1//===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the library calls simplifier. It does not implement
10// any pass, but can't be used by other passes to do simplifications.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Transforms/Utils/SimplifyLibCalls.h"
15#include "llvm/ADT/APSInt.h"
16#include "llvm/ADT/SmallString.h"
17#include "llvm/ADT/StringExtras.h"
18#include "llvm/Analysis/ConstantFolding.h"
19#include "llvm/Analysis/Loads.h"
20#include "llvm/Analysis/OptimizationRemarkEmitter.h"
21#include "llvm/Analysis/ValueTracking.h"
22#include "llvm/IR/AttributeMask.h"
23#include "llvm/IR/DataLayout.h"
24#include "llvm/IR/Function.h"
25#include "llvm/IR/IRBuilder.h"
26#include "llvm/IR/IntrinsicInst.h"
27#include "llvm/IR/Intrinsics.h"
28#include "llvm/IR/Module.h"
29#include "llvm/IR/PatternMatch.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/KnownBits.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/TargetParser/Triple.h"
34#include "llvm/Transforms/Utils/BuildLibCalls.h"
35#include "llvm/Transforms/Utils/Local.h"
36#include "llvm/Transforms/Utils/SizeOpts.h"
37
38#include <cmath>
39
40using namespace llvm;
41using namespace PatternMatch;
42
43static cl::opt<bool>
44 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
45 cl::init(Val: false),
46 cl::desc("Enable unsafe double to float "
47 "shrinking for math lib calls"));
48
49// Enable conversion of operator new calls with a MemProf hot or cold hint
50// to an operator new call that takes a hot/cold hint. Off by default since
51// not all allocators currently support this extension.
52static cl::opt<bool>
53 OptimizeHotColdNew("optimize-hot-cold-new", cl::Hidden, cl::init(Val: false),
54 cl::desc("Enable hot/cold operator new library calls"));
55
56namespace {
57
58// Specialized parser to ensure the hint is an 8 bit value (we can't specify
59// uint8_t to opt<> as that is interpreted to mean that we are passing a char
60// option with a specific set of values.
61struct HotColdHintParser : public cl::parser<unsigned> {
62 HotColdHintParser(cl::Option &O) : cl::parser<unsigned>(O) {}
63
64 bool parse(cl::Option &O, StringRef ArgName, StringRef Arg, unsigned &Value) {
65 if (Arg.getAsInteger(Radix: 0, Result&: Value))
66 return O.error(Message: "'" + Arg + "' value invalid for uint argument!");
67
68 if (Value > 255)
69 return O.error(Message: "'" + Arg + "' value must be in the range [0, 255]!");
70
71 return false;
72 }
73};
74
75} // end anonymous namespace
76
77// Hot/cold operator new takes an 8 bit hotness hint, where 0 is the coldest
78// and 255 is the hottest. Default to 1 value away from the coldest and hottest
79// hints, so that the compiler hinted allocations are slightly less strong than
80// manually inserted hints at the two extremes.
81static cl::opt<unsigned, false, HotColdHintParser> ColdNewHintValue(
82 "cold-new-hint-value", cl::Hidden, cl::init(Val: 1),
83 cl::desc("Value to pass to hot/cold operator new for cold allocation"));
84static cl::opt<unsigned, false, HotColdHintParser> HotNewHintValue(
85 "hot-new-hint-value", cl::Hidden, cl::init(Val: 254),
86 cl::desc("Value to pass to hot/cold operator new for hot allocation"));
87
88//===----------------------------------------------------------------------===//
89// Helper Functions
90//===----------------------------------------------------------------------===//
91
92static bool ignoreCallingConv(LibFunc Func) {
93 return Func == LibFunc_abs || Func == LibFunc_labs ||
94 Func == LibFunc_llabs || Func == LibFunc_strlen;
95}
96
97/// Return true if it is only used in equality comparisons with With.
98static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
99 for (User *U : V->users()) {
100 if (ICmpInst *IC = dyn_cast<ICmpInst>(Val: U))
101 if (IC->isEquality() && IC->getOperand(i_nocapture: 1) == With)
102 continue;
103 // Unknown instruction.
104 return false;
105 }
106 return true;
107}
108
109static bool callHasFloatingPointArgument(const CallInst *CI) {
110 return any_of(Range: CI->operands(), P: [](const Use &OI) {
111 return OI->getType()->isFloatingPointTy();
112 });
113}
114
115static bool callHasFP128Argument(const CallInst *CI) {
116 return any_of(Range: CI->operands(), P: [](const Use &OI) {
117 return OI->getType()->isFP128Ty();
118 });
119}
120
121// Convert the entire string Str representing an integer in Base, up to
122// the terminating nul if present, to a constant according to the rules
123// of strtoul[l] or, when AsSigned is set, of strtol[l]. On success
124// return the result, otherwise null.
125// The function assumes the string is encoded in ASCII and carefully
126// avoids converting sequences (including "") that the corresponding
127// library call might fail and set errno for.
128static Value *convertStrToInt(CallInst *CI, StringRef &Str, Value *EndPtr,
129 uint64_t Base, bool AsSigned, IRBuilderBase &B) {
130 if (Base < 2 || Base > 36)
131 if (Base != 0)
132 // Fail for an invalid base (required by POSIX).
133 return nullptr;
134
135 // Current offset into the original string to reflect in EndPtr.
136 size_t Offset = 0;
137 // Strip leading whitespace.
138 for ( ; Offset != Str.size(); ++Offset)
139 if (!isSpace(C: (unsigned char)Str[Offset])) {
140 Str = Str.substr(Start: Offset);
141 break;
142 }
143
144 if (Str.empty())
145 // Fail for empty subject sequences (POSIX allows but doesn't require
146 // strtol[l]/strtoul[l] to fail with EINVAL).
147 return nullptr;
148
149 // Strip but remember the sign.
150 bool Negate = Str[0] == '-';
151 if (Str[0] == '-' || Str[0] == '+') {
152 Str = Str.drop_front();
153 if (Str.empty())
154 // Fail for a sign with nothing after it.
155 return nullptr;
156 ++Offset;
157 }
158
159 // Set Max to the absolute value of the minimum (for signed), or
160 // to the maximum (for unsigned) value representable in the type.
161 Type *RetTy = CI->getType();
162 unsigned NBits = RetTy->getPrimitiveSizeInBits();
163 uint64_t Max = AsSigned && Negate ? 1 : 0;
164 Max += AsSigned ? maxIntN(N: NBits) : maxUIntN(N: NBits);
165
166 // Autodetect Base if it's zero and consume the "0x" prefix.
167 if (Str.size() > 1) {
168 if (Str[0] == '0') {
169 if (toUpper(x: (unsigned char)Str[1]) == 'X') {
170 if (Str.size() == 2 || (Base && Base != 16))
171 // Fail if Base doesn't allow the "0x" prefix or for the prefix
172 // alone that implementations like BSD set errno to EINVAL for.
173 return nullptr;
174
175 Str = Str.drop_front(N: 2);
176 Offset += 2;
177 Base = 16;
178 }
179 else if (Base == 0)
180 Base = 8;
181 } else if (Base == 0)
182 Base = 10;
183 }
184 else if (Base == 0)
185 Base = 10;
186
187 // Convert the rest of the subject sequence, not including the sign,
188 // to its uint64_t representation (this assumes the source character
189 // set is ASCII).
190 uint64_t Result = 0;
191 for (unsigned i = 0; i != Str.size(); ++i) {
192 unsigned char DigVal = Str[i];
193 if (isDigit(C: DigVal))
194 DigVal = DigVal - '0';
195 else {
196 DigVal = toUpper(x: DigVal);
197 if (isAlpha(C: DigVal))
198 DigVal = DigVal - 'A' + 10;
199 else
200 return nullptr;
201 }
202
203 if (DigVal >= Base)
204 // Fail if the digit is not valid in the Base.
205 return nullptr;
206
207 // Add the digit and fail if the result is not representable in
208 // the (unsigned form of the) destination type.
209 bool VFlow;
210 Result = SaturatingMultiplyAdd(X: Result, Y: Base, A: (uint64_t)DigVal, ResultOverflowed: &VFlow);
211 if (VFlow || Result > Max)
212 return nullptr;
213 }
214
215 if (EndPtr) {
216 // Store the pointer to the end.
217 Value *Off = B.getInt64(C: Offset + Str.size());
218 Value *StrBeg = CI->getArgOperand(i: 0);
219 Value *StrEnd = B.CreateInBoundsGEP(Ty: B.getInt8Ty(), Ptr: StrBeg, IdxList: Off, Name: "endptr");
220 B.CreateStore(Val: StrEnd, Ptr: EndPtr);
221 }
222
223 if (Negate)
224 // Unsigned negation doesn't overflow.
225 Result = -Result;
226
227 return ConstantInt::get(Ty: RetTy, V: Result);
228}
229
230static bool isOnlyUsedInComparisonWithZero(Value *V) {
231 for (User *U : V->users()) {
232 if (ICmpInst *IC = dyn_cast<ICmpInst>(Val: U))
233 if (Constant *C = dyn_cast<Constant>(Val: IC->getOperand(i_nocapture: 1)))
234 if (C->isNullValue())
235 continue;
236 // Unknown instruction.
237 return false;
238 }
239 return true;
240}
241
242static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len,
243 const DataLayout &DL) {
244 if (!isOnlyUsedInComparisonWithZero(V: CI))
245 return false;
246
247 if (!isDereferenceableAndAlignedPointer(V: Str, Alignment: Align(1), Size: APInt(64, Len), DL))
248 return false;
249
250 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory))
251 return false;
252
253 return true;
254}
255
256static void annotateDereferenceableBytes(CallInst *CI,
257 ArrayRef<unsigned> ArgNos,
258 uint64_t DereferenceableBytes) {
259 const Function *F = CI->getCaller();
260 if (!F)
261 return;
262 for (unsigned ArgNo : ArgNos) {
263 uint64_t DerefBytes = DereferenceableBytes;
264 unsigned AS = CI->getArgOperand(i: ArgNo)->getType()->getPointerAddressSpace();
265 if (!llvm::NullPointerIsDefined(F, AS) ||
266 CI->paramHasAttr(ArgNo, Attribute::Kind: NonNull))
267 DerefBytes = std::max(a: CI->getParamDereferenceableOrNullBytes(i: ArgNo),
268 b: DereferenceableBytes);
269
270 if (CI->getParamDereferenceableBytes(i: ArgNo) < DerefBytes) {
271 CI->removeParamAttr(ArgNo, Attribute::Dereferenceable);
272 if (!llvm::NullPointerIsDefined(F, AS) ||
273 CI->paramHasAttr(ArgNo, Attribute::Kind: NonNull))
274 CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull);
275 CI->addParamAttr(ArgNo, Attr: Attribute::getWithDereferenceableBytes(
276 Context&: CI->getContext(), Bytes: DerefBytes));
277 }
278 }
279}
280
281static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI,
282 ArrayRef<unsigned> ArgNos) {
283 Function *F = CI->getCaller();
284 if (!F)
285 return;
286
287 for (unsigned ArgNo : ArgNos) {
288 if (!CI->paramHasAttr(ArgNo, Attribute::Kind: NoUndef))
289 CI->addParamAttr(ArgNo, Attribute::NoUndef);
290
291 if (!CI->paramHasAttr(ArgNo, Attribute::Kind: NonNull)) {
292 unsigned AS =
293 CI->getArgOperand(i: ArgNo)->getType()->getPointerAddressSpace();
294 if (llvm::NullPointerIsDefined(F, AS))
295 continue;
296 CI->addParamAttr(ArgNo, Attribute::NonNull);
297 }
298
299 annotateDereferenceableBytes(CI, ArgNos: ArgNo, DereferenceableBytes: 1);
300 }
301}
302
303static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos,
304 Value *Size, const DataLayout &DL) {
305 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Val: Size)) {
306 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos);
307 annotateDereferenceableBytes(CI, ArgNos, DereferenceableBytes: LenC->getZExtValue());
308 } else if (isKnownNonZero(V: Size, Q: DL)) {
309 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos);
310 const APInt *X, *Y;
311 uint64_t DerefMin = 1;
312 if (match(V: Size, P: m_Select(C: m_Value(), L: m_APInt(Res&: X), R: m_APInt(Res&: Y)))) {
313 DerefMin = std::min(a: X->getZExtValue(), b: Y->getZExtValue());
314 annotateDereferenceableBytes(CI, ArgNos, DereferenceableBytes: DerefMin);
315 }
316 }
317}
318
319// Copy CallInst "flags" like musttail, notail, and tail. Return New param for
320// easier chaining. Calls to emit* and B.createCall should probably be wrapped
321// in this function when New is created to replace Old. Callers should take
322// care to check Old.isMustTailCall() if they aren't replacing Old directly
323// with New.
324static Value *copyFlags(const CallInst &Old, Value *New) {
325 assert(!Old.isMustTailCall() && "do not copy musttail call flags");
326 assert(!Old.isNoTailCall() && "do not copy notail call flags");
327 if (auto *NewCI = dyn_cast_or_null<CallInst>(Val: New))
328 NewCI->setTailCallKind(Old.getTailCallKind());
329 return New;
330}
331
332static Value *mergeAttributesAndFlags(CallInst *NewCI, const CallInst &Old) {
333 NewCI->setAttributes(AttributeList::get(
334 C&: NewCI->getContext(), Attrs: {NewCI->getAttributes(), Old.getAttributes()}));
335 NewCI->removeRetAttrs(AttrsToRemove: AttributeFuncs::typeIncompatible(Ty: NewCI->getType()));
336 return copyFlags(Old, New: NewCI);
337}
338
339// Helper to avoid truncating the length if size_t is 32-bits.
340static StringRef substr(StringRef Str, uint64_t Len) {
341 return Len >= Str.size() ? Str : Str.substr(Start: 0, N: Len);
342}
343
344//===----------------------------------------------------------------------===//
345// String and Memory Library Call Optimizations
346//===----------------------------------------------------------------------===//
347
348Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) {
349 // Extract some information from the instruction
350 Value *Dst = CI->getArgOperand(i: 0);
351 Value *Src = CI->getArgOperand(i: 1);
352 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos: {0, 1});
353
354 // See if we can get the length of the input string.
355 uint64_t Len = GetStringLength(V: Src);
356 if (Len)
357 annotateDereferenceableBytes(CI, ArgNos: 1, DereferenceableBytes: Len);
358 else
359 return nullptr;
360 --Len; // Unbias length.
361
362 // Handle the simple, do-nothing case: strcat(x, "") -> x
363 if (Len == 0)
364 return Dst;
365
366 return copyFlags(Old: *CI, New: emitStrLenMemCpy(Src, Dst, Len, B));
367}
368
369Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
370 IRBuilderBase &B) {
371 // We need to find the end of the destination string. That's where the
372 // memory is to be moved to. We just generate a call to strlen.
373 Value *DstLen = emitStrLen(Ptr: Dst, B, DL, TLI);
374 if (!DstLen)
375 return nullptr;
376
377 // Now that we have the destination's length, we must index into the
378 // destination's pointer to get the actual memcpy destination (end of
379 // the string .. we're concatenating).
380 Value *CpyDst = B.CreateInBoundsGEP(Ty: B.getInt8Ty(), Ptr: Dst, IdxList: DstLen, Name: "endptr");
381
382 // We have enough information to now generate the memcpy call to do the
383 // concatenation for us. Make a memcpy to copy the nul byte with align = 1.
384 B.CreateMemCpy(
385 Dst: CpyDst, DstAlign: Align(1), Src, SrcAlign: Align(1),
386 Size: ConstantInt::get(Ty: DL.getIntPtrType(C&: Src->getContext()), V: Len + 1));
387 return Dst;
388}
389
390Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) {
391 // Extract some information from the instruction.
392 Value *Dst = CI->getArgOperand(i: 0);
393 Value *Src = CI->getArgOperand(i: 1);
394 Value *Size = CI->getArgOperand(i: 2);
395 uint64_t Len;
396 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos: 0);
397 if (isKnownNonZero(V: Size, Q: DL))
398 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos: 1);
399
400 // We don't do anything if length is not constant.
401 ConstantInt *LengthArg = dyn_cast<ConstantInt>(Val: Size);
402 if (LengthArg) {
403 Len = LengthArg->getZExtValue();
404 // strncat(x, c, 0) -> x
405 if (!Len)
406 return Dst;
407 } else {
408 return nullptr;
409 }
410
411 // See if we can get the length of the input string.
412 uint64_t SrcLen = GetStringLength(V: Src);
413 if (SrcLen) {
414 annotateDereferenceableBytes(CI, ArgNos: 1, DereferenceableBytes: SrcLen);
415 --SrcLen; // Unbias length.
416 } else {
417 return nullptr;
418 }
419
420 // strncat(x, "", c) -> x
421 if (SrcLen == 0)
422 return Dst;
423
424 // We don't optimize this case.
425 if (Len < SrcLen)
426 return nullptr;
427
428 // strncat(x, s, c) -> strcat(x, s)
429 // s is constant so the strcat can be optimized further.
430 return copyFlags(Old: *CI, New: emitStrLenMemCpy(Src, Dst, Len: SrcLen, B));
431}
432
433// Helper to transform memchr(S, C, N) == S to N && *S == C and, when
434// NBytes is null, strchr(S, C) to *S == C. A precondition of the function
435// is that either S is dereferenceable or the value of N is nonzero.
436static Value* memChrToCharCompare(CallInst *CI, Value *NBytes,
437 IRBuilderBase &B, const DataLayout &DL)
438{
439 Value *Src = CI->getArgOperand(i: 0);
440 Value *CharVal = CI->getArgOperand(i: 1);
441
442 // Fold memchr(A, C, N) == A to N && *A == C.
443 Type *CharTy = B.getInt8Ty();
444 Value *Char0 = B.CreateLoad(Ty: CharTy, Ptr: Src);
445 CharVal = B.CreateTrunc(V: CharVal, DestTy: CharTy);
446 Value *Cmp = B.CreateICmpEQ(LHS: Char0, RHS: CharVal, Name: "char0cmp");
447
448 if (NBytes) {
449 Value *Zero = ConstantInt::get(Ty: NBytes->getType(), V: 0);
450 Value *And = B.CreateICmpNE(LHS: NBytes, RHS: Zero);
451 Cmp = B.CreateLogicalAnd(Cond1: And, Cond2: Cmp);
452 }
453
454 Value *NullPtr = Constant::getNullValue(Ty: CI->getType());
455 return B.CreateSelect(C: Cmp, True: Src, False: NullPtr);
456}
457
458Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) {
459 Value *SrcStr = CI->getArgOperand(i: 0);
460 Value *CharVal = CI->getArgOperand(i: 1);
461 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos: 0);
462
463 if (isOnlyUsedInEqualityComparison(V: CI, With: SrcStr))
464 return memChrToCharCompare(CI, NBytes: nullptr, B, DL);
465
466 // If the second operand is non-constant, see if we can compute the length
467 // of the input string and turn this into memchr.
468 ConstantInt *CharC = dyn_cast<ConstantInt>(Val: CharVal);
469 if (!CharC) {
470 uint64_t Len = GetStringLength(V: SrcStr);
471 if (Len)
472 annotateDereferenceableBytes(CI, ArgNos: 0, DereferenceableBytes: Len);
473 else
474 return nullptr;
475
476 Function *Callee = CI->getCalledFunction();
477 FunctionType *FT = Callee->getFunctionType();
478 unsigned IntBits = TLI->getIntSize();
479 if (!FT->getParamType(i: 1)->isIntegerTy(Bitwidth: IntBits)) // memchr needs 'int'.
480 return nullptr;
481
482 unsigned SizeTBits = TLI->getSizeTSize(M: *CI->getModule());
483 Type *SizeTTy = IntegerType::get(C&: CI->getContext(), NumBits: SizeTBits);
484 return copyFlags(Old: *CI,
485 New: emitMemChr(Ptr: SrcStr, Val: CharVal, // include nul.
486 Len: ConstantInt::get(Ty: SizeTTy, V: Len), B,
487 DL, TLI));
488 }
489
490 if (CharC->isZero()) {
491 Value *NullPtr = Constant::getNullValue(Ty: CI->getType());
492 if (isOnlyUsedInEqualityComparison(V: CI, With: NullPtr))
493 // Pre-empt the transformation to strlen below and fold
494 // strchr(A, '\0') == null to false.
495 return B.CreateIntToPtr(V: B.getTrue(), DestTy: CI->getType());
496 }
497
498 // Otherwise, the character is a constant, see if the first argument is
499 // a string literal. If so, we can constant fold.
500 StringRef Str;
501 if (!getConstantStringInfo(V: SrcStr, Str)) {
502 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
503 if (Value *StrLen = emitStrLen(Ptr: SrcStr, B, DL, TLI))
504 return B.CreateInBoundsGEP(Ty: B.getInt8Ty(), Ptr: SrcStr, IdxList: StrLen, Name: "strchr");
505 return nullptr;
506 }
507
508 // Compute the offset, make sure to handle the case when we're searching for
509 // zero (a weird way to spell strlen).
510 size_t I = (0xFF & CharC->getSExtValue()) == 0
511 ? Str.size()
512 : Str.find(C: CharC->getSExtValue());
513 if (I == StringRef::npos) // Didn't find the char. strchr returns null.
514 return Constant::getNullValue(Ty: CI->getType());
515
516 // strchr(s+n,c) -> gep(s+n+i,c)
517 return B.CreateInBoundsGEP(Ty: B.getInt8Ty(), Ptr: SrcStr, IdxList: B.getInt64(C: I), Name: "strchr");
518}
519
520Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) {
521 Value *SrcStr = CI->getArgOperand(i: 0);
522 Value *CharVal = CI->getArgOperand(i: 1);
523 ConstantInt *CharC = dyn_cast<ConstantInt>(Val: CharVal);
524 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos: 0);
525
526 StringRef Str;
527 if (!getConstantStringInfo(V: SrcStr, Str)) {
528 // strrchr(s, 0) -> strchr(s, 0)
529 if (CharC && CharC->isZero())
530 return copyFlags(Old: *CI, New: emitStrChr(Ptr: SrcStr, C: '\0', B, TLI));
531 return nullptr;
532 }
533
534 unsigned SizeTBits = TLI->getSizeTSize(M: *CI->getModule());
535 Type *SizeTTy = IntegerType::get(C&: CI->getContext(), NumBits: SizeTBits);
536
537 // Try to expand strrchr to the memrchr nonstandard extension if it's
538 // available, or simply fail otherwise.
539 uint64_t NBytes = Str.size() + 1; // Include the terminating nul.
540 Value *Size = ConstantInt::get(Ty: SizeTTy, V: NBytes);
541 return copyFlags(Old: *CI, New: emitMemRChr(Ptr: SrcStr, Val: CharVal, Len: Size, B, DL, TLI));
542}
543
544Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) {
545 Value *Str1P = CI->getArgOperand(i: 0), *Str2P = CI->getArgOperand(i: 1);
546 if (Str1P == Str2P) // strcmp(x,x) -> 0
547 return ConstantInt::get(Ty: CI->getType(), V: 0);
548
549 StringRef Str1, Str2;
550 bool HasStr1 = getConstantStringInfo(V: Str1P, Str&: Str1);
551 bool HasStr2 = getConstantStringInfo(V: Str2P, Str&: Str2);
552
553 // strcmp(x, y) -> cnst (if both x and y are constant strings)
554 if (HasStr1 && HasStr2)
555 return ConstantInt::get(Ty: CI->getType(),
556 V: std::clamp(val: Str1.compare(RHS: Str2), lo: -1, hi: 1));
557
558 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
559 return B.CreateNeg(V: B.CreateZExt(
560 V: B.CreateLoad(Ty: B.getInt8Ty(), Ptr: Str2P, Name: "strcmpload"), DestTy: CI->getType()));
561
562 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
563 return B.CreateZExt(V: B.CreateLoad(Ty: B.getInt8Ty(), Ptr: Str1P, Name: "strcmpload"),
564 DestTy: CI->getType());
565
566 // strcmp(P, "x") -> memcmp(P, "x", 2)
567 uint64_t Len1 = GetStringLength(V: Str1P);
568 if (Len1)
569 annotateDereferenceableBytes(CI, ArgNos: 0, DereferenceableBytes: Len1);
570 uint64_t Len2 = GetStringLength(V: Str2P);
571 if (Len2)
572 annotateDereferenceableBytes(CI, ArgNos: 1, DereferenceableBytes: Len2);
573
574 if (Len1 && Len2) {
575 return copyFlags(
576 Old: *CI, New: emitMemCmp(Ptr1: Str1P, Ptr2: Str2P,
577 Len: ConstantInt::get(Ty: DL.getIntPtrType(C&: CI->getContext()),
578 V: std::min(a: Len1, b: Len2)),
579 B, DL, TLI));
580 }
581
582 // strcmp to memcmp
583 if (!HasStr1 && HasStr2) {
584 if (canTransformToMemCmp(CI, Str: Str1P, Len: Len2, DL))
585 return copyFlags(
586 Old: *CI,
587 New: emitMemCmp(Ptr1: Str1P, Ptr2: Str2P,
588 Len: ConstantInt::get(Ty: DL.getIntPtrType(C&: CI->getContext()), V: Len2),
589 B, DL, TLI));
590 } else if (HasStr1 && !HasStr2) {
591 if (canTransformToMemCmp(CI, Str: Str2P, Len: Len1, DL))
592 return copyFlags(
593 Old: *CI,
594 New: emitMemCmp(Ptr1: Str1P, Ptr2: Str2P,
595 Len: ConstantInt::get(Ty: DL.getIntPtrType(C&: CI->getContext()), V: Len1),
596 B, DL, TLI));
597 }
598
599 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos: {0, 1});
600 return nullptr;
601}
602
603// Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant
604// arrays LHS and RHS and nonconstant Size.
605static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS,
606 Value *Size, bool StrNCmp,
607 IRBuilderBase &B, const DataLayout &DL);
608
609Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) {
610 Value *Str1P = CI->getArgOperand(i: 0);
611 Value *Str2P = CI->getArgOperand(i: 1);
612 Value *Size = CI->getArgOperand(i: 2);
613 if (Str1P == Str2P) // strncmp(x,x,n) -> 0
614 return ConstantInt::get(Ty: CI->getType(), V: 0);
615
616 if (isKnownNonZero(V: Size, Q: DL))
617 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos: {0, 1});
618 // Get the length argument if it is constant.
619 uint64_t Length;
620 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Val: Size))
621 Length = LengthArg->getZExtValue();
622 else
623 return optimizeMemCmpVarSize(CI, LHS: Str1P, RHS: Str2P, Size, StrNCmp: true, B, DL);
624
625 if (Length == 0) // strncmp(x,y,0) -> 0
626 return ConstantInt::get(Ty: CI->getType(), V: 0);
627
628 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
629 return copyFlags(Old: *CI, New: emitMemCmp(Ptr1: Str1P, Ptr2: Str2P, Len: Size, B, DL, TLI));
630
631 StringRef Str1, Str2;
632 bool HasStr1 = getConstantStringInfo(V: Str1P, Str&: Str1);
633 bool HasStr2 = getConstantStringInfo(V: Str2P, Str&: Str2);
634
635 // strncmp(x, y) -> cnst (if both x and y are constant strings)
636 if (HasStr1 && HasStr2) {
637 // Avoid truncating the 64-bit Length to 32 bits in ILP32.
638 StringRef SubStr1 = substr(Str: Str1, Len: Length);
639 StringRef SubStr2 = substr(Str: Str2, Len: Length);
640 return ConstantInt::get(Ty: CI->getType(),
641 V: std::clamp(val: SubStr1.compare(RHS: SubStr2), lo: -1, hi: 1));
642 }
643
644 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
645 return B.CreateNeg(V: B.CreateZExt(
646 V: B.CreateLoad(Ty: B.getInt8Ty(), Ptr: Str2P, Name: "strcmpload"), DestTy: CI->getType()));
647
648 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
649 return B.CreateZExt(V: B.CreateLoad(Ty: B.getInt8Ty(), Ptr: Str1P, Name: "strcmpload"),
650 DestTy: CI->getType());
651
652 uint64_t Len1 = GetStringLength(V: Str1P);
653 if (Len1)
654 annotateDereferenceableBytes(CI, ArgNos: 0, DereferenceableBytes: Len1);
655 uint64_t Len2 = GetStringLength(V: Str2P);
656 if (Len2)
657 annotateDereferenceableBytes(CI, ArgNos: 1, DereferenceableBytes: Len2);
658
659 // strncmp to memcmp
660 if (!HasStr1 && HasStr2) {
661 Len2 = std::min(a: Len2, b: Length);
662 if (canTransformToMemCmp(CI, Str: Str1P, Len: Len2, DL))
663 return copyFlags(
664 Old: *CI,
665 New: emitMemCmp(Ptr1: Str1P, Ptr2: Str2P,
666 Len: ConstantInt::get(Ty: DL.getIntPtrType(C&: CI->getContext()), V: Len2),
667 B, DL, TLI));
668 } else if (HasStr1 && !HasStr2) {
669 Len1 = std::min(a: Len1, b: Length);
670 if (canTransformToMemCmp(CI, Str: Str2P, Len: Len1, DL))
671 return copyFlags(
672 Old: *CI,
673 New: emitMemCmp(Ptr1: Str1P, Ptr2: Str2P,
674 Len: ConstantInt::get(Ty: DL.getIntPtrType(C&: CI->getContext()), V: Len1),
675 B, DL, TLI));
676 }
677
678 return nullptr;
679}
680
681Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) {
682 Value *Src = CI->getArgOperand(i: 0);
683 ConstantInt *Size = dyn_cast<ConstantInt>(Val: CI->getArgOperand(i: 1));
684 uint64_t SrcLen = GetStringLength(V: Src);
685 if (SrcLen && Size) {
686 annotateDereferenceableBytes(CI, ArgNos: 0, DereferenceableBytes: SrcLen);
687 if (SrcLen <= Size->getZExtValue() + 1)
688 return copyFlags(Old: *CI, New: emitStrDup(Ptr: Src, B, TLI));
689 }
690
691 return nullptr;
692}
693
694Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) {
695 Value *Dst = CI->getArgOperand(i: 0), *Src = CI->getArgOperand(i: 1);
696 if (Dst == Src) // strcpy(x,x) -> x
697 return Src;
698
699 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos: {0, 1});
700 // See if we can get the length of the input string.
701 uint64_t Len = GetStringLength(V: Src);
702 if (Len)
703 annotateDereferenceableBytes(CI, ArgNos: 1, DereferenceableBytes: Len);
704 else
705 return nullptr;
706
707 // We have enough information to now generate the memcpy call to do the
708 // copy for us. Make a memcpy to copy the nul byte with align = 1.
709 CallInst *NewCI =
710 B.CreateMemCpy(Dst, DstAlign: Align(1), Src, SrcAlign: Align(1),
711 Size: ConstantInt::get(Ty: DL.getIntPtrType(C&: CI->getContext()), V: Len));
712 mergeAttributesAndFlags(NewCI, Old: *CI);
713 return Dst;
714}
715
716Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) {
717 Function *Callee = CI->getCalledFunction();
718 Value *Dst = CI->getArgOperand(i: 0), *Src = CI->getArgOperand(i: 1);
719
720 // stpcpy(d,s) -> strcpy(d,s) if the result is not used.
721 if (CI->use_empty())
722 return copyFlags(Old: *CI, New: emitStrCpy(Dst, Src, B, TLI));
723
724 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x)
725 Value *StrLen = emitStrLen(Ptr: Src, B, DL, TLI);
726 return StrLen ? B.CreateInBoundsGEP(Ty: B.getInt8Ty(), Ptr: Dst, IdxList: StrLen) : nullptr;
727 }
728
729 // See if we can get the length of the input string.
730 uint64_t Len = GetStringLength(V: Src);
731 if (Len)
732 annotateDereferenceableBytes(CI, ArgNos: 1, DereferenceableBytes: Len);
733 else
734 return nullptr;
735
736 Type *PT = Callee->getFunctionType()->getParamType(i: 0);
737 Value *LenV = ConstantInt::get(Ty: DL.getIntPtrType(PT), V: Len);
738 Value *DstEnd = B.CreateInBoundsGEP(
739 Ty: B.getInt8Ty(), Ptr: Dst, IdxList: ConstantInt::get(Ty: DL.getIntPtrType(PT), V: Len - 1));
740
741 // We have enough information to now generate the memcpy call to do the
742 // copy for us. Make a memcpy to copy the nul byte with align = 1.
743 CallInst *NewCI = B.CreateMemCpy(Dst, DstAlign: Align(1), Src, SrcAlign: Align(1), Size: LenV);
744 mergeAttributesAndFlags(NewCI, Old: *CI);
745 return DstEnd;
746}
747
748// Optimize a call to size_t strlcpy(char*, const char*, size_t).
749
750Value *LibCallSimplifier::optimizeStrLCpy(CallInst *CI, IRBuilderBase &B) {
751 Value *Size = CI->getArgOperand(i: 2);
752 if (isKnownNonZero(V: Size, Q: DL))
753 // Like snprintf, the function stores into the destination only when
754 // the size argument is nonzero.
755 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos: 0);
756 // The function reads the source argument regardless of Size (it returns
757 // its length).
758 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos: 1);
759
760 uint64_t NBytes;
761 if (ConstantInt *SizeC = dyn_cast<ConstantInt>(Val: Size))
762 NBytes = SizeC->getZExtValue();
763 else
764 return nullptr;
765
766 Value *Dst = CI->getArgOperand(i: 0);
767 Value *Src = CI->getArgOperand(i: 1);
768 if (NBytes <= 1) {
769 if (NBytes == 1)
770 // For a call to strlcpy(D, S, 1) first store a nul in *D.
771 B.CreateStore(Val: B.getInt8(C: 0), Ptr: Dst);
772
773 // Transform strlcpy(D, S, 0) to a call to strlen(S).
774 return copyFlags(Old: *CI, New: emitStrLen(Ptr: Src, B, DL, TLI));
775 }
776
777 // Try to determine the length of the source, substituting its size
778 // when it's not nul-terminated (as it's required to be) to avoid
779 // reading past its end.
780 StringRef Str;
781 if (!getConstantStringInfo(V: Src, Str, /*TrimAtNul=*/false))
782 return nullptr;
783
784 uint64_t SrcLen = Str.find(C: '\0');
785 // Set if the terminating nul should be copied by the call to memcpy
786 // below.
787 bool NulTerm = SrcLen < NBytes;
788
789 if (NulTerm)
790 // Overwrite NBytes with the number of bytes to copy, including
791 // the terminating nul.
792 NBytes = SrcLen + 1;
793 else {
794 // Set the length of the source for the function to return to its
795 // size, and cap NBytes at the same.
796 SrcLen = std::min(a: SrcLen, b: uint64_t(Str.size()));
797 NBytes = std::min(a: NBytes - 1, b: SrcLen);
798 }
799
800 if (SrcLen == 0) {
801 // Transform strlcpy(D, "", N) to (*D = '\0, 0).
802 B.CreateStore(Val: B.getInt8(C: 0), Ptr: Dst);
803 return ConstantInt::get(Ty: CI->getType(), V: 0);
804 }
805
806 Function *Callee = CI->getCalledFunction();
807 Type *PT = Callee->getFunctionType()->getParamType(i: 0);
808 // Transform strlcpy(D, S, N) to memcpy(D, S, N') where N' is the lower
809 // bound on strlen(S) + 1 and N, optionally followed by a nul store to
810 // D[N' - 1] if necessary.
811 CallInst *NewCI = B.CreateMemCpy(Dst, DstAlign: Align(1), Src, SrcAlign: Align(1),
812 Size: ConstantInt::get(Ty: DL.getIntPtrType(PT), V: NBytes));
813 mergeAttributesAndFlags(NewCI, Old: *CI);
814
815 if (!NulTerm) {
816 Value *EndOff = ConstantInt::get(Ty: CI->getType(), V: NBytes);
817 Value *EndPtr = B.CreateInBoundsGEP(Ty: B.getInt8Ty(), Ptr: Dst, IdxList: EndOff);
818 B.CreateStore(Val: B.getInt8(C: 0), Ptr: EndPtr);
819 }
820
821 // Like snprintf, strlcpy returns the number of nonzero bytes that would
822 // have been copied if the bound had been sufficiently big (which in this
823 // case is strlen(Src)).
824 return ConstantInt::get(Ty: CI->getType(), V: SrcLen);
825}
826
827// Optimize a call CI to either stpncpy when RetEnd is true, or to strncpy
828// otherwise.
829Value *LibCallSimplifier::optimizeStringNCpy(CallInst *CI, bool RetEnd,
830 IRBuilderBase &B) {
831 Function *Callee = CI->getCalledFunction();
832 Value *Dst = CI->getArgOperand(i: 0);
833 Value *Src = CI->getArgOperand(i: 1);
834 Value *Size = CI->getArgOperand(i: 2);
835
836 if (isKnownNonZero(V: Size, Q: DL)) {
837 // Both st{p,r}ncpy(D, S, N) access the source and destination arrays
838 // only when N is nonzero.
839 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos: 0);
840 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos: 1);
841 }
842
843 // If the "bound" argument is known set N to it. Otherwise set it to
844 // UINT64_MAX and handle it later.
845 uint64_t N = UINT64_MAX;
846 if (ConstantInt *SizeC = dyn_cast<ConstantInt>(Val: Size))
847 N = SizeC->getZExtValue();
848
849 if (N == 0)
850 // Fold st{p,r}ncpy(D, S, 0) to D.
851 return Dst;
852
853 if (N == 1) {
854 Type *CharTy = B.getInt8Ty();
855 Value *CharVal = B.CreateLoad(Ty: CharTy, Ptr: Src, Name: "stxncpy.char0");
856 B.CreateStore(Val: CharVal, Ptr: Dst);
857 if (!RetEnd)
858 // Transform strncpy(D, S, 1) to return (*D = *S), D.
859 return Dst;
860
861 // Transform stpncpy(D, S, 1) to return (*D = *S) ? D + 1 : D.
862 Value *ZeroChar = ConstantInt::get(Ty: CharTy, V: 0);
863 Value *Cmp = B.CreateICmpEQ(LHS: CharVal, RHS: ZeroChar, Name: "stpncpy.char0cmp");
864
865 Value *Off1 = B.getInt32(C: 1);
866 Value *EndPtr = B.CreateInBoundsGEP(Ty: CharTy, Ptr: Dst, IdxList: Off1, Name: "stpncpy.end");
867 return B.CreateSelect(C: Cmp, True: Dst, False: EndPtr, Name: "stpncpy.sel");
868 }
869
870 // If the length of the input string is known set SrcLen to it.
871 uint64_t SrcLen = GetStringLength(V: Src);
872 if (SrcLen)
873 annotateDereferenceableBytes(CI, ArgNos: 1, DereferenceableBytes: SrcLen);
874 else
875 return nullptr;
876
877 --SrcLen; // Unbias length.
878
879 if (SrcLen == 0) {
880 // Transform st{p,r}ncpy(D, "", N) to memset(D, '\0', N) for any N.
881 Align MemSetAlign =
882 CI->getAttributes().getParamAttrs(ArgNo: 0).getAlignment().valueOrOne();
883 CallInst *NewCI = B.CreateMemSet(Ptr: Dst, Val: B.getInt8(C: '\0'), Size, Align: MemSetAlign);
884 AttrBuilder ArgAttrs(CI->getContext(), CI->getAttributes().getParamAttrs(ArgNo: 0));
885 NewCI->setAttributes(NewCI->getAttributes().addParamAttributes(
886 C&: CI->getContext(), ArgNo: 0, B: ArgAttrs));
887 copyFlags(Old: *CI, New: NewCI);
888 return Dst;
889 }
890
891 if (N > SrcLen + 1) {
892 if (N > 128)
893 // Bail if N is large or unknown.
894 return nullptr;
895
896 // st{p,r}ncpy(D, "a", N) -> memcpy(D, "a\0\0\0", N) for N <= 128.
897 StringRef Str;
898 if (!getConstantStringInfo(V: Src, Str))
899 return nullptr;
900 std::string SrcStr = Str.str();
901 // Create a bigger, nul-padded array with the same length, SrcLen,
902 // as the original string.
903 SrcStr.resize(n: N, c: '\0');
904 Src = B.CreateGlobalString(Str: SrcStr, Name: "str");
905 }
906
907 Type *PT = Callee->getFunctionType()->getParamType(i: 0);
908 // st{p,r}ncpy(D, S, N) -> memcpy(align 1 D, align 1 S, N) when both
909 // S and N are constant.
910 CallInst *NewCI = B.CreateMemCpy(Dst, DstAlign: Align(1), Src, SrcAlign: Align(1),
911 Size: ConstantInt::get(Ty: DL.getIntPtrType(PT), V: N));
912 mergeAttributesAndFlags(NewCI, Old: *CI);
913 if (!RetEnd)
914 return Dst;
915
916 // stpncpy(D, S, N) returns the address of the first null in D if it writes
917 // one, otherwise D + N.
918 Value *Off = B.getInt64(C: std::min(a: SrcLen, b: N));
919 return B.CreateInBoundsGEP(Ty: B.getInt8Ty(), Ptr: Dst, IdxList: Off, Name: "endptr");
920}
921
922Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B,
923 unsigned CharSize,
924 Value *Bound) {
925 Value *Src = CI->getArgOperand(i: 0);
926 Type *CharTy = B.getIntNTy(N: CharSize);
927
928 if (isOnlyUsedInZeroEqualityComparison(CxtI: CI) &&
929 (!Bound || isKnownNonZero(V: Bound, Q: DL))) {
930 // Fold strlen:
931 // strlen(x) != 0 --> *x != 0
932 // strlen(x) == 0 --> *x == 0
933 // and likewise strnlen with constant N > 0:
934 // strnlen(x, N) != 0 --> *x != 0
935 // strnlen(x, N) == 0 --> *x == 0
936 return B.CreateZExt(V: B.CreateLoad(Ty: CharTy, Ptr: Src, Name: "char0"),
937 DestTy: CI->getType());
938 }
939
940 if (Bound) {
941 if (ConstantInt *BoundCst = dyn_cast<ConstantInt>(Val: Bound)) {
942 if (BoundCst->isZero())
943 // Fold strnlen(s, 0) -> 0 for any s, constant or otherwise.
944 return ConstantInt::get(Ty: CI->getType(), V: 0);
945
946 if (BoundCst->isOne()) {
947 // Fold strnlen(s, 1) -> *s ? 1 : 0 for any s.
948 Value *CharVal = B.CreateLoad(Ty: CharTy, Ptr: Src, Name: "strnlen.char0");
949 Value *ZeroChar = ConstantInt::get(Ty: CharTy, V: 0);
950 Value *Cmp = B.CreateICmpNE(LHS: CharVal, RHS: ZeroChar, Name: "strnlen.char0cmp");
951 return B.CreateZExt(V: Cmp, DestTy: CI->getType());
952 }
953 }
954 }
955
956 if (uint64_t Len = GetStringLength(V: Src, CharSize)) {
957 Value *LenC = ConstantInt::get(Ty: CI->getType(), V: Len - 1);
958 // Fold strlen("xyz") -> 3 and strnlen("xyz", 2) -> 2
959 // and strnlen("xyz", Bound) -> min(3, Bound) for nonconstant Bound.
960 if (Bound)
961 return B.CreateBinaryIntrinsic(Intrinsic::ID: umin, LHS: LenC, RHS: Bound);
962 return LenC;
963 }
964
965 if (Bound)
966 // Punt for strnlen for now.
967 return nullptr;
968
969 // If s is a constant pointer pointing to a string literal, we can fold
970 // strlen(s + x) to strlen(s) - x, when x is known to be in the range
971 // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
972 // We only try to simplify strlen when the pointer s points to an array
973 // of CharSize elements. Otherwise, we would need to scale the offset x before
974 // doing the subtraction. This will make the optimization more complex, and
975 // it's not very useful because calling strlen for a pointer of other types is
976 // very uncommon.
977 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Val: Src)) {
978 // TODO: Handle subobjects.
979 if (!isGEPBasedOnPointerToString(GEP, CharSize))
980 return nullptr;
981
982 ConstantDataArraySlice Slice;
983 if (getConstantDataArrayInfo(V: GEP->getOperand(i_nocapture: 0), Slice, ElementSize: CharSize)) {
984 uint64_t NullTermIdx;
985 if (Slice.Array == nullptr) {
986 NullTermIdx = 0;
987 } else {
988 NullTermIdx = ~((uint64_t)0);
989 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
990 if (Slice.Array->getElementAsInteger(i: I + Slice.Offset) == 0) {
991 NullTermIdx = I;
992 break;
993 }
994 }
995 // If the string does not have '\0', leave it to strlen to compute
996 // its length.
997 if (NullTermIdx == ~((uint64_t)0))
998 return nullptr;
999 }
1000
1001 Value *Offset = GEP->getOperand(i_nocapture: 2);
1002 KnownBits Known = computeKnownBits(V: Offset, DL, Depth: 0, AC: nullptr, CxtI: CI, DT: nullptr);
1003 uint64_t ArrSize =
1004 cast<ArrayType>(Val: GEP->getSourceElementType())->getNumElements();
1005
1006 // If Offset is not provably in the range [0, NullTermIdx], we can still
1007 // optimize if we can prove that the program has undefined behavior when
1008 // Offset is outside that range. That is the case when GEP->getOperand(0)
1009 // is a pointer to an object whose memory extent is NullTermIdx+1.
1010 if ((Known.isNonNegative() && Known.getMaxValue().ule(RHS: NullTermIdx)) ||
1011 (isa<GlobalVariable>(Val: GEP->getOperand(i_nocapture: 0)) &&
1012 NullTermIdx == ArrSize - 1)) {
1013 Offset = B.CreateSExtOrTrunc(V: Offset, DestTy: CI->getType());
1014 return B.CreateSub(LHS: ConstantInt::get(Ty: CI->getType(), V: NullTermIdx),
1015 RHS: Offset);
1016 }
1017 }
1018 }
1019
1020 // strlen(x?"foo":"bars") --> x ? 3 : 4
1021 if (SelectInst *SI = dyn_cast<SelectInst>(Val: Src)) {
1022 uint64_t LenTrue = GetStringLength(V: SI->getTrueValue(), CharSize);
1023 uint64_t LenFalse = GetStringLength(V: SI->getFalseValue(), CharSize);
1024 if (LenTrue && LenFalse) {
1025 ORE.emit(RemarkBuilder: [&]() {
1026 return OptimizationRemark("instcombine", "simplify-libcalls", CI)
1027 << "folded strlen(select) to select of constants";
1028 });
1029 return B.CreateSelect(C: SI->getCondition(),
1030 True: ConstantInt::get(Ty: CI->getType(), V: LenTrue - 1),
1031 False: ConstantInt::get(Ty: CI->getType(), V: LenFalse - 1));
1032 }
1033 }
1034
1035 return nullptr;
1036}
1037
1038Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) {
1039 if (Value *V = optimizeStringLength(CI, B, CharSize: 8))
1040 return V;
1041 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos: 0);
1042 return nullptr;
1043}
1044
1045Value *LibCallSimplifier::optimizeStrNLen(CallInst *CI, IRBuilderBase &B) {
1046 Value *Bound = CI->getArgOperand(i: 1);
1047 if (Value *V = optimizeStringLength(CI, B, CharSize: 8, Bound))
1048 return V;
1049
1050 if (isKnownNonZero(V: Bound, Q: DL))
1051 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos: 0);
1052 return nullptr;
1053}
1054
1055Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) {
1056 Module &M = *CI->getModule();
1057 unsigned WCharSize = TLI->getWCharSize(M) * 8;
1058 // We cannot perform this optimization without wchar_size metadata.
1059 if (WCharSize == 0)
1060 return nullptr;
1061
1062 return optimizeStringLength(CI, B, CharSize: WCharSize);
1063}
1064
1065Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) {
1066 StringRef S1, S2;
1067 bool HasS1 = getConstantStringInfo(V: CI->getArgOperand(i: 0), Str&: S1);
1068 bool HasS2 = getConstantStringInfo(V: CI->getArgOperand(i: 1), Str&: S2);
1069
1070 // strpbrk(s, "") -> nullptr
1071 // strpbrk("", s) -> nullptr
1072 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
1073 return Constant::getNullValue(Ty: CI->getType());
1074
1075 // Constant folding.
1076 if (HasS1 && HasS2) {
1077 size_t I = S1.find_first_of(Chars: S2);
1078 if (I == StringRef::npos) // No match.
1079 return Constant::getNullValue(Ty: CI->getType());
1080
1081 return B.CreateInBoundsGEP(Ty: B.getInt8Ty(), Ptr: CI->getArgOperand(i: 0),
1082 IdxList: B.getInt64(C: I), Name: "strpbrk");
1083 }
1084
1085 // strpbrk(s, "a") -> strchr(s, 'a')
1086 if (HasS2 && S2.size() == 1)
1087 return copyFlags(Old: *CI, New: emitStrChr(Ptr: CI->getArgOperand(i: 0), C: S2[0], B, TLI));
1088
1089 return nullptr;
1090}
1091
1092Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) {
1093 Value *EndPtr = CI->getArgOperand(i: 1);
1094 if (isa<ConstantPointerNull>(Val: EndPtr)) {
1095 // With a null EndPtr, this function won't capture the main argument.
1096 // It would be readonly too, except that it still may write to errno.
1097 CI->addParamAttr(0, Attribute::NoCapture);
1098 }
1099
1100 return nullptr;
1101}
1102
1103Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) {
1104 StringRef S1, S2;
1105 bool HasS1 = getConstantStringInfo(V: CI->getArgOperand(i: 0), Str&: S1);
1106 bool HasS2 = getConstantStringInfo(V: CI->getArgOperand(i: 1), Str&: S2);
1107
1108 // strspn(s, "") -> 0
1109 // strspn("", s) -> 0
1110 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
1111 return Constant::getNullValue(Ty: CI->getType());
1112
1113 // Constant folding.
1114 if (HasS1 && HasS2) {
1115 size_t Pos = S1.find_first_not_of(Chars: S2);
1116 if (Pos == StringRef::npos)
1117 Pos = S1.size();
1118 return ConstantInt::get(Ty: CI->getType(), V: Pos);
1119 }
1120
1121 return nullptr;
1122}
1123
1124Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) {
1125 StringRef S1, S2;
1126 bool HasS1 = getConstantStringInfo(V: CI->getArgOperand(i: 0), Str&: S1);
1127 bool HasS2 = getConstantStringInfo(V: CI->getArgOperand(i: 1), Str&: S2);
1128
1129 // strcspn("", s) -> 0
1130 if (HasS1 && S1.empty())
1131 return Constant::getNullValue(Ty: CI->getType());
1132
1133 // Constant folding.
1134 if (HasS1 && HasS2) {
1135 size_t Pos = S1.find_first_of(Chars: S2);
1136 if (Pos == StringRef::npos)
1137 Pos = S1.size();
1138 return ConstantInt::get(Ty: CI->getType(), V: Pos);
1139 }
1140
1141 // strcspn(s, "") -> strlen(s)
1142 if (HasS2 && S2.empty())
1143 return copyFlags(Old: *CI, New: emitStrLen(Ptr: CI->getArgOperand(i: 0), B, DL, TLI));
1144
1145 return nullptr;
1146}
1147
1148Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) {
1149 // fold strstr(x, x) -> x.
1150 if (CI->getArgOperand(i: 0) == CI->getArgOperand(i: 1))
1151 return CI->getArgOperand(i: 0);
1152
1153 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
1154 if (isOnlyUsedInEqualityComparison(V: CI, With: CI->getArgOperand(i: 0))) {
1155 Value *StrLen = emitStrLen(Ptr: CI->getArgOperand(i: 1), B, DL, TLI);
1156 if (!StrLen)
1157 return nullptr;
1158 Value *StrNCmp = emitStrNCmp(Ptr1: CI->getArgOperand(i: 0), Ptr2: CI->getArgOperand(i: 1),
1159 Len: StrLen, B, DL, TLI);
1160 if (!StrNCmp)
1161 return nullptr;
1162 for (User *U : llvm::make_early_inc_range(Range: CI->users())) {
1163 ICmpInst *Old = cast<ICmpInst>(Val: U);
1164 Value *Cmp =
1165 B.CreateICmp(P: Old->getPredicate(), LHS: StrNCmp,
1166 RHS: ConstantInt::getNullValue(Ty: StrNCmp->getType()), Name: "cmp");
1167 replaceAllUsesWith(I: Old, With: Cmp);
1168 }
1169 return CI;
1170 }
1171
1172 // See if either input string is a constant string.
1173 StringRef SearchStr, ToFindStr;
1174 bool HasStr1 = getConstantStringInfo(V: CI->getArgOperand(i: 0), Str&: SearchStr);
1175 bool HasStr2 = getConstantStringInfo(V: CI->getArgOperand(i: 1), Str&: ToFindStr);
1176
1177 // fold strstr(x, "") -> x.
1178 if (HasStr2 && ToFindStr.empty())
1179 return CI->getArgOperand(i: 0);
1180
1181 // If both strings are known, constant fold it.
1182 if (HasStr1 && HasStr2) {
1183 size_t Offset = SearchStr.find(Str: ToFindStr);
1184
1185 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
1186 return Constant::getNullValue(Ty: CI->getType());
1187
1188 // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
1189 return B.CreateConstInBoundsGEP1_64(Ty: B.getInt8Ty(), Ptr: CI->getArgOperand(i: 0),
1190 Idx0: Offset, Name: "strstr");
1191 }
1192
1193 // fold strstr(x, "y") -> strchr(x, 'y').
1194 if (HasStr2 && ToFindStr.size() == 1) {
1195 return emitStrChr(Ptr: CI->getArgOperand(i: 0), C: ToFindStr[0], B, TLI);
1196 }
1197
1198 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos: {0, 1});
1199 return nullptr;
1200}
1201
1202Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) {
1203 Value *SrcStr = CI->getArgOperand(i: 0);
1204 Value *Size = CI->getArgOperand(i: 2);
1205 annotateNonNullAndDereferenceable(CI, ArgNos: 0, Size, DL);
1206 Value *CharVal = CI->getArgOperand(i: 1);
1207 ConstantInt *LenC = dyn_cast<ConstantInt>(Val: Size);
1208 Value *NullPtr = Constant::getNullValue(Ty: CI->getType());
1209
1210 if (LenC) {
1211 if (LenC->isZero())
1212 // Fold memrchr(x, y, 0) --> null.
1213 return NullPtr;
1214
1215 if (LenC->isOne()) {
1216 // Fold memrchr(x, y, 1) --> *x == y ? x : null for any x and y,
1217 // constant or otherwise.
1218 Value *Val = B.CreateLoad(Ty: B.getInt8Ty(), Ptr: SrcStr, Name: "memrchr.char0");
1219 // Slice off the character's high end bits.
1220 CharVal = B.CreateTrunc(V: CharVal, DestTy: B.getInt8Ty());
1221 Value *Cmp = B.CreateICmpEQ(LHS: Val, RHS: CharVal, Name: "memrchr.char0cmp");
1222 return B.CreateSelect(C: Cmp, True: SrcStr, False: NullPtr, Name: "memrchr.sel");
1223 }
1224 }
1225
1226 StringRef Str;
1227 if (!getConstantStringInfo(V: SrcStr, Str, /*TrimAtNul=*/false))
1228 return nullptr;
1229
1230 if (Str.size() == 0)
1231 // If the array is empty fold memrchr(A, C, N) to null for any value
1232 // of C and N on the basis that the only valid value of N is zero
1233 // (otherwise the call is undefined).
1234 return NullPtr;
1235
1236 uint64_t EndOff = UINT64_MAX;
1237 if (LenC) {
1238 EndOff = LenC->getZExtValue();
1239 if (Str.size() < EndOff)
1240 // Punt out-of-bounds accesses to sanitizers and/or libc.
1241 return nullptr;
1242 }
1243
1244 if (ConstantInt *CharC = dyn_cast<ConstantInt>(Val: CharVal)) {
1245 // Fold memrchr(S, C, N) for a constant C.
1246 size_t Pos = Str.rfind(C: CharC->getZExtValue(), From: EndOff);
1247 if (Pos == StringRef::npos)
1248 // When the character is not in the source array fold the result
1249 // to null regardless of Size.
1250 return NullPtr;
1251
1252 if (LenC)
1253 // Fold memrchr(s, c, N) --> s + Pos for constant N > Pos.
1254 return B.CreateInBoundsGEP(Ty: B.getInt8Ty(), Ptr: SrcStr, IdxList: B.getInt64(C: Pos));
1255
1256 if (Str.find(C: Str[Pos]) == Pos) {
1257 // When there is just a single occurrence of C in S, i.e., the one
1258 // in Str[Pos], fold
1259 // memrchr(s, c, N) --> N <= Pos ? null : s + Pos
1260 // for nonconstant N.
1261 Value *Cmp = B.CreateICmpULE(LHS: Size, RHS: ConstantInt::get(Ty: Size->getType(), V: Pos),
1262 Name: "memrchr.cmp");
1263 Value *SrcPlus = B.CreateInBoundsGEP(Ty: B.getInt8Ty(), Ptr: SrcStr,
1264 IdxList: B.getInt64(C: Pos), Name: "memrchr.ptr_plus");
1265 return B.CreateSelect(C: Cmp, True: NullPtr, False: SrcPlus, Name: "memrchr.sel");
1266 }
1267 }
1268
1269 // Truncate the string to search at most EndOff characters.
1270 Str = Str.substr(Start: 0, N: EndOff);
1271 if (Str.find_first_not_of(C: Str[0]) != StringRef::npos)
1272 return nullptr;
1273
1274 // If the source array consists of all equal characters, then for any
1275 // C and N (whether in bounds or not), fold memrchr(S, C, N) to
1276 // N != 0 && *S == C ? S + N - 1 : null
1277 Type *SizeTy = Size->getType();
1278 Type *Int8Ty = B.getInt8Ty();
1279 Value *NNeZ = B.CreateICmpNE(LHS: Size, RHS: ConstantInt::get(Ty: SizeTy, V: 0));
1280 // Slice off the sought character's high end bits.
1281 CharVal = B.CreateTrunc(V: CharVal, DestTy: Int8Ty);
1282 Value *CEqS0 = B.CreateICmpEQ(LHS: ConstantInt::get(Ty: Int8Ty, V: Str[0]), RHS: CharVal);
1283 Value *And = B.CreateLogicalAnd(Cond1: NNeZ, Cond2: CEqS0);
1284 Value *SizeM1 = B.CreateSub(LHS: Size, RHS: ConstantInt::get(Ty: SizeTy, V: 1));
1285 Value *SrcPlus =
1286 B.CreateInBoundsGEP(Ty: Int8Ty, Ptr: SrcStr, IdxList: SizeM1, Name: "memrchr.ptr_plus");
1287 return B.CreateSelect(C: And, True: SrcPlus, False: NullPtr, Name: "memrchr.sel");
1288}
1289
1290Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) {
1291 Value *SrcStr = CI->getArgOperand(i: 0);
1292 Value *Size = CI->getArgOperand(i: 2);
1293
1294 if (isKnownNonZero(V: Size, Q: DL)) {
1295 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos: 0);
1296 if (isOnlyUsedInEqualityComparison(V: CI, With: SrcStr))
1297 return memChrToCharCompare(CI, NBytes: Size, B, DL);
1298 }
1299
1300 Value *CharVal = CI->getArgOperand(i: 1);
1301 ConstantInt *CharC = dyn_cast<ConstantInt>(Val: CharVal);
1302 ConstantInt *LenC = dyn_cast<ConstantInt>(Val: Size);
1303 Value *NullPtr = Constant::getNullValue(Ty: CI->getType());
1304
1305 // memchr(x, y, 0) -> null
1306 if (LenC) {
1307 if (LenC->isZero())
1308 return NullPtr;
1309
1310 if (LenC->isOne()) {
1311 // Fold memchr(x, y, 1) --> *x == y ? x : null for any x and y,
1312 // constant or otherwise.
1313 Value *Val = B.CreateLoad(Ty: B.getInt8Ty(), Ptr: SrcStr, Name: "memchr.char0");
1314 // Slice off the character's high end bits.
1315 CharVal = B.CreateTrunc(V: CharVal, DestTy: B.getInt8Ty());
1316 Value *Cmp = B.CreateICmpEQ(LHS: Val, RHS: CharVal, Name: "memchr.char0cmp");
1317 return B.CreateSelect(C: Cmp, True: SrcStr, False: NullPtr, Name: "memchr.sel");
1318 }
1319 }
1320
1321 StringRef Str;
1322 if (!getConstantStringInfo(V: SrcStr, Str, /*TrimAtNul=*/false))
1323 return nullptr;
1324
1325 if (CharC) {
1326 size_t Pos = Str.find(C: CharC->getZExtValue());
1327 if (Pos == StringRef::npos)
1328 // When the character is not in the source array fold the result
1329 // to null regardless of Size.
1330 return NullPtr;
1331
1332 // Fold memchr(s, c, n) -> n <= Pos ? null : s + Pos
1333 // When the constant Size is less than or equal to the character
1334 // position also fold the result to null.
1335 Value *Cmp = B.CreateICmpULE(LHS: Size, RHS: ConstantInt::get(Ty: Size->getType(), V: Pos),
1336 Name: "memchr.cmp");
1337 Value *SrcPlus = B.CreateInBoundsGEP(Ty: B.getInt8Ty(), Ptr: SrcStr, IdxList: B.getInt64(C: Pos),
1338 Name: "memchr.ptr");
1339 return B.CreateSelect(C: Cmp, True: NullPtr, False: SrcPlus);
1340 }
1341
1342 if (Str.size() == 0)
1343 // If the array is empty fold memchr(A, C, N) to null for any value
1344 // of C and N on the basis that the only valid value of N is zero
1345 // (otherwise the call is undefined).
1346 return NullPtr;
1347
1348 if (LenC)
1349 Str = substr(Str, Len: LenC->getZExtValue());
1350
1351 size_t Pos = Str.find_first_not_of(C: Str[0]);
1352 if (Pos == StringRef::npos
1353 || Str.find_first_not_of(C: Str[Pos], From: Pos) == StringRef::npos) {
1354 // If the source array consists of at most two consecutive sequences
1355 // of the same characters, then for any C and N (whether in bounds or
1356 // not), fold memchr(S, C, N) to
1357 // N != 0 && *S == C ? S : null
1358 // or for the two sequences to:
1359 // N != 0 && *S == C ? S : (N > Pos && S[Pos] == C ? S + Pos : null)
1360 // ^Sel2 ^Sel1 are denoted above.
1361 // The latter makes it also possible to fold strchr() calls with strings
1362 // of the same characters.
1363 Type *SizeTy = Size->getType();
1364 Type *Int8Ty = B.getInt8Ty();
1365
1366 // Slice off the sought character's high end bits.
1367 CharVal = B.CreateTrunc(V: CharVal, DestTy: Int8Ty);
1368
1369 Value *Sel1 = NullPtr;
1370 if (Pos != StringRef::npos) {
1371 // Handle two consecutive sequences of the same characters.
1372 Value *PosVal = ConstantInt::get(Ty: SizeTy, V: Pos);
1373 Value *StrPos = ConstantInt::get(Ty: Int8Ty, V: Str[Pos]);
1374 Value *CEqSPos = B.CreateICmpEQ(LHS: CharVal, RHS: StrPos);
1375 Value *NGtPos = B.CreateICmp(P: ICmpInst::ICMP_UGT, LHS: Size, RHS: PosVal);
1376 Value *And = B.CreateAnd(LHS: CEqSPos, RHS: NGtPos);
1377 Value *SrcPlus = B.CreateInBoundsGEP(Ty: B.getInt8Ty(), Ptr: SrcStr, IdxList: PosVal);
1378 Sel1 = B.CreateSelect(C: And, True: SrcPlus, False: NullPtr, Name: "memchr.sel1");
1379 }
1380
1381 Value *Str0 = ConstantInt::get(Ty: Int8Ty, V: Str[0]);
1382 Value *CEqS0 = B.CreateICmpEQ(LHS: Str0, RHS: CharVal);
1383 Value *NNeZ = B.CreateICmpNE(LHS: Size, RHS: ConstantInt::get(Ty: SizeTy, V: 0));
1384 Value *And = B.CreateAnd(LHS: NNeZ, RHS: CEqS0);
1385 return B.CreateSelect(C: And, True: SrcStr, False: Sel1, Name: "memchr.sel2");
1386 }
1387
1388 if (!LenC) {
1389 if (isOnlyUsedInEqualityComparison(V: CI, With: SrcStr))
1390 // S is dereferenceable so it's safe to load from it and fold
1391 // memchr(S, C, N) == S to N && *S == C for any C and N.
1392 // TODO: This is safe even for nonconstant S.
1393 return memChrToCharCompare(CI, NBytes: Size, B, DL);
1394
1395 // From now on we need a constant length and constant array.
1396 return nullptr;
1397 }
1398
1399 bool OptForSize = CI->getFunction()->hasOptSize() ||
1400 llvm::shouldOptimizeForSize(BB: CI->getParent(), PSI, BFI,
1401 QueryType: PGSOQueryType::IRPass);
1402
1403 // If the char is variable but the input str and length are not we can turn
1404 // this memchr call into a simple bit field test. Of course this only works
1405 // when the return value is only checked against null.
1406 //
1407 // It would be really nice to reuse switch lowering here but we can't change
1408 // the CFG at this point.
1409 //
1410 // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n')))
1411 // != 0
1412 // after bounds check.
1413 if (OptForSize || Str.empty() || !isOnlyUsedInZeroEqualityComparison(CxtI: CI))
1414 return nullptr;
1415
1416 unsigned char Max =
1417 *std::max_element(first: reinterpret_cast<const unsigned char *>(Str.begin()),
1418 last: reinterpret_cast<const unsigned char *>(Str.end()));
1419
1420 // Make sure the bit field we're about to create fits in a register on the
1421 // target.
1422 // FIXME: On a 64 bit architecture this prevents us from using the
1423 // interesting range of alpha ascii chars. We could do better by emitting
1424 // two bitfields or shifting the range by 64 if no lower chars are used.
1425 if (!DL.fitsInLegalInteger(Width: Max + 1)) {
1426 // Build chain of ORs
1427 // Transform:
1428 // memchr("abcd", C, 4) != nullptr
1429 // to:
1430 // (C == 'a' || C == 'b' || C == 'c' || C == 'd') != 0
1431 std::string SortedStr = Str.str();
1432 llvm::sort(C&: SortedStr);
1433 // Compute the number of of non-contiguous ranges.
1434 unsigned NonContRanges = 1;
1435 for (size_t i = 1; i < SortedStr.size(); ++i) {
1436 if (SortedStr[i] > SortedStr[i - 1] + 1) {
1437 NonContRanges++;
1438 }
1439 }
1440
1441 // Restrict this optimization to profitable cases with one or two range
1442 // checks.
1443 if (NonContRanges > 2)
1444 return nullptr;
1445
1446 SmallVector<Value *> CharCompares;
1447 for (unsigned char C : SortedStr)
1448 CharCompares.push_back(
1449 Elt: B.CreateICmpEQ(LHS: CharVal, RHS: ConstantInt::get(Ty: CharVal->getType(), V: C)));
1450
1451 return B.CreateIntToPtr(V: B.CreateOr(Ops: CharCompares), DestTy: CI->getType());
1452 }
1453
1454 // For the bit field use a power-of-2 type with at least 8 bits to avoid
1455 // creating unnecessary illegal types.
1456 unsigned char Width = NextPowerOf2(A: std::max(a: (unsigned char)7, b: Max));
1457
1458 // Now build the bit field.
1459 APInt Bitfield(Width, 0);
1460 for (char C : Str)
1461 Bitfield.setBit((unsigned char)C);
1462 Value *BitfieldC = B.getInt(AI: Bitfield);
1463
1464 // Adjust width of "C" to the bitfield width, then mask off the high bits.
1465 Value *C = B.CreateZExtOrTrunc(V: CharVal, DestTy: BitfieldC->getType());
1466 C = B.CreateAnd(LHS: C, RHS: B.getIntN(N: Width, C: 0xFF));
1467
1468 // First check that the bit field access is within bounds.
1469 Value *Bounds = B.CreateICmp(P: ICmpInst::ICMP_ULT, LHS: C, RHS: B.getIntN(N: Width, C: Width),
1470 Name: "memchr.bounds");
1471
1472 // Create code that checks if the given bit is set in the field.
1473 Value *Shl = B.CreateShl(LHS: B.getIntN(N: Width, C: 1ULL), RHS: C);
1474 Value *Bits = B.CreateIsNotNull(Arg: B.CreateAnd(LHS: Shl, RHS: BitfieldC), Name: "memchr.bits");
1475
1476 // Finally merge both checks and cast to pointer type. The inttoptr
1477 // implicitly zexts the i1 to intptr type.
1478 return B.CreateIntToPtr(V: B.CreateLogicalAnd(Cond1: Bounds, Cond2: Bits, Name: "memchr"),
1479 DestTy: CI->getType());
1480}
1481
1482// Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant
1483// arrays LHS and RHS and nonconstant Size.
1484static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS,
1485 Value *Size, bool StrNCmp,
1486 IRBuilderBase &B, const DataLayout &DL) {
1487 if (LHS == RHS) // memcmp(s,s,x) -> 0
1488 return Constant::getNullValue(Ty: CI->getType());
1489
1490 StringRef LStr, RStr;
1491 if (!getConstantStringInfo(V: LHS, Str&: LStr, /*TrimAtNul=*/false) ||
1492 !getConstantStringInfo(V: RHS, Str&: RStr, /*TrimAtNul=*/false))
1493 return nullptr;
1494
1495 // If the contents of both constant arrays are known, fold a call to
1496 // memcmp(A, B, N) to
1497 // N <= Pos ? 0 : (A < B ? -1 : B < A ? +1 : 0)
1498 // where Pos is the first mismatch between A and B, determined below.
1499
1500 uint64_t Pos = 0;
1501 Value *Zero = ConstantInt::get(Ty: CI->getType(), V: 0);
1502 for (uint64_t MinSize = std::min(a: LStr.size(), b: RStr.size()); ; ++Pos) {
1503 if (Pos == MinSize ||
1504 (StrNCmp && (LStr[Pos] == '\0' && RStr[Pos] == '\0'))) {
1505 // One array is a leading part of the other of equal or greater
1506 // size, or for strncmp, the arrays are equal strings.
1507 // Fold the result to zero. Size is assumed to be in bounds, since
1508 // otherwise the call would be undefined.
1509 return Zero;
1510 }
1511
1512 if (LStr[Pos] != RStr[Pos])
1513 break;
1514 }
1515
1516 // Normalize the result.
1517 typedef unsigned char UChar;
1518 int IRes = UChar(LStr[Pos]) < UChar(RStr[Pos]) ? -1 : 1;
1519 Value *MaxSize = ConstantInt::get(Ty: Size->getType(), V: Pos);
1520 Value *Cmp = B.CreateICmp(P: ICmpInst::ICMP_ULE, LHS: Size, RHS: MaxSize);
1521 Value *Res = ConstantInt::get(Ty: CI->getType(), V: IRes);
1522 return B.CreateSelect(C: Cmp, True: Zero, False: Res);
1523}
1524
1525// Optimize a memcmp call CI with constant size Len.
1526static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS,
1527 uint64_t Len, IRBuilderBase &B,
1528 const DataLayout &DL) {
1529 if (Len == 0) // memcmp(s1,s2,0) -> 0
1530 return Constant::getNullValue(Ty: CI->getType());
1531
1532 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
1533 if (Len == 1) {
1534 Value *LHSV = B.CreateZExt(V: B.CreateLoad(Ty: B.getInt8Ty(), Ptr: LHS, Name: "lhsc"),
1535 DestTy: CI->getType(), Name: "lhsv");
1536 Value *RHSV = B.CreateZExt(V: B.CreateLoad(Ty: B.getInt8Ty(), Ptr: RHS, Name: "rhsc"),
1537 DestTy: CI->getType(), Name: "rhsv");
1538 return B.CreateSub(LHS: LHSV, RHS: RHSV, Name: "chardiff");
1539 }
1540
1541 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
1542 // TODO: The case where both inputs are constants does not need to be limited
1543 // to legal integers or equality comparison. See block below this.
1544 if (DL.isLegalInteger(Width: Len * 8) && isOnlyUsedInZeroEqualityComparison(CxtI: CI)) {
1545 IntegerType *IntType = IntegerType::get(C&: CI->getContext(), NumBits: Len * 8);
1546 Align PrefAlignment = DL.getPrefTypeAlign(Ty: IntType);
1547
1548 // First, see if we can fold either argument to a constant.
1549 Value *LHSV = nullptr;
1550 if (auto *LHSC = dyn_cast<Constant>(Val: LHS))
1551 LHSV = ConstantFoldLoadFromConstPtr(C: LHSC, Ty: IntType, DL);
1552
1553 Value *RHSV = nullptr;
1554 if (auto *RHSC = dyn_cast<Constant>(Val: RHS))
1555 RHSV = ConstantFoldLoadFromConstPtr(C: RHSC, Ty: IntType, DL);
1556
1557 // Don't generate unaligned loads. If either source is constant data,
1558 // alignment doesn't matter for that source because there is no load.
1559 if ((LHSV || getKnownAlignment(V: LHS, DL, CxtI: CI) >= PrefAlignment) &&
1560 (RHSV || getKnownAlignment(V: RHS, DL, CxtI: CI) >= PrefAlignment)) {
1561 if (!LHSV)
1562 LHSV = B.CreateLoad(Ty: IntType, Ptr: LHS, Name: "lhsv");
1563 if (!RHSV)
1564 RHSV = B.CreateLoad(Ty: IntType, Ptr: RHS, Name: "rhsv");
1565 return B.CreateZExt(V: B.CreateICmpNE(LHS: LHSV, RHS: RHSV), DestTy: CI->getType(), Name: "memcmp");
1566 }
1567 }
1568
1569 return nullptr;
1570}
1571
1572// Most simplifications for memcmp also apply to bcmp.
1573Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI,
1574 IRBuilderBase &B) {
1575 Value *LHS = CI->getArgOperand(i: 0), *RHS = CI->getArgOperand(i: 1);
1576 Value *Size = CI->getArgOperand(i: 2);
1577
1578 annotateNonNullAndDereferenceable(CI, ArgNos: {0, 1}, Size, DL);
1579
1580 if (Value *Res = optimizeMemCmpVarSize(CI, LHS, RHS, Size, StrNCmp: false, B, DL))
1581 return Res;
1582
1583 // Handle constant Size.
1584 ConstantInt *LenC = dyn_cast<ConstantInt>(Val: Size);
1585 if (!LenC)
1586 return nullptr;
1587
1588 return optimizeMemCmpConstantSize(CI, LHS, RHS, Len: LenC->getZExtValue(), B, DL);
1589}
1590
1591Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) {
1592 Module *M = CI->getModule();
1593 if (Value *V = optimizeMemCmpBCmpCommon(CI, B))
1594 return V;
1595
1596 // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0
1597 // bcmp can be more efficient than memcmp because it only has to know that
1598 // there is a difference, not how different one is to the other.
1599 if (isLibFuncEmittable(M, TLI, TheLibFunc: LibFunc_bcmp) &&
1600 isOnlyUsedInZeroEqualityComparison(CxtI: CI)) {
1601 Value *LHS = CI->getArgOperand(i: 0);
1602 Value *RHS = CI->getArgOperand(i: 1);
1603 Value *Size = CI->getArgOperand(i: 2);
1604 return copyFlags(Old: *CI, New: emitBCmp(Ptr1: LHS, Ptr2: RHS, Len: Size, B, DL, TLI));
1605 }
1606
1607 return nullptr;
1608}
1609
1610Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) {
1611 return optimizeMemCmpBCmpCommon(CI, B);
1612}
1613
1614Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) {
1615 Value *Size = CI->getArgOperand(i: 2);
1616 annotateNonNullAndDereferenceable(CI, ArgNos: {0, 1}, Size, DL);
1617 if (isa<IntrinsicInst>(Val: CI))
1618 return nullptr;
1619
1620 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
1621 CallInst *NewCI = B.CreateMemCpy(Dst: CI->getArgOperand(i: 0), DstAlign: Align(1),
1622 Src: CI->getArgOperand(i: 1), SrcAlign: Align(1), Size);
1623 mergeAttributesAndFlags(NewCI, Old: *CI);
1624 return CI->getArgOperand(i: 0);
1625}
1626
1627Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) {
1628 Value *Dst = CI->getArgOperand(i: 0);
1629 Value *Src = CI->getArgOperand(i: 1);
1630 ConstantInt *StopChar = dyn_cast<ConstantInt>(Val: CI->getArgOperand(i: 2));
1631 ConstantInt *N = dyn_cast<ConstantInt>(Val: CI->getArgOperand(i: 3));
1632 StringRef SrcStr;
1633 if (CI->use_empty() && Dst == Src)
1634 return Dst;
1635 // memccpy(d, s, c, 0) -> nullptr
1636 if (N) {
1637 if (N->isNullValue())
1638 return Constant::getNullValue(Ty: CI->getType());
1639 if (!getConstantStringInfo(V: Src, Str&: SrcStr, /*TrimAtNul=*/false) ||
1640 // TODO: Handle zeroinitializer.
1641 !StopChar)
1642 return nullptr;
1643 } else {
1644 return nullptr;
1645 }
1646
1647 // Wrap arg 'c' of type int to char
1648 size_t Pos = SrcStr.find(C: StopChar->getSExtValue() & 0xFF);
1649 if (Pos == StringRef::npos) {
1650 if (N->getZExtValue() <= SrcStr.size()) {
1651 copyFlags(Old: *CI, New: B.CreateMemCpy(Dst, DstAlign: Align(1), Src, SrcAlign: Align(1),
1652 Size: CI->getArgOperand(i: 3)));
1653 return Constant::getNullValue(Ty: CI->getType());
1654 }
1655 return nullptr;
1656 }
1657
1658 Value *NewN =
1659 ConstantInt::get(Ty: N->getType(), V: std::min(a: uint64_t(Pos + 1), b: N->getZExtValue()));
1660 // memccpy -> llvm.memcpy
1661 copyFlags(Old: *CI, New: B.CreateMemCpy(Dst, DstAlign: Align(1), Src, SrcAlign: Align(1), Size: NewN));
1662 return Pos + 1 <= N->getZExtValue()
1663 ? B.CreateInBoundsGEP(Ty: B.getInt8Ty(), Ptr: Dst, IdxList: NewN)
1664 : Constant::getNullValue(Ty: CI->getType());
1665}
1666
1667Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) {
1668 Value *Dst = CI->getArgOperand(i: 0);
1669 Value *N = CI->getArgOperand(i: 2);
1670 // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n
1671 CallInst *NewCI =
1672 B.CreateMemCpy(Dst, DstAlign: Align(1), Src: CI->getArgOperand(i: 1), SrcAlign: Align(1), Size: N);
1673 // Propagate attributes, but memcpy has no return value, so make sure that
1674 // any return attributes are compliant.
1675 // TODO: Attach return value attributes to the 1st operand to preserve them?
1676 mergeAttributesAndFlags(NewCI, Old: *CI);
1677 return B.CreateInBoundsGEP(Ty: B.getInt8Ty(), Ptr: Dst, IdxList: N);
1678}
1679
1680Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) {
1681 Value *Size = CI->getArgOperand(i: 2);
1682 annotateNonNullAndDereferenceable(CI, ArgNos: {0, 1}, Size, DL);
1683 if (isa<IntrinsicInst>(Val: CI))
1684 return nullptr;
1685
1686 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
1687 CallInst *NewCI = B.CreateMemMove(Dst: CI->getArgOperand(i: 0), DstAlign: Align(1),
1688 Src: CI->getArgOperand(i: 1), SrcAlign: Align(1), Size);
1689 mergeAttributesAndFlags(NewCI, Old: *CI);
1690 return CI->getArgOperand(i: 0);
1691}
1692
1693Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) {
1694 Value *Size = CI->getArgOperand(i: 2);
1695 annotateNonNullAndDereferenceable(CI, ArgNos: 0, Size, DL);
1696 if (isa<IntrinsicInst>(Val: CI))
1697 return nullptr;
1698
1699 // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
1700 Value *Val = B.CreateIntCast(V: CI->getArgOperand(i: 1), DestTy: B.getInt8Ty(), isSigned: false);
1701 CallInst *NewCI = B.CreateMemSet(Ptr: CI->getArgOperand(i: 0), Val, Size, Align: Align(1));
1702 mergeAttributesAndFlags(NewCI, Old: *CI);
1703 return CI->getArgOperand(i: 0);
1704}
1705
1706Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) {
1707 if (isa<ConstantPointerNull>(Val: CI->getArgOperand(i: 0)))
1708 return copyFlags(Old: *CI, New: emitMalloc(Num: CI->getArgOperand(i: 1), B, DL, TLI));
1709
1710 return nullptr;
1711}
1712
1713// When enabled, replace operator new() calls marked with a hot or cold memprof
1714// attribute with an operator new() call that takes a __hot_cold_t parameter.
1715// Currently this is supported by the open source version of tcmalloc, see:
1716// https://github.com/google/tcmalloc/blob/master/tcmalloc/new_extension.h
1717Value *LibCallSimplifier::optimizeNew(CallInst *CI, IRBuilderBase &B,
1718 LibFunc &Func) {
1719 if (!OptimizeHotColdNew)
1720 return nullptr;
1721
1722 uint8_t HotCold;
1723 if (CI->getAttributes().getFnAttr(Kind: "memprof").getValueAsString() == "cold")
1724 HotCold = ColdNewHintValue;
1725 else if (CI->getAttributes().getFnAttr(Kind: "memprof").getValueAsString() == "hot")
1726 HotCold = HotNewHintValue;
1727 else
1728 return nullptr;
1729
1730 switch (Func) {
1731 case LibFunc_Znwm:
1732 return emitHotColdNew(Num: CI->getArgOperand(i: 0), B, TLI,
1733 NewFunc: LibFunc_Znwm12__hot_cold_t, HotCold);
1734 case LibFunc_Znam:
1735 return emitHotColdNew(Num: CI->getArgOperand(i: 0), B, TLI,
1736 NewFunc: LibFunc_Znam12__hot_cold_t, HotCold);
1737 case LibFunc_ZnwmRKSt9nothrow_t:
1738 return emitHotColdNewNoThrow(Num: CI->getArgOperand(i: 0), NoThrow: CI->getArgOperand(i: 1), B,
1739 TLI, NewFunc: LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t,
1740 HotCold);
1741 case LibFunc_ZnamRKSt9nothrow_t:
1742 return emitHotColdNewNoThrow(Num: CI->getArgOperand(i: 0), NoThrow: CI->getArgOperand(i: 1), B,
1743 TLI, NewFunc: LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t,
1744 HotCold);
1745 case LibFunc_ZnwmSt11align_val_t:
1746 return emitHotColdNewAligned(Num: CI->getArgOperand(i: 0), Align: CI->getArgOperand(i: 1), B,
1747 TLI, NewFunc: LibFunc_ZnwmSt11align_val_t12__hot_cold_t,
1748 HotCold);
1749 case LibFunc_ZnamSt11align_val_t:
1750 return emitHotColdNewAligned(Num: CI->getArgOperand(i: 0), Align: CI->getArgOperand(i: 1), B,
1751 TLI, NewFunc: LibFunc_ZnamSt11align_val_t12__hot_cold_t,
1752 HotCold);
1753 case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t:
1754 return emitHotColdNewAlignedNoThrow(
1755 Num: CI->getArgOperand(i: 0), Align: CI->getArgOperand(i: 1), NoThrow: CI->getArgOperand(i: 2), B,
1756 TLI, NewFunc: LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t, HotCold);
1757 case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t:
1758 return emitHotColdNewAlignedNoThrow(
1759 Num: CI->getArgOperand(i: 0), Align: CI->getArgOperand(i: 1), NoThrow: CI->getArgOperand(i: 2), B,
1760 TLI, NewFunc: LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t, HotCold);
1761 default:
1762 return nullptr;
1763 }
1764}
1765
1766//===----------------------------------------------------------------------===//
1767// Math Library Optimizations
1768//===----------------------------------------------------------------------===//
1769
1770// Replace a libcall \p CI with a call to intrinsic \p IID
1771static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B,
1772 Intrinsic::ID IID) {
1773 // Propagate fast-math flags from the existing call to the new call.
1774 IRBuilderBase::FastMathFlagGuard Guard(B);
1775 B.setFastMathFlags(CI->getFastMathFlags());
1776
1777 Module *M = CI->getModule();
1778 Value *V = CI->getArgOperand(i: 0);
1779 Function *F = Intrinsic::getDeclaration(M, id: IID, Tys: CI->getType());
1780 CallInst *NewCall = B.CreateCall(Callee: F, Args: V);
1781 NewCall->takeName(V: CI);
1782 return copyFlags(Old: *CI, New: NewCall);
1783}
1784
1785/// Return a variant of Val with float type.
1786/// Currently this works in two cases: If Val is an FPExtension of a float
1787/// value to something bigger, simply return the operand.
1788/// If Val is a ConstantFP but can be converted to a float ConstantFP without
1789/// loss of precision do so.
1790static Value *valueHasFloatPrecision(Value *Val) {
1791 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
1792 Value *Op = Cast->getOperand(i_nocapture: 0);
1793 if (Op->getType()->isFloatTy())
1794 return Op;
1795 }
1796 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
1797 APFloat F = Const->getValueAPF();
1798 bool losesInfo;
1799 (void)F.convert(ToSemantics: APFloat::IEEEsingle(), RM: APFloat::rmNearestTiesToEven,
1800 losesInfo: &losesInfo);
1801 if (!losesInfo)
1802 return ConstantFP::get(Context&: Const->getContext(), V: F);
1803 }
1804 return nullptr;
1805}
1806
1807/// Shrink double -> float functions.
1808static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B,
1809 bool isBinary, const TargetLibraryInfo *TLI,
1810 bool isPrecise = false) {
1811 Function *CalleeFn = CI->getCalledFunction();
1812 if (!CI->getType()->isDoubleTy() || !CalleeFn)
1813 return nullptr;
1814
1815 // If not all the uses of the function are converted to float, then bail out.
1816 // This matters if the precision of the result is more important than the
1817 // precision of the arguments.
1818 if (isPrecise)
1819 for (User *U : CI->users()) {
1820 FPTruncInst *Cast = dyn_cast<FPTruncInst>(Val: U);
1821 if (!Cast || !Cast->getType()->isFloatTy())
1822 return nullptr;
1823 }
1824
1825 // If this is something like 'g((double) float)', convert to 'gf(float)'.
1826 Value *V[2];
1827 V[0] = valueHasFloatPrecision(Val: CI->getArgOperand(i: 0));
1828 V[1] = isBinary ? valueHasFloatPrecision(Val: CI->getArgOperand(i: 1)) : nullptr;
1829 if (!V[0] || (isBinary && !V[1]))
1830 return nullptr;
1831
1832 // If call isn't an intrinsic, check that it isn't within a function with the
1833 // same name as the float version of this call, otherwise the result is an
1834 // infinite loop. For example, from MinGW-w64:
1835 //
1836 // float expf(float val) { return (float) exp((double) val); }
1837 StringRef CalleeName = CalleeFn->getName();
1838 bool IsIntrinsic = CalleeFn->isIntrinsic();
1839 if (!IsIntrinsic) {
1840 StringRef CallerName = CI->getFunction()->getName();
1841 if (!CallerName.empty() && CallerName.back() == 'f' &&
1842 CallerName.size() == (CalleeName.size() + 1) &&
1843 CallerName.starts_with(Prefix: CalleeName))
1844 return nullptr;
1845 }
1846
1847 // Propagate the math semantics from the current function to the new function.
1848 IRBuilderBase::FastMathFlagGuard Guard(B);
1849 B.setFastMathFlags(CI->getFastMathFlags());
1850
1851 // g((double) float) -> (double) gf(float)
1852 Value *R;
1853 if (IsIntrinsic) {
1854 Module *M = CI->getModule();
1855 Intrinsic::ID IID = CalleeFn->getIntrinsicID();
1856 Function *Fn = Intrinsic::getDeclaration(M, id: IID, Tys: B.getFloatTy());
1857 R = isBinary ? B.CreateCall(Callee: Fn, Args: V) : B.CreateCall(Callee: Fn, Args: V[0]);
1858 } else {
1859 AttributeList CalleeAttrs = CalleeFn->getAttributes();
1860 R = isBinary ? emitBinaryFloatFnCall(Op1: V[0], Op2: V[1], TLI, Name: CalleeName, B,
1861 Attrs: CalleeAttrs)
1862 : emitUnaryFloatFnCall(Op: V[0], TLI, Name: CalleeName, B, Attrs: CalleeAttrs);
1863 }
1864 return B.CreateFPExt(V: R, DestTy: B.getDoubleTy());
1865}
1866
1867/// Shrink double -> float for unary functions.
1868static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1869 const TargetLibraryInfo *TLI,
1870 bool isPrecise = false) {
1871 return optimizeDoubleFP(CI, B, isBinary: false, TLI, isPrecise);
1872}
1873
1874/// Shrink double -> float for binary functions.
1875static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1876 const TargetLibraryInfo *TLI,
1877 bool isPrecise = false) {
1878 return optimizeDoubleFP(CI, B, isBinary: true, TLI, isPrecise);
1879}
1880
1881// cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
1882Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) {
1883 if (!CI->isFast())
1884 return nullptr;
1885
1886 // Propagate fast-math flags from the existing call to new instructions.
1887 IRBuilderBase::FastMathFlagGuard Guard(B);
1888 B.setFastMathFlags(CI->getFastMathFlags());
1889
1890 Value *Real, *Imag;
1891 if (CI->arg_size() == 1) {
1892 Value *Op = CI->getArgOperand(i: 0);
1893 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
1894 Real = B.CreateExtractValue(Agg: Op, Idxs: 0, Name: "real");
1895 Imag = B.CreateExtractValue(Agg: Op, Idxs: 1, Name: "imag");
1896 } else {
1897 assert(CI->arg_size() == 2 && "Unexpected signature for cabs!");
1898 Real = CI->getArgOperand(i: 0);
1899 Imag = CI->getArgOperand(i: 1);
1900 }
1901
1902 Value *RealReal = B.CreateFMul(L: Real, R: Real);
1903 Value *ImagImag = B.CreateFMul(L: Imag, R: Imag);
1904
1905 Function *FSqrt = Intrinsic::getDeclaration(M: CI->getModule(), Intrinsic::id: sqrt,
1906 Tys: CI->getType());
1907 return copyFlags(
1908 Old: *CI, New: B.CreateCall(Callee: FSqrt, Args: B.CreateFAdd(L: RealReal, R: ImagImag), Name: "cabs"));
1909}
1910
1911// Return a properly extended integer (DstWidth bits wide) if the operation is
1912// an itofp.
1913static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) {
1914 if (isa<SIToFPInst>(Val: I2F) || isa<UIToFPInst>(Val: I2F)) {
1915 Value *Op = cast<Instruction>(Val: I2F)->getOperand(i: 0);
1916 // Make sure that the exponent fits inside an "int" of size DstWidth,
1917 // thus avoiding any range issues that FP has not.
1918 unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits();
1919 if (BitWidth < DstWidth ||
1920 (BitWidth == DstWidth && isa<SIToFPInst>(Val: I2F)))
1921 return isa<SIToFPInst>(Val: I2F) ? B.CreateSExt(V: Op, DestTy: B.getIntNTy(N: DstWidth))
1922 : B.CreateZExt(V: Op, DestTy: B.getIntNTy(N: DstWidth));
1923 }
1924
1925 return nullptr;
1926}
1927
1928/// Use exp{,2}(x * y) for pow(exp{,2}(x), y);
1929/// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x);
1930/// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x).
1931Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) {
1932 Module *M = Pow->getModule();
1933 Value *Base = Pow->getArgOperand(i: 0), *Expo = Pow->getArgOperand(i: 1);
1934 Module *Mod = Pow->getModule();
1935 Type *Ty = Pow->getType();
1936 bool Ignored;
1937
1938 // Evaluate special cases related to a nested function as the base.
1939
1940 // pow(exp(x), y) -> exp(x * y)
1941 // pow(exp2(x), y) -> exp2(x * y)
1942 // If exp{,2}() is used only once, it is better to fold two transcendental
1943 // math functions into one. If used again, exp{,2}() would still have to be
1944 // called with the original argument, then keep both original transcendental
1945 // functions. However, this transformation is only safe with fully relaxed
1946 // math semantics, since, besides rounding differences, it changes overflow
1947 // and underflow behavior quite dramatically. For example:
1948 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf
1949 // Whereas:
1950 // exp(1000 * 0.001) = exp(1)
1951 // TODO: Loosen the requirement for fully relaxed math semantics.
1952 // TODO: Handle exp10() when more targets have it available.
1953 CallInst *BaseFn = dyn_cast<CallInst>(Val: Base);
1954 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) {
1955 LibFunc LibFn;
1956
1957 Function *CalleeFn = BaseFn->getCalledFunction();
1958 if (CalleeFn && TLI->getLibFunc(funcName: CalleeFn->getName(), F&: LibFn) &&
1959 isLibFuncEmittable(M, TLI, TheLibFunc: LibFn)) {
1960 StringRef ExpName;
1961 Intrinsic::ID ID;
1962 Value *ExpFn;
1963 LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble;
1964
1965 switch (LibFn) {
1966 default:
1967 return nullptr;
1968 case LibFunc_expf:
1969 case LibFunc_exp:
1970 case LibFunc_expl:
1971 ExpName = TLI->getName(F: LibFunc_exp);
1972 ID = Intrinsic::exp;
1973 LibFnFloat = LibFunc_expf;
1974 LibFnDouble = LibFunc_exp;
1975 LibFnLongDouble = LibFunc_expl;
1976 break;
1977 case LibFunc_exp2f:
1978 case LibFunc_exp2:
1979 case LibFunc_exp2l:
1980 ExpName = TLI->getName(F: LibFunc_exp2);
1981 ID = Intrinsic::exp2;
1982 LibFnFloat = LibFunc_exp2f;
1983 LibFnDouble = LibFunc_exp2;
1984 LibFnLongDouble = LibFunc_exp2l;
1985 break;
1986 }
1987
1988 // Create new exp{,2}() with the product as its argument.
1989 Value *FMul = B.CreateFMul(L: BaseFn->getArgOperand(i: 0), R: Expo, Name: "mul");
1990 ExpFn = BaseFn->doesNotAccessMemory()
1991 ? B.CreateCall(Callee: Intrinsic::getDeclaration(M: Mod, id: ID, Tys: Ty),
1992 Args: FMul, Name: ExpName)
1993 : emitUnaryFloatFnCall(Op: FMul, TLI, DoubleFn: LibFnDouble, FloatFn: LibFnFloat,
1994 LongDoubleFn: LibFnLongDouble, B,
1995 Attrs: BaseFn->getAttributes());
1996
1997 // Since the new exp{,2}() is different from the original one, dead code
1998 // elimination cannot be trusted to remove it, since it may have side
1999 // effects (e.g., errno). When the only consumer for the original
2000 // exp{,2}() is pow(), then it has to be explicitly erased.
2001 substituteInParent(I: BaseFn, With: ExpFn);
2002 return ExpFn;
2003 }
2004 }
2005
2006 // Evaluate special cases related to a constant base.
2007
2008 const APFloat *BaseF;
2009 if (!match(V: Pow->getArgOperand(i: 0), P: m_APFloat(Res&: BaseF)))
2010 return nullptr;
2011
2012 AttributeList NoAttrs; // Attributes are only meaningful on the original call
2013
2014 // pow(2.0, itofp(x)) -> ldexp(1.0, x)
2015 // TODO: This does not work for vectors because there is no ldexp intrinsic.
2016 if (!Ty->isVectorTy() && match(V: Base, P: m_SpecificFP(V: 2.0)) &&
2017 (isa<SIToFPInst>(Val: Expo) || isa<UIToFPInst>(Val: Expo)) &&
2018 hasFloatFn(M, TLI, Ty, DoubleFn: LibFunc_ldexp, FloatFn: LibFunc_ldexpf, LongDoubleFn: LibFunc_ldexpl)) {
2019 if (Value *ExpoI = getIntToFPVal(I2F: Expo, B, DstWidth: TLI->getIntSize()))
2020 return copyFlags(Old: *Pow,
2021 New: emitBinaryFloatFnCall(Op1: ConstantFP::get(Ty, V: 1.0), Op2: ExpoI,
2022 TLI, DoubleFn: LibFunc_ldexp, FloatFn: LibFunc_ldexpf,
2023 LongDoubleFn: LibFunc_ldexpl, B, Attrs: NoAttrs));
2024 }
2025
2026 // pow(2.0 ** n, x) -> exp2(n * x)
2027 if (hasFloatFn(M, TLI, Ty, DoubleFn: LibFunc_exp2, FloatFn: LibFunc_exp2f, LongDoubleFn: LibFunc_exp2l)) {
2028 APFloat BaseR = APFloat(1.0);
2029 BaseR.convert(ToSemantics: BaseF->getSemantics(), RM: APFloat::rmTowardZero, losesInfo: &Ignored);
2030 BaseR = BaseR / *BaseF;
2031 bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger();
2032 const APFloat *NF = IsReciprocal ? &BaseR : BaseF;
2033 APSInt NI(64, false);
2034 if ((IsInteger || IsReciprocal) &&
2035 NF->convertToInteger(Result&: NI, RM: APFloat::rmTowardZero, IsExact: &Ignored) ==
2036 APFloat::opOK &&
2037 NI > 1 && NI.isPowerOf2()) {
2038 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0);
2039 Value *FMul = B.CreateFMul(L: Expo, R: ConstantFP::get(Ty, V: N), Name: "mul");
2040 if (Pow->doesNotAccessMemory())
2041 return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration(
2042 M: Mod, Intrinsic::id: exp2, Tys: Ty),
2043 FMul, "exp2"));
2044 else
2045 return copyFlags(Old: *Pow, New: emitUnaryFloatFnCall(Op: FMul, TLI, DoubleFn: LibFunc_exp2,
2046 FloatFn: LibFunc_exp2f,
2047 LongDoubleFn: LibFunc_exp2l, B, Attrs: NoAttrs));
2048 }
2049 }
2050
2051 // pow(10.0, x) -> exp10(x)
2052 // TODO: There is no exp10() intrinsic yet, but some day there shall be one.
2053 if (match(V: Base, P: m_SpecificFP(V: 10.0)) &&
2054 hasFloatFn(M, TLI, Ty, DoubleFn: LibFunc_exp10, FloatFn: LibFunc_exp10f, LongDoubleFn: LibFunc_exp10l))
2055 return copyFlags(Old: *Pow, New: emitUnaryFloatFnCall(Op: Expo, TLI, DoubleFn: LibFunc_exp10,
2056 FloatFn: LibFunc_exp10f, LongDoubleFn: LibFunc_exp10l,
2057 B, Attrs: NoAttrs));
2058
2059 // pow(x, y) -> exp2(log2(x) * y)
2060 if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() &&
2061 !BaseF->isNegative()) {
2062 // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN.
2063 // Luckily optimizePow has already handled the x == 1 case.
2064 assert(!match(Base, m_FPOne()) &&
2065 "pow(1.0, y) should have been simplified earlier!");
2066
2067 Value *Log = nullptr;
2068 if (Ty->isFloatTy())
2069 Log = ConstantFP::get(Ty, V: std::log2(x: BaseF->convertToFloat()));
2070 else if (Ty->isDoubleTy())
2071 Log = ConstantFP::get(Ty, V: std::log2(x: BaseF->convertToDouble()));
2072
2073 if (Log) {
2074 Value *FMul = B.CreateFMul(L: Log, R: Expo, Name: "mul");
2075 if (Pow->doesNotAccessMemory())
2076 return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration(
2077 M: Mod, Intrinsic::id: exp2, Tys: Ty),
2078 FMul, "exp2"));
2079 else if (hasFloatFn(M, TLI, Ty, DoubleFn: LibFunc_exp2, FloatFn: LibFunc_exp2f,
2080 LongDoubleFn: LibFunc_exp2l))
2081 return copyFlags(Old: *Pow, New: emitUnaryFloatFnCall(Op: FMul, TLI, DoubleFn: LibFunc_exp2,
2082 FloatFn: LibFunc_exp2f,
2083 LongDoubleFn: LibFunc_exp2l, B, Attrs: NoAttrs));
2084 }
2085 }
2086
2087 return nullptr;
2088}
2089
2090static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno,
2091 Module *M, IRBuilderBase &B,
2092 const TargetLibraryInfo *TLI) {
2093 // If errno is never set, then use the intrinsic for sqrt().
2094 if (NoErrno) {
2095 Function *SqrtFn =
2096 Intrinsic::getDeclaration(M, Intrinsic::id: sqrt, Tys: V->getType());
2097 return B.CreateCall(Callee: SqrtFn, Args: V, Name: "sqrt");
2098 }
2099
2100 // Otherwise, use the libcall for sqrt().
2101 if (hasFloatFn(M, TLI, Ty: V->getType(), DoubleFn: LibFunc_sqrt, FloatFn: LibFunc_sqrtf,
2102 LongDoubleFn: LibFunc_sqrtl))
2103 // TODO: We also should check that the target can in fact lower the sqrt()
2104 // libcall. We currently have no way to ask this question, so we ask if
2105 // the target has a sqrt() libcall, which is not exactly the same.
2106 return emitUnaryFloatFnCall(Op: V, TLI, DoubleFn: LibFunc_sqrt, FloatFn: LibFunc_sqrtf,
2107 LongDoubleFn: LibFunc_sqrtl, B, Attrs);
2108
2109 return nullptr;
2110}
2111
2112/// Use square root in place of pow(x, +/-0.5).
2113Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) {
2114 Value *Sqrt, *Base = Pow->getArgOperand(i: 0), *Expo = Pow->getArgOperand(i: 1);
2115 Module *Mod = Pow->getModule();
2116 Type *Ty = Pow->getType();
2117
2118 const APFloat *ExpoF;
2119 if (!match(V: Expo, P: m_APFloat(Res&: ExpoF)) ||
2120 (!ExpoF->isExactlyValue(V: 0.5) && !ExpoF->isExactlyValue(V: -0.5)))
2121 return nullptr;
2122
2123 // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step,
2124 // so that requires fast-math-flags (afn or reassoc).
2125 if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc()))
2126 return nullptr;
2127
2128 // If we have a pow() library call (accesses memory) and we can't guarantee
2129 // that the base is not an infinity, give up:
2130 // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting
2131 // errno), but sqrt(-Inf) is required by various standards to set errno.
2132 if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() &&
2133 !isKnownNeverInfinity(V: Base, Depth: 0,
2134 SQ: SimplifyQuery(DL, TLI, /*DT=*/nullptr, AC, Pow)))
2135 return nullptr;
2136
2137 Sqrt = getSqrtCall(V: Base, Attrs: AttributeList(), NoErrno: Pow->doesNotAccessMemory(), M: Mod, B,
2138 TLI);
2139 if (!Sqrt)
2140 return nullptr;
2141
2142 // Handle signed zero base by expanding to fabs(sqrt(x)).
2143 if (!Pow->hasNoSignedZeros()) {
2144 Function *FAbsFn = Intrinsic::getDeclaration(M: Mod, Intrinsic::id: fabs, Tys: Ty);
2145 Sqrt = B.CreateCall(Callee: FAbsFn, Args: Sqrt, Name: "abs");
2146 }
2147
2148 Sqrt = copyFlags(Old: *Pow, New: Sqrt);
2149
2150 // Handle non finite base by expanding to
2151 // (x == -infinity ? +infinity : sqrt(x)).
2152 if (!Pow->hasNoInfs()) {
2153 Value *PosInf = ConstantFP::getInfinity(Ty),
2154 *NegInf = ConstantFP::getInfinity(Ty, Negative: true);
2155 Value *FCmp = B.CreateFCmpOEQ(LHS: Base, RHS: NegInf, Name: "isinf");
2156 Sqrt = B.CreateSelect(C: FCmp, True: PosInf, False: Sqrt);
2157 }
2158
2159 // If the exponent is negative, then get the reciprocal.
2160 if (ExpoF->isNegative())
2161 Sqrt = B.CreateFDiv(L: ConstantFP::get(Ty, V: 1.0), R: Sqrt, Name: "reciprocal");
2162
2163 return Sqrt;
2164}
2165
2166static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M,
2167 IRBuilderBase &B) {
2168 Value *Args[] = {Base, Expo};
2169 Type *Types[] = {Base->getType(), Expo->getType()};
2170 Function *F = Intrinsic::getDeclaration(M, Intrinsic::id: powi, Tys: Types);
2171 return B.CreateCall(Callee: F, Args);
2172}
2173
2174Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) {
2175 Value *Base = Pow->getArgOperand(i: 0);
2176 Value *Expo = Pow->getArgOperand(i: 1);
2177 Function *Callee = Pow->getCalledFunction();
2178 StringRef Name = Callee->getName();
2179 Type *Ty = Pow->getType();
2180 Module *M = Pow->getModule();
2181 bool AllowApprox = Pow->hasApproxFunc();
2182 bool Ignored;
2183
2184 // Propagate the math semantics from the call to any created instructions.
2185 IRBuilderBase::FastMathFlagGuard Guard(B);
2186 B.setFastMathFlags(Pow->getFastMathFlags());
2187 // Evaluate special cases related to the base.
2188
2189 // pow(1.0, x) -> 1.0
2190 if (match(V: Base, P: m_FPOne()))
2191 return Base;
2192
2193 if (Value *Exp = replacePowWithExp(Pow, B))
2194 return Exp;
2195
2196 // Evaluate special cases related to the exponent.
2197
2198 // pow(x, -1.0) -> 1.0 / x
2199 if (match(V: Expo, P: m_SpecificFP(V: -1.0)))
2200 return B.CreateFDiv(L: ConstantFP::get(Ty, V: 1.0), R: Base, Name: "reciprocal");
2201
2202 // pow(x, +/-0.0) -> 1.0
2203 if (match(V: Expo, P: m_AnyZeroFP()))
2204 return ConstantFP::get(Ty, V: 1.0);
2205
2206 // pow(x, 1.0) -> x
2207 if (match(V: Expo, P: m_FPOne()))
2208 return Base;
2209
2210 // pow(x, 2.0) -> x * x
2211 if (match(V: Expo, P: m_SpecificFP(V: 2.0)))
2212 return B.CreateFMul(L: Base, R: Base, Name: "square");
2213
2214 if (Value *Sqrt = replacePowWithSqrt(Pow, B))
2215 return Sqrt;
2216
2217 // If we can approximate pow:
2218 // pow(x, n) -> powi(x, n) * sqrt(x) if n has exactly a 0.5 fraction
2219 // pow(x, n) -> powi(x, n) if n is a constant signed integer value
2220 const APFloat *ExpoF;
2221 if (AllowApprox && match(V: Expo, P: m_APFloat(Res&: ExpoF)) &&
2222 !ExpoF->isExactlyValue(V: 0.5) && !ExpoF->isExactlyValue(V: -0.5)) {
2223 APFloat ExpoA(abs(X: *ExpoF));
2224 APFloat ExpoI(*ExpoF);
2225 Value *Sqrt = nullptr;
2226 if (!ExpoA.isInteger()) {
2227 APFloat Expo2 = ExpoA;
2228 // To check if ExpoA is an integer + 0.5, we add it to itself. If there
2229 // is no floating point exception and the result is an integer, then
2230 // ExpoA == integer + 0.5
2231 if (Expo2.add(RHS: ExpoA, RM: APFloat::rmNearestTiesToEven) != APFloat::opOK)
2232 return nullptr;
2233
2234 if (!Expo2.isInteger())
2235 return nullptr;
2236
2237 if (ExpoI.roundToIntegral(RM: APFloat::rmTowardNegative) !=
2238 APFloat::opInexact)
2239 return nullptr;
2240 if (!ExpoI.isInteger())
2241 return nullptr;
2242 ExpoF = &ExpoI;
2243
2244 Sqrt = getSqrtCall(V: Base, Attrs: AttributeList(), NoErrno: Pow->doesNotAccessMemory(), M,
2245 B, TLI);
2246 if (!Sqrt)
2247 return nullptr;
2248 }
2249
2250 // 0.5 fraction is now optionally handled.
2251 // Do pow -> powi for remaining integer exponent
2252 APSInt IntExpo(TLI->getIntSize(), /*isUnsigned=*/false);
2253 if (ExpoF->isInteger() &&
2254 ExpoF->convertToInteger(Result&: IntExpo, RM: APFloat::rmTowardZero, IsExact: &Ignored) ==
2255 APFloat::opOK) {
2256 Value *PowI = copyFlags(
2257 Old: *Pow,
2258 New: createPowWithIntegerExponent(
2259 Base, Expo: ConstantInt::get(Ty: B.getIntNTy(N: TLI->getIntSize()), V: IntExpo),
2260 M, B));
2261
2262 if (PowI && Sqrt)
2263 return B.CreateFMul(L: PowI, R: Sqrt);
2264
2265 return PowI;
2266 }
2267 }
2268
2269 // powf(x, itofp(y)) -> powi(x, y)
2270 if (AllowApprox && (isa<SIToFPInst>(Val: Expo) || isa<UIToFPInst>(Val: Expo))) {
2271 if (Value *ExpoI = getIntToFPVal(I2F: Expo, B, DstWidth: TLI->getIntSize()))
2272 return copyFlags(Old: *Pow, New: createPowWithIntegerExponent(Base, Expo: ExpoI, M, B));
2273 }
2274
2275 // Shrink pow() to powf() if the arguments are single precision,
2276 // unless the result is expected to be double precision.
2277 if (UnsafeFPShrink && Name == TLI->getName(F: LibFunc_pow) &&
2278 hasFloatVersion(M, FuncName: Name)) {
2279 if (Value *Shrunk = optimizeBinaryDoubleFP(CI: Pow, B, TLI, isPrecise: true))
2280 return Shrunk;
2281 }
2282
2283 return nullptr;
2284}
2285
2286Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) {
2287 Module *M = CI->getModule();
2288 Function *Callee = CI->getCalledFunction();
2289 StringRef Name = Callee->getName();
2290 Value *Ret = nullptr;
2291 if (UnsafeFPShrink && Name == TLI->getName(F: LibFunc_exp2) &&
2292 hasFloatVersion(M, FuncName: Name))
2293 Ret = optimizeUnaryDoubleFP(CI, B, TLI, isPrecise: true);
2294
2295 // Bail out for vectors because the code below only expects scalars.
2296 // TODO: This could be allowed if we had a ldexp intrinsic (D14327).
2297 Type *Ty = CI->getType();
2298 if (Ty->isVectorTy())
2299 return Ret;
2300
2301 // exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= IntSize
2302 // exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < IntSize
2303 Value *Op = CI->getArgOperand(i: 0);
2304 if ((isa<SIToFPInst>(Val: Op) || isa<UIToFPInst>(Val: Op)) &&
2305 hasFloatFn(M, TLI, Ty, DoubleFn: LibFunc_ldexp, FloatFn: LibFunc_ldexpf, LongDoubleFn: LibFunc_ldexpl)) {
2306 if (Value *Exp = getIntToFPVal(I2F: Op, B, DstWidth: TLI->getIntSize())) {
2307 IRBuilderBase::FastMathFlagGuard Guard(B);
2308 B.setFastMathFlags(CI->getFastMathFlags());
2309 return copyFlags(
2310 Old: *CI, New: emitBinaryFloatFnCall(Op1: ConstantFP::get(Ty, V: 1.0), Op2: Exp, TLI,
2311 DoubleFn: LibFunc_ldexp, FloatFn: LibFunc_ldexpf,
2312 LongDoubleFn: LibFunc_ldexpl, B, Attrs: AttributeList()));
2313 }
2314 }
2315
2316 return Ret;
2317}
2318
2319Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) {
2320 Module *M = CI->getModule();
2321
2322 // If we can shrink the call to a float function rather than a double
2323 // function, do that first.
2324 Function *Callee = CI->getCalledFunction();
2325 StringRef Name = Callee->getName();
2326 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(M, FuncName: Name))
2327 if (Value *Ret = optimizeBinaryDoubleFP(CI, B, TLI))
2328 return Ret;
2329
2330 // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to
2331 // the intrinsics for improved optimization (for example, vectorization).
2332 // No-signed-zeros is implied by the definitions of fmax/fmin themselves.
2333 // From the C standard draft WG14/N1256:
2334 // "Ideally, fmax would be sensitive to the sign of zero, for example
2335 // fmax(-0.0, +0.0) would return +0; however, implementation in software
2336 // might be impractical."
2337 IRBuilderBase::FastMathFlagGuard Guard(B);
2338 FastMathFlags FMF = CI->getFastMathFlags();
2339 FMF.setNoSignedZeros();
2340 B.setFastMathFlags(FMF);
2341
2342 Intrinsic::ID IID = Callee->getName().starts_with(Prefix: "fmin") ? Intrinsic::minnum
2343 : Intrinsic::maxnum;
2344 Function *F = Intrinsic::getDeclaration(M: CI->getModule(), id: IID, Tys: CI->getType());
2345 return copyFlags(
2346 Old: *CI, New: B.CreateCall(Callee: F, Args: {CI->getArgOperand(i: 0), CI->getArgOperand(i: 1)}));
2347}
2348
2349Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) {
2350 Function *LogFn = Log->getCalledFunction();
2351 StringRef LogNm = LogFn->getName();
2352 Intrinsic::ID LogID = LogFn->getIntrinsicID();
2353 Module *Mod = Log->getModule();
2354 Type *Ty = Log->getType();
2355 Value *Ret = nullptr;
2356
2357 if (UnsafeFPShrink && hasFloatVersion(M: Mod, FuncName: LogNm))
2358 Ret = optimizeUnaryDoubleFP(CI: Log, B, TLI, isPrecise: true);
2359
2360 // The earlier call must also be 'fast' in order to do these transforms.
2361 CallInst *Arg = dyn_cast<CallInst>(Val: Log->getArgOperand(i: 0));
2362 if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse())
2363 return Ret;
2364
2365 LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb;
2366
2367 // This is only applicable to log(), log2(), log10().
2368 if (TLI->getLibFunc(funcName: LogNm, F&: LogLb))
2369 switch (LogLb) {
2370 case LibFunc_logf:
2371 LogID = Intrinsic::log;
2372 ExpLb = LibFunc_expf;
2373 Exp2Lb = LibFunc_exp2f;
2374 Exp10Lb = LibFunc_exp10f;
2375 PowLb = LibFunc_powf;
2376 break;
2377 case LibFunc_log:
2378 LogID = Intrinsic::log;
2379 ExpLb = LibFunc_exp;
2380 Exp2Lb = LibFunc_exp2;
2381 Exp10Lb = LibFunc_exp10;
2382 PowLb = LibFunc_pow;
2383 break;
2384 case LibFunc_logl:
2385 LogID = Intrinsic::log;
2386 ExpLb = LibFunc_expl;
2387 Exp2Lb = LibFunc_exp2l;
2388 Exp10Lb = LibFunc_exp10l;
2389 PowLb = LibFunc_powl;
2390 break;
2391 case LibFunc_log2f:
2392 LogID = Intrinsic::log2;
2393 ExpLb = LibFunc_expf;
2394 Exp2Lb = LibFunc_exp2f;
2395 Exp10Lb = LibFunc_exp10f;
2396 PowLb = LibFunc_powf;
2397 break;
2398 case LibFunc_log2:
2399 LogID = Intrinsic::log2;
2400 ExpLb = LibFunc_exp;
2401 Exp2Lb = LibFunc_exp2;
2402 Exp10Lb = LibFunc_exp10;
2403 PowLb = LibFunc_pow;
2404 break;
2405 case LibFunc_log2l:
2406 LogID = Intrinsic::log2;
2407 ExpLb = LibFunc_expl;
2408 Exp2Lb = LibFunc_exp2l;
2409 Exp10Lb = LibFunc_exp10l;
2410 PowLb = LibFunc_powl;
2411 break;
2412 case LibFunc_log10f:
2413 LogID = Intrinsic::log10;
2414 ExpLb = LibFunc_expf;
2415 Exp2Lb = LibFunc_exp2f;
2416 Exp10Lb = LibFunc_exp10f;
2417 PowLb = LibFunc_powf;
2418 break;
2419 case LibFunc_log10:
2420 LogID = Intrinsic::log10;
2421 ExpLb = LibFunc_exp;
2422 Exp2Lb = LibFunc_exp2;
2423 Exp10Lb = LibFunc_exp10;
2424 PowLb = LibFunc_pow;
2425 break;
2426 case LibFunc_log10l:
2427 LogID = Intrinsic::log10;
2428 ExpLb = LibFunc_expl;
2429 Exp2Lb = LibFunc_exp2l;
2430 Exp10Lb = LibFunc_exp10l;
2431 PowLb = LibFunc_powl;
2432 break;
2433 default:
2434 return Ret;
2435 }
2436 else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 ||
2437 LogID == Intrinsic::log10) {
2438 if (Ty->getScalarType()->isFloatTy()) {
2439 ExpLb = LibFunc_expf;
2440 Exp2Lb = LibFunc_exp2f;
2441 Exp10Lb = LibFunc_exp10f;
2442 PowLb = LibFunc_powf;
2443 } else if (Ty->getScalarType()->isDoubleTy()) {
2444 ExpLb = LibFunc_exp;
2445 Exp2Lb = LibFunc_exp2;
2446 Exp10Lb = LibFunc_exp10;
2447 PowLb = LibFunc_pow;
2448 } else
2449 return Ret;
2450 } else
2451 return Ret;
2452
2453 IRBuilderBase::FastMathFlagGuard Guard(B);
2454 B.setFastMathFlags(FastMathFlags::getFast());
2455
2456 Intrinsic::ID ArgID = Arg->getIntrinsicID();
2457 LibFunc ArgLb = NotLibFunc;
2458 TLI->getLibFunc(CB: *Arg, F&: ArgLb);
2459
2460 // log(pow(x,y)) -> y*log(x)
2461 AttributeList NoAttrs;
2462 if (ArgLb == PowLb || ArgID == Intrinsic::pow || ArgID == Intrinsic::powi) {
2463 Value *LogX =
2464 Log->doesNotAccessMemory()
2465 ? B.CreateCall(Callee: Intrinsic::getDeclaration(M: Mod, id: LogID, Tys: Ty),
2466 Args: Arg->getOperand(i_nocapture: 0), Name: "log")
2467 : emitUnaryFloatFnCall(Op: Arg->getOperand(i_nocapture: 0), TLI, Name: LogNm, B, Attrs: NoAttrs);
2468 Value *Y = Arg->getArgOperand(i: 1);
2469 // Cast exponent to FP if integer.
2470 if (ArgID == Intrinsic::powi)
2471 Y = B.CreateSIToFP(V: Y, DestTy: Ty, Name: "cast");
2472 Value *MulY = B.CreateFMul(L: Y, R: LogX, Name: "mul");
2473 // Since pow() may have side effects, e.g. errno,
2474 // dead code elimination may not be trusted to remove it.
2475 substituteInParent(I: Arg, With: MulY);
2476 return MulY;
2477 }
2478
2479 // log(exp{,2,10}(y)) -> y*log({e,2,10})
2480 // TODO: There is no exp10() intrinsic yet.
2481 if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb ||
2482 ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) {
2483 Constant *Eul;
2484 if (ArgLb == ExpLb || ArgID == Intrinsic::exp)
2485 // FIXME: Add more precise value of e for long double.
2486 Eul = ConstantFP::get(Ty: Log->getType(), V: numbers::e);
2487 else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2)
2488 Eul = ConstantFP::get(Ty: Log->getType(), V: 2.0);
2489 else
2490 Eul = ConstantFP::get(Ty: Log->getType(), V: 10.0);
2491 Value *LogE = Log->doesNotAccessMemory()
2492 ? B.CreateCall(Callee: Intrinsic::getDeclaration(M: Mod, id: LogID, Tys: Ty),
2493 Args: Eul, Name: "log")
2494 : emitUnaryFloatFnCall(Op: Eul, TLI, Name: LogNm, B, Attrs: NoAttrs);
2495 Value *MulY = B.CreateFMul(L: Arg->getArgOperand(i: 0), R: LogE, Name: "mul");
2496 // Since exp() may have side effects, e.g. errno,
2497 // dead code elimination may not be trusted to remove it.
2498 substituteInParent(I: Arg, With: MulY);
2499 return MulY;
2500 }
2501
2502 return Ret;
2503}
2504
2505// sqrt(exp(X)) -> exp(X * 0.5)
2506Value *LibCallSimplifier::mergeSqrtToExp(CallInst *CI, IRBuilderBase &B) {
2507 if (!CI->hasAllowReassoc())
2508 return nullptr;
2509
2510 Function *SqrtFn = CI->getCalledFunction();
2511 CallInst *Arg = dyn_cast<CallInst>(Val: CI->getArgOperand(i: 0));
2512 if (!Arg || !Arg->hasAllowReassoc() || !Arg->hasOneUse())
2513 return nullptr;
2514 Intrinsic::ID ArgID = Arg->getIntrinsicID();
2515 LibFunc ArgLb = NotLibFunc;
2516 TLI->getLibFunc(CB: *Arg, F&: ArgLb);
2517
2518 LibFunc SqrtLb, ExpLb, Exp2Lb, Exp10Lb;
2519
2520 if (TLI->getLibFunc(funcName: SqrtFn->getName(), F&: SqrtLb))
2521 switch (SqrtLb) {
2522 case LibFunc_sqrtf:
2523 ExpLb = LibFunc_expf;
2524 Exp2Lb = LibFunc_exp2f;
2525 Exp10Lb = LibFunc_exp10f;
2526 break;
2527 case LibFunc_sqrt:
2528 ExpLb = LibFunc_exp;
2529 Exp2Lb = LibFunc_exp2;
2530 Exp10Lb = LibFunc_exp10;
2531 break;
2532 case LibFunc_sqrtl:
2533 ExpLb = LibFunc_expl;
2534 Exp2Lb = LibFunc_exp2l;
2535 Exp10Lb = LibFunc_exp10l;
2536 break;
2537 default:
2538 return nullptr;
2539 }
2540 else if (SqrtFn->getIntrinsicID() == Intrinsic::sqrt) {
2541 if (CI->getType()->getScalarType()->isFloatTy()) {
2542 ExpLb = LibFunc_expf;
2543 Exp2Lb = LibFunc_exp2f;
2544 Exp10Lb = LibFunc_exp10f;
2545 } else if (CI->getType()->getScalarType()->isDoubleTy()) {
2546 ExpLb = LibFunc_exp;
2547 Exp2Lb = LibFunc_exp2;
2548 Exp10Lb = LibFunc_exp10;
2549 } else
2550 return nullptr;
2551 } else
2552 return nullptr;
2553
2554 if (ArgLb != ExpLb && ArgLb != Exp2Lb && ArgLb != Exp10Lb &&
2555 ArgID != Intrinsic::exp && ArgID != Intrinsic::exp2)
2556 return nullptr;
2557
2558 IRBuilderBase::InsertPointGuard Guard(B);
2559 B.SetInsertPoint(Arg);
2560 auto *ExpOperand = Arg->getOperand(i_nocapture: 0);
2561 auto *FMul =
2562 B.CreateFMulFMF(L: ExpOperand, R: ConstantFP::get(Ty: ExpOperand->getType(), V: 0.5),
2563 FMFSource: CI, Name: "merged.sqrt");
2564
2565 Arg->setOperand(i_nocapture: 0, Val_nocapture: FMul);
2566 return Arg;
2567}
2568
2569Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) {
2570 Module *M = CI->getModule();
2571 Function *Callee = CI->getCalledFunction();
2572 Value *Ret = nullptr;
2573 // TODO: Once we have a way (other than checking for the existince of the
2574 // libcall) to tell whether our target can lower @llvm.sqrt, relax the
2575 // condition below.
2576 if (isLibFuncEmittable(M, TLI, TheLibFunc: LibFunc_sqrtf) &&
2577 (Callee->getName() == "sqrt" ||
2578 Callee->getIntrinsicID() == Intrinsic::sqrt))
2579 Ret = optimizeUnaryDoubleFP(CI, B, TLI, isPrecise: true);
2580
2581 if (Value *Opt = mergeSqrtToExp(CI, B))
2582 return Opt;
2583
2584 if (!CI->isFast())
2585 return Ret;
2586
2587 Instruction *I = dyn_cast<Instruction>(Val: CI->getArgOperand(i: 0));
2588 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
2589 return Ret;
2590
2591 // We're looking for a repeated factor in a multiplication tree,
2592 // so we can do this fold: sqrt(x * x) -> fabs(x);
2593 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
2594 Value *Op0 = I->getOperand(i: 0);
2595 Value *Op1 = I->getOperand(i: 1);
2596 Value *RepeatOp = nullptr;
2597 Value *OtherOp = nullptr;
2598 if (Op0 == Op1) {
2599 // Simple match: the operands of the multiply are identical.
2600 RepeatOp = Op0;
2601 } else {
2602 // Look for a more complicated pattern: one of the operands is itself
2603 // a multiply, so search for a common factor in that multiply.
2604 // Note: We don't bother looking any deeper than this first level or for
2605 // variations of this pattern because instcombine's visitFMUL and/or the
2606 // reassociation pass should give us this form.
2607 Value *OtherMul0, *OtherMul1;
2608 if (match(V: Op0, P: m_FMul(L: m_Value(V&: OtherMul0), R: m_Value(V&: OtherMul1)))) {
2609 // Pattern: sqrt((x * y) * z)
2610 if (OtherMul0 == OtherMul1 && cast<Instruction>(Val: Op0)->isFast()) {
2611 // Matched: sqrt((x * x) * z)
2612 RepeatOp = OtherMul0;
2613 OtherOp = Op1;
2614 }
2615 }
2616 }
2617 if (!RepeatOp)
2618 return Ret;
2619
2620 // Fast math flags for any created instructions should match the sqrt
2621 // and multiply.
2622 IRBuilderBase::FastMathFlagGuard Guard(B);
2623 B.setFastMathFlags(I->getFastMathFlags());
2624
2625 // If we found a repeated factor, hoist it out of the square root and
2626 // replace it with the fabs of that factor.
2627 Type *ArgType = I->getType();
2628 Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::id: fabs, Tys: ArgType);
2629 Value *FabsCall = B.CreateCall(Callee: Fabs, Args: RepeatOp, Name: "fabs");
2630 if (OtherOp) {
2631 // If we found a non-repeated factor, we still need to get its square
2632 // root. We then multiply that by the value that was simplified out
2633 // of the square root calculation.
2634 Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::id: sqrt, Tys: ArgType);
2635 Value *SqrtCall = B.CreateCall(Callee: Sqrt, Args: OtherOp, Name: "sqrt");
2636 return copyFlags(Old: *CI, New: B.CreateFMul(L: FabsCall, R: SqrtCall));
2637 }
2638 return copyFlags(Old: *CI, New: FabsCall);
2639}
2640
2641Value *LibCallSimplifier::optimizeTrigInversionPairs(CallInst *CI,
2642 IRBuilderBase &B) {
2643 Module *M = CI->getModule();
2644 Function *Callee = CI->getCalledFunction();
2645 Value *Ret = nullptr;
2646 StringRef Name = Callee->getName();
2647 if (UnsafeFPShrink &&
2648 (Name == "tan" || Name == "atanh" || Name == "sinh" || Name == "cosh" ||
2649 Name == "asinh") &&
2650 hasFloatVersion(M, FuncName: Name))
2651 Ret = optimizeUnaryDoubleFP(CI, B, TLI, isPrecise: true);
2652
2653 Value *Op1 = CI->getArgOperand(i: 0);
2654 auto *OpC = dyn_cast<CallInst>(Val: Op1);
2655 if (!OpC)
2656 return Ret;
2657
2658 // Both calls must be 'fast' in order to remove them.
2659 if (!CI->isFast() || !OpC->isFast())
2660 return Ret;
2661
2662 // tan(atan(x)) -> x
2663 // atanh(tanh(x)) -> x
2664 // sinh(asinh(x)) -> x
2665 // asinh(sinh(x)) -> x
2666 // cosh(acosh(x)) -> x
2667 LibFunc Func;
2668 Function *F = OpC->getCalledFunction();
2669 if (F && TLI->getLibFunc(funcName: F->getName(), F&: Func) &&
2670 isLibFuncEmittable(M, TLI, TheLibFunc: Func)) {
2671 LibFunc inverseFunc = llvm::StringSwitch<LibFunc>(Callee->getName())
2672 .Case(S: "tan", Value: LibFunc_atan)
2673 .Case(S: "atanh", Value: LibFunc_tanh)
2674 .Case(S: "sinh", Value: LibFunc_asinh)
2675 .Case(S: "cosh", Value: LibFunc_acosh)
2676 .Case(S: "tanf", Value: LibFunc_atanf)
2677 .Case(S: "atanhf", Value: LibFunc_tanhf)
2678 .Case(S: "sinhf", Value: LibFunc_asinhf)
2679 .Case(S: "coshf", Value: LibFunc_acoshf)
2680 .Case(S: "tanl", Value: LibFunc_atanl)
2681 .Case(S: "atanhl", Value: LibFunc_tanhl)
2682 .Case(S: "sinhl", Value: LibFunc_asinhl)
2683 .Case(S: "coshl", Value: LibFunc_acoshl)
2684 .Case(S: "asinh", Value: LibFunc_sinh)
2685 .Case(S: "asinhf", Value: LibFunc_sinhf)
2686 .Case(S: "asinhl", Value: LibFunc_sinhl)
2687 .Default(Value: NumLibFuncs); // Used as error value
2688 if (Func == inverseFunc)
2689 Ret = OpC->getArgOperand(i: 0);
2690 }
2691 return Ret;
2692}
2693
2694static bool isTrigLibCall(CallInst *CI) {
2695 // We can only hope to do anything useful if we can ignore things like errno
2696 // and floating-point exceptions.
2697 // We already checked the prototype.
2698 return CI->doesNotThrow() && CI->doesNotAccessMemory();
2699}
2700
2701static bool insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg,
2702 bool UseFloat, Value *&Sin, Value *&Cos,
2703 Value *&SinCos, const TargetLibraryInfo *TLI) {
2704 Module *M = OrigCallee->getParent();
2705 Type *ArgTy = Arg->getType();
2706 Type *ResTy;
2707 StringRef Name;
2708
2709 Triple T(OrigCallee->getParent()->getTargetTriple());
2710 if (UseFloat) {
2711 Name = "__sincospif_stret";
2712
2713 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
2714 // x86_64 can't use {float, float} since that would be returned in both
2715 // xmm0 and xmm1, which isn't what a real struct would do.
2716 ResTy = T.getArch() == Triple::x86_64
2717 ? static_cast<Type *>(FixedVectorType::get(ElementType: ArgTy, NumElts: 2))
2718 : static_cast<Type *>(StructType::get(elt1: ArgTy, elts: ArgTy));
2719 } else {
2720 Name = "__sincospi_stret";
2721 ResTy = StructType::get(elt1: ArgTy, elts: ArgTy);
2722 }
2723
2724 if (!isLibFuncEmittable(M, TLI, Name))
2725 return false;
2726 LibFunc TheLibFunc;
2727 TLI->getLibFunc(funcName: Name, F&: TheLibFunc);
2728 FunctionCallee Callee = getOrInsertLibFunc(
2729 M, TLI: *TLI, TheLibFunc, AttributeList: OrigCallee->getAttributes(), RetTy: ResTy, Args: ArgTy);
2730
2731 if (Instruction *ArgInst = dyn_cast<Instruction>(Val: Arg)) {
2732 // If the argument is an instruction, it must dominate all uses so put our
2733 // sincos call there.
2734 B.SetInsertPoint(TheBB: ArgInst->getParent(), IP: ++ArgInst->getIterator());
2735 } else {
2736 // Otherwise (e.g. for a constant) the beginning of the function is as
2737 // good a place as any.
2738 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
2739 B.SetInsertPoint(TheBB: &EntryBB, IP: EntryBB.begin());
2740 }
2741
2742 SinCos = B.CreateCall(Callee, Args: Arg, Name: "sincospi");
2743
2744 if (SinCos->getType()->isStructTy()) {
2745 Sin = B.CreateExtractValue(Agg: SinCos, Idxs: 0, Name: "sinpi");
2746 Cos = B.CreateExtractValue(Agg: SinCos, Idxs: 1, Name: "cospi");
2747 } else {
2748 Sin = B.CreateExtractElement(Vec: SinCos, Idx: ConstantInt::get(Ty: B.getInt32Ty(), V: 0),
2749 Name: "sinpi");
2750 Cos = B.CreateExtractElement(Vec: SinCos, Idx: ConstantInt::get(Ty: B.getInt32Ty(), V: 1),
2751 Name: "cospi");
2752 }
2753
2754 return true;
2755}
2756
2757static Value *optimizeSymmetricCall(CallInst *CI, bool IsEven,
2758 IRBuilderBase &B) {
2759 Value *X;
2760 Value *Src = CI->getArgOperand(i: 0);
2761
2762 if (match(V: Src, P: m_OneUse(SubPattern: m_FNeg(X: m_Value(V&: X))))) {
2763 IRBuilderBase::FastMathFlagGuard Guard(B);
2764 B.setFastMathFlags(CI->getFastMathFlags());
2765
2766 auto *CallInst = copyFlags(Old: *CI, New: B.CreateCall(Callee: CI->getCalledFunction(), Args: {X}));
2767 if (IsEven) {
2768 // Even function: f(-x) = f(x)
2769 return CallInst;
2770 }
2771 // Odd function: f(-x) = -f(x)
2772 return B.CreateFNeg(V: CallInst);
2773 }
2774
2775 // Even function: f(abs(x)) = f(x), f(copysign(x, y)) = f(x)
2776 if (IsEven && (match(V: Src, P: m_FAbs(Op0: m_Value(V&: X))) ||
2777 match(V: Src, P: m_CopySign(Op0: m_Value(V&: X), Op1: m_Value())))) {
2778 IRBuilderBase::FastMathFlagGuard Guard(B);
2779 B.setFastMathFlags(CI->getFastMathFlags());
2780
2781 auto *CallInst = copyFlags(Old: *CI, New: B.CreateCall(Callee: CI->getCalledFunction(), Args: {X}));
2782 return CallInst;
2783 }
2784
2785 return nullptr;
2786}
2787
2788Value *LibCallSimplifier::optimizeSymmetric(CallInst *CI, LibFunc Func,
2789 IRBuilderBase &B) {
2790 switch (Func) {
2791 case LibFunc_cos:
2792 case LibFunc_cosf:
2793 case LibFunc_cosl:
2794 return optimizeSymmetricCall(CI, /*IsEven*/ true, B);
2795
2796 case LibFunc_sin:
2797 case LibFunc_sinf:
2798 case LibFunc_sinl:
2799
2800 case LibFunc_tan:
2801 case LibFunc_tanf:
2802 case LibFunc_tanl:
2803
2804 case LibFunc_erf:
2805 case LibFunc_erff:
2806 case LibFunc_erfl:
2807 return optimizeSymmetricCall(CI, /*IsEven*/ false, B);
2808
2809 default:
2810 return nullptr;
2811 }
2812}
2813
2814Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, bool IsSin, IRBuilderBase &B) {
2815 // Make sure the prototype is as expected, otherwise the rest of the
2816 // function is probably invalid and likely to abort.
2817 if (!isTrigLibCall(CI))
2818 return nullptr;
2819
2820 Value *Arg = CI->getArgOperand(i: 0);
2821 SmallVector<CallInst *, 1> SinCalls;
2822 SmallVector<CallInst *, 1> CosCalls;
2823 SmallVector<CallInst *, 1> SinCosCalls;
2824
2825 bool IsFloat = Arg->getType()->isFloatTy();
2826
2827 // Look for all compatible sinpi, cospi and sincospi calls with the same
2828 // argument. If there are enough (in some sense) we can make the
2829 // substitution.
2830 Function *F = CI->getFunction();
2831 for (User *U : Arg->users())
2832 classifyArgUse(Val: U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
2833
2834 // It's only worthwhile if both sinpi and cospi are actually used.
2835 if (SinCalls.empty() || CosCalls.empty())
2836 return nullptr;
2837
2838 Value *Sin, *Cos, *SinCos;
2839 if (!insertSinCosCall(B, OrigCallee: CI->getCalledFunction(), Arg, UseFloat: IsFloat, Sin, Cos,
2840 SinCos, TLI))
2841 return nullptr;
2842
2843 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
2844 Value *Res) {
2845 for (CallInst *C : Calls)
2846 replaceAllUsesWith(I: C, With: Res);
2847 };
2848
2849 replaceTrigInsts(SinCalls, Sin);
2850 replaceTrigInsts(CosCalls, Cos);
2851 replaceTrigInsts(SinCosCalls, SinCos);
2852
2853 return IsSin ? Sin : Cos;
2854}
2855
2856void LibCallSimplifier::classifyArgUse(
2857 Value *Val, Function *F, bool IsFloat,
2858 SmallVectorImpl<CallInst *> &SinCalls,
2859 SmallVectorImpl<CallInst *> &CosCalls,
2860 SmallVectorImpl<CallInst *> &SinCosCalls) {
2861 auto *CI = dyn_cast<CallInst>(Val);
2862 if (!CI || CI->use_empty())
2863 return;
2864
2865 // Don't consider calls in other functions.
2866 if (CI->getFunction() != F)
2867 return;
2868
2869 Module *M = CI->getModule();
2870 Function *Callee = CI->getCalledFunction();
2871 LibFunc Func;
2872 if (!Callee || !TLI->getLibFunc(FDecl: *Callee, F&: Func) ||
2873 !isLibFuncEmittable(M, TLI, TheLibFunc: Func) ||
2874 !isTrigLibCall(CI))
2875 return;
2876
2877 if (IsFloat) {
2878 if (Func == LibFunc_sinpif)
2879 SinCalls.push_back(Elt: CI);
2880 else if (Func == LibFunc_cospif)
2881 CosCalls.push_back(Elt: CI);
2882 else if (Func == LibFunc_sincospif_stret)
2883 SinCosCalls.push_back(Elt: CI);
2884 } else {
2885 if (Func == LibFunc_sinpi)
2886 SinCalls.push_back(Elt: CI);
2887 else if (Func == LibFunc_cospi)
2888 CosCalls.push_back(Elt: CI);
2889 else if (Func == LibFunc_sincospi_stret)
2890 SinCosCalls.push_back(Elt: CI);
2891 }
2892}
2893
2894//===----------------------------------------------------------------------===//
2895// Integer Library Call Optimizations
2896//===----------------------------------------------------------------------===//
2897
2898Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) {
2899 // All variants of ffs return int which need not be 32 bits wide.
2900 // ffs{,l,ll}(x) -> x != 0 ? (int)llvm.cttz(x)+1 : 0
2901 Type *RetType = CI->getType();
2902 Value *Op = CI->getArgOperand(i: 0);
2903 Type *ArgType = Op->getType();
2904 Function *F = Intrinsic::getDeclaration(M: CI->getCalledFunction()->getParent(),
2905 Intrinsic::id: cttz, Tys: ArgType);
2906 Value *V = B.CreateCall(Callee: F, Args: {Op, B.getTrue()}, Name: "cttz");
2907 V = B.CreateAdd(LHS: V, RHS: ConstantInt::get(Ty: V->getType(), V: 1));
2908 V = B.CreateIntCast(V, DestTy: RetType, isSigned: false);
2909
2910 Value *Cond = B.CreateICmpNE(LHS: Op, RHS: Constant::getNullValue(Ty: ArgType));
2911 return B.CreateSelect(C: Cond, True: V, False: ConstantInt::get(Ty: RetType, V: 0));
2912}
2913
2914Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) {
2915 // All variants of fls return int which need not be 32 bits wide.
2916 // fls{,l,ll}(x) -> (int)(sizeInBits(x) - llvm.ctlz(x, false))
2917 Value *Op = CI->getArgOperand(i: 0);
2918 Type *ArgType = Op->getType();
2919 Function *F = Intrinsic::getDeclaration(M: CI->getCalledFunction()->getParent(),
2920 Intrinsic::id: ctlz, Tys: ArgType);
2921 Value *V = B.CreateCall(Callee: F, Args: {Op, B.getFalse()}, Name: "ctlz");
2922 V = B.CreateSub(LHS: ConstantInt::get(Ty: V->getType(), V: ArgType->getIntegerBitWidth()),
2923 RHS: V);
2924 return B.CreateIntCast(V, DestTy: CI->getType(), isSigned: false);
2925}
2926
2927Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) {
2928 // abs(x) -> x <s 0 ? -x : x
2929 // The negation has 'nsw' because abs of INT_MIN is undefined.
2930 Value *X = CI->getArgOperand(i: 0);
2931 Value *IsNeg = B.CreateIsNeg(Arg: X);
2932 Value *NegX = B.CreateNSWNeg(V: X, Name: "neg");
2933 return B.CreateSelect(C: IsNeg, True: NegX, False: X);
2934}
2935
2936Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) {
2937 // isdigit(c) -> (c-'0') <u 10
2938 Value *Op = CI->getArgOperand(i: 0);
2939 Type *ArgType = Op->getType();
2940 Op = B.CreateSub(LHS: Op, RHS: ConstantInt::get(Ty: ArgType, V: '0'), Name: "isdigittmp");
2941 Op = B.CreateICmpULT(LHS: Op, RHS: ConstantInt::get(Ty: ArgType, V: 10), Name: "isdigit");
2942 return B.CreateZExt(V: Op, DestTy: CI->getType());
2943}
2944
2945Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) {
2946 // isascii(c) -> c <u 128
2947 Value *Op = CI->getArgOperand(i: 0);
2948 Type *ArgType = Op->getType();
2949 Op = B.CreateICmpULT(LHS: Op, RHS: ConstantInt::get(Ty: ArgType, V: 128), Name: "isascii");
2950 return B.CreateZExt(V: Op, DestTy: CI->getType());
2951}
2952
2953Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) {
2954 // toascii(c) -> c & 0x7f
2955 return B.CreateAnd(LHS: CI->getArgOperand(i: 0),
2956 RHS: ConstantInt::get(Ty: CI->getType(), V: 0x7F));
2957}
2958
2959// Fold calls to atoi, atol, and atoll.
2960Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) {
2961 CI->addParamAttr(0, Attribute::NoCapture);
2962
2963 StringRef Str;
2964 if (!getConstantStringInfo(V: CI->getArgOperand(i: 0), Str))
2965 return nullptr;
2966
2967 return convertStrToInt(CI, Str, EndPtr: nullptr, Base: 10, /*AsSigned=*/true, B);
2968}
2969
2970// Fold calls to strtol, strtoll, strtoul, and strtoull.
2971Value *LibCallSimplifier::optimizeStrToInt(CallInst *CI, IRBuilderBase &B,
2972 bool AsSigned) {
2973 Value *EndPtr = CI->getArgOperand(i: 1);
2974 if (isa<ConstantPointerNull>(Val: EndPtr)) {
2975 // With a null EndPtr, this function won't capture the main argument.
2976 // It would be readonly too, except that it still may write to errno.
2977 CI->addParamAttr(0, Attribute::NoCapture);
2978 EndPtr = nullptr;
2979 } else if (!isKnownNonZero(V: EndPtr, Q: DL))
2980 return nullptr;
2981
2982 StringRef Str;
2983 if (!getConstantStringInfo(V: CI->getArgOperand(i: 0), Str))
2984 return nullptr;
2985
2986 if (ConstantInt *CInt = dyn_cast<ConstantInt>(Val: CI->getArgOperand(i: 2))) {
2987 return convertStrToInt(CI, Str, EndPtr, Base: CInt->getSExtValue(), AsSigned, B);
2988 }
2989
2990 return nullptr;
2991}
2992
2993//===----------------------------------------------------------------------===//
2994// Formatting and IO Library Call Optimizations
2995//===----------------------------------------------------------------------===//
2996
2997static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
2998
2999Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B,
3000 int StreamArg) {
3001 Function *Callee = CI->getCalledFunction();
3002 // Error reporting calls should be cold, mark them as such.
3003 // This applies even to non-builtin calls: it is only a hint and applies to
3004 // functions that the frontend might not understand as builtins.
3005
3006 // This heuristic was suggested in:
3007 // Improving Static Branch Prediction in a Compiler
3008 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
3009 // Proceedings of PACT'98, Oct. 1998, IEEE
3010 if (!CI->hasFnAttr(Attribute::Cold) &&
3011 isReportingError(Callee, CI, StreamArg)) {
3012 CI->addFnAttr(Attribute::Cold);
3013 }
3014
3015 return nullptr;
3016}
3017
3018static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
3019 if (!Callee || !Callee->isDeclaration())
3020 return false;
3021
3022 if (StreamArg < 0)
3023 return true;
3024
3025 // These functions might be considered cold, but only if their stream
3026 // argument is stderr.
3027
3028 if (StreamArg >= (int)CI->arg_size())
3029 return false;
3030 LoadInst *LI = dyn_cast<LoadInst>(Val: CI->getArgOperand(i: StreamArg));
3031 if (!LI)
3032 return false;
3033 GlobalVariable *GV = dyn_cast<GlobalVariable>(Val: LI->getPointerOperand());
3034 if (!GV || !GV->isDeclaration())
3035 return false;
3036 return GV->getName() == "stderr";
3037}
3038
3039Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) {
3040 // Check for a fixed format string.
3041 StringRef FormatStr;
3042 if (!getConstantStringInfo(V: CI->getArgOperand(i: 0), Str&: FormatStr))
3043 return nullptr;
3044
3045 // Empty format string -> noop.
3046 if (FormatStr.empty()) // Tolerate printf's declared void.
3047 return CI->use_empty() ? (Value *)CI : ConstantInt::get(Ty: CI->getType(), V: 0);
3048
3049 // Do not do any of the following transformations if the printf return value
3050 // is used, in general the printf return value is not compatible with either
3051 // putchar() or puts().
3052 if (!CI->use_empty())
3053 return nullptr;
3054
3055 Type *IntTy = CI->getType();
3056 // printf("x") -> putchar('x'), even for "%" and "%%".
3057 if (FormatStr.size() == 1 || FormatStr == "%%") {
3058 // Convert the character to unsigned char before passing it to putchar
3059 // to avoid host-specific sign extension in the IR. Putchar converts
3060 // it to unsigned char regardless.
3061 Value *IntChar = ConstantInt::get(Ty: IntTy, V: (unsigned char)FormatStr[0]);
3062 return copyFlags(Old: *CI, New: emitPutChar(Char: IntChar, B, TLI));
3063 }
3064
3065 // Try to remove call or emit putchar/puts.
3066 if (FormatStr == "%s" && CI->arg_size() > 1) {
3067 StringRef OperandStr;
3068 if (!getConstantStringInfo(V: CI->getOperand(i_nocapture: 1), Str&: OperandStr))
3069 return nullptr;
3070 // printf("%s", "") --> NOP
3071 if (OperandStr.empty())
3072 return (Value *)CI;
3073 // printf("%s", "a") --> putchar('a')
3074 if (OperandStr.size() == 1) {
3075 // Convert the character to unsigned char before passing it to putchar
3076 // to avoid host-specific sign extension in the IR. Putchar converts
3077 // it to unsigned char regardless.
3078 Value *IntChar = ConstantInt::get(Ty: IntTy, V: (unsigned char)OperandStr[0]);
3079 return copyFlags(Old: *CI, New: emitPutChar(Char: IntChar, B, TLI));
3080 }
3081 // printf("%s", str"\n") --> puts(str)
3082 if (OperandStr.back() == '\n') {
3083 OperandStr = OperandStr.drop_back();
3084 Value *GV = B.CreateGlobalString(Str: OperandStr, Name: "str");
3085 return copyFlags(Old: *CI, New: emitPutS(Str: GV, B, TLI));
3086 }
3087 return nullptr;
3088 }
3089
3090 // printf("foo\n") --> puts("foo")
3091 if (FormatStr.back() == '\n' &&
3092 !FormatStr.contains(C: '%')) { // No format characters.
3093 // Create a string literal with no \n on it. We expect the constant merge
3094 // pass to be run after this pass, to merge duplicate strings.
3095 FormatStr = FormatStr.drop_back();
3096 Value *GV = B.CreateGlobalString(Str: FormatStr, Name: "str");
3097 return copyFlags(Old: *CI, New: emitPutS(Str: GV, B, TLI));
3098 }
3099
3100 // Optimize specific format strings.
3101 // printf("%c", chr) --> putchar(chr)
3102 if (FormatStr == "%c" && CI->arg_size() > 1 &&
3103 CI->getArgOperand(i: 1)->getType()->isIntegerTy()) {
3104 // Convert the argument to the type expected by putchar, i.e., int, which
3105 // need not be 32 bits wide but which is the same as printf's return type.
3106 Value *IntChar = B.CreateIntCast(V: CI->getArgOperand(i: 1), DestTy: IntTy, isSigned: false);
3107 return copyFlags(Old: *CI, New: emitPutChar(Char: IntChar, B, TLI));
3108 }
3109
3110 // printf("%s\n", str) --> puts(str)
3111 if (FormatStr == "%s\n" && CI->arg_size() > 1 &&
3112 CI->getArgOperand(i: 1)->getType()->isPointerTy())
3113 return copyFlags(Old: *CI, New: emitPutS(Str: CI->getArgOperand(i: 1), B, TLI));
3114 return nullptr;
3115}
3116
3117Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) {
3118
3119 Module *M = CI->getModule();
3120 Function *Callee = CI->getCalledFunction();
3121 FunctionType *FT = Callee->getFunctionType();
3122 if (Value *V = optimizePrintFString(CI, B)) {
3123 return V;
3124 }
3125
3126 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos: 0);
3127
3128 // printf(format, ...) -> iprintf(format, ...) if no floating point
3129 // arguments.
3130 if (isLibFuncEmittable(M, TLI, TheLibFunc: LibFunc_iprintf) &&
3131 !callHasFloatingPointArgument(CI)) {
3132 FunctionCallee IPrintFFn = getOrInsertLibFunc(M, TLI: *TLI, TheLibFunc: LibFunc_iprintf, T: FT,
3133 AttributeList: Callee->getAttributes());
3134 CallInst *New = cast<CallInst>(Val: CI->clone());
3135 New->setCalledFunction(IPrintFFn);
3136 B.Insert(I: New);
3137 return New;
3138 }
3139
3140 // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point
3141 // arguments.
3142 if (isLibFuncEmittable(M, TLI, TheLibFunc: LibFunc_small_printf) &&
3143 !callHasFP128Argument(CI)) {
3144 auto SmallPrintFFn = getOrInsertLibFunc(M, TLI: *TLI, TheLibFunc: LibFunc_small_printf, T: FT,
3145 AttributeList: Callee->getAttributes());
3146 CallInst *New = cast<CallInst>(Val: CI->clone());
3147 New->setCalledFunction(SmallPrintFFn);
3148 B.Insert(I: New);
3149 return New;
3150 }
3151
3152 return nullptr;
3153}
3154
3155Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI,
3156 IRBuilderBase &B) {
3157 // Check for a fixed format string.
3158 StringRef FormatStr;
3159 if (!getConstantStringInfo(V: CI->getArgOperand(i: 1), Str&: FormatStr))
3160 return nullptr;
3161
3162 // If we just have a format string (nothing else crazy) transform it.
3163 Value *Dest = CI->getArgOperand(i: 0);
3164 if (CI->arg_size() == 2) {
3165 // Make sure there's no % in the constant array. We could try to handle
3166 // %% -> % in the future if we cared.
3167 if (FormatStr.contains(C: '%'))
3168 return nullptr; // we found a format specifier, bail out.
3169
3170 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
3171 B.CreateMemCpy(
3172 Dst: Dest, DstAlign: Align(1), Src: CI->getArgOperand(i: 1), SrcAlign: Align(1),
3173 Size: ConstantInt::get(Ty: DL.getIntPtrType(C&: CI->getContext()),
3174 V: FormatStr.size() + 1)); // Copy the null byte.
3175 return ConstantInt::get(Ty: CI->getType(), V: FormatStr.size());
3176 }
3177
3178 // The remaining optimizations require the format string to be "%s" or "%c"
3179 // and have an extra operand.
3180 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3)
3181 return nullptr;
3182
3183 // Decode the second character of the format string.
3184 if (FormatStr[1] == 'c') {
3185 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
3186 if (!CI->getArgOperand(i: 2)->getType()->isIntegerTy())
3187 return nullptr;
3188 Value *V = B.CreateTrunc(V: CI->getArgOperand(i: 2), DestTy: B.getInt8Ty(), Name: "char");
3189 Value *Ptr = Dest;
3190 B.CreateStore(Val: V, Ptr);
3191 Ptr = B.CreateInBoundsGEP(Ty: B.getInt8Ty(), Ptr, IdxList: B.getInt32(C: 1), Name: "nul");
3192 B.CreateStore(Val: B.getInt8(C: 0), Ptr);
3193
3194 return ConstantInt::get(Ty: CI->getType(), V: 1);
3195 }
3196
3197 if (FormatStr[1] == 's') {
3198 // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str,
3199 // strlen(str)+1)
3200 if (!CI->getArgOperand(i: 2)->getType()->isPointerTy())
3201 return nullptr;
3202
3203 if (CI->use_empty())
3204 // sprintf(dest, "%s", str) -> strcpy(dest, str)
3205 return copyFlags(Old: *CI, New: emitStrCpy(Dst: Dest, Src: CI->getArgOperand(i: 2), B, TLI));
3206
3207 uint64_t SrcLen = GetStringLength(V: CI->getArgOperand(i: 2));
3208 if (SrcLen) {
3209 B.CreateMemCpy(
3210 Dst: Dest, DstAlign: Align(1), Src: CI->getArgOperand(i: 2), SrcAlign: Align(1),
3211 Size: ConstantInt::get(Ty: DL.getIntPtrType(C&: CI->getContext()), V: SrcLen));
3212 // Returns total number of characters written without null-character.
3213 return ConstantInt::get(Ty: CI->getType(), V: SrcLen - 1);
3214 } else if (Value *V = emitStpCpy(Dst: Dest, Src: CI->getArgOperand(i: 2), B, TLI)) {
3215 // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest
3216 Value *PtrDiff = B.CreatePtrDiff(ElemTy: B.getInt8Ty(), LHS: V, RHS: Dest);
3217 return B.CreateIntCast(V: PtrDiff, DestTy: CI->getType(), isSigned: false);
3218 }
3219
3220 bool OptForSize = CI->getFunction()->hasOptSize() ||
3221 llvm::shouldOptimizeForSize(BB: CI->getParent(), PSI, BFI,
3222 QueryType: PGSOQueryType::IRPass);
3223 if (OptForSize)
3224 return nullptr;
3225
3226 Value *Len = emitStrLen(Ptr: CI->getArgOperand(i: 2), B, DL, TLI);
3227 if (!Len)
3228 return nullptr;
3229 Value *IncLen =
3230 B.CreateAdd(LHS: Len, RHS: ConstantInt::get(Ty: Len->getType(), V: 1), Name: "leninc");
3231 B.CreateMemCpy(Dst: Dest, DstAlign: Align(1), Src: CI->getArgOperand(i: 2), SrcAlign: Align(1), Size: IncLen);
3232
3233 // The sprintf result is the unincremented number of bytes in the string.
3234 return B.CreateIntCast(V: Len, DestTy: CI->getType(), isSigned: false);
3235 }
3236 return nullptr;
3237}
3238
3239Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) {
3240 Module *M = CI->getModule();
3241 Function *Callee = CI->getCalledFunction();
3242 FunctionType *FT = Callee->getFunctionType();
3243 if (Value *V = optimizeSPrintFString(CI, B)) {
3244 return V;
3245 }
3246
3247 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos: {0, 1});
3248
3249 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
3250 // point arguments.
3251 if (isLibFuncEmittable(M, TLI, TheLibFunc: LibFunc_siprintf) &&
3252 !callHasFloatingPointArgument(CI)) {
3253 FunctionCallee SIPrintFFn = getOrInsertLibFunc(M, TLI: *TLI, TheLibFunc: LibFunc_siprintf,
3254 T: FT, AttributeList: Callee->getAttributes());
3255 CallInst *New = cast<CallInst>(Val: CI->clone());
3256 New->setCalledFunction(SIPrintFFn);
3257 B.Insert(I: New);
3258 return New;
3259 }
3260
3261 // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit
3262 // floating point arguments.
3263 if (isLibFuncEmittable(M, TLI, TheLibFunc: LibFunc_small_sprintf) &&
3264 !callHasFP128Argument(CI)) {
3265 auto SmallSPrintFFn = getOrInsertLibFunc(M, TLI: *TLI, TheLibFunc: LibFunc_small_sprintf, T: FT,
3266 AttributeList: Callee->getAttributes());
3267 CallInst *New = cast<CallInst>(Val: CI->clone());
3268 New->setCalledFunction(SmallSPrintFFn);
3269 B.Insert(I: New);
3270 return New;
3271 }
3272
3273 return nullptr;
3274}
3275
3276// Transform an snprintf call CI with the bound N to format the string Str
3277// either to a call to memcpy, or to single character a store, or to nothing,
3278// and fold the result to a constant. A nonnull StrArg refers to the string
3279// argument being formatted. Otherwise the call is one with N < 2 and
3280// the "%c" directive to format a single character.
3281Value *LibCallSimplifier::emitSnPrintfMemCpy(CallInst *CI, Value *StrArg,
3282 StringRef Str, uint64_t N,
3283 IRBuilderBase &B) {
3284 assert(StrArg || (N < 2 && Str.size() == 1));
3285
3286 unsigned IntBits = TLI->getIntSize();
3287 uint64_t IntMax = maxIntN(N: IntBits);
3288 if (Str.size() > IntMax)
3289 // Bail if the string is longer than INT_MAX. POSIX requires
3290 // implementations to set errno to EOVERFLOW in this case, in
3291 // addition to when N is larger than that (checked by the caller).
3292 return nullptr;
3293
3294 Value *StrLen = ConstantInt::get(Ty: CI->getType(), V: Str.size());
3295 if (N == 0)
3296 return StrLen;
3297
3298 // Set to the number of bytes to copy fron StrArg which is also
3299 // the offset of the terinating nul.
3300 uint64_t NCopy;
3301 if (N > Str.size())
3302 // Copy the full string, including the terminating nul (which must
3303 // be present regardless of the bound).
3304 NCopy = Str.size() + 1;
3305 else
3306 NCopy = N - 1;
3307
3308 Value *DstArg = CI->getArgOperand(i: 0);
3309 if (NCopy && StrArg)
3310 // Transform the call to lvm.memcpy(dst, fmt, N).
3311 copyFlags(
3312 Old: *CI,
3313 New: B.CreateMemCpy(
3314 Dst: DstArg, DstAlign: Align(1), Src: StrArg, SrcAlign: Align(1),
3315 Size: ConstantInt::get(Ty: DL.getIntPtrType(C&: CI->getContext()), V: NCopy)));
3316
3317 if (N > Str.size())
3318 // Return early when the whole format string, including the final nul,
3319 // has been copied.
3320 return StrLen;
3321
3322 // Otherwise, when truncating the string append a terminating nul.
3323 Type *Int8Ty = B.getInt8Ty();
3324 Value *NulOff = B.getIntN(N: IntBits, C: NCopy);
3325 Value *DstEnd = B.CreateInBoundsGEP(Ty: Int8Ty, Ptr: DstArg, IdxList: NulOff, Name: "endptr");
3326 B.CreateStore(Val: ConstantInt::get(Ty: Int8Ty, V: 0), Ptr: DstEnd);
3327 return StrLen;
3328}
3329
3330Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI,
3331 IRBuilderBase &B) {
3332 // Check for size
3333 ConstantInt *Size = dyn_cast<ConstantInt>(Val: CI->getArgOperand(i: 1));
3334 if (!Size)
3335 return nullptr;
3336
3337 uint64_t N = Size->getZExtValue();
3338 uint64_t IntMax = maxIntN(N: TLI->getIntSize());
3339 if (N > IntMax)
3340 // Bail if the bound exceeds INT_MAX. POSIX requires implementations
3341 // to set errno to EOVERFLOW in this case.
3342 return nullptr;
3343
3344 Value *DstArg = CI->getArgOperand(i: 0);
3345 Value *FmtArg = CI->getArgOperand(i: 2);
3346
3347 // Check for a fixed format string.
3348 StringRef FormatStr;
3349 if (!getConstantStringInfo(V: FmtArg, Str&: FormatStr))
3350 return nullptr;
3351
3352 // If we just have a format string (nothing else crazy) transform it.
3353 if (CI->arg_size() == 3) {
3354 if (FormatStr.contains(C: '%'))
3355 // Bail if the format string contains a directive and there are
3356 // no arguments. We could handle "%%" in the future.
3357 return nullptr;
3358
3359 return emitSnPrintfMemCpy(CI, StrArg: FmtArg, Str: FormatStr, N, B);
3360 }
3361
3362 // The remaining optimizations require the format string to be "%s" or "%c"
3363 // and have an extra operand.
3364 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() != 4)
3365 return nullptr;
3366
3367 // Decode the second character of the format string.
3368 if (FormatStr[1] == 'c') {
3369 if (N <= 1) {
3370 // Use an arbitary string of length 1 to transform the call into
3371 // either a nul store (N == 1) or a no-op (N == 0) and fold it
3372 // to one.
3373 StringRef CharStr("*");
3374 return emitSnPrintfMemCpy(CI, StrArg: nullptr, Str: CharStr, N, B);
3375 }
3376
3377 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
3378 if (!CI->getArgOperand(i: 3)->getType()->isIntegerTy())
3379 return nullptr;
3380 Value *V = B.CreateTrunc(V: CI->getArgOperand(i: 3), DestTy: B.getInt8Ty(), Name: "char");
3381 Value *Ptr = DstArg;
3382 B.CreateStore(Val: V, Ptr);
3383 Ptr = B.CreateInBoundsGEP(Ty: B.getInt8Ty(), Ptr, IdxList: B.getInt32(C: 1), Name: "nul");
3384 B.CreateStore(Val: B.getInt8(C: 0), Ptr);
3385 return ConstantInt::get(Ty: CI->getType(), V: 1);
3386 }
3387
3388 if (FormatStr[1] != 's')
3389 return nullptr;
3390
3391 Value *StrArg = CI->getArgOperand(i: 3);
3392 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1)
3393 StringRef Str;
3394 if (!getConstantStringInfo(V: StrArg, Str))
3395 return nullptr;
3396
3397 return emitSnPrintfMemCpy(CI, StrArg, Str, N, B);
3398}
3399
3400Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) {
3401 if (Value *V = optimizeSnPrintFString(CI, B)) {
3402 return V;
3403 }
3404
3405 if (isKnownNonZero(V: CI->getOperand(i_nocapture: 1), Q: DL))
3406 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos: 0);
3407 return nullptr;
3408}
3409
3410Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI,
3411 IRBuilderBase &B) {
3412 optimizeErrorReporting(CI, B, StreamArg: 0);
3413
3414 // All the optimizations depend on the format string.
3415 StringRef FormatStr;
3416 if (!getConstantStringInfo(V: CI->getArgOperand(i: 1), Str&: FormatStr))
3417 return nullptr;
3418
3419 // Do not do any of the following transformations if the fprintf return
3420 // value is used, in general the fprintf return value is not compatible
3421 // with fwrite(), fputc() or fputs().
3422 if (!CI->use_empty())
3423 return nullptr;
3424
3425 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
3426 if (CI->arg_size() == 2) {
3427 // Could handle %% -> % if we cared.
3428 if (FormatStr.contains(C: '%'))
3429 return nullptr; // We found a format specifier.
3430
3431 unsigned SizeTBits = TLI->getSizeTSize(M: *CI->getModule());
3432 Type *SizeTTy = IntegerType::get(C&: CI->getContext(), NumBits: SizeTBits);
3433 return copyFlags(
3434 Old: *CI, New: emitFWrite(Ptr: CI->getArgOperand(i: 1),
3435 Size: ConstantInt::get(Ty: SizeTTy, V: FormatStr.size()),
3436 File: CI->getArgOperand(i: 0), B, DL, TLI));
3437 }
3438
3439 // The remaining optimizations require the format string to be "%s" or "%c"
3440 // and have an extra operand.
3441 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3)
3442 return nullptr;
3443
3444 // Decode the second character of the format string.
3445 if (FormatStr[1] == 'c') {
3446 // fprintf(F, "%c", chr) --> fputc((int)chr, F)
3447 if (!CI->getArgOperand(i: 2)->getType()->isIntegerTy())
3448 return nullptr;
3449 Type *IntTy = B.getIntNTy(N: TLI->getIntSize());
3450 Value *V = B.CreateIntCast(V: CI->getArgOperand(i: 2), DestTy: IntTy, /*isSigned*/ true,
3451 Name: "chari");
3452 return copyFlags(Old: *CI, New: emitFPutC(Char: V, File: CI->getArgOperand(i: 0), B, TLI));
3453 }
3454
3455 if (FormatStr[1] == 's') {
3456 // fprintf(F, "%s", str) --> fputs(str, F)
3457 if (!CI->getArgOperand(i: 2)->getType()->isPointerTy())
3458 return nullptr;
3459 return copyFlags(
3460 Old: *CI, New: emitFPutS(Str: CI->getArgOperand(i: 2), File: CI->getArgOperand(i: 0), B, TLI));
3461 }
3462 return nullptr;
3463}
3464
3465Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) {
3466 Module *M = CI->getModule();
3467 Function *Callee = CI->getCalledFunction();
3468 FunctionType *FT = Callee->getFunctionType();
3469 if (Value *V = optimizeFPrintFString(CI, B)) {
3470 return V;
3471 }
3472
3473 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
3474 // floating point arguments.
3475 if (isLibFuncEmittable(M, TLI, TheLibFunc: LibFunc_fiprintf) &&
3476 !callHasFloatingPointArgument(CI)) {
3477 FunctionCallee FIPrintFFn = getOrInsertLibFunc(M, TLI: *TLI, TheLibFunc: LibFunc_fiprintf,
3478 T: FT, AttributeList: Callee->getAttributes());
3479 CallInst *New = cast<CallInst>(Val: CI->clone());
3480 New->setCalledFunction(FIPrintFFn);
3481 B.Insert(I: New);
3482 return New;
3483 }
3484
3485 // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no
3486 // 128-bit floating point arguments.
3487 if (isLibFuncEmittable(M, TLI, TheLibFunc: LibFunc_small_fprintf) &&
3488 !callHasFP128Argument(CI)) {
3489 auto SmallFPrintFFn =
3490 getOrInsertLibFunc(M, TLI: *TLI, TheLibFunc: LibFunc_small_fprintf, T: FT,
3491 AttributeList: Callee->getAttributes());
3492 CallInst *New = cast<CallInst>(Val: CI->clone());
3493 New->setCalledFunction(SmallFPrintFFn);
3494 B.Insert(I: New);
3495 return New;
3496 }
3497
3498 return nullptr;
3499}
3500
3501Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) {
3502 optimizeErrorReporting(CI, B, StreamArg: 3);
3503
3504 // Get the element size and count.
3505 ConstantInt *SizeC = dyn_cast<ConstantInt>(Val: CI->getArgOperand(i: 1));
3506 ConstantInt *CountC = dyn_cast<ConstantInt>(Val: CI->getArgOperand(i: 2));
3507 if (SizeC && CountC) {
3508 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
3509
3510 // If this is writing zero records, remove the call (it's a noop).
3511 if (Bytes == 0)
3512 return ConstantInt::get(Ty: CI->getType(), V: 0);
3513
3514 // If this is writing one byte, turn it into fputc.
3515 // This optimisation is only valid, if the return value is unused.
3516 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
3517 Value *Char = B.CreateLoad(Ty: B.getInt8Ty(), Ptr: CI->getArgOperand(i: 0), Name: "char");
3518 Type *IntTy = B.getIntNTy(N: TLI->getIntSize());
3519 Value *Cast = B.CreateIntCast(V: Char, DestTy: IntTy, /*isSigned*/ true, Name: "chari");
3520 Value *NewCI = emitFPutC(Char: Cast, File: CI->getArgOperand(i: 3), B, TLI);
3521 return NewCI ? ConstantInt::get(Ty: CI->getType(), V: 1) : nullptr;
3522 }
3523 }
3524
3525 return nullptr;
3526}
3527
3528Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) {
3529 optimizeErrorReporting(CI, B, StreamArg: 1);
3530
3531 // Don't rewrite fputs to fwrite when optimising for size because fwrite
3532 // requires more arguments and thus extra MOVs are required.
3533 bool OptForSize = CI->getFunction()->hasOptSize() ||
3534 llvm::shouldOptimizeForSize(BB: CI->getParent(), PSI, BFI,
3535 QueryType: PGSOQueryType::IRPass);
3536 if (OptForSize)
3537 return nullptr;
3538
3539 // We can't optimize if return value is used.
3540 if (!CI->use_empty())
3541 return nullptr;
3542
3543 // fputs(s,F) --> fwrite(s,strlen(s),1,F)
3544 uint64_t Len = GetStringLength(V: CI->getArgOperand(i: 0));
3545 if (!Len)
3546 return nullptr;
3547
3548 // Known to have no uses (see above).
3549 unsigned SizeTBits = TLI->getSizeTSize(M: *CI->getModule());
3550 Type *SizeTTy = IntegerType::get(C&: CI->getContext(), NumBits: SizeTBits);
3551 return copyFlags(
3552 Old: *CI,
3553 New: emitFWrite(Ptr: CI->getArgOperand(i: 0),
3554 Size: ConstantInt::get(Ty: SizeTTy, V: Len - 1),
3555 File: CI->getArgOperand(i: 1), B, DL, TLI));
3556}
3557
3558Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) {
3559 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos: 0);
3560 if (!CI->use_empty())
3561 return nullptr;
3562
3563 // Check for a constant string.
3564 // puts("") -> putchar('\n')
3565 StringRef Str;
3566 if (getConstantStringInfo(V: CI->getArgOperand(i: 0), Str) && Str.empty()) {
3567 // putchar takes an argument of the same type as puts returns, i.e.,
3568 // int, which need not be 32 bits wide.
3569 Type *IntTy = CI->getType();
3570 return copyFlags(Old: *CI, New: emitPutChar(Char: ConstantInt::get(Ty: IntTy, V: '\n'), B, TLI));
3571 }
3572
3573 return nullptr;
3574}
3575
3576Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) {
3577 // bcopy(src, dst, n) -> llvm.memmove(dst, src, n)
3578 return copyFlags(Old: *CI, New: B.CreateMemMove(Dst: CI->getArgOperand(i: 1), DstAlign: Align(1),
3579 Src: CI->getArgOperand(i: 0), SrcAlign: Align(1),
3580 Size: CI->getArgOperand(i: 2)));
3581}
3582
3583bool LibCallSimplifier::hasFloatVersion(const Module *M, StringRef FuncName) {
3584 SmallString<20> FloatFuncName = FuncName;
3585 FloatFuncName += 'f';
3586 return isLibFuncEmittable(M, TLI, Name: FloatFuncName);
3587}
3588
3589Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
3590 IRBuilderBase &Builder) {
3591 Module *M = CI->getModule();
3592 LibFunc Func;
3593 Function *Callee = CI->getCalledFunction();
3594 // Check for string/memory library functions.
3595 if (TLI->getLibFunc(FDecl: *Callee, F&: Func) && isLibFuncEmittable(M, TLI, TheLibFunc: Func)) {
3596 // Make sure we never change the calling convention.
3597 assert(
3598 (ignoreCallingConv(Func) ||
3599 TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) &&
3600 "Optimizing string/memory libcall would change the calling convention");
3601 switch (Func) {
3602 case LibFunc_strcat:
3603 return optimizeStrCat(CI, B&: Builder);
3604 case LibFunc_strncat:
3605 return optimizeStrNCat(CI, B&: Builder);
3606 case LibFunc_strchr:
3607 return optimizeStrChr(CI, B&: Builder);
3608 case LibFunc_strrchr:
3609 return optimizeStrRChr(CI, B&: Builder);
3610 case LibFunc_strcmp:
3611 return optimizeStrCmp(CI, B&: Builder);
3612 case LibFunc_strncmp:
3613 return optimizeStrNCmp(CI, B&: Builder);
3614 case LibFunc_strcpy:
3615 return optimizeStrCpy(CI, B&: Builder);
3616 case LibFunc_stpcpy:
3617 return optimizeStpCpy(CI, B&: Builder);
3618 case LibFunc_strlcpy:
3619 return optimizeStrLCpy(CI, B&: Builder);
3620 case LibFunc_stpncpy:
3621 return optimizeStringNCpy(CI, /*RetEnd=*/true, B&: Builder);
3622 case LibFunc_strncpy:
3623 return optimizeStringNCpy(CI, /*RetEnd=*/false, B&: Builder);
3624 case LibFunc_strlen:
3625 return optimizeStrLen(CI, B&: Builder);
3626 case LibFunc_strnlen:
3627 return optimizeStrNLen(CI, B&: Builder);
3628 case LibFunc_strpbrk:
3629 return optimizeStrPBrk(CI, B&: Builder);
3630 case LibFunc_strndup:
3631 return optimizeStrNDup(CI, B&: Builder);
3632 case LibFunc_strtol:
3633 case LibFunc_strtod:
3634 case LibFunc_strtof:
3635 case LibFunc_strtoul:
3636 case LibFunc_strtoll:
3637 case LibFunc_strtold:
3638 case LibFunc_strtoull:
3639 return optimizeStrTo(CI, B&: Builder);
3640 case LibFunc_strspn:
3641 return optimizeStrSpn(CI, B&: Builder);
3642 case LibFunc_strcspn:
3643 return optimizeStrCSpn(CI, B&: Builder);
3644 case LibFunc_strstr:
3645 return optimizeStrStr(CI, B&: Builder);
3646 case LibFunc_memchr:
3647 return optimizeMemChr(CI, B&: Builder);
3648 case LibFunc_memrchr:
3649 return optimizeMemRChr(CI, B&: Builder);
3650 case LibFunc_bcmp:
3651 return optimizeBCmp(CI, B&: Builder);
3652 case LibFunc_memcmp:
3653 return optimizeMemCmp(CI, B&: Builder);
3654 case LibFunc_memcpy:
3655 return optimizeMemCpy(CI, B&: Builder);
3656 case LibFunc_memccpy:
3657 return optimizeMemCCpy(CI, B&: Builder);
3658 case LibFunc_mempcpy:
3659 return optimizeMemPCpy(CI, B&: Builder);
3660 case LibFunc_memmove:
3661 return optimizeMemMove(CI, B&: Builder);
3662 case LibFunc_memset:
3663 return optimizeMemSet(CI, B&: Builder);
3664 case LibFunc_realloc:
3665 return optimizeRealloc(CI, B&: Builder);
3666 case LibFunc_wcslen:
3667 return optimizeWcslen(CI, B&: Builder);
3668 case LibFunc_bcopy:
3669 return optimizeBCopy(CI, B&: Builder);
3670 case LibFunc_Znwm:
3671 case LibFunc_ZnwmRKSt9nothrow_t:
3672 case LibFunc_ZnwmSt11align_val_t:
3673 case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t:
3674 case LibFunc_Znam:
3675 case LibFunc_ZnamRKSt9nothrow_t:
3676 case LibFunc_ZnamSt11align_val_t:
3677 case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t:
3678 return optimizeNew(CI, B&: Builder, Func);
3679 default:
3680 break;
3681 }
3682 }
3683 return nullptr;
3684}
3685
3686Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
3687 LibFunc Func,
3688 IRBuilderBase &Builder) {
3689 const Module *M = CI->getModule();
3690
3691 // Don't optimize calls that require strict floating point semantics.
3692 if (CI->isStrictFP())
3693 return nullptr;
3694
3695 if (Value *V = optimizeSymmetric(CI, Func, B&: Builder))
3696 return V;
3697
3698 switch (Func) {
3699 case LibFunc_sinpif:
3700 case LibFunc_sinpi:
3701 return optimizeSinCosPi(CI, /*IsSin*/true, B&: Builder);
3702 case LibFunc_cospif:
3703 case LibFunc_cospi:
3704 return optimizeSinCosPi(CI, /*IsSin*/false, B&: Builder);
3705 case LibFunc_powf:
3706 case LibFunc_pow:
3707 case LibFunc_powl:
3708 return optimizePow(Pow: CI, B&: Builder);
3709 case LibFunc_exp2l:
3710 case LibFunc_exp2:
3711 case LibFunc_exp2f:
3712 return optimizeExp2(CI, B&: Builder);
3713 case LibFunc_fabsf:
3714 case LibFunc_fabs:
3715 case LibFunc_fabsl:
3716 return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
3717 case LibFunc_sqrtf:
3718 case LibFunc_sqrt:
3719 case LibFunc_sqrtl:
3720 return optimizeSqrt(CI, B&: Builder);
3721 case LibFunc_logf:
3722 case LibFunc_log:
3723 case LibFunc_logl:
3724 case LibFunc_log10f:
3725 case LibFunc_log10:
3726 case LibFunc_log10l:
3727 case LibFunc_log1pf:
3728 case LibFunc_log1p:
3729 case LibFunc_log1pl:
3730 case LibFunc_log2f:
3731 case LibFunc_log2:
3732 case LibFunc_log2l:
3733 case LibFunc_logbf:
3734 case LibFunc_logb:
3735 case LibFunc_logbl:
3736 return optimizeLog(Log: CI, B&: Builder);
3737 case LibFunc_tan:
3738 case LibFunc_tanf:
3739 case LibFunc_tanl:
3740 case LibFunc_sinh:
3741 case LibFunc_sinhf:
3742 case LibFunc_sinhl:
3743 case LibFunc_asinh:
3744 case LibFunc_asinhf:
3745 case LibFunc_asinhl:
3746 case LibFunc_cosh:
3747 case LibFunc_coshf:
3748 case LibFunc_coshl:
3749 case LibFunc_atanh:
3750 case LibFunc_atanhf:
3751 case LibFunc_atanhl:
3752 return optimizeTrigInversionPairs(CI, B&: Builder);
3753 case LibFunc_ceil:
3754 return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
3755 case LibFunc_floor:
3756 return replaceUnaryCall(CI, Builder, Intrinsic::floor);
3757 case LibFunc_round:
3758 return replaceUnaryCall(CI, Builder, Intrinsic::round);
3759 case LibFunc_roundeven:
3760 return replaceUnaryCall(CI, Builder, Intrinsic::roundeven);
3761 case LibFunc_nearbyint:
3762 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
3763 case LibFunc_rint:
3764 return replaceUnaryCall(CI, Builder, Intrinsic::rint);
3765 case LibFunc_trunc:
3766 return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
3767 case LibFunc_acos:
3768 case LibFunc_acosh:
3769 case LibFunc_asin:
3770 case LibFunc_atan:
3771 case LibFunc_cbrt:
3772 case LibFunc_exp:
3773 case LibFunc_exp10:
3774 case LibFunc_expm1:
3775 case LibFunc_cos:
3776 case LibFunc_sin:
3777 case LibFunc_tanh:
3778 if (UnsafeFPShrink && hasFloatVersion(M, FuncName: CI->getCalledFunction()->getName()))
3779 return optimizeUnaryDoubleFP(CI, B&: Builder, TLI, isPrecise: true);
3780 return nullptr;
3781 case LibFunc_copysign:
3782 if (hasFloatVersion(M, FuncName: CI->getCalledFunction()->getName()))
3783 return optimizeBinaryDoubleFP(CI, B&: Builder, TLI);
3784 return nullptr;
3785 case LibFunc_fminf:
3786 case LibFunc_fmin:
3787 case LibFunc_fminl:
3788 case LibFunc_fmaxf:
3789 case LibFunc_fmax:
3790 case LibFunc_fmaxl:
3791 return optimizeFMinFMax(CI, B&: Builder);
3792 case LibFunc_cabs:
3793 case LibFunc_cabsf:
3794 case LibFunc_cabsl:
3795 return optimizeCAbs(CI, B&: Builder);
3796 default:
3797 return nullptr;
3798 }
3799}
3800
3801Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) {
3802 Module *M = CI->getModule();
3803 assert(!CI->isMustTailCall() && "These transforms aren't musttail safe.");
3804
3805 // TODO: Split out the code below that operates on FP calls so that
3806 // we can all non-FP calls with the StrictFP attribute to be
3807 // optimized.
3808 if (CI->isNoBuiltin())
3809 return nullptr;
3810
3811 LibFunc Func;
3812 Function *Callee = CI->getCalledFunction();
3813 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI);
3814
3815 SmallVector<OperandBundleDef, 2> OpBundles;
3816 CI->getOperandBundlesAsDefs(Defs&: OpBundles);
3817
3818 IRBuilderBase::OperandBundlesGuard Guard(Builder);
3819 Builder.setDefaultOperandBundles(OpBundles);
3820
3821 // Command-line parameter overrides instruction attribute.
3822 // This can't be moved to optimizeFloatingPointLibCall() because it may be
3823 // used by the intrinsic optimizations.
3824 if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
3825 UnsafeFPShrink = EnableUnsafeFPShrink;
3826 else if (isa<FPMathOperator>(Val: CI) && CI->isFast())
3827 UnsafeFPShrink = true;
3828
3829 // First, check for intrinsics.
3830 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: CI)) {
3831 if (!IsCallingConvC)
3832 return nullptr;
3833 // The FP intrinsics have corresponding constrained versions so we don't
3834 // need to check for the StrictFP attribute here.
3835 switch (II->getIntrinsicID()) {
3836 case Intrinsic::pow:
3837 return optimizePow(Pow: CI, B&: Builder);
3838 case Intrinsic::exp2:
3839 return optimizeExp2(CI, B&: Builder);
3840 case Intrinsic::log:
3841 case Intrinsic::log2:
3842 case Intrinsic::log10:
3843 return optimizeLog(Log: CI, B&: Builder);
3844 case Intrinsic::sqrt:
3845 return optimizeSqrt(CI, B&: Builder);
3846 case Intrinsic::memset:
3847 return optimizeMemSet(CI, B&: Builder);
3848 case Intrinsic::memcpy:
3849 return optimizeMemCpy(CI, B&: Builder);
3850 case Intrinsic::memmove:
3851 return optimizeMemMove(CI, B&: Builder);
3852 default:
3853 return nullptr;
3854 }
3855 }
3856
3857 // Also try to simplify calls to fortified library functions.
3858 if (Value *SimplifiedFortifiedCI =
3859 FortifiedSimplifier.optimizeCall(CI, B&: Builder))
3860 return SimplifiedFortifiedCI;
3861
3862 // Then check for known library functions.
3863 if (TLI->getLibFunc(FDecl: *Callee, F&: Func) && isLibFuncEmittable(M, TLI, TheLibFunc: Func)) {
3864 // We never change the calling convention.
3865 if (!ignoreCallingConv(Func) && !IsCallingConvC)
3866 return nullptr;
3867 if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
3868 return V;
3869 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
3870 return V;
3871 switch (Func) {
3872 case LibFunc_ffs:
3873 case LibFunc_ffsl:
3874 case LibFunc_ffsll:
3875 return optimizeFFS(CI, B&: Builder);
3876 case LibFunc_fls:
3877 case LibFunc_flsl:
3878 case LibFunc_flsll:
3879 return optimizeFls(CI, B&: Builder);
3880 case LibFunc_abs:
3881 case LibFunc_labs:
3882 case LibFunc_llabs:
3883 return optimizeAbs(CI, B&: Builder);
3884 case LibFunc_isdigit:
3885 return optimizeIsDigit(CI, B&: Builder);
3886 case LibFunc_isascii:
3887 return optimizeIsAscii(CI, B&: Builder);
3888 case LibFunc_toascii:
3889 return optimizeToAscii(CI, B&: Builder);
3890 case LibFunc_atoi:
3891 case LibFunc_atol:
3892 case LibFunc_atoll:
3893 return optimizeAtoi(CI, B&: Builder);
3894 case LibFunc_strtol:
3895 case LibFunc_strtoll:
3896 return optimizeStrToInt(CI, B&: Builder, /*AsSigned=*/true);
3897 case LibFunc_strtoul:
3898 case LibFunc_strtoull:
3899 return optimizeStrToInt(CI, B&: Builder, /*AsSigned=*/false);
3900 case LibFunc_printf:
3901 return optimizePrintF(CI, B&: Builder);
3902 case LibFunc_sprintf:
3903 return optimizeSPrintF(CI, B&: Builder);
3904 case LibFunc_snprintf:
3905 return optimizeSnPrintF(CI, B&: Builder);
3906 case LibFunc_fprintf:
3907 return optimizeFPrintF(CI, B&: Builder);
3908 case LibFunc_fwrite:
3909 return optimizeFWrite(CI, B&: Builder);
3910 case LibFunc_fputs:
3911 return optimizeFPuts(CI, B&: Builder);
3912 case LibFunc_puts:
3913 return optimizePuts(CI, B&: Builder);
3914 case LibFunc_perror:
3915 return optimizeErrorReporting(CI, B&: Builder);
3916 case LibFunc_vfprintf:
3917 case LibFunc_fiprintf:
3918 return optimizeErrorReporting(CI, B&: Builder, StreamArg: 0);
3919 default:
3920 return nullptr;
3921 }
3922 }
3923 return nullptr;
3924}
3925
3926LibCallSimplifier::LibCallSimplifier(
3927 const DataLayout &DL, const TargetLibraryInfo *TLI, AssumptionCache *AC,
3928 OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
3929 ProfileSummaryInfo *PSI,
3930 function_ref<void(Instruction *, Value *)> Replacer,
3931 function_ref<void(Instruction *)> Eraser)
3932 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), AC(AC), ORE(ORE), BFI(BFI),
3933 PSI(PSI), Replacer(Replacer), Eraser(Eraser) {}
3934
3935void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
3936 // Indirect through the replacer used in this instance.
3937 Replacer(I, With);
3938}
3939
3940void LibCallSimplifier::eraseFromParent(Instruction *I) {
3941 Eraser(I);
3942}
3943
3944// TODO:
3945// Additional cases that we need to add to this file:
3946//
3947// cbrt:
3948// * cbrt(expN(X)) -> expN(x/3)
3949// * cbrt(sqrt(x)) -> pow(x,1/6)
3950// * cbrt(cbrt(x)) -> pow(x,1/9)
3951//
3952// exp, expf, expl:
3953// * exp(log(x)) -> x
3954//
3955// log, logf, logl:
3956// * log(exp(x)) -> x
3957// * log(exp(y)) -> y*log(e)
3958// * log(exp10(y)) -> y*log(10)
3959// * log(sqrt(x)) -> 0.5*log(x)
3960//
3961// pow, powf, powl:
3962// * pow(sqrt(x),y) -> pow(x,y*0.5)
3963// * pow(pow(x,y),z)-> pow(x,y*z)
3964//
3965// signbit:
3966// * signbit(cnst) -> cnst'
3967// * signbit(nncst) -> 0 (if pstv is a non-negative constant)
3968//
3969// sqrt, sqrtf, sqrtl:
3970// * sqrt(expN(x)) -> expN(x*0.5)
3971// * sqrt(Nroot(x)) -> pow(x,1/(2*N))
3972// * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
3973//
3974
3975//===----------------------------------------------------------------------===//
3976// Fortified Library Call Optimizations
3977//===----------------------------------------------------------------------===//
3978
3979bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(
3980 CallInst *CI, unsigned ObjSizeOp, std::optional<unsigned> SizeOp,
3981 std::optional<unsigned> StrOp, std::optional<unsigned> FlagOp) {
3982 // If this function takes a flag argument, the implementation may use it to
3983 // perform extra checks. Don't fold into the non-checking variant.
3984 if (FlagOp) {
3985 ConstantInt *Flag = dyn_cast<ConstantInt>(Val: CI->getArgOperand(i: *FlagOp));
3986 if (!Flag || !Flag->isZero())
3987 return false;
3988 }
3989
3990 if (SizeOp && CI->getArgOperand(i: ObjSizeOp) == CI->getArgOperand(i: *SizeOp))
3991 return true;
3992
3993 if (ConstantInt *ObjSizeCI =
3994 dyn_cast<ConstantInt>(Val: CI->getArgOperand(i: ObjSizeOp))) {
3995 if (ObjSizeCI->isMinusOne())
3996 return true;
3997 // If the object size wasn't -1 (unknown), bail out if we were asked to.
3998 if (OnlyLowerUnknownSize)
3999 return false;
4000 if (StrOp) {
4001 uint64_t Len = GetStringLength(V: CI->getArgOperand(i: *StrOp));
4002 // If the length is 0 we don't know how long it is and so we can't
4003 // remove the check.
4004 if (Len)
4005 annotateDereferenceableBytes(CI, ArgNos: *StrOp, DereferenceableBytes: Len);
4006 else
4007 return false;
4008 return ObjSizeCI->getZExtValue() >= Len;
4009 }
4010
4011 if (SizeOp) {
4012 if (ConstantInt *SizeCI =
4013 dyn_cast<ConstantInt>(Val: CI->getArgOperand(i: *SizeOp)))
4014 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
4015 }
4016 }
4017 return false;
4018}
4019
4020Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
4021 IRBuilderBase &B) {
4022 if (isFortifiedCallFoldable(CI, ObjSizeOp: 3, SizeOp: 2)) {
4023 CallInst *NewCI =
4024 B.CreateMemCpy(Dst: CI->getArgOperand(i: 0), DstAlign: Align(1), Src: CI->getArgOperand(i: 1),
4025 SrcAlign: Align(1), Size: CI->getArgOperand(i: 2));
4026 mergeAttributesAndFlags(NewCI, Old: *CI);
4027 return CI->getArgOperand(i: 0);
4028 }
4029 return nullptr;
4030}
4031
4032Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
4033 IRBuilderBase &B) {
4034 if (isFortifiedCallFoldable(CI, ObjSizeOp: 3, SizeOp: 2)) {
4035 CallInst *NewCI =
4036 B.CreateMemMove(Dst: CI->getArgOperand(i: 0), DstAlign: Align(1), Src: CI->getArgOperand(i: 1),
4037 SrcAlign: Align(1), Size: CI->getArgOperand(i: 2));
4038 mergeAttributesAndFlags(NewCI, Old: *CI);
4039 return CI->getArgOperand(i: 0);
4040 }
4041 return nullptr;
4042}
4043
4044Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
4045 IRBuilderBase &B) {
4046 if (isFortifiedCallFoldable(CI, ObjSizeOp: 3, SizeOp: 2)) {
4047 Value *Val = B.CreateIntCast(V: CI->getArgOperand(i: 1), DestTy: B.getInt8Ty(), isSigned: false);
4048 CallInst *NewCI = B.CreateMemSet(Ptr: CI->getArgOperand(i: 0), Val,
4049 Size: CI->getArgOperand(i: 2), Align: Align(1));
4050 mergeAttributesAndFlags(NewCI, Old: *CI);
4051 return CI->getArgOperand(i: 0);
4052 }
4053 return nullptr;
4054}
4055
4056Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI,
4057 IRBuilderBase &B) {
4058 const DataLayout &DL = CI->getModule()->getDataLayout();
4059 if (isFortifiedCallFoldable(CI, ObjSizeOp: 3, SizeOp: 2))
4060 if (Value *Call = emitMemPCpy(Dst: CI->getArgOperand(i: 0), Src: CI->getArgOperand(i: 1),
4061 Len: CI->getArgOperand(i: 2), B, DL, TLI)) {
4062 return mergeAttributesAndFlags(NewCI: cast<CallInst>(Val: Call), Old: *CI);
4063 }
4064 return nullptr;
4065}
4066
4067Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
4068 IRBuilderBase &B,
4069 LibFunc Func) {
4070 const DataLayout &DL = CI->getModule()->getDataLayout();
4071 Value *Dst = CI->getArgOperand(i: 0), *Src = CI->getArgOperand(i: 1),
4072 *ObjSize = CI->getArgOperand(i: 2);
4073
4074 // __stpcpy_chk(x,x,...) -> x+strlen(x)
4075 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
4076 Value *StrLen = emitStrLen(Ptr: Src, B, DL, TLI);
4077 return StrLen ? B.CreateInBoundsGEP(Ty: B.getInt8Ty(), Ptr: Dst, IdxList: StrLen) : nullptr;
4078 }
4079
4080 // If a) we don't have any length information, or b) we know this will
4081 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
4082 // st[rp]cpy_chk call which may fail at runtime if the size is too long.
4083 // TODO: It might be nice to get a maximum length out of the possible
4084 // string lengths for varying.
4085 if (isFortifiedCallFoldable(CI, ObjSizeOp: 2, SizeOp: std::nullopt, StrOp: 1)) {
4086 if (Func == LibFunc_strcpy_chk)
4087 return copyFlags(Old: *CI, New: emitStrCpy(Dst, Src, B, TLI));
4088 else
4089 return copyFlags(Old: *CI, New: emitStpCpy(Dst, Src, B, TLI));
4090 }
4091
4092 if (OnlyLowerUnknownSize)
4093 return nullptr;
4094
4095 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
4096 uint64_t Len = GetStringLength(V: Src);
4097 if (Len)
4098 annotateDereferenceableBytes(CI, ArgNos: 1, DereferenceableBytes: Len);
4099 else
4100 return nullptr;
4101
4102 unsigned SizeTBits = TLI->getSizeTSize(M: *CI->getModule());
4103 Type *SizeTTy = IntegerType::get(C&: CI->getContext(), NumBits: SizeTBits);
4104 Value *LenV = ConstantInt::get(Ty: SizeTTy, V: Len);
4105 Value *Ret = emitMemCpyChk(Dst, Src, Len: LenV, ObjSize, B, DL, TLI);
4106 // If the function was an __stpcpy_chk, and we were able to fold it into
4107 // a __memcpy_chk, we still need to return the correct end pointer.
4108 if (Ret && Func == LibFunc_stpcpy_chk)
4109 return B.CreateInBoundsGEP(Ty: B.getInt8Ty(), Ptr: Dst,
4110 IdxList: ConstantInt::get(Ty: SizeTTy, V: Len - 1));
4111 return copyFlags(Old: *CI, New: cast<CallInst>(Val: Ret));
4112}
4113
4114Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI,
4115 IRBuilderBase &B) {
4116 if (isFortifiedCallFoldable(CI, ObjSizeOp: 1, SizeOp: std::nullopt, StrOp: 0))
4117 return copyFlags(Old: *CI, New: emitStrLen(Ptr: CI->getArgOperand(i: 0), B,
4118 DL: CI->getModule()->getDataLayout(), TLI));
4119 return nullptr;
4120}
4121
4122Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
4123 IRBuilderBase &B,
4124 LibFunc Func) {
4125 if (isFortifiedCallFoldable(CI, ObjSizeOp: 3, SizeOp: 2)) {
4126 if (Func == LibFunc_strncpy_chk)
4127 return copyFlags(Old: *CI,
4128 New: emitStrNCpy(Dst: CI->getArgOperand(i: 0), Src: CI->getArgOperand(i: 1),
4129 Len: CI->getArgOperand(i: 2), B, TLI));
4130 else
4131 return copyFlags(Old: *CI,
4132 New: emitStpNCpy(Dst: CI->getArgOperand(i: 0), Src: CI->getArgOperand(i: 1),
4133 Len: CI->getArgOperand(i: 2), B, TLI));
4134 }
4135
4136 return nullptr;
4137}
4138
4139Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI,
4140 IRBuilderBase &B) {
4141 if (isFortifiedCallFoldable(CI, ObjSizeOp: 4, SizeOp: 3))
4142 return copyFlags(
4143 Old: *CI, New: emitMemCCpy(Ptr1: CI->getArgOperand(i: 0), Ptr2: CI->getArgOperand(i: 1),
4144 Val: CI->getArgOperand(i: 2), Len: CI->getArgOperand(i: 3), B, TLI));
4145
4146 return nullptr;
4147}
4148
4149Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI,
4150 IRBuilderBase &B) {
4151 if (isFortifiedCallFoldable(CI, ObjSizeOp: 3, SizeOp: 1, StrOp: std::nullopt, FlagOp: 2)) {
4152 SmallVector<Value *, 8> VariadicArgs(drop_begin(RangeOrContainer: CI->args(), N: 5));
4153 return copyFlags(Old: *CI,
4154 New: emitSNPrintf(Dest: CI->getArgOperand(i: 0), Size: CI->getArgOperand(i: 1),
4155 Fmt: CI->getArgOperand(i: 4), Args: VariadicArgs, B, TLI));
4156 }
4157
4158 return nullptr;
4159}
4160
4161Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI,
4162 IRBuilderBase &B) {
4163 if (isFortifiedCallFoldable(CI, ObjSizeOp: 2, SizeOp: std::nullopt, StrOp: std::nullopt, FlagOp: 1)) {
4164 SmallVector<Value *, 8> VariadicArgs(drop_begin(RangeOrContainer: CI->args(), N: 4));
4165 return copyFlags(Old: *CI,
4166 New: emitSPrintf(Dest: CI->getArgOperand(i: 0), Fmt: CI->getArgOperand(i: 3),
4167 VariadicArgs, B, TLI));
4168 }
4169
4170 return nullptr;
4171}
4172
4173Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI,
4174 IRBuilderBase &B) {
4175 if (isFortifiedCallFoldable(CI, ObjSizeOp: 2))
4176 return copyFlags(
4177 Old: *CI, New: emitStrCat(Dest: CI->getArgOperand(i: 0), Src: CI->getArgOperand(i: 1), B, TLI));
4178
4179 return nullptr;
4180}
4181
4182Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI,
4183 IRBuilderBase &B) {
4184 if (isFortifiedCallFoldable(CI, ObjSizeOp: 3))
4185 return copyFlags(Old: *CI,
4186 New: emitStrLCat(Dest: CI->getArgOperand(i: 0), Src: CI->getArgOperand(i: 1),
4187 Size: CI->getArgOperand(i: 2), B, TLI));
4188
4189 return nullptr;
4190}
4191
4192Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI,
4193 IRBuilderBase &B) {
4194 if (isFortifiedCallFoldable(CI, ObjSizeOp: 3))
4195 return copyFlags(Old: *CI,
4196 New: emitStrNCat(Dest: CI->getArgOperand(i: 0), Src: CI->getArgOperand(i: 1),
4197 Size: CI->getArgOperand(i: 2), B, TLI));
4198
4199 return nullptr;
4200}
4201
4202Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI,
4203 IRBuilderBase &B) {
4204 if (isFortifiedCallFoldable(CI, ObjSizeOp: 3))
4205 return copyFlags(Old: *CI,
4206 New: emitStrLCpy(Dest: CI->getArgOperand(i: 0), Src: CI->getArgOperand(i: 1),
4207 Size: CI->getArgOperand(i: 2), B, TLI));
4208
4209 return nullptr;
4210}
4211
4212Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI,
4213 IRBuilderBase &B) {
4214 if (isFortifiedCallFoldable(CI, ObjSizeOp: 3, SizeOp: 1, StrOp: std::nullopt, FlagOp: 2))
4215 return copyFlags(
4216 Old: *CI, New: emitVSNPrintf(Dest: CI->getArgOperand(i: 0), Size: CI->getArgOperand(i: 1),
4217 Fmt: CI->getArgOperand(i: 4), VAList: CI->getArgOperand(i: 5), B, TLI));
4218
4219 return nullptr;
4220}
4221
4222Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI,
4223 IRBuilderBase &B) {
4224 if (isFortifiedCallFoldable(CI, ObjSizeOp: 2, SizeOp: std::nullopt, StrOp: std::nullopt, FlagOp: 1))
4225 return copyFlags(Old: *CI,
4226 New: emitVSPrintf(Dest: CI->getArgOperand(i: 0), Fmt: CI->getArgOperand(i: 3),
4227 VAList: CI->getArgOperand(i: 4), B, TLI));
4228
4229 return nullptr;
4230}
4231
4232Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI,
4233 IRBuilderBase &Builder) {
4234 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
4235 // Some clang users checked for _chk libcall availability using:
4236 // __has_builtin(__builtin___memcpy_chk)
4237 // When compiling with -fno-builtin, this is always true.
4238 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
4239 // end up with fortified libcalls, which isn't acceptable in a freestanding
4240 // environment which only provides their non-fortified counterparts.
4241 //
4242 // Until we change clang and/or teach external users to check for availability
4243 // differently, disregard the "nobuiltin" attribute and TLI::has.
4244 //
4245 // PR23093.
4246
4247 LibFunc Func;
4248 Function *Callee = CI->getCalledFunction();
4249 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI);
4250
4251 SmallVector<OperandBundleDef, 2> OpBundles;
4252 CI->getOperandBundlesAsDefs(Defs&: OpBundles);
4253
4254 IRBuilderBase::OperandBundlesGuard Guard(Builder);
4255 Builder.setDefaultOperandBundles(OpBundles);
4256
4257 // First, check that this is a known library functions and that the prototype
4258 // is correct.
4259 if (!TLI->getLibFunc(FDecl: *Callee, F&: Func))
4260 return nullptr;
4261
4262 // We never change the calling convention.
4263 if (!ignoreCallingConv(Func) && !IsCallingConvC)
4264 return nullptr;
4265
4266 switch (Func) {
4267 case LibFunc_memcpy_chk:
4268 return optimizeMemCpyChk(CI, B&: Builder);
4269 case LibFunc_mempcpy_chk:
4270 return optimizeMemPCpyChk(CI, B&: Builder);
4271 case LibFunc_memmove_chk:
4272 return optimizeMemMoveChk(CI, B&: Builder);
4273 case LibFunc_memset_chk:
4274 return optimizeMemSetChk(CI, B&: Builder);
4275 case LibFunc_stpcpy_chk:
4276 case LibFunc_strcpy_chk:
4277 return optimizeStrpCpyChk(CI, B&: Builder, Func);
4278 case LibFunc_strlen_chk:
4279 return optimizeStrLenChk(CI, B&: Builder);
4280 case LibFunc_stpncpy_chk:
4281 case LibFunc_strncpy_chk:
4282 return optimizeStrpNCpyChk(CI, B&: Builder, Func);
4283 case LibFunc_memccpy_chk:
4284 return optimizeMemCCpyChk(CI, B&: Builder);
4285 case LibFunc_snprintf_chk:
4286 return optimizeSNPrintfChk(CI, B&: Builder);
4287 case LibFunc_sprintf_chk:
4288 return optimizeSPrintfChk(CI, B&: Builder);
4289 case LibFunc_strcat_chk:
4290 return optimizeStrCatChk(CI, B&: Builder);
4291 case LibFunc_strlcat_chk:
4292 return optimizeStrLCat(CI, B&: Builder);
4293 case LibFunc_strncat_chk:
4294 return optimizeStrNCatChk(CI, B&: Builder);
4295 case LibFunc_strlcpy_chk:
4296 return optimizeStrLCpyChk(CI, B&: Builder);
4297 case LibFunc_vsnprintf_chk:
4298 return optimizeVSNPrintfChk(CI, B&: Builder);
4299 case LibFunc_vsprintf_chk:
4300 return optimizeVSPrintfChk(CI, B&: Builder);
4301 default:
4302 break;
4303 }
4304 return nullptr;
4305}
4306
4307FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
4308 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
4309 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
4310

source code of llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp