| 1 | //== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file defines a basic region store model. In this model, we do have field |
| 10 | // sensitivity. But we assume nothing about the heap shape. So recursive data |
| 11 | // structures are largely ignored. Basically we do 1-limiting analysis. |
| 12 | // Parameter pointers are assumed with no aliasing. Pointee objects of |
| 13 | // parameters are created lazily. |
| 14 | // |
| 15 | //===----------------------------------------------------------------------===// |
| 16 | |
| 17 | #include "clang/AST/Attr.h" |
| 18 | #include "clang/AST/CharUnits.h" |
| 19 | #include "clang/ASTMatchers/ASTMatchFinder.h" |
| 20 | #include "clang/Analysis/AnalysisDeclContext.h" |
| 21 | #include "clang/Basic/JsonSupport.h" |
| 22 | #include "clang/Basic/TargetInfo.h" |
| 23 | #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h" |
| 24 | #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" |
| 25 | #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" |
| 26 | #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" |
| 27 | #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" |
| 28 | #include "llvm/ADT/ImmutableMap.h" |
| 29 | #include "llvm/ADT/STLExtras.h" |
| 30 | #include "llvm/Support/TimeProfiler.h" |
| 31 | #include "llvm/Support/raw_ostream.h" |
| 32 | #include <limits> |
| 33 | #include <optional> |
| 34 | #include <utility> |
| 35 | |
| 36 | using namespace clang; |
| 37 | using namespace ento; |
| 38 | |
| 39 | //===----------------------------------------------------------------------===// |
| 40 | // Representation of binding keys. |
| 41 | //===----------------------------------------------------------------------===// |
| 42 | |
| 43 | namespace { |
| 44 | class BindingKey { |
| 45 | public: |
| 46 | enum Kind { Default = 0x0, Direct = 0x1 }; |
| 47 | private: |
| 48 | enum { Symbolic = 0x2 }; |
| 49 | |
| 50 | llvm::PointerIntPair<const MemRegion *, 2> P; |
| 51 | uint64_t Data; |
| 52 | |
| 53 | /// Create a key for a binding to region \p r, which has a symbolic offset |
| 54 | /// from region \p Base. |
| 55 | explicit BindingKey(const SubRegion *r, const SubRegion *Base, Kind k) |
| 56 | : P(r, k | Symbolic), Data(reinterpret_cast<uintptr_t>(Base)) { |
| 57 | assert(r && Base && "Must have known regions." ); |
| 58 | assert(getConcreteOffsetRegion() == Base && "Failed to store base region" ); |
| 59 | } |
| 60 | |
| 61 | /// Create a key for a binding at \p offset from base region \p r. |
| 62 | explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k) |
| 63 | : P(r, k), Data(offset) { |
| 64 | assert(r && "Must have known regions." ); |
| 65 | assert(getOffset() == offset && "Failed to store offset" ); |
| 66 | assert((r == r->getBaseRegion() || |
| 67 | isa<ObjCIvarRegion, CXXDerivedObjectRegion>(r)) && |
| 68 | "Not a base" ); |
| 69 | } |
| 70 | |
| 71 | public: |
| 72 | bool isDirect() const { return P.getInt() & Direct; } |
| 73 | bool isDefault() const { return !isDirect(); } |
| 74 | bool hasSymbolicOffset() const { return P.getInt() & Symbolic; } |
| 75 | |
| 76 | const MemRegion *getRegion() const { return P.getPointer(); } |
| 77 | uint64_t getOffset() const { |
| 78 | assert(!hasSymbolicOffset()); |
| 79 | return Data; |
| 80 | } |
| 81 | |
| 82 | const SubRegion *getConcreteOffsetRegion() const { |
| 83 | assert(hasSymbolicOffset()); |
| 84 | return reinterpret_cast<const SubRegion *>(static_cast<uintptr_t>(Data)); |
| 85 | } |
| 86 | |
| 87 | const MemRegion *getBaseRegion() const { |
| 88 | if (hasSymbolicOffset()) |
| 89 | return getConcreteOffsetRegion()->getBaseRegion(); |
| 90 | return getRegion()->getBaseRegion(); |
| 91 | } |
| 92 | |
| 93 | void Profile(llvm::FoldingSetNodeID& ID) const { |
| 94 | ID.AddPointer(Ptr: P.getOpaqueValue()); |
| 95 | ID.AddInteger(I: Data); |
| 96 | } |
| 97 | |
| 98 | static BindingKey Make(const MemRegion *R, Kind k); |
| 99 | |
| 100 | bool operator<(const BindingKey &X) const { |
| 101 | if (P.getOpaqueValue() < X.P.getOpaqueValue()) |
| 102 | return true; |
| 103 | if (P.getOpaqueValue() > X.P.getOpaqueValue()) |
| 104 | return false; |
| 105 | return Data < X.Data; |
| 106 | } |
| 107 | |
| 108 | bool operator==(const BindingKey &X) const { |
| 109 | return P.getOpaqueValue() == X.P.getOpaqueValue() && |
| 110 | Data == X.Data; |
| 111 | } |
| 112 | |
| 113 | LLVM_DUMP_METHOD void dump() const; |
| 114 | }; |
| 115 | |
| 116 | std::string locDescr(Loc L) { |
| 117 | std::string S; |
| 118 | llvm::raw_string_ostream OS(S); |
| 119 | L.dumpToStream(Out&: OS); |
| 120 | return OS.str(); |
| 121 | } |
| 122 | } // end anonymous namespace |
| 123 | |
| 124 | BindingKey BindingKey::Make(const MemRegion *R, Kind k) { |
| 125 | const RegionOffset &RO = R->getAsOffset(); |
| 126 | if (RO.hasSymbolicOffset()) |
| 127 | return BindingKey(cast<SubRegion>(Val: R), cast<SubRegion>(Val: RO.getRegion()), k); |
| 128 | |
| 129 | return BindingKey(RO.getRegion(), RO.getOffset(), k); |
| 130 | } |
| 131 | |
| 132 | namespace llvm { |
| 133 | static inline raw_ostream &operator<<(raw_ostream &Out, BindingKey K) { |
| 134 | Out << "\"kind\": \"" << (K.isDirect() ? "Direct" : "Default" ) |
| 135 | << "\", \"offset\": " ; |
| 136 | |
| 137 | if (!K.hasSymbolicOffset()) |
| 138 | Out << K.getOffset(); |
| 139 | else |
| 140 | Out << "null" ; |
| 141 | |
| 142 | return Out; |
| 143 | } |
| 144 | |
| 145 | } // namespace llvm |
| 146 | |
| 147 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 148 | void BindingKey::dump() const { llvm::errs() << *this; } |
| 149 | #endif |
| 150 | |
| 151 | //===----------------------------------------------------------------------===// |
| 152 | // Actual Store type. |
| 153 | //===----------------------------------------------------------------------===// |
| 154 | |
| 155 | typedef llvm::ImmutableMap<BindingKey, SVal> ClusterBindings; |
| 156 | typedef llvm::ImmutableMapRef<BindingKey, SVal> ClusterBindingsRef; |
| 157 | typedef std::pair<BindingKey, SVal> BindingPair; |
| 158 | |
| 159 | typedef llvm::ImmutableMap<const MemRegion *, ClusterBindings> |
| 160 | RegionBindings; |
| 161 | |
| 162 | namespace { |
| 163 | class RegionBindingsRef : public llvm::ImmutableMapRef<const MemRegion *, |
| 164 | ClusterBindings> { |
| 165 | ClusterBindings::Factory *CBFactory; |
| 166 | |
| 167 | // This flag indicates whether the current bindings are within the analysis |
| 168 | // that has started from main(). It affects how we perform loads from |
| 169 | // global variables that have initializers: if we have observed the |
| 170 | // program execution from the start and we know that these variables |
| 171 | // have not been overwritten yet, we can be sure that their initializers |
| 172 | // are still relevant. This flag never gets changed when the bindings are |
| 173 | // updated, so it could potentially be moved into RegionStoreManager |
| 174 | // (as if it's the same bindings but a different loading procedure) |
| 175 | // however that would have made the manager needlessly stateful. |
| 176 | bool IsMainAnalysis; |
| 177 | |
| 178 | public: |
| 179 | typedef llvm::ImmutableMapRef<const MemRegion *, ClusterBindings> |
| 180 | ParentTy; |
| 181 | |
| 182 | RegionBindingsRef(ClusterBindings::Factory &CBFactory, |
| 183 | const RegionBindings::TreeTy *T, |
| 184 | RegionBindings::TreeTy::Factory *F, bool IsMainAnalysis) |
| 185 | : RegionBindingsRef(ParentTy(T, F), CBFactory, IsMainAnalysis) {} |
| 186 | |
| 187 | RegionBindingsRef(const ParentTy &P, ClusterBindings::Factory &CBFactory, |
| 188 | bool IsMainAnalysis) |
| 189 | : ParentTy(P), CBFactory(&CBFactory), IsMainAnalysis(IsMainAnalysis) {} |
| 190 | |
| 191 | RegionBindingsRef removeCluster(const MemRegion *BaseRegion) const { |
| 192 | return RegionBindingsRef(ParentTy::remove(K: BaseRegion), *CBFactory, |
| 193 | IsMainAnalysis); |
| 194 | } |
| 195 | |
| 196 | RegionBindingsRef addBinding(BindingKey K, SVal V) const; |
| 197 | |
| 198 | RegionBindingsRef addBinding(const MemRegion *R, |
| 199 | BindingKey::Kind k, SVal V) const; |
| 200 | |
| 201 | const SVal *lookup(BindingKey K) const; |
| 202 | const SVal *lookup(const MemRegion *R, BindingKey::Kind k) const; |
| 203 | using llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>::lookup; |
| 204 | |
| 205 | RegionBindingsRef removeBinding(BindingKey K); |
| 206 | |
| 207 | RegionBindingsRef removeBinding(const MemRegion *R, |
| 208 | BindingKey::Kind k); |
| 209 | |
| 210 | RegionBindingsRef removeBinding(const MemRegion *R) { |
| 211 | return removeBinding(R, k: BindingKey::Direct). |
| 212 | removeBinding(R, k: BindingKey::Default); |
| 213 | } |
| 214 | |
| 215 | std::optional<SVal> getDirectBinding(const MemRegion *R) const; |
| 216 | |
| 217 | /// getDefaultBinding - Returns an SVal* representing an optional default |
| 218 | /// binding associated with a region and its subregions. |
| 219 | std::optional<SVal> getDefaultBinding(const MemRegion *R) const; |
| 220 | |
| 221 | /// Return the internal tree as a Store. |
| 222 | Store asStore() const { |
| 223 | llvm::PointerIntPair<Store, 1, bool> Ptr = { |
| 224 | asImmutableMap().getRootWithoutRetain(), IsMainAnalysis}; |
| 225 | return reinterpret_cast<Store>(Ptr.getOpaqueValue()); |
| 226 | } |
| 227 | |
| 228 | bool isMainAnalysis() const { |
| 229 | return IsMainAnalysis; |
| 230 | } |
| 231 | |
| 232 | void printJson(raw_ostream &Out, const char *NL = "\n" , |
| 233 | unsigned int Space = 0, bool IsDot = false) const { |
| 234 | using namespace llvm; |
| 235 | DenseMap<const MemRegion *, std::string> StringifyCache; |
| 236 | auto ToString = [&StringifyCache](const MemRegion *R) { |
| 237 | auto [Place, Inserted] = StringifyCache.try_emplace(Key: R); |
| 238 | if (!Inserted) |
| 239 | return Place->second; |
| 240 | std::string Res; |
| 241 | raw_string_ostream OS(Res); |
| 242 | OS << R; |
| 243 | Place->second = Res; |
| 244 | return Res; |
| 245 | }; |
| 246 | |
| 247 | using Cluster = |
| 248 | std::pair<const MemRegion *, ImmutableMap<BindingKey, SVal>>; |
| 249 | using Binding = std::pair<BindingKey, SVal>; |
| 250 | |
| 251 | const auto MemSpaceBeforeRegionName = [&ToString](const Cluster *L, |
| 252 | const Cluster *R) { |
| 253 | if (isa<MemSpaceRegion>(Val: L->first) && !isa<MemSpaceRegion>(Val: R->first)) |
| 254 | return true; |
| 255 | if (!isa<MemSpaceRegion>(Val: L->first) && isa<MemSpaceRegion>(Val: R->first)) |
| 256 | return false; |
| 257 | return ToString(L->first) < ToString(R->first); |
| 258 | }; |
| 259 | |
| 260 | const auto SymbolicBeforeOffset = [&ToString](const BindingKey &L, |
| 261 | const BindingKey &R) { |
| 262 | if (L.hasSymbolicOffset() && !R.hasSymbolicOffset()) |
| 263 | return true; |
| 264 | if (!L.hasSymbolicOffset() && R.hasSymbolicOffset()) |
| 265 | return false; |
| 266 | if (L.hasSymbolicOffset() && R.hasSymbolicOffset()) |
| 267 | return ToString(L.getRegion()) < ToString(R.getRegion()); |
| 268 | return L.getOffset() < R.getOffset(); |
| 269 | }; |
| 270 | |
| 271 | const auto DefaultBindingBeforeDirectBindings = |
| 272 | [&SymbolicBeforeOffset](const Binding *LPtr, const Binding *RPtr) { |
| 273 | const BindingKey &L = LPtr->first; |
| 274 | const BindingKey &R = RPtr->first; |
| 275 | if (L.isDefault() && !R.isDefault()) |
| 276 | return true; |
| 277 | if (!L.isDefault() && R.isDefault()) |
| 278 | return false; |
| 279 | assert(L.isDefault() == R.isDefault()); |
| 280 | return SymbolicBeforeOffset(L, R); |
| 281 | }; |
| 282 | |
| 283 | const auto AddrOf = [](const auto &Item) { return &Item; }; |
| 284 | |
| 285 | std::vector<const Cluster *> SortedClusters; |
| 286 | SortedClusters.reserve(n: std::distance(first: begin(), last: end())); |
| 287 | append_range(C&: SortedClusters, R: map_range(C: *this, F: AddrOf)); |
| 288 | llvm::sort(C&: SortedClusters, Comp: MemSpaceBeforeRegionName); |
| 289 | |
| 290 | for (auto [Idx, C] : llvm::enumerate(First&: SortedClusters)) { |
| 291 | const auto &[BaseRegion, Bindings] = *C; |
| 292 | Indent(Out, Space, IsDot) |
| 293 | << "{ \"cluster\": \"" << BaseRegion << "\", \"pointer\": \"" |
| 294 | << (const void *)BaseRegion << "\", \"items\": [" << NL; |
| 295 | |
| 296 | std::vector<const Binding *> SortedBindings; |
| 297 | SortedBindings.reserve(n: std::distance(first: Bindings.begin(), last: Bindings.end())); |
| 298 | append_range(C&: SortedBindings, R: map_range(C: Bindings, F: AddrOf)); |
| 299 | llvm::sort(C&: SortedBindings, Comp: DefaultBindingBeforeDirectBindings); |
| 300 | |
| 301 | ++Space; |
| 302 | for (auto [Idx, B] : llvm::enumerate(First&: SortedBindings)) { |
| 303 | const auto &[Key, Value] = *B; |
| 304 | Indent(Out, Space, IsDot) << "{ " << Key << ", \"value\": " ; |
| 305 | Value.printJson(Out, /*AddQuotes=*/true); |
| 306 | Out << " }" ; |
| 307 | if (Idx != SortedBindings.size() - 1) |
| 308 | Out << ','; |
| 309 | Out << NL; |
| 310 | } |
| 311 | --Space; |
| 312 | Indent(Out, Space, IsDot) << "]}" ; |
| 313 | if (Idx != SortedClusters.size() - 1) |
| 314 | Out << ','; |
| 315 | Out << NL; |
| 316 | } |
| 317 | } |
| 318 | |
| 319 | LLVM_DUMP_METHOD void dump() const { printJson(Out&: llvm::errs()); } |
| 320 | |
| 321 | protected: |
| 322 | RegionBindingsRef |
| 323 | commitBindingsToCluster(const MemRegion *BaseRegion, |
| 324 | const ClusterBindings &Bindings) const; |
| 325 | }; |
| 326 | } // end anonymous namespace |
| 327 | |
| 328 | /// This class represents the same as \c RegionBindingsRef, but with a limit on |
| 329 | /// the number of bindings that can be added. |
| 330 | class LimitedRegionBindingsRef : public RegionBindingsRef { |
| 331 | public: |
| 332 | LimitedRegionBindingsRef(RegionBindingsRef Base, |
| 333 | SmallVectorImpl<SVal> &EscapedValuesDuringBind, |
| 334 | std::optional<unsigned> BindingsLeft) |
| 335 | : RegionBindingsRef(Base), |
| 336 | EscapedValuesDuringBind(&EscapedValuesDuringBind), |
| 337 | BindingsLeft(BindingsLeft) {} |
| 338 | |
| 339 | bool hasExhaustedBindingLimit() const { |
| 340 | return BindingsLeft.has_value() && BindingsLeft.value() == 0; |
| 341 | } |
| 342 | |
| 343 | LimitedRegionBindingsRef withValuesEscaped(SVal V) const { |
| 344 | EscapedValuesDuringBind->push_back(Elt: V); |
| 345 | return *this; |
| 346 | } |
| 347 | |
| 348 | LimitedRegionBindingsRef |
| 349 | withValuesEscaped(nonloc::CompoundVal::iterator Begin, |
| 350 | nonloc::CompoundVal::iterator End) const { |
| 351 | for (SVal V : llvm::make_range(x: Begin, y: End)) |
| 352 | withValuesEscaped(V); |
| 353 | return *this; |
| 354 | } |
| 355 | |
| 356 | LimitedRegionBindingsRef |
| 357 | addWithoutDecreasingLimit(const MemRegion *BaseRegion, |
| 358 | data_type_ref BindingKeyAndValue) const { |
| 359 | return LimitedRegionBindingsRef{RegionBindingsRef::commitBindingsToCluster( |
| 360 | BaseRegion, Bindings: BindingKeyAndValue), |
| 361 | *EscapedValuesDuringBind, BindingsLeft}; |
| 362 | } |
| 363 | |
| 364 | LimitedRegionBindingsRef removeCluster(const MemRegion *BaseRegion) const { |
| 365 | return LimitedRegionBindingsRef{ |
| 366 | RegionBindingsRef::removeCluster(BaseRegion), *EscapedValuesDuringBind, |
| 367 | BindingsLeft}; |
| 368 | } |
| 369 | |
| 370 | LimitedRegionBindingsRef addBinding(BindingKey K, SVal V) const { |
| 371 | std::optional<unsigned> NewBindingsLeft = BindingsLeft; |
| 372 | if (NewBindingsLeft.has_value()) { |
| 373 | assert(NewBindingsLeft.value() != 0); |
| 374 | NewBindingsLeft.value() -= 1; |
| 375 | |
| 376 | // If we just exhausted the binding limit, highjack |
| 377 | // this bind call for the default binding. |
| 378 | if (NewBindingsLeft.value() == 0) { |
| 379 | withValuesEscaped(V); |
| 380 | K = BindingKey::Make(R: K.getRegion(), k: BindingKey::Default); |
| 381 | V = UnknownVal(); |
| 382 | } |
| 383 | } |
| 384 | |
| 385 | return LimitedRegionBindingsRef{RegionBindingsRef::addBinding(K, V), |
| 386 | *EscapedValuesDuringBind, NewBindingsLeft}; |
| 387 | } |
| 388 | |
| 389 | LimitedRegionBindingsRef addBinding(const MemRegion *R, BindingKey::Kind k, |
| 390 | SVal V) const { |
| 391 | return addBinding(K: BindingKey::Make(R, k), V); |
| 392 | } |
| 393 | |
| 394 | private: |
| 395 | SmallVectorImpl<SVal> *EscapedValuesDuringBind; // nonnull |
| 396 | std::optional<unsigned> BindingsLeft; |
| 397 | }; |
| 398 | |
| 399 | typedef const RegionBindingsRef& RegionBindingsConstRef; |
| 400 | typedef const LimitedRegionBindingsRef &LimitedRegionBindingsConstRef; |
| 401 | |
| 402 | std::optional<SVal> |
| 403 | RegionBindingsRef::getDirectBinding(const MemRegion *R) const { |
| 404 | const SVal *V = lookup(R, k: BindingKey::Direct); |
| 405 | return V ? std::optional<SVal>(*V) : std::nullopt; |
| 406 | } |
| 407 | |
| 408 | std::optional<SVal> |
| 409 | RegionBindingsRef::getDefaultBinding(const MemRegion *R) const { |
| 410 | const SVal *V = lookup(R, k: BindingKey::Default); |
| 411 | return V ? std::optional<SVal>(*V) : std::nullopt; |
| 412 | } |
| 413 | |
| 414 | RegionBindingsRef RegionBindingsRef::commitBindingsToCluster( |
| 415 | const MemRegion *BaseRegion, const ClusterBindings &Bindings) const { |
| 416 | return RegionBindingsRef(ParentTy::add(K: BaseRegion, D: Bindings), *CBFactory, |
| 417 | IsMainAnalysis); |
| 418 | } |
| 419 | |
| 420 | RegionBindingsRef RegionBindingsRef::addBinding(BindingKey K, SVal V) const { |
| 421 | const MemRegion *Base = K.getBaseRegion(); |
| 422 | |
| 423 | const ClusterBindings *ExistingCluster = lookup(K: Base); |
| 424 | ClusterBindings Bindings = |
| 425 | (ExistingCluster ? *ExistingCluster : CBFactory->getEmptyMap()); |
| 426 | Bindings = CBFactory->add(Old: Bindings, K, D: V); |
| 427 | return commitBindingsToCluster(BaseRegion: Base, Bindings); |
| 428 | } |
| 429 | |
| 430 | RegionBindingsRef RegionBindingsRef::addBinding(const MemRegion *R, |
| 431 | BindingKey::Kind k, |
| 432 | SVal V) const { |
| 433 | return addBinding(K: BindingKey::Make(R, k), V); |
| 434 | } |
| 435 | |
| 436 | const SVal *RegionBindingsRef::lookup(BindingKey K) const { |
| 437 | const ClusterBindings *Cluster = lookup(K: K.getBaseRegion()); |
| 438 | if (!Cluster) |
| 439 | return nullptr; |
| 440 | return Cluster->lookup(K); |
| 441 | } |
| 442 | |
| 443 | const SVal *RegionBindingsRef::lookup(const MemRegion *R, |
| 444 | BindingKey::Kind k) const { |
| 445 | return lookup(K: BindingKey::Make(R, k)); |
| 446 | } |
| 447 | |
| 448 | RegionBindingsRef RegionBindingsRef::removeBinding(BindingKey K) { |
| 449 | const MemRegion *Base = K.getBaseRegion(); |
| 450 | const ClusterBindings *Cluster = lookup(K: Base); |
| 451 | if (!Cluster) |
| 452 | return *this; |
| 453 | |
| 454 | ClusterBindings NewCluster = CBFactory->remove(Old: *Cluster, K); |
| 455 | if (NewCluster.isEmpty()) |
| 456 | return removeCluster(BaseRegion: Base); |
| 457 | return commitBindingsToCluster(BaseRegion: Base, Bindings: NewCluster); |
| 458 | } |
| 459 | |
| 460 | RegionBindingsRef RegionBindingsRef::removeBinding(const MemRegion *R, |
| 461 | BindingKey::Kind k){ |
| 462 | return removeBinding(K: BindingKey::Make(R, k)); |
| 463 | } |
| 464 | |
| 465 | //===----------------------------------------------------------------------===// |
| 466 | // Main RegionStore logic. |
| 467 | //===----------------------------------------------------------------------===// |
| 468 | |
| 469 | namespace { |
| 470 | class InvalidateRegionsWorker; |
| 471 | |
| 472 | class RegionStoreManager : public StoreManager { |
| 473 | public: |
| 474 | RegionBindings::Factory RBFactory; |
| 475 | mutable ClusterBindings::Factory CBFactory; |
| 476 | |
| 477 | typedef std::vector<SVal> SValListTy; |
| 478 | private: |
| 479 | typedef llvm::DenseMap<const LazyCompoundValData *, |
| 480 | SValListTy> LazyBindingsMapTy; |
| 481 | LazyBindingsMapTy LazyBindingsMap; |
| 482 | |
| 483 | /// The largest number of fields a struct can have and still be |
| 484 | /// considered "small". |
| 485 | /// |
| 486 | /// This is currently used to decide whether or not it is worth "forcing" a |
| 487 | /// LazyCompoundVal on bind. |
| 488 | /// |
| 489 | /// This is controlled by 'region-store-small-struct-limit' option. |
| 490 | /// To disable all small-struct-dependent behavior, set the option to "0". |
| 491 | const unsigned SmallStructLimit; |
| 492 | |
| 493 | /// The largest number of element an array can have and still be |
| 494 | /// considered "small". |
| 495 | /// |
| 496 | /// This is currently used to decide whether or not it is worth "forcing" a |
| 497 | /// LazyCompoundVal on bind. |
| 498 | /// |
| 499 | /// This is controlled by 'region-store-small-struct-limit' option. |
| 500 | /// To disable all small-struct-dependent behavior, set the option to "0". |
| 501 | const unsigned SmallArrayLimit; |
| 502 | |
| 503 | /// The number of bindings a single bind operation can scatter into. |
| 504 | /// For example, binding the initializer-list of an array would recurse and |
| 505 | /// bind all the individual array elements, potentially causing scalability |
| 506 | /// issues. Nullopt if the limit is disabled. |
| 507 | const std::optional<unsigned> RegionStoreMaxBindingFanOutPlusOne; |
| 508 | |
| 509 | /// A helper used to populate the work list with the given set of |
| 510 | /// regions. |
| 511 | void populateWorkList(InvalidateRegionsWorker &W, |
| 512 | ArrayRef<SVal> Values, |
| 513 | InvalidatedRegions *TopLevelRegions); |
| 514 | |
| 515 | const AnalyzerOptions &getOptions() { |
| 516 | return StateMgr.getOwningEngine().getAnalysisManager().options; |
| 517 | } |
| 518 | |
| 519 | public: |
| 520 | RegionStoreManager(ProgramStateManager &mgr) |
| 521 | : StoreManager(mgr), RBFactory(mgr.getAllocator()), |
| 522 | CBFactory(mgr.getAllocator()), |
| 523 | SmallStructLimit(getOptions().RegionStoreSmallStructLimit), |
| 524 | SmallArrayLimit(getOptions().RegionStoreSmallArrayLimit), |
| 525 | RegionStoreMaxBindingFanOutPlusOne([&]() -> std::optional<unsigned> { |
| 526 | unsigned FanOut = getOptions().RegionStoreMaxBindingFanOut; |
| 527 | assert(FanOut != std::numeric_limits<unsigned>::max()); |
| 528 | if (FanOut == 0) |
| 529 | return std::nullopt; |
| 530 | return FanOut + 1 /*for the default binding*/; |
| 531 | }()) {} |
| 532 | |
| 533 | /// setImplicitDefaultValue - Set the default binding for the provided |
| 534 | /// MemRegion to the value implicitly defined for compound literals when |
| 535 | /// the value is not specified. |
| 536 | LimitedRegionBindingsRef |
| 537 | setImplicitDefaultValue(LimitedRegionBindingsConstRef B, const MemRegion *R, |
| 538 | QualType T); |
| 539 | |
| 540 | /// ArrayToPointer - Emulates the "decay" of an array to a pointer |
| 541 | /// type. 'Array' represents the lvalue of the array being decayed |
| 542 | /// to a pointer, and the returned SVal represents the decayed |
| 543 | /// version of that lvalue (i.e., a pointer to the first element of |
| 544 | /// the array). This is called by ExprEngine when evaluating |
| 545 | /// casts from arrays to pointers. |
| 546 | SVal ArrayToPointer(Loc Array, QualType ElementTy) override; |
| 547 | |
| 548 | /// Creates the Store that correctly represents memory contents before |
| 549 | /// the beginning of the analysis of the given top-level stack frame. |
| 550 | StoreRef getInitialStore(const LocationContext *InitLoc) override { |
| 551 | bool IsMainAnalysis = false; |
| 552 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: InitLoc->getDecl())) |
| 553 | IsMainAnalysis = FD->isMain() && !Ctx.getLangOpts().CPlusPlus; |
| 554 | return StoreRef(RegionBindingsRef(RegionBindingsRef::ParentTy( |
| 555 | RBFactory.getEmptyMap(), RBFactory), |
| 556 | CBFactory, IsMainAnalysis) |
| 557 | .asStore(), |
| 558 | *this); |
| 559 | } |
| 560 | |
| 561 | //===-------------------------------------------------------------------===// |
| 562 | // Binding values to regions. |
| 563 | //===-------------------------------------------------------------------===// |
| 564 | RegionBindingsRef |
| 565 | invalidateGlobalRegion(MemRegion::Kind K, ConstCFGElementRef Elem, |
| 566 | unsigned Count, const LocationContext *LCtx, |
| 567 | RegionBindingsRef B, InvalidatedRegions *Invalidated); |
| 568 | |
| 569 | StoreRef invalidateRegions(Store store, ArrayRef<SVal> Values, |
| 570 | ConstCFGElementRef Elem, unsigned Count, |
| 571 | const LocationContext *LCtx, const CallEvent *Call, |
| 572 | InvalidatedSymbols &IS, |
| 573 | RegionAndSymbolInvalidationTraits &ITraits, |
| 574 | InvalidatedRegions *Invalidated, |
| 575 | InvalidatedRegions *InvalidatedTopLevel) override; |
| 576 | |
| 577 | bool scanReachableSymbols(Store S, const MemRegion *R, |
| 578 | ScanReachableSymbols &Callbacks) override; |
| 579 | |
| 580 | LimitedRegionBindingsRef |
| 581 | removeSubRegionBindings(LimitedRegionBindingsConstRef B, const SubRegion *R); |
| 582 | std::optional<SVal> |
| 583 | getConstantValFromConstArrayInitializer(RegionBindingsConstRef B, |
| 584 | const ElementRegion *R); |
| 585 | std::optional<SVal> |
| 586 | getSValFromInitListExpr(const InitListExpr *ILE, |
| 587 | const SmallVector<uint64_t, 2> &ConcreteOffsets, |
| 588 | QualType ElemT); |
| 589 | SVal getSValFromStringLiteral(const StringLiteral *SL, uint64_t Offset, |
| 590 | QualType ElemT); |
| 591 | |
| 592 | public: // Part of public interface to class. |
| 593 | BindResult Bind(Store store, Loc LV, SVal V) override { |
| 594 | llvm::SmallVector<SVal, 0> EscapedValuesDuringBind; |
| 595 | LimitedRegionBindingsRef BoundedBindings = |
| 596 | getRegionBindings(store, EscapedValuesDuringBind); |
| 597 | return BindResult{.ResultingStore: StoreRef(bind(B: BoundedBindings, LV, V).asStore(), *this), |
| 598 | .FailedToBindValues: std::move(EscapedValuesDuringBind)}; |
| 599 | } |
| 600 | |
| 601 | LimitedRegionBindingsRef bind(LimitedRegionBindingsConstRef B, Loc LV, |
| 602 | SVal V); |
| 603 | |
| 604 | // BindDefaultInitial is only used to initialize a region with |
| 605 | // a default value. |
| 606 | BindResult BindDefaultInitial(Store store, const MemRegion *R, |
| 607 | SVal V) override { |
| 608 | RegionBindingsRef B = getRegionBindings(store); |
| 609 | // Use other APIs when you have to wipe the region that was initialized |
| 610 | // earlier. |
| 611 | assert(!(B.getDefaultBinding(R) || B.getDirectBinding(R)) && |
| 612 | "Double initialization!" ); |
| 613 | B = B.addBinding(K: BindingKey::Make(R, k: BindingKey::Default), V); |
| 614 | return BindResult{ |
| 615 | .ResultingStore: StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this), .FailedToBindValues: {}}; |
| 616 | } |
| 617 | |
| 618 | // BindDefaultZero is used for zeroing constructors that may accidentally |
| 619 | // overwrite existing bindings. |
| 620 | BindResult BindDefaultZero(Store store, const MemRegion *R) override { |
| 621 | // FIXME: The offsets of empty bases can be tricky because of |
| 622 | // of the so called "empty base class optimization". |
| 623 | // If a base class has been optimized out |
| 624 | // we should not try to create a binding, otherwise we should. |
| 625 | // Unfortunately, at the moment ASTRecordLayout doesn't expose |
| 626 | // the actual sizes of the empty bases |
| 627 | // and trying to infer them from offsets/alignments |
| 628 | // seems to be error-prone and non-trivial because of the trailing padding. |
| 629 | // As a temporary mitigation we don't create bindings for empty bases. |
| 630 | if (const auto *BR = dyn_cast<CXXBaseObjectRegion>(Val: R)) |
| 631 | if (BR->getDecl()->isEmpty()) |
| 632 | return BindResult{.ResultingStore: StoreRef(store, *this), .FailedToBindValues: {}}; |
| 633 | |
| 634 | llvm::SmallVector<SVal, 0> EscapedValuesDuringBind; |
| 635 | LimitedRegionBindingsRef B = |
| 636 | getRegionBindings(store, EscapedValuesDuringBind); |
| 637 | SVal V = svalBuilder.makeZeroVal(type: Ctx.CharTy); |
| 638 | B = removeSubRegionBindings(B, R: cast<SubRegion>(Val: R)); |
| 639 | B = B.addBinding(K: BindingKey::Make(R, k: BindingKey::Default), V); |
| 640 | return BindResult{ |
| 641 | .ResultingStore: StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this), |
| 642 | .FailedToBindValues: std::move(EscapedValuesDuringBind)}; |
| 643 | } |
| 644 | |
| 645 | /// Attempt to extract the fields of \p LCV and bind them to the struct region |
| 646 | /// \p R. |
| 647 | /// |
| 648 | /// This path is used when it seems advantageous to "force" loading the values |
| 649 | /// within a LazyCompoundVal to bind memberwise to the struct region, rather |
| 650 | /// than using a Default binding at the base of the entire region. This is a |
| 651 | /// heuristic attempting to avoid building long chains of LazyCompoundVals. |
| 652 | /// |
| 653 | /// \returns The updated store bindings, or \c std::nullopt if binding |
| 654 | /// non-lazily would be too expensive. |
| 655 | std::optional<LimitedRegionBindingsRef> |
| 656 | tryBindSmallStruct(LimitedRegionBindingsConstRef B, const TypedValueRegion *R, |
| 657 | const RecordDecl *RD, nonloc::LazyCompoundVal LCV); |
| 658 | |
| 659 | /// BindStruct - Bind a compound value to a structure. |
| 660 | LimitedRegionBindingsRef bindStruct(LimitedRegionBindingsConstRef B, |
| 661 | const TypedValueRegion *R, SVal V); |
| 662 | |
| 663 | /// BindVector - Bind a compound value to a vector. |
| 664 | LimitedRegionBindingsRef bindVector(LimitedRegionBindingsConstRef B, |
| 665 | const TypedValueRegion *R, SVal V); |
| 666 | |
| 667 | std::optional<LimitedRegionBindingsRef> |
| 668 | tryBindSmallArray(LimitedRegionBindingsConstRef B, const TypedValueRegion *R, |
| 669 | const ArrayType *AT, nonloc::LazyCompoundVal LCV); |
| 670 | |
| 671 | LimitedRegionBindingsRef bindArray(LimitedRegionBindingsConstRef B, |
| 672 | const TypedValueRegion *R, SVal V); |
| 673 | |
| 674 | /// Clears out all bindings in the given region and assigns a new value |
| 675 | /// as a Default binding. |
| 676 | LimitedRegionBindingsRef bindAggregate(LimitedRegionBindingsConstRef B, |
| 677 | const TypedRegion *R, SVal DefaultVal); |
| 678 | |
| 679 | /// Create a new store with the specified binding removed. |
| 680 | /// \param ST the original store, that is the basis for the new store. |
| 681 | /// \param L the location whose binding should be removed. |
| 682 | StoreRef killBinding(Store ST, Loc L) override; |
| 683 | |
| 684 | void incrementReferenceCount(Store store) override { |
| 685 | getRegionBindings(store).manualRetain(); |
| 686 | } |
| 687 | |
| 688 | /// If the StoreManager supports it, decrement the reference count of |
| 689 | /// the specified Store object. If the reference count hits 0, the memory |
| 690 | /// associated with the object is recycled. |
| 691 | void decrementReferenceCount(Store store) override { |
| 692 | getRegionBindings(store).manualRelease(); |
| 693 | } |
| 694 | |
| 695 | bool includedInBindings(Store store, const MemRegion *region) const override; |
| 696 | |
| 697 | /// Return the value bound to specified location in a given state. |
| 698 | /// |
| 699 | /// The high level logic for this method is this: |
| 700 | /// getBinding (L) |
| 701 | /// if L has binding |
| 702 | /// return L's binding |
| 703 | /// else if L is in killset |
| 704 | /// return unknown |
| 705 | /// else |
| 706 | /// if L is on stack or heap |
| 707 | /// return undefined |
| 708 | /// else |
| 709 | /// return symbolic |
| 710 | SVal getBinding(Store S, Loc L, QualType T) override { |
| 711 | return getBinding(B: getRegionBindings(store: S), L, T); |
| 712 | } |
| 713 | |
| 714 | std::optional<SVal> getUniqueDefaultBinding(RegionBindingsConstRef B, |
| 715 | const TypedValueRegion *R) const; |
| 716 | std::optional<SVal> |
| 717 | getUniqueDefaultBinding(nonloc::LazyCompoundVal LCV) const; |
| 718 | |
| 719 | std::optional<SVal> getDefaultBinding(Store S, const MemRegion *R) override { |
| 720 | RegionBindingsRef B = getRegionBindings(store: S); |
| 721 | // Default bindings are always applied over a base region so look up the |
| 722 | // base region's default binding, otherwise the lookup will fail when R |
| 723 | // is at an offset from R->getBaseRegion(). |
| 724 | return B.getDefaultBinding(R: R->getBaseRegion()); |
| 725 | } |
| 726 | |
| 727 | SVal getBinding(RegionBindingsConstRef B, Loc L, QualType T = QualType()); |
| 728 | |
| 729 | SVal getBindingForElement(RegionBindingsConstRef B, const ElementRegion *R); |
| 730 | |
| 731 | SVal getBindingForField(RegionBindingsConstRef B, const FieldRegion *R); |
| 732 | |
| 733 | SVal getBindingForObjCIvar(RegionBindingsConstRef B, const ObjCIvarRegion *R); |
| 734 | |
| 735 | SVal getBindingForVar(RegionBindingsConstRef B, const VarRegion *R); |
| 736 | |
| 737 | SVal getBindingForLazySymbol(const TypedValueRegion *R); |
| 738 | |
| 739 | SVal getBindingForFieldOrElementCommon(RegionBindingsConstRef B, |
| 740 | const TypedValueRegion *R, |
| 741 | QualType Ty); |
| 742 | |
| 743 | SVal getLazyBinding(const SubRegion *LazyBindingRegion, |
| 744 | RegionBindingsRef LazyBinding); |
| 745 | |
| 746 | /// Get bindings for the values in a struct and return a CompoundVal, used |
| 747 | /// when doing struct copy: |
| 748 | /// struct s x, y; |
| 749 | /// x = y; |
| 750 | /// y's value is retrieved by this method. |
| 751 | SVal getBindingForStruct(RegionBindingsConstRef B, const TypedValueRegion *R); |
| 752 | SVal getBindingForArray(RegionBindingsConstRef B, const TypedValueRegion *R); |
| 753 | NonLoc createLazyBinding(RegionBindingsConstRef B, const TypedValueRegion *R); |
| 754 | |
| 755 | /// Used to lazily generate derived symbols for bindings that are defined |
| 756 | /// implicitly by default bindings in a super region. |
| 757 | /// |
| 758 | /// Note that callers may need to specially handle LazyCompoundVals, which |
| 759 | /// are returned as is in case the caller needs to treat them differently. |
| 760 | std::optional<SVal> |
| 761 | getBindingForDerivedDefaultValue(RegionBindingsConstRef B, |
| 762 | const MemRegion *superR, |
| 763 | const TypedValueRegion *R, QualType Ty); |
| 764 | |
| 765 | /// Get the state and region whose binding this region \p R corresponds to. |
| 766 | /// |
| 767 | /// If there is no lazy binding for \p R, the returned value will have a null |
| 768 | /// \c second. Note that a null pointer can represents a valid Store. |
| 769 | std::pair<Store, const SubRegion *> |
| 770 | findLazyBinding(RegionBindingsConstRef B, const SubRegion *R, |
| 771 | const SubRegion *originalRegion); |
| 772 | |
| 773 | /// Returns the cached set of interesting SVals contained within a lazy |
| 774 | /// binding. |
| 775 | /// |
| 776 | /// The precise value of "interesting" is determined for the purposes of |
| 777 | /// RegionStore's internal analysis. It must always contain all regions and |
| 778 | /// symbols, but may omit constants and other kinds of SVal. |
| 779 | /// |
| 780 | /// In contrast to compound values, LazyCompoundVals are also added |
| 781 | /// to the 'interesting values' list in addition to the child interesting |
| 782 | /// values. |
| 783 | const SValListTy &getInterestingValues(nonloc::LazyCompoundVal LCV); |
| 784 | |
| 785 | //===------------------------------------------------------------------===// |
| 786 | // State pruning. |
| 787 | //===------------------------------------------------------------------===// |
| 788 | |
| 789 | /// removeDeadBindings - Scans the RegionStore of 'state' for dead values. |
| 790 | /// It returns a new Store with these values removed. |
| 791 | StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx, |
| 792 | SymbolReaper& SymReaper) override; |
| 793 | |
| 794 | //===------------------------------------------------------------------===// |
| 795 | // Utility methods. |
| 796 | //===------------------------------------------------------------------===// |
| 797 | |
| 798 | RegionBindingsRef getRegionBindings(Store store) const { |
| 799 | llvm::PointerIntPair<Store, 1, bool> Ptr; |
| 800 | Ptr.setFromOpaqueValue(const_cast<void *>(store)); |
| 801 | return {CBFactory, |
| 802 | static_cast<const RegionBindings::TreeTy *>(Ptr.getPointer()), |
| 803 | RBFactory.getTreeFactory(), Ptr.getInt()}; |
| 804 | } |
| 805 | |
| 806 | LimitedRegionBindingsRef |
| 807 | getRegionBindings(Store store, |
| 808 | SmallVectorImpl<SVal> &EscapedValuesDuringBind) const { |
| 809 | return LimitedRegionBindingsRef( |
| 810 | getRegionBindings(store), EscapedValuesDuringBind, |
| 811 | /*BindingsLeft=*/RegionStoreMaxBindingFanOutPlusOne); |
| 812 | } |
| 813 | |
| 814 | void printJson(raw_ostream &Out, Store S, const char *NL = "\n" , |
| 815 | unsigned int Space = 0, bool IsDot = false) const override; |
| 816 | |
| 817 | void iterBindings(Store store, BindingsHandler& f) override { |
| 818 | RegionBindingsRef B = getRegionBindings(store); |
| 819 | for (const auto &[Region, Cluster] : B) { |
| 820 | for (const auto &[Key, Value] : Cluster) { |
| 821 | if (!Key.isDirect()) |
| 822 | continue; |
| 823 | if (const SubRegion *R = dyn_cast<SubRegion>(Val: Key.getRegion())) { |
| 824 | // FIXME: Possibly incorporate the offset? |
| 825 | if (!f.HandleBinding(SMgr&: *this, store, region: R, val: Value)) |
| 826 | return; |
| 827 | } |
| 828 | } |
| 829 | } |
| 830 | } |
| 831 | }; |
| 832 | |
| 833 | } // end anonymous namespace |
| 834 | |
| 835 | //===----------------------------------------------------------------------===// |
| 836 | // RegionStore creation. |
| 837 | //===----------------------------------------------------------------------===// |
| 838 | |
| 839 | std::unique_ptr<StoreManager> |
| 840 | ento::CreateRegionStoreManager(ProgramStateManager &StMgr) { |
| 841 | return std::make_unique<RegionStoreManager>(args&: StMgr); |
| 842 | } |
| 843 | |
| 844 | //===----------------------------------------------------------------------===// |
| 845 | // Region Cluster analysis. |
| 846 | //===----------------------------------------------------------------------===// |
| 847 | |
| 848 | namespace { |
| 849 | /// Used to determine which global regions are automatically included in the |
| 850 | /// initial worklist of a ClusterAnalysis. |
| 851 | enum GlobalsFilterKind { |
| 852 | /// Don't include any global regions. |
| 853 | GFK_None, |
| 854 | /// Only include system globals. |
| 855 | GFK_SystemOnly, |
| 856 | /// Include all global regions. |
| 857 | GFK_All |
| 858 | }; |
| 859 | |
| 860 | template <typename DERIVED> |
| 861 | class ClusterAnalysis { |
| 862 | protected: |
| 863 | typedef llvm::DenseMap<const MemRegion *, const ClusterBindings *> ClusterMap; |
| 864 | typedef const MemRegion * WorkListElement; |
| 865 | typedef SmallVector<WorkListElement, 10> WorkList; |
| 866 | |
| 867 | llvm::SmallPtrSet<const ClusterBindings *, 16> Visited; |
| 868 | |
| 869 | WorkList WL; |
| 870 | |
| 871 | RegionStoreManager &RM; |
| 872 | ASTContext &Ctx; |
| 873 | SValBuilder &svalBuilder; |
| 874 | |
| 875 | RegionBindingsRef B; |
| 876 | |
| 877 | |
| 878 | protected: |
| 879 | const ClusterBindings *getCluster(const MemRegion *R) { |
| 880 | return B.lookup(K: R); |
| 881 | } |
| 882 | |
| 883 | /// Returns true if all clusters in the given memspace should be initially |
| 884 | /// included in the cluster analysis. Subclasses may provide their |
| 885 | /// own implementation. |
| 886 | bool includeEntireMemorySpace(const MemRegion *Base) { |
| 887 | return false; |
| 888 | } |
| 889 | |
| 890 | public: |
| 891 | ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr, |
| 892 | RegionBindingsRef b) |
| 893 | : RM(rm), Ctx(StateMgr.getContext()), |
| 894 | svalBuilder(StateMgr.getSValBuilder()), B(std::move(b)) {} |
| 895 | |
| 896 | RegionBindingsRef getRegionBindings() const { return B; } |
| 897 | |
| 898 | bool isVisited(const MemRegion *R) { |
| 899 | return Visited.count(Ptr: getCluster(R)); |
| 900 | } |
| 901 | |
| 902 | void GenerateClusters() { |
| 903 | // Scan the entire set of bindings and record the region clusters. |
| 904 | for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); |
| 905 | RI != RE; ++RI){ |
| 906 | const MemRegion *Base = RI.getKey(); |
| 907 | |
| 908 | const ClusterBindings &Cluster = RI.getData(); |
| 909 | assert(!Cluster.isEmpty() && "Empty clusters should be removed" ); |
| 910 | static_cast<DERIVED*>(this)->VisitAddedToCluster(Base, Cluster); |
| 911 | |
| 912 | // If the base's memspace should be entirely invalidated, add the cluster |
| 913 | // to the workspace up front. |
| 914 | if (static_cast<DERIVED*>(this)->includeEntireMemorySpace(Base)) |
| 915 | AddToWorkList(WorkListElement(Base), &Cluster); |
| 916 | } |
| 917 | } |
| 918 | |
| 919 | bool AddToWorkList(WorkListElement E, const ClusterBindings *C) { |
| 920 | if (C && !Visited.insert(Ptr: C).second) |
| 921 | return false; |
| 922 | WL.push_back(Elt: E); |
| 923 | return true; |
| 924 | } |
| 925 | |
| 926 | bool AddToWorkList(const MemRegion *R) { |
| 927 | return static_cast<DERIVED*>(this)->AddToWorkList(R); |
| 928 | } |
| 929 | |
| 930 | void RunWorkList() { |
| 931 | while (!WL.empty()) { |
| 932 | WorkListElement E = WL.pop_back_val(); |
| 933 | const MemRegion *BaseR = E; |
| 934 | |
| 935 | static_cast<DERIVED*>(this)->VisitCluster(BaseR, getCluster(R: BaseR)); |
| 936 | } |
| 937 | } |
| 938 | |
| 939 | void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) {} |
| 940 | void VisitCluster(const MemRegion *baseR, const ClusterBindings *C) {} |
| 941 | |
| 942 | void VisitCluster(const MemRegion *BaseR, const ClusterBindings *C, |
| 943 | bool Flag) { |
| 944 | static_cast<DERIVED*>(this)->VisitCluster(BaseR, C); |
| 945 | } |
| 946 | }; |
| 947 | } |
| 948 | |
| 949 | //===----------------------------------------------------------------------===// |
| 950 | // Binding invalidation. |
| 951 | //===----------------------------------------------------------------------===// |
| 952 | |
| 953 | bool RegionStoreManager::scanReachableSymbols(Store S, const MemRegion *R, |
| 954 | ScanReachableSymbols &Callbacks) { |
| 955 | assert(R == R->getBaseRegion() && "Should only be called for base regions" ); |
| 956 | RegionBindingsRef B = getRegionBindings(store: S); |
| 957 | const ClusterBindings *Cluster = B.lookup(K: R); |
| 958 | |
| 959 | if (!Cluster) |
| 960 | return true; |
| 961 | |
| 962 | for (ClusterBindings::iterator RI = Cluster->begin(), RE = Cluster->end(); |
| 963 | RI != RE; ++RI) { |
| 964 | if (!Callbacks.scan(val: RI.getData())) |
| 965 | return false; |
| 966 | } |
| 967 | |
| 968 | return true; |
| 969 | } |
| 970 | |
| 971 | static inline bool isUnionField(const FieldRegion *FR) { |
| 972 | return FR->getDecl()->getParent()->isUnion(); |
| 973 | } |
| 974 | |
| 975 | typedef SmallVector<const FieldDecl *, 8> FieldVector; |
| 976 | |
| 977 | static void getSymbolicOffsetFields(BindingKey K, FieldVector &Fields) { |
| 978 | assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys" ); |
| 979 | |
| 980 | const MemRegion *Base = K.getConcreteOffsetRegion(); |
| 981 | const MemRegion *R = K.getRegion(); |
| 982 | |
| 983 | while (R != Base) { |
| 984 | if (const FieldRegion *FR = dyn_cast<FieldRegion>(Val: R)) |
| 985 | if (!isUnionField(FR)) |
| 986 | Fields.push_back(Elt: FR->getDecl()); |
| 987 | |
| 988 | R = cast<SubRegion>(Val: R)->getSuperRegion(); |
| 989 | } |
| 990 | } |
| 991 | |
| 992 | static bool isCompatibleWithFields(BindingKey K, const FieldVector &Fields) { |
| 993 | assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys" ); |
| 994 | |
| 995 | if (Fields.empty()) |
| 996 | return true; |
| 997 | |
| 998 | FieldVector FieldsInBindingKey; |
| 999 | getSymbolicOffsetFields(K, Fields&: FieldsInBindingKey); |
| 1000 | |
| 1001 | ptrdiff_t Delta = FieldsInBindingKey.size() - Fields.size(); |
| 1002 | if (Delta >= 0) |
| 1003 | return std::equal(first1: FieldsInBindingKey.begin() + Delta, |
| 1004 | last1: FieldsInBindingKey.end(), |
| 1005 | first2: Fields.begin()); |
| 1006 | else |
| 1007 | return std::equal(first1: FieldsInBindingKey.begin(), last1: FieldsInBindingKey.end(), |
| 1008 | first2: Fields.begin() - Delta); |
| 1009 | } |
| 1010 | |
| 1011 | /// Collects all bindings in \p Cluster that may refer to bindings within |
| 1012 | /// \p Top. |
| 1013 | /// |
| 1014 | /// Each binding is a pair whose \c first is the key (a BindingKey) and whose |
| 1015 | /// \c second is the value (an SVal). |
| 1016 | /// |
| 1017 | /// The \p IncludeAllDefaultBindings parameter specifies whether to include |
| 1018 | /// default bindings that may extend beyond \p Top itself, e.g. if \p Top is |
| 1019 | /// an aggregate within a larger aggregate with a default binding. |
| 1020 | static void |
| 1021 | collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings, |
| 1022 | SValBuilder &SVB, const ClusterBindings &Cluster, |
| 1023 | const SubRegion *Top, BindingKey TopKey, |
| 1024 | bool IncludeAllDefaultBindings) { |
| 1025 | FieldVector FieldsInSymbolicSubregions; |
| 1026 | if (TopKey.hasSymbolicOffset()) { |
| 1027 | getSymbolicOffsetFields(K: TopKey, Fields&: FieldsInSymbolicSubregions); |
| 1028 | Top = TopKey.getConcreteOffsetRegion(); |
| 1029 | TopKey = BindingKey::Make(R: Top, k: BindingKey::Default); |
| 1030 | } |
| 1031 | |
| 1032 | // Find the length (in bits) of the region being invalidated. |
| 1033 | uint64_t Length = UINT64_MAX; |
| 1034 | SVal Extent = Top->getMemRegionManager().getStaticSize(MR: Top, SVB); |
| 1035 | if (std::optional<nonloc::ConcreteInt> ExtentCI = |
| 1036 | Extent.getAs<nonloc::ConcreteInt>()) { |
| 1037 | const llvm::APSInt &ExtentInt = ExtentCI->getValue(); |
| 1038 | assert(ExtentInt.isNonNegative() || ExtentInt.isUnsigned()); |
| 1039 | // Extents are in bytes but region offsets are in bits. Be careful! |
| 1040 | Length = ExtentInt.getLimitedValue() * SVB.getContext().getCharWidth(); |
| 1041 | } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(Val: Top)) { |
| 1042 | if (FR->getDecl()->isBitField()) |
| 1043 | Length = FR->getDecl()->getBitWidthValue(); |
| 1044 | } |
| 1045 | |
| 1046 | for (const auto &StoreEntry : Cluster) { |
| 1047 | BindingKey NextKey = StoreEntry.first; |
| 1048 | if (NextKey.getRegion() == TopKey.getRegion()) { |
| 1049 | // FIXME: This doesn't catch the case where we're really invalidating a |
| 1050 | // region with a symbolic offset. Example: |
| 1051 | // R: points[i].y |
| 1052 | // Next: points[0].x |
| 1053 | |
| 1054 | if (NextKey.getOffset() > TopKey.getOffset() && |
| 1055 | NextKey.getOffset() - TopKey.getOffset() < Length) { |
| 1056 | // Case 1: The next binding is inside the region we're invalidating. |
| 1057 | // Include it. |
| 1058 | Bindings.push_back(Elt: StoreEntry); |
| 1059 | |
| 1060 | } else if (NextKey.getOffset() == TopKey.getOffset()) { |
| 1061 | // Case 2: The next binding is at the same offset as the region we're |
| 1062 | // invalidating. In this case, we need to leave default bindings alone, |
| 1063 | // since they may be providing a default value for a regions beyond what |
| 1064 | // we're invalidating. |
| 1065 | // FIXME: This is probably incorrect; consider invalidating an outer |
| 1066 | // struct whose first field is bound to a LazyCompoundVal. |
| 1067 | if (IncludeAllDefaultBindings || NextKey.isDirect()) |
| 1068 | Bindings.push_back(Elt: StoreEntry); |
| 1069 | } |
| 1070 | |
| 1071 | } else if (NextKey.hasSymbolicOffset()) { |
| 1072 | const MemRegion *Base = NextKey.getConcreteOffsetRegion(); |
| 1073 | if (Top->isSubRegionOf(R: Base) && Top != Base) { |
| 1074 | // Case 3: The next key is symbolic and we just changed something within |
| 1075 | // its concrete region. We don't know if the binding is still valid, so |
| 1076 | // we'll be conservative and include it. |
| 1077 | if (IncludeAllDefaultBindings || NextKey.isDirect()) |
| 1078 | if (isCompatibleWithFields(K: NextKey, Fields: FieldsInSymbolicSubregions)) |
| 1079 | Bindings.push_back(Elt: StoreEntry); |
| 1080 | } else if (const SubRegion *BaseSR = dyn_cast<SubRegion>(Val: Base)) { |
| 1081 | // Case 4: The next key is symbolic, but we changed a known |
| 1082 | // super-region. In this case the binding is certainly included. |
| 1083 | if (BaseSR->isSubRegionOf(R: Top)) |
| 1084 | if (isCompatibleWithFields(K: NextKey, Fields: FieldsInSymbolicSubregions)) |
| 1085 | Bindings.push_back(Elt: StoreEntry); |
| 1086 | } |
| 1087 | } |
| 1088 | } |
| 1089 | } |
| 1090 | |
| 1091 | static void |
| 1092 | collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings, |
| 1093 | SValBuilder &SVB, const ClusterBindings &Cluster, |
| 1094 | const SubRegion *Top, bool IncludeAllDefaultBindings) { |
| 1095 | collectSubRegionBindings(Bindings, SVB, Cluster, Top, |
| 1096 | TopKey: BindingKey::Make(R: Top, k: BindingKey::Default), |
| 1097 | IncludeAllDefaultBindings); |
| 1098 | } |
| 1099 | |
| 1100 | LimitedRegionBindingsRef |
| 1101 | RegionStoreManager::removeSubRegionBindings(LimitedRegionBindingsConstRef B, |
| 1102 | const SubRegion *Top) { |
| 1103 | BindingKey TopKey = BindingKey::Make(R: Top, k: BindingKey::Default); |
| 1104 | const MemRegion *ClusterHead = TopKey.getBaseRegion(); |
| 1105 | |
| 1106 | if (Top == ClusterHead) { |
| 1107 | // We can remove an entire cluster's bindings all in one go. |
| 1108 | return B.removeCluster(BaseRegion: Top); |
| 1109 | } |
| 1110 | |
| 1111 | const ClusterBindings *Cluster = B.lookup(K: ClusterHead); |
| 1112 | if (!Cluster) { |
| 1113 | // If we're invalidating a region with a symbolic offset, we need to make |
| 1114 | // sure we don't treat the base region as uninitialized anymore. |
| 1115 | if (TopKey.hasSymbolicOffset()) { |
| 1116 | const SubRegion *Concrete = TopKey.getConcreteOffsetRegion(); |
| 1117 | return B.addBinding(R: Concrete, k: BindingKey::Default, V: UnknownVal()); |
| 1118 | } |
| 1119 | return B; |
| 1120 | } |
| 1121 | |
| 1122 | SmallVector<BindingPair, 32> Bindings; |
| 1123 | collectSubRegionBindings(Bindings, SVB&: svalBuilder, Cluster: *Cluster, Top, TopKey, |
| 1124 | /*IncludeAllDefaultBindings=*/false); |
| 1125 | |
| 1126 | ClusterBindingsRef Result(*Cluster, CBFactory); |
| 1127 | for (BindingKey Key : llvm::make_first_range(c&: Bindings)) |
| 1128 | Result = Result.remove(K: Key); |
| 1129 | |
| 1130 | // If we're invalidating a region with a symbolic offset, we need to make sure |
| 1131 | // we don't treat the base region as uninitialized anymore. |
| 1132 | // FIXME: This isn't very precise; see the example in |
| 1133 | // collectSubRegionBindings. |
| 1134 | if (TopKey.hasSymbolicOffset()) { |
| 1135 | const SubRegion *Concrete = TopKey.getConcreteOffsetRegion(); |
| 1136 | Result = Result.add(K: BindingKey::Make(R: Concrete, k: BindingKey::Default), |
| 1137 | D: UnknownVal()); |
| 1138 | } |
| 1139 | |
| 1140 | if (Result.isEmpty()) |
| 1141 | return B.removeCluster(BaseRegion: ClusterHead); |
| 1142 | return B.addWithoutDecreasingLimit(BaseRegion: ClusterHead, BindingKeyAndValue: Result.asImmutableMap()); |
| 1143 | } |
| 1144 | |
| 1145 | namespace { |
| 1146 | class InvalidateRegionsWorker : public ClusterAnalysis<InvalidateRegionsWorker> |
| 1147 | { |
| 1148 | ConstCFGElementRef Elem; |
| 1149 | unsigned Count; |
| 1150 | const LocationContext *LCtx; |
| 1151 | InvalidatedSymbols &IS; |
| 1152 | RegionAndSymbolInvalidationTraits &ITraits; |
| 1153 | StoreManager::InvalidatedRegions *Regions; |
| 1154 | GlobalsFilterKind GlobalsFilter; |
| 1155 | public: |
| 1156 | InvalidateRegionsWorker(RegionStoreManager &rm, ProgramStateManager &stateMgr, |
| 1157 | RegionBindingsRef b, ConstCFGElementRef elem, |
| 1158 | unsigned count, const LocationContext *lctx, |
| 1159 | InvalidatedSymbols &is, |
| 1160 | RegionAndSymbolInvalidationTraits &ITraitsIn, |
| 1161 | StoreManager::InvalidatedRegions *r, |
| 1162 | GlobalsFilterKind GFK) |
| 1163 | : ClusterAnalysis<InvalidateRegionsWorker>(rm, stateMgr, b), Elem(elem), |
| 1164 | Count(count), LCtx(lctx), IS(is), ITraits(ITraitsIn), Regions(r), |
| 1165 | GlobalsFilter(GFK) {} |
| 1166 | |
| 1167 | void VisitCluster(const MemRegion *baseR, const ClusterBindings *C); |
| 1168 | void VisitBinding(SVal V); |
| 1169 | |
| 1170 | using ClusterAnalysis::AddToWorkList; |
| 1171 | |
| 1172 | bool AddToWorkList(const MemRegion *R); |
| 1173 | |
| 1174 | /// Returns true if all clusters in the memory space for \p Base should be |
| 1175 | /// be invalidated. |
| 1176 | bool includeEntireMemorySpace(const MemRegion *Base); |
| 1177 | |
| 1178 | /// Returns true if the memory space of the given region is one of the global |
| 1179 | /// regions specially included at the start of invalidation. |
| 1180 | bool isInitiallyIncludedGlobalRegion(const MemRegion *R); |
| 1181 | }; |
| 1182 | } |
| 1183 | |
| 1184 | bool InvalidateRegionsWorker::AddToWorkList(const MemRegion *R) { |
| 1185 | bool doNotInvalidateSuperRegion = ITraits.hasTrait( |
| 1186 | MR: R, IK: RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); |
| 1187 | const MemRegion *BaseR = doNotInvalidateSuperRegion ? R : R->getBaseRegion(); |
| 1188 | return AddToWorkList(E: WorkListElement(BaseR), C: getCluster(R: BaseR)); |
| 1189 | } |
| 1190 | |
| 1191 | void InvalidateRegionsWorker::VisitBinding(SVal V) { |
| 1192 | // A symbol? Mark it touched by the invalidation. |
| 1193 | if (SymbolRef Sym = V.getAsSymbol()) |
| 1194 | IS.insert(V: Sym); |
| 1195 | |
| 1196 | if (const MemRegion *R = V.getAsRegion()) { |
| 1197 | AddToWorkList(R); |
| 1198 | return; |
| 1199 | } |
| 1200 | |
| 1201 | // Is it a LazyCompoundVal? All references get invalidated as well. |
| 1202 | if (std::optional<nonloc::LazyCompoundVal> LCS = |
| 1203 | V.getAs<nonloc::LazyCompoundVal>()) { |
| 1204 | |
| 1205 | // `getInterestingValues()` returns SVals contained within LazyCompoundVals, |
| 1206 | // so there is no need to visit them. |
| 1207 | for (SVal V : RM.getInterestingValues(LCV: *LCS)) |
| 1208 | if (!isa<nonloc::LazyCompoundVal>(Val: V)) |
| 1209 | VisitBinding(V); |
| 1210 | |
| 1211 | return; |
| 1212 | } |
| 1213 | } |
| 1214 | |
| 1215 | void InvalidateRegionsWorker::VisitCluster(const MemRegion *baseR, |
| 1216 | const ClusterBindings *C) { |
| 1217 | |
| 1218 | bool PreserveRegionsContents = |
| 1219 | ITraits.hasTrait(MR: baseR, |
| 1220 | IK: RegionAndSymbolInvalidationTraits::TK_PreserveContents); |
| 1221 | |
| 1222 | if (C) { |
| 1223 | for (SVal Val : llvm::make_second_range(c: *C)) |
| 1224 | VisitBinding(V: Val); |
| 1225 | |
| 1226 | // Invalidate regions contents. |
| 1227 | if (!PreserveRegionsContents) |
| 1228 | B = B.removeCluster(BaseRegion: baseR); |
| 1229 | } |
| 1230 | |
| 1231 | if (const auto *TO = dyn_cast<TypedValueRegion>(Val: baseR)) { |
| 1232 | if (const auto *RD = TO->getValueType()->getAsCXXRecordDecl()) { |
| 1233 | |
| 1234 | // Lambdas can affect all static local variables without explicitly |
| 1235 | // capturing those. |
| 1236 | // We invalidate all static locals referenced inside the lambda body. |
| 1237 | if (RD->isLambda() && RD->getLambdaCallOperator()->getBody()) { |
| 1238 | using namespace ast_matchers; |
| 1239 | |
| 1240 | const char *DeclBind = "DeclBind" ; |
| 1241 | StatementMatcher RefToStatic = stmt(hasDescendant(declRefExpr( |
| 1242 | to(InnerMatcher: varDecl(hasStaticStorageDuration()).bind(ID: DeclBind))))); |
| 1243 | auto Matches = |
| 1244 | match(RefToStatic, *RD->getLambdaCallOperator()->getBody(), |
| 1245 | RD->getASTContext()); |
| 1246 | |
| 1247 | for (BoundNodes &Match : Matches) { |
| 1248 | auto *VD = Match.getNodeAs<VarDecl>(DeclBind); |
| 1249 | const VarRegion *ToInvalidate = |
| 1250 | RM.getRegionManager().getVarRegion(VD, LCtx); |
| 1251 | AddToWorkList(ToInvalidate); |
| 1252 | } |
| 1253 | } |
| 1254 | } |
| 1255 | } |
| 1256 | |
| 1257 | // BlockDataRegion? If so, invalidate captured variables that are passed |
| 1258 | // by reference. |
| 1259 | if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(Val: baseR)) { |
| 1260 | for (auto Var : BR->referenced_vars()) { |
| 1261 | const VarRegion *VR = Var.getCapturedRegion(); |
| 1262 | const VarDecl *VD = VR->getDecl(); |
| 1263 | if (VD->hasAttr<BlocksAttr>() || !VD->hasLocalStorage()) { |
| 1264 | AddToWorkList(R: VR); |
| 1265 | } |
| 1266 | else if (Loc::isLocType(T: VR->getValueType())) { |
| 1267 | // Map the current bindings to a Store to retrieve the value |
| 1268 | // of the binding. If that binding itself is a region, we should |
| 1269 | // invalidate that region. This is because a block may capture |
| 1270 | // a pointer value, but the thing pointed by that pointer may |
| 1271 | // get invalidated. |
| 1272 | SVal V = RM.getBinding(B, L: loc::MemRegionVal(VR)); |
| 1273 | if (std::optional<Loc> L = V.getAs<Loc>()) { |
| 1274 | if (const MemRegion *LR = L->getAsRegion()) |
| 1275 | AddToWorkList(R: LR); |
| 1276 | } |
| 1277 | } |
| 1278 | } |
| 1279 | return; |
| 1280 | } |
| 1281 | |
| 1282 | // Symbolic region? |
| 1283 | if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(Val: baseR)) |
| 1284 | IS.insert(V: SR->getSymbol()); |
| 1285 | |
| 1286 | // Nothing else should be done in the case when we preserve regions context. |
| 1287 | if (PreserveRegionsContents) |
| 1288 | return; |
| 1289 | |
| 1290 | // Otherwise, we have a normal data region. Record that we touched the region. |
| 1291 | if (Regions) |
| 1292 | Regions->push_back(Elt: baseR); |
| 1293 | |
| 1294 | if (isa<AllocaRegion, SymbolicRegion>(Val: baseR)) { |
| 1295 | // Invalidate the region by setting its default value to |
| 1296 | // conjured symbol. The type of the symbol is irrelevant. |
| 1297 | DefinedOrUnknownSVal V = |
| 1298 | svalBuilder.conjureSymbolVal(baseR, Elem, LCtx, Ctx.IntTy, Count); |
| 1299 | B = B.addBinding(R: baseR, k: BindingKey::Default, V); |
| 1300 | return; |
| 1301 | } |
| 1302 | |
| 1303 | if (!baseR->isBoundable()) |
| 1304 | return; |
| 1305 | |
| 1306 | const TypedValueRegion *TR = cast<TypedValueRegion>(Val: baseR); |
| 1307 | QualType T = TR->getValueType(); |
| 1308 | |
| 1309 | if (isInitiallyIncludedGlobalRegion(R: baseR)) { |
| 1310 | // If the region is a global and we are invalidating all globals, |
| 1311 | // erasing the entry is good enough. This causes all globals to be lazily |
| 1312 | // symbolicated from the same base symbol. |
| 1313 | return; |
| 1314 | } |
| 1315 | |
| 1316 | if (T->isRecordType()) { |
| 1317 | // Invalidate the region by setting its default value to |
| 1318 | // conjured symbol. The type of the symbol is irrelevant. |
| 1319 | DefinedOrUnknownSVal V = |
| 1320 | svalBuilder.conjureSymbolVal(baseR, Elem, LCtx, Ctx.IntTy, Count); |
| 1321 | B = B.addBinding(R: baseR, k: BindingKey::Default, V); |
| 1322 | return; |
| 1323 | } |
| 1324 | |
| 1325 | if (const ArrayType *AT = Ctx.getAsArrayType(T)) { |
| 1326 | bool doNotInvalidateSuperRegion = ITraits.hasTrait( |
| 1327 | MR: baseR, |
| 1328 | IK: RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); |
| 1329 | |
| 1330 | if (doNotInvalidateSuperRegion) { |
| 1331 | // We are not doing blank invalidation of the whole array region so we |
| 1332 | // have to manually invalidate each elements. |
| 1333 | std::optional<uint64_t> NumElements; |
| 1334 | |
| 1335 | // Compute lower and upper offsets for region within array. |
| 1336 | if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(Val: AT)) |
| 1337 | NumElements = CAT->getZExtSize(); |
| 1338 | if (!NumElements) // We are not dealing with a constant size array |
| 1339 | goto conjure_default; |
| 1340 | QualType ElementTy = AT->getElementType(); |
| 1341 | uint64_t ElemSize = Ctx.getTypeSize(T: ElementTy); |
| 1342 | const RegionOffset &RO = baseR->getAsOffset(); |
| 1343 | const MemRegion *SuperR = baseR->getBaseRegion(); |
| 1344 | if (RO.hasSymbolicOffset()) { |
| 1345 | // If base region has a symbolic offset, |
| 1346 | // we revert to invalidating the super region. |
| 1347 | if (SuperR) |
| 1348 | AddToWorkList(R: SuperR); |
| 1349 | goto conjure_default; |
| 1350 | } |
| 1351 | |
| 1352 | uint64_t LowerOffset = RO.getOffset(); |
| 1353 | uint64_t UpperOffset = LowerOffset + *NumElements * ElemSize; |
| 1354 | bool UpperOverflow = UpperOffset < LowerOffset; |
| 1355 | |
| 1356 | // Invalidate regions which are within array boundaries, |
| 1357 | // or have a symbolic offset. |
| 1358 | if (!SuperR) |
| 1359 | goto conjure_default; |
| 1360 | |
| 1361 | const ClusterBindings *C = B.lookup(K: SuperR); |
| 1362 | if (!C) |
| 1363 | goto conjure_default; |
| 1364 | |
| 1365 | for (const auto &[BK, V] : *C) { |
| 1366 | std::optional<uint64_t> ROffset = |
| 1367 | BK.hasSymbolicOffset() ? std::optional<uint64_t>() : BK.getOffset(); |
| 1368 | |
| 1369 | // Check offset is not symbolic and within array's boundaries. |
| 1370 | // Handles arrays of 0 elements and of 0-sized elements as well. |
| 1371 | if (!ROffset || |
| 1372 | ((*ROffset >= LowerOffset && *ROffset < UpperOffset) || |
| 1373 | (UpperOverflow && |
| 1374 | (*ROffset >= LowerOffset || *ROffset < UpperOffset)) || |
| 1375 | (LowerOffset == UpperOffset && *ROffset == LowerOffset))) { |
| 1376 | B = B.removeBinding(K: BK); |
| 1377 | // Bound symbolic regions need to be invalidated for dead symbol |
| 1378 | // detection. |
| 1379 | const MemRegion *R = V.getAsRegion(); |
| 1380 | if (isa_and_nonnull<SymbolicRegion>(Val: R)) |
| 1381 | VisitBinding(V); |
| 1382 | } |
| 1383 | } |
| 1384 | } |
| 1385 | conjure_default: |
| 1386 | // Set the default value of the array to conjured symbol. |
| 1387 | DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal( |
| 1388 | symbolTag: baseR, elem: Elem, LCtx, type: AT->getElementType(), count: Count); |
| 1389 | B = B.addBinding(R: baseR, k: BindingKey::Default, V); |
| 1390 | return; |
| 1391 | } |
| 1392 | |
| 1393 | DefinedOrUnknownSVal V = |
| 1394 | svalBuilder.conjureSymbolVal(symbolTag: baseR, elem: Elem, LCtx, type: T, count: Count); |
| 1395 | assert(SymbolManager::canSymbolicate(T) || V.isUnknown()); |
| 1396 | B = B.addBinding(R: baseR, k: BindingKey::Direct, V); |
| 1397 | } |
| 1398 | |
| 1399 | bool InvalidateRegionsWorker::isInitiallyIncludedGlobalRegion( |
| 1400 | const MemRegion *R) { |
| 1401 | switch (GlobalsFilter) { |
| 1402 | case GFK_None: |
| 1403 | return false; |
| 1404 | case GFK_SystemOnly: |
| 1405 | return isa<GlobalSystemSpaceRegion>(Val: R->getRawMemorySpace()); |
| 1406 | case GFK_All: |
| 1407 | return isa<NonStaticGlobalSpaceRegion>(Val: R->getRawMemorySpace()); |
| 1408 | } |
| 1409 | |
| 1410 | llvm_unreachable("unknown globals filter" ); |
| 1411 | } |
| 1412 | |
| 1413 | bool InvalidateRegionsWorker::includeEntireMemorySpace(const MemRegion *Base) { |
| 1414 | if (isInitiallyIncludedGlobalRegion(R: Base)) |
| 1415 | return true; |
| 1416 | |
| 1417 | const MemSpaceRegion *MemSpace = Base->getRawMemorySpace(); |
| 1418 | return ITraits.hasTrait(MR: MemSpace, |
| 1419 | IK: RegionAndSymbolInvalidationTraits::TK_EntireMemSpace); |
| 1420 | } |
| 1421 | |
| 1422 | RegionBindingsRef RegionStoreManager::invalidateGlobalRegion( |
| 1423 | MemRegion::Kind K, ConstCFGElementRef Elem, unsigned Count, |
| 1424 | const LocationContext *LCtx, RegionBindingsRef B, |
| 1425 | InvalidatedRegions *Invalidated) { |
| 1426 | // Bind the globals memory space to a new symbol that we will use to derive |
| 1427 | // the bindings for all globals. |
| 1428 | const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K); |
| 1429 | SVal V = svalBuilder.conjureSymbolVal( |
| 1430 | /* symbolTag = */ (const void *)GS, Elem, LCtx, |
| 1431 | /* type does not matter */ Ctx.IntTy, Count); |
| 1432 | |
| 1433 | B = B.removeBinding(R: GS) |
| 1434 | .addBinding(K: BindingKey::Make(R: GS, k: BindingKey::Default), V); |
| 1435 | |
| 1436 | // Even if there are no bindings in the global scope, we still need to |
| 1437 | // record that we touched it. |
| 1438 | if (Invalidated) |
| 1439 | Invalidated->push_back(Elt: GS); |
| 1440 | |
| 1441 | return B; |
| 1442 | } |
| 1443 | |
| 1444 | void RegionStoreManager::populateWorkList(InvalidateRegionsWorker &W, |
| 1445 | ArrayRef<SVal> Values, |
| 1446 | InvalidatedRegions *TopLevelRegions) { |
| 1447 | for (SVal V : Values) { |
| 1448 | if (auto LCS = V.getAs<nonloc::LazyCompoundVal>()) { |
| 1449 | for (SVal S : getInterestingValues(LCV: *LCS)) |
| 1450 | if (const MemRegion *R = S.getAsRegion()) |
| 1451 | W.AddToWorkList(R); |
| 1452 | |
| 1453 | continue; |
| 1454 | } |
| 1455 | |
| 1456 | if (const MemRegion *R = V.getAsRegion()) { |
| 1457 | if (TopLevelRegions) |
| 1458 | TopLevelRegions->push_back(Elt: R); |
| 1459 | W.AddToWorkList(R); |
| 1460 | continue; |
| 1461 | } |
| 1462 | } |
| 1463 | } |
| 1464 | |
| 1465 | StoreRef RegionStoreManager::invalidateRegions( |
| 1466 | Store store, ArrayRef<SVal> Values, ConstCFGElementRef Elem, unsigned Count, |
| 1467 | const LocationContext *LCtx, const CallEvent *Call, InvalidatedSymbols &IS, |
| 1468 | RegionAndSymbolInvalidationTraits &ITraits, |
| 1469 | InvalidatedRegions *TopLevelRegions, InvalidatedRegions *Invalidated) { |
| 1470 | GlobalsFilterKind GlobalsFilter; |
| 1471 | if (Call) { |
| 1472 | if (Call->isInSystemHeader()) |
| 1473 | GlobalsFilter = GFK_SystemOnly; |
| 1474 | else |
| 1475 | GlobalsFilter = GFK_All; |
| 1476 | } else { |
| 1477 | GlobalsFilter = GFK_None; |
| 1478 | } |
| 1479 | |
| 1480 | RegionBindingsRef B = getRegionBindings(store); |
| 1481 | InvalidateRegionsWorker W(*this, StateMgr, B, Elem, Count, LCtx, IS, ITraits, |
| 1482 | Invalidated, GlobalsFilter); |
| 1483 | |
| 1484 | // Scan the bindings and generate the clusters. |
| 1485 | W.GenerateClusters(); |
| 1486 | |
| 1487 | // Add the regions to the worklist. |
| 1488 | populateWorkList(W, Values, TopLevelRegions); |
| 1489 | |
| 1490 | W.RunWorkList(); |
| 1491 | |
| 1492 | // Return the new bindings. |
| 1493 | B = W.getRegionBindings(); |
| 1494 | |
| 1495 | // For calls, determine which global regions should be invalidated and |
| 1496 | // invalidate them. (Note that function-static and immutable globals are never |
| 1497 | // invalidated by this.) |
| 1498 | // TODO: This could possibly be more precise with modules. |
| 1499 | switch (GlobalsFilter) { |
| 1500 | case GFK_All: |
| 1501 | B = invalidateGlobalRegion(K: MemRegion::GlobalInternalSpaceRegionKind, Elem, |
| 1502 | Count, LCtx, B, Invalidated); |
| 1503 | [[fallthrough]]; |
| 1504 | case GFK_SystemOnly: |
| 1505 | B = invalidateGlobalRegion(K: MemRegion::GlobalSystemSpaceRegionKind, Elem, |
| 1506 | Count, LCtx, B, Invalidated); |
| 1507 | [[fallthrough]]; |
| 1508 | case GFK_None: |
| 1509 | break; |
| 1510 | } |
| 1511 | |
| 1512 | return StoreRef(B.asStore(), *this); |
| 1513 | } |
| 1514 | |
| 1515 | //===----------------------------------------------------------------------===// |
| 1516 | // Location and region casting. |
| 1517 | //===----------------------------------------------------------------------===// |
| 1518 | |
| 1519 | /// ArrayToPointer - Emulates the "decay" of an array to a pointer |
| 1520 | /// type. 'Array' represents the lvalue of the array being decayed |
| 1521 | /// to a pointer, and the returned SVal represents the decayed |
| 1522 | /// version of that lvalue (i.e., a pointer to the first element of |
| 1523 | /// the array). This is called by ExprEngine when evaluating casts |
| 1524 | /// from arrays to pointers. |
| 1525 | SVal RegionStoreManager::ArrayToPointer(Loc Array, QualType T) { |
| 1526 | if (isa<loc::ConcreteInt>(Val: Array)) |
| 1527 | return Array; |
| 1528 | |
| 1529 | if (!isa<loc::MemRegionVal>(Val: Array)) |
| 1530 | return UnknownVal(); |
| 1531 | |
| 1532 | const SubRegion *R = |
| 1533 | cast<SubRegion>(Val: Array.castAs<loc::MemRegionVal>().getRegion()); |
| 1534 | NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex(); |
| 1535 | return loc::MemRegionVal(MRMgr.getElementRegion(elementType: T, Idx: ZeroIdx, superRegion: R, Ctx)); |
| 1536 | } |
| 1537 | |
| 1538 | //===----------------------------------------------------------------------===// |
| 1539 | // Loading values from regions. |
| 1540 | //===----------------------------------------------------------------------===// |
| 1541 | |
| 1542 | SVal RegionStoreManager::getBinding(RegionBindingsConstRef B, Loc L, QualType T) { |
| 1543 | assert(!isa<UnknownVal>(L) && "location unknown" ); |
| 1544 | assert(!isa<UndefinedVal>(L) && "location undefined" ); |
| 1545 | |
| 1546 | // For access to concrete addresses, return UnknownVal. Checks |
| 1547 | // for null dereferences (and similar errors) are done by checkers, not |
| 1548 | // the Store. |
| 1549 | // FIXME: We can consider lazily symbolicating such memory, but we really |
| 1550 | // should defer this when we can reason easily about symbolicating arrays |
| 1551 | // of bytes. |
| 1552 | if (L.getAs<loc::ConcreteInt>()) { |
| 1553 | return UnknownVal(); |
| 1554 | } |
| 1555 | if (!L.getAs<loc::MemRegionVal>()) { |
| 1556 | return UnknownVal(); |
| 1557 | } |
| 1558 | |
| 1559 | const MemRegion *MR = L.castAs<loc::MemRegionVal>().getRegion(); |
| 1560 | |
| 1561 | if (isa<BlockDataRegion>(Val: MR)) { |
| 1562 | return UnknownVal(); |
| 1563 | } |
| 1564 | |
| 1565 | // Auto-detect the binding type. |
| 1566 | if (T.isNull()) { |
| 1567 | if (const auto *TVR = dyn_cast<TypedValueRegion>(Val: MR)) |
| 1568 | T = TVR->getValueType(); |
| 1569 | else if (const auto *TR = dyn_cast<TypedRegion>(Val: MR)) |
| 1570 | T = TR->getLocationType()->getPointeeType(); |
| 1571 | else if (const auto *SR = dyn_cast<SymbolicRegion>(Val: MR)) |
| 1572 | T = SR->getPointeeStaticType(); |
| 1573 | } |
| 1574 | assert(!T.isNull() && "Unable to auto-detect binding type!" ); |
| 1575 | assert(!T->isVoidType() && "Attempting to dereference a void pointer!" ); |
| 1576 | |
| 1577 | if (!isa<TypedValueRegion>(Val: MR)) |
| 1578 | MR = GetElementZeroRegion(R: cast<SubRegion>(Val: MR), T); |
| 1579 | |
| 1580 | // FIXME: Perhaps this method should just take a 'const MemRegion*' argument |
| 1581 | // instead of 'Loc', and have the other Loc cases handled at a higher level. |
| 1582 | const TypedValueRegion *R = cast<TypedValueRegion>(Val: MR); |
| 1583 | QualType RTy = R->getValueType(); |
| 1584 | |
| 1585 | // FIXME: we do not yet model the parts of a complex type, so treat the |
| 1586 | // whole thing as "unknown". |
| 1587 | if (RTy->isAnyComplexType()) |
| 1588 | return UnknownVal(); |
| 1589 | |
| 1590 | // FIXME: We should eventually handle funny addressing. e.g.: |
| 1591 | // |
| 1592 | // int x = ...; |
| 1593 | // int *p = &x; |
| 1594 | // char *q = (char*) p; |
| 1595 | // char c = *q; // returns the first byte of 'x'. |
| 1596 | // |
| 1597 | // Such funny addressing will occur due to layering of regions. |
| 1598 | if (RTy->isStructureOrClassType()) |
| 1599 | return getBindingForStruct(B, R); |
| 1600 | |
| 1601 | // FIXME: Handle unions. |
| 1602 | if (RTy->isUnionType()) |
| 1603 | return createLazyBinding(B, R); |
| 1604 | |
| 1605 | if (RTy->isArrayType()) { |
| 1606 | if (RTy->isConstantArrayType()) |
| 1607 | return getBindingForArray(B, R); |
| 1608 | else |
| 1609 | return UnknownVal(); |
| 1610 | } |
| 1611 | |
| 1612 | // FIXME: handle Vector types. |
| 1613 | if (RTy->isVectorType()) |
| 1614 | return UnknownVal(); |
| 1615 | |
| 1616 | if (const FieldRegion* FR = dyn_cast<FieldRegion>(Val: R)) |
| 1617 | return svalBuilder.evalCast(V: getBindingForField(B, R: FR), CastTy: T, OriginalTy: QualType{}); |
| 1618 | |
| 1619 | if (const ElementRegion* ER = dyn_cast<ElementRegion>(Val: R)) { |
| 1620 | // FIXME: Here we actually perform an implicit conversion from the loaded |
| 1621 | // value to the element type. Eventually we want to compose these values |
| 1622 | // more intelligently. For example, an 'element' can encompass multiple |
| 1623 | // bound regions (e.g., several bound bytes), or could be a subset of |
| 1624 | // a larger value. |
| 1625 | return svalBuilder.evalCast(V: getBindingForElement(B, R: ER), CastTy: T, OriginalTy: QualType{}); |
| 1626 | } |
| 1627 | |
| 1628 | if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(Val: R)) { |
| 1629 | // FIXME: Here we actually perform an implicit conversion from the loaded |
| 1630 | // value to the ivar type. What we should model is stores to ivars |
| 1631 | // that blow past the extent of the ivar. If the address of the ivar is |
| 1632 | // reinterpretted, it is possible we stored a different value that could |
| 1633 | // fit within the ivar. Either we need to cast these when storing them |
| 1634 | // or reinterpret them lazily (as we do here). |
| 1635 | return svalBuilder.evalCast(V: getBindingForObjCIvar(B, R: IVR), CastTy: T, OriginalTy: QualType{}); |
| 1636 | } |
| 1637 | |
| 1638 | if (const VarRegion *VR = dyn_cast<VarRegion>(Val: R)) { |
| 1639 | // FIXME: Here we actually perform an implicit conversion from the loaded |
| 1640 | // value to the variable type. What we should model is stores to variables |
| 1641 | // that blow past the extent of the variable. If the address of the |
| 1642 | // variable is reinterpretted, it is possible we stored a different value |
| 1643 | // that could fit within the variable. Either we need to cast these when |
| 1644 | // storing them or reinterpret them lazily (as we do here). |
| 1645 | return svalBuilder.evalCast(V: getBindingForVar(B, R: VR), CastTy: T, OriginalTy: QualType{}); |
| 1646 | } |
| 1647 | |
| 1648 | const SVal *V = B.lookup(R, k: BindingKey::Direct); |
| 1649 | |
| 1650 | // Check if the region has a binding. |
| 1651 | if (V) |
| 1652 | return *V; |
| 1653 | |
| 1654 | // The location does not have a bound value. This means that it has |
| 1655 | // the value it had upon its creation and/or entry to the analyzed |
| 1656 | // function/method. These are either symbolic values or 'undefined'. |
| 1657 | if (isa<StackLocalsSpaceRegion>(Val: R->getRawMemorySpace())) { |
| 1658 | // All stack variables are considered to have undefined values |
| 1659 | // upon creation. All heap allocated blocks are considered to |
| 1660 | // have undefined values as well unless they are explicitly bound |
| 1661 | // to specific values. |
| 1662 | return UndefinedVal(); |
| 1663 | } |
| 1664 | |
| 1665 | // All other values are symbolic. |
| 1666 | return svalBuilder.getRegionValueSymbolVal(region: R); |
| 1667 | } |
| 1668 | |
| 1669 | static QualType getUnderlyingType(const SubRegion *R) { |
| 1670 | QualType RegionTy; |
| 1671 | if (const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(Val: R)) |
| 1672 | RegionTy = TVR->getValueType(); |
| 1673 | |
| 1674 | if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(Val: R)) |
| 1675 | RegionTy = SR->getSymbol()->getType(); |
| 1676 | |
| 1677 | return RegionTy; |
| 1678 | } |
| 1679 | |
| 1680 | /// Checks to see if store \p B has a lazy binding for region \p R. |
| 1681 | /// |
| 1682 | /// If \p AllowSubregionBindings is \c false, a lazy binding will be rejected |
| 1683 | /// if there are additional bindings within \p R. |
| 1684 | /// |
| 1685 | /// Note that unlike RegionStoreManager::findLazyBinding, this will not search |
| 1686 | /// for lazy bindings for super-regions of \p R. |
| 1687 | static std::optional<nonloc::LazyCompoundVal> |
| 1688 | getExistingLazyBinding(SValBuilder &SVB, RegionBindingsConstRef B, |
| 1689 | const SubRegion *R, bool AllowSubregionBindings) { |
| 1690 | std::optional<SVal> V = B.getDefaultBinding(R); |
| 1691 | if (!V) |
| 1692 | return std::nullopt; |
| 1693 | |
| 1694 | std::optional<nonloc::LazyCompoundVal> LCV = |
| 1695 | V->getAs<nonloc::LazyCompoundVal>(); |
| 1696 | if (!LCV) |
| 1697 | return std::nullopt; |
| 1698 | |
| 1699 | // If the LCV is for a subregion, the types might not match, and we shouldn't |
| 1700 | // reuse the binding. |
| 1701 | QualType RegionTy = getUnderlyingType(R); |
| 1702 | if (!RegionTy.isNull() && |
| 1703 | !RegionTy->isVoidPointerType()) { |
| 1704 | QualType SourceRegionTy = LCV->getRegion()->getValueType(); |
| 1705 | if (!SVB.getContext().hasSameUnqualifiedType(T1: RegionTy, T2: SourceRegionTy)) |
| 1706 | return std::nullopt; |
| 1707 | } |
| 1708 | |
| 1709 | if (!AllowSubregionBindings) { |
| 1710 | // If there are any other bindings within this region, we shouldn't reuse |
| 1711 | // the top-level binding. |
| 1712 | SmallVector<BindingPair, 16> Bindings; |
| 1713 | collectSubRegionBindings(Bindings, SVB, Cluster: *B.lookup(K: R->getBaseRegion()), Top: R, |
| 1714 | /*IncludeAllDefaultBindings=*/true); |
| 1715 | if (Bindings.size() > 1) |
| 1716 | return std::nullopt; |
| 1717 | } |
| 1718 | |
| 1719 | return *LCV; |
| 1720 | } |
| 1721 | |
| 1722 | std::pair<Store, const SubRegion *> |
| 1723 | RegionStoreManager::findLazyBinding(RegionBindingsConstRef B, |
| 1724 | const SubRegion *R, |
| 1725 | const SubRegion *originalRegion) { |
| 1726 | if (originalRegion != R) { |
| 1727 | if (std::optional<nonloc::LazyCompoundVal> V = |
| 1728 | getExistingLazyBinding(SVB&: svalBuilder, B, R, AllowSubregionBindings: true)) |
| 1729 | return std::make_pair(x: V->getStore(), y: V->getRegion()); |
| 1730 | } |
| 1731 | |
| 1732 | typedef std::pair<Store, const SubRegion *> StoreRegionPair; |
| 1733 | StoreRegionPair Result = StoreRegionPair(); |
| 1734 | |
| 1735 | if (const ElementRegion *ER = dyn_cast<ElementRegion>(Val: R)) { |
| 1736 | Result = findLazyBinding(B, R: cast<SubRegion>(ER->getSuperRegion()), |
| 1737 | originalRegion); |
| 1738 | |
| 1739 | if (Result.second) |
| 1740 | Result.second = MRMgr.getElementRegionWithSuper(ER, superRegion: Result.second); |
| 1741 | |
| 1742 | } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(Val: R)) { |
| 1743 | Result = findLazyBinding(B, R: cast<SubRegion>(Val: FR->getSuperRegion()), |
| 1744 | originalRegion); |
| 1745 | |
| 1746 | if (Result.second) |
| 1747 | Result.second = MRMgr.getFieldRegionWithSuper(FR, superRegion: Result.second); |
| 1748 | |
| 1749 | } else if (const CXXBaseObjectRegion *BaseReg = |
| 1750 | dyn_cast<CXXBaseObjectRegion>(Val: R)) { |
| 1751 | // C++ base object region is another kind of region that we should blast |
| 1752 | // through to look for lazy compound value. It is like a field region. |
| 1753 | Result = findLazyBinding(B, R: cast<SubRegion>(Val: BaseReg->getSuperRegion()), |
| 1754 | originalRegion); |
| 1755 | |
| 1756 | if (Result.second) |
| 1757 | Result.second = MRMgr.getCXXBaseObjectRegionWithSuper(baseReg: BaseReg, |
| 1758 | superRegion: Result.second); |
| 1759 | } |
| 1760 | |
| 1761 | return Result; |
| 1762 | } |
| 1763 | |
| 1764 | /// This is a helper function for `getConstantValFromConstArrayInitializer`. |
| 1765 | /// |
| 1766 | /// Return an array of extents of the declared array type. |
| 1767 | /// |
| 1768 | /// E.g. for `int x[1][2][3];` returns { 1, 2, 3 }. |
| 1769 | static SmallVector<uint64_t, 2> |
| 1770 | getConstantArrayExtents(const ConstantArrayType *CAT) { |
| 1771 | assert(CAT && "ConstantArrayType should not be null" ); |
| 1772 | CAT = cast<ConstantArrayType>(CAT->getCanonicalTypeInternal()); |
| 1773 | SmallVector<uint64_t, 2> Extents; |
| 1774 | do { |
| 1775 | Extents.push_back(Elt: CAT->getZExtSize()); |
| 1776 | } while ((CAT = dyn_cast<ConstantArrayType>(CAT->getElementType()))); |
| 1777 | return Extents; |
| 1778 | } |
| 1779 | |
| 1780 | /// This is a helper function for `getConstantValFromConstArrayInitializer`. |
| 1781 | /// |
| 1782 | /// Return an array of offsets from nested ElementRegions and a root base |
| 1783 | /// region. The array is never empty and a base region is never null. |
| 1784 | /// |
| 1785 | /// E.g. for `Element{Element{Element{VarRegion},1},2},3}` returns { 3, 2, 1 }. |
| 1786 | /// This represents an access through indirection: `arr[1][2][3];` |
| 1787 | /// |
| 1788 | /// \param ER The given (possibly nested) ElementRegion. |
| 1789 | /// |
| 1790 | /// \note The result array is in the reverse order of indirection expression: |
| 1791 | /// arr[1][2][3] -> { 3, 2, 1 }. This helps to provide complexity O(n), where n |
| 1792 | /// is a number of indirections. It may not affect performance in real-life |
| 1793 | /// code, though. |
| 1794 | static std::pair<SmallVector<SVal, 2>, const MemRegion *> |
| 1795 | getElementRegionOffsetsWithBase(const ElementRegion *ER) { |
| 1796 | assert(ER && "ConstantArrayType should not be null" ); |
| 1797 | const MemRegion *Base; |
| 1798 | SmallVector<SVal, 2> SValOffsets; |
| 1799 | do { |
| 1800 | SValOffsets.push_back(Elt: ER->getIndex()); |
| 1801 | Base = ER->getSuperRegion(); |
| 1802 | ER = dyn_cast<ElementRegion>(Val: Base); |
| 1803 | } while (ER); |
| 1804 | return {SValOffsets, Base}; |
| 1805 | } |
| 1806 | |
| 1807 | /// This is a helper function for `getConstantValFromConstArrayInitializer`. |
| 1808 | /// |
| 1809 | /// Convert array of offsets from `SVal` to `uint64_t` in consideration of |
| 1810 | /// respective array extents. |
| 1811 | /// \param SrcOffsets [in] The array of offsets of type `SVal` in reversed |
| 1812 | /// order (expectedly received from `getElementRegionOffsetsWithBase`). |
| 1813 | /// \param ArrayExtents [in] The array of extents. |
| 1814 | /// \param DstOffsets [out] The array of offsets of type `uint64_t`. |
| 1815 | /// \returns: |
| 1816 | /// - `std::nullopt` for successful convertion. |
| 1817 | /// - `UndefinedVal` or `UnknownVal` otherwise. It's expected that this SVal |
| 1818 | /// will be returned as a suitable value of the access operation. |
| 1819 | /// which should be returned as a correct |
| 1820 | /// |
| 1821 | /// \example: |
| 1822 | /// const int arr[10][20][30] = {}; // ArrayExtents { 10, 20, 30 } |
| 1823 | /// int x1 = arr[4][5][6]; // SrcOffsets { NonLoc(6), NonLoc(5), NonLoc(4) } |
| 1824 | /// // DstOffsets { 4, 5, 6 } |
| 1825 | /// // returns std::nullopt |
| 1826 | /// int x2 = arr[42][5][-6]; // returns UndefinedVal |
| 1827 | /// int x3 = arr[4][5][x2]; // returns UnknownVal |
| 1828 | static std::optional<SVal> |
| 1829 | convertOffsetsFromSvalToUnsigneds(const SmallVector<SVal, 2> &SrcOffsets, |
| 1830 | const SmallVector<uint64_t, 2> ArrayExtents, |
| 1831 | SmallVector<uint64_t, 2> &DstOffsets) { |
| 1832 | // Check offsets for being out of bounds. |
| 1833 | // C++20 [expr.add] 7.6.6.4 (excerpt): |
| 1834 | // If P points to an array element i of an array object x with n |
| 1835 | // elements, where i < 0 or i > n, the behavior is undefined. |
| 1836 | // Dereferencing is not allowed on the "one past the last |
| 1837 | // element", when i == n. |
| 1838 | // Example: |
| 1839 | // const int arr[3][2] = {{1, 2}, {3, 4}}; |
| 1840 | // arr[0][0]; // 1 |
| 1841 | // arr[0][1]; // 2 |
| 1842 | // arr[0][2]; // UB |
| 1843 | // arr[1][0]; // 3 |
| 1844 | // arr[1][1]; // 4 |
| 1845 | // arr[1][-1]; // UB |
| 1846 | // arr[2][0]; // 0 |
| 1847 | // arr[2][1]; // 0 |
| 1848 | // arr[-2][0]; // UB |
| 1849 | DstOffsets.resize(N: SrcOffsets.size()); |
| 1850 | auto ExtentIt = ArrayExtents.begin(); |
| 1851 | auto OffsetIt = DstOffsets.begin(); |
| 1852 | // Reverse `SValOffsets` to make it consistent with `ArrayExtents`. |
| 1853 | for (SVal V : llvm::reverse(C: SrcOffsets)) { |
| 1854 | if (auto CI = V.getAs<nonloc::ConcreteInt>()) { |
| 1855 | // When offset is out of array's bounds, result is UB. |
| 1856 | const llvm::APSInt &Offset = CI->getValue(); |
| 1857 | if (Offset.isNegative() || Offset.uge(RHS: *(ExtentIt++))) |
| 1858 | return UndefinedVal(); |
| 1859 | // Store index in a reversive order. |
| 1860 | *(OffsetIt++) = Offset.getZExtValue(); |
| 1861 | continue; |
| 1862 | } |
| 1863 | // Symbolic index presented. Return Unknown value. |
| 1864 | // FIXME: We also need to take ElementRegions with symbolic indexes into |
| 1865 | // account. |
| 1866 | return UnknownVal(); |
| 1867 | } |
| 1868 | return std::nullopt; |
| 1869 | } |
| 1870 | |
| 1871 | std::optional<SVal> RegionStoreManager::getConstantValFromConstArrayInitializer( |
| 1872 | RegionBindingsConstRef B, const ElementRegion *R) { |
| 1873 | assert(R && "ElementRegion should not be null" ); |
| 1874 | |
| 1875 | // Treat an n-dimensional array. |
| 1876 | SmallVector<SVal, 2> SValOffsets; |
| 1877 | const MemRegion *Base; |
| 1878 | std::tie(args&: SValOffsets, args&: Base) = getElementRegionOffsetsWithBase(ER: R); |
| 1879 | const VarRegion *VR = dyn_cast<VarRegion>(Val: Base); |
| 1880 | if (!VR) |
| 1881 | return std::nullopt; |
| 1882 | |
| 1883 | assert(!SValOffsets.empty() && "getElementRegionOffsets guarantees the " |
| 1884 | "offsets vector is not empty." ); |
| 1885 | |
| 1886 | // Check if the containing array has an initialized value that we can trust. |
| 1887 | // We can trust a const value or a value of a global initializer in main(). |
| 1888 | const VarDecl *VD = VR->getDecl(); |
| 1889 | if (!VD->getType().isConstQualified() && |
| 1890 | !R->getElementType().isConstQualified() && |
| 1891 | (!B.isMainAnalysis() || !VD->hasGlobalStorage())) |
| 1892 | return std::nullopt; |
| 1893 | |
| 1894 | // Array's declaration should have `ConstantArrayType` type, because only this |
| 1895 | // type contains an array extent. It may happen that array type can be of |
| 1896 | // `IncompleteArrayType` type. To get the declaration of `ConstantArrayType` |
| 1897 | // type, we should find the declaration in the redeclarations chain that has |
| 1898 | // the initialization expression. |
| 1899 | // NOTE: `getAnyInitializer` has an out-parameter, which returns a new `VD` |
| 1900 | // from which an initializer is obtained. We replace current `VD` with the new |
| 1901 | // `VD`. If the return value of the function is null than `VD` won't be |
| 1902 | // replaced. |
| 1903 | const Expr *Init = VD->getAnyInitializer(D&: VD); |
| 1904 | // NOTE: If `Init` is non-null, then a new `VD` is non-null for sure. So check |
| 1905 | // `Init` for null only and don't worry about the replaced `VD`. |
| 1906 | if (!Init) |
| 1907 | return std::nullopt; |
| 1908 | |
| 1909 | // Array's declaration should have ConstantArrayType type, because only this |
| 1910 | // type contains an array extent. |
| 1911 | const ConstantArrayType *CAT = Ctx.getAsConstantArrayType(T: VD->getType()); |
| 1912 | if (!CAT) |
| 1913 | return std::nullopt; |
| 1914 | |
| 1915 | // Get array extents. |
| 1916 | SmallVector<uint64_t, 2> Extents = getConstantArrayExtents(CAT); |
| 1917 | |
| 1918 | // The number of offsets should equal to the numbers of extents, |
| 1919 | // otherwise wrong type punning occurred. For instance: |
| 1920 | // int arr[1][2][3]; |
| 1921 | // auto ptr = (int(*)[42])arr; |
| 1922 | // auto x = ptr[4][2]; // UB |
| 1923 | // FIXME: Should return UndefinedVal. |
| 1924 | if (SValOffsets.size() != Extents.size()) |
| 1925 | return std::nullopt; |
| 1926 | |
| 1927 | SmallVector<uint64_t, 2> ConcreteOffsets; |
| 1928 | if (std::optional<SVal> V = convertOffsetsFromSvalToUnsigneds( |
| 1929 | SrcOffsets: SValOffsets, ArrayExtents: Extents, DstOffsets&: ConcreteOffsets)) |
| 1930 | return *V; |
| 1931 | |
| 1932 | // Handle InitListExpr. |
| 1933 | // Example: |
| 1934 | // const char arr[4][2] = { { 1, 2 }, { 3 }, 4, 5 }; |
| 1935 | if (const auto *ILE = dyn_cast<InitListExpr>(Val: Init)) |
| 1936 | return getSValFromInitListExpr(ILE, ConcreteOffsets, ElemT: R->getElementType()); |
| 1937 | |
| 1938 | // Handle StringLiteral. |
| 1939 | // Example: |
| 1940 | // const char arr[] = "abc"; |
| 1941 | if (const auto *SL = dyn_cast<StringLiteral>(Val: Init)) |
| 1942 | return getSValFromStringLiteral(SL, Offset: ConcreteOffsets.front(), |
| 1943 | ElemT: R->getElementType()); |
| 1944 | |
| 1945 | // FIXME: Handle CompoundLiteralExpr. |
| 1946 | |
| 1947 | return std::nullopt; |
| 1948 | } |
| 1949 | |
| 1950 | /// Returns an SVal, if possible, for the specified position of an |
| 1951 | /// initialization list. |
| 1952 | /// |
| 1953 | /// \param ILE The given initialization list. |
| 1954 | /// \param Offsets The array of unsigned offsets. E.g. for the expression |
| 1955 | /// `int x = arr[1][2][3];` an array should be { 1, 2, 3 }. |
| 1956 | /// \param ElemT The type of the result SVal expression. |
| 1957 | /// \return Optional SVal for the particular position in the initialization |
| 1958 | /// list. E.g. for the list `{{1, 2},[3, 4],{5, 6}, {}}` offsets: |
| 1959 | /// - {1, 1} returns SVal{4}, because it's the second position in the second |
| 1960 | /// sublist; |
| 1961 | /// - {3, 0} returns SVal{0}, because there's no explicit value at this |
| 1962 | /// position in the sublist. |
| 1963 | /// |
| 1964 | /// NOTE: Inorder to get a valid SVal, a caller shall guarantee valid offsets |
| 1965 | /// for the given initialization list. Otherwise SVal can be an equivalent to 0 |
| 1966 | /// or lead to assertion. |
| 1967 | std::optional<SVal> RegionStoreManager::getSValFromInitListExpr( |
| 1968 | const InitListExpr *ILE, const SmallVector<uint64_t, 2> &Offsets, |
| 1969 | QualType ElemT) { |
| 1970 | assert(ILE && "InitListExpr should not be null" ); |
| 1971 | |
| 1972 | for (uint64_t Offset : Offsets) { |
| 1973 | // C++20 [dcl.init.string] 9.4.2.1: |
| 1974 | // An array of ordinary character type [...] can be initialized by [...] |
| 1975 | // an appropriately-typed string-literal enclosed in braces. |
| 1976 | // Example: |
| 1977 | // const char arr[] = { "abc" }; |
| 1978 | if (ILE->isStringLiteralInit()) |
| 1979 | if (const auto *SL = dyn_cast<StringLiteral>(Val: ILE->getInit(Init: 0))) |
| 1980 | return getSValFromStringLiteral(SL, Offset, ElemT); |
| 1981 | |
| 1982 | // C++20 [expr.add] 9.4.17.5 (excerpt): |
| 1983 | // i-th array element is value-initialized for each k < i ≤ n, |
| 1984 | // where k is an expression-list size and n is an array extent. |
| 1985 | if (Offset >= ILE->getNumInits()) |
| 1986 | return svalBuilder.makeZeroVal(type: ElemT); |
| 1987 | |
| 1988 | const Expr *E = ILE->getInit(Init: Offset); |
| 1989 | const auto *IL = dyn_cast<InitListExpr>(Val: E); |
| 1990 | if (!IL) |
| 1991 | // Return a constant value, if it is presented. |
| 1992 | // FIXME: Support other SVals. |
| 1993 | return svalBuilder.getConstantVal(E); |
| 1994 | |
| 1995 | // Go to the nested initializer list. |
| 1996 | ILE = IL; |
| 1997 | } |
| 1998 | |
| 1999 | assert(ILE); |
| 2000 | |
| 2001 | // FIXME: Unhandeled InitListExpr sub-expression, possibly constructing an |
| 2002 | // enum? |
| 2003 | return std::nullopt; |
| 2004 | } |
| 2005 | |
| 2006 | /// Returns an SVal, if possible, for the specified position in a string |
| 2007 | /// literal. |
| 2008 | /// |
| 2009 | /// \param SL The given string literal. |
| 2010 | /// \param Offset The unsigned offset. E.g. for the expression |
| 2011 | /// `char x = str[42];` an offset should be 42. |
| 2012 | /// E.g. for the string "abc" offset: |
| 2013 | /// - 1 returns SVal{b}, because it's the second position in the string. |
| 2014 | /// - 42 returns SVal{0}, because there's no explicit value at this |
| 2015 | /// position in the string. |
| 2016 | /// \param ElemT The type of the result SVal expression. |
| 2017 | /// |
| 2018 | /// NOTE: We return `0` for every offset >= the literal length for array |
| 2019 | /// declarations, like: |
| 2020 | /// const char str[42] = "123"; // Literal length is 4. |
| 2021 | /// char c = str[41]; // Offset is 41. |
| 2022 | /// FIXME: Nevertheless, we can't do the same for pointer declaraions, like: |
| 2023 | /// const char * const str = "123"; // Literal length is 4. |
| 2024 | /// char c = str[41]; // Offset is 41. Returns `0`, but Undef |
| 2025 | /// // expected. |
| 2026 | /// It should be properly handled before reaching this point. |
| 2027 | /// The main problem is that we can't distinguish between these declarations, |
| 2028 | /// because in case of array we can get the Decl from VarRegion, but in case |
| 2029 | /// of pointer the region is a StringRegion, which doesn't contain a Decl. |
| 2030 | /// Possible solution could be passing an array extent along with the offset. |
| 2031 | SVal RegionStoreManager::getSValFromStringLiteral(const StringLiteral *SL, |
| 2032 | uint64_t Offset, |
| 2033 | QualType ElemT) { |
| 2034 | assert(SL && "StringLiteral should not be null" ); |
| 2035 | // C++20 [dcl.init.string] 9.4.2.3: |
| 2036 | // If there are fewer initializers than there are array elements, each |
| 2037 | // element not explicitly initialized shall be zero-initialized [dcl.init]. |
| 2038 | uint32_t Code = (Offset >= SL->getLength()) ? 0 : SL->getCodeUnit(i: Offset); |
| 2039 | return svalBuilder.makeIntVal(integer: Code, type: ElemT); |
| 2040 | } |
| 2041 | |
| 2042 | static std::optional<SVal> getDerivedSymbolForBinding( |
| 2043 | RegionBindingsConstRef B, const TypedValueRegion *BaseRegion, |
| 2044 | const TypedValueRegion *SubReg, const ASTContext &Ctx, SValBuilder &SVB) { |
| 2045 | assert(BaseRegion); |
| 2046 | QualType BaseTy = BaseRegion->getValueType(); |
| 2047 | QualType Ty = SubReg->getValueType(); |
| 2048 | if (BaseTy->isScalarType() && Ty->isScalarType()) { |
| 2049 | if (Ctx.getTypeSizeInChars(T: BaseTy) >= Ctx.getTypeSizeInChars(T: Ty)) { |
| 2050 | if (const std::optional<SVal> &ParentValue = |
| 2051 | B.getDirectBinding(R: BaseRegion)) { |
| 2052 | if (SymbolRef ParentValueAsSym = ParentValue->getAsSymbol()) |
| 2053 | return SVB.getDerivedRegionValueSymbolVal(parentSymbol: ParentValueAsSym, region: SubReg); |
| 2054 | |
| 2055 | if (ParentValue->isUndef()) |
| 2056 | return UndefinedVal(); |
| 2057 | |
| 2058 | // Other cases: give up. We are indexing into a larger object |
| 2059 | // that has some value, but we don't know how to handle that yet. |
| 2060 | return UnknownVal(); |
| 2061 | } |
| 2062 | } |
| 2063 | } |
| 2064 | return std::nullopt; |
| 2065 | } |
| 2066 | |
| 2067 | SVal RegionStoreManager::getBindingForElement(RegionBindingsConstRef B, |
| 2068 | const ElementRegion* R) { |
| 2069 | // Check if the region has a binding. |
| 2070 | if (const std::optional<SVal> &V = B.getDirectBinding(R)) |
| 2071 | return *V; |
| 2072 | |
| 2073 | const MemRegion* superR = R->getSuperRegion(); |
| 2074 | |
| 2075 | // Check if the region is an element region of a string literal. |
| 2076 | if (const StringRegion *StrR = dyn_cast<StringRegion>(Val: superR)) { |
| 2077 | // FIXME: Handle loads from strings where the literal is treated as |
| 2078 | // an integer, e.g., *((unsigned int*)"hello"). Such loads are UB according |
| 2079 | // to C++20 7.2.1.11 [basic.lval]. |
| 2080 | QualType T = Ctx.getAsArrayType(T: StrR->getValueType())->getElementType(); |
| 2081 | if (!Ctx.hasSameUnqualifiedType(T1: T, T2: R->getElementType())) |
| 2082 | return UnknownVal(); |
| 2083 | if (const auto CI = R->getIndex().getAs<nonloc::ConcreteInt>()) { |
| 2084 | const llvm::APSInt &Idx = CI->getValue(); |
| 2085 | if (Idx < 0) |
| 2086 | return UndefinedVal(); |
| 2087 | const StringLiteral *SL = StrR->getStringLiteral(); |
| 2088 | return getSValFromStringLiteral(SL, Offset: Idx.getZExtValue(), ElemT: T); |
| 2089 | } |
| 2090 | } else if (isa<ElementRegion, VarRegion>(Val: superR)) { |
| 2091 | if (std::optional<SVal> V = getConstantValFromConstArrayInitializer(B, R)) |
| 2092 | return *V; |
| 2093 | } |
| 2094 | |
| 2095 | // Check for loads from a code text region. For such loads, just give up. |
| 2096 | if (isa<CodeTextRegion>(Val: superR)) |
| 2097 | return UnknownVal(); |
| 2098 | |
| 2099 | // Handle the case where we are indexing into a larger scalar object. |
| 2100 | // For example, this handles: |
| 2101 | // int x = ... |
| 2102 | // char *y = &x; |
| 2103 | // return *y; |
| 2104 | // FIXME: This is a hack, and doesn't do anything really intelligent yet. |
| 2105 | const RegionRawOffset &O = R->getAsArrayOffset(); |
| 2106 | |
| 2107 | // If we cannot reason about the offset, return an unknown value. |
| 2108 | if (!O.getRegion()) |
| 2109 | return UnknownVal(); |
| 2110 | |
| 2111 | if (const TypedValueRegion *baseR = dyn_cast<TypedValueRegion>(Val: O.getRegion())) |
| 2112 | if (auto V = getDerivedSymbolForBinding(B, baseR, R, Ctx, svalBuilder)) |
| 2113 | return *V; |
| 2114 | |
| 2115 | return getBindingForFieldOrElementCommon(B, R, R->getElementType()); |
| 2116 | } |
| 2117 | |
| 2118 | SVal RegionStoreManager::getBindingForField(RegionBindingsConstRef B, |
| 2119 | const FieldRegion* R) { |
| 2120 | |
| 2121 | // Check if the region has a binding. |
| 2122 | if (const std::optional<SVal> &V = B.getDirectBinding(R)) |
| 2123 | return *V; |
| 2124 | |
| 2125 | // If the containing record was initialized, try to get its constant value. |
| 2126 | const FieldDecl *FD = R->getDecl(); |
| 2127 | QualType Ty = FD->getType(); |
| 2128 | const MemRegion* superR = R->getSuperRegion(); |
| 2129 | if (const auto *VR = dyn_cast<VarRegion>(Val: superR)) { |
| 2130 | const VarDecl *VD = VR->getDecl(); |
| 2131 | QualType RecordVarTy = VD->getType(); |
| 2132 | unsigned Index = FD->getFieldIndex(); |
| 2133 | // Either the record variable or the field has an initializer that we can |
| 2134 | // trust. We trust initializers of constants and, additionally, respect |
| 2135 | // initializers of globals when analyzing main(). |
| 2136 | if (RecordVarTy.isConstQualified() || Ty.isConstQualified() || |
| 2137 | (B.isMainAnalysis() && VD->hasGlobalStorage())) |
| 2138 | if (const Expr *Init = VD->getAnyInitializer()) |
| 2139 | if (const auto *InitList = dyn_cast<InitListExpr>(Val: Init)) { |
| 2140 | if (Index < InitList->getNumInits()) { |
| 2141 | if (const Expr *FieldInit = InitList->getInit(Init: Index)) |
| 2142 | if (std::optional<SVal> V = svalBuilder.getConstantVal(E: FieldInit)) |
| 2143 | return *V; |
| 2144 | } else { |
| 2145 | return svalBuilder.makeZeroVal(type: Ty); |
| 2146 | } |
| 2147 | } |
| 2148 | } |
| 2149 | |
| 2150 | // Handle the case where we are accessing into a larger scalar object. |
| 2151 | // For example, this handles: |
| 2152 | // struct header { |
| 2153 | // unsigned a : 1; |
| 2154 | // unsigned b : 1; |
| 2155 | // }; |
| 2156 | // struct parse_t { |
| 2157 | // unsigned bits0 : 1; |
| 2158 | // unsigned bits2 : 2; // <-- header |
| 2159 | // unsigned bits4 : 4; |
| 2160 | // }; |
| 2161 | // int parse(parse_t *p) { |
| 2162 | // unsigned copy = p->bits2; |
| 2163 | // header *bits = (header *)© |
| 2164 | // return bits->b; <-- here |
| 2165 | // } |
| 2166 | if (const auto *Base = dyn_cast<TypedValueRegion>(Val: R->getBaseRegion())) |
| 2167 | if (auto V = getDerivedSymbolForBinding(B, BaseRegion: Base, SubReg: R, Ctx, SVB&: svalBuilder)) |
| 2168 | return *V; |
| 2169 | |
| 2170 | return getBindingForFieldOrElementCommon(B, R, Ty); |
| 2171 | } |
| 2172 | |
| 2173 | std::optional<SVal> RegionStoreManager::getBindingForDerivedDefaultValue( |
| 2174 | RegionBindingsConstRef B, const MemRegion *superR, |
| 2175 | const TypedValueRegion *R, QualType Ty) { |
| 2176 | |
| 2177 | if (const std::optional<SVal> &D = B.getDefaultBinding(R: superR)) { |
| 2178 | SVal val = *D; |
| 2179 | if (SymbolRef parentSym = val.getAsSymbol()) |
| 2180 | return svalBuilder.getDerivedRegionValueSymbolVal(parentSymbol: parentSym, region: R); |
| 2181 | |
| 2182 | if (val.isZeroConstant()) |
| 2183 | return svalBuilder.makeZeroVal(type: Ty); |
| 2184 | |
| 2185 | if (val.isUnknownOrUndef()) |
| 2186 | return val; |
| 2187 | |
| 2188 | // Lazy bindings are usually handled through getExistingLazyBinding(). |
| 2189 | // We should unify these two code paths at some point. |
| 2190 | if (isa<nonloc::LazyCompoundVal, nonloc::CompoundVal>(Val: val)) |
| 2191 | return val; |
| 2192 | |
| 2193 | llvm_unreachable("Unknown default value" ); |
| 2194 | } |
| 2195 | |
| 2196 | return std::nullopt; |
| 2197 | } |
| 2198 | |
| 2199 | SVal RegionStoreManager::getLazyBinding(const SubRegion *LazyBindingRegion, |
| 2200 | RegionBindingsRef LazyBinding) { |
| 2201 | SVal Result; |
| 2202 | if (const ElementRegion *ER = dyn_cast<ElementRegion>(Val: LazyBindingRegion)) |
| 2203 | Result = getBindingForElement(B: LazyBinding, R: ER); |
| 2204 | else |
| 2205 | Result = getBindingForField(B: LazyBinding, |
| 2206 | R: cast<FieldRegion>(Val: LazyBindingRegion)); |
| 2207 | |
| 2208 | // FIXME: This is a hack to deal with RegionStore's inability to distinguish a |
| 2209 | // default value for /part/ of an aggregate from a default value for the |
| 2210 | // /entire/ aggregate. The most common case of this is when struct Outer |
| 2211 | // has as its first member a struct Inner, which is copied in from a stack |
| 2212 | // variable. In this case, even if the Outer's default value is symbolic, 0, |
| 2213 | // or unknown, it gets overridden by the Inner's default value of undefined. |
| 2214 | // |
| 2215 | // This is a general problem -- if the Inner is zero-initialized, the Outer |
| 2216 | // will now look zero-initialized. The proper way to solve this is with a |
| 2217 | // new version of RegionStore that tracks the extent of a binding as well |
| 2218 | // as the offset. |
| 2219 | // |
| 2220 | // This hack only takes care of the undefined case because that can very |
| 2221 | // quickly result in a warning. |
| 2222 | if (Result.isUndef()) |
| 2223 | Result = UnknownVal(); |
| 2224 | |
| 2225 | return Result; |
| 2226 | } |
| 2227 | |
| 2228 | SVal |
| 2229 | RegionStoreManager::getBindingForFieldOrElementCommon(RegionBindingsConstRef B, |
| 2230 | const TypedValueRegion *R, |
| 2231 | QualType Ty) { |
| 2232 | |
| 2233 | // At this point we have already checked in either getBindingForElement or |
| 2234 | // getBindingForField if 'R' has a direct binding. |
| 2235 | |
| 2236 | // Lazy binding? |
| 2237 | Store lazyBindingStore = nullptr; |
| 2238 | const SubRegion *lazyBindingRegion = nullptr; |
| 2239 | std::tie(args&: lazyBindingStore, args&: lazyBindingRegion) = findLazyBinding(B, R, originalRegion: R); |
| 2240 | if (lazyBindingRegion) |
| 2241 | return getLazyBinding(LazyBindingRegion: lazyBindingRegion, |
| 2242 | LazyBinding: getRegionBindings(store: lazyBindingStore)); |
| 2243 | |
| 2244 | // Record whether or not we see a symbolic index. That can completely |
| 2245 | // be out of scope of our lookup. |
| 2246 | bool hasSymbolicIndex = false; |
| 2247 | |
| 2248 | // FIXME: This is a hack to deal with RegionStore's inability to distinguish a |
| 2249 | // default value for /part/ of an aggregate from a default value for the |
| 2250 | // /entire/ aggregate. The most common case of this is when struct Outer |
| 2251 | // has as its first member a struct Inner, which is copied in from a stack |
| 2252 | // variable. In this case, even if the Outer's default value is symbolic, 0, |
| 2253 | // or unknown, it gets overridden by the Inner's default value of undefined. |
| 2254 | // |
| 2255 | // This is a general problem -- if the Inner is zero-initialized, the Outer |
| 2256 | // will now look zero-initialized. The proper way to solve this is with a |
| 2257 | // new version of RegionStore that tracks the extent of a binding as well |
| 2258 | // as the offset. |
| 2259 | // |
| 2260 | // This hack only takes care of the undefined case because that can very |
| 2261 | // quickly result in a warning. |
| 2262 | bool hasPartialLazyBinding = false; |
| 2263 | |
| 2264 | const SubRegion *SR = R; |
| 2265 | while (SR) { |
| 2266 | const MemRegion *Base = SR->getSuperRegion(); |
| 2267 | if (std::optional<SVal> D = |
| 2268 | getBindingForDerivedDefaultValue(B, superR: Base, R, Ty)) { |
| 2269 | if (D->getAs<nonloc::LazyCompoundVal>()) { |
| 2270 | hasPartialLazyBinding = true; |
| 2271 | break; |
| 2272 | } |
| 2273 | |
| 2274 | return *D; |
| 2275 | } |
| 2276 | |
| 2277 | if (const ElementRegion *ER = dyn_cast<ElementRegion>(Val: Base)) { |
| 2278 | NonLoc index = ER->getIndex(); |
| 2279 | if (!index.isConstant()) |
| 2280 | hasSymbolicIndex = true; |
| 2281 | } |
| 2282 | |
| 2283 | // If our super region is a field or element itself, walk up the region |
| 2284 | // hierarchy to see if there is a default value installed in an ancestor. |
| 2285 | SR = dyn_cast<SubRegion>(Val: Base); |
| 2286 | } |
| 2287 | |
| 2288 | if (isa<StackLocalsSpaceRegion>(Val: R->getRawMemorySpace())) { |
| 2289 | if (isa<ElementRegion>(Val: R)) { |
| 2290 | // Currently we don't reason specially about Clang-style vectors. Check |
| 2291 | // if superR is a vector and if so return Unknown. |
| 2292 | if (const TypedValueRegion *typedSuperR = |
| 2293 | dyn_cast<TypedValueRegion>(Val: R->getSuperRegion())) { |
| 2294 | if (typedSuperR->getValueType()->isVectorType()) |
| 2295 | return UnknownVal(); |
| 2296 | } |
| 2297 | } |
| 2298 | |
| 2299 | // FIXME: We also need to take ElementRegions with symbolic indexes into |
| 2300 | // account. This case handles both directly accessing an ElementRegion |
| 2301 | // with a symbolic offset, but also fields within an element with |
| 2302 | // a symbolic offset. |
| 2303 | if (hasSymbolicIndex) |
| 2304 | return UnknownVal(); |
| 2305 | |
| 2306 | // Additionally allow introspection of a block's internal layout. |
| 2307 | // Try to get direct binding if all other attempts failed thus far. |
| 2308 | // Else, return UndefinedVal() |
| 2309 | if (!hasPartialLazyBinding && !isa<BlockDataRegion>(Val: R->getBaseRegion())) { |
| 2310 | if (const std::optional<SVal> &V = B.getDefaultBinding(R)) |
| 2311 | return *V; |
| 2312 | return UndefinedVal(); |
| 2313 | } |
| 2314 | } |
| 2315 | |
| 2316 | // All other values are symbolic. |
| 2317 | return svalBuilder.getRegionValueSymbolVal(region: R); |
| 2318 | } |
| 2319 | |
| 2320 | SVal RegionStoreManager::getBindingForObjCIvar(RegionBindingsConstRef B, |
| 2321 | const ObjCIvarRegion* R) { |
| 2322 | // Check if the region has a binding. |
| 2323 | if (const std::optional<SVal> &V = B.getDirectBinding(R)) |
| 2324 | return *V; |
| 2325 | |
| 2326 | const MemRegion *superR = R->getSuperRegion(); |
| 2327 | |
| 2328 | // Check if the super region has a default binding. |
| 2329 | if (const std::optional<SVal> &V = B.getDefaultBinding(R: superR)) { |
| 2330 | if (SymbolRef parentSym = V->getAsSymbol()) |
| 2331 | return svalBuilder.getDerivedRegionValueSymbolVal(parentSymbol: parentSym, region: R); |
| 2332 | |
| 2333 | // Other cases: give up. |
| 2334 | return UnknownVal(); |
| 2335 | } |
| 2336 | |
| 2337 | return getBindingForLazySymbol(R); |
| 2338 | } |
| 2339 | |
| 2340 | SVal RegionStoreManager::getBindingForVar(RegionBindingsConstRef B, |
| 2341 | const VarRegion *R) { |
| 2342 | |
| 2343 | // Check if the region has a binding. |
| 2344 | if (std::optional<SVal> V = B.getDirectBinding(R)) |
| 2345 | return *V; |
| 2346 | |
| 2347 | if (std::optional<SVal> V = B.getDefaultBinding(R)) |
| 2348 | return *V; |
| 2349 | |
| 2350 | // Lazily derive a value for the VarRegion. |
| 2351 | const VarDecl *VD = R->getDecl(); |
| 2352 | const MemSpaceRegion *MS = R->getRawMemorySpace(); |
| 2353 | |
| 2354 | // Arguments are always symbolic. |
| 2355 | if (isa<StackArgumentsSpaceRegion>(Val: MS)) |
| 2356 | return svalBuilder.getRegionValueSymbolVal(region: R); |
| 2357 | |
| 2358 | // Is 'VD' declared constant? If so, retrieve the constant value. |
| 2359 | if (VD->getType().isConstQualified()) { |
| 2360 | if (const Expr *Init = VD->getAnyInitializer()) { |
| 2361 | if (std::optional<SVal> V = svalBuilder.getConstantVal(E: Init)) |
| 2362 | return *V; |
| 2363 | |
| 2364 | // If the variable is const qualified and has an initializer but |
| 2365 | // we couldn't evaluate initializer to a value, treat the value as |
| 2366 | // unknown. |
| 2367 | return UnknownVal(); |
| 2368 | } |
| 2369 | } |
| 2370 | |
| 2371 | // This must come after the check for constants because closure-captured |
| 2372 | // constant variables may appear in UnknownSpaceRegion. |
| 2373 | if (isa<UnknownSpaceRegion>(Val: MS)) |
| 2374 | return svalBuilder.getRegionValueSymbolVal(region: R); |
| 2375 | |
| 2376 | if (isa<GlobalsSpaceRegion>(Val: MS)) { |
| 2377 | QualType T = VD->getType(); |
| 2378 | |
| 2379 | // If we're in main(), then global initializers have not become stale yet. |
| 2380 | if (B.isMainAnalysis()) |
| 2381 | if (const Expr *Init = VD->getAnyInitializer()) |
| 2382 | if (std::optional<SVal> V = svalBuilder.getConstantVal(E: Init)) |
| 2383 | return *V; |
| 2384 | |
| 2385 | // Function-scoped static variables are default-initialized to 0; if they |
| 2386 | // have an initializer, it would have been processed by now. |
| 2387 | // FIXME: This is only true when we're starting analysis from main(). |
| 2388 | // We're losing a lot of coverage here. |
| 2389 | if (isa<StaticGlobalSpaceRegion>(Val: MS)) |
| 2390 | return svalBuilder.makeZeroVal(type: T); |
| 2391 | |
| 2392 | if (std::optional<SVal> V = getBindingForDerivedDefaultValue(B, superR: MS, R, Ty: T)) { |
| 2393 | assert(!V->getAs<nonloc::LazyCompoundVal>()); |
| 2394 | return *V; |
| 2395 | } |
| 2396 | |
| 2397 | return svalBuilder.getRegionValueSymbolVal(region: R); |
| 2398 | } |
| 2399 | |
| 2400 | return UndefinedVal(); |
| 2401 | } |
| 2402 | |
| 2403 | SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) { |
| 2404 | // All other values are symbolic. |
| 2405 | return svalBuilder.getRegionValueSymbolVal(region: R); |
| 2406 | } |
| 2407 | |
| 2408 | const RegionStoreManager::SValListTy & |
| 2409 | RegionStoreManager::getInterestingValues(nonloc::LazyCompoundVal LCV) { |
| 2410 | // First, check the cache. |
| 2411 | LazyBindingsMapTy::iterator I = LazyBindingsMap.find(Val: LCV.getCVData()); |
| 2412 | if (I != LazyBindingsMap.end()) |
| 2413 | return I->second; |
| 2414 | |
| 2415 | // If we don't have a list of values cached, start constructing it. |
| 2416 | SValListTy List; |
| 2417 | |
| 2418 | const SubRegion *LazyR = LCV.getRegion(); |
| 2419 | RegionBindingsRef B = getRegionBindings(store: LCV.getStore()); |
| 2420 | |
| 2421 | // If this region had /no/ bindings at the time, there are no interesting |
| 2422 | // values to return. |
| 2423 | const ClusterBindings *Cluster = B.lookup(K: LazyR->getBaseRegion()); |
| 2424 | if (!Cluster) |
| 2425 | return (LazyBindingsMap[LCV.getCVData()] = std::move(List)); |
| 2426 | |
| 2427 | SmallVector<BindingPair, 32> Bindings; |
| 2428 | collectSubRegionBindings(Bindings, SVB&: svalBuilder, Cluster: *Cluster, Top: LazyR, |
| 2429 | /*IncludeAllDefaultBindings=*/true); |
| 2430 | for (SVal V : llvm::make_second_range(c&: Bindings)) { |
| 2431 | if (V.isUnknownOrUndef() || V.isConstant()) |
| 2432 | continue; |
| 2433 | |
| 2434 | if (auto InnerLCV = V.getAs<nonloc::LazyCompoundVal>()) { |
| 2435 | const SValListTy &InnerList = getInterestingValues(LCV: *InnerLCV); |
| 2436 | llvm::append_range(C&: List, R: InnerList); |
| 2437 | } |
| 2438 | |
| 2439 | List.push_back(x: V); |
| 2440 | } |
| 2441 | |
| 2442 | return (LazyBindingsMap[LCV.getCVData()] = std::move(List)); |
| 2443 | } |
| 2444 | |
| 2445 | NonLoc RegionStoreManager::createLazyBinding(RegionBindingsConstRef B, |
| 2446 | const TypedValueRegion *R) { |
| 2447 | if (std::optional<nonloc::LazyCompoundVal> V = |
| 2448 | getExistingLazyBinding(SVB&: svalBuilder, B, R, AllowSubregionBindings: false)) |
| 2449 | return *V; |
| 2450 | |
| 2451 | return svalBuilder.makeLazyCompoundVal(store: StoreRef(B.asStore(), *this), region: R); |
| 2452 | } |
| 2453 | |
| 2454 | SVal RegionStoreManager::getBindingForStruct(RegionBindingsConstRef B, |
| 2455 | const TypedValueRegion *R) { |
| 2456 | const RecordDecl *RD = R->getValueType()->castAs<RecordType>()->getDecl(); |
| 2457 | if (!RD->getDefinition()) |
| 2458 | return UnknownVal(); |
| 2459 | |
| 2460 | // We also create a LCV for copying empty structs because then the store |
| 2461 | // behavior doesn't depend on the struct layout. |
| 2462 | // This way even an empty struct can carry taint, no matter if creduce drops |
| 2463 | // the last field member or not. |
| 2464 | |
| 2465 | // Try to avoid creating a LCV if it would anyways just refer to a single |
| 2466 | // default binding. |
| 2467 | if (std::optional<SVal> Val = getUniqueDefaultBinding(B, R)) |
| 2468 | return *Val; |
| 2469 | return createLazyBinding(B, R); |
| 2470 | } |
| 2471 | |
| 2472 | SVal RegionStoreManager::getBindingForArray(RegionBindingsConstRef B, |
| 2473 | const TypedValueRegion *R) { |
| 2474 | assert(Ctx.getAsConstantArrayType(R->getValueType()) && |
| 2475 | "Only constant array types can have compound bindings." ); |
| 2476 | |
| 2477 | return createLazyBinding(B, R); |
| 2478 | } |
| 2479 | |
| 2480 | bool RegionStoreManager::includedInBindings(Store store, |
| 2481 | const MemRegion *region) const { |
| 2482 | RegionBindingsRef B = getRegionBindings(store); |
| 2483 | region = region->getBaseRegion(); |
| 2484 | |
| 2485 | // Quick path: if the base is the head of a cluster, the region is live. |
| 2486 | if (B.lookup(K: region)) |
| 2487 | return true; |
| 2488 | |
| 2489 | // Slow path: if the region is the VALUE of any binding, it is live. |
| 2490 | for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) { |
| 2491 | const ClusterBindings &Cluster = RI.getData(); |
| 2492 | for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end(); |
| 2493 | CI != CE; ++CI) { |
| 2494 | SVal D = CI.getData(); |
| 2495 | if (const MemRegion *R = D.getAsRegion()) |
| 2496 | if (R->getBaseRegion() == region) |
| 2497 | return true; |
| 2498 | } |
| 2499 | } |
| 2500 | |
| 2501 | return false; |
| 2502 | } |
| 2503 | |
| 2504 | //===----------------------------------------------------------------------===// |
| 2505 | // Binding values to regions. |
| 2506 | //===----------------------------------------------------------------------===// |
| 2507 | |
| 2508 | StoreRef RegionStoreManager::killBinding(Store ST, Loc L) { |
| 2509 | if (std::optional<loc::MemRegionVal> LV = L.getAs<loc::MemRegionVal>()) |
| 2510 | if (const MemRegion* R = LV->getRegion()) |
| 2511 | return StoreRef(getRegionBindings(store: ST) |
| 2512 | .removeBinding(R) |
| 2513 | .asImmutableMap() |
| 2514 | .getRootWithoutRetain(), |
| 2515 | *this); |
| 2516 | |
| 2517 | return StoreRef(ST, *this); |
| 2518 | } |
| 2519 | |
| 2520 | LimitedRegionBindingsRef |
| 2521 | RegionStoreManager::bind(LimitedRegionBindingsConstRef B, Loc L, SVal V) { |
| 2522 | llvm::TimeTraceScope TimeScope("RegionStoreManager::bind" , |
| 2523 | [&L]() { return locDescr(L); }); |
| 2524 | |
| 2525 | if (B.hasExhaustedBindingLimit()) |
| 2526 | return B.withValuesEscaped(V); |
| 2527 | |
| 2528 | // We only care about region locations. |
| 2529 | auto MemRegVal = L.getAs<loc::MemRegionVal>(); |
| 2530 | if (!MemRegVal) |
| 2531 | return B; |
| 2532 | |
| 2533 | const MemRegion *R = MemRegVal->getRegion(); |
| 2534 | |
| 2535 | // Binding directly to a symbolic region should be treated as binding |
| 2536 | // to element 0. |
| 2537 | if (const auto *SymReg = dyn_cast<SymbolicRegion>(Val: R)) { |
| 2538 | QualType Ty = SymReg->getPointeeStaticType(); |
| 2539 | if (Ty->isVoidType()) |
| 2540 | Ty = StateMgr.getContext().CharTy; |
| 2541 | R = GetElementZeroRegion(R: SymReg, T: Ty); |
| 2542 | } |
| 2543 | |
| 2544 | // Check if the region is a struct region. |
| 2545 | if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(Val: R)) { |
| 2546 | QualType Ty = TR->getValueType(); |
| 2547 | if (Ty->isArrayType()) |
| 2548 | return bindArray(B, R: TR, V); |
| 2549 | if (Ty->isStructureOrClassType()) |
| 2550 | return bindStruct(B, R: TR, V); |
| 2551 | if (Ty->isVectorType()) |
| 2552 | return bindVector(B, R: TR, V); |
| 2553 | if (Ty->isUnionType()) |
| 2554 | return bindAggregate(B, R: TR, DefaultVal: V); |
| 2555 | } |
| 2556 | |
| 2557 | assert((!isa<CXXThisRegion>(R) || !B.lookup(R)) && |
| 2558 | "'this' pointer is not an l-value and is not assignable" ); |
| 2559 | |
| 2560 | // Clear out bindings that may overlap with this binding. |
| 2561 | auto NewB = removeSubRegionBindings(B, Top: cast<SubRegion>(Val: R)); |
| 2562 | |
| 2563 | // LazyCompoundVals should be always bound as 'default' bindings. |
| 2564 | auto KeyKind = isa<nonloc::LazyCompoundVal>(Val: V) ? BindingKey::Default |
| 2565 | : BindingKey::Direct; |
| 2566 | return NewB.addBinding(K: BindingKey::Make(R, k: KeyKind), V); |
| 2567 | } |
| 2568 | |
| 2569 | LimitedRegionBindingsRef |
| 2570 | RegionStoreManager::setImplicitDefaultValue(LimitedRegionBindingsConstRef B, |
| 2571 | const MemRegion *R, QualType T) { |
| 2572 | if (B.hasExhaustedBindingLimit()) |
| 2573 | return B; |
| 2574 | |
| 2575 | SVal V; |
| 2576 | |
| 2577 | if (Loc::isLocType(T)) |
| 2578 | V = svalBuilder.makeNullWithType(type: T); |
| 2579 | else if (T->isIntegralOrEnumerationType()) |
| 2580 | V = svalBuilder.makeZeroVal(type: T); |
| 2581 | else if (T->isStructureOrClassType() || T->isArrayType()) { |
| 2582 | // Set the default value to a zero constant when it is a structure |
| 2583 | // or array. The type doesn't really matter. |
| 2584 | V = svalBuilder.makeZeroVal(type: Ctx.IntTy); |
| 2585 | } |
| 2586 | else { |
| 2587 | // We can't represent values of this type, but we still need to set a value |
| 2588 | // to record that the region has been initialized. |
| 2589 | // If this assertion ever fires, a new case should be added above -- we |
| 2590 | // should know how to default-initialize any value we can symbolicate. |
| 2591 | assert(!SymbolManager::canSymbolicate(T) && "This type is representable" ); |
| 2592 | V = UnknownVal(); |
| 2593 | } |
| 2594 | |
| 2595 | return B.addBinding(R, k: BindingKey::Default, V); |
| 2596 | } |
| 2597 | |
| 2598 | std::optional<LimitedRegionBindingsRef> RegionStoreManager::tryBindSmallArray( |
| 2599 | LimitedRegionBindingsConstRef B, const TypedValueRegion *R, |
| 2600 | const ArrayType *AT, nonloc::LazyCompoundVal LCV) { |
| 2601 | if (B.hasExhaustedBindingLimit()) |
| 2602 | return B.withValuesEscaped(V: LCV); |
| 2603 | |
| 2604 | auto CAT = dyn_cast<ConstantArrayType>(Val: AT); |
| 2605 | |
| 2606 | // If we don't know the size, create a lazyCompoundVal instead. |
| 2607 | if (!CAT) |
| 2608 | return std::nullopt; |
| 2609 | |
| 2610 | QualType Ty = CAT->getElementType(); |
| 2611 | if (!(Ty->isScalarType() || Ty->isReferenceType())) |
| 2612 | return std::nullopt; |
| 2613 | |
| 2614 | // If the array is too big, create a LCV instead. |
| 2615 | uint64_t ArrSize = CAT->getLimitedSize(); |
| 2616 | if (ArrSize > SmallArrayLimit) |
| 2617 | return std::nullopt; |
| 2618 | |
| 2619 | LimitedRegionBindingsRef NewB = B; |
| 2620 | |
| 2621 | for (uint64_t i = 0; i < ArrSize; ++i) { |
| 2622 | auto Idx = svalBuilder.makeArrayIndex(idx: i); |
| 2623 | const ElementRegion *SrcER = |
| 2624 | MRMgr.getElementRegion(elementType: Ty, Idx, superRegion: LCV.getRegion(), Ctx); |
| 2625 | SVal V = getBindingForElement(B: getRegionBindings(store: LCV.getStore()), R: SrcER); |
| 2626 | |
| 2627 | const ElementRegion *DstER = MRMgr.getElementRegion(elementType: Ty, Idx, superRegion: R, Ctx); |
| 2628 | NewB = bind(B: NewB, L: loc::MemRegionVal(DstER), V); |
| 2629 | } |
| 2630 | |
| 2631 | return NewB; |
| 2632 | } |
| 2633 | |
| 2634 | LimitedRegionBindingsRef |
| 2635 | RegionStoreManager::bindArray(LimitedRegionBindingsConstRef B, |
| 2636 | const TypedValueRegion *R, SVal Init) { |
| 2637 | llvm::TimeTraceScope TimeScope("RegionStoreManager::bindArray" , |
| 2638 | [R]() { return R->getDescriptiveName(); }); |
| 2639 | if (B.hasExhaustedBindingLimit()) |
| 2640 | return B.withValuesEscaped(V: Init); |
| 2641 | |
| 2642 | const ArrayType *AT =cast<ArrayType>(Val: Ctx.getCanonicalType(T: R->getValueType())); |
| 2643 | QualType ElementTy = AT->getElementType(); |
| 2644 | std::optional<uint64_t> Size; |
| 2645 | |
| 2646 | if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(Val: AT)) |
| 2647 | Size = CAT->getZExtSize(); |
| 2648 | |
| 2649 | // Check if the init expr is a literal. If so, bind the rvalue instead. |
| 2650 | // FIXME: It's not responsibility of the Store to transform this lvalue |
| 2651 | // to rvalue. ExprEngine or maybe even CFG should do this before binding. |
| 2652 | if (std::optional<loc::MemRegionVal> MRV = Init.getAs<loc::MemRegionVal>()) { |
| 2653 | SVal V = getBinding(S: B.asStore(), L: *MRV, T: R->getValueType()); |
| 2654 | return bindAggregate(B, R, DefaultVal: V); |
| 2655 | } |
| 2656 | |
| 2657 | // Handle lazy compound values. |
| 2658 | if (std::optional LCV = Init.getAs<nonloc::LazyCompoundVal>()) { |
| 2659 | if (std::optional NewB = tryBindSmallArray(B, R, AT, LCV: *LCV)) |
| 2660 | return *NewB; |
| 2661 | |
| 2662 | return bindAggregate(B, R, DefaultVal: Init); |
| 2663 | } |
| 2664 | |
| 2665 | if (Init.isUnknown()) |
| 2666 | return bindAggregate(B, R, DefaultVal: UnknownVal()); |
| 2667 | |
| 2668 | // Remaining case: explicit compound values. |
| 2669 | const nonloc::CompoundVal& CV = Init.castAs<nonloc::CompoundVal>(); |
| 2670 | nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end(); |
| 2671 | uint64_t i = 0; |
| 2672 | |
| 2673 | LimitedRegionBindingsRef NewB = B; |
| 2674 | |
| 2675 | for (; Size ? i < *Size : true; ++i, ++VI) { |
| 2676 | // The init list might be shorter than the array length. |
| 2677 | if (VI == VE) |
| 2678 | break; |
| 2679 | if (NewB.hasExhaustedBindingLimit()) |
| 2680 | return NewB.withValuesEscaped(Begin: VI, End: VE); |
| 2681 | |
| 2682 | NonLoc Idx = svalBuilder.makeArrayIndex(idx: i); |
| 2683 | const ElementRegion *ER = MRMgr.getElementRegion(elementType: ElementTy, Idx, superRegion: R, Ctx); |
| 2684 | |
| 2685 | if (ElementTy->isStructureOrClassType()) |
| 2686 | NewB = bindStruct(NewB, ER, *VI); |
| 2687 | else if (ElementTy->isArrayType()) |
| 2688 | NewB = bindArray(NewB, ER, *VI); |
| 2689 | else |
| 2690 | NewB = bind(B: NewB, L: loc::MemRegionVal(ER), V: *VI); |
| 2691 | } |
| 2692 | |
| 2693 | // If the init list is shorter than the array length (or the array has |
| 2694 | // variable length), set the array default value. Values that are already set |
| 2695 | // are not overwritten. |
| 2696 | if (!Size || i < *Size) |
| 2697 | NewB = setImplicitDefaultValue(B: NewB, R, T: ElementTy); |
| 2698 | |
| 2699 | return NewB; |
| 2700 | } |
| 2701 | |
| 2702 | LimitedRegionBindingsRef |
| 2703 | RegionStoreManager::bindVector(LimitedRegionBindingsConstRef B, |
| 2704 | const TypedValueRegion *R, SVal V) { |
| 2705 | llvm::TimeTraceScope TimeScope("RegionStoreManager::bindVector" , |
| 2706 | [R]() { return R->getDescriptiveName(); }); |
| 2707 | if (B.hasExhaustedBindingLimit()) |
| 2708 | return B.withValuesEscaped(V); |
| 2709 | |
| 2710 | QualType T = R->getValueType(); |
| 2711 | const VectorType *VT = T->castAs<VectorType>(); // Use castAs for typedefs. |
| 2712 | |
| 2713 | // Handle lazy compound values and symbolic values. |
| 2714 | if (isa<nonloc::LazyCompoundVal, nonloc::SymbolVal>(Val: V)) |
| 2715 | return bindAggregate(B, R, DefaultVal: V); |
| 2716 | |
| 2717 | // We may get non-CompoundVal accidentally due to imprecise cast logic or |
| 2718 | // that we are binding symbolic struct value. Kill the field values, and if |
| 2719 | // the value is symbolic go and bind it as a "default" binding. |
| 2720 | if (!isa<nonloc::CompoundVal>(Val: V)) { |
| 2721 | return bindAggregate(B, R, DefaultVal: UnknownVal()); |
| 2722 | } |
| 2723 | |
| 2724 | QualType ElemType = VT->getElementType(); |
| 2725 | nonloc::CompoundVal CV = V.castAs<nonloc::CompoundVal>(); |
| 2726 | nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end(); |
| 2727 | unsigned index = 0, numElements = VT->getNumElements(); |
| 2728 | LimitedRegionBindingsRef NewB = B; |
| 2729 | |
| 2730 | for ( ; index != numElements ; ++index) { |
| 2731 | if (VI == VE) |
| 2732 | break; |
| 2733 | |
| 2734 | if (NewB.hasExhaustedBindingLimit()) |
| 2735 | return NewB.withValuesEscaped(Begin: VI, End: VE); |
| 2736 | |
| 2737 | NonLoc Idx = svalBuilder.makeArrayIndex(idx: index); |
| 2738 | const ElementRegion *ER = MRMgr.getElementRegion(elementType: ElemType, Idx, superRegion: R, Ctx); |
| 2739 | |
| 2740 | if (ElemType->isArrayType()) |
| 2741 | NewB = bindArray(NewB, ER, *VI); |
| 2742 | else if (ElemType->isStructureOrClassType()) |
| 2743 | NewB = bindStruct(NewB, ER, *VI); |
| 2744 | else |
| 2745 | NewB = bind(B: NewB, L: loc::MemRegionVal(ER), V: *VI); |
| 2746 | } |
| 2747 | return NewB; |
| 2748 | } |
| 2749 | |
| 2750 | std::optional<SVal> |
| 2751 | RegionStoreManager::getUniqueDefaultBinding(RegionBindingsConstRef B, |
| 2752 | const TypedValueRegion *R) const { |
| 2753 | if (R != R->getBaseRegion()) |
| 2754 | return std::nullopt; |
| 2755 | |
| 2756 | const auto *Cluster = B.lookup(K: R); |
| 2757 | if (!Cluster || !llvm::hasSingleElement(C: *Cluster)) |
| 2758 | return std::nullopt; |
| 2759 | |
| 2760 | const auto [Key, Value] = *Cluster->begin(); |
| 2761 | return Key.isDirect() ? std::optional<SVal>{} : Value; |
| 2762 | } |
| 2763 | |
| 2764 | std::optional<SVal> |
| 2765 | RegionStoreManager::getUniqueDefaultBinding(nonloc::LazyCompoundVal LCV) const { |
| 2766 | auto B = getRegionBindings(store: LCV.getStore()); |
| 2767 | return getUniqueDefaultBinding(B, R: LCV.getRegion()); |
| 2768 | } |
| 2769 | |
| 2770 | std::optional<LimitedRegionBindingsRef> RegionStoreManager::tryBindSmallStruct( |
| 2771 | LimitedRegionBindingsConstRef B, const TypedValueRegion *R, |
| 2772 | const RecordDecl *RD, nonloc::LazyCompoundVal LCV) { |
| 2773 | if (B.hasExhaustedBindingLimit()) |
| 2774 | return B.withValuesEscaped(V: LCV); |
| 2775 | |
| 2776 | // If we try to copy a Conjured value representing the value of the whole |
| 2777 | // struct, don't try to element-wise copy each field. |
| 2778 | // That would unnecessarily bind Derived symbols slicing off the subregion for |
| 2779 | // the field from the whole Conjured symbol. |
| 2780 | // |
| 2781 | // struct Window { int width; int height; }; |
| 2782 | // Window getWindow(); <-- opaque fn. |
| 2783 | // Window w = getWindow(); <-- conjures a new Window. |
| 2784 | // Window w2 = w; <-- trivial copy "w", calling "tryBindSmallStruct" |
| 2785 | // |
| 2786 | // We should not end up with a new Store for "w2" like this: |
| 2787 | // Direct [ 0..31]: Derived{Conj{}, w.width} |
| 2788 | // Direct [32..63]: Derived{Conj{}, w.height} |
| 2789 | // Instead, we should just bind that Conjured value instead. |
| 2790 | if (std::optional<SVal> Val = getUniqueDefaultBinding(LCV)) { |
| 2791 | return B.addBinding(K: BindingKey::Make(R, k: BindingKey::Default), V: Val.value()); |
| 2792 | } |
| 2793 | |
| 2794 | FieldVector Fields; |
| 2795 | |
| 2796 | if (const CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Val: RD)) |
| 2797 | if (Class->getNumBases() != 0 || Class->getNumVBases() != 0) |
| 2798 | return std::nullopt; |
| 2799 | |
| 2800 | for (const auto *FD : RD->fields()) { |
| 2801 | if (FD->isUnnamedBitField()) |
| 2802 | continue; |
| 2803 | |
| 2804 | // If there are too many fields, or if any of the fields are aggregates, |
| 2805 | // just use the LCV as a default binding. |
| 2806 | if (Fields.size() == SmallStructLimit) |
| 2807 | return std::nullopt; |
| 2808 | |
| 2809 | QualType Ty = FD->getType(); |
| 2810 | |
| 2811 | // Zero length arrays are basically no-ops, so we also ignore them here. |
| 2812 | if (Ty->isConstantArrayType() && |
| 2813 | Ctx.getConstantArrayElementCount(CA: Ctx.getAsConstantArrayType(T: Ty)) == 0) |
| 2814 | continue; |
| 2815 | |
| 2816 | if (!(Ty->isScalarType() || Ty->isReferenceType())) |
| 2817 | return std::nullopt; |
| 2818 | |
| 2819 | Fields.push_back(Elt: FD); |
| 2820 | } |
| 2821 | |
| 2822 | LimitedRegionBindingsRef NewB = B; |
| 2823 | |
| 2824 | for (const FieldDecl *Field : Fields) { |
| 2825 | const FieldRegion *SourceFR = MRMgr.getFieldRegion(fd: Field, superRegion: LCV.getRegion()); |
| 2826 | SVal V = getBindingForField(B: getRegionBindings(store: LCV.getStore()), R: SourceFR); |
| 2827 | |
| 2828 | const FieldRegion *DestFR = MRMgr.getFieldRegion(fd: Field, superRegion: R); |
| 2829 | NewB = bind(B: NewB, L: loc::MemRegionVal(DestFR), V); |
| 2830 | } |
| 2831 | |
| 2832 | return NewB; |
| 2833 | } |
| 2834 | |
| 2835 | LimitedRegionBindingsRef |
| 2836 | RegionStoreManager::bindStruct(LimitedRegionBindingsConstRef B, |
| 2837 | const TypedValueRegion *R, SVal V) { |
| 2838 | llvm::TimeTraceScope TimeScope("RegionStoreManager::bindStruct" , |
| 2839 | [R]() { return R->getDescriptiveName(); }); |
| 2840 | if (B.hasExhaustedBindingLimit()) |
| 2841 | return B.withValuesEscaped(V); |
| 2842 | |
| 2843 | QualType T = R->getValueType(); |
| 2844 | assert(T->isStructureOrClassType()); |
| 2845 | |
| 2846 | const RecordType* RT = T->castAs<RecordType>(); |
| 2847 | const RecordDecl *RD = RT->getDecl(); |
| 2848 | |
| 2849 | if (!RD->isCompleteDefinition()) |
| 2850 | return B; |
| 2851 | |
| 2852 | // Handle lazy compound values and symbolic values. |
| 2853 | if (std::optional<nonloc::LazyCompoundVal> LCV = |
| 2854 | V.getAs<nonloc::LazyCompoundVal>()) { |
| 2855 | if (std::optional NewB = tryBindSmallStruct(B, R, RD, LCV: *LCV)) |
| 2856 | return *NewB; |
| 2857 | return bindAggregate(B, R, DefaultVal: V); |
| 2858 | } |
| 2859 | if (isa<nonloc::SymbolVal>(Val: V)) |
| 2860 | return bindAggregate(B, R, DefaultVal: V); |
| 2861 | |
| 2862 | // We may get non-CompoundVal accidentally due to imprecise cast logic or |
| 2863 | // that we are binding symbolic struct value. Kill the field values, and if |
| 2864 | // the value is symbolic go and bind it as a "default" binding. |
| 2865 | if (V.isUnknown() || !isa<nonloc::CompoundVal>(Val: V)) |
| 2866 | return bindAggregate(B, R, DefaultVal: UnknownVal()); |
| 2867 | |
| 2868 | // The raw CompoundVal is essentially a symbolic InitListExpr: an (immutable) |
| 2869 | // list of other values. It appears pretty much only when there's an actual |
| 2870 | // initializer list expression in the program, and the analyzer tries to |
| 2871 | // unwrap it as soon as possible. |
| 2872 | // This code is where such unwrap happens: when the compound value is put into |
| 2873 | // the object that it was supposed to initialize (it's an *initializer* list, |
| 2874 | // after all), instead of binding the whole value to the whole object, we bind |
| 2875 | // sub-values to sub-objects. Sub-values may themselves be compound values, |
| 2876 | // and in this case the procedure becomes recursive. |
| 2877 | // FIXME: The annoying part about compound values is that they don't carry |
| 2878 | // any sort of information about which value corresponds to which sub-object. |
| 2879 | // It's simply a list of values in the middle of nowhere; we expect to match |
| 2880 | // them to sub-objects, essentially, "by index": first value binds to |
| 2881 | // the first field, second value binds to the second field, etc. |
| 2882 | // It would have been much safer to organize non-lazy compound values as |
| 2883 | // a mapping from fields/bases to values. |
| 2884 | const nonloc::CompoundVal& CV = V.castAs<nonloc::CompoundVal>(); |
| 2885 | nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end(); |
| 2886 | |
| 2887 | LimitedRegionBindingsRef NewB = B; |
| 2888 | |
| 2889 | // In C++17 aggregates may have base classes, handle those as well. |
| 2890 | // They appear before fields in the initializer list / compound value. |
| 2891 | if (const auto *CRD = dyn_cast<CXXRecordDecl>(Val: RD)) { |
| 2892 | // If the object was constructed with a constructor, its value is a |
| 2893 | // LazyCompoundVal. If it's a raw CompoundVal, it means that we're |
| 2894 | // performing aggregate initialization. The only exception from this |
| 2895 | // rule is sending an Objective-C++ message that returns a C++ object |
| 2896 | // to a nil receiver; in this case the semantics is to return a |
| 2897 | // zero-initialized object even if it's a C++ object that doesn't have |
| 2898 | // this sort of constructor; the CompoundVal is empty in this case. |
| 2899 | assert((CRD->isAggregate() || (Ctx.getLangOpts().ObjC && VI == VE)) && |
| 2900 | "Non-aggregates are constructed with a constructor!" ); |
| 2901 | |
| 2902 | for (const auto &B : CRD->bases()) { |
| 2903 | // (Multiple inheritance is fine though.) |
| 2904 | assert(!B.isVirtual() && "Aggregates cannot have virtual base classes!" ); |
| 2905 | |
| 2906 | if (VI == VE) |
| 2907 | break; |
| 2908 | if (NewB.hasExhaustedBindingLimit()) |
| 2909 | return NewB.withValuesEscaped(Begin: VI, End: VE); |
| 2910 | |
| 2911 | QualType BTy = B.getType(); |
| 2912 | assert(BTy->isStructureOrClassType() && "Base classes must be classes!" ); |
| 2913 | |
| 2914 | const CXXRecordDecl *BRD = BTy->getAsCXXRecordDecl(); |
| 2915 | assert(BRD && "Base classes must be C++ classes!" ); |
| 2916 | |
| 2917 | const CXXBaseObjectRegion *BR = |
| 2918 | MRMgr.getCXXBaseObjectRegion(BaseClass: BRD, Super: R, /*IsVirtual=*/false); |
| 2919 | |
| 2920 | NewB = bindStruct(B: NewB, R: BR, V: *VI); |
| 2921 | |
| 2922 | ++VI; |
| 2923 | } |
| 2924 | } |
| 2925 | |
| 2926 | RecordDecl::field_iterator FI, FE; |
| 2927 | |
| 2928 | for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) { |
| 2929 | |
| 2930 | if (VI == VE) |
| 2931 | break; |
| 2932 | |
| 2933 | if (NewB.hasExhaustedBindingLimit()) |
| 2934 | return NewB.withValuesEscaped(Begin: VI, End: VE); |
| 2935 | |
| 2936 | // Skip any unnamed bitfields to stay in sync with the initializers. |
| 2937 | if (FI->isUnnamedBitField()) |
| 2938 | continue; |
| 2939 | |
| 2940 | QualType FTy = FI->getType(); |
| 2941 | const FieldRegion* FR = MRMgr.getFieldRegion(fd: *FI, superRegion: R); |
| 2942 | |
| 2943 | if (FTy->isArrayType()) |
| 2944 | NewB = bindArray(B: NewB, R: FR, Init: *VI); |
| 2945 | else if (FTy->isStructureOrClassType()) |
| 2946 | NewB = bindStruct(B: NewB, R: FR, V: *VI); |
| 2947 | else |
| 2948 | NewB = bind(B: NewB, L: loc::MemRegionVal(FR), V: *VI); |
| 2949 | ++VI; |
| 2950 | } |
| 2951 | |
| 2952 | if (NewB.hasExhaustedBindingLimit()) |
| 2953 | return NewB.withValuesEscaped(Begin: VI, End: VE); |
| 2954 | |
| 2955 | // There may be fewer values in the initialize list than the fields of struct. |
| 2956 | if (FI != FE) { |
| 2957 | NewB = NewB.addBinding(R, k: BindingKey::Default, |
| 2958 | V: svalBuilder.makeIntVal(integer: 0, isUnsigned: false)); |
| 2959 | } |
| 2960 | |
| 2961 | return NewB; |
| 2962 | } |
| 2963 | |
| 2964 | LimitedRegionBindingsRef |
| 2965 | RegionStoreManager::bindAggregate(LimitedRegionBindingsConstRef B, |
| 2966 | const TypedRegion *R, SVal Val) { |
| 2967 | llvm::TimeTraceScope TimeScope("RegionStoreManager::bindAggregate" , |
| 2968 | [R]() { return R->getDescriptiveName(); }); |
| 2969 | if (B.hasExhaustedBindingLimit()) |
| 2970 | return B.withValuesEscaped(V: Val); |
| 2971 | |
| 2972 | // Remove the old bindings, using 'R' as the root of all regions |
| 2973 | // we will invalidate. Then add the new binding. |
| 2974 | return removeSubRegionBindings(B, Top: R).addBinding(R, k: BindingKey::Default, V: Val); |
| 2975 | } |
| 2976 | |
| 2977 | //===----------------------------------------------------------------------===// |
| 2978 | // State pruning. |
| 2979 | //===----------------------------------------------------------------------===// |
| 2980 | |
| 2981 | namespace { |
| 2982 | class RemoveDeadBindingsWorker |
| 2983 | : public ClusterAnalysis<RemoveDeadBindingsWorker> { |
| 2984 | SmallVector<const SymbolicRegion *, 12> Postponed; |
| 2985 | SymbolReaper &SymReaper; |
| 2986 | const StackFrameContext *CurrentLCtx; |
| 2987 | |
| 2988 | public: |
| 2989 | RemoveDeadBindingsWorker(RegionStoreManager &rm, |
| 2990 | ProgramStateManager &stateMgr, |
| 2991 | RegionBindingsRef b, SymbolReaper &symReaper, |
| 2992 | const StackFrameContext *LCtx) |
| 2993 | : ClusterAnalysis<RemoveDeadBindingsWorker>(rm, stateMgr, b), |
| 2994 | SymReaper(symReaper), CurrentLCtx(LCtx) {} |
| 2995 | |
| 2996 | // Called by ClusterAnalysis. |
| 2997 | void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C); |
| 2998 | void VisitCluster(const MemRegion *baseR, const ClusterBindings *C); |
| 2999 | using ClusterAnalysis<RemoveDeadBindingsWorker>::VisitCluster; |
| 3000 | |
| 3001 | using ClusterAnalysis::AddToWorkList; |
| 3002 | |
| 3003 | bool AddToWorkList(const MemRegion *R); |
| 3004 | |
| 3005 | bool UpdatePostponed(); |
| 3006 | void VisitBinding(SVal V); |
| 3007 | }; |
| 3008 | } |
| 3009 | |
| 3010 | bool RemoveDeadBindingsWorker::AddToWorkList(const MemRegion *R) { |
| 3011 | const MemRegion *BaseR = R->getBaseRegion(); |
| 3012 | return AddToWorkList(E: WorkListElement(BaseR), C: getCluster(R: BaseR)); |
| 3013 | } |
| 3014 | |
| 3015 | void RemoveDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR, |
| 3016 | const ClusterBindings &C) { |
| 3017 | |
| 3018 | if (const VarRegion *VR = dyn_cast<VarRegion>(Val: baseR)) { |
| 3019 | if (SymReaper.isLive(VR)) |
| 3020 | AddToWorkList(E: baseR, C: &C); |
| 3021 | |
| 3022 | return; |
| 3023 | } |
| 3024 | |
| 3025 | if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(Val: baseR)) { |
| 3026 | if (SymReaper.isLive(sym: SR->getSymbol())) |
| 3027 | AddToWorkList(E: SR, C: &C); |
| 3028 | else |
| 3029 | Postponed.push_back(Elt: SR); |
| 3030 | |
| 3031 | return; |
| 3032 | } |
| 3033 | |
| 3034 | if (isa<NonStaticGlobalSpaceRegion>(Val: baseR)) { |
| 3035 | AddToWorkList(E: baseR, C: &C); |
| 3036 | return; |
| 3037 | } |
| 3038 | |
| 3039 | // CXXThisRegion in the current or parent location context is live. |
| 3040 | if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(Val: baseR)) { |
| 3041 | const auto *StackReg = |
| 3042 | cast<StackArgumentsSpaceRegion>(Val: TR->getSuperRegion()); |
| 3043 | const StackFrameContext *RegCtx = StackReg->getStackFrame(); |
| 3044 | if (CurrentLCtx && |
| 3045 | (RegCtx == CurrentLCtx || RegCtx->isParentOf(LC: CurrentLCtx))) |
| 3046 | AddToWorkList(E: TR, C: &C); |
| 3047 | } |
| 3048 | } |
| 3049 | |
| 3050 | void RemoveDeadBindingsWorker::VisitCluster(const MemRegion *baseR, |
| 3051 | const ClusterBindings *C) { |
| 3052 | if (!C) |
| 3053 | return; |
| 3054 | |
| 3055 | // Mark the symbol for any SymbolicRegion with live bindings as live itself. |
| 3056 | // This means we should continue to track that symbol. |
| 3057 | if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(Val: baseR)) |
| 3058 | SymReaper.markLive(sym: SymR->getSymbol()); |
| 3059 | |
| 3060 | for (const auto &[Key, Val] : *C) { |
| 3061 | // Element index of a binding key is live. |
| 3062 | SymReaper.markElementIndicesLive(region: Key.getRegion()); |
| 3063 | |
| 3064 | VisitBinding(V: Val); |
| 3065 | } |
| 3066 | } |
| 3067 | |
| 3068 | void RemoveDeadBindingsWorker::VisitBinding(SVal V) { |
| 3069 | // Is it a LazyCompoundVal? All referenced regions are live as well. |
| 3070 | // The LazyCompoundVal itself is not live but should be readable. |
| 3071 | if (auto LCS = V.getAs<nonloc::LazyCompoundVal>()) { |
| 3072 | SymReaper.markLazilyCopied(region: LCS->getRegion()); |
| 3073 | |
| 3074 | for (SVal V : RM.getInterestingValues(LCV: *LCS)) { |
| 3075 | if (auto DepLCS = V.getAs<nonloc::LazyCompoundVal>()) |
| 3076 | SymReaper.markLazilyCopied(region: DepLCS->getRegion()); |
| 3077 | else |
| 3078 | VisitBinding(V); |
| 3079 | } |
| 3080 | |
| 3081 | return; |
| 3082 | } |
| 3083 | |
| 3084 | // If V is a region, then add it to the worklist. |
| 3085 | if (const MemRegion *R = V.getAsRegion()) { |
| 3086 | AddToWorkList(R); |
| 3087 | SymReaper.markLive(region: R); |
| 3088 | |
| 3089 | // All regions captured by a block are also live. |
| 3090 | if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(Val: R)) { |
| 3091 | for (auto Var : BR->referenced_vars()) |
| 3092 | AddToWorkList(R: Var.getCapturedRegion()); |
| 3093 | } |
| 3094 | } |
| 3095 | |
| 3096 | |
| 3097 | // Update the set of live symbols. |
| 3098 | for (SymbolRef Sym : V.symbols()) |
| 3099 | SymReaper.markLive(sym: Sym); |
| 3100 | } |
| 3101 | |
| 3102 | bool RemoveDeadBindingsWorker::UpdatePostponed() { |
| 3103 | // See if any postponed SymbolicRegions are actually live now, after |
| 3104 | // having done a scan. |
| 3105 | bool Changed = false; |
| 3106 | |
| 3107 | for (const SymbolicRegion *SR : Postponed) { |
| 3108 | if (SymReaper.isLive(sym: SR->getSymbol())) { |
| 3109 | Changed |= AddToWorkList(R: SR); |
| 3110 | SR = nullptr; |
| 3111 | } |
| 3112 | } |
| 3113 | |
| 3114 | return Changed; |
| 3115 | } |
| 3116 | |
| 3117 | StoreRef RegionStoreManager::removeDeadBindings(Store store, |
| 3118 | const StackFrameContext *LCtx, |
| 3119 | SymbolReaper& SymReaper) { |
| 3120 | RegionBindingsRef B = getRegionBindings(store); |
| 3121 | RemoveDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx); |
| 3122 | W.GenerateClusters(); |
| 3123 | |
| 3124 | // Enqueue the region roots onto the worklist. |
| 3125 | for (const MemRegion *Reg : SymReaper.regions()) { |
| 3126 | W.AddToWorkList(R: Reg); |
| 3127 | } |
| 3128 | |
| 3129 | do W.RunWorkList(); while (W.UpdatePostponed()); |
| 3130 | |
| 3131 | // We have now scanned the store, marking reachable regions and symbols |
| 3132 | // as live. We now remove all the regions that are dead from the store |
| 3133 | // as well as update DSymbols with the set symbols that are now dead. |
| 3134 | for (const MemRegion *Base : llvm::make_first_range(c&: B)) { |
| 3135 | // If the cluster has been visited, we know the region has been marked. |
| 3136 | // Otherwise, remove the dead entry. |
| 3137 | if (!W.isVisited(R: Base)) |
| 3138 | B = B.removeCluster(BaseRegion: Base); |
| 3139 | } |
| 3140 | |
| 3141 | return StoreRef(B.asStore(), *this); |
| 3142 | } |
| 3143 | |
| 3144 | //===----------------------------------------------------------------------===// |
| 3145 | // Utility methods. |
| 3146 | //===----------------------------------------------------------------------===// |
| 3147 | |
| 3148 | void RegionStoreManager::printJson(raw_ostream &Out, Store S, const char *NL, |
| 3149 | unsigned int Space, bool IsDot) const { |
| 3150 | RegionBindingsRef Bindings = getRegionBindings(store: S); |
| 3151 | |
| 3152 | Indent(Out, Space, IsDot) << "\"store\": " ; |
| 3153 | |
| 3154 | if (Bindings.isEmpty()) { |
| 3155 | Out << "null," << NL; |
| 3156 | return; |
| 3157 | } |
| 3158 | |
| 3159 | Out << "{ \"pointer\": \"" << Bindings.asStore() << "\", \"items\": [" << NL; |
| 3160 | Bindings.printJson(Out, NL, Space: Space + 1, IsDot); |
| 3161 | Indent(Out, Space, IsDot) << "]}," << NL; |
| 3162 | } |
| 3163 | |