1//===- DeadStoreElimination.cpp - MemorySSA Backed Dead Store Elimination -===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// The code below implements dead store elimination using MemorySSA. It uses
10// the following general approach: given a MemoryDef, walk upwards to find
11// clobbering MemoryDefs that may be killed by the starting def. Then check
12// that there are no uses that may read the location of the original MemoryDef
13// in between both MemoryDefs. A bit more concretely:
14//
15// For all MemoryDefs StartDef:
16// 1. Get the next dominating clobbering MemoryDef (MaybeDeadAccess) by walking
17// upwards.
18// 2. Check that there are no reads between MaybeDeadAccess and the StartDef by
19// checking all uses starting at MaybeDeadAccess and walking until we see
20// StartDef.
21// 3. For each found CurrentDef, check that:
22// 1. There are no barrier instructions between CurrentDef and StartDef (like
23// throws or stores with ordering constraints).
24// 2. StartDef is executed whenever CurrentDef is executed.
25// 3. StartDef completely overwrites CurrentDef.
26// 4. Erase CurrentDef from the function and MemorySSA.
27//
28//===----------------------------------------------------------------------===//
29
30#include "llvm/Transforms/Scalar/DeadStoreElimination.h"
31#include "llvm/ADT/APInt.h"
32#include "llvm/ADT/DenseMap.h"
33#include "llvm/ADT/MapVector.h"
34#include "llvm/ADT/PostOrderIterator.h"
35#include "llvm/ADT/SetVector.h"
36#include "llvm/ADT/SmallPtrSet.h"
37#include "llvm/ADT/SmallVector.h"
38#include "llvm/ADT/Statistic.h"
39#include "llvm/ADT/StringRef.h"
40#include "llvm/Analysis/AliasAnalysis.h"
41#include "llvm/Analysis/CaptureTracking.h"
42#include "llvm/Analysis/GlobalsModRef.h"
43#include "llvm/Analysis/LoopInfo.h"
44#include "llvm/Analysis/MemoryBuiltins.h"
45#include "llvm/Analysis/MemoryLocation.h"
46#include "llvm/Analysis/MemorySSA.h"
47#include "llvm/Analysis/MemorySSAUpdater.h"
48#include "llvm/Analysis/MustExecute.h"
49#include "llvm/Analysis/PostDominators.h"
50#include "llvm/Analysis/TargetLibraryInfo.h"
51#include "llvm/Analysis/ValueTracking.h"
52#include "llvm/IR/Argument.h"
53#include "llvm/IR/BasicBlock.h"
54#include "llvm/IR/Constant.h"
55#include "llvm/IR/Constants.h"
56#include "llvm/IR/DataLayout.h"
57#include "llvm/IR/DebugInfo.h"
58#include "llvm/IR/Dominators.h"
59#include "llvm/IR/Function.h"
60#include "llvm/IR/IRBuilder.h"
61#include "llvm/IR/InstIterator.h"
62#include "llvm/IR/InstrTypes.h"
63#include "llvm/IR/Instruction.h"
64#include "llvm/IR/Instructions.h"
65#include "llvm/IR/IntrinsicInst.h"
66#include "llvm/IR/Module.h"
67#include "llvm/IR/PassManager.h"
68#include "llvm/IR/PatternMatch.h"
69#include "llvm/IR/Value.h"
70#include "llvm/Support/Casting.h"
71#include "llvm/Support/CommandLine.h"
72#include "llvm/Support/Debug.h"
73#include "llvm/Support/DebugCounter.h"
74#include "llvm/Support/ErrorHandling.h"
75#include "llvm/Support/raw_ostream.h"
76#include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
77#include "llvm/Transforms/Utils/BuildLibCalls.h"
78#include "llvm/Transforms/Utils/Local.h"
79#include <algorithm>
80#include <cassert>
81#include <cstdint>
82#include <iterator>
83#include <map>
84#include <optional>
85#include <utility>
86
87using namespace llvm;
88using namespace PatternMatch;
89
90#define DEBUG_TYPE "dse"
91
92STATISTIC(NumRemainingStores, "Number of stores remaining after DSE");
93STATISTIC(NumRedundantStores, "Number of redundant stores deleted");
94STATISTIC(NumFastStores, "Number of stores deleted");
95STATISTIC(NumFastOther, "Number of other instrs removed");
96STATISTIC(NumCompletePartials, "Number of stores dead by later partials");
97STATISTIC(NumModifiedStores, "Number of stores modified");
98STATISTIC(NumCFGChecks, "Number of stores modified");
99STATISTIC(NumCFGTries, "Number of stores modified");
100STATISTIC(NumCFGSuccess, "Number of stores modified");
101STATISTIC(NumGetDomMemoryDefPassed,
102 "Number of times a valid candidate is returned from getDomMemoryDef");
103STATISTIC(NumDomMemDefChecks,
104 "Number iterations check for reads in getDomMemoryDef");
105
106DEBUG_COUNTER(MemorySSACounter, "dse-memoryssa",
107 "Controls which MemoryDefs are eliminated.");
108
109static cl::opt<bool>
110EnablePartialOverwriteTracking("enable-dse-partial-overwrite-tracking",
111 cl::init(Val: true), cl::Hidden,
112 cl::desc("Enable partial-overwrite tracking in DSE"));
113
114static cl::opt<bool>
115EnablePartialStoreMerging("enable-dse-partial-store-merging",
116 cl::init(Val: true), cl::Hidden,
117 cl::desc("Enable partial store merging in DSE"));
118
119static cl::opt<unsigned>
120 MemorySSAScanLimit("dse-memoryssa-scanlimit", cl::init(Val: 150), cl::Hidden,
121 cl::desc("The number of memory instructions to scan for "
122 "dead store elimination (default = 150)"));
123static cl::opt<unsigned> MemorySSAUpwardsStepLimit(
124 "dse-memoryssa-walklimit", cl::init(Val: 90), cl::Hidden,
125 cl::desc("The maximum number of steps while walking upwards to find "
126 "MemoryDefs that may be killed (default = 90)"));
127
128static cl::opt<unsigned> MemorySSAPartialStoreLimit(
129 "dse-memoryssa-partial-store-limit", cl::init(Val: 5), cl::Hidden,
130 cl::desc("The maximum number candidates that only partially overwrite the "
131 "killing MemoryDef to consider"
132 " (default = 5)"));
133
134static cl::opt<unsigned> MemorySSADefsPerBlockLimit(
135 "dse-memoryssa-defs-per-block-limit", cl::init(Val: 5000), cl::Hidden,
136 cl::desc("The number of MemoryDefs we consider as candidates to eliminated "
137 "other stores per basic block (default = 5000)"));
138
139static cl::opt<unsigned> MemorySSASameBBStepCost(
140 "dse-memoryssa-samebb-cost", cl::init(Val: 1), cl::Hidden,
141 cl::desc(
142 "The cost of a step in the same basic block as the killing MemoryDef"
143 "(default = 1)"));
144
145static cl::opt<unsigned>
146 MemorySSAOtherBBStepCost("dse-memoryssa-otherbb-cost", cl::init(Val: 5),
147 cl::Hidden,
148 cl::desc("The cost of a step in a different basic "
149 "block than the killing MemoryDef"
150 "(default = 5)"));
151
152static cl::opt<unsigned> MemorySSAPathCheckLimit(
153 "dse-memoryssa-path-check-limit", cl::init(Val: 50), cl::Hidden,
154 cl::desc("The maximum number of blocks to check when trying to prove that "
155 "all paths to an exit go through a killing block (default = 50)"));
156
157// This flags allows or disallows DSE to optimize MemorySSA during its
158// traversal. Note that DSE optimizing MemorySSA may impact other passes
159// downstream of the DSE invocation and can lead to issues not being
160// reproducible in isolation (i.e. when MemorySSA is built from scratch). In
161// those cases, the flag can be used to check if DSE's MemorySSA optimizations
162// impact follow-up passes.
163static cl::opt<bool>
164 OptimizeMemorySSA("dse-optimize-memoryssa", cl::init(Val: true), cl::Hidden,
165 cl::desc("Allow DSE to optimize memory accesses."));
166
167//===----------------------------------------------------------------------===//
168// Helper functions
169//===----------------------------------------------------------------------===//
170using OverlapIntervalsTy = std::map<int64_t, int64_t>;
171using InstOverlapIntervalsTy = DenseMap<Instruction *, OverlapIntervalsTy>;
172
173/// Returns true if the end of this instruction can be safely shortened in
174/// length.
175static bool isShortenableAtTheEnd(Instruction *I) {
176 // Don't shorten stores for now
177 if (isa<StoreInst>(Val: I))
178 return false;
179
180 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: I)) {
181 switch (II->getIntrinsicID()) {
182 default: return false;
183 case Intrinsic::memset:
184 case Intrinsic::memcpy:
185 case Intrinsic::memcpy_element_unordered_atomic:
186 case Intrinsic::memset_element_unordered_atomic:
187 // Do shorten memory intrinsics.
188 // FIXME: Add memmove if it's also safe to transform.
189 return true;
190 }
191 }
192
193 // Don't shorten libcalls calls for now.
194
195 return false;
196}
197
198/// Returns true if the beginning of this instruction can be safely shortened
199/// in length.
200static bool isShortenableAtTheBeginning(Instruction *I) {
201 // FIXME: Handle only memset for now. Supporting memcpy/memmove should be
202 // easily done by offsetting the source address.
203 return isa<AnyMemSetInst>(Val: I);
204}
205
206static std::optional<TypeSize> getPointerSize(const Value *V,
207 const DataLayout &DL,
208 const TargetLibraryInfo &TLI,
209 const Function *F) {
210 uint64_t Size;
211 ObjectSizeOpts Opts;
212 Opts.NullIsUnknownSize = NullPointerIsDefined(F);
213
214 if (getObjectSize(Ptr: V, Size, DL, TLI: &TLI, Opts))
215 return TypeSize::getFixed(ExactSize: Size);
216 return std::nullopt;
217}
218
219namespace {
220
221enum OverwriteResult {
222 OW_Begin,
223 OW_Complete,
224 OW_End,
225 OW_PartialEarlierWithFullLater,
226 OW_MaybePartial,
227 OW_None,
228 OW_Unknown
229};
230
231} // end anonymous namespace
232
233/// Check if two instruction are masked stores that completely
234/// overwrite one another. More specifically, \p KillingI has to
235/// overwrite \p DeadI.
236static OverwriteResult isMaskedStoreOverwrite(const Instruction *KillingI,
237 const Instruction *DeadI,
238 BatchAAResults &AA) {
239 const auto *KillingII = dyn_cast<IntrinsicInst>(Val: KillingI);
240 const auto *DeadII = dyn_cast<IntrinsicInst>(Val: DeadI);
241 if (KillingII == nullptr || DeadII == nullptr)
242 return OW_Unknown;
243 if (KillingII->getIntrinsicID() != DeadII->getIntrinsicID())
244 return OW_Unknown;
245 if (KillingII->getIntrinsicID() == Intrinsic::masked_store) {
246 // Type size.
247 VectorType *KillingTy =
248 cast<VectorType>(Val: KillingII->getArgOperand(i: 0)->getType());
249 VectorType *DeadTy = cast<VectorType>(Val: DeadII->getArgOperand(i: 0)->getType());
250 if (KillingTy->getScalarSizeInBits() != DeadTy->getScalarSizeInBits())
251 return OW_Unknown;
252 // Element count.
253 if (KillingTy->getElementCount() != DeadTy->getElementCount())
254 return OW_Unknown;
255 // Pointers.
256 Value *KillingPtr = KillingII->getArgOperand(i: 1)->stripPointerCasts();
257 Value *DeadPtr = DeadII->getArgOperand(i: 1)->stripPointerCasts();
258 if (KillingPtr != DeadPtr && !AA.isMustAlias(V1: KillingPtr, V2: DeadPtr))
259 return OW_Unknown;
260 // Masks.
261 // TODO: check that KillingII's mask is a superset of the DeadII's mask.
262 if (KillingII->getArgOperand(i: 3) != DeadII->getArgOperand(i: 3))
263 return OW_Unknown;
264 return OW_Complete;
265 }
266 return OW_Unknown;
267}
268
269/// Return 'OW_Complete' if a store to the 'KillingLoc' location completely
270/// overwrites a store to the 'DeadLoc' location, 'OW_End' if the end of the
271/// 'DeadLoc' location is completely overwritten by 'KillingLoc', 'OW_Begin'
272/// if the beginning of the 'DeadLoc' location is overwritten by 'KillingLoc'.
273/// 'OW_PartialEarlierWithFullLater' means that a dead (big) store was
274/// overwritten by a killing (smaller) store which doesn't write outside the big
275/// store's memory locations. Returns 'OW_Unknown' if nothing can be determined.
276/// NOTE: This function must only be called if both \p KillingLoc and \p
277/// DeadLoc belong to the same underlying object with valid \p KillingOff and
278/// \p DeadOff.
279static OverwriteResult isPartialOverwrite(const MemoryLocation &KillingLoc,
280 const MemoryLocation &DeadLoc,
281 int64_t KillingOff, int64_t DeadOff,
282 Instruction *DeadI,
283 InstOverlapIntervalsTy &IOL) {
284 const uint64_t KillingSize = KillingLoc.Size.getValue();
285 const uint64_t DeadSize = DeadLoc.Size.getValue();
286 // We may now overlap, although the overlap is not complete. There might also
287 // be other incomplete overlaps, and together, they might cover the complete
288 // dead store.
289 // Note: The correctness of this logic depends on the fact that this function
290 // is not even called providing DepWrite when there are any intervening reads.
291 if (EnablePartialOverwriteTracking &&
292 KillingOff < int64_t(DeadOff + DeadSize) &&
293 int64_t(KillingOff + KillingSize) >= DeadOff) {
294
295 // Insert our part of the overlap into the map.
296 auto &IM = IOL[DeadI];
297 LLVM_DEBUG(dbgs() << "DSE: Partial overwrite: DeadLoc [" << DeadOff << ", "
298 << int64_t(DeadOff + DeadSize) << ") KillingLoc ["
299 << KillingOff << ", " << int64_t(KillingOff + KillingSize)
300 << ")\n");
301
302 // Make sure that we only insert non-overlapping intervals and combine
303 // adjacent intervals. The intervals are stored in the map with the ending
304 // offset as the key (in the half-open sense) and the starting offset as
305 // the value.
306 int64_t KillingIntStart = KillingOff;
307 int64_t KillingIntEnd = KillingOff + KillingSize;
308
309 // Find any intervals ending at, or after, KillingIntStart which start
310 // before KillingIntEnd.
311 auto ILI = IM.lower_bound(x: KillingIntStart);
312 if (ILI != IM.end() && ILI->second <= KillingIntEnd) {
313 // This existing interval is overlapped with the current store somewhere
314 // in [KillingIntStart, KillingIntEnd]. Merge them by erasing the existing
315 // intervals and adjusting our start and end.
316 KillingIntStart = std::min(a: KillingIntStart, b: ILI->second);
317 KillingIntEnd = std::max(a: KillingIntEnd, b: ILI->first);
318 ILI = IM.erase(position: ILI);
319
320 // Continue erasing and adjusting our end in case other previous
321 // intervals are also overlapped with the current store.
322 //
323 // |--- dead 1 ---| |--- dead 2 ---|
324 // |------- killing---------|
325 //
326 while (ILI != IM.end() && ILI->second <= KillingIntEnd) {
327 assert(ILI->second > KillingIntStart && "Unexpected interval");
328 KillingIntEnd = std::max(a: KillingIntEnd, b: ILI->first);
329 ILI = IM.erase(position: ILI);
330 }
331 }
332
333 IM[KillingIntEnd] = KillingIntStart;
334
335 ILI = IM.begin();
336 if (ILI->second <= DeadOff && ILI->first >= int64_t(DeadOff + DeadSize)) {
337 LLVM_DEBUG(dbgs() << "DSE: Full overwrite from partials: DeadLoc ["
338 << DeadOff << ", " << int64_t(DeadOff + DeadSize)
339 << ") Composite KillingLoc [" << ILI->second << ", "
340 << ILI->first << ")\n");
341 ++NumCompletePartials;
342 return OW_Complete;
343 }
344 }
345
346 // Check for a dead store which writes to all the memory locations that
347 // the killing store writes to.
348 if (EnablePartialStoreMerging && KillingOff >= DeadOff &&
349 int64_t(DeadOff + DeadSize) > KillingOff &&
350 uint64_t(KillingOff - DeadOff) + KillingSize <= DeadSize) {
351 LLVM_DEBUG(dbgs() << "DSE: Partial overwrite a dead load [" << DeadOff
352 << ", " << int64_t(DeadOff + DeadSize)
353 << ") by a killing store [" << KillingOff << ", "
354 << int64_t(KillingOff + KillingSize) << ")\n");
355 // TODO: Maybe come up with a better name?
356 return OW_PartialEarlierWithFullLater;
357 }
358
359 // Another interesting case is if the killing store overwrites the end of the
360 // dead store.
361 //
362 // |--dead--|
363 // |-- killing --|
364 //
365 // In this case we may want to trim the size of dead store to avoid
366 // generating stores to addresses which will definitely be overwritten killing
367 // store.
368 if (!EnablePartialOverwriteTracking &&
369 (KillingOff > DeadOff && KillingOff < int64_t(DeadOff + DeadSize) &&
370 int64_t(KillingOff + KillingSize) >= int64_t(DeadOff + DeadSize)))
371 return OW_End;
372
373 // Finally, we also need to check if the killing store overwrites the
374 // beginning of the dead store.
375 //
376 // |--dead--|
377 // |-- killing --|
378 //
379 // In this case we may want to move the destination address and trim the size
380 // of dead store to avoid generating stores to addresses which will definitely
381 // be overwritten killing store.
382 if (!EnablePartialOverwriteTracking &&
383 (KillingOff <= DeadOff && int64_t(KillingOff + KillingSize) > DeadOff)) {
384 assert(int64_t(KillingOff + KillingSize) < int64_t(DeadOff + DeadSize) &&
385 "Expect to be handled as OW_Complete");
386 return OW_Begin;
387 }
388 // Otherwise, they don't completely overlap.
389 return OW_Unknown;
390}
391
392/// Returns true if the memory which is accessed by the second instruction is not
393/// modified between the first and the second instruction.
394/// Precondition: Second instruction must be dominated by the first
395/// instruction.
396static bool
397memoryIsNotModifiedBetween(Instruction *FirstI, Instruction *SecondI,
398 BatchAAResults &AA, const DataLayout &DL,
399 DominatorTree *DT) {
400 // Do a backwards scan through the CFG from SecondI to FirstI. Look for
401 // instructions which can modify the memory location accessed by SecondI.
402 //
403 // While doing the walk keep track of the address to check. It might be
404 // different in different basic blocks due to PHI translation.
405 using BlockAddressPair = std::pair<BasicBlock *, PHITransAddr>;
406 SmallVector<BlockAddressPair, 16> WorkList;
407 // Keep track of the address we visited each block with. Bail out if we
408 // visit a block with different addresses.
409 DenseMap<BasicBlock *, Value *> Visited;
410
411 BasicBlock::iterator FirstBBI(FirstI);
412 ++FirstBBI;
413 BasicBlock::iterator SecondBBI(SecondI);
414 BasicBlock *FirstBB = FirstI->getParent();
415 BasicBlock *SecondBB = SecondI->getParent();
416 MemoryLocation MemLoc;
417 if (auto *MemSet = dyn_cast<MemSetInst>(Val: SecondI))
418 MemLoc = MemoryLocation::getForDest(MI: MemSet);
419 else
420 MemLoc = MemoryLocation::get(Inst: SecondI);
421
422 auto *MemLocPtr = const_cast<Value *>(MemLoc.Ptr);
423
424 // Start checking the SecondBB.
425 WorkList.push_back(
426 Elt: std::make_pair(x&: SecondBB, y: PHITransAddr(MemLocPtr, DL, nullptr)));
427 bool isFirstBlock = true;
428
429 // Check all blocks going backward until we reach the FirstBB.
430 while (!WorkList.empty()) {
431 BlockAddressPair Current = WorkList.pop_back_val();
432 BasicBlock *B = Current.first;
433 PHITransAddr &Addr = Current.second;
434 Value *Ptr = Addr.getAddr();
435
436 // Ignore instructions before FirstI if this is the FirstBB.
437 BasicBlock::iterator BI = (B == FirstBB ? FirstBBI : B->begin());
438
439 BasicBlock::iterator EI;
440 if (isFirstBlock) {
441 // Ignore instructions after SecondI if this is the first visit of SecondBB.
442 assert(B == SecondBB && "first block is not the store block");
443 EI = SecondBBI;
444 isFirstBlock = false;
445 } else {
446 // It's not SecondBB or (in case of a loop) the second visit of SecondBB.
447 // In this case we also have to look at instructions after SecondI.
448 EI = B->end();
449 }
450 for (; BI != EI; ++BI) {
451 Instruction *I = &*BI;
452 if (I->mayWriteToMemory() && I != SecondI)
453 if (isModSet(MRI: AA.getModRefInfo(I, OptLoc: MemLoc.getWithNewPtr(NewPtr: Ptr))))
454 return false;
455 }
456 if (B != FirstBB) {
457 assert(B != &FirstBB->getParent()->getEntryBlock() &&
458 "Should not hit the entry block because SI must be dominated by LI");
459 for (BasicBlock *Pred : predecessors(BB: B)) {
460 PHITransAddr PredAddr = Addr;
461 if (PredAddr.needsPHITranslationFromBlock(BB: B)) {
462 if (!PredAddr.isPotentiallyPHITranslatable())
463 return false;
464 if (!PredAddr.translateValue(CurBB: B, PredBB: Pred, DT, MustDominate: false))
465 return false;
466 }
467 Value *TranslatedPtr = PredAddr.getAddr();
468 auto Inserted = Visited.insert(KV: std::make_pair(x&: Pred, y&: TranslatedPtr));
469 if (!Inserted.second) {
470 // We already visited this block before. If it was with a different
471 // address - bail out!
472 if (TranslatedPtr != Inserted.first->second)
473 return false;
474 // ... otherwise just skip it.
475 continue;
476 }
477 WorkList.push_back(Elt: std::make_pair(x&: Pred, y&: PredAddr));
478 }
479 }
480 }
481 return true;
482}
483
484static void shortenAssignment(Instruction *Inst, Value *OriginalDest,
485 uint64_t OldOffsetInBits, uint64_t OldSizeInBits,
486 uint64_t NewSizeInBits, bool IsOverwriteEnd) {
487 const DataLayout &DL = Inst->getModule()->getDataLayout();
488 uint64_t DeadSliceSizeInBits = OldSizeInBits - NewSizeInBits;
489 uint64_t DeadSliceOffsetInBits =
490 OldOffsetInBits + (IsOverwriteEnd ? NewSizeInBits : 0);
491 auto SetDeadFragExpr = [](auto *Assign,
492 DIExpression::FragmentInfo DeadFragment) {
493 // createFragmentExpression expects an offset relative to the existing
494 // fragment offset if there is one.
495 uint64_t RelativeOffset = DeadFragment.OffsetInBits -
496 Assign->getExpression()
497 ->getFragmentInfo()
498 .value_or(DIExpression::FragmentInfo(0, 0))
499 .OffsetInBits;
500 if (auto NewExpr = DIExpression::createFragmentExpression(
501 Expr: Assign->getExpression(), OffsetInBits: RelativeOffset, SizeInBits: DeadFragment.SizeInBits)) {
502 Assign->setExpression(*NewExpr);
503 return;
504 }
505 // Failed to create a fragment expression for this so discard the value,
506 // making this a kill location.
507 auto *Expr = *DIExpression::createFragmentExpression(
508 Expr: DIExpression::get(Context&: Assign->getContext(), Elements: std::nullopt),
509 OffsetInBits: DeadFragment.OffsetInBits, SizeInBits: DeadFragment.SizeInBits);
510 Assign->setExpression(Expr);
511 Assign->setKillLocation();
512 };
513
514 // A DIAssignID to use so that the inserted dbg.assign intrinsics do not
515 // link to any instructions. Created in the loop below (once).
516 DIAssignID *LinkToNothing = nullptr;
517 LLVMContext &Ctx = Inst->getContext();
518 auto GetDeadLink = [&Ctx, &LinkToNothing]() {
519 if (!LinkToNothing)
520 LinkToNothing = DIAssignID::getDistinct(Context&: Ctx);
521 return LinkToNothing;
522 };
523
524 // Insert an unlinked dbg.assign intrinsic for the dead fragment after each
525 // overlapping dbg.assign intrinsic. The loop invalidates the iterators
526 // returned by getAssignmentMarkers so save a copy of the markers to iterate
527 // over.
528 auto LinkedRange = at::getAssignmentMarkers(Inst);
529 SmallVector<DPValue *> LinkedDPVAssigns = at::getDPVAssignmentMarkers(Inst);
530 SmallVector<DbgAssignIntrinsic *> Linked(LinkedRange.begin(),
531 LinkedRange.end());
532 auto InsertAssignForOverlap = [&](auto *Assign) {
533 std::optional<DIExpression::FragmentInfo> NewFragment;
534 if (!at::calculateFragmentIntersect(DL, OriginalDest, DeadSliceOffsetInBits,
535 DeadSliceSizeInBits, Assign,
536 NewFragment) ||
537 !NewFragment) {
538 // We couldn't calculate the intersecting fragment for some reason. Be
539 // cautious and unlink the whole assignment from the store.
540 Assign->setKillAddress();
541 Assign->setAssignId(GetDeadLink());
542 return;
543 }
544 // No intersect.
545 if (NewFragment->SizeInBits == 0)
546 return;
547
548 // Fragments overlap: insert a new dbg.assign for this dead part.
549 auto *NewAssign = static_cast<decltype(Assign)>(Assign->clone());
550 NewAssign->insertAfter(Assign);
551 NewAssign->setAssignId(GetDeadLink());
552 if (NewFragment)
553 SetDeadFragExpr(NewAssign, *NewFragment);
554 NewAssign->setKillAddress();
555 };
556 for_each(Range&: Linked, F: InsertAssignForOverlap);
557 for_each(Range&: LinkedDPVAssigns, F: InsertAssignForOverlap);
558}
559
560static bool tryToShorten(Instruction *DeadI, int64_t &DeadStart,
561 uint64_t &DeadSize, int64_t KillingStart,
562 uint64_t KillingSize, bool IsOverwriteEnd) {
563 auto *DeadIntrinsic = cast<AnyMemIntrinsic>(Val: DeadI);
564 Align PrefAlign = DeadIntrinsic->getDestAlign().valueOrOne();
565
566 // We assume that memet/memcpy operates in chunks of the "largest" native
567 // type size and aligned on the same value. That means optimal start and size
568 // of memset/memcpy should be modulo of preferred alignment of that type. That
569 // is it there is no any sense in trying to reduce store size any further
570 // since any "extra" stores comes for free anyway.
571 // On the other hand, maximum alignment we can achieve is limited by alignment
572 // of initial store.
573
574 // TODO: Limit maximum alignment by preferred (or abi?) alignment of the
575 // "largest" native type.
576 // Note: What is the proper way to get that value?
577 // Should TargetTransformInfo::getRegisterBitWidth be used or anything else?
578 // PrefAlign = std::min(DL.getPrefTypeAlign(LargestType), PrefAlign);
579
580 int64_t ToRemoveStart = 0;
581 uint64_t ToRemoveSize = 0;
582 // Compute start and size of the region to remove. Make sure 'PrefAlign' is
583 // maintained on the remaining store.
584 if (IsOverwriteEnd) {
585 // Calculate required adjustment for 'KillingStart' in order to keep
586 // remaining store size aligned on 'PerfAlign'.
587 uint64_t Off =
588 offsetToAlignment(Value: uint64_t(KillingStart - DeadStart), Alignment: PrefAlign);
589 ToRemoveStart = KillingStart + Off;
590 if (DeadSize <= uint64_t(ToRemoveStart - DeadStart))
591 return false;
592 ToRemoveSize = DeadSize - uint64_t(ToRemoveStart - DeadStart);
593 } else {
594 ToRemoveStart = DeadStart;
595 assert(KillingSize >= uint64_t(DeadStart - KillingStart) &&
596 "Not overlapping accesses?");
597 ToRemoveSize = KillingSize - uint64_t(DeadStart - KillingStart);
598 // Calculate required adjustment for 'ToRemoveSize'in order to keep
599 // start of the remaining store aligned on 'PerfAlign'.
600 uint64_t Off = offsetToAlignment(Value: ToRemoveSize, Alignment: PrefAlign);
601 if (Off != 0) {
602 if (ToRemoveSize <= (PrefAlign.value() - Off))
603 return false;
604 ToRemoveSize -= PrefAlign.value() - Off;
605 }
606 assert(isAligned(PrefAlign, ToRemoveSize) &&
607 "Should preserve selected alignment");
608 }
609
610 assert(ToRemoveSize > 0 && "Shouldn't reach here if nothing to remove");
611 assert(DeadSize > ToRemoveSize && "Can't remove more than original size");
612
613 uint64_t NewSize = DeadSize - ToRemoveSize;
614 if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(Val: DeadI)) {
615 // When shortening an atomic memory intrinsic, the newly shortened
616 // length must remain an integer multiple of the element size.
617 const uint32_t ElementSize = AMI->getElementSizeInBytes();
618 if (0 != NewSize % ElementSize)
619 return false;
620 }
621
622 LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n OW "
623 << (IsOverwriteEnd ? "END" : "BEGIN") << ": " << *DeadI
624 << "\n KILLER [" << ToRemoveStart << ", "
625 << int64_t(ToRemoveStart + ToRemoveSize) << ")\n");
626
627 Value *DeadWriteLength = DeadIntrinsic->getLength();
628 Value *TrimmedLength = ConstantInt::get(Ty: DeadWriteLength->getType(), V: NewSize);
629 DeadIntrinsic->setLength(TrimmedLength);
630 DeadIntrinsic->setDestAlignment(PrefAlign);
631
632 Value *OrigDest = DeadIntrinsic->getRawDest();
633 if (!IsOverwriteEnd) {
634 Value *Indices[1] = {
635 ConstantInt::get(Ty: DeadWriteLength->getType(), V: ToRemoveSize)};
636 Instruction *NewDestGEP = GetElementPtrInst::CreateInBounds(
637 PointeeType: Type::getInt8Ty(C&: DeadIntrinsic->getContext()), Ptr: OrigDest, IdxList: Indices, NameStr: "", InsertBefore: DeadI);
638 NewDestGEP->setDebugLoc(DeadIntrinsic->getDebugLoc());
639 DeadIntrinsic->setDest(NewDestGEP);
640 }
641
642 // Update attached dbg.assign intrinsics. Assume 8-bit byte.
643 shortenAssignment(Inst: DeadI, OriginalDest: OrigDest, OldOffsetInBits: DeadStart * 8, OldSizeInBits: DeadSize * 8, NewSizeInBits: NewSize * 8,
644 IsOverwriteEnd);
645
646 // Finally update start and size of dead access.
647 if (!IsOverwriteEnd)
648 DeadStart += ToRemoveSize;
649 DeadSize = NewSize;
650
651 return true;
652}
653
654static bool tryToShortenEnd(Instruction *DeadI, OverlapIntervalsTy &IntervalMap,
655 int64_t &DeadStart, uint64_t &DeadSize) {
656 if (IntervalMap.empty() || !isShortenableAtTheEnd(I: DeadI))
657 return false;
658
659 OverlapIntervalsTy::iterator OII = --IntervalMap.end();
660 int64_t KillingStart = OII->second;
661 uint64_t KillingSize = OII->first - KillingStart;
662
663 assert(OII->first - KillingStart >= 0 && "Size expected to be positive");
664
665 if (KillingStart > DeadStart &&
666 // Note: "KillingStart - KillingStart" is known to be positive due to
667 // preceding check.
668 (uint64_t)(KillingStart - DeadStart) < DeadSize &&
669 // Note: "DeadSize - (uint64_t)(KillingStart - DeadStart)" is known to
670 // be non negative due to preceding checks.
671 KillingSize >= DeadSize - (uint64_t)(KillingStart - DeadStart)) {
672 if (tryToShorten(DeadI, DeadStart, DeadSize, KillingStart, KillingSize,
673 IsOverwriteEnd: true)) {
674 IntervalMap.erase(position: OII);
675 return true;
676 }
677 }
678 return false;
679}
680
681static bool tryToShortenBegin(Instruction *DeadI,
682 OverlapIntervalsTy &IntervalMap,
683 int64_t &DeadStart, uint64_t &DeadSize) {
684 if (IntervalMap.empty() || !isShortenableAtTheBeginning(I: DeadI))
685 return false;
686
687 OverlapIntervalsTy::iterator OII = IntervalMap.begin();
688 int64_t KillingStart = OII->second;
689 uint64_t KillingSize = OII->first - KillingStart;
690
691 assert(OII->first - KillingStart >= 0 && "Size expected to be positive");
692
693 if (KillingStart <= DeadStart &&
694 // Note: "DeadStart - KillingStart" is known to be non negative due to
695 // preceding check.
696 KillingSize > (uint64_t)(DeadStart - KillingStart)) {
697 // Note: "KillingSize - (uint64_t)(DeadStart - DeadStart)" is known to
698 // be positive due to preceding checks.
699 assert(KillingSize - (uint64_t)(DeadStart - KillingStart) < DeadSize &&
700 "Should have been handled as OW_Complete");
701 if (tryToShorten(DeadI, DeadStart, DeadSize, KillingStart, KillingSize,
702 IsOverwriteEnd: false)) {
703 IntervalMap.erase(position: OII);
704 return true;
705 }
706 }
707 return false;
708}
709
710static Constant *
711tryToMergePartialOverlappingStores(StoreInst *KillingI, StoreInst *DeadI,
712 int64_t KillingOffset, int64_t DeadOffset,
713 const DataLayout &DL, BatchAAResults &AA,
714 DominatorTree *DT) {
715
716 if (DeadI && isa<ConstantInt>(Val: DeadI->getValueOperand()) &&
717 DL.typeSizeEqualsStoreSize(Ty: DeadI->getValueOperand()->getType()) &&
718 KillingI && isa<ConstantInt>(Val: KillingI->getValueOperand()) &&
719 DL.typeSizeEqualsStoreSize(Ty: KillingI->getValueOperand()->getType()) &&
720 memoryIsNotModifiedBetween(FirstI: DeadI, SecondI: KillingI, AA, DL, DT)) {
721 // If the store we find is:
722 // a) partially overwritten by the store to 'Loc'
723 // b) the killing store is fully contained in the dead one and
724 // c) they both have a constant value
725 // d) none of the two stores need padding
726 // Merge the two stores, replacing the dead store's value with a
727 // merge of both values.
728 // TODO: Deal with other constant types (vectors, etc), and probably
729 // some mem intrinsics (if needed)
730
731 APInt DeadValue = cast<ConstantInt>(Val: DeadI->getValueOperand())->getValue();
732 APInt KillingValue =
733 cast<ConstantInt>(Val: KillingI->getValueOperand())->getValue();
734 unsigned KillingBits = KillingValue.getBitWidth();
735 assert(DeadValue.getBitWidth() > KillingValue.getBitWidth());
736 KillingValue = KillingValue.zext(width: DeadValue.getBitWidth());
737
738 // Offset of the smaller store inside the larger store
739 unsigned BitOffsetDiff = (KillingOffset - DeadOffset) * 8;
740 unsigned LShiftAmount =
741 DL.isBigEndian() ? DeadValue.getBitWidth() - BitOffsetDiff - KillingBits
742 : BitOffsetDiff;
743 APInt Mask = APInt::getBitsSet(numBits: DeadValue.getBitWidth(), loBit: LShiftAmount,
744 hiBit: LShiftAmount + KillingBits);
745 // Clear the bits we'll be replacing, then OR with the smaller
746 // store, shifted appropriately.
747 APInt Merged = (DeadValue & ~Mask) | (KillingValue << LShiftAmount);
748 LLVM_DEBUG(dbgs() << "DSE: Merge Stores:\n Dead: " << *DeadI
749 << "\n Killing: " << *KillingI
750 << "\n Merged Value: " << Merged << '\n');
751 return ConstantInt::get(Ty: DeadI->getValueOperand()->getType(), V: Merged);
752 }
753 return nullptr;
754}
755
756namespace {
757// Returns true if \p I is an intrinsic that does not read or write memory.
758bool isNoopIntrinsic(Instruction *I) {
759 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: I)) {
760 switch (II->getIntrinsicID()) {
761 case Intrinsic::lifetime_start:
762 case Intrinsic::lifetime_end:
763 case Intrinsic::invariant_end:
764 case Intrinsic::launder_invariant_group:
765 case Intrinsic::assume:
766 return true;
767 case Intrinsic::dbg_declare:
768 case Intrinsic::dbg_label:
769 case Intrinsic::dbg_value:
770 llvm_unreachable("Intrinsic should not be modeled in MemorySSA");
771 default:
772 return false;
773 }
774 }
775 return false;
776}
777
778// Check if we can ignore \p D for DSE.
779bool canSkipDef(MemoryDef *D, bool DefVisibleToCaller) {
780 Instruction *DI = D->getMemoryInst();
781 // Calls that only access inaccessible memory cannot read or write any memory
782 // locations we consider for elimination.
783 if (auto *CB = dyn_cast<CallBase>(Val: DI))
784 if (CB->onlyAccessesInaccessibleMemory())
785 return true;
786
787 // We can eliminate stores to locations not visible to the caller across
788 // throwing instructions.
789 if (DI->mayThrow() && !DefVisibleToCaller)
790 return true;
791
792 // We can remove the dead stores, irrespective of the fence and its ordering
793 // (release/acquire/seq_cst). Fences only constraints the ordering of
794 // already visible stores, it does not make a store visible to other
795 // threads. So, skipping over a fence does not change a store from being
796 // dead.
797 if (isa<FenceInst>(Val: DI))
798 return true;
799
800 // Skip intrinsics that do not really read or modify memory.
801 if (isNoopIntrinsic(I: DI))
802 return true;
803
804 return false;
805}
806
807struct DSEState {
808 Function &F;
809 AliasAnalysis &AA;
810 EarliestEscapeInfo EI;
811
812 /// The single BatchAA instance that is used to cache AA queries. It will
813 /// not be invalidated over the whole run. This is safe, because:
814 /// 1. Only memory writes are removed, so the alias cache for memory
815 /// locations remains valid.
816 /// 2. No new instructions are added (only instructions removed), so cached
817 /// information for a deleted value cannot be accessed by a re-used new
818 /// value pointer.
819 BatchAAResults BatchAA;
820
821 MemorySSA &MSSA;
822 DominatorTree &DT;
823 PostDominatorTree &PDT;
824 const TargetLibraryInfo &TLI;
825 const DataLayout &DL;
826 const LoopInfo &LI;
827
828 // Whether the function contains any irreducible control flow, useful for
829 // being accurately able to detect loops.
830 bool ContainsIrreducibleLoops;
831
832 // All MemoryDefs that potentially could kill other MemDefs.
833 SmallVector<MemoryDef *, 64> MemDefs;
834 // Any that should be skipped as they are already deleted
835 SmallPtrSet<MemoryAccess *, 4> SkipStores;
836 // Keep track whether a given object is captured before return or not.
837 DenseMap<const Value *, bool> CapturedBeforeReturn;
838 // Keep track of all of the objects that are invisible to the caller after
839 // the function returns.
840 DenseMap<const Value *, bool> InvisibleToCallerAfterRet;
841 // Keep track of blocks with throwing instructions not modeled in MemorySSA.
842 SmallPtrSet<BasicBlock *, 16> ThrowingBlocks;
843 // Post-order numbers for each basic block. Used to figure out if memory
844 // accesses are executed before another access.
845 DenseMap<BasicBlock *, unsigned> PostOrderNumbers;
846
847 /// Keep track of instructions (partly) overlapping with killing MemoryDefs per
848 /// basic block.
849 MapVector<BasicBlock *, InstOverlapIntervalsTy> IOLs;
850 // Check if there are root nodes that are terminated by UnreachableInst.
851 // Those roots pessimize post-dominance queries. If there are such roots,
852 // fall back to CFG scan starting from all non-unreachable roots.
853 bool AnyUnreachableExit;
854
855 // Whether or not we should iterate on removing dead stores at the end of the
856 // function due to removing a store causing a previously captured pointer to
857 // no longer be captured.
858 bool ShouldIterateEndOfFunctionDSE;
859
860 // Class contains self-reference, make sure it's not copied/moved.
861 DSEState(const DSEState &) = delete;
862 DSEState &operator=(const DSEState &) = delete;
863
864 DSEState(Function &F, AliasAnalysis &AA, MemorySSA &MSSA, DominatorTree &DT,
865 PostDominatorTree &PDT, const TargetLibraryInfo &TLI,
866 const LoopInfo &LI)
867 : F(F), AA(AA), EI(DT, &LI), BatchAA(AA, &EI), MSSA(MSSA), DT(DT),
868 PDT(PDT), TLI(TLI), DL(F.getParent()->getDataLayout()), LI(LI) {
869 // Collect blocks with throwing instructions not modeled in MemorySSA and
870 // alloc-like objects.
871 unsigned PO = 0;
872 for (BasicBlock *BB : post_order(G: &F)) {
873 PostOrderNumbers[BB] = PO++;
874 for (Instruction &I : *BB) {
875 MemoryAccess *MA = MSSA.getMemoryAccess(I: &I);
876 if (I.mayThrow() && !MA)
877 ThrowingBlocks.insert(Ptr: I.getParent());
878
879 auto *MD = dyn_cast_or_null<MemoryDef>(Val: MA);
880 if (MD && MemDefs.size() < MemorySSADefsPerBlockLimit &&
881 (getLocForWrite(I: &I) || isMemTerminatorInst(I: &I)))
882 MemDefs.push_back(Elt: MD);
883 }
884 }
885
886 // Treat byval or inalloca arguments the same as Allocas, stores to them are
887 // dead at the end of the function.
888 for (Argument &AI : F.args())
889 if (AI.hasPassPointeeByValueCopyAttr())
890 InvisibleToCallerAfterRet.insert(KV: {&AI, true});
891
892 // Collect whether there is any irreducible control flow in the function.
893 ContainsIrreducibleLoops = mayContainIrreducibleControl(F, LI: &LI);
894
895 AnyUnreachableExit = any_of(Range: PDT.roots(), P: [](const BasicBlock *E) {
896 return isa<UnreachableInst>(Val: E->getTerminator());
897 });
898 }
899
900 LocationSize strengthenLocationSize(const Instruction *I,
901 LocationSize Size) const {
902 if (auto *CB = dyn_cast<CallBase>(Val: I)) {
903 LibFunc F;
904 if (TLI.getLibFunc(CB: *CB, F) && TLI.has(F) &&
905 (F == LibFunc_memset_chk || F == LibFunc_memcpy_chk)) {
906 // Use the precise location size specified by the 3rd argument
907 // for determining KillingI overwrites DeadLoc if it is a memset_chk
908 // instruction. memset_chk will write either the amount specified as 3rd
909 // argument or the function will immediately abort and exit the program.
910 // NOTE: AA may determine NoAlias if it can prove that the access size
911 // is larger than the allocation size due to that being UB. To avoid
912 // returning potentially invalid NoAlias results by AA, limit the use of
913 // the precise location size to isOverwrite.
914 if (const auto *Len = dyn_cast<ConstantInt>(Val: CB->getArgOperand(i: 2)))
915 return LocationSize::precise(Value: Len->getZExtValue());
916 }
917 }
918 return Size;
919 }
920
921 /// Return 'OW_Complete' if a store to the 'KillingLoc' location (by \p
922 /// KillingI instruction) completely overwrites a store to the 'DeadLoc'
923 /// location (by \p DeadI instruction).
924 /// Return OW_MaybePartial if \p KillingI does not completely overwrite
925 /// \p DeadI, but they both write to the same underlying object. In that
926 /// case, use isPartialOverwrite to check if \p KillingI partially overwrites
927 /// \p DeadI. Returns 'OR_None' if \p KillingI is known to not overwrite the
928 /// \p DeadI. Returns 'OW_Unknown' if nothing can be determined.
929 OverwriteResult isOverwrite(const Instruction *KillingI,
930 const Instruction *DeadI,
931 const MemoryLocation &KillingLoc,
932 const MemoryLocation &DeadLoc,
933 int64_t &KillingOff, int64_t &DeadOff) {
934 // AliasAnalysis does not always account for loops. Limit overwrite checks
935 // to dependencies for which we can guarantee they are independent of any
936 // loops they are in.
937 if (!isGuaranteedLoopIndependent(Current: DeadI, KillingDef: KillingI, CurrentLoc: DeadLoc))
938 return OW_Unknown;
939
940 LocationSize KillingLocSize =
941 strengthenLocationSize(I: KillingI, Size: KillingLoc.Size);
942 const Value *DeadPtr = DeadLoc.Ptr->stripPointerCasts();
943 const Value *KillingPtr = KillingLoc.Ptr->stripPointerCasts();
944 const Value *DeadUndObj = getUnderlyingObject(V: DeadPtr);
945 const Value *KillingUndObj = getUnderlyingObject(V: KillingPtr);
946
947 // Check whether the killing store overwrites the whole object, in which
948 // case the size/offset of the dead store does not matter.
949 if (DeadUndObj == KillingUndObj && KillingLocSize.isPrecise() &&
950 isIdentifiedObject(V: KillingUndObj)) {
951 std::optional<TypeSize> KillingUndObjSize =
952 getPointerSize(V: KillingUndObj, DL, TLI, F: &F);
953 if (KillingUndObjSize && *KillingUndObjSize == KillingLocSize.getValue())
954 return OW_Complete;
955 }
956
957 // FIXME: Vet that this works for size upper-bounds. Seems unlikely that we'll
958 // get imprecise values here, though (except for unknown sizes).
959 if (!KillingLocSize.isPrecise() || !DeadLoc.Size.isPrecise()) {
960 // In case no constant size is known, try to an IR values for the number
961 // of bytes written and check if they match.
962 const auto *KillingMemI = dyn_cast<MemIntrinsic>(Val: KillingI);
963 const auto *DeadMemI = dyn_cast<MemIntrinsic>(Val: DeadI);
964 if (KillingMemI && DeadMemI) {
965 const Value *KillingV = KillingMemI->getLength();
966 const Value *DeadV = DeadMemI->getLength();
967 if (KillingV == DeadV && BatchAA.isMustAlias(LocA: DeadLoc, LocB: KillingLoc))
968 return OW_Complete;
969 }
970
971 // Masked stores have imprecise locations, but we can reason about them
972 // to some extent.
973 return isMaskedStoreOverwrite(KillingI, DeadI, AA&: BatchAA);
974 }
975
976 const TypeSize KillingSize = KillingLocSize.getValue();
977 const TypeSize DeadSize = DeadLoc.Size.getValue();
978 // Bail on doing Size comparison which depends on AA for now
979 // TODO: Remove AnyScalable once Alias Analysis deal with scalable vectors
980 const bool AnyScalable =
981 DeadSize.isScalable() || KillingLocSize.isScalable();
982
983 if (AnyScalable)
984 return OW_Unknown;
985 // Query the alias information
986 AliasResult AAR = BatchAA.alias(LocA: KillingLoc, LocB: DeadLoc);
987
988 // If the start pointers are the same, we just have to compare sizes to see if
989 // the killing store was larger than the dead store.
990 if (AAR == AliasResult::MustAlias) {
991 // Make sure that the KillingSize size is >= the DeadSize size.
992 if (KillingSize >= DeadSize)
993 return OW_Complete;
994 }
995
996 // If we hit a partial alias we may have a full overwrite
997 if (AAR == AliasResult::PartialAlias && AAR.hasOffset()) {
998 int32_t Off = AAR.getOffset();
999 if (Off >= 0 && (uint64_t)Off + DeadSize <= KillingSize)
1000 return OW_Complete;
1001 }
1002
1003 // If we can't resolve the same pointers to the same object, then we can't
1004 // analyze them at all.
1005 if (DeadUndObj != KillingUndObj) {
1006 // Non aliasing stores to different objects don't overlap. Note that
1007 // if the killing store is known to overwrite whole object (out of
1008 // bounds access overwrites whole object as well) then it is assumed to
1009 // completely overwrite any store to the same object even if they don't
1010 // actually alias (see next check).
1011 if (AAR == AliasResult::NoAlias)
1012 return OW_None;
1013 return OW_Unknown;
1014 }
1015
1016 // Okay, we have stores to two completely different pointers. Try to
1017 // decompose the pointer into a "base + constant_offset" form. If the base
1018 // pointers are equal, then we can reason about the two stores.
1019 DeadOff = 0;
1020 KillingOff = 0;
1021 const Value *DeadBasePtr =
1022 GetPointerBaseWithConstantOffset(Ptr: DeadPtr, Offset&: DeadOff, DL);
1023 const Value *KillingBasePtr =
1024 GetPointerBaseWithConstantOffset(Ptr: KillingPtr, Offset&: KillingOff, DL);
1025
1026 // If the base pointers still differ, we have two completely different
1027 // stores.
1028 if (DeadBasePtr != KillingBasePtr)
1029 return OW_Unknown;
1030
1031 // The killing access completely overlaps the dead store if and only if
1032 // both start and end of the dead one is "inside" the killing one:
1033 // |<->|--dead--|<->|
1034 // |-----killing------|
1035 // Accesses may overlap if and only if start of one of them is "inside"
1036 // another one:
1037 // |<->|--dead--|<-------->|
1038 // |-------killing--------|
1039 // OR
1040 // |-------dead-------|
1041 // |<->|---killing---|<----->|
1042 //
1043 // We have to be careful here as *Off is signed while *.Size is unsigned.
1044
1045 // Check if the dead access starts "not before" the killing one.
1046 if (DeadOff >= KillingOff) {
1047 // If the dead access ends "not after" the killing access then the
1048 // dead one is completely overwritten by the killing one.
1049 if (uint64_t(DeadOff - KillingOff) + DeadSize <= KillingSize)
1050 return OW_Complete;
1051 // If start of the dead access is "before" end of the killing access
1052 // then accesses overlap.
1053 else if ((uint64_t)(DeadOff - KillingOff) < KillingSize)
1054 return OW_MaybePartial;
1055 }
1056 // If start of the killing access is "before" end of the dead access then
1057 // accesses overlap.
1058 else if ((uint64_t)(KillingOff - DeadOff) < DeadSize) {
1059 return OW_MaybePartial;
1060 }
1061
1062 // Can reach here only if accesses are known not to overlap.
1063 return OW_None;
1064 }
1065
1066 bool isInvisibleToCallerAfterRet(const Value *V) {
1067 if (isa<AllocaInst>(Val: V))
1068 return true;
1069 auto I = InvisibleToCallerAfterRet.insert(KV: {V, false});
1070 if (I.second) {
1071 if (!isInvisibleToCallerOnUnwind(V)) {
1072 I.first->second = false;
1073 } else if (isNoAliasCall(V)) {
1074 I.first->second = !PointerMayBeCaptured(V, ReturnCaptures: true, StoreCaptures: false);
1075 }
1076 }
1077 return I.first->second;
1078 }
1079
1080 bool isInvisibleToCallerOnUnwind(const Value *V) {
1081 bool RequiresNoCaptureBeforeUnwind;
1082 if (!isNotVisibleOnUnwind(Object: V, RequiresNoCaptureBeforeUnwind))
1083 return false;
1084 if (!RequiresNoCaptureBeforeUnwind)
1085 return true;
1086
1087 auto I = CapturedBeforeReturn.insert(KV: {V, true});
1088 if (I.second)
1089 // NOTE: This could be made more precise by PointerMayBeCapturedBefore
1090 // with the killing MemoryDef. But we refrain from doing so for now to
1091 // limit compile-time and this does not cause any changes to the number
1092 // of stores removed on a large test set in practice.
1093 I.first->second = PointerMayBeCaptured(V, ReturnCaptures: false, StoreCaptures: true);
1094 return !I.first->second;
1095 }
1096
1097 std::optional<MemoryLocation> getLocForWrite(Instruction *I) const {
1098 if (!I->mayWriteToMemory())
1099 return std::nullopt;
1100
1101 if (auto *CB = dyn_cast<CallBase>(Val: I))
1102 return MemoryLocation::getForDest(CI: CB, TLI);
1103
1104 return MemoryLocation::getOrNone(Inst: I);
1105 }
1106
1107 /// Assuming this instruction has a dead analyzable write, can we delete
1108 /// this instruction?
1109 bool isRemovable(Instruction *I) {
1110 assert(getLocForWrite(I) && "Must have analyzable write");
1111
1112 // Don't remove volatile/atomic stores.
1113 if (StoreInst *SI = dyn_cast<StoreInst>(Val: I))
1114 return SI->isUnordered();
1115
1116 if (auto *CB = dyn_cast<CallBase>(Val: I)) {
1117 // Don't remove volatile memory intrinsics.
1118 if (auto *MI = dyn_cast<MemIntrinsic>(Val: CB))
1119 return !MI->isVolatile();
1120
1121 // Never remove dead lifetime intrinsics, e.g. because they are followed
1122 // by a free.
1123 if (CB->isLifetimeStartOrEnd())
1124 return false;
1125
1126 return CB->use_empty() && CB->willReturn() && CB->doesNotThrow() &&
1127 !CB->isTerminator();
1128 }
1129
1130 return false;
1131 }
1132
1133 /// Returns true if \p UseInst completely overwrites \p DefLoc
1134 /// (stored by \p DefInst).
1135 bool isCompleteOverwrite(const MemoryLocation &DefLoc, Instruction *DefInst,
1136 Instruction *UseInst) {
1137 // UseInst has a MemoryDef associated in MemorySSA. It's possible for a
1138 // MemoryDef to not write to memory, e.g. a volatile load is modeled as a
1139 // MemoryDef.
1140 if (!UseInst->mayWriteToMemory())
1141 return false;
1142
1143 if (auto *CB = dyn_cast<CallBase>(Val: UseInst))
1144 if (CB->onlyAccessesInaccessibleMemory())
1145 return false;
1146
1147 int64_t InstWriteOffset, DepWriteOffset;
1148 if (auto CC = getLocForWrite(I: UseInst))
1149 return isOverwrite(KillingI: UseInst, DeadI: DefInst, KillingLoc: *CC, DeadLoc: DefLoc, KillingOff&: InstWriteOffset,
1150 DeadOff&: DepWriteOffset) == OW_Complete;
1151 return false;
1152 }
1153
1154 /// Returns true if \p Def is not read before returning from the function.
1155 bool isWriteAtEndOfFunction(MemoryDef *Def) {
1156 LLVM_DEBUG(dbgs() << " Check if def " << *Def << " ("
1157 << *Def->getMemoryInst()
1158 << ") is at the end the function \n");
1159
1160 auto MaybeLoc = getLocForWrite(I: Def->getMemoryInst());
1161 if (!MaybeLoc) {
1162 LLVM_DEBUG(dbgs() << " ... could not get location for write.\n");
1163 return false;
1164 }
1165
1166 SmallVector<MemoryAccess *, 4> WorkList;
1167 SmallPtrSet<MemoryAccess *, 8> Visited;
1168 auto PushMemUses = [&WorkList, &Visited](MemoryAccess *Acc) {
1169 if (!Visited.insert(Ptr: Acc).second)
1170 return;
1171 for (Use &U : Acc->uses())
1172 WorkList.push_back(Elt: cast<MemoryAccess>(Val: U.getUser()));
1173 };
1174 PushMemUses(Def);
1175 for (unsigned I = 0; I < WorkList.size(); I++) {
1176 if (WorkList.size() >= MemorySSAScanLimit) {
1177 LLVM_DEBUG(dbgs() << " ... hit exploration limit.\n");
1178 return false;
1179 }
1180
1181 MemoryAccess *UseAccess = WorkList[I];
1182 if (isa<MemoryPhi>(Val: UseAccess)) {
1183 // AliasAnalysis does not account for loops. Limit elimination to
1184 // candidates for which we can guarantee they always store to the same
1185 // memory location.
1186 if (!isGuaranteedLoopInvariant(Ptr: MaybeLoc->Ptr))
1187 return false;
1188
1189 PushMemUses(cast<MemoryPhi>(Val: UseAccess));
1190 continue;
1191 }
1192 // TODO: Checking for aliasing is expensive. Consider reducing the amount
1193 // of times this is called and/or caching it.
1194 Instruction *UseInst = cast<MemoryUseOrDef>(Val: UseAccess)->getMemoryInst();
1195 if (isReadClobber(DefLoc: *MaybeLoc, UseInst)) {
1196 LLVM_DEBUG(dbgs() << " ... hit read clobber " << *UseInst << ".\n");
1197 return false;
1198 }
1199
1200 if (MemoryDef *UseDef = dyn_cast<MemoryDef>(Val: UseAccess))
1201 PushMemUses(UseDef);
1202 }
1203 return true;
1204 }
1205
1206 /// If \p I is a memory terminator like llvm.lifetime.end or free, return a
1207 /// pair with the MemoryLocation terminated by \p I and a boolean flag
1208 /// indicating whether \p I is a free-like call.
1209 std::optional<std::pair<MemoryLocation, bool>>
1210 getLocForTerminator(Instruction *I) const {
1211 uint64_t Len;
1212 Value *Ptr;
1213 if (match(I, m_Intrinsic<Intrinsic::lifetime_end>(m_ConstantInt(Len),
1214 m_Value(Ptr))))
1215 return {std::make_pair(x: MemoryLocation(Ptr, Len), y: false)};
1216
1217 if (auto *CB = dyn_cast<CallBase>(Val: I)) {
1218 if (Value *FreedOp = getFreedOperand(CB, TLI: &TLI))
1219 return {std::make_pair(x: MemoryLocation::getAfter(Ptr: FreedOp), y: true)};
1220 }
1221
1222 return std::nullopt;
1223 }
1224
1225 /// Returns true if \p I is a memory terminator instruction like
1226 /// llvm.lifetime.end or free.
1227 bool isMemTerminatorInst(Instruction *I) const {
1228 auto *CB = dyn_cast<CallBase>(Val: I);
1229 return CB && (CB->getIntrinsicID() == Intrinsic::lifetime_end ||
1230 getFreedOperand(CB, TLI: &TLI) != nullptr);
1231 }
1232
1233 /// Returns true if \p MaybeTerm is a memory terminator for \p Loc from
1234 /// instruction \p AccessI.
1235 bool isMemTerminator(const MemoryLocation &Loc, Instruction *AccessI,
1236 Instruction *MaybeTerm) {
1237 std::optional<std::pair<MemoryLocation, bool>> MaybeTermLoc =
1238 getLocForTerminator(I: MaybeTerm);
1239
1240 if (!MaybeTermLoc)
1241 return false;
1242
1243 // If the terminator is a free-like call, all accesses to the underlying
1244 // object can be considered terminated.
1245 if (getUnderlyingObject(V: Loc.Ptr) !=
1246 getUnderlyingObject(V: MaybeTermLoc->first.Ptr))
1247 return false;
1248
1249 auto TermLoc = MaybeTermLoc->first;
1250 if (MaybeTermLoc->second) {
1251 const Value *LocUO = getUnderlyingObject(V: Loc.Ptr);
1252 return BatchAA.isMustAlias(V1: TermLoc.Ptr, V2: LocUO);
1253 }
1254 int64_t InstWriteOffset = 0;
1255 int64_t DepWriteOffset = 0;
1256 return isOverwrite(KillingI: MaybeTerm, DeadI: AccessI, KillingLoc: TermLoc, DeadLoc: Loc, KillingOff&: InstWriteOffset,
1257 DeadOff&: DepWriteOffset) == OW_Complete;
1258 }
1259
1260 // Returns true if \p Use may read from \p DefLoc.
1261 bool isReadClobber(const MemoryLocation &DefLoc, Instruction *UseInst) {
1262 if (isNoopIntrinsic(I: UseInst))
1263 return false;
1264
1265 // Monotonic or weaker atomic stores can be re-ordered and do not need to be
1266 // treated as read clobber.
1267 if (auto SI = dyn_cast<StoreInst>(Val: UseInst))
1268 return isStrongerThan(AO: SI->getOrdering(), Other: AtomicOrdering::Monotonic);
1269
1270 if (!UseInst->mayReadFromMemory())
1271 return false;
1272
1273 if (auto *CB = dyn_cast<CallBase>(Val: UseInst))
1274 if (CB->onlyAccessesInaccessibleMemory())
1275 return false;
1276
1277 return isRefSet(MRI: BatchAA.getModRefInfo(I: UseInst, OptLoc: DefLoc));
1278 }
1279
1280 /// Returns true if a dependency between \p Current and \p KillingDef is
1281 /// guaranteed to be loop invariant for the loops that they are in. Either
1282 /// because they are known to be in the same block, in the same loop level or
1283 /// by guaranteeing that \p CurrentLoc only references a single MemoryLocation
1284 /// during execution of the containing function.
1285 bool isGuaranteedLoopIndependent(const Instruction *Current,
1286 const Instruction *KillingDef,
1287 const MemoryLocation &CurrentLoc) {
1288 // If the dependency is within the same block or loop level (being careful
1289 // of irreducible loops), we know that AA will return a valid result for the
1290 // memory dependency. (Both at the function level, outside of any loop,
1291 // would also be valid but we currently disable that to limit compile time).
1292 if (Current->getParent() == KillingDef->getParent())
1293 return true;
1294 const Loop *CurrentLI = LI.getLoopFor(BB: Current->getParent());
1295 if (!ContainsIrreducibleLoops && CurrentLI &&
1296 CurrentLI == LI.getLoopFor(BB: KillingDef->getParent()))
1297 return true;
1298 // Otherwise check the memory location is invariant to any loops.
1299 return isGuaranteedLoopInvariant(Ptr: CurrentLoc.Ptr);
1300 }
1301
1302 /// Returns true if \p Ptr is guaranteed to be loop invariant for any possible
1303 /// loop. In particular, this guarantees that it only references a single
1304 /// MemoryLocation during execution of the containing function.
1305 bool isGuaranteedLoopInvariant(const Value *Ptr) {
1306 Ptr = Ptr->stripPointerCasts();
1307 if (auto *GEP = dyn_cast<GEPOperator>(Val: Ptr))
1308 if (GEP->hasAllConstantIndices())
1309 Ptr = GEP->getPointerOperand()->stripPointerCasts();
1310
1311 if (auto *I = dyn_cast<Instruction>(Val: Ptr)) {
1312 return I->getParent()->isEntryBlock() ||
1313 (!ContainsIrreducibleLoops && !LI.getLoopFor(BB: I->getParent()));
1314 }
1315 return true;
1316 }
1317
1318 // Find a MemoryDef writing to \p KillingLoc and dominating \p StartAccess,
1319 // with no read access between them or on any other path to a function exit
1320 // block if \p KillingLoc is not accessible after the function returns. If
1321 // there is no such MemoryDef, return std::nullopt. The returned value may not
1322 // (completely) overwrite \p KillingLoc. Currently we bail out when we
1323 // encounter an aliasing MemoryUse (read).
1324 std::optional<MemoryAccess *>
1325 getDomMemoryDef(MemoryDef *KillingDef, MemoryAccess *StartAccess,
1326 const MemoryLocation &KillingLoc, const Value *KillingUndObj,
1327 unsigned &ScanLimit, unsigned &WalkerStepLimit,
1328 bool IsMemTerm, unsigned &PartialLimit) {
1329 if (ScanLimit == 0 || WalkerStepLimit == 0) {
1330 LLVM_DEBUG(dbgs() << "\n ... hit scan limit\n");
1331 return std::nullopt;
1332 }
1333
1334 MemoryAccess *Current = StartAccess;
1335 Instruction *KillingI = KillingDef->getMemoryInst();
1336 LLVM_DEBUG(dbgs() << " trying to get dominating access\n");
1337
1338 // Only optimize defining access of KillingDef when directly starting at its
1339 // defining access. The defining access also must only access KillingLoc. At
1340 // the moment we only support instructions with a single write location, so
1341 // it should be sufficient to disable optimizations for instructions that
1342 // also read from memory.
1343 bool CanOptimize = OptimizeMemorySSA &&
1344 KillingDef->getDefiningAccess() == StartAccess &&
1345 !KillingI->mayReadFromMemory();
1346
1347 // Find the next clobbering Mod access for DefLoc, starting at StartAccess.
1348 std::optional<MemoryLocation> CurrentLoc;
1349 for (;; Current = cast<MemoryDef>(Val: Current)->getDefiningAccess()) {
1350 LLVM_DEBUG({
1351 dbgs() << " visiting " << *Current;
1352 if (!MSSA.isLiveOnEntryDef(Current) && isa<MemoryUseOrDef>(Current))
1353 dbgs() << " (" << *cast<MemoryUseOrDef>(Current)->getMemoryInst()
1354 << ")";
1355 dbgs() << "\n";
1356 });
1357
1358 // Reached TOP.
1359 if (MSSA.isLiveOnEntryDef(MA: Current)) {
1360 LLVM_DEBUG(dbgs() << " ... found LiveOnEntryDef\n");
1361 if (CanOptimize && Current != KillingDef->getDefiningAccess())
1362 // The first clobbering def is... none.
1363 KillingDef->setOptimized(Current);
1364 return std::nullopt;
1365 }
1366
1367 // Cost of a step. Accesses in the same block are more likely to be valid
1368 // candidates for elimination, hence consider them cheaper.
1369 unsigned StepCost = KillingDef->getBlock() == Current->getBlock()
1370 ? MemorySSASameBBStepCost
1371 : MemorySSAOtherBBStepCost;
1372 if (WalkerStepLimit <= StepCost) {
1373 LLVM_DEBUG(dbgs() << " ... hit walker step limit\n");
1374 return std::nullopt;
1375 }
1376 WalkerStepLimit -= StepCost;
1377
1378 // Return for MemoryPhis. They cannot be eliminated directly and the
1379 // caller is responsible for traversing them.
1380 if (isa<MemoryPhi>(Val: Current)) {
1381 LLVM_DEBUG(dbgs() << " ... found MemoryPhi\n");
1382 return Current;
1383 }
1384
1385 // Below, check if CurrentDef is a valid candidate to be eliminated by
1386 // KillingDef. If it is not, check the next candidate.
1387 MemoryDef *CurrentDef = cast<MemoryDef>(Val: Current);
1388 Instruction *CurrentI = CurrentDef->getMemoryInst();
1389
1390 if (canSkipDef(D: CurrentDef, DefVisibleToCaller: !isInvisibleToCallerOnUnwind(V: KillingUndObj))) {
1391 CanOptimize = false;
1392 continue;
1393 }
1394
1395 // Before we try to remove anything, check for any extra throwing
1396 // instructions that block us from DSEing
1397 if (mayThrowBetween(KillingI, DeadI: CurrentI, KillingUndObj)) {
1398 LLVM_DEBUG(dbgs() << " ... skip, may throw!\n");
1399 return std::nullopt;
1400 }
1401
1402 // Check for anything that looks like it will be a barrier to further
1403 // removal
1404 if (isDSEBarrier(KillingUndObj, DeadI: CurrentI)) {
1405 LLVM_DEBUG(dbgs() << " ... skip, barrier\n");
1406 return std::nullopt;
1407 }
1408
1409 // If Current is known to be on path that reads DefLoc or is a read
1410 // clobber, bail out, as the path is not profitable. We skip this check
1411 // for intrinsic calls, because the code knows how to handle memcpy
1412 // intrinsics.
1413 if (!isa<IntrinsicInst>(Val: CurrentI) && isReadClobber(DefLoc: KillingLoc, UseInst: CurrentI))
1414 return std::nullopt;
1415
1416 // Quick check if there are direct uses that are read-clobbers.
1417 if (any_of(Range: Current->uses(), P: [this, &KillingLoc, StartAccess](Use &U) {
1418 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(Val: U.getUser()))
1419 return !MSSA.dominates(A: StartAccess, B: UseOrDef) &&
1420 isReadClobber(DefLoc: KillingLoc, UseInst: UseOrDef->getMemoryInst());
1421 return false;
1422 })) {
1423 LLVM_DEBUG(dbgs() << " ... found a read clobber\n");
1424 return std::nullopt;
1425 }
1426
1427 // If Current does not have an analyzable write location or is not
1428 // removable, skip it.
1429 CurrentLoc = getLocForWrite(I: CurrentI);
1430 if (!CurrentLoc || !isRemovable(I: CurrentI)) {
1431 CanOptimize = false;
1432 continue;
1433 }
1434
1435 // AliasAnalysis does not account for loops. Limit elimination to
1436 // candidates for which we can guarantee they always store to the same
1437 // memory location and not located in different loops.
1438 if (!isGuaranteedLoopIndependent(Current: CurrentI, KillingDef: KillingI, CurrentLoc: *CurrentLoc)) {
1439 LLVM_DEBUG(dbgs() << " ... not guaranteed loop independent\n");
1440 CanOptimize = false;
1441 continue;
1442 }
1443
1444 if (IsMemTerm) {
1445 // If the killing def is a memory terminator (e.g. lifetime.end), check
1446 // the next candidate if the current Current does not write the same
1447 // underlying object as the terminator.
1448 if (!isMemTerminator(Loc: *CurrentLoc, AccessI: CurrentI, MaybeTerm: KillingI)) {
1449 CanOptimize = false;
1450 continue;
1451 }
1452 } else {
1453 int64_t KillingOffset = 0;
1454 int64_t DeadOffset = 0;
1455 auto OR = isOverwrite(KillingI, DeadI: CurrentI, KillingLoc, DeadLoc: *CurrentLoc,
1456 KillingOff&: KillingOffset, DeadOff&: DeadOffset);
1457 if (CanOptimize) {
1458 // CurrentDef is the earliest write clobber of KillingDef. Use it as
1459 // optimized access. Do not optimize if CurrentDef is already the
1460 // defining access of KillingDef.
1461 if (CurrentDef != KillingDef->getDefiningAccess() &&
1462 (OR == OW_Complete || OR == OW_MaybePartial))
1463 KillingDef->setOptimized(CurrentDef);
1464
1465 // Once a may-aliasing def is encountered do not set an optimized
1466 // access.
1467 if (OR != OW_None)
1468 CanOptimize = false;
1469 }
1470
1471 // If Current does not write to the same object as KillingDef, check
1472 // the next candidate.
1473 if (OR == OW_Unknown || OR == OW_None)
1474 continue;
1475 else if (OR == OW_MaybePartial) {
1476 // If KillingDef only partially overwrites Current, check the next
1477 // candidate if the partial step limit is exceeded. This aggressively
1478 // limits the number of candidates for partial store elimination,
1479 // which are less likely to be removable in the end.
1480 if (PartialLimit <= 1) {
1481 WalkerStepLimit -= 1;
1482 LLVM_DEBUG(dbgs() << " ... reached partial limit ... continue with next access\n");
1483 continue;
1484 }
1485 PartialLimit -= 1;
1486 }
1487 }
1488 break;
1489 };
1490
1491 // Accesses to objects accessible after the function returns can only be
1492 // eliminated if the access is dead along all paths to the exit. Collect
1493 // the blocks with killing (=completely overwriting MemoryDefs) and check if
1494 // they cover all paths from MaybeDeadAccess to any function exit.
1495 SmallPtrSet<Instruction *, 16> KillingDefs;
1496 KillingDefs.insert(Ptr: KillingDef->getMemoryInst());
1497 MemoryAccess *MaybeDeadAccess = Current;
1498 MemoryLocation MaybeDeadLoc = *CurrentLoc;
1499 Instruction *MaybeDeadI = cast<MemoryDef>(Val: MaybeDeadAccess)->getMemoryInst();
1500 LLVM_DEBUG(dbgs() << " Checking for reads of " << *MaybeDeadAccess << " ("
1501 << *MaybeDeadI << ")\n");
1502
1503 SmallSetVector<MemoryAccess *, 32> WorkList;
1504 auto PushMemUses = [&WorkList](MemoryAccess *Acc) {
1505 for (Use &U : Acc->uses())
1506 WorkList.insert(X: cast<MemoryAccess>(Val: U.getUser()));
1507 };
1508 PushMemUses(MaybeDeadAccess);
1509
1510 // Check if DeadDef may be read.
1511 for (unsigned I = 0; I < WorkList.size(); I++) {
1512 MemoryAccess *UseAccess = WorkList[I];
1513
1514 LLVM_DEBUG(dbgs() << " " << *UseAccess);
1515 // Bail out if the number of accesses to check exceeds the scan limit.
1516 if (ScanLimit < (WorkList.size() - I)) {
1517 LLVM_DEBUG(dbgs() << "\n ... hit scan limit\n");
1518 return std::nullopt;
1519 }
1520 --ScanLimit;
1521 NumDomMemDefChecks++;
1522
1523 if (isa<MemoryPhi>(Val: UseAccess)) {
1524 if (any_of(Range&: KillingDefs, P: [this, UseAccess](Instruction *KI) {
1525 return DT.properlyDominates(A: KI->getParent(),
1526 B: UseAccess->getBlock());
1527 })) {
1528 LLVM_DEBUG(dbgs() << " ... skipping, dominated by killing block\n");
1529 continue;
1530 }
1531 LLVM_DEBUG(dbgs() << "\n ... adding PHI uses\n");
1532 PushMemUses(UseAccess);
1533 continue;
1534 }
1535
1536 Instruction *UseInst = cast<MemoryUseOrDef>(Val: UseAccess)->getMemoryInst();
1537 LLVM_DEBUG(dbgs() << " (" << *UseInst << ")\n");
1538
1539 if (any_of(Range&: KillingDefs, P: [this, UseInst](Instruction *KI) {
1540 return DT.dominates(Def: KI, User: UseInst);
1541 })) {
1542 LLVM_DEBUG(dbgs() << " ... skipping, dominated by killing def\n");
1543 continue;
1544 }
1545
1546 // A memory terminator kills all preceeding MemoryDefs and all succeeding
1547 // MemoryAccesses. We do not have to check it's users.
1548 if (isMemTerminator(Loc: MaybeDeadLoc, AccessI: MaybeDeadI, MaybeTerm: UseInst)) {
1549 LLVM_DEBUG(
1550 dbgs()
1551 << " ... skipping, memterminator invalidates following accesses\n");
1552 continue;
1553 }
1554
1555 if (isNoopIntrinsic(I: cast<MemoryUseOrDef>(Val: UseAccess)->getMemoryInst())) {
1556 LLVM_DEBUG(dbgs() << " ... adding uses of intrinsic\n");
1557 PushMemUses(UseAccess);
1558 continue;
1559 }
1560
1561 if (UseInst->mayThrow() && !isInvisibleToCallerOnUnwind(V: KillingUndObj)) {
1562 LLVM_DEBUG(dbgs() << " ... found throwing instruction\n");
1563 return std::nullopt;
1564 }
1565
1566 // Uses which may read the original MemoryDef mean we cannot eliminate the
1567 // original MD. Stop walk.
1568 if (isReadClobber(DefLoc: MaybeDeadLoc, UseInst)) {
1569 LLVM_DEBUG(dbgs() << " ... found read clobber\n");
1570 return std::nullopt;
1571 }
1572
1573 // If this worklist walks back to the original memory access (and the
1574 // pointer is not guarenteed loop invariant) then we cannot assume that a
1575 // store kills itself.
1576 if (MaybeDeadAccess == UseAccess &&
1577 !isGuaranteedLoopInvariant(Ptr: MaybeDeadLoc.Ptr)) {
1578 LLVM_DEBUG(dbgs() << " ... found not loop invariant self access\n");
1579 return std::nullopt;
1580 }
1581 // Otherwise, for the KillingDef and MaybeDeadAccess we only have to check
1582 // if it reads the memory location.
1583 // TODO: It would probably be better to check for self-reads before
1584 // calling the function.
1585 if (KillingDef == UseAccess || MaybeDeadAccess == UseAccess) {
1586 LLVM_DEBUG(dbgs() << " ... skipping killing def/dom access\n");
1587 continue;
1588 }
1589
1590 // Check all uses for MemoryDefs, except for defs completely overwriting
1591 // the original location. Otherwise we have to check uses of *all*
1592 // MemoryDefs we discover, including non-aliasing ones. Otherwise we might
1593 // miss cases like the following
1594 // 1 = Def(LoE) ; <----- DeadDef stores [0,1]
1595 // 2 = Def(1) ; (2, 1) = NoAlias, stores [2,3]
1596 // Use(2) ; MayAlias 2 *and* 1, loads [0, 3].
1597 // (The Use points to the *first* Def it may alias)
1598 // 3 = Def(1) ; <---- Current (3, 2) = NoAlias, (3,1) = MayAlias,
1599 // stores [0,1]
1600 if (MemoryDef *UseDef = dyn_cast<MemoryDef>(Val: UseAccess)) {
1601 if (isCompleteOverwrite(DefLoc: MaybeDeadLoc, DefInst: MaybeDeadI, UseInst)) {
1602 BasicBlock *MaybeKillingBlock = UseInst->getParent();
1603 if (PostOrderNumbers.find(Val: MaybeKillingBlock)->second <
1604 PostOrderNumbers.find(Val: MaybeDeadAccess->getBlock())->second) {
1605 if (!isInvisibleToCallerAfterRet(V: KillingUndObj)) {
1606 LLVM_DEBUG(dbgs()
1607 << " ... found killing def " << *UseInst << "\n");
1608 KillingDefs.insert(Ptr: UseInst);
1609 }
1610 } else {
1611 LLVM_DEBUG(dbgs()
1612 << " ... found preceeding def " << *UseInst << "\n");
1613 return std::nullopt;
1614 }
1615 } else
1616 PushMemUses(UseDef);
1617 }
1618 }
1619
1620 // For accesses to locations visible after the function returns, make sure
1621 // that the location is dead (=overwritten) along all paths from
1622 // MaybeDeadAccess to the exit.
1623 if (!isInvisibleToCallerAfterRet(V: KillingUndObj)) {
1624 SmallPtrSet<BasicBlock *, 16> KillingBlocks;
1625 for (Instruction *KD : KillingDefs)
1626 KillingBlocks.insert(Ptr: KD->getParent());
1627 assert(!KillingBlocks.empty() &&
1628 "Expected at least a single killing block");
1629
1630 // Find the common post-dominator of all killing blocks.
1631 BasicBlock *CommonPred = *KillingBlocks.begin();
1632 for (BasicBlock *BB : llvm::drop_begin(RangeOrContainer&: KillingBlocks)) {
1633 if (!CommonPred)
1634 break;
1635 CommonPred = PDT.findNearestCommonDominator(A: CommonPred, B: BB);
1636 }
1637
1638 // If the common post-dominator does not post-dominate MaybeDeadAccess,
1639 // there is a path from MaybeDeadAccess to an exit not going through a
1640 // killing block.
1641 if (!PDT.dominates(A: CommonPred, B: MaybeDeadAccess->getBlock())) {
1642 if (!AnyUnreachableExit)
1643 return std::nullopt;
1644
1645 // Fall back to CFG scan starting at all non-unreachable roots if not
1646 // all paths to the exit go through CommonPred.
1647 CommonPred = nullptr;
1648 }
1649
1650 // If CommonPred itself is in the set of killing blocks, we're done.
1651 if (KillingBlocks.count(Ptr: CommonPred))
1652 return {MaybeDeadAccess};
1653
1654 SetVector<BasicBlock *> WorkList;
1655 // If CommonPred is null, there are multiple exits from the function.
1656 // They all have to be added to the worklist.
1657 if (CommonPred)
1658 WorkList.insert(X: CommonPred);
1659 else
1660 for (BasicBlock *R : PDT.roots()) {
1661 if (!isa<UnreachableInst>(Val: R->getTerminator()))
1662 WorkList.insert(X: R);
1663 }
1664
1665 NumCFGTries++;
1666 // Check if all paths starting from an exit node go through one of the
1667 // killing blocks before reaching MaybeDeadAccess.
1668 for (unsigned I = 0; I < WorkList.size(); I++) {
1669 NumCFGChecks++;
1670 BasicBlock *Current = WorkList[I];
1671 if (KillingBlocks.count(Ptr: Current))
1672 continue;
1673 if (Current == MaybeDeadAccess->getBlock())
1674 return std::nullopt;
1675
1676 // MaybeDeadAccess is reachable from the entry, so we don't have to
1677 // explore unreachable blocks further.
1678 if (!DT.isReachableFromEntry(A: Current))
1679 continue;
1680
1681 for (BasicBlock *Pred : predecessors(BB: Current))
1682 WorkList.insert(X: Pred);
1683
1684 if (WorkList.size() >= MemorySSAPathCheckLimit)
1685 return std::nullopt;
1686 }
1687 NumCFGSuccess++;
1688 }
1689
1690 // No aliasing MemoryUses of MaybeDeadAccess found, MaybeDeadAccess is
1691 // potentially dead.
1692 return {MaybeDeadAccess};
1693 }
1694
1695 // Delete dead memory defs
1696 void deleteDeadInstruction(Instruction *SI) {
1697 MemorySSAUpdater Updater(&MSSA);
1698 SmallVector<Instruction *, 32> NowDeadInsts;
1699 NowDeadInsts.push_back(Elt: SI);
1700 --NumFastOther;
1701
1702 while (!NowDeadInsts.empty()) {
1703 Instruction *DeadInst = NowDeadInsts.pop_back_val();
1704 ++NumFastOther;
1705
1706 // Try to preserve debug information attached to the dead instruction.
1707 salvageDebugInfo(I&: *DeadInst);
1708 salvageKnowledge(I: DeadInst);
1709
1710 // Remove the Instruction from MSSA.
1711 if (MemoryAccess *MA = MSSA.getMemoryAccess(I: DeadInst)) {
1712 if (MemoryDef *MD = dyn_cast<MemoryDef>(Val: MA)) {
1713 SkipStores.insert(Ptr: MD);
1714 if (auto *SI = dyn_cast<StoreInst>(Val: MD->getMemoryInst())) {
1715 if (SI->getValueOperand()->getType()->isPointerTy()) {
1716 const Value *UO = getUnderlyingObject(V: SI->getValueOperand());
1717 if (CapturedBeforeReturn.erase(Val: UO))
1718 ShouldIterateEndOfFunctionDSE = true;
1719 InvisibleToCallerAfterRet.erase(Val: UO);
1720 }
1721 }
1722 }
1723
1724 Updater.removeMemoryAccess(MA);
1725 }
1726
1727 auto I = IOLs.find(Key: DeadInst->getParent());
1728 if (I != IOLs.end())
1729 I->second.erase(Val: DeadInst);
1730 // Remove its operands
1731 for (Use &O : DeadInst->operands())
1732 if (Instruction *OpI = dyn_cast<Instruction>(Val&: O)) {
1733 O = nullptr;
1734 if (isInstructionTriviallyDead(I: OpI, TLI: &TLI))
1735 NowDeadInsts.push_back(Elt: OpI);
1736 }
1737
1738 EI.removeInstruction(I: DeadInst);
1739 DeadInst->eraseFromParent();
1740 }
1741 }
1742
1743 // Check for any extra throws between \p KillingI and \p DeadI that block
1744 // DSE. This only checks extra maythrows (those that aren't MemoryDef's).
1745 // MemoryDef that may throw are handled during the walk from one def to the
1746 // next.
1747 bool mayThrowBetween(Instruction *KillingI, Instruction *DeadI,
1748 const Value *KillingUndObj) {
1749 // First see if we can ignore it by using the fact that KillingI is an
1750 // alloca/alloca like object that is not visible to the caller during
1751 // execution of the function.
1752 if (KillingUndObj && isInvisibleToCallerOnUnwind(V: KillingUndObj))
1753 return false;
1754
1755 if (KillingI->getParent() == DeadI->getParent())
1756 return ThrowingBlocks.count(Ptr: KillingI->getParent());
1757 return !ThrowingBlocks.empty();
1758 }
1759
1760 // Check if \p DeadI acts as a DSE barrier for \p KillingI. The following
1761 // instructions act as barriers:
1762 // * A memory instruction that may throw and \p KillingI accesses a non-stack
1763 // object.
1764 // * Atomic stores stronger that monotonic.
1765 bool isDSEBarrier(const Value *KillingUndObj, Instruction *DeadI) {
1766 // If DeadI may throw it acts as a barrier, unless we are to an
1767 // alloca/alloca like object that does not escape.
1768 if (DeadI->mayThrow() && !isInvisibleToCallerOnUnwind(V: KillingUndObj))
1769 return true;
1770
1771 // If DeadI is an atomic load/store stronger than monotonic, do not try to
1772 // eliminate/reorder it.
1773 if (DeadI->isAtomic()) {
1774 if (auto *LI = dyn_cast<LoadInst>(Val: DeadI))
1775 return isStrongerThanMonotonic(AO: LI->getOrdering());
1776 if (auto *SI = dyn_cast<StoreInst>(Val: DeadI))
1777 return isStrongerThanMonotonic(AO: SI->getOrdering());
1778 if (auto *ARMW = dyn_cast<AtomicRMWInst>(Val: DeadI))
1779 return isStrongerThanMonotonic(AO: ARMW->getOrdering());
1780 if (auto *CmpXchg = dyn_cast<AtomicCmpXchgInst>(Val: DeadI))
1781 return isStrongerThanMonotonic(AO: CmpXchg->getSuccessOrdering()) ||
1782 isStrongerThanMonotonic(AO: CmpXchg->getFailureOrdering());
1783 llvm_unreachable("other instructions should be skipped in MemorySSA");
1784 }
1785 return false;
1786 }
1787
1788 /// Eliminate writes to objects that are not visible in the caller and are not
1789 /// accessed before returning from the function.
1790 bool eliminateDeadWritesAtEndOfFunction() {
1791 bool MadeChange = false;
1792 LLVM_DEBUG(
1793 dbgs()
1794 << "Trying to eliminate MemoryDefs at the end of the function\n");
1795 do {
1796 ShouldIterateEndOfFunctionDSE = false;
1797 for (MemoryDef *Def : llvm::reverse(C&: MemDefs)) {
1798 if (SkipStores.contains(Ptr: Def))
1799 continue;
1800
1801 Instruction *DefI = Def->getMemoryInst();
1802 auto DefLoc = getLocForWrite(I: DefI);
1803 if (!DefLoc || !isRemovable(I: DefI))
1804 continue;
1805
1806 // NOTE: Currently eliminating writes at the end of a function is
1807 // limited to MemoryDefs with a single underlying object, to save
1808 // compile-time. In practice it appears the case with multiple
1809 // underlying objects is very uncommon. If it turns out to be important,
1810 // we can use getUnderlyingObjects here instead.
1811 const Value *UO = getUnderlyingObject(V: DefLoc->Ptr);
1812 if (!isInvisibleToCallerAfterRet(V: UO))
1813 continue;
1814
1815 if (isWriteAtEndOfFunction(Def)) {
1816 // See through pointer-to-pointer bitcasts
1817 LLVM_DEBUG(dbgs() << " ... MemoryDef is not accessed until the end "
1818 "of the function\n");
1819 deleteDeadInstruction(SI: DefI);
1820 ++NumFastStores;
1821 MadeChange = true;
1822 }
1823 }
1824 } while (ShouldIterateEndOfFunctionDSE);
1825 return MadeChange;
1826 }
1827
1828 /// If we have a zero initializing memset following a call to malloc,
1829 /// try folding it into a call to calloc.
1830 bool tryFoldIntoCalloc(MemoryDef *Def, const Value *DefUO) {
1831 Instruction *DefI = Def->getMemoryInst();
1832 MemSetInst *MemSet = dyn_cast<MemSetInst>(Val: DefI);
1833 if (!MemSet)
1834 // TODO: Could handle zero store to small allocation as well.
1835 return false;
1836 Constant *StoredConstant = dyn_cast<Constant>(Val: MemSet->getValue());
1837 if (!StoredConstant || !StoredConstant->isNullValue())
1838 return false;
1839
1840 if (!isRemovable(I: DefI))
1841 // The memset might be volatile..
1842 return false;
1843
1844 if (F.hasFnAttribute(Attribute::SanitizeMemory) ||
1845 F.hasFnAttribute(Attribute::SanitizeAddress) ||
1846 F.hasFnAttribute(Attribute::SanitizeHWAddress) ||
1847 F.getName() == "calloc")
1848 return false;
1849 auto *Malloc = const_cast<CallInst *>(dyn_cast<CallInst>(Val: DefUO));
1850 if (!Malloc)
1851 return false;
1852 auto *InnerCallee = Malloc->getCalledFunction();
1853 if (!InnerCallee)
1854 return false;
1855 LibFunc Func;
1856 if (!TLI.getLibFunc(FDecl: *InnerCallee, F&: Func) || !TLI.has(F: Func) ||
1857 Func != LibFunc_malloc)
1858 return false;
1859 // Gracefully handle malloc with unexpected memory attributes.
1860 auto *MallocDef = dyn_cast_or_null<MemoryDef>(Val: MSSA.getMemoryAccess(I: Malloc));
1861 if (!MallocDef)
1862 return false;
1863
1864 auto shouldCreateCalloc = [](CallInst *Malloc, CallInst *Memset) {
1865 // Check for br(icmp ptr, null), truebb, falsebb) pattern at the end
1866 // of malloc block
1867 auto *MallocBB = Malloc->getParent(),
1868 *MemsetBB = Memset->getParent();
1869 if (MallocBB == MemsetBB)
1870 return true;
1871 auto *Ptr = Memset->getArgOperand(i: 0);
1872 auto *TI = MallocBB->getTerminator();
1873 ICmpInst::Predicate Pred;
1874 BasicBlock *TrueBB, *FalseBB;
1875 if (!match(V: TI, P: m_Br(C: m_ICmp(Pred, L: m_Specific(V: Ptr), R: m_Zero()), T&: TrueBB,
1876 F&: FalseBB)))
1877 return false;
1878 if (Pred != ICmpInst::ICMP_EQ || MemsetBB != FalseBB)
1879 return false;
1880 return true;
1881 };
1882
1883 if (Malloc->getOperand(i_nocapture: 0) != MemSet->getLength())
1884 return false;
1885 if (!shouldCreateCalloc(Malloc, MemSet) ||
1886 !DT.dominates(Def: Malloc, User: MemSet) ||
1887 !memoryIsNotModifiedBetween(FirstI: Malloc, SecondI: MemSet, AA&: BatchAA, DL, DT: &DT))
1888 return false;
1889 IRBuilder<> IRB(Malloc);
1890 Type *SizeTTy = Malloc->getArgOperand(i: 0)->getType();
1891 auto *Calloc = emitCalloc(Num: ConstantInt::get(Ty: SizeTTy, V: 1),
1892 Size: Malloc->getArgOperand(i: 0), B&: IRB, TLI);
1893 if (!Calloc)
1894 return false;
1895 MemorySSAUpdater Updater(&MSSA);
1896 auto *NewAccess =
1897 Updater.createMemoryAccessAfter(I: cast<Instruction>(Val: Calloc), Definition: nullptr,
1898 InsertPt: MallocDef);
1899 auto *NewAccessMD = cast<MemoryDef>(Val: NewAccess);
1900 Updater.insertDef(Def: NewAccessMD, /*RenameUses=*/true);
1901 Updater.removeMemoryAccess(I: Malloc);
1902 Malloc->replaceAllUsesWith(V: Calloc);
1903 Malloc->eraseFromParent();
1904 return true;
1905 }
1906
1907 // Check if there is a dominating condition, that implies that the value
1908 // being stored in a ptr is already present in the ptr.
1909 bool dominatingConditionImpliesValue(MemoryDef *Def) {
1910 auto *StoreI = cast<StoreInst>(Val: Def->getMemoryInst());
1911 BasicBlock *StoreBB = StoreI->getParent();
1912 Value *StorePtr = StoreI->getPointerOperand();
1913 Value *StoreVal = StoreI->getValueOperand();
1914
1915 DomTreeNode *IDom = DT.getNode(BB: StoreBB)->getIDom();
1916 if (!IDom)
1917 return false;
1918
1919 auto *BI = dyn_cast<BranchInst>(Val: IDom->getBlock()->getTerminator());
1920 if (!BI || !BI->isConditional())
1921 return false;
1922
1923 // In case both blocks are the same, it is not possible to determine
1924 // if optimization is possible. (We would not want to optimize a store
1925 // in the FalseBB if condition is true and vice versa.)
1926 if (BI->getSuccessor(i: 0) == BI->getSuccessor(i: 1))
1927 return false;
1928
1929 Instruction *ICmpL;
1930 ICmpInst::Predicate Pred;
1931 if (!match(V: BI->getCondition(),
1932 P: m_c_ICmp(Pred,
1933 L: m_CombineAnd(L: m_Load(Op: m_Specific(V: StorePtr)),
1934 R: m_Instruction(I&: ICmpL)),
1935 R: m_Specific(V: StoreVal))) ||
1936 !ICmpInst::isEquality(P: Pred))
1937 return false;
1938
1939 // In case the else blocks also branches to the if block or the other way
1940 // around it is not possible to determine if the optimization is possible.
1941 if (Pred == ICmpInst::ICMP_EQ &&
1942 !DT.dominates(BBE: BasicBlockEdge(BI->getParent(), BI->getSuccessor(i: 0)),
1943 BB: StoreBB))
1944 return false;
1945
1946 if (Pred == ICmpInst::ICMP_NE &&
1947 !DT.dominates(BBE: BasicBlockEdge(BI->getParent(), BI->getSuccessor(i: 1)),
1948 BB: StoreBB))
1949 return false;
1950
1951 MemoryAccess *LoadAcc = MSSA.getMemoryAccess(I: ICmpL);
1952 MemoryAccess *ClobAcc =
1953 MSSA.getSkipSelfWalker()->getClobberingMemoryAccess(Def, AA&: BatchAA);
1954
1955 return MSSA.dominates(A: ClobAcc, B: LoadAcc);
1956 }
1957
1958 /// \returns true if \p Def is a no-op store, either because it
1959 /// directly stores back a loaded value or stores zero to a calloced object.
1960 bool storeIsNoop(MemoryDef *Def, const Value *DefUO) {
1961 Instruction *DefI = Def->getMemoryInst();
1962 StoreInst *Store = dyn_cast<StoreInst>(Val: DefI);
1963 MemSetInst *MemSet = dyn_cast<MemSetInst>(Val: DefI);
1964 Constant *StoredConstant = nullptr;
1965 if (Store)
1966 StoredConstant = dyn_cast<Constant>(Val: Store->getOperand(i_nocapture: 0));
1967 else if (MemSet)
1968 StoredConstant = dyn_cast<Constant>(Val: MemSet->getValue());
1969 else
1970 return false;
1971
1972 if (!isRemovable(I: DefI))
1973 return false;
1974
1975 if (StoredConstant) {
1976 Constant *InitC =
1977 getInitialValueOfAllocation(V: DefUO, TLI: &TLI, Ty: StoredConstant->getType());
1978 // If the clobbering access is LiveOnEntry, no instructions between them
1979 // can modify the memory location.
1980 if (InitC && InitC == StoredConstant)
1981 return MSSA.isLiveOnEntryDef(
1982 MA: MSSA.getSkipSelfWalker()->getClobberingMemoryAccess(Def, AA&: BatchAA));
1983 }
1984
1985 if (!Store)
1986 return false;
1987
1988 if (dominatingConditionImpliesValue(Def))
1989 return true;
1990
1991 if (auto *LoadI = dyn_cast<LoadInst>(Val: Store->getOperand(i_nocapture: 0))) {
1992 if (LoadI->getPointerOperand() == Store->getOperand(i_nocapture: 1)) {
1993 // Get the defining access for the load.
1994 auto *LoadAccess = MSSA.getMemoryAccess(I: LoadI)->getDefiningAccess();
1995 // Fast path: the defining accesses are the same.
1996 if (LoadAccess == Def->getDefiningAccess())
1997 return true;
1998
1999 // Look through phi accesses. Recursively scan all phi accesses by
2000 // adding them to a worklist. Bail when we run into a memory def that
2001 // does not match LoadAccess.
2002 SetVector<MemoryAccess *> ToCheck;
2003 MemoryAccess *Current =
2004 MSSA.getWalker()->getClobberingMemoryAccess(Def, AA&: BatchAA);
2005 // We don't want to bail when we run into the store memory def. But,
2006 // the phi access may point to it. So, pretend like we've already
2007 // checked it.
2008 ToCheck.insert(X: Def);
2009 ToCheck.insert(X: Current);
2010 // Start at current (1) to simulate already having checked Def.
2011 for (unsigned I = 1; I < ToCheck.size(); ++I) {
2012 Current = ToCheck[I];
2013 if (auto PhiAccess = dyn_cast<MemoryPhi>(Val: Current)) {
2014 // Check all the operands.
2015 for (auto &Use : PhiAccess->incoming_values())
2016 ToCheck.insert(X: cast<MemoryAccess>(Val: &Use));
2017 continue;
2018 }
2019
2020 // If we found a memory def, bail. This happens when we have an
2021 // unrelated write in between an otherwise noop store.
2022 assert(isa<MemoryDef>(Current) &&
2023 "Only MemoryDefs should reach here.");
2024 // TODO: Skip no alias MemoryDefs that have no aliasing reads.
2025 // We are searching for the definition of the store's destination.
2026 // So, if that is the same definition as the load, then this is a
2027 // noop. Otherwise, fail.
2028 if (LoadAccess != Current)
2029 return false;
2030 }
2031 return true;
2032 }
2033 }
2034
2035 return false;
2036 }
2037
2038 bool removePartiallyOverlappedStores(InstOverlapIntervalsTy &IOL) {
2039 bool Changed = false;
2040 for (auto OI : IOL) {
2041 Instruction *DeadI = OI.first;
2042 MemoryLocation Loc = *getLocForWrite(I: DeadI);
2043 assert(isRemovable(DeadI) && "Expect only removable instruction");
2044
2045 const Value *Ptr = Loc.Ptr->stripPointerCasts();
2046 int64_t DeadStart = 0;
2047 uint64_t DeadSize = Loc.Size.getValue();
2048 GetPointerBaseWithConstantOffset(Ptr, Offset&: DeadStart, DL);
2049 OverlapIntervalsTy &IntervalMap = OI.second;
2050 Changed |= tryToShortenEnd(DeadI, IntervalMap, DeadStart, DeadSize);
2051 if (IntervalMap.empty())
2052 continue;
2053 Changed |= tryToShortenBegin(DeadI, IntervalMap, DeadStart, DeadSize);
2054 }
2055 return Changed;
2056 }
2057
2058 /// Eliminates writes to locations where the value that is being written
2059 /// is already stored at the same location.
2060 bool eliminateRedundantStoresOfExistingValues() {
2061 bool MadeChange = false;
2062 LLVM_DEBUG(dbgs() << "Trying to eliminate MemoryDefs that write the "
2063 "already existing value\n");
2064 for (auto *Def : MemDefs) {
2065 if (SkipStores.contains(Ptr: Def) || MSSA.isLiveOnEntryDef(MA: Def))
2066 continue;
2067
2068 Instruction *DefInst = Def->getMemoryInst();
2069 auto MaybeDefLoc = getLocForWrite(I: DefInst);
2070 if (!MaybeDefLoc || !isRemovable(I: DefInst))
2071 continue;
2072
2073 MemoryDef *UpperDef;
2074 // To conserve compile-time, we avoid walking to the next clobbering def.
2075 // Instead, we just try to get the optimized access, if it exists. DSE
2076 // will try to optimize defs during the earlier traversal.
2077 if (Def->isOptimized())
2078 UpperDef = dyn_cast<MemoryDef>(Val: Def->getOptimized());
2079 else
2080 UpperDef = dyn_cast<MemoryDef>(Val: Def->getDefiningAccess());
2081 if (!UpperDef || MSSA.isLiveOnEntryDef(MA: UpperDef))
2082 continue;
2083
2084 Instruction *UpperInst = UpperDef->getMemoryInst();
2085 auto IsRedundantStore = [&]() {
2086 if (DefInst->isIdenticalTo(I: UpperInst))
2087 return true;
2088 if (auto *MemSetI = dyn_cast<MemSetInst>(Val: UpperInst)) {
2089 if (auto *SI = dyn_cast<StoreInst>(Val: DefInst)) {
2090 // MemSetInst must have a write location.
2091 MemoryLocation UpperLoc = *getLocForWrite(I: UpperInst);
2092 int64_t InstWriteOffset = 0;
2093 int64_t DepWriteOffset = 0;
2094 auto OR = isOverwrite(KillingI: UpperInst, DeadI: DefInst, KillingLoc: UpperLoc, DeadLoc: *MaybeDefLoc,
2095 KillingOff&: InstWriteOffset, DeadOff&: DepWriteOffset);
2096 Value *StoredByte = isBytewiseValue(V: SI->getValueOperand(), DL);
2097 return StoredByte && StoredByte == MemSetI->getOperand(i_nocapture: 1) &&
2098 OR == OW_Complete;
2099 }
2100 }
2101 return false;
2102 };
2103
2104 if (!IsRedundantStore() || isReadClobber(DefLoc: *MaybeDefLoc, UseInst: DefInst))
2105 continue;
2106 LLVM_DEBUG(dbgs() << "DSE: Remove No-Op Store:\n DEAD: " << *DefInst
2107 << '\n');
2108 deleteDeadInstruction(SI: DefInst);
2109 NumRedundantStores++;
2110 MadeChange = true;
2111 }
2112 return MadeChange;
2113 }
2114};
2115
2116static bool eliminateDeadStores(Function &F, AliasAnalysis &AA, MemorySSA &MSSA,
2117 DominatorTree &DT, PostDominatorTree &PDT,
2118 const TargetLibraryInfo &TLI,
2119 const LoopInfo &LI) {
2120 bool MadeChange = false;
2121
2122 DSEState State(F, AA, MSSA, DT, PDT, TLI, LI);
2123 // For each store:
2124 for (unsigned I = 0; I < State.MemDefs.size(); I++) {
2125 MemoryDef *KillingDef = State.MemDefs[I];
2126 if (State.SkipStores.count(Ptr: KillingDef))
2127 continue;
2128 Instruction *KillingI = KillingDef->getMemoryInst();
2129
2130 std::optional<MemoryLocation> MaybeKillingLoc;
2131 if (State.isMemTerminatorInst(I: KillingI)) {
2132 if (auto KillingLoc = State.getLocForTerminator(I: KillingI))
2133 MaybeKillingLoc = KillingLoc->first;
2134 } else {
2135 MaybeKillingLoc = State.getLocForWrite(I: KillingI);
2136 }
2137
2138 if (!MaybeKillingLoc) {
2139 LLVM_DEBUG(dbgs() << "Failed to find analyzable write location for "
2140 << *KillingI << "\n");
2141 continue;
2142 }
2143 MemoryLocation KillingLoc = *MaybeKillingLoc;
2144 assert(KillingLoc.Ptr && "KillingLoc should not be null");
2145 const Value *KillingUndObj = getUnderlyingObject(V: KillingLoc.Ptr);
2146 LLVM_DEBUG(dbgs() << "Trying to eliminate MemoryDefs killed by "
2147 << *KillingDef << " (" << *KillingI << ")\n");
2148
2149 unsigned ScanLimit = MemorySSAScanLimit;
2150 unsigned WalkerStepLimit = MemorySSAUpwardsStepLimit;
2151 unsigned PartialLimit = MemorySSAPartialStoreLimit;
2152 // Worklist of MemoryAccesses that may be killed by KillingDef.
2153 SmallSetVector<MemoryAccess *, 8> ToCheck;
2154 ToCheck.insert(X: KillingDef->getDefiningAccess());
2155
2156 bool Shortend = false;
2157 bool IsMemTerm = State.isMemTerminatorInst(I: KillingI);
2158 // Check if MemoryAccesses in the worklist are killed by KillingDef.
2159 for (unsigned I = 0; I < ToCheck.size(); I++) {
2160 MemoryAccess *Current = ToCheck[I];
2161 if (State.SkipStores.count(Ptr: Current))
2162 continue;
2163
2164 std::optional<MemoryAccess *> MaybeDeadAccess = State.getDomMemoryDef(
2165 KillingDef, StartAccess: Current, KillingLoc, KillingUndObj, ScanLimit,
2166 WalkerStepLimit, IsMemTerm, PartialLimit);
2167
2168 if (!MaybeDeadAccess) {
2169 LLVM_DEBUG(dbgs() << " finished walk\n");
2170 continue;
2171 }
2172
2173 MemoryAccess *DeadAccess = *MaybeDeadAccess;
2174 LLVM_DEBUG(dbgs() << " Checking if we can kill " << *DeadAccess);
2175 if (isa<MemoryPhi>(Val: DeadAccess)) {
2176 LLVM_DEBUG(dbgs() << "\n ... adding incoming values to worklist\n");
2177 for (Value *V : cast<MemoryPhi>(Val: DeadAccess)->incoming_values()) {
2178 MemoryAccess *IncomingAccess = cast<MemoryAccess>(Val: V);
2179 BasicBlock *IncomingBlock = IncomingAccess->getBlock();
2180 BasicBlock *PhiBlock = DeadAccess->getBlock();
2181
2182 // We only consider incoming MemoryAccesses that come before the
2183 // MemoryPhi. Otherwise we could discover candidates that do not
2184 // strictly dominate our starting def.
2185 if (State.PostOrderNumbers[IncomingBlock] >
2186 State.PostOrderNumbers[PhiBlock])
2187 ToCheck.insert(X: IncomingAccess);
2188 }
2189 continue;
2190 }
2191 auto *DeadDefAccess = cast<MemoryDef>(Val: DeadAccess);
2192 Instruction *DeadI = DeadDefAccess->getMemoryInst();
2193 LLVM_DEBUG(dbgs() << " (" << *DeadI << ")\n");
2194 ToCheck.insert(X: DeadDefAccess->getDefiningAccess());
2195 NumGetDomMemoryDefPassed++;
2196
2197 if (!DebugCounter::shouldExecute(CounterName: MemorySSACounter))
2198 continue;
2199
2200 MemoryLocation DeadLoc = *State.getLocForWrite(I: DeadI);
2201
2202 if (IsMemTerm) {
2203 const Value *DeadUndObj = getUnderlyingObject(V: DeadLoc.Ptr);
2204 if (KillingUndObj != DeadUndObj)
2205 continue;
2206 LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n DEAD: " << *DeadI
2207 << "\n KILLER: " << *KillingI << '\n');
2208 State.deleteDeadInstruction(SI: DeadI);
2209 ++NumFastStores;
2210 MadeChange = true;
2211 } else {
2212 // Check if DeadI overwrites KillingI.
2213 int64_t KillingOffset = 0;
2214 int64_t DeadOffset = 0;
2215 OverwriteResult OR = State.isOverwrite(
2216 KillingI, DeadI, KillingLoc, DeadLoc, KillingOff&: KillingOffset, DeadOff&: DeadOffset);
2217 if (OR == OW_MaybePartial) {
2218 auto Iter = State.IOLs.insert(
2219 KV: std::make_pair<BasicBlock *, InstOverlapIntervalsTy>(
2220 x: DeadI->getParent(), y: InstOverlapIntervalsTy()));
2221 auto &IOL = Iter.first->second;
2222 OR = isPartialOverwrite(KillingLoc, DeadLoc, KillingOff: KillingOffset,
2223 DeadOff: DeadOffset, DeadI, IOL);
2224 }
2225
2226 if (EnablePartialStoreMerging && OR == OW_PartialEarlierWithFullLater) {
2227 auto *DeadSI = dyn_cast<StoreInst>(Val: DeadI);
2228 auto *KillingSI = dyn_cast<StoreInst>(Val: KillingI);
2229 // We are re-using tryToMergePartialOverlappingStores, which requires
2230 // DeadSI to dominate KillingSI.
2231 // TODO: implement tryToMergeParialOverlappingStores using MemorySSA.
2232 if (DeadSI && KillingSI && DT.dominates(Def: DeadSI, User: KillingSI)) {
2233 if (Constant *Merged = tryToMergePartialOverlappingStores(
2234 KillingI: KillingSI, DeadI: DeadSI, KillingOffset, DeadOffset, DL: State.DL,
2235 AA&: State.BatchAA, DT: &DT)) {
2236
2237 // Update stored value of earlier store to merged constant.
2238 DeadSI->setOperand(i_nocapture: 0, Val_nocapture: Merged);
2239 ++NumModifiedStores;
2240 MadeChange = true;
2241
2242 Shortend = true;
2243 // Remove killing store and remove any outstanding overlap
2244 // intervals for the updated store.
2245 State.deleteDeadInstruction(SI: KillingSI);
2246 auto I = State.IOLs.find(Key: DeadSI->getParent());
2247 if (I != State.IOLs.end())
2248 I->second.erase(Val: DeadSI);
2249 break;
2250 }
2251 }
2252 }
2253
2254 if (OR == OW_Complete) {
2255 LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n DEAD: " << *DeadI
2256 << "\n KILLER: " << *KillingI << '\n');
2257 State.deleteDeadInstruction(SI: DeadI);
2258 ++NumFastStores;
2259 MadeChange = true;
2260 }
2261 }
2262 }
2263
2264 // Check if the store is a no-op.
2265 if (!Shortend && State.storeIsNoop(Def: KillingDef, DefUO: KillingUndObj)) {
2266 LLVM_DEBUG(dbgs() << "DSE: Remove No-Op Store:\n DEAD: " << *KillingI
2267 << '\n');
2268 State.deleteDeadInstruction(SI: KillingI);
2269 NumRedundantStores++;
2270 MadeChange = true;
2271 continue;
2272 }
2273
2274 // Can we form a calloc from a memset/malloc pair?
2275 if (!Shortend && State.tryFoldIntoCalloc(Def: KillingDef, DefUO: KillingUndObj)) {
2276 LLVM_DEBUG(dbgs() << "DSE: Remove memset after forming calloc:\n"
2277 << " DEAD: " << *KillingI << '\n');
2278 State.deleteDeadInstruction(SI: KillingI);
2279 MadeChange = true;
2280 continue;
2281 }
2282 }
2283
2284 if (EnablePartialOverwriteTracking)
2285 for (auto &KV : State.IOLs)
2286 MadeChange |= State.removePartiallyOverlappedStores(IOL&: KV.second);
2287
2288 MadeChange |= State.eliminateRedundantStoresOfExistingValues();
2289 MadeChange |= State.eliminateDeadWritesAtEndOfFunction();
2290 return MadeChange;
2291}
2292} // end anonymous namespace
2293
2294//===----------------------------------------------------------------------===//
2295// DSE Pass
2296//===----------------------------------------------------------------------===//
2297PreservedAnalyses DSEPass::run(Function &F, FunctionAnalysisManager &AM) {
2298 AliasAnalysis &AA = AM.getResult<AAManager>(IR&: F);
2299 const TargetLibraryInfo &TLI = AM.getResult<TargetLibraryAnalysis>(IR&: F);
2300 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(IR&: F);
2301 MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(IR&: F).getMSSA();
2302 PostDominatorTree &PDT = AM.getResult<PostDominatorTreeAnalysis>(IR&: F);
2303 LoopInfo &LI = AM.getResult<LoopAnalysis>(IR&: F);
2304
2305 bool Changed = eliminateDeadStores(F, AA, MSSA, DT, PDT, TLI, LI);
2306
2307#ifdef LLVM_ENABLE_STATS
2308 if (AreStatisticsEnabled())
2309 for (auto &I : instructions(F))
2310 NumRemainingStores += isa<StoreInst>(Val: &I);
2311#endif
2312
2313 if (!Changed)
2314 return PreservedAnalyses::all();
2315
2316 PreservedAnalyses PA;
2317 PA.preserveSet<CFGAnalyses>();
2318 PA.preserve<MemorySSAAnalysis>();
2319 PA.preserve<LoopAnalysis>();
2320 return PA;
2321}
2322

source code of llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp