1//===-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ --===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines an instruction selector for the SystemZ target.
10//
11//===----------------------------------------------------------------------===//
12
13#include "SystemZTargetMachine.h"
14#include "SystemZISelLowering.h"
15#include "llvm/Analysis/AliasAnalysis.h"
16#include "llvm/CodeGen/SelectionDAGISel.h"
17#include "llvm/Support/Debug.h"
18#include "llvm/Support/KnownBits.h"
19#include "llvm/Support/raw_ostream.h"
20
21using namespace llvm;
22
23#define DEBUG_TYPE "systemz-isel"
24#define PASS_NAME "SystemZ DAG->DAG Pattern Instruction Selection"
25
26namespace {
27// Used to build addressing modes.
28struct SystemZAddressingMode {
29 // The shape of the address.
30 enum AddrForm {
31 // base+displacement
32 FormBD,
33
34 // base+displacement+index for load and store operands
35 FormBDXNormal,
36
37 // base+displacement+index for load address operands
38 FormBDXLA,
39
40 // base+displacement+index+ADJDYNALLOC
41 FormBDXDynAlloc
42 };
43 AddrForm Form;
44
45 // The type of displacement. The enum names here correspond directly
46 // to the definitions in SystemZOperand.td. We could split them into
47 // flags -- single/pair, 128-bit, etc. -- but it hardly seems worth it.
48 enum DispRange {
49 Disp12Only,
50 Disp12Pair,
51 Disp20Only,
52 Disp20Only128,
53 Disp20Pair
54 };
55 DispRange DR;
56
57 // The parts of the address. The address is equivalent to:
58 //
59 // Base + Disp + Index + (IncludesDynAlloc ? ADJDYNALLOC : 0)
60 SDValue Base;
61 int64_t Disp;
62 SDValue Index;
63 bool IncludesDynAlloc;
64
65 SystemZAddressingMode(AddrForm form, DispRange dr)
66 : Form(form), DR(dr), Disp(0), IncludesDynAlloc(false) {}
67
68 // True if the address can have an index register.
69 bool hasIndexField() { return Form != FormBD; }
70
71 // True if the address can (and must) include ADJDYNALLOC.
72 bool isDynAlloc() { return Form == FormBDXDynAlloc; }
73
74 void dump(const llvm::SelectionDAG *DAG) {
75 errs() << "SystemZAddressingMode " << this << '\n';
76
77 errs() << " Base ";
78 if (Base.getNode())
79 Base.getNode()->dump(G: DAG);
80 else
81 errs() << "null\n";
82
83 if (hasIndexField()) {
84 errs() << " Index ";
85 if (Index.getNode())
86 Index.getNode()->dump(G: DAG);
87 else
88 errs() << "null\n";
89 }
90
91 errs() << " Disp " << Disp;
92 if (IncludesDynAlloc)
93 errs() << " + ADJDYNALLOC";
94 errs() << '\n';
95 }
96};
97
98// Return a mask with Count low bits set.
99static uint64_t allOnes(unsigned int Count) {
100 assert(Count <= 64);
101 if (Count > 63)
102 return UINT64_MAX;
103 return (uint64_t(1) << Count) - 1;
104}
105
106// Represents operands 2 to 5 of the ROTATE AND ... SELECTED BITS operation
107// given by Opcode. The operands are: Input (R2), Start (I3), End (I4) and
108// Rotate (I5). The combined operand value is effectively:
109//
110// (or (rotl Input, Rotate), ~Mask)
111//
112// for RNSBG and:
113//
114// (and (rotl Input, Rotate), Mask)
115//
116// otherwise. The output value has BitSize bits, although Input may be
117// narrower (in which case the upper bits are don't care), or wider (in which
118// case the result will be truncated as part of the operation).
119struct RxSBGOperands {
120 RxSBGOperands(unsigned Op, SDValue N)
121 : Opcode(Op), BitSize(N.getValueSizeInBits()),
122 Mask(allOnes(Count: BitSize)), Input(N), Start(64 - BitSize), End(63),
123 Rotate(0) {}
124
125 unsigned Opcode;
126 unsigned BitSize;
127 uint64_t Mask;
128 SDValue Input;
129 unsigned Start;
130 unsigned End;
131 unsigned Rotate;
132};
133
134class SystemZDAGToDAGISel : public SelectionDAGISel {
135 const SystemZSubtarget *Subtarget;
136
137 // Used by SystemZOperands.td to create integer constants.
138 inline SDValue getImm(const SDNode *Node, uint64_t Imm) const {
139 return CurDAG->getTargetConstant(Val: Imm, DL: SDLoc(Node), VT: Node->getValueType(ResNo: 0));
140 }
141
142 const SystemZTargetMachine &getTargetMachine() const {
143 return static_cast<const SystemZTargetMachine &>(TM);
144 }
145
146 const SystemZInstrInfo *getInstrInfo() const {
147 return Subtarget->getInstrInfo();
148 }
149
150 // Try to fold more of the base or index of AM into AM, where IsBase
151 // selects between the base and index.
152 bool expandAddress(SystemZAddressingMode &AM, bool IsBase) const;
153
154 // Try to describe N in AM, returning true on success.
155 bool selectAddress(SDValue N, SystemZAddressingMode &AM) const;
156
157 // Extract individual target operands from matched address AM.
158 void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
159 SDValue &Base, SDValue &Disp) const;
160 void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
161 SDValue &Base, SDValue &Disp, SDValue &Index) const;
162
163 // Try to match Addr as a FormBD address with displacement type DR.
164 // Return true on success, storing the base and displacement in
165 // Base and Disp respectively.
166 bool selectBDAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
167 SDValue &Base, SDValue &Disp) const;
168
169 // Try to match Addr as a FormBDX address with displacement type DR.
170 // Return true on success and if the result had no index. Store the
171 // base and displacement in Base and Disp respectively.
172 bool selectMVIAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
173 SDValue &Base, SDValue &Disp) const;
174
175 // Try to match Addr as a FormBDX* address of form Form with
176 // displacement type DR. Return true on success, storing the base,
177 // displacement and index in Base, Disp and Index respectively.
178 bool selectBDXAddr(SystemZAddressingMode::AddrForm Form,
179 SystemZAddressingMode::DispRange DR, SDValue Addr,
180 SDValue &Base, SDValue &Disp, SDValue &Index) const;
181
182 // PC-relative address matching routines used by SystemZOperands.td.
183 bool selectPCRelAddress(SDValue Addr, SDValue &Target) const {
184 if (SystemZISD::isPCREL(Opcode: Addr.getOpcode())) {
185 Target = Addr.getOperand(i: 0);
186 return true;
187 }
188 return false;
189 }
190
191 // BD matching routines used by SystemZOperands.td.
192 bool selectBDAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
193 return selectBDAddr(DR: SystemZAddressingMode::Disp12Only, Addr, Base, Disp);
194 }
195 bool selectBDAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
196 return selectBDAddr(DR: SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
197 }
198 bool selectBDAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
199 return selectBDAddr(DR: SystemZAddressingMode::Disp20Only, Addr, Base, Disp);
200 }
201 bool selectBDAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
202 return selectBDAddr(DR: SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
203 }
204
205 // MVI matching routines used by SystemZOperands.td.
206 bool selectMVIAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
207 return selectMVIAddr(DR: SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
208 }
209 bool selectMVIAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
210 return selectMVIAddr(DR: SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
211 }
212
213 // BDX matching routines used by SystemZOperands.td.
214 bool selectBDXAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
215 SDValue &Index) const {
216 return selectBDXAddr(Form: SystemZAddressingMode::FormBDXNormal,
217 DR: SystemZAddressingMode::Disp12Only,
218 Addr, Base, Disp, Index);
219 }
220 bool selectBDXAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
221 SDValue &Index) const {
222 return selectBDXAddr(Form: SystemZAddressingMode::FormBDXNormal,
223 DR: SystemZAddressingMode::Disp12Pair,
224 Addr, Base, Disp, Index);
225 }
226 bool selectDynAlloc12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
227 SDValue &Index) const {
228 return selectBDXAddr(Form: SystemZAddressingMode::FormBDXDynAlloc,
229 DR: SystemZAddressingMode::Disp12Only,
230 Addr, Base, Disp, Index);
231 }
232 bool selectBDXAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp,
233 SDValue &Index) const {
234 return selectBDXAddr(Form: SystemZAddressingMode::FormBDXNormal,
235 DR: SystemZAddressingMode::Disp20Only,
236 Addr, Base, Disp, Index);
237 }
238 bool selectBDXAddr20Only128(SDValue Addr, SDValue &Base, SDValue &Disp,
239 SDValue &Index) const {
240 return selectBDXAddr(Form: SystemZAddressingMode::FormBDXNormal,
241 DR: SystemZAddressingMode::Disp20Only128,
242 Addr, Base, Disp, Index);
243 }
244 bool selectBDXAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
245 SDValue &Index) const {
246 return selectBDXAddr(Form: SystemZAddressingMode::FormBDXNormal,
247 DR: SystemZAddressingMode::Disp20Pair,
248 Addr, Base, Disp, Index);
249 }
250 bool selectLAAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
251 SDValue &Index) const {
252 return selectBDXAddr(Form: SystemZAddressingMode::FormBDXLA,
253 DR: SystemZAddressingMode::Disp12Pair,
254 Addr, Base, Disp, Index);
255 }
256 bool selectLAAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
257 SDValue &Index) const {
258 return selectBDXAddr(Form: SystemZAddressingMode::FormBDXLA,
259 DR: SystemZAddressingMode::Disp20Pair,
260 Addr, Base, Disp, Index);
261 }
262
263 // Try to match Addr as an address with a base, 12-bit displacement
264 // and index, where the index is element Elem of a vector.
265 // Return true on success, storing the base, displacement and vector
266 // in Base, Disp and Index respectively.
267 bool selectBDVAddr12Only(SDValue Addr, SDValue Elem, SDValue &Base,
268 SDValue &Disp, SDValue &Index) const;
269
270 // Check whether (or Op (and X InsertMask)) is effectively an insertion
271 // of X into bits InsertMask of some Y != Op. Return true if so and
272 // set Op to that Y.
273 bool detectOrAndInsertion(SDValue &Op, uint64_t InsertMask) const;
274
275 // Try to update RxSBG so that only the bits of RxSBG.Input in Mask are used.
276 // Return true on success.
277 bool refineRxSBGMask(RxSBGOperands &RxSBG, uint64_t Mask) const;
278
279 // Try to fold some of RxSBG.Input into other fields of RxSBG.
280 // Return true on success.
281 bool expandRxSBG(RxSBGOperands &RxSBG) const;
282
283 // Return an undefined value of type VT.
284 SDValue getUNDEF(const SDLoc &DL, EVT VT) const;
285
286 // Convert N to VT, if it isn't already.
287 SDValue convertTo(const SDLoc &DL, EVT VT, SDValue N) const;
288
289 // Try to implement AND or shift node N using RISBG with the zero flag set.
290 // Return the selected node on success, otherwise return null.
291 bool tryRISBGZero(SDNode *N);
292
293 // Try to use RISBG or Opcode to implement OR or XOR node N.
294 // Return the selected node on success, otherwise return null.
295 bool tryRxSBG(SDNode *N, unsigned Opcode);
296
297 // If Op0 is null, then Node is a constant that can be loaded using:
298 //
299 // (Opcode UpperVal LowerVal)
300 //
301 // If Op0 is nonnull, then Node can be implemented using:
302 //
303 // (Opcode (Opcode Op0 UpperVal) LowerVal)
304 void splitLargeImmediate(unsigned Opcode, SDNode *Node, SDValue Op0,
305 uint64_t UpperVal, uint64_t LowerVal);
306
307 void loadVectorConstant(const SystemZVectorConstantInfo &VCI,
308 SDNode *Node);
309
310 SDNode *loadPoolVectorConstant(APInt Val, EVT VT, SDLoc DL);
311
312 // Try to use gather instruction Opcode to implement vector insertion N.
313 bool tryGather(SDNode *N, unsigned Opcode);
314
315 // Try to use scatter instruction Opcode to implement store Store.
316 bool tryScatter(StoreSDNode *Store, unsigned Opcode);
317
318 // Change a chain of {load; op; store} of the same value into a simple op
319 // through memory of that value, if the uses of the modified value and its
320 // address are suitable.
321 bool tryFoldLoadStoreIntoMemOperand(SDNode *Node);
322
323 // Return true if Load and Store are loads and stores of the same size
324 // and are guaranteed not to overlap. Such operations can be implemented
325 // using block (SS-format) instructions.
326 //
327 // Partial overlap would lead to incorrect code, since the block operations
328 // are logically bytewise, even though they have a fast path for the
329 // non-overlapping case. We also need to avoid full overlap (i.e. two
330 // addresses that might be equal at run time) because although that case
331 // would be handled correctly, it might be implemented by millicode.
332 bool canUseBlockOperation(StoreSDNode *Store, LoadSDNode *Load) const;
333
334 // N is a (store (load Y), X) pattern. Return true if it can use an MVC
335 // from Y to X.
336 bool storeLoadCanUseMVC(SDNode *N) const;
337
338 // N is a (store (op (load A[0]), (load A[1])), X) pattern. Return true
339 // if A[1 - I] == X and if N can use a block operation like NC from A[I]
340 // to X.
341 bool storeLoadCanUseBlockBinary(SDNode *N, unsigned I) const;
342
343 // Return true if N (a load or a store) fullfills the alignment
344 // requirements for a PC-relative access.
345 bool storeLoadIsAligned(SDNode *N) const;
346
347 // Return the load extension type of a load or atomic load.
348 ISD::LoadExtType getLoadExtType(SDNode *N) const;
349
350 // Try to expand a boolean SELECT_CCMASK using an IPM sequence.
351 SDValue expandSelectBoolean(SDNode *Node);
352
353public:
354 static char ID;
355
356 SystemZDAGToDAGISel() = delete;
357
358 SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOptLevel OptLevel)
359 : SelectionDAGISel(ID, TM, OptLevel) {}
360
361 bool runOnMachineFunction(MachineFunction &MF) override {
362 const Function &F = MF.getFunction();
363 if (F.getFnAttribute(Kind: "fentry-call").getValueAsString() != "true") {
364 if (F.hasFnAttribute(Kind: "mnop-mcount"))
365 report_fatal_error(reason: "mnop-mcount only supported with fentry-call");
366 if (F.hasFnAttribute(Kind: "mrecord-mcount"))
367 report_fatal_error(reason: "mrecord-mcount only supported with fentry-call");
368 }
369
370 Subtarget = &MF.getSubtarget<SystemZSubtarget>();
371 return SelectionDAGISel::runOnMachineFunction(MF);
372 }
373
374 // Override SelectionDAGISel.
375 void Select(SDNode *Node) override;
376 bool SelectInlineAsmMemoryOperand(const SDValue &Op,
377 InlineAsm::ConstraintCode ConstraintID,
378 std::vector<SDValue> &OutOps) override;
379 bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override;
380 void PreprocessISelDAG() override;
381
382 // Include the pieces autogenerated from the target description.
383 #include "SystemZGenDAGISel.inc"
384};
385} // end anonymous namespace
386
387char SystemZDAGToDAGISel::ID = 0;
388
389INITIALIZE_PASS(SystemZDAGToDAGISel, DEBUG_TYPE, PASS_NAME, false, false)
390
391FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM,
392 CodeGenOptLevel OptLevel) {
393 return new SystemZDAGToDAGISel(TM, OptLevel);
394}
395
396// Return true if Val should be selected as a displacement for an address
397// with range DR. Here we're interested in the range of both the instruction
398// described by DR and of any pairing instruction.
399static bool selectDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
400 switch (DR) {
401 case SystemZAddressingMode::Disp12Only:
402 return isUInt<12>(x: Val);
403
404 case SystemZAddressingMode::Disp12Pair:
405 case SystemZAddressingMode::Disp20Only:
406 case SystemZAddressingMode::Disp20Pair:
407 return isInt<20>(x: Val);
408
409 case SystemZAddressingMode::Disp20Only128:
410 return isInt<20>(x: Val) && isInt<20>(x: Val + 8);
411 }
412 llvm_unreachable("Unhandled displacement range");
413}
414
415// Change the base or index in AM to Value, where IsBase selects
416// between the base and index.
417static void changeComponent(SystemZAddressingMode &AM, bool IsBase,
418 SDValue Value) {
419 if (IsBase)
420 AM.Base = Value;
421 else
422 AM.Index = Value;
423}
424
425// The base or index of AM is equivalent to Value + ADJDYNALLOC,
426// where IsBase selects between the base and index. Try to fold the
427// ADJDYNALLOC into AM.
428static bool expandAdjDynAlloc(SystemZAddressingMode &AM, bool IsBase,
429 SDValue Value) {
430 if (AM.isDynAlloc() && !AM.IncludesDynAlloc) {
431 changeComponent(AM, IsBase, Value);
432 AM.IncludesDynAlloc = true;
433 return true;
434 }
435 return false;
436}
437
438// The base of AM is equivalent to Base + Index. Try to use Index as
439// the index register.
440static bool expandIndex(SystemZAddressingMode &AM, SDValue Base,
441 SDValue Index) {
442 if (AM.hasIndexField() && !AM.Index.getNode()) {
443 AM.Base = Base;
444 AM.Index = Index;
445 return true;
446 }
447 return false;
448}
449
450// The base or index of AM is equivalent to Op0 + Op1, where IsBase selects
451// between the base and index. Try to fold Op1 into AM's displacement.
452static bool expandDisp(SystemZAddressingMode &AM, bool IsBase,
453 SDValue Op0, uint64_t Op1) {
454 // First try adjusting the displacement.
455 int64_t TestDisp = AM.Disp + Op1;
456 if (selectDisp(DR: AM.DR, Val: TestDisp)) {
457 changeComponent(AM, IsBase, Value: Op0);
458 AM.Disp = TestDisp;
459 return true;
460 }
461
462 // We could consider forcing the displacement into a register and
463 // using it as an index, but it would need to be carefully tuned.
464 return false;
465}
466
467bool SystemZDAGToDAGISel::expandAddress(SystemZAddressingMode &AM,
468 bool IsBase) const {
469 SDValue N = IsBase ? AM.Base : AM.Index;
470 unsigned Opcode = N.getOpcode();
471 // Look through no-op truncations.
472 if (Opcode == ISD::TRUNCATE && N.getOperand(i: 0).getValueSizeInBits() <= 64) {
473 N = N.getOperand(i: 0);
474 Opcode = N.getOpcode();
475 }
476 if (Opcode == ISD::ADD || CurDAG->isBaseWithConstantOffset(Op: N)) {
477 SDValue Op0 = N.getOperand(i: 0);
478 SDValue Op1 = N.getOperand(i: 1);
479
480 unsigned Op0Code = Op0->getOpcode();
481 unsigned Op1Code = Op1->getOpcode();
482
483 if (Op0Code == SystemZISD::ADJDYNALLOC)
484 return expandAdjDynAlloc(AM, IsBase, Value: Op1);
485 if (Op1Code == SystemZISD::ADJDYNALLOC)
486 return expandAdjDynAlloc(AM, IsBase, Value: Op0);
487
488 if (Op0Code == ISD::Constant)
489 return expandDisp(AM, IsBase, Op0: Op1,
490 Op1: cast<ConstantSDNode>(Val&: Op0)->getSExtValue());
491 if (Op1Code == ISD::Constant)
492 return expandDisp(AM, IsBase, Op0,
493 Op1: cast<ConstantSDNode>(Val&: Op1)->getSExtValue());
494
495 if (IsBase && expandIndex(AM, Base: Op0, Index: Op1))
496 return true;
497 }
498 if (Opcode == SystemZISD::PCREL_OFFSET) {
499 SDValue Full = N.getOperand(i: 0);
500 SDValue Base = N.getOperand(i: 1);
501 SDValue Anchor = Base.getOperand(i: 0);
502 uint64_t Offset = (cast<GlobalAddressSDNode>(Val&: Full)->getOffset() -
503 cast<GlobalAddressSDNode>(Val&: Anchor)->getOffset());
504 return expandDisp(AM, IsBase, Op0: Base, Op1: Offset);
505 }
506 return false;
507}
508
509// Return true if an instruction with displacement range DR should be
510// used for displacement value Val. selectDisp(DR, Val) must already hold.
511static bool isValidDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
512 assert(selectDisp(DR, Val) && "Invalid displacement");
513 switch (DR) {
514 case SystemZAddressingMode::Disp12Only:
515 case SystemZAddressingMode::Disp20Only:
516 case SystemZAddressingMode::Disp20Only128:
517 return true;
518
519 case SystemZAddressingMode::Disp12Pair:
520 // Use the other instruction if the displacement is too large.
521 return isUInt<12>(x: Val);
522
523 case SystemZAddressingMode::Disp20Pair:
524 // Use the other instruction if the displacement is small enough.
525 return !isUInt<12>(x: Val);
526 }
527 llvm_unreachable("Unhandled displacement range");
528}
529
530// Return true if Base + Disp + Index should be performed by LA(Y).
531static bool shouldUseLA(SDNode *Base, int64_t Disp, SDNode *Index) {
532 // Don't use LA(Y) for constants.
533 if (!Base)
534 return false;
535
536 // Always use LA(Y) for frame addresses, since we know that the destination
537 // register is almost always (perhaps always) going to be different from
538 // the frame register.
539 if (Base->getOpcode() == ISD::FrameIndex)
540 return true;
541
542 if (Disp) {
543 // Always use LA(Y) if there is a base, displacement and index.
544 if (Index)
545 return true;
546
547 // Always use LA if the displacement is small enough. It should always
548 // be no worse than AGHI (and better if it avoids a move).
549 if (isUInt<12>(x: Disp))
550 return true;
551
552 // For similar reasons, always use LAY if the constant is too big for AGHI.
553 // LAY should be no worse than AGFI.
554 if (!isInt<16>(x: Disp))
555 return true;
556 } else {
557 // Don't use LA for plain registers.
558 if (!Index)
559 return false;
560
561 // Don't use LA for plain addition if the index operand is only used
562 // once. It should be a natural two-operand addition in that case.
563 if (Index->hasOneUse())
564 return false;
565
566 // Prefer addition if the second operation is sign-extended, in the
567 // hope of using AGF.
568 unsigned IndexOpcode = Index->getOpcode();
569 if (IndexOpcode == ISD::SIGN_EXTEND ||
570 IndexOpcode == ISD::SIGN_EXTEND_INREG)
571 return false;
572 }
573
574 // Don't use LA for two-operand addition if either operand is only
575 // used once. The addition instructions are better in that case.
576 if (Base->hasOneUse())
577 return false;
578
579 return true;
580}
581
582// Return true if Addr is suitable for AM, updating AM if so.
583bool SystemZDAGToDAGISel::selectAddress(SDValue Addr,
584 SystemZAddressingMode &AM) const {
585 // Start out assuming that the address will need to be loaded separately,
586 // then try to extend it as much as we can.
587 AM.Base = Addr;
588
589 // First try treating the address as a constant.
590 if (Addr.getOpcode() == ISD::Constant &&
591 expandDisp(AM, IsBase: true, Op0: SDValue(),
592 Op1: cast<ConstantSDNode>(Val&: Addr)->getSExtValue()))
593 ;
594 // Also see if it's a bare ADJDYNALLOC.
595 else if (Addr.getOpcode() == SystemZISD::ADJDYNALLOC &&
596 expandAdjDynAlloc(AM, IsBase: true, Value: SDValue()))
597 ;
598 else
599 // Otherwise try expanding each component.
600 while (expandAddress(AM, IsBase: true) ||
601 (AM.Index.getNode() && expandAddress(AM, IsBase: false)))
602 continue;
603
604 // Reject cases where it isn't profitable to use LA(Y).
605 if (AM.Form == SystemZAddressingMode::FormBDXLA &&
606 !shouldUseLA(Base: AM.Base.getNode(), Disp: AM.Disp, Index: AM.Index.getNode()))
607 return false;
608
609 // Reject cases where the other instruction in a pair should be used.
610 if (!isValidDisp(DR: AM.DR, Val: AM.Disp))
611 return false;
612
613 // Make sure that ADJDYNALLOC is included where necessary.
614 if (AM.isDynAlloc() && !AM.IncludesDynAlloc)
615 return false;
616
617 LLVM_DEBUG(AM.dump(CurDAG));
618 return true;
619}
620
621// Insert a node into the DAG at least before Pos. This will reposition
622// the node as needed, and will assign it a node ID that is <= Pos's ID.
623// Note that this does *not* preserve the uniqueness of node IDs!
624// The selection DAG must no longer depend on their uniqueness when this
625// function is used.
626static void insertDAGNode(SelectionDAG *DAG, SDNode *Pos, SDValue N) {
627 if (N->getNodeId() == -1 ||
628 (SelectionDAGISel::getUninvalidatedNodeId(N: N.getNode()) >
629 SelectionDAGISel::getUninvalidatedNodeId(N: Pos))) {
630 DAG->RepositionNode(Position: Pos->getIterator(), N: N.getNode());
631 // Mark Node as invalid for pruning as after this it may be a successor to a
632 // selected node but otherwise be in the same position of Pos.
633 // Conservatively mark it with the same -abs(Id) to assure node id
634 // invariant is preserved.
635 N->setNodeId(Pos->getNodeId());
636 SelectionDAGISel::InvalidateNodeId(N: N.getNode());
637 }
638}
639
640void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
641 EVT VT, SDValue &Base,
642 SDValue &Disp) const {
643 Base = AM.Base;
644 if (!Base.getNode())
645 // Register 0 means "no base". This is mostly useful for shifts.
646 Base = CurDAG->getRegister(Reg: 0, VT);
647 else if (Base.getOpcode() == ISD::FrameIndex) {
648 // Lower a FrameIndex to a TargetFrameIndex.
649 int64_t FrameIndex = cast<FrameIndexSDNode>(Val&: Base)->getIndex();
650 Base = CurDAG->getTargetFrameIndex(FI: FrameIndex, VT);
651 } else if (Base.getValueType() != VT) {
652 // Truncate values from i64 to i32, for shifts.
653 assert(VT == MVT::i32 && Base.getValueType() == MVT::i64 &&
654 "Unexpected truncation");
655 SDLoc DL(Base);
656 SDValue Trunc = CurDAG->getNode(Opcode: ISD::TRUNCATE, DL, VT, Operand: Base);
657 insertDAGNode(DAG: CurDAG, Pos: Base.getNode(), N: Trunc);
658 Base = Trunc;
659 }
660
661 // Lower the displacement to a TargetConstant.
662 Disp = CurDAG->getTargetConstant(Val: AM.Disp, DL: SDLoc(Base), VT);
663}
664
665void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
666 EVT VT, SDValue &Base,
667 SDValue &Disp,
668 SDValue &Index) const {
669 getAddressOperands(AM, VT, Base, Disp);
670
671 Index = AM.Index;
672 if (!Index.getNode())
673 // Register 0 means "no index".
674 Index = CurDAG->getRegister(Reg: 0, VT);
675}
676
677bool SystemZDAGToDAGISel::selectBDAddr(SystemZAddressingMode::DispRange DR,
678 SDValue Addr, SDValue &Base,
679 SDValue &Disp) const {
680 SystemZAddressingMode AM(SystemZAddressingMode::FormBD, DR);
681 if (!selectAddress(Addr, AM))
682 return false;
683
684 getAddressOperands(AM, VT: Addr.getValueType(), Base, Disp);
685 return true;
686}
687
688bool SystemZDAGToDAGISel::selectMVIAddr(SystemZAddressingMode::DispRange DR,
689 SDValue Addr, SDValue &Base,
690 SDValue &Disp) const {
691 SystemZAddressingMode AM(SystemZAddressingMode::FormBDXNormal, DR);
692 if (!selectAddress(Addr, AM) || AM.Index.getNode())
693 return false;
694
695 getAddressOperands(AM, VT: Addr.getValueType(), Base, Disp);
696 return true;
697}
698
699bool SystemZDAGToDAGISel::selectBDXAddr(SystemZAddressingMode::AddrForm Form,
700 SystemZAddressingMode::DispRange DR,
701 SDValue Addr, SDValue &Base,
702 SDValue &Disp, SDValue &Index) const {
703 SystemZAddressingMode AM(Form, DR);
704 if (!selectAddress(Addr, AM))
705 return false;
706
707 getAddressOperands(AM, VT: Addr.getValueType(), Base, Disp, Index);
708 return true;
709}
710
711bool SystemZDAGToDAGISel::selectBDVAddr12Only(SDValue Addr, SDValue Elem,
712 SDValue &Base,
713 SDValue &Disp,
714 SDValue &Index) const {
715 SDValue Regs[2];
716 if (selectBDXAddr12Only(Addr, Base&: Regs[0], Disp, Index&: Regs[1]) &&
717 Regs[0].getNode() && Regs[1].getNode()) {
718 for (unsigned int I = 0; I < 2; ++I) {
719 Base = Regs[I];
720 Index = Regs[1 - I];
721 // We can't tell here whether the index vector has the right type
722 // for the access; the caller needs to do that instead.
723 if (Index.getOpcode() == ISD::ZERO_EXTEND)
724 Index = Index.getOperand(i: 0);
725 if (Index.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
726 Index.getOperand(i: 1) == Elem) {
727 Index = Index.getOperand(i: 0);
728 return true;
729 }
730 }
731 }
732 return false;
733}
734
735bool SystemZDAGToDAGISel::detectOrAndInsertion(SDValue &Op,
736 uint64_t InsertMask) const {
737 // We're only interested in cases where the insertion is into some operand
738 // of Op, rather than into Op itself. The only useful case is an AND.
739 if (Op.getOpcode() != ISD::AND)
740 return false;
741
742 // We need a constant mask.
743 auto *MaskNode = dyn_cast<ConstantSDNode>(Val: Op.getOperand(i: 1).getNode());
744 if (!MaskNode)
745 return false;
746
747 // It's not an insertion of Op.getOperand(0) if the two masks overlap.
748 uint64_t AndMask = MaskNode->getZExtValue();
749 if (InsertMask & AndMask)
750 return false;
751
752 // It's only an insertion if all bits are covered or are known to be zero.
753 // The inner check covers all cases but is more expensive.
754 uint64_t Used = allOnes(Count: Op.getValueSizeInBits());
755 if (Used != (AndMask | InsertMask)) {
756 KnownBits Known = CurDAG->computeKnownBits(Op: Op.getOperand(i: 0));
757 if (Used != (AndMask | InsertMask | Known.Zero.getZExtValue()))
758 return false;
759 }
760
761 Op = Op.getOperand(i: 0);
762 return true;
763}
764
765bool SystemZDAGToDAGISel::refineRxSBGMask(RxSBGOperands &RxSBG,
766 uint64_t Mask) const {
767 const SystemZInstrInfo *TII = getInstrInfo();
768 if (RxSBG.Rotate != 0)
769 Mask = (Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate));
770 Mask &= RxSBG.Mask;
771 if (TII->isRxSBGMask(Mask, BitSize: RxSBG.BitSize, Start&: RxSBG.Start, End&: RxSBG.End)) {
772 RxSBG.Mask = Mask;
773 return true;
774 }
775 return false;
776}
777
778// Return true if any bits of (RxSBG.Input & Mask) are significant.
779static bool maskMatters(RxSBGOperands &RxSBG, uint64_t Mask) {
780 // Rotate the mask in the same way as RxSBG.Input is rotated.
781 if (RxSBG.Rotate != 0)
782 Mask = ((Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate)));
783 return (Mask & RxSBG.Mask) != 0;
784}
785
786bool SystemZDAGToDAGISel::expandRxSBG(RxSBGOperands &RxSBG) const {
787 SDValue N = RxSBG.Input;
788 unsigned Opcode = N.getOpcode();
789 switch (Opcode) {
790 case ISD::TRUNCATE: {
791 if (RxSBG.Opcode == SystemZ::RNSBG)
792 return false;
793 if (N.getOperand(i: 0).getValueSizeInBits() > 64)
794 return false;
795 uint64_t BitSize = N.getValueSizeInBits();
796 uint64_t Mask = allOnes(Count: BitSize);
797 if (!refineRxSBGMask(RxSBG, Mask))
798 return false;
799 RxSBG.Input = N.getOperand(i: 0);
800 return true;
801 }
802 case ISD::AND: {
803 if (RxSBG.Opcode == SystemZ::RNSBG)
804 return false;
805
806 auto *MaskNode = dyn_cast<ConstantSDNode>(Val: N.getOperand(i: 1).getNode());
807 if (!MaskNode)
808 return false;
809
810 SDValue Input = N.getOperand(i: 0);
811 uint64_t Mask = MaskNode->getZExtValue();
812 if (!refineRxSBGMask(RxSBG, Mask)) {
813 // If some bits of Input are already known zeros, those bits will have
814 // been removed from the mask. See if adding them back in makes the
815 // mask suitable.
816 KnownBits Known = CurDAG->computeKnownBits(Op: Input);
817 Mask |= Known.Zero.getZExtValue();
818 if (!refineRxSBGMask(RxSBG, Mask))
819 return false;
820 }
821 RxSBG.Input = Input;
822 return true;
823 }
824
825 case ISD::OR: {
826 if (RxSBG.Opcode != SystemZ::RNSBG)
827 return false;
828
829 auto *MaskNode = dyn_cast<ConstantSDNode>(Val: N.getOperand(i: 1).getNode());
830 if (!MaskNode)
831 return false;
832
833 SDValue Input = N.getOperand(i: 0);
834 uint64_t Mask = ~MaskNode->getZExtValue();
835 if (!refineRxSBGMask(RxSBG, Mask)) {
836 // If some bits of Input are already known ones, those bits will have
837 // been removed from the mask. See if adding them back in makes the
838 // mask suitable.
839 KnownBits Known = CurDAG->computeKnownBits(Op: Input);
840 Mask &= ~Known.One.getZExtValue();
841 if (!refineRxSBGMask(RxSBG, Mask))
842 return false;
843 }
844 RxSBG.Input = Input;
845 return true;
846 }
847
848 case ISD::ROTL: {
849 // Any 64-bit rotate left can be merged into the RxSBG.
850 if (RxSBG.BitSize != 64 || N.getValueType() != MVT::i64)
851 return false;
852 auto *CountNode = dyn_cast<ConstantSDNode>(Val: N.getOperand(i: 1).getNode());
853 if (!CountNode)
854 return false;
855
856 RxSBG.Rotate = (RxSBG.Rotate + CountNode->getZExtValue()) & 63;
857 RxSBG.Input = N.getOperand(i: 0);
858 return true;
859 }
860
861 case ISD::ANY_EXTEND:
862 // Bits above the extended operand are don't-care.
863 RxSBG.Input = N.getOperand(i: 0);
864 return true;
865
866 case ISD::ZERO_EXTEND:
867 if (RxSBG.Opcode != SystemZ::RNSBG) {
868 // Restrict the mask to the extended operand.
869 unsigned InnerBitSize = N.getOperand(i: 0).getValueSizeInBits();
870 if (!refineRxSBGMask(RxSBG, Mask: allOnes(Count: InnerBitSize)))
871 return false;
872
873 RxSBG.Input = N.getOperand(i: 0);
874 return true;
875 }
876 [[fallthrough]];
877
878 case ISD::SIGN_EXTEND: {
879 // Check that the extension bits are don't-care (i.e. are masked out
880 // by the final mask).
881 unsigned BitSize = N.getValueSizeInBits();
882 unsigned InnerBitSize = N.getOperand(i: 0).getValueSizeInBits();
883 if (maskMatters(RxSBG, Mask: allOnes(Count: BitSize) - allOnes(Count: InnerBitSize))) {
884 // In the case where only the sign bit is active, increase Rotate with
885 // the extension width.
886 if (RxSBG.Mask == 1 && RxSBG.Rotate == 1)
887 RxSBG.Rotate += (BitSize - InnerBitSize);
888 else
889 return false;
890 }
891
892 RxSBG.Input = N.getOperand(i: 0);
893 return true;
894 }
895
896 case ISD::SHL: {
897 auto *CountNode = dyn_cast<ConstantSDNode>(Val: N.getOperand(i: 1).getNode());
898 if (!CountNode)
899 return false;
900
901 uint64_t Count = CountNode->getZExtValue();
902 unsigned BitSize = N.getValueSizeInBits();
903 if (Count < 1 || Count >= BitSize)
904 return false;
905
906 if (RxSBG.Opcode == SystemZ::RNSBG) {
907 // Treat (shl X, count) as (rotl X, size-count) as long as the bottom
908 // count bits from RxSBG.Input are ignored.
909 if (maskMatters(RxSBG, Mask: allOnes(Count)))
910 return false;
911 } else {
912 // Treat (shl X, count) as (and (rotl X, count), ~0<<count).
913 if (!refineRxSBGMask(RxSBG, Mask: allOnes(Count: BitSize - Count) << Count))
914 return false;
915 }
916
917 RxSBG.Rotate = (RxSBG.Rotate + Count) & 63;
918 RxSBG.Input = N.getOperand(i: 0);
919 return true;
920 }
921
922 case ISD::SRL:
923 case ISD::SRA: {
924 auto *CountNode = dyn_cast<ConstantSDNode>(Val: N.getOperand(i: 1).getNode());
925 if (!CountNode)
926 return false;
927
928 uint64_t Count = CountNode->getZExtValue();
929 unsigned BitSize = N.getValueSizeInBits();
930 if (Count < 1 || Count >= BitSize)
931 return false;
932
933 if (RxSBG.Opcode == SystemZ::RNSBG || Opcode == ISD::SRA) {
934 // Treat (srl|sra X, count) as (rotl X, size-count) as long as the top
935 // count bits from RxSBG.Input are ignored.
936 if (maskMatters(RxSBG, Mask: allOnes(Count) << (BitSize - Count)))
937 return false;
938 } else {
939 // Treat (srl X, count), mask) as (and (rotl X, size-count), ~0>>count),
940 // which is similar to SLL above.
941 if (!refineRxSBGMask(RxSBG, Mask: allOnes(Count: BitSize - Count)))
942 return false;
943 }
944
945 RxSBG.Rotate = (RxSBG.Rotate - Count) & 63;
946 RxSBG.Input = N.getOperand(i: 0);
947 return true;
948 }
949 default:
950 return false;
951 }
952}
953
954SDValue SystemZDAGToDAGISel::getUNDEF(const SDLoc &DL, EVT VT) const {
955 SDNode *N = CurDAG->getMachineNode(Opcode: TargetOpcode::IMPLICIT_DEF, dl: DL, VT);
956 return SDValue(N, 0);
957}
958
959SDValue SystemZDAGToDAGISel::convertTo(const SDLoc &DL, EVT VT,
960 SDValue N) const {
961 if (N.getValueType() == MVT::i32 && VT == MVT::i64)
962 return CurDAG->getTargetInsertSubreg(SystemZ::SRIdx: subreg_l32,
963 DL, VT, Operand: getUNDEF(DL, MVT::VT: i64), Subreg: N);
964 if (N.getValueType() == MVT::i64 && VT == MVT::i32)
965 return CurDAG->getTargetExtractSubreg(SystemZ::SRIdx: subreg_l32, DL, VT, Operand: N);
966 assert(N.getValueType() == VT && "Unexpected value types");
967 return N;
968}
969
970bool SystemZDAGToDAGISel::tryRISBGZero(SDNode *N) {
971 SDLoc DL(N);
972 EVT VT = N->getValueType(ResNo: 0);
973 if (!VT.isInteger() || VT.getSizeInBits() > 64)
974 return false;
975 RxSBGOperands RISBG(SystemZ::RISBG, SDValue(N, 0));
976 unsigned Count = 0;
977 while (expandRxSBG(RxSBG&: RISBG))
978 // The widening or narrowing is expected to be free.
979 // Counting widening or narrowing as a saved operation will result in
980 // preferring an R*SBG over a simple shift/logical instruction.
981 if (RISBG.Input.getOpcode() != ISD::ANY_EXTEND &&
982 RISBG.Input.getOpcode() != ISD::TRUNCATE)
983 Count += 1;
984 if (Count == 0 || isa<ConstantSDNode>(Val: RISBG.Input))
985 return false;
986
987 // Prefer to use normal shift instructions over RISBG, since they can handle
988 // all cases and are sometimes shorter.
989 if (Count == 1 && N->getOpcode() != ISD::AND)
990 return false;
991
992 // Prefer register extensions like LLC over RISBG. Also prefer to start
993 // out with normal ANDs if one instruction would be enough. We can convert
994 // these ANDs into an RISBG later if a three-address instruction is useful.
995 if (RISBG.Rotate == 0) {
996 bool PreferAnd = false;
997 // Prefer AND for any 32-bit and-immediate operation.
998 if (VT == MVT::i32)
999 PreferAnd = true;
1000 // As well as for any 64-bit operation that can be implemented via LLC(R),
1001 // LLH(R), LLGT(R), or one of the and-immediate instructions.
1002 else if (RISBG.Mask == 0xff ||
1003 RISBG.Mask == 0xffff ||
1004 RISBG.Mask == 0x7fffffff ||
1005 SystemZ::isImmLF(Val: ~RISBG.Mask) ||
1006 SystemZ::isImmHF(Val: ~RISBG.Mask))
1007 PreferAnd = true;
1008 // And likewise for the LLZRGF instruction, which doesn't have a register
1009 // to register version.
1010 else if (auto *Load = dyn_cast<LoadSDNode>(RISBG.Input)) {
1011 if (Load->getMemoryVT() == MVT::i32 &&
1012 (Load->getExtensionType() == ISD::EXTLOAD ||
1013 Load->getExtensionType() == ISD::ZEXTLOAD) &&
1014 RISBG.Mask == 0xffffff00 &&
1015 Subtarget->hasLoadAndZeroRightmostByte())
1016 PreferAnd = true;
1017 }
1018 if (PreferAnd) {
1019 // Replace the current node with an AND. Note that the current node
1020 // might already be that same AND, in which case it is already CSE'd
1021 // with it, and we must not call ReplaceNode.
1022 SDValue In = convertTo(DL, VT, N: RISBG.Input);
1023 SDValue Mask = CurDAG->getConstant(Val: RISBG.Mask, DL, VT);
1024 SDValue New = CurDAG->getNode(Opcode: ISD::AND, DL, VT, N1: In, N2: Mask);
1025 if (N != New.getNode()) {
1026 insertDAGNode(DAG: CurDAG, Pos: N, N: Mask);
1027 insertDAGNode(DAG: CurDAG, Pos: N, N: New);
1028 ReplaceNode(F: N, T: New.getNode());
1029 N = New.getNode();
1030 }
1031 // Now, select the machine opcode to implement this operation.
1032 if (!N->isMachineOpcode())
1033 SelectCode(N);
1034 return true;
1035 }
1036 }
1037
1038 unsigned Opcode = SystemZ::RISBG;
1039 // Prefer RISBGN if available, since it does not clobber CC.
1040 if (Subtarget->hasMiscellaneousExtensions())
1041 Opcode = SystemZ::RISBGN;
1042 EVT OpcodeVT = MVT::i64;
1043 if (VT == MVT::i32 && Subtarget->hasHighWord() &&
1044 // We can only use the 32-bit instructions if all source bits are
1045 // in the low 32 bits without wrapping, both after rotation (because
1046 // of the smaller range for Start and End) and before rotation
1047 // (because the input value is truncated).
1048 RISBG.Start >= 32 && RISBG.End >= RISBG.Start &&
1049 ((RISBG.Start + RISBG.Rotate) & 63) >= 32 &&
1050 ((RISBG.End + RISBG.Rotate) & 63) >=
1051 ((RISBG.Start + RISBG.Rotate) & 63)) {
1052 Opcode = SystemZ::RISBMux;
1053 OpcodeVT = MVT::i32;
1054 RISBG.Start &= 31;
1055 RISBG.End &= 31;
1056 }
1057 SDValue Ops[5] = {
1058 getUNDEF(DL, OpcodeVT),
1059 convertTo(DL, OpcodeVT, RISBG.Input),
1060 CurDAG->getTargetConstant(RISBG.Start, DL, MVT::i32),
1061 CurDAG->getTargetConstant(RISBG.End | 128, DL, MVT::i32),
1062 CurDAG->getTargetConstant(RISBG.Rotate, DL, MVT::i32)
1063 };
1064 SDValue New = convertTo(
1065 DL, VT, N: SDValue(CurDAG->getMachineNode(Opcode, dl: DL, VT: OpcodeVT, Ops), 0));
1066 ReplaceNode(F: N, T: New.getNode());
1067 return true;
1068}
1069
1070bool SystemZDAGToDAGISel::tryRxSBG(SDNode *N, unsigned Opcode) {
1071 SDLoc DL(N);
1072 EVT VT = N->getValueType(ResNo: 0);
1073 if (!VT.isInteger() || VT.getSizeInBits() > 64)
1074 return false;
1075 // Try treating each operand of N as the second operand of the RxSBG
1076 // and see which goes deepest.
1077 RxSBGOperands RxSBG[] = {
1078 RxSBGOperands(Opcode, N->getOperand(Num: 0)),
1079 RxSBGOperands(Opcode, N->getOperand(Num: 1))
1080 };
1081 unsigned Count[] = { 0, 0 };
1082 for (unsigned I = 0; I < 2; ++I)
1083 while (RxSBG[I].Input->hasOneUse() && expandRxSBG(RxSBG&: RxSBG[I]))
1084 // In cases of multiple users it seems better to keep the simple
1085 // instruction as they are one cycle faster, and it also helps in cases
1086 // where both inputs share a common node.
1087 // The widening or narrowing is expected to be free. Counting widening
1088 // or narrowing as a saved operation will result in preferring an R*SBG
1089 // over a simple shift/logical instruction.
1090 if (RxSBG[I].Input.getOpcode() != ISD::ANY_EXTEND &&
1091 RxSBG[I].Input.getOpcode() != ISD::TRUNCATE)
1092 Count[I] += 1;
1093
1094 // Do nothing if neither operand is suitable.
1095 if (Count[0] == 0 && Count[1] == 0)
1096 return false;
1097
1098 // Pick the deepest second operand.
1099 unsigned I = Count[0] > Count[1] ? 0 : 1;
1100 SDValue Op0 = N->getOperand(Num: I ^ 1);
1101
1102 // Prefer IC for character insertions from memory.
1103 if (Opcode == SystemZ::ROSBG && (RxSBG[I].Mask & 0xff) == 0)
1104 if (auto *Load = dyn_cast<LoadSDNode>(Val: Op0.getNode()))
1105 if (Load->getMemoryVT() == MVT::i8)
1106 return false;
1107
1108 // See whether we can avoid an AND in the first operand by converting
1109 // ROSBG to RISBG.
1110 if (Opcode == SystemZ::ROSBG && detectOrAndInsertion(Op&: Op0, InsertMask: RxSBG[I].Mask)) {
1111 Opcode = SystemZ::RISBG;
1112 // Prefer RISBGN if available, since it does not clobber CC.
1113 if (Subtarget->hasMiscellaneousExtensions())
1114 Opcode = SystemZ::RISBGN;
1115 }
1116
1117 SDValue Ops[5] = {
1118 convertTo(DL, MVT::i64, Op0),
1119 convertTo(DL, MVT::i64, RxSBG[I].Input),
1120 CurDAG->getTargetConstant(RxSBG[I].Start, DL, MVT::i32),
1121 CurDAG->getTargetConstant(RxSBG[I].End, DL, MVT::i32),
1122 CurDAG->getTargetConstant(RxSBG[I].Rotate, DL, MVT::i32)
1123 };
1124 SDValue New = convertTo(
1125 DL, VT, SDValue(CurDAG->getMachineNode(Opcode, DL, MVT::i64, Ops), 0));
1126 ReplaceNode(F: N, T: New.getNode());
1127 return true;
1128}
1129
1130void SystemZDAGToDAGISel::splitLargeImmediate(unsigned Opcode, SDNode *Node,
1131 SDValue Op0, uint64_t UpperVal,
1132 uint64_t LowerVal) {
1133 EVT VT = Node->getValueType(ResNo: 0);
1134 SDLoc DL(Node);
1135 SDValue Upper = CurDAG->getConstant(Val: UpperVal, DL, VT);
1136 if (Op0.getNode())
1137 Upper = CurDAG->getNode(Opcode, DL, VT, N1: Op0, N2: Upper);
1138
1139 {
1140 // When we haven't passed in Op0, Upper will be a constant. In order to
1141 // prevent folding back to the large immediate in `Or = getNode(...)` we run
1142 // SelectCode first and end up with an opaque machine node. This means that
1143 // we need to use a handle to keep track of Upper in case it gets CSE'd by
1144 // SelectCode.
1145 //
1146 // Note that in the case where Op0 is passed in we could just call
1147 // SelectCode(Upper) later, along with the SelectCode(Or), and avoid needing
1148 // the handle at all, but it's fine to do it here.
1149 //
1150 // TODO: This is a pretty hacky way to do this. Can we do something that
1151 // doesn't require a two paragraph explanation?
1152 HandleSDNode Handle(Upper);
1153 SelectCode(Upper.getNode());
1154 Upper = Handle.getValue();
1155 }
1156
1157 SDValue Lower = CurDAG->getConstant(Val: LowerVal, DL, VT);
1158 SDValue Or = CurDAG->getNode(Opcode, DL, VT, N1: Upper, N2: Lower);
1159
1160 ReplaceNode(F: Node, T: Or.getNode());
1161
1162 SelectCode(Or.getNode());
1163}
1164
1165void SystemZDAGToDAGISel::loadVectorConstant(
1166 const SystemZVectorConstantInfo &VCI, SDNode *Node) {
1167 assert((VCI.Opcode == SystemZISD::BYTE_MASK ||
1168 VCI.Opcode == SystemZISD::REPLICATE ||
1169 VCI.Opcode == SystemZISD::ROTATE_MASK) &&
1170 "Bad opcode!");
1171 assert(VCI.VecVT.getSizeInBits() == 128 && "Expected a vector type");
1172 EVT VT = Node->getValueType(ResNo: 0);
1173 SDLoc DL(Node);
1174 SmallVector<SDValue, 2> Ops;
1175 for (unsigned OpVal : VCI.OpVals)
1176 Ops.push_back(CurDAG->getTargetConstant(OpVal, DL, MVT::i32));
1177 SDValue Op = CurDAG->getNode(Opcode: VCI.Opcode, DL, VT: VCI.VecVT, Ops);
1178
1179 if (VCI.VecVT == VT.getSimpleVT())
1180 ReplaceNode(F: Node, T: Op.getNode());
1181 else if (VT.getSizeInBits() == 128) {
1182 SDValue BitCast = CurDAG->getNode(Opcode: ISD::BITCAST, DL, VT, Operand: Op);
1183 ReplaceNode(F: Node, T: BitCast.getNode());
1184 SelectCode(BitCast.getNode());
1185 } else { // float or double
1186 unsigned SubRegIdx =
1187 (VT.getSizeInBits() == 32 ? SystemZ::subreg_h32 : SystemZ::subreg_h64);
1188 ReplaceNode(
1189 F: Node, T: CurDAG->getTargetExtractSubreg(SRIdx: SubRegIdx, DL, VT, Operand: Op).getNode());
1190 }
1191 SelectCode(Op.getNode());
1192}
1193
1194SDNode *SystemZDAGToDAGISel::loadPoolVectorConstant(APInt Val, EVT VT, SDLoc DL) {
1195 SDNode *ResNode;
1196 assert (VT.getSizeInBits() == 128);
1197
1198 SDValue CP = CurDAG->getTargetConstantPool(
1199 C: ConstantInt::get(Ty: Type::getInt128Ty(C&: *CurDAG->getContext()), V: Val),
1200 VT: TLI->getPointerTy(DL: CurDAG->getDataLayout()));
1201
1202 EVT PtrVT = CP.getValueType();
1203 SDValue Ops[] = {
1204 SDValue(CurDAG->getMachineNode(SystemZ::LARL, DL, PtrVT, CP), 0),
1205 CurDAG->getTargetConstant(0, DL, PtrVT),
1206 CurDAG->getRegister(0, PtrVT),
1207 CurDAG->getEntryNode()
1208 };
1209 ResNode = CurDAG->getMachineNode(SystemZ::VL, DL, VT, MVT::Other, Ops);
1210
1211 // Annotate ResNode with memory operand information so that MachineInstr
1212 // queries work properly. This e.g. gives the register allocation the
1213 // required information for rematerialization.
1214 MachineFunction& MF = CurDAG->getMachineFunction();
1215 MachineMemOperand *MemOp =
1216 MF.getMachineMemOperand(PtrInfo: MachinePointerInfo::getConstantPool(MF),
1217 F: MachineMemOperand::MOLoad, Size: 16, BaseAlignment: Align(8));
1218
1219 CurDAG->setNodeMemRefs(N: cast<MachineSDNode>(Val: ResNode), NewMemRefs: {MemOp});
1220 return ResNode;
1221}
1222
1223bool SystemZDAGToDAGISel::tryGather(SDNode *N, unsigned Opcode) {
1224 SDValue ElemV = N->getOperand(Num: 2);
1225 auto *ElemN = dyn_cast<ConstantSDNode>(Val&: ElemV);
1226 if (!ElemN)
1227 return false;
1228
1229 unsigned Elem = ElemN->getZExtValue();
1230 EVT VT = N->getValueType(ResNo: 0);
1231 if (Elem >= VT.getVectorNumElements())
1232 return false;
1233
1234 auto *Load = dyn_cast<LoadSDNode>(Val: N->getOperand(Num: 1));
1235 if (!Load || !Load->hasNUsesOfValue(NUses: 1, Value: 0))
1236 return false;
1237 if (Load->getMemoryVT().getSizeInBits() !=
1238 Load->getValueType(ResNo: 0).getSizeInBits())
1239 return false;
1240
1241 SDValue Base, Disp, Index;
1242 if (!selectBDVAddr12Only(Addr: Load->getBasePtr(), Elem: ElemV, Base, Disp, Index) ||
1243 Index.getValueType() != VT.changeVectorElementTypeToInteger())
1244 return false;
1245
1246 SDLoc DL(Load);
1247 SDValue Ops[] = {
1248 N->getOperand(0), Base, Disp, Index,
1249 CurDAG->getTargetConstant(Elem, DL, MVT::i32), Load->getChain()
1250 };
1251 SDNode *Res = CurDAG->getMachineNode(Opcode, DL, VT, MVT::Other, Ops);
1252 ReplaceUses(F: SDValue(Load, 1), T: SDValue(Res, 1));
1253 ReplaceNode(F: N, T: Res);
1254 return true;
1255}
1256
1257bool SystemZDAGToDAGISel::tryScatter(StoreSDNode *Store, unsigned Opcode) {
1258 SDValue Value = Store->getValue();
1259 if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1260 return false;
1261 if (Store->getMemoryVT().getSizeInBits() != Value.getValueSizeInBits())
1262 return false;
1263
1264 SDValue ElemV = Value.getOperand(i: 1);
1265 auto *ElemN = dyn_cast<ConstantSDNode>(Val&: ElemV);
1266 if (!ElemN)
1267 return false;
1268
1269 SDValue Vec = Value.getOperand(i: 0);
1270 EVT VT = Vec.getValueType();
1271 unsigned Elem = ElemN->getZExtValue();
1272 if (Elem >= VT.getVectorNumElements())
1273 return false;
1274
1275 SDValue Base, Disp, Index;
1276 if (!selectBDVAddr12Only(Addr: Store->getBasePtr(), Elem: ElemV, Base, Disp, Index) ||
1277 Index.getValueType() != VT.changeVectorElementTypeToInteger())
1278 return false;
1279
1280 SDLoc DL(Store);
1281 SDValue Ops[] = {
1282 Vec, Base, Disp, Index, CurDAG->getTargetConstant(Elem, DL, MVT::i32),
1283 Store->getChain()
1284 };
1285 ReplaceNode(Store, CurDAG->getMachineNode(Opcode, DL, MVT::Other, Ops));
1286 return true;
1287}
1288
1289// Check whether or not the chain ending in StoreNode is suitable for doing
1290// the {load; op; store} to modify transformation.
1291static bool isFusableLoadOpStorePattern(StoreSDNode *StoreNode,
1292 SDValue StoredVal, SelectionDAG *CurDAG,
1293 LoadSDNode *&LoadNode,
1294 SDValue &InputChain) {
1295 // Is the stored value result 0 of the operation?
1296 if (StoredVal.getResNo() != 0)
1297 return false;
1298
1299 // Are there other uses of the loaded value than the operation?
1300 if (!StoredVal.getNode()->hasNUsesOfValue(NUses: 1, Value: 0))
1301 return false;
1302
1303 // Is the store non-extending and non-indexed?
1304 if (!ISD::isNormalStore(N: StoreNode) || StoreNode->isNonTemporal())
1305 return false;
1306
1307 SDValue Load = StoredVal->getOperand(Num: 0);
1308 // Is the stored value a non-extending and non-indexed load?
1309 if (!ISD::isNormalLoad(N: Load.getNode()))
1310 return false;
1311
1312 // Return LoadNode by reference.
1313 LoadNode = cast<LoadSDNode>(Val&: Load);
1314
1315 // Is store the only read of the loaded value?
1316 if (!Load.hasOneUse())
1317 return false;
1318
1319 // Is the address of the store the same as the load?
1320 if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
1321 LoadNode->getOffset() != StoreNode->getOffset())
1322 return false;
1323
1324 // Check if the chain is produced by the load or is a TokenFactor with
1325 // the load output chain as an operand. Return InputChain by reference.
1326 SDValue Chain = StoreNode->getChain();
1327
1328 bool ChainCheck = false;
1329 if (Chain == Load.getValue(R: 1)) {
1330 ChainCheck = true;
1331 InputChain = LoadNode->getChain();
1332 } else if (Chain.getOpcode() == ISD::TokenFactor) {
1333 SmallVector<SDValue, 4> ChainOps;
1334 SmallVector<const SDNode *, 4> LoopWorklist;
1335 SmallPtrSet<const SDNode *, 16> Visited;
1336 const unsigned int Max = 1024;
1337 for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
1338 SDValue Op = Chain.getOperand(i);
1339 if (Op == Load.getValue(R: 1)) {
1340 ChainCheck = true;
1341 // Drop Load, but keep its chain. No cycle check necessary.
1342 ChainOps.push_back(Elt: Load.getOperand(i: 0));
1343 continue;
1344 }
1345 LoopWorklist.push_back(Elt: Op.getNode());
1346 ChainOps.push_back(Elt: Op);
1347 }
1348
1349 if (ChainCheck) {
1350 // Add the other operand of StoredVal to worklist.
1351 for (SDValue Op : StoredVal->ops())
1352 if (Op.getNode() != LoadNode)
1353 LoopWorklist.push_back(Elt: Op.getNode());
1354
1355 // Check if Load is reachable from any of the nodes in the worklist.
1356 if (SDNode::hasPredecessorHelper(N: Load.getNode(), Visited, Worklist&: LoopWorklist, MaxSteps: Max,
1357 TopologicalPrune: true))
1358 return false;
1359
1360 // Make a new TokenFactor with all the other input chains except
1361 // for the load.
1362 InputChain = CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain),
1363 MVT::Other, ChainOps);
1364 }
1365 }
1366 if (!ChainCheck)
1367 return false;
1368
1369 return true;
1370}
1371
1372// Change a chain of {load; op; store} of the same value into a simple op
1373// through memory of that value, if the uses of the modified value and its
1374// address are suitable.
1375//
1376// The tablegen pattern memory operand pattern is currently not able to match
1377// the case where the CC on the original operation are used.
1378//
1379// See the equivalent routine in X86ISelDAGToDAG for further comments.
1380bool SystemZDAGToDAGISel::tryFoldLoadStoreIntoMemOperand(SDNode *Node) {
1381 StoreSDNode *StoreNode = cast<StoreSDNode>(Val: Node);
1382 SDValue StoredVal = StoreNode->getOperand(Num: 1);
1383 unsigned Opc = StoredVal->getOpcode();
1384 SDLoc DL(StoreNode);
1385
1386 // Before we try to select anything, make sure this is memory operand size
1387 // and opcode we can handle. Note that this must match the code below that
1388 // actually lowers the opcodes.
1389 EVT MemVT = StoreNode->getMemoryVT();
1390 unsigned NewOpc = 0;
1391 bool NegateOperand = false;
1392 switch (Opc) {
1393 default:
1394 return false;
1395 case SystemZISD::SSUBO:
1396 NegateOperand = true;
1397 [[fallthrough]];
1398 case SystemZISD::SADDO:
1399 if (MemVT == MVT::i32)
1400 NewOpc = SystemZ::ASI;
1401 else if (MemVT == MVT::i64)
1402 NewOpc = SystemZ::AGSI;
1403 else
1404 return false;
1405 break;
1406 case SystemZISD::USUBO:
1407 NegateOperand = true;
1408 [[fallthrough]];
1409 case SystemZISD::UADDO:
1410 if (MemVT == MVT::i32)
1411 NewOpc = SystemZ::ALSI;
1412 else if (MemVT == MVT::i64)
1413 NewOpc = SystemZ::ALGSI;
1414 else
1415 return false;
1416 break;
1417 }
1418
1419 LoadSDNode *LoadNode = nullptr;
1420 SDValue InputChain;
1421 if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadNode,
1422 InputChain))
1423 return false;
1424
1425 SDValue Operand = StoredVal.getOperand(i: 1);
1426 auto *OperandC = dyn_cast<ConstantSDNode>(Val&: Operand);
1427 if (!OperandC)
1428 return false;
1429 auto OperandV = OperandC->getAPIntValue();
1430 if (NegateOperand)
1431 OperandV = -OperandV;
1432 if (OperandV.getSignificantBits() > 8)
1433 return false;
1434 Operand = CurDAG->getTargetConstant(Val: OperandV, DL, VT: MemVT);
1435
1436 SDValue Base, Disp;
1437 if (!selectBDAddr20Only(Addr: StoreNode->getBasePtr(), Base, Disp))
1438 return false;
1439
1440 SDValue Ops[] = { Base, Disp, Operand, InputChain };
1441 MachineSDNode *Result =
1442 CurDAG->getMachineNode(NewOpc, DL, MVT::i32, MVT::Other, Ops);
1443 CurDAG->setNodeMemRefs(
1444 N: Result, NewMemRefs: {StoreNode->getMemOperand(), LoadNode->getMemOperand()});
1445
1446 ReplaceUses(F: SDValue(StoreNode, 0), T: SDValue(Result, 1));
1447 ReplaceUses(F: SDValue(StoredVal.getNode(), 1), T: SDValue(Result, 0));
1448 CurDAG->RemoveDeadNode(N: Node);
1449 return true;
1450}
1451
1452bool SystemZDAGToDAGISel::canUseBlockOperation(StoreSDNode *Store,
1453 LoadSDNode *Load) const {
1454 // Check that the two memory operands have the same size.
1455 if (Load->getMemoryVT() != Store->getMemoryVT())
1456 return false;
1457
1458 // Volatility stops an access from being decomposed.
1459 if (Load->isVolatile() || Store->isVolatile())
1460 return false;
1461
1462 // There's no chance of overlap if the load is invariant.
1463 if (Load->isInvariant() && Load->isDereferenceable())
1464 return true;
1465
1466 // Otherwise we need to check whether there's an alias.
1467 const Value *V1 = Load->getMemOperand()->getValue();
1468 const Value *V2 = Store->getMemOperand()->getValue();
1469 if (!V1 || !V2)
1470 return false;
1471
1472 // Reject equality.
1473 uint64_t Size = Load->getMemoryVT().getStoreSize();
1474 int64_t End1 = Load->getSrcValueOffset() + Size;
1475 int64_t End2 = Store->getSrcValueOffset() + Size;
1476 if (V1 == V2 && End1 == End2)
1477 return false;
1478
1479 return AA->isNoAlias(LocA: MemoryLocation(V1, End1, Load->getAAInfo()),
1480 LocB: MemoryLocation(V2, End2, Store->getAAInfo()));
1481}
1482
1483bool SystemZDAGToDAGISel::storeLoadCanUseMVC(SDNode *N) const {
1484 auto *Store = cast<StoreSDNode>(Val: N);
1485 auto *Load = cast<LoadSDNode>(Val: Store->getValue());
1486
1487 // Prefer not to use MVC if either address can use ... RELATIVE LONG
1488 // instructions.
1489 uint64_t Size = Load->getMemoryVT().getStoreSize();
1490 if (Size > 1 && Size <= 8) {
1491 // Prefer LHRL, LRL and LGRL.
1492 if (SystemZISD::isPCREL(Opcode: Load->getBasePtr().getOpcode()))
1493 return false;
1494 // Prefer STHRL, STRL and STGRL.
1495 if (SystemZISD::isPCREL(Opcode: Store->getBasePtr().getOpcode()))
1496 return false;
1497 }
1498
1499 return canUseBlockOperation(Store, Load);
1500}
1501
1502bool SystemZDAGToDAGISel::storeLoadCanUseBlockBinary(SDNode *N,
1503 unsigned I) const {
1504 auto *StoreA = cast<StoreSDNode>(Val: N);
1505 auto *LoadA = cast<LoadSDNode>(Val: StoreA->getValue().getOperand(i: 1 - I));
1506 auto *LoadB = cast<LoadSDNode>(Val: StoreA->getValue().getOperand(i: I));
1507 return !LoadA->isVolatile() && LoadA->getMemoryVT() == LoadB->getMemoryVT() &&
1508 canUseBlockOperation(Store: StoreA, Load: LoadB);
1509}
1510
1511bool SystemZDAGToDAGISel::storeLoadIsAligned(SDNode *N) const {
1512
1513 auto *MemAccess = cast<MemSDNode>(Val: N);
1514 auto *LdSt = dyn_cast<LSBaseSDNode>(Val: MemAccess);
1515 TypeSize StoreSize = MemAccess->getMemoryVT().getStoreSize();
1516 SDValue BasePtr = MemAccess->getBasePtr();
1517 MachineMemOperand *MMO = MemAccess->getMemOperand();
1518 assert(MMO && "Expected a memory operand.");
1519
1520 // The memory access must have a proper alignment and no index register.
1521 // Only load and store nodes have the offset operand (atomic loads do not).
1522 if (MemAccess->getAlign().value() < StoreSize ||
1523 (LdSt && !LdSt->getOffset().isUndef()))
1524 return false;
1525
1526 // The MMO must not have an unaligned offset.
1527 if (MMO->getOffset() % StoreSize != 0)
1528 return false;
1529
1530 // An access to GOT or the Constant Pool is aligned.
1531 if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
1532 if ((PSV->isGOT() || PSV->isConstantPool()))
1533 return true;
1534
1535 // Check the alignment of a Global Address.
1536 if (BasePtr.getNumOperands())
1537 if (GlobalAddressSDNode *GA =
1538 dyn_cast<GlobalAddressSDNode>(Val: BasePtr.getOperand(i: 0))) {
1539 // The immediate offset must be aligned.
1540 if (GA->getOffset() % StoreSize != 0)
1541 return false;
1542
1543 // The alignment of the symbol itself must be at least the store size.
1544 const GlobalValue *GV = GA->getGlobal();
1545 const DataLayout &DL = GV->getParent()->getDataLayout();
1546 if (GV->getPointerAlignment(DL).value() < StoreSize)
1547 return false;
1548 }
1549
1550 return true;
1551}
1552
1553ISD::LoadExtType SystemZDAGToDAGISel::getLoadExtType(SDNode *N) const {
1554 ISD::LoadExtType ETy;
1555 if (auto *L = dyn_cast<LoadSDNode>(Val: N))
1556 ETy = L->getExtensionType();
1557 else if (auto *AL = dyn_cast<AtomicSDNode>(Val: N))
1558 ETy = AL->getExtensionType();
1559 else
1560 llvm_unreachable("Unkown load node type.");
1561 return ETy;
1562}
1563
1564void SystemZDAGToDAGISel::Select(SDNode *Node) {
1565 // If we have a custom node, we already have selected!
1566 if (Node->isMachineOpcode()) {
1567 LLVM_DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
1568 Node->setNodeId(-1);
1569 return;
1570 }
1571
1572 unsigned Opcode = Node->getOpcode();
1573 switch (Opcode) {
1574 case ISD::OR:
1575 if (Node->getOperand(Num: 1).getOpcode() != ISD::Constant)
1576 if (tryRxSBG(Node, SystemZ::ROSBG))
1577 return;
1578 goto or_xor;
1579
1580 case ISD::XOR:
1581 if (Node->getOperand(Num: 1).getOpcode() != ISD::Constant)
1582 if (tryRxSBG(Node, SystemZ::RXSBG))
1583 return;
1584 // Fall through.
1585 or_xor:
1586 // If this is a 64-bit operation in which both 32-bit halves are nonzero,
1587 // split the operation into two. If both operands here happen to be
1588 // constant, leave this to common code to optimize.
1589 if (Node->getValueType(0) == MVT::i64 &&
1590 Node->getOperand(0).getOpcode() != ISD::Constant)
1591 if (auto *Op1 = dyn_cast<ConstantSDNode>(Val: Node->getOperand(Num: 1))) {
1592 uint64_t Val = Op1->getZExtValue();
1593 // Don't split the operation if we can match one of the combined
1594 // logical operations provided by miscellaneous-extensions-3.
1595 if (Subtarget->hasMiscellaneousExtensions3()) {
1596 unsigned ChildOpcode = Node->getOperand(Num: 0).getOpcode();
1597 // Check whether this expression matches NAND/NOR/NXOR.
1598 if (Val == (uint64_t)-1 && Opcode == ISD::XOR)
1599 if (ChildOpcode == ISD::AND || ChildOpcode == ISD::OR ||
1600 ChildOpcode == ISD::XOR)
1601 break;
1602 // Check whether this expression matches OR-with-complement
1603 // (or matches an alternate pattern for NXOR).
1604 if (ChildOpcode == ISD::XOR) {
1605 auto Op0 = Node->getOperand(Num: 0);
1606 if (auto *Op0Op1 = dyn_cast<ConstantSDNode>(Val: Op0->getOperand(Num: 1)))
1607 if (Op0Op1->getZExtValue() == (uint64_t)-1)
1608 break;
1609 }
1610 }
1611 // Don't split an XOR with -1 as LCGR/AGHI is more compact.
1612 if (Opcode == ISD::XOR && Op1->isAllOnes())
1613 break;
1614 if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val)) {
1615 splitLargeImmediate(Opcode, Node, Op0: Node->getOperand(Num: 0),
1616 UpperVal: Val - uint32_t(Val), LowerVal: uint32_t(Val));
1617 return;
1618 }
1619 }
1620 break;
1621
1622 case ISD::AND:
1623 if (Node->getOperand(Num: 1).getOpcode() != ISD::Constant)
1624 if (tryRxSBG(Node, SystemZ::RNSBG))
1625 return;
1626 [[fallthrough]];
1627 case ISD::ROTL:
1628 case ISD::SHL:
1629 case ISD::SRL:
1630 case ISD::ZERO_EXTEND:
1631 if (tryRISBGZero(N: Node))
1632 return;
1633 break;
1634
1635 case ISD::BSWAP:
1636 if (Node->getValueType(0) == MVT::i128) {
1637 SDLoc DL(Node);
1638 SDValue Src = Node->getOperand(Num: 0);
1639 Src = CurDAG->getNode(ISD::BITCAST, DL, MVT::v16i8, Src);
1640
1641 uint64_t Bytes[2] = { 0x0706050403020100ULL, 0x0f0e0d0c0b0a0908ULL };
1642 SDNode *Mask = loadPoolVectorConstant(APInt(128, Bytes), MVT::v16i8, DL);
1643 SDValue Ops[] = { Src, Src, SDValue(Mask, 0) };
1644 SDValue Res = SDValue(CurDAG->getMachineNode(SystemZ::VPERM, DL,
1645 MVT::v16i8, Ops), 0);
1646
1647 Res = CurDAG->getNode(ISD::BITCAST, DL, MVT::i128, Res);
1648 SDNode *ResNode = Res.getNode();
1649 ReplaceNode(F: Node, T: ResNode);
1650 SelectCode(Src.getNode());
1651 SelectCode(ResNode);
1652 return;
1653 }
1654 break;
1655
1656 case ISD::Constant:
1657 // If this is a 64-bit constant that is out of the range of LLILF,
1658 // LLIHF and LGFI, split it into two 32-bit pieces.
1659 if (Node->getValueType(0) == MVT::i64) {
1660 uint64_t Val = Node->getAsZExtVal();
1661 if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val) && !isInt<32>(x: Val)) {
1662 splitLargeImmediate(Opcode: ISD::OR, Node, Op0: SDValue(), UpperVal: Val - uint32_t(Val),
1663 LowerVal: uint32_t(Val));
1664 return;
1665 }
1666 }
1667 if (Node->getValueType(0) == MVT::i128) {
1668 const APInt &Val = Node->getAsAPIntVal();
1669 SystemZVectorConstantInfo VCI(Val);
1670 if (VCI.isVectorConstantLegal(Subtarget: *Subtarget)) {
1671 loadVectorConstant(VCI, Node);
1672 return;
1673 }
1674 // If we can't materialize the constant we need to use a literal pool.
1675 SDNode *ResNode = loadPoolVectorConstant(Val, MVT::i128, SDLoc(Node));
1676 ReplaceNode(F: Node, T: ResNode);
1677 return;
1678 }
1679 break;
1680
1681 case SystemZISD::SELECT_CCMASK: {
1682 SDValue Op0 = Node->getOperand(Num: 0);
1683 SDValue Op1 = Node->getOperand(Num: 1);
1684 // Prefer to put any load first, so that it can be matched as a
1685 // conditional load. Likewise for constants in range for LOCHI.
1686 if ((Op1.getOpcode() == ISD::LOAD && Op0.getOpcode() != ISD::LOAD) ||
1687 (Subtarget->hasLoadStoreOnCond2() &&
1688 Node->getValueType(ResNo: 0).isInteger() &&
1689 Node->getValueType(ResNo: 0).getSizeInBits() <= 64 &&
1690 Op1.getOpcode() == ISD::Constant &&
1691 isInt<16>(x: cast<ConstantSDNode>(Val&: Op1)->getSExtValue()) &&
1692 !(Op0.getOpcode() == ISD::Constant &&
1693 isInt<16>(x: cast<ConstantSDNode>(Val&: Op0)->getSExtValue())))) {
1694 SDValue CCValid = Node->getOperand(Num: 2);
1695 SDValue CCMask = Node->getOperand(Num: 3);
1696 uint64_t ConstCCValid = CCValid.getNode()->getAsZExtVal();
1697 uint64_t ConstCCMask = CCMask.getNode()->getAsZExtVal();
1698 // Invert the condition.
1699 CCMask = CurDAG->getTargetConstant(Val: ConstCCValid ^ ConstCCMask,
1700 DL: SDLoc(Node), VT: CCMask.getValueType());
1701 SDValue Op4 = Node->getOperand(Num: 4);
1702 SDNode *UpdatedNode =
1703 CurDAG->UpdateNodeOperands(N: Node, Op1, Op2: Op0, Op3: CCValid, Op4: CCMask, Op5: Op4);
1704 if (UpdatedNode != Node) {
1705 // In case this node already exists then replace Node with it.
1706 ReplaceNode(F: Node, T: UpdatedNode);
1707 Node = UpdatedNode;
1708 }
1709 }
1710 break;
1711 }
1712
1713 case ISD::INSERT_VECTOR_ELT: {
1714 EVT VT = Node->getValueType(ResNo: 0);
1715 unsigned ElemBitSize = VT.getScalarSizeInBits();
1716 if (ElemBitSize == 32) {
1717 if (tryGather(Node, SystemZ::VGEF))
1718 return;
1719 } else if (ElemBitSize == 64) {
1720 if (tryGather(Node, SystemZ::VGEG))
1721 return;
1722 }
1723 break;
1724 }
1725
1726 case ISD::BUILD_VECTOR: {
1727 auto *BVN = cast<BuildVectorSDNode>(Val: Node);
1728 SystemZVectorConstantInfo VCI(BVN);
1729 if (VCI.isVectorConstantLegal(Subtarget: *Subtarget)) {
1730 loadVectorConstant(VCI, Node);
1731 return;
1732 }
1733 break;
1734 }
1735
1736 case ISD::ConstantFP: {
1737 APFloat Imm = cast<ConstantFPSDNode>(Val: Node)->getValueAPF();
1738 if (Imm.isZero() || Imm.isNegZero())
1739 break;
1740 SystemZVectorConstantInfo VCI(Imm);
1741 bool Success = VCI.isVectorConstantLegal(Subtarget: *Subtarget); (void)Success;
1742 assert(Success && "Expected legal FP immediate");
1743 loadVectorConstant(VCI, Node);
1744 return;
1745 }
1746
1747 case ISD::STORE: {
1748 if (tryFoldLoadStoreIntoMemOperand(Node))
1749 return;
1750 auto *Store = cast<StoreSDNode>(Val: Node);
1751 unsigned ElemBitSize = Store->getValue().getValueSizeInBits();
1752 if (ElemBitSize == 32) {
1753 if (tryScatter(Store, SystemZ::VSCEF))
1754 return;
1755 } else if (ElemBitSize == 64) {
1756 if (tryScatter(Store, SystemZ::VSCEG))
1757 return;
1758 }
1759 break;
1760 }
1761
1762 case ISD::ATOMIC_STORE: {
1763 auto *AtomOp = cast<AtomicSDNode>(Val: Node);
1764 // Replace the atomic_store with a regular store and select it. This is
1765 // ok since we know all store instructions <= 8 bytes are atomic, and the
1766 // 16 byte case is already handled during lowering.
1767 StoreSDNode *St = cast<StoreSDNode>(Val: CurDAG->getTruncStore(
1768 Chain: AtomOp->getChain(), dl: SDLoc(AtomOp), Val: AtomOp->getVal(),
1769 Ptr: AtomOp->getBasePtr(), SVT: AtomOp->getMemoryVT(), MMO: AtomOp->getMemOperand()));
1770 assert(St->getMemOperand()->isAtomic() && "Broken MMO.");
1771 SDNode *Chain = St;
1772 // We have to enforce sequential consistency by performing a
1773 // serialization operation after the store.
1774 if (AtomOp->getSuccessOrdering() == AtomicOrdering::SequentiallyConsistent)
1775 Chain = CurDAG->getMachineNode(SystemZ::Serialize, SDLoc(AtomOp),
1776 MVT::Other, SDValue(Chain, 0));
1777 ReplaceNode(F: Node, T: Chain);
1778 SelectCode(St);
1779 return;
1780 }
1781 }
1782
1783 SelectCode(Node);
1784}
1785
1786bool SystemZDAGToDAGISel::SelectInlineAsmMemoryOperand(
1787 const SDValue &Op, InlineAsm::ConstraintCode ConstraintID,
1788 std::vector<SDValue> &OutOps) {
1789 SystemZAddressingMode::AddrForm Form;
1790 SystemZAddressingMode::DispRange DispRange;
1791 SDValue Base, Disp, Index;
1792
1793 switch(ConstraintID) {
1794 default:
1795 llvm_unreachable("Unexpected asm memory constraint");
1796 case InlineAsm::ConstraintCode::i:
1797 case InlineAsm::ConstraintCode::Q:
1798 case InlineAsm::ConstraintCode::ZQ:
1799 // Accept an address with a short displacement, but no index.
1800 Form = SystemZAddressingMode::FormBD;
1801 DispRange = SystemZAddressingMode::Disp12Only;
1802 break;
1803 case InlineAsm::ConstraintCode::R:
1804 case InlineAsm::ConstraintCode::ZR:
1805 // Accept an address with a short displacement and an index.
1806 Form = SystemZAddressingMode::FormBDXNormal;
1807 DispRange = SystemZAddressingMode::Disp12Only;
1808 break;
1809 case InlineAsm::ConstraintCode::S:
1810 case InlineAsm::ConstraintCode::ZS:
1811 // Accept an address with a long displacement, but no index.
1812 Form = SystemZAddressingMode::FormBD;
1813 DispRange = SystemZAddressingMode::Disp20Only;
1814 break;
1815 case InlineAsm::ConstraintCode::T:
1816 case InlineAsm::ConstraintCode::m:
1817 case InlineAsm::ConstraintCode::o:
1818 case InlineAsm::ConstraintCode::p:
1819 case InlineAsm::ConstraintCode::ZT:
1820 // Accept an address with a long displacement and an index.
1821 // m works the same as T, as this is the most general case.
1822 // We don't really have any special handling of "offsettable"
1823 // memory addresses, so just treat o the same as m.
1824 Form = SystemZAddressingMode::FormBDXNormal;
1825 DispRange = SystemZAddressingMode::Disp20Only;
1826 break;
1827 }
1828
1829 if (selectBDXAddr(Form, DR: DispRange, Addr: Op, Base, Disp, Index)) {
1830 const TargetRegisterClass *TRC =
1831 Subtarget->getRegisterInfo()->getPointerRegClass(MF: *MF);
1832 SDLoc DL(Base);
1833 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), DL, MVT::i32);
1834
1835 // Make sure that the base address doesn't go into %r0.
1836 // If it's a TargetFrameIndex or a fixed register, we shouldn't do anything.
1837 if (Base.getOpcode() != ISD::TargetFrameIndex &&
1838 Base.getOpcode() != ISD::Register) {
1839 Base =
1840 SDValue(CurDAG->getMachineNode(Opcode: TargetOpcode::COPY_TO_REGCLASS,
1841 dl: DL, VT: Base.getValueType(),
1842 Op1: Base, Op2: RC), 0);
1843 }
1844
1845 // Make sure that the index register isn't assigned to %r0 either.
1846 if (Index.getOpcode() != ISD::Register) {
1847 Index =
1848 SDValue(CurDAG->getMachineNode(Opcode: TargetOpcode::COPY_TO_REGCLASS,
1849 dl: DL, VT: Index.getValueType(),
1850 Op1: Index, Op2: RC), 0);
1851 }
1852
1853 OutOps.push_back(x: Base);
1854 OutOps.push_back(x: Disp);
1855 OutOps.push_back(x: Index);
1856 return false;
1857 }
1858
1859 return true;
1860}
1861
1862// IsProfitableToFold - Returns true if is profitable to fold the specific
1863// operand node N of U during instruction selection that starts at Root.
1864bool
1865SystemZDAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1866 SDNode *Root) const {
1867 // We want to avoid folding a LOAD into an ICMP node if as a result
1868 // we would be forced to spill the condition code into a GPR.
1869 if (N.getOpcode() == ISD::LOAD && U->getOpcode() == SystemZISD::ICMP) {
1870 if (!N.hasOneUse() || !U->hasOneUse())
1871 return false;
1872
1873 // The user of the CC value will usually be a CopyToReg into the
1874 // physical CC register, which in turn is glued and chained to the
1875 // actual instruction that uses the CC value. Bail out if we have
1876 // anything else than that.
1877 SDNode *CCUser = *U->use_begin();
1878 SDNode *CCRegUser = nullptr;
1879 if (CCUser->getOpcode() == ISD::CopyToReg ||
1880 cast<RegisterSDNode>(CCUser->getOperand(1))->getReg() == SystemZ::CC) {
1881 for (auto *U : CCUser->uses()) {
1882 if (CCRegUser == nullptr)
1883 CCRegUser = U;
1884 else if (CCRegUser != U)
1885 return false;
1886 }
1887 }
1888 if (CCRegUser == nullptr)
1889 return false;
1890
1891 // If the actual instruction is a branch, the only thing that remains to be
1892 // checked is whether the CCUser chain is a predecessor of the load.
1893 if (CCRegUser->isMachineOpcode() &&
1894 CCRegUser->getMachineOpcode() == SystemZ::BRC)
1895 return !N->isPredecessorOf(N: CCUser->getOperand(Num: 0).getNode());
1896
1897 // Otherwise, the instruction may have multiple operands, and we need to
1898 // verify that none of them are a predecessor of the load. This is exactly
1899 // the same check that would be done by common code if the CC setter were
1900 // glued to the CC user, so simply invoke that check here.
1901 if (!IsLegalToFold(N, U, Root: CCRegUser, OptLevel, IgnoreChains: false))
1902 return false;
1903 }
1904
1905 return true;
1906}
1907
1908namespace {
1909// Represents a sequence for extracting a 0/1 value from an IPM result:
1910// (((X ^ XORValue) + AddValue) >> Bit)
1911struct IPMConversion {
1912 IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit)
1913 : XORValue(xorValue), AddValue(addValue), Bit(bit) {}
1914
1915 int64_t XORValue;
1916 int64_t AddValue;
1917 unsigned Bit;
1918};
1919} // end anonymous namespace
1920
1921// Return a sequence for getting a 1 from an IPM result when CC has a
1922// value in CCMask and a 0 when CC has a value in CCValid & ~CCMask.
1923// The handling of CC values outside CCValid doesn't matter.
1924static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) {
1925 // Deal with cases where the result can be taken directly from a bit
1926 // of the IPM result.
1927 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3)))
1928 return IPMConversion(0, 0, SystemZ::IPM_CC);
1929 if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3)))
1930 return IPMConversion(0, 0, SystemZ::IPM_CC + 1);
1931
1932 // Deal with cases where we can add a value to force the sign bit
1933 // to contain the right value. Putting the bit in 31 means we can
1934 // use SRL rather than RISBG(L), and also makes it easier to get a
1935 // 0/-1 value, so it has priority over the other tests below.
1936 //
1937 // These sequences rely on the fact that the upper two bits of the
1938 // IPM result are zero.
1939 uint64_t TopBit = uint64_t(1) << 31;
1940 if (CCMask == (CCValid & SystemZ::CCMASK_0))
1941 return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31);
1942 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1)))
1943 return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31);
1944 if (CCMask == (CCValid & (SystemZ::CCMASK_0
1945 | SystemZ::CCMASK_1
1946 | SystemZ::CCMASK_2)))
1947 return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31);
1948 if (CCMask == (CCValid & SystemZ::CCMASK_3))
1949 return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31);
1950 if (CCMask == (CCValid & (SystemZ::CCMASK_1
1951 | SystemZ::CCMASK_2
1952 | SystemZ::CCMASK_3)))
1953 return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31);
1954
1955 // Next try inverting the value and testing a bit. 0/1 could be
1956 // handled this way too, but we dealt with that case above.
1957 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2)))
1958 return IPMConversion(-1, 0, SystemZ::IPM_CC);
1959
1960 // Handle cases where adding a value forces a non-sign bit to contain
1961 // the right value.
1962 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2)))
1963 return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1);
1964 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3)))
1965 return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1);
1966
1967 // The remaining cases are 1, 2, 0/1/3 and 0/2/3. All these are
1968 // can be done by inverting the low CC bit and applying one of the
1969 // sign-based extractions above.
1970 if (CCMask == (CCValid & SystemZ::CCMASK_1))
1971 return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31);
1972 if (CCMask == (CCValid & SystemZ::CCMASK_2))
1973 return IPMConversion(1 << SystemZ::IPM_CC,
1974 TopBit - (3 << SystemZ::IPM_CC), 31);
1975 if (CCMask == (CCValid & (SystemZ::CCMASK_0
1976 | SystemZ::CCMASK_1
1977 | SystemZ::CCMASK_3)))
1978 return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31);
1979 if (CCMask == (CCValid & (SystemZ::CCMASK_0
1980 | SystemZ::CCMASK_2
1981 | SystemZ::CCMASK_3)))
1982 return IPMConversion(1 << SystemZ::IPM_CC,
1983 TopBit - (1 << SystemZ::IPM_CC), 31);
1984
1985 llvm_unreachable("Unexpected CC combination");
1986}
1987
1988SDValue SystemZDAGToDAGISel::expandSelectBoolean(SDNode *Node) {
1989 auto *TrueOp = dyn_cast<ConstantSDNode>(Val: Node->getOperand(Num: 0));
1990 auto *FalseOp = dyn_cast<ConstantSDNode>(Val: Node->getOperand(Num: 1));
1991 if (!TrueOp || !FalseOp)
1992 return SDValue();
1993 if (FalseOp->getZExtValue() != 0)
1994 return SDValue();
1995 if (TrueOp->getSExtValue() != 1 && TrueOp->getSExtValue() != -1)
1996 return SDValue();
1997
1998 auto *CCValidOp = dyn_cast<ConstantSDNode>(Val: Node->getOperand(Num: 2));
1999 auto *CCMaskOp = dyn_cast<ConstantSDNode>(Val: Node->getOperand(Num: 3));
2000 if (!CCValidOp || !CCMaskOp)
2001 return SDValue();
2002 int CCValid = CCValidOp->getZExtValue();
2003 int CCMask = CCMaskOp->getZExtValue();
2004
2005 SDLoc DL(Node);
2006 SDValue CCReg = Node->getOperand(Num: 4);
2007 IPMConversion IPM = getIPMConversion(CCValid, CCMask);
2008 SDValue Result = CurDAG->getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
2009
2010 if (IPM.XORValue)
2011 Result = CurDAG->getNode(ISD::XOR, DL, MVT::i32, Result,
2012 CurDAG->getConstant(IPM.XORValue, DL, MVT::i32));
2013
2014 if (IPM.AddValue)
2015 Result = CurDAG->getNode(ISD::ADD, DL, MVT::i32, Result,
2016 CurDAG->getConstant(IPM.AddValue, DL, MVT::i32));
2017
2018 EVT VT = Node->getValueType(ResNo: 0);
2019 if (VT == MVT::i32 && IPM.Bit == 31) {
2020 unsigned ShiftOp = TrueOp->getSExtValue() == 1 ? ISD::SRL : ISD::SRA;
2021 Result = CurDAG->getNode(ShiftOp, DL, MVT::i32, Result,
2022 CurDAG->getConstant(IPM.Bit, DL, MVT::i32));
2023 } else {
2024 if (VT != MVT::i32)
2025 Result = CurDAG->getNode(Opcode: ISD::ANY_EXTEND, DL, VT, Operand: Result);
2026
2027 if (TrueOp->getSExtValue() == 1) {
2028 // The SHR/AND sequence should get optimized to an RISBG.
2029 Result = CurDAG->getNode(ISD::SRL, DL, VT, Result,
2030 CurDAG->getConstant(IPM.Bit, DL, MVT::i32));
2031 Result = CurDAG->getNode(Opcode: ISD::AND, DL, VT, N1: Result,
2032 N2: CurDAG->getConstant(Val: 1, DL, VT));
2033 } else {
2034 // Sign-extend from IPM.Bit using a pair of shifts.
2035 int ShlAmt = VT.getSizeInBits() - 1 - IPM.Bit;
2036 int SraAmt = VT.getSizeInBits() - 1;
2037 Result = CurDAG->getNode(ISD::SHL, DL, VT, Result,
2038 CurDAG->getConstant(ShlAmt, DL, MVT::i32));
2039 Result = CurDAG->getNode(ISD::SRA, DL, VT, Result,
2040 CurDAG->getConstant(SraAmt, DL, MVT::i32));
2041 }
2042 }
2043
2044 return Result;
2045}
2046
2047void SystemZDAGToDAGISel::PreprocessISelDAG() {
2048 // If we have conditional immediate loads, we always prefer
2049 // using those over an IPM sequence.
2050 if (Subtarget->hasLoadStoreOnCond2())
2051 return;
2052
2053 bool MadeChange = false;
2054
2055 for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
2056 E = CurDAG->allnodes_end();
2057 I != E;) {
2058 SDNode *N = &*I++;
2059 if (N->use_empty())
2060 continue;
2061
2062 SDValue Res;
2063 switch (N->getOpcode()) {
2064 default: break;
2065 case SystemZISD::SELECT_CCMASK:
2066 Res = expandSelectBoolean(Node: N);
2067 break;
2068 }
2069
2070 if (Res) {
2071 LLVM_DEBUG(dbgs() << "SystemZ DAG preprocessing replacing:\nOld: ");
2072 LLVM_DEBUG(N->dump(CurDAG));
2073 LLVM_DEBUG(dbgs() << "\nNew: ");
2074 LLVM_DEBUG(Res.getNode()->dump(CurDAG));
2075 LLVM_DEBUG(dbgs() << "\n");
2076
2077 CurDAG->ReplaceAllUsesOfValueWith(From: SDValue(N, 0), To: Res);
2078 MadeChange = true;
2079 }
2080 }
2081
2082 if (MadeChange)
2083 CurDAG->RemoveDeadNodes();
2084}
2085

source code of llvm/lib/Target/SystemZ/SystemZISelDAGToDAG.cpp