1//===- Simplex.cpp - MLIR Simplex Class -----------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "mlir/Analysis/Presburger/Simplex.h"
10#include "mlir/Analysis/Presburger/Fraction.h"
11#include "mlir/Analysis/Presburger/IntegerRelation.h"
12#include "mlir/Analysis/Presburger/MPInt.h"
13#include "mlir/Analysis/Presburger/Matrix.h"
14#include "mlir/Analysis/Presburger/PresburgerSpace.h"
15#include "mlir/Analysis/Presburger/Utils.h"
16#include "mlir/Support/LLVM.h"
17#include "mlir/Support/LogicalResult.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallBitVector.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/Support/Compiler.h"
22#include "llvm/Support/ErrorHandling.h"
23#include "llvm/Support/raw_ostream.h"
24#include <cassert>
25#include <functional>
26#include <limits>
27#include <optional>
28#include <tuple>
29#include <utility>
30
31using namespace mlir;
32using namespace presburger;
33
34using Direction = Simplex::Direction;
35
36const int nullIndex = std::numeric_limits<int>::max();
37
38// Return a + scale*b;
39LLVM_ATTRIBUTE_UNUSED
40static SmallVector<MPInt, 8>
41scaleAndAddForAssert(ArrayRef<MPInt> a, const MPInt &scale, ArrayRef<MPInt> b) {
42 assert(a.size() == b.size());
43 SmallVector<MPInt, 8> res;
44 res.reserve(N: a.size());
45 for (unsigned i = 0, e = a.size(); i < e; ++i)
46 res.push_back(Elt: a[i] + scale * b[i]);
47 return res;
48}
49
50SimplexBase::SimplexBase(unsigned nVar, bool mustUseBigM)
51 : usingBigM(mustUseBigM), nRedundant(0), nSymbol(0),
52 tableau(0, getNumFixedCols() + nVar), empty(false) {
53 colUnknown.insert(I: colUnknown.begin(), NumToInsert: getNumFixedCols(), Elt: nullIndex);
54 for (unsigned i = 0; i < nVar; ++i) {
55 var.emplace_back(Args: Orientation::Column, /*restricted=*/Args: false,
56 /*pos=*/Args: getNumFixedCols() + i);
57 colUnknown.push_back(Elt: i);
58 }
59}
60
61SimplexBase::SimplexBase(unsigned nVar, bool mustUseBigM,
62 const llvm::SmallBitVector &isSymbol)
63 : SimplexBase(nVar, mustUseBigM) {
64 assert(isSymbol.size() == nVar && "invalid bitmask!");
65 // Invariant: nSymbol is the number of symbols that have been marked
66 // already and these occupy the columns
67 // [getNumFixedCols(), getNumFixedCols() + nSymbol).
68 for (unsigned symbolIdx : isSymbol.set_bits()) {
69 var[symbolIdx].isSymbol = true;
70 swapColumns(i: var[symbolIdx].pos, j: getNumFixedCols() + nSymbol);
71 ++nSymbol;
72 }
73}
74
75const Simplex::Unknown &SimplexBase::unknownFromIndex(int index) const {
76 assert(index != nullIndex && "nullIndex passed to unknownFromIndex");
77 return index >= 0 ? var[index] : con[~index];
78}
79
80const Simplex::Unknown &SimplexBase::unknownFromColumn(unsigned col) const {
81 assert(col < getNumColumns() && "Invalid column");
82 return unknownFromIndex(index: colUnknown[col]);
83}
84
85const Simplex::Unknown &SimplexBase::unknownFromRow(unsigned row) const {
86 assert(row < getNumRows() && "Invalid row");
87 return unknownFromIndex(index: rowUnknown[row]);
88}
89
90Simplex::Unknown &SimplexBase::unknownFromIndex(int index) {
91 assert(index != nullIndex && "nullIndex passed to unknownFromIndex");
92 return index >= 0 ? var[index] : con[~index];
93}
94
95Simplex::Unknown &SimplexBase::unknownFromColumn(unsigned col) {
96 assert(col < getNumColumns() && "Invalid column");
97 return unknownFromIndex(index: colUnknown[col]);
98}
99
100Simplex::Unknown &SimplexBase::unknownFromRow(unsigned row) {
101 assert(row < getNumRows() && "Invalid row");
102 return unknownFromIndex(index: rowUnknown[row]);
103}
104
105unsigned SimplexBase::addZeroRow(bool makeRestricted) {
106 // Resize the tableau to accommodate the extra row.
107 unsigned newRow = tableau.appendExtraRow();
108 assert(getNumRows() == getNumRows() && "Inconsistent tableau size");
109 rowUnknown.push_back(Elt: ~con.size());
110 con.emplace_back(Args: Orientation::Row, Args&: makeRestricted, Args&: newRow);
111 undoLog.push_back(Elt: UndoLogEntry::RemoveLastConstraint);
112 tableau(newRow, 0) = 1;
113 return newRow;
114}
115
116/// Add a new row to the tableau corresponding to the given constant term and
117/// list of coefficients. The coefficients are specified as a vector of
118/// (variable index, coefficient) pairs.
119unsigned SimplexBase::addRow(ArrayRef<MPInt> coeffs, bool makeRestricted) {
120 assert(coeffs.size() == var.size() + 1 &&
121 "Incorrect number of coefficients!");
122 assert(var.size() + getNumFixedCols() == getNumColumns() &&
123 "inconsistent column count!");
124
125 unsigned newRow = addZeroRow(makeRestricted);
126 tableau(newRow, 1) = coeffs.back();
127 if (usingBigM) {
128 // When the lexicographic pivot rule is used, instead of the variables
129 //
130 // x, y, z ...
131 //
132 // we internally use the variables
133 //
134 // M, M + x, M + y, M + z, ...
135 //
136 // where M is the big M parameter. As such, when the user tries to add
137 // a row ax + by + cz + d, we express it in terms of our internal variables
138 // as -(a + b + c)M + a(M + x) + b(M + y) + c(M + z) + d.
139 //
140 // Symbols don't use the big M parameter since they do not get lex
141 // optimized.
142 MPInt bigMCoeff(0);
143 for (unsigned i = 0; i < coeffs.size() - 1; ++i)
144 if (!var[i].isSymbol)
145 bigMCoeff -= coeffs[i];
146 // The coefficient to the big M parameter is stored in column 2.
147 tableau(newRow, 2) = bigMCoeff;
148 }
149
150 // Process each given variable coefficient.
151 for (unsigned i = 0; i < var.size(); ++i) {
152 unsigned pos = var[i].pos;
153 if (coeffs[i] == 0)
154 continue;
155
156 if (var[i].orientation == Orientation::Column) {
157 // If a variable is in column position at column col, then we just add the
158 // coefficient for that variable (scaled by the common row denominator) to
159 // the corresponding entry in the new row.
160 tableau(newRow, pos) += coeffs[i] * tableau(newRow, 0);
161 continue;
162 }
163
164 // If the variable is in row position, we need to add that row to the new
165 // row, scaled by the coefficient for the variable, accounting for the two
166 // rows potentially having different denominators. The new denominator is
167 // the lcm of the two.
168 MPInt lcm = presburger::lcm(a: tableau(newRow, 0), b: tableau(pos, 0));
169 MPInt nRowCoeff = lcm / tableau(newRow, 0);
170 MPInt idxRowCoeff = coeffs[i] * (lcm / tableau(pos, 0));
171 tableau(newRow, 0) = lcm;
172 for (unsigned col = 1, e = getNumColumns(); col < e; ++col)
173 tableau(newRow, col) =
174 nRowCoeff * tableau(newRow, col) + idxRowCoeff * tableau(pos, col);
175 }
176
177 tableau.normalizeRow(row: newRow);
178 // Push to undo log along with the index of the new constraint.
179 return con.size() - 1;
180}
181
182namespace {
183bool signMatchesDirection(const MPInt &elem, Direction direction) {
184 assert(elem != 0 && "elem should not be 0");
185 return direction == Direction::Up ? elem > 0 : elem < 0;
186}
187
188Direction flippedDirection(Direction direction) {
189 return direction == Direction::Up ? Direction::Down : Simplex::Direction::Up;
190}
191} // namespace
192
193/// We simply make the tableau consistent while maintaining a lexicopositive
194/// basis transform, and then return the sample value. If the tableau becomes
195/// empty, we return empty.
196///
197/// Let the variables be x = (x_1, ... x_n).
198/// Let the basis unknowns be y = (y_1, ... y_n).
199/// We have that x = A*y + b for some n x n matrix A and n x 1 column vector b.
200///
201/// As we will show below, A*y is either zero or lexicopositive.
202/// Adding a lexicopositive vector to b will make it lexicographically
203/// greater, so A*y + b is always equal to or lexicographically greater than b.
204/// Thus, since we can attain x = b, that is the lexicographic minimum.
205///
206/// We have that every column in A is lexicopositive, i.e., has at least
207/// one non-zero element, with the first such element being positive. Since for
208/// the tableau to be consistent we must have non-negative sample values not
209/// only for the constraints but also for the variables, we also have x >= 0 and
210/// y >= 0, by which we mean every element in these vectors is non-negative.
211///
212/// Proof that if every column in A is lexicopositive, and y >= 0, then
213/// A*y is zero or lexicopositive. Begin by considering A_1, the first row of A.
214/// If this row is all zeros, then (A*y)_1 = (A_1)*y = 0; proceed to the next
215/// row. If we run out of rows, A*y is zero and we are done; otherwise, we
216/// encounter some row A_i that has a non-zero element. Every column is
217/// lexicopositive and so has some positive element before any negative elements
218/// occur, so the element in this row for any column, if non-zero, must be
219/// positive. Consider (A*y)_i = (A_i)*y. All the elements in both vectors are
220/// non-negative, so if this is non-zero then it must be positive. Then the
221/// first non-zero element of A*y is positive so A*y is lexicopositive.
222///
223/// Otherwise, if (A_i)*y is zero, then for every column j that had a non-zero
224/// element in A_i, y_j is zero. Thus these columns have no contribution to A*y
225/// and we can completely ignore these columns of A. We now continue downwards,
226/// looking for rows of A that have a non-zero element other than in the ignored
227/// columns. If we find one, say A_k, once again these elements must be positive
228/// since they are the first non-zero element in each of these columns, so if
229/// (A_k)*y is not zero then we have that A*y is lexicopositive and if not we
230/// add these to the set of ignored columns and continue to the next row. If we
231/// run out of rows, then A*y is zero and we are done.
232MaybeOptimum<SmallVector<Fraction, 8>> LexSimplex::findRationalLexMin() {
233 if (restoreRationalConsistency().failed()) {
234 markEmpty();
235 return OptimumKind::Empty;
236 }
237 return getRationalSample();
238}
239
240/// Given a row that has a non-integer sample value, add an inequality such
241/// that this fractional sample value is cut away from the polytope. The added
242/// inequality will be such that no integer points are removed. i.e., the
243/// integer lexmin, if it exists, is the same with and without this constraint.
244///
245/// Let the row be
246/// (c + coeffM*M + a_1*s_1 + ... + a_m*s_m + b_1*y_1 + ... + b_n*y_n)/d,
247/// where s_1, ... s_m are the symbols and
248/// y_1, ... y_n are the other basis unknowns.
249///
250/// For this to be an integer, we want
251/// coeffM*M + a_1*s_1 + ... + a_m*s_m + b_1*y_1 + ... + b_n*y_n = -c (mod d)
252/// Note that this constraint must always hold, independent of the basis,
253/// becuse the row unknown's value always equals this expression, even if *we*
254/// later compute the sample value from a different expression based on a
255/// different basis.
256///
257/// Let us assume that M has a factor of d in it. Imposing this constraint on M
258/// does not in any way hinder us from finding a value of M that is big enough.
259/// Moreover, this function is only called when the symbolic part of the sample,
260/// a_1*s_1 + ... + a_m*s_m, is known to be an integer.
261///
262/// Also, we can safely reduce the coefficients modulo d, so we have:
263///
264/// (b_1%d)y_1 + ... + (b_n%d)y_n = (-c%d) + k*d for some integer `k`
265///
266/// Note that all coefficient modulos here are non-negative. Also, all the
267/// unknowns are non-negative here as both constraints and variables are
268/// non-negative in LexSimplexBase. (We used the big M trick to make the
269/// variables non-negative). Therefore, the LHS here is non-negative.
270/// Since 0 <= (-c%d) < d, k is the quotient of dividing the LHS by d and
271/// is therefore non-negative as well.
272///
273/// So we have
274/// ((b_1%d)y_1 + ... + (b_n%d)y_n - (-c%d))/d >= 0.
275///
276/// The constraint is violated when added (it would be useless otherwise)
277/// so we immediately try to move it to a column.
278LogicalResult LexSimplexBase::addCut(unsigned row) {
279 MPInt d = tableau(row, 0);
280 unsigned cutRow = addZeroRow(/*makeRestricted=*/true);
281 tableau(cutRow, 0) = d;
282 tableau(cutRow, 1) = -mod(lhs: -tableau(row, 1), rhs: d); // -c%d.
283 tableau(cutRow, 2) = 0;
284 for (unsigned col = 3 + nSymbol, e = getNumColumns(); col < e; ++col)
285 tableau(cutRow, col) = mod(lhs: tableau(row, col), rhs: d); // b_i%d.
286 return moveRowUnknownToColumn(row: cutRow);
287}
288
289std::optional<unsigned> LexSimplex::maybeGetNonIntegralVarRow() const {
290 for (const Unknown &u : var) {
291 if (u.orientation == Orientation::Column)
292 continue;
293 // If the sample value is of the form (a/d)M + b/d, we need b to be
294 // divisible by d. We assume M contains all possible
295 // factors and is divisible by everything.
296 unsigned row = u.pos;
297 if (tableau(row, 1) % tableau(row, 0) != 0)
298 return row;
299 }
300 return {};
301}
302
303MaybeOptimum<SmallVector<MPInt, 8>> LexSimplex::findIntegerLexMin() {
304 // We first try to make the tableau consistent.
305 if (restoreRationalConsistency().failed())
306 return OptimumKind::Empty;
307
308 // Then, if the sample value is integral, we are done.
309 while (std::optional<unsigned> maybeRow = maybeGetNonIntegralVarRow()) {
310 // Otherwise, for the variable whose row has a non-integral sample value,
311 // we add a cut, a constraint that remove this rational point
312 // while preserving all integer points, thus keeping the lexmin the same.
313 // We then again try to make the tableau with the new constraint
314 // consistent. This continues until the tableau becomes empty, in which
315 // case there is no integer point, or until there are no variables with
316 // non-integral sample values.
317 //
318 // Failure indicates that the tableau became empty, which occurs when the
319 // polytope is integer empty.
320 if (addCut(row: *maybeRow).failed())
321 return OptimumKind::Empty;
322 if (restoreRationalConsistency().failed())
323 return OptimumKind::Empty;
324 }
325
326 MaybeOptimum<SmallVector<Fraction, 8>> sample = getRationalSample();
327 assert(!sample.isEmpty() && "If we reached here the sample should exist!");
328 if (sample.isUnbounded())
329 return OptimumKind::Unbounded;
330 return llvm::to_vector<8>(
331 Range: llvm::map_range(C&: *sample, F: std::mem_fn(pm: &Fraction::getAsInteger)));
332}
333
334bool LexSimplex::isSeparateInequality(ArrayRef<MPInt> coeffs) {
335 SimplexRollbackScopeExit scopeExit(*this);
336 addInequality(coeffs);
337 return findIntegerLexMin().isEmpty();
338}
339
340bool LexSimplex::isRedundantInequality(ArrayRef<MPInt> coeffs) {
341 return isSeparateInequality(coeffs: getComplementIneq(ineq: coeffs));
342}
343
344SmallVector<MPInt, 8>
345SymbolicLexSimplex::getSymbolicSampleNumerator(unsigned row) const {
346 SmallVector<MPInt, 8> sample;
347 sample.reserve(N: nSymbol + 1);
348 for (unsigned col = 3; col < 3 + nSymbol; ++col)
349 sample.push_back(Elt: tableau(row, col));
350 sample.push_back(Elt: tableau(row, 1));
351 return sample;
352}
353
354SmallVector<MPInt, 8>
355SymbolicLexSimplex::getSymbolicSampleIneq(unsigned row) const {
356 SmallVector<MPInt, 8> sample = getSymbolicSampleNumerator(row);
357 // The inequality is equivalent to the GCD-normalized one.
358 normalizeRange(range: sample);
359 return sample;
360}
361
362void LexSimplexBase::appendSymbol() {
363 appendVariable();
364 swapColumns(i: 3 + nSymbol, j: getNumColumns() - 1);
365 var.back().isSymbol = true;
366 nSymbol++;
367}
368
369static bool isRangeDivisibleBy(ArrayRef<MPInt> range, const MPInt &divisor) {
370 assert(divisor > 0 && "divisor must be positive!");
371 return llvm::all_of(Range&: range,
372 P: [divisor](const MPInt &x) { return x % divisor == 0; });
373}
374
375bool SymbolicLexSimplex::isSymbolicSampleIntegral(unsigned row) const {
376 MPInt denom = tableau(row, 0);
377 return tableau(row, 1) % denom == 0 &&
378 isRangeDivisibleBy(range: tableau.getRow(row).slice(N: 3, M: nSymbol), divisor: denom);
379}
380
381/// This proceeds similarly to LexSimplexBase::addCut(). We are given a row that
382/// has a symbolic sample value with fractional coefficients.
383///
384/// Let the row be
385/// (c + coeffM*M + sum_i a_i*s_i + sum_j b_j*y_j)/d,
386/// where s_1, ... s_m are the symbols and
387/// y_1, ... y_n are the other basis unknowns.
388///
389/// As in LexSimplex::addCut, for this to be an integer, we want
390///
391/// coeffM*M + sum_j b_j*y_j = -c + sum_i (-a_i*s_i) (mod d)
392///
393/// This time, a_1*s_1 + ... + a_m*s_m may not be an integer. We find that
394///
395/// sum_i (b_i%d)y_i = ((-c%d) + sum_i (-a_i%d)s_i)%d + k*d for some integer k
396///
397/// where we take a modulo of the whole symbolic expression on the right to
398/// bring it into the range [0, d - 1]. Therefore, as in addCut(),
399/// k is the quotient on dividing the LHS by d, and since LHS >= 0, we have
400/// k >= 0 as well. If all the a_i are divisible by d, then we can add the
401/// constraint directly. Otherwise, we realize the modulo of the symbolic
402/// expression by adding a division variable
403///
404/// q = ((-c%d) + sum_i (-a_i%d)s_i)/d
405///
406/// to the symbol domain, so the equality becomes
407///
408/// sum_i (b_i%d)y_i = (-c%d) + sum_i (-a_i%d)s_i - q*d + k*d for some integer k
409///
410/// So the cut is
411/// (sum_i (b_i%d)y_i - (-c%d) - sum_i (-a_i%d)s_i + q*d)/d >= 0
412/// This constraint is violated when added so we immediately try to move it to a
413/// column.
414LogicalResult SymbolicLexSimplex::addSymbolicCut(unsigned row) {
415 MPInt d = tableau(row, 0);
416 if (isRangeDivisibleBy(range: tableau.getRow(row).slice(N: 3, M: nSymbol), divisor: d)) {
417 // The coefficients of symbols in the symbol numerator are divisible
418 // by the denominator, so we can add the constraint directly,
419 // i.e., ignore the symbols and add a regular cut as in addCut().
420 return addCut(row);
421 }
422
423 // Construct the division variable `q = ((-c%d) + sum_i (-a_i%d)s_i)/d`.
424 SmallVector<MPInt, 8> divCoeffs;
425 divCoeffs.reserve(N: nSymbol + 1);
426 MPInt divDenom = d;
427 for (unsigned col = 3; col < 3 + nSymbol; ++col)
428 divCoeffs.push_back(Elt: mod(lhs: -tableau(row, col), rhs: divDenom)); // (-a_i%d)s_i
429 divCoeffs.push_back(Elt: mod(lhs: -tableau(row, 1), rhs: divDenom)); // -c%d.
430 normalizeDiv(num: divCoeffs, denom&: divDenom);
431
432 domainSimplex.addDivisionVariable(coeffs: divCoeffs, denom: divDenom);
433 domainPoly.addLocalFloorDiv(dividend: divCoeffs, divisor: divDenom);
434
435 // Update `this` to account for the additional symbol we just added.
436 appendSymbol();
437
438 // Add the cut (sum_i (b_i%d)y_i - (-c%d) + sum_i -(-a_i%d)s_i + q*d)/d >= 0.
439 unsigned cutRow = addZeroRow(/*makeRestricted=*/true);
440 tableau(cutRow, 0) = d;
441 tableau(cutRow, 2) = 0;
442
443 tableau(cutRow, 1) = -mod(lhs: -tableau(row, 1), rhs: d); // -(-c%d).
444 for (unsigned col = 3; col < 3 + nSymbol - 1; ++col)
445 tableau(cutRow, col) = -mod(lhs: -tableau(row, col), rhs: d); // -(-a_i%d)s_i.
446 tableau(cutRow, 3 + nSymbol - 1) = d; // q*d.
447
448 for (unsigned col = 3 + nSymbol, e = getNumColumns(); col < e; ++col)
449 tableau(cutRow, col) = mod(lhs: tableau(row, col), rhs: d); // (b_i%d)y_i.
450 return moveRowUnknownToColumn(row: cutRow);
451}
452
453void SymbolicLexSimplex::recordOutput(SymbolicLexOpt &result) const {
454 IntMatrix output(0, domainPoly.getNumVars() + 1);
455 output.reserveRows(rows: result.lexopt.getNumOutputs());
456 for (const Unknown &u : var) {
457 if (u.isSymbol)
458 continue;
459
460 if (u.orientation == Orientation::Column) {
461 // M + u has a sample value of zero so u has a sample value of -M, i.e,
462 // unbounded.
463 result.unboundedDomain.unionInPlace(disjunct: domainPoly);
464 return;
465 }
466
467 MPInt denom = tableau(u.pos, 0);
468 if (tableau(u.pos, 2) < denom) {
469 // M + u has a sample value of fM + something, where f < 1, so
470 // u = (f - 1)M + something, which has a negative coefficient for M,
471 // and so is unbounded.
472 result.unboundedDomain.unionInPlace(disjunct: domainPoly);
473 return;
474 }
475 assert(tableau(u.pos, 2) == denom &&
476 "Coefficient of M should not be greater than 1!");
477
478 SmallVector<MPInt, 8> sample = getSymbolicSampleNumerator(row: u.pos);
479 for (MPInt &elem : sample) {
480 assert(elem % denom == 0 && "coefficients must be integral!");
481 elem /= denom;
482 }
483 output.appendExtraRow(elems: sample);
484 }
485
486 // Store the output in a MultiAffineFunction and add it the result.
487 PresburgerSpace funcSpace = result.lexopt.getSpace();
488 funcSpace.insertVar(kind: VarKind::Local, pos: 0, num: domainPoly.getNumLocalVars());
489
490 result.lexopt.addPiece(
491 piece: {.domain: PresburgerSet(domainPoly),
492 .output: MultiAffineFunction(funcSpace, output, domainPoly.getLocalReprs())});
493}
494
495std::optional<unsigned> SymbolicLexSimplex::maybeGetAlwaysViolatedRow() {
496 // First look for rows that are clearly violated just from the big M
497 // coefficient, without needing to perform any simplex queries on the domain.
498 for (unsigned row = 0, e = getNumRows(); row < e; ++row)
499 if (tableau(row, 2) < 0)
500 return row;
501
502 for (unsigned row = 0, e = getNumRows(); row < e; ++row) {
503 if (tableau(row, 2) > 0)
504 continue;
505 if (domainSimplex.isSeparateInequality(coeffs: getSymbolicSampleIneq(row))) {
506 // Sample numerator always takes negative values in the symbol domain.
507 return row;
508 }
509 }
510 return {};
511}
512
513std::optional<unsigned> SymbolicLexSimplex::maybeGetNonIntegralVarRow() {
514 for (const Unknown &u : var) {
515 if (u.orientation == Orientation::Column)
516 continue;
517 assert(!u.isSymbol && "Symbol should not be in row orientation!");
518 if (!isSymbolicSampleIntegral(row: u.pos))
519 return u.pos;
520 }
521 return {};
522}
523
524/// The non-branching pivots are just the ones moving the rows
525/// that are always violated in the symbol domain.
526LogicalResult SymbolicLexSimplex::doNonBranchingPivots() {
527 while (std::optional<unsigned> row = maybeGetAlwaysViolatedRow())
528 if (moveRowUnknownToColumn(row: *row).failed())
529 return failure();
530 return success();
531}
532
533SymbolicLexOpt SymbolicLexSimplex::computeSymbolicIntegerLexMin() {
534 SymbolicLexOpt result(PresburgerSpace::getRelationSpace(
535 /*numDomain=*/domainPoly.getNumDimVars(),
536 /*numRange=*/var.size() - nSymbol,
537 /*numSymbols=*/domainPoly.getNumSymbolVars()));
538
539 /// The algorithm is more naturally expressed recursively, but we implement
540 /// it iteratively here to avoid potential issues with stack overflows in the
541 /// compiler. We explicitly maintain the stack frames in a vector.
542 ///
543 /// To "recurse", we store the current "stack frame", i.e., state variables
544 /// that we will need when we "return", into `stack`, increment `level`, and
545 /// `continue`. To "tail recurse", we just `continue`.
546 /// To "return", we decrement `level` and `continue`.
547 ///
548 /// When there is no stack frame for the current `level`, this indicates that
549 /// we have just "recursed" or "tail recursed". When there does exist one,
550 /// this indicates that we have just "returned" from recursing. There is only
551 /// one point at which non-tail calls occur so we always "return" there.
552 unsigned level = 1;
553 struct StackFrame {
554 int splitIndex;
555 unsigned snapshot;
556 unsigned domainSnapshot;
557 IntegerRelation::CountsSnapshot domainPolyCounts;
558 };
559 SmallVector<StackFrame, 8> stack;
560
561 while (level > 0) {
562 assert(level >= stack.size());
563 if (level > stack.size()) {
564 if (empty || domainSimplex.findIntegerLexMin().isEmpty()) {
565 // No integer points; return.
566 --level;
567 continue;
568 }
569
570 if (doNonBranchingPivots().failed()) {
571 // Could not find pivots for violated constraints; return.
572 --level;
573 continue;
574 }
575
576 SmallVector<MPInt, 8> symbolicSample;
577 unsigned splitRow = 0;
578 for (unsigned e = getNumRows(); splitRow < e; ++splitRow) {
579 if (tableau(splitRow, 2) > 0)
580 continue;
581 assert(tableau(splitRow, 2) == 0 &&
582 "Non-branching pivots should have been handled already!");
583
584 symbolicSample = getSymbolicSampleIneq(row: splitRow);
585 if (domainSimplex.isRedundantInequality(coeffs: symbolicSample))
586 continue;
587
588 // It's neither redundant nor separate, so it takes both positive and
589 // negative values, and hence constitutes a row for which we need to
590 // split the domain and separately run each case.
591 assert(!domainSimplex.isSeparateInequality(symbolicSample) &&
592 "Non-branching pivots should have been handled already!");
593 break;
594 }
595
596 if (splitRow < getNumRows()) {
597 unsigned domainSnapshot = domainSimplex.getSnapshot();
598 IntegerRelation::CountsSnapshot domainPolyCounts =
599 domainPoly.getCounts();
600
601 // First, we consider the part of the domain where the row is not
602 // violated. We don't have to do any pivots for the row in this case,
603 // but we record the additional constraint that defines this part of
604 // the domain.
605 domainSimplex.addInequality(coeffs: symbolicSample);
606 domainPoly.addInequality(inEq: symbolicSample);
607
608 // Recurse.
609 //
610 // On return, the basis as a set is preserved but not the internal
611 // ordering within rows or columns. Thus, we take note of the index of
612 // the Unknown that caused the split, which may be in a different
613 // row when we come back from recursing. We will need this to recurse
614 // on the other part of the split domain, where the row is violated.
615 //
616 // Note that we have to capture the index above and not a reference to
617 // the Unknown itself, since the array it lives in might get
618 // reallocated.
619 int splitIndex = rowUnknown[splitRow];
620 unsigned snapshot = getSnapshot();
621 stack.push_back(
622 Elt: {.splitIndex: splitIndex, .snapshot: snapshot, .domainSnapshot: domainSnapshot, .domainPolyCounts: domainPolyCounts});
623 ++level;
624 continue;
625 }
626
627 // The tableau is rationally consistent for the current domain.
628 // Now we look for non-integral sample values and add cuts for them.
629 if (std::optional<unsigned> row = maybeGetNonIntegralVarRow()) {
630 if (addSymbolicCut(row: *row).failed()) {
631 // No integral points; return.
632 --level;
633 continue;
634 }
635
636 // Rerun this level with the added cut constraint (tail recurse).
637 continue;
638 }
639
640 // Record output and return.
641 recordOutput(result);
642 --level;
643 continue;
644 }
645
646 if (level == stack.size()) {
647 // We have "returned" from "recursing".
648 const StackFrame &frame = stack.back();
649 domainPoly.truncate(counts: frame.domainPolyCounts);
650 domainSimplex.rollback(snapshot: frame.domainSnapshot);
651 rollback(snapshot: frame.snapshot);
652 const Unknown &u = unknownFromIndex(index: frame.splitIndex);
653
654 // Drop the frame. We don't need it anymore.
655 stack.pop_back();
656
657 // Now we consider the part of the domain where the unknown `splitIndex`
658 // was negative.
659 assert(u.orientation == Orientation::Row &&
660 "The split row should have been returned to row orientation!");
661 SmallVector<MPInt, 8> splitIneq =
662 getComplementIneq(ineq: getSymbolicSampleIneq(row: u.pos));
663 normalizeRange(range: splitIneq);
664 if (moveRowUnknownToColumn(row: u.pos).failed()) {
665 // The unknown can't be made non-negative; return.
666 --level;
667 continue;
668 }
669
670 // The unknown can be made negative; recurse with the corresponding domain
671 // constraints.
672 domainSimplex.addInequality(coeffs: splitIneq);
673 domainPoly.addInequality(inEq: splitIneq);
674
675 // We are now taking care of the second half of the domain and we don't
676 // need to do anything else here after returning, so it's a tail recurse.
677 continue;
678 }
679 }
680
681 return result;
682}
683
684bool LexSimplex::rowIsViolated(unsigned row) const {
685 if (tableau(row, 2) < 0)
686 return true;
687 if (tableau(row, 2) == 0 && tableau(row, 1) < 0)
688 return true;
689 return false;
690}
691
692std::optional<unsigned> LexSimplex::maybeGetViolatedRow() const {
693 for (unsigned row = 0, e = getNumRows(); row < e; ++row)
694 if (rowIsViolated(row))
695 return row;
696 return {};
697}
698
699/// We simply look for violated rows and keep trying to move them to column
700/// orientation, which always succeeds unless the constraints have no solution
701/// in which case we just give up and return.
702LogicalResult LexSimplex::restoreRationalConsistency() {
703 if (empty)
704 return failure();
705 while (std::optional<unsigned> maybeViolatedRow = maybeGetViolatedRow())
706 if (moveRowUnknownToColumn(row: *maybeViolatedRow).failed())
707 return failure();
708 return success();
709}
710
711// Move the row unknown to column orientation while preserving lexicopositivity
712// of the basis transform. The sample value of the row must be non-positive.
713//
714// We only consider pivots where the pivot element is positive. Suppose no such
715// pivot exists, i.e., some violated row has no positive coefficient for any
716// basis unknown. The row can be represented as (s + c_1*u_1 + ... + c_n*u_n)/d,
717// where d is the denominator, s is the sample value and the c_i are the basis
718// coefficients. If s != 0, then since any feasible assignment of the basis
719// satisfies u_i >= 0 for all i, and we have s < 0 as well as c_i < 0 for all i,
720// any feasible assignment would violate this row and therefore the constraints
721// have no solution.
722//
723// We can preserve lexicopositivity by picking the pivot column with positive
724// pivot element that makes the lexicographically smallest change to the sample
725// point.
726//
727// Proof. Let
728// x = (x_1, ... x_n) be the variables,
729// z = (z_1, ... z_m) be the constraints,
730// y = (y_1, ... y_n) be the current basis, and
731// define w = (x_1, ... x_n, z_1, ... z_m) = B*y + s.
732// B is basically the simplex tableau of our implementation except that instead
733// of only describing the transform to get back the non-basis unknowns, it
734// defines the values of all the unknowns in terms of the basis unknowns.
735// Similarly, s is the column for the sample value.
736//
737// Our goal is to show that each column in B, restricted to the first n
738// rows, is lexicopositive after the pivot if it is so before. This is
739// equivalent to saying the columns in the whole matrix are lexicopositive;
740// there must be some non-zero element in every column in the first n rows since
741// the n variables cannot be spanned without using all the n basis unknowns.
742//
743// Consider a pivot where z_i replaces y_j in the basis. Recall the pivot
744// transform for the tableau derived for SimplexBase::pivot:
745//
746// pivot col other col pivot col other col
747// pivot row a b -> pivot row 1/a -b/a
748// other row c d other row c/a d - bc/a
749//
750// Similarly, a pivot results in B changing to B' and c to c'; the difference
751// between the tableau and these matrices B and B' is that there is no special
752// case for the pivot row, since it continues to represent the same unknown. The
753// same formula applies for all rows:
754//
755// B'.col(j) = B.col(j) / B(i,j)
756// B'.col(k) = B.col(k) - B(i,k) * B.col(j) / B(i,j) for k != j
757// and similarly, s' = s - s_i * B.col(j) / B(i,j).
758//
759// If s_i == 0, then the sample value remains unchanged. Otherwise, if s_i < 0,
760// the change in sample value when pivoting with column a is lexicographically
761// smaller than that when pivoting with column b iff B.col(a) / B(i, a) is
762// lexicographically smaller than B.col(b) / B(i, b).
763//
764// Since B(i, j) > 0, column j remains lexicopositive.
765//
766// For the other columns, suppose C.col(k) is not lexicopositive.
767// This means that for some p, for all t < p,
768// C(t,k) = 0 => B(t,k) = B(t,j) * B(i,k) / B(i,j) and
769// C(t,k) < 0 => B(p,k) < B(t,j) * B(i,k) / B(i,j),
770// which is in contradiction to the fact that B.col(j) / B(i,j) must be
771// lexicographically smaller than B.col(k) / B(i,k), since it lexicographically
772// minimizes the change in sample value.
773LogicalResult LexSimplexBase::moveRowUnknownToColumn(unsigned row) {
774 std::optional<unsigned> maybeColumn;
775 for (unsigned col = 3 + nSymbol, e = getNumColumns(); col < e; ++col) {
776 if (tableau(row, col) <= 0)
777 continue;
778 maybeColumn =
779 !maybeColumn ? col : getLexMinPivotColumn(row, colA: *maybeColumn, colB: col);
780 }
781
782 if (!maybeColumn)
783 return failure();
784
785 pivot(row, col: *maybeColumn);
786 return success();
787}
788
789unsigned LexSimplexBase::getLexMinPivotColumn(unsigned row, unsigned colA,
790 unsigned colB) const {
791 // First, let's consider the non-symbolic case.
792 // A pivot causes the following change. (in the diagram the matrix elements
793 // are shown as rationals and there is no common denominator used)
794 //
795 // pivot col big M col const col
796 // pivot row a p b
797 // other row c q d
798 // |
799 // v
800 //
801 // pivot col big M col const col
802 // pivot row 1/a -p/a -b/a
803 // other row c/a q - pc/a d - bc/a
804 //
805 // Let the sample value of the pivot row be s = pM + b before the pivot. Since
806 // the pivot row represents a violated constraint we know that s < 0.
807 //
808 // If the variable is a non-pivot column, its sample value is zero before and
809 // after the pivot.
810 //
811 // If the variable is the pivot column, then its sample value goes from 0 to
812 // (-p/a)M + (-b/a), i.e. 0 to -(pM + b)/a. Thus the change in the sample
813 // value is -s/a.
814 //
815 // If the variable is the pivot row, its sample value goes from s to 0, for a
816 // change of -s.
817 //
818 // If the variable is a non-pivot row, its sample value changes from
819 // qM + d to qM + d + (-pc/a)M + (-bc/a). Thus the change in sample value
820 // is -(pM + b)(c/a) = -sc/a.
821 //
822 // Thus the change in sample value is either 0, -s/a, -s, or -sc/a. Here -s is
823 // fixed for all calls to this function since the row and tableau are fixed.
824 // The callee just wants to compare the return values with the return value of
825 // other invocations of the same function. So the -s is common for all
826 // comparisons involved and can be ignored, since -s is strictly positive.
827 //
828 // Thus we take away this common factor and just return 0, 1/a, 1, or c/a as
829 // appropriate. This allows us to run the entire algorithm treating M
830 // symbolically, as the pivot to be performed does not depend on the value
831 // of M, so long as the sample value s is negative. Note that this is not
832 // because of any special feature of M; by the same argument, we ignore the
833 // symbols too. The caller ensure that the sample value s is negative for
834 // all possible values of the symbols.
835 auto getSampleChangeCoeffForVar = [this, row](unsigned col,
836 const Unknown &u) -> Fraction {
837 MPInt a = tableau(row, col);
838 if (u.orientation == Orientation::Column) {
839 // Pivot column case.
840 if (u.pos == col)
841 return {1, a};
842
843 // Non-pivot column case.
844 return {0, 1};
845 }
846
847 // Pivot row case.
848 if (u.pos == row)
849 return {1, 1};
850
851 // Non-pivot row case.
852 MPInt c = tableau(u.pos, col);
853 return {c, a};
854 };
855
856 for (const Unknown &u : var) {
857 Fraction changeA = getSampleChangeCoeffForVar(colA, u);
858 Fraction changeB = getSampleChangeCoeffForVar(colB, u);
859 if (changeA < changeB)
860 return colA;
861 if (changeA > changeB)
862 return colB;
863 }
864
865 // If we reached here, both result in exactly the same changes, so it
866 // doesn't matter which we return.
867 return colA;
868}
869
870/// Find a pivot to change the sample value of the row in the specified
871/// direction. The returned pivot row will involve `row` if and only if the
872/// unknown is unbounded in the specified direction.
873///
874/// To increase (resp. decrease) the value of a row, we need to find a live
875/// column with a non-zero coefficient. If the coefficient is positive, we need
876/// to increase (decrease) the value of the column, and if the coefficient is
877/// negative, we need to decrease (increase) the value of the column. Also,
878/// we cannot decrease the sample value of restricted columns.
879///
880/// If multiple columns are valid, we break ties by considering a lexicographic
881/// ordering where we prefer unknowns with lower index.
882std::optional<SimplexBase::Pivot>
883Simplex::findPivot(int row, Direction direction) const {
884 std::optional<unsigned> col;
885 for (unsigned j = 2, e = getNumColumns(); j < e; ++j) {
886 MPInt elem = tableau(row, j);
887 if (elem == 0)
888 continue;
889
890 if (unknownFromColumn(col: j).restricted &&
891 !signMatchesDirection(elem, direction))
892 continue;
893 if (!col || colUnknown[j] < colUnknown[*col])
894 col = j;
895 }
896
897 if (!col)
898 return {};
899
900 Direction newDirection =
901 tableau(row, *col) < 0 ? flippedDirection(direction) : direction;
902 std::optional<unsigned> maybePivotRow = findPivotRow(skipRow: row, direction: newDirection, col: *col);
903 return Pivot{.row: maybePivotRow.value_or(u&: row), .column: *col};
904}
905
906/// Swap the associated unknowns for the row and the column.
907///
908/// First we swap the index associated with the row and column. Then we update
909/// the unknowns to reflect their new position and orientation.
910void SimplexBase::swapRowWithCol(unsigned row, unsigned col) {
911 std::swap(a&: rowUnknown[row], b&: colUnknown[col]);
912 Unknown &uCol = unknownFromColumn(col);
913 Unknown &uRow = unknownFromRow(row);
914 uCol.orientation = Orientation::Column;
915 uRow.orientation = Orientation::Row;
916 uCol.pos = col;
917 uRow.pos = row;
918}
919
920void SimplexBase::pivot(Pivot pair) { pivot(row: pair.row, col: pair.column); }
921
922/// Pivot pivotRow and pivotCol.
923///
924/// Let R be the pivot row unknown and let C be the pivot col unknown.
925/// Since initially R = a*C + sum b_i * X_i
926/// (where the sum is over the other column's unknowns, x_i)
927/// C = (R - (sum b_i * X_i))/a
928///
929/// Let u be some other row unknown.
930/// u = c*C + sum d_i * X_i
931/// So u = c*(R - sum b_i * X_i)/a + sum d_i * X_i
932///
933/// This results in the following transform:
934/// pivot col other col pivot col other col
935/// pivot row a b -> pivot row 1/a -b/a
936/// other row c d other row c/a d - bc/a
937///
938/// Taking into account the common denominators p and q:
939///
940/// pivot col other col pivot col other col
941/// pivot row a/p b/p -> pivot row p/a -b/a
942/// other row c/q d/q other row cp/aq (da - bc)/aq
943///
944/// The pivot row transform is accomplished be swapping a with the pivot row's
945/// common denominator and negating the pivot row except for the pivot column
946/// element.
947void SimplexBase::pivot(unsigned pivotRow, unsigned pivotCol) {
948 assert(pivotCol >= getNumFixedCols() && "Refusing to pivot invalid column");
949 assert(!unknownFromColumn(pivotCol).isSymbol);
950
951 swapRowWithCol(row: pivotRow, col: pivotCol);
952 std::swap(a&: tableau(pivotRow, 0), b&: tableau(pivotRow, pivotCol));
953 // We need to negate the whole pivot row except for the pivot column.
954 if (tableau(pivotRow, 0) < 0) {
955 // If the denominator is negative, we negate the row by simply negating the
956 // denominator.
957 tableau(pivotRow, 0) = -tableau(pivotRow, 0);
958 tableau(pivotRow, pivotCol) = -tableau(pivotRow, pivotCol);
959 } else {
960 for (unsigned col = 1, e = getNumColumns(); col < e; ++col) {
961 if (col == pivotCol)
962 continue;
963 tableau(pivotRow, col) = -tableau(pivotRow, col);
964 }
965 }
966 tableau.normalizeRow(row: pivotRow);
967
968 for (unsigned row = 0, numRows = getNumRows(); row < numRows; ++row) {
969 if (row == pivotRow)
970 continue;
971 if (tableau(row, pivotCol) == 0) // Nothing to do.
972 continue;
973 tableau(row, 0) *= tableau(pivotRow, 0);
974 for (unsigned col = 1, numCols = getNumColumns(); col < numCols; ++col) {
975 if (col == pivotCol)
976 continue;
977 // Add rather than subtract because the pivot row has been negated.
978 tableau(row, col) = tableau(row, col) * tableau(pivotRow, 0) +
979 tableau(row, pivotCol) * tableau(pivotRow, col);
980 }
981 tableau(row, pivotCol) *= tableau(pivotRow, pivotCol);
982 tableau.normalizeRow(row);
983 }
984}
985
986/// Perform pivots until the unknown has a non-negative sample value or until
987/// no more upward pivots can be performed. Return success if we were able to
988/// bring the row to a non-negative sample value, and failure otherwise.
989LogicalResult Simplex::restoreRow(Unknown &u) {
990 assert(u.orientation == Orientation::Row &&
991 "unknown should be in row position");
992
993 while (tableau(u.pos, 1) < 0) {
994 std::optional<Pivot> maybePivot = findPivot(row: u.pos, direction: Direction::Up);
995 if (!maybePivot)
996 break;
997
998 pivot(pair: *maybePivot);
999 if (u.orientation == Orientation::Column)
1000 return success(); // the unknown is unbounded above.
1001 }
1002 return success(isSuccess: tableau(u.pos, 1) >= 0);
1003}
1004
1005/// Find a row that can be used to pivot the column in the specified direction.
1006/// This returns an empty optional if and only if the column is unbounded in the
1007/// specified direction (ignoring skipRow, if skipRow is set).
1008///
1009/// If skipRow is set, this row is not considered, and (if it is restricted) its
1010/// restriction may be violated by the returned pivot. Usually, skipRow is set
1011/// because we don't want to move it to column position unless it is unbounded,
1012/// and we are either trying to increase the value of skipRow or explicitly
1013/// trying to make skipRow negative, so we are not concerned about this.
1014///
1015/// If the direction is up (resp. down) and a restricted row has a negative
1016/// (positive) coefficient for the column, then this row imposes a bound on how
1017/// much the sample value of the column can change. Such a row with constant
1018/// term c and coefficient f for the column imposes a bound of c/|f| on the
1019/// change in sample value (in the specified direction). (note that c is
1020/// non-negative here since the row is restricted and the tableau is consistent)
1021///
1022/// We iterate through the rows and pick the row which imposes the most
1023/// stringent bound, since pivoting with a row changes the row's sample value to
1024/// 0 and hence saturates the bound it imposes. We break ties between rows that
1025/// impose the same bound by considering a lexicographic ordering where we
1026/// prefer unknowns with lower index value.
1027std::optional<unsigned> Simplex::findPivotRow(std::optional<unsigned> skipRow,
1028 Direction direction,
1029 unsigned col) const {
1030 std::optional<unsigned> retRow;
1031 // Initialize these to zero in order to silence a warning about retElem and
1032 // retConst being used uninitialized in the initialization of `diff` below. In
1033 // reality, these are always initialized when that line is reached since these
1034 // are set whenever retRow is set.
1035 MPInt retElem, retConst;
1036 for (unsigned row = nRedundant, e = getNumRows(); row < e; ++row) {
1037 if (skipRow && row == *skipRow)
1038 continue;
1039 MPInt elem = tableau(row, col);
1040 if (elem == 0)
1041 continue;
1042 if (!unknownFromRow(row).restricted)
1043 continue;
1044 if (signMatchesDirection(elem, direction))
1045 continue;
1046 MPInt constTerm = tableau(row, 1);
1047
1048 if (!retRow) {
1049 retRow = row;
1050 retElem = elem;
1051 retConst = constTerm;
1052 continue;
1053 }
1054
1055 MPInt diff = retConst * elem - constTerm * retElem;
1056 if ((diff == 0 && rowUnknown[row] < rowUnknown[*retRow]) ||
1057 (diff != 0 && !signMatchesDirection(elem: diff, direction))) {
1058 retRow = row;
1059 retElem = elem;
1060 retConst = constTerm;
1061 }
1062 }
1063 return retRow;
1064}
1065
1066bool SimplexBase::isEmpty() const { return empty; }
1067
1068void SimplexBase::swapRows(unsigned i, unsigned j) {
1069 if (i == j)
1070 return;
1071 tableau.swapRows(row: i, otherRow: j);
1072 std::swap(a&: rowUnknown[i], b&: rowUnknown[j]);
1073 unknownFromRow(row: i).pos = i;
1074 unknownFromRow(row: j).pos = j;
1075}
1076
1077void SimplexBase::swapColumns(unsigned i, unsigned j) {
1078 assert(i < getNumColumns() && j < getNumColumns() &&
1079 "Invalid columns provided!");
1080 if (i == j)
1081 return;
1082 tableau.swapColumns(column: i, otherColumn: j);
1083 std::swap(a&: colUnknown[i], b&: colUnknown[j]);
1084 unknownFromColumn(col: i).pos = i;
1085 unknownFromColumn(col: j).pos = j;
1086}
1087
1088/// Mark this tableau empty and push an entry to the undo stack.
1089void SimplexBase::markEmpty() {
1090 // If the set is already empty, then we shouldn't add another UnmarkEmpty log
1091 // entry, since in that case the Simplex will be erroneously marked as
1092 // non-empty when rolling back past this point.
1093 if (empty)
1094 return;
1095 undoLog.push_back(Elt: UndoLogEntry::UnmarkEmpty);
1096 empty = true;
1097}
1098
1099/// Add an inequality to the tableau. If coeffs is c_0, c_1, ... c_n, where n
1100/// is the current number of variables, then the corresponding inequality is
1101/// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} >= 0.
1102///
1103/// We add the inequality and mark it as restricted. We then try to make its
1104/// sample value non-negative. If this is not possible, the tableau has become
1105/// empty and we mark it as such.
1106void Simplex::addInequality(ArrayRef<MPInt> coeffs) {
1107 unsigned conIndex = addRow(coeffs, /*makeRestricted=*/true);
1108 LogicalResult result = restoreRow(u&: con[conIndex]);
1109 if (failed(result))
1110 markEmpty();
1111}
1112
1113/// Add an equality to the tableau. If coeffs is c_0, c_1, ... c_n, where n
1114/// is the current number of variables, then the corresponding equality is
1115/// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} == 0.
1116///
1117/// We simply add two opposing inequalities, which force the expression to
1118/// be zero.
1119void SimplexBase::addEquality(ArrayRef<MPInt> coeffs) {
1120 addInequality(coeffs);
1121 SmallVector<MPInt, 8> negatedCoeffs;
1122 for (const MPInt &coeff : coeffs)
1123 negatedCoeffs.emplace_back(Args: -coeff);
1124 addInequality(coeffs: negatedCoeffs);
1125}
1126
1127unsigned SimplexBase::getNumVariables() const { return var.size(); }
1128unsigned SimplexBase::getNumConstraints() const { return con.size(); }
1129
1130/// Return a snapshot of the current state. This is just the current size of the
1131/// undo log.
1132unsigned SimplexBase::getSnapshot() const { return undoLog.size(); }
1133
1134unsigned SimplexBase::getSnapshotBasis() {
1135 SmallVector<int, 8> basis;
1136 for (int index : colUnknown) {
1137 if (index != nullIndex)
1138 basis.push_back(Elt: index);
1139 }
1140 savedBases.push_back(Elt: std::move(basis));
1141
1142 undoLog.emplace_back(Args: UndoLogEntry::RestoreBasis);
1143 return undoLog.size() - 1;
1144}
1145
1146void SimplexBase::removeLastConstraintRowOrientation() {
1147 assert(con.back().orientation == Orientation::Row);
1148
1149 // Move this unknown to the last row and remove the last row from the
1150 // tableau.
1151 swapRows(i: con.back().pos, j: getNumRows() - 1);
1152 // It is not strictly necessary to shrink the tableau, but for now we
1153 // maintain the invariant that the tableau has exactly getNumRows()
1154 // rows.
1155 tableau.resizeVertically(newNRows: getNumRows() - 1);
1156 rowUnknown.pop_back();
1157 con.pop_back();
1158}
1159
1160// This doesn't find a pivot row only if the column has zero
1161// coefficients for every row.
1162//
1163// If the unknown is a constraint, this can't happen, since it was added
1164// initially as a row. Such a row could never have been pivoted to a column. So
1165// a pivot row will always be found if we have a constraint.
1166//
1167// If we have a variable, then the column has zero coefficients for every row
1168// iff no constraints have been added with a non-zero coefficient for this row.
1169std::optional<unsigned> SimplexBase::findAnyPivotRow(unsigned col) {
1170 for (unsigned row = nRedundant, e = getNumRows(); row < e; ++row)
1171 if (tableau(row, col) != 0)
1172 return row;
1173 return {};
1174}
1175
1176// It's not valid to remove the constraint by deleting the column since this
1177// would result in an invalid basis.
1178void Simplex::undoLastConstraint() {
1179 if (con.back().orientation == Orientation::Column) {
1180 // We try to find any pivot row for this column that preserves tableau
1181 // consistency (except possibly the column itself, which is going to be
1182 // deallocated anyway).
1183 //
1184 // If no pivot row is found in either direction, then the unknown is
1185 // unbounded in both directions and we are free to perform any pivot at
1186 // all. To do this, we just need to find any row with a non-zero
1187 // coefficient for the column. findAnyPivotRow will always be able to
1188 // find such a row for a constraint.
1189 unsigned column = con.back().pos;
1190 if (std::optional<unsigned> maybeRow =
1191 findPivotRow(skipRow: {}, direction: Direction::Up, col: column)) {
1192 pivot(pivotRow: *maybeRow, pivotCol: column);
1193 } else if (std::optional<unsigned> maybeRow =
1194 findPivotRow(skipRow: {}, direction: Direction::Down, col: column)) {
1195 pivot(pivotRow: *maybeRow, pivotCol: column);
1196 } else {
1197 std::optional<unsigned> row = findAnyPivotRow(col: column);
1198 assert(row && "Pivot should always exist for a constraint!");
1199 pivot(pivotRow: *row, pivotCol: column);
1200 }
1201 }
1202 removeLastConstraintRowOrientation();
1203}
1204
1205// It's not valid to remove the constraint by deleting the column since this
1206// would result in an invalid basis.
1207void LexSimplexBase::undoLastConstraint() {
1208 if (con.back().orientation == Orientation::Column) {
1209 // When removing the last constraint during a rollback, we just need to find
1210 // any pivot at all, i.e., any row with non-zero coefficient for the
1211 // column, because when rolling back a lexicographic simplex, we always
1212 // end by restoring the exact basis that was present at the time of the
1213 // snapshot, so what pivots we perform while undoing doesn't matter as
1214 // long as we get the unknown to row orientation and remove it.
1215 unsigned column = con.back().pos;
1216 std::optional<unsigned> row = findAnyPivotRow(col: column);
1217 assert(row && "Pivot should always exist for a constraint!");
1218 pivot(pivotRow: *row, pivotCol: column);
1219 }
1220 removeLastConstraintRowOrientation();
1221}
1222
1223void SimplexBase::undo(UndoLogEntry entry) {
1224 if (entry == UndoLogEntry::RemoveLastConstraint) {
1225 // Simplex and LexSimplex handle this differently, so we call out to a
1226 // virtual function to handle this.
1227 undoLastConstraint();
1228 } else if (entry == UndoLogEntry::RemoveLastVariable) {
1229 // Whenever we are rolling back the addition of a variable, it is guaranteed
1230 // that the variable will be in column position.
1231 //
1232 // We can see this as follows: any constraint that depends on this variable
1233 // was added after this variable was added, so the addition of such
1234 // constraints should already have been rolled back by the time we get to
1235 // rolling back the addition of the variable. Therefore, no constraint
1236 // currently has a component along the variable, so the variable itself must
1237 // be part of the basis.
1238 assert(var.back().orientation == Orientation::Column &&
1239 "Variable to be removed must be in column orientation!");
1240
1241 if (var.back().isSymbol)
1242 nSymbol--;
1243
1244 // Move this variable to the last column and remove the column from the
1245 // tableau.
1246 swapColumns(i: var.back().pos, j: getNumColumns() - 1);
1247 tableau.resizeHorizontally(newNColumns: getNumColumns() - 1);
1248 var.pop_back();
1249 colUnknown.pop_back();
1250 } else if (entry == UndoLogEntry::UnmarkEmpty) {
1251 empty = false;
1252 } else if (entry == UndoLogEntry::UnmarkLastRedundant) {
1253 nRedundant--;
1254 } else if (entry == UndoLogEntry::RestoreBasis) {
1255 assert(!savedBases.empty() && "No bases saved!");
1256
1257 SmallVector<int, 8> basis = std::move(savedBases.back());
1258 savedBases.pop_back();
1259
1260 for (int index : basis) {
1261 Unknown &u = unknownFromIndex(index);
1262 if (u.orientation == Orientation::Column)
1263 continue;
1264 for (unsigned col = getNumFixedCols(), e = getNumColumns(); col < e;
1265 col++) {
1266 assert(colUnknown[col] != nullIndex &&
1267 "Column should not be a fixed column!");
1268 if (llvm::is_contained(Range&: basis, Element: colUnknown[col]))
1269 continue;
1270 if (tableau(u.pos, col) == 0)
1271 continue;
1272 pivot(pivotRow: u.pos, pivotCol: col);
1273 break;
1274 }
1275
1276 assert(u.orientation == Orientation::Column && "No pivot found!");
1277 }
1278 }
1279}
1280
1281/// Rollback to the specified snapshot.
1282///
1283/// We undo all the log entries until the log size when the snapshot was taken
1284/// is reached.
1285void SimplexBase::rollback(unsigned snapshot) {
1286 while (undoLog.size() > snapshot) {
1287 undo(entry: undoLog.back());
1288 undoLog.pop_back();
1289 }
1290}
1291
1292/// We add the usual floor division constraints:
1293/// `0 <= coeffs - denom*q <= denom - 1`, where `q` is the new division
1294/// variable.
1295///
1296/// This constrains the remainder `coeffs - denom*q` to be in the
1297/// range `[0, denom - 1]`, which fixes the integer value of the quotient `q`.
1298void SimplexBase::addDivisionVariable(ArrayRef<MPInt> coeffs,
1299 const MPInt &denom) {
1300 assert(denom > 0 && "Denominator must be positive!");
1301 appendVariable();
1302
1303 SmallVector<MPInt, 8> ineq(coeffs.begin(), coeffs.end());
1304 MPInt constTerm = ineq.back();
1305 ineq.back() = -denom;
1306 ineq.push_back(Elt: constTerm);
1307 addInequality(coeffs: ineq);
1308
1309 for (MPInt &coeff : ineq)
1310 coeff = -coeff;
1311 ineq.back() += denom - 1;
1312 addInequality(coeffs: ineq);
1313}
1314
1315void SimplexBase::appendVariable(unsigned count) {
1316 if (count == 0)
1317 return;
1318 var.reserve(N: var.size() + count);
1319 colUnknown.reserve(N: colUnknown.size() + count);
1320 for (unsigned i = 0; i < count; ++i) {
1321 var.emplace_back(Args: Orientation::Column, /*restricted=*/Args: false,
1322 /*pos=*/Args: getNumColumns() + i);
1323 colUnknown.push_back(Elt: var.size() - 1);
1324 }
1325 tableau.resizeHorizontally(newNColumns: getNumColumns() + count);
1326 undoLog.insert(I: undoLog.end(), NumToInsert: count, Elt: UndoLogEntry::RemoveLastVariable);
1327}
1328
1329/// Add all the constraints from the given IntegerRelation.
1330void SimplexBase::intersectIntegerRelation(const IntegerRelation &rel) {
1331 assert(rel.getNumVars() == getNumVariables() &&
1332 "IntegerRelation must have same dimensionality as simplex");
1333 for (unsigned i = 0, e = rel.getNumInequalities(); i < e; ++i)
1334 addInequality(coeffs: rel.getInequality(idx: i));
1335 for (unsigned i = 0, e = rel.getNumEqualities(); i < e; ++i)
1336 addEquality(coeffs: rel.getEquality(idx: i));
1337}
1338
1339MaybeOptimum<Fraction> Simplex::computeRowOptimum(Direction direction,
1340 unsigned row) {
1341 // Keep trying to find a pivot for the row in the specified direction.
1342 while (std::optional<Pivot> maybePivot = findPivot(row, direction)) {
1343 // If findPivot returns a pivot involving the row itself, then the optimum
1344 // is unbounded, so we return std::nullopt.
1345 if (maybePivot->row == row)
1346 return OptimumKind::Unbounded;
1347 pivot(pair: *maybePivot);
1348 }
1349
1350 // The row has reached its optimal sample value, which we return.
1351 // The sample value is the entry in the constant column divided by the common
1352 // denominator for this row.
1353 return Fraction(tableau(row, 1), tableau(row, 0));
1354}
1355
1356/// Compute the optimum of the specified expression in the specified direction,
1357/// or std::nullopt if it is unbounded.
1358MaybeOptimum<Fraction> Simplex::computeOptimum(Direction direction,
1359 ArrayRef<MPInt> coeffs) {
1360 if (empty)
1361 return OptimumKind::Empty;
1362
1363 SimplexRollbackScopeExit scopeExit(*this);
1364 unsigned conIndex = addRow(coeffs);
1365 unsigned row = con[conIndex].pos;
1366 return computeRowOptimum(direction, row);
1367}
1368
1369MaybeOptimum<Fraction> Simplex::computeOptimum(Direction direction,
1370 Unknown &u) {
1371 if (empty)
1372 return OptimumKind::Empty;
1373 if (u.orientation == Orientation::Column) {
1374 unsigned column = u.pos;
1375 std::optional<unsigned> pivotRow = findPivotRow(skipRow: {}, direction, col: column);
1376 // If no pivot is returned, the constraint is unbounded in the specified
1377 // direction.
1378 if (!pivotRow)
1379 return OptimumKind::Unbounded;
1380 pivot(pivotRow: *pivotRow, pivotCol: column);
1381 }
1382
1383 unsigned row = u.pos;
1384 MaybeOptimum<Fraction> optimum = computeRowOptimum(direction, row);
1385 if (u.restricted && direction == Direction::Down &&
1386 (optimum.isUnbounded() || *optimum < Fraction(0, 1))) {
1387 if (failed(result: restoreRow(u)))
1388 llvm_unreachable("Could not restore row!");
1389 }
1390 return optimum;
1391}
1392
1393bool Simplex::isBoundedAlongConstraint(unsigned constraintIndex) {
1394 assert(!empty && "It is not meaningful to ask whether a direction is bounded "
1395 "in an empty set.");
1396 // The constraint's perpendicular is already bounded below, since it is a
1397 // constraint. If it is also bounded above, we can return true.
1398 return computeOptimum(direction: Direction::Up, u&: con[constraintIndex]).isBounded();
1399}
1400
1401/// Redundant constraints are those that are in row orientation and lie in
1402/// rows 0 to nRedundant - 1.
1403bool Simplex::isMarkedRedundant(unsigned constraintIndex) const {
1404 const Unknown &u = con[constraintIndex];
1405 return u.orientation == Orientation::Row && u.pos < nRedundant;
1406}
1407
1408/// Mark the specified row redundant.
1409///
1410/// This is done by moving the unknown to the end of the block of redundant
1411/// rows (namely, to row nRedundant) and incrementing nRedundant to
1412/// accomodate the new redundant row.
1413void Simplex::markRowRedundant(Unknown &u) {
1414 assert(u.orientation == Orientation::Row &&
1415 "Unknown should be in row position!");
1416 assert(u.pos >= nRedundant && "Unknown is already marked redundant!");
1417 swapRows(i: u.pos, j: nRedundant);
1418 ++nRedundant;
1419 undoLog.emplace_back(Args: UndoLogEntry::UnmarkLastRedundant);
1420}
1421
1422/// Find a subset of constraints that is redundant and mark them redundant.
1423void Simplex::detectRedundant(unsigned offset, unsigned count) {
1424 assert(offset + count <= con.size() && "invalid range!");
1425 // It is not meaningful to talk about redundancy for empty sets.
1426 if (empty)
1427 return;
1428
1429 // Iterate through the constraints and check for each one if it can attain
1430 // negative sample values. If it can, it's not redundant. Otherwise, it is.
1431 // We mark redundant constraints redundant.
1432 //
1433 // Constraints that get marked redundant in one iteration are not respected
1434 // when checking constraints in later iterations. This prevents, for example,
1435 // two identical constraints both being marked redundant since each is
1436 // redundant given the other one. In this example, only the first of the
1437 // constraints that is processed will get marked redundant, as it should be.
1438 for (unsigned i = 0; i < count; ++i) {
1439 Unknown &u = con[offset + i];
1440 if (u.orientation == Orientation::Column) {
1441 unsigned column = u.pos;
1442 std::optional<unsigned> pivotRow =
1443 findPivotRow(skipRow: {}, direction: Direction::Down, col: column);
1444 // If no downward pivot is returned, the constraint is unbounded below
1445 // and hence not redundant.
1446 if (!pivotRow)
1447 continue;
1448 pivot(pivotRow: *pivotRow, pivotCol: column);
1449 }
1450
1451 unsigned row = u.pos;
1452 MaybeOptimum<Fraction> minimum = computeRowOptimum(direction: Direction::Down, row);
1453 if (minimum.isUnbounded() || *minimum < Fraction(0, 1)) {
1454 // Constraint is unbounded below or can attain negative sample values and
1455 // hence is not redundant.
1456 if (failed(result: restoreRow(u)))
1457 llvm_unreachable("Could not restore non-redundant row!");
1458 continue;
1459 }
1460
1461 markRowRedundant(u);
1462 }
1463}
1464
1465bool Simplex::isUnbounded() {
1466 if (empty)
1467 return false;
1468
1469 SmallVector<MPInt, 8> dir(var.size() + 1);
1470 for (unsigned i = 0; i < var.size(); ++i) {
1471 dir[i] = 1;
1472
1473 if (computeOptimum(direction: Direction::Up, coeffs: dir).isUnbounded())
1474 return true;
1475
1476 if (computeOptimum(direction: Direction::Down, coeffs: dir).isUnbounded())
1477 return true;
1478
1479 dir[i] = 0;
1480 }
1481 return false;
1482}
1483
1484/// Make a tableau to represent a pair of points in the original tableau.
1485///
1486/// The product constraints and variables are stored as: first A's, then B's.
1487///
1488/// The product tableau has row layout:
1489/// A's redundant rows, B's redundant rows, A's other rows, B's other rows.
1490///
1491/// It has column layout:
1492/// denominator, constant, A's columns, B's columns.
1493Simplex Simplex::makeProduct(const Simplex &a, const Simplex &b) {
1494 unsigned numVar = a.getNumVariables() + b.getNumVariables();
1495 unsigned numCon = a.getNumConstraints() + b.getNumConstraints();
1496 Simplex result(numVar);
1497
1498 result.tableau.reserveRows(rows: numCon);
1499 result.empty = a.empty || b.empty;
1500
1501 auto concat = [](ArrayRef<Unknown> v, ArrayRef<Unknown> w) {
1502 SmallVector<Unknown, 8> result;
1503 result.reserve(N: v.size() + w.size());
1504 result.insert(I: result.end(), From: v.begin(), To: v.end());
1505 result.insert(I: result.end(), From: w.begin(), To: w.end());
1506 return result;
1507 };
1508 result.con = concat(a.con, b.con);
1509 result.var = concat(a.var, b.var);
1510
1511 auto indexFromBIndex = [&](int index) {
1512 return index >= 0 ? a.getNumVariables() + index
1513 : ~(a.getNumConstraints() + ~index);
1514 };
1515
1516 result.colUnknown.assign(NumElts: 2, Elt: nullIndex);
1517 for (unsigned i = 2, e = a.getNumColumns(); i < e; ++i) {
1518 result.colUnknown.push_back(Elt: a.colUnknown[i]);
1519 result.unknownFromIndex(index: result.colUnknown.back()).pos =
1520 result.colUnknown.size() - 1;
1521 }
1522 for (unsigned i = 2, e = b.getNumColumns(); i < e; ++i) {
1523 result.colUnknown.push_back(Elt: indexFromBIndex(b.colUnknown[i]));
1524 result.unknownFromIndex(index: result.colUnknown.back()).pos =
1525 result.colUnknown.size() - 1;
1526 }
1527
1528 auto appendRowFromA = [&](unsigned row) {
1529 unsigned resultRow = result.tableau.appendExtraRow();
1530 for (unsigned col = 0, e = a.getNumColumns(); col < e; ++col)
1531 result.tableau(resultRow, col) = a.tableau(row, col);
1532 result.rowUnknown.push_back(Elt: a.rowUnknown[row]);
1533 result.unknownFromIndex(index: result.rowUnknown.back()).pos =
1534 result.rowUnknown.size() - 1;
1535 };
1536
1537 // Also fixes the corresponding entry in rowUnknown and var/con (as the case
1538 // may be).
1539 auto appendRowFromB = [&](unsigned row) {
1540 unsigned resultRow = result.tableau.appendExtraRow();
1541 result.tableau(resultRow, 0) = b.tableau(row, 0);
1542 result.tableau(resultRow, 1) = b.tableau(row, 1);
1543
1544 unsigned offset = a.getNumColumns() - 2;
1545 for (unsigned col = 2, e = b.getNumColumns(); col < e; ++col)
1546 result.tableau(resultRow, offset + col) = b.tableau(row, col);
1547 result.rowUnknown.push_back(Elt: indexFromBIndex(b.rowUnknown[row]));
1548 result.unknownFromIndex(index: result.rowUnknown.back()).pos =
1549 result.rowUnknown.size() - 1;
1550 };
1551
1552 result.nRedundant = a.nRedundant + b.nRedundant;
1553 for (unsigned row = 0; row < a.nRedundant; ++row)
1554 appendRowFromA(row);
1555 for (unsigned row = 0; row < b.nRedundant; ++row)
1556 appendRowFromB(row);
1557 for (unsigned row = a.nRedundant, e = a.getNumRows(); row < e; ++row)
1558 appendRowFromA(row);
1559 for (unsigned row = b.nRedundant, e = b.getNumRows(); row < e; ++row)
1560 appendRowFromB(row);
1561
1562 return result;
1563}
1564
1565std::optional<SmallVector<Fraction, 8>> Simplex::getRationalSample() const {
1566 if (empty)
1567 return {};
1568
1569 SmallVector<Fraction, 8> sample;
1570 sample.reserve(N: var.size());
1571 // Push the sample value for each variable into the vector.
1572 for (const Unknown &u : var) {
1573 if (u.orientation == Orientation::Column) {
1574 // If the variable is in column position, its sample value is zero.
1575 sample.emplace_back(Args: 0, Args: 1);
1576 } else {
1577 // If the variable is in row position, its sample value is the
1578 // entry in the constant column divided by the denominator.
1579 MPInt denom = tableau(u.pos, 0);
1580 sample.emplace_back(Args: tableau(u.pos, 1), Args&: denom);
1581 }
1582 }
1583 return sample;
1584}
1585
1586void LexSimplexBase::addInequality(ArrayRef<MPInt> coeffs) {
1587 addRow(coeffs, /*makeRestricted=*/true);
1588}
1589
1590MaybeOptimum<SmallVector<Fraction, 8>> LexSimplex::getRationalSample() const {
1591 if (empty)
1592 return OptimumKind::Empty;
1593
1594 SmallVector<Fraction, 8> sample;
1595 sample.reserve(N: var.size());
1596 // Push the sample value for each variable into the vector.
1597 for (const Unknown &u : var) {
1598 // When the big M parameter is being used, each variable x is represented
1599 // as M + x, so its sample value is finite if and only if it is of the
1600 // form 1*M + c. If the coefficient of M is not one then the sample value
1601 // is infinite, and we return an empty optional.
1602
1603 if (u.orientation == Orientation::Column) {
1604 // If the variable is in column position, the sample value of M + x is
1605 // zero, so x = -M which is unbounded.
1606 return OptimumKind::Unbounded;
1607 }
1608
1609 // If the variable is in row position, its sample value is the
1610 // entry in the constant column divided by the denominator.
1611 MPInt denom = tableau(u.pos, 0);
1612 if (usingBigM)
1613 if (tableau(u.pos, 2) != denom)
1614 return OptimumKind::Unbounded;
1615 sample.emplace_back(Args: tableau(u.pos, 1), Args&: denom);
1616 }
1617 return sample;
1618}
1619
1620std::optional<SmallVector<MPInt, 8>> Simplex::getSamplePointIfIntegral() const {
1621 // If the tableau is empty, no sample point exists.
1622 if (empty)
1623 return {};
1624
1625 // The value will always exist since the Simplex is non-empty.
1626 SmallVector<Fraction, 8> rationalSample = *getRationalSample();
1627 SmallVector<MPInt, 8> integerSample;
1628 integerSample.reserve(N: var.size());
1629 for (const Fraction &coord : rationalSample) {
1630 // If the sample is non-integral, return std::nullopt.
1631 if (coord.num % coord.den != 0)
1632 return {};
1633 integerSample.push_back(Elt: coord.num / coord.den);
1634 }
1635 return integerSample;
1636}
1637
1638/// Given a simplex for a polytope, construct a new simplex whose variables are
1639/// identified with a pair of points (x, y) in the original polytope. Supports
1640/// some operations needed for generalized basis reduction. In what follows,
1641/// dotProduct(x, y) = x_1 * y_1 + x_2 * y_2 + ... x_n * y_n where n is the
1642/// dimension of the original polytope.
1643///
1644/// This supports adding equality constraints dotProduct(dir, x - y) == 0. It
1645/// also supports rolling back this addition, by maintaining a snapshot stack
1646/// that contains a snapshot of the Simplex's state for each equality, just
1647/// before that equality was added.
1648class presburger::GBRSimplex {
1649 using Orientation = Simplex::Orientation;
1650
1651public:
1652 GBRSimplex(const Simplex &originalSimplex)
1653 : simplex(Simplex::makeProduct(a: originalSimplex, b: originalSimplex)),
1654 simplexConstraintOffset(simplex.getNumConstraints()) {}
1655
1656 /// Add an equality dotProduct(dir, x - y) == 0.
1657 /// First pushes a snapshot for the current simplex state to the stack so
1658 /// that this can be rolled back later.
1659 void addEqualityForDirection(ArrayRef<MPInt> dir) {
1660 assert(llvm::any_of(dir, [](const MPInt &x) { return x != 0; }) &&
1661 "Direction passed is the zero vector!");
1662 snapshotStack.push_back(Elt: simplex.getSnapshot());
1663 simplex.addEquality(coeffs: getCoeffsForDirection(dir));
1664 }
1665 /// Compute max(dotProduct(dir, x - y)).
1666 Fraction computeWidth(ArrayRef<MPInt> dir) {
1667 MaybeOptimum<Fraction> maybeWidth =
1668 simplex.computeOptimum(direction: Direction::Up, coeffs: getCoeffsForDirection(dir));
1669 assert(maybeWidth.isBounded() && "Width should be bounded!");
1670 return *maybeWidth;
1671 }
1672
1673 /// Compute max(dotProduct(dir, x - y)) and save the dual variables for only
1674 /// the direction equalities to `dual`.
1675 Fraction computeWidthAndDuals(ArrayRef<MPInt> dir,
1676 SmallVectorImpl<MPInt> &dual,
1677 MPInt &dualDenom) {
1678 // We can't just call into computeWidth or computeOptimum since we need to
1679 // access the state of the tableau after computing the optimum, and these
1680 // functions rollback the insertion of the objective function into the
1681 // tableau before returning. We instead add a row for the objective function
1682 // ourselves, call into computeOptimum, compute the duals from the tableau
1683 // state, and finally rollback the addition of the row before returning.
1684 SimplexRollbackScopeExit scopeExit(simplex);
1685 unsigned conIndex = simplex.addRow(coeffs: getCoeffsForDirection(dir));
1686 unsigned row = simplex.con[conIndex].pos;
1687 MaybeOptimum<Fraction> maybeWidth =
1688 simplex.computeRowOptimum(direction: Simplex::Direction::Up, row);
1689 assert(maybeWidth.isBounded() && "Width should be bounded!");
1690 dualDenom = simplex.tableau(row, 0);
1691 dual.clear();
1692
1693 // The increment is i += 2 because equalities are added as two inequalities,
1694 // one positive and one negative. Each iteration processes one equality.
1695 for (unsigned i = simplexConstraintOffset; i < conIndex; i += 2) {
1696 // The dual variable for an inequality in column orientation is the
1697 // negative of its coefficient at the objective row. If the inequality is
1698 // in row orientation, the corresponding dual variable is zero.
1699 //
1700 // We want the dual for the original equality, which corresponds to two
1701 // inequalities: a positive inequality, which has the same coefficients as
1702 // the equality, and a negative equality, which has negated coefficients.
1703 //
1704 // Note that at most one of these inequalities can be in column
1705 // orientation because the column unknowns should form a basis and hence
1706 // must be linearly independent. If the positive inequality is in column
1707 // position, its dual is the dual corresponding to the equality. If the
1708 // negative inequality is in column position, the negation of its dual is
1709 // the dual corresponding to the equality. If neither is in column
1710 // position, then that means that this equality is redundant, and its dual
1711 // is zero.
1712 //
1713 // Note that it is NOT valid to perform pivots during the computation of
1714 // the duals. This entire dual computation must be performed on the same
1715 // tableau configuration.
1716 assert(!(simplex.con[i].orientation == Orientation::Column &&
1717 simplex.con[i + 1].orientation == Orientation::Column) &&
1718 "Both inequalities for the equality cannot be in column "
1719 "orientation!");
1720 if (simplex.con[i].orientation == Orientation::Column)
1721 dual.push_back(Elt: -simplex.tableau(row, simplex.con[i].pos));
1722 else if (simplex.con[i + 1].orientation == Orientation::Column)
1723 dual.push_back(Elt: simplex.tableau(row, simplex.con[i + 1].pos));
1724 else
1725 dual.emplace_back(Args: 0);
1726 }
1727 return *maybeWidth;
1728 }
1729
1730 /// Remove the last equality that was added through addEqualityForDirection.
1731 ///
1732 /// We do this by rolling back to the snapshot at the top of the stack, which
1733 /// should be a snapshot taken just before the last equality was added.
1734 void removeLastEquality() {
1735 assert(!snapshotStack.empty() && "Snapshot stack is empty!");
1736 simplex.rollback(snapshot: snapshotStack.back());
1737 snapshotStack.pop_back();
1738 }
1739
1740private:
1741 /// Returns coefficients of the expression 'dot_product(dir, x - y)',
1742 /// i.e., dir_1 * x_1 + dir_2 * x_2 + ... + dir_n * x_n
1743 /// - dir_1 * y_1 - dir_2 * y_2 - ... - dir_n * y_n,
1744 /// where n is the dimension of the original polytope.
1745 SmallVector<MPInt, 8> getCoeffsForDirection(ArrayRef<MPInt> dir) {
1746 assert(2 * dir.size() == simplex.getNumVariables() &&
1747 "Direction vector has wrong dimensionality");
1748 SmallVector<MPInt, 8> coeffs(dir.begin(), dir.end());
1749 coeffs.reserve(N: 2 * dir.size());
1750 for (const MPInt &coeff : dir)
1751 coeffs.push_back(Elt: -coeff);
1752 coeffs.emplace_back(Args: 0); // constant term
1753 return coeffs;
1754 }
1755
1756 Simplex simplex;
1757 /// The first index of the equality constraints, the index immediately after
1758 /// the last constraint in the initial product simplex.
1759 unsigned simplexConstraintOffset;
1760 /// A stack of snapshots, used for rolling back.
1761 SmallVector<unsigned, 8> snapshotStack;
1762};
1763
1764/// Reduce the basis to try and find a direction in which the polytope is
1765/// "thin". This only works for bounded polytopes.
1766///
1767/// This is an implementation of the algorithm described in the paper
1768/// "An Implementation of Generalized Basis Reduction for Integer Programming"
1769/// by W. Cook, T. Rutherford, H. E. Scarf, D. Shallcross.
1770///
1771/// Let b_{level}, b_{level + 1}, ... b_n be the current basis.
1772/// Let width_i(v) = max <v, x - y> where x and y are points in the original
1773/// polytope such that <b_j, x - y> = 0 is satisfied for all level <= j < i.
1774///
1775/// In every iteration, we first replace b_{i+1} with b_{i+1} + u*b_i, where u
1776/// is the integer such that width_i(b_{i+1} + u*b_i) is minimized. Let dual_i
1777/// be the dual variable associated with the constraint <b_i, x - y> = 0 when
1778/// computing width_{i+1}(b_{i+1}). It can be shown that dual_i is the
1779/// minimizing value of u, if it were allowed to be fractional. Due to
1780/// convexity, the minimizing integer value is either floor(dual_i) or
1781/// ceil(dual_i), so we just need to check which of these gives a lower
1782/// width_{i+1} value. If dual_i turned out to be an integer, then u = dual_i.
1783///
1784/// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and (the new)
1785/// b_{i + 1} and decrement i (unless i = level, in which case we stay at the
1786/// same i). Otherwise, we increment i.
1787///
1788/// We keep f values and duals cached and invalidate them when necessary.
1789/// Whenever possible, we use them instead of recomputing them. We implement the
1790/// algorithm as follows.
1791///
1792/// In an iteration at i we need to compute:
1793/// a) width_i(b_{i + 1})
1794/// b) width_i(b_i)
1795/// c) the integer u that minimizes width_i(b_{i + 1} + u*b_i)
1796///
1797/// If width_i(b_i) is not already cached, we compute it.
1798///
1799/// If the duals are not already cached, we compute width_{i+1}(b_{i+1}) and
1800/// store the duals from this computation.
1801///
1802/// We call updateBasisWithUAndGetFCandidate, which finds the minimizing value
1803/// of u as explained before, caches the duals from this computation, sets
1804/// b_{i+1} to b_{i+1} + u*b_i, and returns the new value of width_i(b_{i+1}).
1805///
1806/// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and b_{i+1} and
1807/// decrement i, resulting in the basis
1808/// ... b_{i - 1}, b_{i + 1} + u*b_i, b_i, b_{i+2}, ...
1809/// with corresponding f values
1810/// ... width_{i-1}(b_{i-1}), width_i(b_{i+1} + u*b_i), width_{i+1}(b_i), ...
1811/// The values up to i - 1 remain unchanged. We have just gotten the middle
1812/// value from updateBasisWithUAndGetFCandidate, so we can update that in the
1813/// cache. The value at width_{i+1}(b_i) is unknown, so we evict this value from
1814/// the cache. The iteration after decrementing needs exactly the duals from the
1815/// computation of width_i(b_{i + 1} + u*b_i), so we keep these in the cache.
1816///
1817/// When incrementing i, no cached f values get invalidated. However, the cached
1818/// duals do get invalidated as the duals for the higher levels are different.
1819void Simplex::reduceBasis(IntMatrix &basis, unsigned level) {
1820 const Fraction epsilon(3, 4);
1821
1822 if (level == basis.getNumRows() - 1)
1823 return;
1824
1825 GBRSimplex gbrSimplex(*this);
1826 SmallVector<Fraction, 8> width;
1827 SmallVector<MPInt, 8> dual;
1828 MPInt dualDenom;
1829
1830 // Finds the value of u that minimizes width_i(b_{i+1} + u*b_i), caches the
1831 // duals from this computation, sets b_{i+1} to b_{i+1} + u*b_i, and returns
1832 // the new value of width_i(b_{i+1}).
1833 //
1834 // If dual_i is not an integer, the minimizing value must be either
1835 // floor(dual_i) or ceil(dual_i). We compute the expression for both and
1836 // choose the minimizing value.
1837 //
1838 // If dual_i is an integer, we don't need to perform these computations. We
1839 // know that in this case,
1840 // a) u = dual_i.
1841 // b) one can show that dual_j for j < i are the same duals we would have
1842 // gotten from computing width_i(b_{i + 1} + u*b_i), so the correct duals
1843 // are the ones already in the cache.
1844 // c) width_i(b_{i+1} + u*b_i) = min_{alpha} width_i(b_{i+1} + alpha * b_i),
1845 // which
1846 // one can show is equal to width_{i+1}(b_{i+1}). The latter value must
1847 // be in the cache, so we get it from there and return it.
1848 auto updateBasisWithUAndGetFCandidate = [&](unsigned i) -> Fraction {
1849 assert(i < level + dual.size() && "dual_i is not known!");
1850
1851 MPInt u = floorDiv(lhs: dual[i - level], rhs: dualDenom);
1852 basis.addToRow(sourceRow: i, targetRow: i + 1, scale: u);
1853 if (dual[i - level] % dualDenom != 0) {
1854 SmallVector<MPInt, 8> candidateDual[2];
1855 MPInt candidateDualDenom[2];
1856 Fraction widthI[2];
1857
1858 // Initially u is floor(dual) and basis reflects this.
1859 widthI[0] = gbrSimplex.computeWidthAndDuals(
1860 dir: basis.getRow(row: i + 1), dual&: candidateDual[0], dualDenom&: candidateDualDenom[0]);
1861
1862 // Now try ceil(dual), i.e. floor(dual) + 1.
1863 ++u;
1864 basis.addToRow(sourceRow: i, targetRow: i + 1, scale: 1);
1865 widthI[1] = gbrSimplex.computeWidthAndDuals(
1866 dir: basis.getRow(row: i + 1), dual&: candidateDual[1], dualDenom&: candidateDualDenom[1]);
1867
1868 unsigned j = widthI[0] < widthI[1] ? 0 : 1;
1869 if (j == 0)
1870 // Subtract 1 to go from u = ceil(dual) back to floor(dual).
1871 basis.addToRow(sourceRow: i, targetRow: i + 1, scale: -1);
1872
1873 // width_i(b{i+1} + u*b_i) should be minimized at our value of u.
1874 // We assert that this holds by checking that the values of width_i at
1875 // u - 1 and u + 1 are greater than or equal to the value at u. If the
1876 // width is lesser at either of the adjacent values, then our computed
1877 // value of u is clearly not the minimizer. Otherwise by convexity the
1878 // computed value of u is really the minimizer.
1879
1880 // Check the value at u - 1.
1881 assert(gbrSimplex.computeWidth(scaleAndAddForAssert(
1882 basis.getRow(i + 1), MPInt(-1), basis.getRow(i))) >=
1883 widthI[j] &&
1884 "Computed u value does not minimize the width!");
1885 // Check the value at u + 1.
1886 assert(gbrSimplex.computeWidth(scaleAndAddForAssert(
1887 basis.getRow(i + 1), MPInt(+1), basis.getRow(i))) >=
1888 widthI[j] &&
1889 "Computed u value does not minimize the width!");
1890
1891 dual = std::move(candidateDual[j]);
1892 dualDenom = candidateDualDenom[j];
1893 return widthI[j];
1894 }
1895
1896 assert(i + 1 - level < width.size() && "width_{i+1} wasn't saved");
1897 // f_i(b_{i+1} + dual*b_i) == width_{i+1}(b_{i+1}) when `dual` minimizes the
1898 // LHS. (note: the basis has already been updated, so b_{i+1} + dual*b_i in
1899 // the above expression is equal to basis.getRow(i+1) below.)
1900 assert(gbrSimplex.computeWidth(basis.getRow(i + 1)) ==
1901 width[i + 1 - level]);
1902 return width[i + 1 - level];
1903 };
1904
1905 // In the ith iteration of the loop, gbrSimplex has constraints for directions
1906 // from `level` to i - 1.
1907 unsigned i = level;
1908 while (i < basis.getNumRows() - 1) {
1909 if (i >= level + width.size()) {
1910 // We don't even know the value of f_i(b_i), so let's find that first.
1911 // We have to do this first since later we assume that width already
1912 // contains values up to and including i.
1913
1914 assert((i == 0 || i - 1 < level + width.size()) &&
1915 "We are at level i but we don't know the value of width_{i-1}");
1916
1917 // We don't actually use these duals at all, but it doesn't matter
1918 // because this case should only occur when i is level, and there are no
1919 // duals in that case anyway.
1920 assert(i == level && "This case should only occur when i == level");
1921 width.push_back(
1922 Elt: gbrSimplex.computeWidthAndDuals(dir: basis.getRow(row: i), dual, dualDenom));
1923 }
1924
1925 if (i >= level + dual.size()) {
1926 assert(i + 1 >= level + width.size() &&
1927 "We don't know dual_i but we know width_{i+1}");
1928 // We don't know dual for our level, so let's find it.
1929 gbrSimplex.addEqualityForDirection(dir: basis.getRow(row: i));
1930 width.push_back(Elt: gbrSimplex.computeWidthAndDuals(dir: basis.getRow(row: i + 1), dual,
1931 dualDenom));
1932 gbrSimplex.removeLastEquality();
1933 }
1934
1935 // This variable stores width_i(b_{i+1} + u*b_i).
1936 Fraction widthICandidate = updateBasisWithUAndGetFCandidate(i);
1937 if (widthICandidate < epsilon * width[i - level]) {
1938 basis.swapRows(row: i, otherRow: i + 1);
1939 width[i - level] = widthICandidate;
1940 // The values of width_{i+1}(b_{i+1}) and higher may change after the
1941 // swap, so we remove the cached values here.
1942 width.resize(N: i - level + 1);
1943 if (i == level) {
1944 dual.clear();
1945 continue;
1946 }
1947
1948 gbrSimplex.removeLastEquality();
1949 i--;
1950 continue;
1951 }
1952
1953 // Invalidate duals since the higher level needs to recompute its own duals.
1954 dual.clear();
1955 gbrSimplex.addEqualityForDirection(dir: basis.getRow(row: i));
1956 i++;
1957 }
1958}
1959
1960/// Search for an integer sample point using a branch and bound algorithm.
1961///
1962/// Each row in the basis matrix is a vector, and the set of basis vectors
1963/// should span the space. Initially this is the identity matrix,
1964/// i.e., the basis vectors are just the variables.
1965///
1966/// In every level, a value is assigned to the level-th basis vector, as
1967/// follows. Compute the minimum and maximum rational values of this direction.
1968/// If only one integer point lies in this range, constrain the variable to
1969/// have this value and recurse to the next variable.
1970///
1971/// If the range has multiple values, perform generalized basis reduction via
1972/// reduceBasis and then compute the bounds again. Now we try constraining
1973/// this direction in the first value in this range and "recurse" to the next
1974/// level. If we fail to find a sample, we try assigning the direction the next
1975/// value in this range, and so on.
1976///
1977/// If no integer sample is found from any of the assignments, or if the range
1978/// contains no integer value, then of course the polytope is empty for the
1979/// current assignment of the values in previous levels, so we return to
1980/// the previous level.
1981///
1982/// If we reach the last level where all the variables have been assigned values
1983/// already, then we simply return the current sample point if it is integral,
1984/// and go back to the previous level otherwise.
1985///
1986/// To avoid potentially arbitrarily large recursion depths leading to stack
1987/// overflows, this algorithm is implemented iteratively.
1988std::optional<SmallVector<MPInt, 8>> Simplex::findIntegerSample() {
1989 if (empty)
1990 return {};
1991
1992 unsigned nDims = var.size();
1993 IntMatrix basis = IntMatrix::identity(dimension: nDims);
1994
1995 unsigned level = 0;
1996 // The snapshot just before constraining a direction to a value at each level.
1997 SmallVector<unsigned, 8> snapshotStack;
1998 // The maximum value in the range of the direction for each level.
1999 SmallVector<MPInt, 8> upperBoundStack;
2000 // The next value to try constraining the basis vector to at each level.
2001 SmallVector<MPInt, 8> nextValueStack;
2002
2003 snapshotStack.reserve(N: basis.getNumRows());
2004 upperBoundStack.reserve(N: basis.getNumRows());
2005 nextValueStack.reserve(N: basis.getNumRows());
2006 while (level != -1u) {
2007 if (level == basis.getNumRows()) {
2008 // We've assigned values to all variables. Return if we have a sample,
2009 // or go back up to the previous level otherwise.
2010 if (auto maybeSample = getSamplePointIfIntegral())
2011 return maybeSample;
2012 level--;
2013 continue;
2014 }
2015
2016 if (level >= upperBoundStack.size()) {
2017 // We haven't populated the stack values for this level yet, so we have
2018 // just come down a level ("recursed"). Find the lower and upper bounds.
2019 // If there is more than one integer point in the range, perform
2020 // generalized basis reduction.
2021 SmallVector<MPInt, 8> basisCoeffs =
2022 llvm::to_vector<8>(Range: basis.getRow(row: level));
2023 basisCoeffs.emplace_back(Args: 0);
2024
2025 auto [minRoundedUp, maxRoundedDown] = computeIntegerBounds(coeffs: basisCoeffs);
2026
2027 // We don't have any integer values in the range.
2028 // Pop the stack and return up a level.
2029 if (minRoundedUp.isEmpty() || maxRoundedDown.isEmpty()) {
2030 assert((minRoundedUp.isEmpty() && maxRoundedDown.isEmpty()) &&
2031 "If one bound is empty, both should be.");
2032 snapshotStack.pop_back();
2033 nextValueStack.pop_back();
2034 upperBoundStack.pop_back();
2035 level--;
2036 continue;
2037 }
2038
2039 // We already checked the empty case above.
2040 assert((minRoundedUp.isBounded() && maxRoundedDown.isBounded()) &&
2041 "Polyhedron should be bounded!");
2042
2043 // Heuristic: if the sample point is integral at this point, just return
2044 // it.
2045 if (auto maybeSample = getSamplePointIfIntegral())
2046 return *maybeSample;
2047
2048 if (*minRoundedUp < *maxRoundedDown) {
2049 reduceBasis(basis, level);
2050 basisCoeffs = llvm::to_vector<8>(Range: basis.getRow(row: level));
2051 basisCoeffs.emplace_back(Args: 0);
2052 std::tie(args&: minRoundedUp, args&: maxRoundedDown) =
2053 computeIntegerBounds(coeffs: basisCoeffs);
2054 }
2055
2056 snapshotStack.push_back(Elt: getSnapshot());
2057 // The smallest value in the range is the next value to try.
2058 // The values in the optionals are guaranteed to exist since we know the
2059 // polytope is bounded.
2060 nextValueStack.push_back(Elt: *minRoundedUp);
2061 upperBoundStack.push_back(Elt: *maxRoundedDown);
2062 }
2063
2064 assert((snapshotStack.size() - 1 == level &&
2065 nextValueStack.size() - 1 == level &&
2066 upperBoundStack.size() - 1 == level) &&
2067 "Mismatched variable stack sizes!");
2068
2069 // Whether we "recursed" or "returned" from a lower level, we rollback
2070 // to the snapshot of the starting state at this level. (in the "recursed"
2071 // case this has no effect)
2072 rollback(snapshot: snapshotStack.back());
2073 MPInt nextValue = nextValueStack.back();
2074 ++nextValueStack.back();
2075 if (nextValue > upperBoundStack.back()) {
2076 // We have exhausted the range and found no solution. Pop the stack and
2077 // return up a level.
2078 snapshotStack.pop_back();
2079 nextValueStack.pop_back();
2080 upperBoundStack.pop_back();
2081 level--;
2082 continue;
2083 }
2084
2085 // Try the next value in the range and "recurse" into the next level.
2086 SmallVector<MPInt, 8> basisCoeffs(basis.getRow(row: level).begin(),
2087 basis.getRow(row: level).end());
2088 basisCoeffs.push_back(Elt: -nextValue);
2089 addEquality(coeffs: basisCoeffs);
2090 level++;
2091 }
2092
2093 return {};
2094}
2095
2096/// Compute the minimum and maximum integer values the expression can take. We
2097/// compute each separately.
2098std::pair<MaybeOptimum<MPInt>, MaybeOptimum<MPInt>>
2099Simplex::computeIntegerBounds(ArrayRef<MPInt> coeffs) {
2100 MaybeOptimum<MPInt> minRoundedUp(
2101 computeOptimum(direction: Simplex::Direction::Down, coeffs).map(f&: ceil));
2102 MaybeOptimum<MPInt> maxRoundedDown(
2103 computeOptimum(direction: Simplex::Direction::Up, coeffs).map(f&: floor));
2104 return {minRoundedUp, maxRoundedDown};
2105}
2106
2107bool Simplex::isFlatAlong(ArrayRef<MPInt> coeffs) {
2108 assert(!isEmpty() && "cannot check for flatness of empty simplex!");
2109 auto upOpt = computeOptimum(direction: Simplex::Direction::Up, coeffs);
2110 auto downOpt = computeOptimum(direction: Simplex::Direction::Down, coeffs);
2111
2112 if (!upOpt.isBounded())
2113 return false;
2114 if (!downOpt.isBounded())
2115 return false;
2116
2117 return *upOpt == *downOpt;
2118}
2119
2120void SimplexBase::print(raw_ostream &os) const {
2121 os << "rows = " << getNumRows() << ", columns = " << getNumColumns() << "\n";
2122 if (empty)
2123 os << "Simplex marked empty!\n";
2124 os << "var: ";
2125 for (unsigned i = 0; i < var.size(); ++i) {
2126 if (i > 0)
2127 os << ", ";
2128 var[i].print(os);
2129 }
2130 os << "\ncon: ";
2131 for (unsigned i = 0; i < con.size(); ++i) {
2132 if (i > 0)
2133 os << ", ";
2134 con[i].print(os);
2135 }
2136 os << '\n';
2137 for (unsigned row = 0, e = getNumRows(); row < e; ++row) {
2138 if (row > 0)
2139 os << ", ";
2140 os << "r" << row << ": " << rowUnknown[row];
2141 }
2142 os << '\n';
2143 os << "c0: denom, c1: const";
2144 for (unsigned col = 2, e = getNumColumns(); col < e; ++col)
2145 os << ", c" << col << ": " << colUnknown[col];
2146 os << '\n';
2147 for (unsigned row = 0, numRows = getNumRows(); row < numRows; ++row) {
2148 for (unsigned col = 0, numCols = getNumColumns(); col < numCols; ++col)
2149 os << tableau(row, col) << '\t';
2150 os << '\n';
2151 }
2152 os << '\n';
2153}
2154
2155void SimplexBase::dump() const { print(os&: llvm::errs()); }
2156
2157bool Simplex::isRationalSubsetOf(const IntegerRelation &rel) {
2158 if (isEmpty())
2159 return true;
2160
2161 for (unsigned i = 0, e = rel.getNumInequalities(); i < e; ++i)
2162 if (findIneqType(coeffs: rel.getInequality(idx: i)) != IneqType::Redundant)
2163 return false;
2164
2165 for (unsigned i = 0, e = rel.getNumEqualities(); i < e; ++i)
2166 if (!isRedundantEquality(coeffs: rel.getEquality(idx: i)))
2167 return false;
2168
2169 return true;
2170}
2171
2172/// Returns the type of the inequality with coefficients `coeffs`.
2173/// Possible types are:
2174/// Redundant The inequality is satisfied by all points in the polytope
2175/// Cut The inequality is satisfied by some points, but not by others
2176/// Separate The inequality is not satisfied by any point
2177///
2178/// Internally, this computes the minimum and the maximum the inequality with
2179/// coefficients `coeffs` can take. If the minimum is >= 0, the inequality holds
2180/// for all points in the polytope, so it is redundant. If the minimum is <= 0
2181/// and the maximum is >= 0, the points in between the minimum and the
2182/// inequality do not satisfy it, the points in between the inequality and the
2183/// maximum satisfy it. Hence, it is a cut inequality. If both are < 0, no
2184/// points of the polytope satisfy the inequality, which means it is a separate
2185/// inequality.
2186Simplex::IneqType Simplex::findIneqType(ArrayRef<MPInt> coeffs) {
2187 MaybeOptimum<Fraction> minimum = computeOptimum(direction: Direction::Down, coeffs);
2188 if (minimum.isBounded() && *minimum >= Fraction(0, 1)) {
2189 return IneqType::Redundant;
2190 }
2191 MaybeOptimum<Fraction> maximum = computeOptimum(direction: Direction::Up, coeffs);
2192 if ((!minimum.isBounded() || *minimum <= Fraction(0, 1)) &&
2193 (!maximum.isBounded() || *maximum >= Fraction(0, 1))) {
2194 return IneqType::Cut;
2195 }
2196 return IneqType::Separate;
2197}
2198
2199/// Checks whether the type of the inequality with coefficients `coeffs`
2200/// is Redundant.
2201bool Simplex::isRedundantInequality(ArrayRef<MPInt> coeffs) {
2202 assert(!empty &&
2203 "It is not meaningful to ask about redundancy in an empty set!");
2204 return findIneqType(coeffs) == IneqType::Redundant;
2205}
2206
2207/// Check whether the equality given by `coeffs == 0` is redundant given
2208/// the existing constraints. This is redundant when `coeffs` is already
2209/// always zero under the existing constraints. `coeffs` is always zero
2210/// when the minimum and maximum value that `coeffs` can take are both zero.
2211bool Simplex::isRedundantEquality(ArrayRef<MPInt> coeffs) {
2212 assert(!empty &&
2213 "It is not meaningful to ask about redundancy in an empty set!");
2214 MaybeOptimum<Fraction> minimum = computeOptimum(direction: Direction::Down, coeffs);
2215 MaybeOptimum<Fraction> maximum = computeOptimum(direction: Direction::Up, coeffs);
2216 assert((!minimum.isEmpty() && !maximum.isEmpty()) &&
2217 "Optima should be non-empty for a non-empty set");
2218 return minimum.isBounded() && maximum.isBounded() &&
2219 *maximum == Fraction(0, 1) && *minimum == Fraction(0, 1);
2220}
2221

source code of mlir/lib/Analysis/Presburger/Simplex.cpp