1 | //===- Barvinok.cpp - Barvinok's Algorithm ----------------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "mlir/Analysis/Presburger/Barvinok.h" |
10 | #include "mlir/Analysis/Presburger/Utils.h" |
11 | #include "llvm/ADT/Sequence.h" |
12 | #include <algorithm> |
13 | #include <bitset> |
14 | |
15 | using namespace mlir; |
16 | using namespace presburger; |
17 | using namespace mlir::presburger::detail; |
18 | |
19 | /// Assuming that the input cone is pointed at the origin, |
20 | /// converts it to its dual in V-representation. |
21 | /// Essentially we just remove the all-zeroes constant column. |
22 | ConeV mlir::presburger::detail::getDual(ConeH cone) { |
23 | unsigned numIneq = cone.getNumInequalities(); |
24 | unsigned numVar = cone.getNumCols() - 1; |
25 | ConeV dual(numIneq, numVar, 0, 0); |
26 | // Assuming that an inequality of the form |
27 | // a1*x1 + ... + an*xn + b ≥ 0 |
28 | // is represented as a row [a1, ..., an, b] |
29 | // and that b = 0. |
30 | |
31 | for (auto i : llvm::seq<int>(Begin: 0, End: numIneq)) { |
32 | assert(cone.atIneq(i, numVar) == 0 && |
33 | "H-representation of cone is not centred at the origin!" ); |
34 | for (unsigned j = 0; j < numVar; ++j) { |
35 | dual.at(row: i, column: j) = cone.atIneq(i, j); |
36 | } |
37 | } |
38 | |
39 | // Now dual is of the form [ [a1, ..., an] , ... ] |
40 | // which is the V-representation of the dual. |
41 | return dual; |
42 | } |
43 | |
44 | /// Converts a cone in V-representation to the H-representation |
45 | /// of its dual, pointed at the origin (not at the original vertex). |
46 | /// Essentially adds a column consisting only of zeroes to the end. |
47 | ConeH mlir::presburger::detail::getDual(ConeV cone) { |
48 | unsigned rows = cone.getNumRows(); |
49 | unsigned columns = cone.getNumColumns(); |
50 | ConeH dual = defineHRep(numVars: columns); |
51 | // Add a new column (for constants) at the end. |
52 | // This will be initialized to zero. |
53 | cone.insertColumn(pos: columns); |
54 | |
55 | for (unsigned i = 0; i < rows; ++i) |
56 | dual.addInequality(inEq: cone.getRow(row: i)); |
57 | |
58 | // Now dual is of the form [ [a1, ..., an, 0] , ... ] |
59 | // which is the H-representation of the dual. |
60 | return dual; |
61 | } |
62 | |
63 | /// Find the index of a cone in V-representation. |
64 | MPInt mlir::presburger::detail::getIndex(const ConeV &cone) { |
65 | if (cone.getNumRows() > cone.getNumColumns()) |
66 | return MPInt(0); |
67 | |
68 | return cone.determinant(); |
69 | } |
70 | |
71 | /// Compute the generating function for a unimodular cone. |
72 | /// This consists of a single term of the form |
73 | /// sign * x^num / prod_j (1 - x^den_j) |
74 | /// |
75 | /// sign is either +1 or -1. |
76 | /// den_j is defined as the set of generators of the cone. |
77 | /// num is computed by expressing the vertex as a weighted |
78 | /// sum of the generators, and then taking the floor of the |
79 | /// coefficients. |
80 | GeneratingFunction |
81 | mlir::presburger::detail::computeUnimodularConeGeneratingFunction( |
82 | ParamPoint vertex, int sign, const ConeH &cone) { |
83 | // Consider a cone with H-representation [0 -1]. |
84 | // [-1 -2] |
85 | // Let the vertex be given by the matrix [ 2 2 0], with 2 params. |
86 | // [-1 -1/2 1] |
87 | |
88 | // `cone` must be unimodular. |
89 | assert(abs(getIndex(getDual(cone))) == 1 && "input cone is not unimodular!" ); |
90 | |
91 | unsigned numVar = cone.getNumVars(); |
92 | unsigned numIneq = cone.getNumInequalities(); |
93 | |
94 | // Thus its ray matrix, U, is the inverse of the |
95 | // transpose of its inequality matrix, `cone`. |
96 | // The last column of the inequality matrix is null, |
97 | // so we remove it to obtain a square matrix. |
98 | FracMatrix transp = FracMatrix(cone.getInequalities()).transpose(); |
99 | transp.removeRow(pos: numVar); |
100 | |
101 | FracMatrix generators(numVar, numIneq); |
102 | transp.determinant(/*inverse=*/&generators); // This is the U-matrix. |
103 | // Thus the generators are given by U = [2 -1]. |
104 | // [-1 0] |
105 | |
106 | // The powers in the denominator of the generating |
107 | // function are given by the generators of the cone, |
108 | // i.e., the rows of the matrix U. |
109 | std::vector<Point> denominator(numIneq); |
110 | ArrayRef<Fraction> row; |
111 | for (auto i : llvm::seq<int>(Begin: 0, End: numVar)) { |
112 | row = generators.getRow(row: i); |
113 | denominator[i] = Point(row); |
114 | } |
115 | |
116 | // The vertex is v \in Z^{d x (n+1)} |
117 | // We need to find affine functions of parameters λ_i(p) |
118 | // such that v = Σ λ_i(p)*u_i, |
119 | // where u_i are the rows of U (generators) |
120 | // The λ_i are given by the columns of Λ = v^T U^{-1}, and |
121 | // we have transp = U^{-1}. |
122 | // Then the exponent in the numerator will be |
123 | // Σ -floor(-λ_i(p))*u_i. |
124 | // Thus we store the (exponent of the) numerator as the affine function -Λ, |
125 | // since the generators u_i are already stored as the exponent of the |
126 | // denominator. Note that the outer -1 will have to be accounted for, as it is |
127 | // not stored. See end for an example. |
128 | |
129 | unsigned numColumns = vertex.getNumColumns(); |
130 | unsigned numRows = vertex.getNumRows(); |
131 | ParamPoint numerator(numColumns, numRows); |
132 | SmallVector<Fraction> ithCol(numRows); |
133 | for (auto i : llvm::seq<int>(Begin: 0, End: numColumns)) { |
134 | for (auto j : llvm::seq<int>(Begin: 0, End: numRows)) |
135 | ithCol[j] = vertex(j, i); |
136 | numerator.setRow(row: i, elems: transp.preMultiplyWithRow(rowVec: ithCol)); |
137 | numerator.negateRow(row: i); |
138 | } |
139 | // Therefore Λ will be given by [ 1 0 ] and the negation of this will be |
140 | // [ 1/2 -1 ] |
141 | // [ -1 -2 ] |
142 | // stored as the numerator. |
143 | // Algebraically, the numerator exponent is |
144 | // [ -2 ⌊ - N - M/2 + 1 ⌋ + 1 ⌊ 0 + M + 2 ⌋ ] -> first COLUMN of U is [2, -1] |
145 | // [ 1 ⌊ - N - M/2 + 1 ⌋ + 0 ⌊ 0 + M + 2 ⌋ ] -> second COLUMN of U is [-1, 0] |
146 | |
147 | return GeneratingFunction(numColumns - 1, SmallVector<int>(1, sign), |
148 | std::vector({numerator}), |
149 | std::vector({denominator})); |
150 | } |
151 | |
152 | /// We use Gaussian elimination to find the solution to a set of d equations |
153 | /// of the form |
154 | /// a_1 x_1 + ... + a_d x_d + b_1 m_1 + ... + b_p m_p + c = 0 |
155 | /// where x_i are variables, |
156 | /// m_i are parameters and |
157 | /// a_i, b_i, c are rational coefficients. |
158 | /// |
159 | /// The solution expresses each x_i as an affine function of the m_i, and is |
160 | /// therefore represented as a matrix of size d x (p+1). |
161 | /// If there is no solution, we return null. |
162 | std::optional<ParamPoint> |
163 | mlir::presburger::detail::solveParametricEquations(FracMatrix equations) { |
164 | // equations is a d x (d + p + 1) matrix. |
165 | // Each row represents an equation. |
166 | unsigned d = equations.getNumRows(); |
167 | unsigned numCols = equations.getNumColumns(); |
168 | |
169 | // If the determinant is zero, there is no unique solution. |
170 | // Thus we return null. |
171 | if (FracMatrix(equations.getSubMatrix(/*fromRow=*/0, /*toRow=*/d - 1, |
172 | /*fromColumn=*/0, |
173 | /*toColumn=*/d - 1)) |
174 | .determinant() == 0) |
175 | return std::nullopt; |
176 | |
177 | // Perform row operations to make each column all zeros except for the |
178 | // diagonal element, which is made to be one. |
179 | for (unsigned i = 0; i < d; ++i) { |
180 | // First ensure that the diagonal element is nonzero, by swapping |
181 | // it with a row that is non-zero at column i. |
182 | if (equations(i, i) != 0) |
183 | continue; |
184 | for (unsigned j = i + 1; j < d; ++j) { |
185 | if (equations(j, i) == 0) |
186 | continue; |
187 | equations.swapRows(row: j, otherRow: i); |
188 | break; |
189 | } |
190 | |
191 | Fraction diagElement = equations(i, i); |
192 | |
193 | // Apply row operations to make all elements except the diagonal to zero. |
194 | for (unsigned j = 0; j < d; ++j) { |
195 | if (i == j) |
196 | continue; |
197 | if (equations(j, i) == 0) |
198 | continue; |
199 | // Apply row operations to make element (j, i) zero by subtracting the |
200 | // ith row, appropriately scaled. |
201 | Fraction currentElement = equations(j, i); |
202 | equations.addToRow(/*sourceRow=*/i, /*targetRow=*/j, |
203 | /*scale=*/-currentElement / diagElement); |
204 | } |
205 | } |
206 | |
207 | // Rescale diagonal elements to 1. |
208 | for (unsigned i = 0; i < d; ++i) |
209 | equations.scaleRow(row: i, scale: 1 / equations(i, i)); |
210 | |
211 | // Now we have reduced the equations to the form |
212 | // x_i + b_1' m_1 + ... + b_p' m_p + c' = 0 |
213 | // i.e. each variable appears exactly once in the system, and has coefficient |
214 | // one. |
215 | // |
216 | // Thus we have |
217 | // x_i = - b_1' m_1 - ... - b_p' m_p - c |
218 | // and so we return the negation of the last p + 1 columns of the matrix. |
219 | // |
220 | // We copy these columns and return them. |
221 | ParamPoint vertex = |
222 | equations.getSubMatrix(/*fromRow=*/0, /*toRow=*/d - 1, |
223 | /*fromColumn=*/d, /*toColumn=*/numCols - 1); |
224 | vertex.negateMatrix(); |
225 | return vertex; |
226 | } |
227 | |
228 | /// This is an implementation of the Clauss-Loechner algorithm for chamber |
229 | /// decomposition. |
230 | /// |
231 | /// We maintain a list of pairwise disjoint chambers and the generating |
232 | /// functions corresponding to each one. We iterate over the list of regions, |
233 | /// each time adding the current region's generating function to the chambers |
234 | /// where it is active and separating the chambers where it is not. |
235 | /// |
236 | /// Given the region each generating function is active in, for each subset of |
237 | /// generating functions the region that (the sum of) precisely this subset is |
238 | /// in, is the intersection of the regions that these are active in, |
239 | /// intersected with the complements of the remaining regions. |
240 | std::vector<std::pair<PresburgerSet, GeneratingFunction>> |
241 | mlir::presburger::detail::computeChamberDecomposition( |
242 | unsigned numSymbols, ArrayRef<std::pair<PresburgerSet, GeneratingFunction>> |
243 | regionsAndGeneratingFunctions) { |
244 | assert(!regionsAndGeneratingFunctions.empty() && |
245 | "there must be at least one chamber!" ); |
246 | // We maintain a list of regions and their associated generating function |
247 | // initialized with the universe and the empty generating function. |
248 | std::vector<std::pair<PresburgerSet, GeneratingFunction>> chambers = { |
249 | {PresburgerSet::getUniverse(space: PresburgerSpace::getSetSpace(numDims: numSymbols)), |
250 | GeneratingFunction(numSymbols, {}, {}, {})}}; |
251 | |
252 | // We iterate over the region list. |
253 | // |
254 | // For each activity region R_j (corresponding to the generating function |
255 | // gf_j), we examine all the current chambers R_i. |
256 | // |
257 | // If R_j has a full-dimensional intersection with an existing chamber R_i, |
258 | // then that chamber is replaced by two new ones: |
259 | // 1. the intersection R_i \cap R_j, where the generating function is |
260 | // gf_i + gf_j. |
261 | // 2. the difference R_i - R_j, where the generating function is gf_i. |
262 | // |
263 | // At each step, we define a new chamber list after considering gf_j, |
264 | // replacing and appending chambers as discussed above. |
265 | // |
266 | // The loop has the invariant that the union over all the chambers gives the |
267 | // universe at every step. |
268 | for (const auto &[region, generatingFunction] : |
269 | regionsAndGeneratingFunctions) { |
270 | std::vector<std::pair<PresburgerSet, GeneratingFunction>> newChambers; |
271 | |
272 | for (const auto &[currentRegion, currentGeneratingFunction] : chambers) { |
273 | PresburgerSet intersection = currentRegion.intersect(set: region); |
274 | |
275 | // If the intersection is not full-dimensional, we do not modify |
276 | // the chamber list. |
277 | if (!intersection.isFullDim()) { |
278 | newChambers.emplace_back(args: currentRegion, args: currentGeneratingFunction); |
279 | continue; |
280 | } |
281 | |
282 | // If it is, we add the intersection and the difference as chambers. |
283 | newChambers.emplace_back(args&: intersection, |
284 | args: currentGeneratingFunction + generatingFunction); |
285 | newChambers.emplace_back(args: currentRegion.subtract(set: region), |
286 | args: currentGeneratingFunction); |
287 | } |
288 | chambers = std::move(newChambers); |
289 | } |
290 | |
291 | return chambers; |
292 | } |
293 | |
294 | /// For a polytope expressed as a set of n inequalities, compute the generating |
295 | /// function corresponding to the lattice points included in the polytope. This |
296 | /// algorithm has three main steps: |
297 | /// 1. Enumerate the vertices, by iterating over subsets of inequalities and |
298 | /// checking for satisfiability. For each d-subset of inequalities (where d |
299 | /// is the number of variables), we solve to obtain the vertex in terms of |
300 | /// the parameters, and then check for the region in parameter space where |
301 | /// this vertex satisfies the remaining (n - d) inequalities. |
302 | /// 2. For each vertex, identify the tangent cone and compute the generating |
303 | /// function corresponding to it. The generating function depends on the |
304 | /// parametric expression of the vertex and the (non-parametric) generators |
305 | /// of the tangent cone. |
306 | /// 3. [Clauss-Loechner decomposition] Identify the regions in parameter space |
307 | /// (chambers) where each vertex is active, and accordingly compute the |
308 | /// GF of the polytope in each chamber. |
309 | /// |
310 | /// Verdoolaege, Sven, et al. "Counting integer points in parametric |
311 | /// polytopes using Barvinok's rational functions." Algorithmica 48 (2007): |
312 | /// 37-66. |
313 | std::vector<std::pair<PresburgerSet, GeneratingFunction>> |
314 | mlir::presburger::detail::computePolytopeGeneratingFunction( |
315 | const PolyhedronH &poly) { |
316 | unsigned numVars = poly.getNumRangeVars(); |
317 | unsigned numSymbols = poly.getNumSymbolVars(); |
318 | unsigned numIneqs = poly.getNumInequalities(); |
319 | |
320 | // We store a list of the computed vertices. |
321 | std::vector<ParamPoint> vertices; |
322 | // For each vertex, we store the corresponding active region and the |
323 | // generating functions of the tangent cone, in order. |
324 | std::vector<std::pair<PresburgerSet, GeneratingFunction>> |
325 | regionsAndGeneratingFunctions; |
326 | |
327 | // We iterate over all subsets of inequalities with cardinality numVars, |
328 | // using permutations of numVars 1's and (numIneqs - numVars) 0's. |
329 | // |
330 | // For a given permutation, we consider a subset which contains |
331 | // the i'th inequality if the i'th bit in the bitset is 1. |
332 | // |
333 | // We start with the permutation that takes the last numVars inequalities. |
334 | SmallVector<int> indicator(numIneqs); |
335 | for (unsigned i = numIneqs - numVars; i < numIneqs; ++i) |
336 | indicator[i] = 1; |
337 | |
338 | do { |
339 | // Collect the inequalities corresponding to the bits which are set |
340 | // and the remaining ones. |
341 | auto [subset, remainder] = poly.getInequalities().splitByBitset(indicator); |
342 | // All other inequalities are stored in a2 and b2c2. |
343 | // |
344 | // These are column-wise splits of the inequalities; |
345 | // a2 stores the coefficients of the variables, and |
346 | // b2c2 stores the coefficients of the parameters and the constant term. |
347 | FracMatrix a2(numIneqs - numVars, numVars); |
348 | FracMatrix b2c2(numIneqs - numVars, numSymbols + 1); |
349 | a2 = FracMatrix( |
350 | remainder.getSubMatrix(fromRow: 0, toRow: numIneqs - numVars - 1, fromColumn: 0, toColumn: numVars - 1)); |
351 | b2c2 = FracMatrix(remainder.getSubMatrix(fromRow: 0, toRow: numIneqs - numVars - 1, fromColumn: numVars, |
352 | toColumn: numVars + numSymbols)); |
353 | |
354 | // Find the vertex, if any, corresponding to the current subset of |
355 | // inequalities. |
356 | std::optional<ParamPoint> vertex = |
357 | solveParametricEquations(equations: FracMatrix(subset)); // d x (p+1) |
358 | |
359 | if (!vertex) |
360 | continue; |
361 | if (std::find(first: vertices.begin(), last: vertices.end(), val: vertex) != vertices.end()) |
362 | continue; |
363 | // If this subset corresponds to a vertex that has not been considered, |
364 | // store it. |
365 | vertices.push_back(x: *vertex); |
366 | |
367 | // If a vertex is formed by the intersection of more than d facets, we |
368 | // assume that any d-subset of these facets can be solved to obtain its |
369 | // expression. This assumption is valid because, if the vertex has two |
370 | // distinct parametric expressions, then a nontrivial equality among the |
371 | // parameters holds, which is a contradiction as we know the parameter |
372 | // space to be full-dimensional. |
373 | |
374 | // Let the current vertex be [X | y], where |
375 | // X represents the coefficients of the parameters and |
376 | // y represents the constant term. |
377 | // |
378 | // The region (in parameter space) where this vertex is active is given |
379 | // by substituting the vertex into the *remaining* inequalities of the |
380 | // polytope (those which were not collected into `subset`), i.e., into the |
381 | // inequalities [A2 | B2 | c2]. |
382 | // |
383 | // Thus, the coefficients of the parameters after substitution become |
384 | // (A2 • X + B2) |
385 | // and the constant terms become |
386 | // (A2 • y + c2). |
387 | // |
388 | // The region is therefore given by |
389 | // (A2 • X + B2) p + (A2 • y + c2) ≥ 0 |
390 | // |
391 | // This is equivalent to A2 • [X | y] + [B2 | c2]. |
392 | // |
393 | // Thus we premultiply [X | y] with each row of A2 |
394 | // and add each row of [B2 | c2]. |
395 | FracMatrix activeRegion(numIneqs - numVars, numSymbols + 1); |
396 | for (unsigned i = 0; i < numIneqs - numVars; i++) { |
397 | activeRegion.setRow(row: i, elems: vertex->preMultiplyWithRow(rowVec: a2.getRow(row: i))); |
398 | activeRegion.addToRow(row: i, rowVec: b2c2.getRow(row: i), scale: 1); |
399 | } |
400 | |
401 | // We convert the representation of the active region to an integers-only |
402 | // form so as to store it as a PresburgerSet. |
403 | IntegerPolyhedron activeRegionRel( |
404 | PresburgerSpace::getRelationSpace(numDomain: 0, numRange: numSymbols, numSymbols: 0, numLocals: 0), activeRegion); |
405 | |
406 | // Now, we compute the generating function at this vertex. |
407 | // We collect the inequalities corresponding to each vertex to compute |
408 | // the tangent cone at that vertex. |
409 | // |
410 | // We only need the coefficients of the variables (NOT the parameters) |
411 | // as the generating function only depends on these. |
412 | // We translate the cones to be pointed at the origin by making the |
413 | // constant terms zero. |
414 | ConeH tangentCone = defineHRep(numVars); |
415 | for (unsigned j = 0, e = subset.getNumRows(); j < e; ++j) { |
416 | SmallVector<MPInt> ineq(numVars + 1); |
417 | for (unsigned k = 0; k < numVars; ++k) |
418 | ineq[k] = subset(j, k); |
419 | tangentCone.addInequality(inEq: ineq); |
420 | } |
421 | // We assume that the tangent cone is unimodular, so there is no need |
422 | // to decompose it. |
423 | // |
424 | // In the general case, the unimodular decomposition may have several |
425 | // cones. |
426 | GeneratingFunction vertexGf(numSymbols, {}, {}, {}); |
427 | SmallVector<std::pair<int, ConeH>, 4> unimodCones = {{1, tangentCone}}; |
428 | for (const std::pair<int, ConeH> &signedCone : unimodCones) { |
429 | auto [sign, cone] = signedCone; |
430 | vertexGf = vertexGf + |
431 | computeUnimodularConeGeneratingFunction(vertex: *vertex, sign, cone); |
432 | } |
433 | // We store the vertex we computed with the generating function of its |
434 | // tangent cone. |
435 | regionsAndGeneratingFunctions.emplace_back(args: PresburgerSet(activeRegionRel), |
436 | args&: vertexGf); |
437 | } while (std::next_permutation(first: indicator.begin(), last: indicator.end())); |
438 | |
439 | // Now, we use Clauss-Loechner decomposition to identify regions in parameter |
440 | // space where each vertex is active. These regions (chambers) have the |
441 | // property that no two of them have a full-dimensional intersection, i.e., |
442 | // they may share "facets" or "edges", but their intersection can only have |
443 | // up to numVars - 1 dimensions. |
444 | // |
445 | // In each chamber, we sum up the generating functions of the active vertices |
446 | // to find the generating function of the polytope. |
447 | return computeChamberDecomposition(numSymbols, regionsAndGeneratingFunctions); |
448 | } |
449 | |
450 | /// We use an iterative procedure to find a vector not orthogonal |
451 | /// to a given set, ignoring the null vectors. |
452 | /// Let the inputs be {x_1, ..., x_k}, all vectors of length n. |
453 | /// |
454 | /// In the following, |
455 | /// vs[:i] means the elements of vs up to and including the i'th one, |
456 | /// <vs, us> means the dot product of vs and us, |
457 | /// vs ++ [v] means the vector vs with the new element v appended to it. |
458 | /// |
459 | /// We proceed iteratively; for steps d = 0, ... n-1, we construct a vector |
460 | /// which is not orthogonal to any of {x_1[:d], ..., x_n[:d]}, ignoring |
461 | /// the null vectors. |
462 | /// At step d = 0, we let vs = [1]. Clearly this is not orthogonal to |
463 | /// any vector in the set {x_1[0], ..., x_n[0]}, except the null ones, |
464 | /// which we ignore. |
465 | /// At step d > 0 , we need a number v |
466 | /// s.t. <x_i[:d], vs++[v]> != 0 for all i. |
467 | /// => <x_i[:d-1], vs> + x_i[d]*v != 0 |
468 | /// => v != - <x_i[:d-1], vs> / x_i[d] |
469 | /// We compute this value for all x_i, and then |
470 | /// set v to be the maximum element of this set plus one. Thus |
471 | /// v is outside the set as desired, and we append it to vs |
472 | /// to obtain the result of the d'th step. |
473 | Point mlir::presburger::detail::getNonOrthogonalVector( |
474 | ArrayRef<Point> vectors) { |
475 | unsigned dim = vectors[0].size(); |
476 | assert( |
477 | llvm::all_of(vectors, |
478 | [&](const Point &vector) { return vector.size() == dim; }) && |
479 | "all vectors need to be the same size!" ); |
480 | |
481 | SmallVector<Fraction> newPoint = {Fraction(1, 1)}; |
482 | Fraction maxDisallowedValue = -Fraction(1, 0), |
483 | disallowedValue = Fraction(0, 1); |
484 | |
485 | for (unsigned d = 1; d < dim; ++d) { |
486 | // Compute the disallowed values - <x_i[:d-1], vs> / x_i[d] for each i. |
487 | maxDisallowedValue = -Fraction(1, 0); |
488 | for (const Point &vector : vectors) { |
489 | if (vector[d] == 0) |
490 | continue; |
491 | disallowedValue = |
492 | -dotProduct(a: ArrayRef(vector).slice(N: 0, M: d), b: newPoint) / vector[d]; |
493 | |
494 | // Find the biggest such value |
495 | maxDisallowedValue = std::max(a: maxDisallowedValue, b: disallowedValue); |
496 | } |
497 | newPoint.push_back(Elt: maxDisallowedValue + 1); |
498 | } |
499 | return newPoint; |
500 | } |
501 | |
502 | /// We use the following recursive formula to find the coefficient of |
503 | /// s^power in the rational function given by P(s)/Q(s). |
504 | /// |
505 | /// Let P[i] denote the coefficient of s^i in the polynomial P(s). |
506 | /// (P/Q)[r] = |
507 | /// if (r == 0) then |
508 | /// P[0]/Q[0] |
509 | /// else |
510 | /// (P[r] - {Σ_{i=1}^r (P/Q)[r-i] * Q[i])}/(Q[0]) |
511 | /// We therefore recursively call `getCoefficientInRationalFunction` on |
512 | /// all i \in [0, power). |
513 | /// |
514 | /// https://math.ucdavis.edu/~deloera/researchsummary/ |
515 | /// barvinokalgorithm-latte1.pdf, p. 1285 |
516 | QuasiPolynomial mlir::presburger::detail::getCoefficientInRationalFunction( |
517 | unsigned power, ArrayRef<QuasiPolynomial> num, ArrayRef<Fraction> den) { |
518 | assert(!den.empty() && "division by empty denominator in rational function!" ); |
519 | |
520 | unsigned numParam = num[0].getNumInputs(); |
521 | // We use the `isEqual` method of PresburgerSpace, which QuasiPolynomial |
522 | // inherits from. |
523 | assert( |
524 | llvm::all_of( |
525 | num, [&](const QuasiPolynomial &qp) { return num[0].isEqual(qp); }) && |
526 | "the quasipolynomials should all belong to the same space!" ); |
527 | |
528 | std::vector<QuasiPolynomial> coefficients; |
529 | coefficients.reserve(n: power + 1); |
530 | |
531 | coefficients.push_back(x: num[0] / den[0]); |
532 | for (unsigned i = 1; i <= power; ++i) { |
533 | // If the power is not there in the numerator, the coefficient is zero. |
534 | coefficients.push_back(x: i < num.size() ? num[i] |
535 | : QuasiPolynomial(numParam, 0)); |
536 | |
537 | // After den.size(), the coefficients are zero, so we stop |
538 | // subtracting at that point (if it is less than i). |
539 | unsigned limit = std::min<unsigned long>(a: i, b: den.size() - 1); |
540 | for (unsigned j = 1; j <= limit; ++j) |
541 | coefficients[i] = coefficients[i] - |
542 | coefficients[i - j] * QuasiPolynomial(numParam, den[j]); |
543 | |
544 | coefficients[i] = coefficients[i] / den[0]; |
545 | } |
546 | return coefficients[power].simplify(); |
547 | } |
548 | |
549 | /// Substitute x_i = t^μ_i in one term of a generating function, returning |
550 | /// a quasipolynomial which represents the exponent of the numerator |
551 | /// of the result, and a vector which represents the exponents of the |
552 | /// denominator of the result. |
553 | /// If the returned value is {num, dens}, it represents the function |
554 | /// t^num / \prod_j (1 - t^dens[j]). |
555 | /// v represents the affine functions whose floors are multiplied by the |
556 | /// generators, and ds represents the list of generators. |
557 | std::pair<QuasiPolynomial, std::vector<Fraction>> |
558 | substituteMuInTerm(unsigned numParams, const ParamPoint &v, |
559 | const std::vector<Point> &ds, const Point &mu) { |
560 | unsigned numDims = mu.size(); |
561 | #ifndef NDEBUG |
562 | for (const Point &d : ds) |
563 | assert(d.size() == numDims && |
564 | "μ has to have the same number of dimensions as the generators!" ); |
565 | #endif |
566 | |
567 | // First, the exponent in the numerator becomes |
568 | // - (μ • u_1) * (floor(first col of v)) |
569 | // - (μ • u_2) * (floor(second col of v)) - ... |
570 | // - (μ • u_d) * (floor(d'th col of v)) |
571 | // So we store the negation of the dot products. |
572 | |
573 | // We have d terms, each of whose coefficient is the negative dot product. |
574 | SmallVector<Fraction> coefficients; |
575 | coefficients.reserve(N: numDims); |
576 | for (const Point &d : ds) |
577 | coefficients.push_back(Elt: -dotProduct(a: mu, b: d)); |
578 | |
579 | // Then, the affine function is a single floor expression, given by the |
580 | // corresponding column of v. |
581 | ParamPoint vTranspose = v.transpose(); |
582 | std::vector<std::vector<SmallVector<Fraction>>> affine; |
583 | affine.reserve(n: numDims); |
584 | for (unsigned j = 0; j < numDims; ++j) |
585 | affine.push_back(x: {SmallVector<Fraction>(vTranspose.getRow(row: j))}); |
586 | |
587 | QuasiPolynomial num(numParams, coefficients, affine); |
588 | num = num.simplify(); |
589 | |
590 | std::vector<Fraction> dens; |
591 | dens.reserve(n: ds.size()); |
592 | // Similarly, each term in the denominator has exponent |
593 | // given by the dot product of μ with u_i. |
594 | for (const Point &d : ds) { |
595 | // This term in the denominator is |
596 | // (1 - t^dens.back()) |
597 | dens.push_back(x: dotProduct(a: d, b: mu)); |
598 | } |
599 | |
600 | return {num, dens}; |
601 | } |
602 | |
603 | /// Normalize all denominator exponents `dens` to their absolute values |
604 | /// by multiplying and dividing by the inverses, in a function of the form |
605 | /// sign * t^num / prod_j (1 - t^dens[j]). |
606 | /// Here, sign = ± 1, |
607 | /// num is a QuasiPolynomial, and |
608 | /// each dens[j] is a Fraction. |
609 | void normalizeDenominatorExponents(int &sign, QuasiPolynomial &num, |
610 | std::vector<Fraction> &dens) { |
611 | // We track the number of exponents that are negative in the |
612 | // denominator, and convert them to their absolute values. |
613 | unsigned numNegExps = 0; |
614 | Fraction sumNegExps(0, 1); |
615 | for (const auto &den : dens) { |
616 | if (den < 0) { |
617 | numNegExps += 1; |
618 | sumNegExps += den; |
619 | } |
620 | } |
621 | |
622 | // If we have (1 - t^-c) in the denominator, for positive c, |
623 | // multiply and divide by t^c. |
624 | // We convert all negative-exponent terms at once; therefore |
625 | // we multiply and divide by t^sumNegExps. |
626 | // Then we get |
627 | // -(1 - t^c) in the denominator, |
628 | // increase the numerator by c, and |
629 | // flip the sign of the function. |
630 | if (numNegExps % 2 == 1) |
631 | sign = -sign; |
632 | num = num - QuasiPolynomial(num.getNumInputs(), sumNegExps); |
633 | } |
634 | |
635 | /// Compute the binomial coefficients nCi for 0 ≤ i ≤ r, |
636 | /// where n is a QuasiPolynomial. |
637 | std::vector<QuasiPolynomial> getBinomialCoefficients(const QuasiPolynomial &n, |
638 | unsigned r) { |
639 | unsigned numParams = n.getNumInputs(); |
640 | std::vector<QuasiPolynomial> coefficients; |
641 | coefficients.reserve(n: r + 1); |
642 | coefficients.emplace_back(args&: numParams, args: 1); |
643 | for (unsigned j = 1; j <= r; ++j) |
644 | // We use the recursive formula for binomial coefficients here and below. |
645 | coefficients.push_back( |
646 | x: (coefficients[j - 1] * (n - QuasiPolynomial(numParams, j - 1)) / |
647 | Fraction(j, 1)) |
648 | .simplify()); |
649 | return coefficients; |
650 | } |
651 | |
652 | /// Compute the binomial coefficients nCi for 0 ≤ i ≤ r, |
653 | /// where n is a QuasiPolynomial. |
654 | std::vector<Fraction> getBinomialCoefficients(const Fraction &n, |
655 | const Fraction &r) { |
656 | std::vector<Fraction> coefficients; |
657 | coefficients.reserve(n: (int64_t)floor(f: r)); |
658 | coefficients.emplace_back(args: 1); |
659 | for (unsigned j = 1; j <= r; ++j) |
660 | coefficients.push_back(x: coefficients[j - 1] * (n - (j - 1)) / (j)); |
661 | return coefficients; |
662 | } |
663 | |
664 | /// We have a generating function of the form |
665 | /// f_p(x) = \sum_i sign_i * (x^n_i(p)) / (\prod_j (1 - x^d_{ij}) |
666 | /// |
667 | /// where sign_i is ±1, |
668 | /// n_i \in Q^p -> Q^d is the sum of the vectors d_{ij}, weighted by the |
669 | /// floors of d affine functions on p parameters. |
670 | /// d_{ij} \in Q^d are vectors. |
671 | /// |
672 | /// We need to find the number of terms of the form x^t in the expansion of |
673 | /// this function. |
674 | /// However, direct substitution (x = (1, ..., 1)) causes the denominator |
675 | /// to become zero. |
676 | /// |
677 | /// We therefore use the following procedure instead: |
678 | /// 1. Substitute x_i = (s+1)^μ_i for some vector μ. This makes the generating |
679 | /// function a function of a scalar s. |
680 | /// 2. Write each term in this function as P(s)/Q(s), where P and Q are |
681 | /// polynomials. P has coefficients as quasipolynomials in d parameters, while |
682 | /// Q has coefficients as scalars. |
683 | /// 3. Find the constant term in the expansion of each term P(s)/Q(s). This is |
684 | /// equivalent to substituting s = 0. |
685 | /// |
686 | /// Verdoolaege, Sven, et al. "Counting integer points in parametric |
687 | /// polytopes using Barvinok's rational functions." Algorithmica 48 (2007): |
688 | /// 37-66. |
689 | QuasiPolynomial |
690 | mlir::presburger::detail::computeNumTerms(const GeneratingFunction &gf) { |
691 | // Step (1) We need to find a μ such that we can substitute x_i = |
692 | // (s+1)^μ_i. After this substitution, the exponent of (s+1) in the |
693 | // denominator is (μ_i • d_{ij}) in each term. Clearly, this cannot become |
694 | // zero. Hence we find a vector μ that is not orthogonal to any of the |
695 | // d_{ij} and substitute x accordingly. |
696 | std::vector<Point> allDenominators; |
697 | for (ArrayRef<Point> den : gf.getDenominators()) |
698 | allDenominators.insert(position: allDenominators.end(), first: den.begin(), last: den.end()); |
699 | Point mu = getNonOrthogonalVector(vectors: allDenominators); |
700 | |
701 | unsigned numParams = gf.getNumParams(); |
702 | const std::vector<std::vector<Point>> &ds = gf.getDenominators(); |
703 | QuasiPolynomial totalTerm(numParams, 0); |
704 | for (unsigned i = 0, e = ds.size(); i < e; ++i) { |
705 | int sign = gf.getSigns()[i]; |
706 | |
707 | // Compute the new exponents of (s+1) for the numerator and the |
708 | // denominator after substituting μ. |
709 | auto [numExp, dens] = |
710 | substituteMuInTerm(numParams, v: gf.getNumerators()[i], ds: ds[i], mu); |
711 | // Now the numerator is (s+1)^numExp |
712 | // and the denominator is \prod_j (1 - (s+1)^dens[j]). |
713 | |
714 | // Step (2) We need to express the terms in the function as quotients of |
715 | // polynomials. Each term is now of the form |
716 | // sign_i * (s+1)^numExp / (\prod_j (1 - (s+1)^dens[j])) |
717 | // For the i'th term, we first normalize the denominator to have only |
718 | // positive exponents. We convert all the dens[j] to their |
719 | // absolute values and change the sign and exponent in the numerator. |
720 | normalizeDenominatorExponents(sign, num&: numExp, dens); |
721 | |
722 | // Then, using the formula for geometric series, we replace each (1 - |
723 | // (s+1)^(dens[j])) with |
724 | // (-s)(\sum_{0 ≤ k < dens[j]} (s+1)^k). |
725 | for (auto &j : dens) |
726 | j = abs(f: j) - 1; |
727 | // Note that at this point, the semantics of `dens[j]` changes to mean |
728 | // a term (\sum_{0 ≤ k ≤ dens[j]} (s+1)^k). The denominator is, as before, |
729 | // a product of these terms. |
730 | |
731 | // Since the -s are taken out, the sign changes if there is an odd number |
732 | // of such terms. |
733 | unsigned r = dens.size(); |
734 | if (dens.size() % 2 == 1) |
735 | sign = -sign; |
736 | |
737 | // Thus the term overall now has the form |
738 | // sign'_i * (s+1)^numExp / |
739 | // (s^r * \prod_j (\sum_{0 ≤ k < dens[j]} (s+1)^k)). |
740 | // This means that |
741 | // the numerator is a polynomial in s, with coefficients as |
742 | // quasipolynomials (given by binomial coefficients), and the denominator |
743 | // is a polynomial in s, with integral coefficients (given by taking the |
744 | // convolution over all j). |
745 | |
746 | // Step (3) We need to find the constant term in the expansion of each |
747 | // term. Since each term has s^r as a factor in the denominator, we avoid |
748 | // substituting s = 0 directly; instead, we find the coefficient of s^r in |
749 | // sign'_i * (s+1)^numExp / (\prod_j (\sum_k (s+1)^k)), |
750 | // Letting P(s) = (s+1)^numExp and Q(s) = \prod_j (...), |
751 | // we need to find the coefficient of s^r in P(s)/Q(s), |
752 | // for which we use the `getCoefficientInRationalFunction()` function. |
753 | |
754 | // First, we compute the coefficients of P(s), which are binomial |
755 | // coefficients. |
756 | // We only need the first r+1 of these, as higher-order terms do not |
757 | // contribute to the coefficient of s^r. |
758 | std::vector<QuasiPolynomial> numeratorCoefficients = |
759 | getBinomialCoefficients(n: numExp, r); |
760 | |
761 | // Then we compute the coefficients of each individual term in Q(s), |
762 | // which are (dens[i]+1) C (k+1) for 0 ≤ k ≤ dens[i]. |
763 | std::vector<std::vector<Fraction>> eachTermDenCoefficients; |
764 | std::vector<Fraction> singleTermDenCoefficients; |
765 | eachTermDenCoefficients.reserve(n: r); |
766 | for (const Fraction &den : dens) { |
767 | singleTermDenCoefficients = getBinomialCoefficients(n: den + 1, r: den + 1); |
768 | eachTermDenCoefficients.push_back( |
769 | x: ArrayRef<Fraction>(singleTermDenCoefficients).slice(N: 1)); |
770 | } |
771 | |
772 | // Now we find the coefficients in Q(s) itself |
773 | // by taking the convolution of the coefficients |
774 | // of all the terms. |
775 | std::vector<Fraction> denominatorCoefficients; |
776 | denominatorCoefficients = eachTermDenCoefficients[0]; |
777 | for (unsigned j = 1, e = eachTermDenCoefficients.size(); j < e; ++j) |
778 | denominatorCoefficients = multiplyPolynomials(a: denominatorCoefficients, |
779 | b: eachTermDenCoefficients[j]); |
780 | |
781 | totalTerm = |
782 | totalTerm + getCoefficientInRationalFunction(power: r, num: numeratorCoefficients, |
783 | den: denominatorCoefficients) * |
784 | QuasiPolynomial(numParams, sign); |
785 | } |
786 | |
787 | return totalTerm.simplify(); |
788 | } |
789 | |