1//===- ARMConstantIslandPass.cpp - ARM constant islands -------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains a pass that splits the constant pool up into 'islands'
10// which are scattered through-out the function. This is required due to the
11// limited pc-relative displacements that ARM has.
12//
13//===----------------------------------------------------------------------===//
14
15#include "ARM.h"
16#include "ARMBaseInstrInfo.h"
17#include "ARMBasicBlockInfo.h"
18#include "ARMMachineFunctionInfo.h"
19#include "ARMSubtarget.h"
20#include "MCTargetDesc/ARMBaseInfo.h"
21#include "MVETailPredUtils.h"
22#include "Thumb2InstrInfo.h"
23#include "Utils/ARMBaseInfo.h"
24#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/ADT/SmallSet.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/ADT/Statistic.h"
29#include "llvm/ADT/StringRef.h"
30#include "llvm/CodeGen/LivePhysRegs.h"
31#include "llvm/CodeGen/MachineBasicBlock.h"
32#include "llvm/CodeGen/MachineConstantPool.h"
33#include "llvm/CodeGen/MachineDominators.h"
34#include "llvm/CodeGen/MachineFunction.h"
35#include "llvm/CodeGen/MachineFunctionPass.h"
36#include "llvm/CodeGen/MachineInstr.h"
37#include "llvm/CodeGen/MachineJumpTableInfo.h"
38#include "llvm/CodeGen/MachineOperand.h"
39#include "llvm/CodeGen/MachineRegisterInfo.h"
40#include "llvm/Config/llvm-config.h"
41#include "llvm/IR/DataLayout.h"
42#include "llvm/IR/DebugLoc.h"
43#include "llvm/MC/MCInstrDesc.h"
44#include "llvm/Pass.h"
45#include "llvm/Support/CommandLine.h"
46#include "llvm/Support/Compiler.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/Format.h"
50#include "llvm/Support/MathExtras.h"
51#include "llvm/Support/raw_ostream.h"
52#include <algorithm>
53#include <cassert>
54#include <cstdint>
55#include <iterator>
56#include <utility>
57#include <vector>
58
59using namespace llvm;
60
61#define DEBUG_TYPE "arm-cp-islands"
62
63#define ARM_CP_ISLANDS_OPT_NAME \
64 "ARM constant island placement and branch shortening pass"
65STATISTIC(NumCPEs, "Number of constpool entries");
66STATISTIC(NumSplit, "Number of uncond branches inserted");
67STATISTIC(NumCBrFixed, "Number of cond branches fixed");
68STATISTIC(NumUBrFixed, "Number of uncond branches fixed");
69STATISTIC(NumTBs, "Number of table branches generated");
70STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk");
71STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk");
72STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed");
73STATISTIC(NumJTMoved, "Number of jump table destination blocks moved");
74STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted");
75STATISTIC(NumLEInserted, "Number of LE backwards branches inserted");
76
77static cl::opt<bool>
78AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(Val: true),
79 cl::desc("Adjust basic block layout to better use TB[BH]"));
80
81static cl::opt<unsigned>
82CPMaxIteration("arm-constant-island-max-iteration", cl::Hidden, cl::init(Val: 30),
83 cl::desc("The max number of iteration for converge"));
84
85static cl::opt<bool> SynthesizeThumb1TBB(
86 "arm-synthesize-thumb-1-tbb", cl::Hidden, cl::init(Val: true),
87 cl::desc("Use compressed jump tables in Thumb-1 by synthesizing an "
88 "equivalent to the TBB/TBH instructions"));
89
90namespace {
91
92 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM
93 /// requires constant pool entries to be scattered among the instructions
94 /// inside a function. To do this, it completely ignores the normal LLVM
95 /// constant pool; instead, it places constants wherever it feels like with
96 /// special instructions.
97 ///
98 /// The terminology used in this pass includes:
99 /// Islands - Clumps of constants placed in the function.
100 /// Water - Potential places where an island could be formed.
101 /// CPE - A constant pool entry that has been placed somewhere, which
102 /// tracks a list of users.
103 class ARMConstantIslands : public MachineFunctionPass {
104 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr;
105
106 /// WaterList - A sorted list of basic blocks where islands could be placed
107 /// (i.e. blocks that don't fall through to the following block, due
108 /// to a return, unreachable, or unconditional branch).
109 std::vector<MachineBasicBlock*> WaterList;
110
111 /// NewWaterList - The subset of WaterList that was created since the
112 /// previous iteration by inserting unconditional branches.
113 SmallSet<MachineBasicBlock*, 4> NewWaterList;
114
115 using water_iterator = std::vector<MachineBasicBlock *>::iterator;
116
117 /// CPUser - One user of a constant pool, keeping the machine instruction
118 /// pointer, the constant pool being referenced, and the max displacement
119 /// allowed from the instruction to the CP. The HighWaterMark records the
120 /// highest basic block where a new CPEntry can be placed. To ensure this
121 /// pass terminates, the CP entries are initially placed at the end of the
122 /// function and then move monotonically to lower addresses. The
123 /// exception to this rule is when the current CP entry for a particular
124 /// CPUser is out of range, but there is another CP entry for the same
125 /// constant value in range. We want to use the existing in-range CP
126 /// entry, but if it later moves out of range, the search for new water
127 /// should resume where it left off. The HighWaterMark is used to record
128 /// that point.
129 struct CPUser {
130 MachineInstr *MI;
131 MachineInstr *CPEMI;
132 MachineBasicBlock *HighWaterMark;
133 unsigned MaxDisp;
134 bool NegOk;
135 bool IsSoImm;
136 bool KnownAlignment = false;
137
138 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
139 bool neg, bool soimm)
140 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) {
141 HighWaterMark = CPEMI->getParent();
142 }
143
144 /// getMaxDisp - Returns the maximum displacement supported by MI.
145 /// Correct for unknown alignment.
146 /// Conservatively subtract 2 bytes to handle weird alignment effects.
147 unsigned getMaxDisp() const {
148 return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2;
149 }
150 };
151
152 /// CPUsers - Keep track of all of the machine instructions that use various
153 /// constant pools and their max displacement.
154 std::vector<CPUser> CPUsers;
155
156 /// CPEntry - One per constant pool entry, keeping the machine instruction
157 /// pointer, the constpool index, and the number of CPUser's which
158 /// reference this entry.
159 struct CPEntry {
160 MachineInstr *CPEMI;
161 unsigned CPI;
162 unsigned RefCount;
163
164 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
165 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
166 };
167
168 /// CPEntries - Keep track of all of the constant pool entry machine
169 /// instructions. For each original constpool index (i.e. those that existed
170 /// upon entry to this pass), it keeps a vector of entries. Original
171 /// elements are cloned as we go along; the clones are put in the vector of
172 /// the original element, but have distinct CPIs.
173 ///
174 /// The first half of CPEntries contains generic constants, the second half
175 /// contains jump tables. Use getCombinedIndex on a generic CPEMI to look up
176 /// which vector it will be in here.
177 std::vector<std::vector<CPEntry>> CPEntries;
178
179 /// Maps a JT index to the offset in CPEntries containing copies of that
180 /// table. The equivalent map for a CONSTPOOL_ENTRY is the identity.
181 DenseMap<int, int> JumpTableEntryIndices;
182
183 /// Maps a JT index to the LEA that actually uses the index to calculate its
184 /// base address.
185 DenseMap<int, int> JumpTableUserIndices;
186
187 // Maps a MachineBasicBlock to the number of jump tables entries.
188 DenseMap<const MachineBasicBlock *, int> BlockJumpTableRefCount;
189
190 /// ImmBranch - One per immediate branch, keeping the machine instruction
191 /// pointer, conditional or unconditional, the max displacement,
192 /// and (if isCond is true) the corresponding unconditional branch
193 /// opcode.
194 struct ImmBranch {
195 MachineInstr *MI;
196 unsigned MaxDisp : 31;
197 bool isCond : 1;
198 unsigned UncondBr;
199
200 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, unsigned ubr)
201 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
202 };
203
204 /// ImmBranches - Keep track of all the immediate branch instructions.
205 std::vector<ImmBranch> ImmBranches;
206
207 /// PushPopMIs - Keep track of all the Thumb push / pop instructions.
208 SmallVector<MachineInstr*, 4> PushPopMIs;
209
210 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions.
211 SmallVector<MachineInstr*, 4> T2JumpTables;
212
213 MachineFunction *MF;
214 MachineConstantPool *MCP;
215 const ARMBaseInstrInfo *TII;
216 const ARMSubtarget *STI;
217 ARMFunctionInfo *AFI;
218 MachineDominatorTree *DT = nullptr;
219 bool isThumb;
220 bool isThumb1;
221 bool isThumb2;
222 bool isPositionIndependentOrROPI;
223
224 public:
225 static char ID;
226
227 ARMConstantIslands() : MachineFunctionPass(ID) {}
228
229 bool runOnMachineFunction(MachineFunction &MF) override;
230
231 void getAnalysisUsage(AnalysisUsage &AU) const override {
232 AU.addRequired<MachineDominatorTree>();
233 MachineFunctionPass::getAnalysisUsage(AU);
234 }
235
236 MachineFunctionProperties getRequiredProperties() const override {
237 return MachineFunctionProperties().set(
238 MachineFunctionProperties::Property::NoVRegs);
239 }
240
241 StringRef getPassName() const override {
242 return ARM_CP_ISLANDS_OPT_NAME;
243 }
244
245 private:
246 void doInitialConstPlacement(std::vector<MachineInstr *> &CPEMIs);
247 void doInitialJumpTablePlacement(std::vector<MachineInstr *> &CPEMIs);
248 bool BBHasFallthrough(MachineBasicBlock *MBB);
249 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
250 Align getCPEAlign(const MachineInstr *CPEMI);
251 void scanFunctionJumpTables();
252 void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs);
253 MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI);
254 void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
255 bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI);
256 unsigned getCombinedIndex(const MachineInstr *CPEMI);
257 int findInRangeCPEntry(CPUser& U, unsigned UserOffset);
258 bool findAvailableWater(CPUser&U, unsigned UserOffset,
259 water_iterator &WaterIter, bool CloserWater);
260 void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
261 MachineBasicBlock *&NewMBB);
262 bool handleConstantPoolUser(unsigned CPUserIndex, bool CloserWater);
263 void removeDeadCPEMI(MachineInstr *CPEMI);
264 bool removeUnusedCPEntries();
265 bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
266 MachineInstr *CPEMI, unsigned Disp, bool NegOk,
267 bool DoDump = false);
268 bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water,
269 CPUser &U, unsigned &Growth);
270 bool fixupImmediateBr(ImmBranch &Br);
271 bool fixupConditionalBr(ImmBranch &Br);
272 bool fixupUnconditionalBr(ImmBranch &Br);
273 bool optimizeThumb2Instructions();
274 bool optimizeThumb2Branches();
275 bool reorderThumb2JumpTables();
276 bool preserveBaseRegister(MachineInstr *JumpMI, MachineInstr *LEAMI,
277 unsigned &DeadSize, bool &CanDeleteLEA,
278 bool &BaseRegKill);
279 bool optimizeThumb2JumpTables();
280 MachineBasicBlock *adjustJTTargetBlockForward(unsigned JTI,
281 MachineBasicBlock *BB,
282 MachineBasicBlock *JTBB);
283
284 unsigned getUserOffset(CPUser&) const;
285 void dumpBBs();
286 void verify();
287
288 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
289 unsigned Disp, bool NegativeOK, bool IsSoImm = false);
290 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
291 const CPUser &U) {
292 return isOffsetInRange(UserOffset, TrialOffset,
293 Disp: U.getMaxDisp(), NegativeOK: U.NegOk, IsSoImm: U.IsSoImm);
294 }
295 };
296
297} // end anonymous namespace
298
299char ARMConstantIslands::ID = 0;
300
301/// verify - check BBOffsets, BBSizes, alignment of islands
302void ARMConstantIslands::verify() {
303#ifndef NDEBUG
304 BBInfoVector &BBInfo = BBUtils->getBBInfo();
305 assert(is_sorted(*MF, [&BBInfo](const MachineBasicBlock &LHS,
306 const MachineBasicBlock &RHS) {
307 return BBInfo[LHS.getNumber()].postOffset() <
308 BBInfo[RHS.getNumber()].postOffset();
309 }));
310 LLVM_DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n");
311 for (CPUser &U : CPUsers) {
312 unsigned UserOffset = getUserOffset(U);
313 // Verify offset using the real max displacement without the safety
314 // adjustment.
315 if (isCPEntryInRange(MI: U.MI, UserOffset, CPEMI: U.CPEMI, Disp: U.getMaxDisp()+2, NegOk: U.NegOk,
316 /* DoDump = */ true)) {
317 LLVM_DEBUG(dbgs() << "OK\n");
318 continue;
319 }
320 LLVM_DEBUG(dbgs() << "Out of range.\n");
321 dumpBBs();
322 LLVM_DEBUG(MF->dump());
323 llvm_unreachable("Constant pool entry out of range!");
324 }
325#endif
326}
327
328#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
329/// print block size and offset information - debugging
330LLVM_DUMP_METHOD void ARMConstantIslands::dumpBBs() {
331 LLVM_DEBUG({
332 BBInfoVector &BBInfo = BBUtils->getBBInfo();
333 for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) {
334 const BasicBlockInfo &BBI = BBInfo[J];
335 dbgs() << format("%08x %bb.%u\t", BBI.Offset, J)
336 << " kb=" << unsigned(BBI.KnownBits)
337 << " ua=" << unsigned(BBI.Unalign) << " pa=" << Log2(BBI.PostAlign)
338 << format(" size=%#x\n", BBInfo[J].Size);
339 }
340 });
341}
342#endif
343
344// Align blocks where the previous block does not fall through. This may add
345// extra NOP's but they will not be executed. It uses the PrefLoopAlignment as a
346// measure of how much to align, and only runs at CodeGenOptLevel::Aggressive.
347static bool AlignBlocks(MachineFunction *MF, const ARMSubtarget *STI) {
348 if (MF->getTarget().getOptLevel() != CodeGenOptLevel::Aggressive ||
349 MF->getFunction().hasOptSize())
350 return false;
351
352 auto *TLI = STI->getTargetLowering();
353 const Align Alignment = TLI->getPrefLoopAlignment();
354 if (Alignment < 4)
355 return false;
356
357 bool Changed = false;
358 bool PrevCanFallthough = true;
359 for (auto &MBB : *MF) {
360 if (!PrevCanFallthough) {
361 Changed = true;
362 MBB.setAlignment(Alignment);
363 }
364
365 PrevCanFallthough = MBB.canFallThrough();
366
367 // For LOB's, the ARMLowOverheadLoops pass may remove the unconditional
368 // branch later in the pipeline.
369 if (STI->hasLOB()) {
370 for (const auto &MI : reverse(C: MBB.terminators())) {
371 if (MI.getOpcode() == ARM::t2B &&
372 MI.getOperand(i: 0).getMBB() == MBB.getNextNode())
373 continue;
374 if (isLoopStart(MI) || MI.getOpcode() == ARM::t2LoopEnd ||
375 MI.getOpcode() == ARM::t2LoopEndDec) {
376 PrevCanFallthough = true;
377 break;
378 }
379 // Any other terminator - nothing to do
380 break;
381 }
382 }
383 }
384
385 return Changed;
386}
387
388bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) {
389 MF = &mf;
390 MCP = mf.getConstantPool();
391 BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(mf));
392
393 LLVM_DEBUG(dbgs() << "***** ARMConstantIslands: "
394 << MCP->getConstants().size() << " CP entries, aligned to "
395 << MCP->getConstantPoolAlign().value() << " bytes *****\n");
396
397 STI = &MF->getSubtarget<ARMSubtarget>();
398 TII = STI->getInstrInfo();
399 isPositionIndependentOrROPI =
400 STI->getTargetLowering()->isPositionIndependent() || STI->isROPI();
401 AFI = MF->getInfo<ARMFunctionInfo>();
402 DT = &getAnalysis<MachineDominatorTree>();
403
404 isThumb = AFI->isThumbFunction();
405 isThumb1 = AFI->isThumb1OnlyFunction();
406 isThumb2 = AFI->isThumb2Function();
407
408 bool GenerateTBB = isThumb2 || (isThumb1 && SynthesizeThumb1TBB);
409 // TBB generation code in this constant island pass has not been adapted to
410 // deal with speculation barriers.
411 if (STI->hardenSlsRetBr())
412 GenerateTBB = false;
413
414 // Renumber all of the machine basic blocks in the function, guaranteeing that
415 // the numbers agree with the position of the block in the function.
416 MF->RenumberBlocks();
417
418 // Try to reorder and otherwise adjust the block layout to make good use
419 // of the TB[BH] instructions.
420 bool MadeChange = false;
421 if (GenerateTBB && AdjustJumpTableBlocks) {
422 scanFunctionJumpTables();
423 MadeChange |= reorderThumb2JumpTables();
424 // Data is out of date, so clear it. It'll be re-computed later.
425 T2JumpTables.clear();
426 // Blocks may have shifted around. Keep the numbering up to date.
427 MF->RenumberBlocks();
428 }
429
430 // Align any non-fallthrough blocks
431 MadeChange |= AlignBlocks(MF, STI);
432
433 // Perform the initial placement of the constant pool entries. To start with,
434 // we put them all at the end of the function.
435 std::vector<MachineInstr*> CPEMIs;
436 if (!MCP->isEmpty())
437 doInitialConstPlacement(CPEMIs);
438
439 if (MF->getJumpTableInfo())
440 doInitialJumpTablePlacement(CPEMIs);
441
442 /// The next UID to take is the first unused one.
443 AFI->initPICLabelUId(UId: CPEMIs.size());
444
445 // Do the initial scan of the function, building up information about the
446 // sizes of each block, the location of all the water, and finding all of the
447 // constant pool users.
448 initializeFunctionInfo(CPEMIs);
449 CPEMIs.clear();
450 LLVM_DEBUG(dumpBBs());
451
452 // Functions with jump tables need an alignment of 4 because they use the ADR
453 // instruction, which aligns the PC to 4 bytes before adding an offset.
454 if (!T2JumpTables.empty())
455 MF->ensureAlignment(A: Align(4));
456
457 /// Remove dead constant pool entries.
458 MadeChange |= removeUnusedCPEntries();
459
460 // Iteratively place constant pool entries and fix up branches until there
461 // is no change.
462 unsigned NoCPIters = 0, NoBRIters = 0;
463 while (true) {
464 LLVM_DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
465 bool CPChange = false;
466 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
467 // For most inputs, it converges in no more than 5 iterations.
468 // If it doesn't end in 10, the input may have huge BB or many CPEs.
469 // In this case, we will try different heuristics.
470 CPChange |= handleConstantPoolUser(CPUserIndex: i, CloserWater: NoCPIters >= CPMaxIteration / 2);
471 if (CPChange && ++NoCPIters > CPMaxIteration)
472 report_fatal_error(reason: "Constant Island pass failed to converge!");
473 LLVM_DEBUG(dumpBBs());
474
475 // Clear NewWaterList now. If we split a block for branches, it should
476 // appear as "new water" for the next iteration of constant pool placement.
477 NewWaterList.clear();
478
479 LLVM_DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
480 bool BRChange = false;
481 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
482 BRChange |= fixupImmediateBr(Br&: ImmBranches[i]);
483 if (BRChange && ++NoBRIters > 30)
484 report_fatal_error(reason: "Branch Fix Up pass failed to converge!");
485 LLVM_DEBUG(dumpBBs());
486
487 if (!CPChange && !BRChange)
488 break;
489 MadeChange = true;
490 }
491
492 // Shrink 32-bit Thumb2 load and store instructions.
493 if (isThumb2 && !STI->prefers32BitThumb())
494 MadeChange |= optimizeThumb2Instructions();
495
496 // Shrink 32-bit branch instructions.
497 if (isThumb && STI->hasV8MBaselineOps())
498 MadeChange |= optimizeThumb2Branches();
499
500 // Optimize jump tables using TBB / TBH.
501 if (GenerateTBB && !STI->genExecuteOnly())
502 MadeChange |= optimizeThumb2JumpTables();
503
504 // After a while, this might be made debug-only, but it is not expensive.
505 verify();
506
507 // Save the mapping between original and cloned constpool entries.
508 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
509 for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) {
510 const CPEntry & CPE = CPEntries[i][j];
511 if (CPE.CPEMI && CPE.CPEMI->getOperand(i: 1).isCPI())
512 AFI->recordCPEClone(CPIdx: i, CPCloneIdx: CPE.CPI);
513 }
514 }
515
516 LLVM_DEBUG(dbgs() << '\n'; dumpBBs());
517
518 BBUtils->clear();
519 WaterList.clear();
520 CPUsers.clear();
521 CPEntries.clear();
522 JumpTableEntryIndices.clear();
523 JumpTableUserIndices.clear();
524 BlockJumpTableRefCount.clear();
525 ImmBranches.clear();
526 PushPopMIs.clear();
527 T2JumpTables.clear();
528
529 return MadeChange;
530}
531
532/// Perform the initial placement of the regular constant pool entries.
533/// To start with, we put them all at the end of the function.
534void
535ARMConstantIslands::doInitialConstPlacement(std::vector<MachineInstr*> &CPEMIs) {
536 // Create the basic block to hold the CPE's.
537 MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
538 MF->push_back(MBB: BB);
539
540 // MachineConstantPool measures alignment in bytes.
541 const Align MaxAlign = MCP->getConstantPoolAlign();
542 const unsigned MaxLogAlign = Log2(A: MaxAlign);
543
544 // Mark the basic block as required by the const-pool.
545 BB->setAlignment(MaxAlign);
546
547 // The function needs to be as aligned as the basic blocks. The linker may
548 // move functions around based on their alignment.
549 // Special case: halfword literals still need word alignment on the function.
550 Align FuncAlign = MaxAlign;
551 if (MaxAlign == 2)
552 FuncAlign = Align(4);
553 MF->ensureAlignment(A: FuncAlign);
554
555 // Order the entries in BB by descending alignment. That ensures correct
556 // alignment of all entries as long as BB is sufficiently aligned. Keep
557 // track of the insertion point for each alignment. We are going to bucket
558 // sort the entries as they are created.
559 SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxLogAlign + 1,
560 BB->end());
561
562 // Add all of the constants from the constant pool to the end block, use an
563 // identity mapping of CPI's to CPE's.
564 const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
565
566 const DataLayout &TD = MF->getDataLayout();
567 for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
568 unsigned Size = CPs[i].getSizeInBytes(DL: TD);
569 Align Alignment = CPs[i].getAlign();
570 // Verify that all constant pool entries are a multiple of their alignment.
571 // If not, we would have to pad them out so that instructions stay aligned.
572 assert(isAligned(Alignment, Size) && "CP Entry not multiple of 4 bytes!");
573
574 // Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
575 unsigned LogAlign = Log2(A: Alignment);
576 MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
577 MachineInstr *CPEMI =
578 BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
579 .addImm(i).addConstantPoolIndex(i).addImm(Size);
580 CPEMIs.push_back(x: CPEMI);
581
582 // Ensure that future entries with higher alignment get inserted before
583 // CPEMI. This is bucket sort with iterators.
584 for (unsigned a = LogAlign + 1; a <= MaxLogAlign; ++a)
585 if (InsPoint[a] == InsAt)
586 InsPoint[a] = CPEMI;
587
588 // Add a new CPEntry, but no corresponding CPUser yet.
589 CPEntries.emplace_back(args: 1, args: CPEntry(CPEMI, i));
590 ++NumCPEs;
591 LLVM_DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = "
592 << Size << ", align = " << Alignment.value() << '\n');
593 }
594 LLVM_DEBUG(BB->dump());
595}
596
597/// Do initial placement of the jump tables. Because Thumb2's TBB and TBH
598/// instructions can be made more efficient if the jump table immediately
599/// follows the instruction, it's best to place them immediately next to their
600/// jumps to begin with. In almost all cases they'll never be moved from that
601/// position.
602void ARMConstantIslands::doInitialJumpTablePlacement(
603 std::vector<MachineInstr *> &CPEMIs) {
604 unsigned i = CPEntries.size();
605 auto MJTI = MF->getJumpTableInfo();
606 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
607
608 // Only inline jump tables are placed in the function.
609 if (MJTI->getEntryKind() != MachineJumpTableInfo::EK_Inline)
610 return;
611
612 MachineBasicBlock *LastCorrectlyNumberedBB = nullptr;
613 for (MachineBasicBlock &MBB : *MF) {
614 auto MI = MBB.getLastNonDebugInstr();
615 // Look past potential SpeculationBarriers at end of BB.
616 while (MI != MBB.end() &&
617 (isSpeculationBarrierEndBBOpcode(Opc: MI->getOpcode()) ||
618 MI->isDebugInstr()))
619 --MI;
620
621 if (MI == MBB.end())
622 continue;
623
624 unsigned JTOpcode;
625 switch (MI->getOpcode()) {
626 default:
627 continue;
628 case ARM::BR_JTadd:
629 case ARM::BR_JTr:
630 case ARM::tBR_JTr:
631 case ARM::BR_JTm_i12:
632 case ARM::BR_JTm_rs:
633 // These instructions are emitted only in ARM or Thumb1 modes which do not
634 // support PACBTI. Hence we don't add BTI instructions in the destination
635 // blocks.
636 assert(!MF->getInfo<ARMFunctionInfo>()->branchTargetEnforcement() &&
637 "Branch protection must not be enabled for Arm or Thumb1 modes");
638 JTOpcode = ARM::JUMPTABLE_ADDRS;
639 break;
640 case ARM::t2BR_JT:
641 JTOpcode = ARM::JUMPTABLE_INSTS;
642 break;
643 case ARM::tTBB_JT:
644 case ARM::t2TBB_JT:
645 JTOpcode = ARM::JUMPTABLE_TBB;
646 break;
647 case ARM::tTBH_JT:
648 case ARM::t2TBH_JT:
649 JTOpcode = ARM::JUMPTABLE_TBH;
650 break;
651 }
652
653 unsigned NumOps = MI->getDesc().getNumOperands();
654 MachineOperand JTOp =
655 MI->getOperand(i: NumOps - (MI->isPredicable() ? 2 : 1));
656 unsigned JTI = JTOp.getIndex();
657 unsigned Size = JT[JTI].MBBs.size() * sizeof(uint32_t);
658 MachineBasicBlock *JumpTableBB = MF->CreateMachineBasicBlock();
659 MF->insert(MBBI: std::next(x: MachineFunction::iterator(MBB)), MBB: JumpTableBB);
660 MachineInstr *CPEMI = BuildMI(*JumpTableBB, JumpTableBB->begin(),
661 DebugLoc(), TII->get(JTOpcode))
662 .addImm(i++)
663 .addJumpTableIndex(JTI)
664 .addImm(Size);
665 CPEMIs.push_back(x: CPEMI);
666 CPEntries.emplace_back(args: 1, args: CPEntry(CPEMI, JTI));
667 JumpTableEntryIndices.insert(KV: std::make_pair(x&: JTI, y: CPEntries.size() - 1));
668 if (!LastCorrectlyNumberedBB)
669 LastCorrectlyNumberedBB = &MBB;
670 }
671
672 // If we did anything then we need to renumber the subsequent blocks.
673 if (LastCorrectlyNumberedBB)
674 MF->RenumberBlocks(MBBFrom: LastCorrectlyNumberedBB);
675}
676
677/// BBHasFallthrough - Return true if the specified basic block can fallthrough
678/// into the block immediately after it.
679bool ARMConstantIslands::BBHasFallthrough(MachineBasicBlock *MBB) {
680 // Get the next machine basic block in the function.
681 MachineFunction::iterator MBBI = MBB->getIterator();
682 // Can't fall off end of function.
683 if (std::next(x: MBBI) == MBB->getParent()->end())
684 return false;
685
686 MachineBasicBlock *NextBB = &*std::next(x: MBBI);
687 if (!MBB->isSuccessor(MBB: NextBB))
688 return false;
689
690 // Try to analyze the end of the block. A potential fallthrough may already
691 // have an unconditional branch for whatever reason.
692 MachineBasicBlock *TBB, *FBB;
693 SmallVector<MachineOperand, 4> Cond;
694 bool TooDifficult = TII->analyzeBranch(MBB&: *MBB, TBB, FBB, Cond);
695 return TooDifficult || FBB == nullptr;
696}
697
698/// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
699/// look up the corresponding CPEntry.
700ARMConstantIslands::CPEntry *
701ARMConstantIslands::findConstPoolEntry(unsigned CPI,
702 const MachineInstr *CPEMI) {
703 std::vector<CPEntry> &CPEs = CPEntries[CPI];
704 // Number of entries per constpool index should be small, just do a
705 // linear search.
706 for (CPEntry &CPE : CPEs)
707 if (CPE.CPEMI == CPEMI)
708 return &CPE;
709 return nullptr;
710}
711
712/// getCPEAlign - Returns the required alignment of the constant pool entry
713/// represented by CPEMI.
714Align ARMConstantIslands::getCPEAlign(const MachineInstr *CPEMI) {
715 switch (CPEMI->getOpcode()) {
716 case ARM::CONSTPOOL_ENTRY:
717 break;
718 case ARM::JUMPTABLE_TBB:
719 return isThumb1 ? Align(4) : Align(1);
720 case ARM::JUMPTABLE_TBH:
721 return isThumb1 ? Align(4) : Align(2);
722 case ARM::JUMPTABLE_INSTS:
723 return Align(2);
724 case ARM::JUMPTABLE_ADDRS:
725 return Align(4);
726 default:
727 llvm_unreachable("unknown constpool entry kind");
728 }
729
730 unsigned CPI = getCombinedIndex(CPEMI);
731 assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
732 return MCP->getConstants()[CPI].getAlign();
733}
734
735// Exception landing pads, blocks that has their adress taken, and function
736// entry blocks will always be (potential) indirect jump targets, regardless of
737// whether they are referenced by or not by jump tables.
738static bool isAlwaysIndirectTarget(const MachineBasicBlock &MBB) {
739 return MBB.isEHPad() || MBB.hasAddressTaken() ||
740 &MBB == &MBB.getParent()->front();
741}
742
743/// scanFunctionJumpTables - Do a scan of the function, building up
744/// information about the sizes of each block and the locations of all
745/// the jump tables.
746void ARMConstantIslands::scanFunctionJumpTables() {
747 for (MachineBasicBlock &MBB : *MF) {
748 for (MachineInstr &I : MBB)
749 if (I.isBranch() &&
750 (I.getOpcode() == ARM::t2BR_JT || I.getOpcode() == ARM::tBR_JTr))
751 T2JumpTables.push_back(Elt: &I);
752 }
753
754 if (!MF->getInfo<ARMFunctionInfo>()->branchTargetEnforcement())
755 return;
756
757 if (const MachineJumpTableInfo *JTI = MF->getJumpTableInfo())
758 for (const MachineJumpTableEntry &JTE : JTI->getJumpTables())
759 for (const MachineBasicBlock *MBB : JTE.MBBs) {
760 if (isAlwaysIndirectTarget(MBB: *MBB))
761 // Set the reference count essentially to infinity, it will never
762 // reach zero and the BTI Instruction will never be removed.
763 BlockJumpTableRefCount[MBB] = std::numeric_limits<int>::max();
764 else
765 ++BlockJumpTableRefCount[MBB];
766 }
767}
768
769/// initializeFunctionInfo - Do the initial scan of the function, building up
770/// information about the sizes of each block, the location of all the water,
771/// and finding all of the constant pool users.
772void ARMConstantIslands::
773initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) {
774
775 BBUtils->computeAllBlockSizes();
776 BBInfoVector &BBInfo = BBUtils->getBBInfo();
777 // The known bits of the entry block offset are determined by the function
778 // alignment.
779 BBInfo.front().KnownBits = Log2(A: MF->getAlignment());
780
781 // Compute block offsets and known bits.
782 BBUtils->adjustBBOffsetsAfter(MBB: &MF->front());
783
784 // We only care about jump table instructions when jump tables are inline.
785 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
786 bool InlineJumpTables =
787 MJTI && MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline;
788
789 // Now go back through the instructions and build up our data structures.
790 for (MachineBasicBlock &MBB : *MF) {
791 // If this block doesn't fall through into the next MBB, then this is
792 // 'water' that a constant pool island could be placed.
793 if (!BBHasFallthrough(MBB: &MBB))
794 WaterList.push_back(x: &MBB);
795
796 for (MachineInstr &I : MBB) {
797 if (I.isDebugInstr())
798 continue;
799
800 unsigned Opc = I.getOpcode();
801 if (I.isBranch()) {
802 bool isCond = false;
803 unsigned Bits = 0;
804 unsigned Scale = 1;
805 int UOpc = Opc;
806 switch (Opc) {
807 default:
808 continue; // Ignore other JT branches
809 case ARM::t2BR_JT:
810 case ARM::tBR_JTr:
811 if (InlineJumpTables)
812 T2JumpTables.push_back(Elt: &I);
813 continue; // Does not get an entry in ImmBranches
814 case ARM::Bcc:
815 isCond = true;
816 UOpc = ARM::B;
817 [[fallthrough]];
818 case ARM::B:
819 Bits = 24;
820 Scale = 4;
821 break;
822 case ARM::tBcc:
823 isCond = true;
824 UOpc = ARM::tB;
825 Bits = 8;
826 Scale = 2;
827 break;
828 case ARM::tB:
829 Bits = 11;
830 Scale = 2;
831 break;
832 case ARM::t2Bcc:
833 isCond = true;
834 UOpc = ARM::t2B;
835 Bits = 20;
836 Scale = 2;
837 break;
838 case ARM::t2B:
839 Bits = 24;
840 Scale = 2;
841 break;
842 }
843
844 // Record this immediate branch.
845 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
846 ImmBranches.push_back(x: ImmBranch(&I, MaxOffs, isCond, UOpc));
847 }
848
849 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET)
850 PushPopMIs.push_back(Elt: &I);
851
852 if (Opc == ARM::CONSTPOOL_ENTRY || Opc == ARM::JUMPTABLE_ADDRS ||
853 Opc == ARM::JUMPTABLE_INSTS || Opc == ARM::JUMPTABLE_TBB ||
854 Opc == ARM::JUMPTABLE_TBH)
855 continue;
856
857 // Scan the instructions for constant pool operands.
858 for (unsigned op = 0, e = I.getNumOperands(); op != e; ++op)
859 if (I.getOperand(i: op).isCPI() ||
860 (I.getOperand(i: op).isJTI() && InlineJumpTables)) {
861 // We found one. The addressing mode tells us the max displacement
862 // from the PC that this instruction permits.
863
864 // Basic size info comes from the TSFlags field.
865 unsigned Bits = 0;
866 unsigned Scale = 1;
867 bool NegOk = false;
868 bool IsSoImm = false;
869
870 switch (Opc) {
871 default:
872 llvm_unreachable("Unknown addressing mode for CP reference!");
873
874 // Taking the address of a CP entry.
875 case ARM::LEApcrel:
876 case ARM::LEApcrelJT: {
877 // This takes a SoImm, which is 8 bit immediate rotated. We'll
878 // pretend the maximum offset is 255 * 4. Since each instruction
879 // 4 byte wide, this is always correct. We'll check for other
880 // displacements that fits in a SoImm as well.
881 Bits = 8;
882 NegOk = true;
883 IsSoImm = true;
884 unsigned CPI = I.getOperand(i: op).getIndex();
885 assert(CPI < CPEMIs.size());
886 MachineInstr *CPEMI = CPEMIs[CPI];
887 const Align CPEAlign = getCPEAlign(CPEMI);
888 const unsigned LogCPEAlign = Log2(A: CPEAlign);
889 if (LogCPEAlign >= 2)
890 Scale = 4;
891 else
892 // For constants with less than 4-byte alignment,
893 // we'll pretend the maximum offset is 255 * 1.
894 Scale = 1;
895 }
896 break;
897 case ARM::t2LEApcrel:
898 case ARM::t2LEApcrelJT:
899 Bits = 12;
900 NegOk = true;
901 break;
902 case ARM::tLEApcrel:
903 case ARM::tLEApcrelJT:
904 Bits = 8;
905 Scale = 4;
906 break;
907
908 case ARM::LDRBi12:
909 case ARM::LDRi12:
910 case ARM::LDRcp:
911 case ARM::t2LDRpci:
912 case ARM::t2LDRHpci:
913 case ARM::t2LDRSHpci:
914 case ARM::t2LDRBpci:
915 case ARM::t2LDRSBpci:
916 Bits = 12; // +-offset_12
917 NegOk = true;
918 break;
919
920 case ARM::tLDRpci:
921 Bits = 8;
922 Scale = 4; // +(offset_8*4)
923 break;
924
925 case ARM::VLDRD:
926 case ARM::VLDRS:
927 Bits = 8;
928 Scale = 4; // +-(offset_8*4)
929 NegOk = true;
930 break;
931 case ARM::VLDRH:
932 Bits = 8;
933 Scale = 2; // +-(offset_8*2)
934 NegOk = true;
935 break;
936 }
937
938 // Remember that this is a user of a CP entry.
939 unsigned CPI = I.getOperand(i: op).getIndex();
940 if (I.getOperand(i: op).isJTI()) {
941 JumpTableUserIndices.insert(KV: std::make_pair(x&: CPI, y: CPUsers.size()));
942 CPI = JumpTableEntryIndices[CPI];
943 }
944
945 MachineInstr *CPEMI = CPEMIs[CPI];
946 unsigned MaxOffs = ((1 << Bits)-1) * Scale;
947 CPUsers.push_back(x: CPUser(&I, CPEMI, MaxOffs, NegOk, IsSoImm));
948
949 // Increment corresponding CPEntry reference count.
950 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
951 assert(CPE && "Cannot find a corresponding CPEntry!");
952 CPE->RefCount++;
953
954 // Instructions can only use one CP entry, don't bother scanning the
955 // rest of the operands.
956 break;
957 }
958 }
959 }
960}
961
962/// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
963/// ID.
964static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
965 const MachineBasicBlock *RHS) {
966 return LHS->getNumber() < RHS->getNumber();
967}
968
969/// updateForInsertedWaterBlock - When a block is newly inserted into the
970/// machine function, it upsets all of the block numbers. Renumber the blocks
971/// and update the arrays that parallel this numbering.
972void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) {
973 // Renumber the MBB's to keep them consecutive.
974 NewBB->getParent()->RenumberBlocks(MBBFrom: NewBB);
975
976 // Insert an entry into BBInfo to align it properly with the (newly
977 // renumbered) block numbers.
978 BBUtils->insert(BBNum: NewBB->getNumber(), BBI: BasicBlockInfo());
979
980 // Next, update WaterList. Specifically, we need to add NewMBB as having
981 // available water after it.
982 water_iterator IP = llvm::lower_bound(Range&: WaterList, Value&: NewBB, C: CompareMBBNumbers);
983 WaterList.insert(position: IP, x: NewBB);
984}
985
986/// Split the basic block containing MI into two blocks, which are joined by
987/// an unconditional branch. Update data structures and renumber blocks to
988/// account for this change and returns the newly created block.
989MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) {
990 MachineBasicBlock *OrigBB = MI->getParent();
991
992 // Collect liveness information at MI.
993 LivePhysRegs LRs(*MF->getSubtarget().getRegisterInfo());
994 LRs.addLiveOuts(MBB: *OrigBB);
995 auto LivenessEnd = ++MachineBasicBlock::iterator(MI).getReverse();
996 for (MachineInstr &LiveMI : make_range(x: OrigBB->rbegin(), y: LivenessEnd))
997 LRs.stepBackward(MI: LiveMI);
998
999 // Create a new MBB for the code after the OrigBB.
1000 MachineBasicBlock *NewBB =
1001 MF->CreateMachineBasicBlock(BB: OrigBB->getBasicBlock());
1002 MachineFunction::iterator MBBI = ++OrigBB->getIterator();
1003 MF->insert(MBBI, MBB: NewBB);
1004
1005 // Splice the instructions starting with MI over to NewBB.
1006 NewBB->splice(Where: NewBB->end(), Other: OrigBB, From: MI, To: OrigBB->end());
1007
1008 // Add an unconditional branch from OrigBB to NewBB.
1009 // Note the new unconditional branch is not being recorded.
1010 // There doesn't seem to be meaningful DebugInfo available; this doesn't
1011 // correspond to anything in the source.
1012 unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B;
1013 if (!isThumb)
1014 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB);
1015 else
1016 BuildMI(OrigBB, DebugLoc(), TII->get(Opc))
1017 .addMBB(NewBB)
1018 .add(predOps(Pred: ARMCC::AL));
1019 ++NumSplit;
1020
1021 // Update the CFG. All succs of OrigBB are now succs of NewBB.
1022 NewBB->transferSuccessors(FromMBB: OrigBB);
1023
1024 // OrigBB branches to NewBB.
1025 OrigBB->addSuccessor(Succ: NewBB);
1026
1027 // Update live-in information in the new block.
1028 MachineRegisterInfo &MRI = MF->getRegInfo();
1029 for (MCPhysReg L : LRs)
1030 if (!MRI.isReserved(PhysReg: L))
1031 NewBB->addLiveIn(PhysReg: L);
1032
1033 // Update internal data structures to account for the newly inserted MBB.
1034 // This is almost the same as updateForInsertedWaterBlock, except that
1035 // the Water goes after OrigBB, not NewBB.
1036 MF->RenumberBlocks(MBBFrom: NewBB);
1037
1038 // Insert an entry into BBInfo to align it properly with the (newly
1039 // renumbered) block numbers.
1040 BBUtils->insert(BBNum: NewBB->getNumber(), BBI: BasicBlockInfo());
1041
1042 // Next, update WaterList. Specifically, we need to add OrigMBB as having
1043 // available water after it (but not if it's already there, which happens
1044 // when splitting before a conditional branch that is followed by an
1045 // unconditional branch - in that case we want to insert NewBB).
1046 water_iterator IP = llvm::lower_bound(Range&: WaterList, Value&: OrigBB, C: CompareMBBNumbers);
1047 MachineBasicBlock* WaterBB = *IP;
1048 if (WaterBB == OrigBB)
1049 WaterList.insert(position: std::next(x: IP), x: NewBB);
1050 else
1051 WaterList.insert(position: IP, x: OrigBB);
1052 NewWaterList.insert(Ptr: OrigBB);
1053
1054 // Figure out how large the OrigBB is. As the first half of the original
1055 // block, it cannot contain a tablejump. The size includes
1056 // the new jump we added. (It should be possible to do this without
1057 // recounting everything, but it's very confusing, and this is rarely
1058 // executed.)
1059 BBUtils->computeBlockSize(MBB: OrigBB);
1060
1061 // Figure out how large the NewMBB is. As the second half of the original
1062 // block, it may contain a tablejump.
1063 BBUtils->computeBlockSize(MBB: NewBB);
1064
1065 // All BBOffsets following these blocks must be modified.
1066 BBUtils->adjustBBOffsetsAfter(MBB: OrigBB);
1067
1068 return NewBB;
1069}
1070
1071/// getUserOffset - Compute the offset of U.MI as seen by the hardware
1072/// displacement computation. Update U.KnownAlignment to match its current
1073/// basic block location.
1074unsigned ARMConstantIslands::getUserOffset(CPUser &U) const {
1075 unsigned UserOffset = BBUtils->getOffsetOf(MI: U.MI);
1076
1077 SmallVectorImpl<BasicBlockInfo> &BBInfo = BBUtils->getBBInfo();
1078 const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()];
1079 unsigned KnownBits = BBI.internalKnownBits();
1080
1081 // The value read from PC is offset from the actual instruction address.
1082 UserOffset += (isThumb ? 4 : 8);
1083
1084 // Because of inline assembly, we may not know the alignment (mod 4) of U.MI.
1085 // Make sure U.getMaxDisp() returns a constrained range.
1086 U.KnownAlignment = (KnownBits >= 2);
1087
1088 // On Thumb, offsets==2 mod 4 are rounded down by the hardware for
1089 // purposes of the displacement computation; compensate for that here.
1090 // For unknown alignments, getMaxDisp() constrains the range instead.
1091 if (isThumb && U.KnownAlignment)
1092 UserOffset &= ~3u;
1093
1094 return UserOffset;
1095}
1096
1097/// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
1098/// reference) is within MaxDisp of TrialOffset (a proposed location of a
1099/// constant pool entry).
1100/// UserOffset is computed by getUserOffset above to include PC adjustments. If
1101/// the mod 4 alignment of UserOffset is not known, the uncertainty must be
1102/// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that.
1103bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset,
1104 unsigned TrialOffset, unsigned MaxDisp,
1105 bool NegativeOK, bool IsSoImm) {
1106 if (UserOffset <= TrialOffset) {
1107 // User before the Trial.
1108 if (TrialOffset - UserOffset <= MaxDisp)
1109 return true;
1110 // FIXME: Make use full range of soimm values.
1111 } else if (NegativeOK) {
1112 if (UserOffset - TrialOffset <= MaxDisp)
1113 return true;
1114 // FIXME: Make use full range of soimm values.
1115 }
1116 return false;
1117}
1118
1119/// isWaterInRange - Returns true if a CPE placed after the specified
1120/// Water (a basic block) will be in range for the specific MI.
1121///
1122/// Compute how much the function will grow by inserting a CPE after Water.
1123bool ARMConstantIslands::isWaterInRange(unsigned UserOffset,
1124 MachineBasicBlock* Water, CPUser &U,
1125 unsigned &Growth) {
1126 BBInfoVector &BBInfo = BBUtils->getBBInfo();
1127 const Align CPEAlign = getCPEAlign(CPEMI: U.CPEMI);
1128 const unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(Alignment: CPEAlign);
1129 unsigned NextBlockOffset;
1130 Align NextBlockAlignment;
1131 MachineFunction::const_iterator NextBlock = Water->getIterator();
1132 if (++NextBlock == MF->end()) {
1133 NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
1134 } else {
1135 NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
1136 NextBlockAlignment = NextBlock->getAlignment();
1137 }
1138 unsigned Size = U.CPEMI->getOperand(i: 2).getImm();
1139 unsigned CPEEnd = CPEOffset + Size;
1140
1141 // The CPE may be able to hide in the alignment padding before the next
1142 // block. It may also cause more padding to be required if it is more aligned
1143 // that the next block.
1144 if (CPEEnd > NextBlockOffset) {
1145 Growth = CPEEnd - NextBlockOffset;
1146 // Compute the padding that would go at the end of the CPE to align the next
1147 // block.
1148 Growth += offsetToAlignment(Value: CPEEnd, Alignment: NextBlockAlignment);
1149
1150 // If the CPE is to be inserted before the instruction, that will raise
1151 // the offset of the instruction. Also account for unknown alignment padding
1152 // in blocks between CPE and the user.
1153 if (CPEOffset < UserOffset)
1154 UserOffset += Growth + UnknownPadding(Alignment: MF->getAlignment(), KnownBits: Log2(A: CPEAlign));
1155 } else
1156 // CPE fits in existing padding.
1157 Growth = 0;
1158
1159 return isOffsetInRange(UserOffset, TrialOffset: CPEOffset, U);
1160}
1161
1162/// isCPEntryInRange - Returns true if the distance between specific MI and
1163/// specific ConstPool entry instruction can fit in MI's displacement field.
1164bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
1165 MachineInstr *CPEMI, unsigned MaxDisp,
1166 bool NegOk, bool DoDump) {
1167 unsigned CPEOffset = BBUtils->getOffsetOf(MI: CPEMI);
1168
1169 if (DoDump) {
1170 LLVM_DEBUG({
1171 BBInfoVector &BBInfo = BBUtils->getBBInfo();
1172 unsigned Block = MI->getParent()->getNumber();
1173 const BasicBlockInfo &BBI = BBInfo[Block];
1174 dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
1175 << " max delta=" << MaxDisp
1176 << format(" insn address=%#x", UserOffset) << " in "
1177 << printMBBReference(*MI->getParent()) << ": "
1178 << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
1179 << format("CPE address=%#x offset=%+d: ", CPEOffset,
1180 int(CPEOffset - UserOffset));
1181 });
1182 }
1183
1184 return isOffsetInRange(UserOffset, TrialOffset: CPEOffset, MaxDisp, NegativeOK: NegOk);
1185}
1186
1187#ifndef NDEBUG
1188/// BBIsJumpedOver - Return true of the specified basic block's only predecessor
1189/// unconditionally branches to its only successor.
1190static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
1191 if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
1192 return false;
1193
1194 MachineBasicBlock *Succ = *MBB->succ_begin();
1195 MachineBasicBlock *Pred = *MBB->pred_begin();
1196 MachineInstr *PredMI = &Pred->back();
1197 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB
1198 || PredMI->getOpcode() == ARM::t2B)
1199 return PredMI->getOperand(i: 0).getMBB() == Succ;
1200 return false;
1201}
1202#endif // NDEBUG
1203
1204/// decrementCPEReferenceCount - find the constant pool entry with index CPI
1205/// and instruction CPEMI, and decrement its refcount. If the refcount
1206/// becomes 0 remove the entry and instruction. Returns true if we removed
1207/// the entry, false if we didn't.
1208bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI,
1209 MachineInstr *CPEMI) {
1210 // Find the old entry. Eliminate it if it is no longer used.
1211 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
1212 assert(CPE && "Unexpected!");
1213 if (--CPE->RefCount == 0) {
1214 removeDeadCPEMI(CPEMI);
1215 CPE->CPEMI = nullptr;
1216 --NumCPEs;
1217 return true;
1218 }
1219 return false;
1220}
1221
1222unsigned ARMConstantIslands::getCombinedIndex(const MachineInstr *CPEMI) {
1223 if (CPEMI->getOperand(i: 1).isCPI())
1224 return CPEMI->getOperand(i: 1).getIndex();
1225
1226 return JumpTableEntryIndices[CPEMI->getOperand(i: 1).getIndex()];
1227}
1228
1229/// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1230/// if not, see if an in-range clone of the CPE is in range, and if so,
1231/// change the data structures so the user references the clone. Returns:
1232/// 0 = no existing entry found
1233/// 1 = entry found, and there were no code insertions or deletions
1234/// 2 = entry found, and there were code insertions or deletions
1235int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset) {
1236 MachineInstr *UserMI = U.MI;
1237 MachineInstr *CPEMI = U.CPEMI;
1238
1239 // Check to see if the CPE is already in-range.
1240 if (isCPEntryInRange(MI: UserMI, UserOffset, CPEMI, MaxDisp: U.getMaxDisp(), NegOk: U.NegOk,
1241 DoDump: true)) {
1242 LLVM_DEBUG(dbgs() << "In range\n");
1243 return 1;
1244 }
1245
1246 // No. Look for previously created clones of the CPE that are in range.
1247 unsigned CPI = getCombinedIndex(CPEMI);
1248 std::vector<CPEntry> &CPEs = CPEntries[CPI];
1249 for (CPEntry &CPE : CPEs) {
1250 // We already tried this one
1251 if (CPE.CPEMI == CPEMI)
1252 continue;
1253 // Removing CPEs can leave empty entries, skip
1254 if (CPE.CPEMI == nullptr)
1255 continue;
1256 if (isCPEntryInRange(MI: UserMI, UserOffset, CPEMI: CPE.CPEMI, MaxDisp: U.getMaxDisp(),
1257 NegOk: U.NegOk)) {
1258 LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" << CPE.CPI
1259 << "\n");
1260 // Point the CPUser node to the replacement
1261 U.CPEMI = CPE.CPEMI;
1262 // Change the CPI in the instruction operand to refer to the clone.
1263 for (MachineOperand &MO : UserMI->operands())
1264 if (MO.isCPI()) {
1265 MO.setIndex(CPE.CPI);
1266 break;
1267 }
1268 // Adjust the refcount of the clone...
1269 CPE.RefCount++;
1270 // ...and the original. If we didn't remove the old entry, none of the
1271 // addresses changed, so we don't need another pass.
1272 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
1273 }
1274 }
1275 return 0;
1276}
1277
1278/// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
1279/// the specific unconditional branch instruction.
1280static inline unsigned getUnconditionalBrDisp(int Opc) {
1281 switch (Opc) {
1282 case ARM::tB:
1283 return ((1<<10)-1)*2;
1284 case ARM::t2B:
1285 return ((1<<23)-1)*2;
1286 default:
1287 break;
1288 }
1289
1290 return ((1<<23)-1)*4;
1291}
1292
1293/// findAvailableWater - Look for an existing entry in the WaterList in which
1294/// we can place the CPE referenced from U so it's within range of U's MI.
1295/// Returns true if found, false if not. If it returns true, WaterIter
1296/// is set to the WaterList entry. For Thumb, prefer water that will not
1297/// introduce padding to water that will. To ensure that this pass
1298/// terminates, the CPE location for a particular CPUser is only allowed to
1299/// move to a lower address, so search backward from the end of the list and
1300/// prefer the first water that is in range.
1301bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
1302 water_iterator &WaterIter,
1303 bool CloserWater) {
1304 if (WaterList.empty())
1305 return false;
1306
1307 unsigned BestGrowth = ~0u;
1308 // The nearest water without splitting the UserBB is right after it.
1309 // If the distance is still large (we have a big BB), then we need to split it
1310 // if we don't converge after certain iterations. This helps the following
1311 // situation to converge:
1312 // BB0:
1313 // Big BB
1314 // BB1:
1315 // Constant Pool
1316 // When a CP access is out of range, BB0 may be used as water. However,
1317 // inserting islands between BB0 and BB1 makes other accesses out of range.
1318 MachineBasicBlock *UserBB = U.MI->getParent();
1319 BBInfoVector &BBInfo = BBUtils->getBBInfo();
1320 const Align CPEAlign = getCPEAlign(CPEMI: U.CPEMI);
1321 unsigned MinNoSplitDisp = BBInfo[UserBB->getNumber()].postOffset(Alignment: CPEAlign);
1322 if (CloserWater && MinNoSplitDisp > U.getMaxDisp() / 2)
1323 return false;
1324 for (water_iterator IP = std::prev(x: WaterList.end()), B = WaterList.begin();;
1325 --IP) {
1326 MachineBasicBlock* WaterBB = *IP;
1327 // Check if water is in range and is either at a lower address than the
1328 // current "high water mark" or a new water block that was created since
1329 // the previous iteration by inserting an unconditional branch. In the
1330 // latter case, we want to allow resetting the high water mark back to
1331 // this new water since we haven't seen it before. Inserting branches
1332 // should be relatively uncommon and when it does happen, we want to be
1333 // sure to take advantage of it for all the CPEs near that block, so that
1334 // we don't insert more branches than necessary.
1335 // When CloserWater is true, we try to find the lowest address after (or
1336 // equal to) user MI's BB no matter of padding growth.
1337 unsigned Growth;
1338 if (isWaterInRange(UserOffset, Water: WaterBB, U, Growth) &&
1339 (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
1340 NewWaterList.count(Ptr: WaterBB) || WaterBB == U.MI->getParent()) &&
1341 Growth < BestGrowth) {
1342 // This is the least amount of required padding seen so far.
1343 BestGrowth = Growth;
1344 WaterIter = IP;
1345 LLVM_DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB)
1346 << " Growth=" << Growth << '\n');
1347
1348 if (CloserWater && WaterBB == U.MI->getParent())
1349 return true;
1350 // Keep looking unless it is perfect and we're not looking for the lowest
1351 // possible address.
1352 if (!CloserWater && BestGrowth == 0)
1353 return true;
1354 }
1355 if (IP == B)
1356 break;
1357 }
1358 return BestGrowth != ~0u;
1359}
1360
1361/// createNewWater - No existing WaterList entry will work for
1362/// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the
1363/// block is used if in range, and the conditional branch munged so control
1364/// flow is correct. Otherwise the block is split to create a hole with an
1365/// unconditional branch around it. In either case NewMBB is set to a
1366/// block following which the new island can be inserted (the WaterList
1367/// is not adjusted).
1368void ARMConstantIslands::createNewWater(unsigned CPUserIndex,
1369 unsigned UserOffset,
1370 MachineBasicBlock *&NewMBB) {
1371 CPUser &U = CPUsers[CPUserIndex];
1372 MachineInstr *UserMI = U.MI;
1373 MachineInstr *CPEMI = U.CPEMI;
1374 const Align CPEAlign = getCPEAlign(CPEMI);
1375 MachineBasicBlock *UserMBB = UserMI->getParent();
1376 BBInfoVector &BBInfo = BBUtils->getBBInfo();
1377 const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
1378
1379 // If the block does not end in an unconditional branch already, and if the
1380 // end of the block is within range, make new water there. (The addition
1381 // below is for the unconditional branch we will be adding: 4 bytes on ARM +
1382 // Thumb2, 2 on Thumb1.
1383 if (BBHasFallthrough(MBB: UserMBB)) {
1384 // Size of branch to insert.
1385 unsigned Delta = isThumb1 ? 2 : 4;
1386 // Compute the offset where the CPE will begin.
1387 unsigned CPEOffset = UserBBI.postOffset(Alignment: CPEAlign) + Delta;
1388
1389 if (isOffsetInRange(UserOffset, TrialOffset: CPEOffset, U)) {
1390 LLVM_DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB)
1391 << format(", expected CPE offset %#x\n", CPEOffset));
1392 NewMBB = &*++UserMBB->getIterator();
1393 // Add an unconditional branch from UserMBB to fallthrough block. Record
1394 // it for branch lengthening; this new branch will not get out of range,
1395 // but if the preceding conditional branch is out of range, the targets
1396 // will be exchanged, and the altered branch may be out of range, so the
1397 // machinery has to know about it.
1398 int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B;
1399 if (!isThumb)
1400 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
1401 else
1402 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr))
1403 .addMBB(NewMBB)
1404 .add(predOps(Pred: ARMCC::AL));
1405 unsigned MaxDisp = getUnconditionalBrDisp(Opc: UncondBr);
1406 ImmBranches.push_back(x: ImmBranch(&UserMBB->back(),
1407 MaxDisp, false, UncondBr));
1408 BBUtils->computeBlockSize(MBB: UserMBB);
1409 BBUtils->adjustBBOffsetsAfter(MBB: UserMBB);
1410 return;
1411 }
1412 }
1413
1414 // What a big block. Find a place within the block to split it. This is a
1415 // little tricky on Thumb1 since instructions are 2 bytes and constant pool
1416 // entries are 4 bytes: if instruction I references island CPE, and
1417 // instruction I+1 references CPE', it will not work well to put CPE as far
1418 // forward as possible, since then CPE' cannot immediately follow it (that
1419 // location is 2 bytes farther away from I+1 than CPE was from I) and we'd
1420 // need to create a new island. So, we make a first guess, then walk through
1421 // the instructions between the one currently being looked at and the
1422 // possible insertion point, and make sure any other instructions that
1423 // reference CPEs will be able to use the same island area; if not, we back
1424 // up the insertion point.
1425
1426 // Try to split the block so it's fully aligned. Compute the latest split
1427 // point where we can add a 4-byte branch instruction, and then align to
1428 // Align which is the largest possible alignment in the function.
1429 const Align Align = MF->getAlignment();
1430 assert(Align >= CPEAlign && "Over-aligned constant pool entry");
1431 unsigned KnownBits = UserBBI.internalKnownBits();
1432 unsigned UPad = UnknownPadding(Alignment: Align, KnownBits);
1433 unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad;
1434 LLVM_DEBUG(dbgs() << format("Split in middle of big block before %#x",
1435 BaseInsertOffset));
1436
1437 // The 4 in the following is for the unconditional branch we'll be inserting
1438 // (allows for long branch on Thumb1). Alignment of the island is handled
1439 // inside isOffsetInRange.
1440 BaseInsertOffset -= 4;
1441
1442 LLVM_DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
1443 << " la=" << Log2(Align) << " kb=" << KnownBits
1444 << " up=" << UPad << '\n');
1445
1446 // This could point off the end of the block if we've already got constant
1447 // pool entries following this block; only the last one is in the water list.
1448 // Back past any possible branches (allow for a conditional and a maximally
1449 // long unconditional).
1450 if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
1451 // Ensure BaseInsertOffset is larger than the offset of the instruction
1452 // following UserMI so that the loop which searches for the split point
1453 // iterates at least once.
1454 BaseInsertOffset =
1455 std::max(a: UserBBI.postOffset() - UPad - 8,
1456 b: UserOffset + TII->getInstSizeInBytes(MI: *UserMI) + 1);
1457 // If the CP is referenced(ie, UserOffset) is in first four instructions
1458 // after IT, this recalculated BaseInsertOffset could be in the middle of
1459 // an IT block. If it is, change the BaseInsertOffset to just after the
1460 // IT block. This still make the CP Entry is in range becuase of the
1461 // following reasons.
1462 // 1. The initial BaseseInsertOffset calculated is (UserOffset +
1463 // U.getMaxDisp() - UPad).
1464 // 2. An IT block is only at most 4 instructions plus the "it" itself (18
1465 // bytes).
1466 // 3. All the relevant instructions support much larger Maximum
1467 // displacement.
1468 MachineBasicBlock::iterator I = UserMI;
1469 ++I;
1470 Register PredReg;
1471 for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI);
1472 I->getOpcode() != ARM::t2IT &&
1473 getITInstrPredicate(*I, PredReg) != ARMCC::AL;
1474 Offset += TII->getInstSizeInBytes(*I), I = std::next(I)) {
1475 BaseInsertOffset =
1476 std::max(BaseInsertOffset, Offset + TII->getInstSizeInBytes(*I) + 1);
1477 assert(I != UserMBB->end() && "Fell off end of block");
1478 }
1479 LLVM_DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
1480 }
1481 unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad +
1482 CPEMI->getOperand(i: 2).getImm();
1483 MachineBasicBlock::iterator MI = UserMI;
1484 ++MI;
1485 unsigned CPUIndex = CPUserIndex+1;
1486 unsigned NumCPUsers = CPUsers.size();
1487 MachineInstr *LastIT = nullptr;
1488 for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(MI: *UserMI);
1489 Offset < BaseInsertOffset;
1490 Offset += TII->getInstSizeInBytes(MI: *MI), MI = std::next(x: MI)) {
1491 assert(MI != UserMBB->end() && "Fell off end of block");
1492 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == &*MI) {
1493 CPUser &U = CPUsers[CPUIndex];
1494 if (!isOffsetInRange(UserOffset: Offset, TrialOffset: EndInsertOffset, U)) {
1495 // Shift intertion point by one unit of alignment so it is within reach.
1496 BaseInsertOffset -= Align.value();
1497 EndInsertOffset -= Align.value();
1498 }
1499 // This is overly conservative, as we don't account for CPEMIs being
1500 // reused within the block, but it doesn't matter much. Also assume CPEs
1501 // are added in order with alignment padding. We may eventually be able
1502 // to pack the aligned CPEs better.
1503 EndInsertOffset += U.CPEMI->getOperand(i: 2).getImm();
1504 CPUIndex++;
1505 }
1506
1507 // Remember the last IT instruction.
1508 if (MI->getOpcode() == ARM::t2IT)
1509 LastIT = &*MI;
1510 }
1511
1512 --MI;
1513
1514 // Avoid splitting an IT block.
1515 if (LastIT) {
1516 Register PredReg;
1517 ARMCC::CondCodes CC = getITInstrPredicate(MI: *MI, PredReg);
1518 if (CC != ARMCC::AL)
1519 MI = LastIT;
1520 }
1521
1522 // Avoid splitting a MOVW+MOVT pair with a relocation on Windows.
1523 // On Windows, this instruction pair is covered by one single
1524 // IMAGE_REL_ARM_MOV32T relocation which covers both instructions. If a
1525 // constant island is injected inbetween them, the relocation will clobber
1526 // the instruction and fail to update the MOVT instruction.
1527 // (These instructions are bundled up until right before the ConstantIslands
1528 // pass.)
1529 if (STI->isTargetWindows() && isThumb && MI->getOpcode() == ARM::t2MOVTi16 &&
1530 (MI->getOperand(2).getTargetFlags() & ARMII::MO_OPTION_MASK) ==
1531 ARMII::MO_HI16) {
1532 --MI;
1533 assert(MI->getOpcode() == ARM::t2MOVi16 &&
1534 (MI->getOperand(1).getTargetFlags() & ARMII::MO_OPTION_MASK) ==
1535 ARMII::MO_LO16);
1536 }
1537
1538 // We really must not split an IT block.
1539#ifndef NDEBUG
1540 Register PredReg;
1541 assert(!isThumb || getITInstrPredicate(*MI, PredReg) == ARMCC::AL);
1542#endif
1543 NewMBB = splitBlockBeforeInstr(MI: &*MI);
1544}
1545
1546/// handleConstantPoolUser - Analyze the specified user, checking to see if it
1547/// is out-of-range. If so, pick up the constant pool value and move it some
1548/// place in-range. Return true if we changed any addresses (thus must run
1549/// another pass of branch lengthening), false otherwise.
1550bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex,
1551 bool CloserWater) {
1552 CPUser &U = CPUsers[CPUserIndex];
1553 MachineInstr *UserMI = U.MI;
1554 MachineInstr *CPEMI = U.CPEMI;
1555 unsigned CPI = getCombinedIndex(CPEMI);
1556 unsigned Size = CPEMI->getOperand(i: 2).getImm();
1557 // Compute this only once, it's expensive.
1558 unsigned UserOffset = getUserOffset(U);
1559
1560 // See if the current entry is within range, or there is a clone of it
1561 // in range.
1562 int result = findInRangeCPEntry(U, UserOffset);
1563 if (result==1) return false;
1564 else if (result==2) return true;
1565
1566 // No existing clone of this CPE is within range.
1567 // We will be generating a new clone. Get a UID for it.
1568 unsigned ID = AFI->createPICLabelUId();
1569
1570 // Look for water where we can place this CPE.
1571 MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
1572 MachineBasicBlock *NewMBB;
1573 water_iterator IP;
1574 if (findAvailableWater(U, UserOffset, WaterIter&: IP, CloserWater)) {
1575 LLVM_DEBUG(dbgs() << "Found water in range\n");
1576 MachineBasicBlock *WaterBB = *IP;
1577
1578 // If the original WaterList entry was "new water" on this iteration,
1579 // propagate that to the new island. This is just keeping NewWaterList
1580 // updated to match the WaterList, which will be updated below.
1581 if (NewWaterList.erase(Ptr: WaterBB))
1582 NewWaterList.insert(Ptr: NewIsland);
1583
1584 // The new CPE goes before the following block (NewMBB).
1585 NewMBB = &*++WaterBB->getIterator();
1586 } else {
1587 // No water found.
1588 LLVM_DEBUG(dbgs() << "No water found\n");
1589 createNewWater(CPUserIndex, UserOffset, NewMBB);
1590
1591 // splitBlockBeforeInstr adds to WaterList, which is important when it is
1592 // called while handling branches so that the water will be seen on the
1593 // next iteration for constant pools, but in this context, we don't want
1594 // it. Check for this so it will be removed from the WaterList.
1595 // Also remove any entry from NewWaterList.
1596 MachineBasicBlock *WaterBB = &*--NewMBB->getIterator();
1597 IP = find(Range&: WaterList, Val: WaterBB);
1598 if (IP != WaterList.end())
1599 NewWaterList.erase(Ptr: WaterBB);
1600
1601 // We are adding new water. Update NewWaterList.
1602 NewWaterList.insert(Ptr: NewIsland);
1603 }
1604 // Always align the new block because CP entries can be smaller than 4
1605 // bytes. Be careful not to decrease the existing alignment, e.g. NewMBB may
1606 // be an already aligned constant pool block.
1607 const Align Alignment = isThumb ? Align(2) : Align(4);
1608 if (NewMBB->getAlignment() < Alignment)
1609 NewMBB->setAlignment(Alignment);
1610
1611 // Remove the original WaterList entry; we want subsequent insertions in
1612 // this vicinity to go after the one we're about to insert. This
1613 // considerably reduces the number of times we have to move the same CPE
1614 // more than once and is also important to ensure the algorithm terminates.
1615 if (IP != WaterList.end())
1616 WaterList.erase(position: IP);
1617
1618 // Okay, we know we can put an island before NewMBB now, do it!
1619 MF->insert(MBBI: NewMBB->getIterator(), MBB: NewIsland);
1620
1621 // Update internal data structures to account for the newly inserted MBB.
1622 updateForInsertedWaterBlock(NewBB: NewIsland);
1623
1624 // Now that we have an island to add the CPE to, clone the original CPE and
1625 // add it to the island.
1626 U.HighWaterMark = NewIsland;
1627 U.CPEMI = BuildMI(BB: NewIsland, MIMD: DebugLoc(), MCID: CPEMI->getDesc())
1628 .addImm(Val: ID)
1629 .add(MO: CPEMI->getOperand(i: 1))
1630 .addImm(Val: Size);
1631 CPEntries[CPI].push_back(x: CPEntry(U.CPEMI, ID, 1));
1632 ++NumCPEs;
1633
1634 // Decrement the old entry, and remove it if refcount becomes 0.
1635 decrementCPEReferenceCount(CPI, CPEMI);
1636
1637 // Mark the basic block as aligned as required by the const-pool entry.
1638 NewIsland->setAlignment(getCPEAlign(CPEMI: U.CPEMI));
1639
1640 // Increase the size of the island block to account for the new entry.
1641 BBUtils->adjustBBSize(MBB: NewIsland, Size);
1642 BBUtils->adjustBBOffsetsAfter(MBB: &*--NewIsland->getIterator());
1643
1644 // Finally, change the CPI in the instruction operand to be ID.
1645 for (MachineOperand &MO : UserMI->operands())
1646 if (MO.isCPI()) {
1647 MO.setIndex(ID);
1648 break;
1649 }
1650
1651 LLVM_DEBUG(
1652 dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI
1653 << format(" offset=%#x\n",
1654 BBUtils->getBBInfo()[NewIsland->getNumber()].Offset));
1655
1656 return true;
1657}
1658
1659/// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
1660/// sizes and offsets of impacted basic blocks.
1661void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
1662 MachineBasicBlock *CPEBB = CPEMI->getParent();
1663 unsigned Size = CPEMI->getOperand(i: 2).getImm();
1664 CPEMI->eraseFromParent();
1665 BBInfoVector &BBInfo = BBUtils->getBBInfo();
1666 BBUtils->adjustBBSize(MBB: CPEBB, Size: -Size);
1667 // All succeeding offsets have the current size value added in, fix this.
1668 if (CPEBB->empty()) {
1669 BBInfo[CPEBB->getNumber()].Size = 0;
1670
1671 // This block no longer needs to be aligned.
1672 CPEBB->setAlignment(Align(1));
1673 } else {
1674 // Entries are sorted by descending alignment, so realign from the front.
1675 CPEBB->setAlignment(getCPEAlign(CPEMI: &*CPEBB->begin()));
1676 }
1677
1678 BBUtils->adjustBBOffsetsAfter(MBB: CPEBB);
1679 // An island has only one predecessor BB and one successor BB. Check if
1680 // this BB's predecessor jumps directly to this BB's successor. This
1681 // shouldn't happen currently.
1682 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
1683 // FIXME: remove the empty blocks after all the work is done?
1684}
1685
1686/// removeUnusedCPEntries - Remove constant pool entries whose refcounts
1687/// are zero.
1688bool ARMConstantIslands::removeUnusedCPEntries() {
1689 unsigned MadeChange = false;
1690 for (std::vector<CPEntry> &CPEs : CPEntries) {
1691 for (CPEntry &CPE : CPEs) {
1692 if (CPE.RefCount == 0 && CPE.CPEMI) {
1693 removeDeadCPEMI(CPEMI: CPE.CPEMI);
1694 CPE.CPEMI = nullptr;
1695 MadeChange = true;
1696 }
1697 }
1698 }
1699 return MadeChange;
1700}
1701
1702
1703/// fixupImmediateBr - Fix up an immediate branch whose destination is too far
1704/// away to fit in its displacement field.
1705bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) {
1706 MachineInstr *MI = Br.MI;
1707 MachineBasicBlock *DestBB = MI->getOperand(i: 0).getMBB();
1708
1709 // Check to see if the DestBB is already in-range.
1710 if (BBUtils->isBBInRange(MI, DestBB, MaxDisp: Br.MaxDisp))
1711 return false;
1712
1713 if (!Br.isCond)
1714 return fixupUnconditionalBr(Br);
1715 return fixupConditionalBr(Br);
1716}
1717
1718/// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
1719/// too far away to fit in its displacement field. If the LR register has been
1720/// spilled in the epilogue, then we can use BL to implement a far jump.
1721/// Otherwise, add an intermediate branch instruction to a branch.
1722bool
1723ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) {
1724 MachineInstr *MI = Br.MI;
1725 MachineBasicBlock *MBB = MI->getParent();
1726 if (!isThumb1)
1727 llvm_unreachable("fixupUnconditionalBr is Thumb1 only!");
1728
1729 if (!AFI->isLRSpilled())
1730 report_fatal_error(reason: "underestimated function size");
1731
1732 // Use BL to implement far jump.
1733 Br.MaxDisp = (1 << 21) * 2;
1734 MI->setDesc(TII->get(ARM::tBfar));
1735 BBInfoVector &BBInfo = BBUtils->getBBInfo();
1736 BBInfo[MBB->getNumber()].Size += 2;
1737 BBUtils->adjustBBOffsetsAfter(MBB);
1738 ++NumUBrFixed;
1739
1740 LLVM_DEBUG(dbgs() << " Changed B to long jump " << *MI);
1741
1742 return true;
1743}
1744
1745/// fixupConditionalBr - Fix up a conditional branch whose destination is too
1746/// far away to fit in its displacement field. It is converted to an inverse
1747/// conditional branch + an unconditional branch to the destination.
1748bool
1749ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) {
1750 MachineInstr *MI = Br.MI;
1751 MachineBasicBlock *DestBB = MI->getOperand(i: 0).getMBB();
1752
1753 // Add an unconditional branch to the destination and invert the branch
1754 // condition to jump over it:
1755 // blt L1
1756 // =>
1757 // bge L2
1758 // b L1
1759 // L2:
1760 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(i: 1).getImm();
1761 CC = ARMCC::getOppositeCondition(CC);
1762 Register CCReg = MI->getOperand(i: 2).getReg();
1763
1764 // If the branch is at the end of its MBB and that has a fall-through block,
1765 // direct the updated conditional branch to the fall-through block. Otherwise,
1766 // split the MBB before the next instruction.
1767 MachineBasicBlock *MBB = MI->getParent();
1768 MachineInstr *BMI = &MBB->back();
1769 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
1770
1771 ++NumCBrFixed;
1772 if (BMI != MI) {
1773 if (std::next(x: MachineBasicBlock::iterator(MI)) == std::prev(x: MBB->end()) &&
1774 BMI->getOpcode() == Br.UncondBr) {
1775 // Last MI in the BB is an unconditional branch. Can we simply invert the
1776 // condition and swap destinations:
1777 // beq L1
1778 // b L2
1779 // =>
1780 // bne L2
1781 // b L1
1782 MachineBasicBlock *NewDest = BMI->getOperand(i: 0).getMBB();
1783 if (BBUtils->isBBInRange(MI, DestBB: NewDest, MaxDisp: Br.MaxDisp)) {
1784 LLVM_DEBUG(
1785 dbgs() << " Invert Bcc condition and swap its destination with "
1786 << *BMI);
1787 BMI->getOperand(i: 0).setMBB(DestBB);
1788 MI->getOperand(i: 0).setMBB(NewDest);
1789 MI->getOperand(i: 1).setImm(CC);
1790 return true;
1791 }
1792 }
1793 }
1794
1795 if (NeedSplit) {
1796 splitBlockBeforeInstr(MI);
1797 // No need for the branch to the next block. We're adding an unconditional
1798 // branch to the destination.
1799 int delta = TII->getInstSizeInBytes(MI: MBB->back());
1800 BBUtils->adjustBBSize(MBB, Size: -delta);
1801 MBB->back().eraseFromParent();
1802
1803 // The conditional successor will be swapped between the BBs after this, so
1804 // update CFG.
1805 MBB->addSuccessor(Succ: DestBB);
1806 std::next(x: MBB->getIterator())->removeSuccessor(Succ: DestBB);
1807
1808 // BBInfo[SplitBB].Offset is wrong temporarily, fixed below
1809 }
1810 MachineBasicBlock *NextBB = &*++MBB->getIterator();
1811
1812 LLVM_DEBUG(dbgs() << " Insert B to " << printMBBReference(*DestBB)
1813 << " also invert condition and change dest. to "
1814 << printMBBReference(*NextBB) << "\n");
1815
1816 // Insert a new conditional branch and a new unconditional branch.
1817 // Also update the ImmBranch as well as adding a new entry for the new branch.
1818 BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode()))
1819 .addMBB(NextBB).addImm(CC).addReg(CCReg);
1820 Br.MI = &MBB->back();
1821 BBUtils->adjustBBSize(MBB, Size: TII->getInstSizeInBytes(MI: MBB->back()));
1822 if (isThumb)
1823 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr))
1824 .addMBB(DestBB)
1825 .add(predOps(Pred: ARMCC::AL));
1826 else
1827 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
1828 BBUtils->adjustBBSize(MBB, Size: TII->getInstSizeInBytes(MI: MBB->back()));
1829 unsigned MaxDisp = getUnconditionalBrDisp(Opc: Br.UncondBr);
1830 ImmBranches.push_back(x: ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
1831
1832 // Remove the old conditional branch. It may or may not still be in MBB.
1833 BBUtils->adjustBBSize(MBB: MI->getParent(), Size: -TII->getInstSizeInBytes(MI: *MI));
1834 MI->eraseFromParent();
1835 BBUtils->adjustBBOffsetsAfter(MBB);
1836 return true;
1837}
1838
1839bool ARMConstantIslands::optimizeThumb2Instructions() {
1840 bool MadeChange = false;
1841
1842 // Shrink ADR and LDR from constantpool.
1843 for (CPUser &U : CPUsers) {
1844 unsigned Opcode = U.MI->getOpcode();
1845 unsigned NewOpc = 0;
1846 unsigned Scale = 1;
1847 unsigned Bits = 0;
1848 switch (Opcode) {
1849 default: break;
1850 case ARM::t2LEApcrel:
1851 if (isARMLowRegister(Reg: U.MI->getOperand(i: 0).getReg())) {
1852 NewOpc = ARM::tLEApcrel;
1853 Bits = 8;
1854 Scale = 4;
1855 }
1856 break;
1857 case ARM::t2LDRpci:
1858 if (isARMLowRegister(Reg: U.MI->getOperand(i: 0).getReg())) {
1859 NewOpc = ARM::tLDRpci;
1860 Bits = 8;
1861 Scale = 4;
1862 }
1863 break;
1864 }
1865
1866 if (!NewOpc)
1867 continue;
1868
1869 unsigned UserOffset = getUserOffset(U);
1870 unsigned MaxOffs = ((1 << Bits) - 1) * Scale;
1871
1872 // Be conservative with inline asm.
1873 if (!U.KnownAlignment)
1874 MaxOffs -= 2;
1875
1876 // FIXME: Check if offset is multiple of scale if scale is not 4.
1877 if (isCPEntryInRange(MI: U.MI, UserOffset, CPEMI: U.CPEMI, MaxDisp: MaxOffs, NegOk: false, DoDump: true)) {
1878 LLVM_DEBUG(dbgs() << "Shrink: " << *U.MI);
1879 U.MI->setDesc(TII->get(NewOpc));
1880 MachineBasicBlock *MBB = U.MI->getParent();
1881 BBUtils->adjustBBSize(MBB, Size: -2);
1882 BBUtils->adjustBBOffsetsAfter(MBB);
1883 ++NumT2CPShrunk;
1884 MadeChange = true;
1885 }
1886 }
1887
1888 return MadeChange;
1889}
1890
1891
1892bool ARMConstantIslands::optimizeThumb2Branches() {
1893
1894 auto TryShrinkBranch = [this](ImmBranch &Br) {
1895 unsigned Opcode = Br.MI->getOpcode();
1896 unsigned NewOpc = 0;
1897 unsigned Scale = 1;
1898 unsigned Bits = 0;
1899 switch (Opcode) {
1900 default: break;
1901 case ARM::t2B:
1902 NewOpc = ARM::tB;
1903 Bits = 11;
1904 Scale = 2;
1905 break;
1906 case ARM::t2Bcc:
1907 NewOpc = ARM::tBcc;
1908 Bits = 8;
1909 Scale = 2;
1910 break;
1911 }
1912 if (NewOpc) {
1913 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
1914 MachineBasicBlock *DestBB = Br.MI->getOperand(i: 0).getMBB();
1915 if (BBUtils->isBBInRange(MI: Br.MI, DestBB, MaxDisp: MaxOffs)) {
1916 LLVM_DEBUG(dbgs() << "Shrink branch: " << *Br.MI);
1917 Br.MI->setDesc(TII->get(NewOpc));
1918 MachineBasicBlock *MBB = Br.MI->getParent();
1919 BBUtils->adjustBBSize(MBB, Size: -2);
1920 BBUtils->adjustBBOffsetsAfter(MBB);
1921 ++NumT2BrShrunk;
1922 return true;
1923 }
1924 }
1925 return false;
1926 };
1927
1928 struct ImmCompare {
1929 MachineInstr* MI = nullptr;
1930 unsigned NewOpc = 0;
1931 };
1932
1933 auto FindCmpForCBZ = [this](ImmBranch &Br, ImmCompare &ImmCmp,
1934 MachineBasicBlock *DestBB) {
1935 ImmCmp.MI = nullptr;
1936 ImmCmp.NewOpc = 0;
1937
1938 // If the conditional branch doesn't kill CPSR, then CPSR can be liveout
1939 // so this transformation is not safe.
1940 if (!Br.MI->killsRegister(ARM::CPSR, /*TRI=*/nullptr))
1941 return false;
1942
1943 Register PredReg;
1944 unsigned NewOpc = 0;
1945 ARMCC::CondCodes Pred = getInstrPredicate(MI: *Br.MI, PredReg);
1946 if (Pred == ARMCC::EQ)
1947 NewOpc = ARM::tCBZ;
1948 else if (Pred == ARMCC::NE)
1949 NewOpc = ARM::tCBNZ;
1950 else
1951 return false;
1952
1953 // Check if the distance is within 126. Subtract starting offset by 2
1954 // because the cmp will be eliminated.
1955 unsigned BrOffset = BBUtils->getOffsetOf(MI: Br.MI) + 4 - 2;
1956 BBInfoVector &BBInfo = BBUtils->getBBInfo();
1957 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
1958 if (BrOffset >= DestOffset || (DestOffset - BrOffset) > 126)
1959 return false;
1960
1961 // Search backwards to find a tCMPi8
1962 auto *TRI = STI->getRegisterInfo();
1963 MachineInstr *CmpMI = findCMPToFoldIntoCBZ(Br.MI, TRI);
1964 if (!CmpMI || CmpMI->getOpcode() != ARM::tCMPi8)
1965 return false;
1966
1967 ImmCmp.MI = CmpMI;
1968 ImmCmp.NewOpc = NewOpc;
1969 return true;
1970 };
1971
1972 auto TryConvertToLE = [this](ImmBranch &Br, ImmCompare &Cmp) {
1973 if (Br.MI->getOpcode() != ARM::t2Bcc || !STI->hasLOB() ||
1974 STI->hasMinSize())
1975 return false;
1976
1977 MachineBasicBlock *MBB = Br.MI->getParent();
1978 MachineBasicBlock *DestBB = Br.MI->getOperand(i: 0).getMBB();
1979 if (BBUtils->getOffsetOf(MBB) < BBUtils->getOffsetOf(MBB: DestBB) ||
1980 !BBUtils->isBBInRange(MI: Br.MI, DestBB, MaxDisp: 4094))
1981 return false;
1982
1983 if (!DT->dominates(A: DestBB, B: MBB))
1984 return false;
1985
1986 // We queried for the CBN?Z opcode based upon the 'ExitBB', the opposite
1987 // target of Br. So now we need to reverse the condition.
1988 Cmp.NewOpc = Cmp.NewOpc == ARM::tCBZ ? ARM::tCBNZ : ARM::tCBZ;
1989
1990 MachineInstrBuilder MIB = BuildMI(*MBB, Br.MI, Br.MI->getDebugLoc(),
1991 TII->get(ARM::t2LE));
1992 // Swapped a t2Bcc for a t2LE, so no need to update the size of the block.
1993 MIB.add(MO: Br.MI->getOperand(i: 0));
1994 Br.MI->eraseFromParent();
1995 Br.MI = MIB;
1996 ++NumLEInserted;
1997 return true;
1998 };
1999
2000 bool MadeChange = false;
2001
2002 // The order in which branches appear in ImmBranches is approximately their
2003 // order within the function body. By visiting later branches first, we reduce
2004 // the distance between earlier forward branches and their targets, making it
2005 // more likely that the cbn?z optimization, which can only apply to forward
2006 // branches, will succeed.
2007 for (ImmBranch &Br : reverse(C&: ImmBranches)) {
2008 MachineBasicBlock *DestBB = Br.MI->getOperand(i: 0).getMBB();
2009 MachineBasicBlock *MBB = Br.MI->getParent();
2010 MachineBasicBlock *ExitBB = &MBB->back() == Br.MI ?
2011 MBB->getFallThrough() :
2012 MBB->back().getOperand(i: 0).getMBB();
2013
2014 ImmCompare Cmp;
2015 if (FindCmpForCBZ(Br, Cmp, ExitBB) && TryConvertToLE(Br, Cmp)) {
2016 DestBB = ExitBB;
2017 MadeChange = true;
2018 } else {
2019 FindCmpForCBZ(Br, Cmp, DestBB);
2020 MadeChange |= TryShrinkBranch(Br);
2021 }
2022
2023 unsigned Opcode = Br.MI->getOpcode();
2024 if ((Opcode != ARM::tBcc && Opcode != ARM::t2LE) || !Cmp.NewOpc)
2025 continue;
2026
2027 Register Reg = Cmp.MI->getOperand(i: 0).getReg();
2028
2029 // Check for Kill flags on Reg. If they are present remove them and set kill
2030 // on the new CBZ.
2031 auto *TRI = STI->getRegisterInfo();
2032 MachineBasicBlock::iterator KillMI = Br.MI;
2033 bool RegKilled = false;
2034 do {
2035 --KillMI;
2036 if (KillMI->killsRegister(Reg, TRI)) {
2037 KillMI->clearRegisterKills(Reg, TRI);
2038 RegKilled = true;
2039 break;
2040 }
2041 } while (KillMI != Cmp.MI);
2042
2043 // Create the new CBZ/CBNZ
2044 LLVM_DEBUG(dbgs() << "Fold: " << *Cmp.MI << " and: " << *Br.MI);
2045 MachineInstr *NewBR =
2046 BuildMI(*MBB, Br.MI, Br.MI->getDebugLoc(), TII->get(Cmp.NewOpc))
2047 .addReg(Reg, getKillRegState(B: RegKilled) |
2048 getRegState(RegOp: Cmp.MI->getOperand(i: 0)))
2049 .addMBB(DestBB, Br.MI->getOperand(i: 0).getTargetFlags());
2050
2051 Cmp.MI->eraseFromParent();
2052
2053 if (Br.MI->getOpcode() == ARM::tBcc) {
2054 Br.MI->eraseFromParent();
2055 Br.MI = NewBR;
2056 BBUtils->adjustBBSize(MBB, Size: -2);
2057 } else if (MBB->back().getOpcode() != ARM::t2LE) {
2058 // An LE has been generated, but it's not the terminator - that is an
2059 // unconditional branch. However, the logic has now been reversed with the
2060 // CBN?Z being the conditional branch and the LE being the unconditional
2061 // branch. So this means we can remove the redundant unconditional branch
2062 // at the end of the block.
2063 MachineInstr *LastMI = &MBB->back();
2064 BBUtils->adjustBBSize(MBB, Size: -LastMI->getDesc().getSize());
2065 LastMI->eraseFromParent();
2066 }
2067 BBUtils->adjustBBOffsetsAfter(MBB);
2068 ++NumCBZ;
2069 MadeChange = true;
2070 }
2071
2072 return MadeChange;
2073}
2074
2075static bool isSimpleIndexCalc(MachineInstr &I, unsigned EntryReg,
2076 unsigned BaseReg) {
2077 if (I.getOpcode() != ARM::t2ADDrs)
2078 return false;
2079
2080 if (I.getOperand(i: 0).getReg() != EntryReg)
2081 return false;
2082
2083 if (I.getOperand(i: 1).getReg() != BaseReg)
2084 return false;
2085
2086 // FIXME: what about CC and IdxReg?
2087 return true;
2088}
2089
2090/// While trying to form a TBB/TBH instruction, we may (if the table
2091/// doesn't immediately follow the BR_JT) need access to the start of the
2092/// jump-table. We know one instruction that produces such a register; this
2093/// function works out whether that definition can be preserved to the BR_JT,
2094/// possibly by removing an intervening addition (which is usually needed to
2095/// calculate the actual entry to jump to).
2096bool ARMConstantIslands::preserveBaseRegister(MachineInstr *JumpMI,
2097 MachineInstr *LEAMI,
2098 unsigned &DeadSize,
2099 bool &CanDeleteLEA,
2100 bool &BaseRegKill) {
2101 if (JumpMI->getParent() != LEAMI->getParent())
2102 return false;
2103
2104 // Now we hope that we have at least these instructions in the basic block:
2105 // BaseReg = t2LEA ...
2106 // [...]
2107 // EntryReg = t2ADDrs BaseReg, ...
2108 // [...]
2109 // t2BR_JT EntryReg
2110 //
2111 // We have to be very conservative about what we recognise here though. The
2112 // main perturbing factors to watch out for are:
2113 // + Spills at any point in the chain: not direct problems but we would
2114 // expect a blocking Def of the spilled register so in practice what we
2115 // can do is limited.
2116 // + EntryReg == BaseReg: this is the one situation we should allow a Def
2117 // of BaseReg, but only if the t2ADDrs can be removed.
2118 // + Some instruction other than t2ADDrs computing the entry. Not seen in
2119 // the wild, but we should be careful.
2120 Register EntryReg = JumpMI->getOperand(i: 0).getReg();
2121 Register BaseReg = LEAMI->getOperand(i: 0).getReg();
2122
2123 CanDeleteLEA = true;
2124 BaseRegKill = false;
2125 MachineInstr *RemovableAdd = nullptr;
2126 MachineBasicBlock::iterator I(LEAMI);
2127 for (++I; &*I != JumpMI; ++I) {
2128 if (isSimpleIndexCalc(I&: *I, EntryReg, BaseReg)) {
2129 RemovableAdd = &*I;
2130 break;
2131 }
2132
2133 for (const MachineOperand &MO : I->operands()) {
2134 if (!MO.isReg() || !MO.getReg())
2135 continue;
2136 if (MO.isDef() && MO.getReg() == BaseReg)
2137 return false;
2138 if (MO.isUse() && MO.getReg() == BaseReg) {
2139 BaseRegKill = BaseRegKill || MO.isKill();
2140 CanDeleteLEA = false;
2141 }
2142 }
2143 }
2144
2145 if (!RemovableAdd)
2146 return true;
2147
2148 // Check the add really is removable, and that nothing else in the block
2149 // clobbers BaseReg.
2150 for (++I; &*I != JumpMI; ++I) {
2151 for (const MachineOperand &MO : I->operands()) {
2152 if (!MO.isReg() || !MO.getReg())
2153 continue;
2154 if (MO.isDef() && MO.getReg() == BaseReg)
2155 return false;
2156 if (MO.isUse() && MO.getReg() == EntryReg)
2157 RemovableAdd = nullptr;
2158 }
2159 }
2160
2161 if (RemovableAdd) {
2162 RemovableAdd->eraseFromParent();
2163 DeadSize += isThumb2 ? 4 : 2;
2164 } else if (BaseReg == EntryReg) {
2165 // The add wasn't removable, but clobbered the base for the TBB. So we can't
2166 // preserve it.
2167 return false;
2168 }
2169
2170 // We reached the end of the block without seeing another definition of
2171 // BaseReg (except, possibly the t2ADDrs, which was removed). BaseReg can be
2172 // used in the TBB/TBH if necessary.
2173 return true;
2174}
2175
2176/// Returns whether CPEMI is the first instruction in the block
2177/// immediately following JTMI (assumed to be a TBB or TBH terminator). If so,
2178/// we can switch the first register to PC and usually remove the address
2179/// calculation that preceded it.
2180static bool jumpTableFollowsTB(MachineInstr *JTMI, MachineInstr *CPEMI) {
2181 MachineFunction::iterator MBB = JTMI->getParent()->getIterator();
2182 MachineFunction *MF = MBB->getParent();
2183 ++MBB;
2184
2185 return MBB != MF->end() && !MBB->empty() && &*MBB->begin() == CPEMI;
2186}
2187
2188static void RemoveDeadAddBetweenLEAAndJT(MachineInstr *LEAMI,
2189 MachineInstr *JumpMI,
2190 unsigned &DeadSize) {
2191 // Remove a dead add between the LEA and JT, which used to compute EntryReg,
2192 // but the JT now uses PC. Finds the last ADD (if any) that def's EntryReg
2193 // and is not clobbered / used.
2194 MachineInstr *RemovableAdd = nullptr;
2195 Register EntryReg = JumpMI->getOperand(i: 0).getReg();
2196
2197 // Find the last ADD to set EntryReg
2198 MachineBasicBlock::iterator I(LEAMI);
2199 for (++I; &*I != JumpMI; ++I) {
2200 if (I->getOpcode() == ARM::t2ADDrs && I->getOperand(0).getReg() == EntryReg)
2201 RemovableAdd = &*I;
2202 }
2203
2204 if (!RemovableAdd)
2205 return;
2206
2207 // Ensure EntryReg is not clobbered or used.
2208 MachineBasicBlock::iterator J(RemovableAdd);
2209 for (++J; &*J != JumpMI; ++J) {
2210 for (const MachineOperand &MO : J->operands()) {
2211 if (!MO.isReg() || !MO.getReg())
2212 continue;
2213 if (MO.isDef() && MO.getReg() == EntryReg)
2214 return;
2215 if (MO.isUse() && MO.getReg() == EntryReg)
2216 return;
2217 }
2218 }
2219
2220 LLVM_DEBUG(dbgs() << "Removing Dead Add: " << *RemovableAdd);
2221 RemovableAdd->eraseFromParent();
2222 DeadSize += 4;
2223}
2224
2225/// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller
2226/// jumptables when it's possible.
2227bool ARMConstantIslands::optimizeThumb2JumpTables() {
2228 bool MadeChange = false;
2229
2230 // FIXME: After the tables are shrunk, can we get rid some of the
2231 // constantpool tables?
2232 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
2233 if (!MJTI) return false;
2234
2235 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
2236 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
2237 MachineInstr *MI = T2JumpTables[i];
2238 const MCInstrDesc &MCID = MI->getDesc();
2239 unsigned NumOps = MCID.getNumOperands();
2240 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1);
2241 MachineOperand JTOP = MI->getOperand(i: JTOpIdx);
2242 unsigned JTI = JTOP.getIndex();
2243 assert(JTI < JT.size());
2244
2245 bool ByteOk = true;
2246 bool HalfWordOk = true;
2247 unsigned JTOffset = BBUtils->getOffsetOf(MI) + 4;
2248 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
2249 BBInfoVector &BBInfo = BBUtils->getBBInfo();
2250 for (MachineBasicBlock *MBB : JTBBs) {
2251 unsigned DstOffset = BBInfo[MBB->getNumber()].Offset;
2252 // Negative offset is not ok. FIXME: We should change BB layout to make
2253 // sure all the branches are forward.
2254 if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2)
2255 ByteOk = false;
2256 unsigned TBHLimit = ((1<<16)-1)*2;
2257 if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit)
2258 HalfWordOk = false;
2259 if (!ByteOk && !HalfWordOk)
2260 break;
2261 }
2262
2263 if (!ByteOk && !HalfWordOk)
2264 continue;
2265
2266 CPUser &User = CPUsers[JumpTableUserIndices[JTI]];
2267 MachineBasicBlock *MBB = MI->getParent();
2268 if (!MI->getOperand(i: 0).isKill()) // FIXME: needed now?
2269 continue;
2270
2271 unsigned DeadSize = 0;
2272 bool CanDeleteLEA = false;
2273 bool BaseRegKill = false;
2274
2275 unsigned IdxReg = ~0U;
2276 bool IdxRegKill = true;
2277 if (isThumb2) {
2278 IdxReg = MI->getOperand(i: 1).getReg();
2279 IdxRegKill = MI->getOperand(i: 1).isKill();
2280
2281 bool PreservedBaseReg =
2282 preserveBaseRegister(JumpMI: MI, LEAMI: User.MI, DeadSize, CanDeleteLEA, BaseRegKill);
2283 if (!jumpTableFollowsTB(JTMI: MI, CPEMI: User.CPEMI) && !PreservedBaseReg)
2284 continue;
2285 } else {
2286 // We're in thumb-1 mode, so we must have something like:
2287 // %idx = tLSLri %idx, 2
2288 // %base = tLEApcrelJT
2289 // %t = tLDRr %base, %idx
2290 Register BaseReg = User.MI->getOperand(i: 0).getReg();
2291
2292 MachineBasicBlock *UserMBB = User.MI->getParent();
2293 MachineBasicBlock::iterator Shift = User.MI->getIterator();
2294 if (Shift == UserMBB->begin())
2295 continue;
2296
2297 Shift = prev_nodbg(It: Shift, Begin: UserMBB->begin());
2298 if (Shift->getOpcode() != ARM::tLSLri ||
2299 Shift->getOperand(3).getImm() != 2 ||
2300 !Shift->getOperand(2).isKill())
2301 continue;
2302 IdxReg = Shift->getOperand(i: 2).getReg();
2303 Register ShiftedIdxReg = Shift->getOperand(i: 0).getReg();
2304
2305 // It's important that IdxReg is live until the actual TBB/TBH. Most of
2306 // the range is checked later, but the LEA might still clobber it and not
2307 // actually get removed.
2308 if (BaseReg == IdxReg && !jumpTableFollowsTB(JTMI: MI, CPEMI: User.CPEMI))
2309 continue;
2310
2311 MachineInstr *Load = User.MI->getNextNode();
2312 if (Load->getOpcode() != ARM::tLDRr)
2313 continue;
2314 if (Load->getOperand(i: 1).getReg() != BaseReg ||
2315 Load->getOperand(i: 2).getReg() != ShiftedIdxReg ||
2316 !Load->getOperand(i: 2).isKill())
2317 continue;
2318
2319 // If we're in PIC mode, there should be another ADD following.
2320 auto *TRI = STI->getRegisterInfo();
2321
2322 // %base cannot be redefined after the load as it will appear before
2323 // TBB/TBH like:
2324 // %base =
2325 // %base =
2326 // tBB %base, %idx
2327 if (registerDefinedBetween(BaseReg, Load->getNextNode(), MBB->end(), TRI))
2328 continue;
2329
2330 if (isPositionIndependentOrROPI) {
2331 MachineInstr *Add = Load->getNextNode();
2332 if (Add->getOpcode() != ARM::tADDrr ||
2333 Add->getOperand(2).getReg() != BaseReg ||
2334 Add->getOperand(3).getReg() != Load->getOperand(0).getReg() ||
2335 !Add->getOperand(3).isKill())
2336 continue;
2337 if (Add->getOperand(i: 0).getReg() != MI->getOperand(i: 0).getReg())
2338 continue;
2339 if (registerDefinedBetween(IdxReg, Add->getNextNode(), MI, TRI))
2340 // IdxReg gets redefined in the middle of the sequence.
2341 continue;
2342 Add->eraseFromParent();
2343 DeadSize += 2;
2344 } else {
2345 if (Load->getOperand(i: 0).getReg() != MI->getOperand(i: 0).getReg())
2346 continue;
2347 if (registerDefinedBetween(IdxReg, Load->getNextNode(), MI, TRI))
2348 // IdxReg gets redefined in the middle of the sequence.
2349 continue;
2350 }
2351
2352 // Now safe to delete the load and lsl. The LEA will be removed later.
2353 CanDeleteLEA = true;
2354 Shift->eraseFromParent();
2355 Load->eraseFromParent();
2356 DeadSize += 4;
2357 }
2358
2359 LLVM_DEBUG(dbgs() << "Shrink JT: " << *MI);
2360 MachineInstr *CPEMI = User.CPEMI;
2361 unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT;
2362 if (!isThumb2)
2363 Opc = ByteOk ? ARM::tTBB_JT : ARM::tTBH_JT;
2364
2365 MachineBasicBlock::iterator MI_JT = MI;
2366 MachineInstr *NewJTMI =
2367 BuildMI(*MBB, MI_JT, MI->getDebugLoc(), TII->get(Opc))
2368 .addReg(User.MI->getOperand(i: 0).getReg(),
2369 getKillRegState(B: BaseRegKill))
2370 .addReg(IdxReg, getKillRegState(B: IdxRegKill))
2371 .addJumpTableIndex(JTI, JTOP.getTargetFlags())
2372 .addImm(CPEMI->getOperand(i: 0).getImm());
2373 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << ": " << *NewJTMI);
2374
2375 unsigned JTOpc = ByteOk ? ARM::JUMPTABLE_TBB : ARM::JUMPTABLE_TBH;
2376 CPEMI->setDesc(TII->get(JTOpc));
2377
2378 if (jumpTableFollowsTB(JTMI: MI, CPEMI: User.CPEMI)) {
2379 NewJTMI->getOperand(0).setReg(ARM::PC);
2380 NewJTMI->getOperand(i: 0).setIsKill(false);
2381
2382 if (CanDeleteLEA) {
2383 if (isThumb2)
2384 RemoveDeadAddBetweenLEAAndJT(LEAMI: User.MI, JumpMI: MI, DeadSize);
2385
2386 User.MI->eraseFromParent();
2387 DeadSize += isThumb2 ? 4 : 2;
2388
2389 // The LEA was eliminated, the TBB instruction becomes the only new user
2390 // of the jump table.
2391 User.MI = NewJTMI;
2392 User.MaxDisp = 4;
2393 User.NegOk = false;
2394 User.IsSoImm = false;
2395 User.KnownAlignment = false;
2396 } else {
2397 // The LEA couldn't be eliminated, so we must add another CPUser to
2398 // record the TBB or TBH use.
2399 int CPEntryIdx = JumpTableEntryIndices[JTI];
2400 auto &CPEs = CPEntries[CPEntryIdx];
2401 auto Entry =
2402 find_if(Range&: CPEs, P: [&](CPEntry &E) { return E.CPEMI == User.CPEMI; });
2403 ++Entry->RefCount;
2404 CPUsers.emplace_back(args: CPUser(NewJTMI, User.CPEMI, 4, false, false));
2405 }
2406 }
2407
2408 unsigned NewSize = TII->getInstSizeInBytes(MI: *NewJTMI);
2409 unsigned OrigSize = TII->getInstSizeInBytes(MI: *MI);
2410 MI->eraseFromParent();
2411
2412 int Delta = OrigSize - NewSize + DeadSize;
2413 BBInfo[MBB->getNumber()].Size -= Delta;
2414 BBUtils->adjustBBOffsetsAfter(MBB);
2415
2416 ++NumTBs;
2417 MadeChange = true;
2418 }
2419
2420 return MadeChange;
2421}
2422
2423/// reorderThumb2JumpTables - Adjust the function's block layout to ensure that
2424/// jump tables always branch forwards, since that's what tbb and tbh need.
2425bool ARMConstantIslands::reorderThumb2JumpTables() {
2426 bool MadeChange = false;
2427
2428 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
2429 if (!MJTI) return false;
2430
2431 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
2432 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
2433 MachineInstr *MI = T2JumpTables[i];
2434 const MCInstrDesc &MCID = MI->getDesc();
2435 unsigned NumOps = MCID.getNumOperands();
2436 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1);
2437 MachineOperand JTOP = MI->getOperand(i: JTOpIdx);
2438 unsigned JTI = JTOP.getIndex();
2439 assert(JTI < JT.size());
2440
2441 // We prefer if target blocks for the jump table come after the jump
2442 // instruction so we can use TB[BH]. Loop through the target blocks
2443 // and try to adjust them such that that's true.
2444 int JTNumber = MI->getParent()->getNumber();
2445 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
2446 for (MachineBasicBlock *MBB : JTBBs) {
2447 int DTNumber = MBB->getNumber();
2448
2449 if (DTNumber < JTNumber) {
2450 // The destination precedes the switch. Try to move the block forward
2451 // so we have a positive offset.
2452 MachineBasicBlock *NewBB =
2453 adjustJTTargetBlockForward(JTI, BB: MBB, JTBB: MI->getParent());
2454 if (NewBB)
2455 MJTI->ReplaceMBBInJumpTable(Idx: JTI, Old: MBB, New: NewBB);
2456 MadeChange = true;
2457 }
2458 }
2459 }
2460
2461 return MadeChange;
2462}
2463
2464MachineBasicBlock *ARMConstantIslands::adjustJTTargetBlockForward(
2465 unsigned JTI, MachineBasicBlock *BB, MachineBasicBlock *JTBB) {
2466 // If the destination block is terminated by an unconditional branch,
2467 // try to move it; otherwise, create a new block following the jump
2468 // table that branches back to the actual target. This is a very simple
2469 // heuristic. FIXME: We can definitely improve it.
2470 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
2471 SmallVector<MachineOperand, 4> Cond;
2472 SmallVector<MachineOperand, 4> CondPrior;
2473 MachineFunction::iterator BBi = BB->getIterator();
2474 MachineFunction::iterator OldPrior = std::prev(x: BBi);
2475 MachineFunction::iterator OldNext = std::next(x: BBi);
2476
2477 // If the block terminator isn't analyzable, don't try to move the block
2478 bool B = TII->analyzeBranch(MBB&: *BB, TBB, FBB, Cond);
2479
2480 // If the block ends in an unconditional branch, move it. The prior block
2481 // has to have an analyzable terminator for us to move this one. Be paranoid
2482 // and make sure we're not trying to move the entry block of the function.
2483 if (!B && Cond.empty() && BB != &MF->front() &&
2484 !TII->analyzeBranch(MBB&: *OldPrior, TBB, FBB, Cond&: CondPrior)) {
2485 BB->moveAfter(NewBefore: JTBB);
2486 OldPrior->updateTerminator(PreviousLayoutSuccessor: BB);
2487 BB->updateTerminator(PreviousLayoutSuccessor: OldNext != MF->end() ? &*OldNext : nullptr);
2488 // Update numbering to account for the block being moved.
2489 MF->RenumberBlocks();
2490 ++NumJTMoved;
2491 return nullptr;
2492 }
2493
2494 // Create a new MBB for the code after the jump BB.
2495 MachineBasicBlock *NewBB =
2496 MF->CreateMachineBasicBlock(BB: JTBB->getBasicBlock());
2497 MachineFunction::iterator MBBI = ++JTBB->getIterator();
2498 MF->insert(MBBI, MBB: NewBB);
2499
2500 // Copy live-in information to new block.
2501 for (const MachineBasicBlock::RegisterMaskPair &RegMaskPair : BB->liveins())
2502 NewBB->addLiveIn(RegMaskPair);
2503
2504 // Add an unconditional branch from NewBB to BB.
2505 // There doesn't seem to be meaningful DebugInfo available; this doesn't
2506 // correspond directly to anything in the source.
2507 if (isThumb2)
2508 BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B))
2509 .addMBB(BB)
2510 .add(predOps(ARMCC::AL));
2511 else
2512 BuildMI(NewBB, DebugLoc(), TII->get(ARM::tB))
2513 .addMBB(BB)
2514 .add(predOps(ARMCC::AL));
2515
2516 // Update internal data structures to account for the newly inserted MBB.
2517 MF->RenumberBlocks(MBBFrom: NewBB);
2518
2519 // Update the CFG.
2520 NewBB->addSuccessor(Succ: BB);
2521 JTBB->replaceSuccessor(Old: BB, New: NewBB);
2522
2523 ++NumJTInserted;
2524 return NewBB;
2525}
2526
2527/// createARMConstantIslandPass - returns an instance of the constpool
2528/// island pass.
2529FunctionPass *llvm::createARMConstantIslandPass() {
2530 return new ARMConstantIslands();
2531}
2532
2533INITIALIZE_PASS(ARMConstantIslands, "arm-cp-islands", ARM_CP_ISLANDS_OPT_NAME,
2534 false, false)
2535

source code of llvm/lib/Target/ARM/ARMConstantIslandPass.cpp