| 1 | //=-- ExprEngineCallAndReturn.cpp - Support for call/return -----*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file defines ExprEngine's support for calls and returns. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "clang/AST/CXXInheritance.h" |
| 14 | #include "clang/AST/Decl.h" |
| 15 | #include "clang/AST/DeclCXX.h" |
| 16 | #include "clang/Analysis/Analyses/LiveVariables.h" |
| 17 | #include "clang/Analysis/ConstructionContext.h" |
| 18 | #include "clang/StaticAnalyzer/Core/CheckerManager.h" |
| 19 | #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" |
| 20 | #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h" |
| 21 | #include "clang/StaticAnalyzer/Core/PathSensitive/EntryPointStats.h" |
| 22 | #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" |
| 23 | #include "llvm/Support/Casting.h" |
| 24 | #include "llvm/Support/Compiler.h" |
| 25 | #include "llvm/Support/SaveAndRestore.h" |
| 26 | #include <optional> |
| 27 | |
| 28 | using namespace clang; |
| 29 | using namespace ento; |
| 30 | |
| 31 | #define DEBUG_TYPE "ExprEngine" |
| 32 | |
| 33 | STAT_COUNTER( |
| 34 | NumOfDynamicDispatchPathSplits, |
| 35 | "The # of times we split the path due to imprecise dynamic dispatch info" ); |
| 36 | |
| 37 | STAT_COUNTER(NumInlinedCalls, "The # of times we inlined a call" ); |
| 38 | |
| 39 | STAT_COUNTER(NumReachedInlineCountMax, |
| 40 | "The # of times we reached inline count maximum" ); |
| 41 | |
| 42 | void ExprEngine::processCallEnter(NodeBuilderContext& BC, CallEnter CE, |
| 43 | ExplodedNode *Pred) { |
| 44 | // Get the entry block in the CFG of the callee. |
| 45 | const CFGBlock *Entry = CE.getEntry(); |
| 46 | |
| 47 | // Validate the CFG. |
| 48 | assert(Entry->empty()); |
| 49 | assert(Entry->succ_size() == 1); |
| 50 | |
| 51 | // Get the solitary successor. |
| 52 | const CFGBlock *Succ = *(Entry->succ_begin()); |
| 53 | |
| 54 | // Construct an edge representing the starting location in the callee. |
| 55 | BlockEdge Loc(Entry, Succ, CE.getCalleeContext()); |
| 56 | |
| 57 | ProgramStateRef state = Pred->getState(); |
| 58 | |
| 59 | // Construct a new node, notify checkers that analysis of the function has |
| 60 | // begun, and add the resultant nodes to the worklist. |
| 61 | bool isNew; |
| 62 | ExplodedNode *Node = G.getNode(L: Loc, State: state, IsSink: false, IsNew: &isNew); |
| 63 | Node->addPredecessor(V: Pred, G); |
| 64 | if (isNew) { |
| 65 | ExplodedNodeSet DstBegin; |
| 66 | processBeginOfFunction(BC, Pred: Node, Dst&: DstBegin, L: Loc); |
| 67 | Engine.enqueue(Set&: DstBegin); |
| 68 | } |
| 69 | } |
| 70 | |
| 71 | // Find the last statement on the path to the exploded node and the |
| 72 | // corresponding Block. |
| 73 | static std::pair<const Stmt*, |
| 74 | const CFGBlock*> getLastStmt(const ExplodedNode *Node) { |
| 75 | const Stmt *S = nullptr; |
| 76 | const CFGBlock *Blk = nullptr; |
| 77 | const StackFrameContext *SF = Node->getStackFrame(); |
| 78 | |
| 79 | // Back up through the ExplodedGraph until we reach a statement node in this |
| 80 | // stack frame. |
| 81 | while (Node) { |
| 82 | const ProgramPoint &PP = Node->getLocation(); |
| 83 | |
| 84 | if (PP.getStackFrame() == SF) { |
| 85 | if (std::optional<StmtPoint> SP = PP.getAs<StmtPoint>()) { |
| 86 | S = SP->getStmt(); |
| 87 | break; |
| 88 | } else if (std::optional<CallExitEnd> CEE = PP.getAs<CallExitEnd>()) { |
| 89 | S = CEE->getCalleeContext()->getCallSite(); |
| 90 | if (S) |
| 91 | break; |
| 92 | |
| 93 | // If there is no statement, this is an implicitly-generated call. |
| 94 | // We'll walk backwards over it and then continue the loop to find |
| 95 | // an actual statement. |
| 96 | std::optional<CallEnter> CE; |
| 97 | do { |
| 98 | Node = Node->getFirstPred(); |
| 99 | CE = Node->getLocationAs<CallEnter>(); |
| 100 | } while (!CE || CE->getCalleeContext() != CEE->getCalleeContext()); |
| 101 | |
| 102 | // Continue searching the graph. |
| 103 | } else if (std::optional<BlockEdge> BE = PP.getAs<BlockEdge>()) { |
| 104 | Blk = BE->getSrc(); |
| 105 | } |
| 106 | } else if (std::optional<CallEnter> CE = PP.getAs<CallEnter>()) { |
| 107 | // If we reached the CallEnter for this function, it has no statements. |
| 108 | if (CE->getCalleeContext() == SF) |
| 109 | break; |
| 110 | } |
| 111 | |
| 112 | if (Node->pred_empty()) |
| 113 | return std::make_pair(x: nullptr, y: nullptr); |
| 114 | |
| 115 | Node = *Node->pred_begin(); |
| 116 | } |
| 117 | |
| 118 | return std::make_pair(x&: S, y&: Blk); |
| 119 | } |
| 120 | |
| 121 | /// Adjusts a return value when the called function's return type does not |
| 122 | /// match the caller's expression type. This can happen when a dynamic call |
| 123 | /// is devirtualized, and the overriding method has a covariant (more specific) |
| 124 | /// return type than the parent's method. For C++ objects, this means we need |
| 125 | /// to add base casts. |
| 126 | static SVal adjustReturnValue(SVal V, QualType ExpectedTy, QualType ActualTy, |
| 127 | StoreManager &StoreMgr) { |
| 128 | // For now, the only adjustments we handle apply only to locations. |
| 129 | if (!isa<Loc>(Val: V)) |
| 130 | return V; |
| 131 | |
| 132 | // If the types already match, don't do any unnecessary work. |
| 133 | ExpectedTy = ExpectedTy.getCanonicalType(); |
| 134 | ActualTy = ActualTy.getCanonicalType(); |
| 135 | if (ExpectedTy == ActualTy) |
| 136 | return V; |
| 137 | |
| 138 | // No adjustment is needed between Objective-C pointer types. |
| 139 | if (ExpectedTy->isObjCObjectPointerType() && |
| 140 | ActualTy->isObjCObjectPointerType()) |
| 141 | return V; |
| 142 | |
| 143 | // C++ object pointers may need "derived-to-base" casts. |
| 144 | const CXXRecordDecl *ExpectedClass = ExpectedTy->getPointeeCXXRecordDecl(); |
| 145 | const CXXRecordDecl *ActualClass = ActualTy->getPointeeCXXRecordDecl(); |
| 146 | if (ExpectedClass && ActualClass) { |
| 147 | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, |
| 148 | /*DetectVirtual=*/false); |
| 149 | if (ActualClass->isDerivedFrom(Base: ExpectedClass, Paths) && |
| 150 | !Paths.isAmbiguous(BaseType: ActualTy->getCanonicalTypeUnqualified())) { |
| 151 | return StoreMgr.evalDerivedToBase(Derived: V, CastPath: Paths.front()); |
| 152 | } |
| 153 | } |
| 154 | |
| 155 | // Unfortunately, Objective-C does not enforce that overridden methods have |
| 156 | // covariant return types, so we can't assert that that never happens. |
| 157 | // Be safe and return UnknownVal(). |
| 158 | return UnknownVal(); |
| 159 | } |
| 160 | |
| 161 | void ExprEngine::removeDeadOnEndOfFunction(NodeBuilderContext& BC, |
| 162 | ExplodedNode *Pred, |
| 163 | ExplodedNodeSet &Dst) { |
| 164 | // Find the last statement in the function and the corresponding basic block. |
| 165 | const Stmt *LastSt = nullptr; |
| 166 | const CFGBlock *Blk = nullptr; |
| 167 | std::tie(args&: LastSt, args&: Blk) = getLastStmt(Node: Pred); |
| 168 | if (!Blk || !LastSt) { |
| 169 | Dst.Add(N: Pred); |
| 170 | return; |
| 171 | } |
| 172 | |
| 173 | // Here, we destroy the current location context. We use the current |
| 174 | // function's entire body as a diagnostic statement, with which the program |
| 175 | // point will be associated. However, we only want to use LastStmt as a |
| 176 | // reference for what to clean up if it's a ReturnStmt; otherwise, everything |
| 177 | // is dead. |
| 178 | SaveAndRestore<const NodeBuilderContext *> (currBldrCtx, &BC); |
| 179 | const LocationContext *LCtx = Pred->getLocationContext(); |
| 180 | removeDead(Pred, Dst, dyn_cast<ReturnStmt>(Val: LastSt), LCtx, |
| 181 | LCtx->getAnalysisDeclContext()->getBody(), |
| 182 | ProgramPoint::PostStmtPurgeDeadSymbolsKind); |
| 183 | } |
| 184 | |
| 185 | static bool wasDifferentDeclUsedForInlining(CallEventRef<> Call, |
| 186 | const StackFrameContext *calleeCtx) { |
| 187 | const Decl *RuntimeCallee = calleeCtx->getDecl(); |
| 188 | const Decl *StaticDecl = Call->getDecl(); |
| 189 | assert(RuntimeCallee); |
| 190 | if (!StaticDecl) |
| 191 | return true; |
| 192 | return RuntimeCallee->getCanonicalDecl() != StaticDecl->getCanonicalDecl(); |
| 193 | } |
| 194 | |
| 195 | // Returns the number of elements in the array currently being destructed. |
| 196 | // If the element count is not found 0 will be returned. |
| 197 | static unsigned getElementCountOfArrayBeingDestructed( |
| 198 | const CallEvent &Call, const ProgramStateRef State, SValBuilder &SVB) { |
| 199 | assert(isa<CXXDestructorCall>(Call) && |
| 200 | "The call event is not a destructor call!" ); |
| 201 | |
| 202 | const auto &DtorCall = cast<CXXDestructorCall>(Val: Call); |
| 203 | |
| 204 | auto ThisVal = DtorCall.getCXXThisVal(); |
| 205 | |
| 206 | if (auto ThisElementRegion = dyn_cast<ElementRegion>(Val: ThisVal.getAsRegion())) { |
| 207 | auto ArrayRegion = ThisElementRegion->getAsArrayOffset().getRegion(); |
| 208 | auto ElementType = ThisElementRegion->getElementType(); |
| 209 | |
| 210 | auto ElementCount = |
| 211 | getDynamicElementCount(State, MR: ArrayRegion, SVB, Ty: ElementType); |
| 212 | |
| 213 | if (!ElementCount.isConstant()) |
| 214 | return 0; |
| 215 | |
| 216 | return ElementCount.getAsInteger()->getLimitedValue(); |
| 217 | } |
| 218 | |
| 219 | return 0; |
| 220 | } |
| 221 | |
| 222 | ProgramStateRef ExprEngine::removeStateTraitsUsedForArrayEvaluation( |
| 223 | ProgramStateRef State, const CXXConstructExpr *E, |
| 224 | const LocationContext *LCtx) { |
| 225 | |
| 226 | assert(LCtx && "Location context must be provided!" ); |
| 227 | |
| 228 | if (E) { |
| 229 | if (getPendingInitLoop(State, E, LCtx)) |
| 230 | State = removePendingInitLoop(State, E, LCtx); |
| 231 | |
| 232 | if (getIndexOfElementToConstruct(State, E, LCtx)) |
| 233 | State = removeIndexOfElementToConstruct(State, E, LCtx); |
| 234 | } |
| 235 | |
| 236 | if (getPendingArrayDestruction(State, LCtx)) |
| 237 | State = removePendingArrayDestruction(State, LCtx); |
| 238 | |
| 239 | return State; |
| 240 | } |
| 241 | |
| 242 | /// The call exit is simulated with a sequence of nodes, which occur between |
| 243 | /// CallExitBegin and CallExitEnd. The following operations occur between the |
| 244 | /// two program points: |
| 245 | /// 1. CallExitBegin (triggers the start of call exit sequence) |
| 246 | /// 2. Bind the return value |
| 247 | /// 3. Run Remove dead bindings to clean up the dead symbols from the callee. |
| 248 | /// 4. CallExitEnd (switch to the caller context) |
| 249 | /// 5. PostStmt<CallExpr> |
| 250 | void ExprEngine::processCallExit(ExplodedNode *CEBNode) { |
| 251 | // Step 1 CEBNode was generated before the call. |
| 252 | const StackFrameContext *calleeCtx = CEBNode->getStackFrame(); |
| 253 | |
| 254 | // The parent context might not be a stack frame, so make sure we |
| 255 | // look up the first enclosing stack frame. |
| 256 | const StackFrameContext *callerCtx = |
| 257 | calleeCtx->getParent()->getStackFrame(); |
| 258 | |
| 259 | const Stmt *CE = calleeCtx->getCallSite(); |
| 260 | ProgramStateRef state = CEBNode->getState(); |
| 261 | // Find the last statement in the function and the corresponding basic block. |
| 262 | const Stmt *LastSt = nullptr; |
| 263 | const CFGBlock *Blk = nullptr; |
| 264 | std::tie(args&: LastSt, args&: Blk) = getLastStmt(Node: CEBNode); |
| 265 | |
| 266 | // Generate a CallEvent /before/ cleaning the state, so that we can get the |
| 267 | // correct value for 'this' (if necessary). |
| 268 | CallEventManager &CEMgr = getStateManager().getCallEventManager(); |
| 269 | CallEventRef<> Call = CEMgr.getCaller(CalleeCtx: calleeCtx, State: state); |
| 270 | |
| 271 | // Step 2: generate node with bound return value: CEBNode -> BindedRetNode. |
| 272 | |
| 273 | // If this variable is set to 'true' the analyzer will evaluate the call |
| 274 | // statement we are about to exit again, instead of continuing the execution |
| 275 | // from the statement after the call. This is useful for non-POD type array |
| 276 | // construction where the CXXConstructExpr is referenced only once in the CFG, |
| 277 | // but we want to evaluate it as many times as many elements the array has. |
| 278 | bool ShouldRepeatCall = false; |
| 279 | |
| 280 | if (const auto *DtorDecl = |
| 281 | dyn_cast_or_null<CXXDestructorDecl>(Val: Call->getDecl())) { |
| 282 | if (auto Idx = getPendingArrayDestruction(State: state, LCtx: callerCtx)) { |
| 283 | ShouldRepeatCall = *Idx > 0; |
| 284 | |
| 285 | auto ThisVal = svalBuilder.getCXXThis(DtorDecl->getParent(), calleeCtx); |
| 286 | state = state->killBinding(LV: ThisVal); |
| 287 | } |
| 288 | } |
| 289 | |
| 290 | // If the callee returns an expression, bind its value to CallExpr. |
| 291 | if (CE) { |
| 292 | if (const ReturnStmt *RS = dyn_cast_or_null<ReturnStmt>(Val: LastSt)) { |
| 293 | const LocationContext *LCtx = CEBNode->getLocationContext(); |
| 294 | SVal V = state->getSVal(RS, LCtx); |
| 295 | |
| 296 | // Ensure that the return type matches the type of the returned Expr. |
| 297 | if (wasDifferentDeclUsedForInlining(Call, calleeCtx)) { |
| 298 | QualType ReturnedTy = |
| 299 | CallEvent::getDeclaredResultType(D: calleeCtx->getDecl()); |
| 300 | if (!ReturnedTy.isNull()) { |
| 301 | if (const Expr *Ex = dyn_cast<Expr>(Val: CE)) { |
| 302 | V = adjustReturnValue(V, ExpectedTy: Ex->getType(), ActualTy: ReturnedTy, |
| 303 | StoreMgr&: getStoreManager()); |
| 304 | } |
| 305 | } |
| 306 | } |
| 307 | |
| 308 | state = state->BindExpr(S: CE, LCtx: callerCtx, V); |
| 309 | } |
| 310 | |
| 311 | // Bind the constructed object value to CXXConstructExpr. |
| 312 | if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Val: CE)) { |
| 313 | loc::MemRegionVal This = |
| 314 | svalBuilder.getCXXThis(CCE->getConstructor()->getParent(), calleeCtx); |
| 315 | SVal ThisV = state->getSVal(LV: This); |
| 316 | ThisV = state->getSVal(LV: ThisV.castAs<Loc>()); |
| 317 | state = state->BindExpr(CCE, callerCtx, ThisV); |
| 318 | |
| 319 | ShouldRepeatCall = shouldRepeatCtorCall(State: state, E: CCE, LCtx: callerCtx); |
| 320 | } |
| 321 | |
| 322 | if (const auto *CNE = dyn_cast<CXXNewExpr>(Val: CE)) { |
| 323 | // We are currently evaluating a CXXNewAllocator CFGElement. It takes a |
| 324 | // while to reach the actual CXXNewExpr element from here, so keep the |
| 325 | // region for later use. |
| 326 | // Additionally cast the return value of the inlined operator new |
| 327 | // (which is of type 'void *') to the correct object type. |
| 328 | SVal AllocV = state->getSVal(CNE, callerCtx); |
| 329 | AllocV = svalBuilder.evalCast( |
| 330 | V: AllocV, CastTy: CNE->getType(), |
| 331 | OriginalTy: getContext().getPointerType(getContext().VoidTy)); |
| 332 | |
| 333 | state = addObjectUnderConstruction(State: state, Item: CNE, LC: calleeCtx->getParent(), |
| 334 | V: AllocV); |
| 335 | } |
| 336 | } |
| 337 | |
| 338 | if (!ShouldRepeatCall) { |
| 339 | state = removeStateTraitsUsedForArrayEvaluation( |
| 340 | State: state, E: dyn_cast_or_null<CXXConstructExpr>(Val: CE), LCtx: callerCtx); |
| 341 | } |
| 342 | |
| 343 | // Step 3: BindedRetNode -> CleanedNodes |
| 344 | // If we can find a statement and a block in the inlined function, run remove |
| 345 | // dead bindings before returning from the call. This is important to ensure |
| 346 | // that we report the issues such as leaks in the stack contexts in which |
| 347 | // they occurred. |
| 348 | ExplodedNodeSet CleanedNodes; |
| 349 | if (LastSt && Blk && AMgr.options.AnalysisPurgeOpt != PurgeNone) { |
| 350 | static SimpleProgramPointTag retValBind("ExprEngine" , "Bind Return Value" ); |
| 351 | auto Loc = isa<ReturnStmt>(Val: LastSt) |
| 352 | ? ProgramPoint{PostStmt(LastSt, calleeCtx, &retValBind)} |
| 353 | : ProgramPoint{EpsilonPoint(calleeCtx, /*Data1=*/nullptr, |
| 354 | /*Data2=*/nullptr, &retValBind)}; |
| 355 | const CFGBlock *PrePurgeBlock = |
| 356 | isa<ReturnStmt>(Val: LastSt) ? Blk : &CEBNode->getCFG().getExit(); |
| 357 | bool isNew; |
| 358 | ExplodedNode *BindedRetNode = G.getNode(L: Loc, State: state, IsSink: false, IsNew: &isNew); |
| 359 | BindedRetNode->addPredecessor(V: CEBNode, G); |
| 360 | if (!isNew) |
| 361 | return; |
| 362 | |
| 363 | NodeBuilderContext Ctx(getCoreEngine(), PrePurgeBlock, BindedRetNode); |
| 364 | currBldrCtx = &Ctx; |
| 365 | // Here, we call the Symbol Reaper with 0 statement and callee location |
| 366 | // context, telling it to clean up everything in the callee's context |
| 367 | // (and its children). We use the callee's function body as a diagnostic |
| 368 | // statement, with which the program point will be associated. |
| 369 | removeDead(Node: BindedRetNode, Out&: CleanedNodes, ReferenceStmt: nullptr, LC: calleeCtx, |
| 370 | DiagnosticStmt: calleeCtx->getAnalysisDeclContext()->getBody(), |
| 371 | K: ProgramPoint::PostStmtPurgeDeadSymbolsKind); |
| 372 | currBldrCtx = nullptr; |
| 373 | } else { |
| 374 | CleanedNodes.Add(N: CEBNode); |
| 375 | } |
| 376 | |
| 377 | for (ExplodedNode *N : CleanedNodes) { |
| 378 | // Step 4: Generate the CallExit and leave the callee's context. |
| 379 | // CleanedNodes -> CEENode |
| 380 | CallExitEnd Loc(calleeCtx, callerCtx); |
| 381 | bool isNew; |
| 382 | ProgramStateRef CEEState = (N == CEBNode) ? state : N->getState(); |
| 383 | |
| 384 | ExplodedNode *CEENode = G.getNode(L: Loc, State: CEEState, IsSink: false, IsNew: &isNew); |
| 385 | CEENode->addPredecessor(V: N, G); |
| 386 | if (!isNew) |
| 387 | return; |
| 388 | |
| 389 | // Step 5: Perform the post-condition check of the CallExpr and enqueue the |
| 390 | // result onto the work list. |
| 391 | // CEENode -> Dst -> WorkList |
| 392 | NodeBuilderContext Ctx(Engine, calleeCtx->getCallSiteBlock(), CEENode); |
| 393 | SaveAndRestore<const NodeBuilderContext *> NBCSave(currBldrCtx, &Ctx); |
| 394 | SaveAndRestore CBISave(currStmtIdx, calleeCtx->getIndex()); |
| 395 | |
| 396 | CallEventRef<> UpdatedCall = Call.cloneWithState(State: CEEState); |
| 397 | |
| 398 | ExplodedNodeSet DstPostCall; |
| 399 | if (llvm::isa_and_nonnull<CXXNewExpr>(Val: CE)) { |
| 400 | ExplodedNodeSet DstPostPostCallCallback; |
| 401 | getCheckerManager().runCheckersForPostCall(Dst&: DstPostPostCallCallback, |
| 402 | Src: CEENode, Call: *UpdatedCall, Eng&: *this, |
| 403 | /*wasInlined=*/true); |
| 404 | for (ExplodedNode *I : DstPostPostCallCallback) { |
| 405 | getCheckerManager().runCheckersForNewAllocator( |
| 406 | Call: cast<CXXAllocatorCall>(Val: *UpdatedCall), Dst&: DstPostCall, Pred: I, Eng&: *this, |
| 407 | /*wasInlined=*/true); |
| 408 | } |
| 409 | } else { |
| 410 | getCheckerManager().runCheckersForPostCall(Dst&: DstPostCall, Src: CEENode, |
| 411 | Call: *UpdatedCall, Eng&: *this, |
| 412 | /*wasInlined=*/true); |
| 413 | } |
| 414 | ExplodedNodeSet Dst; |
| 415 | if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Val&: Call)) { |
| 416 | getCheckerManager().runCheckersForPostObjCMessage(Dst, Src: DstPostCall, msg: *Msg, |
| 417 | Eng&: *this, |
| 418 | /*wasInlined=*/true); |
| 419 | } else if (CE && |
| 420 | !(isa<CXXNewExpr>(Val: CE) && // Called when visiting CXXNewExpr. |
| 421 | AMgr.getAnalyzerOptions().MayInlineCXXAllocator)) { |
| 422 | getCheckerManager().runCheckersForPostStmt(Dst, Src: DstPostCall, S: CE, |
| 423 | Eng&: *this, /*wasInlined=*/true); |
| 424 | } else { |
| 425 | Dst.insert(S: DstPostCall); |
| 426 | } |
| 427 | |
| 428 | // Enqueue the next element in the block. |
| 429 | for (ExplodedNodeSet::iterator PSI = Dst.begin(), PSE = Dst.end(); |
| 430 | PSI != PSE; ++PSI) { |
| 431 | unsigned Idx = calleeCtx->getIndex() + (ShouldRepeatCall ? 0 : 1); |
| 432 | |
| 433 | Engine.getWorkList()->enqueue(N: *PSI, B: calleeCtx->getCallSiteBlock(), idx: Idx); |
| 434 | } |
| 435 | } |
| 436 | } |
| 437 | |
| 438 | bool ExprEngine::isSmall(AnalysisDeclContext *ADC) const { |
| 439 | // When there are no branches in the function, it means that there's no |
| 440 | // exponential complexity introduced by inlining such function. |
| 441 | // Such functions also don't trigger various fundamental problems |
| 442 | // with our inlining mechanism, such as the problem of |
| 443 | // inlined defensive checks. Hence isLinear(). |
| 444 | const CFG *Cfg = ADC->getCFG(); |
| 445 | return Cfg->isLinear() || Cfg->size() <= AMgr.options.AlwaysInlineSize; |
| 446 | } |
| 447 | |
| 448 | bool ExprEngine::isLarge(AnalysisDeclContext *ADC) const { |
| 449 | const CFG *Cfg = ADC->getCFG(); |
| 450 | return Cfg->size() >= AMgr.options.MinCFGSizeTreatFunctionsAsLarge; |
| 451 | } |
| 452 | |
| 453 | bool ExprEngine::isHuge(AnalysisDeclContext *ADC) const { |
| 454 | const CFG *Cfg = ADC->getCFG(); |
| 455 | return Cfg->getNumBlockIDs() > AMgr.options.MaxInlinableSize; |
| 456 | } |
| 457 | |
| 458 | void ExprEngine::examineStackFrames(const Decl *D, const LocationContext *LCtx, |
| 459 | bool &IsRecursive, unsigned &StackDepth) { |
| 460 | IsRecursive = false; |
| 461 | StackDepth = 0; |
| 462 | |
| 463 | while (LCtx) { |
| 464 | if (const StackFrameContext *SFC = dyn_cast<StackFrameContext>(Val: LCtx)) { |
| 465 | const Decl *DI = SFC->getDecl(); |
| 466 | |
| 467 | // Mark recursive (and mutually recursive) functions and always count |
| 468 | // them when measuring the stack depth. |
| 469 | if (DI == D) { |
| 470 | IsRecursive = true; |
| 471 | ++StackDepth; |
| 472 | LCtx = LCtx->getParent(); |
| 473 | continue; |
| 474 | } |
| 475 | |
| 476 | // Do not count the small functions when determining the stack depth. |
| 477 | AnalysisDeclContext *CalleeADC = AMgr.getAnalysisDeclContext(D: DI); |
| 478 | if (!isSmall(ADC: CalleeADC)) |
| 479 | ++StackDepth; |
| 480 | } |
| 481 | LCtx = LCtx->getParent(); |
| 482 | } |
| 483 | } |
| 484 | |
| 485 | // The GDM component containing the dynamic dispatch bifurcation info. When |
| 486 | // the exact type of the receiver is not known, we want to explore both paths - |
| 487 | // one on which we do inline it and the other one on which we don't. This is |
| 488 | // done to ensure we do not drop coverage. |
| 489 | // This is the map from the receiver region to a bool, specifying either we |
| 490 | // consider this region's information precise or not along the given path. |
| 491 | namespace { |
| 492 | enum DynamicDispatchMode { |
| 493 | DynamicDispatchModeInlined = 1, |
| 494 | DynamicDispatchModeConservative |
| 495 | }; |
| 496 | } // end anonymous namespace |
| 497 | |
| 498 | REGISTER_MAP_WITH_PROGRAMSTATE(DynamicDispatchBifurcationMap, |
| 499 | const MemRegion *, unsigned) |
| 500 | REGISTER_TRAIT_WITH_PROGRAMSTATE(CTUDispatchBifurcation, bool) |
| 501 | |
| 502 | void ExprEngine::ctuBifurcate(const CallEvent &Call, const Decl *D, |
| 503 | NodeBuilder &Bldr, ExplodedNode *Pred, |
| 504 | ProgramStateRef State) { |
| 505 | ProgramStateRef ConservativeEvalState = nullptr; |
| 506 | if (Call.isForeign() && !isSecondPhaseCTU()) { |
| 507 | const auto IK = AMgr.options.getCTUPhase1Inlining(); |
| 508 | const bool DoInline = IK == CTUPhase1InliningKind::All || |
| 509 | (IK == CTUPhase1InliningKind::Small && |
| 510 | isSmall(ADC: AMgr.getAnalysisDeclContext(D))); |
| 511 | if (DoInline) { |
| 512 | inlineCall(WList: Engine.getWorkList(), Call, D, Bldr, Pred, State); |
| 513 | return; |
| 514 | } |
| 515 | const bool BState = State->get<CTUDispatchBifurcation>(); |
| 516 | if (!BState) { // This is the first time we see this foreign function. |
| 517 | // Enqueue it to be analyzed in the second (ctu) phase. |
| 518 | inlineCall(WList: Engine.getCTUWorkList(), Call, D, Bldr, Pred, State); |
| 519 | // Conservatively evaluate in the first phase. |
| 520 | ConservativeEvalState = State->set<CTUDispatchBifurcation>(true); |
| 521 | conservativeEvalCall(Call, Bldr, Pred, State: ConservativeEvalState); |
| 522 | } else { |
| 523 | conservativeEvalCall(Call, Bldr, Pred, State); |
| 524 | } |
| 525 | return; |
| 526 | } |
| 527 | inlineCall(WList: Engine.getWorkList(), Call, D, Bldr, Pred, State); |
| 528 | } |
| 529 | |
| 530 | void ExprEngine::inlineCall(WorkList *WList, const CallEvent &Call, |
| 531 | const Decl *D, NodeBuilder &Bldr, |
| 532 | ExplodedNode *Pred, ProgramStateRef State) { |
| 533 | assert(D); |
| 534 | |
| 535 | const LocationContext *CurLC = Pred->getLocationContext(); |
| 536 | const StackFrameContext *CallerSFC = CurLC->getStackFrame(); |
| 537 | const LocationContext *ParentOfCallee = CallerSFC; |
| 538 | if (Call.getKind() == CE_Block && |
| 539 | !cast<BlockCall>(Val: Call).isConversionFromLambda()) { |
| 540 | const BlockDataRegion *BR = cast<BlockCall>(Val: Call).getBlockRegion(); |
| 541 | assert(BR && "If we have the block definition we should have its region" ); |
| 542 | AnalysisDeclContext *BlockCtx = AMgr.getAnalysisDeclContext(D); |
| 543 | ParentOfCallee = BlockCtx->getBlockInvocationContext(ParentLC: CallerSFC, |
| 544 | BD: cast<BlockDecl>(Val: D), |
| 545 | Data: BR); |
| 546 | } |
| 547 | |
| 548 | // This may be NULL, but that's fine. |
| 549 | const Expr *CallE = Call.getOriginExpr(); |
| 550 | |
| 551 | // Construct a new stack frame for the callee. |
| 552 | AnalysisDeclContext *CalleeADC = AMgr.getAnalysisDeclContext(D); |
| 553 | const StackFrameContext *CalleeSFC = |
| 554 | CalleeADC->getStackFrame(ParentOfCallee, CallE, currBldrCtx->getBlock(), |
| 555 | currBldrCtx->blockCount(), currStmtIdx); |
| 556 | |
| 557 | CallEnter Loc(CallE, CalleeSFC, CurLC); |
| 558 | |
| 559 | // Construct a new state which contains the mapping from actual to |
| 560 | // formal arguments. |
| 561 | State = State->enterStackFrame(Call, CalleeCtx: CalleeSFC); |
| 562 | |
| 563 | bool isNew; |
| 564 | if (ExplodedNode *N = G.getNode(L: Loc, State, IsSink: false, IsNew: &isNew)) { |
| 565 | N->addPredecessor(V: Pred, G); |
| 566 | if (isNew) |
| 567 | WList->enqueue(N); |
| 568 | } |
| 569 | |
| 570 | // If we decided to inline the call, the successor has been manually |
| 571 | // added onto the work list so remove it from the node builder. |
| 572 | Bldr.takeNodes(N: Pred); |
| 573 | |
| 574 | NumInlinedCalls++; |
| 575 | Engine.FunctionSummaries->bumpNumTimesInlined(D); |
| 576 | |
| 577 | // Do not mark as visited in the 2nd run (CTUWList), so the function will |
| 578 | // be visited as top-level, this way we won't loose reports in non-ctu |
| 579 | // mode. Considering the case when a function in a foreign TU calls back |
| 580 | // into the main TU. |
| 581 | // Note, during the 1st run, it doesn't matter if we mark the foreign |
| 582 | // functions as visited (or not) because they can never appear as a top level |
| 583 | // function in the main TU. |
| 584 | if (!isSecondPhaseCTU()) |
| 585 | // Mark the decl as visited. |
| 586 | if (VisitedCallees) |
| 587 | VisitedCallees->insert(V: D); |
| 588 | } |
| 589 | |
| 590 | static ProgramStateRef getInlineFailedState(ProgramStateRef State, |
| 591 | const Stmt *CallE) { |
| 592 | const void *ReplayState = State->get<ReplayWithoutInlining>(); |
| 593 | if (!ReplayState) |
| 594 | return nullptr; |
| 595 | |
| 596 | assert(ReplayState == CallE && "Backtracked to the wrong call." ); |
| 597 | (void)CallE; |
| 598 | |
| 599 | return State->remove<ReplayWithoutInlining>(); |
| 600 | } |
| 601 | |
| 602 | void ExprEngine::VisitCallExpr(const CallExpr *CE, ExplodedNode *Pred, |
| 603 | ExplodedNodeSet &dst) { |
| 604 | // Perform the previsit of the CallExpr. |
| 605 | ExplodedNodeSet dstPreVisit; |
| 606 | getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, CE, *this); |
| 607 | |
| 608 | // Get the call in its initial state. We use this as a template to perform |
| 609 | // all the checks. |
| 610 | CallEventManager &CEMgr = getStateManager().getCallEventManager(); |
| 611 | CallEventRef<> CallTemplate = CEMgr.getSimpleCall( |
| 612 | E: CE, State: Pred->getState(), LCtx: Pred->getLocationContext(), ElemRef: getCFGElementRef()); |
| 613 | |
| 614 | // Evaluate the function call. We try each of the checkers |
| 615 | // to see if the can evaluate the function call. |
| 616 | ExplodedNodeSet dstCallEvaluated; |
| 617 | for (ExplodedNode *N : dstPreVisit) { |
| 618 | evalCall(Dst&: dstCallEvaluated, Pred: N, Call: *CallTemplate); |
| 619 | } |
| 620 | |
| 621 | // Finally, perform the post-condition check of the CallExpr and store |
| 622 | // the created nodes in 'Dst'. |
| 623 | // Note that if the call was inlined, dstCallEvaluated will be empty. |
| 624 | // The post-CallExpr check will occur in processCallExit. |
| 625 | getCheckerManager().runCheckersForPostStmt(dst, dstCallEvaluated, CE, |
| 626 | *this); |
| 627 | } |
| 628 | |
| 629 | ProgramStateRef ExprEngine::finishArgumentConstruction(ProgramStateRef State, |
| 630 | const CallEvent &Call) { |
| 631 | const Expr *E = Call.getOriginExpr(); |
| 632 | // FIXME: Constructors to placement arguments of operator new |
| 633 | // are not supported yet. |
| 634 | if (!E || isa<CXXNewExpr>(Val: E)) |
| 635 | return State; |
| 636 | |
| 637 | const LocationContext *LC = Call.getLocationContext(); |
| 638 | for (unsigned CallI = 0, CallN = Call.getNumArgs(); CallI != CallN; ++CallI) { |
| 639 | unsigned I = Call.getASTArgumentIndex(CallArgumentIndex: CallI); |
| 640 | if (std::optional<SVal> V = getObjectUnderConstruction(State, Item: {E, I}, LC)) { |
| 641 | SVal VV = *V; |
| 642 | (void)VV; |
| 643 | assert(cast<VarRegion>(VV.castAs<loc::MemRegionVal>().getRegion()) |
| 644 | ->getStackFrame()->getParent() |
| 645 | ->getStackFrame() == LC->getStackFrame()); |
| 646 | State = finishObjectConstruction(State, Item: {E, I}, LC); |
| 647 | } |
| 648 | } |
| 649 | |
| 650 | return State; |
| 651 | } |
| 652 | |
| 653 | void ExprEngine::finishArgumentConstruction(ExplodedNodeSet &Dst, |
| 654 | ExplodedNode *Pred, |
| 655 | const CallEvent &Call) { |
| 656 | ProgramStateRef State = Pred->getState(); |
| 657 | ProgramStateRef CleanedState = finishArgumentConstruction(State, Call); |
| 658 | if (CleanedState == State) { |
| 659 | Dst.insert(S: Pred); |
| 660 | return; |
| 661 | } |
| 662 | |
| 663 | const Expr *E = Call.getOriginExpr(); |
| 664 | const LocationContext *LC = Call.getLocationContext(); |
| 665 | NodeBuilder B(Pred, Dst, *currBldrCtx); |
| 666 | static SimpleProgramPointTag Tag("ExprEngine" , |
| 667 | "Finish argument construction" ); |
| 668 | PreStmt PP(E, LC, &Tag); |
| 669 | B.generateNode(PP, State: CleanedState, Pred); |
| 670 | } |
| 671 | |
| 672 | void ExprEngine::evalCall(ExplodedNodeSet &Dst, ExplodedNode *Pred, |
| 673 | const CallEvent &Call) { |
| 674 | // WARNING: At this time, the state attached to 'Call' may be older than the |
| 675 | // state in 'Pred'. This is a minor optimization since CheckerManager will |
| 676 | // use an updated CallEvent instance when calling checkers, but if 'Call' is |
| 677 | // ever used directly in this function all callers should be updated to pass |
| 678 | // the most recent state. (It is probably not worth doing the work here since |
| 679 | // for some callers this will not be necessary.) |
| 680 | |
| 681 | // Run any pre-call checks using the generic call interface. |
| 682 | ExplodedNodeSet dstPreVisit; |
| 683 | getCheckerManager().runCheckersForPreCall(Dst&: dstPreVisit, Src: Pred, |
| 684 | Call, Eng&: *this); |
| 685 | |
| 686 | // Actually evaluate the function call. We try each of the checkers |
| 687 | // to see if the can evaluate the function call, and get a callback at |
| 688 | // defaultEvalCall if all of them fail. |
| 689 | ExplodedNodeSet dstCallEvaluated; |
| 690 | getCheckerManager().runCheckersForEvalCall(Dst&: dstCallEvaluated, Src: dstPreVisit, |
| 691 | CE: Call, Eng&: *this, CallOpts: EvalCallOptions()); |
| 692 | |
| 693 | // If there were other constructors called for object-type arguments |
| 694 | // of this call, clean them up. |
| 695 | ExplodedNodeSet dstArgumentCleanup; |
| 696 | for (ExplodedNode *I : dstCallEvaluated) |
| 697 | finishArgumentConstruction(Dst&: dstArgumentCleanup, Pred: I, Call); |
| 698 | |
| 699 | ExplodedNodeSet dstPostCall; |
| 700 | getCheckerManager().runCheckersForPostCall(Dst&: dstPostCall, Src: dstArgumentCleanup, |
| 701 | Call, Eng&: *this); |
| 702 | |
| 703 | // Escaping symbols conjured during invalidating the regions above. |
| 704 | // Note that, for inlined calls the nodes were put back into the worklist, |
| 705 | // so we can assume that every node belongs to a conservative call at this |
| 706 | // point. |
| 707 | |
| 708 | // Run pointerEscape callback with the newly conjured symbols. |
| 709 | SmallVector<std::pair<SVal, SVal>, 8> Escaped; |
| 710 | for (ExplodedNode *I : dstPostCall) { |
| 711 | NodeBuilder B(I, Dst, *currBldrCtx); |
| 712 | ProgramStateRef State = I->getState(); |
| 713 | Escaped.clear(); |
| 714 | { |
| 715 | unsigned Arg = -1; |
| 716 | for (const ParmVarDecl *PVD : Call.parameters()) { |
| 717 | ++Arg; |
| 718 | QualType ParamTy = PVD->getType(); |
| 719 | if (ParamTy.isNull() || |
| 720 | (!ParamTy->isPointerType() && !ParamTy->isReferenceType())) |
| 721 | continue; |
| 722 | QualType Pointee = ParamTy->getPointeeType(); |
| 723 | if (Pointee.isConstQualified() || Pointee->isVoidType()) |
| 724 | continue; |
| 725 | if (const MemRegion *MR = Call.getArgSVal(Index: Arg).getAsRegion()) |
| 726 | Escaped.emplace_back(Args: loc::MemRegionVal(MR), Args: State->getSVal(R: MR, T: Pointee)); |
| 727 | } |
| 728 | } |
| 729 | |
| 730 | State = processPointerEscapedOnBind(State, LocAndVals: Escaped, LCtx: I->getLocationContext(), |
| 731 | Kind: PSK_EscapeOutParameters, Call: &Call); |
| 732 | |
| 733 | if (State == I->getState()) |
| 734 | Dst.insert(S: I); |
| 735 | else |
| 736 | B.generateNode(PP: I->getLocation(), State, Pred: I); |
| 737 | } |
| 738 | } |
| 739 | |
| 740 | ProgramStateRef ExprEngine::bindReturnValue(const CallEvent &Call, |
| 741 | const LocationContext *LCtx, |
| 742 | ProgramStateRef State) { |
| 743 | const Expr *E = Call.getOriginExpr(); |
| 744 | const ConstCFGElementRef &Elem = Call.getCFGElementRef(); |
| 745 | if (!E) |
| 746 | return State; |
| 747 | |
| 748 | // Some method families have known return values. |
| 749 | if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Val: &Call)) { |
| 750 | switch (Msg->getMethodFamily()) { |
| 751 | default: |
| 752 | break; |
| 753 | case OMF_autorelease: |
| 754 | case OMF_retain: |
| 755 | case OMF_self: { |
| 756 | // These methods return their receivers. |
| 757 | return State->BindExpr(E, LCtx, Msg->getReceiverSVal()); |
| 758 | } |
| 759 | } |
| 760 | } else if (const CXXConstructorCall *C = dyn_cast<CXXConstructorCall>(Val: &Call)){ |
| 761 | SVal ThisV = C->getCXXThisVal(); |
| 762 | ThisV = State->getSVal(LV: ThisV.castAs<Loc>()); |
| 763 | return State->BindExpr(E, LCtx, ThisV); |
| 764 | } |
| 765 | |
| 766 | SVal R; |
| 767 | QualType ResultTy = Call.getResultType(); |
| 768 | unsigned Count = currBldrCtx->blockCount(); |
| 769 | if (auto RTC = getCurrentCFGElement().getAs<CFGCXXRecordTypedCall>()) { |
| 770 | // Conjure a temporary if the function returns an object by value. |
| 771 | SVal Target; |
| 772 | assert(RTC->getStmt() == Call.getOriginExpr()); |
| 773 | EvalCallOptions CallOpts; // FIXME: We won't really need those. |
| 774 | std::tie(args&: State, args&: Target) = handleConstructionContext( |
| 775 | E: Call.getOriginExpr(), State, BldrCtx: currBldrCtx, LCtx, |
| 776 | CC: RTC->getConstructionContext(), CallOpts); |
| 777 | const MemRegion *TargetR = Target.getAsRegion(); |
| 778 | assert(TargetR); |
| 779 | // Invalidate the region so that it didn't look uninitialized. If this is |
| 780 | // a field or element constructor, we do not want to invalidate |
| 781 | // the whole structure. Pointer escape is meaningless because |
| 782 | // the structure is a product of conservative evaluation |
| 783 | // and therefore contains nothing interesting at this point. |
| 784 | RegionAndSymbolInvalidationTraits ITraits; |
| 785 | ITraits.setTrait(MR: TargetR, |
| 786 | IK: RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); |
| 787 | State = State->invalidateRegions(Regions: TargetR, Elem, BlockCount: Count, LCtx, |
| 788 | /* CausesPointerEscape=*/false, IS: nullptr, |
| 789 | Call: &Call, ITraits: &ITraits); |
| 790 | |
| 791 | R = State->getSVal(LV: Target.castAs<Loc>(), T: E->getType()); |
| 792 | } else { |
| 793 | // Conjure a symbol if the return value is unknown. |
| 794 | |
| 795 | // See if we need to conjure a heap pointer instead of |
| 796 | // a regular unknown pointer. |
| 797 | const auto *CNE = dyn_cast<CXXNewExpr>(Val: E); |
| 798 | if (CNE && CNE->getOperatorNew()->isReplaceableGlobalAllocationFunction()) { |
| 799 | R = svalBuilder.getConjuredHeapSymbolVal(elem: Elem, LCtx, type: E->getType(), Count); |
| 800 | const MemRegion *MR = R.getAsRegion()->StripCasts(); |
| 801 | |
| 802 | // Store the extent of the allocated object(s). |
| 803 | SVal ElementCount; |
| 804 | if (const Expr *SizeExpr = CNE->getArraySize().value_or(u: nullptr)) { |
| 805 | ElementCount = State->getSVal(SizeExpr, LCtx); |
| 806 | } else { |
| 807 | ElementCount = svalBuilder.makeIntVal(integer: 1, /*IsUnsigned=*/isUnsigned: true); |
| 808 | } |
| 809 | |
| 810 | SVal ElementSize = getElementExtent(Ty: CNE->getAllocatedType(), SVB&: svalBuilder); |
| 811 | |
| 812 | SVal Size = |
| 813 | svalBuilder.evalBinOp(state: State, op: BO_Mul, lhs: ElementCount, rhs: ElementSize, |
| 814 | type: svalBuilder.getArrayIndexType()); |
| 815 | |
| 816 | // FIXME: This line is to prevent a crash. For more details please check |
| 817 | // issue #56264. |
| 818 | if (Size.isUndef()) |
| 819 | Size = UnknownVal(); |
| 820 | |
| 821 | State = setDynamicExtent(State, MR, Extent: Size.castAs<DefinedOrUnknownSVal>()); |
| 822 | } else { |
| 823 | R = svalBuilder.conjureSymbolVal(elem: Elem, LCtx, type: ResultTy, visitCount: Count); |
| 824 | } |
| 825 | } |
| 826 | return State->BindExpr(E, LCtx, R); |
| 827 | } |
| 828 | |
| 829 | // Conservatively evaluate call by invalidating regions and binding |
| 830 | // a conjured return value. |
| 831 | void ExprEngine::conservativeEvalCall(const CallEvent &Call, NodeBuilder &Bldr, |
| 832 | ExplodedNode *Pred, ProgramStateRef State) { |
| 833 | State = Call.invalidateRegions(BlockCount: currBldrCtx->blockCount(), Orig: State); |
| 834 | State = bindReturnValue(Call, LCtx: Pred->getLocationContext(), State); |
| 835 | |
| 836 | // And make the result node. |
| 837 | static SimpleProgramPointTag PT("ExprEngine" , "Conservative eval call" ); |
| 838 | Bldr.generateNode(PP: Call.getProgramPoint(IsPreVisit: false, Tag: &PT), State, Pred); |
| 839 | } |
| 840 | |
| 841 | ExprEngine::CallInlinePolicy |
| 842 | ExprEngine::mayInlineCallKind(const CallEvent &Call, const ExplodedNode *Pred, |
| 843 | AnalyzerOptions &Opts, |
| 844 | const EvalCallOptions &CallOpts) { |
| 845 | const LocationContext *CurLC = Pred->getLocationContext(); |
| 846 | const StackFrameContext *CallerSFC = CurLC->getStackFrame(); |
| 847 | switch (Call.getKind()) { |
| 848 | case CE_Function: |
| 849 | case CE_CXXStaticOperator: |
| 850 | case CE_Block: |
| 851 | break; |
| 852 | case CE_CXXMember: |
| 853 | case CE_CXXMemberOperator: |
| 854 | if (!Opts.mayInlineCXXMemberFunction(K: CIMK_MemberFunctions)) |
| 855 | return CIP_DisallowedAlways; |
| 856 | break; |
| 857 | case CE_CXXConstructor: { |
| 858 | if (!Opts.mayInlineCXXMemberFunction(K: CIMK_Constructors)) |
| 859 | return CIP_DisallowedAlways; |
| 860 | |
| 861 | const CXXConstructorCall &Ctor = cast<CXXConstructorCall>(Val: Call); |
| 862 | |
| 863 | const CXXConstructExpr *CtorExpr = Ctor.getOriginExpr(); |
| 864 | |
| 865 | auto CCE = getCurrentCFGElement().getAs<CFGConstructor>(); |
| 866 | const ConstructionContext *CC = CCE ? CCE->getConstructionContext() |
| 867 | : nullptr; |
| 868 | |
| 869 | if (llvm::isa_and_nonnull<NewAllocatedObjectConstructionContext>(Val: CC) && |
| 870 | !Opts.MayInlineCXXAllocator) |
| 871 | return CIP_DisallowedOnce; |
| 872 | |
| 873 | if (CallOpts.IsArrayCtorOrDtor) { |
| 874 | if (!shouldInlineArrayConstruction(State: Pred->getState(), CE: CtorExpr, LCtx: CurLC)) |
| 875 | return CIP_DisallowedOnce; |
| 876 | } |
| 877 | |
| 878 | // Inlining constructors requires including initializers in the CFG. |
| 879 | const AnalysisDeclContext *ADC = CallerSFC->getAnalysisDeclContext(); |
| 880 | assert(ADC->getCFGBuildOptions().AddInitializers && "No CFG initializers" ); |
| 881 | (void)ADC; |
| 882 | |
| 883 | // If the destructor is trivial, it's always safe to inline the constructor. |
| 884 | if (Ctor.getDecl()->getParent()->hasTrivialDestructor()) |
| 885 | break; |
| 886 | |
| 887 | // For other types, only inline constructors if destructor inlining is |
| 888 | // also enabled. |
| 889 | if (!Opts.mayInlineCXXMemberFunction(K: CIMK_Destructors)) |
| 890 | return CIP_DisallowedAlways; |
| 891 | |
| 892 | if (CtorExpr->getConstructionKind() == CXXConstructionKind::Complete) { |
| 893 | // If we don't handle temporary destructors, we shouldn't inline |
| 894 | // their constructors. |
| 895 | if (CallOpts.IsTemporaryCtorOrDtor && |
| 896 | !Opts.ShouldIncludeTemporaryDtorsInCFG) |
| 897 | return CIP_DisallowedOnce; |
| 898 | |
| 899 | // If we did not find the correct this-region, it would be pointless |
| 900 | // to inline the constructor. Instead we will simply invalidate |
| 901 | // the fake temporary target. |
| 902 | if (CallOpts.IsCtorOrDtorWithImproperlyModeledTargetRegion) |
| 903 | return CIP_DisallowedOnce; |
| 904 | |
| 905 | // If the temporary is lifetime-extended by binding it to a reference-type |
| 906 | // field within an aggregate, automatic destructors don't work properly. |
| 907 | if (CallOpts.IsTemporaryLifetimeExtendedViaAggregate) |
| 908 | return CIP_DisallowedOnce; |
| 909 | } |
| 910 | |
| 911 | break; |
| 912 | } |
| 913 | case CE_CXXInheritedConstructor: { |
| 914 | // This doesn't really increase the cost of inlining ever, because |
| 915 | // the stack frame of the inherited constructor is trivial. |
| 916 | return CIP_Allowed; |
| 917 | } |
| 918 | case CE_CXXDestructor: { |
| 919 | if (!Opts.mayInlineCXXMemberFunction(K: CIMK_Destructors)) |
| 920 | return CIP_DisallowedAlways; |
| 921 | |
| 922 | // Inlining destructors requires building the CFG correctly. |
| 923 | const AnalysisDeclContext *ADC = CallerSFC->getAnalysisDeclContext(); |
| 924 | assert(ADC->getCFGBuildOptions().AddImplicitDtors && "No CFG destructors" ); |
| 925 | (void)ADC; |
| 926 | |
| 927 | if (CallOpts.IsArrayCtorOrDtor) { |
| 928 | if (!shouldInlineArrayDestruction(Size: getElementCountOfArrayBeingDestructed( |
| 929 | Call, State: Pred->getState(), SVB&: svalBuilder))) { |
| 930 | return CIP_DisallowedOnce; |
| 931 | } |
| 932 | } |
| 933 | |
| 934 | // Allow disabling temporary destructor inlining with a separate option. |
| 935 | if (CallOpts.IsTemporaryCtorOrDtor && |
| 936 | !Opts.MayInlineCXXTemporaryDtors) |
| 937 | return CIP_DisallowedOnce; |
| 938 | |
| 939 | // If we did not find the correct this-region, it would be pointless |
| 940 | // to inline the destructor. Instead we will simply invalidate |
| 941 | // the fake temporary target. |
| 942 | if (CallOpts.IsCtorOrDtorWithImproperlyModeledTargetRegion) |
| 943 | return CIP_DisallowedOnce; |
| 944 | break; |
| 945 | } |
| 946 | case CE_CXXDeallocator: |
| 947 | [[fallthrough]]; |
| 948 | case CE_CXXAllocator: |
| 949 | if (Opts.MayInlineCXXAllocator) |
| 950 | break; |
| 951 | // Do not inline allocators until we model deallocators. |
| 952 | // This is unfortunate, but basically necessary for smart pointers and such. |
| 953 | return CIP_DisallowedAlways; |
| 954 | case CE_ObjCMessage: |
| 955 | if (!Opts.MayInlineObjCMethod) |
| 956 | return CIP_DisallowedAlways; |
| 957 | if (!(Opts.getIPAMode() == IPAK_DynamicDispatch || |
| 958 | Opts.getIPAMode() == IPAK_DynamicDispatchBifurcate)) |
| 959 | return CIP_DisallowedAlways; |
| 960 | break; |
| 961 | } |
| 962 | |
| 963 | return CIP_Allowed; |
| 964 | } |
| 965 | |
| 966 | /// Returns true if the given C++ class contains a member with the given name. |
| 967 | static bool hasMember(const ASTContext &Ctx, const CXXRecordDecl *RD, |
| 968 | StringRef Name) { |
| 969 | const IdentifierInfo &II = Ctx.Idents.get(Name); |
| 970 | return RD->hasMemberName(N: Ctx.DeclarationNames.getIdentifier(ID: &II)); |
| 971 | } |
| 972 | |
| 973 | /// Returns true if the given C++ class is a container or iterator. |
| 974 | /// |
| 975 | /// Our heuristic for this is whether it contains a method named 'begin()' or a |
| 976 | /// nested type named 'iterator' or 'iterator_category'. |
| 977 | static bool isContainerClass(const ASTContext &Ctx, const CXXRecordDecl *RD) { |
| 978 | return hasMember(Ctx, RD, Name: "begin" ) || |
| 979 | hasMember(Ctx, RD, Name: "iterator" ) || |
| 980 | hasMember(Ctx, RD, Name: "iterator_category" ); |
| 981 | } |
| 982 | |
| 983 | /// Returns true if the given function refers to a method of a C++ container |
| 984 | /// or iterator. |
| 985 | /// |
| 986 | /// We generally do a poor job modeling most containers right now, and might |
| 987 | /// prefer not to inline their methods. |
| 988 | static bool isContainerMethod(const ASTContext &Ctx, |
| 989 | const FunctionDecl *FD) { |
| 990 | if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: FD)) |
| 991 | return isContainerClass(Ctx, RD: MD->getParent()); |
| 992 | return false; |
| 993 | } |
| 994 | |
| 995 | /// Returns true if the given function is the destructor of a class named |
| 996 | /// "shared_ptr". |
| 997 | static bool isCXXSharedPtrDtor(const FunctionDecl *FD) { |
| 998 | const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(Val: FD); |
| 999 | if (!Dtor) |
| 1000 | return false; |
| 1001 | |
| 1002 | const CXXRecordDecl *RD = Dtor->getParent(); |
| 1003 | if (const IdentifierInfo *II = RD->getDeclName().getAsIdentifierInfo()) |
| 1004 | if (II->isStr(Str: "shared_ptr" )) |
| 1005 | return true; |
| 1006 | |
| 1007 | return false; |
| 1008 | } |
| 1009 | |
| 1010 | /// Returns true if the function in \p CalleeADC may be inlined in general. |
| 1011 | /// |
| 1012 | /// This checks static properties of the function, such as its signature and |
| 1013 | /// CFG, to determine whether the analyzer should ever consider inlining it, |
| 1014 | /// in any context. |
| 1015 | bool ExprEngine::mayInlineDecl(AnalysisDeclContext *CalleeADC) const { |
| 1016 | AnalyzerOptions &Opts = AMgr.getAnalyzerOptions(); |
| 1017 | // FIXME: Do not inline variadic calls. |
| 1018 | if (CallEvent::isVariadic(D: CalleeADC->getDecl())) |
| 1019 | return false; |
| 1020 | |
| 1021 | // Check certain C++-related inlining policies. |
| 1022 | ASTContext &Ctx = CalleeADC->getASTContext(); |
| 1023 | if (Ctx.getLangOpts().CPlusPlus) { |
| 1024 | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: CalleeADC->getDecl())) { |
| 1025 | // Conditionally control the inlining of template functions. |
| 1026 | if (!Opts.MayInlineTemplateFunctions) |
| 1027 | if (FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate) |
| 1028 | return false; |
| 1029 | |
| 1030 | // Conditionally control the inlining of C++ standard library functions. |
| 1031 | if (!Opts.MayInlineCXXStandardLibrary) |
| 1032 | if (Ctx.getSourceManager().isInSystemHeader(Loc: FD->getLocation())) |
| 1033 | if (AnalysisDeclContext::isInStdNamespace(FD)) |
| 1034 | return false; |
| 1035 | |
| 1036 | // Conditionally control the inlining of methods on objects that look |
| 1037 | // like C++ containers. |
| 1038 | if (!Opts.MayInlineCXXContainerMethods) |
| 1039 | if (!AMgr.isInCodeFile(FD->getLocation())) |
| 1040 | if (isContainerMethod(Ctx, FD)) |
| 1041 | return false; |
| 1042 | |
| 1043 | // Conditionally control the inlining of the destructor of C++ shared_ptr. |
| 1044 | // We don't currently do a good job modeling shared_ptr because we can't |
| 1045 | // see the reference count, so treating as opaque is probably the best |
| 1046 | // idea. |
| 1047 | if (!Opts.MayInlineCXXSharedPtrDtor) |
| 1048 | if (isCXXSharedPtrDtor(FD)) |
| 1049 | return false; |
| 1050 | } |
| 1051 | } |
| 1052 | |
| 1053 | // It is possible that the CFG cannot be constructed. |
| 1054 | // Be safe, and check if the CalleeCFG is valid. |
| 1055 | const CFG *CalleeCFG = CalleeADC->getCFG(); |
| 1056 | if (!CalleeCFG) |
| 1057 | return false; |
| 1058 | |
| 1059 | // Do not inline large functions. |
| 1060 | if (isHuge(ADC: CalleeADC)) |
| 1061 | return false; |
| 1062 | |
| 1063 | // It is possible that the live variables analysis cannot be |
| 1064 | // run. If so, bail out. |
| 1065 | if (!CalleeADC->getAnalysis<RelaxedLiveVariables>()) |
| 1066 | return false; |
| 1067 | |
| 1068 | return true; |
| 1069 | } |
| 1070 | |
| 1071 | bool ExprEngine::shouldInlineCall(const CallEvent &Call, const Decl *D, |
| 1072 | const ExplodedNode *Pred, |
| 1073 | const EvalCallOptions &CallOpts) { |
| 1074 | if (!D) |
| 1075 | return false; |
| 1076 | |
| 1077 | AnalysisManager &AMgr = getAnalysisManager(); |
| 1078 | AnalyzerOptions &Opts = AMgr.options; |
| 1079 | AnalysisDeclContextManager &ADCMgr = AMgr.getAnalysisDeclContextManager(); |
| 1080 | AnalysisDeclContext *CalleeADC = ADCMgr.getContext(D); |
| 1081 | |
| 1082 | // The auto-synthesized bodies are essential to inline as they are |
| 1083 | // usually small and commonly used. Note: we should do this check early on to |
| 1084 | // ensure we always inline these calls. |
| 1085 | if (CalleeADC->isBodyAutosynthesized()) |
| 1086 | return true; |
| 1087 | |
| 1088 | if (!AMgr.shouldInlineCall()) |
| 1089 | return false; |
| 1090 | |
| 1091 | // Check if this function has been marked as non-inlinable. |
| 1092 | std::optional<bool> MayInline = Engine.FunctionSummaries->mayInline(D); |
| 1093 | if (MayInline) { |
| 1094 | if (!*MayInline) |
| 1095 | return false; |
| 1096 | |
| 1097 | } else { |
| 1098 | // We haven't actually checked the static properties of this function yet. |
| 1099 | // Do that now, and record our decision in the function summaries. |
| 1100 | if (mayInlineDecl(CalleeADC)) { |
| 1101 | Engine.FunctionSummaries->markMayInline(D); |
| 1102 | } else { |
| 1103 | Engine.FunctionSummaries->markShouldNotInline(D); |
| 1104 | return false; |
| 1105 | } |
| 1106 | } |
| 1107 | |
| 1108 | // Check if we should inline a call based on its kind. |
| 1109 | // FIXME: this checks both static and dynamic properties of the call, which |
| 1110 | // means we're redoing a bit of work that could be cached in the function |
| 1111 | // summary. |
| 1112 | CallInlinePolicy CIP = mayInlineCallKind(Call, Pred, Opts, CallOpts); |
| 1113 | if (CIP != CIP_Allowed) { |
| 1114 | if (CIP == CIP_DisallowedAlways) { |
| 1115 | assert(!MayInline || *MayInline); |
| 1116 | Engine.FunctionSummaries->markShouldNotInline(D); |
| 1117 | } |
| 1118 | return false; |
| 1119 | } |
| 1120 | |
| 1121 | // Do not inline if recursive or we've reached max stack frame count. |
| 1122 | bool IsRecursive = false; |
| 1123 | unsigned StackDepth = 0; |
| 1124 | examineStackFrames(D, LCtx: Pred->getLocationContext(), IsRecursive, StackDepth); |
| 1125 | if ((StackDepth >= Opts.InlineMaxStackDepth) && |
| 1126 | (!isSmall(ADC: CalleeADC) || IsRecursive)) |
| 1127 | return false; |
| 1128 | |
| 1129 | // Do not inline large functions too many times. |
| 1130 | if ((Engine.FunctionSummaries->getNumTimesInlined(D) > |
| 1131 | Opts.MaxTimesInlineLarge) && |
| 1132 | isLarge(ADC: CalleeADC)) { |
| 1133 | NumReachedInlineCountMax++; |
| 1134 | return false; |
| 1135 | } |
| 1136 | |
| 1137 | if (HowToInline == Inline_Minimal && (!isSmall(ADC: CalleeADC) || IsRecursive)) |
| 1138 | return false; |
| 1139 | |
| 1140 | return true; |
| 1141 | } |
| 1142 | |
| 1143 | bool ExprEngine::shouldInlineArrayConstruction(const ProgramStateRef State, |
| 1144 | const CXXConstructExpr *CE, |
| 1145 | const LocationContext *LCtx) { |
| 1146 | if (!CE) |
| 1147 | return false; |
| 1148 | |
| 1149 | // FIXME: Handle other arrays types. |
| 1150 | if (const auto *CAT = dyn_cast<ConstantArrayType>(CE->getType())) { |
| 1151 | unsigned ArrSize = getContext().getConstantArrayElementCount(CA: CAT); |
| 1152 | |
| 1153 | // This might seem conter-intuitive at first glance, but the functions are |
| 1154 | // closely related. Reasoning about destructors depends only on the type |
| 1155 | // of the expression that initialized the memory region, which is the |
| 1156 | // CXXConstructExpr. So to avoid code repetition, the work is delegated |
| 1157 | // to the function that reasons about destructor inlining. Also note that |
| 1158 | // if the constructors of the array elements are inlined, the destructors |
| 1159 | // can also be inlined and if the destructors can be inline, it's safe to |
| 1160 | // inline the constructors. |
| 1161 | return shouldInlineArrayDestruction(Size: ArrSize); |
| 1162 | } |
| 1163 | |
| 1164 | // Check if we're inside an ArrayInitLoopExpr, and it's sufficiently small. |
| 1165 | if (auto Size = getPendingInitLoop(State, E: CE, LCtx)) |
| 1166 | return shouldInlineArrayDestruction(Size: *Size); |
| 1167 | |
| 1168 | return false; |
| 1169 | } |
| 1170 | |
| 1171 | bool ExprEngine::shouldInlineArrayDestruction(uint64_t Size) { |
| 1172 | |
| 1173 | uint64_t maxAllowedSize = AMgr.options.maxBlockVisitOnPath; |
| 1174 | |
| 1175 | // Declaring a 0 element array is also possible. |
| 1176 | return Size <= maxAllowedSize && Size > 0; |
| 1177 | } |
| 1178 | |
| 1179 | bool ExprEngine::shouldRepeatCtorCall(ProgramStateRef State, |
| 1180 | const CXXConstructExpr *E, |
| 1181 | const LocationContext *LCtx) { |
| 1182 | |
| 1183 | if (!E) |
| 1184 | return false; |
| 1185 | |
| 1186 | auto Ty = E->getType(); |
| 1187 | |
| 1188 | // FIXME: Handle non constant array types |
| 1189 | if (const auto *CAT = dyn_cast<ConstantArrayType>(Ty)) { |
| 1190 | unsigned Size = getContext().getConstantArrayElementCount(CA: CAT); |
| 1191 | return Size > getIndexOfElementToConstruct(State, E, LCtx); |
| 1192 | } |
| 1193 | |
| 1194 | if (auto Size = getPendingInitLoop(State, E, LCtx)) |
| 1195 | return Size > getIndexOfElementToConstruct(State, E, LCtx); |
| 1196 | |
| 1197 | return false; |
| 1198 | } |
| 1199 | |
| 1200 | static bool isTrivialObjectAssignment(const CallEvent &Call) { |
| 1201 | const CXXInstanceCall *ICall = dyn_cast<CXXInstanceCall>(Val: &Call); |
| 1202 | if (!ICall) |
| 1203 | return false; |
| 1204 | |
| 1205 | const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Val: ICall->getDecl()); |
| 1206 | if (!MD) |
| 1207 | return false; |
| 1208 | if (!(MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())) |
| 1209 | return false; |
| 1210 | |
| 1211 | return MD->isTrivial(); |
| 1212 | } |
| 1213 | |
| 1214 | void ExprEngine::defaultEvalCall(NodeBuilder &Bldr, ExplodedNode *Pred, |
| 1215 | const CallEvent &CallTemplate, |
| 1216 | const EvalCallOptions &CallOpts) { |
| 1217 | // Make sure we have the most recent state attached to the call. |
| 1218 | ProgramStateRef State = Pred->getState(); |
| 1219 | CallEventRef<> Call = CallTemplate.cloneWithState(NewState: State); |
| 1220 | |
| 1221 | // Special-case trivial assignment operators. |
| 1222 | if (isTrivialObjectAssignment(Call: *Call)) { |
| 1223 | performTrivialCopy(Bldr, Pred, Call: *Call); |
| 1224 | return; |
| 1225 | } |
| 1226 | |
| 1227 | // Try to inline the call. |
| 1228 | // The origin expression here is just used as a kind of checksum; |
| 1229 | // this should still be safe even for CallEvents that don't come from exprs. |
| 1230 | const Expr *E = Call->getOriginExpr(); |
| 1231 | |
| 1232 | ProgramStateRef InlinedFailedState = getInlineFailedState(State, E); |
| 1233 | if (InlinedFailedState) { |
| 1234 | // If we already tried once and failed, make sure we don't retry later. |
| 1235 | State = InlinedFailedState; |
| 1236 | } else { |
| 1237 | RuntimeDefinition RD = Call->getRuntimeDefinition(); |
| 1238 | Call->setForeign(RD.isForeign()); |
| 1239 | const Decl *D = RD.getDecl(); |
| 1240 | if (shouldInlineCall(Call: *Call, D, Pred, CallOpts)) { |
| 1241 | if (RD.mayHaveOtherDefinitions()) { |
| 1242 | AnalyzerOptions &Options = getAnalysisManager().options; |
| 1243 | |
| 1244 | // Explore with and without inlining the call. |
| 1245 | if (Options.getIPAMode() == IPAK_DynamicDispatchBifurcate) { |
| 1246 | BifurcateCall(BifurReg: RD.getDispatchRegion(), Call: *Call, D, Bldr, Pred); |
| 1247 | return; |
| 1248 | } |
| 1249 | |
| 1250 | // Don't inline if we're not in any dynamic dispatch mode. |
| 1251 | if (Options.getIPAMode() != IPAK_DynamicDispatch) { |
| 1252 | conservativeEvalCall(Call: *Call, Bldr, Pred, State); |
| 1253 | return; |
| 1254 | } |
| 1255 | } |
| 1256 | ctuBifurcate(Call: *Call, D, Bldr, Pred, State); |
| 1257 | return; |
| 1258 | } |
| 1259 | } |
| 1260 | |
| 1261 | // If we can't inline it, clean up the state traits used only if the function |
| 1262 | // is inlined. |
| 1263 | State = removeStateTraitsUsedForArrayEvaluation( |
| 1264 | State, E: dyn_cast_or_null<CXXConstructExpr>(Val: E), LCtx: Call->getLocationContext()); |
| 1265 | |
| 1266 | // Also handle the return value and invalidate the regions. |
| 1267 | conservativeEvalCall(Call: *Call, Bldr, Pred, State); |
| 1268 | } |
| 1269 | |
| 1270 | void ExprEngine::BifurcateCall(const MemRegion *BifurReg, |
| 1271 | const CallEvent &Call, const Decl *D, |
| 1272 | NodeBuilder &Bldr, ExplodedNode *Pred) { |
| 1273 | assert(BifurReg); |
| 1274 | BifurReg = BifurReg->StripCasts(); |
| 1275 | |
| 1276 | // Check if we've performed the split already - note, we only want |
| 1277 | // to split the path once per memory region. |
| 1278 | ProgramStateRef State = Pred->getState(); |
| 1279 | const unsigned *BState = |
| 1280 | State->get<DynamicDispatchBifurcationMap>(key: BifurReg); |
| 1281 | if (BState) { |
| 1282 | // If we are on "inline path", keep inlining if possible. |
| 1283 | if (*BState == DynamicDispatchModeInlined) |
| 1284 | ctuBifurcate(Call, D, Bldr, Pred, State); |
| 1285 | // If inline failed, or we are on the path where we assume we |
| 1286 | // don't have enough info about the receiver to inline, conjure the |
| 1287 | // return value and invalidate the regions. |
| 1288 | conservativeEvalCall(Call, Bldr, Pred, State); |
| 1289 | return; |
| 1290 | } |
| 1291 | |
| 1292 | // If we got here, this is the first time we process a message to this |
| 1293 | // region, so split the path. |
| 1294 | ProgramStateRef IState = |
| 1295 | State->set<DynamicDispatchBifurcationMap>(K: BifurReg, |
| 1296 | E: DynamicDispatchModeInlined); |
| 1297 | ctuBifurcate(Call, D, Bldr, Pred, State: IState); |
| 1298 | |
| 1299 | ProgramStateRef NoIState = |
| 1300 | State->set<DynamicDispatchBifurcationMap>(K: BifurReg, |
| 1301 | E: DynamicDispatchModeConservative); |
| 1302 | conservativeEvalCall(Call, Bldr, Pred, State: NoIState); |
| 1303 | |
| 1304 | NumOfDynamicDispatchPathSplits++; |
| 1305 | } |
| 1306 | |
| 1307 | void ExprEngine::VisitReturnStmt(const ReturnStmt *RS, ExplodedNode *Pred, |
| 1308 | ExplodedNodeSet &Dst) { |
| 1309 | ExplodedNodeSet dstPreVisit; |
| 1310 | getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, RS, *this); |
| 1311 | |
| 1312 | StmtNodeBuilder B(dstPreVisit, Dst, *currBldrCtx); |
| 1313 | |
| 1314 | if (RS->getRetValue()) { |
| 1315 | for (ExplodedNodeSet::iterator it = dstPreVisit.begin(), |
| 1316 | ei = dstPreVisit.end(); it != ei; ++it) { |
| 1317 | B.generateNode(RS, *it, (*it)->getState()); |
| 1318 | } |
| 1319 | } |
| 1320 | } |
| 1321 | |