1 | //===- ARMErrataFix.cpp ---------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // This file implements Section Patching for the purpose of working around the |
9 | // Cortex-a8 erratum 657417 "A 32bit branch instruction that spans 2 4K regions |
10 | // can result in an incorrect instruction fetch or processor deadlock." The |
11 | // erratum affects all but r1p7, r2p5, r2p6, r3p1 and r3p2 revisions of the |
12 | // Cortex-A8. A high level description of the patching technique is given in |
13 | // the opening comment of AArch64ErrataFix.cpp. |
14 | //===----------------------------------------------------------------------===// |
15 | |
16 | #include "ARMErrataFix.h" |
17 | #include "InputFiles.h" |
18 | #include "LinkerScript.h" |
19 | #include "OutputSections.h" |
20 | #include "Relocations.h" |
21 | #include "Symbols.h" |
22 | #include "SyntheticSections.h" |
23 | #include "Target.h" |
24 | #include "lld/Common/CommonLinkerContext.h" |
25 | #include "lld/Common/Strings.h" |
26 | #include "llvm/Support/Endian.h" |
27 | #include <algorithm> |
28 | |
29 | using namespace llvm; |
30 | using namespace llvm::ELF; |
31 | using namespace llvm::object; |
32 | using namespace llvm::support; |
33 | using namespace llvm::support::endian; |
34 | using namespace lld; |
35 | using namespace lld::elf; |
36 | |
37 | // The documented title for Erratum 657417 is: |
38 | // "A 32bit branch instruction that spans two 4K regions can result in an |
39 | // incorrect instruction fetch or processor deadlock". Graphically using a |
40 | // 32-bit B.w instruction encoded as a pair of halfwords 0xf7fe 0xbfff |
41 | // xxxxxx000 // Memory region 1 start |
42 | // target: |
43 | // ... |
44 | // xxxxxxffe f7fe // First halfword of branch to target: |
45 | // xxxxxx000 // Memory region 2 start |
46 | // xxxxxx002 bfff // Second halfword of branch to target: |
47 | // |
48 | // The specific trigger conditions that can be detected at link time are: |
49 | // - There is a 32-bit Thumb-2 branch instruction with an address of the form |
50 | // xxxxxxFFE. The first 2 bytes of the instruction are in 4KiB region 1, the |
51 | // second 2 bytes are in region 2. |
52 | // - The branch instruction is one of BLX, BL, B.w BCC.w |
53 | // - The instruction preceding the branch is a 32-bit non-branch instruction. |
54 | // - The target of the branch is in region 1. |
55 | // |
56 | // The linker mitigation for the fix is to redirect any branch that meets the |
57 | // erratum conditions to a patch section containing a branch to the target. |
58 | // |
59 | // As adding patch sections may move branches onto region boundaries the patch |
60 | // must iterate until no more patches are added. |
61 | // |
62 | // Example, before: |
63 | // 00000FFA func: NOP.w // 32-bit Thumb function |
64 | // 00000FFE B.W func // 32-bit branch spanning 2 regions, dest in 1st. |
65 | // Example, after: |
66 | // 00000FFA func: NOP.w // 32-bit Thumb function |
67 | // 00000FFE B.w __CortexA8657417_00000FFE |
68 | // 00001002 2 - bytes padding |
69 | // 00001004 __CortexA8657417_00000FFE: B.w func |
70 | |
71 | class elf::Patch657417Section final : public SyntheticSection { |
72 | public: |
73 | Patch657417Section(InputSection *p, uint64_t off, uint32_t instr, bool isARM); |
74 | |
75 | void writeTo(uint8_t *buf) override; |
76 | |
77 | size_t getSize() const override { return 4; } |
78 | |
79 | // Get the virtual address of the branch instruction at patcheeOffset. |
80 | uint64_t getBranchAddr() const; |
81 | |
82 | static bool classof(const SectionBase *d) { |
83 | return d->kind() == InputSectionBase::Synthetic && d->name ==".text.patch" ; |
84 | } |
85 | |
86 | // The Section we are patching. |
87 | const InputSection *patchee; |
88 | // The offset of the instruction in the Patchee section we are patching. |
89 | uint64_t patcheeOffset; |
90 | // A label for the start of the Patch that we can use as a relocation target. |
91 | Symbol *patchSym; |
92 | // A decoding of the branch instruction at patcheeOffset. |
93 | uint32_t instr; |
94 | // True If the patch is to be written in ARM state, otherwise the patch will |
95 | // be written in Thumb state. |
96 | bool isARM; |
97 | }; |
98 | |
99 | // Return true if the half-word, when taken as the first of a pair of halfwords |
100 | // is the first half of a 32-bit instruction. |
101 | // Reference from ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition |
102 | // section A6.3: 32-bit Thumb instruction encoding |
103 | // | HW1 | HW2 | |
104 | // | 1 1 1 | op1 (2) | op2 (7) | x (4) |op| x (15) | |
105 | // With op1 == 0b00, a 16-bit instruction is encoded. |
106 | // |
107 | // We test only the first halfword, looking for op != 0b00. |
108 | static bool is32bitInstruction(uint16_t hw) { |
109 | return (hw & 0xe000) == 0xe000 && (hw & 0x1800) != 0x0000; |
110 | } |
111 | |
112 | // Reference from ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition |
113 | // section A6.3.4 Branches and miscellaneous control. |
114 | // | HW1 | HW2 | |
115 | // | 1 1 1 | 1 0 | op (7) | x (4) | 1 | op1 (3) | op2 (4) | imm8 (8) | |
116 | // op1 == 0x0 op != x111xxx | Conditional branch (Bcc.W) |
117 | // op1 == 0x1 | Branch (B.W) |
118 | // op1 == 1x0 | Branch with Link and Exchange (BLX.w) |
119 | // op1 == 1x1 | Branch with Link (BL.W) |
120 | |
121 | static bool isBcc(uint32_t instr) { |
122 | return (instr & 0xf800d000) == 0xf0008000 && |
123 | (instr & 0x03800000) != 0x03800000; |
124 | } |
125 | |
126 | static bool isB(uint32_t instr) { return (instr & 0xf800d000) == 0xf0009000; } |
127 | |
128 | static bool isBLX(uint32_t instr) { return (instr & 0xf800d000) == 0xf000c000; } |
129 | |
130 | static bool isBL(uint32_t instr) { return (instr & 0xf800d000) == 0xf000d000; } |
131 | |
132 | static bool is32bitBranch(uint32_t instr) { |
133 | return isBcc(instr) || isB(instr) || isBL(instr) || isBLX(instr); |
134 | } |
135 | |
136 | Patch657417Section::Patch657417Section(InputSection *p, uint64_t off, |
137 | uint32_t instr, bool isARM) |
138 | : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 4, |
139 | ".text.patch" ), |
140 | patchee(p), patcheeOffset(off), instr(instr), isARM(isARM) { |
141 | parent = p->getParent(); |
142 | patchSym = addSyntheticLocal( |
143 | name: saver().save(S: "__CortexA8657417_" + utohexstr(X: getBranchAddr())), type: STT_FUNC, |
144 | value: isARM ? 0 : 1, size: getSize(), section&: *this); |
145 | addSyntheticLocal(name: saver().save(S: isARM ? "$a" : "$t" ), type: STT_NOTYPE, value: 0, size: 0, section&: *this); |
146 | } |
147 | |
148 | uint64_t Patch657417Section::getBranchAddr() const { |
149 | return patchee->getVA(offset: patcheeOffset); |
150 | } |
151 | |
152 | // Given a branch instruction instr at sourceAddr work out its destination |
153 | // address. This is only used when the branch instruction has no relocation. |
154 | static uint64_t getThumbDestAddr(uint64_t sourceAddr, uint32_t instr) { |
155 | uint8_t buf[4]; |
156 | write16le(P: buf, V: instr >> 16); |
157 | write16le(P: buf + 2, V: instr & 0x0000ffff); |
158 | int64_t offset; |
159 | if (isBcc(instr)) |
160 | offset = target->getImplicitAddend(buf, type: R_ARM_THM_JUMP19); |
161 | else if (isB(instr)) |
162 | offset = target->getImplicitAddend(buf, type: R_ARM_THM_JUMP24); |
163 | else |
164 | offset = target->getImplicitAddend(buf, type: R_ARM_THM_CALL); |
165 | // A BLX instruction from Thumb to Arm may have an address that is |
166 | // not 4-byte aligned. As Arm instructions are always 4-byte aligned |
167 | // the instruction is calculated (from Arm ARM): |
168 | // targetAddress = Align(PC, 4) + imm32 |
169 | // where |
170 | // Align(x, y) = y * (x Div y) |
171 | // which corresponds to alignDown. |
172 | if (isBLX(instr)) |
173 | sourceAddr = alignDown(Value: sourceAddr, Align: 4); |
174 | return sourceAddr + offset + 4; |
175 | } |
176 | |
177 | void Patch657417Section::writeTo(uint8_t *buf) { |
178 | // The base instruction of the patch is always a 32-bit unconditional branch. |
179 | if (isARM) |
180 | write32le(P: buf, V: 0xea000000); |
181 | else |
182 | write32le(P: buf, V: 0x9000f000); |
183 | // If we have a relocation then apply it. |
184 | if (!relocs().empty()) { |
185 | target->relocateAlloc(sec&: *this, buf); |
186 | return; |
187 | } |
188 | |
189 | // If we don't have a relocation then we must calculate and write the offset |
190 | // ourselves. |
191 | // Get the destination offset from the addend in the branch instruction. |
192 | // We cannot use the instruction in the patchee section as this will have |
193 | // been altered to point to us! |
194 | uint64_t s = getThumbDestAddr(sourceAddr: getBranchAddr(), instr); |
195 | // A BLX changes the state of the branch in the patch to Arm state, which |
196 | // has a PC Bias of 8, whereas in all other cases the branch is in Thumb |
197 | // state with a PC Bias of 4. |
198 | uint64_t pcBias = isBLX(instr) ? 8 : 4; |
199 | uint64_t p = getVA(offset: pcBias); |
200 | target->relocateNoSym(loc: buf, type: isARM ? R_ARM_JUMP24 : R_ARM_THM_JUMP24, val: s - p); |
201 | } |
202 | |
203 | // Given a branch instruction spanning two 4KiB regions, at offset off from the |
204 | // start of isec, return true if the destination of the branch is within the |
205 | // first of the two 4Kib regions. |
206 | static bool branchDestInFirstRegion(const InputSection *isec, uint64_t off, |
207 | uint32_t instr, const Relocation *r) { |
208 | uint64_t sourceAddr = isec->getVA(offset: 0) + off; |
209 | assert((sourceAddr & 0xfff) == 0xffe); |
210 | uint64_t destAddr; |
211 | // If there is a branch relocation at the same offset we must use this to |
212 | // find the destination address as the branch could be indirected via a thunk |
213 | // or the PLT. |
214 | if (r) { |
215 | uint64_t dst = (r->expr == R_PLT_PC) ? r->sym->getPltVA() : r->sym->getVA(); |
216 | // Account for Thumb PC bias, usually cancelled to 0 by addend of -4. |
217 | destAddr = dst + r->addend + 4; |
218 | } else { |
219 | // If there is no relocation, we must have an intra-section branch |
220 | // We must extract the offset from the addend manually. |
221 | destAddr = getThumbDestAddr(sourceAddr, instr); |
222 | } |
223 | |
224 | return (destAddr & 0xfffff000) == (sourceAddr & 0xfffff000); |
225 | } |
226 | |
227 | // Return true if a branch can reach a patch section placed after isec. |
228 | // The Bcc.w instruction has a range of 1 MiB, all others have 16 MiB. |
229 | static bool patchInRange(const InputSection *isec, uint64_t off, |
230 | uint32_t instr) { |
231 | |
232 | // We need the branch at source to reach a patch section placed immediately |
233 | // after isec. As there can be more than one patch in the patch section we |
234 | // add 0x100 as contingency to account for worst case of 1 branch every 4KiB |
235 | // for a 1 MiB range. |
236 | return target->inBranchRange( |
237 | type: isBcc(instr) ? R_ARM_THM_JUMP19 : R_ARM_THM_JUMP24, src: isec->getVA(offset: off), |
238 | dst: isec->getVA() + isec->getSize() + 0x100); |
239 | } |
240 | |
241 | struct ScanResult { |
242 | // Offset of branch within its InputSection. |
243 | uint64_t off; |
244 | // Cached decoding of the branch instruction. |
245 | uint32_t instr; |
246 | // Branch relocation at off. Will be nullptr if no relocation exists. |
247 | Relocation *rel; |
248 | }; |
249 | |
250 | // Detect the erratum sequence, returning the offset of the branch instruction |
251 | // and a decoding of the branch. If the erratum sequence is not found then |
252 | // return an offset of 0 for the branch. 0 is a safe value to use for no patch |
253 | // as there must be at least one 32-bit non-branch instruction before the |
254 | // branch so the minimum offset for a patch is 4. |
255 | static ScanResult scanCortexA8Errata657417(InputSection *isec, uint64_t &off, |
256 | uint64_t limit) { |
257 | uint64_t isecAddr = isec->getVA(offset: 0); |
258 | // Advance Off so that (isecAddr + off) modulo 0x1000 is at least 0xffa. We |
259 | // need to check for a 32-bit instruction immediately before a 32-bit branch |
260 | // at 0xffe modulo 0x1000. |
261 | off = alignTo(Value: isecAddr + off, Align: 0x1000, Skew: 0xffa) - isecAddr; |
262 | if (off >= limit || limit - off < 8) { |
263 | // Need at least 2 4-byte sized instructions to trigger erratum. |
264 | off = limit; |
265 | return {.off: 0, .instr: 0, .rel: nullptr}; |
266 | } |
267 | |
268 | ScanResult scanRes = {.off: 0, .instr: 0, .rel: nullptr}; |
269 | const uint8_t *buf = isec->content().begin(); |
270 | // ARMv7-A Thumb 32-bit instructions are encoded 2 consecutive |
271 | // little-endian halfwords. |
272 | const ulittle16_t *instBuf = reinterpret_cast<const ulittle16_t *>(buf + off); |
273 | uint16_t hw11 = *instBuf++; |
274 | uint16_t hw12 = *instBuf++; |
275 | uint16_t hw21 = *instBuf++; |
276 | uint16_t hw22 = *instBuf++; |
277 | if (is32bitInstruction(hw: hw11) && is32bitInstruction(hw: hw21)) { |
278 | uint32_t instr1 = (hw11 << 16) | hw12; |
279 | uint32_t instr2 = (hw21 << 16) | hw22; |
280 | if (!is32bitBranch(instr: instr1) && is32bitBranch(instr: instr2)) { |
281 | // Find a relocation for the branch if it exists. This will be used |
282 | // to determine the target. |
283 | uint64_t branchOff = off + 4; |
284 | auto relIt = llvm::find_if(Range: isec->relocs(), P: [=](const Relocation &r) { |
285 | return r.offset == branchOff && |
286 | (r.type == R_ARM_THM_JUMP19 || r.type == R_ARM_THM_JUMP24 || |
287 | r.type == R_ARM_THM_CALL); |
288 | }); |
289 | if (relIt != isec->relocs().end()) |
290 | scanRes.rel = &(*relIt); |
291 | if (branchDestInFirstRegion(isec, off: branchOff, instr: instr2, r: scanRes.rel)) { |
292 | if (patchInRange(isec, off: branchOff, instr: instr2)) { |
293 | scanRes.off = branchOff; |
294 | scanRes.instr = instr2; |
295 | } else { |
296 | warn(msg: toString(f: isec->file) + |
297 | ": skipping cortex-a8 657417 erratum sequence, section " + |
298 | isec->name + " is too large to patch" ); |
299 | } |
300 | } |
301 | } |
302 | } |
303 | off += 0x1000; |
304 | return scanRes; |
305 | } |
306 | |
307 | void ARMErr657417Patcher::init() { |
308 | // The Arm ABI permits a mix of ARM, Thumb and Data in the same |
309 | // InputSection. We must only scan Thumb instructions to avoid false |
310 | // matches. We use the mapping symbols in the InputObjects to identify this |
311 | // data, caching the results in sectionMap so we don't have to recalculate |
312 | // it each pass. |
313 | |
314 | // The ABI Section 4.5.5 Mapping symbols; defines local symbols that describe |
315 | // half open intervals [Symbol Value, Next Symbol Value) of code and data |
316 | // within sections. If there is no next symbol then the half open interval is |
317 | // [Symbol Value, End of section). The type, code or data, is determined by |
318 | // the mapping symbol name, $a for Arm code, $t for Thumb code, $d for data. |
319 | auto isArmMapSymbol = [](const Symbol *s) { |
320 | return s->getName() == "$a" || s->getName().starts_with(Prefix: "$a." ); |
321 | }; |
322 | auto isThumbMapSymbol = [](const Symbol *s) { |
323 | return s->getName() == "$t" || s->getName().starts_with(Prefix: "$t." ); |
324 | }; |
325 | auto isDataMapSymbol = [](const Symbol *s) { |
326 | return s->getName() == "$d" || s->getName().starts_with(Prefix: "$d." ); |
327 | }; |
328 | |
329 | // Collect mapping symbols for every executable InputSection. |
330 | for (ELFFileBase *file : ctx.objectFiles) { |
331 | for (Symbol *s : file->getLocalSymbols()) { |
332 | auto *def = dyn_cast<Defined>(Val: s); |
333 | if (!def) |
334 | continue; |
335 | if (!isArmMapSymbol(def) && !isThumbMapSymbol(def) && |
336 | !isDataMapSymbol(def)) |
337 | continue; |
338 | if (auto *sec = dyn_cast_or_null<InputSection>(Val: def->section)) |
339 | if (sec->flags & SHF_EXECINSTR) |
340 | sectionMap[sec].push_back(x: def); |
341 | } |
342 | } |
343 | // For each InputSection make sure the mapping symbols are in sorted in |
344 | // ascending order and are in alternating Thumb, non-Thumb order. |
345 | for (auto &kv : sectionMap) { |
346 | std::vector<const Defined *> &mapSyms = kv.second; |
347 | llvm::stable_sort(Range&: mapSyms, C: [](const Defined *a, const Defined *b) { |
348 | return a->value < b->value; |
349 | }); |
350 | mapSyms.erase(first: std::unique(first: mapSyms.begin(), last: mapSyms.end(), |
351 | binary_pred: [=](const Defined *a, const Defined *b) { |
352 | return (isThumbMapSymbol(a) == |
353 | isThumbMapSymbol(b)); |
354 | }), |
355 | last: mapSyms.end()); |
356 | // Always start with a Thumb Mapping Symbol |
357 | if (!mapSyms.empty() && !isThumbMapSymbol(mapSyms.front())) |
358 | mapSyms.erase(position: mapSyms.begin()); |
359 | } |
360 | initialized = true; |
361 | } |
362 | |
363 | void ARMErr657417Patcher::insertPatches( |
364 | InputSectionDescription &isd, std::vector<Patch657417Section *> &patches) { |
365 | uint64_t spacing = 0x100000 - 0x7500; |
366 | uint64_t isecLimit; |
367 | uint64_t prevIsecLimit = isd.sections.front()->outSecOff; |
368 | uint64_t patchUpperBound = prevIsecLimit + spacing; |
369 | uint64_t outSecAddr = isd.sections.front()->getParent()->addr; |
370 | |
371 | // Set the outSecOff of patches to the place where we want to insert them. |
372 | // We use a similar strategy to initial thunk placement, using 1 MiB as the |
373 | // range of the Thumb-2 conditional branch with a contingency accounting for |
374 | // thunk generation. |
375 | auto patchIt = patches.begin(); |
376 | auto patchEnd = patches.end(); |
377 | for (const InputSection *isec : isd.sections) { |
378 | isecLimit = isec->outSecOff + isec->getSize(); |
379 | if (isecLimit > patchUpperBound) { |
380 | for (; patchIt != patchEnd; ++patchIt) { |
381 | if ((*patchIt)->getBranchAddr() - outSecAddr >= prevIsecLimit) |
382 | break; |
383 | (*patchIt)->outSecOff = prevIsecLimit; |
384 | } |
385 | patchUpperBound = prevIsecLimit + spacing; |
386 | } |
387 | prevIsecLimit = isecLimit; |
388 | } |
389 | for (; patchIt != patchEnd; ++patchIt) |
390 | (*patchIt)->outSecOff = isecLimit; |
391 | |
392 | // Merge all patch sections. We use the outSecOff assigned above to |
393 | // determine the insertion point. This is ok as we only merge into an |
394 | // InputSectionDescription once per pass, and at the end of the pass |
395 | // assignAddresses() will recalculate all the outSecOff values. |
396 | SmallVector<InputSection *, 0> tmp; |
397 | tmp.reserve(N: isd.sections.size() + patches.size()); |
398 | auto mergeCmp = [](const InputSection *a, const InputSection *b) { |
399 | if (a->outSecOff != b->outSecOff) |
400 | return a->outSecOff < b->outSecOff; |
401 | return isa<Patch657417Section>(Val: a) && !isa<Patch657417Section>(Val: b); |
402 | }; |
403 | std::merge(first1: isd.sections.begin(), last1: isd.sections.end(), first2: patches.begin(), |
404 | last2: patches.end(), result: std::back_inserter(x&: tmp), comp: mergeCmp); |
405 | isd.sections = std::move(tmp); |
406 | } |
407 | |
408 | // Given a branch instruction described by ScanRes redirect it to a patch |
409 | // section containing an unconditional branch instruction to the target. |
410 | // Ensure that this patch section is 4-byte aligned so that the branch cannot |
411 | // span two 4 KiB regions. Place the patch section so that it is always after |
412 | // isec so the branch we are patching always goes forwards. |
413 | static void implementPatch(ScanResult sr, InputSection *isec, |
414 | std::vector<Patch657417Section *> &patches) { |
415 | |
416 | log(msg: "detected cortex-a8-657419 erratum sequence starting at " + |
417 | utohexstr(X: isec->getVA(offset: sr.off)) + " in unpatched output." ); |
418 | Patch657417Section *psec; |
419 | // We have two cases to deal with. |
420 | // Case 1. There is a relocation at patcheeOffset to a symbol. The |
421 | // unconditional branch in the patch must have a relocation so that any |
422 | // further redirection via the PLT or a Thunk happens as normal. At |
423 | // patcheeOffset we redirect the existing relocation to a Symbol defined at |
424 | // the start of the patch section. |
425 | // |
426 | // Case 2. There is no relocation at patcheeOffset. We are unlikely to have |
427 | // a symbol that we can use as a target for a relocation in the patch section. |
428 | // Luckily we know that the destination cannot be indirected via the PLT or |
429 | // a Thunk so we can just write the destination directly. |
430 | if (sr.rel) { |
431 | // Case 1. We have an existing relocation to redirect to patch and a |
432 | // Symbol target. |
433 | |
434 | // Create a branch relocation for the unconditional branch in the patch. |
435 | // This can be redirected via the PLT or Thunks. |
436 | RelType patchRelType = R_ARM_THM_JUMP24; |
437 | int64_t patchRelAddend = sr.rel->addend; |
438 | bool destIsARM = false; |
439 | if (isBL(instr: sr.instr) || isBLX(instr: sr.instr)) { |
440 | // The final target of the branch may be ARM or Thumb, if the target |
441 | // is ARM then we write the patch in ARM state to avoid a state change |
442 | // Thunk from the patch to the target. |
443 | uint64_t dstSymAddr = (sr.rel->expr == R_PLT_PC) ? sr.rel->sym->getPltVA() |
444 | : sr.rel->sym->getVA(); |
445 | destIsARM = (dstSymAddr & 1) == 0; |
446 | } |
447 | psec = make<Patch657417Section>(args&: isec, args&: sr.off, args&: sr.instr, args&: destIsARM); |
448 | if (destIsARM) { |
449 | // The patch will be in ARM state. Use an ARM relocation and account for |
450 | // the larger ARM PC-bias of 8 rather than Thumb's 4. |
451 | patchRelType = R_ARM_JUMP24; |
452 | patchRelAddend -= 4; |
453 | } |
454 | psec->addReloc( |
455 | r: Relocation{.expr: sr.rel->expr, .type: patchRelType, .offset: 0, .addend: patchRelAddend, .sym: sr.rel->sym}); |
456 | // Redirect the existing branch relocation to the patch. |
457 | sr.rel->expr = R_PC; |
458 | sr.rel->addend = -4; |
459 | sr.rel->sym = psec->patchSym; |
460 | } else { |
461 | // Case 2. We do not have a relocation to the patch. Add a relocation of the |
462 | // appropriate type to the patch at patcheeOffset. |
463 | |
464 | // The destination is ARM if we have a BLX. |
465 | psec = make<Patch657417Section>(args&: isec, args&: sr.off, args&: sr.instr, args: isBLX(instr: sr.instr)); |
466 | RelType type; |
467 | if (isBcc(instr: sr.instr)) |
468 | type = R_ARM_THM_JUMP19; |
469 | else if (isB(instr: sr.instr)) |
470 | type = R_ARM_THM_JUMP24; |
471 | else |
472 | type = R_ARM_THM_CALL; |
473 | isec->addReloc(r: Relocation{.expr: R_PC, .type: type, .offset: sr.off, .addend: -4, .sym: psec->patchSym}); |
474 | } |
475 | patches.push_back(x: psec); |
476 | } |
477 | |
478 | // Scan all the instructions in InputSectionDescription, for each instance of |
479 | // the erratum sequence create a Patch657417Section. We return the list of |
480 | // Patch657417Sections that need to be applied to the InputSectionDescription. |
481 | std::vector<Patch657417Section *> |
482 | ARMErr657417Patcher::patchInputSectionDescription( |
483 | InputSectionDescription &isd) { |
484 | std::vector<Patch657417Section *> patches; |
485 | for (InputSection *isec : isd.sections) { |
486 | // LLD doesn't use the erratum sequence in SyntheticSections. |
487 | if (isa<SyntheticSection>(Val: isec)) |
488 | continue; |
489 | // Use sectionMap to make sure we only scan Thumb code and not Arm or inline |
490 | // data. We have already sorted mapSyms in ascending order and removed |
491 | // consecutive mapping symbols of the same type. Our range of executable |
492 | // instructions to scan is therefore [thumbSym->value, nonThumbSym->value) |
493 | // or [thumbSym->value, section size). |
494 | std::vector<const Defined *> &mapSyms = sectionMap[isec]; |
495 | |
496 | auto thumbSym = mapSyms.begin(); |
497 | while (thumbSym != mapSyms.end()) { |
498 | auto nonThumbSym = std::next(x: thumbSym); |
499 | uint64_t off = (*thumbSym)->value; |
500 | uint64_t limit = nonThumbSym == mapSyms.end() ? isec->content().size() |
501 | : (*nonThumbSym)->value; |
502 | |
503 | while (off < limit) { |
504 | ScanResult sr = scanCortexA8Errata657417(isec, off, limit); |
505 | if (sr.off) |
506 | implementPatch(sr, isec, patches); |
507 | } |
508 | if (nonThumbSym == mapSyms.end()) |
509 | break; |
510 | thumbSym = std::next(x: nonThumbSym); |
511 | } |
512 | } |
513 | return patches; |
514 | } |
515 | |
516 | bool ARMErr657417Patcher::createFixes() { |
517 | if (!initialized) |
518 | init(); |
519 | |
520 | bool addressesChanged = false; |
521 | for (OutputSection *os : outputSections) { |
522 | if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR)) |
523 | continue; |
524 | for (SectionCommand *cmd : os->commands) |
525 | if (auto *isd = dyn_cast<InputSectionDescription>(Val: cmd)) { |
526 | std::vector<Patch657417Section *> patches = |
527 | patchInputSectionDescription(isd&: *isd); |
528 | if (!patches.empty()) { |
529 | insertPatches(isd&: *isd, patches); |
530 | addressesChanged = true; |
531 | } |
532 | } |
533 | } |
534 | return addressesChanged; |
535 | } |
536 | |