| 1 | //===- Simplex.cpp - MLIR Simplex Class -----------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "mlir/Analysis/Presburger/Simplex.h" |
| 10 | #include "mlir/Analysis/Presburger/Fraction.h" |
| 11 | #include "mlir/Analysis/Presburger/IntegerRelation.h" |
| 12 | #include "mlir/Analysis/Presburger/Matrix.h" |
| 13 | #include "mlir/Analysis/Presburger/PresburgerSpace.h" |
| 14 | #include "mlir/Analysis/Presburger/Utils.h" |
| 15 | #include "llvm/ADT/DynamicAPInt.h" |
| 16 | #include "llvm/ADT/STLExtras.h" |
| 17 | #include "llvm/ADT/SmallBitVector.h" |
| 18 | #include "llvm/ADT/SmallVector.h" |
| 19 | #include "llvm/Support/Compiler.h" |
| 20 | #include "llvm/Support/ErrorHandling.h" |
| 21 | #include "llvm/Support/LogicalResult.h" |
| 22 | #include "llvm/Support/raw_ostream.h" |
| 23 | #include <cassert> |
| 24 | #include <functional> |
| 25 | #include <limits> |
| 26 | #include <optional> |
| 27 | #include <tuple> |
| 28 | #include <utility> |
| 29 | |
| 30 | using namespace mlir; |
| 31 | using namespace presburger; |
| 32 | |
| 33 | using Direction = Simplex::Direction; |
| 34 | |
| 35 | const int nullIndex = std::numeric_limits<int>::max(); |
| 36 | |
| 37 | // Return a + scale*b; |
| 38 | LLVM_ATTRIBUTE_UNUSED |
| 39 | static SmallVector<DynamicAPInt, 8> |
| 40 | scaleAndAddForAssert(ArrayRef<DynamicAPInt> a, const DynamicAPInt &scale, |
| 41 | ArrayRef<DynamicAPInt> b) { |
| 42 | assert(a.size() == b.size()); |
| 43 | SmallVector<DynamicAPInt, 8> res; |
| 44 | res.reserve(N: a.size()); |
| 45 | for (unsigned i = 0, e = a.size(); i < e; ++i) |
| 46 | res.emplace_back(Args: a[i] + scale * b[i]); |
| 47 | return res; |
| 48 | } |
| 49 | |
| 50 | SimplexBase::SimplexBase(unsigned nVar, bool mustUseBigM) |
| 51 | : usingBigM(mustUseBigM), nRedundant(0), nSymbol(0), |
| 52 | tableau(0, getNumFixedCols() + nVar), empty(false) { |
| 53 | var.reserve(N: nVar); |
| 54 | colUnknown.reserve(N: nVar + 1); |
| 55 | colUnknown.insert(I: colUnknown.begin(), NumToInsert: getNumFixedCols(), Elt: nullIndex); |
| 56 | for (unsigned i = 0; i < nVar; ++i) { |
| 57 | var.emplace_back(Args: Orientation::Column, /*restricted=*/Args: false, |
| 58 | /*pos=*/Args: getNumFixedCols() + i); |
| 59 | colUnknown.emplace_back(Args&: i); |
| 60 | } |
| 61 | } |
| 62 | |
| 63 | SimplexBase::SimplexBase(unsigned nVar, bool mustUseBigM, |
| 64 | const llvm::SmallBitVector &isSymbol) |
| 65 | : SimplexBase(nVar, mustUseBigM) { |
| 66 | assert(isSymbol.size() == nVar && "invalid bitmask!" ); |
| 67 | // Invariant: nSymbol is the number of symbols that have been marked |
| 68 | // already and these occupy the columns |
| 69 | // [getNumFixedCols(), getNumFixedCols() + nSymbol). |
| 70 | for (unsigned symbolIdx : isSymbol.set_bits()) { |
| 71 | var[symbolIdx].isSymbol = true; |
| 72 | swapColumns(i: var[symbolIdx].pos, j: getNumFixedCols() + nSymbol); |
| 73 | ++nSymbol; |
| 74 | } |
| 75 | } |
| 76 | |
| 77 | const Simplex::Unknown &SimplexBase::unknownFromIndex(int index) const { |
| 78 | assert(index != nullIndex && "nullIndex passed to unknownFromIndex" ); |
| 79 | return index >= 0 ? var[index] : con[~index]; |
| 80 | } |
| 81 | |
| 82 | const Simplex::Unknown &SimplexBase::unknownFromColumn(unsigned col) const { |
| 83 | assert(col < getNumColumns() && "Invalid column" ); |
| 84 | return unknownFromIndex(index: colUnknown[col]); |
| 85 | } |
| 86 | |
| 87 | const Simplex::Unknown &SimplexBase::unknownFromRow(unsigned row) const { |
| 88 | assert(row < getNumRows() && "Invalid row" ); |
| 89 | return unknownFromIndex(index: rowUnknown[row]); |
| 90 | } |
| 91 | |
| 92 | Simplex::Unknown &SimplexBase::unknownFromIndex(int index) { |
| 93 | assert(index != nullIndex && "nullIndex passed to unknownFromIndex" ); |
| 94 | return index >= 0 ? var[index] : con[~index]; |
| 95 | } |
| 96 | |
| 97 | Simplex::Unknown &SimplexBase::unknownFromColumn(unsigned col) { |
| 98 | assert(col < getNumColumns() && "Invalid column" ); |
| 99 | return unknownFromIndex(index: colUnknown[col]); |
| 100 | } |
| 101 | |
| 102 | Simplex::Unknown &SimplexBase::unknownFromRow(unsigned row) { |
| 103 | assert(row < getNumRows() && "Invalid row" ); |
| 104 | return unknownFromIndex(index: rowUnknown[row]); |
| 105 | } |
| 106 | |
| 107 | unsigned SimplexBase::addZeroRow(bool makeRestricted) { |
| 108 | // Resize the tableau to accommodate the extra row. |
| 109 | unsigned newRow = tableau.appendExtraRow(); |
| 110 | assert(getNumRows() == getNumRows() && "Inconsistent tableau size" ); |
| 111 | rowUnknown.emplace_back(Args: ~con.size()); |
| 112 | con.emplace_back(Args: Orientation::Row, Args&: makeRestricted, Args&: newRow); |
| 113 | undoLog.emplace_back(Args: UndoLogEntry::RemoveLastConstraint); |
| 114 | tableau(newRow, 0) = 1; |
| 115 | return newRow; |
| 116 | } |
| 117 | |
| 118 | /// Add a new row to the tableau corresponding to the given constant term and |
| 119 | /// list of coefficients. The coefficients are specified as a vector of |
| 120 | /// (variable index, coefficient) pairs. |
| 121 | unsigned SimplexBase::addRow(ArrayRef<DynamicAPInt> coeffs, |
| 122 | bool makeRestricted) { |
| 123 | assert(coeffs.size() == var.size() + 1 && |
| 124 | "Incorrect number of coefficients!" ); |
| 125 | assert(var.size() + getNumFixedCols() == getNumColumns() && |
| 126 | "inconsistent column count!" ); |
| 127 | |
| 128 | unsigned newRow = addZeroRow(makeRestricted); |
| 129 | tableau(newRow, 1) = coeffs.back(); |
| 130 | if (usingBigM) { |
| 131 | // When the lexicographic pivot rule is used, instead of the variables |
| 132 | // |
| 133 | // x, y, z ... |
| 134 | // |
| 135 | // we internally use the variables |
| 136 | // |
| 137 | // M, M + x, M + y, M + z, ... |
| 138 | // |
| 139 | // where M is the big M parameter. As such, when the user tries to add |
| 140 | // a row ax + by + cz + d, we express it in terms of our internal variables |
| 141 | // as -(a + b + c)M + a(M + x) + b(M + y) + c(M + z) + d. |
| 142 | // |
| 143 | // Symbols don't use the big M parameter since they do not get lex |
| 144 | // optimized. |
| 145 | DynamicAPInt bigMCoeff(0); |
| 146 | for (unsigned i = 0; i < coeffs.size() - 1; ++i) |
| 147 | if (!var[i].isSymbol) |
| 148 | bigMCoeff -= coeffs[i]; |
| 149 | // The coefficient to the big M parameter is stored in column 2. |
| 150 | tableau(newRow, 2) = bigMCoeff; |
| 151 | } |
| 152 | |
| 153 | // Process each given variable coefficient. |
| 154 | for (unsigned i = 0; i < var.size(); ++i) { |
| 155 | unsigned pos = var[i].pos; |
| 156 | if (coeffs[i] == 0) |
| 157 | continue; |
| 158 | |
| 159 | if (var[i].orientation == Orientation::Column) { |
| 160 | // If a variable is in column position at column col, then we just add the |
| 161 | // coefficient for that variable (scaled by the common row denominator) to |
| 162 | // the corresponding entry in the new row. |
| 163 | tableau(newRow, pos) += coeffs[i] * tableau(newRow, 0); |
| 164 | continue; |
| 165 | } |
| 166 | |
| 167 | // If the variable is in row position, we need to add that row to the new |
| 168 | // row, scaled by the coefficient for the variable, accounting for the two |
| 169 | // rows potentially having different denominators. The new denominator is |
| 170 | // the lcm of the two. |
| 171 | DynamicAPInt lcm = llvm::lcm(A: tableau(newRow, 0), B: tableau(pos, 0)); |
| 172 | DynamicAPInt nRowCoeff = lcm / tableau(newRow, 0); |
| 173 | DynamicAPInt idxRowCoeff = coeffs[i] * (lcm / tableau(pos, 0)); |
| 174 | tableau(newRow, 0) = lcm; |
| 175 | for (unsigned col = 1, e = getNumColumns(); col < e; ++col) |
| 176 | tableau(newRow, col) = |
| 177 | nRowCoeff * tableau(newRow, col) + idxRowCoeff * tableau(pos, col); |
| 178 | } |
| 179 | |
| 180 | tableau.normalizeRow(row: newRow); |
| 181 | // Push to undo log along with the index of the new constraint. |
| 182 | return con.size() - 1; |
| 183 | } |
| 184 | |
| 185 | namespace { |
| 186 | bool signMatchesDirection(const DynamicAPInt &elem, Direction direction) { |
| 187 | assert(elem != 0 && "elem should not be 0" ); |
| 188 | return direction == Direction::Up ? elem > 0 : elem < 0; |
| 189 | } |
| 190 | |
| 191 | Direction flippedDirection(Direction direction) { |
| 192 | return direction == Direction::Up ? Direction::Down : Simplex::Direction::Up; |
| 193 | } |
| 194 | } // namespace |
| 195 | |
| 196 | /// We simply make the tableau consistent while maintaining a lexicopositive |
| 197 | /// basis transform, and then return the sample value. If the tableau becomes |
| 198 | /// empty, we return empty. |
| 199 | /// |
| 200 | /// Let the variables be x = (x_1, ... x_n). |
| 201 | /// Let the basis unknowns be y = (y_1, ... y_n). |
| 202 | /// We have that x = A*y + b for some n x n matrix A and n x 1 column vector b. |
| 203 | /// |
| 204 | /// As we will show below, A*y is either zero or lexicopositive. |
| 205 | /// Adding a lexicopositive vector to b will make it lexicographically |
| 206 | /// greater, so A*y + b is always equal to or lexicographically greater than b. |
| 207 | /// Thus, since we can attain x = b, that is the lexicographic minimum. |
| 208 | /// |
| 209 | /// We have that every column in A is lexicopositive, i.e., has at least |
| 210 | /// one non-zero element, with the first such element being positive. Since for |
| 211 | /// the tableau to be consistent we must have non-negative sample values not |
| 212 | /// only for the constraints but also for the variables, we also have x >= 0 and |
| 213 | /// y >= 0, by which we mean every element in these vectors is non-negative. |
| 214 | /// |
| 215 | /// Proof that if every column in A is lexicopositive, and y >= 0, then |
| 216 | /// A*y is zero or lexicopositive. Begin by considering A_1, the first row of A. |
| 217 | /// If this row is all zeros, then (A*y)_1 = (A_1)*y = 0; proceed to the next |
| 218 | /// row. If we run out of rows, A*y is zero and we are done; otherwise, we |
| 219 | /// encounter some row A_i that has a non-zero element. Every column is |
| 220 | /// lexicopositive and so has some positive element before any negative elements |
| 221 | /// occur, so the element in this row for any column, if non-zero, must be |
| 222 | /// positive. Consider (A*y)_i = (A_i)*y. All the elements in both vectors are |
| 223 | /// non-negative, so if this is non-zero then it must be positive. Then the |
| 224 | /// first non-zero element of A*y is positive so A*y is lexicopositive. |
| 225 | /// |
| 226 | /// Otherwise, if (A_i)*y is zero, then for every column j that had a non-zero |
| 227 | /// element in A_i, y_j is zero. Thus these columns have no contribution to A*y |
| 228 | /// and we can completely ignore these columns of A. We now continue downwards, |
| 229 | /// looking for rows of A that have a non-zero element other than in the ignored |
| 230 | /// columns. If we find one, say A_k, once again these elements must be positive |
| 231 | /// since they are the first non-zero element in each of these columns, so if |
| 232 | /// (A_k)*y is not zero then we have that A*y is lexicopositive and if not we |
| 233 | /// add these to the set of ignored columns and continue to the next row. If we |
| 234 | /// run out of rows, then A*y is zero and we are done. |
| 235 | MaybeOptimum<SmallVector<Fraction, 8>> LexSimplex::findRationalLexMin() { |
| 236 | if (restoreRationalConsistency().failed()) { |
| 237 | markEmpty(); |
| 238 | return OptimumKind::Empty; |
| 239 | } |
| 240 | return getRationalSample(); |
| 241 | } |
| 242 | |
| 243 | /// Given a row that has a non-integer sample value, add an inequality such |
| 244 | /// that this fractional sample value is cut away from the polytope. The added |
| 245 | /// inequality will be such that no integer points are removed. i.e., the |
| 246 | /// integer lexmin, if it exists, is the same with and without this constraint. |
| 247 | /// |
| 248 | /// Let the row be |
| 249 | /// (c + coeffM*M + a_1*s_1 + ... + a_m*s_m + b_1*y_1 + ... + b_n*y_n)/d, |
| 250 | /// where s_1, ... s_m are the symbols and |
| 251 | /// y_1, ... y_n are the other basis unknowns. |
| 252 | /// |
| 253 | /// For this to be an integer, we want |
| 254 | /// coeffM*M + a_1*s_1 + ... + a_m*s_m + b_1*y_1 + ... + b_n*y_n = -c (mod d) |
| 255 | /// Note that this constraint must always hold, independent of the basis, |
| 256 | /// becuse the row unknown's value always equals this expression, even if *we* |
| 257 | /// later compute the sample value from a different expression based on a |
| 258 | /// different basis. |
| 259 | /// |
| 260 | /// Let us assume that M has a factor of d in it. Imposing this constraint on M |
| 261 | /// does not in any way hinder us from finding a value of M that is big enough. |
| 262 | /// Moreover, this function is only called when the symbolic part of the sample, |
| 263 | /// a_1*s_1 + ... + a_m*s_m, is known to be an integer. |
| 264 | /// |
| 265 | /// Also, we can safely reduce the coefficients modulo d, so we have: |
| 266 | /// |
| 267 | /// (b_1%d)y_1 + ... + (b_n%d)y_n = (-c%d) + k*d for some integer `k` |
| 268 | /// |
| 269 | /// Note that all coefficient modulos here are non-negative. Also, all the |
| 270 | /// unknowns are non-negative here as both constraints and variables are |
| 271 | /// non-negative in LexSimplexBase. (We used the big M trick to make the |
| 272 | /// variables non-negative). Therefore, the LHS here is non-negative. |
| 273 | /// Since 0 <= (-c%d) < d, k is the quotient of dividing the LHS by d and |
| 274 | /// is therefore non-negative as well. |
| 275 | /// |
| 276 | /// So we have |
| 277 | /// ((b_1%d)y_1 + ... + (b_n%d)y_n - (-c%d))/d >= 0. |
| 278 | /// |
| 279 | /// The constraint is violated when added (it would be useless otherwise) |
| 280 | /// so we immediately try to move it to a column. |
| 281 | LogicalResult LexSimplexBase::addCut(unsigned row) { |
| 282 | DynamicAPInt d = tableau(row, 0); |
| 283 | unsigned cutRow = addZeroRow(/*makeRestricted=*/true); |
| 284 | tableau(cutRow, 0) = d; |
| 285 | tableau(cutRow, 1) = -mod(LHS: -tableau(row, 1), RHS: d); // -c%d. |
| 286 | tableau(cutRow, 2) = 0; |
| 287 | for (unsigned col = 3 + nSymbol, e = getNumColumns(); col < e; ++col) |
| 288 | tableau(cutRow, col) = mod(LHS: tableau(row, col), RHS: d); // b_i%d. |
| 289 | return moveRowUnknownToColumn(row: cutRow); |
| 290 | } |
| 291 | |
| 292 | std::optional<unsigned> LexSimplex::maybeGetNonIntegralVarRow() const { |
| 293 | for (const Unknown &u : var) { |
| 294 | if (u.orientation == Orientation::Column) |
| 295 | continue; |
| 296 | // If the sample value is of the form (a/d)M + b/d, we need b to be |
| 297 | // divisible by d. We assume M contains all possible |
| 298 | // factors and is divisible by everything. |
| 299 | unsigned row = u.pos; |
| 300 | if (tableau(row, 1) % tableau(row, 0) != 0) |
| 301 | return row; |
| 302 | } |
| 303 | return {}; |
| 304 | } |
| 305 | |
| 306 | MaybeOptimum<SmallVector<DynamicAPInt, 8>> LexSimplex::findIntegerLexMin() { |
| 307 | // We first try to make the tableau consistent. |
| 308 | if (restoreRationalConsistency().failed()) |
| 309 | return OptimumKind::Empty; |
| 310 | |
| 311 | // Then, if the sample value is integral, we are done. |
| 312 | while (std::optional<unsigned> maybeRow = maybeGetNonIntegralVarRow()) { |
| 313 | // Otherwise, for the variable whose row has a non-integral sample value, |
| 314 | // we add a cut, a constraint that remove this rational point |
| 315 | // while preserving all integer points, thus keeping the lexmin the same. |
| 316 | // We then again try to make the tableau with the new constraint |
| 317 | // consistent. This continues until the tableau becomes empty, in which |
| 318 | // case there is no integer point, or until there are no variables with |
| 319 | // non-integral sample values. |
| 320 | // |
| 321 | // Failure indicates that the tableau became empty, which occurs when the |
| 322 | // polytope is integer empty. |
| 323 | if (addCut(row: *maybeRow).failed()) |
| 324 | return OptimumKind::Empty; |
| 325 | if (restoreRationalConsistency().failed()) |
| 326 | return OptimumKind::Empty; |
| 327 | } |
| 328 | |
| 329 | MaybeOptimum<SmallVector<Fraction, 8>> sample = getRationalSample(); |
| 330 | assert(!sample.isEmpty() && "If we reached here the sample should exist!" ); |
| 331 | if (sample.isUnbounded()) |
| 332 | return OptimumKind::Unbounded; |
| 333 | return llvm::to_vector<8>( |
| 334 | Range: llvm::map_range(C&: *sample, F: std::mem_fn(pm: &Fraction::getAsInteger))); |
| 335 | } |
| 336 | |
| 337 | bool LexSimplex::isSeparateInequality(ArrayRef<DynamicAPInt> coeffs) { |
| 338 | SimplexRollbackScopeExit scopeExit(*this); |
| 339 | addInequality(coeffs); |
| 340 | return findIntegerLexMin().isEmpty(); |
| 341 | } |
| 342 | |
| 343 | bool LexSimplex::isRedundantInequality(ArrayRef<DynamicAPInt> coeffs) { |
| 344 | return isSeparateInequality(coeffs: getComplementIneq(ineq: coeffs)); |
| 345 | } |
| 346 | |
| 347 | SmallVector<DynamicAPInt, 8> |
| 348 | SymbolicLexSimplex::getSymbolicSampleNumerator(unsigned row) const { |
| 349 | SmallVector<DynamicAPInt, 8> sample; |
| 350 | sample.reserve(N: nSymbol + 1); |
| 351 | for (unsigned col = 3; col < 3 + nSymbol; ++col) |
| 352 | sample.emplace_back(Args: tableau(row, col)); |
| 353 | sample.emplace_back(Args: tableau(row, 1)); |
| 354 | return sample; |
| 355 | } |
| 356 | |
| 357 | SmallVector<DynamicAPInt, 8> |
| 358 | SymbolicLexSimplex::getSymbolicSampleIneq(unsigned row) const { |
| 359 | SmallVector<DynamicAPInt, 8> sample = getSymbolicSampleNumerator(row); |
| 360 | // The inequality is equivalent to the GCD-normalized one. |
| 361 | normalizeRange(range: sample); |
| 362 | return sample; |
| 363 | } |
| 364 | |
| 365 | void LexSimplexBase::appendSymbol() { |
| 366 | appendVariable(); |
| 367 | swapColumns(i: 3 + nSymbol, j: getNumColumns() - 1); |
| 368 | var.back().isSymbol = true; |
| 369 | nSymbol++; |
| 370 | } |
| 371 | |
| 372 | static bool isRangeDivisibleBy(ArrayRef<DynamicAPInt> range, |
| 373 | const DynamicAPInt &divisor) { |
| 374 | assert(divisor > 0 && "divisor must be positive!" ); |
| 375 | return llvm::all_of( |
| 376 | Range&: range, P: [divisor](const DynamicAPInt &x) { return x % divisor == 0; }); |
| 377 | } |
| 378 | |
| 379 | bool SymbolicLexSimplex::isSymbolicSampleIntegral(unsigned row) const { |
| 380 | DynamicAPInt denom = tableau(row, 0); |
| 381 | return tableau(row, 1) % denom == 0 && |
| 382 | isRangeDivisibleBy(range: tableau.getRow(row).slice(N: 3, M: nSymbol), divisor: denom); |
| 383 | } |
| 384 | |
| 385 | /// This proceeds similarly to LexSimplexBase::addCut(). We are given a row that |
| 386 | /// has a symbolic sample value with fractional coefficients. |
| 387 | /// |
| 388 | /// Let the row be |
| 389 | /// (c + coeffM*M + sum_i a_i*s_i + sum_j b_j*y_j)/d, |
| 390 | /// where s_1, ... s_m are the symbols and |
| 391 | /// y_1, ... y_n are the other basis unknowns. |
| 392 | /// |
| 393 | /// As in LexSimplex::addCut, for this to be an integer, we want |
| 394 | /// |
| 395 | /// coeffM*M + sum_j b_j*y_j = -c + sum_i (-a_i*s_i) (mod d) |
| 396 | /// |
| 397 | /// This time, a_1*s_1 + ... + a_m*s_m may not be an integer. We find that |
| 398 | /// |
| 399 | /// sum_i (b_i%d)y_i = ((-c%d) + sum_i (-a_i%d)s_i)%d + k*d for some integer k |
| 400 | /// |
| 401 | /// where we take a modulo of the whole symbolic expression on the right to |
| 402 | /// bring it into the range [0, d - 1]. Therefore, as in addCut(), |
| 403 | /// k is the quotient on dividing the LHS by d, and since LHS >= 0, we have |
| 404 | /// k >= 0 as well. If all the a_i are divisible by d, then we can add the |
| 405 | /// constraint directly. Otherwise, we realize the modulo of the symbolic |
| 406 | /// expression by adding a division variable |
| 407 | /// |
| 408 | /// q = ((-c%d) + sum_i (-a_i%d)s_i)/d |
| 409 | /// |
| 410 | /// to the symbol domain, so the equality becomes |
| 411 | /// |
| 412 | /// sum_i (b_i%d)y_i = (-c%d) + sum_i (-a_i%d)s_i - q*d + k*d for some integer k |
| 413 | /// |
| 414 | /// So the cut is |
| 415 | /// (sum_i (b_i%d)y_i - (-c%d) - sum_i (-a_i%d)s_i + q*d)/d >= 0 |
| 416 | /// This constraint is violated when added so we immediately try to move it to a |
| 417 | /// column. |
| 418 | LogicalResult SymbolicLexSimplex::addSymbolicCut(unsigned row) { |
| 419 | DynamicAPInt d = tableau(row, 0); |
| 420 | if (isRangeDivisibleBy(range: tableau.getRow(row).slice(N: 3, M: nSymbol), divisor: d)) { |
| 421 | // The coefficients of symbols in the symbol numerator are divisible |
| 422 | // by the denominator, so we can add the constraint directly, |
| 423 | // i.e., ignore the symbols and add a regular cut as in addCut(). |
| 424 | return addCut(row); |
| 425 | } |
| 426 | |
| 427 | // Construct the division variable `q = ((-c%d) + sum_i (-a_i%d)s_i)/d`. |
| 428 | SmallVector<DynamicAPInt, 8> divCoeffs; |
| 429 | divCoeffs.reserve(N: nSymbol + 1); |
| 430 | DynamicAPInt divDenom = d; |
| 431 | for (unsigned col = 3; col < 3 + nSymbol; ++col) |
| 432 | divCoeffs.emplace_back(Args: mod(LHS: -tableau(row, col), RHS: divDenom)); // (-a_i%d)s_i |
| 433 | divCoeffs.emplace_back(Args: mod(LHS: -tableau(row, 1), RHS: divDenom)); // -c%d. |
| 434 | normalizeDiv(num: divCoeffs, denom&: divDenom); |
| 435 | |
| 436 | domainSimplex.addDivisionVariable(coeffs: divCoeffs, denom: divDenom); |
| 437 | domainPoly.addLocalFloorDiv(dividend: divCoeffs, divisor: divDenom); |
| 438 | |
| 439 | // Update `this` to account for the additional symbol we just added. |
| 440 | appendSymbol(); |
| 441 | |
| 442 | // Add the cut (sum_i (b_i%d)y_i - (-c%d) + sum_i -(-a_i%d)s_i + q*d)/d >= 0. |
| 443 | unsigned cutRow = addZeroRow(/*makeRestricted=*/true); |
| 444 | tableau(cutRow, 0) = d; |
| 445 | tableau(cutRow, 2) = 0; |
| 446 | |
| 447 | tableau(cutRow, 1) = -mod(LHS: -tableau(row, 1), RHS: d); // -(-c%d). |
| 448 | for (unsigned col = 3; col < 3 + nSymbol - 1; ++col) |
| 449 | tableau(cutRow, col) = -mod(LHS: -tableau(row, col), RHS: d); // -(-a_i%d)s_i. |
| 450 | tableau(cutRow, 3 + nSymbol - 1) = d; // q*d. |
| 451 | |
| 452 | for (unsigned col = 3 + nSymbol, e = getNumColumns(); col < e; ++col) |
| 453 | tableau(cutRow, col) = mod(LHS: tableau(row, col), RHS: d); // (b_i%d)y_i. |
| 454 | return moveRowUnknownToColumn(row: cutRow); |
| 455 | } |
| 456 | |
| 457 | void SymbolicLexSimplex::recordOutput(SymbolicLexOpt &result) const { |
| 458 | IntMatrix output(0, domainPoly.getNumVars() + 1); |
| 459 | output.reserveRows(rows: result.lexopt.getNumOutputs()); |
| 460 | for (const Unknown &u : var) { |
| 461 | if (u.isSymbol) |
| 462 | continue; |
| 463 | |
| 464 | if (u.orientation == Orientation::Column) { |
| 465 | // M + u has a sample value of zero so u has a sample value of -M, i.e, |
| 466 | // unbounded. |
| 467 | result.unboundedDomain.unionInPlace(disjunct: domainPoly); |
| 468 | return; |
| 469 | } |
| 470 | |
| 471 | DynamicAPInt denom = tableau(u.pos, 0); |
| 472 | if (tableau(u.pos, 2) < denom) { |
| 473 | // M + u has a sample value of fM + something, where f < 1, so |
| 474 | // u = (f - 1)M + something, which has a negative coefficient for M, |
| 475 | // and so is unbounded. |
| 476 | result.unboundedDomain.unionInPlace(disjunct: domainPoly); |
| 477 | return; |
| 478 | } |
| 479 | assert(tableau(u.pos, 2) == denom && |
| 480 | "Coefficient of M should not be greater than 1!" ); |
| 481 | |
| 482 | SmallVector<DynamicAPInt, 8> sample = getSymbolicSampleNumerator(row: u.pos); |
| 483 | for (DynamicAPInt &elem : sample) { |
| 484 | assert(elem % denom == 0 && "coefficients must be integral!" ); |
| 485 | elem /= denom; |
| 486 | } |
| 487 | output.appendExtraRow(elems: sample); |
| 488 | } |
| 489 | |
| 490 | // Store the output in a MultiAffineFunction and add it the result. |
| 491 | PresburgerSpace funcSpace = result.lexopt.getSpace(); |
| 492 | funcSpace.insertVar(kind: VarKind::Local, pos: 0, num: domainPoly.getNumLocalVars()); |
| 493 | |
| 494 | result.lexopt.addPiece( |
| 495 | piece: {.domain: PresburgerSet(domainPoly), |
| 496 | .output: MultiAffineFunction(funcSpace, output, domainPoly.getLocalReprs())}); |
| 497 | } |
| 498 | |
| 499 | std::optional<unsigned> SymbolicLexSimplex::maybeGetAlwaysViolatedRow() { |
| 500 | // First look for rows that are clearly violated just from the big M |
| 501 | // coefficient, without needing to perform any simplex queries on the domain. |
| 502 | for (unsigned row = 0, e = getNumRows(); row < e; ++row) |
| 503 | if (tableau(row, 2) < 0) |
| 504 | return row; |
| 505 | |
| 506 | for (unsigned row = 0, e = getNumRows(); row < e; ++row) { |
| 507 | if (tableau(row, 2) > 0) |
| 508 | continue; |
| 509 | if (domainSimplex.isSeparateInequality(coeffs: getSymbolicSampleIneq(row))) { |
| 510 | // Sample numerator always takes negative values in the symbol domain. |
| 511 | return row; |
| 512 | } |
| 513 | } |
| 514 | return {}; |
| 515 | } |
| 516 | |
| 517 | std::optional<unsigned> SymbolicLexSimplex::maybeGetNonIntegralVarRow() { |
| 518 | for (const Unknown &u : var) { |
| 519 | if (u.orientation == Orientation::Column) |
| 520 | continue; |
| 521 | assert(!u.isSymbol && "Symbol should not be in row orientation!" ); |
| 522 | if (!isSymbolicSampleIntegral(row: u.pos)) |
| 523 | return u.pos; |
| 524 | } |
| 525 | return {}; |
| 526 | } |
| 527 | |
| 528 | /// The non-branching pivots are just the ones moving the rows |
| 529 | /// that are always violated in the symbol domain. |
| 530 | LogicalResult SymbolicLexSimplex::doNonBranchingPivots() { |
| 531 | while (std::optional<unsigned> row = maybeGetAlwaysViolatedRow()) |
| 532 | if (moveRowUnknownToColumn(row: *row).failed()) |
| 533 | return failure(); |
| 534 | return success(); |
| 535 | } |
| 536 | |
| 537 | SymbolicLexOpt SymbolicLexSimplex::computeSymbolicIntegerLexMin() { |
| 538 | SymbolicLexOpt result(PresburgerSpace::getRelationSpace( |
| 539 | /*numDomain=*/domainPoly.getNumDimVars(), |
| 540 | /*numRange=*/var.size() - nSymbol, |
| 541 | /*numSymbols=*/domainPoly.getNumSymbolVars())); |
| 542 | |
| 543 | /// The algorithm is more naturally expressed recursively, but we implement |
| 544 | /// it iteratively here to avoid potential issues with stack overflows in the |
| 545 | /// compiler. We explicitly maintain the stack frames in a vector. |
| 546 | /// |
| 547 | /// To "recurse", we store the current "stack frame", i.e., state variables |
| 548 | /// that we will need when we "return", into `stack`, increment `level`, and |
| 549 | /// `continue`. To "tail recurse", we just `continue`. |
| 550 | /// To "return", we decrement `level` and `continue`. |
| 551 | /// |
| 552 | /// When there is no stack frame for the current `level`, this indicates that |
| 553 | /// we have just "recursed" or "tail recursed". When there does exist one, |
| 554 | /// this indicates that we have just "returned" from recursing. There is only |
| 555 | /// one point at which non-tail calls occur so we always "return" there. |
| 556 | unsigned level = 1; |
| 557 | struct StackFrame { |
| 558 | int splitIndex; |
| 559 | unsigned snapshot; |
| 560 | unsigned domainSnapshot; |
| 561 | IntegerRelation::CountsSnapshot domainPolyCounts; |
| 562 | }; |
| 563 | SmallVector<StackFrame, 8> stack; |
| 564 | |
| 565 | while (level > 0) { |
| 566 | assert(level >= stack.size()); |
| 567 | if (level > stack.size()) { |
| 568 | if (empty || domainSimplex.findIntegerLexMin().isEmpty()) { |
| 569 | // No integer points; return. |
| 570 | --level; |
| 571 | continue; |
| 572 | } |
| 573 | |
| 574 | if (doNonBranchingPivots().failed()) { |
| 575 | // Could not find pivots for violated constraints; return. |
| 576 | --level; |
| 577 | continue; |
| 578 | } |
| 579 | |
| 580 | SmallVector<DynamicAPInt, 8> symbolicSample; |
| 581 | unsigned splitRow = 0; |
| 582 | for (unsigned e = getNumRows(); splitRow < e; ++splitRow) { |
| 583 | if (tableau(splitRow, 2) > 0) |
| 584 | continue; |
| 585 | assert(tableau(splitRow, 2) == 0 && |
| 586 | "Non-branching pivots should have been handled already!" ); |
| 587 | |
| 588 | symbolicSample = getSymbolicSampleIneq(row: splitRow); |
| 589 | if (domainSimplex.isRedundantInequality(coeffs: symbolicSample)) |
| 590 | continue; |
| 591 | |
| 592 | // It's neither redundant nor separate, so it takes both positive and |
| 593 | // negative values, and hence constitutes a row for which we need to |
| 594 | // split the domain and separately run each case. |
| 595 | assert(!domainSimplex.isSeparateInequality(symbolicSample) && |
| 596 | "Non-branching pivots should have been handled already!" ); |
| 597 | break; |
| 598 | } |
| 599 | |
| 600 | if (splitRow < getNumRows()) { |
| 601 | unsigned domainSnapshot = domainSimplex.getSnapshot(); |
| 602 | IntegerRelation::CountsSnapshot domainPolyCounts = |
| 603 | domainPoly.getCounts(); |
| 604 | |
| 605 | // First, we consider the part of the domain where the row is not |
| 606 | // violated. We don't have to do any pivots for the row in this case, |
| 607 | // but we record the additional constraint that defines this part of |
| 608 | // the domain. |
| 609 | domainSimplex.addInequality(coeffs: symbolicSample); |
| 610 | domainPoly.addInequality(inEq: symbolicSample); |
| 611 | |
| 612 | // Recurse. |
| 613 | // |
| 614 | // On return, the basis as a set is preserved but not the internal |
| 615 | // ordering within rows or columns. Thus, we take note of the index of |
| 616 | // the Unknown that caused the split, which may be in a different |
| 617 | // row when we come back from recursing. We will need this to recurse |
| 618 | // on the other part of the split domain, where the row is violated. |
| 619 | // |
| 620 | // Note that we have to capture the index above and not a reference to |
| 621 | // the Unknown itself, since the array it lives in might get |
| 622 | // reallocated. |
| 623 | int splitIndex = rowUnknown[splitRow]; |
| 624 | unsigned snapshot = getSnapshot(); |
| 625 | stack.emplace_back( |
| 626 | Args: StackFrame{.splitIndex: splitIndex, .snapshot: snapshot, .domainSnapshot: domainSnapshot, .domainPolyCounts: domainPolyCounts}); |
| 627 | ++level; |
| 628 | continue; |
| 629 | } |
| 630 | |
| 631 | // The tableau is rationally consistent for the current domain. |
| 632 | // Now we look for non-integral sample values and add cuts for them. |
| 633 | if (std::optional<unsigned> row = maybeGetNonIntegralVarRow()) { |
| 634 | if (addSymbolicCut(row: *row).failed()) { |
| 635 | // No integral points; return. |
| 636 | --level; |
| 637 | continue; |
| 638 | } |
| 639 | |
| 640 | // Rerun this level with the added cut constraint (tail recurse). |
| 641 | continue; |
| 642 | } |
| 643 | |
| 644 | // Record output and return. |
| 645 | recordOutput(result); |
| 646 | --level; |
| 647 | continue; |
| 648 | } |
| 649 | |
| 650 | if (level == stack.size()) { |
| 651 | // We have "returned" from "recursing". |
| 652 | const StackFrame &frame = stack.back(); |
| 653 | domainPoly.truncate(counts: frame.domainPolyCounts); |
| 654 | domainSimplex.rollback(snapshot: frame.domainSnapshot); |
| 655 | rollback(snapshot: frame.snapshot); |
| 656 | const Unknown &u = unknownFromIndex(index: frame.splitIndex); |
| 657 | |
| 658 | // Drop the frame. We don't need it anymore. |
| 659 | stack.pop_back(); |
| 660 | |
| 661 | // Now we consider the part of the domain where the unknown `splitIndex` |
| 662 | // was negative. |
| 663 | assert(u.orientation == Orientation::Row && |
| 664 | "The split row should have been returned to row orientation!" ); |
| 665 | SmallVector<DynamicAPInt, 8> splitIneq = |
| 666 | getComplementIneq(ineq: getSymbolicSampleIneq(row: u.pos)); |
| 667 | normalizeRange(range: splitIneq); |
| 668 | if (moveRowUnknownToColumn(row: u.pos).failed()) { |
| 669 | // The unknown can't be made non-negative; return. |
| 670 | --level; |
| 671 | continue; |
| 672 | } |
| 673 | |
| 674 | // The unknown can be made negative; recurse with the corresponding domain |
| 675 | // constraints. |
| 676 | domainSimplex.addInequality(coeffs: splitIneq); |
| 677 | domainPoly.addInequality(inEq: splitIneq); |
| 678 | |
| 679 | // We are now taking care of the second half of the domain and we don't |
| 680 | // need to do anything else here after returning, so it's a tail recurse. |
| 681 | continue; |
| 682 | } |
| 683 | } |
| 684 | |
| 685 | return result; |
| 686 | } |
| 687 | |
| 688 | bool LexSimplex::rowIsViolated(unsigned row) const { |
| 689 | if (tableau(row, 2) < 0) |
| 690 | return true; |
| 691 | if (tableau(row, 2) == 0 && tableau(row, 1) < 0) |
| 692 | return true; |
| 693 | return false; |
| 694 | } |
| 695 | |
| 696 | std::optional<unsigned> LexSimplex::maybeGetViolatedRow() const { |
| 697 | for (unsigned row = 0, e = getNumRows(); row < e; ++row) |
| 698 | if (rowIsViolated(row)) |
| 699 | return row; |
| 700 | return {}; |
| 701 | } |
| 702 | |
| 703 | /// We simply look for violated rows and keep trying to move them to column |
| 704 | /// orientation, which always succeeds unless the constraints have no solution |
| 705 | /// in which case we just give up and return. |
| 706 | LogicalResult LexSimplex::restoreRationalConsistency() { |
| 707 | if (empty) |
| 708 | return failure(); |
| 709 | while (std::optional<unsigned> maybeViolatedRow = maybeGetViolatedRow()) |
| 710 | if (moveRowUnknownToColumn(row: *maybeViolatedRow).failed()) |
| 711 | return failure(); |
| 712 | return success(); |
| 713 | } |
| 714 | |
| 715 | // Move the row unknown to column orientation while preserving lexicopositivity |
| 716 | // of the basis transform. The sample value of the row must be non-positive. |
| 717 | // |
| 718 | // We only consider pivots where the pivot element is positive. Suppose no such |
| 719 | // pivot exists, i.e., some violated row has no positive coefficient for any |
| 720 | // basis unknown. The row can be represented as (s + c_1*u_1 + ... + c_n*u_n)/d, |
| 721 | // where d is the denominator, s is the sample value and the c_i are the basis |
| 722 | // coefficients. If s != 0, then since any feasible assignment of the basis |
| 723 | // satisfies u_i >= 0 for all i, and we have s < 0 as well as c_i < 0 for all i, |
| 724 | // any feasible assignment would violate this row and therefore the constraints |
| 725 | // have no solution. |
| 726 | // |
| 727 | // We can preserve lexicopositivity by picking the pivot column with positive |
| 728 | // pivot element that makes the lexicographically smallest change to the sample |
| 729 | // point. |
| 730 | // |
| 731 | // Proof. Let |
| 732 | // x = (x_1, ... x_n) be the variables, |
| 733 | // z = (z_1, ... z_m) be the constraints, |
| 734 | // y = (y_1, ... y_n) be the current basis, and |
| 735 | // define w = (x_1, ... x_n, z_1, ... z_m) = B*y + s. |
| 736 | // B is basically the simplex tableau of our implementation except that instead |
| 737 | // of only describing the transform to get back the non-basis unknowns, it |
| 738 | // defines the values of all the unknowns in terms of the basis unknowns. |
| 739 | // Similarly, s is the column for the sample value. |
| 740 | // |
| 741 | // Our goal is to show that each column in B, restricted to the first n |
| 742 | // rows, is lexicopositive after the pivot if it is so before. This is |
| 743 | // equivalent to saying the columns in the whole matrix are lexicopositive; |
| 744 | // there must be some non-zero element in every column in the first n rows since |
| 745 | // the n variables cannot be spanned without using all the n basis unknowns. |
| 746 | // |
| 747 | // Consider a pivot where z_i replaces y_j in the basis. Recall the pivot |
| 748 | // transform for the tableau derived for SimplexBase::pivot: |
| 749 | // |
| 750 | // pivot col other col pivot col other col |
| 751 | // pivot row a b -> pivot row 1/a -b/a |
| 752 | // other row c d other row c/a d - bc/a |
| 753 | // |
| 754 | // Similarly, a pivot results in B changing to B' and c to c'; the difference |
| 755 | // between the tableau and these matrices B and B' is that there is no special |
| 756 | // case for the pivot row, since it continues to represent the same unknown. The |
| 757 | // same formula applies for all rows: |
| 758 | // |
| 759 | // B'.col(j) = B.col(j) / B(i,j) |
| 760 | // B'.col(k) = B.col(k) - B(i,k) * B.col(j) / B(i,j) for k != j |
| 761 | // and similarly, s' = s - s_i * B.col(j) / B(i,j). |
| 762 | // |
| 763 | // If s_i == 0, then the sample value remains unchanged. Otherwise, if s_i < 0, |
| 764 | // the change in sample value when pivoting with column a is lexicographically |
| 765 | // smaller than that when pivoting with column b iff B.col(a) / B(i, a) is |
| 766 | // lexicographically smaller than B.col(b) / B(i, b). |
| 767 | // |
| 768 | // Since B(i, j) > 0, column j remains lexicopositive. |
| 769 | // |
| 770 | // For the other columns, suppose C.col(k) is not lexicopositive. |
| 771 | // This means that for some p, for all t < p, |
| 772 | // C(t,k) = 0 => B(t,k) = B(t,j) * B(i,k) / B(i,j) and |
| 773 | // C(t,k) < 0 => B(p,k) < B(t,j) * B(i,k) / B(i,j), |
| 774 | // which is in contradiction to the fact that B.col(j) / B(i,j) must be |
| 775 | // lexicographically smaller than B.col(k) / B(i,k), since it lexicographically |
| 776 | // minimizes the change in sample value. |
| 777 | LogicalResult LexSimplexBase::moveRowUnknownToColumn(unsigned row) { |
| 778 | std::optional<unsigned> maybeColumn; |
| 779 | for (unsigned col = 3 + nSymbol, e = getNumColumns(); col < e; ++col) { |
| 780 | if (tableau(row, col) <= 0) |
| 781 | continue; |
| 782 | maybeColumn = |
| 783 | !maybeColumn ? col : getLexMinPivotColumn(row, colA: *maybeColumn, colB: col); |
| 784 | } |
| 785 | |
| 786 | if (!maybeColumn) |
| 787 | return failure(); |
| 788 | |
| 789 | pivot(row, col: *maybeColumn); |
| 790 | return success(); |
| 791 | } |
| 792 | |
| 793 | unsigned LexSimplexBase::getLexMinPivotColumn(unsigned row, unsigned colA, |
| 794 | unsigned colB) const { |
| 795 | // First, let's consider the non-symbolic case. |
| 796 | // A pivot causes the following change. (in the diagram the matrix elements |
| 797 | // are shown as rationals and there is no common denominator used) |
| 798 | // |
| 799 | // pivot col big M col const col |
| 800 | // pivot row a p b |
| 801 | // other row c q d |
| 802 | // | |
| 803 | // v |
| 804 | // |
| 805 | // pivot col big M col const col |
| 806 | // pivot row 1/a -p/a -b/a |
| 807 | // other row c/a q - pc/a d - bc/a |
| 808 | // |
| 809 | // Let the sample value of the pivot row be s = pM + b before the pivot. Since |
| 810 | // the pivot row represents a violated constraint we know that s < 0. |
| 811 | // |
| 812 | // If the variable is a non-pivot column, its sample value is zero before and |
| 813 | // after the pivot. |
| 814 | // |
| 815 | // If the variable is the pivot column, then its sample value goes from 0 to |
| 816 | // (-p/a)M + (-b/a), i.e. 0 to -(pM + b)/a. Thus the change in the sample |
| 817 | // value is -s/a. |
| 818 | // |
| 819 | // If the variable is the pivot row, its sample value goes from s to 0, for a |
| 820 | // change of -s. |
| 821 | // |
| 822 | // If the variable is a non-pivot row, its sample value changes from |
| 823 | // qM + d to qM + d + (-pc/a)M + (-bc/a). Thus the change in sample value |
| 824 | // is -(pM + b)(c/a) = -sc/a. |
| 825 | // |
| 826 | // Thus the change in sample value is either 0, -s/a, -s, or -sc/a. Here -s is |
| 827 | // fixed for all calls to this function since the row and tableau are fixed. |
| 828 | // The callee just wants to compare the return values with the return value of |
| 829 | // other invocations of the same function. So the -s is common for all |
| 830 | // comparisons involved and can be ignored, since -s is strictly positive. |
| 831 | // |
| 832 | // Thus we take away this common factor and just return 0, 1/a, 1, or c/a as |
| 833 | // appropriate. This allows us to run the entire algorithm treating M |
| 834 | // symbolically, as the pivot to be performed does not depend on the value |
| 835 | // of M, so long as the sample value s is negative. Note that this is not |
| 836 | // because of any special feature of M; by the same argument, we ignore the |
| 837 | // symbols too. The caller ensure that the sample value s is negative for |
| 838 | // all possible values of the symbols. |
| 839 | auto getSampleChangeCoeffForVar = [this, row](unsigned col, |
| 840 | const Unknown &u) -> Fraction { |
| 841 | DynamicAPInt a = tableau(row, col); |
| 842 | if (u.orientation == Orientation::Column) { |
| 843 | // Pivot column case. |
| 844 | if (u.pos == col) |
| 845 | return {1, a}; |
| 846 | |
| 847 | // Non-pivot column case. |
| 848 | return {0, 1}; |
| 849 | } |
| 850 | |
| 851 | // Pivot row case. |
| 852 | if (u.pos == row) |
| 853 | return {1, 1}; |
| 854 | |
| 855 | // Non-pivot row case. |
| 856 | DynamicAPInt c = tableau(u.pos, col); |
| 857 | return {c, a}; |
| 858 | }; |
| 859 | |
| 860 | for (const Unknown &u : var) { |
| 861 | Fraction changeA = getSampleChangeCoeffForVar(colA, u); |
| 862 | Fraction changeB = getSampleChangeCoeffForVar(colB, u); |
| 863 | if (changeA < changeB) |
| 864 | return colA; |
| 865 | if (changeA > changeB) |
| 866 | return colB; |
| 867 | } |
| 868 | |
| 869 | // If we reached here, both result in exactly the same changes, so it |
| 870 | // doesn't matter which we return. |
| 871 | return colA; |
| 872 | } |
| 873 | |
| 874 | /// Find a pivot to change the sample value of the row in the specified |
| 875 | /// direction. The returned pivot row will involve `row` if and only if the |
| 876 | /// unknown is unbounded in the specified direction. |
| 877 | /// |
| 878 | /// To increase (resp. decrease) the value of a row, we need to find a live |
| 879 | /// column with a non-zero coefficient. If the coefficient is positive, we need |
| 880 | /// to increase (decrease) the value of the column, and if the coefficient is |
| 881 | /// negative, we need to decrease (increase) the value of the column. Also, |
| 882 | /// we cannot decrease the sample value of restricted columns. |
| 883 | /// |
| 884 | /// If multiple columns are valid, we break ties by considering a lexicographic |
| 885 | /// ordering where we prefer unknowns with lower index. |
| 886 | std::optional<SimplexBase::Pivot> |
| 887 | Simplex::findPivot(int row, Direction direction) const { |
| 888 | std::optional<unsigned> col; |
| 889 | for (unsigned j = 2, e = getNumColumns(); j < e; ++j) { |
| 890 | DynamicAPInt elem = tableau(row, j); |
| 891 | if (elem == 0) |
| 892 | continue; |
| 893 | |
| 894 | if (unknownFromColumn(col: j).restricted && |
| 895 | !signMatchesDirection(elem, direction)) |
| 896 | continue; |
| 897 | if (!col || colUnknown[j] < colUnknown[*col]) |
| 898 | col = j; |
| 899 | } |
| 900 | |
| 901 | if (!col) |
| 902 | return {}; |
| 903 | |
| 904 | Direction newDirection = |
| 905 | tableau(row, *col) < 0 ? flippedDirection(direction) : direction; |
| 906 | std::optional<unsigned> maybePivotRow = findPivotRow(skipRow: row, direction: newDirection, col: *col); |
| 907 | return Pivot{.row: maybePivotRow.value_or(u&: row), .column: *col}; |
| 908 | } |
| 909 | |
| 910 | /// Swap the associated unknowns for the row and the column. |
| 911 | /// |
| 912 | /// First we swap the index associated with the row and column. Then we update |
| 913 | /// the unknowns to reflect their new position and orientation. |
| 914 | void SimplexBase::swapRowWithCol(unsigned row, unsigned col) { |
| 915 | std::swap(a&: rowUnknown[row], b&: colUnknown[col]); |
| 916 | Unknown &uCol = unknownFromColumn(col); |
| 917 | Unknown &uRow = unknownFromRow(row); |
| 918 | uCol.orientation = Orientation::Column; |
| 919 | uRow.orientation = Orientation::Row; |
| 920 | uCol.pos = col; |
| 921 | uRow.pos = row; |
| 922 | } |
| 923 | |
| 924 | void SimplexBase::pivot(Pivot pair) { pivot(row: pair.row, col: pair.column); } |
| 925 | |
| 926 | /// Pivot pivotRow and pivotCol. |
| 927 | /// |
| 928 | /// Let R be the pivot row unknown and let C be the pivot col unknown. |
| 929 | /// Since initially R = a*C + sum b_i * X_i |
| 930 | /// (where the sum is over the other column's unknowns, x_i) |
| 931 | /// C = (R - (sum b_i * X_i))/a |
| 932 | /// |
| 933 | /// Let u be some other row unknown. |
| 934 | /// u = c*C + sum d_i * X_i |
| 935 | /// So u = c*(R - sum b_i * X_i)/a + sum d_i * X_i |
| 936 | /// |
| 937 | /// This results in the following transform: |
| 938 | /// pivot col other col pivot col other col |
| 939 | /// pivot row a b -> pivot row 1/a -b/a |
| 940 | /// other row c d other row c/a d - bc/a |
| 941 | /// |
| 942 | /// Taking into account the common denominators p and q: |
| 943 | /// |
| 944 | /// pivot col other col pivot col other col |
| 945 | /// pivot row a/p b/p -> pivot row p/a -b/a |
| 946 | /// other row c/q d/q other row cp/aq (da - bc)/aq |
| 947 | /// |
| 948 | /// The pivot row transform is accomplished be swapping a with the pivot row's |
| 949 | /// common denominator and negating the pivot row except for the pivot column |
| 950 | /// element. |
| 951 | void SimplexBase::pivot(unsigned pivotRow, unsigned pivotCol) { |
| 952 | assert(pivotCol >= getNumFixedCols() && "Refusing to pivot invalid column" ); |
| 953 | assert(!unknownFromColumn(pivotCol).isSymbol); |
| 954 | |
| 955 | swapRowWithCol(row: pivotRow, col: pivotCol); |
| 956 | std::swap(a&: tableau(pivotRow, 0), b&: tableau(pivotRow, pivotCol)); |
| 957 | // We need to negate the whole pivot row except for the pivot column. |
| 958 | if (tableau(pivotRow, 0) < 0) { |
| 959 | // If the denominator is negative, we negate the row by simply negating the |
| 960 | // denominator. |
| 961 | tableau(pivotRow, 0) = -tableau(pivotRow, 0); |
| 962 | tableau(pivotRow, pivotCol) = -tableau(pivotRow, pivotCol); |
| 963 | } else { |
| 964 | for (unsigned col = 1, e = getNumColumns(); col < e; ++col) { |
| 965 | if (col == pivotCol) |
| 966 | continue; |
| 967 | tableau(pivotRow, col) = -tableau(pivotRow, col); |
| 968 | } |
| 969 | } |
| 970 | tableau.normalizeRow(row: pivotRow); |
| 971 | |
| 972 | for (unsigned row = 0, numRows = getNumRows(); row < numRows; ++row) { |
| 973 | if (row == pivotRow) |
| 974 | continue; |
| 975 | if (tableau(row, pivotCol) == 0) // Nothing to do. |
| 976 | continue; |
| 977 | tableau(row, 0) *= tableau(pivotRow, 0); |
| 978 | for (unsigned col = 1, numCols = getNumColumns(); col < numCols; ++col) { |
| 979 | if (col == pivotCol) |
| 980 | continue; |
| 981 | // Add rather than subtract because the pivot row has been negated. |
| 982 | tableau(row, col) = tableau(row, col) * tableau(pivotRow, 0) + |
| 983 | tableau(row, pivotCol) * tableau(pivotRow, col); |
| 984 | } |
| 985 | tableau(row, pivotCol) *= tableau(pivotRow, pivotCol); |
| 986 | tableau.normalizeRow(row); |
| 987 | } |
| 988 | } |
| 989 | |
| 990 | /// Perform pivots until the unknown has a non-negative sample value or until |
| 991 | /// no more upward pivots can be performed. Return success if we were able to |
| 992 | /// bring the row to a non-negative sample value, and failure otherwise. |
| 993 | LogicalResult Simplex::restoreRow(Unknown &u) { |
| 994 | assert(u.orientation == Orientation::Row && |
| 995 | "unknown should be in row position" ); |
| 996 | |
| 997 | while (tableau(u.pos, 1) < 0) { |
| 998 | std::optional<Pivot> maybePivot = findPivot(row: u.pos, direction: Direction::Up); |
| 999 | if (!maybePivot) |
| 1000 | break; |
| 1001 | |
| 1002 | pivot(pair: *maybePivot); |
| 1003 | if (u.orientation == Orientation::Column) |
| 1004 | return success(); // the unknown is unbounded above. |
| 1005 | } |
| 1006 | return success(IsSuccess: tableau(u.pos, 1) >= 0); |
| 1007 | } |
| 1008 | |
| 1009 | /// Find a row that can be used to pivot the column in the specified direction. |
| 1010 | /// This returns an empty optional if and only if the column is unbounded in the |
| 1011 | /// specified direction (ignoring skipRow, if skipRow is set). |
| 1012 | /// |
| 1013 | /// If skipRow is set, this row is not considered, and (if it is restricted) its |
| 1014 | /// restriction may be violated by the returned pivot. Usually, skipRow is set |
| 1015 | /// because we don't want to move it to column position unless it is unbounded, |
| 1016 | /// and we are either trying to increase the value of skipRow or explicitly |
| 1017 | /// trying to make skipRow negative, so we are not concerned about this. |
| 1018 | /// |
| 1019 | /// If the direction is up (resp. down) and a restricted row has a negative |
| 1020 | /// (positive) coefficient for the column, then this row imposes a bound on how |
| 1021 | /// much the sample value of the column can change. Such a row with constant |
| 1022 | /// term c and coefficient f for the column imposes a bound of c/|f| on the |
| 1023 | /// change in sample value (in the specified direction). (note that c is |
| 1024 | /// non-negative here since the row is restricted and the tableau is consistent) |
| 1025 | /// |
| 1026 | /// We iterate through the rows and pick the row which imposes the most |
| 1027 | /// stringent bound, since pivoting with a row changes the row's sample value to |
| 1028 | /// 0 and hence saturates the bound it imposes. We break ties between rows that |
| 1029 | /// impose the same bound by considering a lexicographic ordering where we |
| 1030 | /// prefer unknowns with lower index value. |
| 1031 | std::optional<unsigned> Simplex::findPivotRow(std::optional<unsigned> skipRow, |
| 1032 | Direction direction, |
| 1033 | unsigned col) const { |
| 1034 | std::optional<unsigned> retRow; |
| 1035 | // Initialize these to zero in order to silence a warning about retElem and |
| 1036 | // retConst being used uninitialized in the initialization of `diff` below. In |
| 1037 | // reality, these are always initialized when that line is reached since these |
| 1038 | // are set whenever retRow is set. |
| 1039 | DynamicAPInt retElem, retConst; |
| 1040 | for (unsigned row = nRedundant, e = getNumRows(); row < e; ++row) { |
| 1041 | if (skipRow && row == *skipRow) |
| 1042 | continue; |
| 1043 | DynamicAPInt elem = tableau(row, col); |
| 1044 | if (elem == 0) |
| 1045 | continue; |
| 1046 | if (!unknownFromRow(row).restricted) |
| 1047 | continue; |
| 1048 | if (signMatchesDirection(elem, direction)) |
| 1049 | continue; |
| 1050 | DynamicAPInt constTerm = tableau(row, 1); |
| 1051 | |
| 1052 | if (!retRow) { |
| 1053 | retRow = row; |
| 1054 | retElem = elem; |
| 1055 | retConst = constTerm; |
| 1056 | continue; |
| 1057 | } |
| 1058 | |
| 1059 | DynamicAPInt diff = retConst * elem - constTerm * retElem; |
| 1060 | if ((diff == 0 && rowUnknown[row] < rowUnknown[*retRow]) || |
| 1061 | (diff != 0 && !signMatchesDirection(elem: diff, direction))) { |
| 1062 | retRow = row; |
| 1063 | retElem = elem; |
| 1064 | retConst = constTerm; |
| 1065 | } |
| 1066 | } |
| 1067 | return retRow; |
| 1068 | } |
| 1069 | |
| 1070 | bool SimplexBase::isEmpty() const { return empty; } |
| 1071 | |
| 1072 | void SimplexBase::swapRows(unsigned i, unsigned j) { |
| 1073 | if (i == j) |
| 1074 | return; |
| 1075 | tableau.swapRows(row: i, otherRow: j); |
| 1076 | std::swap(a&: rowUnknown[i], b&: rowUnknown[j]); |
| 1077 | unknownFromRow(row: i).pos = i; |
| 1078 | unknownFromRow(row: j).pos = j; |
| 1079 | } |
| 1080 | |
| 1081 | void SimplexBase::swapColumns(unsigned i, unsigned j) { |
| 1082 | assert(i < getNumColumns() && j < getNumColumns() && |
| 1083 | "Invalid columns provided!" ); |
| 1084 | if (i == j) |
| 1085 | return; |
| 1086 | tableau.swapColumns(column: i, otherColumn: j); |
| 1087 | std::swap(a&: colUnknown[i], b&: colUnknown[j]); |
| 1088 | unknownFromColumn(col: i).pos = i; |
| 1089 | unknownFromColumn(col: j).pos = j; |
| 1090 | } |
| 1091 | |
| 1092 | /// Mark this tableau empty and push an entry to the undo stack. |
| 1093 | void SimplexBase::markEmpty() { |
| 1094 | // If the set is already empty, then we shouldn't add another UnmarkEmpty log |
| 1095 | // entry, since in that case the Simplex will be erroneously marked as |
| 1096 | // non-empty when rolling back past this point. |
| 1097 | if (empty) |
| 1098 | return; |
| 1099 | undoLog.emplace_back(Args: UndoLogEntry::UnmarkEmpty); |
| 1100 | empty = true; |
| 1101 | } |
| 1102 | |
| 1103 | /// Add an inequality to the tableau. If coeffs is c_0, c_1, ... c_n, where n |
| 1104 | /// is the current number of variables, then the corresponding inequality is |
| 1105 | /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} >= 0. |
| 1106 | /// |
| 1107 | /// We add the inequality and mark it as restricted. We then try to make its |
| 1108 | /// sample value non-negative. If this is not possible, the tableau has become |
| 1109 | /// empty and we mark it as such. |
| 1110 | void Simplex::addInequality(ArrayRef<DynamicAPInt> coeffs) { |
| 1111 | unsigned conIndex = addRow(coeffs, /*makeRestricted=*/true); |
| 1112 | LogicalResult result = restoreRow(u&: con[conIndex]); |
| 1113 | if (result.failed()) |
| 1114 | markEmpty(); |
| 1115 | } |
| 1116 | |
| 1117 | /// Add an equality to the tableau. If coeffs is c_0, c_1, ... c_n, where n |
| 1118 | /// is the current number of variables, then the corresponding equality is |
| 1119 | /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} == 0. |
| 1120 | /// |
| 1121 | /// We simply add two opposing inequalities, which force the expression to |
| 1122 | /// be zero. |
| 1123 | void SimplexBase::addEquality(ArrayRef<DynamicAPInt> coeffs) { |
| 1124 | addInequality(coeffs); |
| 1125 | SmallVector<DynamicAPInt, 8> negatedCoeffs; |
| 1126 | negatedCoeffs.reserve(N: coeffs.size()); |
| 1127 | for (const DynamicAPInt &coeff : coeffs) |
| 1128 | negatedCoeffs.emplace_back(Args: -coeff); |
| 1129 | addInequality(coeffs: negatedCoeffs); |
| 1130 | } |
| 1131 | |
| 1132 | unsigned SimplexBase::getNumVariables() const { return var.size(); } |
| 1133 | unsigned SimplexBase::getNumConstraints() const { return con.size(); } |
| 1134 | |
| 1135 | /// Return a snapshot of the current state. This is just the current size of the |
| 1136 | /// undo log. |
| 1137 | unsigned SimplexBase::getSnapshot() const { return undoLog.size(); } |
| 1138 | |
| 1139 | unsigned SimplexBase::getSnapshotBasis() { |
| 1140 | SmallVector<int, 8> basis; |
| 1141 | basis.reserve(N: colUnknown.size()); |
| 1142 | for (int index : colUnknown) { |
| 1143 | if (index != nullIndex) |
| 1144 | basis.emplace_back(Args&: index); |
| 1145 | } |
| 1146 | savedBases.emplace_back(Args: std::move(basis)); |
| 1147 | |
| 1148 | undoLog.emplace_back(Args: UndoLogEntry::RestoreBasis); |
| 1149 | return undoLog.size() - 1; |
| 1150 | } |
| 1151 | |
| 1152 | void SimplexBase::removeLastConstraintRowOrientation() { |
| 1153 | assert(con.back().orientation == Orientation::Row); |
| 1154 | |
| 1155 | // Move this unknown to the last row and remove the last row from the |
| 1156 | // tableau. |
| 1157 | swapRows(i: con.back().pos, j: getNumRows() - 1); |
| 1158 | // It is not strictly necessary to shrink the tableau, but for now we |
| 1159 | // maintain the invariant that the tableau has exactly getNumRows() |
| 1160 | // rows. |
| 1161 | tableau.resizeVertically(newNRows: getNumRows() - 1); |
| 1162 | rowUnknown.pop_back(); |
| 1163 | con.pop_back(); |
| 1164 | } |
| 1165 | |
| 1166 | // This doesn't find a pivot row only if the column has zero |
| 1167 | // coefficients for every row. |
| 1168 | // |
| 1169 | // If the unknown is a constraint, this can't happen, since it was added |
| 1170 | // initially as a row. Such a row could never have been pivoted to a column. So |
| 1171 | // a pivot row will always be found if we have a constraint. |
| 1172 | // |
| 1173 | // If we have a variable, then the column has zero coefficients for every row |
| 1174 | // iff no constraints have been added with a non-zero coefficient for this row. |
| 1175 | std::optional<unsigned> SimplexBase::findAnyPivotRow(unsigned col) { |
| 1176 | for (unsigned row = nRedundant, e = getNumRows(); row < e; ++row) |
| 1177 | if (tableau(row, col) != 0) |
| 1178 | return row; |
| 1179 | return {}; |
| 1180 | } |
| 1181 | |
| 1182 | // It's not valid to remove the constraint by deleting the column since this |
| 1183 | // would result in an invalid basis. |
| 1184 | void Simplex::undoLastConstraint() { |
| 1185 | if (con.back().orientation == Orientation::Column) { |
| 1186 | // We try to find any pivot row for this column that preserves tableau |
| 1187 | // consistency (except possibly the column itself, which is going to be |
| 1188 | // deallocated anyway). |
| 1189 | // |
| 1190 | // If no pivot row is found in either direction, then the unknown is |
| 1191 | // unbounded in both directions and we are free to perform any pivot at |
| 1192 | // all. To do this, we just need to find any row with a non-zero |
| 1193 | // coefficient for the column. findAnyPivotRow will always be able to |
| 1194 | // find such a row for a constraint. |
| 1195 | unsigned column = con.back().pos; |
| 1196 | if (std::optional<unsigned> maybeRow = |
| 1197 | findPivotRow(skipRow: {}, direction: Direction::Up, col: column)) { |
| 1198 | pivot(pivotRow: *maybeRow, pivotCol: column); |
| 1199 | } else if (std::optional<unsigned> maybeRow = |
| 1200 | findPivotRow(skipRow: {}, direction: Direction::Down, col: column)) { |
| 1201 | pivot(pivotRow: *maybeRow, pivotCol: column); |
| 1202 | } else { |
| 1203 | std::optional<unsigned> row = findAnyPivotRow(col: column); |
| 1204 | assert(row && "Pivot should always exist for a constraint!" ); |
| 1205 | pivot(pivotRow: *row, pivotCol: column); |
| 1206 | } |
| 1207 | } |
| 1208 | removeLastConstraintRowOrientation(); |
| 1209 | } |
| 1210 | |
| 1211 | // It's not valid to remove the constraint by deleting the column since this |
| 1212 | // would result in an invalid basis. |
| 1213 | void LexSimplexBase::undoLastConstraint() { |
| 1214 | if (con.back().orientation == Orientation::Column) { |
| 1215 | // When removing the last constraint during a rollback, we just need to find |
| 1216 | // any pivot at all, i.e., any row with non-zero coefficient for the |
| 1217 | // column, because when rolling back a lexicographic simplex, we always |
| 1218 | // end by restoring the exact basis that was present at the time of the |
| 1219 | // snapshot, so what pivots we perform while undoing doesn't matter as |
| 1220 | // long as we get the unknown to row orientation and remove it. |
| 1221 | unsigned column = con.back().pos; |
| 1222 | std::optional<unsigned> row = findAnyPivotRow(col: column); |
| 1223 | assert(row && "Pivot should always exist for a constraint!" ); |
| 1224 | pivot(pivotRow: *row, pivotCol: column); |
| 1225 | } |
| 1226 | removeLastConstraintRowOrientation(); |
| 1227 | } |
| 1228 | |
| 1229 | void SimplexBase::undo(UndoLogEntry entry) { |
| 1230 | if (entry == UndoLogEntry::RemoveLastConstraint) { |
| 1231 | // Simplex and LexSimplex handle this differently, so we call out to a |
| 1232 | // virtual function to handle this. |
| 1233 | undoLastConstraint(); |
| 1234 | } else if (entry == UndoLogEntry::RemoveLastVariable) { |
| 1235 | // Whenever we are rolling back the addition of a variable, it is guaranteed |
| 1236 | // that the variable will be in column position. |
| 1237 | // |
| 1238 | // We can see this as follows: any constraint that depends on this variable |
| 1239 | // was added after this variable was added, so the addition of such |
| 1240 | // constraints should already have been rolled back by the time we get to |
| 1241 | // rolling back the addition of the variable. Therefore, no constraint |
| 1242 | // currently has a component along the variable, so the variable itself must |
| 1243 | // be part of the basis. |
| 1244 | assert(var.back().orientation == Orientation::Column && |
| 1245 | "Variable to be removed must be in column orientation!" ); |
| 1246 | |
| 1247 | if (var.back().isSymbol) |
| 1248 | nSymbol--; |
| 1249 | |
| 1250 | // Move this variable to the last column and remove the column from the |
| 1251 | // tableau. |
| 1252 | swapColumns(i: var.back().pos, j: getNumColumns() - 1); |
| 1253 | tableau.resizeHorizontally(newNColumns: getNumColumns() - 1); |
| 1254 | var.pop_back(); |
| 1255 | colUnknown.pop_back(); |
| 1256 | } else if (entry == UndoLogEntry::UnmarkEmpty) { |
| 1257 | empty = false; |
| 1258 | } else if (entry == UndoLogEntry::UnmarkLastRedundant) { |
| 1259 | nRedundant--; |
| 1260 | } else if (entry == UndoLogEntry::RestoreBasis) { |
| 1261 | assert(!savedBases.empty() && "No bases saved!" ); |
| 1262 | |
| 1263 | SmallVector<int, 8> basis = std::move(savedBases.back()); |
| 1264 | savedBases.pop_back(); |
| 1265 | |
| 1266 | for (int index : basis) { |
| 1267 | Unknown &u = unknownFromIndex(index); |
| 1268 | if (u.orientation == Orientation::Column) |
| 1269 | continue; |
| 1270 | for (unsigned col = getNumFixedCols(), e = getNumColumns(); col < e; |
| 1271 | col++) { |
| 1272 | assert(colUnknown[col] != nullIndex && |
| 1273 | "Column should not be a fixed column!" ); |
| 1274 | if (llvm::is_contained(Range&: basis, Element: colUnknown[col])) |
| 1275 | continue; |
| 1276 | if (tableau(u.pos, col) == 0) |
| 1277 | continue; |
| 1278 | pivot(pivotRow: u.pos, pivotCol: col); |
| 1279 | break; |
| 1280 | } |
| 1281 | |
| 1282 | assert(u.orientation == Orientation::Column && "No pivot found!" ); |
| 1283 | } |
| 1284 | } |
| 1285 | } |
| 1286 | |
| 1287 | /// Rollback to the specified snapshot. |
| 1288 | /// |
| 1289 | /// We undo all the log entries until the log size when the snapshot was taken |
| 1290 | /// is reached. |
| 1291 | void SimplexBase::rollback(unsigned snapshot) { |
| 1292 | while (undoLog.size() > snapshot) { |
| 1293 | undo(entry: undoLog.back()); |
| 1294 | undoLog.pop_back(); |
| 1295 | } |
| 1296 | } |
| 1297 | |
| 1298 | /// We add the usual floor division constraints: |
| 1299 | /// `0 <= coeffs - denom*q <= denom - 1`, where `q` is the new division |
| 1300 | /// variable. |
| 1301 | /// |
| 1302 | /// This constrains the remainder `coeffs - denom*q` to be in the |
| 1303 | /// range `[0, denom - 1]`, which fixes the integer value of the quotient `q`. |
| 1304 | void SimplexBase::addDivisionVariable(ArrayRef<DynamicAPInt> coeffs, |
| 1305 | const DynamicAPInt &denom) { |
| 1306 | assert(denom > 0 && "Denominator must be positive!" ); |
| 1307 | appendVariable(); |
| 1308 | |
| 1309 | SmallVector<DynamicAPInt, 8> ineq(coeffs); |
| 1310 | DynamicAPInt constTerm = ineq.back(); |
| 1311 | ineq.back() = -denom; |
| 1312 | ineq.emplace_back(Args&: constTerm); |
| 1313 | addInequality(coeffs: ineq); |
| 1314 | |
| 1315 | for (DynamicAPInt &coeff : ineq) |
| 1316 | coeff = -coeff; |
| 1317 | ineq.back() += denom - 1; |
| 1318 | addInequality(coeffs: ineq); |
| 1319 | } |
| 1320 | |
| 1321 | void SimplexBase::appendVariable(unsigned count) { |
| 1322 | if (count == 0) |
| 1323 | return; |
| 1324 | var.reserve(N: var.size() + count); |
| 1325 | colUnknown.reserve(N: colUnknown.size() + count); |
| 1326 | for (unsigned i = 0; i < count; ++i) { |
| 1327 | var.emplace_back(Args: Orientation::Column, /*restricted=*/Args: false, |
| 1328 | /*pos=*/Args: getNumColumns() + i); |
| 1329 | colUnknown.emplace_back(Args: var.size() - 1); |
| 1330 | } |
| 1331 | tableau.resizeHorizontally(newNColumns: getNumColumns() + count); |
| 1332 | undoLog.insert(I: undoLog.end(), NumToInsert: count, Elt: UndoLogEntry::RemoveLastVariable); |
| 1333 | } |
| 1334 | |
| 1335 | /// Add all the constraints from the given IntegerRelation. |
| 1336 | void SimplexBase::intersectIntegerRelation(const IntegerRelation &rel) { |
| 1337 | assert(rel.getNumVars() == getNumVariables() && |
| 1338 | "IntegerRelation must have same dimensionality as simplex" ); |
| 1339 | for (unsigned i = 0, e = rel.getNumInequalities(); i < e; ++i) |
| 1340 | addInequality(coeffs: rel.getInequality(idx: i)); |
| 1341 | for (unsigned i = 0, e = rel.getNumEqualities(); i < e; ++i) |
| 1342 | addEquality(coeffs: rel.getEquality(idx: i)); |
| 1343 | } |
| 1344 | |
| 1345 | MaybeOptimum<Fraction> Simplex::computeRowOptimum(Direction direction, |
| 1346 | unsigned row) { |
| 1347 | // Keep trying to find a pivot for the row in the specified direction. |
| 1348 | while (std::optional<Pivot> maybePivot = findPivot(row, direction)) { |
| 1349 | // If findPivot returns a pivot involving the row itself, then the optimum |
| 1350 | // is unbounded, so we return std::nullopt. |
| 1351 | if (maybePivot->row == row) |
| 1352 | return OptimumKind::Unbounded; |
| 1353 | pivot(pair: *maybePivot); |
| 1354 | } |
| 1355 | |
| 1356 | // The row has reached its optimal sample value, which we return. |
| 1357 | // The sample value is the entry in the constant column divided by the common |
| 1358 | // denominator for this row. |
| 1359 | return Fraction(tableau(row, 1), tableau(row, 0)); |
| 1360 | } |
| 1361 | |
| 1362 | /// Compute the optimum of the specified expression in the specified direction, |
| 1363 | /// or std::nullopt if it is unbounded. |
| 1364 | MaybeOptimum<Fraction> Simplex::computeOptimum(Direction direction, |
| 1365 | ArrayRef<DynamicAPInt> coeffs) { |
| 1366 | if (empty) |
| 1367 | return OptimumKind::Empty; |
| 1368 | |
| 1369 | SimplexRollbackScopeExit scopeExit(*this); |
| 1370 | unsigned conIndex = addRow(coeffs); |
| 1371 | unsigned row = con[conIndex].pos; |
| 1372 | return computeRowOptimum(direction, row); |
| 1373 | } |
| 1374 | |
| 1375 | MaybeOptimum<Fraction> Simplex::computeOptimum(Direction direction, |
| 1376 | Unknown &u) { |
| 1377 | if (empty) |
| 1378 | return OptimumKind::Empty; |
| 1379 | if (u.orientation == Orientation::Column) { |
| 1380 | unsigned column = u.pos; |
| 1381 | std::optional<unsigned> pivotRow = findPivotRow(skipRow: {}, direction, col: column); |
| 1382 | // If no pivot is returned, the constraint is unbounded in the specified |
| 1383 | // direction. |
| 1384 | if (!pivotRow) |
| 1385 | return OptimumKind::Unbounded; |
| 1386 | pivot(pivotRow: *pivotRow, pivotCol: column); |
| 1387 | } |
| 1388 | |
| 1389 | unsigned row = u.pos; |
| 1390 | MaybeOptimum<Fraction> optimum = computeRowOptimum(direction, row); |
| 1391 | if (u.restricted && direction == Direction::Down && |
| 1392 | (optimum.isUnbounded() || *optimum < Fraction(0, 1))) { |
| 1393 | if (restoreRow(u).failed()) |
| 1394 | llvm_unreachable("Could not restore row!" ); |
| 1395 | } |
| 1396 | return optimum; |
| 1397 | } |
| 1398 | |
| 1399 | bool Simplex::isBoundedAlongConstraint(unsigned constraintIndex) { |
| 1400 | assert(!empty && "It is not meaningful to ask whether a direction is bounded " |
| 1401 | "in an empty set." ); |
| 1402 | // The constraint's perpendicular is already bounded below, since it is a |
| 1403 | // constraint. If it is also bounded above, we can return true. |
| 1404 | return computeOptimum(direction: Direction::Up, u&: con[constraintIndex]).isBounded(); |
| 1405 | } |
| 1406 | |
| 1407 | /// Redundant constraints are those that are in row orientation and lie in |
| 1408 | /// rows 0 to nRedundant - 1. |
| 1409 | bool Simplex::isMarkedRedundant(unsigned constraintIndex) const { |
| 1410 | const Unknown &u = con[constraintIndex]; |
| 1411 | return u.orientation == Orientation::Row && u.pos < nRedundant; |
| 1412 | } |
| 1413 | |
| 1414 | /// Mark the specified row redundant. |
| 1415 | /// |
| 1416 | /// This is done by moving the unknown to the end of the block of redundant |
| 1417 | /// rows (namely, to row nRedundant) and incrementing nRedundant to |
| 1418 | /// accomodate the new redundant row. |
| 1419 | void Simplex::markRowRedundant(Unknown &u) { |
| 1420 | assert(u.orientation == Orientation::Row && |
| 1421 | "Unknown should be in row position!" ); |
| 1422 | assert(u.pos >= nRedundant && "Unknown is already marked redundant!" ); |
| 1423 | swapRows(i: u.pos, j: nRedundant); |
| 1424 | ++nRedundant; |
| 1425 | undoLog.emplace_back(Args: UndoLogEntry::UnmarkLastRedundant); |
| 1426 | } |
| 1427 | |
| 1428 | /// Find a subset of constraints that is redundant and mark them redundant. |
| 1429 | void Simplex::detectRedundant(unsigned offset, unsigned count) { |
| 1430 | assert(offset + count <= con.size() && "invalid range!" ); |
| 1431 | // It is not meaningful to talk about redundancy for empty sets. |
| 1432 | if (empty) |
| 1433 | return; |
| 1434 | |
| 1435 | // Iterate through the constraints and check for each one if it can attain |
| 1436 | // negative sample values. If it can, it's not redundant. Otherwise, it is. |
| 1437 | // We mark redundant constraints redundant. |
| 1438 | // |
| 1439 | // Constraints that get marked redundant in one iteration are not respected |
| 1440 | // when checking constraints in later iterations. This prevents, for example, |
| 1441 | // two identical constraints both being marked redundant since each is |
| 1442 | // redundant given the other one. In this example, only the first of the |
| 1443 | // constraints that is processed will get marked redundant, as it should be. |
| 1444 | for (unsigned i = 0; i < count; ++i) { |
| 1445 | Unknown &u = con[offset + i]; |
| 1446 | if (u.orientation == Orientation::Column) { |
| 1447 | unsigned column = u.pos; |
| 1448 | std::optional<unsigned> pivotRow = |
| 1449 | findPivotRow(skipRow: {}, direction: Direction::Down, col: column); |
| 1450 | // If no downward pivot is returned, the constraint is unbounded below |
| 1451 | // and hence not redundant. |
| 1452 | if (!pivotRow) |
| 1453 | continue; |
| 1454 | pivot(pivotRow: *pivotRow, pivotCol: column); |
| 1455 | } |
| 1456 | |
| 1457 | unsigned row = u.pos; |
| 1458 | MaybeOptimum<Fraction> minimum = computeRowOptimum(direction: Direction::Down, row); |
| 1459 | if (minimum.isUnbounded() || *minimum < Fraction(0, 1)) { |
| 1460 | // Constraint is unbounded below or can attain negative sample values and |
| 1461 | // hence is not redundant. |
| 1462 | if (restoreRow(u).failed()) |
| 1463 | llvm_unreachable("Could not restore non-redundant row!" ); |
| 1464 | continue; |
| 1465 | } |
| 1466 | |
| 1467 | markRowRedundant(u); |
| 1468 | } |
| 1469 | } |
| 1470 | |
| 1471 | bool Simplex::isUnbounded() { |
| 1472 | if (empty) |
| 1473 | return false; |
| 1474 | |
| 1475 | SmallVector<DynamicAPInt, 8> dir(var.size() + 1); |
| 1476 | for (unsigned i = 0; i < var.size(); ++i) { |
| 1477 | dir[i] = 1; |
| 1478 | |
| 1479 | if (computeOptimum(direction: Direction::Up, coeffs: dir).isUnbounded()) |
| 1480 | return true; |
| 1481 | |
| 1482 | if (computeOptimum(direction: Direction::Down, coeffs: dir).isUnbounded()) |
| 1483 | return true; |
| 1484 | |
| 1485 | dir[i] = 0; |
| 1486 | } |
| 1487 | return false; |
| 1488 | } |
| 1489 | |
| 1490 | /// Make a tableau to represent a pair of points in the original tableau. |
| 1491 | /// |
| 1492 | /// The product constraints and variables are stored as: first A's, then B's. |
| 1493 | /// |
| 1494 | /// The product tableau has row layout: |
| 1495 | /// A's redundant rows, B's redundant rows, A's other rows, B's other rows. |
| 1496 | /// |
| 1497 | /// It has column layout: |
| 1498 | /// denominator, constant, A's columns, B's columns. |
| 1499 | Simplex Simplex::makeProduct(const Simplex &a, const Simplex &b) { |
| 1500 | unsigned numVar = a.getNumVariables() + b.getNumVariables(); |
| 1501 | unsigned numCon = a.getNumConstraints() + b.getNumConstraints(); |
| 1502 | Simplex result(numVar); |
| 1503 | |
| 1504 | result.tableau.reserveRows(rows: numCon); |
| 1505 | result.empty = a.empty || b.empty; |
| 1506 | |
| 1507 | auto concat = [](ArrayRef<Unknown> v, ArrayRef<Unknown> w) { |
| 1508 | SmallVector<Unknown, 8> result; |
| 1509 | result.reserve(N: v.size() + w.size()); |
| 1510 | llvm::append_range(C&: result, R&: v); |
| 1511 | llvm::append_range(C&: result, R&: w); |
| 1512 | return result; |
| 1513 | }; |
| 1514 | result.con = concat(a.con, b.con); |
| 1515 | result.var = concat(a.var, b.var); |
| 1516 | |
| 1517 | auto indexFromBIndex = [&](int index) { |
| 1518 | return index >= 0 ? a.getNumVariables() + index |
| 1519 | : ~(a.getNumConstraints() + ~index); |
| 1520 | }; |
| 1521 | |
| 1522 | result.colUnknown.assign(NumElts: 2, Elt: nullIndex); |
| 1523 | for (unsigned i = 2, e = a.getNumColumns(); i < e; ++i) { |
| 1524 | result.colUnknown.emplace_back(Args: a.colUnknown[i]); |
| 1525 | result.unknownFromIndex(index: result.colUnknown.back()).pos = |
| 1526 | result.colUnknown.size() - 1; |
| 1527 | } |
| 1528 | for (unsigned i = 2, e = b.getNumColumns(); i < e; ++i) { |
| 1529 | result.colUnknown.emplace_back(Args: indexFromBIndex(b.colUnknown[i])); |
| 1530 | result.unknownFromIndex(index: result.colUnknown.back()).pos = |
| 1531 | result.colUnknown.size() - 1; |
| 1532 | } |
| 1533 | |
| 1534 | auto appendRowFromA = [&](unsigned row) { |
| 1535 | unsigned resultRow = result.tableau.appendExtraRow(); |
| 1536 | for (unsigned col = 0, e = a.getNumColumns(); col < e; ++col) |
| 1537 | result.tableau(resultRow, col) = a.tableau(row, col); |
| 1538 | result.rowUnknown.emplace_back(Args: a.rowUnknown[row]); |
| 1539 | result.unknownFromIndex(index: result.rowUnknown.back()).pos = |
| 1540 | result.rowUnknown.size() - 1; |
| 1541 | }; |
| 1542 | |
| 1543 | // Also fixes the corresponding entry in rowUnknown and var/con (as the case |
| 1544 | // may be). |
| 1545 | auto appendRowFromB = [&](unsigned row) { |
| 1546 | unsigned resultRow = result.tableau.appendExtraRow(); |
| 1547 | result.tableau(resultRow, 0) = b.tableau(row, 0); |
| 1548 | result.tableau(resultRow, 1) = b.tableau(row, 1); |
| 1549 | |
| 1550 | unsigned offset = a.getNumColumns() - 2; |
| 1551 | for (unsigned col = 2, e = b.getNumColumns(); col < e; ++col) |
| 1552 | result.tableau(resultRow, offset + col) = b.tableau(row, col); |
| 1553 | result.rowUnknown.emplace_back(Args: indexFromBIndex(b.rowUnknown[row])); |
| 1554 | result.unknownFromIndex(index: result.rowUnknown.back()).pos = |
| 1555 | result.rowUnknown.size() - 1; |
| 1556 | }; |
| 1557 | |
| 1558 | result.nRedundant = a.nRedundant + b.nRedundant; |
| 1559 | for (unsigned row = 0; row < a.nRedundant; ++row) |
| 1560 | appendRowFromA(row); |
| 1561 | for (unsigned row = 0; row < b.nRedundant; ++row) |
| 1562 | appendRowFromB(row); |
| 1563 | for (unsigned row = a.nRedundant, e = a.getNumRows(); row < e; ++row) |
| 1564 | appendRowFromA(row); |
| 1565 | for (unsigned row = b.nRedundant, e = b.getNumRows(); row < e; ++row) |
| 1566 | appendRowFromB(row); |
| 1567 | |
| 1568 | return result; |
| 1569 | } |
| 1570 | |
| 1571 | std::optional<SmallVector<Fraction, 8>> Simplex::getRationalSample() const { |
| 1572 | if (empty) |
| 1573 | return {}; |
| 1574 | |
| 1575 | SmallVector<Fraction, 8> sample; |
| 1576 | sample.reserve(N: var.size()); |
| 1577 | // Push the sample value for each variable into the vector. |
| 1578 | for (const Unknown &u : var) { |
| 1579 | if (u.orientation == Orientation::Column) { |
| 1580 | // If the variable is in column position, its sample value is zero. |
| 1581 | sample.emplace_back(Args: 0, Args: 1); |
| 1582 | } else { |
| 1583 | // If the variable is in row position, its sample value is the |
| 1584 | // entry in the constant column divided by the denominator. |
| 1585 | DynamicAPInt denom = tableau(u.pos, 0); |
| 1586 | sample.emplace_back(Args: tableau(u.pos, 1), Args&: denom); |
| 1587 | } |
| 1588 | } |
| 1589 | return sample; |
| 1590 | } |
| 1591 | |
| 1592 | void LexSimplexBase::addInequality(ArrayRef<DynamicAPInt> coeffs) { |
| 1593 | addRow(coeffs, /*makeRestricted=*/true); |
| 1594 | } |
| 1595 | |
| 1596 | MaybeOptimum<SmallVector<Fraction, 8>> LexSimplex::getRationalSample() const { |
| 1597 | if (empty) |
| 1598 | return OptimumKind::Empty; |
| 1599 | |
| 1600 | SmallVector<Fraction, 8> sample; |
| 1601 | sample.reserve(N: var.size()); |
| 1602 | // Push the sample value for each variable into the vector. |
| 1603 | for (const Unknown &u : var) { |
| 1604 | // When the big M parameter is being used, each variable x is represented |
| 1605 | // as M + x, so its sample value is finite if and only if it is of the |
| 1606 | // form 1*M + c. If the coefficient of M is not one then the sample value |
| 1607 | // is infinite, and we return an empty optional. |
| 1608 | |
| 1609 | if (u.orientation == Orientation::Column) { |
| 1610 | // If the variable is in column position, the sample value of M + x is |
| 1611 | // zero, so x = -M which is unbounded. |
| 1612 | return OptimumKind::Unbounded; |
| 1613 | } |
| 1614 | |
| 1615 | // If the variable is in row position, its sample value is the |
| 1616 | // entry in the constant column divided by the denominator. |
| 1617 | DynamicAPInt denom = tableau(u.pos, 0); |
| 1618 | if (usingBigM) |
| 1619 | if (tableau(u.pos, 2) != denom) |
| 1620 | return OptimumKind::Unbounded; |
| 1621 | sample.emplace_back(Args: tableau(u.pos, 1), Args&: denom); |
| 1622 | } |
| 1623 | return sample; |
| 1624 | } |
| 1625 | |
| 1626 | std::optional<SmallVector<DynamicAPInt, 8>> |
| 1627 | Simplex::getSamplePointIfIntegral() const { |
| 1628 | // If the tableau is empty, no sample point exists. |
| 1629 | if (empty) |
| 1630 | return {}; |
| 1631 | |
| 1632 | // The value will always exist since the Simplex is non-empty. |
| 1633 | SmallVector<Fraction, 8> rationalSample = *getRationalSample(); |
| 1634 | SmallVector<DynamicAPInt, 8> integerSample; |
| 1635 | integerSample.reserve(N: var.size()); |
| 1636 | for (const Fraction &coord : rationalSample) { |
| 1637 | // If the sample is non-integral, return std::nullopt. |
| 1638 | if (coord.num % coord.den != 0) |
| 1639 | return {}; |
| 1640 | integerSample.emplace_back(Args: coord.num / coord.den); |
| 1641 | } |
| 1642 | return integerSample; |
| 1643 | } |
| 1644 | |
| 1645 | /// Given a simplex for a polytope, construct a new simplex whose variables are |
| 1646 | /// identified with a pair of points (x, y) in the original polytope. Supports |
| 1647 | /// some operations needed for generalized basis reduction. In what follows, |
| 1648 | /// dotProduct(x, y) = x_1 * y_1 + x_2 * y_2 + ... x_n * y_n where n is the |
| 1649 | /// dimension of the original polytope. |
| 1650 | /// |
| 1651 | /// This supports adding equality constraints dotProduct(dir, x - y) == 0. It |
| 1652 | /// also supports rolling back this addition, by maintaining a snapshot stack |
| 1653 | /// that contains a snapshot of the Simplex's state for each equality, just |
| 1654 | /// before that equality was added. |
| 1655 | class presburger::GBRSimplex { |
| 1656 | using Orientation = Simplex::Orientation; |
| 1657 | |
| 1658 | public: |
| 1659 | GBRSimplex(const Simplex &originalSimplex) |
| 1660 | : simplex(Simplex::makeProduct(a: originalSimplex, b: originalSimplex)), |
| 1661 | simplexConstraintOffset(simplex.getNumConstraints()) {} |
| 1662 | |
| 1663 | /// Add an equality dotProduct(dir, x - y) == 0. |
| 1664 | /// First pushes a snapshot for the current simplex state to the stack so |
| 1665 | /// that this can be rolled back later. |
| 1666 | void addEqualityForDirection(ArrayRef<DynamicAPInt> dir) { |
| 1667 | assert(llvm::any_of(dir, [](const DynamicAPInt &x) { return x != 0; }) && |
| 1668 | "Direction passed is the zero vector!" ); |
| 1669 | snapshotStack.emplace_back(Args: simplex.getSnapshot()); |
| 1670 | simplex.addEquality(coeffs: getCoeffsForDirection(dir)); |
| 1671 | } |
| 1672 | /// Compute max(dotProduct(dir, x - y)). |
| 1673 | Fraction computeWidth(ArrayRef<DynamicAPInt> dir) { |
| 1674 | MaybeOptimum<Fraction> maybeWidth = |
| 1675 | simplex.computeOptimum(direction: Direction::Up, coeffs: getCoeffsForDirection(dir)); |
| 1676 | assert(maybeWidth.isBounded() && "Width should be bounded!" ); |
| 1677 | return *maybeWidth; |
| 1678 | } |
| 1679 | |
| 1680 | /// Compute max(dotProduct(dir, x - y)) and save the dual variables for only |
| 1681 | /// the direction equalities to `dual`. |
| 1682 | Fraction computeWidthAndDuals(ArrayRef<DynamicAPInt> dir, |
| 1683 | SmallVectorImpl<DynamicAPInt> &dual, |
| 1684 | DynamicAPInt &dualDenom) { |
| 1685 | // We can't just call into computeWidth or computeOptimum since we need to |
| 1686 | // access the state of the tableau after computing the optimum, and these |
| 1687 | // functions rollback the insertion of the objective function into the |
| 1688 | // tableau before returning. We instead add a row for the objective function |
| 1689 | // ourselves, call into computeOptimum, compute the duals from the tableau |
| 1690 | // state, and finally rollback the addition of the row before returning. |
| 1691 | SimplexRollbackScopeExit scopeExit(simplex); |
| 1692 | unsigned conIndex = simplex.addRow(coeffs: getCoeffsForDirection(dir)); |
| 1693 | unsigned row = simplex.con[conIndex].pos; |
| 1694 | MaybeOptimum<Fraction> maybeWidth = |
| 1695 | simplex.computeRowOptimum(direction: Simplex::Direction::Up, row); |
| 1696 | assert(maybeWidth.isBounded() && "Width should be bounded!" ); |
| 1697 | dualDenom = simplex.tableau(row, 0); |
| 1698 | dual.clear(); |
| 1699 | dual.reserve(N: (conIndex - simplexConstraintOffset) / 2); |
| 1700 | |
| 1701 | // The increment is i += 2 because equalities are added as two inequalities, |
| 1702 | // one positive and one negative. Each iteration processes one equality. |
| 1703 | for (unsigned i = simplexConstraintOffset; i < conIndex; i += 2) { |
| 1704 | // The dual variable for an inequality in column orientation is the |
| 1705 | // negative of its coefficient at the objective row. If the inequality is |
| 1706 | // in row orientation, the corresponding dual variable is zero. |
| 1707 | // |
| 1708 | // We want the dual for the original equality, which corresponds to two |
| 1709 | // inequalities: a positive inequality, which has the same coefficients as |
| 1710 | // the equality, and a negative equality, which has negated coefficients. |
| 1711 | // |
| 1712 | // Note that at most one of these inequalities can be in column |
| 1713 | // orientation because the column unknowns should form a basis and hence |
| 1714 | // must be linearly independent. If the positive inequality is in column |
| 1715 | // position, its dual is the dual corresponding to the equality. If the |
| 1716 | // negative inequality is in column position, the negation of its dual is |
| 1717 | // the dual corresponding to the equality. If neither is in column |
| 1718 | // position, then that means that this equality is redundant, and its dual |
| 1719 | // is zero. |
| 1720 | // |
| 1721 | // Note that it is NOT valid to perform pivots during the computation of |
| 1722 | // the duals. This entire dual computation must be performed on the same |
| 1723 | // tableau configuration. |
| 1724 | assert((simplex.con[i].orientation != Orientation::Column || |
| 1725 | simplex.con[i + 1].orientation != Orientation::Column) && |
| 1726 | "Both inequalities for the equality cannot be in column " |
| 1727 | "orientation!" ); |
| 1728 | if (simplex.con[i].orientation == Orientation::Column) |
| 1729 | dual.emplace_back(Args: -simplex.tableau(row, simplex.con[i].pos)); |
| 1730 | else if (simplex.con[i + 1].orientation == Orientation::Column) |
| 1731 | dual.emplace_back(Args&: simplex.tableau(row, simplex.con[i + 1].pos)); |
| 1732 | else |
| 1733 | dual.emplace_back(Args: 0); |
| 1734 | } |
| 1735 | return *maybeWidth; |
| 1736 | } |
| 1737 | |
| 1738 | /// Remove the last equality that was added through addEqualityForDirection. |
| 1739 | /// |
| 1740 | /// We do this by rolling back to the snapshot at the top of the stack, which |
| 1741 | /// should be a snapshot taken just before the last equality was added. |
| 1742 | void removeLastEquality() { |
| 1743 | assert(!snapshotStack.empty() && "Snapshot stack is empty!" ); |
| 1744 | simplex.rollback(snapshot: snapshotStack.back()); |
| 1745 | snapshotStack.pop_back(); |
| 1746 | } |
| 1747 | |
| 1748 | private: |
| 1749 | /// Returns coefficients of the expression 'dot_product(dir, x - y)', |
| 1750 | /// i.e., dir_1 * x_1 + dir_2 * x_2 + ... + dir_n * x_n |
| 1751 | /// - dir_1 * y_1 - dir_2 * y_2 - ... - dir_n * y_n, |
| 1752 | /// where n is the dimension of the original polytope. |
| 1753 | SmallVector<DynamicAPInt, 8> |
| 1754 | getCoeffsForDirection(ArrayRef<DynamicAPInt> dir) { |
| 1755 | assert(2 * dir.size() == simplex.getNumVariables() && |
| 1756 | "Direction vector has wrong dimensionality" ); |
| 1757 | SmallVector<DynamicAPInt, 8> coeffs(dir); |
| 1758 | coeffs.reserve(N: dir.size() + 1); |
| 1759 | for (const DynamicAPInt &coeff : dir) |
| 1760 | coeffs.emplace_back(Args: -coeff); |
| 1761 | coeffs.emplace_back(Args: 0); // constant term |
| 1762 | return coeffs; |
| 1763 | } |
| 1764 | |
| 1765 | Simplex simplex; |
| 1766 | /// The first index of the equality constraints, the index immediately after |
| 1767 | /// the last constraint in the initial product simplex. |
| 1768 | unsigned simplexConstraintOffset; |
| 1769 | /// A stack of snapshots, used for rolling back. |
| 1770 | SmallVector<unsigned, 8> snapshotStack; |
| 1771 | }; |
| 1772 | |
| 1773 | /// Reduce the basis to try and find a direction in which the polytope is |
| 1774 | /// "thin". This only works for bounded polytopes. |
| 1775 | /// |
| 1776 | /// This is an implementation of the algorithm described in the paper |
| 1777 | /// "An Implementation of Generalized Basis Reduction for Integer Programming" |
| 1778 | /// by W. Cook, T. Rutherford, H. E. Scarf, D. Shallcross. |
| 1779 | /// |
| 1780 | /// Let b_{level}, b_{level + 1}, ... b_n be the current basis. |
| 1781 | /// Let width_i(v) = max <v, x - y> where x and y are points in the original |
| 1782 | /// polytope such that <b_j, x - y> = 0 is satisfied for all level <= j < i. |
| 1783 | /// |
| 1784 | /// In every iteration, we first replace b_{i+1} with b_{i+1} + u*b_i, where u |
| 1785 | /// is the integer such that width_i(b_{i+1} + u*b_i) is minimized. Let dual_i |
| 1786 | /// be the dual variable associated with the constraint <b_i, x - y> = 0 when |
| 1787 | /// computing width_{i+1}(b_{i+1}). It can be shown that dual_i is the |
| 1788 | /// minimizing value of u, if it were allowed to be fractional. Due to |
| 1789 | /// convexity, the minimizing integer value is either floor(dual_i) or |
| 1790 | /// ceil(dual_i), so we just need to check which of these gives a lower |
| 1791 | /// width_{i+1} value. If dual_i turned out to be an integer, then u = dual_i. |
| 1792 | /// |
| 1793 | /// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and (the new) |
| 1794 | /// b_{i + 1} and decrement i (unless i = level, in which case we stay at the |
| 1795 | /// same i). Otherwise, we increment i. |
| 1796 | /// |
| 1797 | /// We keep f values and duals cached and invalidate them when necessary. |
| 1798 | /// Whenever possible, we use them instead of recomputing them. We implement the |
| 1799 | /// algorithm as follows. |
| 1800 | /// |
| 1801 | /// In an iteration at i we need to compute: |
| 1802 | /// a) width_i(b_{i + 1}) |
| 1803 | /// b) width_i(b_i) |
| 1804 | /// c) the integer u that minimizes width_i(b_{i + 1} + u*b_i) |
| 1805 | /// |
| 1806 | /// If width_i(b_i) is not already cached, we compute it. |
| 1807 | /// |
| 1808 | /// If the duals are not already cached, we compute width_{i+1}(b_{i+1}) and |
| 1809 | /// store the duals from this computation. |
| 1810 | /// |
| 1811 | /// We call updateBasisWithUAndGetFCandidate, which finds the minimizing value |
| 1812 | /// of u as explained before, caches the duals from this computation, sets |
| 1813 | /// b_{i+1} to b_{i+1} + u*b_i, and returns the new value of width_i(b_{i+1}). |
| 1814 | /// |
| 1815 | /// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and b_{i+1} and |
| 1816 | /// decrement i, resulting in the basis |
| 1817 | /// ... b_{i - 1}, b_{i + 1} + u*b_i, b_i, b_{i+2}, ... |
| 1818 | /// with corresponding f values |
| 1819 | /// ... width_{i-1}(b_{i-1}), width_i(b_{i+1} + u*b_i), width_{i+1}(b_i), ... |
| 1820 | /// The values up to i - 1 remain unchanged. We have just gotten the middle |
| 1821 | /// value from updateBasisWithUAndGetFCandidate, so we can update that in the |
| 1822 | /// cache. The value at width_{i+1}(b_i) is unknown, so we evict this value from |
| 1823 | /// the cache. The iteration after decrementing needs exactly the duals from the |
| 1824 | /// computation of width_i(b_{i + 1} + u*b_i), so we keep these in the cache. |
| 1825 | /// |
| 1826 | /// When incrementing i, no cached f values get invalidated. However, the cached |
| 1827 | /// duals do get invalidated as the duals for the higher levels are different. |
| 1828 | void Simplex::reduceBasis(IntMatrix &basis, unsigned level) { |
| 1829 | const Fraction epsilon(3, 4); |
| 1830 | |
| 1831 | if (level == basis.getNumRows() - 1) |
| 1832 | return; |
| 1833 | |
| 1834 | GBRSimplex gbrSimplex(*this); |
| 1835 | SmallVector<Fraction, 8> width; |
| 1836 | SmallVector<DynamicAPInt, 8> dual; |
| 1837 | DynamicAPInt dualDenom; |
| 1838 | |
| 1839 | // Finds the value of u that minimizes width_i(b_{i+1} + u*b_i), caches the |
| 1840 | // duals from this computation, sets b_{i+1} to b_{i+1} + u*b_i, and returns |
| 1841 | // the new value of width_i(b_{i+1}). |
| 1842 | // |
| 1843 | // If dual_i is not an integer, the minimizing value must be either |
| 1844 | // floor(dual_i) or ceil(dual_i). We compute the expression for both and |
| 1845 | // choose the minimizing value. |
| 1846 | // |
| 1847 | // If dual_i is an integer, we don't need to perform these computations. We |
| 1848 | // know that in this case, |
| 1849 | // a) u = dual_i. |
| 1850 | // b) one can show that dual_j for j < i are the same duals we would have |
| 1851 | // gotten from computing width_i(b_{i + 1} + u*b_i), so the correct duals |
| 1852 | // are the ones already in the cache. |
| 1853 | // c) width_i(b_{i+1} + u*b_i) = min_{alpha} width_i(b_{i+1} + alpha * b_i), |
| 1854 | // which |
| 1855 | // one can show is equal to width_{i+1}(b_{i+1}). The latter value must |
| 1856 | // be in the cache, so we get it from there and return it. |
| 1857 | auto updateBasisWithUAndGetFCandidate = [&](unsigned i) -> Fraction { |
| 1858 | assert(i < level + dual.size() && "dual_i is not known!" ); |
| 1859 | |
| 1860 | DynamicAPInt u = floorDiv(LHS: dual[i - level], RHS: dualDenom); |
| 1861 | basis.addToRow(sourceRow: i, targetRow: i + 1, scale: u); |
| 1862 | if (dual[i - level] % dualDenom != 0) { |
| 1863 | SmallVector<DynamicAPInt, 8> candidateDual[2]; |
| 1864 | DynamicAPInt candidateDualDenom[2]; |
| 1865 | Fraction widthI[2]; |
| 1866 | |
| 1867 | // Initially u is floor(dual) and basis reflects this. |
| 1868 | widthI[0] = gbrSimplex.computeWidthAndDuals( |
| 1869 | dir: basis.getRow(row: i + 1), dual&: candidateDual[0], dualDenom&: candidateDualDenom[0]); |
| 1870 | |
| 1871 | // Now try ceil(dual), i.e. floor(dual) + 1. |
| 1872 | ++u; |
| 1873 | basis.addToRow(sourceRow: i, targetRow: i + 1, scale: 1); |
| 1874 | widthI[1] = gbrSimplex.computeWidthAndDuals( |
| 1875 | dir: basis.getRow(row: i + 1), dual&: candidateDual[1], dualDenom&: candidateDualDenom[1]); |
| 1876 | |
| 1877 | unsigned j = widthI[0] < widthI[1] ? 0 : 1; |
| 1878 | if (j == 0) |
| 1879 | // Subtract 1 to go from u = ceil(dual) back to floor(dual). |
| 1880 | basis.addToRow(sourceRow: i, targetRow: i + 1, scale: -1); |
| 1881 | |
| 1882 | // width_i(b{i+1} + u*b_i) should be minimized at our value of u. |
| 1883 | // We assert that this holds by checking that the values of width_i at |
| 1884 | // u - 1 and u + 1 are greater than or equal to the value at u. If the |
| 1885 | // width is lesser at either of the adjacent values, then our computed |
| 1886 | // value of u is clearly not the minimizer. Otherwise by convexity the |
| 1887 | // computed value of u is really the minimizer. |
| 1888 | |
| 1889 | // Check the value at u - 1. |
| 1890 | assert(gbrSimplex.computeWidth(scaleAndAddForAssert( |
| 1891 | basis.getRow(i + 1), DynamicAPInt(-1), basis.getRow(i))) >= |
| 1892 | widthI[j] && |
| 1893 | "Computed u value does not minimize the width!" ); |
| 1894 | // Check the value at u + 1. |
| 1895 | assert(gbrSimplex.computeWidth(scaleAndAddForAssert( |
| 1896 | basis.getRow(i + 1), DynamicAPInt(+1), basis.getRow(i))) >= |
| 1897 | widthI[j] && |
| 1898 | "Computed u value does not minimize the width!" ); |
| 1899 | |
| 1900 | dual = std::move(candidateDual[j]); |
| 1901 | dualDenom = candidateDualDenom[j]; |
| 1902 | return widthI[j]; |
| 1903 | } |
| 1904 | |
| 1905 | assert(i + 1 - level < width.size() && "width_{i+1} wasn't saved" ); |
| 1906 | // f_i(b_{i+1} + dual*b_i) == width_{i+1}(b_{i+1}) when `dual` minimizes the |
| 1907 | // LHS. (note: the basis has already been updated, so b_{i+1} + dual*b_i in |
| 1908 | // the above expression is equal to basis.getRow(i+1) below.) |
| 1909 | assert(gbrSimplex.computeWidth(basis.getRow(i + 1)) == |
| 1910 | width[i + 1 - level]); |
| 1911 | return width[i + 1 - level]; |
| 1912 | }; |
| 1913 | |
| 1914 | // In the ith iteration of the loop, gbrSimplex has constraints for directions |
| 1915 | // from `level` to i - 1. |
| 1916 | unsigned i = level; |
| 1917 | while (i < basis.getNumRows() - 1) { |
| 1918 | if (i >= level + width.size()) { |
| 1919 | // We don't even know the value of f_i(b_i), so let's find that first. |
| 1920 | // We have to do this first since later we assume that width already |
| 1921 | // contains values up to and including i. |
| 1922 | |
| 1923 | assert((i == 0 || i - 1 < level + width.size()) && |
| 1924 | "We are at level i but we don't know the value of width_{i-1}" ); |
| 1925 | |
| 1926 | // We don't actually use these duals at all, but it doesn't matter |
| 1927 | // because this case should only occur when i is level, and there are no |
| 1928 | // duals in that case anyway. |
| 1929 | assert(i == level && "This case should only occur when i == level" ); |
| 1930 | width.emplace_back( |
| 1931 | Args: gbrSimplex.computeWidthAndDuals(dir: basis.getRow(row: i), dual, dualDenom)); |
| 1932 | } |
| 1933 | |
| 1934 | if (i >= level + dual.size()) { |
| 1935 | assert(i + 1 >= level + width.size() && |
| 1936 | "We don't know dual_i but we know width_{i+1}" ); |
| 1937 | // We don't know dual for our level, so let's find it. |
| 1938 | gbrSimplex.addEqualityForDirection(dir: basis.getRow(row: i)); |
| 1939 | width.emplace_back(Args: gbrSimplex.computeWidthAndDuals(dir: basis.getRow(row: i + 1), |
| 1940 | dual, dualDenom)); |
| 1941 | gbrSimplex.removeLastEquality(); |
| 1942 | } |
| 1943 | |
| 1944 | // This variable stores width_i(b_{i+1} + u*b_i). |
| 1945 | Fraction widthICandidate = updateBasisWithUAndGetFCandidate(i); |
| 1946 | if (widthICandidate < epsilon * width[i - level]) { |
| 1947 | basis.swapRows(row: i, otherRow: i + 1); |
| 1948 | width[i - level] = widthICandidate; |
| 1949 | // The values of width_{i+1}(b_{i+1}) and higher may change after the |
| 1950 | // swap, so we remove the cached values here. |
| 1951 | width.resize(N: i - level + 1); |
| 1952 | if (i == level) { |
| 1953 | dual.clear(); |
| 1954 | continue; |
| 1955 | } |
| 1956 | |
| 1957 | gbrSimplex.removeLastEquality(); |
| 1958 | i--; |
| 1959 | continue; |
| 1960 | } |
| 1961 | |
| 1962 | // Invalidate duals since the higher level needs to recompute its own duals. |
| 1963 | dual.clear(); |
| 1964 | gbrSimplex.addEqualityForDirection(dir: basis.getRow(row: i)); |
| 1965 | i++; |
| 1966 | } |
| 1967 | } |
| 1968 | |
| 1969 | /// Search for an integer sample point using a branch and bound algorithm. |
| 1970 | /// |
| 1971 | /// Each row in the basis matrix is a vector, and the set of basis vectors |
| 1972 | /// should span the space. Initially this is the identity matrix, |
| 1973 | /// i.e., the basis vectors are just the variables. |
| 1974 | /// |
| 1975 | /// In every level, a value is assigned to the level-th basis vector, as |
| 1976 | /// follows. Compute the minimum and maximum rational values of this direction. |
| 1977 | /// If only one integer point lies in this range, constrain the variable to |
| 1978 | /// have this value and recurse to the next variable. |
| 1979 | /// |
| 1980 | /// If the range has multiple values, perform generalized basis reduction via |
| 1981 | /// reduceBasis and then compute the bounds again. Now we try constraining |
| 1982 | /// this direction in the first value in this range and "recurse" to the next |
| 1983 | /// level. If we fail to find a sample, we try assigning the direction the next |
| 1984 | /// value in this range, and so on. |
| 1985 | /// |
| 1986 | /// If no integer sample is found from any of the assignments, or if the range |
| 1987 | /// contains no integer value, then of course the polytope is empty for the |
| 1988 | /// current assignment of the values in previous levels, so we return to |
| 1989 | /// the previous level. |
| 1990 | /// |
| 1991 | /// If we reach the last level where all the variables have been assigned values |
| 1992 | /// already, then we simply return the current sample point if it is integral, |
| 1993 | /// and go back to the previous level otherwise. |
| 1994 | /// |
| 1995 | /// To avoid potentially arbitrarily large recursion depths leading to stack |
| 1996 | /// overflows, this algorithm is implemented iteratively. |
| 1997 | std::optional<SmallVector<DynamicAPInt, 8>> Simplex::findIntegerSample() { |
| 1998 | if (empty) |
| 1999 | return {}; |
| 2000 | |
| 2001 | unsigned nDims = var.size(); |
| 2002 | IntMatrix basis = IntMatrix::identity(dimension: nDims); |
| 2003 | |
| 2004 | unsigned level = 0; |
| 2005 | // The snapshot just before constraining a direction to a value at each level. |
| 2006 | SmallVector<unsigned, 8> snapshotStack; |
| 2007 | // The maximum value in the range of the direction for each level. |
| 2008 | SmallVector<DynamicAPInt, 8> upperBoundStack; |
| 2009 | // The next value to try constraining the basis vector to at each level. |
| 2010 | SmallVector<DynamicAPInt, 8> nextValueStack; |
| 2011 | |
| 2012 | snapshotStack.reserve(N: basis.getNumRows()); |
| 2013 | upperBoundStack.reserve(N: basis.getNumRows()); |
| 2014 | nextValueStack.reserve(N: basis.getNumRows()); |
| 2015 | while (level != -1u) { |
| 2016 | if (level == basis.getNumRows()) { |
| 2017 | // We've assigned values to all variables. Return if we have a sample, |
| 2018 | // or go back up to the previous level otherwise. |
| 2019 | if (auto maybeSample = getSamplePointIfIntegral()) |
| 2020 | return maybeSample; |
| 2021 | level--; |
| 2022 | continue; |
| 2023 | } |
| 2024 | |
| 2025 | if (level >= upperBoundStack.size()) { |
| 2026 | // We haven't populated the stack values for this level yet, so we have |
| 2027 | // just come down a level ("recursed"). Find the lower and upper bounds. |
| 2028 | // If there is more than one integer point in the range, perform |
| 2029 | // generalized basis reduction. |
| 2030 | SmallVector<DynamicAPInt, 8> basisCoeffs = |
| 2031 | llvm::to_vector<8>(Range: basis.getRow(row: level)); |
| 2032 | basisCoeffs.emplace_back(Args: 0); |
| 2033 | |
| 2034 | auto [minRoundedUp, maxRoundedDown] = computeIntegerBounds(coeffs: basisCoeffs); |
| 2035 | |
| 2036 | // We don't have any integer values in the range. |
| 2037 | // Pop the stack and return up a level. |
| 2038 | if (minRoundedUp.isEmpty() || maxRoundedDown.isEmpty()) { |
| 2039 | assert((minRoundedUp.isEmpty() && maxRoundedDown.isEmpty()) && |
| 2040 | "If one bound is empty, both should be." ); |
| 2041 | snapshotStack.pop_back(); |
| 2042 | nextValueStack.pop_back(); |
| 2043 | upperBoundStack.pop_back(); |
| 2044 | level--; |
| 2045 | continue; |
| 2046 | } |
| 2047 | |
| 2048 | // We already checked the empty case above. |
| 2049 | assert((minRoundedUp.isBounded() && maxRoundedDown.isBounded()) && |
| 2050 | "Polyhedron should be bounded!" ); |
| 2051 | |
| 2052 | // Heuristic: if the sample point is integral at this point, just return |
| 2053 | // it. |
| 2054 | if (auto maybeSample = getSamplePointIfIntegral()) |
| 2055 | return *maybeSample; |
| 2056 | |
| 2057 | if (*minRoundedUp < *maxRoundedDown) { |
| 2058 | reduceBasis(basis, level); |
| 2059 | basisCoeffs = llvm::to_vector<8>(Range: basis.getRow(row: level)); |
| 2060 | basisCoeffs.emplace_back(Args: 0); |
| 2061 | std::tie(args&: minRoundedUp, args&: maxRoundedDown) = |
| 2062 | computeIntegerBounds(coeffs: basisCoeffs); |
| 2063 | } |
| 2064 | |
| 2065 | snapshotStack.emplace_back(Args: getSnapshot()); |
| 2066 | // The smallest value in the range is the next value to try. |
| 2067 | // The values in the optionals are guaranteed to exist since we know the |
| 2068 | // polytope is bounded. |
| 2069 | nextValueStack.emplace_back(Args&: *minRoundedUp); |
| 2070 | upperBoundStack.emplace_back(Args&: *maxRoundedDown); |
| 2071 | } |
| 2072 | |
| 2073 | assert((snapshotStack.size() - 1 == level && |
| 2074 | nextValueStack.size() - 1 == level && |
| 2075 | upperBoundStack.size() - 1 == level) && |
| 2076 | "Mismatched variable stack sizes!" ); |
| 2077 | |
| 2078 | // Whether we "recursed" or "returned" from a lower level, we rollback |
| 2079 | // to the snapshot of the starting state at this level. (in the "recursed" |
| 2080 | // case this has no effect) |
| 2081 | rollback(snapshot: snapshotStack.back()); |
| 2082 | DynamicAPInt nextValue = nextValueStack.back(); |
| 2083 | ++nextValueStack.back(); |
| 2084 | if (nextValue > upperBoundStack.back()) { |
| 2085 | // We have exhausted the range and found no solution. Pop the stack and |
| 2086 | // return up a level. |
| 2087 | snapshotStack.pop_back(); |
| 2088 | nextValueStack.pop_back(); |
| 2089 | upperBoundStack.pop_back(); |
| 2090 | level--; |
| 2091 | continue; |
| 2092 | } |
| 2093 | |
| 2094 | // Try the next value in the range and "recurse" into the next level. |
| 2095 | SmallVector<DynamicAPInt, 8> basisCoeffs(basis.getRow(row: level).begin(), |
| 2096 | basis.getRow(row: level).end()); |
| 2097 | basisCoeffs.emplace_back(Args: -nextValue); |
| 2098 | addEquality(coeffs: basisCoeffs); |
| 2099 | level++; |
| 2100 | } |
| 2101 | |
| 2102 | return {}; |
| 2103 | } |
| 2104 | |
| 2105 | /// Compute the minimum and maximum integer values the expression can take. We |
| 2106 | /// compute each separately. |
| 2107 | std::pair<MaybeOptimum<DynamicAPInt>, MaybeOptimum<DynamicAPInt>> |
| 2108 | Simplex::computeIntegerBounds(ArrayRef<DynamicAPInt> coeffs) { |
| 2109 | MaybeOptimum<DynamicAPInt> minRoundedUp( |
| 2110 | computeOptimum(direction: Simplex::Direction::Down, coeffs).map(f&: ceil)); |
| 2111 | MaybeOptimum<DynamicAPInt> maxRoundedDown( |
| 2112 | computeOptimum(direction: Simplex::Direction::Up, coeffs).map(f&: floor)); |
| 2113 | return {minRoundedUp, maxRoundedDown}; |
| 2114 | } |
| 2115 | |
| 2116 | bool Simplex::isFlatAlong(ArrayRef<DynamicAPInt> coeffs) { |
| 2117 | assert(!isEmpty() && "cannot check for flatness of empty simplex!" ); |
| 2118 | auto upOpt = computeOptimum(direction: Simplex::Direction::Up, coeffs); |
| 2119 | auto downOpt = computeOptimum(direction: Simplex::Direction::Down, coeffs); |
| 2120 | |
| 2121 | if (!upOpt.isBounded()) |
| 2122 | return false; |
| 2123 | if (!downOpt.isBounded()) |
| 2124 | return false; |
| 2125 | |
| 2126 | return *upOpt == *downOpt; |
| 2127 | } |
| 2128 | |
| 2129 | void SimplexBase::print(raw_ostream &os) const { |
| 2130 | os << "rows = " << getNumRows() << ", columns = " << getNumColumns() << "\n" ; |
| 2131 | if (empty) |
| 2132 | os << "Simplex marked empty!\n" ; |
| 2133 | os << "var: " ; |
| 2134 | for (unsigned i = 0; i < var.size(); ++i) { |
| 2135 | if (i > 0) |
| 2136 | os << ", " ; |
| 2137 | var[i].print(os); |
| 2138 | } |
| 2139 | os << "\ncon: " ; |
| 2140 | for (unsigned i = 0; i < con.size(); ++i) { |
| 2141 | if (i > 0) |
| 2142 | os << ", " ; |
| 2143 | con[i].print(os); |
| 2144 | } |
| 2145 | os << '\n'; |
| 2146 | for (unsigned row = 0, e = getNumRows(); row < e; ++row) { |
| 2147 | if (row > 0) |
| 2148 | os << ", " ; |
| 2149 | os << "r" << row << ": " << rowUnknown[row]; |
| 2150 | } |
| 2151 | os << '\n'; |
| 2152 | os << "c0: denom, c1: const" ; |
| 2153 | for (unsigned col = 2, e = getNumColumns(); col < e; ++col) |
| 2154 | os << ", c" << col << ": " << colUnknown[col]; |
| 2155 | os << '\n'; |
| 2156 | PrintTableMetrics ptm = {.maxPreIndent: 0, .maxPostIndent: 0, .preAlign: "-" }; |
| 2157 | for (unsigned row = 0, numRows = getNumRows(); row < numRows; ++row) |
| 2158 | for (unsigned col = 0, numCols = getNumColumns(); col < numCols; ++col) |
| 2159 | updatePrintMetrics<DynamicAPInt>(val: tableau(row, col), m&: ptm); |
| 2160 | unsigned MIN_SPACING = 1; |
| 2161 | for (unsigned row = 0, numRows = getNumRows(); row < numRows; ++row) { |
| 2162 | for (unsigned col = 0, numCols = getNumColumns(); col < numCols; ++col) { |
| 2163 | printWithPrintMetrics<DynamicAPInt>(os, val: tableau(row, col), minSpacing: MIN_SPACING, |
| 2164 | m: ptm); |
| 2165 | } |
| 2166 | os << '\n'; |
| 2167 | } |
| 2168 | os << '\n'; |
| 2169 | } |
| 2170 | |
| 2171 | void SimplexBase::dump() const { print(os&: llvm::errs()); } |
| 2172 | |
| 2173 | bool Simplex::isRationalSubsetOf(const IntegerRelation &rel) { |
| 2174 | if (isEmpty()) |
| 2175 | return true; |
| 2176 | |
| 2177 | for (unsigned i = 0, e = rel.getNumInequalities(); i < e; ++i) |
| 2178 | if (findIneqType(coeffs: rel.getInequality(idx: i)) != IneqType::Redundant) |
| 2179 | return false; |
| 2180 | |
| 2181 | for (unsigned i = 0, e = rel.getNumEqualities(); i < e; ++i) |
| 2182 | if (!isRedundantEquality(coeffs: rel.getEquality(idx: i))) |
| 2183 | return false; |
| 2184 | |
| 2185 | return true; |
| 2186 | } |
| 2187 | |
| 2188 | /// Returns the type of the inequality with coefficients `coeffs`. |
| 2189 | /// Possible types are: |
| 2190 | /// Redundant The inequality is satisfied by all points in the polytope |
| 2191 | /// Cut The inequality is satisfied by some points, but not by others |
| 2192 | /// Separate The inequality is not satisfied by any point |
| 2193 | /// |
| 2194 | /// Internally, this computes the minimum and the maximum the inequality with |
| 2195 | /// coefficients `coeffs` can take. If the minimum is >= 0, the inequality holds |
| 2196 | /// for all points in the polytope, so it is redundant. If the minimum is <= 0 |
| 2197 | /// and the maximum is >= 0, the points in between the minimum and the |
| 2198 | /// inequality do not satisfy it, the points in between the inequality and the |
| 2199 | /// maximum satisfy it. Hence, it is a cut inequality. If both are < 0, no |
| 2200 | /// points of the polytope satisfy the inequality, which means it is a separate |
| 2201 | /// inequality. |
| 2202 | Simplex::IneqType Simplex::findIneqType(ArrayRef<DynamicAPInt> coeffs) { |
| 2203 | MaybeOptimum<Fraction> minimum = computeOptimum(direction: Direction::Down, coeffs); |
| 2204 | if (minimum.isBounded() && *minimum >= Fraction(0, 1)) { |
| 2205 | return IneqType::Redundant; |
| 2206 | } |
| 2207 | MaybeOptimum<Fraction> maximum = computeOptimum(direction: Direction::Up, coeffs); |
| 2208 | if ((!minimum.isBounded() || *minimum <= Fraction(0, 1)) && |
| 2209 | (!maximum.isBounded() || *maximum >= Fraction(0, 1))) { |
| 2210 | return IneqType::Cut; |
| 2211 | } |
| 2212 | return IneqType::Separate; |
| 2213 | } |
| 2214 | |
| 2215 | /// Checks whether the type of the inequality with coefficients `coeffs` |
| 2216 | /// is Redundant. |
| 2217 | bool Simplex::isRedundantInequality(ArrayRef<DynamicAPInt> coeffs) { |
| 2218 | assert(!empty && |
| 2219 | "It is not meaningful to ask about redundancy in an empty set!" ); |
| 2220 | return findIneqType(coeffs) == IneqType::Redundant; |
| 2221 | } |
| 2222 | |
| 2223 | /// Check whether the equality given by `coeffs == 0` is redundant given |
| 2224 | /// the existing constraints. This is redundant when `coeffs` is already |
| 2225 | /// always zero under the existing constraints. `coeffs` is always zero |
| 2226 | /// when the minimum and maximum value that `coeffs` can take are both zero. |
| 2227 | bool Simplex::isRedundantEquality(ArrayRef<DynamicAPInt> coeffs) { |
| 2228 | assert(!empty && |
| 2229 | "It is not meaningful to ask about redundancy in an empty set!" ); |
| 2230 | MaybeOptimum<Fraction> minimum = computeOptimum(direction: Direction::Down, coeffs); |
| 2231 | MaybeOptimum<Fraction> maximum = computeOptimum(direction: Direction::Up, coeffs); |
| 2232 | assert((!minimum.isEmpty() && !maximum.isEmpty()) && |
| 2233 | "Optima should be non-empty for a non-empty set" ); |
| 2234 | return minimum.isBounded() && maximum.isBounded() && |
| 2235 | *maximum == Fraction(0, 1) && *minimum == Fraction(0, 1); |
| 2236 | } |
| 2237 | |