
1938 | if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(Val: E)) { |
1939 | os << "'" |
1940 | << getOperatorSpelling(Operator: NE->getOperatorNew()->getOverloadedOperator()) |
1941 | << "'" ; |
1942 | return true; |
1943 | } |
1944 | |
1945 | if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(Val: E)) { |
1946 | os << "'" |
1947 | << getOperatorSpelling(Operator: DE->getOperatorDelete()->getOverloadedOperator()) |
1948 | << "'" ; |
1949 | return true; |
1950 | } |
1951 | |
1952 | return false; |
1953 | } |
1954 | |
1955 | static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family) { |
1956 | |
1957 | switch(Family) { |
1958 | case AF_Malloc: os << "malloc()" ; return; |
1959 | case AF_CXXNew: os << "'new'" ; return; |
1960 | case AF_CXXNewArray: os << "'new[]'" ; return; |
1961 | case AF_IfNameIndex: os << "'if_nameindex()'" ; return; |
1962 | case AF_InnerBuffer: os << "container-specific allocator" ; return; |
1963 | case AF_Alloca: |
1964 | case AF_None: llvm_unreachable("not a deallocation expression" ); |
1965 | } |
1966 | } |
1967 | |
1968 | static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) { |
1969 | switch(Family) { |
1970 | case AF_Malloc: os << "free()" ; return; |
1971 | case AF_CXXNew: os << "'delete'" ; return; |
1972 | case AF_CXXNewArray: os << "'delete[]'" ; return; |
1973 | case AF_IfNameIndex: os << "'if_freenameindex()'" ; return; |
1974 | case AF_InnerBuffer: os << "container-specific deallocator" ; return; |
1975 | case AF_Alloca: |
1976 | case AF_None: llvm_unreachable("suspicious argument" ); |
1977 | } |
1978 | } |
1979 | |
1980 | ProgramStateRef |
1981 | MallocChecker::FreeMemAux(CheckerContext &C, const Expr *ArgExpr, |
1982 | const CallEvent &Call, ProgramStateRef State, |
1983 | bool Hold, bool &IsKnownToBeAllocated, |
1984 | AllocationFamily Family, bool ReturnsNullOnFailure, |
1985 | std::optional<SVal> ArgValOpt) const { |
1986 | |
1987 | if (!State) |
1988 | return nullptr; |
1989 | |
1990 | SVal ArgVal = ArgValOpt.value_or(u: C.getSVal(ArgExpr)); |
1991 | if (!isa<DefinedOrUnknownSVal>(Val: ArgVal)) |
1992 | return nullptr; |
1993 | DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>(); |
1994 | |
1995 | // Check for null dereferences. |
1996 | if (!isa<Loc>(Val: location)) |
1997 | return nullptr; |
1998 | |
1999 | // The explicit NULL case, no operation is performed. |
2000 | ProgramStateRef notNullState, nullState; |
2001 | std::tie(args&: notNullState, args&: nullState) = State->assume(Cond: location); |
2002 | if (nullState && !notNullState) |
2003 | return nullptr; |
2004 | |
2005 | // Unknown values could easily be okay |
2006 | // Undefined values are handled elsewhere |
2007 | if (ArgVal.isUnknownOrUndef()) |
2008 | return nullptr; |
2009 | |
2010 | const MemRegion *R = ArgVal.getAsRegion(); |
2011 | const Expr *ParentExpr = Call.getOriginExpr(); |
2012 | |
2013 | // NOTE: We detected a bug, but the checker under whose name we would emit the |
2014 | // error could be disabled. Generally speaking, the MallocChecker family is an |
2015 | // integral part of the Static Analyzer, and disabling any part of it should |
2016 | // only be done under exceptional circumstances, such as frequent false |
2017 | // positives. If this is the case, we can reasonably believe that there are |
2018 | // serious faults in our understanding of the source code, and even if we |
2019 | // don't emit an warning, we should terminate further analysis with a sink |
2020 | // node. |
2021 | |
2022 | // Nonlocs can't be freed, of course. |
2023 | // Non-region locations (labels and fixed addresses) also shouldn't be freed. |
2024 | if (!R) { |
2025 | // Exception: |
2026 | // If the macro ZERO_SIZE_PTR is defined, this could be a kernel source |
2027 | // code. In that case, the ZERO_SIZE_PTR defines a special value used for a |
2028 | // zero-sized memory block which is allowed to be freed, despite not being a |
2029 | // null pointer. |
2030 | if (Family != AF_Malloc || !isArgZERO_SIZE_PTR(State, C, ArgVal)) |
2031 | HandleNonHeapDealloc(C, ArgVal, Range: ArgExpr->getSourceRange(), DeallocExpr: ParentExpr, |
2032 | Family); |
2033 | return nullptr; |
2034 | } |
2035 | |
2036 | R = R->StripCasts(); |
2037 | |
2038 | // Blocks might show up as heap data, but should not be free()d |
2039 | if (isa<BlockDataRegion>(Val: R)) { |
2040 | HandleNonHeapDealloc(C, ArgVal, Range: ArgExpr->getSourceRange(), DeallocExpr: ParentExpr, |
2041 | Family); |
2042 | return nullptr; |
2043 | } |
2044 | |
2045 | const MemSpaceRegion *MS = R->getMemorySpace(); |
2046 | |
2047 | // Parameters, locals, statics, globals, and memory returned by |
2048 | // __builtin_alloca() shouldn't be freed. |
2049 | if (!isa<UnknownSpaceRegion, HeapSpaceRegion>(Val: MS)) { |
2050 | // Regions returned by malloc() are represented by SymbolicRegion objects |
2051 | // within HeapSpaceRegion. Of course, free() can work on memory allocated |
2052 | // outside the current function, so UnknownSpaceRegion is also a |
2053 | // possibility here. |
2054 | |
2055 | if (isa<AllocaRegion>(Val: R)) |
2056 | HandleFreeAlloca(C, ArgVal, Range: ArgExpr->getSourceRange()); |
2057 | else |
2058 | HandleNonHeapDealloc(C, ArgVal, Range: ArgExpr->getSourceRange(), DeallocExpr: ParentExpr, |
2059 | Family); |
2060 | |
2061 | return nullptr; |
2062 | } |
2063 | |
2064 | const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(Val: R->getBaseRegion()); |
2065 | // Various cases could lead to non-symbol values here. |
2066 | // For now, ignore them. |
2067 | if (!SrBase) |
2068 | return nullptr; |
2069 | |
2070 | SymbolRef SymBase = SrBase->getSymbol(); |
2071 | const RefState *RsBase = State->get<RegionState>(key: SymBase); |
2072 | SymbolRef PreviousRetStatusSymbol = nullptr; |
2073 | |
2074 | IsKnownToBeAllocated = |
2075 | RsBase && (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero()); |
2076 | |
2077 | if (RsBase) { |
2078 | |
2079 | // Memory returned by alloca() shouldn't be freed. |
2080 | if (RsBase->getAllocationFamily() == AF_Alloca) { |
2081 | HandleFreeAlloca(C, ArgVal, Range: ArgExpr->getSourceRange()); |
2082 | return nullptr; |
2083 | } |
2084 | |
2085 | // Check for double free first. |
2086 | if ((RsBase->isReleased() || RsBase->isRelinquished()) && |
2087 | !didPreviousFreeFail(State, Sym: SymBase, RetStatusSymbol&: PreviousRetStatusSymbol)) { |
2088 | HandleDoubleFree(C, Range: ParentExpr->getSourceRange(), Released: RsBase->isReleased(), |
2089 | Sym: SymBase, PrevSym: PreviousRetStatusSymbol); |
2090 | return nullptr; |
2091 | |
2092 | // If the pointer is allocated or escaped, but we are now trying to free it, |
2093 | // check that the call to free is proper. |
2094 | } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() || |
2095 | RsBase->isEscaped()) { |
2096 | |
2097 | // Check if an expected deallocation function matches the real one. |
2098 | bool DeallocMatchesAlloc = RsBase->getAllocationFamily() == Family; |
2099 | if (!DeallocMatchesAlloc) { |
2100 | HandleMismatchedDealloc(C, Range: ArgExpr->getSourceRange(), DeallocExpr: ParentExpr, |
2101 | RS: RsBase, Sym: SymBase, OwnershipTransferred: Hold); |
2102 | return nullptr; |
2103 | } |
2104 | |
2105 | // Check if the memory location being freed is the actual location |
2106 | // allocated, or an offset. |
2107 | RegionOffset Offset = R->getAsOffset(); |
2108 | if (Offset.isValid() && |
2109 | !Offset.hasSymbolicOffset() && |
2110 | Offset.getOffset() != 0) { |
2111 | const Expr *AllocExpr = cast<Expr>(Val: RsBase->getStmt()); |
2112 | HandleOffsetFree(C, ArgVal, Range: ArgExpr->getSourceRange(), DeallocExpr: ParentExpr, |
2113 | Family, AllocExpr); |
2114 | return nullptr; |
2115 | } |
2116 | } |
2117 | } |
2118 | |
2119 | if (SymBase->getType()->isFunctionPointerType()) { |
2120 | HandleFunctionPtrFree(C, ArgVal, Range: ArgExpr->getSourceRange(), FreeExpr: ParentExpr, |
2121 | Family); |
2122 | return nullptr; |
2123 | } |
2124 | |
2125 | // Clean out the info on previous call to free return info. |
2126 | State = State->remove<FreeReturnValue>(K: SymBase); |
2127 | |
2128 | // Keep track of the return value. If it is NULL, we will know that free |
2129 | // failed. |
2130 | if (ReturnsNullOnFailure) { |
2131 | SVal RetVal = C.getSVal(ParentExpr); |
2132 | SymbolRef RetStatusSymbol = RetVal.getAsSymbol(); |
2133 | if (RetStatusSymbol) { |
2134 | C.getSymbolManager().addSymbolDependency(Primary: SymBase, Dependent: RetStatusSymbol); |
2135 | State = State->set<FreeReturnValue>(K: SymBase, E: RetStatusSymbol); |
2136 | } |
2137 | } |
2138 | |
2139 | // If we don't know anything about this symbol, a free on it may be totally |
2140 | // valid. If this is the case, lets assume that the allocation family of the |
2141 | // freeing function is the same as the symbols allocation family, and go with |
2142 | // that. |
2143 | assert(!RsBase || (RsBase && RsBase->getAllocationFamily() == Family)); |
2144 | |
2145 | // Normal free. |
2146 | if (Hold) |
2147 | return State->set<RegionState>(SymBase, |
2148 | RefState::getRelinquished(Family, |
2149 | ParentExpr)); |
2150 | |
2151 | return State->set<RegionState>(SymBase, |
2152 | RefState::getReleased(Family, ParentExpr)); |
2153 | } |
2154 | |
2155 | std::optional<MallocChecker::CheckKind> |
2156 | MallocChecker::getCheckIfTracked(AllocationFamily Family, |
2157 | bool IsALeakCheck) const { |
2158 | switch (Family) { |
2159 | case AF_Malloc: |
2160 | case AF_Alloca: |
2161 | case AF_IfNameIndex: { |
2162 | if (ChecksEnabled[CK_MallocChecker]) |
2163 | return CK_MallocChecker; |
2164 | return std::nullopt; |
2165 | } |
2166 | case AF_CXXNew: |
2167 | case AF_CXXNewArray: { |
2168 | if (IsALeakCheck) { |
2169 | if (ChecksEnabled[CK_NewDeleteLeaksChecker]) |
2170 | return CK_NewDeleteLeaksChecker; |
2171 | } |
2172 | else { |
2173 | if (ChecksEnabled[CK_NewDeleteChecker]) |
2174 | return CK_NewDeleteChecker; |
2175 | } |
2176 | return std::nullopt; |
2177 | } |
2178 | case AF_InnerBuffer: { |
2179 | if (ChecksEnabled[CK_InnerPointerChecker]) |
2180 | return CK_InnerPointerChecker; |
2181 | return std::nullopt; |
2182 | } |
2183 | case AF_None: { |
2184 | llvm_unreachable("no family" ); |
2185 | } |
2186 | } |
2187 | llvm_unreachable("unhandled family" ); |
2188 | } |
2189 | |
2190 | std::optional<MallocChecker::CheckKind> |
2191 | MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym, |
2192 | bool IsALeakCheck) const { |
2193 | if (C.getState()->contains<ReallocSizeZeroSymbols>(key: Sym)) |
2194 | return CK_MallocChecker; |
2195 | |
2196 | const RefState *RS = C.getState()->get<RegionState>(key: Sym); |
2197 | assert(RS); |
2198 | return getCheckIfTracked(Family: RS->getAllocationFamily(), IsALeakCheck); |
2199 | } |
2200 | |
2201 | bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) { |
2202 | if (std::optional<nonloc::ConcreteInt> IntVal = |
2203 | V.getAs<nonloc::ConcreteInt>()) |
2204 | os << "an integer (" << IntVal->getValue() << ")" ; |
2205 | else if (std::optional<loc::ConcreteInt> ConstAddr = |
2206 | V.getAs<loc::ConcreteInt>()) |
2207 | os << "a constant address (" << ConstAddr->getValue() << ")" ; |
2208 | else if (std::optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>()) |
2209 | os << "the address of the label '" << Label->getLabel()->getName() << "'" ; |
2210 | else |
2211 | return false; |
2212 | |
2213 | return true; |
2214 | } |
2215 | |
2216 | bool MallocChecker::SummarizeRegion(raw_ostream &os, |
2217 | const MemRegion *MR) { |
2218 | switch (MR->getKind()) { |
2219 | case MemRegion::FunctionCodeRegionKind: { |
2220 | const NamedDecl *FD = cast<FunctionCodeRegion>(Val: MR)->getDecl(); |
2221 | if (FD) |
2222 | os << "the address of the function '" << *FD << '\''; |
2223 | else |
2224 | os << "the address of a function" ; |
2225 | return true; |
2226 | } |
2227 | case MemRegion::BlockCodeRegionKind: |
2228 | os << "block text" ; |
2229 | return true; |
2230 | case MemRegion::BlockDataRegionKind: |
2231 | // FIXME: where the block came from? |
2232 | os << "a block" ; |
2233 | return true; |
2234 | default: { |
2235 | const MemSpaceRegion *MS = MR->getMemorySpace(); |
2236 | |
2237 | if (isa<StackLocalsSpaceRegion>(Val: MS)) { |
2238 | const VarRegion *VR = dyn_cast<VarRegion>(Val: MR); |
2239 | const VarDecl *VD; |
2240 | if (VR) |
2241 | VD = VR->getDecl(); |
2242 | else |
2243 | VD = nullptr; |
2244 | |
2245 | if (VD) |
2246 | os << "the address of the local variable '" << VD->getName() << "'" ; |
2247 | else |
2248 | os << "the address of a local stack variable" ; |
2249 | return true; |
2250 | } |
2251 | |
2252 | if (isa<StackArgumentsSpaceRegion>(Val: MS)) { |
2253 | const VarRegion *VR = dyn_cast<VarRegion>(Val: MR); |
2254 | const VarDecl *VD; |
2255 | if (VR) |
2256 | VD = VR->getDecl(); |
2257 | else |
2258 | VD = nullptr; |
2259 | |
2260 | if (VD) |
2261 | os << "the address of the parameter '" << VD->getName() << "'" ; |
2262 | else |
2263 | os << "the address of a parameter" ; |
2264 | return true; |
2265 | } |
2266 | |
2267 | if (isa<GlobalsSpaceRegion>(Val: MS)) { |
2268 | const VarRegion *VR = dyn_cast<VarRegion>(Val: MR); |
2269 | const VarDecl *VD; |
2270 | if (VR) |
2271 | VD = VR->getDecl(); |
2272 | else |
2273 | VD = nullptr; |
2274 | |
2275 | if (VD) { |
2276 | if (VD->isStaticLocal()) |
2277 | os << "the address of the static variable '" << VD->getName() << "'" ; |
2278 | else |
2279 | os << "the address of the global variable '" << VD->getName() << "'" ; |
2280 | } else |
2281 | os << "the address of a global variable" ; |
2282 | return true; |
2283 | } |
2284 | |
2285 | return false; |
2286 | } |
2287 | } |
2288 | } |
2289 | |
2290 | void MallocChecker::HandleNonHeapDealloc(CheckerContext &C, SVal ArgVal, |
2291 | SourceRange Range, |
2292 | const Expr *DeallocExpr, |
2293 | AllocationFamily Family) const { |
2294 | |
2295 | if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { |
2296 | C.addSink(); |
2297 | return; |
2298 | } |
2299 | |
2300 | std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); |
2301 | if (!CheckKind) |
2302 | return; |
2303 | |
2304 | if (ExplodedNode *N = C.generateErrorNode()) { |
2305 | if (!BT_BadFree[*CheckKind]) |
2306 | BT_BadFree[*CheckKind].reset(p: new BugType( |
2307 | CheckNames[*CheckKind], "Bad free" , categories::MemoryError)); |
2308 | |
2309 | SmallString<100> buf; |
2310 | llvm::raw_svector_ostream os(buf); |
2311 | |
2312 | const MemRegion *MR = ArgVal.getAsRegion(); |
2313 | while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(Val: MR)) |
2314 | MR = ER->getSuperRegion(); |
2315 | |
2316 | os << "Argument to " ; |
2317 | if (!printMemFnName(os, C, E: DeallocExpr)) |
2318 | os << "deallocator" ; |
2319 | |
2320 | os << " is " ; |
2321 | bool Summarized = MR ? SummarizeRegion(os, MR) |
2322 | : SummarizeValue(os, V: ArgVal); |
2323 | if (Summarized) |
2324 | os << ", which is not memory allocated by " ; |
2325 | else |
2326 | os << "not memory allocated by " ; |
2327 | |
2328 | printExpectedAllocName(os, Family); |
2329 | |
2330 | auto R = std::make_unique<PathSensitiveBugReport>(args&: *BT_BadFree[*CheckKind], |
2331 | args: os.str(), args&: N); |
2332 | R->markInteresting(R: MR); |
2333 | R->addRange(R: Range); |
2334 | C.emitReport(R: std::move(R)); |
2335 | } |
2336 | } |
2337 | |
2338 | void MallocChecker::HandleFreeAlloca(CheckerContext &C, SVal ArgVal, |
2339 | SourceRange Range) const { |
2340 | |
2341 | std::optional<MallocChecker::CheckKind> CheckKind; |
2342 | |
2343 | if (ChecksEnabled[CK_MallocChecker]) |
2344 | CheckKind = CK_MallocChecker; |
2345 | else if (ChecksEnabled[CK_MismatchedDeallocatorChecker]) |
2346 | CheckKind = CK_MismatchedDeallocatorChecker; |
2347 | else { |
2348 | C.addSink(); |
2349 | return; |
2350 | } |
2351 | |
2352 | if (ExplodedNode *N = C.generateErrorNode()) { |
2353 | if (!BT_FreeAlloca[*CheckKind]) |
2354 | BT_FreeAlloca[*CheckKind].reset(p: new BugType( |
2355 | CheckNames[*CheckKind], "Free alloca()" , categories::MemoryError)); |
2356 | |
2357 | auto R = std::make_unique<PathSensitiveBugReport>( |
2358 | args&: *BT_FreeAlloca[*CheckKind], |
2359 | args: "Memory allocated by alloca() should not be deallocated" , args&: N); |
2360 | R->markInteresting(R: ArgVal.getAsRegion()); |
2361 | R->addRange(R: Range); |
2362 | C.emitReport(R: std::move(R)); |
2363 | } |
2364 | } |
2365 | |
2366 | void MallocChecker::HandleMismatchedDealloc(CheckerContext &C, |
2367 | SourceRange Range, |
2368 | const Expr *DeallocExpr, |
2369 | const RefState *RS, SymbolRef Sym, |
2370 | bool OwnershipTransferred) const { |
2371 | |
2372 | if (!ChecksEnabled[CK_MismatchedDeallocatorChecker]) { |
2373 | C.addSink(); |
2374 | return; |
2375 | } |
2376 | |
2377 | if (ExplodedNode *N = C.generateErrorNode()) { |
2378 | if (!BT_MismatchedDealloc) |
2379 | BT_MismatchedDealloc.reset( |
2380 | p: new BugType(CheckNames[CK_MismatchedDeallocatorChecker], |
2381 | "Bad deallocator" , categories::MemoryError)); |
2382 | |
2383 | SmallString<100> buf; |
2384 | llvm::raw_svector_ostream os(buf); |
2385 | |
2386 | const Expr *AllocExpr = cast<Expr>(Val: RS->getStmt()); |
2387 | SmallString<20> AllocBuf; |
2388 | llvm::raw_svector_ostream AllocOs(AllocBuf); |
2389 | SmallString<20> DeallocBuf; |
2390 | llvm::raw_svector_ostream DeallocOs(DeallocBuf); |
2391 | |
2392 | if (OwnershipTransferred) { |
2393 | if (printMemFnName(os&: DeallocOs, C, E: DeallocExpr)) |
2394 | os << DeallocOs.str() << " cannot" ; |
2395 | else |
2396 | os << "Cannot" ; |
2397 | |
2398 | os << " take ownership of memory" ; |
2399 | |
2400 | if (printMemFnName(os&: AllocOs, C, E: AllocExpr)) |
2401 | os << " allocated by " << AllocOs.str(); |
2402 | } else { |
2403 | os << "Memory" ; |
2404 | if (printMemFnName(os&: AllocOs, C, E: AllocExpr)) |
2405 | os << " allocated by " << AllocOs.str(); |
2406 | |
2407 | os << " should be deallocated by " ; |
2408 | printExpectedDeallocName(os, Family: RS->getAllocationFamily()); |
2409 | |
2410 | if (printMemFnName(os&: DeallocOs, C, E: DeallocExpr)) |
2411 | os << ", not " << DeallocOs.str(); |
2412 | } |
2413 | |
2414 | auto R = std::make_unique<PathSensitiveBugReport>(args&: *BT_MismatchedDealloc, |
2415 | args: os.str(), args&: N); |
2416 | R->markInteresting(sym: Sym); |
2417 | R->addRange(R: Range); |
2418 | R->addVisitor<MallocBugVisitor>(ConstructorArgs&: Sym); |
2419 | C.emitReport(R: std::move(R)); |
2420 | } |
2421 | } |
2422 | |
2423 | void MallocChecker::HandleOffsetFree(CheckerContext &C, SVal ArgVal, |
2424 | SourceRange Range, const Expr *DeallocExpr, |
2425 | AllocationFamily Family, |
2426 | const Expr *AllocExpr) const { |
2427 | |
2428 | if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { |
2429 | C.addSink(); |
2430 | return; |
2431 | } |
2432 | |
2433 | std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); |
2434 | if (!CheckKind) |
2435 | return; |
2436 | |
2437 | ExplodedNode *N = C.generateErrorNode(); |
2438 | if (!N) |
2439 | return; |
2440 | |
2441 | if (!BT_OffsetFree[*CheckKind]) |
2442 | BT_OffsetFree[*CheckKind].reset(p: new BugType( |
2443 | CheckNames[*CheckKind], "Offset free" , categories::MemoryError)); |
2444 | |
2445 | SmallString<100> buf; |
2446 | llvm::raw_svector_ostream os(buf); |
2447 | SmallString<20> AllocNameBuf; |
2448 | llvm::raw_svector_ostream AllocNameOs(AllocNameBuf); |
2449 | |
2450 | const MemRegion *MR = ArgVal.getAsRegion(); |
2451 | assert(MR && "Only MemRegion based symbols can have offset free errors" ); |
2452 | |
2453 | RegionOffset Offset = MR->getAsOffset(); |
2454 | assert((Offset.isValid() && |
2455 | !Offset.hasSymbolicOffset() && |
2456 | Offset.getOffset() != 0) && |
2457 | "Only symbols with a valid offset can have offset free errors" ); |
2458 | |
2459 | int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth(); |
2460 | |
2461 | os << "Argument to " ; |
2462 | if (!printMemFnName(os, C, E: DeallocExpr)) |
2463 | os << "deallocator" ; |
2464 | os << " is offset by " |
2465 | << offsetBytes |
2466 | << " " |
2467 | << ((abs(x: offsetBytes) > 1) ? "bytes" : "byte" ) |
2468 | << " from the start of " ; |
2469 | if (AllocExpr && printMemFnName(os&: AllocNameOs, C, E: AllocExpr)) |
2470 | os << "memory allocated by " << AllocNameOs.str(); |
2471 | else |
2472 | os << "allocated memory" ; |
2473 | |
2474 | auto R = std::make_unique<PathSensitiveBugReport>(args&: *BT_OffsetFree[*CheckKind], |
2475 | args: os.str(), args&: N); |
2476 | R->markInteresting(R: MR->getBaseRegion()); |
2477 | R->addRange(R: Range); |
2478 | C.emitReport(R: std::move(R)); |
2479 | } |
2480 | |
2481 | void MallocChecker::HandleUseAfterFree(CheckerContext &C, SourceRange Range, |
2482 | SymbolRef Sym) const { |
2483 | |
2484 | if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker] && |
2485 | !ChecksEnabled[CK_InnerPointerChecker]) { |
2486 | C.addSink(); |
2487 | return; |
2488 | } |
2489 | |
2490 | std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); |
2491 | if (!CheckKind) |
2492 | return; |
2493 | |
2494 | if (ExplodedNode *N = C.generateErrorNode()) { |
2495 | if (!BT_UseFree[*CheckKind]) |
2496 | BT_UseFree[*CheckKind].reset(p: new BugType( |
2497 | CheckNames[*CheckKind], "Use-after-free" , categories::MemoryError)); |
2498 | |
2499 | AllocationFamily AF = |
2500 | C.getState()->get<RegionState>(key: Sym)->getAllocationFamily(); |
2501 | |
2502 | auto R = std::make_unique<PathSensitiveBugReport>( |
2503 | args&: *BT_UseFree[*CheckKind], |
2504 | args: AF == AF_InnerBuffer |
2505 | ? "Inner pointer of container used after re/deallocation" |
2506 | : "Use of memory after it is freed" , |
2507 | args&: N); |
2508 | |
2509 | R->markInteresting(sym: Sym); |
2510 | R->addRange(R: Range); |
2511 | R->addVisitor<MallocBugVisitor>(ConstructorArgs&: Sym); |
2512 | |
2513 | if (AF == AF_InnerBuffer) |
2514 | R->addVisitor(visitor: allocation_state::getInnerPointerBRVisitor(Sym)); |
2515 | |
2516 | C.emitReport(R: std::move(R)); |
2517 | } |
2518 | } |
2519 | |
2520 | void MallocChecker::HandleDoubleFree(CheckerContext &C, SourceRange Range, |
2521 | bool Released, SymbolRef Sym, |
2522 | SymbolRef PrevSym) const { |
2523 | |
2524 | if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { |
2525 | C.addSink(); |
2526 | return; |
2527 | } |
2528 | |
2529 | std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); |
2530 | if (!CheckKind) |
2531 | return; |
2532 | |
2533 | if (ExplodedNode *N = C.generateErrorNode()) { |
2534 | if (!BT_DoubleFree[*CheckKind]) |
2535 | BT_DoubleFree[*CheckKind].reset(p: new BugType( |
2536 | CheckNames[*CheckKind], "Double free" , categories::MemoryError)); |
2537 | |
2538 | auto R = std::make_unique<PathSensitiveBugReport>( |
2539 | args&: *BT_DoubleFree[*CheckKind], |
2540 | args: (Released ? "Attempt to free released memory" |
2541 | : "Attempt to free non-owned memory" ), |
2542 | args&: N); |
2543 | R->addRange(R: Range); |
2544 | R->markInteresting(sym: Sym); |
2545 | if (PrevSym) |
2546 | R->markInteresting(sym: PrevSym); |
2547 | R->addVisitor<MallocBugVisitor>(ConstructorArgs&: Sym); |
2548 | C.emitReport(R: std::move(R)); |
2549 | } |
2550 | } |
2551 | |
2552 | void MallocChecker::HandleDoubleDelete(CheckerContext &C, SymbolRef Sym) const { |
2553 | |
2554 | if (!ChecksEnabled[CK_NewDeleteChecker]) { |
2555 | C.addSink(); |
2556 | return; |
2557 | } |
2558 | |
2559 | std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); |
2560 | if (!CheckKind) |
2561 | return; |
2562 | |
2563 | if (ExplodedNode *N = C.generateErrorNode()) { |
2564 | if (!BT_DoubleDelete) |
2565 | BT_DoubleDelete.reset(p: new BugType(CheckNames[CK_NewDeleteChecker], |
2566 | "Double delete" , |
2567 | categories::MemoryError)); |
2568 | |
2569 | auto R = std::make_unique<PathSensitiveBugReport>( |
2570 | args&: *BT_DoubleDelete, args: "Attempt to delete released memory" , args&: N); |
2571 | |
2572 | R->markInteresting(sym: Sym); |
2573 | R->addVisitor<MallocBugVisitor>(ConstructorArgs&: Sym); |
2574 | C.emitReport(R: std::move(R)); |
2575 | } |
2576 | } |
2577 | |
2578 | void MallocChecker::HandleUseZeroAlloc(CheckerContext &C, SourceRange Range, |
2579 | SymbolRef Sym) const { |
2580 | |
2581 | if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { |
2582 | C.addSink(); |
2583 | return; |
2584 | } |
2585 | |
2586 | std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); |
2587 | |
2588 | if (!CheckKind) |
2589 | return; |
2590 | |
2591 | if (ExplodedNode *N = C.generateErrorNode()) { |
2592 | if (!BT_UseZerroAllocated[*CheckKind]) |
2593 | BT_UseZerroAllocated[*CheckKind].reset( |
2594 | p: new BugType(CheckNames[*CheckKind], "Use of zero allocated" , |
2595 | categories::MemoryError)); |
2596 | |
2597 | auto R = std::make_unique<PathSensitiveBugReport>( |
2598 | args&: *BT_UseZerroAllocated[*CheckKind], |
2599 | args: "Use of memory allocated with size zero" , args&: N); |
2600 | |
2601 | R->addRange(R: Range); |
2602 | if (Sym) { |
2603 | R->markInteresting(sym: Sym); |
2604 | R->addVisitor<MallocBugVisitor>(ConstructorArgs&: Sym); |
2605 | } |
2606 | C.emitReport(R: std::move(R)); |
2607 | } |
2608 | } |
2609 | |
2610 | void MallocChecker::HandleFunctionPtrFree(CheckerContext &C, SVal ArgVal, |
2611 | SourceRange Range, |
2612 | const Expr *FreeExpr, |
2613 | AllocationFamily Family) const { |
2614 | if (!ChecksEnabled[CK_MallocChecker]) { |
2615 | C.addSink(); |
2616 | return; |
2617 | } |
2618 | |
2619 | std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); |
2620 | if (!CheckKind) |
2621 | return; |
2622 | |
2623 | if (ExplodedNode *N = C.generateErrorNode()) { |
2624 | if (!BT_BadFree[*CheckKind]) |
2625 | BT_BadFree[*CheckKind].reset(p: new BugType( |
2626 | CheckNames[*CheckKind], "Bad free" , categories::MemoryError)); |
2627 | |
2628 | SmallString<100> Buf; |
2629 | llvm::raw_svector_ostream Os(Buf); |
2630 | |
2631 | const MemRegion *MR = ArgVal.getAsRegion(); |
2632 | while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(Val: MR)) |
2633 | MR = ER->getSuperRegion(); |
2634 | |
2635 | Os << "Argument to " ; |
2636 | if (!printMemFnName(os&: Os, C, E: FreeExpr)) |
2637 | Os << "deallocator" ; |
2638 | |
2639 | Os << " is a function pointer" ; |
2640 | |
2641 | auto R = std::make_unique<PathSensitiveBugReport>(args&: *BT_BadFree[*CheckKind], |
2642 | args: Os.str(), args&: N); |
2643 | R->markInteresting(R: MR); |
2644 | R->addRange(R: Range); |
2645 | C.emitReport(R: std::move(R)); |
2646 | } |
2647 | } |
2648 | |
2649 | ProgramStateRef |
2650 | MallocChecker::ReallocMemAux(CheckerContext &C, const CallEvent &Call, |
2651 | bool ShouldFreeOnFail, ProgramStateRef State, |
2652 | AllocationFamily Family, bool SuffixWithN) const { |
2653 | if (!State) |
2654 | return nullptr; |
2655 | |
2656 | const CallExpr *CE = cast<CallExpr>(Val: Call.getOriginExpr()); |
2657 | |
2658 | if (SuffixWithN && CE->getNumArgs() < 3) |
2659 | return nullptr; |
2660 | else if (CE->getNumArgs() < 2) |
2661 | return nullptr; |
2662 | |
2663 | const Expr *arg0Expr = CE->getArg(Arg: 0); |
2664 | SVal Arg0Val = C.getSVal(arg0Expr); |
2665 | if (!isa<DefinedOrUnknownSVal>(Val: Arg0Val)) |
2666 | return nullptr; |
2667 | DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>(); |
2668 | |
2669 | SValBuilder &svalBuilder = C.getSValBuilder(); |
2670 | |
2671 | DefinedOrUnknownSVal PtrEQ = svalBuilder.evalEQ( |
2672 | state: State, lhs: arg0Val, rhs: svalBuilder.makeNullWithType(type: arg0Expr->getType())); |
2673 | |
2674 | // Get the size argument. |
2675 | const Expr *Arg1 = CE->getArg(Arg: 1); |
2676 | |
2677 | // Get the value of the size argument. |
2678 | SVal TotalSize = C.getSVal(Arg1); |
2679 | if (SuffixWithN) |
2680 | TotalSize = evalMulForBufferSize(C, Blocks: Arg1, BlockBytes: CE->getArg(Arg: 2)); |
2681 | if (!isa<DefinedOrUnknownSVal>(Val: TotalSize)) |
2682 | return nullptr; |
2683 | |
2684 | // Compare the size argument to 0. |
2685 | DefinedOrUnknownSVal SizeZero = |
2686 | svalBuilder.evalEQ(state: State, lhs: TotalSize.castAs<DefinedOrUnknownSVal>(), |
2687 | rhs: svalBuilder.makeIntValWithWidth( |
2688 | ptrType: svalBuilder.getContext().getSizeType(), integer: 0)); |
2689 | |
2690 | ProgramStateRef StatePtrIsNull, StatePtrNotNull; |
2691 | std::tie(args&: StatePtrIsNull, args&: StatePtrNotNull) = State->assume(Cond: PtrEQ); |
2692 | ProgramStateRef StateSizeIsZero, StateSizeNotZero; |
2693 | std::tie(args&: StateSizeIsZero, args&: StateSizeNotZero) = State->assume(Cond: SizeZero); |
2694 | // We only assume exceptional states if they are definitely true; if the |
2695 | // state is under-constrained, assume regular realloc behavior. |
2696 | bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull; |
2697 | bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero; |
2698 | |
2699 | // If the ptr is NULL and the size is not 0, the call is equivalent to |
2700 | // malloc(size). |
2701 | if (PrtIsNull && !SizeIsZero) { |
2702 | ProgramStateRef stateMalloc = MallocMemAux( |
2703 | C, Call, Size: TotalSize, Init: UndefinedVal(), State: StatePtrIsNull, Family); |
2704 | return stateMalloc; |
2705 | } |
2706 | |
2707 | if (PrtIsNull && SizeIsZero) |
2708 | return State; |
2709 | |
2710 | assert(!PrtIsNull); |
2711 | |
2712 | bool IsKnownToBeAllocated = false; |
2713 | |
2714 | // If the size is 0, free the memory. |
2715 | if (SizeIsZero) |
2716 | // The semantics of the return value are: |
2717 | // If size was equal to 0, either NULL or a pointer suitable to be passed |
2718 | // to free() is returned. We just free the input pointer and do not add |
2719 | // any constrains on the output pointer. |
2720 | if (ProgramStateRef stateFree = FreeMemAux( |
2721 | C, Call, State: StateSizeIsZero, Num: 0, Hold: false, IsKnownToBeAllocated, Family)) |
2722 | return stateFree; |
2723 | |
2724 | // Default behavior. |
2725 | if (ProgramStateRef stateFree = |
2726 | FreeMemAux(C, Call, State, Num: 0, Hold: false, IsKnownToBeAllocated, Family)) { |
2727 | |
2728 | ProgramStateRef stateRealloc = |
2729 | MallocMemAux(C, Call, Size: TotalSize, Init: UnknownVal(), State: stateFree, Family); |
2730 | if (!stateRealloc) |
2731 | return nullptr; |
2732 | |
2733 | OwnershipAfterReallocKind Kind = OAR_ToBeFreedAfterFailure; |
2734 | if (ShouldFreeOnFail) |
2735 | Kind = OAR_FreeOnFailure; |
2736 | else if (!IsKnownToBeAllocated) |
2737 | Kind = OAR_DoNotTrackAfterFailure; |
2738 | |
2739 | // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size). |
2740 | SymbolRef FromPtr = arg0Val.getLocSymbolInBase(); |
2741 | SVal RetVal = C.getSVal(CE); |
2742 | SymbolRef ToPtr = RetVal.getAsSymbol(); |
2743 | assert(FromPtr && ToPtr && |
2744 | "By this point, FreeMemAux and MallocMemAux should have checked " |
2745 | "whether the argument or the return value is symbolic!" ); |
2746 | |
2747 | // Record the info about the reallocated symbol so that we could properly |
2748 | // process failed reallocation. |
2749 | stateRealloc = stateRealloc->set<ReallocPairs>(K: ToPtr, |
2750 | E: ReallocPair(FromPtr, Kind)); |
2751 | // The reallocated symbol should stay alive for as long as the new symbol. |
2752 | C.getSymbolManager().addSymbolDependency(Primary: ToPtr, Dependent: FromPtr); |
2753 | return stateRealloc; |
2754 | } |
2755 | return nullptr; |
2756 | } |
2757 | |
2758 | ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, |
2759 | const CallEvent &Call, |
2760 | ProgramStateRef State) { |
2761 | if (!State) |
2762 | return nullptr; |
2763 | |
2764 | if (Call.getNumArgs() < 2) |
2765 | return nullptr; |
2766 | |
2767 | SValBuilder &svalBuilder = C.getSValBuilder(); |
2768 | SVal zeroVal = svalBuilder.makeZeroVal(type: svalBuilder.getContext().CharTy); |
2769 | SVal TotalSize = |
2770 | evalMulForBufferSize(C, Blocks: Call.getArgExpr(Index: 0), BlockBytes: Call.getArgExpr(Index: 1)); |
2771 | |
2772 | return MallocMemAux(C, Call, Size: TotalSize, Init: zeroVal, State, Family: AF_Malloc); |
2773 | } |
2774 | |
2775 | MallocChecker::LeakInfo MallocChecker::getAllocationSite(const ExplodedNode *N, |
2776 | SymbolRef Sym, |
2777 | CheckerContext &C) { |
2778 | const LocationContext *LeakContext = N->getLocationContext(); |
2779 | // Walk the ExplodedGraph backwards and find the first node that referred to |
2780 | // the tracked symbol. |
2781 | const ExplodedNode *AllocNode = N; |
2782 | const MemRegion *ReferenceRegion = nullptr; |
2783 | |
2784 | while (N) { |
2785 | ProgramStateRef State = N->getState(); |
2786 | if (!State->get<RegionState>(key: Sym)) |
2787 | break; |
2788 | |
2789 | // Find the most recent expression bound to the symbol in the current |
2790 | // context. |
2791 | if (!ReferenceRegion) { |
2792 | if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) { |
2793 | SVal Val = State->getSVal(R: MR); |
2794 | if (Val.getAsLocSymbol() == Sym) { |
2795 | const VarRegion *VR = MR->getBaseRegion()->getAs<VarRegion>(); |
2796 | // Do not show local variables belonging to a function other than |
2797 | // where the error is reported. |
2798 | if (!VR || (VR->getStackFrame() == LeakContext->getStackFrame())) |
2799 | ReferenceRegion = MR; |
2800 | } |
2801 | } |
2802 | } |
2803 | |
2804 | // Allocation node, is the last node in the current or parent context in |
2805 | // which the symbol was tracked. |
2806 | const LocationContext *NContext = N->getLocationContext(); |
2807 | if (NContext == LeakContext || |
2808 | NContext->isParentOf(LC: LeakContext)) |
2809 | AllocNode = N; |
2810 | N = N->pred_empty() ? nullptr : *(N->pred_begin()); |
2811 | } |
2812 | |
2813 | return LeakInfo(AllocNode, ReferenceRegion); |
2814 | } |
2815 | |
2816 | void MallocChecker::HandleLeak(SymbolRef Sym, ExplodedNode *N, |
2817 | CheckerContext &C) const { |
2818 | |
2819 | if (!ChecksEnabled[CK_MallocChecker] && |
2820 | !ChecksEnabled[CK_NewDeleteLeaksChecker]) |
2821 | return; |
2822 | |
2823 | const RefState *RS = C.getState()->get<RegionState>(key: Sym); |
2824 | assert(RS && "cannot leak an untracked symbol" ); |
2825 | AllocationFamily Family = RS->getAllocationFamily(); |
2826 | |
2827 | if (Family == AF_Alloca) |
2828 | return; |
2829 | |
2830 | std::optional<MallocChecker::CheckKind> CheckKind = |
2831 | getCheckIfTracked(Family, IsALeakCheck: true); |
2832 | |
2833 | if (!CheckKind) |
2834 | return; |
2835 | |
2836 | assert(N); |
2837 | if (!BT_Leak[*CheckKind]) { |
2838 | // Leaks should not be reported if they are post-dominated by a sink: |
2839 | // (1) Sinks are higher importance bugs. |
2840 | // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending |
2841 | // with __noreturn functions such as assert() or exit(). We choose not |
2842 | // to report leaks on such paths. |
2843 | BT_Leak[*CheckKind].reset(p: new BugType(CheckNames[*CheckKind], "Memory leak" , |
2844 | categories::MemoryError, |
2845 | /*SuppressOnSink=*/true)); |
2846 | } |
2847 | |
2848 | // Most bug reports are cached at the location where they occurred. |
2849 | // With leaks, we want to unique them by the location where they were |
2850 | // allocated, and only report a single path. |
2851 | PathDiagnosticLocation LocUsedForUniqueing; |
2852 | const ExplodedNode *AllocNode = nullptr; |
2853 | const MemRegion *Region = nullptr; |
2854 | std::tie(args&: AllocNode, args&: Region) = getAllocationSite(N, Sym, C); |
2855 | |
2856 | const Stmt *AllocationStmt = AllocNode->getStmtForDiagnostics(); |
2857 | if (AllocationStmt) |
2858 | LocUsedForUniqueing = PathDiagnosticLocation::createBegin(S: AllocationStmt, |
2859 | SM: C.getSourceManager(), |
2860 | LAC: AllocNode->getLocationContext()); |
2861 | |
2862 | SmallString<200> buf; |
2863 | llvm::raw_svector_ostream os(buf); |
2864 | if (Region && Region->canPrintPretty()) { |
2865 | os << "Potential leak of memory pointed to by " ; |
2866 | Region->printPretty(os); |
2867 | } else { |
2868 | os << "Potential memory leak" ; |
2869 | } |
2870 | |
2871 | auto R = std::make_unique<PathSensitiveBugReport>( |
2872 | args&: *BT_Leak[*CheckKind], args: os.str(), args&: N, args&: LocUsedForUniqueing, |
2873 | args: AllocNode->getLocationContext()->getDecl()); |
2874 | R->markInteresting(sym: Sym); |
2875 | R->addVisitor<MallocBugVisitor>(ConstructorArgs&: Sym, ConstructorArgs: true); |
2876 | if (ShouldRegisterNoOwnershipChangeVisitor) |
2877 | R->addVisitor<NoOwnershipChangeVisitor>(ConstructorArgs&: Sym, ConstructorArgs: this); |
2878 | C.emitReport(R: std::move(R)); |
2879 | } |
2880 | |
2881 | void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper, |
2882 | CheckerContext &C) const |
2883 | { |
2884 | ProgramStateRef state = C.getState(); |
2885 | RegionStateTy OldRS = state->get<RegionState>(); |
2886 | RegionStateTy::Factory &F = state->get_context<RegionState>(); |
2887 | |
2888 | RegionStateTy RS = OldRS; |
2889 | SmallVector<SymbolRef, 2> Errors; |
2890 | for (auto [Sym, State] : RS) { |
2891 | if (SymReaper.isDead(sym: Sym)) { |
2892 | if (State.isAllocated() || State.isAllocatedOfSizeZero()) |
2893 | Errors.push_back(Elt: Sym); |
2894 | // Remove the dead symbol from the map. |
2895 | RS = F.remove(Old: RS, K: Sym); |
2896 | } |
2897 | } |
2898 | |
2899 | if (RS == OldRS) { |
2900 | // We shouldn't have touched other maps yet. |
2901 | assert(state->get<ReallocPairs>() == |
2902 | C.getState()->get<ReallocPairs>()); |
2903 | assert(state->get<FreeReturnValue>() == |
2904 | C.getState()->get<FreeReturnValue>()); |
2905 | return; |
2906 | } |
2907 | |
2908 | // Cleanup the Realloc Pairs Map. |
2909 | ReallocPairsTy RP = state->get<ReallocPairs>(); |
2910 | for (auto [Sym, ReallocPair] : RP) { |
2911 | if (SymReaper.isDead(sym: Sym) || SymReaper.isDead(sym: ReallocPair.ReallocatedSym)) { |
2912 | state = state->remove<ReallocPairs>(K: Sym); |
2913 | } |
2914 | } |
2915 | |
2916 | // Cleanup the FreeReturnValue Map. |
2917 | FreeReturnValueTy FR = state->get<FreeReturnValue>(); |
2918 | for (auto [Sym, RetSym] : FR) { |
2919 | if (SymReaper.isDead(sym: Sym) || SymReaper.isDead(sym: RetSym)) { |
2920 | state = state->remove<FreeReturnValue>(K: Sym); |
2921 | } |
2922 | } |
2923 | |
2924 | // Generate leak node. |
2925 | ExplodedNode *N = C.getPredecessor(); |
2926 | if (!Errors.empty()) { |
2927 | static CheckerProgramPointTag Tag("MallocChecker" , "DeadSymbolsLeak" ); |
2928 | N = C.generateNonFatalErrorNode(State: C.getState(), Tag: &Tag); |
2929 | if (N) { |
2930 | for (SymbolRef Sym : Errors) { |
2931 | HandleLeak(Sym, N, C); |
2932 | } |
2933 | } |
2934 | } |
2935 | |
2936 | C.addTransition(State: state->set<RegionState>(RS), Pred: N); |
2937 | } |
2938 | |
2939 | void MallocChecker::checkPreCall(const CallEvent &Call, |
2940 | CheckerContext &C) const { |
2941 | |
2942 | if (const auto *DC = dyn_cast<CXXDeallocatorCall>(Val: &Call)) { |
2943 | const CXXDeleteExpr *DE = DC->getOriginExpr(); |
2944 | |
2945 | if (!ChecksEnabled[CK_NewDeleteChecker]) |
2946 | if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol()) |
2947 | checkUseAfterFree(Sym, C, DE->getArgument()); |
2948 | |
2949 | if (!isStandardNewDelete(FD: DC->getDecl())) |
2950 | return; |
2951 | |
2952 | ProgramStateRef State = C.getState(); |
2953 | bool IsKnownToBeAllocated; |
2954 | State = FreeMemAux(C, ArgExpr: DE->getArgument(), Call, State, |
2955 | /*Hold*/ false, IsKnownToBeAllocated, |
2956 | Family: (DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew)); |
2957 | |
2958 | C.addTransition(State); |
2959 | return; |
2960 | } |
2961 | |
2962 | if (const auto *DC = dyn_cast<CXXDestructorCall>(Val: &Call)) { |
2963 | SymbolRef Sym = DC->getCXXThisVal().getAsSymbol(); |
2964 | if (!Sym || checkDoubleDelete(Sym, C)) |
2965 | return; |
2966 | } |
2967 | |
2968 | // We need to handle getline pre-conditions here before the pointed region |
2969 | // gets invalidated by StreamChecker |
2970 | if (const auto *PreFN = PreFnMap.lookup(Call)) { |
2971 | (*PreFN)(this, Call, C); |
2972 | return; |
2973 | } |
2974 | |
2975 | // We will check for double free in the post visit. |
2976 | if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(Val: &Call)) { |
2977 | const FunctionDecl *FD = FC->getDecl(); |
2978 | if (!FD) |
2979 | return; |
2980 | |
2981 | if (ChecksEnabled[CK_MallocChecker] && isFreeingCall(Call)) |
2982 | return; |
2983 | } |
2984 | |
2985 | // Check if the callee of a method is deleted. |
2986 | if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(Val: &Call)) { |
2987 | SymbolRef Sym = CC->getCXXThisVal().getAsSymbol(); |
2988 | if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr())) |
2989 | return; |
2990 | } |
2991 | |
2992 | // Check arguments for being used after free. |
2993 | for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) { |
2994 | SVal ArgSVal = Call.getArgSVal(Index: I); |
2995 | if (isa<Loc>(Val: ArgSVal)) { |
2996 | SymbolRef Sym = ArgSVal.getAsSymbol(); |
2997 | if (!Sym) |
2998 | continue; |
2999 | if (checkUseAfterFree(Sym, C, Call.getArgExpr(Index: I))) |
3000 | return; |
3001 | } |
3002 | } |
3003 | } |
3004 | |
3005 | void MallocChecker::checkPreStmt(const ReturnStmt *S, |
3006 | CheckerContext &C) const { |
3007 | checkEscapeOnReturn(S, C); |
3008 | } |
3009 | |
3010 | // In the CFG, automatic destructors come after the return statement. |
3011 | // This callback checks for returning memory that is freed by automatic |
3012 | // destructors, as those cannot be reached in checkPreStmt(). |
3013 | void MallocChecker::checkEndFunction(const ReturnStmt *S, |
3014 | CheckerContext &C) const { |
3015 | checkEscapeOnReturn(S, C); |
3016 | } |
3017 | |
3018 | void MallocChecker::checkEscapeOnReturn(const ReturnStmt *S, |
3019 | CheckerContext &C) const { |
3020 | if (!S) |
3021 | return; |
3022 | |
3023 | const Expr *E = S->getRetValue(); |
3024 | if (!E) |
3025 | return; |
3026 | |
3027 | // Check if we are returning a symbol. |
3028 | ProgramStateRef State = C.getState(); |
3029 | SVal RetVal = C.getSVal(E); |
3030 | SymbolRef Sym = RetVal.getAsSymbol(); |
3031 | if (!Sym) |
3032 | // If we are returning a field of the allocated struct or an array element, |
3033 | // the callee could still free the memory. |
3034 | // TODO: This logic should be a part of generic symbol escape callback. |
3035 | if (const MemRegion *MR = RetVal.getAsRegion()) |
3036 | if (isa<FieldRegion, ElementRegion>(Val: MR)) |
3037 | if (const SymbolicRegion *BMR = |
3038 | dyn_cast<SymbolicRegion>(Val: MR->getBaseRegion())) |
3039 | Sym = BMR->getSymbol(); |
3040 | |
3041 | // Check if we are returning freed memory. |
3042 | if (Sym) |
3043 | checkUseAfterFree(Sym, C, E); |
3044 | } |
3045 | |
3046 | // TODO: Blocks should be either inlined or should call invalidate regions |
3047 | // upon invocation. After that's in place, special casing here will not be |
3048 | // needed. |
3049 | void MallocChecker::checkPostStmt(const BlockExpr *BE, |
3050 | CheckerContext &C) const { |
3051 | |
3052 | // Scan the BlockDecRefExprs for any object the retain count checker |
3053 | // may be tracking. |
3054 | if (!BE->getBlockDecl()->hasCaptures()) |
3055 | return; |
3056 | |
3057 | ProgramStateRef state = C.getState(); |
3058 | const BlockDataRegion *R = |
3059 | cast<BlockDataRegion>(Val: C.getSVal(BE).getAsRegion()); |
3060 | |
3061 | auto ReferencedVars = R->referenced_vars(); |
3062 | if (ReferencedVars.empty()) |
3063 | return; |
3064 | |
3065 | SmallVector<const MemRegion*, 10> Regions; |
3066 | const LocationContext *LC = C.getLocationContext(); |
3067 | MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager(); |
3068 | |
3069 | for (const auto &Var : ReferencedVars) { |
3070 | const VarRegion *VR = Var.getCapturedRegion(); |
3071 | if (VR->getSuperRegion() == R) { |
3072 | VR = MemMgr.getVarRegion(VR->getDecl(), LC); |
3073 | } |
3074 | Regions.push_back(VR); |
3075 | } |
3076 | |
3077 | state = |
3078 | state->scanReachableSymbols<StopTrackingCallback>(Reachable: Regions).getState(); |
3079 | C.addTransition(State: state); |
3080 | } |
3081 | |
3082 | static bool isReleased(SymbolRef Sym, CheckerContext &C) { |
3083 | assert(Sym); |
3084 | const RefState *RS = C.getState()->get<RegionState>(key: Sym); |
3085 | return (RS && RS->isReleased()); |
3086 | } |
3087 | |
3088 | bool MallocChecker::suppressDeallocationsInSuspiciousContexts( |
3089 | const CallEvent &Call, CheckerContext &C) const { |
3090 | if (Call.getNumArgs() == 0) |
3091 | return false; |
3092 | |
3093 | StringRef FunctionStr = "" ; |
3094 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: C.getStackFrame()->getDecl())) |
3095 | if (const Stmt *Body = FD->getBody()) |
3096 | if (Body->getBeginLoc().isValid()) |
3097 | FunctionStr = |
3098 | Lexer::getSourceText(Range: CharSourceRange::getTokenRange( |
3099 | {FD->getBeginLoc(), Body->getBeginLoc()}), |
3100 | SM: C.getSourceManager(), LangOpts: C.getLangOpts()); |
3101 | |
3102 | // We do not model the Integer Set Library's retain-count based allocation. |
3103 | if (!FunctionStr.contains(Other: "__isl_" )) |
3104 | return false; |
3105 | |
3106 | ProgramStateRef State = C.getState(); |
3107 | |
3108 | for (const Expr *Arg : cast<CallExpr>(Val: Call.getOriginExpr())->arguments()) |
3109 | if (SymbolRef Sym = C.getSVal(Arg).getAsSymbol()) |
3110 | if (const RefState *RS = State->get<RegionState>(key: Sym)) |
3111 | State = State->set<RegionState>(K: Sym, E: RefState::getEscaped(RS)); |
3112 | |
3113 | C.addTransition(State); |
3114 | return true; |
3115 | } |
3116 | |
3117 | bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C, |
3118 | const Stmt *S) const { |
3119 | |
3120 | if (isReleased(Sym, C)) { |
3121 | HandleUseAfterFree(C, Range: S->getSourceRange(), Sym); |
3122 | return true; |
3123 | } |
3124 | |
3125 | return false; |
3126 | } |
3127 | |
3128 | void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, |
3129 | const Stmt *S) const { |
3130 | assert(Sym); |
3131 | |
3132 | if (const RefState *RS = C.getState()->get<RegionState>(key: Sym)) { |
3133 | if (RS->isAllocatedOfSizeZero()) |
3134 | HandleUseZeroAlloc(C, Range: RS->getStmt()->getSourceRange(), Sym); |
3135 | } |
3136 | else if (C.getState()->contains<ReallocSizeZeroSymbols>(key: Sym)) { |
3137 | HandleUseZeroAlloc(C, Range: S->getSourceRange(), Sym); |
3138 | } |
3139 | } |
3140 | |
3141 | bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const { |
3142 | |
3143 | if (isReleased(Sym, C)) { |
3144 | HandleDoubleDelete(C, Sym); |
3145 | return true; |
3146 | } |
3147 | return false; |
3148 | } |
3149 | |
3150 | // Check if the location is a freed symbolic region. |
3151 | void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S, |
3152 | CheckerContext &C) const { |
3153 | SymbolRef Sym = l.getLocSymbolInBase(); |
3154 | if (Sym) { |
3155 | checkUseAfterFree(Sym, C, S); |
3156 | checkUseZeroAllocated(Sym, C, S); |
3157 | } |
3158 | } |
3159 | |
3160 | // If a symbolic region is assumed to NULL (or another constant), stop tracking |
3161 | // it - assuming that allocation failed on this path. |
3162 | ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state, |
3163 | SVal Cond, |
3164 | bool Assumption) const { |
3165 | RegionStateTy RS = state->get<RegionState>(); |
3166 | for (SymbolRef Sym : llvm::make_first_range(c&: RS)) { |
3167 | // If the symbol is assumed to be NULL, remove it from consideration. |
3168 | ConstraintManager &CMgr = state->getConstraintManager(); |
3169 | ConditionTruthVal AllocFailed = CMgr.isNull(State: state, Sym); |
3170 | if (AllocFailed.isConstrainedTrue()) |
3171 | state = state->remove<RegionState>(K: Sym); |
3172 | } |
3173 | |
3174 | // Realloc returns 0 when reallocation fails, which means that we should |
3175 | // restore the state of the pointer being reallocated. |
3176 | ReallocPairsTy RP = state->get<ReallocPairs>(); |
3177 | for (auto [Sym, ReallocPair] : RP) { |
3178 | // If the symbol is assumed to be NULL, remove it from consideration. |
3179 | ConstraintManager &CMgr = state->getConstraintManager(); |
3180 | ConditionTruthVal AllocFailed = CMgr.isNull(State: state, Sym); |
3181 | if (!AllocFailed.isConstrainedTrue()) |
3182 | continue; |
3183 | |
3184 | SymbolRef ReallocSym = ReallocPair.ReallocatedSym; |
3185 | if (const RefState *RS = state->get<RegionState>(key: ReallocSym)) { |
3186 | if (RS->isReleased()) { |
3187 | switch (ReallocPair.Kind) { |
3188 | case OAR_ToBeFreedAfterFailure: |
3189 | state = state->set<RegionState>(K: ReallocSym, |
3190 | E: RefState::getAllocated(family: RS->getAllocationFamily(), s: RS->getStmt())); |
3191 | break; |
3192 | case OAR_DoNotTrackAfterFailure: |
3193 | state = state->remove<RegionState>(K: ReallocSym); |
3194 | break; |
3195 | default: |
3196 | assert(ReallocPair.Kind == OAR_FreeOnFailure); |
3197 | } |
3198 | } |
3199 | } |
3200 | state = state->remove<ReallocPairs>(K: Sym); |
3201 | } |
3202 | |
3203 | return state; |
3204 | } |
3205 | |
3206 | bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly( |
3207 | const CallEvent *Call, |
3208 | ProgramStateRef State, |
3209 | SymbolRef &EscapingSymbol) const { |
3210 | assert(Call); |
3211 | EscapingSymbol = nullptr; |
3212 | |
3213 | // For now, assume that any C++ or block call can free memory. |
3214 | // TODO: If we want to be more optimistic here, we'll need to make sure that |
3215 | // regions escape to C++ containers. They seem to do that even now, but for |
3216 | // mysterious reasons. |
3217 | if (!isa<SimpleFunctionCall, ObjCMethodCall>(Val: Call)) |
3218 | return true; |
3219 | |
3220 | // Check Objective-C messages by selector name. |
3221 | if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Val: Call)) { |
3222 | // If it's not a framework call, or if it takes a callback, assume it |
3223 | // can free memory. |
3224 | if (!Call->isInSystemHeader() || Call->argumentsMayEscape()) |
3225 | return true; |
3226 | |
3227 | // If it's a method we know about, handle it explicitly post-call. |
3228 | // This should happen before the "freeWhenDone" check below. |
3229 | if (isKnownDeallocObjCMethodName(Call: *Msg)) |
3230 | return false; |
3231 | |
3232 | // If there's a "freeWhenDone" parameter, but the method isn't one we know |
3233 | // about, we can't be sure that the object will use free() to deallocate the |
3234 | // memory, so we can't model it explicitly. The best we can do is use it to |
3235 | // decide whether the pointer escapes. |
3236 | if (std::optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call: *Msg)) |
3237 | return *FreeWhenDone; |
3238 | |
3239 | // If the first selector piece ends with "NoCopy", and there is no |
3240 | // "freeWhenDone" parameter set to zero, we know ownership is being |
3241 | // transferred. Again, though, we can't be sure that the object will use |
3242 | // free() to deallocate the memory, so we can't model it explicitly. |
3243 | StringRef FirstSlot = Msg->getSelector().getNameForSlot(argIndex: 0); |
3244 | if (FirstSlot.ends_with(Suffix: "NoCopy" )) |
3245 | return true; |
3246 | |
3247 | // If the first selector starts with addPointer, insertPointer, |
3248 | // or replacePointer, assume we are dealing with NSPointerArray or similar. |
3249 | // This is similar to C++ containers (vector); we still might want to check |
3250 | // that the pointers get freed by following the container itself. |
3251 | if (FirstSlot.starts_with(Prefix: "addPointer" ) || |
3252 | FirstSlot.starts_with(Prefix: "insertPointer" ) || |
3253 | FirstSlot.starts_with(Prefix: "replacePointer" ) || |
3254 | FirstSlot.equals(RHS: "valueWithPointer" )) { |
3255 | return true; |
3256 | } |
3257 | |
3258 | // We should escape receiver on call to 'init'. This is especially relevant |
3259 | // to the receiver, as the corresponding symbol is usually not referenced |
3260 | // after the call. |
3261 | if (Msg->getMethodFamily() == OMF_init) { |
3262 | EscapingSymbol = Msg->getReceiverSVal().getAsSymbol(); |
3263 | return true; |
3264 | } |
3265 | |
3266 | // Otherwise, assume that the method does not free memory. |
3267 | // Most framework methods do not free memory. |
3268 | return false; |
3269 | } |
3270 | |
3271 | // At this point the only thing left to handle is straight function calls. |
3272 | const FunctionDecl *FD = cast<SimpleFunctionCall>(Val: Call)->getDecl(); |
3273 | if (!FD) |
3274 | return true; |
3275 | |
3276 | // If it's one of the allocation functions we can reason about, we model |
3277 | // its behavior explicitly. |
3278 | if (isMemCall(Call: *Call)) |
3279 | return false; |
3280 | |
3281 | // If it's not a system call, assume it frees memory. |
3282 | if (!Call->isInSystemHeader()) |
3283 | return true; |
3284 | |
3285 | // White list the system functions whose arguments escape. |
3286 | const IdentifierInfo *II = FD->getIdentifier(); |
3287 | if (!II) |
3288 | return true; |
3289 | StringRef FName = II->getName(); |
3290 | |
3291 | // White list the 'XXXNoCopy' CoreFoundation functions. |
3292 | // We specifically check these before |
3293 | if (FName.ends_with(Suffix: "NoCopy" )) { |
3294 | // Look for the deallocator argument. We know that the memory ownership |
3295 | // is not transferred only if the deallocator argument is |
3296 | // 'kCFAllocatorNull'. |
3297 | for (unsigned i = 1; i < Call->getNumArgs(); ++i) { |
3298 | const Expr *ArgE = Call->getArgExpr(Index: i)->IgnoreParenCasts(); |
3299 | if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(Val: ArgE)) { |
3300 | StringRef DeallocatorName = DE->getFoundDecl()->getName(); |
3301 | if (DeallocatorName == "kCFAllocatorNull" ) |
3302 | return false; |
3303 | } |
3304 | } |
3305 | return true; |
3306 | } |
3307 | |
3308 | // Associating streams with malloced buffers. The pointer can escape if |
3309 | // 'closefn' is specified (and if that function does free memory), |
3310 | // but it will not if closefn is not specified. |
3311 | // Currently, we do not inspect the 'closefn' function (PR12101). |
3312 | if (FName == "funopen" ) |
3313 | if (Call->getNumArgs() >= 4 && Call->getArgSVal(Index: 4).isConstant(I: 0)) |
3314 | return false; |
3315 | |
3316 | // Do not warn on pointers passed to 'setbuf' when used with std streams, |
3317 | // these leaks might be intentional when setting the buffer for stdio. |
3318 | // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer |
3319 | if (FName == "setbuf" || FName =="setbuffer" || |
3320 | FName == "setlinebuf" || FName == "setvbuf" ) { |
3321 | if (Call->getNumArgs() >= 1) { |
3322 | const Expr *ArgE = Call->getArgExpr(Index: 0)->IgnoreParenCasts(); |
3323 | if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(Val: ArgE)) |
3324 | if (const VarDecl *D = dyn_cast<VarDecl>(Val: ArgDRE->getDecl())) |
3325 | if (D->getCanonicalDecl()->getName().contains("std" )) |
3326 | return true; |
3327 | } |
3328 | } |
3329 | |
3330 | // A bunch of other functions which either take ownership of a pointer or |
3331 | // wrap the result up in a struct or object, meaning it can be freed later. |
3332 | // (See RetainCountChecker.) Not all the parameters here are invalidated, |
3333 | // but the Malloc checker cannot differentiate between them. The right way |
3334 | // of doing this would be to implement a pointer escapes callback. |
3335 | if (FName == "CGBitmapContextCreate" || |
3336 | FName == "CGBitmapContextCreateWithData" || |
3337 | FName == "CVPixelBufferCreateWithBytes" || |
3338 | FName == "CVPixelBufferCreateWithPlanarBytes" || |
3339 | FName == "OSAtomicEnqueue" ) { |
3340 | return true; |
3341 | } |
3342 | |
3343 | if (FName == "postEvent" && |
3344 | FD->getQualifiedNameAsString() == "QCoreApplication::postEvent" ) { |
3345 | return true; |
3346 | } |
3347 | |
3348 | if (FName == "connectImpl" && |
3349 | FD->getQualifiedNameAsString() == "QObject::connectImpl" ) { |
3350 | return true; |
3351 | } |
3352 | |
3353 | if (FName == "singleShotImpl" && |
3354 | FD->getQualifiedNameAsString() == "QTimer::singleShotImpl" ) { |
3355 | return true; |
3356 | } |
3357 | |
3358 | // Handle cases where we know a buffer's /address/ can escape. |
3359 | // Note that the above checks handle some special cases where we know that |
3360 | // even though the address escapes, it's still our responsibility to free the |
3361 | // buffer. |
3362 | if (Call->argumentsMayEscape()) |
3363 | return true; |
3364 | |
3365 | // Otherwise, assume that the function does not free memory. |
3366 | // Most system calls do not free the memory. |
3367 | return false; |
3368 | } |
3369 | |
3370 | ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State, |
3371 | const InvalidatedSymbols &Escaped, |
3372 | const CallEvent *Call, |
3373 | PointerEscapeKind Kind) const { |
3374 | return checkPointerEscapeAux(State, Escaped, Call, Kind, |
3375 | /*IsConstPointerEscape*/ false); |
3376 | } |
3377 | |
3378 | ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State, |
3379 | const InvalidatedSymbols &Escaped, |
3380 | const CallEvent *Call, |
3381 | PointerEscapeKind Kind) const { |
3382 | // If a const pointer escapes, it may not be freed(), but it could be deleted. |
3383 | return checkPointerEscapeAux(State, Escaped, Call, Kind, |
3384 | /*IsConstPointerEscape*/ true); |
3385 | } |
3386 | |
3387 | static bool checkIfNewOrNewArrayFamily(const RefState *RS) { |
3388 | return (RS->getAllocationFamily() == AF_CXXNewArray || |
3389 | RS->getAllocationFamily() == AF_CXXNew); |
3390 | } |
3391 | |
3392 | ProgramStateRef MallocChecker::checkPointerEscapeAux( |
3393 | ProgramStateRef State, const InvalidatedSymbols &Escaped, |
3394 | const CallEvent *Call, PointerEscapeKind Kind, |
3395 | bool IsConstPointerEscape) const { |
3396 | // If we know that the call does not free memory, or we want to process the |
3397 | // call later, keep tracking the top level arguments. |
3398 | SymbolRef EscapingSymbol = nullptr; |
3399 | if (Kind == PSK_DirectEscapeOnCall && |
3400 | !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State, |
3401 | EscapingSymbol) && |
3402 | !EscapingSymbol) { |
3403 | return State; |
3404 | } |
3405 | |
3406 | for (SymbolRef sym : Escaped) { |
3407 | if (EscapingSymbol && EscapingSymbol != sym) |
3408 | continue; |
3409 | |
3410 | if (const RefState *RS = State->get<RegionState>(key: sym)) |
3411 | if (RS->isAllocated() || RS->isAllocatedOfSizeZero()) |
3412 | if (!IsConstPointerEscape || checkIfNewOrNewArrayFamily(RS)) |
3413 | State = State->set<RegionState>(K: sym, E: RefState::getEscaped(RS)); |
3414 | } |
3415 | return State; |
3416 | } |
3417 | |
3418 | bool MallocChecker::isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C, |
3419 | SVal ArgVal) const { |
3420 | if (!KernelZeroSizePtrValue) |
3421 | KernelZeroSizePtrValue = |
3422 | tryExpandAsInteger(Macro: "ZERO_SIZE_PTR" , PP: C.getPreprocessor()); |
3423 | |
3424 | const llvm::APSInt *ArgValKnown = |
3425 | C.getSValBuilder().getKnownValue(state: State, val: ArgVal); |
3426 | return ArgValKnown && *KernelZeroSizePtrValue && |
3427 | ArgValKnown->getSExtValue() == **KernelZeroSizePtrValue; |
3428 | } |
3429 | |
3430 | static SymbolRef findFailedReallocSymbol(ProgramStateRef currState, |
3431 | ProgramStateRef prevState) { |
3432 | ReallocPairsTy currMap = currState->get<ReallocPairs>(); |
3433 | ReallocPairsTy prevMap = prevState->get<ReallocPairs>(); |
3434 | |
3435 | for (const ReallocPairsTy::value_type &Pair : prevMap) { |
3436 | SymbolRef sym = Pair.first; |
3437 | if (!currMap.lookup(K: sym)) |
3438 | return sym; |
3439 | } |
3440 | |
3441 | return nullptr; |
3442 | } |
3443 | |
3444 | static bool isReferenceCountingPointerDestructor(const CXXDestructorDecl *DD) { |
3445 | if (const IdentifierInfo *II = DD->getParent()->getIdentifier()) { |
3446 | StringRef N = II->getName(); |
3447 | if (N.contains_insensitive(Other: "ptr" ) || N.contains_insensitive(Other: "pointer" )) { |
3448 | if (N.contains_insensitive(Other: "ref" ) || N.contains_insensitive(Other: "cnt" ) || |
3449 | N.contains_insensitive(Other: "intrusive" ) || |
3450 | N.contains_insensitive(Other: "shared" )) { |
3451 | return true; |
3452 | } |
3453 | } |
3454 | } |
3455 | return false; |
3456 | } |
3457 | |
3458 | PathDiagnosticPieceRef MallocBugVisitor::VisitNode(const ExplodedNode *N, |
3459 | BugReporterContext &BRC, |
3460 | PathSensitiveBugReport &BR) { |
3461 | ProgramStateRef state = N->getState(); |
3462 | ProgramStateRef statePrev = N->getFirstPred()->getState(); |
3463 | |
3464 | const RefState *RSCurr = state->get<RegionState>(key: Sym); |
3465 | const RefState *RSPrev = statePrev->get<RegionState>(key: Sym); |
3466 | |
3467 | const Stmt *S = N->getStmtForDiagnostics(); |
3468 | // When dealing with containers, we sometimes want to give a note |
3469 | // even if the statement is missing. |
3470 | if (!S && (!RSCurr || RSCurr->getAllocationFamily() != AF_InnerBuffer)) |
3471 | return nullptr; |
3472 | |
3473 | const LocationContext *CurrentLC = N->getLocationContext(); |
3474 | |
3475 | // If we find an atomic fetch_add or fetch_sub within the destructor in which |
3476 | // the pointer was released (before the release), this is likely a destructor |
3477 | // of a shared pointer. |
3478 | // Because we don't model atomics, and also because we don't know that the |
3479 | // original reference count is positive, we should not report use-after-frees |
3480 | // on objects deleted in such destructors. This can probably be improved |
3481 | // through better shared pointer modeling. |
3482 | if (ReleaseDestructorLC) { |
3483 | if (const auto *AE = dyn_cast<AtomicExpr>(Val: S)) { |
3484 | AtomicExpr::AtomicOp Op = AE->getOp(); |
3485 | if (Op == AtomicExpr::AO__c11_atomic_fetch_add || |
3486 | Op == AtomicExpr::AO__c11_atomic_fetch_sub) { |
3487 | if (ReleaseDestructorLC == CurrentLC || |
3488 | ReleaseDestructorLC->isParentOf(LC: CurrentLC)) { |
3489 | BR.markInvalid(Tag: getTag(), Data: S); |
3490 | } |
3491 | } |
3492 | } |
3493 | } |
3494 | |
3495 | // FIXME: We will eventually need to handle non-statement-based events |
3496 | // (__attribute__((cleanup))). |
3497 | |
3498 | // Find out if this is an interesting point and what is the kind. |
3499 | StringRef Msg; |
3500 | std::unique_ptr<StackHintGeneratorForSymbol> StackHint = nullptr; |
3501 | SmallString<256> Buf; |
3502 | llvm::raw_svector_ostream OS(Buf); |
3503 | |
3504 | if (Mode == Normal) { |
3505 | if (isAllocated(RSCurr, RSPrev, Stmt: S)) { |
3506 | Msg = "Memory is allocated" ; |
3507 | StackHint = std::make_unique<StackHintGeneratorForSymbol>( |
3508 | args&: Sym, args: "Returned allocated memory" ); |
3509 | } else if (isReleased(RSCurr, RSPrev, Stmt: S)) { |
3510 | const auto Family = RSCurr->getAllocationFamily(); |
3511 | switch (Family) { |
3512 | case AF_Alloca: |
3513 | case AF_Malloc: |
3514 | case AF_CXXNew: |
3515 | case AF_CXXNewArray: |
3516 | case AF_IfNameIndex: |
3517 | Msg = "Memory is released" ; |
3518 | StackHint = std::make_unique<StackHintGeneratorForSymbol>( |
3519 | args&: Sym, args: "Returning; memory was released" ); |
3520 | break; |
3521 | case AF_InnerBuffer: { |
3522 | const MemRegion *ObjRegion = |
3523 | allocation_state::getContainerObjRegion(State: statePrev, Sym); |
3524 | const auto *TypedRegion = cast<TypedValueRegion>(Val: ObjRegion); |
3525 | QualType ObjTy = TypedRegion->getValueType(); |
3526 | OS << "Inner buffer of '" << ObjTy << "' " ; |
3527 | |
3528 | if (N->getLocation().getKind() == ProgramPoint::PostImplicitCallKind) { |
3529 | OS << "deallocated by call to destructor" ; |
3530 | StackHint = std::make_unique<StackHintGeneratorForSymbol>( |
3531 | args&: Sym, args: "Returning; inner buffer was deallocated" ); |
3532 | } else { |
3533 | OS << "reallocated by call to '" ; |
3534 | const Stmt *S = RSCurr->getStmt(); |
3535 | if (const auto *MemCallE = dyn_cast<CXXMemberCallExpr>(Val: S)) { |
3536 | OS << MemCallE->getMethodDecl()->getDeclName(); |
3537 | } else if (const auto *OpCallE = dyn_cast<CXXOperatorCallExpr>(Val: S)) { |
3538 | OS << OpCallE->getDirectCallee()->getDeclName(); |
3539 | } else if (const auto *CallE = dyn_cast<CallExpr>(Val: S)) { |
3540 | auto &CEMgr = BRC.getStateManager().getCallEventManager(); |
3541 | CallEventRef<> Call = |
3542 | CEMgr.getSimpleCall(E: CallE, State: state, LCtx: CurrentLC, ElemRef: {nullptr, 0}); |
3543 | if (const auto *D = dyn_cast_or_null<NamedDecl>(Val: Call->getDecl())) |
3544 | OS << D->getDeclName(); |
3545 | else |
3546 | OS << "unknown" ; |
3547 | } |
3548 | OS << "'" ; |
3549 | StackHint = std::make_unique<StackHintGeneratorForSymbol>( |
3550 | args&: Sym, args: "Returning; inner buffer was reallocated" ); |
3551 | } |
3552 | Msg = OS.str(); |
3553 | break; |
3554 | } |
3555 | case AF_None: |
3556 | llvm_unreachable("Unhandled allocation family!" ); |
3557 | } |
3558 | |
3559 | // See if we're releasing memory while inlining a destructor |
3560 | // (or one of its callees). This turns on various common |
3561 | // false positive suppressions. |
3562 | bool FoundAnyDestructor = false; |
3563 | for (const LocationContext *LC = CurrentLC; LC; LC = LC->getParent()) { |
3564 | if (const auto *DD = dyn_cast<CXXDestructorDecl>(Val: LC->getDecl())) { |
3565 | if (isReferenceCountingPointerDestructor(DD)) { |
3566 | // This immediately looks like a reference-counting destructor. |
3567 | // We're bad at guessing the original reference count of the object, |
3568 | // so suppress the report for now. |
3569 | BR.markInvalid(Tag: getTag(), Data: DD); |
3570 | } else if (!FoundAnyDestructor) { |
3571 | assert(!ReleaseDestructorLC && |
3572 | "There can be only one release point!" ); |
3573 | // Suspect that it's a reference counting pointer destructor. |
3574 | // On one of the next nodes might find out that it has atomic |
3575 | // reference counting operations within it (see the code above), |
3576 | // and if so, we'd conclude that it likely is a reference counting |
3577 | // pointer destructor. |
3578 | ReleaseDestructorLC = LC->getStackFrame(); |
3579 | // It is unlikely that releasing memory is delegated to a destructor |
3580 | // inside a destructor of a shared pointer, because it's fairly hard |
3581 | // to pass the information that the pointer indeed needs to be |
3582 | // released into it. So we're only interested in the innermost |
3583 | // destructor. |
3584 | FoundAnyDestructor = true; |
3585 | } |
3586 | } |
3587 | } |
3588 | } else if (isRelinquished(RSCurr, RSPrev, Stmt: S)) { |
3589 | Msg = "Memory ownership is transferred" ; |
3590 | StackHint = std::make_unique<StackHintGeneratorForSymbol>(args&: Sym, args: "" ); |
3591 | } else if (hasReallocFailed(RSCurr, RSPrev, Stmt: S)) { |
3592 | Mode = ReallocationFailed; |
3593 | Msg = "Reallocation failed" ; |
3594 | StackHint = std::make_unique<StackHintGeneratorForReallocationFailed>( |
3595 | args&: Sym, args: "Reallocation failed" ); |
3596 | |
3597 | if (SymbolRef sym = findFailedReallocSymbol(currState: state, prevState: statePrev)) { |
3598 | // Is it possible to fail two reallocs WITHOUT testing in between? |
3599 | assert((!FailedReallocSymbol || FailedReallocSymbol == sym) && |
3600 | "We only support one failed realloc at a time." ); |
3601 | BR.markInteresting(sym); |
3602 | FailedReallocSymbol = sym; |
3603 | } |
3604 | } |
3605 | |
3606 | // We are in a special mode if a reallocation failed later in the path. |
3607 | } else if (Mode == ReallocationFailed) { |
3608 | assert(FailedReallocSymbol && "No symbol to look for." ); |
3609 | |
3610 | // Is this is the first appearance of the reallocated symbol? |
3611 | if (!statePrev->get<RegionState>(key: FailedReallocSymbol)) { |
3612 | // We're at the reallocation point. |
3613 | Msg = "Attempt to reallocate memory" ; |
3614 | StackHint = std::make_unique<StackHintGeneratorForSymbol>( |
3615 | args&: Sym, args: "Returned reallocated memory" ); |
3616 | FailedReallocSymbol = nullptr; |
3617 | Mode = Normal; |
3618 | } |
3619 | } |
3620 | |
3621 | if (Msg.empty()) { |
3622 | assert(!StackHint); |
3623 | return nullptr; |
3624 | } |
3625 | |
3626 | assert(StackHint); |
3627 | |
3628 | // Generate the extra diagnostic. |
3629 | PathDiagnosticLocation Pos; |
3630 | if (!S) { |
3631 | assert(RSCurr->getAllocationFamily() == AF_InnerBuffer); |
3632 | auto PostImplCall = N->getLocation().getAs<PostImplicitCall>(); |
3633 | if (!PostImplCall) |
3634 | return nullptr; |
3635 | Pos = PathDiagnosticLocation(PostImplCall->getLocation(), |
3636 | BRC.getSourceManager()); |
3637 | } else { |
3638 | Pos = PathDiagnosticLocation(S, BRC.getSourceManager(), |
3639 | N->getLocationContext()); |
3640 | } |
3641 | |
3642 | auto P = std::make_shared<PathDiagnosticEventPiece>(args&: Pos, args&: Msg, args: true); |
3643 | BR.addCallStackHint(Piece: P, StackHint: std::move(StackHint)); |
3644 | return P; |
3645 | } |
3646 | |
3647 | void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State, |
3648 | const char *NL, const char *Sep) const { |
3649 | |
3650 | RegionStateTy RS = State->get<RegionState>(); |
3651 | |
3652 | if (!RS.isEmpty()) { |
3653 | Out << Sep << "MallocChecker :" << NL; |
3654 | for (auto [Sym, Data] : RS) { |
3655 | const RefState *RefS = State->get<RegionState>(key: Sym); |
3656 | AllocationFamily Family = RefS->getAllocationFamily(); |
3657 | std::optional<MallocChecker::CheckKind> CheckKind = |
3658 | getCheckIfTracked(Family); |
3659 | if (!CheckKind) |
3660 | CheckKind = getCheckIfTracked(Family, IsALeakCheck: true); |
3661 | |
3662 | Sym->dumpToStream(os&: Out); |
3663 | Out << " : " ; |
3664 | Data.dump(OS&: Out); |
3665 | if (CheckKind) |
3666 | Out << " (" << CheckNames[*CheckKind].getName() << ")" ; |
3667 | Out << NL; |
3668 | } |
3669 | } |
3670 | } |
3671 | |
3672 | namespace clang { |
3673 | namespace ento { |
3674 | namespace allocation_state { |
3675 | |
3676 | ProgramStateRef |
3677 | markReleased(ProgramStateRef State, SymbolRef Sym, const Expr *Origin) { |
3678 | AllocationFamily Family = AF_InnerBuffer; |
3679 | return State->set<RegionState>(Sym, RefState::getReleased(Family, Origin)); |
3680 | } |
3681 | |
3682 | } // end namespace allocation_state |
3683 | } // end namespace ento |
3684 | } // end namespace clang |
3685 | |
3686 | // Intended to be used in InnerPointerChecker to register the part of |
3687 | // MallocChecker connected to it. |
3688 | void ento::registerInnerPointerCheckerAux(CheckerManager &mgr) { |
3689 | MallocChecker *checker = mgr.getChecker<MallocChecker>(); |
3690 | checker->ChecksEnabled[MallocChecker::CK_InnerPointerChecker] = true; |
3691 | checker->CheckNames[MallocChecker::CK_InnerPointerChecker] = |
3692 | mgr.getCurrentCheckerName(); |
3693 | } |
3694 | |
3695 | void ento::registerDynamicMemoryModeling(CheckerManager &mgr) { |
3696 | auto *checker = mgr.registerChecker<MallocChecker>(); |
3697 | checker->ShouldIncludeOwnershipAnnotatedFunctions = |
3698 | mgr.getAnalyzerOptions().getCheckerBooleanOption(C: checker, OptionName: "Optimistic" ); |
3699 | checker->ShouldRegisterNoOwnershipChangeVisitor = |
3700 | mgr.getAnalyzerOptions().getCheckerBooleanOption( |
3701 | C: checker, OptionName: "AddNoOwnershipChangeNotes" ); |
3702 | } |
3703 | |
3704 | bool ento::shouldRegisterDynamicMemoryModeling(const CheckerManager &mgr) { |
3705 | return true; |
3706 | } |
3707 | |
3708 | #define REGISTER_CHECKER(name) \ |
3709 | void ento::register##name(CheckerManager &mgr) { \ |
3710 | MallocChecker *checker = mgr.getChecker<MallocChecker>(); \ |
3711 | checker->ChecksEnabled[MallocChecker::CK_##name] = true; \ |
3712 | checker->CheckNames[MallocChecker::CK_##name] = \ |
3713 | mgr.getCurrentCheckerName(); \ |
3714 | } \ |
3715 | \ |
3716 | bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; } |
3717 | |
3718 | REGISTER_CHECKER(MallocChecker) |
3719 | REGISTER_CHECKER(NewDeleteChecker) |
3720 | REGISTER_CHECKER(NewDeleteLeaksChecker) |
3721 | REGISTER_CHECKER(MismatchedDeallocatorChecker) |
3722 | |