1//===- AArch64ErrataFix.cpp -----------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8// This file implements Section Patching for the purpose of working around
9// the AArch64 Cortex-53 errata 843419 that affects r0p0, r0p1, r0p2 and r0p4
10// versions of the core.
11//
12// The general principle is that an erratum sequence of one or
13// more instructions is detected in the instruction stream, one of the
14// instructions in the sequence is replaced with a branch to a patch sequence
15// of replacement instructions. At the end of the replacement sequence the
16// patch branches back to the instruction stream.
17
18// This technique is only suitable for fixing an erratum when:
19// - There is a set of necessary conditions required to trigger the erratum that
20// can be detected at static link time.
21// - There is a set of replacement instructions that can be used to remove at
22// least one of the necessary conditions that trigger the erratum.
23// - We can overwrite an instruction in the erratum sequence with a branch to
24// the replacement sequence.
25// - We can place the replacement sequence within range of the branch.
26//===----------------------------------------------------------------------===//
27
28#include "AArch64ErrataFix.h"
29#include "InputFiles.h"
30#include "LinkerScript.h"
31#include "OutputSections.h"
32#include "Relocations.h"
33#include "Symbols.h"
34#include "SyntheticSections.h"
35#include "Target.h"
36#include "llvm/ADT/StringExtras.h"
37#include "llvm/Support/Endian.h"
38#include <algorithm>
39
40using namespace llvm;
41using namespace llvm::ELF;
42using namespace llvm::object;
43using namespace llvm::support;
44using namespace llvm::support::endian;
45using namespace lld;
46using namespace lld::elf;
47
48// Helper functions to identify instructions and conditions needed to trigger
49// the Cortex-A53-843419 erratum.
50
51// ADRP
52// | 1 | immlo (2) | 1 | 0 0 0 0 | immhi (19) | Rd (5) |
53static bool isADRP(uint32_t instr) {
54 return (instr & 0x9f000000) == 0x90000000;
55}
56
57// Load and store bit patterns from ARMv8-A.
58// Instructions appear in order of appearance starting from table in
59// C4.1.3 Loads and Stores.
60
61// All loads and stores have 1 (at bit position 27), (0 at bit position 25).
62// | op0 x op1 (2) | 1 op2 0 op3 (2) | x | op4 (5) | xxxx | op5 (2) | x (10) |
63static bool isLoadStoreClass(uint32_t instr) {
64 return (instr & 0x0a000000) == 0x08000000;
65}
66
67// LDN/STN multiple no offset
68// | 0 Q 00 | 1100 | 0 L 00 | 0000 | opcode (4) | size (2) | Rn (5) | Rt (5) |
69// LDN/STN multiple post-indexed
70// | 0 Q 00 | 1100 | 1 L 0 | Rm (5)| opcode (4) | size (2) | Rn (5) | Rt (5) |
71// L == 0 for stores.
72
73// Utility routine to decode opcode field of LDN/STN multiple structure
74// instructions to find the ST1 instructions.
75// opcode == 0010 ST1 4 registers.
76// opcode == 0110 ST1 3 registers.
77// opcode == 0111 ST1 1 register.
78// opcode == 1010 ST1 2 registers.
79static bool isST1MultipleOpcode(uint32_t instr) {
80 return (instr & 0x0000f000) == 0x00002000 ||
81 (instr & 0x0000f000) == 0x00006000 ||
82 (instr & 0x0000f000) == 0x00007000 ||
83 (instr & 0x0000f000) == 0x0000a000;
84}
85
86static bool isST1Multiple(uint32_t instr) {
87 return (instr & 0xbfff0000) == 0x0c000000 && isST1MultipleOpcode(instr);
88}
89
90// Writes to Rn (writeback).
91static bool isST1MultiplePost(uint32_t instr) {
92 return (instr & 0xbfe00000) == 0x0c800000 && isST1MultipleOpcode(instr);
93}
94
95// LDN/STN single no offset
96// | 0 Q 00 | 1101 | 0 L R 0 | 0000 | opc (3) S | size (2) | Rn (5) | Rt (5)|
97// LDN/STN single post-indexed
98// | 0 Q 00 | 1101 | 1 L R | Rm (5) | opc (3) S | size (2) | Rn (5) | Rt (5)|
99// L == 0 for stores
100
101// Utility routine to decode opcode field of LDN/STN single structure
102// instructions to find the ST1 instructions.
103// R == 0 for ST1 and ST3, R == 1 for ST2 and ST4.
104// opcode == 000 ST1 8-bit.
105// opcode == 010 ST1 16-bit.
106// opcode == 100 ST1 32 or 64-bit (Size determines which).
107static bool isST1SingleOpcode(uint32_t instr) {
108 return (instr & 0x0040e000) == 0x00000000 ||
109 (instr & 0x0040e000) == 0x00004000 ||
110 (instr & 0x0040e000) == 0x00008000;
111}
112
113static bool isST1Single(uint32_t instr) {
114 return (instr & 0xbfff0000) == 0x0d000000 && isST1SingleOpcode(instr);
115}
116
117// Writes to Rn (writeback).
118static bool isST1SinglePost(uint32_t instr) {
119 return (instr & 0xbfe00000) == 0x0d800000 && isST1SingleOpcode(instr);
120}
121
122static bool isST1(uint32_t instr) {
123 return isST1Multiple(instr) || isST1MultiplePost(instr) ||
124 isST1Single(instr) || isST1SinglePost(instr);
125}
126
127// Load/store exclusive
128// | size (2) 00 | 1000 | o2 L o1 | Rs (5) | o0 | Rt2 (5) | Rn (5) | Rt (5) |
129// L == 0 for Stores.
130static bool isLoadStoreExclusive(uint32_t instr) {
131 return (instr & 0x3f000000) == 0x08000000;
132}
133
134static bool isLoadExclusive(uint32_t instr) {
135 return (instr & 0x3f400000) == 0x08400000;
136}
137
138// Load register literal
139// | opc (2) 01 | 1 V 00 | imm19 | Rt (5) |
140static bool isLoadLiteral(uint32_t instr) {
141 return (instr & 0x3b000000) == 0x18000000;
142}
143
144// Load/store no-allocate pair
145// (offset)
146// | opc (2) 10 | 1 V 00 | 0 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) |
147// L == 0 for stores.
148// Never writes to register
149static bool isSTNP(uint32_t instr) {
150 return (instr & 0x3bc00000) == 0x28000000;
151}
152
153// Load/store register pair
154// (post-indexed)
155// | opc (2) 10 | 1 V 00 | 1 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) |
156// L == 0 for stores, V == 0 for Scalar, V == 1 for Simd/FP
157// Writes to Rn.
158static bool isSTPPost(uint32_t instr) {
159 return (instr & 0x3bc00000) == 0x28800000;
160}
161
162// (offset)
163// | opc (2) 10 | 1 V 01 | 0 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) |
164static bool isSTPOffset(uint32_t instr) {
165 return (instr & 0x3bc00000) == 0x29000000;
166}
167
168// (pre-index)
169// | opc (2) 10 | 1 V 01 | 1 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) |
170// Writes to Rn.
171static bool isSTPPre(uint32_t instr) {
172 return (instr & 0x3bc00000) == 0x29800000;
173}
174
175static bool isSTP(uint32_t instr) {
176 return isSTPPost(instr) || isSTPOffset(instr) || isSTPPre(instr);
177}
178
179// Load/store register (unscaled immediate)
180// | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 00 | Rn (5) | Rt (5) |
181// V == 0 for Scalar, V == 1 for Simd/FP.
182static bool isLoadStoreUnscaled(uint32_t instr) {
183 return (instr & 0x3b000c00) == 0x38000000;
184}
185
186// Load/store register (immediate post-indexed)
187// | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 01 | Rn (5) | Rt (5) |
188static bool isLoadStoreImmediatePost(uint32_t instr) {
189 return (instr & 0x3b200c00) == 0x38000400;
190}
191
192// Load/store register (unprivileged)
193// | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 10 | Rn (5) | Rt (5) |
194static bool isLoadStoreUnpriv(uint32_t instr) {
195 return (instr & 0x3b200c00) == 0x38000800;
196}
197
198// Load/store register (immediate pre-indexed)
199// | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 11 | Rn (5) | Rt (5) |
200static bool isLoadStoreImmediatePre(uint32_t instr) {
201 return (instr & 0x3b200c00) == 0x38000c00;
202}
203
204// Load/store register (register offset)
205// | size (2) 11 | 1 V 00 | opc (2) 1 | Rm (5) | option (3) S | 10 | Rn | Rt |
206static bool isLoadStoreRegisterOff(uint32_t instr) {
207 return (instr & 0x3b200c00) == 0x38200800;
208}
209
210// Load/store register (unsigned immediate)
211// | size (2) 11 | 1 V 01 | opc (2) | imm12 | Rn (5) | Rt (5) |
212static bool isLoadStoreRegisterUnsigned(uint32_t instr) {
213 return (instr & 0x3b000000) == 0x39000000;
214}
215
216// Rt is always in bit position 0 - 4.
217static uint32_t getRt(uint32_t instr) { return (instr & 0x1f); }
218
219// Rn is always in bit position 5 - 9.
220static uint32_t getRn(uint32_t instr) { return (instr >> 5) & 0x1f; }
221
222// C4.1.2 Branches, Exception Generating and System instructions
223// | op0 (3) 1 | 01 op1 (4) | x (22) |
224// op0 == 010 101 op1 == 0xxx Conditional Branch.
225// op0 == 110 101 op1 == 1xxx Unconditional Branch Register.
226// op0 == x00 101 op1 == xxxx Unconditional Branch immediate.
227// op0 == x01 101 op1 == 0xxx Compare and branch immediate.
228// op0 == x01 101 op1 == 1xxx Test and branch immediate.
229static bool isBranch(uint32_t instr) {
230 return ((instr & 0xfe000000) == 0xd6000000) || // Cond branch.
231 ((instr & 0xfe000000) == 0x54000000) || // Uncond branch reg.
232 ((instr & 0x7c000000) == 0x14000000) || // Uncond branch imm.
233 ((instr & 0x7c000000) == 0x34000000); // Compare and test branch.
234}
235
236static bool isV8SingleRegisterNonStructureLoadStore(uint32_t instr) {
237 return isLoadStoreUnscaled(instr) || isLoadStoreImmediatePost(instr) ||
238 isLoadStoreUnpriv(instr) || isLoadStoreImmediatePre(instr) ||
239 isLoadStoreRegisterOff(instr) || isLoadStoreRegisterUnsigned(instr);
240}
241
242// Note that this function refers to v8.0 only and does not include the
243// additional load and store instructions added for in later revisions of
244// the architecture such as the Atomic memory operations introduced
245// in v8.1.
246static bool isV8NonStructureLoad(uint32_t instr) {
247 if (isLoadExclusive(instr))
248 return true;
249 if (isLoadLiteral(instr))
250 return true;
251 else if (isV8SingleRegisterNonStructureLoadStore(instr)) {
252 // For Load and Store single register, Loads are derived from a
253 // combination of the Size, V and Opc fields.
254 uint32_t size = (instr >> 30) & 0xff;
255 uint32_t v = (instr >> 26) & 0x1;
256 uint32_t opc = (instr >> 22) & 0x3;
257 // For the load and store instructions that we are decoding.
258 // Opc == 0 are all stores.
259 // Opc == 1 with a couple of exceptions are loads. The exceptions are:
260 // Size == 00 (0), V == 1, Opc == 10 (2) which is a store and
261 // Size == 11 (3), V == 0, Opc == 10 (2) which is a prefetch.
262 return opc != 0 && !(size == 0 && v == 1 && opc == 2) &&
263 !(size == 3 && v == 0 && opc == 2);
264 }
265 return false;
266}
267
268// The following decode instructions are only complete up to the instructions
269// needed for errata 843419.
270
271// Instruction with writeback updates the index register after the load/store.
272static bool hasWriteback(uint32_t instr) {
273 return isLoadStoreImmediatePre(instr) || isLoadStoreImmediatePost(instr) ||
274 isSTPPre(instr) || isSTPPost(instr) || isST1SinglePost(instr) ||
275 isST1MultiplePost(instr);
276}
277
278// For the load and store class of instructions, a load can write to the
279// destination register, a load and a store can write to the base register when
280// the instruction has writeback.
281static bool doesLoadStoreWriteToReg(uint32_t instr, uint32_t reg) {
282 return (isV8NonStructureLoad(instr) && getRt(instr) == reg) ||
283 (hasWriteback(instr) && getRn(instr) == reg);
284}
285
286// Scanner for Cortex-A53 errata 843419
287// Full details are available in the Cortex A53 MPCore revision 0 Software
288// Developers Errata Notice (ARM-EPM-048406).
289//
290// The instruction sequence that triggers the erratum is common in compiled
291// AArch64 code, however it is sensitive to the offset of the sequence within
292// a 4k page. This means that by scanning and fixing the patch after we have
293// assigned addresses we only need to disassemble and fix instances of the
294// sequence in the range of affected offsets.
295//
296// In summary the erratum conditions are a series of 4 instructions:
297// 1.) An ADRP instruction that writes to register Rn with low 12 bits of
298// address of instruction either 0xff8 or 0xffc.
299// 2.) A load or store instruction that can be:
300// - A single register load or store, of either integer or vector registers.
301// - An STP or STNP, of either integer or vector registers.
302// - An Advanced SIMD ST1 store instruction.
303// - Must not write to Rn, but may optionally read from it.
304// 3.) An optional instruction that is not a branch and does not write to Rn.
305// 4.) A load or store from the Load/store register (unsigned immediate) class
306// that uses Rn as the base address register.
307//
308// Note that we do not attempt to scan for Sequence 2 as described in the
309// Software Developers Errata Notice as this has been assessed to be extremely
310// unlikely to occur in compiled code. This matches gold and ld.bfd behavior.
311
312// Return true if the Instruction sequence Adrp, Instr2, and Instr4 match
313// the erratum sequence. The Adrp, Instr2 and Instr4 correspond to 1.), 2.),
314// and 4.) in the Scanner for Cortex-A53 errata comment above.
315static bool is843419ErratumSequence(uint32_t instr1, uint32_t instr2,
316 uint32_t instr4) {
317 if (!isADRP(instr: instr1))
318 return false;
319
320 uint32_t rn = getRt(instr: instr1);
321 return isLoadStoreClass(instr: instr2) &&
322 (isLoadStoreExclusive(instr: instr2) || isLoadLiteral(instr: instr2) ||
323 isV8SingleRegisterNonStructureLoadStore(instr: instr2) || isSTP(instr: instr2) ||
324 isSTNP(instr: instr2) || isST1(instr: instr2)) &&
325 !doesLoadStoreWriteToReg(instr: instr2, reg: rn) &&
326 isLoadStoreRegisterUnsigned(instr: instr4) && getRn(instr: instr4) == rn;
327}
328
329// Scan the instruction sequence starting at Offset Off from the base of
330// InputSection isec. We update Off in this function rather than in the caller
331// as we can skip ahead much further into the section when we know how many
332// instructions we've scanned.
333// Return the offset of the load or store instruction in isec that we want to
334// patch or 0 if no patch required.
335static uint64_t scanCortexA53Errata843419(InputSection *isec, uint64_t &off,
336 uint64_t limit) {
337 uint64_t isecAddr = isec->getVA(offset: 0);
338
339 // Advance Off so that (isecAddr + Off) modulo 0x1000 is at least 0xff8.
340 uint64_t initialPageOff = (isecAddr + off) & 0xfff;
341 if (initialPageOff < 0xff8)
342 off += 0xff8 - initialPageOff;
343
344 bool optionalAllowed = limit - off > 12;
345 if (off >= limit || limit - off < 12) {
346 // Need at least 3 4-byte sized instructions to trigger erratum.
347 off = limit;
348 return 0;
349 }
350
351 uint64_t patchOff = 0;
352 const uint8_t *buf = isec->content().begin();
353 const ulittle32_t *instBuf = reinterpret_cast<const ulittle32_t *>(buf + off);
354 uint32_t instr1 = *instBuf++;
355 uint32_t instr2 = *instBuf++;
356 uint32_t instr3 = *instBuf++;
357 if (is843419ErratumSequence(instr1, instr2, instr4: instr3)) {
358 patchOff = off + 8;
359 } else if (optionalAllowed && !isBranch(instr: instr3)) {
360 uint32_t instr4 = *instBuf++;
361 if (is843419ErratumSequence(instr1, instr2, instr4))
362 patchOff = off + 12;
363 }
364 if (((isecAddr + off) & 0xfff) == 0xff8)
365 off += 4;
366 else
367 off += 0xffc;
368 return patchOff;
369}
370
371class elf::Patch843419Section final : public SyntheticSection {
372public:
373 Patch843419Section(Ctx &, InputSection *p, uint64_t off);
374
375 void writeTo(uint8_t *buf) override;
376
377 size_t getSize() const override { return 8; }
378
379 uint64_t getLDSTAddr() const;
380
381 static bool classof(const SectionBase *d) {
382 return d->kind() == InputSectionBase::Synthetic && d->name == ".text.patch";
383 }
384
385 // The Section we are patching.
386 const InputSection *patchee;
387 // The offset of the instruction in the patchee section we are patching.
388 uint64_t patcheeOffset;
389 // A label for the start of the Patch that we can use as a relocation target.
390 Symbol *patchSym;
391};
392
393Patch843419Section::Patch843419Section(Ctx &ctx, InputSection *p, uint64_t off)
394 : SyntheticSection(ctx, ".text.patch", SHT_PROGBITS,
395 SHF_ALLOC | SHF_EXECINSTR, 4),
396 patchee(p), patcheeOffset(off) {
397 this->parent = p->getParent();
398 patchSym = addSyntheticLocal(
399 ctx, name: ctx.saver.save(S: "__CortexA53843419_" + utohexstr(X: getLDSTAddr())),
400 type: STT_FUNC, value: 0, size: getSize(), section&: *this);
401 addSyntheticLocal(ctx, name: ctx.saver.save(S: "$x"), type: STT_NOTYPE, value: 0, size: 0, section&: *this);
402}
403
404uint64_t Patch843419Section::getLDSTAddr() const {
405 return patchee->getVA(offset: patcheeOffset);
406}
407
408void Patch843419Section::writeTo(uint8_t *buf) {
409 // Copy the instruction that we will be replacing with a branch in the
410 // patchee Section.
411 write32le(P: buf, V: read32le(P: patchee->content().begin() + patcheeOffset));
412
413 // Apply any relocation transferred from the original patchee section.
414 ctx.target->relocateAlloc(sec&: *this, buf);
415
416 // Return address is the next instruction after the one we have just copied.
417 uint64_t s = getLDSTAddr() + 4;
418 uint64_t p = patchSym->getVA(ctx) + 4;
419 ctx.target->relocateNoSym(loc: buf + 4, type: R_AARCH64_JUMP26, val: s - p);
420}
421
422void AArch64Err843419Patcher::init() {
423 // The AArch64 ABI permits data in executable sections. We must avoid scanning
424 // this data as if it were instructions to avoid false matches. We use the
425 // mapping symbols in the InputObjects to identify this data, caching the
426 // results in sectionMap so we don't have to recalculate it each pass.
427
428 // The ABI Section 4.5.4 Mapping symbols; defines local symbols that describe
429 // half open intervals [Symbol Value, Next Symbol Value) of code and data
430 // within sections. If there is no next symbol then the half open interval is
431 // [Symbol Value, End of section). The type, code or data, is determined by
432 // the mapping symbol name, $x for code, $d for data.
433 auto isCodeMapSymbol = [](const Symbol *b) {
434 return b->getName() == "$x" || b->getName().starts_with(Prefix: "$x.");
435 };
436 auto isDataMapSymbol = [](const Symbol *b) {
437 return b->getName() == "$d" || b->getName().starts_with(Prefix: "$d.");
438 };
439
440 // Collect mapping symbols for every executable InputSection.
441 for (ELFFileBase *file : ctx.objectFiles) {
442 for (Symbol *b : file->getLocalSymbols()) {
443 auto *def = dyn_cast<Defined>(Val: b);
444 if (!def)
445 continue;
446 if (!isCodeMapSymbol(def) && !isDataMapSymbol(def))
447 continue;
448 if (auto *sec = dyn_cast_or_null<InputSection>(Val: def->section))
449 if (sec->flags & SHF_EXECINSTR)
450 sectionMap[sec].push_back(x: def);
451 }
452 }
453 // For each InputSection make sure the mapping symbols are in sorted in
454 // ascending order and free from consecutive runs of mapping symbols with
455 // the same type. For example we must remove the redundant $d.1 from $x.0
456 // $d.0 $d.1 $x.1.
457 for (auto &kv : sectionMap) {
458 std::vector<const Defined *> &mapSyms = kv.second;
459 llvm::stable_sort(Range&: mapSyms, C: [](const Defined *a, const Defined *b) {
460 return a->value < b->value;
461 });
462 mapSyms.erase(first: llvm::unique(R&: mapSyms,
463 P: [=](const Defined *a, const Defined *b) {
464 return isCodeMapSymbol(a) ==
465 isCodeMapSymbol(b);
466 }),
467 last: mapSyms.end());
468 // Always start with a Code Mapping Symbol.
469 if (!mapSyms.empty() && !isCodeMapSymbol(mapSyms.front()))
470 mapSyms.erase(position: mapSyms.begin());
471 }
472 initialized = true;
473}
474
475// Insert the PatchSections we have created back into the
476// InputSectionDescription. As inserting patches alters the addresses of
477// InputSections that follow them, we try and place the patches after all the
478// executable sections, although we may need to insert them earlier if the
479// InputSectionDescription is larger than the maximum branch range.
480void AArch64Err843419Patcher::insertPatches(
481 InputSectionDescription &isd, std::vector<Patch843419Section *> &patches) {
482 uint64_t isecLimit;
483 uint64_t prevIsecLimit = isd.sections.front()->outSecOff;
484 uint64_t patchUpperBound =
485 prevIsecLimit + ctx.target->getThunkSectionSpacing();
486 uint64_t outSecAddr = isd.sections.front()->getParent()->addr;
487
488 // Set the outSecOff of patches to the place where we want to insert them.
489 // We use a similar strategy to Thunk placement. Place patches roughly
490 // every multiple of maximum branch range.
491 auto patchIt = patches.begin();
492 auto patchEnd = patches.end();
493 for (const InputSection *isec : isd.sections) {
494 isecLimit = isec->outSecOff + isec->getSize();
495 if (isecLimit > patchUpperBound) {
496 while (patchIt != patchEnd) {
497 if ((*patchIt)->getLDSTAddr() - outSecAddr >= prevIsecLimit)
498 break;
499 (*patchIt)->outSecOff = prevIsecLimit;
500 ++patchIt;
501 }
502 patchUpperBound = prevIsecLimit + ctx.target->getThunkSectionSpacing();
503 }
504 prevIsecLimit = isecLimit;
505 }
506 for (; patchIt != patchEnd; ++patchIt) {
507 (*patchIt)->outSecOff = isecLimit;
508 }
509
510 // Merge all patch sections. We use the outSecOff assigned above to
511 // determine the insertion point. This is ok as we only merge into an
512 // InputSectionDescription once per pass, and at the end of the pass
513 // assignAddresses() will recalculate all the outSecOff values.
514 SmallVector<InputSection *, 0> tmp;
515 tmp.reserve(N: isd.sections.size() + patches.size());
516 auto mergeCmp = [](const InputSection *a, const InputSection *b) {
517 if (a->outSecOff != b->outSecOff)
518 return a->outSecOff < b->outSecOff;
519 return isa<Patch843419Section>(Val: a) && !isa<Patch843419Section>(Val: b);
520 };
521 std::merge(first1: isd.sections.begin(), last1: isd.sections.end(), first2: patches.begin(),
522 last2: patches.end(), result: std::back_inserter(x&: tmp), comp: mergeCmp);
523 isd.sections = std::move(tmp);
524}
525
526// Given an erratum sequence that starts at address adrpAddr, with an
527// instruction that we need to patch at patcheeOffset from the start of
528// InputSection isec, create a Patch843419 Section and add it to the
529// Patches that we need to insert.
530static void implementPatch(Ctx &ctx, uint64_t adrpAddr, uint64_t patcheeOffset,
531 InputSection *isec,
532 std::vector<Patch843419Section *> &patches) {
533 // There may be a relocation at the same offset that we are patching. There
534 // are four cases that we need to consider.
535 // Case 1: R_AARCH64_JUMP26 branch relocation. We have already patched this
536 // instance of the erratum on a previous patch and altered the relocation. We
537 // have nothing more to do.
538 // Case 2: A TLS Relaxation R_RELAX_TLS_IE_TO_LE. In this case the ADRP that
539 // we read will be transformed into a MOVZ later so we actually don't match
540 // the sequence and have nothing more to do.
541 // Case 3: A load/store register (unsigned immediate) class relocation. There
542 // are two of these R_AARCH_LD64_ABS_LO12_NC and R_AARCH_LD64_GOT_LO12_NC and
543 // they are both absolute. We need to add the same relocation to the patch,
544 // and replace the relocation with a R_AARCH_JUMP26 branch relocation.
545 // Case 4: No relocation. We must create a new R_AARCH64_JUMP26 branch
546 // relocation at the offset.
547 auto relIt = llvm::find_if(Range: isec->relocs(), P: [=](const Relocation &r) {
548 return r.offset == patcheeOffset;
549 });
550 if (relIt != isec->relocs().end() &&
551 (relIt->type == R_AARCH64_JUMP26 || relIt->expr == R_RELAX_TLS_IE_TO_LE))
552 return;
553
554 Log(ctx) << "detected cortex-a53-843419 erratum sequence starting at " <<
555 utohexstr(X: adrpAddr) << " in unpatched output.";
556
557 auto *ps = make<Patch843419Section>(args&: ctx, args&: isec, args&: patcheeOffset);
558 patches.push_back(x: ps);
559
560 auto makeRelToPatch = [](uint64_t offset, Symbol *patchSym) {
561 return Relocation{.expr: R_PC, .type: R_AARCH64_JUMP26, .offset: offset, .addend: 0, .sym: patchSym};
562 };
563
564 if (relIt != isec->relocs().end()) {
565 ps->addReloc(r: {.expr: relIt->expr, .type: relIt->type, .offset: 0, .addend: relIt->addend, .sym: relIt->sym});
566 *relIt = makeRelToPatch(patcheeOffset, ps->patchSym);
567 } else
568 isec->addReloc(r: makeRelToPatch(patcheeOffset, ps->patchSym));
569}
570
571// Scan all the instructions in InputSectionDescription, for each instance of
572// the erratum sequence create a Patch843419Section. We return the list of
573// Patch843419Sections that need to be applied to the InputSectionDescription.
574std::vector<Patch843419Section *>
575AArch64Err843419Patcher::patchInputSectionDescription(
576 InputSectionDescription &isd) {
577 std::vector<Patch843419Section *> patches;
578 for (InputSection *isec : isd.sections) {
579 // LLD doesn't use the erratum sequence in SyntheticSections.
580 if (isa<SyntheticSection>(Val: isec))
581 continue;
582 // Use sectionMap to make sure we only scan code and not inline data.
583 // We have already sorted MapSyms in ascending order and removed consecutive
584 // mapping symbols of the same type. Our range of executable instructions to
585 // scan is therefore [codeSym->value, dataSym->value) or [codeSym->value,
586 // section size).
587 std::vector<const Defined *> &mapSyms = sectionMap[isec];
588
589 auto codeSym = mapSyms.begin();
590 while (codeSym != mapSyms.end()) {
591 auto dataSym = std::next(x: codeSym);
592 uint64_t off = (*codeSym)->value;
593 uint64_t limit = (dataSym == mapSyms.end()) ? isec->content().size()
594 : (*dataSym)->value;
595
596 while (off < limit) {
597 uint64_t startAddr = isec->getVA(offset: off);
598 if (uint64_t patcheeOffset =
599 scanCortexA53Errata843419(isec, off, limit))
600 implementPatch(ctx, adrpAddr: startAddr, patcheeOffset, isec, patches);
601 }
602 if (dataSym == mapSyms.end())
603 break;
604 codeSym = std::next(x: dataSym);
605 }
606 }
607 return patches;
608}
609
610// For each InputSectionDescription make one pass over the executable sections
611// looking for the erratum sequence; creating a synthetic Patch843419Section
612// for each instance found. We insert these synthetic patch sections after the
613// executable code in each InputSectionDescription.
614//
615// PreConditions:
616// The Output and Input Sections have had their final addresses assigned.
617//
618// PostConditions:
619// Returns true if at least one patch was added. The addresses of the
620// Output and Input Sections may have been changed.
621// Returns false if no patches were required and no changes were made.
622bool AArch64Err843419Patcher::createFixes() {
623 if (!initialized)
624 init();
625
626 bool addressesChanged = false;
627 for (OutputSection *os : ctx.outputSections) {
628 if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR))
629 continue;
630 for (SectionCommand *cmd : os->commands)
631 if (auto *isd = dyn_cast<InputSectionDescription>(Val: cmd)) {
632 std::vector<Patch843419Section *> patches =
633 patchInputSectionDescription(isd&: *isd);
634 if (!patches.empty()) {
635 insertPatches(isd&: *isd, patches);
636 addressesChanged = true;
637 }
638 }
639 }
640 return addressesChanged;
641}
642

Provided by KDAB

Privacy Policy
Learn to use CMake with our Intro Training
Find out more

source code of lld/ELF/AArch64ErrataFix.cpp