1//===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the visit functions for add, fadd, sub, and fsub.
10//
11//===----------------------------------------------------------------------===//
12
13#include "InstCombineInternal.h"
14#include "llvm/ADT/APFloat.h"
15#include "llvm/ADT/APInt.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/Analysis/InstructionSimplify.h"
19#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/IR/Constant.h"
21#include "llvm/IR/Constants.h"
22#include "llvm/IR/InstrTypes.h"
23#include "llvm/IR/Instruction.h"
24#include "llvm/IR/Instructions.h"
25#include "llvm/IR/Operator.h"
26#include "llvm/IR/PatternMatch.h"
27#include "llvm/IR/Type.h"
28#include "llvm/IR/Value.h"
29#include "llvm/Support/AlignOf.h"
30#include "llvm/Support/Casting.h"
31#include "llvm/Support/KnownBits.h"
32#include "llvm/Transforms/InstCombine/InstCombiner.h"
33#include <cassert>
34#include <utility>
35
36using namespace llvm;
37using namespace PatternMatch;
38
39#define DEBUG_TYPE "instcombine"
40
41namespace {
42
43 /// Class representing coefficient of floating-point addend.
44 /// This class needs to be highly efficient, which is especially true for
45 /// the constructor. As of I write this comment, the cost of the default
46 /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
47 /// perform write-merging).
48 ///
49 class FAddendCoef {
50 public:
51 // The constructor has to initialize a APFloat, which is unnecessary for
52 // most addends which have coefficient either 1 or -1. So, the constructor
53 // is expensive. In order to avoid the cost of the constructor, we should
54 // reuse some instances whenever possible. The pre-created instances
55 // FAddCombine::Add[0-5] embodies this idea.
56 FAddendCoef() = default;
57 ~FAddendCoef();
58
59 // If possible, don't define operator+/operator- etc because these
60 // operators inevitably call FAddendCoef's constructor which is not cheap.
61 void operator=(const FAddendCoef &A);
62 void operator+=(const FAddendCoef &A);
63 void operator*=(const FAddendCoef &S);
64
65 void set(short C) {
66 assert(!insaneIntVal(C) && "Insane coefficient");
67 IsFp = false; IntVal = C;
68 }
69
70 void set(const APFloat& C);
71
72 void negate();
73
74 bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
75 Value *getValue(Type *) const;
76
77 bool isOne() const { return isInt() && IntVal == 1; }
78 bool isTwo() const { return isInt() && IntVal == 2; }
79 bool isMinusOne() const { return isInt() && IntVal == -1; }
80 bool isMinusTwo() const { return isInt() && IntVal == -2; }
81
82 private:
83 bool insaneIntVal(int V) { return V > 4 || V < -4; }
84
85 APFloat *getFpValPtr() { return reinterpret_cast<APFloat *>(&FpValBuf); }
86
87 const APFloat *getFpValPtr() const {
88 return reinterpret_cast<const APFloat *>(&FpValBuf);
89 }
90
91 const APFloat &getFpVal() const {
92 assert(IsFp && BufHasFpVal && "Incorret state");
93 return *getFpValPtr();
94 }
95
96 APFloat &getFpVal() {
97 assert(IsFp && BufHasFpVal && "Incorret state");
98 return *getFpValPtr();
99 }
100
101 bool isInt() const { return !IsFp; }
102
103 // If the coefficient is represented by an integer, promote it to a
104 // floating point.
105 void convertToFpType(const fltSemantics &Sem);
106
107 // Construct an APFloat from a signed integer.
108 // TODO: We should get rid of this function when APFloat can be constructed
109 // from an *SIGNED* integer.
110 APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
111
112 bool IsFp = false;
113
114 // True iff FpValBuf contains an instance of APFloat.
115 bool BufHasFpVal = false;
116
117 // The integer coefficient of an individual addend is either 1 or -1,
118 // and we try to simplify at most 4 addends from neighboring at most
119 // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
120 // is overkill of this end.
121 short IntVal = 0;
122
123 AlignedCharArrayUnion<APFloat> FpValBuf;
124 };
125
126 /// FAddend is used to represent floating-point addend. An addend is
127 /// represented as <C, V>, where the V is a symbolic value, and C is a
128 /// constant coefficient. A constant addend is represented as <C, 0>.
129 class FAddend {
130 public:
131 FAddend() = default;
132
133 void operator+=(const FAddend &T) {
134 assert((Val == T.Val) && "Symbolic-values disagree");
135 Coeff += T.Coeff;
136 }
137
138 Value *getSymVal() const { return Val; }
139 const FAddendCoef &getCoef() const { return Coeff; }
140
141 bool isConstant() const { return Val == nullptr; }
142 bool isZero() const { return Coeff.isZero(); }
143
144 void set(short Coefficient, Value *V) {
145 Coeff.set(Coefficient);
146 Val = V;
147 }
148 void set(const APFloat &Coefficient, Value *V) {
149 Coeff.set(Coefficient);
150 Val = V;
151 }
152 void set(const ConstantFP *Coefficient, Value *V) {
153 Coeff.set(Coefficient->getValueAPF());
154 Val = V;
155 }
156
157 void negate() { Coeff.negate(); }
158
159 /// Drill down the U-D chain one step to find the definition of V, and
160 /// try to break the definition into one or two addends.
161 static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
162
163 /// Similar to FAddend::drillDownOneStep() except that the value being
164 /// splitted is the addend itself.
165 unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
166
167 private:
168 void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
169
170 // This addend has the value of "Coeff * Val".
171 Value *Val = nullptr;
172 FAddendCoef Coeff;
173 };
174
175 /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
176 /// with its neighboring at most two instructions.
177 ///
178 class FAddCombine {
179 public:
180 FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {}
181
182 Value *simplify(Instruction *FAdd);
183
184 private:
185 using AddendVect = SmallVector<const FAddend *, 4>;
186
187 Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
188
189 /// Convert given addend to a Value
190 Value *createAddendVal(const FAddend &A, bool& NeedNeg);
191
192 /// Return the number of instructions needed to emit the N-ary addition.
193 unsigned calcInstrNumber(const AddendVect& Vect);
194
195 Value *createFSub(Value *Opnd0, Value *Opnd1);
196 Value *createFAdd(Value *Opnd0, Value *Opnd1);
197 Value *createFMul(Value *Opnd0, Value *Opnd1);
198 Value *createFNeg(Value *V);
199 Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
200 void createInstPostProc(Instruction *NewInst, bool NoNumber = false);
201
202 // Debugging stuff are clustered here.
203 #ifndef NDEBUG
204 unsigned CreateInstrNum;
205 void initCreateInstNum() { CreateInstrNum = 0; }
206 void incCreateInstNum() { CreateInstrNum++; }
207 #else
208 void initCreateInstNum() {}
209 void incCreateInstNum() {}
210 #endif
211
212 InstCombiner::BuilderTy &Builder;
213 Instruction *Instr = nullptr;
214 };
215
216} // end anonymous namespace
217
218//===----------------------------------------------------------------------===//
219//
220// Implementation of
221// {FAddendCoef, FAddend, FAddition, FAddCombine}.
222//
223//===----------------------------------------------------------------------===//
224FAddendCoef::~FAddendCoef() {
225 if (BufHasFpVal)
226 getFpValPtr()->~APFloat();
227}
228
229void FAddendCoef::set(const APFloat& C) {
230 APFloat *P = getFpValPtr();
231
232 if (isInt()) {
233 // As the buffer is meanless byte stream, we cannot call
234 // APFloat::operator=().
235 new(P) APFloat(C);
236 } else
237 *P = C;
238
239 IsFp = BufHasFpVal = true;
240}
241
242void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
243 if (!isInt())
244 return;
245
246 APFloat *P = getFpValPtr();
247 if (IntVal > 0)
248 new(P) APFloat(Sem, IntVal);
249 else {
250 new(P) APFloat(Sem, 0 - IntVal);
251 P->changeSign();
252 }
253 IsFp = BufHasFpVal = true;
254}
255
256APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
257 if (Val >= 0)
258 return APFloat(Sem, Val);
259
260 APFloat T(Sem, 0 - Val);
261 T.changeSign();
262
263 return T;
264}
265
266void FAddendCoef::operator=(const FAddendCoef &That) {
267 if (That.isInt())
268 set(That.IntVal);
269 else
270 set(That.getFpVal());
271}
272
273void FAddendCoef::operator+=(const FAddendCoef &That) {
274 RoundingMode RndMode = RoundingMode::NearestTiesToEven;
275 if (isInt() == That.isInt()) {
276 if (isInt())
277 IntVal += That.IntVal;
278 else
279 getFpVal().add(RHS: That.getFpVal(), RM: RndMode);
280 return;
281 }
282
283 if (isInt()) {
284 const APFloat &T = That.getFpVal();
285 convertToFpType(Sem: T.getSemantics());
286 getFpVal().add(RHS: T, RM: RndMode);
287 return;
288 }
289
290 APFloat &T = getFpVal();
291 T.add(RHS: createAPFloatFromInt(Sem: T.getSemantics(), Val: That.IntVal), RM: RndMode);
292}
293
294void FAddendCoef::operator*=(const FAddendCoef &That) {
295 if (That.isOne())
296 return;
297
298 if (That.isMinusOne()) {
299 negate();
300 return;
301 }
302
303 if (isInt() && That.isInt()) {
304 int Res = IntVal * (int)That.IntVal;
305 assert(!insaneIntVal(Res) && "Insane int value");
306 IntVal = Res;
307 return;
308 }
309
310 const fltSemantics &Semantic =
311 isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
312
313 if (isInt())
314 convertToFpType(Sem: Semantic);
315 APFloat &F0 = getFpVal();
316
317 if (That.isInt())
318 F0.multiply(RHS: createAPFloatFromInt(Sem: Semantic, Val: That.IntVal),
319 RM: APFloat::rmNearestTiesToEven);
320 else
321 F0.multiply(RHS: That.getFpVal(), RM: APFloat::rmNearestTiesToEven);
322}
323
324void FAddendCoef::negate() {
325 if (isInt())
326 IntVal = 0 - IntVal;
327 else
328 getFpVal().changeSign();
329}
330
331Value *FAddendCoef::getValue(Type *Ty) const {
332 return isInt() ?
333 ConstantFP::get(Ty, V: float(IntVal)) :
334 ConstantFP::get(Context&: Ty->getContext(), V: getFpVal());
335}
336
337// The definition of <Val> Addends
338// =========================================
339// A + B <1, A>, <1,B>
340// A - B <1, A>, <1,B>
341// 0 - B <-1, B>
342// C * A, <C, A>
343// A + C <1, A> <C, NULL>
344// 0 +/- 0 <0, NULL> (corner case)
345//
346// Legend: A and B are not constant, C is constant
347unsigned FAddend::drillValueDownOneStep
348 (Value *Val, FAddend &Addend0, FAddend &Addend1) {
349 Instruction *I = nullptr;
350 if (!Val || !(I = dyn_cast<Instruction>(Val)))
351 return 0;
352
353 unsigned Opcode = I->getOpcode();
354
355 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
356 ConstantFP *C0, *C1;
357 Value *Opnd0 = I->getOperand(i: 0);
358 Value *Opnd1 = I->getOperand(i: 1);
359 if ((C0 = dyn_cast<ConstantFP>(Val: Opnd0)) && C0->isZero())
360 Opnd0 = nullptr;
361
362 if ((C1 = dyn_cast<ConstantFP>(Val: Opnd1)) && C1->isZero())
363 Opnd1 = nullptr;
364
365 if (Opnd0) {
366 if (!C0)
367 Addend0.set(Coefficient: 1, V: Opnd0);
368 else
369 Addend0.set(Coefficient: C0, V: nullptr);
370 }
371
372 if (Opnd1) {
373 FAddend &Addend = Opnd0 ? Addend1 : Addend0;
374 if (!C1)
375 Addend.set(Coefficient: 1, V: Opnd1);
376 else
377 Addend.set(Coefficient: C1, V: nullptr);
378 if (Opcode == Instruction::FSub)
379 Addend.negate();
380 }
381
382 if (Opnd0 || Opnd1)
383 return Opnd0 && Opnd1 ? 2 : 1;
384
385 // Both operands are zero. Weird!
386 Addend0.set(Coefficient: APFloat(C0->getValueAPF().getSemantics()), V: nullptr);
387 return 1;
388 }
389
390 if (I->getOpcode() == Instruction::FMul) {
391 Value *V0 = I->getOperand(i: 0);
392 Value *V1 = I->getOperand(i: 1);
393 if (ConstantFP *C = dyn_cast<ConstantFP>(Val: V0)) {
394 Addend0.set(Coefficient: C, V: V1);
395 return 1;
396 }
397
398 if (ConstantFP *C = dyn_cast<ConstantFP>(Val: V1)) {
399 Addend0.set(Coefficient: C, V: V0);
400 return 1;
401 }
402 }
403
404 return 0;
405}
406
407// Try to break *this* addend into two addends. e.g. Suppose this addend is
408// <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
409// i.e. <2.3, X> and <2.3, Y>.
410unsigned FAddend::drillAddendDownOneStep
411 (FAddend &Addend0, FAddend &Addend1) const {
412 if (isConstant())
413 return 0;
414
415 unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
416 if (!BreakNum || Coeff.isOne())
417 return BreakNum;
418
419 Addend0.Scale(ScaleAmt: Coeff);
420
421 if (BreakNum == 2)
422 Addend1.Scale(ScaleAmt: Coeff);
423
424 return BreakNum;
425}
426
427Value *FAddCombine::simplify(Instruction *I) {
428 assert(I->hasAllowReassoc() && I->hasNoSignedZeros() &&
429 "Expected 'reassoc'+'nsz' instruction");
430
431 // Currently we are not able to handle vector type.
432 if (I->getType()->isVectorTy())
433 return nullptr;
434
435 assert((I->getOpcode() == Instruction::FAdd ||
436 I->getOpcode() == Instruction::FSub) && "Expect add/sub");
437
438 // Save the instruction before calling other member-functions.
439 Instr = I;
440
441 FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
442
443 unsigned OpndNum = FAddend::drillValueDownOneStep(Val: I, Addend0&: Opnd0, Addend1&: Opnd1);
444
445 // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
446 unsigned Opnd0_ExpNum = 0;
447 unsigned Opnd1_ExpNum = 0;
448
449 if (!Opnd0.isConstant())
450 Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Addend0&: Opnd0_0, Addend1&: Opnd0_1);
451
452 // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
453 if (OpndNum == 2 && !Opnd1.isConstant())
454 Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Addend0&: Opnd1_0, Addend1&: Opnd1_1);
455
456 // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
457 if (Opnd0_ExpNum && Opnd1_ExpNum) {
458 AddendVect AllOpnds;
459 AllOpnds.push_back(Elt: &Opnd0_0);
460 AllOpnds.push_back(Elt: &Opnd1_0);
461 if (Opnd0_ExpNum == 2)
462 AllOpnds.push_back(Elt: &Opnd0_1);
463 if (Opnd1_ExpNum == 2)
464 AllOpnds.push_back(Elt: &Opnd1_1);
465
466 // Compute instruction quota. We should save at least one instruction.
467 unsigned InstQuota = 0;
468
469 Value *V0 = I->getOperand(i: 0);
470 Value *V1 = I->getOperand(i: 1);
471 InstQuota = ((!isa<Constant>(Val: V0) && V0->hasOneUse()) &&
472 (!isa<Constant>(Val: V1) && V1->hasOneUse())) ? 2 : 1;
473
474 if (Value *R = simplifyFAdd(V&: AllOpnds, InstrQuota: InstQuota))
475 return R;
476 }
477
478 if (OpndNum != 2) {
479 // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
480 // splitted into two addends, say "V = X - Y", the instruction would have
481 // been optimized into "I = Y - X" in the previous steps.
482 //
483 const FAddendCoef &CE = Opnd0.getCoef();
484 return CE.isOne() ? Opnd0.getSymVal() : nullptr;
485 }
486
487 // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
488 if (Opnd1_ExpNum) {
489 AddendVect AllOpnds;
490 AllOpnds.push_back(Elt: &Opnd0);
491 AllOpnds.push_back(Elt: &Opnd1_0);
492 if (Opnd1_ExpNum == 2)
493 AllOpnds.push_back(Elt: &Opnd1_1);
494
495 if (Value *R = simplifyFAdd(V&: AllOpnds, InstrQuota: 1))
496 return R;
497 }
498
499 // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
500 if (Opnd0_ExpNum) {
501 AddendVect AllOpnds;
502 AllOpnds.push_back(Elt: &Opnd1);
503 AllOpnds.push_back(Elt: &Opnd0_0);
504 if (Opnd0_ExpNum == 2)
505 AllOpnds.push_back(Elt: &Opnd0_1);
506
507 if (Value *R = simplifyFAdd(V&: AllOpnds, InstrQuota: 1))
508 return R;
509 }
510
511 return nullptr;
512}
513
514Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
515 unsigned AddendNum = Addends.size();
516 assert(AddendNum <= 4 && "Too many addends");
517
518 // For saving intermediate results;
519 unsigned NextTmpIdx = 0;
520 FAddend TmpResult[3];
521
522 // Simplified addends are placed <SimpVect>.
523 AddendVect SimpVect;
524
525 // The outer loop works on one symbolic-value at a time. Suppose the input
526 // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
527 // The symbolic-values will be processed in this order: x, y, z.
528 for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
529
530 const FAddend *ThisAddend = Addends[SymIdx];
531 if (!ThisAddend) {
532 // This addend was processed before.
533 continue;
534 }
535
536 Value *Val = ThisAddend->getSymVal();
537
538 // If the resulting expr has constant-addend, this constant-addend is
539 // desirable to reside at the top of the resulting expression tree. Placing
540 // constant close to super-expr(s) will potentially reveal some
541 // optimization opportunities in super-expr(s). Here we do not implement
542 // this logic intentionally and rely on SimplifyAssociativeOrCommutative
543 // call later.
544
545 unsigned StartIdx = SimpVect.size();
546 SimpVect.push_back(Elt: ThisAddend);
547
548 // The inner loop collects addends sharing same symbolic-value, and these
549 // addends will be later on folded into a single addend. Following above
550 // example, if the symbolic value "y" is being processed, the inner loop
551 // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
552 // be later on folded into "<b1+b2, y>".
553 for (unsigned SameSymIdx = SymIdx + 1;
554 SameSymIdx < AddendNum; SameSymIdx++) {
555 const FAddend *T = Addends[SameSymIdx];
556 if (T && T->getSymVal() == Val) {
557 // Set null such that next iteration of the outer loop will not process
558 // this addend again.
559 Addends[SameSymIdx] = nullptr;
560 SimpVect.push_back(Elt: T);
561 }
562 }
563
564 // If multiple addends share same symbolic value, fold them together.
565 if (StartIdx + 1 != SimpVect.size()) {
566 FAddend &R = TmpResult[NextTmpIdx ++];
567 R = *SimpVect[StartIdx];
568 for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
569 R += *SimpVect[Idx];
570
571 // Pop all addends being folded and push the resulting folded addend.
572 SimpVect.resize(N: StartIdx);
573 if (!R.isZero()) {
574 SimpVect.push_back(Elt: &R);
575 }
576 }
577 }
578
579 assert((NextTmpIdx <= std::size(TmpResult) + 1) && "out-of-bound access");
580
581 Value *Result;
582 if (!SimpVect.empty())
583 Result = createNaryFAdd(Opnds: SimpVect, InstrQuota);
584 else {
585 // The addition is folded to 0.0.
586 Result = ConstantFP::get(Ty: Instr->getType(), V: 0.0);
587 }
588
589 return Result;
590}
591
592Value *FAddCombine::createNaryFAdd
593 (const AddendVect &Opnds, unsigned InstrQuota) {
594 assert(!Opnds.empty() && "Expect at least one addend");
595
596 // Step 1: Check if the # of instructions needed exceeds the quota.
597
598 unsigned InstrNeeded = calcInstrNumber(Vect: Opnds);
599 if (InstrNeeded > InstrQuota)
600 return nullptr;
601
602 initCreateInstNum();
603
604 // step 2: Emit the N-ary addition.
605 // Note that at most three instructions are involved in Fadd-InstCombine: the
606 // addition in question, and at most two neighboring instructions.
607 // The resulting optimized addition should have at least one less instruction
608 // than the original addition expression tree. This implies that the resulting
609 // N-ary addition has at most two instructions, and we don't need to worry
610 // about tree-height when constructing the N-ary addition.
611
612 Value *LastVal = nullptr;
613 bool LastValNeedNeg = false;
614
615 // Iterate the addends, creating fadd/fsub using adjacent two addends.
616 for (const FAddend *Opnd : Opnds) {
617 bool NeedNeg;
618 Value *V = createAddendVal(A: *Opnd, NeedNeg);
619 if (!LastVal) {
620 LastVal = V;
621 LastValNeedNeg = NeedNeg;
622 continue;
623 }
624
625 if (LastValNeedNeg == NeedNeg) {
626 LastVal = createFAdd(Opnd0: LastVal, Opnd1: V);
627 continue;
628 }
629
630 if (LastValNeedNeg)
631 LastVal = createFSub(Opnd0: V, Opnd1: LastVal);
632 else
633 LastVal = createFSub(Opnd0: LastVal, Opnd1: V);
634
635 LastValNeedNeg = false;
636 }
637
638 if (LastValNeedNeg) {
639 LastVal = createFNeg(V: LastVal);
640 }
641
642#ifndef NDEBUG
643 assert(CreateInstrNum == InstrNeeded &&
644 "Inconsistent in instruction numbers");
645#endif
646
647 return LastVal;
648}
649
650Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) {
651 Value *V = Builder.CreateFSub(L: Opnd0, R: Opnd1);
652 if (Instruction *I = dyn_cast<Instruction>(Val: V))
653 createInstPostProc(NewInst: I);
654 return V;
655}
656
657Value *FAddCombine::createFNeg(Value *V) {
658 Value *NewV = Builder.CreateFNeg(V);
659 if (Instruction *I = dyn_cast<Instruction>(Val: NewV))
660 createInstPostProc(NewInst: I, NoNumber: true); // fneg's don't receive instruction numbers.
661 return NewV;
662}
663
664Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) {
665 Value *V = Builder.CreateFAdd(L: Opnd0, R: Opnd1);
666 if (Instruction *I = dyn_cast<Instruction>(Val: V))
667 createInstPostProc(NewInst: I);
668 return V;
669}
670
671Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
672 Value *V = Builder.CreateFMul(L: Opnd0, R: Opnd1);
673 if (Instruction *I = dyn_cast<Instruction>(Val: V))
674 createInstPostProc(NewInst: I);
675 return V;
676}
677
678void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) {
679 NewInstr->setDebugLoc(Instr->getDebugLoc());
680
681 // Keep track of the number of instruction created.
682 if (!NoNumber)
683 incCreateInstNum();
684
685 // Propagate fast-math flags
686 NewInstr->setFastMathFlags(Instr->getFastMathFlags());
687}
688
689// Return the number of instruction needed to emit the N-ary addition.
690// NOTE: Keep this function in sync with createAddendVal().
691unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
692 unsigned OpndNum = Opnds.size();
693 unsigned InstrNeeded = OpndNum - 1;
694
695 // Adjust the number of instructions needed to emit the N-ary add.
696 for (const FAddend *Opnd : Opnds) {
697 if (Opnd->isConstant())
698 continue;
699
700 // The constant check above is really for a few special constant
701 // coefficients.
702 if (isa<UndefValue>(Val: Opnd->getSymVal()))
703 continue;
704
705 const FAddendCoef &CE = Opnd->getCoef();
706 // Let the addend be "c * x". If "c == +/-1", the value of the addend
707 // is immediately available; otherwise, it needs exactly one instruction
708 // to evaluate the value.
709 if (!CE.isMinusOne() && !CE.isOne())
710 InstrNeeded++;
711 }
712 return InstrNeeded;
713}
714
715// Input Addend Value NeedNeg(output)
716// ================================================================
717// Constant C C false
718// <+/-1, V> V coefficient is -1
719// <2/-2, V> "fadd V, V" coefficient is -2
720// <C, V> "fmul V, C" false
721//
722// NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
723Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) {
724 const FAddendCoef &Coeff = Opnd.getCoef();
725
726 if (Opnd.isConstant()) {
727 NeedNeg = false;
728 return Coeff.getValue(Ty: Instr->getType());
729 }
730
731 Value *OpndVal = Opnd.getSymVal();
732
733 if (Coeff.isMinusOne() || Coeff.isOne()) {
734 NeedNeg = Coeff.isMinusOne();
735 return OpndVal;
736 }
737
738 if (Coeff.isTwo() || Coeff.isMinusTwo()) {
739 NeedNeg = Coeff.isMinusTwo();
740 return createFAdd(Opnd0: OpndVal, Opnd1: OpndVal);
741 }
742
743 NeedNeg = false;
744 return createFMul(Opnd0: OpndVal, Opnd1: Coeff.getValue(Ty: Instr->getType()));
745}
746
747// Checks if any operand is negative and we can convert add to sub.
748// This function checks for following negative patterns
749// ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))
750// ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
751// XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
752static Value *checkForNegativeOperand(BinaryOperator &I,
753 InstCombiner::BuilderTy &Builder) {
754 Value *LHS = I.getOperand(i_nocapture: 0), *RHS = I.getOperand(i_nocapture: 1);
755
756 // This function creates 2 instructions to replace ADD, we need at least one
757 // of LHS or RHS to have one use to ensure benefit in transform.
758 if (!LHS->hasOneUse() && !RHS->hasOneUse())
759 return nullptr;
760
761 Value *X = nullptr, *Y = nullptr, *Z = nullptr;
762 const APInt *C1 = nullptr, *C2 = nullptr;
763
764 // if ONE is on other side, swap
765 if (match(V: RHS, P: m_Add(L: m_Value(V&: X), R: m_One())))
766 std::swap(a&: LHS, b&: RHS);
767
768 if (match(V: LHS, P: m_Add(L: m_Value(V&: X), R: m_One()))) {
769 // if XOR on other side, swap
770 if (match(V: RHS, P: m_Xor(L: m_Value(V&: Y), R: m_APInt(Res&: C1))))
771 std::swap(a&: X, b&: RHS);
772
773 if (match(V: X, P: m_Xor(L: m_Value(V&: Y), R: m_APInt(Res&: C1)))) {
774 // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
775 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
776 if (match(V: Y, P: m_Or(L: m_Value(V&: Z), R: m_APInt(Res&: C2))) && (*C2 == ~(*C1))) {
777 Value *NewAnd = Builder.CreateAnd(LHS: Z, RHS: *C1);
778 return Builder.CreateSub(LHS: RHS, RHS: NewAnd, Name: "sub");
779 } else if (match(V: Y, P: m_And(L: m_Value(V&: Z), R: m_APInt(Res&: C2))) && (*C1 == *C2)) {
780 // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
781 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
782 Value *NewOr = Builder.CreateOr(LHS: Z, RHS: ~(*C1));
783 return Builder.CreateSub(LHS: RHS, RHS: NewOr, Name: "sub");
784 }
785 }
786 }
787
788 // Restore LHS and RHS
789 LHS = I.getOperand(i_nocapture: 0);
790 RHS = I.getOperand(i_nocapture: 1);
791
792 // if XOR is on other side, swap
793 if (match(V: RHS, P: m_Xor(L: m_Value(V&: Y), R: m_APInt(Res&: C1))))
794 std::swap(a&: LHS, b&: RHS);
795
796 // C2 is ODD
797 // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2))
798 // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
799 if (match(V: LHS, P: m_Xor(L: m_Value(V&: Y), R: m_APInt(Res&: C1))))
800 if (C1->countr_zero() == 0)
801 if (match(V: Y, P: m_And(L: m_Value(V&: Z), R: m_APInt(Res&: C2))) && *C1 == (*C2 + 1)) {
802 Value *NewOr = Builder.CreateOr(LHS: Z, RHS: ~(*C2));
803 return Builder.CreateSub(LHS: RHS, RHS: NewOr, Name: "sub");
804 }
805 return nullptr;
806}
807
808/// Wrapping flags may allow combining constants separated by an extend.
809static Instruction *foldNoWrapAdd(BinaryOperator &Add,
810 InstCombiner::BuilderTy &Builder) {
811 Value *Op0 = Add.getOperand(i_nocapture: 0), *Op1 = Add.getOperand(i_nocapture: 1);
812 Type *Ty = Add.getType();
813 Constant *Op1C;
814 if (!match(V: Op1, P: m_Constant(C&: Op1C)))
815 return nullptr;
816
817 // Try this match first because it results in an add in the narrow type.
818 // (zext (X +nuw C2)) + C1 --> zext (X + (C2 + trunc(C1)))
819 Value *X;
820 const APInt *C1, *C2;
821 if (match(V: Op1, P: m_APInt(Res&: C1)) &&
822 match(V: Op0, P: m_OneUse(SubPattern: m_ZExt(Op: m_NUWAddLike(L: m_Value(V&: X), R: m_APInt(Res&: C2))))) &&
823 C1->isNegative() && C1->sge(RHS: -C2->sext(width: C1->getBitWidth()))) {
824 Constant *NewC =
825 ConstantInt::get(Ty: X->getType(), V: *C2 + C1->trunc(width: C2->getBitWidth()));
826 return new ZExtInst(Builder.CreateNUWAdd(LHS: X, RHS: NewC), Ty);
827 }
828
829 // More general combining of constants in the wide type.
830 // (sext (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C)
831 // or (zext nneg (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C)
832 Constant *NarrowC;
833 if (match(V: Op0, P: m_OneUse(SubPattern: m_SExtLike(
834 Op: m_NSWAddLike(L: m_Value(V&: X), R: m_Constant(C&: NarrowC)))))) {
835 Value *WideC = Builder.CreateSExt(V: NarrowC, DestTy: Ty);
836 Value *NewC = Builder.CreateAdd(LHS: WideC, RHS: Op1C);
837 Value *WideX = Builder.CreateSExt(V: X, DestTy: Ty);
838 return BinaryOperator::CreateAdd(V1: WideX, V2: NewC);
839 }
840 // (zext (X +nuw NarrowC)) + C --> (zext X) + (zext(NarrowC) + C)
841 if (match(V: Op0,
842 P: m_OneUse(SubPattern: m_ZExt(Op: m_NUWAddLike(L: m_Value(V&: X), R: m_Constant(C&: NarrowC)))))) {
843 Value *WideC = Builder.CreateZExt(V: NarrowC, DestTy: Ty);
844 Value *NewC = Builder.CreateAdd(LHS: WideC, RHS: Op1C);
845 Value *WideX = Builder.CreateZExt(V: X, DestTy: Ty);
846 return BinaryOperator::CreateAdd(V1: WideX, V2: NewC);
847 }
848 return nullptr;
849}
850
851Instruction *InstCombinerImpl::foldAddWithConstant(BinaryOperator &Add) {
852 Value *Op0 = Add.getOperand(i_nocapture: 0), *Op1 = Add.getOperand(i_nocapture: 1);
853 Type *Ty = Add.getType();
854 Constant *Op1C;
855 if (!match(V: Op1, P: m_ImmConstant(C&: Op1C)))
856 return nullptr;
857
858 if (Instruction *NV = foldBinOpIntoSelectOrPhi(I&: Add))
859 return NV;
860
861 Value *X;
862 Constant *Op00C;
863
864 // add (sub C1, X), C2 --> sub (add C1, C2), X
865 if (match(V: Op0, P: m_Sub(L: m_Constant(C&: Op00C), R: m_Value(V&: X))))
866 return BinaryOperator::CreateSub(V1: ConstantExpr::getAdd(C1: Op00C, C2: Op1C), V2: X);
867
868 Value *Y;
869
870 // add (sub X, Y), -1 --> add (not Y), X
871 if (match(V: Op0, P: m_OneUse(SubPattern: m_Sub(L: m_Value(V&: X), R: m_Value(V&: Y)))) &&
872 match(V: Op1, P: m_AllOnes()))
873 return BinaryOperator::CreateAdd(V1: Builder.CreateNot(V: Y), V2: X);
874
875 // zext(bool) + C -> bool ? C + 1 : C
876 if (match(V: Op0, P: m_ZExt(Op: m_Value(V&: X))) &&
877 X->getType()->getScalarSizeInBits() == 1)
878 return SelectInst::Create(C: X, S1: InstCombiner::AddOne(C: Op1C), S2: Op1);
879 // sext(bool) + C -> bool ? C - 1 : C
880 if (match(V: Op0, P: m_SExt(Op: m_Value(V&: X))) &&
881 X->getType()->getScalarSizeInBits() == 1)
882 return SelectInst::Create(C: X, S1: InstCombiner::SubOne(C: Op1C), S2: Op1);
883
884 // ~X + C --> (C-1) - X
885 if (match(V: Op0, P: m_Not(V: m_Value(V&: X)))) {
886 // ~X + C has NSW and (C-1) won't oveflow => (C-1)-X can have NSW
887 auto *COne = ConstantInt::get(Ty: Op1C->getType(), V: 1);
888 bool WillNotSOV = willNotOverflowSignedSub(LHS: Op1C, RHS: COne, CxtI: Add);
889 BinaryOperator *Res =
890 BinaryOperator::CreateSub(V1: ConstantExpr::getSub(C1: Op1C, C2: COne), V2: X);
891 Res->setHasNoSignedWrap(Add.hasNoSignedWrap() && WillNotSOV);
892 return Res;
893 }
894
895 // (iN X s>> (N - 1)) + 1 --> zext (X > -1)
896 const APInt *C;
897 unsigned BitWidth = Ty->getScalarSizeInBits();
898 if (match(V: Op0, P: m_OneUse(SubPattern: m_AShr(L: m_Value(V&: X),
899 R: m_SpecificIntAllowPoison(V: BitWidth - 1)))) &&
900 match(V: Op1, P: m_One()))
901 return new ZExtInst(Builder.CreateIsNotNeg(Arg: X, Name: "isnotneg"), Ty);
902
903 if (!match(V: Op1, P: m_APInt(Res&: C)))
904 return nullptr;
905
906 // (X | Op01C) + Op1C --> X + (Op01C + Op1C) iff the `or` is actually an `add`
907 Constant *Op01C;
908 if (match(V: Op0, P: m_DisjointOr(L: m_Value(V&: X), R: m_ImmConstant(C&: Op01C))))
909 return BinaryOperator::CreateAdd(V1: X, V2: ConstantExpr::getAdd(C1: Op01C, C2: Op1C));
910
911 // (X | C2) + C --> (X | C2) ^ C2 iff (C2 == -C)
912 const APInt *C2;
913 if (match(V: Op0, P: m_Or(L: m_Value(), R: m_APInt(Res&: C2))) && *C2 == -*C)
914 return BinaryOperator::CreateXor(V1: Op0, V2: ConstantInt::get(Ty: Add.getType(), V: *C2));
915
916 if (C->isSignMask()) {
917 // If wrapping is not allowed, then the addition must set the sign bit:
918 // X + (signmask) --> X | signmask
919 if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap())
920 return BinaryOperator::CreateOr(V1: Op0, V2: Op1);
921
922 // If wrapping is allowed, then the addition flips the sign bit of LHS:
923 // X + (signmask) --> X ^ signmask
924 return BinaryOperator::CreateXor(V1: Op0, V2: Op1);
925 }
926
927 // Is this add the last step in a convoluted sext?
928 // add(zext(xor i16 X, -32768), -32768) --> sext X
929 if (match(V: Op0, P: m_ZExt(Op: m_Xor(L: m_Value(V&: X), R: m_APInt(Res&: C2)))) &&
930 C2->isMinSignedValue() && C2->sext(width: Ty->getScalarSizeInBits()) == *C)
931 return CastInst::Create(Instruction::SExt, S: X, Ty);
932
933 if (match(V: Op0, P: m_Xor(L: m_Value(V&: X), R: m_APInt(Res&: C2)))) {
934 // (X ^ signmask) + C --> (X + (signmask ^ C))
935 if (C2->isSignMask())
936 return BinaryOperator::CreateAdd(V1: X, V2: ConstantInt::get(Ty, V: *C2 ^ *C));
937
938 // If X has no high-bits set above an xor mask:
939 // add (xor X, LowMaskC), C --> sub (LowMaskC + C), X
940 if (C2->isMask()) {
941 KnownBits LHSKnown = computeKnownBits(V: X, Depth: 0, CxtI: &Add);
942 if ((*C2 | LHSKnown.Zero).isAllOnes())
943 return BinaryOperator::CreateSub(V1: ConstantInt::get(Ty, V: *C2 + *C), V2: X);
944 }
945
946 // Look for a math+logic pattern that corresponds to sext-in-register of a
947 // value with cleared high bits. Convert that into a pair of shifts:
948 // add (xor X, 0x80), 0xF..F80 --> (X << ShAmtC) >>s ShAmtC
949 // add (xor X, 0xF..F80), 0x80 --> (X << ShAmtC) >>s ShAmtC
950 if (Op0->hasOneUse() && *C2 == -(*C)) {
951 unsigned BitWidth = Ty->getScalarSizeInBits();
952 unsigned ShAmt = 0;
953 if (C->isPowerOf2())
954 ShAmt = BitWidth - C->logBase2() - 1;
955 else if (C2->isPowerOf2())
956 ShAmt = BitWidth - C2->logBase2() - 1;
957 if (ShAmt && MaskedValueIsZero(V: X, Mask: APInt::getHighBitsSet(numBits: BitWidth, hiBitsSet: ShAmt),
958 Depth: 0, CxtI: &Add)) {
959 Constant *ShAmtC = ConstantInt::get(Ty, V: ShAmt);
960 Value *NewShl = Builder.CreateShl(LHS: X, RHS: ShAmtC, Name: "sext");
961 return BinaryOperator::CreateAShr(V1: NewShl, V2: ShAmtC);
962 }
963 }
964 }
965
966 if (C->isOne() && Op0->hasOneUse()) {
967 // add (sext i1 X), 1 --> zext (not X)
968 // TODO: The smallest IR representation is (select X, 0, 1), and that would
969 // not require the one-use check. But we need to remove a transform in
970 // visitSelect and make sure that IR value tracking for select is equal or
971 // better than for these ops.
972 if (match(V: Op0, P: m_SExt(Op: m_Value(V&: X))) &&
973 X->getType()->getScalarSizeInBits() == 1)
974 return new ZExtInst(Builder.CreateNot(V: X), Ty);
975
976 // Shifts and add used to flip and mask off the low bit:
977 // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1
978 const APInt *C3;
979 if (match(V: Op0, P: m_AShr(L: m_Shl(L: m_Value(V&: X), R: m_APInt(Res&: C2)), R: m_APInt(Res&: C3))) &&
980 C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) {
981 Value *NotX = Builder.CreateNot(V: X);
982 return BinaryOperator::CreateAnd(V1: NotX, V2: ConstantInt::get(Ty, V: 1));
983 }
984 }
985
986 // Fold (add (zext (add X, -1)), 1) -> (zext X) if X is non-zero.
987 // TODO: There's a general form for any constant on the outer add.
988 if (C->isOne()) {
989 if (match(V: Op0, P: m_ZExt(Op: m_Add(L: m_Value(V&: X), R: m_AllOnes())))) {
990 const SimplifyQuery Q = SQ.getWithInstruction(I: &Add);
991 if (llvm::isKnownNonZero(V: X, Q))
992 return new ZExtInst(X, Ty);
993 }
994 }
995
996 return nullptr;
997}
998
999// match variations of a^2 + 2*a*b + b^2
1000//
1001// to reuse the code between the FP and Int versions, the instruction OpCodes
1002// and constant types have been turned into template parameters.
1003//
1004// Mul2Rhs: The constant to perform the multiplicative equivalent of X*2 with;
1005// should be `m_SpecificFP(2.0)` for FP and `m_SpecificInt(1)` for Int
1006// (we're matching `X<<1` instead of `X*2` for Int)
1007template <bool FP, typename Mul2Rhs>
1008static bool matchesSquareSum(BinaryOperator &I, Mul2Rhs M2Rhs, Value *&A,
1009 Value *&B) {
1010 constexpr unsigned MulOp = FP ? Instruction::FMul : Instruction::Mul;
1011 constexpr unsigned AddOp = FP ? Instruction::FAdd : Instruction::Add;
1012 constexpr unsigned Mul2Op = FP ? Instruction::FMul : Instruction::Shl;
1013
1014 // (a * a) + (((a * 2) + b) * b)
1015 if (match(&I, m_c_BinOp(
1016 AddOp, m_OneUse(SubPattern: m_BinOp(Opcode: MulOp, L: m_Value(V&: A), R: m_Deferred(V: A))),
1017 m_OneUse(m_BinOp(
1018 MulOp,
1019 m_c_BinOp(AddOp, m_BinOp(Mul2Op, m_Deferred(V: A), M2Rhs),
1020 m_Value(V&: B)),
1021 m_Deferred(V: B))))))
1022 return true;
1023
1024 // ((a * b) * 2) or ((a * 2) * b)
1025 // +
1026 // (a * a + b * b) or (b * b + a * a)
1027 return match(
1028 &I,
1029 m_c_BinOp(AddOp,
1030 m_CombineOr(
1031 m_OneUse(m_BinOp(
1032 Mul2Op, m_BinOp(Opcode: MulOp, L: m_Value(V&: A), R: m_Value(V&: B)), M2Rhs)),
1033 m_OneUse(m_BinOp(MulOp, m_BinOp(Mul2Op, m_Value(V&: A), M2Rhs),
1034 m_Value(V&: B)))),
1035 m_OneUse(SubPattern: m_c_BinOp(
1036 Opcode: AddOp, L: m_BinOp(Opcode: MulOp, L: m_Deferred(V: A), R: m_Deferred(V: A)),
1037 R: m_BinOp(Opcode: MulOp, L: m_Deferred(V: B), R: m_Deferred(V: B))))));
1038}
1039
1040// Fold integer variations of a^2 + 2*a*b + b^2 -> (a + b)^2
1041Instruction *InstCombinerImpl::foldSquareSumInt(BinaryOperator &I) {
1042 Value *A, *B;
1043 if (matchesSquareSum</*FP*/ false>(I, M2Rhs: m_SpecificInt(V: 1), A, B)) {
1044 Value *AB = Builder.CreateAdd(LHS: A, RHS: B);
1045 return BinaryOperator::CreateMul(V1: AB, V2: AB);
1046 }
1047 return nullptr;
1048}
1049
1050// Fold floating point variations of a^2 + 2*a*b + b^2 -> (a + b)^2
1051// Requires `nsz` and `reassoc`.
1052Instruction *InstCombinerImpl::foldSquareSumFP(BinaryOperator &I) {
1053 assert(I.hasAllowReassoc() && I.hasNoSignedZeros() && "Assumption mismatch");
1054 Value *A, *B;
1055 if (matchesSquareSum</*FP*/ true>(I, M2Rhs: m_SpecificFP(V: 2.0), A, B)) {
1056 Value *AB = Builder.CreateFAddFMF(L: A, R: B, FMFSource: &I);
1057 return BinaryOperator::CreateFMulFMF(V1: AB, V2: AB, FMFSource: &I);
1058 }
1059 return nullptr;
1060}
1061
1062// Matches multiplication expression Op * C where C is a constant. Returns the
1063// constant value in C and the other operand in Op. Returns true if such a
1064// match is found.
1065static bool MatchMul(Value *E, Value *&Op, APInt &C) {
1066 const APInt *AI;
1067 if (match(V: E, P: m_Mul(L: m_Value(V&: Op), R: m_APInt(Res&: AI)))) {
1068 C = *AI;
1069 return true;
1070 }
1071 if (match(V: E, P: m_Shl(L: m_Value(V&: Op), R: m_APInt(Res&: AI)))) {
1072 C = APInt(AI->getBitWidth(), 1);
1073 C <<= *AI;
1074 return true;
1075 }
1076 return false;
1077}
1078
1079// Matches remainder expression Op % C where C is a constant. Returns the
1080// constant value in C and the other operand in Op. Returns the signedness of
1081// the remainder operation in IsSigned. Returns true if such a match is
1082// found.
1083static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) {
1084 const APInt *AI;
1085 IsSigned = false;
1086 if (match(V: E, P: m_SRem(L: m_Value(V&: Op), R: m_APInt(Res&: AI)))) {
1087 IsSigned = true;
1088 C = *AI;
1089 return true;
1090 }
1091 if (match(V: E, P: m_URem(L: m_Value(V&: Op), R: m_APInt(Res&: AI)))) {
1092 C = *AI;
1093 return true;
1094 }
1095 if (match(V: E, P: m_And(L: m_Value(V&: Op), R: m_APInt(Res&: AI))) && (*AI + 1).isPowerOf2()) {
1096 C = *AI + 1;
1097 return true;
1098 }
1099 return false;
1100}
1101
1102// Matches division expression Op / C with the given signedness as indicated
1103// by IsSigned, where C is a constant. Returns the constant value in C and the
1104// other operand in Op. Returns true if such a match is found.
1105static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) {
1106 const APInt *AI;
1107 if (IsSigned && match(V: E, P: m_SDiv(L: m_Value(V&: Op), R: m_APInt(Res&: AI)))) {
1108 C = *AI;
1109 return true;
1110 }
1111 if (!IsSigned) {
1112 if (match(V: E, P: m_UDiv(L: m_Value(V&: Op), R: m_APInt(Res&: AI)))) {
1113 C = *AI;
1114 return true;
1115 }
1116 if (match(V: E, P: m_LShr(L: m_Value(V&: Op), R: m_APInt(Res&: AI)))) {
1117 C = APInt(AI->getBitWidth(), 1);
1118 C <<= *AI;
1119 return true;
1120 }
1121 }
1122 return false;
1123}
1124
1125// Returns whether C0 * C1 with the given signedness overflows.
1126static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) {
1127 bool overflow;
1128 if (IsSigned)
1129 (void)C0.smul_ov(RHS: C1, Overflow&: overflow);
1130 else
1131 (void)C0.umul_ov(RHS: C1, Overflow&: overflow);
1132 return overflow;
1133}
1134
1135// Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1)
1136// does not overflow.
1137// Simplifies (X / C0) * C1 + (X % C0) * C2 to
1138// (X / C0) * (C1 - C2 * C0) + X * C2
1139Value *InstCombinerImpl::SimplifyAddWithRemainder(BinaryOperator &I) {
1140 Value *LHS = I.getOperand(i_nocapture: 0), *RHS = I.getOperand(i_nocapture: 1);
1141 Value *X, *MulOpV;
1142 APInt C0, MulOpC;
1143 bool IsSigned;
1144 // Match I = X % C0 + MulOpV * C0
1145 if (((MatchRem(E: LHS, Op&: X, C&: C0, IsSigned) && MatchMul(E: RHS, Op&: MulOpV, C&: MulOpC)) ||
1146 (MatchRem(E: RHS, Op&: X, C&: C0, IsSigned) && MatchMul(E: LHS, Op&: MulOpV, C&: MulOpC))) &&
1147 C0 == MulOpC) {
1148 Value *RemOpV;
1149 APInt C1;
1150 bool Rem2IsSigned;
1151 // Match MulOpC = RemOpV % C1
1152 if (MatchRem(E: MulOpV, Op&: RemOpV, C&: C1, IsSigned&: Rem2IsSigned) &&
1153 IsSigned == Rem2IsSigned) {
1154 Value *DivOpV;
1155 APInt DivOpC;
1156 // Match RemOpV = X / C0
1157 if (MatchDiv(E: RemOpV, Op&: DivOpV, C&: DivOpC, IsSigned) && X == DivOpV &&
1158 C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) {
1159 Value *NewDivisor = ConstantInt::get(Ty: X->getType(), V: C0 * C1);
1160 return IsSigned ? Builder.CreateSRem(LHS: X, RHS: NewDivisor, Name: "srem")
1161 : Builder.CreateURem(LHS: X, RHS: NewDivisor, Name: "urem");
1162 }
1163 }
1164 }
1165
1166 // Match I = (X / C0) * C1 + (X % C0) * C2
1167 Value *Div, *Rem;
1168 APInt C1, C2;
1169 if (!LHS->hasOneUse() || !MatchMul(E: LHS, Op&: Div, C&: C1))
1170 Div = LHS, C1 = APInt(I.getType()->getScalarSizeInBits(), 1);
1171 if (!RHS->hasOneUse() || !MatchMul(E: RHS, Op&: Rem, C&: C2))
1172 Rem = RHS, C2 = APInt(I.getType()->getScalarSizeInBits(), 1);
1173 if (match(V: Div, P: m_IRem(L: m_Value(), R: m_Value()))) {
1174 std::swap(a&: Div, b&: Rem);
1175 std::swap(a&: C1, b&: C2);
1176 }
1177 Value *DivOpV;
1178 APInt DivOpC;
1179 if (MatchRem(E: Rem, Op&: X, C&: C0, IsSigned) &&
1180 MatchDiv(E: Div, Op&: DivOpV, C&: DivOpC, IsSigned) && X == DivOpV && C0 == DivOpC) {
1181 APInt NewC = C1 - C2 * C0;
1182 if (!NewC.isZero() && !Rem->hasOneUse())
1183 return nullptr;
1184 if (!isGuaranteedNotToBeUndef(V: X, AC: &AC, CtxI: &I, DT: &DT))
1185 return nullptr;
1186 Value *MulXC2 = Builder.CreateMul(LHS: X, RHS: ConstantInt::get(Ty: X->getType(), V: C2));
1187 if (NewC.isZero())
1188 return MulXC2;
1189 return Builder.CreateAdd(
1190 LHS: Builder.CreateMul(LHS: Div, RHS: ConstantInt::get(Ty: X->getType(), V: NewC)), RHS: MulXC2);
1191 }
1192
1193 return nullptr;
1194}
1195
1196/// Fold
1197/// (1 << NBits) - 1
1198/// Into:
1199/// ~(-(1 << NBits))
1200/// Because a 'not' is better for bit-tracking analysis and other transforms
1201/// than an 'add'. The new shl is always nsw, and is nuw if old `and` was.
1202static Instruction *canonicalizeLowbitMask(BinaryOperator &I,
1203 InstCombiner::BuilderTy &Builder) {
1204 Value *NBits;
1205 if (!match(V: &I, P: m_Add(L: m_OneUse(SubPattern: m_Shl(L: m_One(), R: m_Value(V&: NBits))), R: m_AllOnes())))
1206 return nullptr;
1207
1208 Constant *MinusOne = Constant::getAllOnesValue(Ty: NBits->getType());
1209 Value *NotMask = Builder.CreateShl(LHS: MinusOne, RHS: NBits, Name: "notmask");
1210 // Be wary of constant folding.
1211 if (auto *BOp = dyn_cast<BinaryOperator>(Val: NotMask)) {
1212 // Always NSW. But NUW propagates from `add`.
1213 BOp->setHasNoSignedWrap();
1214 BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1215 }
1216
1217 return BinaryOperator::CreateNot(Op: NotMask, Name: I.getName());
1218}
1219
1220static Instruction *foldToUnsignedSaturatedAdd(BinaryOperator &I) {
1221 assert(I.getOpcode() == Instruction::Add && "Expecting add instruction");
1222 Type *Ty = I.getType();
1223 auto getUAddSat = [&]() {
1224 return Intrinsic::getDeclaration(I.getModule(), Intrinsic::uadd_sat, Ty);
1225 };
1226
1227 // add (umin X, ~Y), Y --> uaddsat X, Y
1228 Value *X, *Y;
1229 if (match(V: &I, P: m_c_Add(L: m_c_UMin(L: m_Value(V&: X), R: m_Not(V: m_Value(V&: Y))),
1230 R: m_Deferred(V: Y))))
1231 return CallInst::Create(getUAddSat(), { X, Y });
1232
1233 // add (umin X, ~C), C --> uaddsat X, C
1234 const APInt *C, *NotC;
1235 if (match(V: &I, P: m_Add(L: m_UMin(L: m_Value(V&: X), R: m_APInt(Res&: NotC)), R: m_APInt(Res&: C))) &&
1236 *C == ~*NotC)
1237 return CallInst::Create(getUAddSat(), { X, ConstantInt::get(Ty, V: *C) });
1238
1239 return nullptr;
1240}
1241
1242// Transform:
1243// (add A, (shl (neg B), Y))
1244// -> (sub A, (shl B, Y))
1245static Instruction *combineAddSubWithShlAddSub(InstCombiner::BuilderTy &Builder,
1246 const BinaryOperator &I) {
1247 Value *A, *B, *Cnt;
1248 if (match(V: &I,
1249 P: m_c_Add(L: m_OneUse(SubPattern: m_Shl(L: m_OneUse(SubPattern: m_Neg(V: m_Value(V&: B))), R: m_Value(V&: Cnt))),
1250 R: m_Value(V&: A)))) {
1251 Value *NewShl = Builder.CreateShl(LHS: B, RHS: Cnt);
1252 return BinaryOperator::CreateSub(V1: A, V2: NewShl);
1253 }
1254 return nullptr;
1255}
1256
1257/// Try to reduce signed division by power-of-2 to an arithmetic shift right.
1258static Instruction *foldAddToAshr(BinaryOperator &Add) {
1259 // Division must be by power-of-2, but not the minimum signed value.
1260 Value *X;
1261 const APInt *DivC;
1262 if (!match(V: Add.getOperand(i_nocapture: 0), P: m_SDiv(L: m_Value(V&: X), R: m_Power2(V&: DivC))) ||
1263 DivC->isNegative())
1264 return nullptr;
1265
1266 // Rounding is done by adding -1 if the dividend (X) is negative and has any
1267 // low bits set. It recognizes two canonical patterns:
1268 // 1. For an 'ugt' cmp with the signed minimum value (SMIN), the
1269 // pattern is: sext (icmp ugt (X & (DivC - 1)), SMIN).
1270 // 2. For an 'eq' cmp, the pattern's: sext (icmp eq X & (SMIN + 1), SMIN + 1).
1271 // Note that, by the time we end up here, if possible, ugt has been
1272 // canonicalized into eq.
1273 const APInt *MaskC, *MaskCCmp;
1274 ICmpInst::Predicate Pred;
1275 if (!match(V: Add.getOperand(i_nocapture: 1),
1276 P: m_SExt(Op: m_ICmp(Pred, L: m_And(L: m_Specific(V: X), R: m_APInt(Res&: MaskC)),
1277 R: m_APInt(Res&: MaskCCmp)))))
1278 return nullptr;
1279
1280 if ((Pred != ICmpInst::ICMP_UGT || !MaskCCmp->isSignMask()) &&
1281 (Pred != ICmpInst::ICMP_EQ || *MaskCCmp != *MaskC))
1282 return nullptr;
1283
1284 APInt SMin = APInt::getSignedMinValue(numBits: Add.getType()->getScalarSizeInBits());
1285 bool IsMaskValid = Pred == ICmpInst::ICMP_UGT
1286 ? (*MaskC == (SMin | (*DivC - 1)))
1287 : (*DivC == 2 && *MaskC == SMin + 1);
1288 if (!IsMaskValid)
1289 return nullptr;
1290
1291 // (X / DivC) + sext ((X & (SMin | (DivC - 1)) >u SMin) --> X >>s log2(DivC)
1292 return BinaryOperator::CreateAShr(
1293 V1: X, V2: ConstantInt::get(Ty: Add.getType(), V: DivC->exactLogBase2()));
1294}
1295
1296Instruction *InstCombinerImpl::
1297 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(
1298 BinaryOperator &I) {
1299 assert((I.getOpcode() == Instruction::Add ||
1300 I.getOpcode() == Instruction::Or ||
1301 I.getOpcode() == Instruction::Sub) &&
1302 "Expecting add/or/sub instruction");
1303
1304 // We have a subtraction/addition between a (potentially truncated) *logical*
1305 // right-shift of X and a "select".
1306 Value *X, *Select;
1307 Instruction *LowBitsToSkip, *Extract;
1308 if (!match(V: &I, P: m_c_BinOp(L: m_TruncOrSelf(Op: m_CombineAnd(
1309 L: m_LShr(L: m_Value(V&: X), R: m_Instruction(I&: LowBitsToSkip)),
1310 R: m_Instruction(I&: Extract))),
1311 R: m_Value(V&: Select))))
1312 return nullptr;
1313
1314 // `add`/`or` is commutative; but for `sub`, "select" *must* be on RHS.
1315 if (I.getOpcode() == Instruction::Sub && I.getOperand(i_nocapture: 1) != Select)
1316 return nullptr;
1317
1318 Type *XTy = X->getType();
1319 bool HadTrunc = I.getType() != XTy;
1320
1321 // If there was a truncation of extracted value, then we'll need to produce
1322 // one extra instruction, so we need to ensure one instruction will go away.
1323 if (HadTrunc && !match(V: &I, P: m_c_BinOp(L: m_OneUse(SubPattern: m_Value()), R: m_Value())))
1324 return nullptr;
1325
1326 // Extraction should extract high NBits bits, with shift amount calculated as:
1327 // low bits to skip = shift bitwidth - high bits to extract
1328 // The shift amount itself may be extended, and we need to look past zero-ext
1329 // when matching NBits, that will matter for matching later.
1330 Constant *C;
1331 Value *NBits;
1332 if (!match(
1333 V: LowBitsToSkip,
1334 P: m_ZExtOrSelf(Op: m_Sub(L: m_Constant(C), R: m_ZExtOrSelf(Op: m_Value(V&: NBits))))) ||
1335 !match(V: C, P: m_SpecificInt_ICMP(Predicate: ICmpInst::Predicate::ICMP_EQ,
1336 Threshold: APInt(C->getType()->getScalarSizeInBits(),
1337 X->getType()->getScalarSizeInBits()))))
1338 return nullptr;
1339
1340 // Sign-extending value can be zero-extended if we `sub`tract it,
1341 // or sign-extended otherwise.
1342 auto SkipExtInMagic = [&I](Value *&V) {
1343 if (I.getOpcode() == Instruction::Sub)
1344 match(V, P: m_ZExtOrSelf(Op: m_Value(V)));
1345 else
1346 match(V, P: m_SExtOrSelf(Op: m_Value(V)));
1347 };
1348
1349 // Now, finally validate the sign-extending magic.
1350 // `select` itself may be appropriately extended, look past that.
1351 SkipExtInMagic(Select);
1352
1353 ICmpInst::Predicate Pred;
1354 const APInt *Thr;
1355 Value *SignExtendingValue, *Zero;
1356 bool ShouldSignext;
1357 // It must be a select between two values we will later establish to be a
1358 // sign-extending value and a zero constant. The condition guarding the
1359 // sign-extension must be based on a sign bit of the same X we had in `lshr`.
1360 if (!match(V: Select, P: m_Select(C: m_ICmp(Pred, L: m_Specific(V: X), R: m_APInt(Res&: Thr)),
1361 L: m_Value(V&: SignExtendingValue), R: m_Value(V&: Zero))) ||
1362 !isSignBitCheck(Pred, RHS: *Thr, TrueIfSigned&: ShouldSignext))
1363 return nullptr;
1364
1365 // icmp-select pair is commutative.
1366 if (!ShouldSignext)
1367 std::swap(a&: SignExtendingValue, b&: Zero);
1368
1369 // If we should not perform sign-extension then we must add/or/subtract zero.
1370 if (!match(V: Zero, P: m_Zero()))
1371 return nullptr;
1372 // Otherwise, it should be some constant, left-shifted by the same NBits we
1373 // had in `lshr`. Said left-shift can also be appropriately extended.
1374 // Again, we must look past zero-ext when looking for NBits.
1375 SkipExtInMagic(SignExtendingValue);
1376 Constant *SignExtendingValueBaseConstant;
1377 if (!match(V: SignExtendingValue,
1378 P: m_Shl(L: m_Constant(C&: SignExtendingValueBaseConstant),
1379 R: m_ZExtOrSelf(Op: m_Specific(V: NBits)))))
1380 return nullptr;
1381 // If we `sub`, then the constant should be one, else it should be all-ones.
1382 if (I.getOpcode() == Instruction::Sub
1383 ? !match(V: SignExtendingValueBaseConstant, P: m_One())
1384 : !match(V: SignExtendingValueBaseConstant, P: m_AllOnes()))
1385 return nullptr;
1386
1387 auto *NewAShr = BinaryOperator::CreateAShr(V1: X, V2: LowBitsToSkip,
1388 Name: Extract->getName() + ".sext");
1389 NewAShr->copyIRFlags(V: Extract); // Preserve `exact`-ness.
1390 if (!HadTrunc)
1391 return NewAShr;
1392
1393 Builder.Insert(I: NewAShr);
1394 return TruncInst::CreateTruncOrBitCast(S: NewAShr, Ty: I.getType());
1395}
1396
1397/// This is a specialization of a more general transform from
1398/// foldUsingDistributiveLaws. If that code can be made to work optimally
1399/// for multi-use cases or propagating nsw/nuw, then we would not need this.
1400static Instruction *factorizeMathWithShlOps(BinaryOperator &I,
1401 InstCombiner::BuilderTy &Builder) {
1402 // TODO: Also handle mul by doubling the shift amount?
1403 assert((I.getOpcode() == Instruction::Add ||
1404 I.getOpcode() == Instruction::Sub) &&
1405 "Expected add/sub");
1406 auto *Op0 = dyn_cast<BinaryOperator>(Val: I.getOperand(i_nocapture: 0));
1407 auto *Op1 = dyn_cast<BinaryOperator>(Val: I.getOperand(i_nocapture: 1));
1408 if (!Op0 || !Op1 || !(Op0->hasOneUse() || Op1->hasOneUse()))
1409 return nullptr;
1410
1411 Value *X, *Y, *ShAmt;
1412 if (!match(V: Op0, P: m_Shl(L: m_Value(V&: X), R: m_Value(V&: ShAmt))) ||
1413 !match(V: Op1, P: m_Shl(L: m_Value(V&: Y), R: m_Specific(V: ShAmt))))
1414 return nullptr;
1415
1416 // No-wrap propagates only when all ops have no-wrap.
1417 bool HasNSW = I.hasNoSignedWrap() && Op0->hasNoSignedWrap() &&
1418 Op1->hasNoSignedWrap();
1419 bool HasNUW = I.hasNoUnsignedWrap() && Op0->hasNoUnsignedWrap() &&
1420 Op1->hasNoUnsignedWrap();
1421
1422 // add/sub (X << ShAmt), (Y << ShAmt) --> (add/sub X, Y) << ShAmt
1423 Value *NewMath = Builder.CreateBinOp(Opc: I.getOpcode(), LHS: X, RHS: Y);
1424 if (auto *NewI = dyn_cast<BinaryOperator>(Val: NewMath)) {
1425 NewI->setHasNoSignedWrap(HasNSW);
1426 NewI->setHasNoUnsignedWrap(HasNUW);
1427 }
1428 auto *NewShl = BinaryOperator::CreateShl(V1: NewMath, V2: ShAmt);
1429 NewShl->setHasNoSignedWrap(HasNSW);
1430 NewShl->setHasNoUnsignedWrap(HasNUW);
1431 return NewShl;
1432}
1433
1434/// Reduce a sequence of masked half-width multiplies to a single multiply.
1435/// ((XLow * YHigh) + (YLow * XHigh)) << HalfBits) + (XLow * YLow) --> X * Y
1436static Instruction *foldBoxMultiply(BinaryOperator &I) {
1437 unsigned BitWidth = I.getType()->getScalarSizeInBits();
1438 // Skip the odd bitwidth types.
1439 if ((BitWidth & 0x1))
1440 return nullptr;
1441
1442 unsigned HalfBits = BitWidth >> 1;
1443 APInt HalfMask = APInt::getMaxValue(numBits: HalfBits);
1444
1445 // ResLo = (CrossSum << HalfBits) + (YLo * XLo)
1446 Value *XLo, *YLo;
1447 Value *CrossSum;
1448 // Require one-use on the multiply to avoid increasing the number of
1449 // multiplications.
1450 if (!match(V: &I, P: m_c_Add(L: m_Shl(L: m_Value(V&: CrossSum), R: m_SpecificInt(V: HalfBits)),
1451 R: m_OneUse(SubPattern: m_Mul(L: m_Value(V&: YLo), R: m_Value(V&: XLo))))))
1452 return nullptr;
1453
1454 // XLo = X & HalfMask
1455 // YLo = Y & HalfMask
1456 // TODO: Refactor with SimplifyDemandedBits or KnownBits known leading zeros
1457 // to enhance robustness
1458 Value *X, *Y;
1459 if (!match(V: XLo, P: m_And(L: m_Value(V&: X), R: m_SpecificInt(V: HalfMask))) ||
1460 !match(V: YLo, P: m_And(L: m_Value(V&: Y), R: m_SpecificInt(V: HalfMask))))
1461 return nullptr;
1462
1463 // CrossSum = (X' * (Y >> Halfbits)) + (Y' * (X >> HalfBits))
1464 // X' can be either X or XLo in the pattern (and the same for Y')
1465 if (match(V: CrossSum,
1466 P: m_c_Add(L: m_c_Mul(L: m_LShr(L: m_Specific(V: Y), R: m_SpecificInt(V: HalfBits)),
1467 R: m_CombineOr(L: m_Specific(V: X), R: m_Specific(V: XLo))),
1468 R: m_c_Mul(L: m_LShr(L: m_Specific(V: X), R: m_SpecificInt(V: HalfBits)),
1469 R: m_CombineOr(L: m_Specific(V: Y), R: m_Specific(V: YLo))))))
1470 return BinaryOperator::CreateMul(V1: X, V2: Y);
1471
1472 return nullptr;
1473}
1474
1475Instruction *InstCombinerImpl::visitAdd(BinaryOperator &I) {
1476 if (Value *V = simplifyAddInst(LHS: I.getOperand(i_nocapture: 0), RHS: I.getOperand(i_nocapture: 1),
1477 IsNSW: I.hasNoSignedWrap(), IsNUW: I.hasNoUnsignedWrap(),
1478 Q: SQ.getWithInstruction(I: &I)))
1479 return replaceInstUsesWith(I, V);
1480
1481 if (SimplifyAssociativeOrCommutative(I))
1482 return &I;
1483
1484 if (Instruction *X = foldVectorBinop(Inst&: I))
1485 return X;
1486
1487 if (Instruction *Phi = foldBinopWithPhiOperands(BO&: I))
1488 return Phi;
1489
1490 // (A*B)+(A*C) -> A*(B+C) etc
1491 if (Value *V = foldUsingDistributiveLaws(I))
1492 return replaceInstUsesWith(I, V);
1493
1494 if (Instruction *R = foldBoxMultiply(I))
1495 return R;
1496
1497 if (Instruction *R = factorizeMathWithShlOps(I, Builder))
1498 return R;
1499
1500 if (Instruction *X = foldAddWithConstant(Add&: I))
1501 return X;
1502
1503 if (Instruction *X = foldNoWrapAdd(Add&: I, Builder))
1504 return X;
1505
1506 if (Instruction *R = foldBinOpShiftWithShift(I))
1507 return R;
1508
1509 if (Instruction *R = combineAddSubWithShlAddSub(Builder, I))
1510 return R;
1511
1512 Value *LHS = I.getOperand(i_nocapture: 0), *RHS = I.getOperand(i_nocapture: 1);
1513 Type *Ty = I.getType();
1514 if (Ty->isIntOrIntVectorTy(BitWidth: 1))
1515 return BinaryOperator::CreateXor(V1: LHS, V2: RHS);
1516
1517 // X + X --> X << 1
1518 if (LHS == RHS) {
1519 auto *Shl = BinaryOperator::CreateShl(V1: LHS, V2: ConstantInt::get(Ty, V: 1));
1520 Shl->setHasNoSignedWrap(I.hasNoSignedWrap());
1521 Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1522 return Shl;
1523 }
1524
1525 Value *A, *B;
1526 if (match(V: LHS, P: m_Neg(V: m_Value(V&: A)))) {
1527 // -A + -B --> -(A + B)
1528 if (match(V: RHS, P: m_Neg(V: m_Value(V&: B))))
1529 return BinaryOperator::CreateNeg(Op: Builder.CreateAdd(LHS: A, RHS: B));
1530
1531 // -A + B --> B - A
1532 auto *Sub = BinaryOperator::CreateSub(V1: RHS, V2: A);
1533 auto *OB0 = cast<OverflowingBinaryOperator>(Val: LHS);
1534 Sub->setHasNoSignedWrap(I.hasNoSignedWrap() && OB0->hasNoSignedWrap());
1535
1536 return Sub;
1537 }
1538
1539 // A + -B --> A - B
1540 if (match(V: RHS, P: m_Neg(V: m_Value(V&: B))))
1541 return BinaryOperator::CreateSub(V1: LHS, V2: B);
1542
1543 if (Value *V = checkForNegativeOperand(I, Builder))
1544 return replaceInstUsesWith(I, V);
1545
1546 // (A + 1) + ~B --> A - B
1547 // ~B + (A + 1) --> A - B
1548 // (~B + A) + 1 --> A - B
1549 // (A + ~B) + 1 --> A - B
1550 if (match(V: &I, P: m_c_BinOp(L: m_Add(L: m_Value(V&: A), R: m_One()), R: m_Not(V: m_Value(V&: B)))) ||
1551 match(V: &I, P: m_BinOp(L: m_c_Add(L: m_Not(V: m_Value(V&: B)), R: m_Value(V&: A)), R: m_One())))
1552 return BinaryOperator::CreateSub(V1: A, V2: B);
1553
1554 // (A + RHS) + RHS --> A + (RHS << 1)
1555 if (match(V: LHS, P: m_OneUse(SubPattern: m_c_Add(L: m_Value(V&: A), R: m_Specific(V: RHS)))))
1556 return BinaryOperator::CreateAdd(V1: A, V2: Builder.CreateShl(LHS: RHS, RHS: 1, Name: "reass.add"));
1557
1558 // LHS + (A + LHS) --> A + (LHS << 1)
1559 if (match(V: RHS, P: m_OneUse(SubPattern: m_c_Add(L: m_Value(V&: A), R: m_Specific(V: LHS)))))
1560 return BinaryOperator::CreateAdd(V1: A, V2: Builder.CreateShl(LHS, RHS: 1, Name: "reass.add"));
1561
1562 {
1563 // (A + C1) + (C2 - B) --> (A - B) + (C1 + C2)
1564 Constant *C1, *C2;
1565 if (match(V: &I, P: m_c_Add(L: m_Add(L: m_Value(V&: A), R: m_ImmConstant(C&: C1)),
1566 R: m_Sub(L: m_ImmConstant(C&: C2), R: m_Value(V&: B)))) &&
1567 (LHS->hasOneUse() || RHS->hasOneUse())) {
1568 Value *Sub = Builder.CreateSub(LHS: A, RHS: B);
1569 return BinaryOperator::CreateAdd(V1: Sub, V2: ConstantExpr::getAdd(C1, C2));
1570 }
1571
1572 // Canonicalize a constant sub operand as an add operand for better folding:
1573 // (C1 - A) + B --> (B - A) + C1
1574 if (match(V: &I, P: m_c_Add(L: m_OneUse(SubPattern: m_Sub(L: m_ImmConstant(C&: C1), R: m_Value(V&: A))),
1575 R: m_Value(V&: B)))) {
1576 Value *Sub = Builder.CreateSub(LHS: B, RHS: A, Name: "reass.sub");
1577 return BinaryOperator::CreateAdd(V1: Sub, V2: C1);
1578 }
1579 }
1580
1581 // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1)
1582 if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V);
1583
1584 // ((X s/ C1) << C2) + X => X s% -C1 where -C1 is 1 << C2
1585 const APInt *C1, *C2;
1586 if (match(V: LHS, P: m_Shl(L: m_SDiv(L: m_Specific(V: RHS), R: m_APInt(Res&: C1)), R: m_APInt(Res&: C2)))) {
1587 APInt one(C2->getBitWidth(), 1);
1588 APInt minusC1 = -(*C1);
1589 if (minusC1 == (one << *C2)) {
1590 Constant *NewRHS = ConstantInt::get(Ty: RHS->getType(), V: minusC1);
1591 return BinaryOperator::CreateSRem(V1: RHS, V2: NewRHS);
1592 }
1593 }
1594
1595 // (A & 2^C1) + A => A & (2^C1 - 1) iff bit C1 in A is a sign bit
1596 if (match(V: &I, P: m_c_Add(L: m_And(L: m_Value(V&: A), R: m_APInt(Res&: C1)), R: m_Deferred(V: A))) &&
1597 C1->isPowerOf2() && (ComputeNumSignBits(Op: A) > C1->countl_zero())) {
1598 Constant *NewMask = ConstantInt::get(Ty: RHS->getType(), V: *C1 - 1);
1599 return BinaryOperator::CreateAnd(V1: A, V2: NewMask);
1600 }
1601
1602 // ZExt (B - A) + ZExt(A) --> ZExt(B)
1603 if ((match(V: RHS, P: m_ZExt(Op: m_Value(V&: A))) &&
1604 match(V: LHS, P: m_ZExt(Op: m_NUWSub(L: m_Value(V&: B), R: m_Specific(V: A))))) ||
1605 (match(V: LHS, P: m_ZExt(Op: m_Value(V&: A))) &&
1606 match(V: RHS, P: m_ZExt(Op: m_NUWSub(L: m_Value(V&: B), R: m_Specific(V: A))))))
1607 return new ZExtInst(B, LHS->getType());
1608
1609 // zext(A) + sext(A) --> 0 if A is i1
1610 if (match(V: &I, P: m_c_BinOp(L: m_ZExt(Op: m_Value(V&: A)), R: m_SExt(Op: m_Deferred(V: A)))) &&
1611 A->getType()->isIntOrIntVectorTy(BitWidth: 1))
1612 return replaceInstUsesWith(I, V: Constant::getNullValue(Ty: I.getType()));
1613
1614 // A+B --> A|B iff A and B have no bits set in common.
1615 WithCache<const Value *> LHSCache(LHS), RHSCache(RHS);
1616 if (haveNoCommonBitsSet(LHSCache, RHSCache, SQ: SQ.getWithInstruction(I: &I)))
1617 return BinaryOperator::CreateDisjointOr(V1: LHS, V2: RHS);
1618
1619 if (Instruction *Ext = narrowMathIfNoOverflow(I))
1620 return Ext;
1621
1622 // (add (xor A, B) (and A, B)) --> (or A, B)
1623 // (add (and A, B) (xor A, B)) --> (or A, B)
1624 if (match(V: &I, P: m_c_BinOp(L: m_Xor(L: m_Value(V&: A), R: m_Value(V&: B)),
1625 R: m_c_And(L: m_Deferred(V: A), R: m_Deferred(V: B)))))
1626 return BinaryOperator::CreateOr(V1: A, V2: B);
1627
1628 // (add (or A, B) (and A, B)) --> (add A, B)
1629 // (add (and A, B) (or A, B)) --> (add A, B)
1630 if (match(V: &I, P: m_c_BinOp(L: m_Or(L: m_Value(V&: A), R: m_Value(V&: B)),
1631 R: m_c_And(L: m_Deferred(V: A), R: m_Deferred(V: B))))) {
1632 // Replacing operands in-place to preserve nuw/nsw flags.
1633 replaceOperand(I, OpNum: 0, V: A);
1634 replaceOperand(I, OpNum: 1, V: B);
1635 return &I;
1636 }
1637
1638 // (add A (or A, -A)) --> (and (add A, -1) A)
1639 // (add A (or -A, A)) --> (and (add A, -1) A)
1640 // (add (or A, -A) A) --> (and (add A, -1) A)
1641 // (add (or -A, A) A) --> (and (add A, -1) A)
1642 if (match(V: &I, P: m_c_BinOp(L: m_Value(V&: A), R: m_OneUse(SubPattern: m_c_Or(L: m_Neg(V: m_Deferred(V: A)),
1643 R: m_Deferred(V: A)))))) {
1644 Value *Add =
1645 Builder.CreateAdd(LHS: A, RHS: Constant::getAllOnesValue(Ty: A->getType()), Name: "",
1646 HasNUW: I.hasNoUnsignedWrap(), HasNSW: I.hasNoSignedWrap());
1647 return BinaryOperator::CreateAnd(V1: Add, V2: A);
1648 }
1649
1650 // Canonicalize ((A & -A) - 1) --> ((A - 1) & ~A)
1651 // Forms all commutable operations, and simplifies ctpop -> cttz folds.
1652 if (match(V: &I,
1653 P: m_Add(L: m_OneUse(SubPattern: m_c_And(L: m_Value(V&: A), R: m_OneUse(SubPattern: m_Neg(V: m_Deferred(V: A))))),
1654 R: m_AllOnes()))) {
1655 Constant *AllOnes = ConstantInt::getAllOnesValue(Ty: RHS->getType());
1656 Value *Dec = Builder.CreateAdd(LHS: A, RHS: AllOnes);
1657 Value *Not = Builder.CreateXor(LHS: A, RHS: AllOnes);
1658 return BinaryOperator::CreateAnd(V1: Dec, V2: Not);
1659 }
1660
1661 // Disguised reassociation/factorization:
1662 // ~(A * C1) + A
1663 // ((A * -C1) - 1) + A
1664 // ((A * -C1) + A) - 1
1665 // (A * (1 - C1)) - 1
1666 if (match(V: &I,
1667 P: m_c_Add(L: m_OneUse(SubPattern: m_Not(V: m_OneUse(SubPattern: m_Mul(L: m_Value(V&: A), R: m_APInt(Res&: C1))))),
1668 R: m_Deferred(V: A)))) {
1669 Type *Ty = I.getType();
1670 Constant *NewMulC = ConstantInt::get(Ty, V: 1 - *C1);
1671 Value *NewMul = Builder.CreateMul(LHS: A, RHS: NewMulC);
1672 return BinaryOperator::CreateAdd(V1: NewMul, V2: ConstantInt::getAllOnesValue(Ty));
1673 }
1674
1675 // (A * -2**C) + B --> B - (A << C)
1676 const APInt *NegPow2C;
1677 if (match(V: &I, P: m_c_Add(L: m_OneUse(SubPattern: m_Mul(L: m_Value(V&: A), R: m_NegatedPower2(V&: NegPow2C))),
1678 R: m_Value(V&: B)))) {
1679 Constant *ShiftAmtC = ConstantInt::get(Ty, V: NegPow2C->countr_zero());
1680 Value *Shl = Builder.CreateShl(LHS: A, RHS: ShiftAmtC);
1681 return BinaryOperator::CreateSub(V1: B, V2: Shl);
1682 }
1683
1684 // Canonicalize signum variant that ends in add:
1685 // (A s>> (BW - 1)) + (zext (A s> 0)) --> (A s>> (BW - 1)) | (zext (A != 0))
1686 ICmpInst::Predicate Pred;
1687 uint64_t BitWidth = Ty->getScalarSizeInBits();
1688 if (match(V: LHS, P: m_AShr(L: m_Value(V&: A), R: m_SpecificIntAllowPoison(V: BitWidth - 1))) &&
1689 match(V: RHS, P: m_OneUse(SubPattern: m_ZExt(
1690 Op: m_OneUse(SubPattern: m_ICmp(Pred, L: m_Specific(V: A), R: m_ZeroInt()))))) &&
1691 Pred == CmpInst::ICMP_SGT) {
1692 Value *NotZero = Builder.CreateIsNotNull(Arg: A, Name: "isnotnull");
1693 Value *Zext = Builder.CreateZExt(V: NotZero, DestTy: Ty, Name: "isnotnull.zext");
1694 return BinaryOperator::CreateOr(V1: LHS, V2: Zext);
1695 }
1696
1697 if (Instruction *Ashr = foldAddToAshr(Add&: I))
1698 return Ashr;
1699
1700 // (~X) + (~Y) --> -2 - (X + Y)
1701 {
1702 // To ensure we can save instructions we need to ensure that we consume both
1703 // LHS/RHS (i.e they have a `not`).
1704 bool ConsumesLHS, ConsumesRHS;
1705 if (isFreeToInvert(V: LHS, WillInvertAllUses: LHS->hasOneUse(), DoesConsume&: ConsumesLHS) && ConsumesLHS &&
1706 isFreeToInvert(V: RHS, WillInvertAllUses: RHS->hasOneUse(), DoesConsume&: ConsumesRHS) && ConsumesRHS) {
1707 Value *NotLHS = getFreelyInverted(V: LHS, WillInvertAllUses: LHS->hasOneUse(), Builder: &Builder);
1708 Value *NotRHS = getFreelyInverted(V: RHS, WillInvertAllUses: RHS->hasOneUse(), Builder: &Builder);
1709 assert(NotLHS != nullptr && NotRHS != nullptr &&
1710 "isFreeToInvert desynced with getFreelyInverted");
1711 Value *LHSPlusRHS = Builder.CreateAdd(LHS: NotLHS, RHS: NotRHS);
1712 return BinaryOperator::CreateSub(
1713 V1: ConstantInt::getSigned(Ty: RHS->getType(), V: -2), V2: LHSPlusRHS);
1714 }
1715 }
1716
1717 if (Instruction *R = tryFoldInstWithCtpopWithNot(I: &I))
1718 return R;
1719
1720 // TODO(jingyue): Consider willNotOverflowSignedAdd and
1721 // willNotOverflowUnsignedAdd to reduce the number of invocations of
1722 // computeKnownBits.
1723 bool Changed = false;
1724 if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHS: LHSCache, RHS: RHSCache, CxtI: I)) {
1725 Changed = true;
1726 I.setHasNoSignedWrap(true);
1727 }
1728 if (!I.hasNoUnsignedWrap() &&
1729 willNotOverflowUnsignedAdd(LHS: LHSCache, RHS: RHSCache, CxtI: I)) {
1730 Changed = true;
1731 I.setHasNoUnsignedWrap(true);
1732 }
1733
1734 if (Instruction *V = canonicalizeLowbitMask(I, Builder))
1735 return V;
1736
1737 if (Instruction *V =
1738 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
1739 return V;
1740
1741 if (Instruction *SatAdd = foldToUnsignedSaturatedAdd(I))
1742 return SatAdd;
1743
1744 // usub.sat(A, B) + B => umax(A, B)
1745 if (match(&I, m_c_BinOp(
1746 m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Value(A), m_Value(B))),
1747 m_Deferred(B)))) {
1748 return replaceInstUsesWith(I,
1749 V: Builder.CreateIntrinsic(Intrinsic::umax, {I.getType()}, {A, B}));
1750 }
1751
1752 // ctpop(A) + ctpop(B) => ctpop(A | B) if A and B have no bits set in common.
1753 if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(A)))) &&
1754 match(RHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(B)))) &&
1755 haveNoCommonBitsSet(A, B, SQ.getWithInstruction(&I)))
1756 return replaceInstUsesWith(
1757 I, V: Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()},
1758 {Builder.CreateOr(LHS: A, RHS: B)}));
1759
1760 // Fold the log2_ceil idiom:
1761 // zext(ctpop(A) >u/!= 1) + (ctlz(A, true) ^ (BW - 1))
1762 // -->
1763 // BW - ctlz(A - 1, false)
1764 const APInt *XorC;
1765 if (match(&I,
1766 m_c_Add(
1767 m_ZExt(m_ICmp(Pred, m_Intrinsic<Intrinsic::ctpop>(m_Value(A)),
1768 m_One())),
1769 m_OneUse(m_ZExtOrSelf(m_OneUse(m_Xor(
1770 m_OneUse(m_TruncOrSelf(m_OneUse(
1771 m_Intrinsic<Intrinsic::ctlz>(m_Deferred(A), m_One())))),
1772 m_APInt(XorC))))))) &&
1773 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_NE) &&
1774 *XorC == A->getType()->getScalarSizeInBits() - 1) {
1775 Value *Sub = Builder.CreateAdd(LHS: A, RHS: Constant::getAllOnesValue(Ty: A->getType()));
1776 Value *Ctlz = Builder.CreateIntrinsic(Intrinsic::ctlz, {A->getType()},
1777 {Sub, Builder.getFalse()});
1778 Value *Ret = Builder.CreateSub(
1779 LHS: ConstantInt::get(Ty: A->getType(), V: A->getType()->getScalarSizeInBits()),
1780 RHS: Ctlz, Name: "", /*HasNUW*/ true, /*HasNSW*/ true);
1781 return replaceInstUsesWith(I, V: Builder.CreateZExtOrTrunc(V: Ret, DestTy: I.getType()));
1782 }
1783
1784 if (Instruction *Res = foldSquareSumInt(I))
1785 return Res;
1786
1787 if (Instruction *Res = foldBinOpOfDisplacedShifts(I))
1788 return Res;
1789
1790 if (Instruction *Res = foldBinOpOfSelectAndCastOfSelectCondition(I))
1791 return Res;
1792
1793 return Changed ? &I : nullptr;
1794}
1795
1796/// Eliminate an op from a linear interpolation (lerp) pattern.
1797static Instruction *factorizeLerp(BinaryOperator &I,
1798 InstCombiner::BuilderTy &Builder) {
1799 Value *X, *Y, *Z;
1800 if (!match(V: &I, P: m_c_FAdd(L: m_OneUse(SubPattern: m_c_FMul(L: m_Value(V&: Y),
1801 R: m_OneUse(SubPattern: m_FSub(L: m_FPOne(),
1802 R: m_Value(V&: Z))))),
1803 R: m_OneUse(SubPattern: m_c_FMul(L: m_Value(V&: X), R: m_Deferred(V: Z))))))
1804 return nullptr;
1805
1806 // (Y * (1.0 - Z)) + (X * Z) --> Y + Z * (X - Y) [8 commuted variants]
1807 Value *XY = Builder.CreateFSubFMF(L: X, R: Y, FMFSource: &I);
1808 Value *MulZ = Builder.CreateFMulFMF(L: Z, R: XY, FMFSource: &I);
1809 return BinaryOperator::CreateFAddFMF(V1: Y, V2: MulZ, FMFSource: &I);
1810}
1811
1812/// Factor a common operand out of fadd/fsub of fmul/fdiv.
1813static Instruction *factorizeFAddFSub(BinaryOperator &I,
1814 InstCombiner::BuilderTy &Builder) {
1815 assert((I.getOpcode() == Instruction::FAdd ||
1816 I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub");
1817 assert(I.hasAllowReassoc() && I.hasNoSignedZeros() &&
1818 "FP factorization requires FMF");
1819
1820 if (Instruction *Lerp = factorizeLerp(I, Builder))
1821 return Lerp;
1822
1823 Value *Op0 = I.getOperand(i_nocapture: 0), *Op1 = I.getOperand(i_nocapture: 1);
1824 if (!Op0->hasOneUse() || !Op1->hasOneUse())
1825 return nullptr;
1826
1827 Value *X, *Y, *Z;
1828 bool IsFMul;
1829 if ((match(V: Op0, P: m_FMul(L: m_Value(V&: X), R: m_Value(V&: Z))) &&
1830 match(V: Op1, P: m_c_FMul(L: m_Value(V&: Y), R: m_Specific(V: Z)))) ||
1831 (match(V: Op0, P: m_FMul(L: m_Value(V&: Z), R: m_Value(V&: X))) &&
1832 match(V: Op1, P: m_c_FMul(L: m_Value(V&: Y), R: m_Specific(V: Z)))))
1833 IsFMul = true;
1834 else if (match(V: Op0, P: m_FDiv(L: m_Value(V&: X), R: m_Value(V&: Z))) &&
1835 match(V: Op1, P: m_FDiv(L: m_Value(V&: Y), R: m_Specific(V: Z))))
1836 IsFMul = false;
1837 else
1838 return nullptr;
1839
1840 // (X * Z) + (Y * Z) --> (X + Y) * Z
1841 // (X * Z) - (Y * Z) --> (X - Y) * Z
1842 // (X / Z) + (Y / Z) --> (X + Y) / Z
1843 // (X / Z) - (Y / Z) --> (X - Y) / Z
1844 bool IsFAdd = I.getOpcode() == Instruction::FAdd;
1845 Value *XY = IsFAdd ? Builder.CreateFAddFMF(L: X, R: Y, FMFSource: &I)
1846 : Builder.CreateFSubFMF(L: X, R: Y, FMFSource: &I);
1847
1848 // Bail out if we just created a denormal constant.
1849 // TODO: This is copied from a previous implementation. Is it necessary?
1850 const APFloat *C;
1851 if (match(V: XY, P: m_APFloat(Res&: C)) && !C->isNormal())
1852 return nullptr;
1853
1854 return IsFMul ? BinaryOperator::CreateFMulFMF(V1: XY, V2: Z, FMFSource: &I)
1855 : BinaryOperator::CreateFDivFMF(V1: XY, V2: Z, FMFSource: &I);
1856}
1857
1858Instruction *InstCombinerImpl::visitFAdd(BinaryOperator &I) {
1859 if (Value *V = simplifyFAddInst(LHS: I.getOperand(i_nocapture: 0), RHS: I.getOperand(i_nocapture: 1),
1860 FMF: I.getFastMathFlags(),
1861 Q: SQ.getWithInstruction(I: &I)))
1862 return replaceInstUsesWith(I, V);
1863
1864 if (SimplifyAssociativeOrCommutative(I))
1865 return &I;
1866
1867 if (Instruction *X = foldVectorBinop(Inst&: I))
1868 return X;
1869
1870 if (Instruction *Phi = foldBinopWithPhiOperands(BO&: I))
1871 return Phi;
1872
1873 if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I))
1874 return FoldedFAdd;
1875
1876 // (-X) + Y --> Y - X
1877 Value *X, *Y;
1878 if (match(V: &I, P: m_c_FAdd(L: m_FNeg(X: m_Value(V&: X)), R: m_Value(V&: Y))))
1879 return BinaryOperator::CreateFSubFMF(V1: Y, V2: X, FMFSource: &I);
1880
1881 // Similar to above, but look through fmul/fdiv for the negated term.
1882 // (-X * Y) + Z --> Z - (X * Y) [4 commuted variants]
1883 Value *Z;
1884 if (match(V: &I, P: m_c_FAdd(L: m_OneUse(SubPattern: m_c_FMul(L: m_FNeg(X: m_Value(V&: X)), R: m_Value(V&: Y))),
1885 R: m_Value(V&: Z)))) {
1886 Value *XY = Builder.CreateFMulFMF(L: X, R: Y, FMFSource: &I);
1887 return BinaryOperator::CreateFSubFMF(V1: Z, V2: XY, FMFSource: &I);
1888 }
1889 // (-X / Y) + Z --> Z - (X / Y) [2 commuted variants]
1890 // (X / -Y) + Z --> Z - (X / Y) [2 commuted variants]
1891 if (match(V: &I, P: m_c_FAdd(L: m_OneUse(SubPattern: m_FDiv(L: m_FNeg(X: m_Value(V&: X)), R: m_Value(V&: Y))),
1892 R: m_Value(V&: Z))) ||
1893 match(V: &I, P: m_c_FAdd(L: m_OneUse(SubPattern: m_FDiv(L: m_Value(V&: X), R: m_FNeg(X: m_Value(V&: Y)))),
1894 R: m_Value(V&: Z)))) {
1895 Value *XY = Builder.CreateFDivFMF(L: X, R: Y, FMFSource: &I);
1896 return BinaryOperator::CreateFSubFMF(V1: Z, V2: XY, FMFSource: &I);
1897 }
1898
1899 // Check for (fadd double (sitofp x), y), see if we can merge this into an
1900 // integer add followed by a promotion.
1901 if (Instruction *R = foldFBinOpOfIntCasts(I))
1902 return R;
1903
1904 Value *LHS = I.getOperand(i_nocapture: 0), *RHS = I.getOperand(i_nocapture: 1);
1905 // Handle specials cases for FAdd with selects feeding the operation
1906 if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS))
1907 return replaceInstUsesWith(I, V);
1908
1909 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
1910 if (Instruction *F = factorizeFAddFSub(I, Builder))
1911 return F;
1912
1913 if (Instruction *F = foldSquareSumFP(I))
1914 return F;
1915
1916 // Try to fold fadd into start value of reduction intrinsic.
1917 if (match(&I, m_c_FAdd(m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(
1918 m_AnyZeroFP(), m_Value(X))),
1919 m_Value(Y)))) {
1920 // fadd (rdx 0.0, X), Y --> rdx Y, X
1921 return replaceInstUsesWith(
1922 I, V: Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
1923 {X->getType()}, {Y, X}, &I));
1924 }
1925 const APFloat *StartC, *C;
1926 if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(
1927 m_APFloat(StartC), m_Value(X)))) &&
1928 match(RHS, m_APFloat(C))) {
1929 // fadd (rdx StartC, X), C --> rdx (C + StartC), X
1930 Constant *NewStartC = ConstantFP::get(Ty: I.getType(), V: *C + *StartC);
1931 return replaceInstUsesWith(
1932 I, V: Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
1933 {X->getType()}, {NewStartC, X}, &I));
1934 }
1935
1936 // (X * MulC) + X --> X * (MulC + 1.0)
1937 Constant *MulC;
1938 if (match(V: &I, P: m_c_FAdd(L: m_FMul(L: m_Value(V&: X), R: m_ImmConstant(C&: MulC)),
1939 R: m_Deferred(V: X)))) {
1940 if (Constant *NewMulC = ConstantFoldBinaryOpOperands(
1941 Opcode: Instruction::FAdd, LHS: MulC, RHS: ConstantFP::get(Ty: I.getType(), V: 1.0), DL))
1942 return BinaryOperator::CreateFMulFMF(V1: X, V2: NewMulC, FMFSource: &I);
1943 }
1944
1945 // (-X - Y) + (X + Z) --> Z - Y
1946 if (match(V: &I, P: m_c_FAdd(L: m_FSub(L: m_FNeg(X: m_Value(V&: X)), R: m_Value(V&: Y)),
1947 R: m_c_FAdd(L: m_Deferred(V: X), R: m_Value(V&: Z)))))
1948 return BinaryOperator::CreateFSubFMF(V1: Z, V2: Y, FMFSource: &I);
1949
1950 if (Value *V = FAddCombine(Builder).simplify(I: &I))
1951 return replaceInstUsesWith(I, V);
1952 }
1953
1954 // minumum(X, Y) + maximum(X, Y) => X + Y.
1955 if (match(&I,
1956 m_c_FAdd(m_Intrinsic<Intrinsic::maximum>(m_Value(V&: X), m_Value(V&: Y)),
1957 m_c_Intrinsic<Intrinsic::minimum>(m_Deferred(V: X),
1958 m_Deferred(V: Y))))) {
1959 BinaryOperator *Result = BinaryOperator::CreateFAddFMF(V1: X, V2: Y, FMFSource: &I);
1960 // We cannot preserve ninf if nnan flag is not set.
1961 // If X is NaN and Y is Inf then in original program we had NaN + NaN,
1962 // while in optimized version NaN + Inf and this is a poison with ninf flag.
1963 if (!Result->hasNoNaNs())
1964 Result->setHasNoInfs(false);
1965 return Result;
1966 }
1967
1968 return nullptr;
1969}
1970
1971/// Optimize pointer differences into the same array into a size. Consider:
1972/// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer
1973/// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
1974Value *InstCombinerImpl::OptimizePointerDifference(Value *LHS, Value *RHS,
1975 Type *Ty, bool IsNUW) {
1976 // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
1977 // this.
1978 bool Swapped = false;
1979 GEPOperator *GEP1 = nullptr, *GEP2 = nullptr;
1980 if (!isa<GEPOperator>(Val: LHS) && isa<GEPOperator>(Val: RHS)) {
1981 std::swap(a&: LHS, b&: RHS);
1982 Swapped = true;
1983 }
1984
1985 // Require at least one GEP with a common base pointer on both sides.
1986 if (auto *LHSGEP = dyn_cast<GEPOperator>(Val: LHS)) {
1987 // (gep X, ...) - X
1988 if (LHSGEP->getOperand(i_nocapture: 0)->stripPointerCasts() ==
1989 RHS->stripPointerCasts()) {
1990 GEP1 = LHSGEP;
1991 } else if (auto *RHSGEP = dyn_cast<GEPOperator>(Val: RHS)) {
1992 // (gep X, ...) - (gep X, ...)
1993 if (LHSGEP->getOperand(i_nocapture: 0)->stripPointerCasts() ==
1994 RHSGEP->getOperand(i_nocapture: 0)->stripPointerCasts()) {
1995 GEP1 = LHSGEP;
1996 GEP2 = RHSGEP;
1997 }
1998 }
1999 }
2000
2001 if (!GEP1)
2002 return nullptr;
2003
2004 if (GEP2) {
2005 // (gep X, ...) - (gep X, ...)
2006 //
2007 // Avoid duplicating the arithmetic if there are more than one non-constant
2008 // indices between the two GEPs and either GEP has a non-constant index and
2009 // multiple users. If zero non-constant index, the result is a constant and
2010 // there is no duplication. If one non-constant index, the result is an add
2011 // or sub with a constant, which is no larger than the original code, and
2012 // there's no duplicated arithmetic, even if either GEP has multiple
2013 // users. If more than one non-constant indices combined, as long as the GEP
2014 // with at least one non-constant index doesn't have multiple users, there
2015 // is no duplication.
2016 unsigned NumNonConstantIndices1 = GEP1->countNonConstantIndices();
2017 unsigned NumNonConstantIndices2 = GEP2->countNonConstantIndices();
2018 if (NumNonConstantIndices1 + NumNonConstantIndices2 > 1 &&
2019 ((NumNonConstantIndices1 > 0 && !GEP1->hasOneUse()) ||
2020 (NumNonConstantIndices2 > 0 && !GEP2->hasOneUse()))) {
2021 return nullptr;
2022 }
2023 }
2024
2025 // Emit the offset of the GEP and an intptr_t.
2026 Value *Result = EmitGEPOffset(GEP: GEP1);
2027
2028 // If this is a single inbounds GEP and the original sub was nuw,
2029 // then the final multiplication is also nuw.
2030 if (auto *I = dyn_cast<Instruction>(Val: Result))
2031 if (IsNUW && !GEP2 && !Swapped && GEP1->isInBounds() &&
2032 I->getOpcode() == Instruction::Mul)
2033 I->setHasNoUnsignedWrap();
2034
2035 // If we have a 2nd GEP of the same base pointer, subtract the offsets.
2036 // If both GEPs are inbounds, then the subtract does not have signed overflow.
2037 if (GEP2) {
2038 Value *Offset = EmitGEPOffset(GEP: GEP2);
2039 Result = Builder.CreateSub(LHS: Result, RHS: Offset, Name: "gepdiff", /* NUW */ HasNUW: false,
2040 HasNSW: GEP1->isInBounds() && GEP2->isInBounds());
2041 }
2042
2043 // If we have p - gep(p, ...) then we have to negate the result.
2044 if (Swapped)
2045 Result = Builder.CreateNeg(V: Result, Name: "diff.neg");
2046
2047 return Builder.CreateIntCast(V: Result, DestTy: Ty, isSigned: true);
2048}
2049
2050static Instruction *foldSubOfMinMax(BinaryOperator &I,
2051 InstCombiner::BuilderTy &Builder) {
2052 Value *Op0 = I.getOperand(i_nocapture: 0);
2053 Value *Op1 = I.getOperand(i_nocapture: 1);
2054 Type *Ty = I.getType();
2055 auto *MinMax = dyn_cast<MinMaxIntrinsic>(Val: Op1);
2056 if (!MinMax)
2057 return nullptr;
2058
2059 // sub(add(X,Y), s/umin(X,Y)) --> s/umax(X,Y)
2060 // sub(add(X,Y), s/umax(X,Y)) --> s/umin(X,Y)
2061 Value *X = MinMax->getLHS();
2062 Value *Y = MinMax->getRHS();
2063 if (match(V: Op0, P: m_c_Add(L: m_Specific(V: X), R: m_Specific(V: Y))) &&
2064 (Op0->hasOneUse() || Op1->hasOneUse())) {
2065 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(MinMaxID: MinMax->getIntrinsicID());
2066 Function *F = Intrinsic::getDeclaration(M: I.getModule(), id: InvID, Tys: Ty);
2067 return CallInst::Create(Func: F, Args: {X, Y});
2068 }
2069
2070 // sub(add(X,Y),umin(Y,Z)) --> add(X,usub.sat(Y,Z))
2071 // sub(add(X,Z),umin(Y,Z)) --> add(X,usub.sat(Z,Y))
2072 Value *Z;
2073 if (match(V: Op1, P: m_OneUse(SubPattern: m_UMin(L: m_Value(V&: Y), R: m_Value(V&: Z))))) {
2074 if (match(V: Op0, P: m_OneUse(SubPattern: m_c_Add(L: m_Specific(V: Y), R: m_Value(V&: X))))) {
2075 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, Ty, {Y, Z});
2076 return BinaryOperator::CreateAdd(V1: X, V2: USub);
2077 }
2078 if (match(V: Op0, P: m_OneUse(SubPattern: m_c_Add(L: m_Specific(V: Z), R: m_Value(V&: X))))) {
2079 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, Ty, {Z, Y});
2080 return BinaryOperator::CreateAdd(V1: X, V2: USub);
2081 }
2082 }
2083
2084 // sub Op0, smin((sub nsw Op0, Z), 0) --> smax Op0, Z
2085 // sub Op0, smax((sub nsw Op0, Z), 0) --> smin Op0, Z
2086 if (MinMax->isSigned() && match(V: Y, P: m_ZeroInt()) &&
2087 match(V: X, P: m_NSWSub(L: m_Specific(V: Op0), R: m_Value(V&: Z)))) {
2088 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(MinMaxID: MinMax->getIntrinsicID());
2089 Function *F = Intrinsic::getDeclaration(M: I.getModule(), id: InvID, Tys: Ty);
2090 return CallInst::Create(Func: F, Args: {Op0, Z});
2091 }
2092
2093 return nullptr;
2094}
2095
2096Instruction *InstCombinerImpl::visitSub(BinaryOperator &I) {
2097 if (Value *V = simplifySubInst(LHS: I.getOperand(i_nocapture: 0), RHS: I.getOperand(i_nocapture: 1),
2098 IsNSW: I.hasNoSignedWrap(), IsNUW: I.hasNoUnsignedWrap(),
2099 Q: SQ.getWithInstruction(I: &I)))
2100 return replaceInstUsesWith(I, V);
2101
2102 if (Instruction *X = foldVectorBinop(Inst&: I))
2103 return X;
2104
2105 if (Instruction *Phi = foldBinopWithPhiOperands(BO&: I))
2106 return Phi;
2107
2108 Value *Op0 = I.getOperand(i_nocapture: 0), *Op1 = I.getOperand(i_nocapture: 1);
2109
2110 // If this is a 'B = x-(-A)', change to B = x+A.
2111 // We deal with this without involving Negator to preserve NSW flag.
2112 if (Value *V = dyn_castNegVal(V: Op1)) {
2113 BinaryOperator *Res = BinaryOperator::CreateAdd(V1: Op0, V2: V);
2114
2115 if (const auto *BO = dyn_cast<BinaryOperator>(Val: Op1)) {
2116 assert(BO->getOpcode() == Instruction::Sub &&
2117 "Expected a subtraction operator!");
2118 if (BO->hasNoSignedWrap() && I.hasNoSignedWrap())
2119 Res->setHasNoSignedWrap(true);
2120 } else {
2121 if (cast<Constant>(Val: Op1)->isNotMinSignedValue() && I.hasNoSignedWrap())
2122 Res->setHasNoSignedWrap(true);
2123 }
2124
2125 return Res;
2126 }
2127
2128 // Try this before Negator to preserve NSW flag.
2129 if (Instruction *R = factorizeMathWithShlOps(I, Builder))
2130 return R;
2131
2132 Constant *C;
2133 if (match(V: Op0, P: m_ImmConstant(C))) {
2134 Value *X;
2135 Constant *C2;
2136
2137 // C-(X+C2) --> (C-C2)-X
2138 if (match(V: Op1, P: m_Add(L: m_Value(V&: X), R: m_ImmConstant(C&: C2)))) {
2139 // C-C2 never overflow, and C-(X+C2), (X+C2) has NSW/NUW
2140 // => (C-C2)-X can have NSW/NUW
2141 bool WillNotSOV = willNotOverflowSignedSub(LHS: C, RHS: C2, CxtI: I);
2142 BinaryOperator *Res =
2143 BinaryOperator::CreateSub(V1: ConstantExpr::getSub(C1: C, C2), V2: X);
2144 auto *OBO1 = cast<OverflowingBinaryOperator>(Val: Op1);
2145 Res->setHasNoSignedWrap(I.hasNoSignedWrap() && OBO1->hasNoSignedWrap() &&
2146 WillNotSOV);
2147 Res->setHasNoUnsignedWrap(I.hasNoUnsignedWrap() &&
2148 OBO1->hasNoUnsignedWrap());
2149 return Res;
2150 }
2151 }
2152
2153 auto TryToNarrowDeduceFlags = [this, &I, &Op0, &Op1]() -> Instruction * {
2154 if (Instruction *Ext = narrowMathIfNoOverflow(I))
2155 return Ext;
2156
2157 bool Changed = false;
2158 if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(LHS: Op0, RHS: Op1, CxtI: I)) {
2159 Changed = true;
2160 I.setHasNoSignedWrap(true);
2161 }
2162 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(LHS: Op0, RHS: Op1, CxtI: I)) {
2163 Changed = true;
2164 I.setHasNoUnsignedWrap(true);
2165 }
2166
2167 return Changed ? &I : nullptr;
2168 };
2169
2170 // First, let's try to interpret `sub a, b` as `add a, (sub 0, b)`,
2171 // and let's try to sink `(sub 0, b)` into `b` itself. But only if this isn't
2172 // a pure negation used by a select that looks like abs/nabs.
2173 bool IsNegation = match(V: Op0, P: m_ZeroInt());
2174 if (!IsNegation || none_of(Range: I.users(), P: [&I, Op1](const User *U) {
2175 const Instruction *UI = dyn_cast<Instruction>(Val: U);
2176 if (!UI)
2177 return false;
2178 return match(V: UI,
2179 P: m_Select(C: m_Value(), L: m_Specific(V: Op1), R: m_Specific(V: &I))) ||
2180 match(V: UI, P: m_Select(C: m_Value(), L: m_Specific(V: &I), R: m_Specific(V: Op1)));
2181 })) {
2182 if (Value *NegOp1 = Negator::Negate(LHSIsZero: IsNegation, /* IsNSW */ IsNegation &&
2183 I.hasNoSignedWrap(),
2184 Root: Op1, IC&: *this))
2185 return BinaryOperator::CreateAdd(V1: NegOp1, V2: Op0);
2186 }
2187 if (IsNegation)
2188 return TryToNarrowDeduceFlags(); // Should have been handled in Negator!
2189
2190 // (A*B)-(A*C) -> A*(B-C) etc
2191 if (Value *V = foldUsingDistributiveLaws(I))
2192 return replaceInstUsesWith(I, V);
2193
2194 if (I.getType()->isIntOrIntVectorTy(BitWidth: 1))
2195 return BinaryOperator::CreateXor(V1: Op0, V2: Op1);
2196
2197 // Replace (-1 - A) with (~A).
2198 if (match(V: Op0, P: m_AllOnes()))
2199 return BinaryOperator::CreateNot(Op: Op1);
2200
2201 // (X + -1) - Y --> ~Y + X
2202 Value *X, *Y;
2203 if (match(V: Op0, P: m_OneUse(SubPattern: m_Add(L: m_Value(V&: X), R: m_AllOnes()))))
2204 return BinaryOperator::CreateAdd(V1: Builder.CreateNot(V: Op1), V2: X);
2205
2206 // Reassociate sub/add sequences to create more add instructions and
2207 // reduce dependency chains:
2208 // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1)
2209 Value *Z;
2210 if (match(V: Op0, P: m_OneUse(SubPattern: m_c_Add(L: m_OneUse(SubPattern: m_Sub(L: m_Value(V&: X), R: m_Value(V&: Y))),
2211 R: m_Value(V&: Z))))) {
2212 Value *XZ = Builder.CreateAdd(LHS: X, RHS: Z);
2213 Value *YW = Builder.CreateAdd(LHS: Y, RHS: Op1);
2214 return BinaryOperator::CreateSub(V1: XZ, V2: YW);
2215 }
2216
2217 // ((X - Y) - Op1) --> X - (Y + Op1)
2218 if (match(V: Op0, P: m_OneUse(SubPattern: m_Sub(L: m_Value(V&: X), R: m_Value(V&: Y))))) {
2219 OverflowingBinaryOperator *LHSSub = cast<OverflowingBinaryOperator>(Val: Op0);
2220 bool HasNUW = I.hasNoUnsignedWrap() && LHSSub->hasNoUnsignedWrap();
2221 bool HasNSW = HasNUW && I.hasNoSignedWrap() && LHSSub->hasNoSignedWrap();
2222 Value *Add = Builder.CreateAdd(LHS: Y, RHS: Op1, Name: "", /* HasNUW */ HasNUW,
2223 /* HasNSW */ HasNSW);
2224 BinaryOperator *Sub = BinaryOperator::CreateSub(V1: X, V2: Add);
2225 Sub->setHasNoUnsignedWrap(HasNUW);
2226 Sub->setHasNoSignedWrap(HasNSW);
2227 return Sub;
2228 }
2229
2230 {
2231 // (X + Z) - (Y + Z) --> (X - Y)
2232 // This is done in other passes, but we want to be able to consume this
2233 // pattern in InstCombine so we can generate it without creating infinite
2234 // loops.
2235 if (match(V: Op0, P: m_Add(L: m_Value(V&: X), R: m_Value(V&: Z))) &&
2236 match(V: Op1, P: m_c_Add(L: m_Value(V&: Y), R: m_Specific(V: Z))))
2237 return BinaryOperator::CreateSub(V1: X, V2: Y);
2238
2239 // (X + C0) - (Y + C1) --> (X - Y) + (C0 - C1)
2240 Constant *CX, *CY;
2241 if (match(V: Op0, P: m_OneUse(SubPattern: m_Add(L: m_Value(V&: X), R: m_ImmConstant(C&: CX)))) &&
2242 match(V: Op1, P: m_OneUse(SubPattern: m_Add(L: m_Value(V&: Y), R: m_ImmConstant(C&: CY))))) {
2243 Value *OpsSub = Builder.CreateSub(LHS: X, RHS: Y);
2244 Constant *ConstsSub = ConstantExpr::getSub(C1: CX, C2: CY);
2245 return BinaryOperator::CreateAdd(V1: OpsSub, V2: ConstsSub);
2246 }
2247 }
2248
2249 // (~X) - (~Y) --> Y - X
2250 {
2251 // Need to ensure we can consume at least one of the `not` instructions,
2252 // otherwise this can inf loop.
2253 bool ConsumesOp0, ConsumesOp1;
2254 if (isFreeToInvert(V: Op0, WillInvertAllUses: Op0->hasOneUse(), DoesConsume&: ConsumesOp0) &&
2255 isFreeToInvert(V: Op1, WillInvertAllUses: Op1->hasOneUse(), DoesConsume&: ConsumesOp1) &&
2256 (ConsumesOp0 || ConsumesOp1)) {
2257 Value *NotOp0 = getFreelyInverted(V: Op0, WillInvertAllUses: Op0->hasOneUse(), Builder: &Builder);
2258 Value *NotOp1 = getFreelyInverted(V: Op1, WillInvertAllUses: Op1->hasOneUse(), Builder: &Builder);
2259 assert(NotOp0 != nullptr && NotOp1 != nullptr &&
2260 "isFreeToInvert desynced with getFreelyInverted");
2261 return BinaryOperator::CreateSub(V1: NotOp1, V2: NotOp0);
2262 }
2263 }
2264
2265 auto m_AddRdx = [](Value *&Vec) {
2266 return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_add>(m_Value(Vec)));
2267 };
2268 Value *V0, *V1;
2269 if (match(Op0, m_AddRdx(V0)) && match(Op1, m_AddRdx(V1)) &&
2270 V0->getType() == V1->getType()) {
2271 // Difference of sums is sum of differences:
2272 // add_rdx(V0) - add_rdx(V1) --> add_rdx(V0 - V1)
2273 Value *Sub = Builder.CreateSub(LHS: V0, RHS: V1);
2274 Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_add,
2275 {Sub->getType()}, {Sub});
2276 return replaceInstUsesWith(I, V: Rdx);
2277 }
2278
2279 if (Constant *C = dyn_cast<Constant>(Val: Op0)) {
2280 Value *X;
2281 if (match(V: Op1, P: m_ZExt(Op: m_Value(V&: X))) && X->getType()->isIntOrIntVectorTy(BitWidth: 1))
2282 // C - (zext bool) --> bool ? C - 1 : C
2283 return SelectInst::Create(C: X, S1: InstCombiner::SubOne(C), S2: C);
2284 if (match(V: Op1, P: m_SExt(Op: m_Value(V&: X))) && X->getType()->isIntOrIntVectorTy(BitWidth: 1))
2285 // C - (sext bool) --> bool ? C + 1 : C
2286 return SelectInst::Create(C: X, S1: InstCombiner::AddOne(C), S2: C);
2287
2288 // C - ~X == X + (1+C)
2289 if (match(V: Op1, P: m_Not(V: m_Value(V&: X))))
2290 return BinaryOperator::CreateAdd(V1: X, V2: InstCombiner::AddOne(C));
2291
2292 // Try to fold constant sub into select arguments.
2293 if (SelectInst *SI = dyn_cast<SelectInst>(Val: Op1))
2294 if (Instruction *R = FoldOpIntoSelect(Op&: I, SI))
2295 return R;
2296
2297 // Try to fold constant sub into PHI values.
2298 if (PHINode *PN = dyn_cast<PHINode>(Val: Op1))
2299 if (Instruction *R = foldOpIntoPhi(I, PN))
2300 return R;
2301
2302 Constant *C2;
2303
2304 // C-(C2-X) --> X+(C-C2)
2305 if (match(V: Op1, P: m_Sub(L: m_ImmConstant(C&: C2), R: m_Value(V&: X))))
2306 return BinaryOperator::CreateAdd(V1: X, V2: ConstantExpr::getSub(C1: C, C2));
2307 }
2308
2309 const APInt *Op0C;
2310 if (match(V: Op0, P: m_APInt(Res&: Op0C))) {
2311 if (Op0C->isMask()) {
2312 // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
2313 // zero. We don't use information from dominating conditions so this
2314 // transform is easier to reverse if necessary.
2315 KnownBits RHSKnown = llvm::computeKnownBits(
2316 V: Op1, Depth: 0, Q: SQ.getWithInstruction(I: &I).getWithoutDomCondCache());
2317 if ((*Op0C | RHSKnown.Zero).isAllOnes())
2318 return BinaryOperator::CreateXor(V1: Op1, V2: Op0);
2319 }
2320
2321 // C - ((C3 -nuw X) & C2) --> (C - (C2 & C3)) + (X & C2) when:
2322 // (C3 - ((C2 & C3) - 1)) is pow2
2323 // ((C2 + C3) & ((C2 & C3) - 1)) == ((C2 & C3) - 1)
2324 // C2 is negative pow2 || sub nuw
2325 const APInt *C2, *C3;
2326 BinaryOperator *InnerSub;
2327 if (match(V: Op1, P: m_OneUse(SubPattern: m_And(L: m_BinOp(I&: InnerSub), R: m_APInt(Res&: C2)))) &&
2328 match(V: InnerSub, P: m_Sub(L: m_APInt(Res&: C3), R: m_Value(V&: X))) &&
2329 (InnerSub->hasNoUnsignedWrap() || C2->isNegatedPowerOf2())) {
2330 APInt C2AndC3 = *C2 & *C3;
2331 APInt C2AndC3Minus1 = C2AndC3 - 1;
2332 APInt C2AddC3 = *C2 + *C3;
2333 if ((*C3 - C2AndC3Minus1).isPowerOf2() &&
2334 C2AndC3Minus1.isSubsetOf(RHS: C2AddC3)) {
2335 Value *And = Builder.CreateAnd(LHS: X, RHS: ConstantInt::get(Ty: I.getType(), V: *C2));
2336 return BinaryOperator::CreateAdd(
2337 V1: And, V2: ConstantInt::get(Ty: I.getType(), V: *Op0C - C2AndC3));
2338 }
2339 }
2340 }
2341
2342 {
2343 Value *Y;
2344 // X-(X+Y) == -Y X-(Y+X) == -Y
2345 if (match(V: Op1, P: m_c_Add(L: m_Specific(V: Op0), R: m_Value(V&: Y))))
2346 return BinaryOperator::CreateNeg(Op: Y);
2347
2348 // (X-Y)-X == -Y
2349 if (match(V: Op0, P: m_Sub(L: m_Specific(V: Op1), R: m_Value(V&: Y))))
2350 return BinaryOperator::CreateNeg(Op: Y);
2351 }
2352
2353 // (sub (or A, B) (and A, B)) --> (xor A, B)
2354 {
2355 Value *A, *B;
2356 if (match(V: Op1, P: m_And(L: m_Value(V&: A), R: m_Value(V&: B))) &&
2357 match(V: Op0, P: m_c_Or(L: m_Specific(V: A), R: m_Specific(V: B))))
2358 return BinaryOperator::CreateXor(V1: A, V2: B);
2359 }
2360
2361 // (sub (add A, B) (or A, B)) --> (and A, B)
2362 {
2363 Value *A, *B;
2364 if (match(V: Op0, P: m_Add(L: m_Value(V&: A), R: m_Value(V&: B))) &&
2365 match(V: Op1, P: m_c_Or(L: m_Specific(V: A), R: m_Specific(V: B))))
2366 return BinaryOperator::CreateAnd(V1: A, V2: B);
2367 }
2368
2369 // (sub (add A, B) (and A, B)) --> (or A, B)
2370 {
2371 Value *A, *B;
2372 if (match(V: Op0, P: m_Add(L: m_Value(V&: A), R: m_Value(V&: B))) &&
2373 match(V: Op1, P: m_c_And(L: m_Specific(V: A), R: m_Specific(V: B))))
2374 return BinaryOperator::CreateOr(V1: A, V2: B);
2375 }
2376
2377 // (sub (and A, B) (or A, B)) --> neg (xor A, B)
2378 {
2379 Value *A, *B;
2380 if (match(V: Op0, P: m_And(L: m_Value(V&: A), R: m_Value(V&: B))) &&
2381 match(V: Op1, P: m_c_Or(L: m_Specific(V: A), R: m_Specific(V: B))) &&
2382 (Op0->hasOneUse() || Op1->hasOneUse()))
2383 return BinaryOperator::CreateNeg(Op: Builder.CreateXor(LHS: A, RHS: B));
2384 }
2385
2386 // (sub (or A, B), (xor A, B)) --> (and A, B)
2387 {
2388 Value *A, *B;
2389 if (match(V: Op1, P: m_Xor(L: m_Value(V&: A), R: m_Value(V&: B))) &&
2390 match(V: Op0, P: m_c_Or(L: m_Specific(V: A), R: m_Specific(V: B))))
2391 return BinaryOperator::CreateAnd(V1: A, V2: B);
2392 }
2393
2394 // (sub (xor A, B) (or A, B)) --> neg (and A, B)
2395 {
2396 Value *A, *B;
2397 if (match(V: Op0, P: m_Xor(L: m_Value(V&: A), R: m_Value(V&: B))) &&
2398 match(V: Op1, P: m_c_Or(L: m_Specific(V: A), R: m_Specific(V: B))) &&
2399 (Op0->hasOneUse() || Op1->hasOneUse()))
2400 return BinaryOperator::CreateNeg(Op: Builder.CreateAnd(LHS: A, RHS: B));
2401 }
2402
2403 {
2404 Value *Y;
2405 // ((X | Y) - X) --> (~X & Y)
2406 if (match(V: Op0, P: m_OneUse(SubPattern: m_c_Or(L: m_Value(V&: Y), R: m_Specific(V: Op1)))))
2407 return BinaryOperator::CreateAnd(
2408 V1: Y, V2: Builder.CreateNot(V: Op1, Name: Op1->getName() + ".not"));
2409 }
2410
2411 {
2412 // (sub (and Op1, (neg X)), Op1) --> neg (and Op1, (add X, -1))
2413 Value *X;
2414 if (match(V: Op0, P: m_OneUse(SubPattern: m_c_And(L: m_Specific(V: Op1),
2415 R: m_OneUse(SubPattern: m_Neg(V: m_Value(V&: X))))))) {
2416 return BinaryOperator::CreateNeg(Op: Builder.CreateAnd(
2417 LHS: Op1, RHS: Builder.CreateAdd(LHS: X, RHS: Constant::getAllOnesValue(Ty: I.getType()))));
2418 }
2419 }
2420
2421 {
2422 // (sub (and Op1, C), Op1) --> neg (and Op1, ~C)
2423 Constant *C;
2424 if (match(V: Op0, P: m_OneUse(SubPattern: m_And(L: m_Specific(V: Op1), R: m_Constant(C))))) {
2425 return BinaryOperator::CreateNeg(
2426 Op: Builder.CreateAnd(LHS: Op1, RHS: Builder.CreateNot(V: C)));
2427 }
2428 }
2429
2430 {
2431 // (sub (xor X, (sext C)), (sext C)) => (select C, (neg X), X)
2432 // (sub (sext C), (xor X, (sext C))) => (select C, X, (neg X))
2433 Value *C, *X;
2434 auto m_SubXorCmp = [&C, &X](Value *LHS, Value *RHS) {
2435 return match(V: LHS, P: m_OneUse(SubPattern: m_c_Xor(L: m_Value(V&: X), R: m_Specific(V: RHS)))) &&
2436 match(V: RHS, P: m_SExt(Op: m_Value(V&: C))) &&
2437 (C->getType()->getScalarSizeInBits() == 1);
2438 };
2439 if (m_SubXorCmp(Op0, Op1))
2440 return SelectInst::Create(C, S1: Builder.CreateNeg(V: X), S2: X);
2441 if (m_SubXorCmp(Op1, Op0))
2442 return SelectInst::Create(C, S1: X, S2: Builder.CreateNeg(V: X));
2443 }
2444
2445 if (Instruction *R = tryFoldInstWithCtpopWithNot(I: &I))
2446 return R;
2447
2448 if (Instruction *R = foldSubOfMinMax(I, Builder))
2449 return R;
2450
2451 {
2452 // If we have a subtraction between some value and a select between
2453 // said value and something else, sink subtraction into select hands, i.e.:
2454 // sub (select %Cond, %TrueVal, %FalseVal), %Op1
2455 // ->
2456 // select %Cond, (sub %TrueVal, %Op1), (sub %FalseVal, %Op1)
2457 // or
2458 // sub %Op0, (select %Cond, %TrueVal, %FalseVal)
2459 // ->
2460 // select %Cond, (sub %Op0, %TrueVal), (sub %Op0, %FalseVal)
2461 // This will result in select between new subtraction and 0.
2462 auto SinkSubIntoSelect =
2463 [Ty = I.getType()](Value *Select, Value *OtherHandOfSub,
2464 auto SubBuilder) -> Instruction * {
2465 Value *Cond, *TrueVal, *FalseVal;
2466 if (!match(V: Select, P: m_OneUse(SubPattern: m_Select(C: m_Value(V&: Cond), L: m_Value(V&: TrueVal),
2467 R: m_Value(V&: FalseVal)))))
2468 return nullptr;
2469 if (OtherHandOfSub != TrueVal && OtherHandOfSub != FalseVal)
2470 return nullptr;
2471 // While it is really tempting to just create two subtractions and let
2472 // InstCombine fold one of those to 0, it isn't possible to do so
2473 // because of worklist visitation order. So ugly it is.
2474 bool OtherHandOfSubIsTrueVal = OtherHandOfSub == TrueVal;
2475 Value *NewSub = SubBuilder(OtherHandOfSubIsTrueVal ? FalseVal : TrueVal);
2476 Constant *Zero = Constant::getNullValue(Ty);
2477 SelectInst *NewSel =
2478 SelectInst::Create(C: Cond, S1: OtherHandOfSubIsTrueVal ? Zero : NewSub,
2479 S2: OtherHandOfSubIsTrueVal ? NewSub : Zero);
2480 // Preserve prof metadata if any.
2481 NewSel->copyMetadata(SrcInst: cast<Instruction>(Val&: *Select));
2482 return NewSel;
2483 };
2484 if (Instruction *NewSel = SinkSubIntoSelect(
2485 /*Select=*/Op0, /*OtherHandOfSub=*/Op1,
2486 [Builder = &Builder, Op1](Value *OtherHandOfSelect) {
2487 return Builder->CreateSub(LHS: OtherHandOfSelect,
2488 /*OtherHandOfSub=*/RHS: Op1);
2489 }))
2490 return NewSel;
2491 if (Instruction *NewSel = SinkSubIntoSelect(
2492 /*Select=*/Op1, /*OtherHandOfSub=*/Op0,
2493 [Builder = &Builder, Op0](Value *OtherHandOfSelect) {
2494 return Builder->CreateSub(/*OtherHandOfSub=*/LHS: Op0,
2495 RHS: OtherHandOfSelect);
2496 }))
2497 return NewSel;
2498 }
2499
2500 // (X - (X & Y)) --> (X & ~Y)
2501 if (match(V: Op1, P: m_c_And(L: m_Specific(V: Op0), R: m_Value(V&: Y))) &&
2502 (Op1->hasOneUse() || isa<Constant>(Val: Y)))
2503 return BinaryOperator::CreateAnd(
2504 V1: Op0, V2: Builder.CreateNot(V: Y, Name: Y->getName() + ".not"));
2505
2506 // ~X - Min/Max(~X, Y) -> ~Min/Max(X, ~Y) - X
2507 // ~X - Min/Max(Y, ~X) -> ~Min/Max(X, ~Y) - X
2508 // Min/Max(~X, Y) - ~X -> X - ~Min/Max(X, ~Y)
2509 // Min/Max(Y, ~X) - ~X -> X - ~Min/Max(X, ~Y)
2510 // As long as Y is freely invertible, this will be neutral or a win.
2511 // Note: We don't generate the inverse max/min, just create the 'not' of
2512 // it and let other folds do the rest.
2513 if (match(V: Op0, P: m_Not(V: m_Value(V&: X))) &&
2514 match(V: Op1, P: m_c_MaxOrMin(L: m_Specific(V: Op0), R: m_Value(V&: Y))) &&
2515 !Op0->hasNUsesOrMore(N: 3) && isFreeToInvert(V: Y, WillInvertAllUses: Y->hasOneUse())) {
2516 Value *Not = Builder.CreateNot(V: Op1);
2517 return BinaryOperator::CreateSub(V1: Not, V2: X);
2518 }
2519 if (match(V: Op1, P: m_Not(V: m_Value(V&: X))) &&
2520 match(V: Op0, P: m_c_MaxOrMin(L: m_Specific(V: Op1), R: m_Value(V&: Y))) &&
2521 !Op1->hasNUsesOrMore(N: 3) && isFreeToInvert(V: Y, WillInvertAllUses: Y->hasOneUse())) {
2522 Value *Not = Builder.CreateNot(V: Op0);
2523 return BinaryOperator::CreateSub(V1: X, V2: Not);
2524 }
2525
2526 // Optimize pointer differences into the same array into a size. Consider:
2527 // &A[10] - &A[0]: we should compile this to "10".
2528 Value *LHSOp, *RHSOp;
2529 if (match(V: Op0, P: m_PtrToInt(Op: m_Value(V&: LHSOp))) &&
2530 match(V: Op1, P: m_PtrToInt(Op: m_Value(V&: RHSOp))))
2531 if (Value *Res = OptimizePointerDifference(LHS: LHSOp, RHS: RHSOp, Ty: I.getType(),
2532 IsNUW: I.hasNoUnsignedWrap()))
2533 return replaceInstUsesWith(I, V: Res);
2534
2535 // trunc(p)-trunc(q) -> trunc(p-q)
2536 if (match(V: Op0, P: m_Trunc(Op: m_PtrToInt(Op: m_Value(V&: LHSOp)))) &&
2537 match(V: Op1, P: m_Trunc(Op: m_PtrToInt(Op: m_Value(V&: RHSOp)))))
2538 if (Value *Res = OptimizePointerDifference(LHS: LHSOp, RHS: RHSOp, Ty: I.getType(),
2539 /* IsNUW */ false))
2540 return replaceInstUsesWith(I, V: Res);
2541
2542 // Canonicalize a shifty way to code absolute value to the common pattern.
2543 // There are 2 potential commuted variants.
2544 // We're relying on the fact that we only do this transform when the shift has
2545 // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase
2546 // instructions).
2547 Value *A;
2548 const APInt *ShAmt;
2549 Type *Ty = I.getType();
2550 unsigned BitWidth = Ty->getScalarSizeInBits();
2551 if (match(V: Op1, P: m_AShr(L: m_Value(V&: A), R: m_APInt(Res&: ShAmt))) &&
2552 Op1->hasNUses(N: 2) && *ShAmt == BitWidth - 1 &&
2553 match(V: Op0, P: m_OneUse(SubPattern: m_c_Xor(L: m_Specific(V: A), R: m_Specific(V: Op1))))) {
2554 // B = ashr i32 A, 31 ; smear the sign bit
2555 // sub (xor A, B), B ; flip bits if negative and subtract -1 (add 1)
2556 // --> (A < 0) ? -A : A
2557 Value *IsNeg = Builder.CreateIsNeg(Arg: A);
2558 // Copy the nsw flags from the sub to the negate.
2559 Value *NegA = I.hasNoUnsignedWrap()
2560 ? Constant::getNullValue(Ty: A->getType())
2561 : Builder.CreateNeg(V: A, Name: "", HasNSW: I.hasNoSignedWrap());
2562 return SelectInst::Create(C: IsNeg, S1: NegA, S2: A);
2563 }
2564
2565 // If we are subtracting a low-bit masked subset of some value from an add
2566 // of that same value with no low bits changed, that is clearing some low bits
2567 // of the sum:
2568 // sub (X + AddC), (X & AndC) --> and (X + AddC), ~AndC
2569 const APInt *AddC, *AndC;
2570 if (match(V: Op0, P: m_Add(L: m_Value(V&: X), R: m_APInt(Res&: AddC))) &&
2571 match(V: Op1, P: m_And(L: m_Specific(V: X), R: m_APInt(Res&: AndC)))) {
2572 unsigned Cttz = AddC->countr_zero();
2573 APInt HighMask(APInt::getHighBitsSet(numBits: BitWidth, hiBitsSet: BitWidth - Cttz));
2574 if ((HighMask & *AndC).isZero())
2575 return BinaryOperator::CreateAnd(V1: Op0, V2: ConstantInt::get(Ty, V: ~(*AndC)));
2576 }
2577
2578 if (Instruction *V =
2579 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
2580 return V;
2581
2582 // X - usub.sat(X, Y) => umin(X, Y)
2583 if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Specific(Op0),
2584 m_Value(Y)))))
2585 return replaceInstUsesWith(
2586 I, V: Builder.CreateIntrinsic(Intrinsic::umin, {I.getType()}, {Op0, Y}));
2587
2588 // umax(X, Op1) - Op1 --> usub.sat(X, Op1)
2589 // TODO: The one-use restriction is not strictly necessary, but it may
2590 // require improving other pattern matching and/or codegen.
2591 if (match(V: Op0, P: m_OneUse(SubPattern: m_c_UMax(L: m_Value(V&: X), R: m_Specific(V: Op1)))))
2592 return replaceInstUsesWith(
2593 I, V: Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op1}));
2594
2595 // Op0 - umin(X, Op0) --> usub.sat(Op0, X)
2596 if (match(V: Op1, P: m_OneUse(SubPattern: m_c_UMin(L: m_Value(V&: X), R: m_Specific(V: Op0)))))
2597 return replaceInstUsesWith(
2598 I, V: Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {Op0, X}));
2599
2600 // Op0 - umax(X, Op0) --> 0 - usub.sat(X, Op0)
2601 if (match(V: Op1, P: m_OneUse(SubPattern: m_c_UMax(L: m_Value(V&: X), R: m_Specific(V: Op0))))) {
2602 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op0});
2603 return BinaryOperator::CreateNeg(Op: USub);
2604 }
2605
2606 // umin(X, Op1) - Op1 --> 0 - usub.sat(Op1, X)
2607 if (match(V: Op0, P: m_OneUse(SubPattern: m_c_UMin(L: m_Value(V&: X), R: m_Specific(V: Op1))))) {
2608 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {Op1, X});
2609 return BinaryOperator::CreateNeg(Op: USub);
2610 }
2611
2612 // C - ctpop(X) => ctpop(~X) if C is bitwidth
2613 if (match(Op0, m_SpecificInt(BitWidth)) &&
2614 match(Op1, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(X)))))
2615 return replaceInstUsesWith(
2616 I, V: Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()},
2617 {Builder.CreateNot(V: X)}));
2618
2619 // Reduce multiplies for difference-of-squares by factoring:
2620 // (X * X) - (Y * Y) --> (X + Y) * (X - Y)
2621 if (match(V: Op0, P: m_OneUse(SubPattern: m_Mul(L: m_Value(V&: X), R: m_Deferred(V: X)))) &&
2622 match(V: Op1, P: m_OneUse(SubPattern: m_Mul(L: m_Value(V&: Y), R: m_Deferred(V: Y))))) {
2623 auto *OBO0 = cast<OverflowingBinaryOperator>(Val: Op0);
2624 auto *OBO1 = cast<OverflowingBinaryOperator>(Val: Op1);
2625 bool PropagateNSW = I.hasNoSignedWrap() && OBO0->hasNoSignedWrap() &&
2626 OBO1->hasNoSignedWrap() && BitWidth > 2;
2627 bool PropagateNUW = I.hasNoUnsignedWrap() && OBO0->hasNoUnsignedWrap() &&
2628 OBO1->hasNoUnsignedWrap() && BitWidth > 1;
2629 Value *Add = Builder.CreateAdd(LHS: X, RHS: Y, Name: "add", HasNUW: PropagateNUW, HasNSW: PropagateNSW);
2630 Value *Sub = Builder.CreateSub(LHS: X, RHS: Y, Name: "sub", HasNUW: PropagateNUW, HasNSW: PropagateNSW);
2631 Value *Mul = Builder.CreateMul(LHS: Add, RHS: Sub, Name: "", HasNUW: PropagateNUW, HasNSW: PropagateNSW);
2632 return replaceInstUsesWith(I, V: Mul);
2633 }
2634
2635 // max(X,Y) nsw/nuw - min(X,Y) --> abs(X nsw - Y)
2636 if (match(V: Op0, P: m_OneUse(SubPattern: m_c_SMax(L: m_Value(V&: X), R: m_Value(V&: Y)))) &&
2637 match(V: Op1, P: m_OneUse(SubPattern: m_c_SMin(L: m_Specific(V: X), R: m_Specific(V: Y))))) {
2638 if (I.hasNoUnsignedWrap() || I.hasNoSignedWrap()) {
2639 Value *Sub =
2640 Builder.CreateSub(LHS: X, RHS: Y, Name: "sub", /*HasNUW=*/false, /*HasNSW=*/true);
2641 Value *Call =
2642 Builder.CreateBinaryIntrinsic(Intrinsic::ID: abs, LHS: Sub, RHS: Builder.getTrue());
2643 return replaceInstUsesWith(I, V: Call);
2644 }
2645 }
2646
2647 if (Instruction *Res = foldBinOpOfSelectAndCastOfSelectCondition(I))
2648 return Res;
2649
2650 return TryToNarrowDeduceFlags();
2651}
2652
2653/// This eliminates floating-point negation in either 'fneg(X)' or
2654/// 'fsub(-0.0, X)' form by combining into a constant operand.
2655static Instruction *foldFNegIntoConstant(Instruction &I, const DataLayout &DL) {
2656 // This is limited with one-use because fneg is assumed better for
2657 // reassociation and cheaper in codegen than fmul/fdiv.
2658 // TODO: Should the m_OneUse restriction be removed?
2659 Instruction *FNegOp;
2660 if (!match(V: &I, P: m_FNeg(X: m_OneUse(SubPattern: m_Instruction(I&: FNegOp)))))
2661 return nullptr;
2662
2663 Value *X;
2664 Constant *C;
2665
2666 // Fold negation into constant operand.
2667 // -(X * C) --> X * (-C)
2668 if (match(V: FNegOp, P: m_FMul(L: m_Value(V&: X), R: m_Constant(C))))
2669 if (Constant *NegC = ConstantFoldUnaryOpOperand(Opcode: Instruction::FNeg, Op: C, DL))
2670 return BinaryOperator::CreateFMulFMF(V1: X, V2: NegC, FMFSource: &I);
2671 // -(X / C) --> X / (-C)
2672 if (match(V: FNegOp, P: m_FDiv(L: m_Value(V&: X), R: m_Constant(C))))
2673 if (Constant *NegC = ConstantFoldUnaryOpOperand(Opcode: Instruction::FNeg, Op: C, DL))
2674 return BinaryOperator::CreateFDivFMF(V1: X, V2: NegC, FMFSource: &I);
2675 // -(C / X) --> (-C) / X
2676 if (match(V: FNegOp, P: m_FDiv(L: m_Constant(C), R: m_Value(V&: X))))
2677 if (Constant *NegC = ConstantFoldUnaryOpOperand(Opcode: Instruction::FNeg, Op: C, DL)) {
2678 Instruction *FDiv = BinaryOperator::CreateFDivFMF(V1: NegC, V2: X, FMFSource: &I);
2679
2680 // Intersect 'nsz' and 'ninf' because those special value exceptions may
2681 // not apply to the fdiv. Everything else propagates from the fneg.
2682 // TODO: We could propagate nsz/ninf from fdiv alone?
2683 FastMathFlags FMF = I.getFastMathFlags();
2684 FastMathFlags OpFMF = FNegOp->getFastMathFlags();
2685 FDiv->setHasNoSignedZeros(FMF.noSignedZeros() && OpFMF.noSignedZeros());
2686 FDiv->setHasNoInfs(FMF.noInfs() && OpFMF.noInfs());
2687 return FDiv;
2688 }
2689 // With NSZ [ counter-example with -0.0: -(-0.0 + 0.0) != 0.0 + -0.0 ]:
2690 // -(X + C) --> -X + -C --> -C - X
2691 if (I.hasNoSignedZeros() && match(V: FNegOp, P: m_FAdd(L: m_Value(V&: X), R: m_Constant(C))))
2692 if (Constant *NegC = ConstantFoldUnaryOpOperand(Opcode: Instruction::FNeg, Op: C, DL))
2693 return BinaryOperator::CreateFSubFMF(V1: NegC, V2: X, FMFSource: &I);
2694
2695 return nullptr;
2696}
2697
2698Instruction *InstCombinerImpl::hoistFNegAboveFMulFDiv(Value *FNegOp,
2699 Instruction &FMFSource) {
2700 Value *X, *Y;
2701 if (match(V: FNegOp, P: m_FMul(L: m_Value(V&: X), R: m_Value(V&: Y)))) {
2702 return cast<Instruction>(Val: Builder.CreateFMulFMF(
2703 L: Builder.CreateFNegFMF(V: X, FMFSource: &FMFSource), R: Y, FMFSource: &FMFSource));
2704 }
2705
2706 if (match(V: FNegOp, P: m_FDiv(L: m_Value(V&: X), R: m_Value(V&: Y)))) {
2707 return cast<Instruction>(Val: Builder.CreateFDivFMF(
2708 L: Builder.CreateFNegFMF(V: X, FMFSource: &FMFSource), R: Y, FMFSource: &FMFSource));
2709 }
2710
2711 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: FNegOp)) {
2712 // Make sure to preserve flags and metadata on the call.
2713 if (II->getIntrinsicID() == Intrinsic::ldexp) {
2714 FastMathFlags FMF = FMFSource.getFastMathFlags() | II->getFastMathFlags();
2715 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
2716 Builder.setFastMathFlags(FMF);
2717
2718 CallInst *New = Builder.CreateCall(
2719 Callee: II->getCalledFunction(),
2720 Args: {Builder.CreateFNeg(V: II->getArgOperand(i: 0)), II->getArgOperand(i: 1)});
2721 New->copyMetadata(SrcInst: *II);
2722 return New;
2723 }
2724 }
2725
2726 return nullptr;
2727}
2728
2729Instruction *InstCombinerImpl::visitFNeg(UnaryOperator &I) {
2730 Value *Op = I.getOperand(i_nocapture: 0);
2731
2732 if (Value *V = simplifyFNegInst(Op, FMF: I.getFastMathFlags(),
2733 Q: getSimplifyQuery().getWithInstruction(I: &I)))
2734 return replaceInstUsesWith(I, V);
2735
2736 if (Instruction *X = foldFNegIntoConstant(I, DL))
2737 return X;
2738
2739 Value *X, *Y;
2740
2741 // If we can ignore the sign of zeros: -(X - Y) --> (Y - X)
2742 if (I.hasNoSignedZeros() &&
2743 match(V: Op, P: m_OneUse(SubPattern: m_FSub(L: m_Value(V&: X), R: m_Value(V&: Y)))))
2744 return BinaryOperator::CreateFSubFMF(V1: Y, V2: X, FMFSource: &I);
2745
2746 Value *OneUse;
2747 if (!match(V: Op, P: m_OneUse(SubPattern: m_Value(V&: OneUse))))
2748 return nullptr;
2749
2750 if (Instruction *R = hoistFNegAboveFMulFDiv(FNegOp: OneUse, FMFSource&: I))
2751 return replaceInstUsesWith(I, V: R);
2752
2753 // Try to eliminate fneg if at least 1 arm of the select is negated.
2754 Value *Cond;
2755 if (match(V: OneUse, P: m_Select(C: m_Value(V&: Cond), L: m_Value(V&: X), R: m_Value(V&: Y)))) {
2756 // Unlike most transforms, this one is not safe to propagate nsz unless
2757 // it is present on the original select. We union the flags from the select
2758 // and fneg and then remove nsz if needed.
2759 auto propagateSelectFMF = [&](SelectInst *S, bool CommonOperand) {
2760 S->copyFastMathFlags(I: &I);
2761 if (auto *OldSel = dyn_cast<SelectInst>(Val: Op)) {
2762 FastMathFlags FMF = I.getFastMathFlags() | OldSel->getFastMathFlags();
2763 S->setFastMathFlags(FMF);
2764 if (!OldSel->hasNoSignedZeros() && !CommonOperand &&
2765 !isGuaranteedNotToBeUndefOrPoison(V: OldSel->getCondition()))
2766 S->setHasNoSignedZeros(false);
2767 }
2768 };
2769 // -(Cond ? -P : Y) --> Cond ? P : -Y
2770 Value *P;
2771 if (match(V: X, P: m_FNeg(X: m_Value(V&: P)))) {
2772 Value *NegY = Builder.CreateFNegFMF(V: Y, FMFSource: &I, Name: Y->getName() + ".neg");
2773 SelectInst *NewSel = SelectInst::Create(C: Cond, S1: P, S2: NegY);
2774 propagateSelectFMF(NewSel, P == Y);
2775 return NewSel;
2776 }
2777 // -(Cond ? X : -P) --> Cond ? -X : P
2778 if (match(V: Y, P: m_FNeg(X: m_Value(V&: P)))) {
2779 Value *NegX = Builder.CreateFNegFMF(V: X, FMFSource: &I, Name: X->getName() + ".neg");
2780 SelectInst *NewSel = SelectInst::Create(C: Cond, S1: NegX, S2: P);
2781 propagateSelectFMF(NewSel, P == X);
2782 return NewSel;
2783 }
2784 }
2785
2786 // fneg (copysign x, y) -> copysign x, (fneg y)
2787 if (match(V: OneUse, P: m_CopySign(Op0: m_Value(V&: X), Op1: m_Value(V&: Y)))) {
2788 // The source copysign has an additional value input, so we can't propagate
2789 // flags the copysign doesn't also have.
2790 FastMathFlags FMF = I.getFastMathFlags();
2791 FMF &= cast<FPMathOperator>(Val: OneUse)->getFastMathFlags();
2792
2793 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
2794 Builder.setFastMathFlags(FMF);
2795
2796 Value *NegY = Builder.CreateFNeg(V: Y);
2797 Value *NewCopySign = Builder.CreateCopySign(LHS: X, RHS: NegY);
2798 return replaceInstUsesWith(I, V: NewCopySign);
2799 }
2800
2801 return nullptr;
2802}
2803
2804Instruction *InstCombinerImpl::visitFSub(BinaryOperator &I) {
2805 if (Value *V = simplifyFSubInst(LHS: I.getOperand(i_nocapture: 0), RHS: I.getOperand(i_nocapture: 1),
2806 FMF: I.getFastMathFlags(),
2807 Q: getSimplifyQuery().getWithInstruction(I: &I)))
2808 return replaceInstUsesWith(I, V);
2809
2810 if (Instruction *X = foldVectorBinop(Inst&: I))
2811 return X;
2812
2813 if (Instruction *Phi = foldBinopWithPhiOperands(BO&: I))
2814 return Phi;
2815
2816 // Subtraction from -0.0 is the canonical form of fneg.
2817 // fsub -0.0, X ==> fneg X
2818 // fsub nsz 0.0, X ==> fneg nsz X
2819 //
2820 // FIXME This matcher does not respect FTZ or DAZ yet:
2821 // fsub -0.0, Denorm ==> +-0
2822 // fneg Denorm ==> -Denorm
2823 Value *Op;
2824 if (match(V: &I, P: m_FNeg(X: m_Value(V&: Op))))
2825 return UnaryOperator::CreateFNegFMF(Op, FMFSource: &I);
2826
2827 if (Instruction *X = foldFNegIntoConstant(I, DL))
2828 return X;
2829
2830 if (Instruction *R = foldFBinOpOfIntCasts(I))
2831 return R;
2832
2833 Value *X, *Y;
2834 Constant *C;
2835
2836 Value *Op0 = I.getOperand(i_nocapture: 0), *Op1 = I.getOperand(i_nocapture: 1);
2837 // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X)
2838 // Canonicalize to fadd to make analysis easier.
2839 // This can also help codegen because fadd is commutative.
2840 // Note that if this fsub was really an fneg, the fadd with -0.0 will get
2841 // killed later. We still limit that particular transform with 'hasOneUse'
2842 // because an fneg is assumed better/cheaper than a generic fsub.
2843 if (I.hasNoSignedZeros() ||
2844 cannotBeNegativeZero(V: Op0, Depth: 0, SQ: getSimplifyQuery().getWithInstruction(I: &I))) {
2845 if (match(V: Op1, P: m_OneUse(SubPattern: m_FSub(L: m_Value(V&: X), R: m_Value(V&: Y))))) {
2846 Value *NewSub = Builder.CreateFSubFMF(L: Y, R: X, FMFSource: &I);
2847 return BinaryOperator::CreateFAddFMF(V1: Op0, V2: NewSub, FMFSource: &I);
2848 }
2849 }
2850
2851 // (-X) - Op1 --> -(X + Op1)
2852 if (I.hasNoSignedZeros() && !isa<ConstantExpr>(Val: Op0) &&
2853 match(V: Op0, P: m_OneUse(SubPattern: m_FNeg(X: m_Value(V&: X))))) {
2854 Value *FAdd = Builder.CreateFAddFMF(L: X, R: Op1, FMFSource: &I);
2855 return UnaryOperator::CreateFNegFMF(Op: FAdd, FMFSource: &I);
2856 }
2857
2858 if (isa<Constant>(Val: Op0))
2859 if (SelectInst *SI = dyn_cast<SelectInst>(Val: Op1))
2860 if (Instruction *NV = FoldOpIntoSelect(Op&: I, SI))
2861 return NV;
2862
2863 // X - C --> X + (-C)
2864 // But don't transform constant expressions because there's an inverse fold
2865 // for X + (-Y) --> X - Y.
2866 if (match(V: Op1, P: m_ImmConstant(C)))
2867 if (Constant *NegC = ConstantFoldUnaryOpOperand(Opcode: Instruction::FNeg, Op: C, DL))
2868 return BinaryOperator::CreateFAddFMF(V1: Op0, V2: NegC, FMFSource: &I);
2869
2870 // X - (-Y) --> X + Y
2871 if (match(V: Op1, P: m_FNeg(X: m_Value(V&: Y))))
2872 return BinaryOperator::CreateFAddFMF(V1: Op0, V2: Y, FMFSource: &I);
2873
2874 // Similar to above, but look through a cast of the negated value:
2875 // X - (fptrunc(-Y)) --> X + fptrunc(Y)
2876 Type *Ty = I.getType();
2877 if (match(V: Op1, P: m_OneUse(SubPattern: m_FPTrunc(Op: m_FNeg(X: m_Value(V&: Y))))))
2878 return BinaryOperator::CreateFAddFMF(V1: Op0, V2: Builder.CreateFPTrunc(V: Y, DestTy: Ty), FMFSource: &I);
2879
2880 // X - (fpext(-Y)) --> X + fpext(Y)
2881 if (match(V: Op1, P: m_OneUse(SubPattern: m_FPExt(Op: m_FNeg(X: m_Value(V&: Y))))))
2882 return BinaryOperator::CreateFAddFMF(V1: Op0, V2: Builder.CreateFPExt(V: Y, DestTy: Ty), FMFSource: &I);
2883
2884 // Similar to above, but look through fmul/fdiv of the negated value:
2885 // Op0 - (-X * Y) --> Op0 + (X * Y)
2886 // Op0 - (Y * -X) --> Op0 + (X * Y)
2887 if (match(V: Op1, P: m_OneUse(SubPattern: m_c_FMul(L: m_FNeg(X: m_Value(V&: X)), R: m_Value(V&: Y))))) {
2888 Value *FMul = Builder.CreateFMulFMF(L: X, R: Y, FMFSource: &I);
2889 return BinaryOperator::CreateFAddFMF(V1: Op0, V2: FMul, FMFSource: &I);
2890 }
2891 // Op0 - (-X / Y) --> Op0 + (X / Y)
2892 // Op0 - (X / -Y) --> Op0 + (X / Y)
2893 if (match(V: Op1, P: m_OneUse(SubPattern: m_FDiv(L: m_FNeg(X: m_Value(V&: X)), R: m_Value(V&: Y)))) ||
2894 match(V: Op1, P: m_OneUse(SubPattern: m_FDiv(L: m_Value(V&: X), R: m_FNeg(X: m_Value(V&: Y)))))) {
2895 Value *FDiv = Builder.CreateFDivFMF(L: X, R: Y, FMFSource: &I);
2896 return BinaryOperator::CreateFAddFMF(V1: Op0, V2: FDiv, FMFSource: &I);
2897 }
2898
2899 // Handle special cases for FSub with selects feeding the operation
2900 if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS: Op0, RHS: Op1))
2901 return replaceInstUsesWith(I, V);
2902
2903 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
2904 // (Y - X) - Y --> -X
2905 if (match(V: Op0, P: m_FSub(L: m_Specific(V: Op1), R: m_Value(V&: X))))
2906 return UnaryOperator::CreateFNegFMF(Op: X, FMFSource: &I);
2907
2908 // Y - (X + Y) --> -X
2909 // Y - (Y + X) --> -X
2910 if (match(V: Op1, P: m_c_FAdd(L: m_Specific(V: Op0), R: m_Value(V&: X))))
2911 return UnaryOperator::CreateFNegFMF(Op: X, FMFSource: &I);
2912
2913 // (X * C) - X --> X * (C - 1.0)
2914 if (match(V: Op0, P: m_FMul(L: m_Specific(V: Op1), R: m_Constant(C)))) {
2915 if (Constant *CSubOne = ConstantFoldBinaryOpOperands(
2916 Opcode: Instruction::FSub, LHS: C, RHS: ConstantFP::get(Ty, V: 1.0), DL))
2917 return BinaryOperator::CreateFMulFMF(V1: Op1, V2: CSubOne, FMFSource: &I);
2918 }
2919 // X - (X * C) --> X * (1.0 - C)
2920 if (match(V: Op1, P: m_FMul(L: m_Specific(V: Op0), R: m_Constant(C)))) {
2921 if (Constant *OneSubC = ConstantFoldBinaryOpOperands(
2922 Opcode: Instruction::FSub, LHS: ConstantFP::get(Ty, V: 1.0), RHS: C, DL))
2923 return BinaryOperator::CreateFMulFMF(V1: Op0, V2: OneSubC, FMFSource: &I);
2924 }
2925
2926 // Reassociate fsub/fadd sequences to create more fadd instructions and
2927 // reduce dependency chains:
2928 // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1)
2929 Value *Z;
2930 if (match(V: Op0, P: m_OneUse(SubPattern: m_c_FAdd(L: m_OneUse(SubPattern: m_FSub(L: m_Value(V&: X), R: m_Value(V&: Y))),
2931 R: m_Value(V&: Z))))) {
2932 Value *XZ = Builder.CreateFAddFMF(L: X, R: Z, FMFSource: &I);
2933 Value *YW = Builder.CreateFAddFMF(L: Y, R: Op1, FMFSource: &I);
2934 return BinaryOperator::CreateFSubFMF(V1: XZ, V2: YW, FMFSource: &I);
2935 }
2936
2937 auto m_FaddRdx = [](Value *&Sum, Value *&Vec) {
2938 return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(m_Value(Sum),
2939 m_Value(Vec)));
2940 };
2941 Value *A0, *A1, *V0, *V1;
2942 if (match(Op0, m_FaddRdx(A0, V0)) && match(Op1, m_FaddRdx(A1, V1)) &&
2943 V0->getType() == V1->getType()) {
2944 // Difference of sums is sum of differences:
2945 // add_rdx(A0, V0) - add_rdx(A1, V1) --> add_rdx(A0, V0 - V1) - A1
2946 Value *Sub = Builder.CreateFSubFMF(L: V0, R: V1, FMFSource: &I);
2947 Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
2948 {Sub->getType()}, {A0, Sub}, &I);
2949 return BinaryOperator::CreateFSubFMF(V1: Rdx, V2: A1, FMFSource: &I);
2950 }
2951
2952 if (Instruction *F = factorizeFAddFSub(I, Builder))
2953 return F;
2954
2955 // TODO: This performs reassociative folds for FP ops. Some fraction of the
2956 // functionality has been subsumed by simple pattern matching here and in
2957 // InstSimplify. We should let a dedicated reassociation pass handle more
2958 // complex pattern matching and remove this from InstCombine.
2959 if (Value *V = FAddCombine(Builder).simplify(I: &I))
2960 return replaceInstUsesWith(I, V);
2961
2962 // (X - Y) - Op1 --> X - (Y + Op1)
2963 if (match(V: Op0, P: m_OneUse(SubPattern: m_FSub(L: m_Value(V&: X), R: m_Value(V&: Y))))) {
2964 Value *FAdd = Builder.CreateFAddFMF(L: Y, R: Op1, FMFSource: &I);
2965 return BinaryOperator::CreateFSubFMF(V1: X, V2: FAdd, FMFSource: &I);
2966 }
2967 }
2968
2969 return nullptr;
2970}
2971

source code of llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp