| 1 | //===- Utils.cpp - General utilities for Presburger library ---------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Utility functions required by the Presburger Library. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "mlir/Analysis/Presburger/Utils.h" |
| 14 | #include "mlir/Analysis/Presburger/IntegerRelation.h" |
| 15 | #include "mlir/Analysis/Presburger/PresburgerSpace.h" |
| 16 | #include "llvm/ADT/STLFunctionalExtras.h" |
| 17 | #include "llvm/ADT/SmallBitVector.h" |
| 18 | #include "llvm/Support/LogicalResult.h" |
| 19 | #include "llvm/Support/raw_ostream.h" |
| 20 | #include <cassert> |
| 21 | #include <cstdint> |
| 22 | #include <numeric> |
| 23 | #include <optional> |
| 24 | |
| 25 | using namespace mlir; |
| 26 | using namespace presburger; |
| 27 | using llvm::dynamicAPIntFromInt64; |
| 28 | |
| 29 | /// Normalize a division's `dividend` and the `divisor` by their GCD. For |
| 30 | /// example: if the dividend and divisor are [2,0,4] and 4 respectively, |
| 31 | /// they get normalized to [1,0,2] and 2. The divisor must be non-negative; |
| 32 | /// it is allowed for the divisor to be zero, but nothing is done in this case. |
| 33 | static void normalizeDivisionByGCD(MutableArrayRef<DynamicAPInt> dividend, |
| 34 | DynamicAPInt &divisor) { |
| 35 | assert(divisor > 0 && "divisor must be non-negative!" ); |
| 36 | if (dividend.empty()) |
| 37 | return; |
| 38 | // We take the absolute value of dividend's coefficients to make sure that |
| 39 | // `gcd` is positive. |
| 40 | DynamicAPInt gcd = llvm::gcd(A: abs(X: dividend.front()), B: divisor); |
| 41 | |
| 42 | // The reason for ignoring the constant term is as follows. |
| 43 | // For a division: |
| 44 | // floor((a + m.f(x))/(m.d)) |
| 45 | // It can be replaced by: |
| 46 | // floor((floor(a/m) + f(x))/d) |
| 47 | // Since `{a/m}/d` in the dividend satisfies 0 <= {a/m}/d < 1/d, it will not |
| 48 | // influence the result of the floor division and thus, can be ignored. |
| 49 | for (size_t i = 1, m = dividend.size() - 1; i < m; i++) { |
| 50 | gcd = llvm::gcd(A: abs(X: dividend[i]), B: gcd); |
| 51 | if (gcd == 1) |
| 52 | return; |
| 53 | } |
| 54 | |
| 55 | // Normalize the dividend and the denominator. |
| 56 | std::transform(first: dividend.begin(), last: dividend.end(), result: dividend.begin(), |
| 57 | unary_op: [gcd](DynamicAPInt &n) { return floorDiv(LHS: n, RHS: gcd); }); |
| 58 | divisor /= gcd; |
| 59 | } |
| 60 | |
| 61 | /// Check if the pos^th variable can be represented as a division using upper |
| 62 | /// bound inequality at position `ubIneq` and lower bound inequality at position |
| 63 | /// `lbIneq`. |
| 64 | /// |
| 65 | /// Let `var` be the pos^th variable, then `var` is equivalent to |
| 66 | /// `expr floordiv divisor` if there are constraints of the form: |
| 67 | /// 0 <= expr - divisor * var <= divisor - 1 |
| 68 | /// Rearranging, we have: |
| 69 | /// divisor * var - expr + (divisor - 1) >= 0 <-- Lower bound for 'var' |
| 70 | /// -divisor * var + expr >= 0 <-- Upper bound for 'var' |
| 71 | /// |
| 72 | /// For example: |
| 73 | /// 32*k >= 16*i + j - 31 <-- Lower bound for 'k' |
| 74 | /// 32*k <= 16*i + j <-- Upper bound for 'k' |
| 75 | /// expr = 16*i + j, divisor = 32 |
| 76 | /// k = ( 16*i + j ) floordiv 32 |
| 77 | /// |
| 78 | /// 4q >= i + j - 2 <-- Lower bound for 'q' |
| 79 | /// 4q <= i + j + 1 <-- Upper bound for 'q' |
| 80 | /// expr = i + j + 1, divisor = 4 |
| 81 | /// q = (i + j + 1) floordiv 4 |
| 82 | // |
| 83 | /// This function also supports detecting divisions from bounds that are |
| 84 | /// strictly tighter than the division bounds described above, since tighter |
| 85 | /// bounds imply the division bounds. For example: |
| 86 | /// 4q - i - j + 2 >= 0 <-- Lower bound for 'q' |
| 87 | /// -4q + i + j >= 0 <-- Tight upper bound for 'q' |
| 88 | /// |
| 89 | /// To extract floor divisions with tighter bounds, we assume that the |
| 90 | /// constraints are of the form: |
| 91 | /// c <= expr - divisior * var <= divisor - 1, where 0 <= c <= divisor - 1 |
| 92 | /// Rearranging, we have: |
| 93 | /// divisor * var - expr + (divisor - 1) >= 0 <-- Lower bound for 'var' |
| 94 | /// -divisor * var + expr - c >= 0 <-- Upper bound for 'var' |
| 95 | /// |
| 96 | /// If successful, `expr` is set to dividend of the division and `divisor` is |
| 97 | /// set to the denominator of the division, which will be positive. |
| 98 | /// The final division expression is normalized by GCD. |
| 99 | static LogicalResult getDivRepr(const IntegerRelation &cst, unsigned pos, |
| 100 | unsigned ubIneq, unsigned lbIneq, |
| 101 | MutableArrayRef<DynamicAPInt> expr, |
| 102 | DynamicAPInt &divisor) { |
| 103 | |
| 104 | assert(pos <= cst.getNumVars() && "Invalid variable position" ); |
| 105 | assert(ubIneq <= cst.getNumInequalities() && |
| 106 | "Invalid upper bound inequality position" ); |
| 107 | assert(lbIneq <= cst.getNumInequalities() && |
| 108 | "Invalid upper bound inequality position" ); |
| 109 | assert(expr.size() == cst.getNumCols() && "Invalid expression size" ); |
| 110 | assert(cst.atIneq(lbIneq, pos) > 0 && "lbIneq is not a lower bound!" ); |
| 111 | assert(cst.atIneq(ubIneq, pos) < 0 && "ubIneq is not an upper bound!" ); |
| 112 | |
| 113 | // Extract divisor from the lower bound. |
| 114 | divisor = cst.atIneq(i: lbIneq, j: pos); |
| 115 | |
| 116 | // First, check if the constraints are opposite of each other except the |
| 117 | // constant term. |
| 118 | unsigned i = 0, e = 0; |
| 119 | for (i = 0, e = cst.getNumVars(); i < e; ++i) |
| 120 | if (cst.atIneq(i: ubIneq, j: i) != -cst.atIneq(i: lbIneq, j: i)) |
| 121 | break; |
| 122 | |
| 123 | if (i < e) |
| 124 | return failure(); |
| 125 | |
| 126 | // Then, check if the constant term is of the proper form. |
| 127 | // Due to the form of the upper/lower bound inequalities, the sum of their |
| 128 | // constants is `divisor - 1 - c`. From this, we can extract c: |
| 129 | DynamicAPInt constantSum = cst.atIneq(i: lbIneq, j: cst.getNumCols() - 1) + |
| 130 | cst.atIneq(i: ubIneq, j: cst.getNumCols() - 1); |
| 131 | DynamicAPInt c = divisor - 1 - constantSum; |
| 132 | |
| 133 | // Check if `c` satisfies the condition `0 <= c <= divisor - 1`. |
| 134 | // This also implictly checks that `divisor` is positive. |
| 135 | if (!(0 <= c && c <= divisor - 1)) // NOLINT |
| 136 | return failure(); |
| 137 | |
| 138 | // The inequality pair can be used to extract the division. |
| 139 | // Set `expr` to the dividend of the division except the constant term, which |
| 140 | // is set below. |
| 141 | for (i = 0, e = cst.getNumVars(); i < e; ++i) |
| 142 | if (i != pos) |
| 143 | expr[i] = cst.atIneq(i: ubIneq, j: i); |
| 144 | |
| 145 | // From the upper bound inequality's form, its constant term is equal to the |
| 146 | // constant term of `expr`, minus `c`. From this, |
| 147 | // constant term of `expr` = constant term of upper bound + `c`. |
| 148 | expr.back() = cst.atIneq(i: ubIneq, j: cst.getNumCols() - 1) + c; |
| 149 | normalizeDivisionByGCD(dividend: expr, divisor); |
| 150 | |
| 151 | return success(); |
| 152 | } |
| 153 | |
| 154 | /// Check if the pos^th variable can be represented as a division using |
| 155 | /// equality at position `eqInd`. |
| 156 | /// |
| 157 | /// For example: |
| 158 | /// 32*k == 16*i + j - 31 <-- `eqInd` for 'k' |
| 159 | /// expr = 16*i + j - 31, divisor = 32 |
| 160 | /// k = (16*i + j - 31) floordiv 32 |
| 161 | /// |
| 162 | /// If successful, `expr` is set to dividend of the division and `divisor` is |
| 163 | /// set to the denominator of the division. The final division expression is |
| 164 | /// normalized by GCD. |
| 165 | static LogicalResult getDivRepr(const IntegerRelation &cst, unsigned pos, |
| 166 | unsigned eqInd, |
| 167 | MutableArrayRef<DynamicAPInt> expr, |
| 168 | DynamicAPInt &divisor) { |
| 169 | |
| 170 | assert(pos <= cst.getNumVars() && "Invalid variable position" ); |
| 171 | assert(eqInd <= cst.getNumEqualities() && "Invalid equality position" ); |
| 172 | assert(expr.size() == cst.getNumCols() && "Invalid expression size" ); |
| 173 | |
| 174 | // Extract divisor, the divisor can be negative and hence its sign information |
| 175 | // is stored in `signDiv` to reverse the sign of dividend's coefficients. |
| 176 | // Equality must involve the pos-th variable and hence `tempDiv` != 0. |
| 177 | DynamicAPInt tempDiv = cst.atEq(i: eqInd, j: pos); |
| 178 | if (tempDiv == 0) |
| 179 | return failure(); |
| 180 | int signDiv = tempDiv < 0 ? -1 : 1; |
| 181 | |
| 182 | // The divisor is always a positive integer. |
| 183 | divisor = tempDiv * signDiv; |
| 184 | |
| 185 | for (unsigned i = 0, e = cst.getNumVars(); i < e; ++i) |
| 186 | if (i != pos) |
| 187 | expr[i] = -signDiv * cst.atEq(i: eqInd, j: i); |
| 188 | |
| 189 | expr.back() = -signDiv * cst.atEq(i: eqInd, j: cst.getNumCols() - 1); |
| 190 | normalizeDivisionByGCD(dividend: expr, divisor); |
| 191 | |
| 192 | return success(); |
| 193 | } |
| 194 | |
| 195 | // Returns `false` if the constraints depends on a variable for which an |
| 196 | // explicit representation has not been found yet, otherwise returns `true`. |
| 197 | static bool checkExplicitRepresentation(const IntegerRelation &cst, |
| 198 | ArrayRef<bool> foundRepr, |
| 199 | ArrayRef<DynamicAPInt> dividend, |
| 200 | unsigned pos) { |
| 201 | // Exit to avoid circular dependencies between divisions. |
| 202 | for (unsigned c = 0, e = cst.getNumVars(); c < e; ++c) { |
| 203 | if (c == pos) |
| 204 | continue; |
| 205 | |
| 206 | if (!foundRepr[c] && dividend[c] != 0) { |
| 207 | // Expression can't be constructed as it depends on a yet unknown |
| 208 | // variable. |
| 209 | // |
| 210 | // TODO: Visit/compute the variables in an order so that this doesn't |
| 211 | // happen. More complex but much more efficient. |
| 212 | return false; |
| 213 | } |
| 214 | } |
| 215 | |
| 216 | return true; |
| 217 | } |
| 218 | |
| 219 | /// Check if the pos^th variable can be expressed as a floordiv of an affine |
| 220 | /// function of other variables (where the divisor is a positive constant). |
| 221 | /// `foundRepr` contains a boolean for each variable indicating if the |
| 222 | /// explicit representation for that variable has already been computed. |
| 223 | /// Returns the `MaybeLocalRepr` struct which contains the indices of the |
| 224 | /// constraints that can be expressed as a floordiv of an affine function. If |
| 225 | /// the representation could be computed, `dividend` and `denominator` are set. |
| 226 | /// If the representation could not be computed, the kind attribute in |
| 227 | /// `MaybeLocalRepr` is set to None. |
| 228 | MaybeLocalRepr presburger::computeSingleVarRepr( |
| 229 | const IntegerRelation &cst, ArrayRef<bool> foundRepr, unsigned pos, |
| 230 | MutableArrayRef<DynamicAPInt> dividend, DynamicAPInt &divisor) { |
| 231 | assert(pos < cst.getNumVars() && "invalid position" ); |
| 232 | assert(foundRepr.size() == cst.getNumVars() && |
| 233 | "Size of foundRepr does not match total number of variables" ); |
| 234 | assert(dividend.size() == cst.getNumCols() && "Invalid dividend size" ); |
| 235 | |
| 236 | SmallVector<unsigned, 4> lbIndices, ubIndices, eqIndices; |
| 237 | cst.getLowerAndUpperBoundIndices(pos, lbIndices: &lbIndices, ubIndices: &ubIndices, eqIndices: &eqIndices); |
| 238 | MaybeLocalRepr repr{}; |
| 239 | |
| 240 | for (unsigned ubPos : ubIndices) { |
| 241 | for (unsigned lbPos : lbIndices) { |
| 242 | // Attempt to get divison representation from ubPos, lbPos. |
| 243 | if (getDivRepr(cst, pos, ubIneq: ubPos, lbIneq: lbPos, expr: dividend, divisor).failed()) |
| 244 | continue; |
| 245 | |
| 246 | if (!checkExplicitRepresentation(cst, foundRepr, dividend, pos)) |
| 247 | continue; |
| 248 | |
| 249 | repr.kind = ReprKind::Inequality; |
| 250 | repr.repr.inequalityPair = {.lowerBoundIdx: ubPos, .upperBoundIdx: lbPos}; |
| 251 | return repr; |
| 252 | } |
| 253 | } |
| 254 | for (unsigned eqPos : eqIndices) { |
| 255 | // Attempt to get divison representation from eqPos. |
| 256 | if (getDivRepr(cst, pos, eqInd: eqPos, expr: dividend, divisor).failed()) |
| 257 | continue; |
| 258 | |
| 259 | if (!checkExplicitRepresentation(cst, foundRepr, dividend, pos)) |
| 260 | continue; |
| 261 | |
| 262 | repr.kind = ReprKind::Equality; |
| 263 | repr.repr.equalityIdx = eqPos; |
| 264 | return repr; |
| 265 | } |
| 266 | return repr; |
| 267 | } |
| 268 | |
| 269 | MaybeLocalRepr presburger::computeSingleVarRepr( |
| 270 | const IntegerRelation &cst, ArrayRef<bool> foundRepr, unsigned pos, |
| 271 | SmallVector<int64_t, 8> ÷nd, unsigned &divisor) { |
| 272 | SmallVector<DynamicAPInt, 8> dividendDynamicAPInt(cst.getNumCols()); |
| 273 | DynamicAPInt divisorDynamicAPInt; |
| 274 | MaybeLocalRepr result = computeSingleVarRepr( |
| 275 | cst, foundRepr, pos, dividend: dividendDynamicAPInt, divisor&: divisorDynamicAPInt); |
| 276 | dividend = getInt64Vec(range: dividendDynamicAPInt); |
| 277 | divisor = unsigned(int64_t(divisorDynamicAPInt)); |
| 278 | return result; |
| 279 | } |
| 280 | |
| 281 | llvm::SmallBitVector presburger::getSubrangeBitVector(unsigned len, |
| 282 | unsigned setOffset, |
| 283 | unsigned numSet) { |
| 284 | llvm::SmallBitVector vec(len, false); |
| 285 | vec.set(I: setOffset, E: setOffset + numSet); |
| 286 | return vec; |
| 287 | } |
| 288 | |
| 289 | void presburger::mergeLocalVars( |
| 290 | IntegerRelation &relA, IntegerRelation &relB, |
| 291 | llvm::function_ref<bool(unsigned i, unsigned j)> merge) { |
| 292 | assert(relA.getSpace().isCompatible(relB.getSpace()) && |
| 293 | "Spaces should be compatible." ); |
| 294 | |
| 295 | // Merge local vars of relA and relB without using division information, |
| 296 | // i.e. append local vars of `relB` to `relA` and insert local vars of `relA` |
| 297 | // to `relB` at start of its local vars. |
| 298 | unsigned initLocals = relA.getNumLocalVars(); |
| 299 | relA.insertVar(kind: VarKind::Local, pos: relA.getNumLocalVars(), |
| 300 | num: relB.getNumLocalVars()); |
| 301 | relB.insertVar(kind: VarKind::Local, pos: 0, num: initLocals); |
| 302 | |
| 303 | // Get division representations from each rel. |
| 304 | DivisionRepr divsA = relA.getLocalReprs(); |
| 305 | DivisionRepr divsB = relB.getLocalReprs(); |
| 306 | |
| 307 | for (unsigned i = initLocals, e = divsB.getNumDivs(); i < e; ++i) |
| 308 | divsA.setDiv(i, dividend: divsB.getDividend(i), divisor: divsB.getDenom(i)); |
| 309 | |
| 310 | // Remove duplicate divisions from divsA. The removing duplicate divisions |
| 311 | // call, calls `merge` to effectively merge divisions in relA and relB. |
| 312 | divsA.removeDuplicateDivs(merge); |
| 313 | } |
| 314 | |
| 315 | SmallVector<DynamicAPInt, 8> |
| 316 | presburger::getDivUpperBound(ArrayRef<DynamicAPInt> dividend, |
| 317 | const DynamicAPInt &divisor, |
| 318 | unsigned localVarIdx) { |
| 319 | assert(divisor > 0 && "divisor must be positive!" ); |
| 320 | assert(dividend[localVarIdx] == 0 && |
| 321 | "Local to be set to division must have zero coeff!" ); |
| 322 | SmallVector<DynamicAPInt, 8> ineq(dividend); |
| 323 | ineq[localVarIdx] = -divisor; |
| 324 | return ineq; |
| 325 | } |
| 326 | |
| 327 | SmallVector<DynamicAPInt, 8> |
| 328 | presburger::getDivLowerBound(ArrayRef<DynamicAPInt> dividend, |
| 329 | const DynamicAPInt &divisor, |
| 330 | unsigned localVarIdx) { |
| 331 | assert(divisor > 0 && "divisor must be positive!" ); |
| 332 | assert(dividend[localVarIdx] == 0 && |
| 333 | "Local to be set to division must have zero coeff!" ); |
| 334 | SmallVector<DynamicAPInt, 8> ineq(dividend.size()); |
| 335 | std::transform(first: dividend.begin(), last: dividend.end(), result: ineq.begin(), |
| 336 | unary_op: std::negate<DynamicAPInt>()); |
| 337 | ineq[localVarIdx] = divisor; |
| 338 | ineq.back() += divisor - 1; |
| 339 | return ineq; |
| 340 | } |
| 341 | |
| 342 | DynamicAPInt presburger::gcdRange(ArrayRef<DynamicAPInt> range) { |
| 343 | DynamicAPInt gcd(0); |
| 344 | for (const DynamicAPInt &elem : range) { |
| 345 | gcd = llvm::gcd(A: gcd, B: abs(X: elem)); |
| 346 | if (gcd == 1) |
| 347 | return gcd; |
| 348 | } |
| 349 | return gcd; |
| 350 | } |
| 351 | |
| 352 | DynamicAPInt presburger::normalizeRange(MutableArrayRef<DynamicAPInt> range) { |
| 353 | DynamicAPInt gcd = gcdRange(range); |
| 354 | if ((gcd == 0) || (gcd == 1)) |
| 355 | return gcd; |
| 356 | for (DynamicAPInt &elem : range) |
| 357 | elem /= gcd; |
| 358 | return gcd; |
| 359 | } |
| 360 | |
| 361 | void presburger::normalizeDiv(MutableArrayRef<DynamicAPInt> num, |
| 362 | DynamicAPInt &denom) { |
| 363 | assert(denom > 0 && "denom must be positive!" ); |
| 364 | DynamicAPInt gcd = llvm::gcd(A: gcdRange(range: num), B: denom); |
| 365 | if (gcd == 1) |
| 366 | return; |
| 367 | for (DynamicAPInt &coeff : num) |
| 368 | coeff /= gcd; |
| 369 | denom /= gcd; |
| 370 | } |
| 371 | |
| 372 | SmallVector<DynamicAPInt, 8> |
| 373 | presburger::getNegatedCoeffs(ArrayRef<DynamicAPInt> coeffs) { |
| 374 | SmallVector<DynamicAPInt, 8> negatedCoeffs; |
| 375 | negatedCoeffs.reserve(N: coeffs.size()); |
| 376 | for (const DynamicAPInt &coeff : coeffs) |
| 377 | negatedCoeffs.emplace_back(Args: -coeff); |
| 378 | return negatedCoeffs; |
| 379 | } |
| 380 | |
| 381 | SmallVector<DynamicAPInt, 8> |
| 382 | presburger::getComplementIneq(ArrayRef<DynamicAPInt> ineq) { |
| 383 | SmallVector<DynamicAPInt, 8> coeffs; |
| 384 | coeffs.reserve(N: ineq.size()); |
| 385 | for (const DynamicAPInt &coeff : ineq) |
| 386 | coeffs.emplace_back(Args: -coeff); |
| 387 | --coeffs.back(); |
| 388 | return coeffs; |
| 389 | } |
| 390 | |
| 391 | SmallVector<std::optional<DynamicAPInt>, 4> |
| 392 | DivisionRepr::divValuesAt(ArrayRef<DynamicAPInt> point) const { |
| 393 | assert(point.size() == getNumNonDivs() && "Incorrect point size" ); |
| 394 | |
| 395 | SmallVector<std::optional<DynamicAPInt>, 4> divValues(getNumDivs(), |
| 396 | std::nullopt); |
| 397 | bool changed = true; |
| 398 | while (changed) { |
| 399 | changed = false; |
| 400 | for (unsigned i = 0, e = getNumDivs(); i < e; ++i) { |
| 401 | // If division value is found, continue; |
| 402 | if (divValues[i]) |
| 403 | continue; |
| 404 | |
| 405 | ArrayRef<DynamicAPInt> dividend = getDividend(i); |
| 406 | DynamicAPInt divVal(0); |
| 407 | |
| 408 | // Check if we have all the division values required for this division. |
| 409 | unsigned j, f; |
| 410 | for (j = 0, f = getNumDivs(); j < f; ++j) { |
| 411 | if (dividend[getDivOffset() + j] == 0) |
| 412 | continue; |
| 413 | // Division value required, but not found yet. |
| 414 | if (!divValues[j]) |
| 415 | break; |
| 416 | divVal += dividend[getDivOffset() + j] * *divValues[j]; |
| 417 | } |
| 418 | |
| 419 | // We have some division values that are still not found, but are required |
| 420 | // to find the value of this division. |
| 421 | if (j < f) |
| 422 | continue; |
| 423 | |
| 424 | // Fill remaining values. |
| 425 | divVal = std::inner_product(first1: point.begin(), last1: point.end(), first2: dividend.begin(), |
| 426 | init: divVal); |
| 427 | // Add constant. |
| 428 | divVal += dividend.back(); |
| 429 | // Take floor division with denominator. |
| 430 | divVal = floorDiv(LHS: divVal, RHS: denoms[i]); |
| 431 | |
| 432 | // Set div value and continue. |
| 433 | divValues[i] = divVal; |
| 434 | changed = true; |
| 435 | } |
| 436 | } |
| 437 | |
| 438 | return divValues; |
| 439 | } |
| 440 | |
| 441 | void DivisionRepr::removeDuplicateDivs( |
| 442 | llvm::function_ref<bool(unsigned i, unsigned j)> merge) { |
| 443 | |
| 444 | // Find and merge duplicate divisions. |
| 445 | // TODO: Add division normalization to support divisions that differ by |
| 446 | // a constant. |
| 447 | // TODO: Add division ordering such that a division representation for local |
| 448 | // variable at position `i` only depends on local variables at position < |
| 449 | // `i`. This would make sure that all divisions depending on other local |
| 450 | // variables that can be merged, are merged. |
| 451 | normalizeDivs(); |
| 452 | for (unsigned i = 0; i < getNumDivs(); ++i) { |
| 453 | // Check if a division representation exists for the `i^th` local var. |
| 454 | if (denoms[i] == 0) |
| 455 | continue; |
| 456 | // Check if a division exists which is a duplicate of the division at `i`. |
| 457 | for (unsigned j = i + 1; j < getNumDivs(); ++j) { |
| 458 | // Check if a division representation exists for the `j^th` local var. |
| 459 | if (denoms[j] == 0) |
| 460 | continue; |
| 461 | // Check if the denominators match. |
| 462 | if (denoms[i] != denoms[j]) |
| 463 | continue; |
| 464 | // Check if the representations are equal. |
| 465 | if (dividends.getRow(row: i) != dividends.getRow(row: j)) |
| 466 | continue; |
| 467 | |
| 468 | // Merge divisions at position `j` into division at position `i`. If |
| 469 | // merge fails, do not merge these divs. |
| 470 | bool mergeResult = merge(i, j); |
| 471 | if (!mergeResult) |
| 472 | continue; |
| 473 | |
| 474 | // Update division information to reflect merging. |
| 475 | unsigned divOffset = getDivOffset(); |
| 476 | dividends.addToColumn(sourceColumn: divOffset + j, targetColumn: divOffset + i, /*scale=*/1); |
| 477 | dividends.removeColumn(pos: divOffset + j); |
| 478 | dividends.removeRow(pos: j); |
| 479 | denoms.erase(CI: denoms.begin() + j); |
| 480 | |
| 481 | // Since `j` can never be zero, we do not need to worry about overflows. |
| 482 | --j; |
| 483 | } |
| 484 | } |
| 485 | } |
| 486 | |
| 487 | void DivisionRepr::normalizeDivs() { |
| 488 | for (unsigned i = 0, e = getNumDivs(); i < e; ++i) { |
| 489 | if (getDenom(i) == 0 || getDividend(i).empty()) |
| 490 | continue; |
| 491 | normalizeDiv(num: getDividend(i), denom&: getDenom(i)); |
| 492 | } |
| 493 | } |
| 494 | |
| 495 | void DivisionRepr::insertDiv(unsigned pos, ArrayRef<DynamicAPInt> dividend, |
| 496 | const DynamicAPInt &divisor) { |
| 497 | assert(pos <= getNumDivs() && "Invalid insertion position" ); |
| 498 | assert(dividend.size() == getNumVars() + 1 && "Incorrect dividend size" ); |
| 499 | |
| 500 | dividends.appendExtraRow(elems: dividend); |
| 501 | denoms.insert(I: denoms.begin() + pos, Elt: divisor); |
| 502 | dividends.insertColumn(pos: getDivOffset() + pos); |
| 503 | } |
| 504 | |
| 505 | void DivisionRepr::insertDiv(unsigned pos, unsigned num) { |
| 506 | assert(pos <= getNumDivs() && "Invalid insertion position" ); |
| 507 | dividends.insertColumns(pos: getDivOffset() + pos, count: num); |
| 508 | dividends.insertRows(pos, count: num); |
| 509 | denoms.insert(I: denoms.begin() + pos, NumToInsert: num, Elt: DynamicAPInt(0)); |
| 510 | } |
| 511 | |
| 512 | void DivisionRepr::print(raw_ostream &os) const { |
| 513 | os << "Dividends:\n" ; |
| 514 | dividends.print(os); |
| 515 | os << "Denominators\n" ; |
| 516 | for (const DynamicAPInt &denom : denoms) |
| 517 | os << denom << " " ; |
| 518 | os << "\n" ; |
| 519 | } |
| 520 | |
| 521 | void DivisionRepr::dump() const { print(os&: llvm::errs()); } |
| 522 | |
| 523 | SmallVector<DynamicAPInt, 8> |
| 524 | presburger::getDynamicAPIntVec(ArrayRef<int64_t> range) { |
| 525 | SmallVector<DynamicAPInt, 8> result(range.size()); |
| 526 | std::transform(first: range.begin(), last: range.end(), result: result.begin(), |
| 527 | unary_op: dynamicAPIntFromInt64); |
| 528 | return result; |
| 529 | } |
| 530 | |
| 531 | SmallVector<int64_t, 8> presburger::getInt64Vec(ArrayRef<DynamicAPInt> range) { |
| 532 | SmallVector<int64_t, 8> result(range.size()); |
| 533 | std::transform(first: range.begin(), last: range.end(), result: result.begin(), |
| 534 | unary_op: int64fromDynamicAPInt); |
| 535 | return result; |
| 536 | } |
| 537 | |
| 538 | Fraction presburger::dotProduct(ArrayRef<Fraction> a, ArrayRef<Fraction> b) { |
| 539 | assert(a.size() == b.size() && |
| 540 | "dot product is only valid for vectors of equal sizes!" ); |
| 541 | Fraction sum = 0; |
| 542 | for (unsigned i = 0, e = a.size(); i < e; i++) |
| 543 | sum += a[i] * b[i]; |
| 544 | return sum; |
| 545 | } |
| 546 | |
| 547 | /// Find the product of two polynomials, each given by an array of |
| 548 | /// coefficients, by taking the convolution. |
| 549 | std::vector<Fraction> presburger::multiplyPolynomials(ArrayRef<Fraction> a, |
| 550 | ArrayRef<Fraction> b) { |
| 551 | // The length of the convolution is the sum of the lengths |
| 552 | // of the two sequences. We pad the shorter one with zeroes. |
| 553 | unsigned len = a.size() + b.size() - 1; |
| 554 | |
| 555 | // We define accessors to avoid out-of-bounds errors. |
| 556 | auto getCoeff = [](ArrayRef<Fraction> arr, unsigned i) -> Fraction { |
| 557 | if (i < arr.size()) |
| 558 | return arr[i]; |
| 559 | return 0; |
| 560 | }; |
| 561 | |
| 562 | std::vector<Fraction> convolution; |
| 563 | convolution.reserve(n: len); |
| 564 | for (unsigned k = 0; k < len; ++k) { |
| 565 | Fraction sum(0, 1); |
| 566 | for (unsigned l = 0; l <= k; ++l) |
| 567 | sum += getCoeff(a, l) * getCoeff(b, k - l); |
| 568 | convolution.emplace_back(args&: sum); |
| 569 | } |
| 570 | return convolution; |
| 571 | } |
| 572 | |
| 573 | bool presburger::isRangeZero(ArrayRef<Fraction> arr) { |
| 574 | return llvm::all_of(Range&: arr, P: [](const Fraction &f) { return f == 0; }); |
| 575 | } |
| 576 | |