1 | //===- X86_64.cpp ---------------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "OutputSections.h" |
10 | #include "Relocations.h" |
11 | #include "Symbols.h" |
12 | #include "SyntheticSections.h" |
13 | #include "Target.h" |
14 | #include "lld/Common/ErrorHandler.h" |
15 | #include "llvm/BinaryFormat/ELF.h" |
16 | #include "llvm/Support/Endian.h" |
17 | #include "llvm/Support/MathExtras.h" |
18 | |
19 | using namespace llvm; |
20 | using namespace llvm::object; |
21 | using namespace llvm::support::endian; |
22 | using namespace llvm::ELF; |
23 | using namespace lld; |
24 | using namespace lld::elf; |
25 | |
26 | namespace { |
27 | class X86_64 : public TargetInfo { |
28 | public: |
29 | X86_64(); |
30 | int getTlsGdRelaxSkip(RelType type) const override; |
31 | RelExpr getRelExpr(RelType type, const Symbol &s, |
32 | const uint8_t *loc) const override; |
33 | RelType getDynRel(RelType type) const override; |
34 | void writeGotPltHeader(uint8_t *buf) const override; |
35 | void writeGotPlt(uint8_t *buf, const Symbol &s) const override; |
36 | void writeIgotPlt(uint8_t *buf, const Symbol &s) const override; |
37 | void writePltHeader(uint8_t *buf) const override; |
38 | void writePlt(uint8_t *buf, const Symbol &sym, |
39 | uint64_t pltEntryAddr) const override; |
40 | void relocate(uint8_t *loc, const Relocation &rel, |
41 | uint64_t val) const override; |
42 | int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override; |
43 | void applyJumpInstrMod(uint8_t *loc, JumpModType type, |
44 | unsigned size) const override; |
45 | RelExpr adjustGotPcExpr(RelType type, int64_t addend, |
46 | const uint8_t *loc) const override; |
47 | void relocateAlloc(InputSectionBase &sec, uint8_t *buf) const override; |
48 | bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end, |
49 | uint8_t stOther) const override; |
50 | bool deleteFallThruJmpInsn(InputSection &is, InputFile *file, |
51 | InputSection *nextIS) const override; |
52 | bool relaxOnce(int pass) const override; |
53 | }; |
54 | } // namespace |
55 | |
56 | // This is vector of NOP instructions of sizes from 1 to 8 bytes. The |
57 | // appropriately sized instructions are used to fill the gaps between sections |
58 | // which are executed during fall through. |
59 | static const std::vector<std::vector<uint8_t>> nopInstructions = { |
60 | {0x90}, |
61 | {0x66, 0x90}, |
62 | {0x0f, 0x1f, 0x00}, |
63 | {0x0f, 0x1f, 0x40, 0x00}, |
64 | {0x0f, 0x1f, 0x44, 0x00, 0x00}, |
65 | {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00}, |
66 | {0x0F, 0x1F, 0x80, 0x00, 0x00, 0x00, 0x00}, |
67 | {0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}, |
68 | {0x66, 0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}}; |
69 | |
70 | X86_64::X86_64() { |
71 | copyRel = R_X86_64_COPY; |
72 | gotRel = R_X86_64_GLOB_DAT; |
73 | pltRel = R_X86_64_JUMP_SLOT; |
74 | relativeRel = R_X86_64_RELATIVE; |
75 | iRelativeRel = R_X86_64_IRELATIVE; |
76 | symbolicRel = R_X86_64_64; |
77 | tlsDescRel = R_X86_64_TLSDESC; |
78 | tlsGotRel = R_X86_64_TPOFF64; |
79 | tlsModuleIndexRel = R_X86_64_DTPMOD64; |
80 | tlsOffsetRel = R_X86_64_DTPOFF64; |
81 | gotBaseSymInGotPlt = true; |
82 | gotEntrySize = 8; |
83 | pltHeaderSize = 16; |
84 | pltEntrySize = 16; |
85 | ipltEntrySize = 16; |
86 | trapInstr = {0xcc, 0xcc, 0xcc, 0xcc}; // 0xcc = INT3 |
87 | nopInstrs = nopInstructions; |
88 | |
89 | // Align to the large page size (known as a superpage or huge page). |
90 | // FreeBSD automatically promotes large, superpage-aligned allocations. |
91 | defaultImageBase = 0x200000; |
92 | } |
93 | |
94 | int X86_64::getTlsGdRelaxSkip(RelType type) const { |
95 | // TLSDESC relocations are processed separately. See relaxTlsGdToLe below. |
96 | return type == R_X86_64_GOTPC32_TLSDESC || type == R_X86_64_TLSDESC_CALL ? 1 |
97 | : 2; |
98 | } |
99 | |
100 | // Opcodes for the different X86_64 jmp instructions. |
101 | enum JmpInsnOpcode : uint32_t { |
102 | J_JMP_32, |
103 | J_JNE_32, |
104 | J_JE_32, |
105 | J_JG_32, |
106 | J_JGE_32, |
107 | J_JB_32, |
108 | J_JBE_32, |
109 | J_JL_32, |
110 | J_JLE_32, |
111 | J_JA_32, |
112 | J_JAE_32, |
113 | J_UNKNOWN, |
114 | }; |
115 | |
116 | // Given the first (optional) and second byte of the insn's opcode, this |
117 | // returns the corresponding enum value. |
118 | static JmpInsnOpcode getJmpInsnType(const uint8_t *first, |
119 | const uint8_t *second) { |
120 | if (*second == 0xe9) |
121 | return J_JMP_32; |
122 | |
123 | if (first == nullptr) |
124 | return J_UNKNOWN; |
125 | |
126 | if (*first == 0x0f) { |
127 | switch (*second) { |
128 | case 0x84: |
129 | return J_JE_32; |
130 | case 0x85: |
131 | return J_JNE_32; |
132 | case 0x8f: |
133 | return J_JG_32; |
134 | case 0x8d: |
135 | return J_JGE_32; |
136 | case 0x82: |
137 | return J_JB_32; |
138 | case 0x86: |
139 | return J_JBE_32; |
140 | case 0x8c: |
141 | return J_JL_32; |
142 | case 0x8e: |
143 | return J_JLE_32; |
144 | case 0x87: |
145 | return J_JA_32; |
146 | case 0x83: |
147 | return J_JAE_32; |
148 | } |
149 | } |
150 | return J_UNKNOWN; |
151 | } |
152 | |
153 | // Return the relocation index for input section IS with a specific Offset. |
154 | // Returns the maximum size of the vector if no such relocation is found. |
155 | static unsigned getRelocationWithOffset(const InputSection &is, |
156 | uint64_t offset) { |
157 | unsigned size = is.relocs().size(); |
158 | for (unsigned i = size - 1; i + 1 > 0; --i) { |
159 | if (is.relocs()[i].offset == offset && is.relocs()[i].expr != R_NONE) |
160 | return i; |
161 | } |
162 | return size; |
163 | } |
164 | |
165 | // Returns true if R corresponds to a relocation used for a jump instruction. |
166 | // TODO: Once special relocations for relaxable jump instructions are available, |
167 | // this should be modified to use those relocations. |
168 | static bool isRelocationForJmpInsn(Relocation &R) { |
169 | return R.type == R_X86_64_PLT32 || R.type == R_X86_64_PC32 || |
170 | R.type == R_X86_64_PC8; |
171 | } |
172 | |
173 | // Return true if Relocation R points to the first instruction in the |
174 | // next section. |
175 | // TODO: Delete this once psABI reserves a new relocation type for fall thru |
176 | // jumps. |
177 | static bool isFallThruRelocation(InputSection &is, InputFile *file, |
178 | InputSection *nextIS, Relocation &r) { |
179 | if (!isRelocationForJmpInsn(R&: r)) |
180 | return false; |
181 | |
182 | uint64_t addrLoc = is.getOutputSection()->addr + is.outSecOff + r.offset; |
183 | uint64_t targetOffset = InputSectionBase::getRelocTargetVA( |
184 | File: file, Type: r.type, A: r.addend, P: addrLoc, Sym: *r.sym, Expr: r.expr); |
185 | |
186 | // If this jmp is a fall thru, the target offset is the beginning of the |
187 | // next section. |
188 | uint64_t nextSectionOffset = |
189 | nextIS->getOutputSection()->addr + nextIS->outSecOff; |
190 | return (addrLoc + 4 + targetOffset) == nextSectionOffset; |
191 | } |
192 | |
193 | // Return the jmp instruction opcode that is the inverse of the given |
194 | // opcode. For example, JE inverted is JNE. |
195 | static JmpInsnOpcode invertJmpOpcode(const JmpInsnOpcode opcode) { |
196 | switch (opcode) { |
197 | case J_JE_32: |
198 | return J_JNE_32; |
199 | case J_JNE_32: |
200 | return J_JE_32; |
201 | case J_JG_32: |
202 | return J_JLE_32; |
203 | case J_JGE_32: |
204 | return J_JL_32; |
205 | case J_JB_32: |
206 | return J_JAE_32; |
207 | case J_JBE_32: |
208 | return J_JA_32; |
209 | case J_JL_32: |
210 | return J_JGE_32; |
211 | case J_JLE_32: |
212 | return J_JG_32; |
213 | case J_JA_32: |
214 | return J_JBE_32; |
215 | case J_JAE_32: |
216 | return J_JB_32; |
217 | default: |
218 | return J_UNKNOWN; |
219 | } |
220 | } |
221 | |
222 | // Deletes direct jump instruction in input sections that jumps to the |
223 | // following section as it is not required. If there are two consecutive jump |
224 | // instructions, it checks if they can be flipped and one can be deleted. |
225 | // For example: |
226 | // .section .text |
227 | // a.BB.foo: |
228 | // ... |
229 | // 10: jne aa.BB.foo |
230 | // 16: jmp bar |
231 | // aa.BB.foo: |
232 | // ... |
233 | // |
234 | // can be converted to: |
235 | // a.BB.foo: |
236 | // ... |
237 | // 10: je bar #jne flipped to je and the jmp is deleted. |
238 | // aa.BB.foo: |
239 | // ... |
240 | bool X86_64::deleteFallThruJmpInsn(InputSection &is, InputFile *file, |
241 | InputSection *nextIS) const { |
242 | const unsigned sizeOfDirectJmpInsn = 5; |
243 | |
244 | if (nextIS == nullptr) |
245 | return false; |
246 | |
247 | if (is.getSize() < sizeOfDirectJmpInsn) |
248 | return false; |
249 | |
250 | // If this jmp insn can be removed, it is the last insn and the |
251 | // relocation is 4 bytes before the end. |
252 | unsigned rIndex = getRelocationWithOffset(is, offset: is.getSize() - 4); |
253 | if (rIndex == is.relocs().size()) |
254 | return false; |
255 | |
256 | Relocation &r = is.relocs()[rIndex]; |
257 | |
258 | // Check if the relocation corresponds to a direct jmp. |
259 | const uint8_t *secContents = is.content().data(); |
260 | // If it is not a direct jmp instruction, there is nothing to do here. |
261 | if (*(secContents + r.offset - 1) != 0xe9) |
262 | return false; |
263 | |
264 | if (isFallThruRelocation(is, file, nextIS, r)) { |
265 | // This is a fall thru and can be deleted. |
266 | r.expr = R_NONE; |
267 | r.offset = 0; |
268 | is.drop_back(num: sizeOfDirectJmpInsn); |
269 | is.nopFiller = true; |
270 | return true; |
271 | } |
272 | |
273 | // Now, check if flip and delete is possible. |
274 | const unsigned sizeOfJmpCCInsn = 6; |
275 | // To flip, there must be at least one JmpCC and one direct jmp. |
276 | if (is.getSize() < sizeOfDirectJmpInsn + sizeOfJmpCCInsn) |
277 | return false; |
278 | |
279 | unsigned rbIndex = |
280 | getRelocationWithOffset(is, offset: (is.getSize() - sizeOfDirectJmpInsn - 4)); |
281 | if (rbIndex == is.relocs().size()) |
282 | return false; |
283 | |
284 | Relocation &rB = is.relocs()[rbIndex]; |
285 | |
286 | const uint8_t *jmpInsnB = secContents + rB.offset - 1; |
287 | JmpInsnOpcode jmpOpcodeB = getJmpInsnType(first: jmpInsnB - 1, second: jmpInsnB); |
288 | if (jmpOpcodeB == J_UNKNOWN) |
289 | return false; |
290 | |
291 | if (!isFallThruRelocation(is, file, nextIS, r&: rB)) |
292 | return false; |
293 | |
294 | // jmpCC jumps to the fall thru block, the branch can be flipped and the |
295 | // jmp can be deleted. |
296 | JmpInsnOpcode jInvert = invertJmpOpcode(opcode: jmpOpcodeB); |
297 | if (jInvert == J_UNKNOWN) |
298 | return false; |
299 | is.jumpInstrMod = make<JumpInstrMod>(); |
300 | *is.jumpInstrMod = {.offset: rB.offset - 1, .original: jInvert, .size: 4}; |
301 | // Move R's values to rB except the offset. |
302 | rB = {.expr: r.expr, .type: r.type, .offset: rB.offset, .addend: r.addend, .sym: r.sym}; |
303 | // Cancel R |
304 | r.expr = R_NONE; |
305 | r.offset = 0; |
306 | is.drop_back(num: sizeOfDirectJmpInsn); |
307 | is.nopFiller = true; |
308 | return true; |
309 | } |
310 | |
311 | bool X86_64::relaxOnce(int pass) const { |
312 | uint64_t minVA = UINT64_MAX, maxVA = 0; |
313 | for (OutputSection *osec : outputSections) { |
314 | minVA = std::min(a: minVA, b: osec->addr); |
315 | maxVA = std::max(a: maxVA, b: osec->addr + osec->size); |
316 | } |
317 | // If the max VA difference is under 2^31, GOT-generating relocations with a 32-bit range cannot overflow. |
318 | if (isUInt<31>(x: maxVA - minVA)) |
319 | return false; |
320 | |
321 | SmallVector<InputSection *, 0> storage; |
322 | bool changed = false; |
323 | for (OutputSection *osec : outputSections) { |
324 | if (!(osec->flags & SHF_EXECINSTR)) |
325 | continue; |
326 | for (InputSection *sec : getInputSections(os: *osec, storage)) { |
327 | for (Relocation &rel : sec->relocs()) { |
328 | if (rel.expr != R_RELAX_GOT_PC) |
329 | continue; |
330 | |
331 | uint64_t v = sec->getRelocTargetVA(File: sec->file, Type: rel.type, A: rel.addend, |
332 | P: sec->getOutputSection()->addr + |
333 | sec->outSecOff + rel.offset, |
334 | Sym: *rel.sym, Expr: rel.expr); |
335 | if (isInt<32>(x: v)) |
336 | continue; |
337 | if (rel.sym->auxIdx == 0) { |
338 | rel.sym->allocateAux(); |
339 | addGotEntry(sym&: *rel.sym); |
340 | changed = true; |
341 | } |
342 | rel.expr = R_GOT_PC; |
343 | } |
344 | } |
345 | } |
346 | return changed; |
347 | } |
348 | |
349 | RelExpr X86_64::getRelExpr(RelType type, const Symbol &s, |
350 | const uint8_t *loc) const { |
351 | switch (type) { |
352 | case R_X86_64_8: |
353 | case R_X86_64_16: |
354 | case R_X86_64_32: |
355 | case R_X86_64_32S: |
356 | case R_X86_64_64: |
357 | return R_ABS; |
358 | case R_X86_64_DTPOFF32: |
359 | case R_X86_64_DTPOFF64: |
360 | return R_DTPREL; |
361 | case R_X86_64_TPOFF32: |
362 | case R_X86_64_TPOFF64: |
363 | return R_TPREL; |
364 | case R_X86_64_TLSDESC_CALL: |
365 | return R_TLSDESC_CALL; |
366 | case R_X86_64_TLSLD: |
367 | return R_TLSLD_PC; |
368 | case R_X86_64_TLSGD: |
369 | return R_TLSGD_PC; |
370 | case R_X86_64_SIZE32: |
371 | case R_X86_64_SIZE64: |
372 | return R_SIZE; |
373 | case R_X86_64_PLT32: |
374 | return R_PLT_PC; |
375 | case R_X86_64_PC8: |
376 | case R_X86_64_PC16: |
377 | case R_X86_64_PC32: |
378 | case R_X86_64_PC64: |
379 | return R_PC; |
380 | case R_X86_64_GOT32: |
381 | case R_X86_64_GOT64: |
382 | return R_GOTPLT; |
383 | case R_X86_64_GOTPC32_TLSDESC: |
384 | return R_TLSDESC_PC; |
385 | case R_X86_64_GOTPCREL: |
386 | case R_X86_64_GOTPCRELX: |
387 | case R_X86_64_REX_GOTPCRELX: |
388 | case R_X86_64_GOTTPOFF: |
389 | return R_GOT_PC; |
390 | case R_X86_64_GOTOFF64: |
391 | return R_GOTPLTREL; |
392 | case R_X86_64_PLTOFF64: |
393 | return R_PLT_GOTPLT; |
394 | case R_X86_64_GOTPC32: |
395 | case R_X86_64_GOTPC64: |
396 | return R_GOTPLTONLY_PC; |
397 | case R_X86_64_NONE: |
398 | return R_NONE; |
399 | default: |
400 | error(msg: getErrorLocation(loc) + "unknown relocation (" + Twine(type) + |
401 | ") against symbol " + toString(s)); |
402 | return R_NONE; |
403 | } |
404 | } |
405 | |
406 | void X86_64::(uint8_t *buf) const { |
407 | // The first entry holds the link-time address of _DYNAMIC. It is documented |
408 | // in the psABI and glibc before Aug 2021 used the entry to compute run-time |
409 | // load address of the shared object (note that this is relevant for linking |
410 | // ld.so, not any other program). |
411 | write64le(P: buf, V: mainPart->dynamic->getVA()); |
412 | } |
413 | |
414 | void X86_64::writeGotPlt(uint8_t *buf, const Symbol &s) const { |
415 | // See comments in X86::writeGotPlt. |
416 | write64le(P: buf, V: s.getPltVA() + 6); |
417 | } |
418 | |
419 | void X86_64::writeIgotPlt(uint8_t *buf, const Symbol &s) const { |
420 | // An x86 entry is the address of the ifunc resolver function (for -z rel). |
421 | if (config->writeAddends) |
422 | write64le(P: buf, V: s.getVA()); |
423 | } |
424 | |
425 | void X86_64::(uint8_t *buf) const { |
426 | const uint8_t pltData[] = { |
427 | 0xff, 0x35, 0, 0, 0, 0, // pushq GOTPLT+8(%rip) |
428 | 0xff, 0x25, 0, 0, 0, 0, // jmp *GOTPLT+16(%rip) |
429 | 0x0f, 0x1f, 0x40, 0x00, // nop |
430 | }; |
431 | memcpy(dest: buf, src: pltData, n: sizeof(pltData)); |
432 | uint64_t gotPlt = in.gotPlt->getVA(); |
433 | uint64_t plt = in.ibtPlt ? in.ibtPlt->getVA() : in.plt->getVA(); |
434 | write32le(P: buf + 2, V: gotPlt - plt + 2); // GOTPLT+8 |
435 | write32le(P: buf + 8, V: gotPlt - plt + 4); // GOTPLT+16 |
436 | } |
437 | |
438 | void X86_64::writePlt(uint8_t *buf, const Symbol &sym, |
439 | uint64_t pltEntryAddr) const { |
440 | const uint8_t inst[] = { |
441 | 0xff, 0x25, 0, 0, 0, 0, // jmpq *got(%rip) |
442 | 0x68, 0, 0, 0, 0, // pushq <relocation index> |
443 | 0xe9, 0, 0, 0, 0, // jmpq plt[0] |
444 | }; |
445 | memcpy(dest: buf, src: inst, n: sizeof(inst)); |
446 | |
447 | write32le(P: buf + 2, V: sym.getGotPltVA() - pltEntryAddr - 6); |
448 | write32le(P: buf + 7, V: sym.getPltIdx()); |
449 | write32le(P: buf + 12, V: in.plt->getVA() - pltEntryAddr - 16); |
450 | } |
451 | |
452 | RelType X86_64::getDynRel(RelType type) const { |
453 | if (type == R_X86_64_64 || type == R_X86_64_PC64 || type == R_X86_64_SIZE32 || |
454 | type == R_X86_64_SIZE64) |
455 | return type; |
456 | return R_X86_64_NONE; |
457 | } |
458 | |
459 | static void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) { |
460 | if (rel.type == R_X86_64_TLSGD) { |
461 | // Convert |
462 | // .byte 0x66 |
463 | // leaq x@tlsgd(%rip), %rdi |
464 | // .word 0x6666 |
465 | // rex64 |
466 | // call __tls_get_addr@plt |
467 | // to the following two instructions. |
468 | const uint8_t inst[] = { |
469 | 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, |
470 | 0x00, 0x00, // mov %fs:0x0,%rax |
471 | 0x48, 0x8d, 0x80, 0, 0, 0, 0, // lea x@tpoff,%rax |
472 | }; |
473 | memcpy(dest: loc - 4, src: inst, n: sizeof(inst)); |
474 | |
475 | // The original code used a pc relative relocation and so we have to |
476 | // compensate for the -4 in had in the addend. |
477 | write32le(P: loc + 8, V: val + 4); |
478 | } else if (rel.type == R_X86_64_GOTPC32_TLSDESC) { |
479 | // Convert leaq x@tlsdesc(%rip), %REG to movq $x@tpoff, %REG. |
480 | if ((loc[-3] & 0xfb) != 0x48 || loc[-2] != 0x8d || |
481 | (loc[-1] & 0xc7) != 0x05) { |
482 | errorOrWarn(msg: getErrorLocation(loc: loc - 3) + |
483 | "R_X86_64_GOTPC32_TLSDESC must be used " |
484 | "in leaq x@tlsdesc(%rip), %REG" ); |
485 | return; |
486 | } |
487 | loc[-3] = 0x48 | ((loc[-3] >> 2) & 1); |
488 | loc[-2] = 0xc7; |
489 | loc[-1] = 0xc0 | ((loc[-1] >> 3) & 7); |
490 | write32le(P: loc, V: val + 4); |
491 | } else { |
492 | // Convert call *x@tlsdesc(%REG) to xchg ax, ax. |
493 | assert(rel.type == R_X86_64_TLSDESC_CALL); |
494 | loc[0] = 0x66; |
495 | loc[1] = 0x90; |
496 | } |
497 | } |
498 | |
499 | static void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, uint64_t val) { |
500 | if (rel.type == R_X86_64_TLSGD) { |
501 | // Convert |
502 | // .byte 0x66 |
503 | // leaq x@tlsgd(%rip), %rdi |
504 | // .word 0x6666 |
505 | // rex64 |
506 | // call __tls_get_addr@plt |
507 | // to the following two instructions. |
508 | const uint8_t inst[] = { |
509 | 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, |
510 | 0x00, 0x00, // mov %fs:0x0,%rax |
511 | 0x48, 0x03, 0x05, 0, 0, 0, 0, // addq x@gottpoff(%rip),%rax |
512 | }; |
513 | memcpy(dest: loc - 4, src: inst, n: sizeof(inst)); |
514 | |
515 | // Both code sequences are PC relatives, but since we are moving the |
516 | // constant forward by 8 bytes we have to subtract the value by 8. |
517 | write32le(P: loc + 8, V: val - 8); |
518 | } else if (rel.type == R_X86_64_GOTPC32_TLSDESC) { |
519 | // Convert leaq x@tlsdesc(%rip), %REG to movq x@gottpoff(%rip), %REG. |
520 | assert(rel.type == R_X86_64_GOTPC32_TLSDESC); |
521 | if ((loc[-3] & 0xfb) != 0x48 || loc[-2] != 0x8d || |
522 | (loc[-1] & 0xc7) != 0x05) { |
523 | errorOrWarn(msg: getErrorLocation(loc: loc - 3) + |
524 | "R_X86_64_GOTPC32_TLSDESC must be used " |
525 | "in leaq x@tlsdesc(%rip), %REG" ); |
526 | return; |
527 | } |
528 | loc[-2] = 0x8b; |
529 | write32le(P: loc, V: val); |
530 | } else { |
531 | // Convert call *x@tlsdesc(%rax) to xchg ax, ax. |
532 | assert(rel.type == R_X86_64_TLSDESC_CALL); |
533 | loc[0] = 0x66; |
534 | loc[1] = 0x90; |
535 | } |
536 | } |
537 | |
538 | // In some conditions, R_X86_64_GOTTPOFF relocation can be optimized to |
539 | // R_X86_64_TPOFF32 so that it does not use GOT. |
540 | static void relaxTlsIeToLe(uint8_t *loc, const Relocation &, uint64_t val) { |
541 | uint8_t *inst = loc - 3; |
542 | uint8_t reg = loc[-1] >> 3; |
543 | uint8_t *regSlot = loc - 1; |
544 | |
545 | // Note that ADD with RSP or R12 is converted to ADD instead of LEA |
546 | // because LEA with these registers needs 4 bytes to encode and thus |
547 | // wouldn't fit the space. |
548 | |
549 | if (memcmp(s1: inst, s2: "\x48\x03\x25" , n: 3) == 0) { |
550 | // "addq foo@gottpoff(%rip),%rsp" -> "addq $foo,%rsp" |
551 | memcpy(dest: inst, src: "\x48\x81\xc4" , n: 3); |
552 | } else if (memcmp(s1: inst, s2: "\x4c\x03\x25" , n: 3) == 0) { |
553 | // "addq foo@gottpoff(%rip),%r12" -> "addq $foo,%r12" |
554 | memcpy(dest: inst, src: "\x49\x81\xc4" , n: 3); |
555 | } else if (memcmp(s1: inst, s2: "\x4c\x03" , n: 2) == 0) { |
556 | // "addq foo@gottpoff(%rip),%r[8-15]" -> "leaq foo(%r[8-15]),%r[8-15]" |
557 | memcpy(dest: inst, src: "\x4d\x8d" , n: 2); |
558 | *regSlot = 0x80 | (reg << 3) | reg; |
559 | } else if (memcmp(s1: inst, s2: "\x48\x03" , n: 2) == 0) { |
560 | // "addq foo@gottpoff(%rip),%reg -> "leaq foo(%reg),%reg" |
561 | memcpy(dest: inst, src: "\x48\x8d" , n: 2); |
562 | *regSlot = 0x80 | (reg << 3) | reg; |
563 | } else if (memcmp(s1: inst, s2: "\x4c\x8b" , n: 2) == 0) { |
564 | // "movq foo@gottpoff(%rip),%r[8-15]" -> "movq $foo,%r[8-15]" |
565 | memcpy(dest: inst, src: "\x49\xc7" , n: 2); |
566 | *regSlot = 0xc0 | reg; |
567 | } else if (memcmp(s1: inst, s2: "\x48\x8b" , n: 2) == 0) { |
568 | // "movq foo@gottpoff(%rip),%reg" -> "movq $foo,%reg" |
569 | memcpy(dest: inst, src: "\x48\xc7" , n: 2); |
570 | *regSlot = 0xc0 | reg; |
571 | } else { |
572 | error(msg: getErrorLocation(loc: loc - 3) + |
573 | "R_X86_64_GOTTPOFF must be used in MOVQ or ADDQ instructions only" ); |
574 | } |
575 | |
576 | // The original code used a PC relative relocation. |
577 | // Need to compensate for the -4 it had in the addend. |
578 | write32le(P: loc, V: val + 4); |
579 | } |
580 | |
581 | static void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) { |
582 | const uint8_t inst[] = { |
583 | 0x66, 0x66, // .word 0x6666 |
584 | 0x66, // .byte 0x66 |
585 | 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0,%rax |
586 | }; |
587 | |
588 | if (loc[4] == 0xe8) { |
589 | // Convert |
590 | // leaq bar@tlsld(%rip), %rdi # 48 8d 3d <Loc> |
591 | // callq __tls_get_addr@PLT # e8 <disp32> |
592 | // leaq bar@dtpoff(%rax), %rcx |
593 | // to |
594 | // .word 0x6666 |
595 | // .byte 0x66 |
596 | // mov %fs:0,%rax |
597 | // leaq bar@tpoff(%rax), %rcx |
598 | memcpy(dest: loc - 3, src: inst, n: sizeof(inst)); |
599 | return; |
600 | } |
601 | |
602 | if (loc[4] == 0xff && loc[5] == 0x15) { |
603 | // Convert |
604 | // leaq x@tlsld(%rip),%rdi # 48 8d 3d <Loc> |
605 | // call *__tls_get_addr@GOTPCREL(%rip) # ff 15 <disp32> |
606 | // to |
607 | // .long 0x66666666 |
608 | // movq %fs:0,%rax |
609 | // See "Table 11.9: LD -> LE Code Transition (LP64)" in |
610 | // https://raw.githubusercontent.com/wiki/hjl-tools/x86-psABI/x86-64-psABI-1.0.pdf |
611 | loc[-3] = 0x66; |
612 | memcpy(dest: loc - 2, src: inst, n: sizeof(inst)); |
613 | return; |
614 | } |
615 | |
616 | error(msg: getErrorLocation(loc: loc - 3) + |
617 | "expected R_X86_64_PLT32 or R_X86_64_GOTPCRELX after R_X86_64_TLSLD" ); |
618 | } |
619 | |
620 | // A JumpInstrMod at a specific offset indicates that the jump instruction |
621 | // opcode at that offset must be modified. This is specifically used to relax |
622 | // jump instructions with basic block sections. This function looks at the |
623 | // JumpMod and effects the change. |
624 | void X86_64::applyJumpInstrMod(uint8_t *loc, JumpModType type, |
625 | unsigned size) const { |
626 | switch (type) { |
627 | case J_JMP_32: |
628 | if (size == 4) |
629 | *loc = 0xe9; |
630 | else |
631 | *loc = 0xeb; |
632 | break; |
633 | case J_JE_32: |
634 | if (size == 4) { |
635 | loc[-1] = 0x0f; |
636 | *loc = 0x84; |
637 | } else |
638 | *loc = 0x74; |
639 | break; |
640 | case J_JNE_32: |
641 | if (size == 4) { |
642 | loc[-1] = 0x0f; |
643 | *loc = 0x85; |
644 | } else |
645 | *loc = 0x75; |
646 | break; |
647 | case J_JG_32: |
648 | if (size == 4) { |
649 | loc[-1] = 0x0f; |
650 | *loc = 0x8f; |
651 | } else |
652 | *loc = 0x7f; |
653 | break; |
654 | case J_JGE_32: |
655 | if (size == 4) { |
656 | loc[-1] = 0x0f; |
657 | *loc = 0x8d; |
658 | } else |
659 | *loc = 0x7d; |
660 | break; |
661 | case J_JB_32: |
662 | if (size == 4) { |
663 | loc[-1] = 0x0f; |
664 | *loc = 0x82; |
665 | } else |
666 | *loc = 0x72; |
667 | break; |
668 | case J_JBE_32: |
669 | if (size == 4) { |
670 | loc[-1] = 0x0f; |
671 | *loc = 0x86; |
672 | } else |
673 | *loc = 0x76; |
674 | break; |
675 | case J_JL_32: |
676 | if (size == 4) { |
677 | loc[-1] = 0x0f; |
678 | *loc = 0x8c; |
679 | } else |
680 | *loc = 0x7c; |
681 | break; |
682 | case J_JLE_32: |
683 | if (size == 4) { |
684 | loc[-1] = 0x0f; |
685 | *loc = 0x8e; |
686 | } else |
687 | *loc = 0x7e; |
688 | break; |
689 | case J_JA_32: |
690 | if (size == 4) { |
691 | loc[-1] = 0x0f; |
692 | *loc = 0x87; |
693 | } else |
694 | *loc = 0x77; |
695 | break; |
696 | case J_JAE_32: |
697 | if (size == 4) { |
698 | loc[-1] = 0x0f; |
699 | *loc = 0x83; |
700 | } else |
701 | *loc = 0x73; |
702 | break; |
703 | case J_UNKNOWN: |
704 | llvm_unreachable("Unknown Jump Relocation" ); |
705 | } |
706 | } |
707 | |
708 | int64_t X86_64::getImplicitAddend(const uint8_t *buf, RelType type) const { |
709 | switch (type) { |
710 | case R_X86_64_8: |
711 | case R_X86_64_PC8: |
712 | return SignExtend64<8>(x: *buf); |
713 | case R_X86_64_16: |
714 | case R_X86_64_PC16: |
715 | return SignExtend64<16>(x: read16le(P: buf)); |
716 | case R_X86_64_32: |
717 | case R_X86_64_32S: |
718 | case R_X86_64_TPOFF32: |
719 | case R_X86_64_GOT32: |
720 | case R_X86_64_GOTPC32: |
721 | case R_X86_64_GOTPC32_TLSDESC: |
722 | case R_X86_64_GOTPCREL: |
723 | case R_X86_64_GOTPCRELX: |
724 | case R_X86_64_REX_GOTPCRELX: |
725 | case R_X86_64_PC32: |
726 | case R_X86_64_GOTTPOFF: |
727 | case R_X86_64_PLT32: |
728 | case R_X86_64_TLSGD: |
729 | case R_X86_64_TLSLD: |
730 | case R_X86_64_DTPOFF32: |
731 | case R_X86_64_SIZE32: |
732 | return SignExtend64<32>(x: read32le(P: buf)); |
733 | case R_X86_64_64: |
734 | case R_X86_64_TPOFF64: |
735 | case R_X86_64_DTPOFF64: |
736 | case R_X86_64_DTPMOD64: |
737 | case R_X86_64_PC64: |
738 | case R_X86_64_SIZE64: |
739 | case R_X86_64_GLOB_DAT: |
740 | case R_X86_64_GOT64: |
741 | case R_X86_64_GOTOFF64: |
742 | case R_X86_64_GOTPC64: |
743 | case R_X86_64_PLTOFF64: |
744 | case R_X86_64_IRELATIVE: |
745 | case R_X86_64_RELATIVE: |
746 | return read64le(P: buf); |
747 | case R_X86_64_TLSDESC: |
748 | return read64le(P: buf + 8); |
749 | case R_X86_64_JUMP_SLOT: |
750 | case R_X86_64_NONE: |
751 | // These relocations are defined as not having an implicit addend. |
752 | return 0; |
753 | default: |
754 | internalLinkerError(loc: getErrorLocation(loc: buf), |
755 | msg: "cannot read addend for relocation " + toString(type)); |
756 | return 0; |
757 | } |
758 | } |
759 | |
760 | static void relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val); |
761 | |
762 | void X86_64::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const { |
763 | switch (rel.type) { |
764 | case R_X86_64_8: |
765 | checkIntUInt(loc, v: val, n: 8, rel); |
766 | *loc = val; |
767 | break; |
768 | case R_X86_64_PC8: |
769 | checkInt(loc, v: val, n: 8, rel); |
770 | *loc = val; |
771 | break; |
772 | case R_X86_64_16: |
773 | checkIntUInt(loc, v: val, n: 16, rel); |
774 | write16le(P: loc, V: val); |
775 | break; |
776 | case R_X86_64_PC16: |
777 | checkInt(loc, v: val, n: 16, rel); |
778 | write16le(P: loc, V: val); |
779 | break; |
780 | case R_X86_64_32: |
781 | checkUInt(loc, v: val, n: 32, rel); |
782 | write32le(P: loc, V: val); |
783 | break; |
784 | case R_X86_64_32S: |
785 | case R_X86_64_GOT32: |
786 | case R_X86_64_GOTPC32: |
787 | case R_X86_64_GOTPCREL: |
788 | case R_X86_64_PC32: |
789 | case R_X86_64_PLT32: |
790 | case R_X86_64_DTPOFF32: |
791 | case R_X86_64_SIZE32: |
792 | checkInt(loc, v: val, n: 32, rel); |
793 | write32le(P: loc, V: val); |
794 | break; |
795 | case R_X86_64_64: |
796 | case R_X86_64_TPOFF64: |
797 | case R_X86_64_DTPOFF64: |
798 | case R_X86_64_PC64: |
799 | case R_X86_64_SIZE64: |
800 | case R_X86_64_GOT64: |
801 | case R_X86_64_GOTOFF64: |
802 | case R_X86_64_GOTPC64: |
803 | case R_X86_64_PLTOFF64: |
804 | write64le(P: loc, V: val); |
805 | break; |
806 | case R_X86_64_GOTPCRELX: |
807 | case R_X86_64_REX_GOTPCRELX: |
808 | if (rel.expr != R_GOT_PC) { |
809 | relaxGot(loc, rel, val); |
810 | } else { |
811 | checkInt(loc, v: val, n: 32, rel); |
812 | write32le(P: loc, V: val); |
813 | } |
814 | break; |
815 | case R_X86_64_GOTPC32_TLSDESC: |
816 | case R_X86_64_TLSDESC_CALL: |
817 | case R_X86_64_TLSGD: |
818 | if (rel.expr == R_RELAX_TLS_GD_TO_LE) { |
819 | relaxTlsGdToLe(loc, rel, val); |
820 | } else if (rel.expr == R_RELAX_TLS_GD_TO_IE) { |
821 | relaxTlsGdToIe(loc, rel, val); |
822 | } else { |
823 | checkInt(loc, v: val, n: 32, rel); |
824 | write32le(P: loc, V: val); |
825 | } |
826 | break; |
827 | case R_X86_64_TLSLD: |
828 | if (rel.expr == R_RELAX_TLS_LD_TO_LE) { |
829 | relaxTlsLdToLe(loc, rel, val); |
830 | } else { |
831 | checkInt(loc, v: val, n: 32, rel); |
832 | write32le(P: loc, V: val); |
833 | } |
834 | break; |
835 | case R_X86_64_GOTTPOFF: |
836 | if (rel.expr == R_RELAX_TLS_IE_TO_LE) { |
837 | relaxTlsIeToLe(loc, rel, val); |
838 | } else { |
839 | checkInt(loc, v: val, n: 32, rel); |
840 | write32le(P: loc, V: val); |
841 | } |
842 | break; |
843 | case R_X86_64_TPOFF32: |
844 | checkInt(loc, v: val, n: 32, rel); |
845 | write32le(P: loc, V: val); |
846 | break; |
847 | |
848 | case R_X86_64_TLSDESC: |
849 | // The addend is stored in the second 64-bit word. |
850 | write64le(P: loc + 8, V: val); |
851 | break; |
852 | default: |
853 | llvm_unreachable("unknown relocation" ); |
854 | } |
855 | } |
856 | |
857 | RelExpr X86_64::adjustGotPcExpr(RelType type, int64_t addend, |
858 | const uint8_t *loc) const { |
859 | // Only R_X86_64_[REX_]GOTPCRELX can be relaxed. GNU as may emit GOTPCRELX |
860 | // with addend != -4. Such an instruction does not load the full GOT entry, so |
861 | // we cannot relax the relocation. E.g. movl x@GOTPCREL+4(%rip), %rax |
862 | // (addend=0) loads the high 32 bits of the GOT entry. |
863 | if (!config->relax || addend != -4 || |
864 | (type != R_X86_64_GOTPCRELX && type != R_X86_64_REX_GOTPCRELX)) |
865 | return R_GOT_PC; |
866 | const uint8_t op = loc[-2]; |
867 | const uint8_t modRm = loc[-1]; |
868 | |
869 | // FIXME: When PIC is disabled and foo is defined locally in the |
870 | // lower 32 bit address space, memory operand in mov can be converted into |
871 | // immediate operand. Otherwise, mov must be changed to lea. We support only |
872 | // latter relaxation at this moment. |
873 | if (op == 0x8b) |
874 | return R_RELAX_GOT_PC; |
875 | |
876 | // Relax call and jmp. |
877 | if (op == 0xff && (modRm == 0x15 || modRm == 0x25)) |
878 | return R_RELAX_GOT_PC; |
879 | |
880 | // We don't support test/binop instructions without a REX prefix. |
881 | if (type == R_X86_64_GOTPCRELX) |
882 | return R_GOT_PC; |
883 | |
884 | // Relaxation of test, adc, add, and, cmp, or, sbb, sub, xor. |
885 | // If PIC then no relaxation is available. |
886 | return config->isPic ? R_GOT_PC : R_RELAX_GOT_PC_NOPIC; |
887 | } |
888 | |
889 | // A subset of relaxations can only be applied for no-PIC. This method |
890 | // handles such relaxations. Instructions encoding information was taken from: |
891 | // "Intel 64 and IA-32 Architectures Software Developer's Manual V2" |
892 | // (http://www.intel.com/content/dam/www/public/us/en/documents/manuals/ |
893 | // 64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf) |
894 | static void relaxGotNoPic(uint8_t *loc, uint64_t val, uint8_t op, |
895 | uint8_t modRm) { |
896 | const uint8_t rex = loc[-3]; |
897 | // Convert "test %reg, foo@GOTPCREL(%rip)" to "test $foo, %reg". |
898 | if (op == 0x85) { |
899 | // See "TEST-Logical Compare" (4-428 Vol. 2B), |
900 | // TEST r/m64, r64 uses "full" ModR / M byte (no opcode extension). |
901 | |
902 | // ModR/M byte has form XX YYY ZZZ, where |
903 | // YYY is MODRM.reg(register 2), ZZZ is MODRM.rm(register 1). |
904 | // XX has different meanings: |
905 | // 00: The operand's memory address is in reg1. |
906 | // 01: The operand's memory address is reg1 + a byte-sized displacement. |
907 | // 10: The operand's memory address is reg1 + a word-sized displacement. |
908 | // 11: The operand is reg1 itself. |
909 | // If an instruction requires only one operand, the unused reg2 field |
910 | // holds extra opcode bits rather than a register code |
911 | // 0xC0 == 11 000 000 binary. |
912 | // 0x38 == 00 111 000 binary. |
913 | // We transfer reg2 to reg1 here as operand. |
914 | // See "2.1.3 ModR/M and SIB Bytes" (Vol. 2A 2-3). |
915 | loc[-1] = 0xc0 | (modRm & 0x38) >> 3; // ModR/M byte. |
916 | |
917 | // Change opcode from TEST r/m64, r64 to TEST r/m64, imm32 |
918 | // See "TEST-Logical Compare" (4-428 Vol. 2B). |
919 | loc[-2] = 0xf7; |
920 | |
921 | // Move R bit to the B bit in REX byte. |
922 | // REX byte is encoded as 0100WRXB, where |
923 | // 0100 is 4bit fixed pattern. |
924 | // REX.W When 1, a 64-bit operand size is used. Otherwise, when 0, the |
925 | // default operand size is used (which is 32-bit for most but not all |
926 | // instructions). |
927 | // REX.R This 1-bit value is an extension to the MODRM.reg field. |
928 | // REX.X This 1-bit value is an extension to the SIB.index field. |
929 | // REX.B This 1-bit value is an extension to the MODRM.rm field or the |
930 | // SIB.base field. |
931 | // See "2.2.1.2 More on REX Prefix Fields " (2-8 Vol. 2A). |
932 | loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2; |
933 | write32le(P: loc, V: val); |
934 | return; |
935 | } |
936 | |
937 | // If we are here then we need to relax the adc, add, and, cmp, or, sbb, sub |
938 | // or xor operations. |
939 | |
940 | // Convert "binop foo@GOTPCREL(%rip), %reg" to "binop $foo, %reg". |
941 | // Logic is close to one for test instruction above, but we also |
942 | // write opcode extension here, see below for details. |
943 | loc[-1] = 0xc0 | (modRm & 0x38) >> 3 | (op & 0x3c); // ModR/M byte. |
944 | |
945 | // Primary opcode is 0x81, opcode extension is one of: |
946 | // 000b = ADD, 001b is OR, 010b is ADC, 011b is SBB, |
947 | // 100b is AND, 101b is SUB, 110b is XOR, 111b is CMP. |
948 | // This value was wrote to MODRM.reg in a line above. |
949 | // See "3.2 INSTRUCTIONS (A-M)" (Vol. 2A 3-15), |
950 | // "INSTRUCTION SET REFERENCE, N-Z" (Vol. 2B 4-1) for |
951 | // descriptions about each operation. |
952 | loc[-2] = 0x81; |
953 | loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2; |
954 | write32le(P: loc, V: val); |
955 | } |
956 | |
957 | static void relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) { |
958 | assert(isInt<32>(val) && |
959 | "GOTPCRELX should not have been relaxed if it overflows" ); |
960 | const uint8_t op = loc[-2]; |
961 | const uint8_t modRm = loc[-1]; |
962 | |
963 | // Convert "mov foo@GOTPCREL(%rip),%reg" to "lea foo(%rip),%reg". |
964 | if (op == 0x8b) { |
965 | loc[-2] = 0x8d; |
966 | write32le(P: loc, V: val); |
967 | return; |
968 | } |
969 | |
970 | if (op != 0xff) { |
971 | // We are relaxing a rip relative to an absolute, so compensate |
972 | // for the old -4 addend. |
973 | assert(!config->isPic); |
974 | relaxGotNoPic(loc, val: val + 4, op, modRm); |
975 | return; |
976 | } |
977 | |
978 | // Convert call/jmp instructions. |
979 | if (modRm == 0x15) { |
980 | // ABI says we can convert "call *foo@GOTPCREL(%rip)" to "nop; call foo". |
981 | // Instead we convert to "addr32 call foo" where addr32 is an instruction |
982 | // prefix. That makes result expression to be a single instruction. |
983 | loc[-2] = 0x67; // addr32 prefix |
984 | loc[-1] = 0xe8; // call |
985 | write32le(P: loc, V: val); |
986 | return; |
987 | } |
988 | |
989 | // Convert "jmp *foo@GOTPCREL(%rip)" to "jmp foo; nop". |
990 | // jmp doesn't return, so it is fine to use nop here, it is just a stub. |
991 | assert(modRm == 0x25); |
992 | loc[-2] = 0xe9; // jmp |
993 | loc[3] = 0x90; // nop |
994 | write32le(P: loc - 1, V: val + 1); |
995 | } |
996 | |
997 | // A split-stack prologue starts by checking the amount of stack remaining |
998 | // in one of two ways: |
999 | // A) Comparing of the stack pointer to a field in the tcb. |
1000 | // B) Or a load of a stack pointer offset with an lea to r10 or r11. |
1001 | bool X86_64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end, |
1002 | uint8_t stOther) const { |
1003 | if (!config->is64) { |
1004 | error(msg: "target doesn't support split stacks" ); |
1005 | return false; |
1006 | } |
1007 | |
1008 | if (loc + 8 >= end) |
1009 | return false; |
1010 | |
1011 | // Replace "cmp %fs:0x70,%rsp" and subsequent branch |
1012 | // with "stc, nopl 0x0(%rax,%rax,1)" |
1013 | if (memcmp(s1: loc, s2: "\x64\x48\x3b\x24\x25" , n: 5) == 0) { |
1014 | memcpy(dest: loc, src: "\xf9\x0f\x1f\x84\x00\x00\x00\x00" , n: 8); |
1015 | return true; |
1016 | } |
1017 | |
1018 | // Adjust "lea X(%rsp),%rYY" to lea "(X - 0x4000)(%rsp),%rYY" where rYY could |
1019 | // be r10 or r11. The lea instruction feeds a subsequent compare which checks |
1020 | // if there is X available stack space. Making X larger effectively reserves |
1021 | // that much additional space. The stack grows downward so subtract the value. |
1022 | if (memcmp(s1: loc, s2: "\x4c\x8d\x94\x24" , n: 4) == 0 || |
1023 | memcmp(s1: loc, s2: "\x4c\x8d\x9c\x24" , n: 4) == 0) { |
1024 | // The offset bytes are encoded four bytes after the start of the |
1025 | // instruction. |
1026 | write32le(P: loc + 4, V: read32le(P: loc + 4) - 0x4000); |
1027 | return true; |
1028 | } |
1029 | return false; |
1030 | } |
1031 | |
1032 | void X86_64::relocateAlloc(InputSectionBase &sec, uint8_t *buf) const { |
1033 | uint64_t secAddr = sec.getOutputSection()->addr; |
1034 | if (auto *s = dyn_cast<InputSection>(Val: &sec)) |
1035 | secAddr += s->outSecOff; |
1036 | else if (auto *ehIn = dyn_cast<EhInputSection>(Val: &sec)) |
1037 | secAddr += ehIn->getParent()->outSecOff; |
1038 | for (const Relocation &rel : sec.relocs()) { |
1039 | if (rel.expr == R_NONE) // See deleteFallThruJmpInsn |
1040 | continue; |
1041 | uint8_t *loc = buf + rel.offset; |
1042 | const uint64_t val = |
1043 | sec.getRelocTargetVA(File: sec.file, Type: rel.type, A: rel.addend, |
1044 | P: secAddr + rel.offset, Sym: *rel.sym, Expr: rel.expr); |
1045 | relocate(loc, rel, val); |
1046 | } |
1047 | if (sec.jumpInstrMod) { |
1048 | applyJumpInstrMod(loc: buf + sec.jumpInstrMod->offset, |
1049 | type: sec.jumpInstrMod->original, size: sec.jumpInstrMod->size); |
1050 | } |
1051 | } |
1052 | |
1053 | // If Intel Indirect Branch Tracking is enabled, we have to emit special PLT |
1054 | // entries containing endbr64 instructions. A PLT entry will be split into two |
1055 | // parts, one in .plt.sec (writePlt), and the other in .plt (writeIBTPlt). |
1056 | namespace { |
1057 | class IntelIBT : public X86_64 { |
1058 | public: |
1059 | IntelIBT(); |
1060 | void writeGotPlt(uint8_t *buf, const Symbol &s) const override; |
1061 | void writePlt(uint8_t *buf, const Symbol &sym, |
1062 | uint64_t pltEntryAddr) const override; |
1063 | void writeIBTPlt(uint8_t *buf, size_t numEntries) const override; |
1064 | |
1065 | static const unsigned = 16; |
1066 | }; |
1067 | } // namespace |
1068 | |
1069 | IntelIBT::IntelIBT() { pltHeaderSize = 0; } |
1070 | |
1071 | void IntelIBT::writeGotPlt(uint8_t *buf, const Symbol &s) const { |
1072 | uint64_t va = |
1073 | in.ibtPlt->getVA() + IBTPltHeaderSize + s.getPltIdx() * pltEntrySize; |
1074 | write64le(P: buf, V: va); |
1075 | } |
1076 | |
1077 | void IntelIBT::writePlt(uint8_t *buf, const Symbol &sym, |
1078 | uint64_t pltEntryAddr) const { |
1079 | const uint8_t Inst[] = { |
1080 | 0xf3, 0x0f, 0x1e, 0xfa, // endbr64 |
1081 | 0xff, 0x25, 0, 0, 0, 0, // jmpq *got(%rip) |
1082 | 0x66, 0x0f, 0x1f, 0x44, 0, 0, // nop |
1083 | }; |
1084 | memcpy(dest: buf, src: Inst, n: sizeof(Inst)); |
1085 | write32le(P: buf + 6, V: sym.getGotPltVA() - pltEntryAddr - 10); |
1086 | } |
1087 | |
1088 | void IntelIBT::writeIBTPlt(uint8_t *buf, size_t numEntries) const { |
1089 | writePltHeader(buf); |
1090 | buf += IBTPltHeaderSize; |
1091 | |
1092 | const uint8_t inst[] = { |
1093 | 0xf3, 0x0f, 0x1e, 0xfa, // endbr64 |
1094 | 0x68, 0, 0, 0, 0, // pushq <relocation index> |
1095 | 0xe9, 0, 0, 0, 0, // jmpq plt[0] |
1096 | 0x66, 0x90, // nop |
1097 | }; |
1098 | |
1099 | for (size_t i = 0; i < numEntries; ++i) { |
1100 | memcpy(dest: buf, src: inst, n: sizeof(inst)); |
1101 | write32le(P: buf + 5, V: i); |
1102 | write32le(P: buf + 10, V: -pltHeaderSize - sizeof(inst) * i - 30); |
1103 | buf += sizeof(inst); |
1104 | } |
1105 | } |
1106 | |
1107 | // These nonstandard PLT entries are to migtigate Spectre v2 security |
1108 | // vulnerability. In order to mitigate Spectre v2, we want to avoid indirect |
1109 | // branch instructions such as `jmp *GOTPLT(%rip)`. So, in the following PLT |
1110 | // entries, we use a CALL followed by MOV and RET to do the same thing as an |
1111 | // indirect jump. That instruction sequence is so-called "retpoline". |
1112 | // |
1113 | // We have two types of retpoline PLTs as a size optimization. If `-z now` |
1114 | // is specified, all dynamic symbols are resolved at load-time. Thus, when |
1115 | // that option is given, we can omit code for symbol lazy resolution. |
1116 | namespace { |
1117 | class Retpoline : public X86_64 { |
1118 | public: |
1119 | Retpoline(); |
1120 | void writeGotPlt(uint8_t *buf, const Symbol &s) const override; |
1121 | void writePltHeader(uint8_t *buf) const override; |
1122 | void writePlt(uint8_t *buf, const Symbol &sym, |
1123 | uint64_t pltEntryAddr) const override; |
1124 | }; |
1125 | |
1126 | class RetpolineZNow : public X86_64 { |
1127 | public: |
1128 | RetpolineZNow(); |
1129 | void writeGotPlt(uint8_t *buf, const Symbol &s) const override {} |
1130 | void writePltHeader(uint8_t *buf) const override; |
1131 | void writePlt(uint8_t *buf, const Symbol &sym, |
1132 | uint64_t pltEntryAddr) const override; |
1133 | }; |
1134 | } // namespace |
1135 | |
1136 | Retpoline::Retpoline() { |
1137 | pltHeaderSize = 48; |
1138 | pltEntrySize = 32; |
1139 | ipltEntrySize = 32; |
1140 | } |
1141 | |
1142 | void Retpoline::writeGotPlt(uint8_t *buf, const Symbol &s) const { |
1143 | write64le(P: buf, V: s.getPltVA() + 17); |
1144 | } |
1145 | |
1146 | void Retpoline::(uint8_t *buf) const { |
1147 | const uint8_t insn[] = { |
1148 | 0xff, 0x35, 0, 0, 0, 0, // 0: pushq GOTPLT+8(%rip) |
1149 | 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // 6: mov GOTPLT+16(%rip), %r11 |
1150 | 0xe8, 0x0e, 0x00, 0x00, 0x00, // d: callq next |
1151 | 0xf3, 0x90, // 12: loop: pause |
1152 | 0x0f, 0xae, 0xe8, // 14: lfence |
1153 | 0xeb, 0xf9, // 17: jmp loop |
1154 | 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 19: int3; .align 16 |
1155 | 0x4c, 0x89, 0x1c, 0x24, // 20: next: mov %r11, (%rsp) |
1156 | 0xc3, // 24: ret |
1157 | 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 25: int3; padding |
1158 | 0xcc, 0xcc, 0xcc, 0xcc, // 2c: int3; padding |
1159 | }; |
1160 | memcpy(dest: buf, src: insn, n: sizeof(insn)); |
1161 | |
1162 | uint64_t gotPlt = in.gotPlt->getVA(); |
1163 | uint64_t plt = in.plt->getVA(); |
1164 | write32le(P: buf + 2, V: gotPlt - plt - 6 + 8); |
1165 | write32le(P: buf + 9, V: gotPlt - plt - 13 + 16); |
1166 | } |
1167 | |
1168 | void Retpoline::writePlt(uint8_t *buf, const Symbol &sym, |
1169 | uint64_t pltEntryAddr) const { |
1170 | const uint8_t insn[] = { |
1171 | 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // 0: mov foo@GOTPLT(%rip), %r11 |
1172 | 0xe8, 0, 0, 0, 0, // 7: callq plt+0x20 |
1173 | 0xe9, 0, 0, 0, 0, // c: jmp plt+0x12 |
1174 | 0x68, 0, 0, 0, 0, // 11: pushq <relocation index> |
1175 | 0xe9, 0, 0, 0, 0, // 16: jmp plt+0 |
1176 | 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1b: int3; padding |
1177 | }; |
1178 | memcpy(dest: buf, src: insn, n: sizeof(insn)); |
1179 | |
1180 | uint64_t off = pltEntryAddr - in.plt->getVA(); |
1181 | |
1182 | write32le(P: buf + 3, V: sym.getGotPltVA() - pltEntryAddr - 7); |
1183 | write32le(P: buf + 8, V: -off - 12 + 32); |
1184 | write32le(P: buf + 13, V: -off - 17 + 18); |
1185 | write32le(P: buf + 18, V: sym.getPltIdx()); |
1186 | write32le(P: buf + 23, V: -off - 27); |
1187 | } |
1188 | |
1189 | RetpolineZNow::RetpolineZNow() { |
1190 | pltHeaderSize = 32; |
1191 | pltEntrySize = 16; |
1192 | ipltEntrySize = 16; |
1193 | } |
1194 | |
1195 | void RetpolineZNow::(uint8_t *buf) const { |
1196 | const uint8_t insn[] = { |
1197 | 0xe8, 0x0b, 0x00, 0x00, 0x00, // 0: call next |
1198 | 0xf3, 0x90, // 5: loop: pause |
1199 | 0x0f, 0xae, 0xe8, // 7: lfence |
1200 | 0xeb, 0xf9, // a: jmp loop |
1201 | 0xcc, 0xcc, 0xcc, 0xcc, // c: int3; .align 16 |
1202 | 0x4c, 0x89, 0x1c, 0x24, // 10: next: mov %r11, (%rsp) |
1203 | 0xc3, // 14: ret |
1204 | 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 15: int3; padding |
1205 | 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1a: int3; padding |
1206 | 0xcc, // 1f: int3; padding |
1207 | }; |
1208 | memcpy(dest: buf, src: insn, n: sizeof(insn)); |
1209 | } |
1210 | |
1211 | void RetpolineZNow::writePlt(uint8_t *buf, const Symbol &sym, |
1212 | uint64_t pltEntryAddr) const { |
1213 | const uint8_t insn[] = { |
1214 | 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // mov foo@GOTPLT(%rip), %r11 |
1215 | 0xe9, 0, 0, 0, 0, // jmp plt+0 |
1216 | 0xcc, 0xcc, 0xcc, 0xcc, // int3; padding |
1217 | }; |
1218 | memcpy(dest: buf, src: insn, n: sizeof(insn)); |
1219 | |
1220 | write32le(P: buf + 3, V: sym.getGotPltVA() - pltEntryAddr - 7); |
1221 | write32le(P: buf + 8, V: in.plt->getVA() - pltEntryAddr - 12); |
1222 | } |
1223 | |
1224 | static TargetInfo *getTargetInfo() { |
1225 | if (config->zRetpolineplt) { |
1226 | if (config->zNow) { |
1227 | static RetpolineZNow t; |
1228 | return &t; |
1229 | } |
1230 | static Retpoline t; |
1231 | return &t; |
1232 | } |
1233 | |
1234 | if (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT) { |
1235 | static IntelIBT t; |
1236 | return &t; |
1237 | } |
1238 | |
1239 | static X86_64 t; |
1240 | return &t; |
1241 | } |
1242 | |
1243 | TargetInfo *elf::getX86_64TargetInfo() { return getTargetInfo(); } |
1244 | |