1 | //===--- LoopUnrolling.cpp - Unroll loops -----------------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | /// |
9 | /// This file contains functions which are used to decide if a loop worth to be |
10 | /// unrolled. Moreover, these functions manages the stack of loop which is |
11 | /// tracked by the ProgramState. |
12 | /// |
13 | //===----------------------------------------------------------------------===// |
14 | |
15 | #include "clang/ASTMatchers/ASTMatchers.h" |
16 | #include "clang/ASTMatchers/ASTMatchFinder.h" |
17 | #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" |
18 | #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" |
19 | #include "clang/StaticAnalyzer/Core/PathSensitive/LoopUnrolling.h" |
20 | #include <optional> |
21 | |
22 | using namespace clang; |
23 | using namespace ento; |
24 | using namespace clang::ast_matchers; |
25 | |
26 | static const int MAXIMUM_STEP_UNROLLED = 128; |
27 | |
28 | namespace { |
29 | struct LoopState { |
30 | private: |
31 | enum Kind { Normal, Unrolled } K; |
32 | const Stmt *LoopStmt; |
33 | const LocationContext *LCtx; |
34 | unsigned maxStep; |
35 | LoopState(Kind InK, const Stmt *S, const LocationContext *L, unsigned N) |
36 | : K(InK), LoopStmt(S), LCtx(L), maxStep(N) {} |
37 | |
38 | public: |
39 | static LoopState getNormal(const Stmt *S, const LocationContext *L, |
40 | unsigned N) { |
41 | return LoopState(Normal, S, L, N); |
42 | } |
43 | static LoopState getUnrolled(const Stmt *S, const LocationContext *L, |
44 | unsigned N) { |
45 | return LoopState(Unrolled, S, L, N); |
46 | } |
47 | bool isUnrolled() const { return K == Unrolled; } |
48 | unsigned getMaxStep() const { return maxStep; } |
49 | const Stmt *getLoopStmt() const { return LoopStmt; } |
50 | const LocationContext *getLocationContext() const { return LCtx; } |
51 | bool operator==(const LoopState &X) const { |
52 | return K == X.K && LoopStmt == X.LoopStmt; |
53 | } |
54 | void Profile(llvm::FoldingSetNodeID &ID) const { |
55 | ID.AddInteger(I: K); |
56 | ID.AddPointer(Ptr: LoopStmt); |
57 | ID.AddPointer(Ptr: LCtx); |
58 | ID.AddInteger(I: maxStep); |
59 | } |
60 | }; |
61 | } // namespace |
62 | |
63 | // The tracked stack of loops. The stack indicates that which loops the |
64 | // simulated element contained by. The loops are marked depending if we decided |
65 | // to unroll them. |
66 | // TODO: The loop stack should not need to be in the program state since it is |
67 | // lexical in nature. Instead, the stack of loops should be tracked in the |
68 | // LocationContext. |
69 | REGISTER_LIST_WITH_PROGRAMSTATE(LoopStack, LoopState) |
70 | |
71 | namespace clang { |
72 | namespace ento { |
73 | |
74 | static bool isLoopStmt(const Stmt *S) { |
75 | return isa_and_nonnull<ForStmt, WhileStmt, DoStmt>(Val: S); |
76 | } |
77 | |
78 | ProgramStateRef processLoopEnd(const Stmt *LoopStmt, ProgramStateRef State) { |
79 | auto LS = State->get<LoopStack>(); |
80 | if (!LS.isEmpty() && LS.getHead().getLoopStmt() == LoopStmt) |
81 | State = State->set<LoopStack>(LS.getTail()); |
82 | return State; |
83 | } |
84 | |
85 | static internal::Matcher<Stmt> simpleCondition(StringRef BindName, |
86 | StringRef RefName) { |
87 | return binaryOperator( |
88 | anyOf(hasOperatorName(Name: "<" ), hasOperatorName(Name: ">" ), |
89 | hasOperatorName(Name: "<=" ), hasOperatorName(Name: ">=" ), |
90 | hasOperatorName(Name: "!=" )), |
91 | hasEitherOperand(InnerMatcher: ignoringParenImpCasts( |
92 | InnerMatcher: declRefExpr(to(InnerMatcher: varDecl(hasType(InnerMatcher: isInteger())).bind(ID: BindName))) |
93 | .bind(ID: RefName))), |
94 | hasEitherOperand( |
95 | InnerMatcher: ignoringParenImpCasts(InnerMatcher: integerLiteral().bind(ID: "boundNum" )))) |
96 | .bind(ID: "conditionOperator" ); |
97 | } |
98 | |
99 | static internal::Matcher<Stmt> |
100 | changeIntBoundNode(internal::Matcher<Decl> VarNodeMatcher) { |
101 | return anyOf( |
102 | unaryOperator(anyOf(hasOperatorName(Name: "--" ), hasOperatorName(Name: "++" )), |
103 | hasUnaryOperand(InnerMatcher: ignoringParenImpCasts( |
104 | InnerMatcher: declRefExpr(to(InnerMatcher: varDecl(VarNodeMatcher)))))), |
105 | binaryOperator(isAssignmentOperator(), |
106 | hasLHS(InnerMatcher: ignoringParenImpCasts( |
107 | InnerMatcher: declRefExpr(to(InnerMatcher: varDecl(VarNodeMatcher))))))); |
108 | } |
109 | |
110 | static internal::Matcher<Stmt> |
111 | callByRef(internal::Matcher<Decl> VarNodeMatcher) { |
112 | return callExpr(forEachArgumentWithParam( |
113 | ArgMatcher: declRefExpr(to(InnerMatcher: varDecl(VarNodeMatcher))), |
114 | ParamMatcher: parmVarDecl(hasType(InnerMatcher: references(InnerMatcher: qualType(unless(isConstQualified()))))))); |
115 | } |
116 | |
117 | static internal::Matcher<Stmt> |
118 | assignedToRef(internal::Matcher<Decl> VarNodeMatcher) { |
119 | return declStmt(hasDescendant(varDecl( |
120 | allOf(hasType(InnerMatcher: referenceType()), |
121 | hasInitializer(InnerMatcher: anyOf( |
122 | initListExpr(has(declRefExpr(to(InnerMatcher: varDecl(VarNodeMatcher))))), |
123 | declRefExpr(to(InnerMatcher: varDecl(VarNodeMatcher))))))))); |
124 | } |
125 | |
126 | static internal::Matcher<Stmt> |
127 | getAddrTo(internal::Matcher<Decl> VarNodeMatcher) { |
128 | return unaryOperator( |
129 | hasOperatorName(Name: "&" ), |
130 | hasUnaryOperand(InnerMatcher: declRefExpr(hasDeclaration(InnerMatcher: VarNodeMatcher)))); |
131 | } |
132 | |
133 | static internal::Matcher<Stmt> hasSuspiciousStmt(StringRef NodeName) { |
134 | return hasDescendant(stmt( |
135 | anyOf(gotoStmt(), switchStmt(), returnStmt(), |
136 | // Escaping and not known mutation of the loop counter is handled |
137 | // by exclusion of assigning and address-of operators and |
138 | // pass-by-ref function calls on the loop counter from the body. |
139 | changeIntBoundNode(VarNodeMatcher: equalsBoundNode(ID: std::string(NodeName))), |
140 | callByRef(VarNodeMatcher: equalsBoundNode(ID: std::string(NodeName))), |
141 | getAddrTo(VarNodeMatcher: equalsBoundNode(ID: std::string(NodeName))), |
142 | assignedToRef(VarNodeMatcher: equalsBoundNode(ID: std::string(NodeName)))))); |
143 | } |
144 | |
145 | static internal::Matcher<Stmt> forLoopMatcher() { |
146 | return forStmt( |
147 | hasCondition(InnerMatcher: simpleCondition(BindName: "initVarName" , RefName: "initVarRef" )), |
148 | // Initialization should match the form: 'int i = 6' or 'i = 42'. |
149 | hasLoopInit( |
150 | InnerMatcher: anyOf(declStmt(hasSingleDecl( |
151 | InnerMatcher: varDecl(allOf(hasInitializer(InnerMatcher: ignoringParenImpCasts( |
152 | InnerMatcher: integerLiteral().bind(ID: "initNum" ))), |
153 | equalsBoundNode(ID: "initVarName" ))))), |
154 | binaryOperator(hasLHS(InnerMatcher: declRefExpr(to(InnerMatcher: varDecl( |
155 | equalsBoundNode(ID: "initVarName" ))))), |
156 | hasRHS(InnerMatcher: ignoringParenImpCasts( |
157 | InnerMatcher: integerLiteral().bind(ID: "initNum" )))))), |
158 | // Incrementation should be a simple increment or decrement |
159 | // operator call. |
160 | hasIncrement(InnerMatcher: unaryOperator( |
161 | anyOf(hasOperatorName(Name: "++" ), hasOperatorName(Name: "--" )), |
162 | hasUnaryOperand(InnerMatcher: declRefExpr( |
163 | to(InnerMatcher: varDecl(allOf(equalsBoundNode(ID: "initVarName" ), |
164 | hasType(InnerMatcher: isInteger())))))))), |
165 | unless(hasBody(InnerMatcher: hasSuspiciousStmt(NodeName: "initVarName" )))) |
166 | .bind(ID: "forLoop" ); |
167 | } |
168 | |
169 | static bool isCapturedByReference(ExplodedNode *N, const DeclRefExpr *DR) { |
170 | |
171 | // Get the lambda CXXRecordDecl |
172 | assert(DR->refersToEnclosingVariableOrCapture()); |
173 | const LocationContext *LocCtxt = N->getLocationContext(); |
174 | const Decl *D = LocCtxt->getDecl(); |
175 | const auto *MD = cast<CXXMethodDecl>(Val: D); |
176 | assert(MD && MD->getParent()->isLambda() && |
177 | "Captured variable should only be seen while evaluating a lambda" ); |
178 | const CXXRecordDecl *LambdaCXXRec = MD->getParent(); |
179 | |
180 | // Lookup the fields of the lambda |
181 | llvm::DenseMap<const ValueDecl *, FieldDecl *> LambdaCaptureFields; |
182 | FieldDecl *LambdaThisCaptureField; |
183 | LambdaCXXRec->getCaptureFields(Captures&: LambdaCaptureFields, ThisCapture&: LambdaThisCaptureField); |
184 | |
185 | // Check if the counter is captured by reference |
186 | const VarDecl *VD = cast<VarDecl>(DR->getDecl()->getCanonicalDecl()); |
187 | assert(VD); |
188 | const FieldDecl *FD = LambdaCaptureFields[VD]; |
189 | assert(FD && "Captured variable without a corresponding field" ); |
190 | return FD->getType()->isReferenceType(); |
191 | } |
192 | |
193 | static bool isFoundInStmt(const Stmt *S, const VarDecl *VD) { |
194 | if (const DeclStmt *DS = dyn_cast<DeclStmt>(Val: S)) { |
195 | for (const Decl *D : DS->decls()) { |
196 | // Once we reach the declaration of the VD we can return. |
197 | if (D->getCanonicalDecl() == VD) |
198 | return true; |
199 | } |
200 | } |
201 | return false; |
202 | } |
203 | |
204 | // A loop counter is considered escaped if: |
205 | // case 1: It is a global variable. |
206 | // case 2: It is a reference parameter or a reference capture. |
207 | // case 3: It is assigned to a non-const reference variable or parameter. |
208 | // case 4: Has its address taken. |
209 | static bool isPossiblyEscaped(ExplodedNode *N, const DeclRefExpr *DR) { |
210 | const VarDecl *VD = cast<VarDecl>(DR->getDecl()->getCanonicalDecl()); |
211 | assert(VD); |
212 | // Case 1: |
213 | if (VD->hasGlobalStorage()) |
214 | return true; |
215 | |
216 | const bool IsRefParamOrCapture = |
217 | isa<ParmVarDecl>(Val: VD) || DR->refersToEnclosingVariableOrCapture(); |
218 | // Case 2: |
219 | if ((DR->refersToEnclosingVariableOrCapture() && |
220 | isCapturedByReference(N, DR)) || |
221 | (IsRefParamOrCapture && VD->getType()->isReferenceType())) |
222 | return true; |
223 | |
224 | while (!N->pred_empty()) { |
225 | // FIXME: getStmtForDiagnostics() does nasty things in order to provide |
226 | // a valid statement for body farms, do we need this behavior here? |
227 | const Stmt *S = N->getStmtForDiagnostics(); |
228 | if (!S) { |
229 | N = N->getFirstPred(); |
230 | continue; |
231 | } |
232 | |
233 | if (isFoundInStmt(S, VD)) { |
234 | return false; |
235 | } |
236 | |
237 | if (const auto *SS = dyn_cast<SwitchStmt>(Val: S)) { |
238 | if (const auto *CST = dyn_cast<CompoundStmt>(Val: SS->getBody())) { |
239 | for (const Stmt *CB : CST->body()) { |
240 | if (isFoundInStmt(S: CB, VD)) |
241 | return false; |
242 | } |
243 | } |
244 | } |
245 | |
246 | // Check the usage of the pass-by-ref function calls and adress-of operator |
247 | // on VD and reference initialized by VD. |
248 | ASTContext &ASTCtx = |
249 | N->getLocationContext()->getAnalysisDeclContext()->getASTContext(); |
250 | // Case 3 and 4: |
251 | auto Match = |
252 | match(stmt(anyOf(callByRef(equalsNode(VD)), getAddrTo(equalsNode(VD)), |
253 | assignedToRef(equalsNode(VD)))), |
254 | *S, ASTCtx); |
255 | if (!Match.empty()) |
256 | return true; |
257 | |
258 | N = N->getFirstPred(); |
259 | } |
260 | |
261 | // Reference parameter and reference capture will not be found. |
262 | if (IsRefParamOrCapture) |
263 | return false; |
264 | |
265 | llvm_unreachable("Reached root without finding the declaration of VD" ); |
266 | } |
267 | |
268 | bool shouldCompletelyUnroll(const Stmt *LoopStmt, ASTContext &ASTCtx, |
269 | ExplodedNode *Pred, unsigned &maxStep) { |
270 | |
271 | if (!isLoopStmt(S: LoopStmt)) |
272 | return false; |
273 | |
274 | // TODO: Match the cases where the bound is not a concrete literal but an |
275 | // integer with known value |
276 | auto Matches = match(Matcher: forLoopMatcher(), Node: *LoopStmt, Context&: ASTCtx); |
277 | if (Matches.empty()) |
278 | return false; |
279 | |
280 | const auto *CounterVarRef = Matches[0].getNodeAs<DeclRefExpr>(ID: "initVarRef" ); |
281 | llvm::APInt BoundNum = |
282 | Matches[0].getNodeAs<IntegerLiteral>(ID: "boundNum" )->getValue(); |
283 | llvm::APInt InitNum = |
284 | Matches[0].getNodeAs<IntegerLiteral>(ID: "initNum" )->getValue(); |
285 | auto CondOp = Matches[0].getNodeAs<BinaryOperator>(ID: "conditionOperator" ); |
286 | if (InitNum.getBitWidth() != BoundNum.getBitWidth()) { |
287 | InitNum = InitNum.zext(width: BoundNum.getBitWidth()); |
288 | BoundNum = BoundNum.zext(width: InitNum.getBitWidth()); |
289 | } |
290 | |
291 | if (CondOp->getOpcode() == BO_GE || CondOp->getOpcode() == BO_LE) |
292 | maxStep = (BoundNum - InitNum + 1).abs().getZExtValue(); |
293 | else |
294 | maxStep = (BoundNum - InitNum).abs().getZExtValue(); |
295 | |
296 | // Check if the counter of the loop is not escaped before. |
297 | return !isPossiblyEscaped(N: Pred, DR: CounterVarRef); |
298 | } |
299 | |
300 | bool madeNewBranch(ExplodedNode *N, const Stmt *LoopStmt) { |
301 | const Stmt *S = nullptr; |
302 | while (!N->pred_empty()) { |
303 | if (N->succ_size() > 1) |
304 | return true; |
305 | |
306 | ProgramPoint P = N->getLocation(); |
307 | if (std::optional<BlockEntrance> BE = P.getAs<BlockEntrance>()) |
308 | S = BE->getBlock()->getTerminatorStmt(); |
309 | |
310 | if (S == LoopStmt) |
311 | return false; |
312 | |
313 | N = N->getFirstPred(); |
314 | } |
315 | |
316 | llvm_unreachable("Reached root without encountering the previous step" ); |
317 | } |
318 | |
319 | // updateLoopStack is called on every basic block, therefore it needs to be fast |
320 | ProgramStateRef updateLoopStack(const Stmt *LoopStmt, ASTContext &ASTCtx, |
321 | ExplodedNode *Pred, unsigned maxVisitOnPath) { |
322 | auto State = Pred->getState(); |
323 | auto LCtx = Pred->getLocationContext(); |
324 | |
325 | if (!isLoopStmt(S: LoopStmt)) |
326 | return State; |
327 | |
328 | auto LS = State->get<LoopStack>(); |
329 | if (!LS.isEmpty() && LoopStmt == LS.getHead().getLoopStmt() && |
330 | LCtx == LS.getHead().getLocationContext()) { |
331 | if (LS.getHead().isUnrolled() && madeNewBranch(N: Pred, LoopStmt)) { |
332 | State = State->set<LoopStack>(LS.getTail()); |
333 | State = State->add<LoopStack>( |
334 | K: LoopState::getNormal(S: LoopStmt, L: LCtx, N: maxVisitOnPath)); |
335 | } |
336 | return State; |
337 | } |
338 | unsigned maxStep; |
339 | if (!shouldCompletelyUnroll(LoopStmt, ASTCtx, Pred, maxStep)) { |
340 | State = State->add<LoopStack>( |
341 | K: LoopState::getNormal(S: LoopStmt, L: LCtx, N: maxVisitOnPath)); |
342 | return State; |
343 | } |
344 | |
345 | unsigned outerStep = (LS.isEmpty() ? 1 : LS.getHead().getMaxStep()); |
346 | |
347 | unsigned innerMaxStep = maxStep * outerStep; |
348 | if (innerMaxStep > MAXIMUM_STEP_UNROLLED) |
349 | State = State->add<LoopStack>( |
350 | K: LoopState::getNormal(S: LoopStmt, L: LCtx, N: maxVisitOnPath)); |
351 | else |
352 | State = State->add<LoopStack>( |
353 | K: LoopState::getUnrolled(S: LoopStmt, L: LCtx, N: innerMaxStep)); |
354 | return State; |
355 | } |
356 | |
357 | bool isUnrolledState(ProgramStateRef State) { |
358 | auto LS = State->get<LoopStack>(); |
359 | if (LS.isEmpty() || !LS.getHead().isUnrolled()) |
360 | return false; |
361 | return true; |
362 | } |
363 | } |
364 | } |
365 | |