1//===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the MapValue function, which is shared by various parts of
10// the lib/Transforms/Utils library.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Transforms/Utils/ValueMapper.h"
15#include "llvm/ADT/ArrayRef.h"
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/DenseSet.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/IR/Argument.h"
21#include "llvm/IR/BasicBlock.h"
22#include "llvm/IR/Constant.h"
23#include "llvm/IR/Constants.h"
24#include "llvm/IR/DebugInfoMetadata.h"
25#include "llvm/IR/DerivedTypes.h"
26#include "llvm/IR/Function.h"
27#include "llvm/IR/GlobalAlias.h"
28#include "llvm/IR/GlobalIFunc.h"
29#include "llvm/IR/GlobalObject.h"
30#include "llvm/IR/GlobalVariable.h"
31#include "llvm/IR/InlineAsm.h"
32#include "llvm/IR/Instruction.h"
33#include "llvm/IR/Instructions.h"
34#include "llvm/IR/IntrinsicInst.h"
35#include "llvm/IR/Metadata.h"
36#include "llvm/IR/Operator.h"
37#include "llvm/IR/Type.h"
38#include "llvm/IR/Value.h"
39#include "llvm/Support/Casting.h"
40#include "llvm/Support/Debug.h"
41#include <cassert>
42#include <limits>
43#include <memory>
44#include <utility>
45
46using namespace llvm;
47
48#define DEBUG_TYPE "value-mapper"
49
50// Out of line method to get vtable etc for class.
51void ValueMapTypeRemapper::anchor() {}
52void ValueMaterializer::anchor() {}
53
54namespace {
55
56/// A basic block used in a BlockAddress whose function body is not yet
57/// materialized.
58struct DelayedBasicBlock {
59 BasicBlock *OldBB;
60 std::unique_ptr<BasicBlock> TempBB;
61
62 DelayedBasicBlock(const BlockAddress &Old)
63 : OldBB(Old.getBasicBlock()),
64 TempBB(BasicBlock::Create(Context&: Old.getContext())) {}
65};
66
67struct WorklistEntry {
68 enum EntryKind {
69 MapGlobalInit,
70 MapAppendingVar,
71 MapAliasOrIFunc,
72 RemapFunction
73 };
74 struct GVInitTy {
75 GlobalVariable *GV;
76 Constant *Init;
77 };
78 struct AppendingGVTy {
79 GlobalVariable *GV;
80 Constant *InitPrefix;
81 };
82 struct AliasOrIFuncTy {
83 GlobalValue *GV;
84 Constant *Target;
85 };
86
87 unsigned Kind : 2;
88 unsigned MCID : 29;
89 unsigned AppendingGVIsOldCtorDtor : 1;
90 unsigned AppendingGVNumNewMembers;
91 union {
92 GVInitTy GVInit;
93 AppendingGVTy AppendingGV;
94 AliasOrIFuncTy AliasOrIFunc;
95 Function *RemapF;
96 } Data;
97};
98
99struct MappingContext {
100 ValueToValueMapTy *VM;
101 ValueMaterializer *Materializer = nullptr;
102
103 /// Construct a MappingContext with a value map and materializer.
104 explicit MappingContext(ValueToValueMapTy &VM,
105 ValueMaterializer *Materializer = nullptr)
106 : VM(&VM), Materializer(Materializer) {}
107};
108
109class Mapper {
110 friend class MDNodeMapper;
111
112#ifndef NDEBUG
113 DenseSet<GlobalValue *> AlreadyScheduled;
114#endif
115
116 RemapFlags Flags;
117 ValueMapTypeRemapper *TypeMapper;
118 unsigned CurrentMCID = 0;
119 SmallVector<MappingContext, 2> MCs;
120 SmallVector<WorklistEntry, 4> Worklist;
121 SmallVector<DelayedBasicBlock, 1> DelayedBBs;
122 SmallVector<Constant *, 16> AppendingInits;
123
124public:
125 Mapper(ValueToValueMapTy &VM, RemapFlags Flags,
126 ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer)
127 : Flags(Flags), TypeMapper(TypeMapper),
128 MCs(1, MappingContext(VM, Materializer)) {}
129
130 /// ValueMapper should explicitly call \a flush() before destruction.
131 ~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed"); }
132
133 bool hasWorkToDo() const { return !Worklist.empty(); }
134
135 unsigned
136 registerAlternateMappingContext(ValueToValueMapTy &VM,
137 ValueMaterializer *Materializer = nullptr) {
138 MCs.push_back(Elt: MappingContext(VM, Materializer));
139 return MCs.size() - 1;
140 }
141
142 void addFlags(RemapFlags Flags);
143
144 void remapGlobalObjectMetadata(GlobalObject &GO);
145
146 Value *mapValue(const Value *V);
147 void remapInstruction(Instruction *I);
148 void remapFunction(Function &F);
149 void remapDbgRecord(DbgRecord &DVR);
150
151 Constant *mapConstant(const Constant *C) {
152 return cast_or_null<Constant>(Val: mapValue(V: C));
153 }
154
155 /// Map metadata.
156 ///
157 /// Find the mapping for MD. Guarantees that the return will be resolved
158 /// (not an MDNode, or MDNode::isResolved() returns true).
159 Metadata *mapMetadata(const Metadata *MD);
160
161 void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init,
162 unsigned MCID);
163 void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
164 bool IsOldCtorDtor,
165 ArrayRef<Constant *> NewMembers,
166 unsigned MCID);
167 void scheduleMapAliasOrIFunc(GlobalValue &GV, Constant &Target,
168 unsigned MCID);
169 void scheduleRemapFunction(Function &F, unsigned MCID);
170
171 void flush();
172
173private:
174 void mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
175 bool IsOldCtorDtor,
176 ArrayRef<Constant *> NewMembers);
177
178 ValueToValueMapTy &getVM() { return *MCs[CurrentMCID].VM; }
179 ValueMaterializer *getMaterializer() { return MCs[CurrentMCID].Materializer; }
180
181 Value *mapBlockAddress(const BlockAddress &BA);
182
183 /// Map metadata that doesn't require visiting operands.
184 std::optional<Metadata *> mapSimpleMetadata(const Metadata *MD);
185
186 Metadata *mapToMetadata(const Metadata *Key, Metadata *Val);
187 Metadata *mapToSelf(const Metadata *MD);
188};
189
190class MDNodeMapper {
191 Mapper &M;
192
193 /// Data about a node in \a UniquedGraph.
194 struct Data {
195 bool HasChanged = false;
196 unsigned ID = std::numeric_limits<unsigned>::max();
197 TempMDNode Placeholder;
198 };
199
200 /// A graph of uniqued nodes.
201 struct UniquedGraph {
202 SmallDenseMap<const Metadata *, Data, 32> Info; // Node properties.
203 SmallVector<MDNode *, 16> POT; // Post-order traversal.
204
205 /// Propagate changed operands through the post-order traversal.
206 ///
207 /// Iteratively update \a Data::HasChanged for each node based on \a
208 /// Data::HasChanged of its operands, until fixed point.
209 void propagateChanges();
210
211 /// Get a forward reference to a node to use as an operand.
212 Metadata &getFwdReference(MDNode &Op);
213 };
214
215 /// Worklist of distinct nodes whose operands need to be remapped.
216 SmallVector<MDNode *, 16> DistinctWorklist;
217
218 // Storage for a UniquedGraph.
219 SmallDenseMap<const Metadata *, Data, 32> InfoStorage;
220 SmallVector<MDNode *, 16> POTStorage;
221
222public:
223 MDNodeMapper(Mapper &M) : M(M) {}
224
225 /// Map a metadata node (and its transitive operands).
226 ///
227 /// Map all the (unmapped) nodes in the subgraph under \c N. The iterative
228 /// algorithm handles distinct nodes and uniqued node subgraphs using
229 /// different strategies.
230 ///
231 /// Distinct nodes are immediately mapped and added to \a DistinctWorklist
232 /// using \a mapDistinctNode(). Their mapping can always be computed
233 /// immediately without visiting operands, even if their operands change.
234 ///
235 /// The mapping for uniqued nodes depends on whether their operands change.
236 /// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of
237 /// a node to calculate uniqued node mappings in bulk. Distinct leafs are
238 /// added to \a DistinctWorklist with \a mapDistinctNode().
239 ///
240 /// After mapping \c N itself, this function remaps the operands of the
241 /// distinct nodes in \a DistinctWorklist until the entire subgraph under \c
242 /// N has been mapped.
243 Metadata *map(const MDNode &N);
244
245private:
246 /// Map a top-level uniqued node and the uniqued subgraph underneath it.
247 ///
248 /// This builds up a post-order traversal of the (unmapped) uniqued subgraph
249 /// underneath \c FirstN and calculates the nodes' mapping. Each node uses
250 /// the identity mapping (\a Mapper::mapToSelf()) as long as all of its
251 /// operands uses the identity mapping.
252 ///
253 /// The algorithm works as follows:
254 ///
255 /// 1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and
256 /// save the post-order traversal in the given \a UniquedGraph, tracking
257 /// nodes' operands change.
258 ///
259 /// 2. \a UniquedGraph::propagateChanges(): propagate changed operands
260 /// through the \a UniquedGraph until fixed point, following the rule
261 /// that if a node changes, any node that references must also change.
262 ///
263 /// 3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes
264 /// (referencing new operands) where necessary.
265 Metadata *mapTopLevelUniquedNode(const MDNode &FirstN);
266
267 /// Try to map the operand of an \a MDNode.
268 ///
269 /// If \c Op is already mapped, return the mapping. If it's not an \a
270 /// MDNode, compute and return the mapping. If it's a distinct \a MDNode,
271 /// return the result of \a mapDistinctNode().
272 ///
273 /// \return std::nullopt if \c Op is an unmapped uniqued \a MDNode.
274 /// \post getMappedOp(Op) only returns std::nullopt if this returns
275 /// std::nullopt.
276 std::optional<Metadata *> tryToMapOperand(const Metadata *Op);
277
278 /// Map a distinct node.
279 ///
280 /// Return the mapping for the distinct node \c N, saving the result in \a
281 /// DistinctWorklist for later remapping.
282 ///
283 /// \pre \c N is not yet mapped.
284 /// \pre \c N.isDistinct().
285 MDNode *mapDistinctNode(const MDNode &N);
286
287 /// Get a previously mapped node.
288 std::optional<Metadata *> getMappedOp(const Metadata *Op) const;
289
290 /// Create a post-order traversal of an unmapped uniqued node subgraph.
291 ///
292 /// This traverses the metadata graph deeply enough to map \c FirstN. It
293 /// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any
294 /// metadata that has already been mapped will not be part of the POT.
295 ///
296 /// Each node that has a changed operand from outside the graph (e.g., a
297 /// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata)
298 /// is marked with \a Data::HasChanged.
299 ///
300 /// \return \c true if any nodes in \c G have \a Data::HasChanged.
301 /// \post \c G.POT is a post-order traversal ending with \c FirstN.
302 /// \post \a Data::hasChanged in \c G.Info indicates whether any node needs
303 /// to change because of operands outside the graph.
304 bool createPOT(UniquedGraph &G, const MDNode &FirstN);
305
306 /// Visit the operands of a uniqued node in the POT.
307 ///
308 /// Visit the operands in the range from \c I to \c E, returning the first
309 /// uniqued node we find that isn't yet in \c G. \c I is always advanced to
310 /// where to continue the loop through the operands.
311 ///
312 /// This sets \c HasChanged if any of the visited operands change.
313 MDNode *visitOperands(UniquedGraph &G, MDNode::op_iterator &I,
314 MDNode::op_iterator E, bool &HasChanged);
315
316 /// Map all the nodes in the given uniqued graph.
317 ///
318 /// This visits all the nodes in \c G in post-order, using the identity
319 /// mapping or creating a new node depending on \a Data::HasChanged.
320 ///
321 /// \pre \a getMappedOp() returns std::nullopt for nodes in \c G, but not for
322 /// any of their operands outside of \c G. \pre \a Data::HasChanged is true
323 /// for a node in \c G iff any of its operands have changed. \post \a
324 /// getMappedOp() returns the mapped node for every node in \c G.
325 void mapNodesInPOT(UniquedGraph &G);
326
327 /// Remap a node's operands using the given functor.
328 ///
329 /// Iterate through the operands of \c N and update them in place using \c
330 /// mapOperand.
331 ///
332 /// \pre N.isDistinct() or N.isTemporary().
333 template <class OperandMapper>
334 void remapOperands(MDNode &N, OperandMapper mapOperand);
335};
336
337} // end anonymous namespace
338
339Value *Mapper::mapValue(const Value *V) {
340 ValueToValueMapTy::iterator I = getVM().find(Val: V);
341
342 // If the value already exists in the map, use it.
343 if (I != getVM().end()) {
344 assert(I->second && "Unexpected null mapping");
345 return I->second;
346 }
347
348 // If we have a materializer and it can materialize a value, use that.
349 if (auto *Materializer = getMaterializer()) {
350 if (Value *NewV = Materializer->materialize(V: const_cast<Value *>(V))) {
351 getVM()[V] = NewV;
352 return NewV;
353 }
354 }
355
356 // Global values do not need to be seeded into the VM if they
357 // are using the identity mapping.
358 if (isa<GlobalValue>(Val: V)) {
359 if (Flags & RF_NullMapMissingGlobalValues)
360 return nullptr;
361 return getVM()[V] = const_cast<Value *>(V);
362 }
363
364 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Val: V)) {
365 // Inline asm may need *type* remapping.
366 FunctionType *NewTy = IA->getFunctionType();
367 if (TypeMapper) {
368 NewTy = cast<FunctionType>(Val: TypeMapper->remapType(SrcTy: NewTy));
369
370 if (NewTy != IA->getFunctionType())
371 V = InlineAsm::get(Ty: NewTy, AsmString: IA->getAsmString(), Constraints: IA->getConstraintString(),
372 hasSideEffects: IA->hasSideEffects(), isAlignStack: IA->isAlignStack(),
373 asmDialect: IA->getDialect(), canThrow: IA->canThrow());
374 }
375
376 return getVM()[V] = const_cast<Value *>(V);
377 }
378
379 if (const auto *MDV = dyn_cast<MetadataAsValue>(Val: V)) {
380 const Metadata *MD = MDV->getMetadata();
381
382 if (auto *LAM = dyn_cast<LocalAsMetadata>(Val: MD)) {
383 // Look through to grab the local value.
384 if (Value *LV = mapValue(V: LAM->getValue())) {
385 if (V == LAM->getValue())
386 return const_cast<Value *>(V);
387 return MetadataAsValue::get(Context&: V->getContext(), MD: ValueAsMetadata::get(V: LV));
388 }
389
390 // FIXME: always return nullptr once Verifier::verifyDominatesUse()
391 // ensures metadata operands only reference defined SSA values.
392 return (Flags & RF_IgnoreMissingLocals)
393 ? nullptr
394 : MetadataAsValue::get(
395 Context&: V->getContext(),
396 MD: MDTuple::get(Context&: V->getContext(), MDs: std::nullopt));
397 }
398 if (auto *AL = dyn_cast<DIArgList>(Val: MD)) {
399 SmallVector<ValueAsMetadata *, 4> MappedArgs;
400 for (auto *VAM : AL->getArgs()) {
401 // Map both Local and Constant VAMs here; they will both ultimately
402 // be mapped via mapValue. The exceptions are constants when we have no
403 // module level changes and locals when they have no existing mapped
404 // value and RF_IgnoreMissingLocals is set; these have identity
405 // mappings.
406 if ((Flags & RF_NoModuleLevelChanges) && isa<ConstantAsMetadata>(Val: VAM)) {
407 MappedArgs.push_back(Elt: VAM);
408 } else if (Value *LV = mapValue(V: VAM->getValue())) {
409 MappedArgs.push_back(
410 Elt: LV == VAM->getValue() ? VAM : ValueAsMetadata::get(V: LV));
411 } else if ((Flags & RF_IgnoreMissingLocals) && isa<LocalAsMetadata>(Val: VAM)) {
412 MappedArgs.push_back(Elt: VAM);
413 } else {
414 // If we cannot map the value, set the argument as undef.
415 MappedArgs.push_back(Elt: ValueAsMetadata::get(
416 V: UndefValue::get(T: VAM->getValue()->getType())));
417 }
418 }
419 return MetadataAsValue::get(Context&: V->getContext(),
420 MD: DIArgList::get(Context&: V->getContext(), Args: MappedArgs));
421 }
422
423 // If this is a module-level metadata and we know that nothing at the module
424 // level is changing, then use an identity mapping.
425 if (Flags & RF_NoModuleLevelChanges)
426 return getVM()[V] = const_cast<Value *>(V);
427
428 // Map the metadata and turn it into a value.
429 auto *MappedMD = mapMetadata(MD);
430 if (MD == MappedMD)
431 return getVM()[V] = const_cast<Value *>(V);
432 return getVM()[V] = MetadataAsValue::get(Context&: V->getContext(), MD: MappedMD);
433 }
434
435 // Okay, this either must be a constant (which may or may not be mappable) or
436 // is something that is not in the mapping table.
437 Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val: V));
438 if (!C)
439 return nullptr;
440
441 if (BlockAddress *BA = dyn_cast<BlockAddress>(Val: C))
442 return mapBlockAddress(BA: *BA);
443
444 if (const auto *E = dyn_cast<DSOLocalEquivalent>(Val: C)) {
445 auto *Val = mapValue(V: E->getGlobalValue());
446 GlobalValue *GV = dyn_cast<GlobalValue>(Val);
447 if (GV)
448 return getVM()[E] = DSOLocalEquivalent::get(GV);
449
450 auto *Func = cast<Function>(Val: Val->stripPointerCastsAndAliases());
451 Type *NewTy = E->getType();
452 if (TypeMapper)
453 NewTy = TypeMapper->remapType(SrcTy: NewTy);
454 return getVM()[E] = llvm::ConstantExpr::getBitCast(
455 C: DSOLocalEquivalent::get(GV: Func), Ty: NewTy);
456 }
457
458 if (const auto *NC = dyn_cast<NoCFIValue>(Val: C)) {
459 auto *Val = mapValue(V: NC->getGlobalValue());
460 GlobalValue *GV = cast<GlobalValue>(Val);
461 return getVM()[NC] = NoCFIValue::get(GV);
462 }
463
464 auto mapValueOrNull = [this](Value *V) {
465 auto Mapped = mapValue(V);
466 assert((Mapped || (Flags & RF_NullMapMissingGlobalValues)) &&
467 "Unexpected null mapping for constant operand without "
468 "NullMapMissingGlobalValues flag");
469 return Mapped;
470 };
471
472 // Otherwise, we have some other constant to remap. Start by checking to see
473 // if all operands have an identity remapping.
474 unsigned OpNo = 0, NumOperands = C->getNumOperands();
475 Value *Mapped = nullptr;
476 for (; OpNo != NumOperands; ++OpNo) {
477 Value *Op = C->getOperand(i: OpNo);
478 Mapped = mapValueOrNull(Op);
479 if (!Mapped)
480 return nullptr;
481 if (Mapped != Op)
482 break;
483 }
484
485 // See if the type mapper wants to remap the type as well.
486 Type *NewTy = C->getType();
487 if (TypeMapper)
488 NewTy = TypeMapper->remapType(SrcTy: NewTy);
489
490 // If the result type and all operands match up, then just insert an identity
491 // mapping.
492 if (OpNo == NumOperands && NewTy == C->getType())
493 return getVM()[V] = C;
494
495 // Okay, we need to create a new constant. We've already processed some or
496 // all of the operands, set them all up now.
497 SmallVector<Constant*, 8> Ops;
498 Ops.reserve(N: NumOperands);
499 for (unsigned j = 0; j != OpNo; ++j)
500 Ops.push_back(Elt: cast<Constant>(Val: C->getOperand(i: j)));
501
502 // If one of the operands mismatch, push it and the other mapped operands.
503 if (OpNo != NumOperands) {
504 Ops.push_back(Elt: cast<Constant>(Val: Mapped));
505
506 // Map the rest of the operands that aren't processed yet.
507 for (++OpNo; OpNo != NumOperands; ++OpNo) {
508 Mapped = mapValueOrNull(C->getOperand(i: OpNo));
509 if (!Mapped)
510 return nullptr;
511 Ops.push_back(Elt: cast<Constant>(Val: Mapped));
512 }
513 }
514 Type *NewSrcTy = nullptr;
515 if (TypeMapper)
516 if (auto *GEPO = dyn_cast<GEPOperator>(Val: C))
517 NewSrcTy = TypeMapper->remapType(SrcTy: GEPO->getSourceElementType());
518
519 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Val: C))
520 return getVM()[V] = CE->getWithOperands(Ops, Ty: NewTy, OnlyIfReduced: false, SrcTy: NewSrcTy);
521 if (isa<ConstantArray>(Val: C))
522 return getVM()[V] = ConstantArray::get(T: cast<ArrayType>(Val: NewTy), V: Ops);
523 if (isa<ConstantStruct>(Val: C))
524 return getVM()[V] = ConstantStruct::get(T: cast<StructType>(Val: NewTy), V: Ops);
525 if (isa<ConstantVector>(Val: C))
526 return getVM()[V] = ConstantVector::get(V: Ops);
527 // If this is a no-operand constant, it must be because the type was remapped.
528 if (isa<PoisonValue>(Val: C))
529 return getVM()[V] = PoisonValue::get(T: NewTy);
530 if (isa<UndefValue>(Val: C))
531 return getVM()[V] = UndefValue::get(T: NewTy);
532 if (isa<ConstantAggregateZero>(Val: C))
533 return getVM()[V] = ConstantAggregateZero::get(Ty: NewTy);
534 if (isa<ConstantTargetNone>(Val: C))
535 return getVM()[V] = Constant::getNullValue(Ty: NewTy);
536 assert(isa<ConstantPointerNull>(C));
537 return getVM()[V] = ConstantPointerNull::get(T: cast<PointerType>(Val: NewTy));
538}
539
540void Mapper::remapDbgRecord(DbgRecord &DR) {
541 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(Val: &DR)) {
542 DLR->setLabel(cast<DILabel>(Val: mapMetadata(MD: DLR->getLabel())));
543 return;
544 }
545
546 DbgVariableRecord &V = cast<DbgVariableRecord>(Val&: DR);
547 // Remap variables and DILocations.
548 auto *MappedVar = mapMetadata(MD: V.getVariable());
549 auto *MappedDILoc = mapMetadata(MD: V.getDebugLoc());
550 V.setVariable(cast<DILocalVariable>(Val: MappedVar));
551 V.setDebugLoc(DebugLoc(cast<DILocation>(Val: MappedDILoc)));
552
553 bool IgnoreMissingLocals = Flags & RF_IgnoreMissingLocals;
554
555 if (V.isDbgAssign()) {
556 auto *NewAddr = mapValue(V: V.getAddress());
557 if (!IgnoreMissingLocals && !NewAddr)
558 V.setKillAddress();
559 else if (NewAddr)
560 V.setAddress(NewAddr);
561 V.setAssignId(cast<DIAssignID>(Val: mapMetadata(MD: V.getAssignID())));
562 }
563
564 // Find Value operands and remap those.
565 SmallVector<Value *, 4> Vals, NewVals;
566 for (Value *Val : V.location_ops())
567 Vals.push_back(Elt: Val);
568 for (Value *Val : Vals)
569 NewVals.push_back(Elt: mapValue(V: Val));
570
571 // If there are no changes to the Value operands, finished.
572 if (Vals == NewVals)
573 return;
574
575 // Otherwise, do some replacement.
576 if (!IgnoreMissingLocals &&
577 llvm::any_of(Range&: NewVals, P: [&](Value *V) { return V == nullptr; })) {
578 V.setKillLocation();
579 } else {
580 // Either we have all non-empty NewVals, or we're permitted to ignore
581 // missing locals.
582 for (unsigned int I = 0; I < Vals.size(); ++I)
583 if (NewVals[I])
584 V.replaceVariableLocationOp(OpIdx: I, NewValue: NewVals[I]);
585 }
586}
587
588Value *Mapper::mapBlockAddress(const BlockAddress &BA) {
589 Function *F = cast<Function>(Val: mapValue(V: BA.getFunction()));
590
591 // F may not have materialized its initializer. In that case, create a
592 // dummy basic block for now, and replace it once we've materialized all
593 // the initializers.
594 BasicBlock *BB;
595 if (F->empty()) {
596 DelayedBBs.push_back(Elt: DelayedBasicBlock(BA));
597 BB = DelayedBBs.back().TempBB.get();
598 } else {
599 BB = cast_or_null<BasicBlock>(Val: mapValue(V: BA.getBasicBlock()));
600 }
601
602 return getVM()[&BA] = BlockAddress::get(F, BB: BB ? BB : BA.getBasicBlock());
603}
604
605Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) {
606 getVM().MD()[Key].reset(MD: Val);
607 return Val;
608}
609
610Metadata *Mapper::mapToSelf(const Metadata *MD) {
611 return mapToMetadata(Key: MD, Val: const_cast<Metadata *>(MD));
612}
613
614std::optional<Metadata *> MDNodeMapper::tryToMapOperand(const Metadata *Op) {
615 if (!Op)
616 return nullptr;
617
618 if (std::optional<Metadata *> MappedOp = M.mapSimpleMetadata(MD: Op)) {
619#ifndef NDEBUG
620 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Val: Op))
621 assert((!*MappedOp || M.getVM().count(CMD->getValue()) ||
622 M.getVM().getMappedMD(Op)) &&
623 "Expected Value to be memoized");
624 else
625 assert((isa<MDString>(Op) || M.getVM().getMappedMD(Op)) &&
626 "Expected result to be memoized");
627#endif
628 return *MappedOp;
629 }
630
631 const MDNode &N = *cast<MDNode>(Val: Op);
632 if (N.isDistinct())
633 return mapDistinctNode(N);
634 return std::nullopt;
635}
636
637MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) {
638 assert(N.isDistinct() && "Expected a distinct node");
639 assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node");
640 Metadata *NewM = nullptr;
641
642 if (M.Flags & RF_ReuseAndMutateDistinctMDs) {
643 NewM = M.mapToSelf(MD: &N);
644 } else {
645 NewM = MDNode::replaceWithDistinct(N: N.clone());
646 LLVM_DEBUG(dbgs() << "\nMap " << N << "\n"
647 << "To " << *NewM << "\n\n");
648 M.mapToMetadata(Key: &N, Val: NewM);
649 }
650 DistinctWorklist.push_back(Elt: cast<MDNode>(Val: NewM));
651
652 return DistinctWorklist.back();
653}
654
655static ConstantAsMetadata *wrapConstantAsMetadata(const ConstantAsMetadata &CMD,
656 Value *MappedV) {
657 if (CMD.getValue() == MappedV)
658 return const_cast<ConstantAsMetadata *>(&CMD);
659 return MappedV ? ConstantAsMetadata::getConstant(C: MappedV) : nullptr;
660}
661
662std::optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const {
663 if (!Op)
664 return nullptr;
665
666 if (std::optional<Metadata *> MappedOp = M.getVM().getMappedMD(MD: Op))
667 return *MappedOp;
668
669 if (isa<MDString>(Val: Op))
670 return const_cast<Metadata *>(Op);
671
672 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Val: Op))
673 return wrapConstantAsMetadata(CMD: *CMD, MappedV: M.getVM().lookup(Val: CMD->getValue()));
674
675 return std::nullopt;
676}
677
678Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) {
679 auto Where = Info.find(Val: &Op);
680 assert(Where != Info.end() && "Expected a valid reference");
681
682 auto &OpD = Where->second;
683 if (!OpD.HasChanged)
684 return Op;
685
686 // Lazily construct a temporary node.
687 if (!OpD.Placeholder)
688 OpD.Placeholder = Op.clone();
689
690 return *OpD.Placeholder;
691}
692
693template <class OperandMapper>
694void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) {
695 assert(!N.isUniqued() && "Expected distinct or temporary nodes");
696 for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) {
697 Metadata *Old = N.getOperand(I);
698 Metadata *New = mapOperand(Old);
699 if (Old != New)
700 LLVM_DEBUG(dbgs() << "Replacing Op " << Old << " with " << New << " in "
701 << N << "\n");
702
703 if (Old != New)
704 N.replaceOperandWith(I, New);
705 }
706}
707
708namespace {
709
710/// An entry in the worklist for the post-order traversal.
711struct POTWorklistEntry {
712 MDNode *N; ///< Current node.
713 MDNode::op_iterator Op; ///< Current operand of \c N.
714
715 /// Keep a flag of whether operands have changed in the worklist to avoid
716 /// hitting the map in \a UniquedGraph.
717 bool HasChanged = false;
718
719 POTWorklistEntry(MDNode &N) : N(&N), Op(N.op_begin()) {}
720};
721
722} // end anonymous namespace
723
724bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) {
725 assert(G.Info.empty() && "Expected a fresh traversal");
726 assert(FirstN.isUniqued() && "Expected uniqued node in POT");
727
728 // Construct a post-order traversal of the uniqued subgraph under FirstN.
729 bool AnyChanges = false;
730 SmallVector<POTWorklistEntry, 16> Worklist;
731 Worklist.push_back(Elt: POTWorklistEntry(const_cast<MDNode &>(FirstN)));
732 (void)G.Info[&FirstN];
733 while (!Worklist.empty()) {
734 // Start or continue the traversal through the this node's operands.
735 auto &WE = Worklist.back();
736 if (MDNode *N = visitOperands(G, I&: WE.Op, E: WE.N->op_end(), HasChanged&: WE.HasChanged)) {
737 // Push a new node to traverse first.
738 Worklist.push_back(Elt: POTWorklistEntry(*N));
739 continue;
740 }
741
742 // Push the node onto the POT.
743 assert(WE.N->isUniqued() && "Expected only uniqued nodes");
744 assert(WE.Op == WE.N->op_end() && "Expected to visit all operands");
745 auto &D = G.Info[WE.N];
746 AnyChanges |= D.HasChanged = WE.HasChanged;
747 D.ID = G.POT.size();
748 G.POT.push_back(Elt: WE.N);
749
750 // Pop the node off the worklist.
751 Worklist.pop_back();
752 }
753 return AnyChanges;
754}
755
756MDNode *MDNodeMapper::visitOperands(UniquedGraph &G, MDNode::op_iterator &I,
757 MDNode::op_iterator E, bool &HasChanged) {
758 while (I != E) {
759 Metadata *Op = *I++; // Increment even on early return.
760 if (std::optional<Metadata *> MappedOp = tryToMapOperand(Op)) {
761 // Check if the operand changes.
762 HasChanged |= Op != *MappedOp;
763 continue;
764 }
765
766 // A uniqued metadata node.
767 MDNode &OpN = *cast<MDNode>(Val: Op);
768 assert(OpN.isUniqued() &&
769 "Only uniqued operands cannot be mapped immediately");
770 if (G.Info.insert(KV: std::make_pair(x: &OpN, y: Data())).second)
771 return &OpN; // This is a new one. Return it.
772 }
773 return nullptr;
774}
775
776void MDNodeMapper::UniquedGraph::propagateChanges() {
777 bool AnyChanges;
778 do {
779 AnyChanges = false;
780 for (MDNode *N : POT) {
781 auto &D = Info[N];
782 if (D.HasChanged)
783 continue;
784
785 if (llvm::none_of(Range: N->operands(), P: [&](const Metadata *Op) {
786 auto Where = Info.find(Val: Op);
787 return Where != Info.end() && Where->second.HasChanged;
788 }))
789 continue;
790
791 AnyChanges = D.HasChanged = true;
792 }
793 } while (AnyChanges);
794}
795
796void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) {
797 // Construct uniqued nodes, building forward references as necessary.
798 SmallVector<MDNode *, 16> CyclicNodes;
799 for (auto *N : G.POT) {
800 auto &D = G.Info[N];
801 if (!D.HasChanged) {
802 // The node hasn't changed.
803 M.mapToSelf(MD: N);
804 continue;
805 }
806
807 // Remember whether this node had a placeholder.
808 bool HadPlaceholder(D.Placeholder);
809
810 // Clone the uniqued node and remap the operands.
811 TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone();
812 remapOperands(N&: *ClonedN, mapOperand: [this, &D, &G](Metadata *Old) {
813 if (std::optional<Metadata *> MappedOp = getMappedOp(Op: Old))
814 return *MappedOp;
815 (void)D;
816 assert(G.Info[Old].ID > D.ID && "Expected a forward reference");
817 return &G.getFwdReference(Op&: *cast<MDNode>(Val: Old));
818 });
819
820 auto *NewN = MDNode::replaceWithUniqued(N: std::move(ClonedN));
821 if (N && NewN && N != NewN) {
822 LLVM_DEBUG(dbgs() << "\nMap " << *N << "\n"
823 << "To " << *NewN << "\n\n");
824 }
825
826 M.mapToMetadata(Key: N, Val: NewN);
827
828 // Nodes that were referenced out of order in the POT are involved in a
829 // uniquing cycle.
830 if (HadPlaceholder)
831 CyclicNodes.push_back(Elt: NewN);
832 }
833
834 // Resolve cycles.
835 for (auto *N : CyclicNodes)
836 if (!N->isResolved())
837 N->resolveCycles();
838}
839
840Metadata *MDNodeMapper::map(const MDNode &N) {
841 assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive");
842 assert(!(M.Flags & RF_NoModuleLevelChanges) &&
843 "MDNodeMapper::map assumes module-level changes");
844
845 // Require resolved nodes whenever metadata might be remapped.
846 assert(N.isResolved() && "Unexpected unresolved node");
847
848 Metadata *MappedN =
849 N.isUniqued() ? mapTopLevelUniquedNode(FirstN: N) : mapDistinctNode(N);
850 while (!DistinctWorklist.empty())
851 remapOperands(N&: *DistinctWorklist.pop_back_val(), mapOperand: [this](Metadata *Old) {
852 if (std::optional<Metadata *> MappedOp = tryToMapOperand(Op: Old))
853 return *MappedOp;
854 return mapTopLevelUniquedNode(FirstN: *cast<MDNode>(Val: Old));
855 });
856 return MappedN;
857}
858
859Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) {
860 assert(FirstN.isUniqued() && "Expected uniqued node");
861
862 // Create a post-order traversal of uniqued nodes under FirstN.
863 UniquedGraph G;
864 if (!createPOT(G, FirstN)) {
865 // Return early if no nodes have changed.
866 for (const MDNode *N : G.POT)
867 M.mapToSelf(MD: N);
868 return &const_cast<MDNode &>(FirstN);
869 }
870
871 // Update graph with all nodes that have changed.
872 G.propagateChanges();
873
874 // Map all the nodes in the graph.
875 mapNodesInPOT(G);
876
877 // Return the original node, remapped.
878 return *getMappedOp(Op: &FirstN);
879}
880
881std::optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) {
882 // If the value already exists in the map, use it.
883 if (std::optional<Metadata *> NewMD = getVM().getMappedMD(MD))
884 return *NewMD;
885
886 if (isa<MDString>(Val: MD))
887 return const_cast<Metadata *>(MD);
888
889 // This is a module-level metadata. If nothing at the module level is
890 // changing, use an identity mapping.
891 if ((Flags & RF_NoModuleLevelChanges))
892 return const_cast<Metadata *>(MD);
893
894 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Val: MD)) {
895 // Don't memoize ConstantAsMetadata. Instead of lasting until the
896 // LLVMContext is destroyed, they can be deleted when the GlobalValue they
897 // reference is destructed. These aren't super common, so the extra
898 // indirection isn't that expensive.
899 return wrapConstantAsMetadata(CMD: *CMD, MappedV: mapValue(V: CMD->getValue()));
900 }
901
902 assert(isa<MDNode>(MD) && "Expected a metadata node");
903
904 return std::nullopt;
905}
906
907Metadata *Mapper::mapMetadata(const Metadata *MD) {
908 assert(MD && "Expected valid metadata");
909 assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata");
910
911 if (std::optional<Metadata *> NewMD = mapSimpleMetadata(MD))
912 return *NewMD;
913
914 return MDNodeMapper(*this).map(N: *cast<MDNode>(Val: MD));
915}
916
917void Mapper::flush() {
918 // Flush out the worklist of global values.
919 while (!Worklist.empty()) {
920 WorklistEntry E = Worklist.pop_back_val();
921 CurrentMCID = E.MCID;
922 switch (E.Kind) {
923 case WorklistEntry::MapGlobalInit:
924 E.Data.GVInit.GV->setInitializer(mapConstant(C: E.Data.GVInit.Init));
925 remapGlobalObjectMetadata(GO&: *E.Data.GVInit.GV);
926 break;
927 case WorklistEntry::MapAppendingVar: {
928 unsigned PrefixSize = AppendingInits.size() - E.AppendingGVNumNewMembers;
929 // mapAppendingVariable call can change AppendingInits if initalizer for
930 // the variable depends on another appending global, because of that inits
931 // need to be extracted and updated before the call.
932 SmallVector<Constant *, 8> NewInits(
933 drop_begin(RangeOrContainer&: AppendingInits, N: PrefixSize));
934 AppendingInits.resize(N: PrefixSize);
935 mapAppendingVariable(GV&: *E.Data.AppendingGV.GV,
936 InitPrefix: E.Data.AppendingGV.InitPrefix,
937 IsOldCtorDtor: E.AppendingGVIsOldCtorDtor, NewMembers: ArrayRef(NewInits));
938 break;
939 }
940 case WorklistEntry::MapAliasOrIFunc: {
941 GlobalValue *GV = E.Data.AliasOrIFunc.GV;
942 Constant *Target = mapConstant(C: E.Data.AliasOrIFunc.Target);
943 if (auto *GA = dyn_cast<GlobalAlias>(Val: GV))
944 GA->setAliasee(Target);
945 else if (auto *GI = dyn_cast<GlobalIFunc>(Val: GV))
946 GI->setResolver(Target);
947 else
948 llvm_unreachable("Not alias or ifunc");
949 break;
950 }
951 case WorklistEntry::RemapFunction:
952 remapFunction(F&: *E.Data.RemapF);
953 break;
954 }
955 }
956 CurrentMCID = 0;
957
958 // Finish logic for block addresses now that all global values have been
959 // handled.
960 while (!DelayedBBs.empty()) {
961 DelayedBasicBlock DBB = DelayedBBs.pop_back_val();
962 BasicBlock *BB = cast_or_null<BasicBlock>(Val: mapValue(V: DBB.OldBB));
963 DBB.TempBB->replaceAllUsesWith(V: BB ? BB : DBB.OldBB);
964 }
965}
966
967void Mapper::remapInstruction(Instruction *I) {
968 // Remap operands.
969 for (Use &Op : I->operands()) {
970 Value *V = mapValue(V: Op);
971 // If we aren't ignoring missing entries, assert that something happened.
972 if (V)
973 Op = V;
974 else
975 assert((Flags & RF_IgnoreMissingLocals) &&
976 "Referenced value not in value map!");
977 }
978
979 // Remap phi nodes' incoming blocks.
980 if (PHINode *PN = dyn_cast<PHINode>(Val: I)) {
981 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
982 Value *V = mapValue(V: PN->getIncomingBlock(i));
983 // If we aren't ignoring missing entries, assert that something happened.
984 if (V)
985 PN->setIncomingBlock(i, BB: cast<BasicBlock>(Val: V));
986 else
987 assert((Flags & RF_IgnoreMissingLocals) &&
988 "Referenced block not in value map!");
989 }
990 }
991
992 // Remap attached metadata.
993 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
994 I->getAllMetadata(MDs);
995 for (const auto &MI : MDs) {
996 MDNode *Old = MI.second;
997 MDNode *New = cast_or_null<MDNode>(Val: mapMetadata(MD: Old));
998 if (New != Old)
999 I->setMetadata(KindID: MI.first, Node: New);
1000 }
1001
1002 if (!TypeMapper)
1003 return;
1004
1005 // If the instruction's type is being remapped, do so now.
1006 if (auto *CB = dyn_cast<CallBase>(Val: I)) {
1007 SmallVector<Type *, 3> Tys;
1008 FunctionType *FTy = CB->getFunctionType();
1009 Tys.reserve(N: FTy->getNumParams());
1010 for (Type *Ty : FTy->params())
1011 Tys.push_back(Elt: TypeMapper->remapType(SrcTy: Ty));
1012 CB->mutateFunctionType(FTy: FunctionType::get(
1013 Result: TypeMapper->remapType(SrcTy: I->getType()), Params: Tys, isVarArg: FTy->isVarArg()));
1014
1015 LLVMContext &C = CB->getContext();
1016 AttributeList Attrs = CB->getAttributes();
1017 for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) {
1018 for (int AttrIdx = Attribute::FirstTypeAttr;
1019 AttrIdx <= Attribute::LastTypeAttr; AttrIdx++) {
1020 Attribute::AttrKind TypedAttr = (Attribute::AttrKind)AttrIdx;
1021 if (Type *Ty =
1022 Attrs.getAttributeAtIndex(Index: i, Kind: TypedAttr).getValueAsType()) {
1023 Attrs = Attrs.replaceAttributeTypeAtIndex(C, ArgNo: i, Kind: TypedAttr,
1024 ReplacementTy: TypeMapper->remapType(SrcTy: Ty));
1025 break;
1026 }
1027 }
1028 }
1029 CB->setAttributes(Attrs);
1030 return;
1031 }
1032 if (auto *AI = dyn_cast<AllocaInst>(Val: I))
1033 AI->setAllocatedType(TypeMapper->remapType(SrcTy: AI->getAllocatedType()));
1034 if (auto *GEP = dyn_cast<GetElementPtrInst>(Val: I)) {
1035 GEP->setSourceElementType(
1036 TypeMapper->remapType(SrcTy: GEP->getSourceElementType()));
1037 GEP->setResultElementType(
1038 TypeMapper->remapType(SrcTy: GEP->getResultElementType()));
1039 }
1040 I->mutateType(Ty: TypeMapper->remapType(SrcTy: I->getType()));
1041}
1042
1043void Mapper::remapGlobalObjectMetadata(GlobalObject &GO) {
1044 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
1045 GO.getAllMetadata(MDs);
1046 GO.clearMetadata();
1047 for (const auto &I : MDs)
1048 GO.addMetadata(KindID: I.first, MD&: *cast<MDNode>(Val: mapMetadata(MD: I.second)));
1049}
1050
1051void Mapper::remapFunction(Function &F) {
1052 // Remap the operands.
1053 for (Use &Op : F.operands())
1054 if (Op)
1055 Op = mapValue(V: Op);
1056
1057 // Remap the metadata attachments.
1058 remapGlobalObjectMetadata(GO&: F);
1059
1060 // Remap the argument types.
1061 if (TypeMapper)
1062 for (Argument &A : F.args())
1063 A.mutateType(Ty: TypeMapper->remapType(SrcTy: A.getType()));
1064
1065 // Remap the instructions.
1066 for (BasicBlock &BB : F) {
1067 for (Instruction &I : BB) {
1068 remapInstruction(I: &I);
1069 for (DbgRecord &DR : I.getDbgRecordRange())
1070 remapDbgRecord(DR);
1071 }
1072 }
1073}
1074
1075void Mapper::mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
1076 bool IsOldCtorDtor,
1077 ArrayRef<Constant *> NewMembers) {
1078 SmallVector<Constant *, 16> Elements;
1079 if (InitPrefix) {
1080 unsigned NumElements =
1081 cast<ArrayType>(Val: InitPrefix->getType())->getNumElements();
1082 for (unsigned I = 0; I != NumElements; ++I)
1083 Elements.push_back(Elt: InitPrefix->getAggregateElement(Elt: I));
1084 }
1085
1086 PointerType *VoidPtrTy;
1087 Type *EltTy;
1088 if (IsOldCtorDtor) {
1089 // FIXME: This upgrade is done during linking to support the C API. See
1090 // also IRLinker::linkAppendingVarProto() in IRMover.cpp.
1091 VoidPtrTy = PointerType::getUnqual(C&: GV.getContext());
1092 auto &ST = *cast<StructType>(Val: NewMembers.front()->getType());
1093 Type *Tys[3] = {ST.getElementType(N: 0), ST.getElementType(N: 1), VoidPtrTy};
1094 EltTy = StructType::get(Context&: GV.getContext(), Elements: Tys, isPacked: false);
1095 }
1096
1097 for (auto *V : NewMembers) {
1098 Constant *NewV;
1099 if (IsOldCtorDtor) {
1100 auto *S = cast<ConstantStruct>(Val: V);
1101 auto *E1 = cast<Constant>(Val: mapValue(V: S->getOperand(i_nocapture: 0)));
1102 auto *E2 = cast<Constant>(Val: mapValue(V: S->getOperand(i_nocapture: 1)));
1103 Constant *Null = Constant::getNullValue(Ty: VoidPtrTy);
1104 NewV = ConstantStruct::get(T: cast<StructType>(Val: EltTy), Vs: E1, Vs: E2, Vs: Null);
1105 } else {
1106 NewV = cast_or_null<Constant>(Val: mapValue(V));
1107 }
1108 Elements.push_back(Elt: NewV);
1109 }
1110
1111 GV.setInitializer(
1112 ConstantArray::get(T: cast<ArrayType>(Val: GV.getValueType()), V: Elements));
1113}
1114
1115void Mapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init,
1116 unsigned MCID) {
1117 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
1118 assert(MCID < MCs.size() && "Invalid mapping context");
1119
1120 WorklistEntry WE;
1121 WE.Kind = WorklistEntry::MapGlobalInit;
1122 WE.MCID = MCID;
1123 WE.Data.GVInit.GV = &GV;
1124 WE.Data.GVInit.Init = &Init;
1125 Worklist.push_back(Elt: WE);
1126}
1127
1128void Mapper::scheduleMapAppendingVariable(GlobalVariable &GV,
1129 Constant *InitPrefix,
1130 bool IsOldCtorDtor,
1131 ArrayRef<Constant *> NewMembers,
1132 unsigned MCID) {
1133 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
1134 assert(MCID < MCs.size() && "Invalid mapping context");
1135
1136 WorklistEntry WE;
1137 WE.Kind = WorklistEntry::MapAppendingVar;
1138 WE.MCID = MCID;
1139 WE.Data.AppendingGV.GV = &GV;
1140 WE.Data.AppendingGV.InitPrefix = InitPrefix;
1141 WE.AppendingGVIsOldCtorDtor = IsOldCtorDtor;
1142 WE.AppendingGVNumNewMembers = NewMembers.size();
1143 Worklist.push_back(Elt: WE);
1144 AppendingInits.append(in_start: NewMembers.begin(), in_end: NewMembers.end());
1145}
1146
1147void Mapper::scheduleMapAliasOrIFunc(GlobalValue &GV, Constant &Target,
1148 unsigned MCID) {
1149 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
1150 assert((isa<GlobalAlias>(GV) || isa<GlobalIFunc>(GV)) &&
1151 "Should be alias or ifunc");
1152 assert(MCID < MCs.size() && "Invalid mapping context");
1153
1154 WorklistEntry WE;
1155 WE.Kind = WorklistEntry::MapAliasOrIFunc;
1156 WE.MCID = MCID;
1157 WE.Data.AliasOrIFunc.GV = &GV;
1158 WE.Data.AliasOrIFunc.Target = &Target;
1159 Worklist.push_back(Elt: WE);
1160}
1161
1162void Mapper::scheduleRemapFunction(Function &F, unsigned MCID) {
1163 assert(AlreadyScheduled.insert(&F).second && "Should not reschedule");
1164 assert(MCID < MCs.size() && "Invalid mapping context");
1165
1166 WorklistEntry WE;
1167 WE.Kind = WorklistEntry::RemapFunction;
1168 WE.MCID = MCID;
1169 WE.Data.RemapF = &F;
1170 Worklist.push_back(Elt: WE);
1171}
1172
1173void Mapper::addFlags(RemapFlags Flags) {
1174 assert(!hasWorkToDo() && "Expected to have flushed the worklist");
1175 this->Flags = this->Flags | Flags;
1176}
1177
1178static Mapper *getAsMapper(void *pImpl) {
1179 return reinterpret_cast<Mapper *>(pImpl);
1180}
1181
1182namespace {
1183
1184class FlushingMapper {
1185 Mapper &M;
1186
1187public:
1188 explicit FlushingMapper(void *pImpl) : M(*getAsMapper(pImpl)) {
1189 assert(!M.hasWorkToDo() && "Expected to be flushed");
1190 }
1191
1192 ~FlushingMapper() { M.flush(); }
1193
1194 Mapper *operator->() const { return &M; }
1195};
1196
1197} // end anonymous namespace
1198
1199ValueMapper::ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags,
1200 ValueMapTypeRemapper *TypeMapper,
1201 ValueMaterializer *Materializer)
1202 : pImpl(new Mapper(VM, Flags, TypeMapper, Materializer)) {}
1203
1204ValueMapper::~ValueMapper() { delete getAsMapper(pImpl); }
1205
1206unsigned
1207ValueMapper::registerAlternateMappingContext(ValueToValueMapTy &VM,
1208 ValueMaterializer *Materializer) {
1209 return getAsMapper(pImpl)->registerAlternateMappingContext(VM, Materializer);
1210}
1211
1212void ValueMapper::addFlags(RemapFlags Flags) {
1213 FlushingMapper(pImpl)->addFlags(Flags);
1214}
1215
1216Value *ValueMapper::mapValue(const Value &V) {
1217 return FlushingMapper(pImpl)->mapValue(V: &V);
1218}
1219
1220Constant *ValueMapper::mapConstant(const Constant &C) {
1221 return cast_or_null<Constant>(Val: mapValue(V: C));
1222}
1223
1224Metadata *ValueMapper::mapMetadata(const Metadata &MD) {
1225 return FlushingMapper(pImpl)->mapMetadata(MD: &MD);
1226}
1227
1228MDNode *ValueMapper::mapMDNode(const MDNode &N) {
1229 return cast_or_null<MDNode>(Val: mapMetadata(MD: N));
1230}
1231
1232void ValueMapper::remapInstruction(Instruction &I) {
1233 FlushingMapper(pImpl)->remapInstruction(I: &I);
1234}
1235
1236void ValueMapper::remapDbgVariableRecord(Module *M, DbgVariableRecord &V) {
1237 FlushingMapper(pImpl)->remapDbgRecord(DR&: V);
1238}
1239
1240void ValueMapper::remapDbgVariableRecordRange(
1241 Module *M, iterator_range<DbgRecord::self_iterator> Range) {
1242 for (DbgVariableRecord &DVR : filterDbgVars(R: Range)) {
1243 remapDbgVariableRecord(M, V&: DVR);
1244 }
1245}
1246
1247void ValueMapper::remapFunction(Function &F) {
1248 FlushingMapper(pImpl)->remapFunction(F);
1249}
1250
1251void ValueMapper::remapGlobalObjectMetadata(GlobalObject &GO) {
1252 FlushingMapper(pImpl)->remapGlobalObjectMetadata(GO);
1253}
1254
1255void ValueMapper::scheduleMapGlobalInitializer(GlobalVariable &GV,
1256 Constant &Init,
1257 unsigned MCID) {
1258 getAsMapper(pImpl)->scheduleMapGlobalInitializer(GV, Init, MCID);
1259}
1260
1261void ValueMapper::scheduleMapAppendingVariable(GlobalVariable &GV,
1262 Constant *InitPrefix,
1263 bool IsOldCtorDtor,
1264 ArrayRef<Constant *> NewMembers,
1265 unsigned MCID) {
1266 getAsMapper(pImpl)->scheduleMapAppendingVariable(
1267 GV, InitPrefix, IsOldCtorDtor, NewMembers, MCID);
1268}
1269
1270void ValueMapper::scheduleMapGlobalAlias(GlobalAlias &GA, Constant &Aliasee,
1271 unsigned MCID) {
1272 getAsMapper(pImpl)->scheduleMapAliasOrIFunc(GV&: GA, Target&: Aliasee, MCID);
1273}
1274
1275void ValueMapper::scheduleMapGlobalIFunc(GlobalIFunc &GI, Constant &Resolver,
1276 unsigned MCID) {
1277 getAsMapper(pImpl)->scheduleMapAliasOrIFunc(GV&: GI, Target&: Resolver, MCID);
1278}
1279
1280void ValueMapper::scheduleRemapFunction(Function &F, unsigned MCID) {
1281 getAsMapper(pImpl)->scheduleRemapFunction(F, MCID);
1282}
1283

source code of llvm/lib/Transforms/Utils/ValueMapper.cpp