1//===- Simplex.cpp - MLIR Simplex Class -----------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "mlir/Analysis/Presburger/Simplex.h"
10#include "mlir/Analysis/Presburger/Fraction.h"
11#include "mlir/Analysis/Presburger/IntegerRelation.h"
12#include "mlir/Analysis/Presburger/Matrix.h"
13#include "mlir/Analysis/Presburger/PresburgerSpace.h"
14#include "mlir/Analysis/Presburger/Utils.h"
15#include "llvm/ADT/DynamicAPInt.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/SmallBitVector.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/Support/Compiler.h"
20#include "llvm/Support/ErrorHandling.h"
21#include "llvm/Support/LogicalResult.h"
22#include "llvm/Support/raw_ostream.h"
23#include <cassert>
24#include <functional>
25#include <limits>
26#include <optional>
27#include <tuple>
28#include <utility>
29
30using namespace mlir;
31using namespace presburger;
32
33using Direction = Simplex::Direction;
34
35const int nullIndex = std::numeric_limits<int>::max();
36
37// Return a + scale*b;
38LLVM_ATTRIBUTE_UNUSED
39static SmallVector<DynamicAPInt, 8>
40scaleAndAddForAssert(ArrayRef<DynamicAPInt> a, const DynamicAPInt &scale,
41 ArrayRef<DynamicAPInt> b) {
42 assert(a.size() == b.size());
43 SmallVector<DynamicAPInt, 8> res;
44 res.reserve(N: a.size());
45 for (unsigned i = 0, e = a.size(); i < e; ++i)
46 res.emplace_back(Args: a[i] + scale * b[i]);
47 return res;
48}
49
50SimplexBase::SimplexBase(unsigned nVar, bool mustUseBigM)
51 : usingBigM(mustUseBigM), nRedundant(0), nSymbol(0),
52 tableau(0, getNumFixedCols() + nVar), empty(false) {
53 var.reserve(N: nVar);
54 colUnknown.reserve(N: nVar + 1);
55 colUnknown.insert(I: colUnknown.begin(), NumToInsert: getNumFixedCols(), Elt: nullIndex);
56 for (unsigned i = 0; i < nVar; ++i) {
57 var.emplace_back(Args: Orientation::Column, /*restricted=*/Args: false,
58 /*pos=*/Args: getNumFixedCols() + i);
59 colUnknown.emplace_back(Args&: i);
60 }
61}
62
63SimplexBase::SimplexBase(unsigned nVar, bool mustUseBigM,
64 const llvm::SmallBitVector &isSymbol)
65 : SimplexBase(nVar, mustUseBigM) {
66 assert(isSymbol.size() == nVar && "invalid bitmask!");
67 // Invariant: nSymbol is the number of symbols that have been marked
68 // already and these occupy the columns
69 // [getNumFixedCols(), getNumFixedCols() + nSymbol).
70 for (unsigned symbolIdx : isSymbol.set_bits()) {
71 var[symbolIdx].isSymbol = true;
72 swapColumns(i: var[symbolIdx].pos, j: getNumFixedCols() + nSymbol);
73 ++nSymbol;
74 }
75}
76
77const Simplex::Unknown &SimplexBase::unknownFromIndex(int index) const {
78 assert(index != nullIndex && "nullIndex passed to unknownFromIndex");
79 return index >= 0 ? var[index] : con[~index];
80}
81
82const Simplex::Unknown &SimplexBase::unknownFromColumn(unsigned col) const {
83 assert(col < getNumColumns() && "Invalid column");
84 return unknownFromIndex(index: colUnknown[col]);
85}
86
87const Simplex::Unknown &SimplexBase::unknownFromRow(unsigned row) const {
88 assert(row < getNumRows() && "Invalid row");
89 return unknownFromIndex(index: rowUnknown[row]);
90}
91
92Simplex::Unknown &SimplexBase::unknownFromIndex(int index) {
93 assert(index != nullIndex && "nullIndex passed to unknownFromIndex");
94 return index >= 0 ? var[index] : con[~index];
95}
96
97Simplex::Unknown &SimplexBase::unknownFromColumn(unsigned col) {
98 assert(col < getNumColumns() && "Invalid column");
99 return unknownFromIndex(index: colUnknown[col]);
100}
101
102Simplex::Unknown &SimplexBase::unknownFromRow(unsigned row) {
103 assert(row < getNumRows() && "Invalid row");
104 return unknownFromIndex(index: rowUnknown[row]);
105}
106
107unsigned SimplexBase::addZeroRow(bool makeRestricted) {
108 // Resize the tableau to accommodate the extra row.
109 unsigned newRow = tableau.appendExtraRow();
110 assert(getNumRows() == getNumRows() && "Inconsistent tableau size");
111 rowUnknown.emplace_back(Args: ~con.size());
112 con.emplace_back(Args: Orientation::Row, Args&: makeRestricted, Args&: newRow);
113 undoLog.emplace_back(Args: UndoLogEntry::RemoveLastConstraint);
114 tableau(newRow, 0) = 1;
115 return newRow;
116}
117
118/// Add a new row to the tableau corresponding to the given constant term and
119/// list of coefficients. The coefficients are specified as a vector of
120/// (variable index, coefficient) pairs.
121unsigned SimplexBase::addRow(ArrayRef<DynamicAPInt> coeffs,
122 bool makeRestricted) {
123 assert(coeffs.size() == var.size() + 1 &&
124 "Incorrect number of coefficients!");
125 assert(var.size() + getNumFixedCols() == getNumColumns() &&
126 "inconsistent column count!");
127
128 unsigned newRow = addZeroRow(makeRestricted);
129 tableau(newRow, 1) = coeffs.back();
130 if (usingBigM) {
131 // When the lexicographic pivot rule is used, instead of the variables
132 //
133 // x, y, z ...
134 //
135 // we internally use the variables
136 //
137 // M, M + x, M + y, M + z, ...
138 //
139 // where M is the big M parameter. As such, when the user tries to add
140 // a row ax + by + cz + d, we express it in terms of our internal variables
141 // as -(a + b + c)M + a(M + x) + b(M + y) + c(M + z) + d.
142 //
143 // Symbols don't use the big M parameter since they do not get lex
144 // optimized.
145 DynamicAPInt bigMCoeff(0);
146 for (unsigned i = 0; i < coeffs.size() - 1; ++i)
147 if (!var[i].isSymbol)
148 bigMCoeff -= coeffs[i];
149 // The coefficient to the big M parameter is stored in column 2.
150 tableau(newRow, 2) = bigMCoeff;
151 }
152
153 // Process each given variable coefficient.
154 for (unsigned i = 0; i < var.size(); ++i) {
155 unsigned pos = var[i].pos;
156 if (coeffs[i] == 0)
157 continue;
158
159 if (var[i].orientation == Orientation::Column) {
160 // If a variable is in column position at column col, then we just add the
161 // coefficient for that variable (scaled by the common row denominator) to
162 // the corresponding entry in the new row.
163 tableau(newRow, pos) += coeffs[i] * tableau(newRow, 0);
164 continue;
165 }
166
167 // If the variable is in row position, we need to add that row to the new
168 // row, scaled by the coefficient for the variable, accounting for the two
169 // rows potentially having different denominators. The new denominator is
170 // the lcm of the two.
171 DynamicAPInt lcm = llvm::lcm(A: tableau(newRow, 0), B: tableau(pos, 0));
172 DynamicAPInt nRowCoeff = lcm / tableau(newRow, 0);
173 DynamicAPInt idxRowCoeff = coeffs[i] * (lcm / tableau(pos, 0));
174 tableau(newRow, 0) = lcm;
175 for (unsigned col = 1, e = getNumColumns(); col < e; ++col)
176 tableau(newRow, col) =
177 nRowCoeff * tableau(newRow, col) + idxRowCoeff * tableau(pos, col);
178 }
179
180 tableau.normalizeRow(row: newRow);
181 // Push to undo log along with the index of the new constraint.
182 return con.size() - 1;
183}
184
185namespace {
186bool signMatchesDirection(const DynamicAPInt &elem, Direction direction) {
187 assert(elem != 0 && "elem should not be 0");
188 return direction == Direction::Up ? elem > 0 : elem < 0;
189}
190
191Direction flippedDirection(Direction direction) {
192 return direction == Direction::Up ? Direction::Down : Simplex::Direction::Up;
193}
194} // namespace
195
196/// We simply make the tableau consistent while maintaining a lexicopositive
197/// basis transform, and then return the sample value. If the tableau becomes
198/// empty, we return empty.
199///
200/// Let the variables be x = (x_1, ... x_n).
201/// Let the basis unknowns be y = (y_1, ... y_n).
202/// We have that x = A*y + b for some n x n matrix A and n x 1 column vector b.
203///
204/// As we will show below, A*y is either zero or lexicopositive.
205/// Adding a lexicopositive vector to b will make it lexicographically
206/// greater, so A*y + b is always equal to or lexicographically greater than b.
207/// Thus, since we can attain x = b, that is the lexicographic minimum.
208///
209/// We have that every column in A is lexicopositive, i.e., has at least
210/// one non-zero element, with the first such element being positive. Since for
211/// the tableau to be consistent we must have non-negative sample values not
212/// only for the constraints but also for the variables, we also have x >= 0 and
213/// y >= 0, by which we mean every element in these vectors is non-negative.
214///
215/// Proof that if every column in A is lexicopositive, and y >= 0, then
216/// A*y is zero or lexicopositive. Begin by considering A_1, the first row of A.
217/// If this row is all zeros, then (A*y)_1 = (A_1)*y = 0; proceed to the next
218/// row. If we run out of rows, A*y is zero and we are done; otherwise, we
219/// encounter some row A_i that has a non-zero element. Every column is
220/// lexicopositive and so has some positive element before any negative elements
221/// occur, so the element in this row for any column, if non-zero, must be
222/// positive. Consider (A*y)_i = (A_i)*y. All the elements in both vectors are
223/// non-negative, so if this is non-zero then it must be positive. Then the
224/// first non-zero element of A*y is positive so A*y is lexicopositive.
225///
226/// Otherwise, if (A_i)*y is zero, then for every column j that had a non-zero
227/// element in A_i, y_j is zero. Thus these columns have no contribution to A*y
228/// and we can completely ignore these columns of A. We now continue downwards,
229/// looking for rows of A that have a non-zero element other than in the ignored
230/// columns. If we find one, say A_k, once again these elements must be positive
231/// since they are the first non-zero element in each of these columns, so if
232/// (A_k)*y is not zero then we have that A*y is lexicopositive and if not we
233/// add these to the set of ignored columns and continue to the next row. If we
234/// run out of rows, then A*y is zero and we are done.
235MaybeOptimum<SmallVector<Fraction, 8>> LexSimplex::findRationalLexMin() {
236 if (restoreRationalConsistency().failed()) {
237 markEmpty();
238 return OptimumKind::Empty;
239 }
240 return getRationalSample();
241}
242
243/// Given a row that has a non-integer sample value, add an inequality such
244/// that this fractional sample value is cut away from the polytope. The added
245/// inequality will be such that no integer points are removed. i.e., the
246/// integer lexmin, if it exists, is the same with and without this constraint.
247///
248/// Let the row be
249/// (c + coeffM*M + a_1*s_1 + ... + a_m*s_m + b_1*y_1 + ... + b_n*y_n)/d,
250/// where s_1, ... s_m are the symbols and
251/// y_1, ... y_n are the other basis unknowns.
252///
253/// For this to be an integer, we want
254/// coeffM*M + a_1*s_1 + ... + a_m*s_m + b_1*y_1 + ... + b_n*y_n = -c (mod d)
255/// Note that this constraint must always hold, independent of the basis,
256/// becuse the row unknown's value always equals this expression, even if *we*
257/// later compute the sample value from a different expression based on a
258/// different basis.
259///
260/// Let us assume that M has a factor of d in it. Imposing this constraint on M
261/// does not in any way hinder us from finding a value of M that is big enough.
262/// Moreover, this function is only called when the symbolic part of the sample,
263/// a_1*s_1 + ... + a_m*s_m, is known to be an integer.
264///
265/// Also, we can safely reduce the coefficients modulo d, so we have:
266///
267/// (b_1%d)y_1 + ... + (b_n%d)y_n = (-c%d) + k*d for some integer `k`
268///
269/// Note that all coefficient modulos here are non-negative. Also, all the
270/// unknowns are non-negative here as both constraints and variables are
271/// non-negative in LexSimplexBase. (We used the big M trick to make the
272/// variables non-negative). Therefore, the LHS here is non-negative.
273/// Since 0 <= (-c%d) < d, k is the quotient of dividing the LHS by d and
274/// is therefore non-negative as well.
275///
276/// So we have
277/// ((b_1%d)y_1 + ... + (b_n%d)y_n - (-c%d))/d >= 0.
278///
279/// The constraint is violated when added (it would be useless otherwise)
280/// so we immediately try to move it to a column.
281LogicalResult LexSimplexBase::addCut(unsigned row) {
282 DynamicAPInt d = tableau(row, 0);
283 unsigned cutRow = addZeroRow(/*makeRestricted=*/true);
284 tableau(cutRow, 0) = d;
285 tableau(cutRow, 1) = -mod(LHS: -tableau(row, 1), RHS: d); // -c%d.
286 tableau(cutRow, 2) = 0;
287 for (unsigned col = 3 + nSymbol, e = getNumColumns(); col < e; ++col)
288 tableau(cutRow, col) = mod(LHS: tableau(row, col), RHS: d); // b_i%d.
289 return moveRowUnknownToColumn(row: cutRow);
290}
291
292std::optional<unsigned> LexSimplex::maybeGetNonIntegralVarRow() const {
293 for (const Unknown &u : var) {
294 if (u.orientation == Orientation::Column)
295 continue;
296 // If the sample value is of the form (a/d)M + b/d, we need b to be
297 // divisible by d. We assume M contains all possible
298 // factors and is divisible by everything.
299 unsigned row = u.pos;
300 if (tableau(row, 1) % tableau(row, 0) != 0)
301 return row;
302 }
303 return {};
304}
305
306MaybeOptimum<SmallVector<DynamicAPInt, 8>> LexSimplex::findIntegerLexMin() {
307 // We first try to make the tableau consistent.
308 if (restoreRationalConsistency().failed())
309 return OptimumKind::Empty;
310
311 // Then, if the sample value is integral, we are done.
312 while (std::optional<unsigned> maybeRow = maybeGetNonIntegralVarRow()) {
313 // Otherwise, for the variable whose row has a non-integral sample value,
314 // we add a cut, a constraint that remove this rational point
315 // while preserving all integer points, thus keeping the lexmin the same.
316 // We then again try to make the tableau with the new constraint
317 // consistent. This continues until the tableau becomes empty, in which
318 // case there is no integer point, or until there are no variables with
319 // non-integral sample values.
320 //
321 // Failure indicates that the tableau became empty, which occurs when the
322 // polytope is integer empty.
323 if (addCut(row: *maybeRow).failed())
324 return OptimumKind::Empty;
325 if (restoreRationalConsistency().failed())
326 return OptimumKind::Empty;
327 }
328
329 MaybeOptimum<SmallVector<Fraction, 8>> sample = getRationalSample();
330 assert(!sample.isEmpty() && "If we reached here the sample should exist!");
331 if (sample.isUnbounded())
332 return OptimumKind::Unbounded;
333 return llvm::to_vector<8>(
334 Range: llvm::map_range(C&: *sample, F: std::mem_fn(pm: &Fraction::getAsInteger)));
335}
336
337bool LexSimplex::isSeparateInequality(ArrayRef<DynamicAPInt> coeffs) {
338 SimplexRollbackScopeExit scopeExit(*this);
339 addInequality(coeffs);
340 return findIntegerLexMin().isEmpty();
341}
342
343bool LexSimplex::isRedundantInequality(ArrayRef<DynamicAPInt> coeffs) {
344 return isSeparateInequality(coeffs: getComplementIneq(ineq: coeffs));
345}
346
347SmallVector<DynamicAPInt, 8>
348SymbolicLexSimplex::getSymbolicSampleNumerator(unsigned row) const {
349 SmallVector<DynamicAPInt, 8> sample;
350 sample.reserve(N: nSymbol + 1);
351 for (unsigned col = 3; col < 3 + nSymbol; ++col)
352 sample.emplace_back(Args: tableau(row, col));
353 sample.emplace_back(Args: tableau(row, 1));
354 return sample;
355}
356
357SmallVector<DynamicAPInt, 8>
358SymbolicLexSimplex::getSymbolicSampleIneq(unsigned row) const {
359 SmallVector<DynamicAPInt, 8> sample = getSymbolicSampleNumerator(row);
360 // The inequality is equivalent to the GCD-normalized one.
361 normalizeRange(range: sample);
362 return sample;
363}
364
365void LexSimplexBase::appendSymbol() {
366 appendVariable();
367 swapColumns(i: 3 + nSymbol, j: getNumColumns() - 1);
368 var.back().isSymbol = true;
369 nSymbol++;
370}
371
372static bool isRangeDivisibleBy(ArrayRef<DynamicAPInt> range,
373 const DynamicAPInt &divisor) {
374 assert(divisor > 0 && "divisor must be positive!");
375 return llvm::all_of(
376 Range&: range, P: [divisor](const DynamicAPInt &x) { return x % divisor == 0; });
377}
378
379bool SymbolicLexSimplex::isSymbolicSampleIntegral(unsigned row) const {
380 DynamicAPInt denom = tableau(row, 0);
381 return tableau(row, 1) % denom == 0 &&
382 isRangeDivisibleBy(range: tableau.getRow(row).slice(N: 3, M: nSymbol), divisor: denom);
383}
384
385/// This proceeds similarly to LexSimplexBase::addCut(). We are given a row that
386/// has a symbolic sample value with fractional coefficients.
387///
388/// Let the row be
389/// (c + coeffM*M + sum_i a_i*s_i + sum_j b_j*y_j)/d,
390/// where s_1, ... s_m are the symbols and
391/// y_1, ... y_n are the other basis unknowns.
392///
393/// As in LexSimplex::addCut, for this to be an integer, we want
394///
395/// coeffM*M + sum_j b_j*y_j = -c + sum_i (-a_i*s_i) (mod d)
396///
397/// This time, a_1*s_1 + ... + a_m*s_m may not be an integer. We find that
398///
399/// sum_i (b_i%d)y_i = ((-c%d) + sum_i (-a_i%d)s_i)%d + k*d for some integer k
400///
401/// where we take a modulo of the whole symbolic expression on the right to
402/// bring it into the range [0, d - 1]. Therefore, as in addCut(),
403/// k is the quotient on dividing the LHS by d, and since LHS >= 0, we have
404/// k >= 0 as well. If all the a_i are divisible by d, then we can add the
405/// constraint directly. Otherwise, we realize the modulo of the symbolic
406/// expression by adding a division variable
407///
408/// q = ((-c%d) + sum_i (-a_i%d)s_i)/d
409///
410/// to the symbol domain, so the equality becomes
411///
412/// sum_i (b_i%d)y_i = (-c%d) + sum_i (-a_i%d)s_i - q*d + k*d for some integer k
413///
414/// So the cut is
415/// (sum_i (b_i%d)y_i - (-c%d) - sum_i (-a_i%d)s_i + q*d)/d >= 0
416/// This constraint is violated when added so we immediately try to move it to a
417/// column.
418LogicalResult SymbolicLexSimplex::addSymbolicCut(unsigned row) {
419 DynamicAPInt d = tableau(row, 0);
420 if (isRangeDivisibleBy(range: tableau.getRow(row).slice(N: 3, M: nSymbol), divisor: d)) {
421 // The coefficients of symbols in the symbol numerator are divisible
422 // by the denominator, so we can add the constraint directly,
423 // i.e., ignore the symbols and add a regular cut as in addCut().
424 return addCut(row);
425 }
426
427 // Construct the division variable `q = ((-c%d) + sum_i (-a_i%d)s_i)/d`.
428 SmallVector<DynamicAPInt, 8> divCoeffs;
429 divCoeffs.reserve(N: nSymbol + 1);
430 DynamicAPInt divDenom = d;
431 for (unsigned col = 3; col < 3 + nSymbol; ++col)
432 divCoeffs.emplace_back(Args: mod(LHS: -tableau(row, col), RHS: divDenom)); // (-a_i%d)s_i
433 divCoeffs.emplace_back(Args: mod(LHS: -tableau(row, 1), RHS: divDenom)); // -c%d.
434 normalizeDiv(num: divCoeffs, denom&: divDenom);
435
436 domainSimplex.addDivisionVariable(coeffs: divCoeffs, denom: divDenom);
437 domainPoly.addLocalFloorDiv(dividend: divCoeffs, divisor: divDenom);
438
439 // Update `this` to account for the additional symbol we just added.
440 appendSymbol();
441
442 // Add the cut (sum_i (b_i%d)y_i - (-c%d) + sum_i -(-a_i%d)s_i + q*d)/d >= 0.
443 unsigned cutRow = addZeroRow(/*makeRestricted=*/true);
444 tableau(cutRow, 0) = d;
445 tableau(cutRow, 2) = 0;
446
447 tableau(cutRow, 1) = -mod(LHS: -tableau(row, 1), RHS: d); // -(-c%d).
448 for (unsigned col = 3; col < 3 + nSymbol - 1; ++col)
449 tableau(cutRow, col) = -mod(LHS: -tableau(row, col), RHS: d); // -(-a_i%d)s_i.
450 tableau(cutRow, 3 + nSymbol - 1) = d; // q*d.
451
452 for (unsigned col = 3 + nSymbol, e = getNumColumns(); col < e; ++col)
453 tableau(cutRow, col) = mod(LHS: tableau(row, col), RHS: d); // (b_i%d)y_i.
454 return moveRowUnknownToColumn(row: cutRow);
455}
456
457void SymbolicLexSimplex::recordOutput(SymbolicLexOpt &result) const {
458 IntMatrix output(0, domainPoly.getNumVars() + 1);
459 output.reserveRows(rows: result.lexopt.getNumOutputs());
460 for (const Unknown &u : var) {
461 if (u.isSymbol)
462 continue;
463
464 if (u.orientation == Orientation::Column) {
465 // M + u has a sample value of zero so u has a sample value of -M, i.e,
466 // unbounded.
467 result.unboundedDomain.unionInPlace(disjunct: domainPoly);
468 return;
469 }
470
471 DynamicAPInt denom = tableau(u.pos, 0);
472 if (tableau(u.pos, 2) < denom) {
473 // M + u has a sample value of fM + something, where f < 1, so
474 // u = (f - 1)M + something, which has a negative coefficient for M,
475 // and so is unbounded.
476 result.unboundedDomain.unionInPlace(disjunct: domainPoly);
477 return;
478 }
479 assert(tableau(u.pos, 2) == denom &&
480 "Coefficient of M should not be greater than 1!");
481
482 SmallVector<DynamicAPInt, 8> sample = getSymbolicSampleNumerator(row: u.pos);
483 for (DynamicAPInt &elem : sample) {
484 assert(elem % denom == 0 && "coefficients must be integral!");
485 elem /= denom;
486 }
487 output.appendExtraRow(elems: sample);
488 }
489
490 // Store the output in a MultiAffineFunction and add it the result.
491 PresburgerSpace funcSpace = result.lexopt.getSpace();
492 funcSpace.insertVar(kind: VarKind::Local, pos: 0, num: domainPoly.getNumLocalVars());
493
494 result.lexopt.addPiece(
495 piece: {.domain: PresburgerSet(domainPoly),
496 .output: MultiAffineFunction(funcSpace, output, domainPoly.getLocalReprs())});
497}
498
499std::optional<unsigned> SymbolicLexSimplex::maybeGetAlwaysViolatedRow() {
500 // First look for rows that are clearly violated just from the big M
501 // coefficient, without needing to perform any simplex queries on the domain.
502 for (unsigned row = 0, e = getNumRows(); row < e; ++row)
503 if (tableau(row, 2) < 0)
504 return row;
505
506 for (unsigned row = 0, e = getNumRows(); row < e; ++row) {
507 if (tableau(row, 2) > 0)
508 continue;
509 if (domainSimplex.isSeparateInequality(coeffs: getSymbolicSampleIneq(row))) {
510 // Sample numerator always takes negative values in the symbol domain.
511 return row;
512 }
513 }
514 return {};
515}
516
517std::optional<unsigned> SymbolicLexSimplex::maybeGetNonIntegralVarRow() {
518 for (const Unknown &u : var) {
519 if (u.orientation == Orientation::Column)
520 continue;
521 assert(!u.isSymbol && "Symbol should not be in row orientation!");
522 if (!isSymbolicSampleIntegral(row: u.pos))
523 return u.pos;
524 }
525 return {};
526}
527
528/// The non-branching pivots are just the ones moving the rows
529/// that are always violated in the symbol domain.
530LogicalResult SymbolicLexSimplex::doNonBranchingPivots() {
531 while (std::optional<unsigned> row = maybeGetAlwaysViolatedRow())
532 if (moveRowUnknownToColumn(row: *row).failed())
533 return failure();
534 return success();
535}
536
537SymbolicLexOpt SymbolicLexSimplex::computeSymbolicIntegerLexMin() {
538 SymbolicLexOpt result(PresburgerSpace::getRelationSpace(
539 /*numDomain=*/domainPoly.getNumDimVars(),
540 /*numRange=*/var.size() - nSymbol,
541 /*numSymbols=*/domainPoly.getNumSymbolVars()));
542
543 /// The algorithm is more naturally expressed recursively, but we implement
544 /// it iteratively here to avoid potential issues with stack overflows in the
545 /// compiler. We explicitly maintain the stack frames in a vector.
546 ///
547 /// To "recurse", we store the current "stack frame", i.e., state variables
548 /// that we will need when we "return", into `stack`, increment `level`, and
549 /// `continue`. To "tail recurse", we just `continue`.
550 /// To "return", we decrement `level` and `continue`.
551 ///
552 /// When there is no stack frame for the current `level`, this indicates that
553 /// we have just "recursed" or "tail recursed". When there does exist one,
554 /// this indicates that we have just "returned" from recursing. There is only
555 /// one point at which non-tail calls occur so we always "return" there.
556 unsigned level = 1;
557 struct StackFrame {
558 int splitIndex;
559 unsigned snapshot;
560 unsigned domainSnapshot;
561 IntegerRelation::CountsSnapshot domainPolyCounts;
562 };
563 SmallVector<StackFrame, 8> stack;
564
565 while (level > 0) {
566 assert(level >= stack.size());
567 if (level > stack.size()) {
568 if (empty || domainSimplex.findIntegerLexMin().isEmpty()) {
569 // No integer points; return.
570 --level;
571 continue;
572 }
573
574 if (doNonBranchingPivots().failed()) {
575 // Could not find pivots for violated constraints; return.
576 --level;
577 continue;
578 }
579
580 SmallVector<DynamicAPInt, 8> symbolicSample;
581 unsigned splitRow = 0;
582 for (unsigned e = getNumRows(); splitRow < e; ++splitRow) {
583 if (tableau(splitRow, 2) > 0)
584 continue;
585 assert(tableau(splitRow, 2) == 0 &&
586 "Non-branching pivots should have been handled already!");
587
588 symbolicSample = getSymbolicSampleIneq(row: splitRow);
589 if (domainSimplex.isRedundantInequality(coeffs: symbolicSample))
590 continue;
591
592 // It's neither redundant nor separate, so it takes both positive and
593 // negative values, and hence constitutes a row for which we need to
594 // split the domain and separately run each case.
595 assert(!domainSimplex.isSeparateInequality(symbolicSample) &&
596 "Non-branching pivots should have been handled already!");
597 break;
598 }
599
600 if (splitRow < getNumRows()) {
601 unsigned domainSnapshot = domainSimplex.getSnapshot();
602 IntegerRelation::CountsSnapshot domainPolyCounts =
603 domainPoly.getCounts();
604
605 // First, we consider the part of the domain where the row is not
606 // violated. We don't have to do any pivots for the row in this case,
607 // but we record the additional constraint that defines this part of
608 // the domain.
609 domainSimplex.addInequality(coeffs: symbolicSample);
610 domainPoly.addInequality(inEq: symbolicSample);
611
612 // Recurse.
613 //
614 // On return, the basis as a set is preserved but not the internal
615 // ordering within rows or columns. Thus, we take note of the index of
616 // the Unknown that caused the split, which may be in a different
617 // row when we come back from recursing. We will need this to recurse
618 // on the other part of the split domain, where the row is violated.
619 //
620 // Note that we have to capture the index above and not a reference to
621 // the Unknown itself, since the array it lives in might get
622 // reallocated.
623 int splitIndex = rowUnknown[splitRow];
624 unsigned snapshot = getSnapshot();
625 stack.emplace_back(
626 Args: StackFrame{.splitIndex: splitIndex, .snapshot: snapshot, .domainSnapshot: domainSnapshot, .domainPolyCounts: domainPolyCounts});
627 ++level;
628 continue;
629 }
630
631 // The tableau is rationally consistent for the current domain.
632 // Now we look for non-integral sample values and add cuts for them.
633 if (std::optional<unsigned> row = maybeGetNonIntegralVarRow()) {
634 if (addSymbolicCut(row: *row).failed()) {
635 // No integral points; return.
636 --level;
637 continue;
638 }
639
640 // Rerun this level with the added cut constraint (tail recurse).
641 continue;
642 }
643
644 // Record output and return.
645 recordOutput(result);
646 --level;
647 continue;
648 }
649
650 if (level == stack.size()) {
651 // We have "returned" from "recursing".
652 const StackFrame &frame = stack.back();
653 domainPoly.truncate(counts: frame.domainPolyCounts);
654 domainSimplex.rollback(snapshot: frame.domainSnapshot);
655 rollback(snapshot: frame.snapshot);
656 const Unknown &u = unknownFromIndex(index: frame.splitIndex);
657
658 // Drop the frame. We don't need it anymore.
659 stack.pop_back();
660
661 // Now we consider the part of the domain where the unknown `splitIndex`
662 // was negative.
663 assert(u.orientation == Orientation::Row &&
664 "The split row should have been returned to row orientation!");
665 SmallVector<DynamicAPInt, 8> splitIneq =
666 getComplementIneq(ineq: getSymbolicSampleIneq(row: u.pos));
667 normalizeRange(range: splitIneq);
668 if (moveRowUnknownToColumn(row: u.pos).failed()) {
669 // The unknown can't be made non-negative; return.
670 --level;
671 continue;
672 }
673
674 // The unknown can be made negative; recurse with the corresponding domain
675 // constraints.
676 domainSimplex.addInequality(coeffs: splitIneq);
677 domainPoly.addInequality(inEq: splitIneq);
678
679 // We are now taking care of the second half of the domain and we don't
680 // need to do anything else here after returning, so it's a tail recurse.
681 continue;
682 }
683 }
684
685 return result;
686}
687
688bool LexSimplex::rowIsViolated(unsigned row) const {
689 if (tableau(row, 2) < 0)
690 return true;
691 if (tableau(row, 2) == 0 && tableau(row, 1) < 0)
692 return true;
693 return false;
694}
695
696std::optional<unsigned> LexSimplex::maybeGetViolatedRow() const {
697 for (unsigned row = 0, e = getNumRows(); row < e; ++row)
698 if (rowIsViolated(row))
699 return row;
700 return {};
701}
702
703/// We simply look for violated rows and keep trying to move them to column
704/// orientation, which always succeeds unless the constraints have no solution
705/// in which case we just give up and return.
706LogicalResult LexSimplex::restoreRationalConsistency() {
707 if (empty)
708 return failure();
709 while (std::optional<unsigned> maybeViolatedRow = maybeGetViolatedRow())
710 if (moveRowUnknownToColumn(row: *maybeViolatedRow).failed())
711 return failure();
712 return success();
713}
714
715// Move the row unknown to column orientation while preserving lexicopositivity
716// of the basis transform. The sample value of the row must be non-positive.
717//
718// We only consider pivots where the pivot element is positive. Suppose no such
719// pivot exists, i.e., some violated row has no positive coefficient for any
720// basis unknown. The row can be represented as (s + c_1*u_1 + ... + c_n*u_n)/d,
721// where d is the denominator, s is the sample value and the c_i are the basis
722// coefficients. If s != 0, then since any feasible assignment of the basis
723// satisfies u_i >= 0 for all i, and we have s < 0 as well as c_i < 0 for all i,
724// any feasible assignment would violate this row and therefore the constraints
725// have no solution.
726//
727// We can preserve lexicopositivity by picking the pivot column with positive
728// pivot element that makes the lexicographically smallest change to the sample
729// point.
730//
731// Proof. Let
732// x = (x_1, ... x_n) be the variables,
733// z = (z_1, ... z_m) be the constraints,
734// y = (y_1, ... y_n) be the current basis, and
735// define w = (x_1, ... x_n, z_1, ... z_m) = B*y + s.
736// B is basically the simplex tableau of our implementation except that instead
737// of only describing the transform to get back the non-basis unknowns, it
738// defines the values of all the unknowns in terms of the basis unknowns.
739// Similarly, s is the column for the sample value.
740//
741// Our goal is to show that each column in B, restricted to the first n
742// rows, is lexicopositive after the pivot if it is so before. This is
743// equivalent to saying the columns in the whole matrix are lexicopositive;
744// there must be some non-zero element in every column in the first n rows since
745// the n variables cannot be spanned without using all the n basis unknowns.
746//
747// Consider a pivot where z_i replaces y_j in the basis. Recall the pivot
748// transform for the tableau derived for SimplexBase::pivot:
749//
750// pivot col other col pivot col other col
751// pivot row a b -> pivot row 1/a -b/a
752// other row c d other row c/a d - bc/a
753//
754// Similarly, a pivot results in B changing to B' and c to c'; the difference
755// between the tableau and these matrices B and B' is that there is no special
756// case for the pivot row, since it continues to represent the same unknown. The
757// same formula applies for all rows:
758//
759// B'.col(j) = B.col(j) / B(i,j)
760// B'.col(k) = B.col(k) - B(i,k) * B.col(j) / B(i,j) for k != j
761// and similarly, s' = s - s_i * B.col(j) / B(i,j).
762//
763// If s_i == 0, then the sample value remains unchanged. Otherwise, if s_i < 0,
764// the change in sample value when pivoting with column a is lexicographically
765// smaller than that when pivoting with column b iff B.col(a) / B(i, a) is
766// lexicographically smaller than B.col(b) / B(i, b).
767//
768// Since B(i, j) > 0, column j remains lexicopositive.
769//
770// For the other columns, suppose C.col(k) is not lexicopositive.
771// This means that for some p, for all t < p,
772// C(t,k) = 0 => B(t,k) = B(t,j) * B(i,k) / B(i,j) and
773// C(t,k) < 0 => B(p,k) < B(t,j) * B(i,k) / B(i,j),
774// which is in contradiction to the fact that B.col(j) / B(i,j) must be
775// lexicographically smaller than B.col(k) / B(i,k), since it lexicographically
776// minimizes the change in sample value.
777LogicalResult LexSimplexBase::moveRowUnknownToColumn(unsigned row) {
778 std::optional<unsigned> maybeColumn;
779 for (unsigned col = 3 + nSymbol, e = getNumColumns(); col < e; ++col) {
780 if (tableau(row, col) <= 0)
781 continue;
782 maybeColumn =
783 !maybeColumn ? col : getLexMinPivotColumn(row, colA: *maybeColumn, colB: col);
784 }
785
786 if (!maybeColumn)
787 return failure();
788
789 pivot(row, col: *maybeColumn);
790 return success();
791}
792
793unsigned LexSimplexBase::getLexMinPivotColumn(unsigned row, unsigned colA,
794 unsigned colB) const {
795 // First, let's consider the non-symbolic case.
796 // A pivot causes the following change. (in the diagram the matrix elements
797 // are shown as rationals and there is no common denominator used)
798 //
799 // pivot col big M col const col
800 // pivot row a p b
801 // other row c q d
802 // |
803 // v
804 //
805 // pivot col big M col const col
806 // pivot row 1/a -p/a -b/a
807 // other row c/a q - pc/a d - bc/a
808 //
809 // Let the sample value of the pivot row be s = pM + b before the pivot. Since
810 // the pivot row represents a violated constraint we know that s < 0.
811 //
812 // If the variable is a non-pivot column, its sample value is zero before and
813 // after the pivot.
814 //
815 // If the variable is the pivot column, then its sample value goes from 0 to
816 // (-p/a)M + (-b/a), i.e. 0 to -(pM + b)/a. Thus the change in the sample
817 // value is -s/a.
818 //
819 // If the variable is the pivot row, its sample value goes from s to 0, for a
820 // change of -s.
821 //
822 // If the variable is a non-pivot row, its sample value changes from
823 // qM + d to qM + d + (-pc/a)M + (-bc/a). Thus the change in sample value
824 // is -(pM + b)(c/a) = -sc/a.
825 //
826 // Thus the change in sample value is either 0, -s/a, -s, or -sc/a. Here -s is
827 // fixed for all calls to this function since the row and tableau are fixed.
828 // The callee just wants to compare the return values with the return value of
829 // other invocations of the same function. So the -s is common for all
830 // comparisons involved and can be ignored, since -s is strictly positive.
831 //
832 // Thus we take away this common factor and just return 0, 1/a, 1, or c/a as
833 // appropriate. This allows us to run the entire algorithm treating M
834 // symbolically, as the pivot to be performed does not depend on the value
835 // of M, so long as the sample value s is negative. Note that this is not
836 // because of any special feature of M; by the same argument, we ignore the
837 // symbols too. The caller ensure that the sample value s is negative for
838 // all possible values of the symbols.
839 auto getSampleChangeCoeffForVar = [this, row](unsigned col,
840 const Unknown &u) -> Fraction {
841 DynamicAPInt a = tableau(row, col);
842 if (u.orientation == Orientation::Column) {
843 // Pivot column case.
844 if (u.pos == col)
845 return {1, a};
846
847 // Non-pivot column case.
848 return {0, 1};
849 }
850
851 // Pivot row case.
852 if (u.pos == row)
853 return {1, 1};
854
855 // Non-pivot row case.
856 DynamicAPInt c = tableau(u.pos, col);
857 return {c, a};
858 };
859
860 for (const Unknown &u : var) {
861 Fraction changeA = getSampleChangeCoeffForVar(colA, u);
862 Fraction changeB = getSampleChangeCoeffForVar(colB, u);
863 if (changeA < changeB)
864 return colA;
865 if (changeA > changeB)
866 return colB;
867 }
868
869 // If we reached here, both result in exactly the same changes, so it
870 // doesn't matter which we return.
871 return colA;
872}
873
874/// Find a pivot to change the sample value of the row in the specified
875/// direction. The returned pivot row will involve `row` if and only if the
876/// unknown is unbounded in the specified direction.
877///
878/// To increase (resp. decrease) the value of a row, we need to find a live
879/// column with a non-zero coefficient. If the coefficient is positive, we need
880/// to increase (decrease) the value of the column, and if the coefficient is
881/// negative, we need to decrease (increase) the value of the column. Also,
882/// we cannot decrease the sample value of restricted columns.
883///
884/// If multiple columns are valid, we break ties by considering a lexicographic
885/// ordering where we prefer unknowns with lower index.
886std::optional<SimplexBase::Pivot>
887Simplex::findPivot(int row, Direction direction) const {
888 std::optional<unsigned> col;
889 for (unsigned j = 2, e = getNumColumns(); j < e; ++j) {
890 DynamicAPInt elem = tableau(row, j);
891 if (elem == 0)
892 continue;
893
894 if (unknownFromColumn(col: j).restricted &&
895 !signMatchesDirection(elem, direction))
896 continue;
897 if (!col || colUnknown[j] < colUnknown[*col])
898 col = j;
899 }
900
901 if (!col)
902 return {};
903
904 Direction newDirection =
905 tableau(row, *col) < 0 ? flippedDirection(direction) : direction;
906 std::optional<unsigned> maybePivotRow = findPivotRow(skipRow: row, direction: newDirection, col: *col);
907 return Pivot{.row: maybePivotRow.value_or(u&: row), .column: *col};
908}
909
910/// Swap the associated unknowns for the row and the column.
911///
912/// First we swap the index associated with the row and column. Then we update
913/// the unknowns to reflect their new position and orientation.
914void SimplexBase::swapRowWithCol(unsigned row, unsigned col) {
915 std::swap(a&: rowUnknown[row], b&: colUnknown[col]);
916 Unknown &uCol = unknownFromColumn(col);
917 Unknown &uRow = unknownFromRow(row);
918 uCol.orientation = Orientation::Column;
919 uRow.orientation = Orientation::Row;
920 uCol.pos = col;
921 uRow.pos = row;
922}
923
924void SimplexBase::pivot(Pivot pair) { pivot(row: pair.row, col: pair.column); }
925
926/// Pivot pivotRow and pivotCol.
927///
928/// Let R be the pivot row unknown and let C be the pivot col unknown.
929/// Since initially R = a*C + sum b_i * X_i
930/// (where the sum is over the other column's unknowns, x_i)
931/// C = (R - (sum b_i * X_i))/a
932///
933/// Let u be some other row unknown.
934/// u = c*C + sum d_i * X_i
935/// So u = c*(R - sum b_i * X_i)/a + sum d_i * X_i
936///
937/// This results in the following transform:
938/// pivot col other col pivot col other col
939/// pivot row a b -> pivot row 1/a -b/a
940/// other row c d other row c/a d - bc/a
941///
942/// Taking into account the common denominators p and q:
943///
944/// pivot col other col pivot col other col
945/// pivot row a/p b/p -> pivot row p/a -b/a
946/// other row c/q d/q other row cp/aq (da - bc)/aq
947///
948/// The pivot row transform is accomplished be swapping a with the pivot row's
949/// common denominator and negating the pivot row except for the pivot column
950/// element.
951void SimplexBase::pivot(unsigned pivotRow, unsigned pivotCol) {
952 assert(pivotCol >= getNumFixedCols() && "Refusing to pivot invalid column");
953 assert(!unknownFromColumn(pivotCol).isSymbol);
954
955 swapRowWithCol(row: pivotRow, col: pivotCol);
956 std::swap(a&: tableau(pivotRow, 0), b&: tableau(pivotRow, pivotCol));
957 // We need to negate the whole pivot row except for the pivot column.
958 if (tableau(pivotRow, 0) < 0) {
959 // If the denominator is negative, we negate the row by simply negating the
960 // denominator.
961 tableau(pivotRow, 0) = -tableau(pivotRow, 0);
962 tableau(pivotRow, pivotCol) = -tableau(pivotRow, pivotCol);
963 } else {
964 for (unsigned col = 1, e = getNumColumns(); col < e; ++col) {
965 if (col == pivotCol)
966 continue;
967 tableau(pivotRow, col) = -tableau(pivotRow, col);
968 }
969 }
970 tableau.normalizeRow(row: pivotRow);
971
972 for (unsigned row = 0, numRows = getNumRows(); row < numRows; ++row) {
973 if (row == pivotRow)
974 continue;
975 if (tableau(row, pivotCol) == 0) // Nothing to do.
976 continue;
977 tableau(row, 0) *= tableau(pivotRow, 0);
978 for (unsigned col = 1, numCols = getNumColumns(); col < numCols; ++col) {
979 if (col == pivotCol)
980 continue;
981 // Add rather than subtract because the pivot row has been negated.
982 tableau(row, col) = tableau(row, col) * tableau(pivotRow, 0) +
983 tableau(row, pivotCol) * tableau(pivotRow, col);
984 }
985 tableau(row, pivotCol) *= tableau(pivotRow, pivotCol);
986 tableau.normalizeRow(row);
987 }
988}
989
990/// Perform pivots until the unknown has a non-negative sample value or until
991/// no more upward pivots can be performed. Return success if we were able to
992/// bring the row to a non-negative sample value, and failure otherwise.
993LogicalResult Simplex::restoreRow(Unknown &u) {
994 assert(u.orientation == Orientation::Row &&
995 "unknown should be in row position");
996
997 while (tableau(u.pos, 1) < 0) {
998 std::optional<Pivot> maybePivot = findPivot(row: u.pos, direction: Direction::Up);
999 if (!maybePivot)
1000 break;
1001
1002 pivot(pair: *maybePivot);
1003 if (u.orientation == Orientation::Column)
1004 return success(); // the unknown is unbounded above.
1005 }
1006 return success(IsSuccess: tableau(u.pos, 1) >= 0);
1007}
1008
1009/// Find a row that can be used to pivot the column in the specified direction.
1010/// This returns an empty optional if and only if the column is unbounded in the
1011/// specified direction (ignoring skipRow, if skipRow is set).
1012///
1013/// If skipRow is set, this row is not considered, and (if it is restricted) its
1014/// restriction may be violated by the returned pivot. Usually, skipRow is set
1015/// because we don't want to move it to column position unless it is unbounded,
1016/// and we are either trying to increase the value of skipRow or explicitly
1017/// trying to make skipRow negative, so we are not concerned about this.
1018///
1019/// If the direction is up (resp. down) and a restricted row has a negative
1020/// (positive) coefficient for the column, then this row imposes a bound on how
1021/// much the sample value of the column can change. Such a row with constant
1022/// term c and coefficient f for the column imposes a bound of c/|f| on the
1023/// change in sample value (in the specified direction). (note that c is
1024/// non-negative here since the row is restricted and the tableau is consistent)
1025///
1026/// We iterate through the rows and pick the row which imposes the most
1027/// stringent bound, since pivoting with a row changes the row's sample value to
1028/// 0 and hence saturates the bound it imposes. We break ties between rows that
1029/// impose the same bound by considering a lexicographic ordering where we
1030/// prefer unknowns with lower index value.
1031std::optional<unsigned> Simplex::findPivotRow(std::optional<unsigned> skipRow,
1032 Direction direction,
1033 unsigned col) const {
1034 std::optional<unsigned> retRow;
1035 // Initialize these to zero in order to silence a warning about retElem and
1036 // retConst being used uninitialized in the initialization of `diff` below. In
1037 // reality, these are always initialized when that line is reached since these
1038 // are set whenever retRow is set.
1039 DynamicAPInt retElem, retConst;
1040 for (unsigned row = nRedundant, e = getNumRows(); row < e; ++row) {
1041 if (skipRow && row == *skipRow)
1042 continue;
1043 DynamicAPInt elem = tableau(row, col);
1044 if (elem == 0)
1045 continue;
1046 if (!unknownFromRow(row).restricted)
1047 continue;
1048 if (signMatchesDirection(elem, direction))
1049 continue;
1050 DynamicAPInt constTerm = tableau(row, 1);
1051
1052 if (!retRow) {
1053 retRow = row;
1054 retElem = elem;
1055 retConst = constTerm;
1056 continue;
1057 }
1058
1059 DynamicAPInt diff = retConst * elem - constTerm * retElem;
1060 if ((diff == 0 && rowUnknown[row] < rowUnknown[*retRow]) ||
1061 (diff != 0 && !signMatchesDirection(elem: diff, direction))) {
1062 retRow = row;
1063 retElem = elem;
1064 retConst = constTerm;
1065 }
1066 }
1067 return retRow;
1068}
1069
1070bool SimplexBase::isEmpty() const { return empty; }
1071
1072void SimplexBase::swapRows(unsigned i, unsigned j) {
1073 if (i == j)
1074 return;
1075 tableau.swapRows(row: i, otherRow: j);
1076 std::swap(a&: rowUnknown[i], b&: rowUnknown[j]);
1077 unknownFromRow(row: i).pos = i;
1078 unknownFromRow(row: j).pos = j;
1079}
1080
1081void SimplexBase::swapColumns(unsigned i, unsigned j) {
1082 assert(i < getNumColumns() && j < getNumColumns() &&
1083 "Invalid columns provided!");
1084 if (i == j)
1085 return;
1086 tableau.swapColumns(column: i, otherColumn: j);
1087 std::swap(a&: colUnknown[i], b&: colUnknown[j]);
1088 unknownFromColumn(col: i).pos = i;
1089 unknownFromColumn(col: j).pos = j;
1090}
1091
1092/// Mark this tableau empty and push an entry to the undo stack.
1093void SimplexBase::markEmpty() {
1094 // If the set is already empty, then we shouldn't add another UnmarkEmpty log
1095 // entry, since in that case the Simplex will be erroneously marked as
1096 // non-empty when rolling back past this point.
1097 if (empty)
1098 return;
1099 undoLog.emplace_back(Args: UndoLogEntry::UnmarkEmpty);
1100 empty = true;
1101}
1102
1103/// Add an inequality to the tableau. If coeffs is c_0, c_1, ... c_n, where n
1104/// is the current number of variables, then the corresponding inequality is
1105/// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} >= 0.
1106///
1107/// We add the inequality and mark it as restricted. We then try to make its
1108/// sample value non-negative. If this is not possible, the tableau has become
1109/// empty and we mark it as such.
1110void Simplex::addInequality(ArrayRef<DynamicAPInt> coeffs) {
1111 unsigned conIndex = addRow(coeffs, /*makeRestricted=*/true);
1112 LogicalResult result = restoreRow(u&: con[conIndex]);
1113 if (result.failed())
1114 markEmpty();
1115}
1116
1117/// Add an equality to the tableau. If coeffs is c_0, c_1, ... c_n, where n
1118/// is the current number of variables, then the corresponding equality is
1119/// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} == 0.
1120///
1121/// We simply add two opposing inequalities, which force the expression to
1122/// be zero.
1123void SimplexBase::addEquality(ArrayRef<DynamicAPInt> coeffs) {
1124 addInequality(coeffs);
1125 SmallVector<DynamicAPInt, 8> negatedCoeffs;
1126 negatedCoeffs.reserve(N: coeffs.size());
1127 for (const DynamicAPInt &coeff : coeffs)
1128 negatedCoeffs.emplace_back(Args: -coeff);
1129 addInequality(coeffs: negatedCoeffs);
1130}
1131
1132unsigned SimplexBase::getNumVariables() const { return var.size(); }
1133unsigned SimplexBase::getNumConstraints() const { return con.size(); }
1134
1135/// Return a snapshot of the current state. This is just the current size of the
1136/// undo log.
1137unsigned SimplexBase::getSnapshot() const { return undoLog.size(); }
1138
1139unsigned SimplexBase::getSnapshotBasis() {
1140 SmallVector<int, 8> basis;
1141 basis.reserve(N: colUnknown.size());
1142 for (int index : colUnknown) {
1143 if (index != nullIndex)
1144 basis.emplace_back(Args&: index);
1145 }
1146 savedBases.emplace_back(Args: std::move(basis));
1147
1148 undoLog.emplace_back(Args: UndoLogEntry::RestoreBasis);
1149 return undoLog.size() - 1;
1150}
1151
1152void SimplexBase::removeLastConstraintRowOrientation() {
1153 assert(con.back().orientation == Orientation::Row);
1154
1155 // Move this unknown to the last row and remove the last row from the
1156 // tableau.
1157 swapRows(i: con.back().pos, j: getNumRows() - 1);
1158 // It is not strictly necessary to shrink the tableau, but for now we
1159 // maintain the invariant that the tableau has exactly getNumRows()
1160 // rows.
1161 tableau.resizeVertically(newNRows: getNumRows() - 1);
1162 rowUnknown.pop_back();
1163 con.pop_back();
1164}
1165
1166// This doesn't find a pivot row only if the column has zero
1167// coefficients for every row.
1168//
1169// If the unknown is a constraint, this can't happen, since it was added
1170// initially as a row. Such a row could never have been pivoted to a column. So
1171// a pivot row will always be found if we have a constraint.
1172//
1173// If we have a variable, then the column has zero coefficients for every row
1174// iff no constraints have been added with a non-zero coefficient for this row.
1175std::optional<unsigned> SimplexBase::findAnyPivotRow(unsigned col) {
1176 for (unsigned row = nRedundant, e = getNumRows(); row < e; ++row)
1177 if (tableau(row, col) != 0)
1178 return row;
1179 return {};
1180}
1181
1182// It's not valid to remove the constraint by deleting the column since this
1183// would result in an invalid basis.
1184void Simplex::undoLastConstraint() {
1185 if (con.back().orientation == Orientation::Column) {
1186 // We try to find any pivot row for this column that preserves tableau
1187 // consistency (except possibly the column itself, which is going to be
1188 // deallocated anyway).
1189 //
1190 // If no pivot row is found in either direction, then the unknown is
1191 // unbounded in both directions and we are free to perform any pivot at
1192 // all. To do this, we just need to find any row with a non-zero
1193 // coefficient for the column. findAnyPivotRow will always be able to
1194 // find such a row for a constraint.
1195 unsigned column = con.back().pos;
1196 if (std::optional<unsigned> maybeRow =
1197 findPivotRow(skipRow: {}, direction: Direction::Up, col: column)) {
1198 pivot(pivotRow: *maybeRow, pivotCol: column);
1199 } else if (std::optional<unsigned> maybeRow =
1200 findPivotRow(skipRow: {}, direction: Direction::Down, col: column)) {
1201 pivot(pivotRow: *maybeRow, pivotCol: column);
1202 } else {
1203 std::optional<unsigned> row = findAnyPivotRow(col: column);
1204 assert(row && "Pivot should always exist for a constraint!");
1205 pivot(pivotRow: *row, pivotCol: column);
1206 }
1207 }
1208 removeLastConstraintRowOrientation();
1209}
1210
1211// It's not valid to remove the constraint by deleting the column since this
1212// would result in an invalid basis.
1213void LexSimplexBase::undoLastConstraint() {
1214 if (con.back().orientation == Orientation::Column) {
1215 // When removing the last constraint during a rollback, we just need to find
1216 // any pivot at all, i.e., any row with non-zero coefficient for the
1217 // column, because when rolling back a lexicographic simplex, we always
1218 // end by restoring the exact basis that was present at the time of the
1219 // snapshot, so what pivots we perform while undoing doesn't matter as
1220 // long as we get the unknown to row orientation and remove it.
1221 unsigned column = con.back().pos;
1222 std::optional<unsigned> row = findAnyPivotRow(col: column);
1223 assert(row && "Pivot should always exist for a constraint!");
1224 pivot(pivotRow: *row, pivotCol: column);
1225 }
1226 removeLastConstraintRowOrientation();
1227}
1228
1229void SimplexBase::undo(UndoLogEntry entry) {
1230 if (entry == UndoLogEntry::RemoveLastConstraint) {
1231 // Simplex and LexSimplex handle this differently, so we call out to a
1232 // virtual function to handle this.
1233 undoLastConstraint();
1234 } else if (entry == UndoLogEntry::RemoveLastVariable) {
1235 // Whenever we are rolling back the addition of a variable, it is guaranteed
1236 // that the variable will be in column position.
1237 //
1238 // We can see this as follows: any constraint that depends on this variable
1239 // was added after this variable was added, so the addition of such
1240 // constraints should already have been rolled back by the time we get to
1241 // rolling back the addition of the variable. Therefore, no constraint
1242 // currently has a component along the variable, so the variable itself must
1243 // be part of the basis.
1244 assert(var.back().orientation == Orientation::Column &&
1245 "Variable to be removed must be in column orientation!");
1246
1247 if (var.back().isSymbol)
1248 nSymbol--;
1249
1250 // Move this variable to the last column and remove the column from the
1251 // tableau.
1252 swapColumns(i: var.back().pos, j: getNumColumns() - 1);
1253 tableau.resizeHorizontally(newNColumns: getNumColumns() - 1);
1254 var.pop_back();
1255 colUnknown.pop_back();
1256 } else if (entry == UndoLogEntry::UnmarkEmpty) {
1257 empty = false;
1258 } else if (entry == UndoLogEntry::UnmarkLastRedundant) {
1259 nRedundant--;
1260 } else if (entry == UndoLogEntry::RestoreBasis) {
1261 assert(!savedBases.empty() && "No bases saved!");
1262
1263 SmallVector<int, 8> basis = std::move(savedBases.back());
1264 savedBases.pop_back();
1265
1266 for (int index : basis) {
1267 Unknown &u = unknownFromIndex(index);
1268 if (u.orientation == Orientation::Column)
1269 continue;
1270 for (unsigned col = getNumFixedCols(), e = getNumColumns(); col < e;
1271 col++) {
1272 assert(colUnknown[col] != nullIndex &&
1273 "Column should not be a fixed column!");
1274 if (llvm::is_contained(Range&: basis, Element: colUnknown[col]))
1275 continue;
1276 if (tableau(u.pos, col) == 0)
1277 continue;
1278 pivot(pivotRow: u.pos, pivotCol: col);
1279 break;
1280 }
1281
1282 assert(u.orientation == Orientation::Column && "No pivot found!");
1283 }
1284 }
1285}
1286
1287/// Rollback to the specified snapshot.
1288///
1289/// We undo all the log entries until the log size when the snapshot was taken
1290/// is reached.
1291void SimplexBase::rollback(unsigned snapshot) {
1292 while (undoLog.size() > snapshot) {
1293 undo(entry: undoLog.back());
1294 undoLog.pop_back();
1295 }
1296}
1297
1298/// We add the usual floor division constraints:
1299/// `0 <= coeffs - denom*q <= denom - 1`, where `q` is the new division
1300/// variable.
1301///
1302/// This constrains the remainder `coeffs - denom*q` to be in the
1303/// range `[0, denom - 1]`, which fixes the integer value of the quotient `q`.
1304void SimplexBase::addDivisionVariable(ArrayRef<DynamicAPInt> coeffs,
1305 const DynamicAPInt &denom) {
1306 assert(denom > 0 && "Denominator must be positive!");
1307 appendVariable();
1308
1309 SmallVector<DynamicAPInt, 8> ineq(coeffs);
1310 DynamicAPInt constTerm = ineq.back();
1311 ineq.back() = -denom;
1312 ineq.emplace_back(Args&: constTerm);
1313 addInequality(coeffs: ineq);
1314
1315 for (DynamicAPInt &coeff : ineq)
1316 coeff = -coeff;
1317 ineq.back() += denom - 1;
1318 addInequality(coeffs: ineq);
1319}
1320
1321void SimplexBase::appendVariable(unsigned count) {
1322 if (count == 0)
1323 return;
1324 var.reserve(N: var.size() + count);
1325 colUnknown.reserve(N: colUnknown.size() + count);
1326 for (unsigned i = 0; i < count; ++i) {
1327 var.emplace_back(Args: Orientation::Column, /*restricted=*/Args: false,
1328 /*pos=*/Args: getNumColumns() + i);
1329 colUnknown.emplace_back(Args: var.size() - 1);
1330 }
1331 tableau.resizeHorizontally(newNColumns: getNumColumns() + count);
1332 undoLog.insert(I: undoLog.end(), NumToInsert: count, Elt: UndoLogEntry::RemoveLastVariable);
1333}
1334
1335/// Add all the constraints from the given IntegerRelation.
1336void SimplexBase::intersectIntegerRelation(const IntegerRelation &rel) {
1337 assert(rel.getNumVars() == getNumVariables() &&
1338 "IntegerRelation must have same dimensionality as simplex");
1339 for (unsigned i = 0, e = rel.getNumInequalities(); i < e; ++i)
1340 addInequality(coeffs: rel.getInequality(idx: i));
1341 for (unsigned i = 0, e = rel.getNumEqualities(); i < e; ++i)
1342 addEquality(coeffs: rel.getEquality(idx: i));
1343}
1344
1345MaybeOptimum<Fraction> Simplex::computeRowOptimum(Direction direction,
1346 unsigned row) {
1347 // Keep trying to find a pivot for the row in the specified direction.
1348 while (std::optional<Pivot> maybePivot = findPivot(row, direction)) {
1349 // If findPivot returns a pivot involving the row itself, then the optimum
1350 // is unbounded, so we return std::nullopt.
1351 if (maybePivot->row == row)
1352 return OptimumKind::Unbounded;
1353 pivot(pair: *maybePivot);
1354 }
1355
1356 // The row has reached its optimal sample value, which we return.
1357 // The sample value is the entry in the constant column divided by the common
1358 // denominator for this row.
1359 return Fraction(tableau(row, 1), tableau(row, 0));
1360}
1361
1362/// Compute the optimum of the specified expression in the specified direction,
1363/// or std::nullopt if it is unbounded.
1364MaybeOptimum<Fraction> Simplex::computeOptimum(Direction direction,
1365 ArrayRef<DynamicAPInt> coeffs) {
1366 if (empty)
1367 return OptimumKind::Empty;
1368
1369 SimplexRollbackScopeExit scopeExit(*this);
1370 unsigned conIndex = addRow(coeffs);
1371 unsigned row = con[conIndex].pos;
1372 return computeRowOptimum(direction, row);
1373}
1374
1375MaybeOptimum<Fraction> Simplex::computeOptimum(Direction direction,
1376 Unknown &u) {
1377 if (empty)
1378 return OptimumKind::Empty;
1379 if (u.orientation == Orientation::Column) {
1380 unsigned column = u.pos;
1381 std::optional<unsigned> pivotRow = findPivotRow(skipRow: {}, direction, col: column);
1382 // If no pivot is returned, the constraint is unbounded in the specified
1383 // direction.
1384 if (!pivotRow)
1385 return OptimumKind::Unbounded;
1386 pivot(pivotRow: *pivotRow, pivotCol: column);
1387 }
1388
1389 unsigned row = u.pos;
1390 MaybeOptimum<Fraction> optimum = computeRowOptimum(direction, row);
1391 if (u.restricted && direction == Direction::Down &&
1392 (optimum.isUnbounded() || *optimum < Fraction(0, 1))) {
1393 if (restoreRow(u).failed())
1394 llvm_unreachable("Could not restore row!");
1395 }
1396 return optimum;
1397}
1398
1399bool Simplex::isBoundedAlongConstraint(unsigned constraintIndex) {
1400 assert(!empty && "It is not meaningful to ask whether a direction is bounded "
1401 "in an empty set.");
1402 // The constraint's perpendicular is already bounded below, since it is a
1403 // constraint. If it is also bounded above, we can return true.
1404 return computeOptimum(direction: Direction::Up, u&: con[constraintIndex]).isBounded();
1405}
1406
1407/// Redundant constraints are those that are in row orientation and lie in
1408/// rows 0 to nRedundant - 1.
1409bool Simplex::isMarkedRedundant(unsigned constraintIndex) const {
1410 const Unknown &u = con[constraintIndex];
1411 return u.orientation == Orientation::Row && u.pos < nRedundant;
1412}
1413
1414/// Mark the specified row redundant.
1415///
1416/// This is done by moving the unknown to the end of the block of redundant
1417/// rows (namely, to row nRedundant) and incrementing nRedundant to
1418/// accomodate the new redundant row.
1419void Simplex::markRowRedundant(Unknown &u) {
1420 assert(u.orientation == Orientation::Row &&
1421 "Unknown should be in row position!");
1422 assert(u.pos >= nRedundant && "Unknown is already marked redundant!");
1423 swapRows(i: u.pos, j: nRedundant);
1424 ++nRedundant;
1425 undoLog.emplace_back(Args: UndoLogEntry::UnmarkLastRedundant);
1426}
1427
1428/// Find a subset of constraints that is redundant and mark them redundant.
1429void Simplex::detectRedundant(unsigned offset, unsigned count) {
1430 assert(offset + count <= con.size() && "invalid range!");
1431 // It is not meaningful to talk about redundancy for empty sets.
1432 if (empty)
1433 return;
1434
1435 // Iterate through the constraints and check for each one if it can attain
1436 // negative sample values. If it can, it's not redundant. Otherwise, it is.
1437 // We mark redundant constraints redundant.
1438 //
1439 // Constraints that get marked redundant in one iteration are not respected
1440 // when checking constraints in later iterations. This prevents, for example,
1441 // two identical constraints both being marked redundant since each is
1442 // redundant given the other one. In this example, only the first of the
1443 // constraints that is processed will get marked redundant, as it should be.
1444 for (unsigned i = 0; i < count; ++i) {
1445 Unknown &u = con[offset + i];
1446 if (u.orientation == Orientation::Column) {
1447 unsigned column = u.pos;
1448 std::optional<unsigned> pivotRow =
1449 findPivotRow(skipRow: {}, direction: Direction::Down, col: column);
1450 // If no downward pivot is returned, the constraint is unbounded below
1451 // and hence not redundant.
1452 if (!pivotRow)
1453 continue;
1454 pivot(pivotRow: *pivotRow, pivotCol: column);
1455 }
1456
1457 unsigned row = u.pos;
1458 MaybeOptimum<Fraction> minimum = computeRowOptimum(direction: Direction::Down, row);
1459 if (minimum.isUnbounded() || *minimum < Fraction(0, 1)) {
1460 // Constraint is unbounded below or can attain negative sample values and
1461 // hence is not redundant.
1462 if (restoreRow(u).failed())
1463 llvm_unreachable("Could not restore non-redundant row!");
1464 continue;
1465 }
1466
1467 markRowRedundant(u);
1468 }
1469}
1470
1471bool Simplex::isUnbounded() {
1472 if (empty)
1473 return false;
1474
1475 SmallVector<DynamicAPInt, 8> dir(var.size() + 1);
1476 for (unsigned i = 0; i < var.size(); ++i) {
1477 dir[i] = 1;
1478
1479 if (computeOptimum(direction: Direction::Up, coeffs: dir).isUnbounded())
1480 return true;
1481
1482 if (computeOptimum(direction: Direction::Down, coeffs: dir).isUnbounded())
1483 return true;
1484
1485 dir[i] = 0;
1486 }
1487 return false;
1488}
1489
1490/// Make a tableau to represent a pair of points in the original tableau.
1491///
1492/// The product constraints and variables are stored as: first A's, then B's.
1493///
1494/// The product tableau has row layout:
1495/// A's redundant rows, B's redundant rows, A's other rows, B's other rows.
1496///
1497/// It has column layout:
1498/// denominator, constant, A's columns, B's columns.
1499Simplex Simplex::makeProduct(const Simplex &a, const Simplex &b) {
1500 unsigned numVar = a.getNumVariables() + b.getNumVariables();
1501 unsigned numCon = a.getNumConstraints() + b.getNumConstraints();
1502 Simplex result(numVar);
1503
1504 result.tableau.reserveRows(rows: numCon);
1505 result.empty = a.empty || b.empty;
1506
1507 auto concat = [](ArrayRef<Unknown> v, ArrayRef<Unknown> w) {
1508 SmallVector<Unknown, 8> result;
1509 result.reserve(N: v.size() + w.size());
1510 llvm::append_range(C&: result, R&: v);
1511 llvm::append_range(C&: result, R&: w);
1512 return result;
1513 };
1514 result.con = concat(a.con, b.con);
1515 result.var = concat(a.var, b.var);
1516
1517 auto indexFromBIndex = [&](int index) {
1518 return index >= 0 ? a.getNumVariables() + index
1519 : ~(a.getNumConstraints() + ~index);
1520 };
1521
1522 result.colUnknown.assign(NumElts: 2, Elt: nullIndex);
1523 for (unsigned i = 2, e = a.getNumColumns(); i < e; ++i) {
1524 result.colUnknown.emplace_back(Args: a.colUnknown[i]);
1525 result.unknownFromIndex(index: result.colUnknown.back()).pos =
1526 result.colUnknown.size() - 1;
1527 }
1528 for (unsigned i = 2, e = b.getNumColumns(); i < e; ++i) {
1529 result.colUnknown.emplace_back(Args: indexFromBIndex(b.colUnknown[i]));
1530 result.unknownFromIndex(index: result.colUnknown.back()).pos =
1531 result.colUnknown.size() - 1;
1532 }
1533
1534 auto appendRowFromA = [&](unsigned row) {
1535 unsigned resultRow = result.tableau.appendExtraRow();
1536 for (unsigned col = 0, e = a.getNumColumns(); col < e; ++col)
1537 result.tableau(resultRow, col) = a.tableau(row, col);
1538 result.rowUnknown.emplace_back(Args: a.rowUnknown[row]);
1539 result.unknownFromIndex(index: result.rowUnknown.back()).pos =
1540 result.rowUnknown.size() - 1;
1541 };
1542
1543 // Also fixes the corresponding entry in rowUnknown and var/con (as the case
1544 // may be).
1545 auto appendRowFromB = [&](unsigned row) {
1546 unsigned resultRow = result.tableau.appendExtraRow();
1547 result.tableau(resultRow, 0) = b.tableau(row, 0);
1548 result.tableau(resultRow, 1) = b.tableau(row, 1);
1549
1550 unsigned offset = a.getNumColumns() - 2;
1551 for (unsigned col = 2, e = b.getNumColumns(); col < e; ++col)
1552 result.tableau(resultRow, offset + col) = b.tableau(row, col);
1553 result.rowUnknown.emplace_back(Args: indexFromBIndex(b.rowUnknown[row]));
1554 result.unknownFromIndex(index: result.rowUnknown.back()).pos =
1555 result.rowUnknown.size() - 1;
1556 };
1557
1558 result.nRedundant = a.nRedundant + b.nRedundant;
1559 for (unsigned row = 0; row < a.nRedundant; ++row)
1560 appendRowFromA(row);
1561 for (unsigned row = 0; row < b.nRedundant; ++row)
1562 appendRowFromB(row);
1563 for (unsigned row = a.nRedundant, e = a.getNumRows(); row < e; ++row)
1564 appendRowFromA(row);
1565 for (unsigned row = b.nRedundant, e = b.getNumRows(); row < e; ++row)
1566 appendRowFromB(row);
1567
1568 return result;
1569}
1570
1571std::optional<SmallVector<Fraction, 8>> Simplex::getRationalSample() const {
1572 if (empty)
1573 return {};
1574
1575 SmallVector<Fraction, 8> sample;
1576 sample.reserve(N: var.size());
1577 // Push the sample value for each variable into the vector.
1578 for (const Unknown &u : var) {
1579 if (u.orientation == Orientation::Column) {
1580 // If the variable is in column position, its sample value is zero.
1581 sample.emplace_back(Args: 0, Args: 1);
1582 } else {
1583 // If the variable is in row position, its sample value is the
1584 // entry in the constant column divided by the denominator.
1585 DynamicAPInt denom = tableau(u.pos, 0);
1586 sample.emplace_back(Args: tableau(u.pos, 1), Args&: denom);
1587 }
1588 }
1589 return sample;
1590}
1591
1592void LexSimplexBase::addInequality(ArrayRef<DynamicAPInt> coeffs) {
1593 addRow(coeffs, /*makeRestricted=*/true);
1594}
1595
1596MaybeOptimum<SmallVector<Fraction, 8>> LexSimplex::getRationalSample() const {
1597 if (empty)
1598 return OptimumKind::Empty;
1599
1600 SmallVector<Fraction, 8> sample;
1601 sample.reserve(N: var.size());
1602 // Push the sample value for each variable into the vector.
1603 for (const Unknown &u : var) {
1604 // When the big M parameter is being used, each variable x is represented
1605 // as M + x, so its sample value is finite if and only if it is of the
1606 // form 1*M + c. If the coefficient of M is not one then the sample value
1607 // is infinite, and we return an empty optional.
1608
1609 if (u.orientation == Orientation::Column) {
1610 // If the variable is in column position, the sample value of M + x is
1611 // zero, so x = -M which is unbounded.
1612 return OptimumKind::Unbounded;
1613 }
1614
1615 // If the variable is in row position, its sample value is the
1616 // entry in the constant column divided by the denominator.
1617 DynamicAPInt denom = tableau(u.pos, 0);
1618 if (usingBigM)
1619 if (tableau(u.pos, 2) != denom)
1620 return OptimumKind::Unbounded;
1621 sample.emplace_back(Args: tableau(u.pos, 1), Args&: denom);
1622 }
1623 return sample;
1624}
1625
1626std::optional<SmallVector<DynamicAPInt, 8>>
1627Simplex::getSamplePointIfIntegral() const {
1628 // If the tableau is empty, no sample point exists.
1629 if (empty)
1630 return {};
1631
1632 // The value will always exist since the Simplex is non-empty.
1633 SmallVector<Fraction, 8> rationalSample = *getRationalSample();
1634 SmallVector<DynamicAPInt, 8> integerSample;
1635 integerSample.reserve(N: var.size());
1636 for (const Fraction &coord : rationalSample) {
1637 // If the sample is non-integral, return std::nullopt.
1638 if (coord.num % coord.den != 0)
1639 return {};
1640 integerSample.emplace_back(Args: coord.num / coord.den);
1641 }
1642 return integerSample;
1643}
1644
1645/// Given a simplex for a polytope, construct a new simplex whose variables are
1646/// identified with a pair of points (x, y) in the original polytope. Supports
1647/// some operations needed for generalized basis reduction. In what follows,
1648/// dotProduct(x, y) = x_1 * y_1 + x_2 * y_2 + ... x_n * y_n where n is the
1649/// dimension of the original polytope.
1650///
1651/// This supports adding equality constraints dotProduct(dir, x - y) == 0. It
1652/// also supports rolling back this addition, by maintaining a snapshot stack
1653/// that contains a snapshot of the Simplex's state for each equality, just
1654/// before that equality was added.
1655class presburger::GBRSimplex {
1656 using Orientation = Simplex::Orientation;
1657
1658public:
1659 GBRSimplex(const Simplex &originalSimplex)
1660 : simplex(Simplex::makeProduct(a: originalSimplex, b: originalSimplex)),
1661 simplexConstraintOffset(simplex.getNumConstraints()) {}
1662
1663 /// Add an equality dotProduct(dir, x - y) == 0.
1664 /// First pushes a snapshot for the current simplex state to the stack so
1665 /// that this can be rolled back later.
1666 void addEqualityForDirection(ArrayRef<DynamicAPInt> dir) {
1667 assert(llvm::any_of(dir, [](const DynamicAPInt &x) { return x != 0; }) &&
1668 "Direction passed is the zero vector!");
1669 snapshotStack.emplace_back(Args: simplex.getSnapshot());
1670 simplex.addEquality(coeffs: getCoeffsForDirection(dir));
1671 }
1672 /// Compute max(dotProduct(dir, x - y)).
1673 Fraction computeWidth(ArrayRef<DynamicAPInt> dir) {
1674 MaybeOptimum<Fraction> maybeWidth =
1675 simplex.computeOptimum(direction: Direction::Up, coeffs: getCoeffsForDirection(dir));
1676 assert(maybeWidth.isBounded() && "Width should be bounded!");
1677 return *maybeWidth;
1678 }
1679
1680 /// Compute max(dotProduct(dir, x - y)) and save the dual variables for only
1681 /// the direction equalities to `dual`.
1682 Fraction computeWidthAndDuals(ArrayRef<DynamicAPInt> dir,
1683 SmallVectorImpl<DynamicAPInt> &dual,
1684 DynamicAPInt &dualDenom) {
1685 // We can't just call into computeWidth or computeOptimum since we need to
1686 // access the state of the tableau after computing the optimum, and these
1687 // functions rollback the insertion of the objective function into the
1688 // tableau before returning. We instead add a row for the objective function
1689 // ourselves, call into computeOptimum, compute the duals from the tableau
1690 // state, and finally rollback the addition of the row before returning.
1691 SimplexRollbackScopeExit scopeExit(simplex);
1692 unsigned conIndex = simplex.addRow(coeffs: getCoeffsForDirection(dir));
1693 unsigned row = simplex.con[conIndex].pos;
1694 MaybeOptimum<Fraction> maybeWidth =
1695 simplex.computeRowOptimum(direction: Simplex::Direction::Up, row);
1696 assert(maybeWidth.isBounded() && "Width should be bounded!");
1697 dualDenom = simplex.tableau(row, 0);
1698 dual.clear();
1699 dual.reserve(N: (conIndex - simplexConstraintOffset) / 2);
1700
1701 // The increment is i += 2 because equalities are added as two inequalities,
1702 // one positive and one negative. Each iteration processes one equality.
1703 for (unsigned i = simplexConstraintOffset; i < conIndex; i += 2) {
1704 // The dual variable for an inequality in column orientation is the
1705 // negative of its coefficient at the objective row. If the inequality is
1706 // in row orientation, the corresponding dual variable is zero.
1707 //
1708 // We want the dual for the original equality, which corresponds to two
1709 // inequalities: a positive inequality, which has the same coefficients as
1710 // the equality, and a negative equality, which has negated coefficients.
1711 //
1712 // Note that at most one of these inequalities can be in column
1713 // orientation because the column unknowns should form a basis and hence
1714 // must be linearly independent. If the positive inequality is in column
1715 // position, its dual is the dual corresponding to the equality. If the
1716 // negative inequality is in column position, the negation of its dual is
1717 // the dual corresponding to the equality. If neither is in column
1718 // position, then that means that this equality is redundant, and its dual
1719 // is zero.
1720 //
1721 // Note that it is NOT valid to perform pivots during the computation of
1722 // the duals. This entire dual computation must be performed on the same
1723 // tableau configuration.
1724 assert((simplex.con[i].orientation != Orientation::Column ||
1725 simplex.con[i + 1].orientation != Orientation::Column) &&
1726 "Both inequalities for the equality cannot be in column "
1727 "orientation!");
1728 if (simplex.con[i].orientation == Orientation::Column)
1729 dual.emplace_back(Args: -simplex.tableau(row, simplex.con[i].pos));
1730 else if (simplex.con[i + 1].orientation == Orientation::Column)
1731 dual.emplace_back(Args&: simplex.tableau(row, simplex.con[i + 1].pos));
1732 else
1733 dual.emplace_back(Args: 0);
1734 }
1735 return *maybeWidth;
1736 }
1737
1738 /// Remove the last equality that was added through addEqualityForDirection.
1739 ///
1740 /// We do this by rolling back to the snapshot at the top of the stack, which
1741 /// should be a snapshot taken just before the last equality was added.
1742 void removeLastEquality() {
1743 assert(!snapshotStack.empty() && "Snapshot stack is empty!");
1744 simplex.rollback(snapshot: snapshotStack.back());
1745 snapshotStack.pop_back();
1746 }
1747
1748private:
1749 /// Returns coefficients of the expression 'dot_product(dir, x - y)',
1750 /// i.e., dir_1 * x_1 + dir_2 * x_2 + ... + dir_n * x_n
1751 /// - dir_1 * y_1 - dir_2 * y_2 - ... - dir_n * y_n,
1752 /// where n is the dimension of the original polytope.
1753 SmallVector<DynamicAPInt, 8>
1754 getCoeffsForDirection(ArrayRef<DynamicAPInt> dir) {
1755 assert(2 * dir.size() == simplex.getNumVariables() &&
1756 "Direction vector has wrong dimensionality");
1757 SmallVector<DynamicAPInt, 8> coeffs(dir);
1758 coeffs.reserve(N: dir.size() + 1);
1759 for (const DynamicAPInt &coeff : dir)
1760 coeffs.emplace_back(Args: -coeff);
1761 coeffs.emplace_back(Args: 0); // constant term
1762 return coeffs;
1763 }
1764
1765 Simplex simplex;
1766 /// The first index of the equality constraints, the index immediately after
1767 /// the last constraint in the initial product simplex.
1768 unsigned simplexConstraintOffset;
1769 /// A stack of snapshots, used for rolling back.
1770 SmallVector<unsigned, 8> snapshotStack;
1771};
1772
1773/// Reduce the basis to try and find a direction in which the polytope is
1774/// "thin". This only works for bounded polytopes.
1775///
1776/// This is an implementation of the algorithm described in the paper
1777/// "An Implementation of Generalized Basis Reduction for Integer Programming"
1778/// by W. Cook, T. Rutherford, H. E. Scarf, D. Shallcross.
1779///
1780/// Let b_{level}, b_{level + 1}, ... b_n be the current basis.
1781/// Let width_i(v) = max <v, x - y> where x and y are points in the original
1782/// polytope such that <b_j, x - y> = 0 is satisfied for all level <= j < i.
1783///
1784/// In every iteration, we first replace b_{i+1} with b_{i+1} + u*b_i, where u
1785/// is the integer such that width_i(b_{i+1} + u*b_i) is minimized. Let dual_i
1786/// be the dual variable associated with the constraint <b_i, x - y> = 0 when
1787/// computing width_{i+1}(b_{i+1}). It can be shown that dual_i is the
1788/// minimizing value of u, if it were allowed to be fractional. Due to
1789/// convexity, the minimizing integer value is either floor(dual_i) or
1790/// ceil(dual_i), so we just need to check which of these gives a lower
1791/// width_{i+1} value. If dual_i turned out to be an integer, then u = dual_i.
1792///
1793/// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and (the new)
1794/// b_{i + 1} and decrement i (unless i = level, in which case we stay at the
1795/// same i). Otherwise, we increment i.
1796///
1797/// We keep f values and duals cached and invalidate them when necessary.
1798/// Whenever possible, we use them instead of recomputing them. We implement the
1799/// algorithm as follows.
1800///
1801/// In an iteration at i we need to compute:
1802/// a) width_i(b_{i + 1})
1803/// b) width_i(b_i)
1804/// c) the integer u that minimizes width_i(b_{i + 1} + u*b_i)
1805///
1806/// If width_i(b_i) is not already cached, we compute it.
1807///
1808/// If the duals are not already cached, we compute width_{i+1}(b_{i+1}) and
1809/// store the duals from this computation.
1810///
1811/// We call updateBasisWithUAndGetFCandidate, which finds the minimizing value
1812/// of u as explained before, caches the duals from this computation, sets
1813/// b_{i+1} to b_{i+1} + u*b_i, and returns the new value of width_i(b_{i+1}).
1814///
1815/// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and b_{i+1} and
1816/// decrement i, resulting in the basis
1817/// ... b_{i - 1}, b_{i + 1} + u*b_i, b_i, b_{i+2}, ...
1818/// with corresponding f values
1819/// ... width_{i-1}(b_{i-1}), width_i(b_{i+1} + u*b_i), width_{i+1}(b_i), ...
1820/// The values up to i - 1 remain unchanged. We have just gotten the middle
1821/// value from updateBasisWithUAndGetFCandidate, so we can update that in the
1822/// cache. The value at width_{i+1}(b_i) is unknown, so we evict this value from
1823/// the cache. The iteration after decrementing needs exactly the duals from the
1824/// computation of width_i(b_{i + 1} + u*b_i), so we keep these in the cache.
1825///
1826/// When incrementing i, no cached f values get invalidated. However, the cached
1827/// duals do get invalidated as the duals for the higher levels are different.
1828void Simplex::reduceBasis(IntMatrix &basis, unsigned level) {
1829 const Fraction epsilon(3, 4);
1830
1831 if (level == basis.getNumRows() - 1)
1832 return;
1833
1834 GBRSimplex gbrSimplex(*this);
1835 SmallVector<Fraction, 8> width;
1836 SmallVector<DynamicAPInt, 8> dual;
1837 DynamicAPInt dualDenom;
1838
1839 // Finds the value of u that minimizes width_i(b_{i+1} + u*b_i), caches the
1840 // duals from this computation, sets b_{i+1} to b_{i+1} + u*b_i, and returns
1841 // the new value of width_i(b_{i+1}).
1842 //
1843 // If dual_i is not an integer, the minimizing value must be either
1844 // floor(dual_i) or ceil(dual_i). We compute the expression for both and
1845 // choose the minimizing value.
1846 //
1847 // If dual_i is an integer, we don't need to perform these computations. We
1848 // know that in this case,
1849 // a) u = dual_i.
1850 // b) one can show that dual_j for j < i are the same duals we would have
1851 // gotten from computing width_i(b_{i + 1} + u*b_i), so the correct duals
1852 // are the ones already in the cache.
1853 // c) width_i(b_{i+1} + u*b_i) = min_{alpha} width_i(b_{i+1} + alpha * b_i),
1854 // which
1855 // one can show is equal to width_{i+1}(b_{i+1}). The latter value must
1856 // be in the cache, so we get it from there and return it.
1857 auto updateBasisWithUAndGetFCandidate = [&](unsigned i) -> Fraction {
1858 assert(i < level + dual.size() && "dual_i is not known!");
1859
1860 DynamicAPInt u = floorDiv(LHS: dual[i - level], RHS: dualDenom);
1861 basis.addToRow(sourceRow: i, targetRow: i + 1, scale: u);
1862 if (dual[i - level] % dualDenom != 0) {
1863 SmallVector<DynamicAPInt, 8> candidateDual[2];
1864 DynamicAPInt candidateDualDenom[2];
1865 Fraction widthI[2];
1866
1867 // Initially u is floor(dual) and basis reflects this.
1868 widthI[0] = gbrSimplex.computeWidthAndDuals(
1869 dir: basis.getRow(row: i + 1), dual&: candidateDual[0], dualDenom&: candidateDualDenom[0]);
1870
1871 // Now try ceil(dual), i.e. floor(dual) + 1.
1872 ++u;
1873 basis.addToRow(sourceRow: i, targetRow: i + 1, scale: 1);
1874 widthI[1] = gbrSimplex.computeWidthAndDuals(
1875 dir: basis.getRow(row: i + 1), dual&: candidateDual[1], dualDenom&: candidateDualDenom[1]);
1876
1877 unsigned j = widthI[0] < widthI[1] ? 0 : 1;
1878 if (j == 0)
1879 // Subtract 1 to go from u = ceil(dual) back to floor(dual).
1880 basis.addToRow(sourceRow: i, targetRow: i + 1, scale: -1);
1881
1882 // width_i(b{i+1} + u*b_i) should be minimized at our value of u.
1883 // We assert that this holds by checking that the values of width_i at
1884 // u - 1 and u + 1 are greater than or equal to the value at u. If the
1885 // width is lesser at either of the adjacent values, then our computed
1886 // value of u is clearly not the minimizer. Otherwise by convexity the
1887 // computed value of u is really the minimizer.
1888
1889 // Check the value at u - 1.
1890 assert(gbrSimplex.computeWidth(scaleAndAddForAssert(
1891 basis.getRow(i + 1), DynamicAPInt(-1), basis.getRow(i))) >=
1892 widthI[j] &&
1893 "Computed u value does not minimize the width!");
1894 // Check the value at u + 1.
1895 assert(gbrSimplex.computeWidth(scaleAndAddForAssert(
1896 basis.getRow(i + 1), DynamicAPInt(+1), basis.getRow(i))) >=
1897 widthI[j] &&
1898 "Computed u value does not minimize the width!");
1899
1900 dual = std::move(candidateDual[j]);
1901 dualDenom = candidateDualDenom[j];
1902 return widthI[j];
1903 }
1904
1905 assert(i + 1 - level < width.size() && "width_{i+1} wasn't saved");
1906 // f_i(b_{i+1} + dual*b_i) == width_{i+1}(b_{i+1}) when `dual` minimizes the
1907 // LHS. (note: the basis has already been updated, so b_{i+1} + dual*b_i in
1908 // the above expression is equal to basis.getRow(i+1) below.)
1909 assert(gbrSimplex.computeWidth(basis.getRow(i + 1)) ==
1910 width[i + 1 - level]);
1911 return width[i + 1 - level];
1912 };
1913
1914 // In the ith iteration of the loop, gbrSimplex has constraints for directions
1915 // from `level` to i - 1.
1916 unsigned i = level;
1917 while (i < basis.getNumRows() - 1) {
1918 if (i >= level + width.size()) {
1919 // We don't even know the value of f_i(b_i), so let's find that first.
1920 // We have to do this first since later we assume that width already
1921 // contains values up to and including i.
1922
1923 assert((i == 0 || i - 1 < level + width.size()) &&
1924 "We are at level i but we don't know the value of width_{i-1}");
1925
1926 // We don't actually use these duals at all, but it doesn't matter
1927 // because this case should only occur when i is level, and there are no
1928 // duals in that case anyway.
1929 assert(i == level && "This case should only occur when i == level");
1930 width.emplace_back(
1931 Args: gbrSimplex.computeWidthAndDuals(dir: basis.getRow(row: i), dual, dualDenom));
1932 }
1933
1934 if (i >= level + dual.size()) {
1935 assert(i + 1 >= level + width.size() &&
1936 "We don't know dual_i but we know width_{i+1}");
1937 // We don't know dual for our level, so let's find it.
1938 gbrSimplex.addEqualityForDirection(dir: basis.getRow(row: i));
1939 width.emplace_back(Args: gbrSimplex.computeWidthAndDuals(dir: basis.getRow(row: i + 1),
1940 dual, dualDenom));
1941 gbrSimplex.removeLastEquality();
1942 }
1943
1944 // This variable stores width_i(b_{i+1} + u*b_i).
1945 Fraction widthICandidate = updateBasisWithUAndGetFCandidate(i);
1946 if (widthICandidate < epsilon * width[i - level]) {
1947 basis.swapRows(row: i, otherRow: i + 1);
1948 width[i - level] = widthICandidate;
1949 // The values of width_{i+1}(b_{i+1}) and higher may change after the
1950 // swap, so we remove the cached values here.
1951 width.resize(N: i - level + 1);
1952 if (i == level) {
1953 dual.clear();
1954 continue;
1955 }
1956
1957 gbrSimplex.removeLastEquality();
1958 i--;
1959 continue;
1960 }
1961
1962 // Invalidate duals since the higher level needs to recompute its own duals.
1963 dual.clear();
1964 gbrSimplex.addEqualityForDirection(dir: basis.getRow(row: i));
1965 i++;
1966 }
1967}
1968
1969/// Search for an integer sample point using a branch and bound algorithm.
1970///
1971/// Each row in the basis matrix is a vector, and the set of basis vectors
1972/// should span the space. Initially this is the identity matrix,
1973/// i.e., the basis vectors are just the variables.
1974///
1975/// In every level, a value is assigned to the level-th basis vector, as
1976/// follows. Compute the minimum and maximum rational values of this direction.
1977/// If only one integer point lies in this range, constrain the variable to
1978/// have this value and recurse to the next variable.
1979///
1980/// If the range has multiple values, perform generalized basis reduction via
1981/// reduceBasis and then compute the bounds again. Now we try constraining
1982/// this direction in the first value in this range and "recurse" to the next
1983/// level. If we fail to find a sample, we try assigning the direction the next
1984/// value in this range, and so on.
1985///
1986/// If no integer sample is found from any of the assignments, or if the range
1987/// contains no integer value, then of course the polytope is empty for the
1988/// current assignment of the values in previous levels, so we return to
1989/// the previous level.
1990///
1991/// If we reach the last level where all the variables have been assigned values
1992/// already, then we simply return the current sample point if it is integral,
1993/// and go back to the previous level otherwise.
1994///
1995/// To avoid potentially arbitrarily large recursion depths leading to stack
1996/// overflows, this algorithm is implemented iteratively.
1997std::optional<SmallVector<DynamicAPInt, 8>> Simplex::findIntegerSample() {
1998 if (empty)
1999 return {};
2000
2001 unsigned nDims = var.size();
2002 IntMatrix basis = IntMatrix::identity(dimension: nDims);
2003
2004 unsigned level = 0;
2005 // The snapshot just before constraining a direction to a value at each level.
2006 SmallVector<unsigned, 8> snapshotStack;
2007 // The maximum value in the range of the direction for each level.
2008 SmallVector<DynamicAPInt, 8> upperBoundStack;
2009 // The next value to try constraining the basis vector to at each level.
2010 SmallVector<DynamicAPInt, 8> nextValueStack;
2011
2012 snapshotStack.reserve(N: basis.getNumRows());
2013 upperBoundStack.reserve(N: basis.getNumRows());
2014 nextValueStack.reserve(N: basis.getNumRows());
2015 while (level != -1u) {
2016 if (level == basis.getNumRows()) {
2017 // We've assigned values to all variables. Return if we have a sample,
2018 // or go back up to the previous level otherwise.
2019 if (auto maybeSample = getSamplePointIfIntegral())
2020 return maybeSample;
2021 level--;
2022 continue;
2023 }
2024
2025 if (level >= upperBoundStack.size()) {
2026 // We haven't populated the stack values for this level yet, so we have
2027 // just come down a level ("recursed"). Find the lower and upper bounds.
2028 // If there is more than one integer point in the range, perform
2029 // generalized basis reduction.
2030 SmallVector<DynamicAPInt, 8> basisCoeffs =
2031 llvm::to_vector<8>(Range: basis.getRow(row: level));
2032 basisCoeffs.emplace_back(Args: 0);
2033
2034 auto [minRoundedUp, maxRoundedDown] = computeIntegerBounds(coeffs: basisCoeffs);
2035
2036 // We don't have any integer values in the range.
2037 // Pop the stack and return up a level.
2038 if (minRoundedUp.isEmpty() || maxRoundedDown.isEmpty()) {
2039 assert((minRoundedUp.isEmpty() && maxRoundedDown.isEmpty()) &&
2040 "If one bound is empty, both should be.");
2041 snapshotStack.pop_back();
2042 nextValueStack.pop_back();
2043 upperBoundStack.pop_back();
2044 level--;
2045 continue;
2046 }
2047
2048 // We already checked the empty case above.
2049 assert((minRoundedUp.isBounded() && maxRoundedDown.isBounded()) &&
2050 "Polyhedron should be bounded!");
2051
2052 // Heuristic: if the sample point is integral at this point, just return
2053 // it.
2054 if (auto maybeSample = getSamplePointIfIntegral())
2055 return *maybeSample;
2056
2057 if (*minRoundedUp < *maxRoundedDown) {
2058 reduceBasis(basis, level);
2059 basisCoeffs = llvm::to_vector<8>(Range: basis.getRow(row: level));
2060 basisCoeffs.emplace_back(Args: 0);
2061 std::tie(args&: minRoundedUp, args&: maxRoundedDown) =
2062 computeIntegerBounds(coeffs: basisCoeffs);
2063 }
2064
2065 snapshotStack.emplace_back(Args: getSnapshot());
2066 // The smallest value in the range is the next value to try.
2067 // The values in the optionals are guaranteed to exist since we know the
2068 // polytope is bounded.
2069 nextValueStack.emplace_back(Args&: *minRoundedUp);
2070 upperBoundStack.emplace_back(Args&: *maxRoundedDown);
2071 }
2072
2073 assert((snapshotStack.size() - 1 == level &&
2074 nextValueStack.size() - 1 == level &&
2075 upperBoundStack.size() - 1 == level) &&
2076 "Mismatched variable stack sizes!");
2077
2078 // Whether we "recursed" or "returned" from a lower level, we rollback
2079 // to the snapshot of the starting state at this level. (in the "recursed"
2080 // case this has no effect)
2081 rollback(snapshot: snapshotStack.back());
2082 DynamicAPInt nextValue = nextValueStack.back();
2083 ++nextValueStack.back();
2084 if (nextValue > upperBoundStack.back()) {
2085 // We have exhausted the range and found no solution. Pop the stack and
2086 // return up a level.
2087 snapshotStack.pop_back();
2088 nextValueStack.pop_back();
2089 upperBoundStack.pop_back();
2090 level--;
2091 continue;
2092 }
2093
2094 // Try the next value in the range and "recurse" into the next level.
2095 SmallVector<DynamicAPInt, 8> basisCoeffs(basis.getRow(row: level).begin(),
2096 basis.getRow(row: level).end());
2097 basisCoeffs.emplace_back(Args: -nextValue);
2098 addEquality(coeffs: basisCoeffs);
2099 level++;
2100 }
2101
2102 return {};
2103}
2104
2105/// Compute the minimum and maximum integer values the expression can take. We
2106/// compute each separately.
2107std::pair<MaybeOptimum<DynamicAPInt>, MaybeOptimum<DynamicAPInt>>
2108Simplex::computeIntegerBounds(ArrayRef<DynamicAPInt> coeffs) {
2109 MaybeOptimum<DynamicAPInt> minRoundedUp(
2110 computeOptimum(direction: Simplex::Direction::Down, coeffs).map(f&: ceil));
2111 MaybeOptimum<DynamicAPInt> maxRoundedDown(
2112 computeOptimum(direction: Simplex::Direction::Up, coeffs).map(f&: floor));
2113 return {minRoundedUp, maxRoundedDown};
2114}
2115
2116bool Simplex::isFlatAlong(ArrayRef<DynamicAPInt> coeffs) {
2117 assert(!isEmpty() && "cannot check for flatness of empty simplex!");
2118 auto upOpt = computeOptimum(direction: Simplex::Direction::Up, coeffs);
2119 auto downOpt = computeOptimum(direction: Simplex::Direction::Down, coeffs);
2120
2121 if (!upOpt.isBounded())
2122 return false;
2123 if (!downOpt.isBounded())
2124 return false;
2125
2126 return *upOpt == *downOpt;
2127}
2128
2129void SimplexBase::print(raw_ostream &os) const {
2130 os << "rows = " << getNumRows() << ", columns = " << getNumColumns() << "\n";
2131 if (empty)
2132 os << "Simplex marked empty!\n";
2133 os << "var: ";
2134 for (unsigned i = 0; i < var.size(); ++i) {
2135 if (i > 0)
2136 os << ", ";
2137 var[i].print(os);
2138 }
2139 os << "\ncon: ";
2140 for (unsigned i = 0; i < con.size(); ++i) {
2141 if (i > 0)
2142 os << ", ";
2143 con[i].print(os);
2144 }
2145 os << '\n';
2146 for (unsigned row = 0, e = getNumRows(); row < e; ++row) {
2147 if (row > 0)
2148 os << ", ";
2149 os << "r" << row << ": " << rowUnknown[row];
2150 }
2151 os << '\n';
2152 os << "c0: denom, c1: const";
2153 for (unsigned col = 2, e = getNumColumns(); col < e; ++col)
2154 os << ", c" << col << ": " << colUnknown[col];
2155 os << '\n';
2156 PrintTableMetrics ptm = {.maxPreIndent: 0, .maxPostIndent: 0, .preAlign: "-"};
2157 for (unsigned row = 0, numRows = getNumRows(); row < numRows; ++row)
2158 for (unsigned col = 0, numCols = getNumColumns(); col < numCols; ++col)
2159 updatePrintMetrics<DynamicAPInt>(val: tableau(row, col), m&: ptm);
2160 unsigned MIN_SPACING = 1;
2161 for (unsigned row = 0, numRows = getNumRows(); row < numRows; ++row) {
2162 for (unsigned col = 0, numCols = getNumColumns(); col < numCols; ++col) {
2163 printWithPrintMetrics<DynamicAPInt>(os, val: tableau(row, col), minSpacing: MIN_SPACING,
2164 m: ptm);
2165 }
2166 os << '\n';
2167 }
2168 os << '\n';
2169}
2170
2171void SimplexBase::dump() const { print(os&: llvm::errs()); }
2172
2173bool Simplex::isRationalSubsetOf(const IntegerRelation &rel) {
2174 if (isEmpty())
2175 return true;
2176
2177 for (unsigned i = 0, e = rel.getNumInequalities(); i < e; ++i)
2178 if (findIneqType(coeffs: rel.getInequality(idx: i)) != IneqType::Redundant)
2179 return false;
2180
2181 for (unsigned i = 0, e = rel.getNumEqualities(); i < e; ++i)
2182 if (!isRedundantEquality(coeffs: rel.getEquality(idx: i)))
2183 return false;
2184
2185 return true;
2186}
2187
2188/// Returns the type of the inequality with coefficients `coeffs`.
2189/// Possible types are:
2190/// Redundant The inequality is satisfied by all points in the polytope
2191/// Cut The inequality is satisfied by some points, but not by others
2192/// Separate The inequality is not satisfied by any point
2193///
2194/// Internally, this computes the minimum and the maximum the inequality with
2195/// coefficients `coeffs` can take. If the minimum is >= 0, the inequality holds
2196/// for all points in the polytope, so it is redundant. If the minimum is <= 0
2197/// and the maximum is >= 0, the points in between the minimum and the
2198/// inequality do not satisfy it, the points in between the inequality and the
2199/// maximum satisfy it. Hence, it is a cut inequality. If both are < 0, no
2200/// points of the polytope satisfy the inequality, which means it is a separate
2201/// inequality.
2202Simplex::IneqType Simplex::findIneqType(ArrayRef<DynamicAPInt> coeffs) {
2203 MaybeOptimum<Fraction> minimum = computeOptimum(direction: Direction::Down, coeffs);
2204 if (minimum.isBounded() && *minimum >= Fraction(0, 1)) {
2205 return IneqType::Redundant;
2206 }
2207 MaybeOptimum<Fraction> maximum = computeOptimum(direction: Direction::Up, coeffs);
2208 if ((!minimum.isBounded() || *minimum <= Fraction(0, 1)) &&
2209 (!maximum.isBounded() || *maximum >= Fraction(0, 1))) {
2210 return IneqType::Cut;
2211 }
2212 return IneqType::Separate;
2213}
2214
2215/// Checks whether the type of the inequality with coefficients `coeffs`
2216/// is Redundant.
2217bool Simplex::isRedundantInequality(ArrayRef<DynamicAPInt> coeffs) {
2218 assert(!empty &&
2219 "It is not meaningful to ask about redundancy in an empty set!");
2220 return findIneqType(coeffs) == IneqType::Redundant;
2221}
2222
2223/// Check whether the equality given by `coeffs == 0` is redundant given
2224/// the existing constraints. This is redundant when `coeffs` is already
2225/// always zero under the existing constraints. `coeffs` is always zero
2226/// when the minimum and maximum value that `coeffs` can take are both zero.
2227bool Simplex::isRedundantEquality(ArrayRef<DynamicAPInt> coeffs) {
2228 assert(!empty &&
2229 "It is not meaningful to ask about redundancy in an empty set!");
2230 MaybeOptimum<Fraction> minimum = computeOptimum(direction: Direction::Down, coeffs);
2231 MaybeOptimum<Fraction> maximum = computeOptimum(direction: Direction::Up, coeffs);
2232 assert((!minimum.isEmpty() && !maximum.isEmpty()) &&
2233 "Optima should be non-empty for a non-empty set");
2234 return minimum.isBounded() && maximum.isBounded() &&
2235 *maximum == Fraction(0, 1) && *minimum == Fraction(0, 1);
2236}
2237

Provided by KDAB

Privacy Policy
Learn to use CMake with our Intro Training
Find out more

source code of mlir/lib/Analysis/Presburger/Simplex.cpp