| 1 | //===- FuncToLLVM.cpp - Func to LLVM dialect conversion -------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements a pass to convert MLIR Func and builtin dialects |
| 10 | // into the LLVM IR dialect. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "mlir/Conversion/FuncToLLVM/ConvertFuncToLLVMPass.h" |
| 15 | |
| 16 | #include "mlir/Analysis/DataLayoutAnalysis.h" |
| 17 | #include "mlir/Conversion/ArithToLLVM/ArithToLLVM.h" |
| 18 | #include "mlir/Conversion/ControlFlowToLLVM/ControlFlowToLLVM.h" |
| 19 | #include "mlir/Conversion/ConvertToLLVM/ToLLVMInterface.h" |
| 20 | #include "mlir/Conversion/FuncToLLVM/ConvertFuncToLLVM.h" |
| 21 | #include "mlir/Conversion/LLVMCommon/ConversionTarget.h" |
| 22 | #include "mlir/Conversion/LLVMCommon/Pattern.h" |
| 23 | #include "mlir/Conversion/LLVMCommon/VectorPattern.h" |
| 24 | #include "mlir/Dialect/Func/IR/FuncOps.h" |
| 25 | #include "mlir/Dialect/LLVMIR/FunctionCallUtils.h" |
| 26 | #include "mlir/Dialect/LLVMIR/LLVMDialect.h" |
| 27 | #include "mlir/Dialect/LLVMIR/LLVMTypes.h" |
| 28 | #include "mlir/Dialect/Utils/StaticValueUtils.h" |
| 29 | #include "mlir/IR/Attributes.h" |
| 30 | #include "mlir/IR/Builders.h" |
| 31 | #include "mlir/IR/BuiltinAttributeInterfaces.h" |
| 32 | #include "mlir/IR/BuiltinAttributes.h" |
| 33 | #include "mlir/IR/BuiltinOps.h" |
| 34 | #include "mlir/IR/IRMapping.h" |
| 35 | #include "mlir/IR/PatternMatch.h" |
| 36 | #include "mlir/IR/SymbolTable.h" |
| 37 | #include "mlir/IR/TypeUtilities.h" |
| 38 | #include "mlir/Transforms/DialectConversion.h" |
| 39 | #include "mlir/Transforms/Passes.h" |
| 40 | #include "llvm/ADT/SmallVector.h" |
| 41 | #include "llvm/ADT/TypeSwitch.h" |
| 42 | #include "llvm/IR/DerivedTypes.h" |
| 43 | #include "llvm/IR/IRBuilder.h" |
| 44 | #include "llvm/IR/Type.h" |
| 45 | #include "llvm/Support/Casting.h" |
| 46 | #include "llvm/Support/CommandLine.h" |
| 47 | #include "llvm/Support/FormatVariadic.h" |
| 48 | #include <algorithm> |
| 49 | #include <functional> |
| 50 | #include <optional> |
| 51 | |
| 52 | namespace mlir { |
| 53 | #define GEN_PASS_DEF_CONVERTFUNCTOLLVMPASS |
| 54 | #define GEN_PASS_DEF_SETLLVMMODULEDATALAYOUTPASS |
| 55 | #include "mlir/Conversion/Passes.h.inc" |
| 56 | } // namespace mlir |
| 57 | |
| 58 | using namespace mlir; |
| 59 | |
| 60 | #define PASS_NAME "convert-func-to-llvm" |
| 61 | |
| 62 | static constexpr StringRef varargsAttrName = "func.varargs" ; |
| 63 | static constexpr StringRef linkageAttrName = "llvm.linkage" ; |
| 64 | static constexpr StringRef barePtrAttrName = "llvm.bareptr" ; |
| 65 | |
| 66 | /// Return `true` if the `op` should use bare pointer calling convention. |
| 67 | static bool shouldUseBarePtrCallConv(Operation *op, |
| 68 | const LLVMTypeConverter *typeConverter) { |
| 69 | return (op && op->hasAttr(name: barePtrAttrName)) || |
| 70 | typeConverter->getOptions().useBarePtrCallConv; |
| 71 | } |
| 72 | |
| 73 | /// Only retain those attributes that are not constructed by |
| 74 | /// `LLVMFuncOp::build`. |
| 75 | static void filterFuncAttributes(FunctionOpInterface func, |
| 76 | SmallVectorImpl<NamedAttribute> &result) { |
| 77 | for (const NamedAttribute &attr : func->getDiscardableAttrs()) { |
| 78 | if (attr.getName() == linkageAttrName || |
| 79 | attr.getName() == varargsAttrName || |
| 80 | attr.getName() == LLVM::LLVMDialect::getReadnoneAttrName()) |
| 81 | continue; |
| 82 | result.push_back(attr); |
| 83 | } |
| 84 | } |
| 85 | |
| 86 | /// Propagate argument/results attributes. |
| 87 | static void propagateArgResAttrs(OpBuilder &builder, bool resultStructType, |
| 88 | FunctionOpInterface funcOp, |
| 89 | LLVM::LLVMFuncOp wrapperFuncOp) { |
| 90 | auto argAttrs = funcOp.getAllArgAttrs(); |
| 91 | if (!resultStructType) { |
| 92 | if (auto resAttrs = funcOp.getAllResultAttrs()) |
| 93 | wrapperFuncOp.setAllResultAttrs(resAttrs); |
| 94 | if (argAttrs) |
| 95 | wrapperFuncOp.setAllArgAttrs(argAttrs); |
| 96 | } else { |
| 97 | SmallVector<Attribute> argAttributes; |
| 98 | // Only modify the argument and result attributes when the result is now |
| 99 | // an argument. |
| 100 | if (argAttrs) { |
| 101 | argAttributes.push_back(builder.getDictionaryAttr({})); |
| 102 | argAttributes.append(argAttrs.begin(), argAttrs.end()); |
| 103 | wrapperFuncOp.setAllArgAttrs(argAttributes); |
| 104 | } |
| 105 | } |
| 106 | cast<FunctionOpInterface>(wrapperFuncOp.getOperation()) |
| 107 | .setVisibility(funcOp.getVisibility()); |
| 108 | } |
| 109 | |
| 110 | /// Creates an auxiliary function with pointer-to-memref-descriptor-struct |
| 111 | /// arguments instead of unpacked arguments. This function can be called from C |
| 112 | /// by passing a pointer to a C struct corresponding to a memref descriptor. |
| 113 | /// Similarly, returned memrefs are passed via pointers to a C struct that is |
| 114 | /// passed as additional argument. |
| 115 | /// Internally, the auxiliary function unpacks the descriptor into individual |
| 116 | /// components and forwards them to `newFuncOp` and forwards the results to |
| 117 | /// the extra arguments. |
| 118 | static void wrapForExternalCallers(OpBuilder &rewriter, Location loc, |
| 119 | const LLVMTypeConverter &typeConverter, |
| 120 | FunctionOpInterface funcOp, |
| 121 | LLVM::LLVMFuncOp newFuncOp) { |
| 122 | auto type = cast<FunctionType>(funcOp.getFunctionType()); |
| 123 | auto [wrapperFuncType, resultStructType] = |
| 124 | typeConverter.convertFunctionTypeCWrapper(type: type); |
| 125 | |
| 126 | SmallVector<NamedAttribute> attributes; |
| 127 | filterFuncAttributes(funcOp, attributes); |
| 128 | |
| 129 | auto wrapperFuncOp = rewriter.create<LLVM::LLVMFuncOp>( |
| 130 | loc, llvm::formatv("_mlir_ciface_{0}" , funcOp.getName()).str(), |
| 131 | wrapperFuncType, LLVM::Linkage::External, /*dsoLocal=*/false, |
| 132 | /*cconv=*/LLVM::CConv::C, /*comdat=*/nullptr, attributes); |
| 133 | propagateArgResAttrs(rewriter, !!resultStructType, funcOp, wrapperFuncOp); |
| 134 | |
| 135 | OpBuilder::InsertionGuard guard(rewriter); |
| 136 | rewriter.setInsertionPointToStart(wrapperFuncOp.addEntryBlock(rewriter)); |
| 137 | |
| 138 | SmallVector<Value, 8> args; |
| 139 | size_t argOffset = resultStructType ? 1 : 0; |
| 140 | for (auto [index, argType] : llvm::enumerate(type.getInputs())) { |
| 141 | Value arg = wrapperFuncOp.getArgument(index + argOffset); |
| 142 | if (auto memrefType = dyn_cast<MemRefType>(argType)) { |
| 143 | Value loaded = rewriter.create<LLVM::LoadOp>( |
| 144 | loc, typeConverter.convertType(memrefType), arg); |
| 145 | MemRefDescriptor::unpack(rewriter, loc, loaded, memrefType, args); |
| 146 | continue; |
| 147 | } |
| 148 | if (isa<UnrankedMemRefType>(argType)) { |
| 149 | Value loaded = rewriter.create<LLVM::LoadOp>( |
| 150 | loc, typeConverter.convertType(argType), arg); |
| 151 | UnrankedMemRefDescriptor::unpack(rewriter, loc, loaded, args); |
| 152 | continue; |
| 153 | } |
| 154 | |
| 155 | args.push_back(arg); |
| 156 | } |
| 157 | |
| 158 | auto call = rewriter.create<LLVM::CallOp>(loc, newFuncOp, args); |
| 159 | |
| 160 | if (resultStructType) { |
| 161 | rewriter.create<LLVM::StoreOp>(loc, call.getResult(), |
| 162 | wrapperFuncOp.getArgument(0)); |
| 163 | rewriter.create<LLVM::ReturnOp>(loc, ValueRange{}); |
| 164 | } else { |
| 165 | rewriter.create<LLVM::ReturnOp>(loc, call.getResults()); |
| 166 | } |
| 167 | } |
| 168 | |
| 169 | /// Creates an auxiliary function with pointer-to-memref-descriptor-struct |
| 170 | /// arguments instead of unpacked arguments. Creates a body for the (external) |
| 171 | /// `newFuncOp` that allocates a memref descriptor on stack, packs the |
| 172 | /// individual arguments into this descriptor and passes a pointer to it into |
| 173 | /// the auxiliary function. If the result of the function cannot be directly |
| 174 | /// returned, we write it to a special first argument that provides a pointer |
| 175 | /// to a corresponding struct. This auxiliary external function is now |
| 176 | /// compatible with functions defined in C using pointers to C structs |
| 177 | /// corresponding to a memref descriptor. |
| 178 | static void wrapExternalFunction(OpBuilder &builder, Location loc, |
| 179 | const LLVMTypeConverter &typeConverter, |
| 180 | FunctionOpInterface funcOp, |
| 181 | LLVM::LLVMFuncOp newFuncOp) { |
| 182 | OpBuilder::InsertionGuard guard(builder); |
| 183 | |
| 184 | auto [wrapperType, resultStructType] = |
| 185 | typeConverter.convertFunctionTypeCWrapper( |
| 186 | type: cast<FunctionType>(funcOp.getFunctionType())); |
| 187 | // This conversion can only fail if it could not convert one of the argument |
| 188 | // types. But since it has been applied to a non-wrapper function before, it |
| 189 | // should have failed earlier and not reach this point at all. |
| 190 | assert(wrapperType && "unexpected type conversion failure" ); |
| 191 | |
| 192 | SmallVector<NamedAttribute, 4> attributes; |
| 193 | filterFuncAttributes(funcOp, attributes); |
| 194 | |
| 195 | // Create the auxiliary function. |
| 196 | auto wrapperFunc = builder.create<LLVM::LLVMFuncOp>( |
| 197 | loc, llvm::formatv("_mlir_ciface_{0}" , funcOp.getName()).str(), |
| 198 | wrapperType, LLVM::Linkage::External, /*dsoLocal=*/false, |
| 199 | /*cconv=*/LLVM::CConv::C, /*comdat=*/nullptr, attributes); |
| 200 | propagateArgResAttrs(builder, !!resultStructType, funcOp, wrapperFunc); |
| 201 | |
| 202 | // The wrapper that we synthetize here should only be visible in this module. |
| 203 | newFuncOp.setLinkage(LLVM::Linkage::Private); |
| 204 | builder.setInsertionPointToStart(newFuncOp.addEntryBlock(builder)); |
| 205 | |
| 206 | // Get a ValueRange containing arguments. |
| 207 | FunctionType type = cast<FunctionType>(funcOp.getFunctionType()); |
| 208 | SmallVector<Value, 8> args; |
| 209 | args.reserve(N: type.getNumInputs()); |
| 210 | ValueRange wrapperArgsRange(newFuncOp.getArguments()); |
| 211 | |
| 212 | if (resultStructType) { |
| 213 | // Allocate the struct on the stack and pass the pointer. |
| 214 | Type resultType = cast<LLVM::LLVMFunctionType>(wrapperType).getParamType(0); |
| 215 | Value one = builder.create<LLVM::ConstantOp>( |
| 216 | loc, typeConverter.convertType(builder.getIndexType()), |
| 217 | builder.getIntegerAttr(builder.getIndexType(), 1)); |
| 218 | Value result = |
| 219 | builder.create<LLVM::AllocaOp>(loc, resultType, resultStructType, one); |
| 220 | args.push_back(Elt: result); |
| 221 | } |
| 222 | |
| 223 | // Iterate over the inputs of the original function and pack values into |
| 224 | // memref descriptors if the original type is a memref. |
| 225 | for (Type input : type.getInputs()) { |
| 226 | Value arg; |
| 227 | int numToDrop = 1; |
| 228 | auto memRefType = dyn_cast<MemRefType>(input); |
| 229 | auto unrankedMemRefType = dyn_cast<UnrankedMemRefType>(input); |
| 230 | if (memRefType || unrankedMemRefType) { |
| 231 | numToDrop = memRefType |
| 232 | ? MemRefDescriptor::getNumUnpackedValues(memRefType) |
| 233 | : UnrankedMemRefDescriptor::getNumUnpackedValues(); |
| 234 | Value packed = |
| 235 | memRefType |
| 236 | ? MemRefDescriptor::pack(builder, loc, typeConverter, memRefType, |
| 237 | wrapperArgsRange.take_front(numToDrop)) |
| 238 | : UnrankedMemRefDescriptor::pack( |
| 239 | builder, loc, typeConverter, unrankedMemRefType, |
| 240 | wrapperArgsRange.take_front(numToDrop)); |
| 241 | |
| 242 | auto ptrTy = LLVM::LLVMPointerType::get(builder.getContext()); |
| 243 | Value one = builder.create<LLVM::ConstantOp>( |
| 244 | loc, typeConverter.convertType(builder.getIndexType()), |
| 245 | builder.getIntegerAttr(builder.getIndexType(), 1)); |
| 246 | Value allocated = builder.create<LLVM::AllocaOp>( |
| 247 | loc, ptrTy, packed.getType(), one, /*alignment=*/0); |
| 248 | builder.create<LLVM::StoreOp>(loc, packed, allocated); |
| 249 | arg = allocated; |
| 250 | } else { |
| 251 | arg = wrapperArgsRange[0]; |
| 252 | } |
| 253 | |
| 254 | args.push_back(arg); |
| 255 | wrapperArgsRange = wrapperArgsRange.drop_front(numToDrop); |
| 256 | } |
| 257 | assert(wrapperArgsRange.empty() && "did not map some of the arguments" ); |
| 258 | |
| 259 | auto call = builder.create<LLVM::CallOp>(loc, wrapperFunc, args); |
| 260 | |
| 261 | if (resultStructType) { |
| 262 | Value result = |
| 263 | builder.create<LLVM::LoadOp>(loc, resultStructType, args.front()); |
| 264 | builder.create<LLVM::ReturnOp>(loc, result); |
| 265 | } else { |
| 266 | builder.create<LLVM::ReturnOp>(loc, call.getResults()); |
| 267 | } |
| 268 | } |
| 269 | |
| 270 | /// Inserts `llvm.load` ops in the function body to restore the expected pointee |
| 271 | /// value from `llvm.byval`/`llvm.byref` function arguments that were converted |
| 272 | /// to LLVM pointer types. |
| 273 | static void restoreByValRefArgumentType( |
| 274 | ConversionPatternRewriter &rewriter, const LLVMTypeConverter &typeConverter, |
| 275 | ArrayRef<std::optional<NamedAttribute>> byValRefNonPtrAttrs, |
| 276 | ArrayRef<BlockArgument> oldBlockArgs, LLVM::LLVMFuncOp funcOp) { |
| 277 | // Nothing to do for function declarations. |
| 278 | if (funcOp.isExternal()) |
| 279 | return; |
| 280 | |
| 281 | ConversionPatternRewriter::InsertionGuard guard(rewriter); |
| 282 | rewriter.setInsertionPointToStart(&funcOp.getFunctionBody().front()); |
| 283 | |
| 284 | for (const auto &[arg, oldArg, byValRefAttr] : |
| 285 | llvm::zip(funcOp.getArguments(), oldBlockArgs, byValRefNonPtrAttrs)) { |
| 286 | // Skip argument if no `llvm.byval` or `llvm.byref` attribute. |
| 287 | if (!byValRefAttr) |
| 288 | continue; |
| 289 | |
| 290 | // Insert load to retrieve the actual argument passed by value/reference. |
| 291 | assert(isa<LLVM::LLVMPointerType>(arg.getType()) && |
| 292 | "Expected LLVM pointer type for argument with " |
| 293 | "`llvm.byval`/`llvm.byref` attribute" ); |
| 294 | Type resTy = typeConverter.convertType( |
| 295 | cast<TypeAttr>(byValRefAttr->getValue()).getValue()); |
| 296 | |
| 297 | auto valueArg = rewriter.create<LLVM::LoadOp>(arg.getLoc(), resTy, arg); |
| 298 | rewriter.replaceUsesOfBlockArgument(oldArg, valueArg); |
| 299 | } |
| 300 | } |
| 301 | |
| 302 | FailureOr<LLVM::LLVMFuncOp> |
| 303 | mlir::convertFuncOpToLLVMFuncOp(FunctionOpInterface funcOp, |
| 304 | ConversionPatternRewriter &rewriter, |
| 305 | const LLVMTypeConverter &converter) { |
| 306 | // Check the funcOp has `FunctionType`. |
| 307 | auto funcTy = dyn_cast<FunctionType>(funcOp.getFunctionType()); |
| 308 | if (!funcTy) |
| 309 | return rewriter.notifyMatchFailure( |
| 310 | funcOp, "Only support FunctionOpInterface with FunctionType" ); |
| 311 | |
| 312 | // Keep track of the entry block arguments. They will be needed later. |
| 313 | SmallVector<BlockArgument> oldBlockArgs = |
| 314 | llvm::to_vector(funcOp.getArguments()); |
| 315 | |
| 316 | // Convert the original function arguments. They are converted using the |
| 317 | // LLVMTypeConverter provided to this legalization pattern. |
| 318 | auto varargsAttr = funcOp->getAttrOfType<BoolAttr>(varargsAttrName); |
| 319 | // Gather `llvm.byval` and `llvm.byref` arguments whose type convertion was |
| 320 | // overriden with an LLVM pointer type for later processing. |
| 321 | SmallVector<std::optional<NamedAttribute>> byValRefNonPtrAttrs; |
| 322 | TypeConverter::SignatureConversion result(funcOp.getNumArguments()); |
| 323 | auto llvmType = dyn_cast_or_null<LLVM::LLVMFunctionType>( |
| 324 | converter.convertFunctionSignature( |
| 325 | funcOp, varargsAttr && varargsAttr.getValue(), |
| 326 | shouldUseBarePtrCallConv(funcOp, &converter), result, |
| 327 | byValRefNonPtrAttrs)); |
| 328 | if (!llvmType) |
| 329 | return rewriter.notifyMatchFailure(funcOp, "signature conversion failed" ); |
| 330 | |
| 331 | // Check for unsupported variadic functions. |
| 332 | if (!shouldUseBarePtrCallConv(funcOp, &converter)) |
| 333 | if (funcOp->getAttrOfType<UnitAttr>( |
| 334 | LLVM::LLVMDialect::getEmitCWrapperAttrName())) |
| 335 | if (llvmType.isVarArg()) |
| 336 | return funcOp.emitError("C interface for variadic functions is not " |
| 337 | "supported yet." ); |
| 338 | |
| 339 | // Create an LLVM function, use external linkage by default until MLIR |
| 340 | // functions have linkage. |
| 341 | LLVM::Linkage linkage = LLVM::Linkage::External; |
| 342 | if (funcOp->hasAttr(linkageAttrName)) { |
| 343 | auto attr = |
| 344 | dyn_cast<mlir::LLVM::LinkageAttr>(funcOp->getAttr(linkageAttrName)); |
| 345 | if (!attr) { |
| 346 | funcOp->emitError() << "Contains " << linkageAttrName |
| 347 | << " attribute not of type LLVM::LinkageAttr" ; |
| 348 | return rewriter.notifyMatchFailure( |
| 349 | funcOp, "Contains linkage attribute not of type LLVM::LinkageAttr" ); |
| 350 | } |
| 351 | linkage = attr.getLinkage(); |
| 352 | } |
| 353 | |
| 354 | // Check for invalid attributes. |
| 355 | StringRef readnoneAttrName = LLVM::LLVMDialect::getReadnoneAttrName(); |
| 356 | if (funcOp->hasAttr(readnoneAttrName)) { |
| 357 | auto attr = funcOp->getAttrOfType<UnitAttr>(readnoneAttrName); |
| 358 | if (!attr) { |
| 359 | funcOp->emitError() << "Contains " << readnoneAttrName |
| 360 | << " attribute not of type UnitAttr" ; |
| 361 | return rewriter.notifyMatchFailure( |
| 362 | funcOp, "Contains readnone attribute not of type UnitAttr" ); |
| 363 | } |
| 364 | } |
| 365 | |
| 366 | SmallVector<NamedAttribute, 4> attributes; |
| 367 | filterFuncAttributes(funcOp, attributes); |
| 368 | auto newFuncOp = rewriter.create<LLVM::LLVMFuncOp>( |
| 369 | funcOp.getLoc(), funcOp.getName(), llvmType, linkage, |
| 370 | /*dsoLocal=*/false, /*cconv=*/LLVM::CConv::C, /*comdat=*/nullptr, |
| 371 | attributes); |
| 372 | cast<FunctionOpInterface>(newFuncOp.getOperation()) |
| 373 | .setVisibility(funcOp.getVisibility()); |
| 374 | |
| 375 | // Create a memory effect attribute corresponding to readnone. |
| 376 | if (funcOp->hasAttr(readnoneAttrName)) { |
| 377 | auto memoryAttr = LLVM::MemoryEffectsAttr::get( |
| 378 | rewriter.getContext(), |
| 379 | {LLVM::ModRefInfo::NoModRef, LLVM::ModRefInfo::NoModRef, |
| 380 | LLVM::ModRefInfo::NoModRef}); |
| 381 | newFuncOp.setMemoryEffectsAttr(memoryAttr); |
| 382 | } |
| 383 | |
| 384 | // Propagate argument/result attributes to all converted arguments/result |
| 385 | // obtained after converting a given original argument/result. |
| 386 | if (ArrayAttr resAttrDicts = funcOp.getAllResultAttrs()) { |
| 387 | assert(!resAttrDicts.empty() && "expected array to be non-empty" ); |
| 388 | if (funcOp.getNumResults() == 1) |
| 389 | newFuncOp.setAllResultAttrs(resAttrDicts); |
| 390 | } |
| 391 | if (ArrayAttr argAttrDicts = funcOp.getAllArgAttrs()) { |
| 392 | SmallVector<Attribute> newArgAttrs( |
| 393 | cast<LLVM::LLVMFunctionType>(llvmType).getNumParams()); |
| 394 | for (unsigned i = 0, e = funcOp.getNumArguments(); i < e; ++i) { |
| 395 | // Some LLVM IR attribute have a type attached to them. During FuncOp -> |
| 396 | // LLVMFuncOp conversion these types may have changed. Account for that |
| 397 | // change by converting attributes' types as well. |
| 398 | SmallVector<NamedAttribute, 4> convertedAttrs; |
| 399 | auto attrsDict = cast<DictionaryAttr>(argAttrDicts[i]); |
| 400 | convertedAttrs.reserve(N: attrsDict.size()); |
| 401 | for (const NamedAttribute &attr : attrsDict) { |
| 402 | const auto convert = [&](const NamedAttribute &attr) { |
| 403 | return TypeAttr::get(converter.convertType( |
| 404 | cast<TypeAttr>(attr.getValue()).getValue())); |
| 405 | }; |
| 406 | if (attr.getName().getValue() == |
| 407 | LLVM::LLVMDialect::getByValAttrName()) { |
| 408 | convertedAttrs.push_back(rewriter.getNamedAttr( |
| 409 | LLVM::LLVMDialect::getByValAttrName(), convert(attr))); |
| 410 | } else if (attr.getName().getValue() == |
| 411 | LLVM::LLVMDialect::getByRefAttrName()) { |
| 412 | convertedAttrs.push_back(rewriter.getNamedAttr( |
| 413 | LLVM::LLVMDialect::getByRefAttrName(), convert(attr))); |
| 414 | } else if (attr.getName().getValue() == |
| 415 | LLVM::LLVMDialect::getStructRetAttrName()) { |
| 416 | convertedAttrs.push_back(rewriter.getNamedAttr( |
| 417 | LLVM::LLVMDialect::getStructRetAttrName(), convert(attr))); |
| 418 | } else if (attr.getName().getValue() == |
| 419 | LLVM::LLVMDialect::getInAllocaAttrName()) { |
| 420 | convertedAttrs.push_back(rewriter.getNamedAttr( |
| 421 | LLVM::LLVMDialect::getInAllocaAttrName(), convert(attr))); |
| 422 | } else { |
| 423 | convertedAttrs.push_back(attr); |
| 424 | } |
| 425 | } |
| 426 | auto mapping = result.getInputMapping(input: i); |
| 427 | assert(mapping && "unexpected deletion of function argument" ); |
| 428 | // Only attach the new argument attributes if there is a one-to-one |
| 429 | // mapping from old to new types. Otherwise, attributes might be |
| 430 | // attached to types that they do not support. |
| 431 | if (mapping->size == 1) { |
| 432 | newArgAttrs[mapping->inputNo] = |
| 433 | DictionaryAttr::get(rewriter.getContext(), convertedAttrs); |
| 434 | continue; |
| 435 | } |
| 436 | // TODO: Implement custom handling for types that expand to multiple |
| 437 | // function arguments. |
| 438 | for (size_t j = 0; j < mapping->size; ++j) |
| 439 | newArgAttrs[mapping->inputNo + j] = |
| 440 | DictionaryAttr::get(rewriter.getContext(), {}); |
| 441 | } |
| 442 | if (!newArgAttrs.empty()) |
| 443 | newFuncOp.setAllArgAttrs(rewriter.getArrayAttr(newArgAttrs)); |
| 444 | } |
| 445 | |
| 446 | rewriter.inlineRegionBefore(funcOp.getFunctionBody(), newFuncOp.getBody(), |
| 447 | newFuncOp.end()); |
| 448 | // Convert just the entry block. The remaining unstructured control flow is |
| 449 | // converted by ControlFlowToLLVM. |
| 450 | if (!newFuncOp.getBody().empty()) |
| 451 | rewriter.applySignatureConversion(block: &newFuncOp.getBody().front(), conversion&: result, |
| 452 | converter: &converter); |
| 453 | |
| 454 | // Fix the type mismatch between the materialized `llvm.ptr` and the expected |
| 455 | // pointee type in the function body when converting `llvm.byval`/`llvm.byref` |
| 456 | // function arguments. |
| 457 | restoreByValRefArgumentType(rewriter, converter, byValRefNonPtrAttrs, |
| 458 | oldBlockArgs, newFuncOp); |
| 459 | |
| 460 | if (!shouldUseBarePtrCallConv(funcOp, &converter)) { |
| 461 | if (funcOp->getAttrOfType<UnitAttr>( |
| 462 | LLVM::LLVMDialect::getEmitCWrapperAttrName())) { |
| 463 | if (newFuncOp.isExternal()) |
| 464 | wrapExternalFunction(rewriter, funcOp->getLoc(), converter, funcOp, |
| 465 | newFuncOp); |
| 466 | else |
| 467 | wrapForExternalCallers(rewriter, funcOp->getLoc(), converter, funcOp, |
| 468 | newFuncOp); |
| 469 | } |
| 470 | } |
| 471 | |
| 472 | return newFuncOp; |
| 473 | } |
| 474 | |
| 475 | namespace { |
| 476 | |
| 477 | /// FuncOp legalization pattern that converts MemRef arguments to pointers to |
| 478 | /// MemRef descriptors (LLVM struct data types) containing all the MemRef type |
| 479 | /// information. |
| 480 | struct FuncOpConversion : public ConvertOpToLLVMPattern<func::FuncOp> { |
| 481 | FuncOpConversion(const LLVMTypeConverter &converter) |
| 482 | : ConvertOpToLLVMPattern(converter) {} |
| 483 | |
| 484 | LogicalResult |
| 485 | matchAndRewrite(func::FuncOp funcOp, OpAdaptor adaptor, |
| 486 | ConversionPatternRewriter &rewriter) const override { |
| 487 | FailureOr<LLVM::LLVMFuncOp> newFuncOp = mlir::convertFuncOpToLLVMFuncOp( |
| 488 | cast<FunctionOpInterface>(funcOp.getOperation()), rewriter, |
| 489 | *getTypeConverter()); |
| 490 | if (failed(Result: newFuncOp)) |
| 491 | return rewriter.notifyMatchFailure(funcOp, "Could not convert funcop" ); |
| 492 | |
| 493 | rewriter.eraseOp(op: funcOp); |
| 494 | return success(); |
| 495 | } |
| 496 | }; |
| 497 | |
| 498 | struct ConstantOpLowering : public ConvertOpToLLVMPattern<func::ConstantOp> { |
| 499 | using ConvertOpToLLVMPattern<func::ConstantOp>::ConvertOpToLLVMPattern; |
| 500 | |
| 501 | LogicalResult |
| 502 | matchAndRewrite(func::ConstantOp op, OpAdaptor adaptor, |
| 503 | ConversionPatternRewriter &rewriter) const override { |
| 504 | auto type = typeConverter->convertType(op.getResult().getType()); |
| 505 | if (!type || !LLVM::isCompatibleType(type: type)) |
| 506 | return rewriter.notifyMatchFailure(op, "failed to convert result type" ); |
| 507 | |
| 508 | auto newOp = |
| 509 | rewriter.create<LLVM::AddressOfOp>(op.getLoc(), type, op.getValue()); |
| 510 | for (const NamedAttribute &attr : op->getAttrs()) { |
| 511 | if (attr.getName().strref() == "value" ) |
| 512 | continue; |
| 513 | newOp->setAttr(attr.getName(), attr.getValue()); |
| 514 | } |
| 515 | rewriter.replaceOp(op, newOp->getResults()); |
| 516 | return success(); |
| 517 | } |
| 518 | }; |
| 519 | |
| 520 | // A CallOp automatically promotes MemRefType to a sequence of alloca/store and |
| 521 | // passes the pointer to the MemRef across function boundaries. |
| 522 | template <typename CallOpType> |
| 523 | struct CallOpInterfaceLowering : public ConvertOpToLLVMPattern<CallOpType> { |
| 524 | using ConvertOpToLLVMPattern<CallOpType>::ConvertOpToLLVMPattern; |
| 525 | using Super = CallOpInterfaceLowering<CallOpType>; |
| 526 | using Base = ConvertOpToLLVMPattern<CallOpType>; |
| 527 | |
| 528 | LogicalResult matchAndRewriteImpl(CallOpType callOp, |
| 529 | typename CallOpType::Adaptor adaptor, |
| 530 | ConversionPatternRewriter &rewriter, |
| 531 | bool useBarePtrCallConv = false) const { |
| 532 | // Pack the result types into a struct. |
| 533 | Type packedResult = nullptr; |
| 534 | unsigned numResults = callOp.getNumResults(); |
| 535 | auto resultTypes = llvm::to_vector<4>(callOp.getResultTypes()); |
| 536 | |
| 537 | if (numResults != 0) { |
| 538 | if (!(packedResult = this->getTypeConverter()->packFunctionResults( |
| 539 | resultTypes, useBarePtrCallConv))) |
| 540 | return failure(); |
| 541 | } |
| 542 | |
| 543 | if (useBarePtrCallConv) { |
| 544 | for (auto it : callOp->getOperands()) { |
| 545 | Type operandType = it.getType(); |
| 546 | if (isa<UnrankedMemRefType>(Val: operandType)) { |
| 547 | // Unranked memref is not supported in the bare pointer calling |
| 548 | // convention. |
| 549 | return failure(); |
| 550 | } |
| 551 | } |
| 552 | } |
| 553 | auto promoted = this->getTypeConverter()->promoteOperands( |
| 554 | callOp.getLoc(), /*opOperands=*/callOp->getOperands(), |
| 555 | adaptor.getOperands(), rewriter, useBarePtrCallConv); |
| 556 | auto newOp = rewriter.create<LLVM::CallOp>( |
| 557 | callOp.getLoc(), packedResult ? TypeRange(packedResult) : TypeRange(), |
| 558 | promoted, callOp->getAttrs()); |
| 559 | |
| 560 | newOp.getProperties().operandSegmentSizes = { |
| 561 | static_cast<int32_t>(promoted.size()), 0}; |
| 562 | newOp.getProperties().op_bundle_sizes = rewriter.getDenseI32ArrayAttr({}); |
| 563 | |
| 564 | SmallVector<Value, 4> results; |
| 565 | if (numResults < 2) { |
| 566 | // If < 2 results, packing did not do anything and we can just return. |
| 567 | results.append(newOp.result_begin(), newOp.result_end()); |
| 568 | } else { |
| 569 | // Otherwise, it had been converted to an operation producing a structure. |
| 570 | // Extract individual results from the structure and return them as list. |
| 571 | results.reserve(N: numResults); |
| 572 | for (unsigned i = 0; i < numResults; ++i) { |
| 573 | results.push_back(rewriter.create<LLVM::ExtractValueOp>( |
| 574 | callOp.getLoc(), newOp->getResult(0), i)); |
| 575 | } |
| 576 | } |
| 577 | |
| 578 | if (useBarePtrCallConv) { |
| 579 | // For the bare-ptr calling convention, promote memref results to |
| 580 | // descriptors. |
| 581 | assert(results.size() == resultTypes.size() && |
| 582 | "The number of arguments and types doesn't match" ); |
| 583 | this->getTypeConverter()->promoteBarePtrsToDescriptors( |
| 584 | rewriter, callOp.getLoc(), resultTypes, results); |
| 585 | } else if (failed(this->copyUnrankedDescriptors(rewriter, callOp.getLoc(), |
| 586 | resultTypes, results, |
| 587 | /*toDynamic=*/false))) { |
| 588 | return failure(); |
| 589 | } |
| 590 | |
| 591 | rewriter.replaceOp(callOp, results); |
| 592 | return success(); |
| 593 | } |
| 594 | }; |
| 595 | |
| 596 | class CallOpLowering : public CallOpInterfaceLowering<func::CallOp> { |
| 597 | public: |
| 598 | CallOpLowering(const LLVMTypeConverter &typeConverter, |
| 599 | // Can be nullptr. |
| 600 | const SymbolTable *symbolTable, PatternBenefit benefit = 1) |
| 601 | : CallOpInterfaceLowering<func::CallOp>(typeConverter, benefit), |
| 602 | symbolTable(symbolTable) {} |
| 603 | |
| 604 | LogicalResult |
| 605 | matchAndRewrite(func::CallOp callOp, OpAdaptor adaptor, |
| 606 | ConversionPatternRewriter &rewriter) const override { |
| 607 | bool useBarePtrCallConv = false; |
| 608 | if (getTypeConverter()->getOptions().useBarePtrCallConv) { |
| 609 | useBarePtrCallConv = true; |
| 610 | } else if (symbolTable != nullptr) { |
| 611 | // Fast lookup. |
| 612 | Operation *callee = |
| 613 | symbolTable->lookup(callOp.getCalleeAttr().getValue()); |
| 614 | useBarePtrCallConv = |
| 615 | callee != nullptr && callee->hasAttr(name: barePtrAttrName); |
| 616 | } else { |
| 617 | // Warning: This is a linear lookup. |
| 618 | Operation *callee = |
| 619 | SymbolTable::lookupNearestSymbolFrom(callOp, callOp.getCalleeAttr()); |
| 620 | useBarePtrCallConv = |
| 621 | callee != nullptr && callee->hasAttr(name: barePtrAttrName); |
| 622 | } |
| 623 | return matchAndRewriteImpl(callOp, adaptor, rewriter, useBarePtrCallConv); |
| 624 | } |
| 625 | |
| 626 | private: |
| 627 | const SymbolTable *symbolTable = nullptr; |
| 628 | }; |
| 629 | |
| 630 | struct CallIndirectOpLowering |
| 631 | : public CallOpInterfaceLowering<func::CallIndirectOp> { |
| 632 | using Super::Super; |
| 633 | |
| 634 | LogicalResult |
| 635 | matchAndRewrite(func::CallIndirectOp callIndirectOp, OpAdaptor adaptor, |
| 636 | ConversionPatternRewriter &rewriter) const override { |
| 637 | return matchAndRewriteImpl(callIndirectOp, adaptor, rewriter); |
| 638 | } |
| 639 | }; |
| 640 | |
| 641 | struct UnrealizedConversionCastOpLowering |
| 642 | : public ConvertOpToLLVMPattern<UnrealizedConversionCastOp> { |
| 643 | using ConvertOpToLLVMPattern< |
| 644 | UnrealizedConversionCastOp>::ConvertOpToLLVMPattern; |
| 645 | |
| 646 | LogicalResult |
| 647 | matchAndRewrite(UnrealizedConversionCastOp op, OpAdaptor adaptor, |
| 648 | ConversionPatternRewriter &rewriter) const override { |
| 649 | SmallVector<Type> convertedTypes; |
| 650 | if (succeeded(typeConverter->convertTypes(op.getOutputs().getTypes(), |
| 651 | convertedTypes)) && |
| 652 | convertedTypes == adaptor.getInputs().getTypes()) { |
| 653 | rewriter.replaceOp(op, adaptor.getInputs()); |
| 654 | return success(); |
| 655 | } |
| 656 | |
| 657 | convertedTypes.clear(); |
| 658 | if (succeeded(typeConverter->convertTypes(adaptor.getInputs().getTypes(), |
| 659 | convertedTypes)) && |
| 660 | convertedTypes == op.getOutputs().getType()) { |
| 661 | rewriter.replaceOp(op, adaptor.getInputs()); |
| 662 | return success(); |
| 663 | } |
| 664 | return failure(); |
| 665 | } |
| 666 | }; |
| 667 | |
| 668 | // Special lowering pattern for `ReturnOps`. Unlike all other operations, |
| 669 | // `ReturnOp` interacts with the function signature and must have as many |
| 670 | // operands as the function has return values. Because in LLVM IR, functions |
| 671 | // can only return 0 or 1 value, we pack multiple values into a structure type. |
| 672 | // Emit `PoisonOp` followed by `InsertValueOp`s to create such structure if |
| 673 | // necessary before returning it |
| 674 | struct ReturnOpLowering : public ConvertOpToLLVMPattern<func::ReturnOp> { |
| 675 | using ConvertOpToLLVMPattern<func::ReturnOp>::ConvertOpToLLVMPattern; |
| 676 | |
| 677 | LogicalResult |
| 678 | matchAndRewrite(func::ReturnOp op, OpAdaptor adaptor, |
| 679 | ConversionPatternRewriter &rewriter) const override { |
| 680 | Location loc = op.getLoc(); |
| 681 | unsigned numArguments = op.getNumOperands(); |
| 682 | SmallVector<Value, 4> updatedOperands; |
| 683 | |
| 684 | auto funcOp = op->getParentOfType<LLVM::LLVMFuncOp>(); |
| 685 | bool useBarePtrCallConv = |
| 686 | shouldUseBarePtrCallConv(funcOp, this->getTypeConverter()); |
| 687 | if (useBarePtrCallConv) { |
| 688 | // For the bare-ptr calling convention, extract the aligned pointer to |
| 689 | // be returned from the memref descriptor. |
| 690 | for (auto it : llvm::zip(op->getOperands(), adaptor.getOperands())) { |
| 691 | Type oldTy = std::get<0>(it).getType(); |
| 692 | Value newOperand = std::get<1>(it); |
| 693 | if (isa<MemRefType>(oldTy) && getTypeConverter()->canConvertToBarePtr( |
| 694 | cast<BaseMemRefType>(oldTy))) { |
| 695 | MemRefDescriptor memrefDesc(newOperand); |
| 696 | newOperand = memrefDesc.allocatedPtr(rewriter, loc); |
| 697 | } else if (isa<UnrankedMemRefType>(oldTy)) { |
| 698 | // Unranked memref is not supported in the bare pointer calling |
| 699 | // convention. |
| 700 | return failure(); |
| 701 | } |
| 702 | updatedOperands.push_back(newOperand); |
| 703 | } |
| 704 | } else { |
| 705 | updatedOperands = llvm::to_vector<4>(adaptor.getOperands()); |
| 706 | (void)copyUnrankedDescriptors(rewriter, loc, op.getOperands().getTypes(), |
| 707 | updatedOperands, |
| 708 | /*toDynamic=*/true); |
| 709 | } |
| 710 | |
| 711 | // If ReturnOp has 0 or 1 operand, create it and return immediately. |
| 712 | if (numArguments <= 1) { |
| 713 | rewriter.replaceOpWithNewOp<LLVM::ReturnOp>( |
| 714 | op, TypeRange(), updatedOperands, op->getAttrs()); |
| 715 | return success(); |
| 716 | } |
| 717 | |
| 718 | // Otherwise, we need to pack the arguments into an LLVM struct type before |
| 719 | // returning. |
| 720 | auto packedType = getTypeConverter()->packFunctionResults( |
| 721 | op.getOperandTypes(), useBarePtrCallConv); |
| 722 | if (!packedType) { |
| 723 | return rewriter.notifyMatchFailure(op, "could not convert result types" ); |
| 724 | } |
| 725 | |
| 726 | Value packed = rewriter.create<LLVM::PoisonOp>(loc, packedType); |
| 727 | for (auto [idx, operand] : llvm::enumerate(First&: updatedOperands)) { |
| 728 | packed = rewriter.create<LLVM::InsertValueOp>(loc, packed, operand, idx); |
| 729 | } |
| 730 | rewriter.replaceOpWithNewOp<LLVM::ReturnOp>(op, TypeRange(), packed, |
| 731 | op->getAttrs()); |
| 732 | return success(); |
| 733 | } |
| 734 | }; |
| 735 | } // namespace |
| 736 | |
| 737 | void mlir::populateFuncToLLVMFuncOpConversionPattern( |
| 738 | const LLVMTypeConverter &converter, RewritePatternSet &patterns) { |
| 739 | patterns.add<FuncOpConversion>(arg: converter); |
| 740 | } |
| 741 | |
| 742 | void mlir::populateFuncToLLVMConversionPatterns( |
| 743 | const LLVMTypeConverter &converter, RewritePatternSet &patterns, |
| 744 | const SymbolTable *symbolTable) { |
| 745 | populateFuncToLLVMFuncOpConversionPattern(converter, patterns); |
| 746 | patterns.add<CallIndirectOpLowering>(arg: converter); |
| 747 | patterns.add<CallOpLowering>(arg: converter, args&: symbolTable); |
| 748 | patterns.add<ConstantOpLowering>(arg: converter); |
| 749 | patterns.add<ReturnOpLowering>(arg: converter); |
| 750 | } |
| 751 | |
| 752 | namespace { |
| 753 | /// A pass converting Func operations into the LLVM IR dialect. |
| 754 | struct ConvertFuncToLLVMPass |
| 755 | : public impl::ConvertFuncToLLVMPassBase<ConvertFuncToLLVMPass> { |
| 756 | using Base::Base; |
| 757 | |
| 758 | /// Run the dialect converter on the module. |
| 759 | void runOnOperation() override { |
| 760 | ModuleOp m = getOperation(); |
| 761 | StringRef dataLayout; |
| 762 | auto dataLayoutAttr = dyn_cast_or_null<StringAttr>( |
| 763 | m->getAttr(LLVM::LLVMDialect::getDataLayoutAttrName())); |
| 764 | if (dataLayoutAttr) |
| 765 | dataLayout = dataLayoutAttr.getValue(); |
| 766 | |
| 767 | if (failed(LLVM::LLVMDialect::verifyDataLayoutString( |
| 768 | dataLayout, [this](const Twine &message) { |
| 769 | getOperation().emitError() << message.str(); |
| 770 | }))) { |
| 771 | signalPassFailure(); |
| 772 | return; |
| 773 | } |
| 774 | |
| 775 | const auto &dataLayoutAnalysis = getAnalysis<DataLayoutAnalysis>(); |
| 776 | |
| 777 | LowerToLLVMOptions options(&getContext(), |
| 778 | dataLayoutAnalysis.getAtOrAbove(m)); |
| 779 | options.useBarePtrCallConv = useBarePtrCallConv; |
| 780 | if (indexBitwidth != kDeriveIndexBitwidthFromDataLayout) |
| 781 | options.overrideIndexBitwidth(indexBitwidth); |
| 782 | options.dataLayout = llvm::DataLayout(dataLayout); |
| 783 | |
| 784 | LLVMTypeConverter typeConverter(&getContext(), options, |
| 785 | &dataLayoutAnalysis); |
| 786 | |
| 787 | std::optional<SymbolTable> optSymbolTable = std::nullopt; |
| 788 | const SymbolTable *symbolTable = nullptr; |
| 789 | if (!options.useBarePtrCallConv) { |
| 790 | optSymbolTable.emplace(m); |
| 791 | symbolTable = &optSymbolTable.value(); |
| 792 | } |
| 793 | |
| 794 | RewritePatternSet patterns(&getContext()); |
| 795 | populateFuncToLLVMConversionPatterns(converter: typeConverter, patterns, symbolTable); |
| 796 | |
| 797 | LLVMConversionTarget target(getContext()); |
| 798 | if (failed(applyPartialConversion(m, target, std::move(patterns)))) |
| 799 | signalPassFailure(); |
| 800 | } |
| 801 | }; |
| 802 | |
| 803 | struct SetLLVMModuleDataLayoutPass |
| 804 | : public impl::SetLLVMModuleDataLayoutPassBase< |
| 805 | SetLLVMModuleDataLayoutPass> { |
| 806 | using Base::Base; |
| 807 | |
| 808 | /// Run the dialect converter on the module. |
| 809 | void runOnOperation() override { |
| 810 | if (failed(LLVM::LLVMDialect::verifyDataLayoutString( |
| 811 | this->dataLayout, [this](const Twine &message) { |
| 812 | getOperation().emitError() << message.str(); |
| 813 | }))) { |
| 814 | signalPassFailure(); |
| 815 | return; |
| 816 | } |
| 817 | ModuleOp m = getOperation(); |
| 818 | m->setAttr(LLVM::LLVMDialect::getDataLayoutAttrName(), |
| 819 | StringAttr::get(m.getContext(), this->dataLayout)); |
| 820 | } |
| 821 | }; |
| 822 | } // namespace |
| 823 | |
| 824 | //===----------------------------------------------------------------------===// |
| 825 | // ConvertToLLVMPatternInterface implementation |
| 826 | //===----------------------------------------------------------------------===// |
| 827 | |
| 828 | namespace { |
| 829 | /// Implement the interface to convert Func to LLVM. |
| 830 | struct FuncToLLVMDialectInterface : public ConvertToLLVMPatternInterface { |
| 831 | using ConvertToLLVMPatternInterface::ConvertToLLVMPatternInterface; |
| 832 | /// Hook for derived dialect interface to provide conversion patterns |
| 833 | /// and mark dialect legal for the conversion target. |
| 834 | void populateConvertToLLVMConversionPatterns( |
| 835 | ConversionTarget &target, LLVMTypeConverter &typeConverter, |
| 836 | RewritePatternSet &patterns) const final { |
| 837 | populateFuncToLLVMConversionPatterns(converter: typeConverter, patterns); |
| 838 | } |
| 839 | }; |
| 840 | } // namespace |
| 841 | |
| 842 | void mlir::registerConvertFuncToLLVMInterface(DialectRegistry ®istry) { |
| 843 | registry.addExtension(extensionFn: +[](MLIRContext *ctx, func::FuncDialect *dialect) { |
| 844 | dialect->addInterfaces<FuncToLLVMDialectInterface>(); |
| 845 | }); |
| 846 | } |
| 847 | |