1//===- ARMErrataFix.cpp ---------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8// This file implements Section Patching for the purpose of working around the
9// Cortex-a8 erratum 657417 "A 32bit branch instruction that spans 2 4K regions
10// can result in an incorrect instruction fetch or processor deadlock." The
11// erratum affects all but r1p7, r2p5, r2p6, r3p1 and r3p2 revisions of the
12// Cortex-A8. A high level description of the patching technique is given in
13// the opening comment of AArch64ErrataFix.cpp.
14//===----------------------------------------------------------------------===//
15
16#include "ARMErrataFix.h"
17#include "InputFiles.h"
18#include "LinkerScript.h"
19#include "OutputSections.h"
20#include "Relocations.h"
21#include "Symbols.h"
22#include "SyntheticSections.h"
23#include "Target.h"
24#include "llvm/Support/Endian.h"
25#include <algorithm>
26
27using namespace llvm;
28using namespace llvm::ELF;
29using namespace llvm::object;
30using namespace llvm::support;
31using namespace llvm::support::endian;
32using namespace lld;
33using namespace lld::elf;
34
35// The documented title for Erratum 657417 is:
36// "A 32bit branch instruction that spans two 4K regions can result in an
37// incorrect instruction fetch or processor deadlock". Graphically using a
38// 32-bit B.w instruction encoded as a pair of halfwords 0xf7fe 0xbfff
39// xxxxxx000 // Memory region 1 start
40// target:
41// ...
42// xxxxxxffe f7fe // First halfword of branch to target:
43// xxxxxx000 // Memory region 2 start
44// xxxxxx002 bfff // Second halfword of branch to target:
45//
46// The specific trigger conditions that can be detected at link time are:
47// - There is a 32-bit Thumb-2 branch instruction with an address of the form
48// xxxxxxFFE. The first 2 bytes of the instruction are in 4KiB region 1, the
49// second 2 bytes are in region 2.
50// - The branch instruction is one of BLX, BL, B.w BCC.w
51// - The instruction preceding the branch is a 32-bit non-branch instruction.
52// - The target of the branch is in region 1.
53//
54// The linker mitigation for the fix is to redirect any branch that meets the
55// erratum conditions to a patch section containing a branch to the target.
56//
57// As adding patch sections may move branches onto region boundaries the patch
58// must iterate until no more patches are added.
59//
60// Example, before:
61// 00000FFA func: NOP.w // 32-bit Thumb function
62// 00000FFE B.W func // 32-bit branch spanning 2 regions, dest in 1st.
63// Example, after:
64// 00000FFA func: NOP.w // 32-bit Thumb function
65// 00000FFE B.w __CortexA8657417_00000FFE
66// 00001002 2 - bytes padding
67// 00001004 __CortexA8657417_00000FFE: B.w func
68
69class elf::Patch657417Section final : public SyntheticSection {
70public:
71 Patch657417Section(Ctx &, InputSection *p, uint64_t off, uint32_t instr,
72 bool isARM);
73
74 void writeTo(uint8_t *buf) override;
75
76 size_t getSize() const override { return 4; }
77
78 // Get the virtual address of the branch instruction at patcheeOffset.
79 uint64_t getBranchAddr() const;
80
81 static bool classof(const SectionBase *d) {
82 return d->kind() == InputSectionBase::Synthetic && d->name ==".text.patch";
83 }
84
85 // The Section we are patching.
86 const InputSection *patchee;
87 // The offset of the instruction in the Patchee section we are patching.
88 uint64_t patcheeOffset;
89 // A label for the start of the Patch that we can use as a relocation target.
90 Symbol *patchSym;
91 // A decoding of the branch instruction at patcheeOffset.
92 uint32_t instr;
93 // True If the patch is to be written in ARM state, otherwise the patch will
94 // be written in Thumb state.
95 bool isARM;
96};
97
98// Return true if the half-word, when taken as the first of a pair of halfwords
99// is the first half of a 32-bit instruction.
100// Reference from ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition
101// section A6.3: 32-bit Thumb instruction encoding
102// | HW1 | HW2 |
103// | 1 1 1 | op1 (2) | op2 (7) | x (4) |op| x (15) |
104// With op1 == 0b00, a 16-bit instruction is encoded.
105//
106// We test only the first halfword, looking for op != 0b00.
107static bool is32bitInstruction(uint16_t hw) {
108 return (hw & 0xe000) == 0xe000 && (hw & 0x1800) != 0x0000;
109}
110
111// Reference from ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition
112// section A6.3.4 Branches and miscellaneous control.
113// | HW1 | HW2 |
114// | 1 1 1 | 1 0 | op (7) | x (4) | 1 | op1 (3) | op2 (4) | imm8 (8) |
115// op1 == 0x0 op != x111xxx | Conditional branch (Bcc.W)
116// op1 == 0x1 | Branch (B.W)
117// op1 == 1x0 | Branch with Link and Exchange (BLX.w)
118// op1 == 1x1 | Branch with Link (BL.W)
119
120static bool isBcc(uint32_t instr) {
121 return (instr & 0xf800d000) == 0xf0008000 &&
122 (instr & 0x03800000) != 0x03800000;
123}
124
125static bool isB(uint32_t instr) { return (instr & 0xf800d000) == 0xf0009000; }
126
127static bool isBLX(uint32_t instr) { return (instr & 0xf800d000) == 0xf000c000; }
128
129static bool isBL(uint32_t instr) { return (instr & 0xf800d000) == 0xf000d000; }
130
131static bool is32bitBranch(uint32_t instr) {
132 return isBcc(instr) || isB(instr) || isBL(instr) || isBLX(instr);
133}
134
135Patch657417Section::Patch657417Section(Ctx &ctx, InputSection *p, uint64_t off,
136 uint32_t instr, bool isARM)
137 : SyntheticSection(ctx, ".text.patch", SHT_PROGBITS,
138 SHF_ALLOC | SHF_EXECINSTR, 4),
139 patchee(p), patcheeOffset(off), instr(instr), isARM(isARM) {
140 parent = p->getParent();
141 patchSym = addSyntheticLocal(
142 ctx, name: ctx.saver.save(S: "__CortexA8657417_" + utohexstr(X: getBranchAddr())),
143 type: STT_FUNC, value: isARM ? 0 : 1, size: getSize(), section&: *this);
144 addSyntheticLocal(ctx, name: ctx.saver.save(S: isARM ? "$a" : "$t"), type: STT_NOTYPE, value: 0, size: 0,
145 section&: *this);
146}
147
148uint64_t Patch657417Section::getBranchAddr() const {
149 return patchee->getVA(offset: patcheeOffset);
150}
151
152// Given a branch instruction instr at sourceAddr work out its destination
153// address. This is only used when the branch instruction has no relocation.
154static uint64_t getThumbDestAddr(Ctx &ctx, uint64_t sourceAddr,
155 uint32_t instr) {
156 uint8_t buf[4];
157 write16le(P: buf, V: instr >> 16);
158 write16le(P: buf + 2, V: instr & 0x0000ffff);
159 int64_t offset;
160 if (isBcc(instr))
161 offset = ctx.target->getImplicitAddend(buf, type: R_ARM_THM_JUMP19);
162 else if (isB(instr))
163 offset = ctx.target->getImplicitAddend(buf, type: R_ARM_THM_JUMP24);
164 else
165 offset = ctx.target->getImplicitAddend(buf, type: R_ARM_THM_CALL);
166 // A BLX instruction from Thumb to Arm may have an address that is
167 // not 4-byte aligned. As Arm instructions are always 4-byte aligned
168 // the instruction is calculated (from Arm ARM):
169 // targetAddress = Align(PC, 4) + imm32
170 // where
171 // Align(x, y) = y * (x Div y)
172 // which corresponds to alignDown.
173 if (isBLX(instr))
174 sourceAddr = alignDown(Value: sourceAddr, Align: 4);
175 return sourceAddr + offset + 4;
176}
177
178void Patch657417Section::writeTo(uint8_t *buf) {
179 // The base instruction of the patch is always a 32-bit unconditional branch.
180 if (isARM)
181 write32le(P: buf, V: 0xea000000);
182 else
183 write32le(P: buf, V: 0x9000f000);
184 // If we have a relocation then apply it.
185 if (!relocs().empty()) {
186 ctx.target->relocateAlloc(sec&: *this, buf);
187 return;
188 }
189
190 // If we don't have a relocation then we must calculate and write the offset
191 // ourselves.
192 // Get the destination offset from the addend in the branch instruction.
193 // We cannot use the instruction in the patchee section as this will have
194 // been altered to point to us!
195 uint64_t s = getThumbDestAddr(ctx, sourceAddr: getBranchAddr(), instr);
196 // A BLX changes the state of the branch in the patch to Arm state, which
197 // has a PC Bias of 8, whereas in all other cases the branch is in Thumb
198 // state with a PC Bias of 4.
199 uint64_t pcBias = isBLX(instr) ? 8 : 4;
200 uint64_t p = getVA(offset: pcBias);
201 ctx.target->relocateNoSym(loc: buf, type: isARM ? R_ARM_JUMP24 : R_ARM_THM_JUMP24,
202 val: s - p);
203}
204
205// Given a branch instruction spanning two 4KiB regions, at offset off from the
206// start of isec, return true if the destination of the branch is within the
207// first of the two 4Kib regions.
208static bool branchDestInFirstRegion(Ctx &ctx, const InputSection *isec,
209 uint64_t off, uint32_t instr,
210 const Relocation *r) {
211 uint64_t sourceAddr = isec->getVA(offset: 0) + off;
212 assert((sourceAddr & 0xfff) == 0xffe);
213 uint64_t destAddr;
214 // If there is a branch relocation at the same offset we must use this to
215 // find the destination address as the branch could be indirected via a thunk
216 // or the PLT.
217 if (r) {
218 uint64_t dst =
219 r->expr == R_PLT_PC ? r->sym->getPltVA(ctx) : r->sym->getVA(ctx);
220 // Account for Thumb PC bias, usually cancelled to 0 by addend of -4.
221 destAddr = dst + r->addend + 4;
222 } else {
223 // If there is no relocation, we must have an intra-section branch
224 // We must extract the offset from the addend manually.
225 destAddr = getThumbDestAddr(ctx, sourceAddr, instr);
226 }
227
228 return (destAddr & 0xfffff000) == (sourceAddr & 0xfffff000);
229}
230
231// Return true if a branch can reach a patch section placed after isec.
232// The Bcc.w instruction has a range of 1 MiB, all others have 16 MiB.
233static bool patchInRange(Ctx &ctx, const InputSection *isec, uint64_t off,
234 uint32_t instr) {
235
236 // We need the branch at source to reach a patch section placed immediately
237 // after isec. As there can be more than one patch in the patch section we
238 // add 0x100 as contingency to account for worst case of 1 branch every 4KiB
239 // for a 1 MiB range.
240 return ctx.target->inBranchRange(
241 type: isBcc(instr) ? R_ARM_THM_JUMP19 : R_ARM_THM_JUMP24, src: isec->getVA(offset: off),
242 dst: isec->getVA() + isec->getSize() + 0x100);
243}
244
245struct ScanResult {
246 // Offset of branch within its InputSection.
247 uint64_t off;
248 // Cached decoding of the branch instruction.
249 uint32_t instr;
250 // Branch relocation at off. Will be nullptr if no relocation exists.
251 Relocation *rel;
252};
253
254// Detect the erratum sequence, returning the offset of the branch instruction
255// and a decoding of the branch. If the erratum sequence is not found then
256// return an offset of 0 for the branch. 0 is a safe value to use for no patch
257// as there must be at least one 32-bit non-branch instruction before the
258// branch so the minimum offset for a patch is 4.
259static ScanResult scanCortexA8Errata657417(InputSection *isec, uint64_t &off,
260 uint64_t limit) {
261 Ctx &ctx = isec->getCtx();
262 uint64_t isecAddr = isec->getVA(offset: 0);
263 // Advance Off so that (isecAddr + off) modulo 0x1000 is at least 0xffa. We
264 // need to check for a 32-bit instruction immediately before a 32-bit branch
265 // at 0xffe modulo 0x1000.
266 off = alignTo(Value: isecAddr + off, Align: 0x1000, Skew: 0xffa) - isecAddr;
267 if (off >= limit || limit - off < 8) {
268 // Need at least 2 4-byte sized instructions to trigger erratum.
269 off = limit;
270 return {.off: 0, .instr: 0, .rel: nullptr};
271 }
272
273 ScanResult scanRes = {.off: 0, .instr: 0, .rel: nullptr};
274 const uint8_t *buf = isec->content().begin();
275 // ARMv7-A Thumb 32-bit instructions are encoded 2 consecutive
276 // little-endian halfwords.
277 const ulittle16_t *instBuf = reinterpret_cast<const ulittle16_t *>(buf + off);
278 uint16_t hw11 = *instBuf++;
279 uint16_t hw12 = *instBuf++;
280 uint16_t hw21 = *instBuf++;
281 uint16_t hw22 = *instBuf++;
282 if (is32bitInstruction(hw: hw11) && is32bitInstruction(hw: hw21)) {
283 uint32_t instr1 = (hw11 << 16) | hw12;
284 uint32_t instr2 = (hw21 << 16) | hw22;
285 if (!is32bitBranch(instr: instr1) && is32bitBranch(instr: instr2)) {
286 // Find a relocation for the branch if it exists. This will be used
287 // to determine the target.
288 uint64_t branchOff = off + 4;
289 auto relIt = llvm::find_if(Range: isec->relocs(), P: [=](const Relocation &r) {
290 return r.offset == branchOff &&
291 (r.type == R_ARM_THM_JUMP19 || r.type == R_ARM_THM_JUMP24 ||
292 r.type == R_ARM_THM_CALL);
293 });
294 if (relIt != isec->relocs().end())
295 scanRes.rel = &(*relIt);
296 if (branchDestInFirstRegion(ctx, isec, off: branchOff, instr: instr2, r: scanRes.rel)) {
297 if (patchInRange(ctx, isec, off: branchOff, instr: instr2)) {
298 scanRes.off = branchOff;
299 scanRes.instr = instr2;
300 } else {
301 Warn(ctx) << isec->file
302 << ": skipping cortex-a8 657417 erratum sequence, section "
303 << isec->name << " is too large to patch";
304 }
305 }
306 }
307 }
308 off += 0x1000;
309 return scanRes;
310}
311
312void ARMErr657417Patcher::init() {
313 // The Arm ABI permits a mix of ARM, Thumb and Data in the same
314 // InputSection. We must only scan Thumb instructions to avoid false
315 // matches. We use the mapping symbols in the InputObjects to identify this
316 // data, caching the results in sectionMap so we don't have to recalculate
317 // it each pass.
318
319 // The ABI Section 4.5.5 Mapping symbols; defines local symbols that describe
320 // half open intervals [Symbol Value, Next Symbol Value) of code and data
321 // within sections. If there is no next symbol then the half open interval is
322 // [Symbol Value, End of section). The type, code or data, is determined by
323 // the mapping symbol name, $a for Arm code, $t for Thumb code, $d for data.
324 auto isArmMapSymbol = [](const Symbol *s) {
325 return s->getName() == "$a" || s->getName().starts_with(Prefix: "$a.");
326 };
327 auto isThumbMapSymbol = [](const Symbol *s) {
328 return s->getName() == "$t" || s->getName().starts_with(Prefix: "$t.");
329 };
330 auto isDataMapSymbol = [](const Symbol *s) {
331 return s->getName() == "$d" || s->getName().starts_with(Prefix: "$d.");
332 };
333
334 // Collect mapping symbols for every executable InputSection.
335 for (ELFFileBase *file : ctx.objectFiles) {
336 for (Symbol *s : file->getLocalSymbols()) {
337 auto *def = dyn_cast<Defined>(Val: s);
338 if (!def)
339 continue;
340 if (!isArmMapSymbol(def) && !isThumbMapSymbol(def) &&
341 !isDataMapSymbol(def))
342 continue;
343 if (auto *sec = dyn_cast_or_null<InputSection>(Val: def->section))
344 if (sec->flags & SHF_EXECINSTR)
345 sectionMap[sec].push_back(x: def);
346 }
347 }
348 // For each InputSection make sure the mapping symbols are in sorted in
349 // ascending order and are in alternating Thumb, non-Thumb order.
350 for (auto &kv : sectionMap) {
351 std::vector<const Defined *> &mapSyms = kv.second;
352 llvm::stable_sort(Range&: mapSyms, C: [](const Defined *a, const Defined *b) {
353 return a->value < b->value;
354 });
355 mapSyms.erase(first: llvm::unique(R&: mapSyms,
356 P: [=](const Defined *a, const Defined *b) {
357 return (isThumbMapSymbol(a) ==
358 isThumbMapSymbol(b));
359 }),
360 last: mapSyms.end());
361 // Always start with a Thumb Mapping Symbol
362 if (!mapSyms.empty() && !isThumbMapSymbol(mapSyms.front()))
363 mapSyms.erase(position: mapSyms.begin());
364 }
365 initialized = true;
366}
367
368void ARMErr657417Patcher::insertPatches(
369 InputSectionDescription &isd, std::vector<Patch657417Section *> &patches) {
370 uint64_t spacing = 0x100000 - 0x7500;
371 uint64_t isecLimit;
372 uint64_t prevIsecLimit = isd.sections.front()->outSecOff;
373 uint64_t patchUpperBound = prevIsecLimit + spacing;
374 uint64_t outSecAddr = isd.sections.front()->getParent()->addr;
375
376 // Set the outSecOff of patches to the place where we want to insert them.
377 // We use a similar strategy to initial thunk placement, using 1 MiB as the
378 // range of the Thumb-2 conditional branch with a contingency accounting for
379 // thunk generation.
380 auto patchIt = patches.begin();
381 auto patchEnd = patches.end();
382 for (const InputSection *isec : isd.sections) {
383 isecLimit = isec->outSecOff + isec->getSize();
384 if (isecLimit > patchUpperBound) {
385 for (; patchIt != patchEnd; ++patchIt) {
386 if ((*patchIt)->getBranchAddr() - outSecAddr >= prevIsecLimit)
387 break;
388 (*patchIt)->outSecOff = prevIsecLimit;
389 }
390 patchUpperBound = prevIsecLimit + spacing;
391 }
392 prevIsecLimit = isecLimit;
393 }
394 for (; patchIt != patchEnd; ++patchIt)
395 (*patchIt)->outSecOff = isecLimit;
396
397 // Merge all patch sections. We use the outSecOff assigned above to
398 // determine the insertion point. This is ok as we only merge into an
399 // InputSectionDescription once per pass, and at the end of the pass
400 // assignAddresses() will recalculate all the outSecOff values.
401 SmallVector<InputSection *, 0> tmp;
402 tmp.reserve(N: isd.sections.size() + patches.size());
403 auto mergeCmp = [](const InputSection *a, const InputSection *b) {
404 if (a->outSecOff != b->outSecOff)
405 return a->outSecOff < b->outSecOff;
406 return isa<Patch657417Section>(Val: a) && !isa<Patch657417Section>(Val: b);
407 };
408 std::merge(first1: isd.sections.begin(), last1: isd.sections.end(), first2: patches.begin(),
409 last2: patches.end(), result: std::back_inserter(x&: tmp), comp: mergeCmp);
410 isd.sections = std::move(tmp);
411}
412
413// Given a branch instruction described by ScanRes redirect it to a patch
414// section containing an unconditional branch instruction to the target.
415// Ensure that this patch section is 4-byte aligned so that the branch cannot
416// span two 4 KiB regions. Place the patch section so that it is always after
417// isec so the branch we are patching always goes forwards.
418static void implementPatch(ScanResult sr, InputSection *isec,
419 std::vector<Patch657417Section *> &patches) {
420 Ctx &ctx = isec->getCtx();
421 Log(ctx) << "detected cortex-a8-657419 erratum sequence starting at " <<
422 utohexstr(X: isec->getVA(offset: sr.off)) << " in unpatched output";
423 Patch657417Section *psec;
424 // We have two cases to deal with.
425 // Case 1. There is a relocation at patcheeOffset to a symbol. The
426 // unconditional branch in the patch must have a relocation so that any
427 // further redirection via the PLT or a Thunk happens as normal. At
428 // patcheeOffset we redirect the existing relocation to a Symbol defined at
429 // the start of the patch section.
430 //
431 // Case 2. There is no relocation at patcheeOffset. We are unlikely to have
432 // a symbol that we can use as a target for a relocation in the patch section.
433 // Luckily we know that the destination cannot be indirected via the PLT or
434 // a Thunk so we can just write the destination directly.
435 if (sr.rel) {
436 // Case 1. We have an existing relocation to redirect to patch and a
437 // Symbol target.
438
439 // Create a branch relocation for the unconditional branch in the patch.
440 // This can be redirected via the PLT or Thunks.
441 RelType patchRelType = R_ARM_THM_JUMP24;
442 int64_t patchRelAddend = sr.rel->addend;
443 bool destIsARM = false;
444 if (isBL(instr: sr.instr) || isBLX(instr: sr.instr)) {
445 // The final target of the branch may be ARM or Thumb, if the target
446 // is ARM then we write the patch in ARM state to avoid a state change
447 // Thunk from the patch to the target.
448 uint64_t dstSymAddr = (sr.rel->expr == R_PLT_PC)
449 ? sr.rel->sym->getPltVA(ctx)
450 : sr.rel->sym->getVA(ctx);
451 destIsARM = (dstSymAddr & 1) == 0;
452 }
453 psec = make<Patch657417Section>(args&: ctx, args&: isec, args&: sr.off, args&: sr.instr, args&: destIsARM);
454 if (destIsARM) {
455 // The patch will be in ARM state. Use an ARM relocation and account for
456 // the larger ARM PC-bias of 8 rather than Thumb's 4.
457 patchRelType = R_ARM_JUMP24;
458 patchRelAddend -= 4;
459 }
460 psec->addReloc(
461 r: Relocation{.expr: sr.rel->expr, .type: patchRelType, .offset: 0, .addend: patchRelAddend, .sym: sr.rel->sym});
462 // Redirect the existing branch relocation to the patch.
463 sr.rel->expr = R_PC;
464 sr.rel->addend = -4;
465 sr.rel->sym = psec->patchSym;
466 } else {
467 // Case 2. We do not have a relocation to the patch. Add a relocation of the
468 // appropriate type to the patch at patcheeOffset.
469
470 // The destination is ARM if we have a BLX.
471 psec =
472 make<Patch657417Section>(args&: ctx, args&: isec, args&: sr.off, args&: sr.instr, args: isBLX(instr: sr.instr));
473 RelType type;
474 if (isBcc(instr: sr.instr))
475 type = R_ARM_THM_JUMP19;
476 else if (isB(instr: sr.instr))
477 type = R_ARM_THM_JUMP24;
478 else
479 type = R_ARM_THM_CALL;
480 isec->addReloc(r: Relocation{.expr: R_PC, .type: type, .offset: sr.off, .addend: -4, .sym: psec->patchSym});
481 }
482 patches.push_back(x: psec);
483}
484
485// Scan all the instructions in InputSectionDescription, for each instance of
486// the erratum sequence create a Patch657417Section. We return the list of
487// Patch657417Sections that need to be applied to the InputSectionDescription.
488std::vector<Patch657417Section *>
489ARMErr657417Patcher::patchInputSectionDescription(
490 InputSectionDescription &isd) {
491 std::vector<Patch657417Section *> patches;
492 for (InputSection *isec : isd.sections) {
493 // LLD doesn't use the erratum sequence in SyntheticSections.
494 if (isa<SyntheticSection>(Val: isec))
495 continue;
496 // Use sectionMap to make sure we only scan Thumb code and not Arm or inline
497 // data. We have already sorted mapSyms in ascending order and removed
498 // consecutive mapping symbols of the same type. Our range of executable
499 // instructions to scan is therefore [thumbSym->value, nonThumbSym->value)
500 // or [thumbSym->value, section size).
501 std::vector<const Defined *> &mapSyms = sectionMap[isec];
502
503 auto thumbSym = mapSyms.begin();
504 while (thumbSym != mapSyms.end()) {
505 auto nonThumbSym = std::next(x: thumbSym);
506 uint64_t off = (*thumbSym)->value;
507 uint64_t limit = nonThumbSym == mapSyms.end() ? isec->content().size()
508 : (*nonThumbSym)->value;
509
510 while (off < limit) {
511 ScanResult sr = scanCortexA8Errata657417(isec, off, limit);
512 if (sr.off)
513 implementPatch(sr, isec, patches);
514 }
515 if (nonThumbSym == mapSyms.end())
516 break;
517 thumbSym = std::next(x: nonThumbSym);
518 }
519 }
520 return patches;
521}
522
523bool ARMErr657417Patcher::createFixes() {
524 if (!initialized)
525 init();
526
527 bool addressesChanged = false;
528 for (OutputSection *os : ctx.outputSections) {
529 if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR))
530 continue;
531 for (SectionCommand *cmd : os->commands)
532 if (auto *isd = dyn_cast<InputSectionDescription>(Val: cmd)) {
533 std::vector<Patch657417Section *> patches =
534 patchInputSectionDescription(isd&: *isd);
535 if (!patches.empty()) {
536 insertPatches(isd&: *isd, patches);
537 addressesChanged = true;
538 }
539 }
540 }
541 return addressesChanged;
542}
543

Provided by KDAB

Privacy Policy
Learn to use CMake with our Intro Training
Find out more

source code of lld/ELF/ARMErrataFix.cpp