1 | //===- AArch64ErrataFix.cpp -----------------------------------------------===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // This file implements Section Patching for the purpose of working around |
9 | // the AArch64 Cortex-53 errata 843419 that affects r0p0, r0p1, r0p2 and r0p4 |
10 | // versions of the core. |
11 | // |
12 | // The general principle is that an erratum sequence of one or |
13 | // more instructions is detected in the instruction stream, one of the |
14 | // instructions in the sequence is replaced with a branch to a patch sequence |
15 | // of replacement instructions. At the end of the replacement sequence the |
16 | // patch branches back to the instruction stream. |
17 | |
18 | // This technique is only suitable for fixing an erratum when: |
19 | // - There is a set of necessary conditions required to trigger the erratum that |
20 | // can be detected at static link time. |
21 | // - There is a set of replacement instructions that can be used to remove at |
22 | // least one of the necessary conditions that trigger the erratum. |
23 | // - We can overwrite an instruction in the erratum sequence with a branch to |
24 | // the replacement sequence. |
25 | // - We can place the replacement sequence within range of the branch. |
26 | //===----------------------------------------------------------------------===// |
27 | |
28 | #include "AArch64ErrataFix.h" |
29 | #include "InputFiles.h" |
30 | #include "LinkerScript.h" |
31 | #include "OutputSections.h" |
32 | #include "Relocations.h" |
33 | #include "Symbols.h" |
34 | #include "SyntheticSections.h" |
35 | #include "Target.h" |
36 | #include "llvm/ADT/StringExtras.h" |
37 | #include "llvm/Support/Endian.h" |
38 | #include <algorithm> |
39 | |
40 | using namespace llvm; |
41 | using namespace llvm::ELF; |
42 | using namespace llvm::object; |
43 | using namespace llvm::support; |
44 | using namespace llvm::support::endian; |
45 | using namespace lld; |
46 | using namespace lld::elf; |
47 | |
48 | // Helper functions to identify instructions and conditions needed to trigger |
49 | // the Cortex-A53-843419 erratum. |
50 | |
51 | // ADRP |
52 | // | 1 | immlo (2) | 1 | 0 0 0 0 | immhi (19) | Rd (5) | |
53 | static bool isADRP(uint32_t instr) { |
54 | return (instr & 0x9f000000) == 0x90000000; |
55 | } |
56 | |
57 | // Load and store bit patterns from ARMv8-A. |
58 | // Instructions appear in order of appearance starting from table in |
59 | // C4.1.3 Loads and Stores. |
60 | |
61 | // All loads and stores have 1 (at bit position 27), (0 at bit position 25). |
62 | // | op0 x op1 (2) | 1 op2 0 op3 (2) | x | op4 (5) | xxxx | op5 (2) | x (10) | |
63 | static bool isLoadStoreClass(uint32_t instr) { |
64 | return (instr & 0x0a000000) == 0x08000000; |
65 | } |
66 | |
67 | // LDN/STN multiple no offset |
68 | // | 0 Q 00 | 1100 | 0 L 00 | 0000 | opcode (4) | size (2) | Rn (5) | Rt (5) | |
69 | // LDN/STN multiple post-indexed |
70 | // | 0 Q 00 | 1100 | 1 L 0 | Rm (5)| opcode (4) | size (2) | Rn (5) | Rt (5) | |
71 | // L == 0 for stores. |
72 | |
73 | // Utility routine to decode opcode field of LDN/STN multiple structure |
74 | // instructions to find the ST1 instructions. |
75 | // opcode == 0010 ST1 4 registers. |
76 | // opcode == 0110 ST1 3 registers. |
77 | // opcode == 0111 ST1 1 register. |
78 | // opcode == 1010 ST1 2 registers. |
79 | static bool isST1MultipleOpcode(uint32_t instr) { |
80 | return (instr & 0x0000f000) == 0x00002000 || |
81 | (instr & 0x0000f000) == 0x00006000 || |
82 | (instr & 0x0000f000) == 0x00007000 || |
83 | (instr & 0x0000f000) == 0x0000a000; |
84 | } |
85 | |
86 | static bool isST1Multiple(uint32_t instr) { |
87 | return (instr & 0xbfff0000) == 0x0c000000 && isST1MultipleOpcode(instr); |
88 | } |
89 | |
90 | // Writes to Rn (writeback). |
91 | static bool isST1MultiplePost(uint32_t instr) { |
92 | return (instr & 0xbfe00000) == 0x0c800000 && isST1MultipleOpcode(instr); |
93 | } |
94 | |
95 | // LDN/STN single no offset |
96 | // | 0 Q 00 | 1101 | 0 L R 0 | 0000 | opc (3) S | size (2) | Rn (5) | Rt (5)| |
97 | // LDN/STN single post-indexed |
98 | // | 0 Q 00 | 1101 | 1 L R | Rm (5) | opc (3) S | size (2) | Rn (5) | Rt (5)| |
99 | // L == 0 for stores |
100 | |
101 | // Utility routine to decode opcode field of LDN/STN single structure |
102 | // instructions to find the ST1 instructions. |
103 | // R == 0 for ST1 and ST3, R == 1 for ST2 and ST4. |
104 | // opcode == 000 ST1 8-bit. |
105 | // opcode == 010 ST1 16-bit. |
106 | // opcode == 100 ST1 32 or 64-bit (Size determines which). |
107 | static bool isST1SingleOpcode(uint32_t instr) { |
108 | return (instr & 0x0040e000) == 0x00000000 || |
109 | (instr & 0x0040e000) == 0x00004000 || |
110 | (instr & 0x0040e000) == 0x00008000; |
111 | } |
112 | |
113 | static bool isST1Single(uint32_t instr) { |
114 | return (instr & 0xbfff0000) == 0x0d000000 && isST1SingleOpcode(instr); |
115 | } |
116 | |
117 | // Writes to Rn (writeback). |
118 | static bool isST1SinglePost(uint32_t instr) { |
119 | return (instr & 0xbfe00000) == 0x0d800000 && isST1SingleOpcode(instr); |
120 | } |
121 | |
122 | static bool isST1(uint32_t instr) { |
123 | return isST1Multiple(instr) || isST1MultiplePost(instr) || |
124 | isST1Single(instr) || isST1SinglePost(instr); |
125 | } |
126 | |
127 | // Load/store exclusive |
128 | // | size (2) 00 | 1000 | o2 L o1 | Rs (5) | o0 | Rt2 (5) | Rn (5) | Rt (5) | |
129 | // L == 0 for Stores. |
130 | static bool isLoadStoreExclusive(uint32_t instr) { |
131 | return (instr & 0x3f000000) == 0x08000000; |
132 | } |
133 | |
134 | static bool isLoadExclusive(uint32_t instr) { |
135 | return (instr & 0x3f400000) == 0x08400000; |
136 | } |
137 | |
138 | // Load register literal |
139 | // | opc (2) 01 | 1 V 00 | imm19 | Rt (5) | |
140 | static bool isLoadLiteral(uint32_t instr) { |
141 | return (instr & 0x3b000000) == 0x18000000; |
142 | } |
143 | |
144 | // Load/store no-allocate pair |
145 | // (offset) |
146 | // | opc (2) 10 | 1 V 00 | 0 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) | |
147 | // L == 0 for stores. |
148 | // Never writes to register |
149 | static bool isSTNP(uint32_t instr) { |
150 | return (instr & 0x3bc00000) == 0x28000000; |
151 | } |
152 | |
153 | // Load/store register pair |
154 | // (post-indexed) |
155 | // | opc (2) 10 | 1 V 00 | 1 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) | |
156 | // L == 0 for stores, V == 0 for Scalar, V == 1 for Simd/FP |
157 | // Writes to Rn. |
158 | static bool isSTPPost(uint32_t instr) { |
159 | return (instr & 0x3bc00000) == 0x28800000; |
160 | } |
161 | |
162 | // (offset) |
163 | // | opc (2) 10 | 1 V 01 | 0 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) | |
164 | static bool isSTPOffset(uint32_t instr) { |
165 | return (instr & 0x3bc00000) == 0x29000000; |
166 | } |
167 | |
168 | // (pre-index) |
169 | // | opc (2) 10 | 1 V 01 | 1 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) | |
170 | // Writes to Rn. |
171 | static bool isSTPPre(uint32_t instr) { |
172 | return (instr & 0x3bc00000) == 0x29800000; |
173 | } |
174 | |
175 | static bool isSTP(uint32_t instr) { |
176 | return isSTPPost(instr) || isSTPOffset(instr) || isSTPPre(instr); |
177 | } |
178 | |
179 | // Load/store register (unscaled immediate) |
180 | // | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 00 | Rn (5) | Rt (5) | |
181 | // V == 0 for Scalar, V == 1 for Simd/FP. |
182 | static bool isLoadStoreUnscaled(uint32_t instr) { |
183 | return (instr & 0x3b000c00) == 0x38000000; |
184 | } |
185 | |
186 | // Load/store register (immediate post-indexed) |
187 | // | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 01 | Rn (5) | Rt (5) | |
188 | static bool isLoadStoreImmediatePost(uint32_t instr) { |
189 | return (instr & 0x3b200c00) == 0x38000400; |
190 | } |
191 | |
192 | // Load/store register (unprivileged) |
193 | // | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 10 | Rn (5) | Rt (5) | |
194 | static bool isLoadStoreUnpriv(uint32_t instr) { |
195 | return (instr & 0x3b200c00) == 0x38000800; |
196 | } |
197 | |
198 | // Load/store register (immediate pre-indexed) |
199 | // | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 11 | Rn (5) | Rt (5) | |
200 | static bool isLoadStoreImmediatePre(uint32_t instr) { |
201 | return (instr & 0x3b200c00) == 0x38000c00; |
202 | } |
203 | |
204 | // Load/store register (register offset) |
205 | // | size (2) 11 | 1 V 00 | opc (2) 1 | Rm (5) | option (3) S | 10 | Rn | Rt | |
206 | static bool isLoadStoreRegisterOff(uint32_t instr) { |
207 | return (instr & 0x3b200c00) == 0x38200800; |
208 | } |
209 | |
210 | // Load/store register (unsigned immediate) |
211 | // | size (2) 11 | 1 V 01 | opc (2) | imm12 | Rn (5) | Rt (5) | |
212 | static bool isLoadStoreRegisterUnsigned(uint32_t instr) { |
213 | return (instr & 0x3b000000) == 0x39000000; |
214 | } |
215 | |
216 | // Rt is always in bit position 0 - 4. |
217 | static uint32_t getRt(uint32_t instr) { return (instr & 0x1f); } |
218 | |
219 | // Rn is always in bit position 5 - 9. |
220 | static uint32_t getRn(uint32_t instr) { return (instr >> 5) & 0x1f; } |
221 | |
222 | // C4.1.2 Branches, Exception Generating and System instructions |
223 | // | op0 (3) 1 | 01 op1 (4) | x (22) | |
224 | // op0 == 010 101 op1 == 0xxx Conditional Branch. |
225 | // op0 == 110 101 op1 == 1xxx Unconditional Branch Register. |
226 | // op0 == x00 101 op1 == xxxx Unconditional Branch immediate. |
227 | // op0 == x01 101 op1 == 0xxx Compare and branch immediate. |
228 | // op0 == x01 101 op1 == 1xxx Test and branch immediate. |
229 | static bool isBranch(uint32_t instr) { |
230 | return ((instr & 0xfe000000) == 0xd6000000) || // Cond branch. |
231 | ((instr & 0xfe000000) == 0x54000000) || // Uncond branch reg. |
232 | ((instr & 0x7c000000) == 0x14000000) || // Uncond branch imm. |
233 | ((instr & 0x7c000000) == 0x34000000); // Compare and test branch. |
234 | } |
235 | |
236 | static bool isV8SingleRegisterNonStructureLoadStore(uint32_t instr) { |
237 | return isLoadStoreUnscaled(instr) || isLoadStoreImmediatePost(instr) || |
238 | isLoadStoreUnpriv(instr) || isLoadStoreImmediatePre(instr) || |
239 | isLoadStoreRegisterOff(instr) || isLoadStoreRegisterUnsigned(instr); |
240 | } |
241 | |
242 | // Note that this function refers to v8.0 only and does not include the |
243 | // additional load and store instructions added for in later revisions of |
244 | // the architecture such as the Atomic memory operations introduced |
245 | // in v8.1. |
246 | static bool isV8NonStructureLoad(uint32_t instr) { |
247 | if (isLoadExclusive(instr)) |
248 | return true; |
249 | if (isLoadLiteral(instr)) |
250 | return true; |
251 | else if (isV8SingleRegisterNonStructureLoadStore(instr)) { |
252 | // For Load and Store single register, Loads are derived from a |
253 | // combination of the Size, V and Opc fields. |
254 | uint32_t size = (instr >> 30) & 0xff; |
255 | uint32_t v = (instr >> 26) & 0x1; |
256 | uint32_t opc = (instr >> 22) & 0x3; |
257 | // For the load and store instructions that we are decoding. |
258 | // Opc == 0 are all stores. |
259 | // Opc == 1 with a couple of exceptions are loads. The exceptions are: |
260 | // Size == 00 (0), V == 1, Opc == 10 (2) which is a store and |
261 | // Size == 11 (3), V == 0, Opc == 10 (2) which is a prefetch. |
262 | return opc != 0 && !(size == 0 && v == 1 && opc == 2) && |
263 | !(size == 3 && v == 0 && opc == 2); |
264 | } |
265 | return false; |
266 | } |
267 | |
268 | // The following decode instructions are only complete up to the instructions |
269 | // needed for errata 843419. |
270 | |
271 | // Instruction with writeback updates the index register after the load/store. |
272 | static bool hasWriteback(uint32_t instr) { |
273 | return isLoadStoreImmediatePre(instr) || isLoadStoreImmediatePost(instr) || |
274 | isSTPPre(instr) || isSTPPost(instr) || isST1SinglePost(instr) || |
275 | isST1MultiplePost(instr); |
276 | } |
277 | |
278 | // For the load and store class of instructions, a load can write to the |
279 | // destination register, a load and a store can write to the base register when |
280 | // the instruction has writeback. |
281 | static bool doesLoadStoreWriteToReg(uint32_t instr, uint32_t reg) { |
282 | return (isV8NonStructureLoad(instr) && getRt(instr) == reg) || |
283 | (hasWriteback(instr) && getRn(instr) == reg); |
284 | } |
285 | |
286 | // Scanner for Cortex-A53 errata 843419 |
287 | // Full details are available in the Cortex A53 MPCore revision 0 Software |
288 | // Developers Errata Notice (ARM-EPM-048406). |
289 | // |
290 | // The instruction sequence that triggers the erratum is common in compiled |
291 | // AArch64 code, however it is sensitive to the offset of the sequence within |
292 | // a 4k page. This means that by scanning and fixing the patch after we have |
293 | // assigned addresses we only need to disassemble and fix instances of the |
294 | // sequence in the range of affected offsets. |
295 | // |
296 | // In summary the erratum conditions are a series of 4 instructions: |
297 | // 1.) An ADRP instruction that writes to register Rn with low 12 bits of |
298 | // address of instruction either 0xff8 or 0xffc. |
299 | // 2.) A load or store instruction that can be: |
300 | // - A single register load or store, of either integer or vector registers. |
301 | // - An STP or STNP, of either integer or vector registers. |
302 | // - An Advanced SIMD ST1 store instruction. |
303 | // - Must not write to Rn, but may optionally read from it. |
304 | // 3.) An optional instruction that is not a branch and does not write to Rn. |
305 | // 4.) A load or store from the Load/store register (unsigned immediate) class |
306 | // that uses Rn as the base address register. |
307 | // |
308 | // Note that we do not attempt to scan for Sequence 2 as described in the |
309 | // Software Developers Errata Notice as this has been assessed to be extremely |
310 | // unlikely to occur in compiled code. This matches gold and ld.bfd behavior. |
311 | |
312 | // Return true if the Instruction sequence Adrp, Instr2, and Instr4 match |
313 | // the erratum sequence. The Adrp, Instr2 and Instr4 correspond to 1.), 2.), |
314 | // and 4.) in the Scanner for Cortex-A53 errata comment above. |
315 | static bool is843419ErratumSequence(uint32_t instr1, uint32_t instr2, |
316 | uint32_t instr4) { |
317 | if (!isADRP(instr: instr1)) |
318 | return false; |
319 | |
320 | uint32_t rn = getRt(instr: instr1); |
321 | return isLoadStoreClass(instr: instr2) && |
322 | (isLoadStoreExclusive(instr: instr2) || isLoadLiteral(instr: instr2) || |
323 | isV8SingleRegisterNonStructureLoadStore(instr: instr2) || isSTP(instr: instr2) || |
324 | isSTNP(instr: instr2) || isST1(instr: instr2)) && |
325 | !doesLoadStoreWriteToReg(instr: instr2, reg: rn) && |
326 | isLoadStoreRegisterUnsigned(instr: instr4) && getRn(instr: instr4) == rn; |
327 | } |
328 | |
329 | // Scan the instruction sequence starting at Offset Off from the base of |
330 | // InputSection isec. We update Off in this function rather than in the caller |
331 | // as we can skip ahead much further into the section when we know how many |
332 | // instructions we've scanned. |
333 | // Return the offset of the load or store instruction in isec that we want to |
334 | // patch or 0 if no patch required. |
335 | static uint64_t scanCortexA53Errata843419(InputSection *isec, uint64_t &off, |
336 | uint64_t limit) { |
337 | uint64_t isecAddr = isec->getVA(offset: 0); |
338 | |
339 | // Advance Off so that (isecAddr + Off) modulo 0x1000 is at least 0xff8. |
340 | uint64_t initialPageOff = (isecAddr + off) & 0xfff; |
341 | if (initialPageOff < 0xff8) |
342 | off += 0xff8 - initialPageOff; |
343 | |
344 | bool optionalAllowed = limit - off > 12; |
345 | if (off >= limit || limit - off < 12) { |
346 | // Need at least 3 4-byte sized instructions to trigger erratum. |
347 | off = limit; |
348 | return 0; |
349 | } |
350 | |
351 | uint64_t patchOff = 0; |
352 | const uint8_t *buf = isec->content().begin(); |
353 | const ulittle32_t *instBuf = reinterpret_cast<const ulittle32_t *>(buf + off); |
354 | uint32_t instr1 = *instBuf++; |
355 | uint32_t instr2 = *instBuf++; |
356 | uint32_t instr3 = *instBuf++; |
357 | if (is843419ErratumSequence(instr1, instr2, instr4: instr3)) { |
358 | patchOff = off + 8; |
359 | } else if (optionalAllowed && !isBranch(instr: instr3)) { |
360 | uint32_t instr4 = *instBuf++; |
361 | if (is843419ErratumSequence(instr1, instr2, instr4)) |
362 | patchOff = off + 12; |
363 | } |
364 | if (((isecAddr + off) & 0xfff) == 0xff8) |
365 | off += 4; |
366 | else |
367 | off += 0xffc; |
368 | return patchOff; |
369 | } |
370 | |
371 | class elf::Patch843419Section final : public SyntheticSection { |
372 | public: |
373 | Patch843419Section(Ctx &, InputSection *p, uint64_t off); |
374 | |
375 | void writeTo(uint8_t *buf) override; |
376 | |
377 | size_t getSize() const override { return 8; } |
378 | |
379 | uint64_t getLDSTAddr() const; |
380 | |
381 | static bool classof(const SectionBase *d) { |
382 | return d->kind() == InputSectionBase::Synthetic && d->name == ".text.patch"; |
383 | } |
384 | |
385 | // The Section we are patching. |
386 | const InputSection *patchee; |
387 | // The offset of the instruction in the patchee section we are patching. |
388 | uint64_t patcheeOffset; |
389 | // A label for the start of the Patch that we can use as a relocation target. |
390 | Symbol *patchSym; |
391 | }; |
392 | |
393 | Patch843419Section::Patch843419Section(Ctx &ctx, InputSection *p, uint64_t off) |
394 | : SyntheticSection(ctx, ".text.patch", SHT_PROGBITS, |
395 | SHF_ALLOC | SHF_EXECINSTR, 4), |
396 | patchee(p), patcheeOffset(off) { |
397 | this->parent = p->getParent(); |
398 | patchSym = addSyntheticLocal( |
399 | ctx, name: ctx.saver.save(S: "__CortexA53843419_"+ utohexstr(X: getLDSTAddr())), |
400 | type: STT_FUNC, value: 0, size: getSize(), section&: *this); |
401 | addSyntheticLocal(ctx, name: ctx.saver.save(S: "$x"), type: STT_NOTYPE, value: 0, size: 0, section&: *this); |
402 | } |
403 | |
404 | uint64_t Patch843419Section::getLDSTAddr() const { |
405 | return patchee->getVA(offset: patcheeOffset); |
406 | } |
407 | |
408 | void Patch843419Section::writeTo(uint8_t *buf) { |
409 | // Copy the instruction that we will be replacing with a branch in the |
410 | // patchee Section. |
411 | write32le(P: buf, V: read32le(P: patchee->content().begin() + patcheeOffset)); |
412 | |
413 | // Apply any relocation transferred from the original patchee section. |
414 | ctx.target->relocateAlloc(sec&: *this, buf); |
415 | |
416 | // Return address is the next instruction after the one we have just copied. |
417 | uint64_t s = getLDSTAddr() + 4; |
418 | uint64_t p = patchSym->getVA(ctx) + 4; |
419 | ctx.target->relocateNoSym(loc: buf + 4, type: R_AARCH64_JUMP26, val: s - p); |
420 | } |
421 | |
422 | void AArch64Err843419Patcher::init() { |
423 | // The AArch64 ABI permits data in executable sections. We must avoid scanning |
424 | // this data as if it were instructions to avoid false matches. We use the |
425 | // mapping symbols in the InputObjects to identify this data, caching the |
426 | // results in sectionMap so we don't have to recalculate it each pass. |
427 | |
428 | // The ABI Section 4.5.4 Mapping symbols; defines local symbols that describe |
429 | // half open intervals [Symbol Value, Next Symbol Value) of code and data |
430 | // within sections. If there is no next symbol then the half open interval is |
431 | // [Symbol Value, End of section). The type, code or data, is determined by |
432 | // the mapping symbol name, $x for code, $d for data. |
433 | auto isCodeMapSymbol = [](const Symbol *b) { |
434 | return b->getName() == "$x"|| b->getName().starts_with(Prefix: "$x."); |
435 | }; |
436 | auto isDataMapSymbol = [](const Symbol *b) { |
437 | return b->getName() == "$d"|| b->getName().starts_with(Prefix: "$d."); |
438 | }; |
439 | |
440 | // Collect mapping symbols for every executable InputSection. |
441 | for (ELFFileBase *file : ctx.objectFiles) { |
442 | for (Symbol *b : file->getLocalSymbols()) { |
443 | auto *def = dyn_cast<Defined>(Val: b); |
444 | if (!def) |
445 | continue; |
446 | if (!isCodeMapSymbol(def) && !isDataMapSymbol(def)) |
447 | continue; |
448 | if (auto *sec = dyn_cast_or_null<InputSection>(Val: def->section)) |
449 | if (sec->flags & SHF_EXECINSTR) |
450 | sectionMap[sec].push_back(x: def); |
451 | } |
452 | } |
453 | // For each InputSection make sure the mapping symbols are in sorted in |
454 | // ascending order and free from consecutive runs of mapping symbols with |
455 | // the same type. For example we must remove the redundant $d.1 from $x.0 |
456 | // $d.0 $d.1 $x.1. |
457 | for (auto &kv : sectionMap) { |
458 | std::vector<const Defined *> &mapSyms = kv.second; |
459 | llvm::stable_sort(Range&: mapSyms, C: [](const Defined *a, const Defined *b) { |
460 | return a->value < b->value; |
461 | }); |
462 | mapSyms.erase(first: llvm::unique(R&: mapSyms, |
463 | P: [=](const Defined *a, const Defined *b) { |
464 | return isCodeMapSymbol(a) == |
465 | isCodeMapSymbol(b); |
466 | }), |
467 | last: mapSyms.end()); |
468 | // Always start with a Code Mapping Symbol. |
469 | if (!mapSyms.empty() && !isCodeMapSymbol(mapSyms.front())) |
470 | mapSyms.erase(position: mapSyms.begin()); |
471 | } |
472 | initialized = true; |
473 | } |
474 | |
475 | // Insert the PatchSections we have created back into the |
476 | // InputSectionDescription. As inserting patches alters the addresses of |
477 | // InputSections that follow them, we try and place the patches after all the |
478 | // executable sections, although we may need to insert them earlier if the |
479 | // InputSectionDescription is larger than the maximum branch range. |
480 | void AArch64Err843419Patcher::insertPatches( |
481 | InputSectionDescription &isd, std::vector<Patch843419Section *> &patches) { |
482 | uint64_t isecLimit; |
483 | uint64_t prevIsecLimit = isd.sections.front()->outSecOff; |
484 | uint64_t patchUpperBound = |
485 | prevIsecLimit + ctx.target->getThunkSectionSpacing(); |
486 | uint64_t outSecAddr = isd.sections.front()->getParent()->addr; |
487 | |
488 | // Set the outSecOff of patches to the place where we want to insert them. |
489 | // We use a similar strategy to Thunk placement. Place patches roughly |
490 | // every multiple of maximum branch range. |
491 | auto patchIt = patches.begin(); |
492 | auto patchEnd = patches.end(); |
493 | for (const InputSection *isec : isd.sections) { |
494 | isecLimit = isec->outSecOff + isec->getSize(); |
495 | if (isecLimit > patchUpperBound) { |
496 | while (patchIt != patchEnd) { |
497 | if ((*patchIt)->getLDSTAddr() - outSecAddr >= prevIsecLimit) |
498 | break; |
499 | (*patchIt)->outSecOff = prevIsecLimit; |
500 | ++patchIt; |
501 | } |
502 | patchUpperBound = prevIsecLimit + ctx.target->getThunkSectionSpacing(); |
503 | } |
504 | prevIsecLimit = isecLimit; |
505 | } |
506 | for (; patchIt != patchEnd; ++patchIt) { |
507 | (*patchIt)->outSecOff = isecLimit; |
508 | } |
509 | |
510 | // Merge all patch sections. We use the outSecOff assigned above to |
511 | // determine the insertion point. This is ok as we only merge into an |
512 | // InputSectionDescription once per pass, and at the end of the pass |
513 | // assignAddresses() will recalculate all the outSecOff values. |
514 | SmallVector<InputSection *, 0> tmp; |
515 | tmp.reserve(N: isd.sections.size() + patches.size()); |
516 | auto mergeCmp = [](const InputSection *a, const InputSection *b) { |
517 | if (a->outSecOff != b->outSecOff) |
518 | return a->outSecOff < b->outSecOff; |
519 | return isa<Patch843419Section>(Val: a) && !isa<Patch843419Section>(Val: b); |
520 | }; |
521 | std::merge(first1: isd.sections.begin(), last1: isd.sections.end(), first2: patches.begin(), |
522 | last2: patches.end(), result: std::back_inserter(x&: tmp), comp: mergeCmp); |
523 | isd.sections = std::move(tmp); |
524 | } |
525 | |
526 | // Given an erratum sequence that starts at address adrpAddr, with an |
527 | // instruction that we need to patch at patcheeOffset from the start of |
528 | // InputSection isec, create a Patch843419 Section and add it to the |
529 | // Patches that we need to insert. |
530 | static void implementPatch(Ctx &ctx, uint64_t adrpAddr, uint64_t patcheeOffset, |
531 | InputSection *isec, |
532 | std::vector<Patch843419Section *> &patches) { |
533 | // There may be a relocation at the same offset that we are patching. There |
534 | // are four cases that we need to consider. |
535 | // Case 1: R_AARCH64_JUMP26 branch relocation. We have already patched this |
536 | // instance of the erratum on a previous patch and altered the relocation. We |
537 | // have nothing more to do. |
538 | // Case 2: A TLS Relaxation R_RELAX_TLS_IE_TO_LE. In this case the ADRP that |
539 | // we read will be transformed into a MOVZ later so we actually don't match |
540 | // the sequence and have nothing more to do. |
541 | // Case 3: A load/store register (unsigned immediate) class relocation. There |
542 | // are two of these R_AARCH_LD64_ABS_LO12_NC and R_AARCH_LD64_GOT_LO12_NC and |
543 | // they are both absolute. We need to add the same relocation to the patch, |
544 | // and replace the relocation with a R_AARCH_JUMP26 branch relocation. |
545 | // Case 4: No relocation. We must create a new R_AARCH64_JUMP26 branch |
546 | // relocation at the offset. |
547 | auto relIt = llvm::find_if(Range: isec->relocs(), P: [=](const Relocation &r) { |
548 | return r.offset == patcheeOffset; |
549 | }); |
550 | if (relIt != isec->relocs().end() && |
551 | (relIt->type == R_AARCH64_JUMP26 || relIt->expr == R_RELAX_TLS_IE_TO_LE)) |
552 | return; |
553 | |
554 | Log(ctx) << "detected cortex-a53-843419 erratum sequence starting at "<< |
555 | utohexstr(X: adrpAddr) << " in unpatched output."; |
556 | |
557 | auto *ps = make<Patch843419Section>(args&: ctx, args&: isec, args&: patcheeOffset); |
558 | patches.push_back(x: ps); |
559 | |
560 | auto makeRelToPatch = [](uint64_t offset, Symbol *patchSym) { |
561 | return Relocation{.expr: R_PC, .type: R_AARCH64_JUMP26, .offset: offset, .addend: 0, .sym: patchSym}; |
562 | }; |
563 | |
564 | if (relIt != isec->relocs().end()) { |
565 | ps->addReloc(r: {.expr: relIt->expr, .type: relIt->type, .offset: 0, .addend: relIt->addend, .sym: relIt->sym}); |
566 | *relIt = makeRelToPatch(patcheeOffset, ps->patchSym); |
567 | } else |
568 | isec->addReloc(r: makeRelToPatch(patcheeOffset, ps->patchSym)); |
569 | } |
570 | |
571 | // Scan all the instructions in InputSectionDescription, for each instance of |
572 | // the erratum sequence create a Patch843419Section. We return the list of |
573 | // Patch843419Sections that need to be applied to the InputSectionDescription. |
574 | std::vector<Patch843419Section *> |
575 | AArch64Err843419Patcher::patchInputSectionDescription( |
576 | InputSectionDescription &isd) { |
577 | std::vector<Patch843419Section *> patches; |
578 | for (InputSection *isec : isd.sections) { |
579 | // LLD doesn't use the erratum sequence in SyntheticSections. |
580 | if (isa<SyntheticSection>(Val: isec)) |
581 | continue; |
582 | // Use sectionMap to make sure we only scan code and not inline data. |
583 | // We have already sorted MapSyms in ascending order and removed consecutive |
584 | // mapping symbols of the same type. Our range of executable instructions to |
585 | // scan is therefore [codeSym->value, dataSym->value) or [codeSym->value, |
586 | // section size). |
587 | std::vector<const Defined *> &mapSyms = sectionMap[isec]; |
588 | |
589 | auto codeSym = mapSyms.begin(); |
590 | while (codeSym != mapSyms.end()) { |
591 | auto dataSym = std::next(x: codeSym); |
592 | uint64_t off = (*codeSym)->value; |
593 | uint64_t limit = (dataSym == mapSyms.end()) ? isec->content().size() |
594 | : (*dataSym)->value; |
595 | |
596 | while (off < limit) { |
597 | uint64_t startAddr = isec->getVA(offset: off); |
598 | if (uint64_t patcheeOffset = |
599 | scanCortexA53Errata843419(isec, off, limit)) |
600 | implementPatch(ctx, adrpAddr: startAddr, patcheeOffset, isec, patches); |
601 | } |
602 | if (dataSym == mapSyms.end()) |
603 | break; |
604 | codeSym = std::next(x: dataSym); |
605 | } |
606 | } |
607 | return patches; |
608 | } |
609 | |
610 | // For each InputSectionDescription make one pass over the executable sections |
611 | // looking for the erratum sequence; creating a synthetic Patch843419Section |
612 | // for each instance found. We insert these synthetic patch sections after the |
613 | // executable code in each InputSectionDescription. |
614 | // |
615 | // PreConditions: |
616 | // The Output and Input Sections have had their final addresses assigned. |
617 | // |
618 | // PostConditions: |
619 | // Returns true if at least one patch was added. The addresses of the |
620 | // Output and Input Sections may have been changed. |
621 | // Returns false if no patches were required and no changes were made. |
622 | bool AArch64Err843419Patcher::createFixes() { |
623 | if (!initialized) |
624 | init(); |
625 | |
626 | bool addressesChanged = false; |
627 | for (OutputSection *os : ctx.outputSections) { |
628 | if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR)) |
629 | continue; |
630 | for (SectionCommand *cmd : os->commands) |
631 | if (auto *isd = dyn_cast<InputSectionDescription>(Val: cmd)) { |
632 | std::vector<Patch843419Section *> patches = |
633 | patchInputSectionDescription(isd&: *isd); |
634 | if (!patches.empty()) { |
635 | insertPatches(isd&: *isd, patches); |
636 | addressesChanged = true; |
637 | } |
638 | } |
639 | } |
640 | return addressesChanged; |
641 | } |
642 |
Definitions
- isADRP
- isLoadStoreClass
- isST1MultipleOpcode
- isST1Multiple
- isST1MultiplePost
- isST1SingleOpcode
- isST1Single
- isST1SinglePost
- isST1
- isLoadStoreExclusive
- isLoadExclusive
- isLoadLiteral
- isSTNP
- isSTPPost
- isSTPOffset
- isSTPPre
- isSTP
- isLoadStoreUnscaled
- isLoadStoreImmediatePost
- isLoadStoreUnpriv
- isLoadStoreImmediatePre
- isLoadStoreRegisterOff
- isLoadStoreRegisterUnsigned
- getRt
- getRn
- isBranch
- isV8SingleRegisterNonStructureLoadStore
- isV8NonStructureLoad
- hasWriteback
- doesLoadStoreWriteToReg
- is843419ErratumSequence
- scanCortexA53Errata843419
- Patch843419Section
- getSize
- classof
- Patch843419Section
- getLDSTAddr
- writeTo
- init
- insertPatches
- implementPatch
- patchInputSectionDescription
Learn to use CMake with our Intro Training
Find out more