1 | //===- MemRefToLLVM.cpp - MemRef to LLVM dialect conversion ---------------===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "mlir/Conversion/MemRefToLLVM/MemRefToLLVM.h" |
10 | |
11 | #include "mlir/Analysis/DataLayoutAnalysis.h" |
12 | #include "mlir/Conversion/ConvertToLLVM/ToLLVMInterface.h" |
13 | #include "mlir/Conversion/LLVMCommon/ConversionTarget.h" |
14 | #include "mlir/Conversion/LLVMCommon/Pattern.h" |
15 | #include "mlir/Conversion/LLVMCommon/TypeConverter.h" |
16 | #include "mlir/Dialect/Arith/IR/Arith.h" |
17 | #include "mlir/Dialect/Func/IR/FuncOps.h" |
18 | #include "mlir/Dialect/LLVMIR/FunctionCallUtils.h" |
19 | #include "mlir/Dialect/LLVMIR/LLVMDialect.h" |
20 | #include "mlir/Dialect/LLVMIR/LLVMTypes.h" |
21 | #include "mlir/Dialect/MemRef/IR/MemRef.h" |
22 | #include "mlir/Dialect/MemRef/Utils/MemRefUtils.h" |
23 | #include "mlir/IR/AffineMap.h" |
24 | #include "mlir/IR/BuiltinTypes.h" |
25 | #include "mlir/IR/IRMapping.h" |
26 | #include "mlir/Pass/Pass.h" |
27 | #include "llvm/ADT/SmallBitVector.h" |
28 | #include "llvm/Support/MathExtras.h" |
29 | #include <optional> |
30 | |
31 | namespace mlir { |
32 | #define GEN_PASS_DEF_FINALIZEMEMREFTOLLVMCONVERSIONPASS |
33 | #include "mlir/Conversion/Passes.h.inc" |
34 | } // namespace mlir |
35 | |
36 | using namespace mlir; |
37 | |
38 | static constexpr LLVM::GEPNoWrapFlags kNoWrapFlags = |
39 | LLVM::GEPNoWrapFlags::inbounds | LLVM::GEPNoWrapFlags::nuw; |
40 | |
41 | namespace { |
42 | |
43 | static bool isStaticStrideOrOffset(int64_t strideOrOffset) { |
44 | return !ShapedType::isDynamic(strideOrOffset); |
45 | } |
46 | |
47 | static FailureOr<LLVM::LLVMFuncOp> |
48 | getFreeFn(OpBuilder &b, const LLVMTypeConverter *typeConverter, |
49 | ModuleOp module) { |
50 | bool useGenericFn = typeConverter->getOptions().useGenericFunctions; |
51 | |
52 | if (useGenericFn) |
53 | return LLVM::lookupOrCreateGenericFreeFn(b, moduleOp: module); |
54 | |
55 | return LLVM::lookupOrCreateFreeFn(b, moduleOp: module); |
56 | } |
57 | |
58 | static FailureOr<LLVM::LLVMFuncOp> |
59 | getNotalignedAllocFn(OpBuilder &b, const LLVMTypeConverter *typeConverter, |
60 | Operation *module, Type indexType) { |
61 | bool useGenericFn = typeConverter->getOptions().useGenericFunctions; |
62 | if (useGenericFn) |
63 | return LLVM::lookupOrCreateGenericAllocFn(b, moduleOp: module, indexType); |
64 | |
65 | return LLVM::lookupOrCreateMallocFn(b, moduleOp: module, indexType); |
66 | } |
67 | |
68 | static FailureOr<LLVM::LLVMFuncOp> |
69 | getAlignedAllocFn(OpBuilder &b, const LLVMTypeConverter *typeConverter, |
70 | Operation *module, Type indexType) { |
71 | bool useGenericFn = typeConverter->getOptions().useGenericFunctions; |
72 | |
73 | if (useGenericFn) |
74 | return LLVM::lookupOrCreateGenericAlignedAllocFn(b, moduleOp: module, indexType); |
75 | |
76 | return LLVM::lookupOrCreateAlignedAllocFn(b, moduleOp: module, indexType); |
77 | } |
78 | |
79 | /// Computes the aligned value for 'input' as follows: |
80 | /// bumped = input + alignement - 1 |
81 | /// aligned = bumped - bumped % alignment |
82 | static Value createAligned(ConversionPatternRewriter &rewriter, Location loc, |
83 | Value input, Value alignment) { |
84 | Value one = rewriter.create<LLVM::ConstantOp>(loc, alignment.getType(), |
85 | rewriter.getIndexAttr(1)); |
86 | Value bump = rewriter.create<LLVM::SubOp>(loc, alignment, one); |
87 | Value bumped = rewriter.create<LLVM::AddOp>(loc, input, bump); |
88 | Value mod = rewriter.create<LLVM::URemOp>(loc, bumped, alignment); |
89 | return rewriter.create<LLVM::SubOp>(loc, bumped, mod); |
90 | } |
91 | |
92 | /// Computes the byte size for the MemRef element type. |
93 | static unsigned getMemRefEltSizeInBytes(const LLVMTypeConverter *typeConverter, |
94 | MemRefType memRefType, Operation *op, |
95 | const DataLayout *defaultLayout) { |
96 | const DataLayout *layout = defaultLayout; |
97 | if (const DataLayoutAnalysis *analysis = |
98 | typeConverter->getDataLayoutAnalysis()) { |
99 | layout = &analysis->getAbove(operation: op); |
100 | } |
101 | Type elementType = memRefType.getElementType(); |
102 | if (auto memRefElementType = dyn_cast<MemRefType>(elementType)) |
103 | return typeConverter->getMemRefDescriptorSize(type: memRefElementType, layout: *layout); |
104 | if (auto memRefElementType = dyn_cast<UnrankedMemRefType>(elementType)) |
105 | return typeConverter->getUnrankedMemRefDescriptorSize(type: memRefElementType, |
106 | layout: *layout); |
107 | return layout->getTypeSize(t: elementType); |
108 | } |
109 | |
110 | static Value castAllocFuncResult(ConversionPatternRewriter &rewriter, |
111 | Location loc, Value allocatedPtr, |
112 | MemRefType memRefType, Type elementPtrType, |
113 | const LLVMTypeConverter &typeConverter) { |
114 | auto allocatedPtrTy = cast<LLVM::LLVMPointerType>(allocatedPtr.getType()); |
115 | FailureOr<unsigned> maybeMemrefAddrSpace = |
116 | typeConverter.getMemRefAddressSpace(type: memRefType); |
117 | assert(succeeded(maybeMemrefAddrSpace) && "unsupported address space"); |
118 | unsigned memrefAddrSpace = *maybeMemrefAddrSpace; |
119 | if (allocatedPtrTy.getAddressSpace() != memrefAddrSpace) |
120 | allocatedPtr = rewriter.create<LLVM::AddrSpaceCastOp>( |
121 | loc, LLVM::LLVMPointerType::get(rewriter.getContext(), memrefAddrSpace), |
122 | allocatedPtr); |
123 | return allocatedPtr; |
124 | } |
125 | |
126 | struct AllocOpLowering : public ConvertOpToLLVMPattern<memref::AllocOp> { |
127 | using ConvertOpToLLVMPattern<memref::AllocOp>::ConvertOpToLLVMPattern; |
128 | |
129 | LogicalResult |
130 | matchAndRewrite(memref::AllocOp op, OpAdaptor adaptor, |
131 | ConversionPatternRewriter &rewriter) const override { |
132 | auto loc = op.getLoc(); |
133 | MemRefType memRefType = op.getType(); |
134 | if (!isConvertibleAndHasIdentityMaps(memRefType)) |
135 | return rewriter.notifyMatchFailure(op, "incompatible memref type"); |
136 | |
137 | // Get or insert alloc function into the module. |
138 | FailureOr<LLVM::LLVMFuncOp> allocFuncOp = getNotalignedAllocFn( |
139 | rewriter, getTypeConverter(), |
140 | op->getParentWithTrait<OpTrait::SymbolTable>(), getIndexType()); |
141 | if (failed(Result: allocFuncOp)) |
142 | return failure(); |
143 | |
144 | // Get actual sizes of the memref as values: static sizes are constant |
145 | // values and dynamic sizes are passed to 'alloc' as operands. In case of |
146 | // zero-dimensional memref, assume a scalar (size 1). |
147 | SmallVector<Value, 4> sizes; |
148 | SmallVector<Value, 4> strides; |
149 | Value sizeBytes; |
150 | |
151 | this->getMemRefDescriptorSizes(loc, memRefType, adaptor.getOperands(), |
152 | rewriter, sizes, strides, sizeBytes, true); |
153 | |
154 | Value alignment = getAlignment(rewriter, loc, op); |
155 | if (alignment) { |
156 | // Adjust the allocation size to consider alignment. |
157 | sizeBytes = rewriter.create<LLVM::AddOp>(loc, sizeBytes, alignment); |
158 | } |
159 | |
160 | // Allocate the underlying buffer. |
161 | Type elementPtrType = this->getElementPtrType(memRefType); |
162 | assert(elementPtrType && "could not compute element ptr type"); |
163 | auto results = |
164 | rewriter.create<LLVM::CallOp>(loc, allocFuncOp.value(), sizeBytes); |
165 | |
166 | Value allocatedPtr = |
167 | castAllocFuncResult(rewriter, loc, results.getResult(), memRefType, |
168 | elementPtrType, *getTypeConverter()); |
169 | Value alignedPtr = allocatedPtr; |
170 | if (alignment) { |
171 | // Compute the aligned pointer. |
172 | Value allocatedInt = |
173 | rewriter.create<LLVM::PtrToIntOp>(loc, getIndexType(), allocatedPtr); |
174 | Value alignmentInt = |
175 | createAligned(rewriter, loc, allocatedInt, alignment); |
176 | alignedPtr = |
177 | rewriter.create<LLVM::IntToPtrOp>(loc, elementPtrType, alignmentInt); |
178 | } |
179 | |
180 | // Create the MemRef descriptor. |
181 | auto memRefDescriptor = this->createMemRefDescriptor( |
182 | loc, memRefType, allocatedPtr, alignedPtr, sizes, strides, rewriter); |
183 | |
184 | // Return the final value of the descriptor. |
185 | rewriter.replaceOp(op, {memRefDescriptor}); |
186 | return success(); |
187 | } |
188 | |
189 | /// Computes the alignment for the given memory allocation op. |
190 | template <typename OpType> |
191 | Value getAlignment(ConversionPatternRewriter &rewriter, Location loc, |
192 | OpType op) const { |
193 | MemRefType memRefType = op.getType(); |
194 | Value alignment; |
195 | if (auto alignmentAttr = op.getAlignment()) { |
196 | Type indexType = getIndexType(); |
197 | alignment = |
198 | createIndexAttrConstant(rewriter, loc, indexType, *alignmentAttr); |
199 | } else if (!memRefType.getElementType().isSignlessIntOrIndexOrFloat()) { |
200 | // In the case where no alignment is specified, we may want to override |
201 | // `malloc's` behavior. `malloc` typically aligns at the size of the |
202 | // biggest scalar on a target HW. For non-scalars, use the natural |
203 | // alignment of the LLVM type given by the LLVM DataLayout. |
204 | alignment = getSizeInBytes(loc, memRefType.getElementType(), rewriter); |
205 | } |
206 | return alignment; |
207 | } |
208 | }; |
209 | |
210 | struct AlignedAllocOpLowering : public ConvertOpToLLVMPattern<memref::AllocOp> { |
211 | using ConvertOpToLLVMPattern<memref::AllocOp>::ConvertOpToLLVMPattern; |
212 | |
213 | LogicalResult |
214 | matchAndRewrite(memref::AllocOp op, OpAdaptor adaptor, |
215 | ConversionPatternRewriter &rewriter) const override { |
216 | auto loc = op.getLoc(); |
217 | MemRefType memRefType = op.getType(); |
218 | if (!isConvertibleAndHasIdentityMaps(memRefType)) |
219 | return rewriter.notifyMatchFailure(op, "incompatible memref type"); |
220 | |
221 | // Get or insert alloc function into module. |
222 | FailureOr<LLVM::LLVMFuncOp> allocFuncOp = getAlignedAllocFn( |
223 | rewriter, getTypeConverter(), |
224 | op->getParentWithTrait<OpTrait::SymbolTable>(), getIndexType()); |
225 | if (failed(Result: allocFuncOp)) |
226 | return failure(); |
227 | |
228 | // Get actual sizes of the memref as values: static sizes are constant |
229 | // values and dynamic sizes are passed to 'alloc' as operands. In case of |
230 | // zero-dimensional memref, assume a scalar (size 1). |
231 | SmallVector<Value, 4> sizes; |
232 | SmallVector<Value, 4> strides; |
233 | Value sizeBytes; |
234 | |
235 | this->getMemRefDescriptorSizes(loc, memRefType, adaptor.getOperands(), |
236 | rewriter, sizes, strides, sizeBytes, !false); |
237 | |
238 | int64_t alignment = alignedAllocationGetAlignment(op, &defaultLayout); |
239 | |
240 | Value allocAlignment = |
241 | createIndexAttrConstant(rewriter, loc, getIndexType(), alignment); |
242 | |
243 | // Function aligned_alloc requires size to be a multiple of alignment; we |
244 | // pad the size to the next multiple if necessary. |
245 | if (!isMemRefSizeMultipleOf(memRefType, alignment, op, &defaultLayout)) |
246 | sizeBytes = createAligned(rewriter, loc, sizeBytes, allocAlignment); |
247 | |
248 | Type elementPtrType = this->getElementPtrType(memRefType); |
249 | auto results = rewriter.create<LLVM::CallOp>( |
250 | loc, allocFuncOp.value(), ValueRange({allocAlignment, sizeBytes})); |
251 | |
252 | Value ptr = |
253 | castAllocFuncResult(rewriter, loc, results.getResult(), memRefType, |
254 | elementPtrType, *getTypeConverter()); |
255 | |
256 | // Create the MemRef descriptor. |
257 | auto memRefDescriptor = this->createMemRefDescriptor( |
258 | loc, memRefType, ptr, ptr, sizes, strides, rewriter); |
259 | |
260 | // Return the final value of the descriptor. |
261 | rewriter.replaceOp(op, {memRefDescriptor}); |
262 | return success(); |
263 | } |
264 | |
265 | /// The minimum alignment to use with aligned_alloc (has to be a power of 2). |
266 | static constexpr uint64_t kMinAlignedAllocAlignment = 16UL; |
267 | |
268 | /// Computes the alignment for aligned_alloc used to allocate the buffer for |
269 | /// the memory allocation op. |
270 | /// |
271 | /// Aligned_alloc requires the allocation size to be a power of two, and the |
272 | /// allocation size to be a multiple of the alignment. |
273 | int64_t alignedAllocationGetAlignment(memref::AllocOp op, |
274 | const DataLayout *defaultLayout) const { |
275 | if (std::optional<uint64_t> alignment = op.getAlignment()) |
276 | return *alignment; |
277 | |
278 | // Whenever we don't have alignment set, we will use an alignment |
279 | // consistent with the element type; since the allocation size has to be a |
280 | // power of two, we will bump to the next power of two if it isn't. |
281 | unsigned eltSizeBytes = getMemRefEltSizeInBytes( |
282 | getTypeConverter(), op.getType(), op, defaultLayout); |
283 | return std::max(a: kMinAlignedAllocAlignment, |
284 | b: llvm::PowerOf2Ceil(A: eltSizeBytes)); |
285 | } |
286 | |
287 | /// Returns true if the memref size in bytes is known to be a multiple of |
288 | /// factor. |
289 | bool isMemRefSizeMultipleOf(MemRefType type, uint64_t factor, Operation *op, |
290 | const DataLayout *defaultLayout) const { |
291 | uint64_t sizeDivisor = |
292 | getMemRefEltSizeInBytes(getTypeConverter(), type, op, defaultLayout); |
293 | for (unsigned i = 0, e = type.getRank(); i < e; i++) { |
294 | if (type.isDynamicDim(i)) |
295 | continue; |
296 | sizeDivisor = sizeDivisor * type.getDimSize(i); |
297 | } |
298 | return sizeDivisor % factor == 0; |
299 | } |
300 | |
301 | private: |
302 | /// Default layout to use in absence of the corresponding analysis. |
303 | DataLayout defaultLayout; |
304 | }; |
305 | |
306 | struct AllocaOpLowering : public ConvertOpToLLVMPattern<memref::AllocaOp> { |
307 | using ConvertOpToLLVMPattern<memref::AllocaOp>::ConvertOpToLLVMPattern; |
308 | |
309 | /// Allocates the underlying buffer using the right call. `allocatedBytePtr` |
310 | /// is set to null for stack allocations. `accessAlignment` is set if |
311 | /// alignment is needed post allocation (for eg. in conjunction with malloc). |
312 | LogicalResult |
313 | matchAndRewrite(memref::AllocaOp op, OpAdaptor adaptor, |
314 | ConversionPatternRewriter &rewriter) const override { |
315 | auto loc = op.getLoc(); |
316 | MemRefType memRefType = op.getType(); |
317 | if (!isConvertibleAndHasIdentityMaps(memRefType)) |
318 | return rewriter.notifyMatchFailure(op, "incompatible memref type"); |
319 | |
320 | // Get actual sizes of the memref as values: static sizes are constant |
321 | // values and dynamic sizes are passed to 'alloc' as operands. In case of |
322 | // zero-dimensional memref, assume a scalar (size 1). |
323 | SmallVector<Value, 4> sizes; |
324 | SmallVector<Value, 4> strides; |
325 | Value size; |
326 | |
327 | this->getMemRefDescriptorSizes(loc, memRefType, adaptor.getOperands(), |
328 | rewriter, sizes, strides, size, !true); |
329 | |
330 | // With alloca, one gets a pointer to the element type right away. |
331 | // For stack allocations. |
332 | auto elementType = |
333 | typeConverter->convertType(op.getType().getElementType()); |
334 | FailureOr<unsigned> maybeAddressSpace = |
335 | getTypeConverter()->getMemRefAddressSpace(op.getType()); |
336 | assert(succeeded(maybeAddressSpace) && "unsupported address space"); |
337 | unsigned addrSpace = *maybeAddressSpace; |
338 | auto elementPtrType = |
339 | LLVM::LLVMPointerType::get(rewriter.getContext(), addrSpace); |
340 | |
341 | auto allocatedElementPtr = rewriter.create<LLVM::AllocaOp>( |
342 | loc, elementPtrType, elementType, size, op.getAlignment().value_or(0)); |
343 | |
344 | // Create the MemRef descriptor. |
345 | auto memRefDescriptor = this->createMemRefDescriptor( |
346 | loc, memRefType, allocatedElementPtr, allocatedElementPtr, sizes, |
347 | strides, rewriter); |
348 | |
349 | // Return the final value of the descriptor. |
350 | rewriter.replaceOp(op, {memRefDescriptor}); |
351 | return success(); |
352 | } |
353 | }; |
354 | |
355 | struct AllocaScopeOpLowering |
356 | : public ConvertOpToLLVMPattern<memref::AllocaScopeOp> { |
357 | using ConvertOpToLLVMPattern<memref::AllocaScopeOp>::ConvertOpToLLVMPattern; |
358 | |
359 | LogicalResult |
360 | matchAndRewrite(memref::AllocaScopeOp allocaScopeOp, OpAdaptor adaptor, |
361 | ConversionPatternRewriter &rewriter) const override { |
362 | OpBuilder::InsertionGuard guard(rewriter); |
363 | Location loc = allocaScopeOp.getLoc(); |
364 | |
365 | // Split the current block before the AllocaScopeOp to create the inlining |
366 | // point. |
367 | auto *currentBlock = rewriter.getInsertionBlock(); |
368 | auto *remainingOpsBlock = |
369 | rewriter.splitBlock(block: currentBlock, before: rewriter.getInsertionPoint()); |
370 | Block *continueBlock; |
371 | if (allocaScopeOp.getNumResults() == 0) { |
372 | continueBlock = remainingOpsBlock; |
373 | } else { |
374 | continueBlock = rewriter.createBlock( |
375 | remainingOpsBlock, allocaScopeOp.getResultTypes(), |
376 | SmallVector<Location>(allocaScopeOp->getNumResults(), |
377 | allocaScopeOp.getLoc())); |
378 | rewriter.create<LLVM::BrOp>(loc, ValueRange(), remainingOpsBlock); |
379 | } |
380 | |
381 | // Inline body region. |
382 | Block *beforeBody = &allocaScopeOp.getBodyRegion().front(); |
383 | Block *afterBody = &allocaScopeOp.getBodyRegion().back(); |
384 | rewriter.inlineRegionBefore(allocaScopeOp.getBodyRegion(), continueBlock); |
385 | |
386 | // Save stack and then branch into the body of the region. |
387 | rewriter.setInsertionPointToEnd(currentBlock); |
388 | auto stackSaveOp = |
389 | rewriter.create<LLVM::StackSaveOp>(loc, getVoidPtrType()); |
390 | rewriter.create<LLVM::BrOp>(loc, ValueRange(), beforeBody); |
391 | |
392 | // Replace the alloca_scope return with a branch that jumps out of the body. |
393 | // Stack restore before leaving the body region. |
394 | rewriter.setInsertionPointToEnd(afterBody); |
395 | auto returnOp = |
396 | cast<memref::AllocaScopeReturnOp>(afterBody->getTerminator()); |
397 | auto branchOp = rewriter.replaceOpWithNewOp<LLVM::BrOp>( |
398 | returnOp, returnOp.getResults(), continueBlock); |
399 | |
400 | // Insert stack restore before jumping out the body of the region. |
401 | rewriter.setInsertionPoint(branchOp); |
402 | rewriter.create<LLVM::StackRestoreOp>(loc, stackSaveOp); |
403 | |
404 | // Replace the op with values return from the body region. |
405 | rewriter.replaceOp(allocaScopeOp, continueBlock->getArguments()); |
406 | |
407 | return success(); |
408 | } |
409 | }; |
410 | |
411 | struct AssumeAlignmentOpLowering |
412 | : public ConvertOpToLLVMPattern<memref::AssumeAlignmentOp> { |
413 | using ConvertOpToLLVMPattern< |
414 | memref::AssumeAlignmentOp>::ConvertOpToLLVMPattern; |
415 | explicit AssumeAlignmentOpLowering(const LLVMTypeConverter &converter) |
416 | : ConvertOpToLLVMPattern<memref::AssumeAlignmentOp>(converter) {} |
417 | |
418 | LogicalResult |
419 | matchAndRewrite(memref::AssumeAlignmentOp op, OpAdaptor adaptor, |
420 | ConversionPatternRewriter &rewriter) const override { |
421 | Value memref = adaptor.getMemref(); |
422 | unsigned alignment = op.getAlignment(); |
423 | auto loc = op.getLoc(); |
424 | |
425 | auto srcMemRefType = cast<MemRefType>(op.getMemref().getType()); |
426 | Value ptr = getStridedElementPtr(rewriter, loc, srcMemRefType, memref, |
427 | /*indices=*/{}); |
428 | |
429 | // Emit llvm.assume(true) ["align"(memref, alignment)]. |
430 | // This is more direct than ptrtoint-based checks, is explicitly supported, |
431 | // and works with non-integral address spaces. |
432 | Value trueCond = |
433 | rewriter.create<LLVM::ConstantOp>(loc, rewriter.getBoolAttr(true)); |
434 | Value alignmentConst = |
435 | createIndexAttrConstant(rewriter, loc, getIndexType(), alignment); |
436 | rewriter.create<LLVM::AssumeOp>(loc, trueCond, LLVM::AssumeAlignTag(), ptr, |
437 | alignmentConst); |
438 | rewriter.replaceOp(op, memref); |
439 | return success(); |
440 | } |
441 | }; |
442 | |
443 | // A `dealloc` is converted into a call to `free` on the underlying data buffer. |
444 | // The memref descriptor being an SSA value, there is no need to clean it up |
445 | // in any way. |
446 | struct DeallocOpLowering : public ConvertOpToLLVMPattern<memref::DeallocOp> { |
447 | using ConvertOpToLLVMPattern<memref::DeallocOp>::ConvertOpToLLVMPattern; |
448 | |
449 | explicit DeallocOpLowering(const LLVMTypeConverter &converter) |
450 | : ConvertOpToLLVMPattern<memref::DeallocOp>(converter) {} |
451 | |
452 | LogicalResult |
453 | matchAndRewrite(memref::DeallocOp op, OpAdaptor adaptor, |
454 | ConversionPatternRewriter &rewriter) const override { |
455 | // Insert the `free` declaration if it is not already present. |
456 | FailureOr<LLVM::LLVMFuncOp> freeFunc = getFreeFn( |
457 | rewriter, getTypeConverter(), op->getParentOfType<ModuleOp>()); |
458 | if (failed(Result: freeFunc)) |
459 | return failure(); |
460 | Value allocatedPtr; |
461 | if (auto unrankedTy = |
462 | llvm::dyn_cast<UnrankedMemRefType>(op.getMemref().getType())) { |
463 | auto elementPtrTy = LLVM::LLVMPointerType::get( |
464 | rewriter.getContext(), unrankedTy.getMemorySpaceAsInt()); |
465 | allocatedPtr = UnrankedMemRefDescriptor::allocatedPtr( |
466 | builder&: rewriter, loc: op.getLoc(), |
467 | memRefDescPtr: UnrankedMemRefDescriptor(adaptor.getMemref()) |
468 | .memRefDescPtr(builder&: rewriter, loc: op.getLoc()), |
469 | elemPtrType: elementPtrTy); |
470 | } else { |
471 | allocatedPtr = MemRefDescriptor(adaptor.getMemref()) |
472 | .allocatedPtr(builder&: rewriter, loc: op.getLoc()); |
473 | } |
474 | rewriter.replaceOpWithNewOp<LLVM::CallOp>(op, freeFunc.value(), |
475 | allocatedPtr); |
476 | return success(); |
477 | } |
478 | }; |
479 | |
480 | // A `dim` is converted to a constant for static sizes and to an access to the |
481 | // size stored in the memref descriptor for dynamic sizes. |
482 | struct DimOpLowering : public ConvertOpToLLVMPattern<memref::DimOp> { |
483 | using ConvertOpToLLVMPattern<memref::DimOp>::ConvertOpToLLVMPattern; |
484 | |
485 | LogicalResult |
486 | matchAndRewrite(memref::DimOp dimOp, OpAdaptor adaptor, |
487 | ConversionPatternRewriter &rewriter) const override { |
488 | Type operandType = dimOp.getSource().getType(); |
489 | if (isa<UnrankedMemRefType>(Val: operandType)) { |
490 | FailureOr<Value> extractedSize = extractSizeOfUnrankedMemRef( |
491 | operandType, dimOp, adaptor.getOperands(), rewriter); |
492 | if (failed(Result: extractedSize)) |
493 | return failure(); |
494 | rewriter.replaceOp(dimOp, {*extractedSize}); |
495 | return success(); |
496 | } |
497 | if (isa<MemRefType>(Val: operandType)) { |
498 | rewriter.replaceOp( |
499 | dimOp, {extractSizeOfRankedMemRef(operandType, dimOp, |
500 | adaptor.getOperands(), rewriter)}); |
501 | return success(); |
502 | } |
503 | llvm_unreachable("expected MemRefType or UnrankedMemRefType"); |
504 | } |
505 | |
506 | private: |
507 | FailureOr<Value> |
508 | extractSizeOfUnrankedMemRef(Type operandType, memref::DimOp dimOp, |
509 | OpAdaptor adaptor, |
510 | ConversionPatternRewriter &rewriter) const { |
511 | Location loc = dimOp.getLoc(); |
512 | |
513 | auto unrankedMemRefType = cast<UnrankedMemRefType>(operandType); |
514 | auto scalarMemRefType = |
515 | MemRefType::get({}, unrankedMemRefType.getElementType()); |
516 | FailureOr<unsigned> maybeAddressSpace = |
517 | getTypeConverter()->getMemRefAddressSpace(unrankedMemRefType); |
518 | if (failed(Result: maybeAddressSpace)) { |
519 | dimOp.emitOpError("memref memory space must be convertible to an integer " |
520 | "address space"); |
521 | return failure(); |
522 | } |
523 | unsigned addressSpace = *maybeAddressSpace; |
524 | |
525 | // Extract pointer to the underlying ranked descriptor and bitcast it to a |
526 | // memref<element_type> descriptor pointer to minimize the number of GEP |
527 | // operations. |
528 | UnrankedMemRefDescriptor unrankedDesc(adaptor.getSource()); |
529 | Value underlyingRankedDesc = unrankedDesc.memRefDescPtr(builder&: rewriter, loc); |
530 | |
531 | Type elementType = typeConverter->convertType(scalarMemRefType); |
532 | |
533 | // Get pointer to offset field of memref<element_type> descriptor. |
534 | auto indexPtrTy = |
535 | LLVM::LLVMPointerType::get(rewriter.getContext(), addressSpace); |
536 | Value offsetPtr = rewriter.create<LLVM::GEPOp>( |
537 | loc, indexPtrTy, elementType, underlyingRankedDesc, |
538 | ArrayRef<LLVM::GEPArg>{0, 2}); |
539 | |
540 | // The size value that we have to extract can be obtained using GEPop with |
541 | // `dimOp.index() + 1` index argument. |
542 | Value idxPlusOne = rewriter.create<LLVM::AddOp>( |
543 | loc, createIndexAttrConstant(rewriter, loc, getIndexType(), 1), |
544 | adaptor.getIndex()); |
545 | Value sizePtr = rewriter.create<LLVM::GEPOp>( |
546 | loc, indexPtrTy, getTypeConverter()->getIndexType(), offsetPtr, |
547 | idxPlusOne); |
548 | return rewriter |
549 | .create<LLVM::LoadOp>(loc, getTypeConverter()->getIndexType(), sizePtr) |
550 | .getResult(); |
551 | } |
552 | |
553 | std::optional<int64_t> getConstantDimIndex(memref::DimOp dimOp) const { |
554 | if (auto idx = dimOp.getConstantIndex()) |
555 | return idx; |
556 | |
557 | if (auto constantOp = dimOp.getIndex().getDefiningOp<LLVM::ConstantOp>()) |
558 | return cast<IntegerAttr>(constantOp.getValue()).getValue().getSExtValue(); |
559 | |
560 | return std::nullopt; |
561 | } |
562 | |
563 | Value extractSizeOfRankedMemRef(Type operandType, memref::DimOp dimOp, |
564 | OpAdaptor adaptor, |
565 | ConversionPatternRewriter &rewriter) const { |
566 | Location loc = dimOp.getLoc(); |
567 | |
568 | // Take advantage if index is constant. |
569 | MemRefType memRefType = cast<MemRefType>(operandType); |
570 | Type indexType = getIndexType(); |
571 | if (std::optional<int64_t> index = getConstantDimIndex(dimOp)) { |
572 | int64_t i = *index; |
573 | if (i >= 0 && i < memRefType.getRank()) { |
574 | if (memRefType.isDynamicDim(i)) { |
575 | // extract dynamic size from the memref descriptor. |
576 | MemRefDescriptor descriptor(adaptor.getSource()); |
577 | return descriptor.size(builder&: rewriter, loc, pos: i); |
578 | } |
579 | // Use constant for static size. |
580 | int64_t dimSize = memRefType.getDimSize(i); |
581 | return createIndexAttrConstant(rewriter, loc, indexType, dimSize); |
582 | } |
583 | } |
584 | Value index = adaptor.getIndex(); |
585 | int64_t rank = memRefType.getRank(); |
586 | MemRefDescriptor memrefDescriptor(adaptor.getSource()); |
587 | return memrefDescriptor.size(builder&: rewriter, loc, pos: index, rank); |
588 | } |
589 | }; |
590 | |
591 | /// Common base for load and store operations on MemRefs. Restricts the match |
592 | /// to supported MemRef types. Provides functionality to emit code accessing a |
593 | /// specific element of the underlying data buffer. |
594 | template <typename Derived> |
595 | struct LoadStoreOpLowering : public ConvertOpToLLVMPattern<Derived> { |
596 | using ConvertOpToLLVMPattern<Derived>::ConvertOpToLLVMPattern; |
597 | using ConvertOpToLLVMPattern<Derived>::isConvertibleAndHasIdentityMaps; |
598 | using Base = LoadStoreOpLowering<Derived>; |
599 | }; |
600 | |
601 | /// Wrap a llvm.cmpxchg operation in a while loop so that the operation can be |
602 | /// retried until it succeeds in atomically storing a new value into memory. |
603 | /// |
604 | /// +---------------------------------+ |
605 | /// | <code before the AtomicRMWOp> | |
606 | /// | <compute initial %loaded> | |
607 | /// | cf.br loop(%loaded) | |
608 | /// +---------------------------------+ |
609 | /// | |
610 | /// -------| | |
611 | /// | v v |
612 | /// | +--------------------------------+ |
613 | /// | | loop(%loaded): | |
614 | /// | | <body contents> | |
615 | /// | | %pair = cmpxchg | |
616 | /// | | %ok = %pair[0] | |
617 | /// | | %new = %pair[1] | |
618 | /// | | cf.cond_br %ok, end, loop(%new) | |
619 | /// | +--------------------------------+ |
620 | /// | | | |
621 | /// |----------- | |
622 | /// v |
623 | /// +--------------------------------+ |
624 | /// | end: | |
625 | /// | <code after the AtomicRMWOp> | |
626 | /// +--------------------------------+ |
627 | /// |
628 | struct GenericAtomicRMWOpLowering |
629 | : public LoadStoreOpLowering<memref::GenericAtomicRMWOp> { |
630 | using Base::Base; |
631 | |
632 | LogicalResult |
633 | matchAndRewrite(memref::GenericAtomicRMWOp atomicOp, OpAdaptor adaptor, |
634 | ConversionPatternRewriter &rewriter) const override { |
635 | auto loc = atomicOp.getLoc(); |
636 | Type valueType = typeConverter->convertType(atomicOp.getResult().getType()); |
637 | |
638 | // Split the block into initial, loop, and ending parts. |
639 | auto *initBlock = rewriter.getInsertionBlock(); |
640 | auto *loopBlock = rewriter.splitBlock(block: initBlock, before: Block::iterator(atomicOp)); |
641 | loopBlock->addArgument(valueType, loc); |
642 | |
643 | auto *endBlock = |
644 | rewriter.splitBlock(block: loopBlock, before: Block::iterator(atomicOp)++); |
645 | |
646 | // Compute the loaded value and branch to the loop block. |
647 | rewriter.setInsertionPointToEnd(initBlock); |
648 | auto memRefType = cast<MemRefType>(atomicOp.getMemref().getType()); |
649 | auto dataPtr = getStridedElementPtr( |
650 | rewriter, loc, memRefType, adaptor.getMemref(), adaptor.getIndices()); |
651 | Value init = rewriter.create<LLVM::LoadOp>( |
652 | loc, typeConverter->convertType(memRefType.getElementType()), dataPtr); |
653 | rewriter.create<LLVM::BrOp>(loc, init, loopBlock); |
654 | |
655 | // Prepare the body of the loop block. |
656 | rewriter.setInsertionPointToStart(loopBlock); |
657 | |
658 | // Clone the GenericAtomicRMWOp region and extract the result. |
659 | auto loopArgument = loopBlock->getArgument(0); |
660 | IRMapping mapping; |
661 | mapping.map(atomicOp.getCurrentValue(), loopArgument); |
662 | Block &entryBlock = atomicOp.body().front(); |
663 | for (auto &nestedOp : entryBlock.without_terminator()) { |
664 | Operation *clone = rewriter.clone(nestedOp, mapping); |
665 | mapping.map(nestedOp.getResults(), clone->getResults()); |
666 | } |
667 | Value result = mapping.lookup(from: entryBlock.getTerminator()->getOperand(idx: 0)); |
668 | |
669 | // Prepare the epilog of the loop block. |
670 | // Append the cmpxchg op to the end of the loop block. |
671 | auto successOrdering = LLVM::AtomicOrdering::acq_rel; |
672 | auto failureOrdering = LLVM::AtomicOrdering::monotonic; |
673 | auto cmpxchg = rewriter.create<LLVM::AtomicCmpXchgOp>( |
674 | loc, dataPtr, loopArgument, result, successOrdering, failureOrdering); |
675 | // Extract the %new_loaded and %ok values from the pair. |
676 | Value newLoaded = rewriter.create<LLVM::ExtractValueOp>(loc, cmpxchg, 0); |
677 | Value ok = rewriter.create<LLVM::ExtractValueOp>(loc, cmpxchg, 1); |
678 | |
679 | // Conditionally branch to the end or back to the loop depending on %ok. |
680 | rewriter.create<LLVM::CondBrOp>(loc, ok, endBlock, ArrayRef<Value>(), |
681 | loopBlock, newLoaded); |
682 | |
683 | rewriter.setInsertionPointToEnd(endBlock); |
684 | |
685 | // The 'result' of the atomic_rmw op is the newly loaded value. |
686 | rewriter.replaceOp(atomicOp, {newLoaded}); |
687 | |
688 | return success(); |
689 | } |
690 | }; |
691 | |
692 | /// Returns the LLVM type of the global variable given the memref type `type`. |
693 | static Type |
694 | convertGlobalMemrefTypeToLLVM(MemRefType type, |
695 | const LLVMTypeConverter &typeConverter) { |
696 | // LLVM type for a global memref will be a multi-dimension array. For |
697 | // declarations or uninitialized global memrefs, we can potentially flatten |
698 | // this to a 1D array. However, for memref.global's with an initial value, |
699 | // we do not intend to flatten the ElementsAttribute when going from std -> |
700 | // LLVM dialect, so the LLVM type needs to me a multi-dimension array. |
701 | Type elementType = typeConverter.convertType(type.getElementType()); |
702 | Type arrayTy = elementType; |
703 | // Shape has the outermost dim at index 0, so need to walk it backwards |
704 | for (int64_t dim : llvm::reverse(type.getShape())) |
705 | arrayTy = LLVM::LLVMArrayType::get(arrayTy, dim); |
706 | return arrayTy; |
707 | } |
708 | |
709 | /// GlobalMemrefOp is lowered to a LLVM Global Variable. |
710 | struct GlobalMemrefOpLowering |
711 | : public ConvertOpToLLVMPattern<memref::GlobalOp> { |
712 | using ConvertOpToLLVMPattern<memref::GlobalOp>::ConvertOpToLLVMPattern; |
713 | |
714 | LogicalResult |
715 | matchAndRewrite(memref::GlobalOp global, OpAdaptor adaptor, |
716 | ConversionPatternRewriter &rewriter) const override { |
717 | MemRefType type = global.getType(); |
718 | if (!isConvertibleAndHasIdentityMaps(type)) |
719 | return failure(); |
720 | |
721 | Type arrayTy = convertGlobalMemrefTypeToLLVM(type, *getTypeConverter()); |
722 | |
723 | LLVM::Linkage linkage = |
724 | global.isPublic() ? LLVM::Linkage::External : LLVM::Linkage::Private; |
725 | |
726 | Attribute initialValue = nullptr; |
727 | if (!global.isExternal() && !global.isUninitialized()) { |
728 | auto elementsAttr = llvm::cast<ElementsAttr>(*global.getInitialValue()); |
729 | initialValue = elementsAttr; |
730 | |
731 | // For scalar memrefs, the global variable created is of the element type, |
732 | // so unpack the elements attribute to extract the value. |
733 | if (type.getRank() == 0) |
734 | initialValue = elementsAttr.getSplatValue<Attribute>(); |
735 | } |
736 | |
737 | uint64_t alignment = global.getAlignment().value_or(0); |
738 | FailureOr<unsigned> addressSpace = |
739 | getTypeConverter()->getMemRefAddressSpace(type); |
740 | if (failed(Result: addressSpace)) |
741 | return global.emitOpError( |
742 | "memory space cannot be converted to an integer address space"); |
743 | auto newGlobal = rewriter.replaceOpWithNewOp<LLVM::GlobalOp>( |
744 | global, arrayTy, global.getConstant(), linkage, global.getSymName(), |
745 | initialValue, alignment, *addressSpace); |
746 | if (!global.isExternal() && global.isUninitialized()) { |
747 | rewriter.createBlock(&newGlobal.getInitializerRegion()); |
748 | Value undef[] = { |
749 | rewriter.create<LLVM::UndefOp>(global.getLoc(), arrayTy)}; |
750 | rewriter.create<LLVM::ReturnOp>(global.getLoc(), undef); |
751 | } |
752 | return success(); |
753 | } |
754 | }; |
755 | |
756 | /// GetGlobalMemrefOp is lowered into a Memref descriptor with the pointer to |
757 | /// the first element stashed into the descriptor. This reuses |
758 | /// `AllocLikeOpLowering` to reuse the Memref descriptor construction. |
759 | struct GetGlobalMemrefOpLowering |
760 | : public ConvertOpToLLVMPattern<memref::GetGlobalOp> { |
761 | using ConvertOpToLLVMPattern<memref::GetGlobalOp>::ConvertOpToLLVMPattern; |
762 | |
763 | /// Buffer "allocation" for memref.get_global op is getting the address of |
764 | /// the global variable referenced. |
765 | LogicalResult |
766 | matchAndRewrite(memref::GetGlobalOp op, OpAdaptor adaptor, |
767 | ConversionPatternRewriter &rewriter) const override { |
768 | auto loc = op.getLoc(); |
769 | MemRefType memRefType = op.getType(); |
770 | if (!isConvertibleAndHasIdentityMaps(memRefType)) |
771 | return rewriter.notifyMatchFailure(op, "incompatible memref type"); |
772 | |
773 | // Get actual sizes of the memref as values: static sizes are constant |
774 | // values and dynamic sizes are passed to 'alloc' as operands. In case of |
775 | // zero-dimensional memref, assume a scalar (size 1). |
776 | SmallVector<Value, 4> sizes; |
777 | SmallVector<Value, 4> strides; |
778 | Value sizeBytes; |
779 | |
780 | this->getMemRefDescriptorSizes(loc, memRefType, adaptor.getOperands(), |
781 | rewriter, sizes, strides, sizeBytes, !false); |
782 | |
783 | MemRefType type = cast<MemRefType>(op.getResult().getType()); |
784 | |
785 | // This is called after a type conversion, which would have failed if this |
786 | // call fails. |
787 | FailureOr<unsigned> maybeAddressSpace = |
788 | getTypeConverter()->getMemRefAddressSpace(type); |
789 | assert(succeeded(maybeAddressSpace) && "unsupported address space"); |
790 | unsigned memSpace = *maybeAddressSpace; |
791 | |
792 | Type arrayTy = convertGlobalMemrefTypeToLLVM(type, *getTypeConverter()); |
793 | auto ptrTy = LLVM::LLVMPointerType::get(rewriter.getContext(), memSpace); |
794 | auto addressOf = |
795 | rewriter.create<LLVM::AddressOfOp>(loc, ptrTy, op.getName()); |
796 | |
797 | // Get the address of the first element in the array by creating a GEP with |
798 | // the address of the GV as the base, and (rank + 1) number of 0 indices. |
799 | auto gep = rewriter.create<LLVM::GEPOp>( |
800 | loc, ptrTy, arrayTy, addressOf, |
801 | SmallVector<LLVM::GEPArg>(type.getRank() + 1, 0)); |
802 | |
803 | // We do not expect the memref obtained using `memref.get_global` to be |
804 | // ever deallocated. Set the allocated pointer to be known bad value to |
805 | // help debug if that ever happens. |
806 | auto intPtrType = getIntPtrType(memSpace); |
807 | Value deadBeefConst = |
808 | createIndexAttrConstant(rewriter, op->getLoc(), intPtrType, 0xdeadbeef); |
809 | auto deadBeefPtr = |
810 | rewriter.create<LLVM::IntToPtrOp>(loc, ptrTy, deadBeefConst); |
811 | |
812 | // Both allocated and aligned pointers are same. We could potentially stash |
813 | // a nullptr for the allocated pointer since we do not expect any dealloc. |
814 | // Create the MemRef descriptor. |
815 | auto memRefDescriptor = this->createMemRefDescriptor( |
816 | loc, memRefType, deadBeefPtr, gep, sizes, strides, rewriter); |
817 | |
818 | // Return the final value of the descriptor. |
819 | rewriter.replaceOp(op, {memRefDescriptor}); |
820 | return success(); |
821 | } |
822 | }; |
823 | |
824 | // Load operation is lowered to obtaining a pointer to the indexed element |
825 | // and loading it. |
826 | struct LoadOpLowering : public LoadStoreOpLowering<memref::LoadOp> { |
827 | using Base::Base; |
828 | |
829 | LogicalResult |
830 | matchAndRewrite(memref::LoadOp loadOp, OpAdaptor adaptor, |
831 | ConversionPatternRewriter &rewriter) const override { |
832 | auto type = loadOp.getMemRefType(); |
833 | |
834 | // Per memref.load spec, the indices must be in-bounds: |
835 | // 0 <= idx < dim_size, and additionally all offsets are non-negative, |
836 | // hence inbounds and nuw are used when lowering to llvm.getelementptr. |
837 | Value dataPtr = getStridedElementPtr(rewriter, loadOp.getLoc(), type, |
838 | adaptor.getMemref(), |
839 | adaptor.getIndices(), kNoWrapFlags); |
840 | rewriter.replaceOpWithNewOp<LLVM::LoadOp>( |
841 | loadOp, typeConverter->convertType(type.getElementType()), dataPtr, 0, |
842 | false, loadOp.getNontemporal()); |
843 | return success(); |
844 | } |
845 | }; |
846 | |
847 | // Store operation is lowered to obtaining a pointer to the indexed element, |
848 | // and storing the given value to it. |
849 | struct StoreOpLowering : public LoadStoreOpLowering<memref::StoreOp> { |
850 | using Base::Base; |
851 | |
852 | LogicalResult |
853 | matchAndRewrite(memref::StoreOp op, OpAdaptor adaptor, |
854 | ConversionPatternRewriter &rewriter) const override { |
855 | auto type = op.getMemRefType(); |
856 | |
857 | // Per memref.store spec, the indices must be in-bounds: |
858 | // 0 <= idx < dim_size, and additionally all offsets are non-negative, |
859 | // hence inbounds and nuw are used when lowering to llvm.getelementptr. |
860 | Value dataPtr = |
861 | getStridedElementPtr(rewriter, op.getLoc(), type, adaptor.getMemref(), |
862 | adaptor.getIndices(), kNoWrapFlags); |
863 | rewriter.replaceOpWithNewOp<LLVM::StoreOp>(op, adaptor.getValue(), dataPtr, |
864 | 0, false, op.getNontemporal()); |
865 | return success(); |
866 | } |
867 | }; |
868 | |
869 | // The prefetch operation is lowered in a way similar to the load operation |
870 | // except that the llvm.prefetch operation is used for replacement. |
871 | struct PrefetchOpLowering : public LoadStoreOpLowering<memref::PrefetchOp> { |
872 | using Base::Base; |
873 | |
874 | LogicalResult |
875 | matchAndRewrite(memref::PrefetchOp prefetchOp, OpAdaptor adaptor, |
876 | ConversionPatternRewriter &rewriter) const override { |
877 | auto type = prefetchOp.getMemRefType(); |
878 | auto loc = prefetchOp.getLoc(); |
879 | |
880 | Value dataPtr = getStridedElementPtr( |
881 | rewriter, loc, type, adaptor.getMemref(), adaptor.getIndices()); |
882 | |
883 | // Replace with llvm.prefetch. |
884 | IntegerAttr isWrite = rewriter.getI32IntegerAttr(prefetchOp.getIsWrite()); |
885 | IntegerAttr localityHint = prefetchOp.getLocalityHintAttr(); |
886 | IntegerAttr isData = |
887 | rewriter.getI32IntegerAttr(prefetchOp.getIsDataCache()); |
888 | rewriter.replaceOpWithNewOp<LLVM::Prefetch>(prefetchOp, dataPtr, isWrite, |
889 | localityHint, isData); |
890 | return success(); |
891 | } |
892 | }; |
893 | |
894 | struct RankOpLowering : public ConvertOpToLLVMPattern<memref::RankOp> { |
895 | using ConvertOpToLLVMPattern<memref::RankOp>::ConvertOpToLLVMPattern; |
896 | |
897 | LogicalResult |
898 | matchAndRewrite(memref::RankOp op, OpAdaptor adaptor, |
899 | ConversionPatternRewriter &rewriter) const override { |
900 | Location loc = op.getLoc(); |
901 | Type operandType = op.getMemref().getType(); |
902 | if (isa<UnrankedMemRefType>(Val: operandType)) { |
903 | UnrankedMemRefDescriptor desc(adaptor.getMemref()); |
904 | rewriter.replaceOp(op, {desc.rank(builder&: rewriter, loc)}); |
905 | return success(); |
906 | } |
907 | if (auto rankedMemRefType = dyn_cast<MemRefType>(operandType)) { |
908 | Type indexType = getIndexType(); |
909 | rewriter.replaceOp(op, |
910 | {createIndexAttrConstant(rewriter, loc, indexType, |
911 | rankedMemRefType.getRank())}); |
912 | return success(); |
913 | } |
914 | return failure(); |
915 | } |
916 | }; |
917 | |
918 | struct MemRefCastOpLowering : public ConvertOpToLLVMPattern<memref::CastOp> { |
919 | using ConvertOpToLLVMPattern::ConvertOpToLLVMPattern; |
920 | |
921 | LogicalResult |
922 | matchAndRewrite(memref::CastOp memRefCastOp, OpAdaptor adaptor, |
923 | ConversionPatternRewriter &rewriter) const override { |
924 | Type srcType = memRefCastOp.getOperand().getType(); |
925 | Type dstType = memRefCastOp.getType(); |
926 | |
927 | // memref::CastOp reduce to bitcast in the ranked MemRef case and can be |
928 | // used for type erasure. For now they must preserve underlying element type |
929 | // and require source and result type to have the same rank. Therefore, |
930 | // perform a sanity check that the underlying structs are the same. Once op |
931 | // semantics are relaxed we can revisit. |
932 | if (isa<MemRefType>(Val: srcType) && isa<MemRefType>(Val: dstType)) |
933 | if (typeConverter->convertType(srcType) != |
934 | typeConverter->convertType(dstType)) |
935 | return failure(); |
936 | |
937 | // Unranked to unranked cast is disallowed |
938 | if (isa<UnrankedMemRefType>(Val: srcType) && isa<UnrankedMemRefType>(Val: dstType)) |
939 | return failure(); |
940 | |
941 | auto targetStructType = typeConverter->convertType(memRefCastOp.getType()); |
942 | auto loc = memRefCastOp.getLoc(); |
943 | |
944 | // For ranked/ranked case, just keep the original descriptor. |
945 | if (isa<MemRefType>(Val: srcType) && isa<MemRefType>(Val: dstType)) { |
946 | rewriter.replaceOp(memRefCastOp, {adaptor.getSource()}); |
947 | return success(); |
948 | } |
949 | |
950 | if (isa<MemRefType>(Val: srcType) && isa<UnrankedMemRefType>(Val: dstType)) { |
951 | // Casting ranked to unranked memref type |
952 | // Set the rank in the destination from the memref type |
953 | // Allocate space on the stack and copy the src memref descriptor |
954 | // Set the ptr in the destination to the stack space |
955 | auto srcMemRefType = cast<MemRefType>(srcType); |
956 | int64_t rank = srcMemRefType.getRank(); |
957 | // ptr = AllocaOp sizeof(MemRefDescriptor) |
958 | auto ptr = getTypeConverter()->promoteOneMemRefDescriptor( |
959 | loc, adaptor.getSource(), rewriter); |
960 | |
961 | // rank = ConstantOp srcRank |
962 | auto rankVal = rewriter.create<LLVM::ConstantOp>( |
963 | loc, getIndexType(), rewriter.getIndexAttr(rank)); |
964 | // poison = PoisonOp |
965 | UnrankedMemRefDescriptor memRefDesc = |
966 | UnrankedMemRefDescriptor::poison(builder&: rewriter, loc: loc, descriptorType: targetStructType); |
967 | // d1 = InsertValueOp poison, rank, 0 |
968 | memRefDesc.setRank(builder&: rewriter, loc: loc, value: rankVal); |
969 | // d2 = InsertValueOp d1, ptr, 1 |
970 | memRefDesc.setMemRefDescPtr(builder&: rewriter, loc: loc, value: ptr); |
971 | rewriter.replaceOp(memRefCastOp, (Value)memRefDesc); |
972 | |
973 | } else if (isa<UnrankedMemRefType>(Val: srcType) && isa<MemRefType>(Val: dstType)) { |
974 | // Casting from unranked type to ranked. |
975 | // The operation is assumed to be doing a correct cast. If the destination |
976 | // type mismatches the unranked the type, it is undefined behavior. |
977 | UnrankedMemRefDescriptor memRefDesc(adaptor.getSource()); |
978 | // ptr = ExtractValueOp src, 1 |
979 | auto ptr = memRefDesc.memRefDescPtr(builder&: rewriter, loc: loc); |
980 | |
981 | // struct = LoadOp ptr |
982 | auto loadOp = rewriter.create<LLVM::LoadOp>(loc, targetStructType, ptr); |
983 | rewriter.replaceOp(memRefCastOp, loadOp.getResult()); |
984 | } else { |
985 | llvm_unreachable("Unsupported unranked memref to unranked memref cast"); |
986 | } |
987 | |
988 | return success(); |
989 | } |
990 | }; |
991 | |
992 | /// Pattern to lower a `memref.copy` to llvm. |
993 | /// |
994 | /// For memrefs with identity layouts, the copy is lowered to the llvm |
995 | /// `memcpy` intrinsic. For non-identity layouts, the copy is lowered to a call |
996 | /// to the generic `MemrefCopyFn`. |
997 | struct MemRefCopyOpLowering : public ConvertOpToLLVMPattern<memref::CopyOp> { |
998 | using ConvertOpToLLVMPattern<memref::CopyOp>::ConvertOpToLLVMPattern; |
999 | |
1000 | LogicalResult |
1001 | lowerToMemCopyIntrinsic(memref::CopyOp op, OpAdaptor adaptor, |
1002 | ConversionPatternRewriter &rewriter) const { |
1003 | auto loc = op.getLoc(); |
1004 | auto srcType = dyn_cast<MemRefType>(op.getSource().getType()); |
1005 | |
1006 | MemRefDescriptor srcDesc(adaptor.getSource()); |
1007 | |
1008 | // Compute number of elements. |
1009 | Value numElements = rewriter.create<LLVM::ConstantOp>( |
1010 | loc, getIndexType(), rewriter.getIndexAttr(1)); |
1011 | for (int pos = 0; pos < srcType.getRank(); ++pos) { |
1012 | auto size = srcDesc.size(rewriter, loc, pos); |
1013 | numElements = rewriter.create<LLVM::MulOp>(loc, numElements, size); |
1014 | } |
1015 | |
1016 | // Get element size. |
1017 | auto sizeInBytes = getSizeInBytes(loc, srcType.getElementType(), rewriter); |
1018 | // Compute total. |
1019 | Value totalSize = |
1020 | rewriter.create<LLVM::MulOp>(loc, numElements, sizeInBytes); |
1021 | |
1022 | Type elementType = typeConverter->convertType(srcType.getElementType()); |
1023 | |
1024 | Value srcBasePtr = srcDesc.alignedPtr(builder&: rewriter, loc: loc); |
1025 | Value srcOffset = srcDesc.offset(builder&: rewriter, loc: loc); |
1026 | Value srcPtr = rewriter.create<LLVM::GEPOp>( |
1027 | loc, srcBasePtr.getType(), elementType, srcBasePtr, srcOffset); |
1028 | MemRefDescriptor targetDesc(adaptor.getTarget()); |
1029 | Value targetBasePtr = targetDesc.alignedPtr(builder&: rewriter, loc: loc); |
1030 | Value targetOffset = targetDesc.offset(builder&: rewriter, loc: loc); |
1031 | Value targetPtr = rewriter.create<LLVM::GEPOp>( |
1032 | loc, targetBasePtr.getType(), elementType, targetBasePtr, targetOffset); |
1033 | rewriter.create<LLVM::MemcpyOp>(loc, targetPtr, srcPtr, totalSize, |
1034 | /*isVolatile=*/false); |
1035 | rewriter.eraseOp(op: op); |
1036 | |
1037 | return success(); |
1038 | } |
1039 | |
1040 | LogicalResult |
1041 | lowerToMemCopyFunctionCall(memref::CopyOp op, OpAdaptor adaptor, |
1042 | ConversionPatternRewriter &rewriter) const { |
1043 | auto loc = op.getLoc(); |
1044 | auto srcType = cast<BaseMemRefType>(op.getSource().getType()); |
1045 | auto targetType = cast<BaseMemRefType>(op.getTarget().getType()); |
1046 | |
1047 | // First make sure we have an unranked memref descriptor representation. |
1048 | auto makeUnranked = [&, this](Value ranked, MemRefType type) { |
1049 | auto rank = rewriter.create<LLVM::ConstantOp>(loc, getIndexType(), |
1050 | type.getRank()); |
1051 | auto *typeConverter = getTypeConverter(); |
1052 | auto ptr = |
1053 | typeConverter->promoteOneMemRefDescriptor(loc, ranked, rewriter); |
1054 | |
1055 | auto unrankedType = |
1056 | UnrankedMemRefType::get(type.getElementType(), type.getMemorySpace()); |
1057 | return UnrankedMemRefDescriptor::pack( |
1058 | rewriter, loc, *typeConverter, unrankedType, ValueRange{rank, ptr}); |
1059 | }; |
1060 | |
1061 | // Save stack position before promoting descriptors |
1062 | auto stackSaveOp = |
1063 | rewriter.create<LLVM::StackSaveOp>(loc, getVoidPtrType()); |
1064 | |
1065 | auto srcMemRefType = dyn_cast<MemRefType>(srcType); |
1066 | Value unrankedSource = |
1067 | srcMemRefType ? makeUnranked(adaptor.getSource(), srcMemRefType) |
1068 | : adaptor.getSource(); |
1069 | auto targetMemRefType = dyn_cast<MemRefType>(targetType); |
1070 | Value unrankedTarget = |
1071 | targetMemRefType ? makeUnranked(adaptor.getTarget(), targetMemRefType) |
1072 | : adaptor.getTarget(); |
1073 | |
1074 | // Now promote the unranked descriptors to the stack. |
1075 | auto one = rewriter.create<LLVM::ConstantOp>(loc, getIndexType(), |
1076 | rewriter.getIndexAttr(1)); |
1077 | auto promote = [&](Value desc) { |
1078 | auto ptrType = LLVM::LLVMPointerType::get(rewriter.getContext()); |
1079 | auto allocated = |
1080 | rewriter.create<LLVM::AllocaOp>(loc, ptrType, desc.getType(), one); |
1081 | rewriter.create<LLVM::StoreOp>(loc, desc, allocated); |
1082 | return allocated; |
1083 | }; |
1084 | |
1085 | auto sourcePtr = promote(unrankedSource); |
1086 | auto targetPtr = promote(unrankedTarget); |
1087 | |
1088 | // Derive size from llvm.getelementptr which will account for any |
1089 | // potential alignment |
1090 | auto elemSize = getSizeInBytes(loc, srcType.getElementType(), rewriter); |
1091 | auto copyFn = LLVM::lookupOrCreateMemRefCopyFn( |
1092 | b&: rewriter, moduleOp: op->getParentOfType<ModuleOp>(), indexType: getIndexType(), |
1093 | unrankedDescriptorType: sourcePtr.getType()); |
1094 | if (failed(copyFn)) |
1095 | return failure(); |
1096 | rewriter.create<LLVM::CallOp>(loc, copyFn.value(), |
1097 | ValueRange{elemSize, sourcePtr, targetPtr}); |
1098 | |
1099 | // Restore stack used for descriptors |
1100 | rewriter.create<LLVM::StackRestoreOp>(loc, stackSaveOp); |
1101 | |
1102 | rewriter.eraseOp(op: op); |
1103 | |
1104 | return success(); |
1105 | } |
1106 | |
1107 | LogicalResult |
1108 | matchAndRewrite(memref::CopyOp op, OpAdaptor adaptor, |
1109 | ConversionPatternRewriter &rewriter) const override { |
1110 | auto srcType = cast<BaseMemRefType>(op.getSource().getType()); |
1111 | auto targetType = cast<BaseMemRefType>(op.getTarget().getType()); |
1112 | |
1113 | auto isContiguousMemrefType = [&](BaseMemRefType type) { |
1114 | auto memrefType = dyn_cast<mlir::MemRefType>(type); |
1115 | // We can use memcpy for memrefs if they have an identity layout or are |
1116 | // contiguous with an arbitrary offset. Ignore empty memrefs, which is a |
1117 | // special case handled by memrefCopy. |
1118 | return memrefType && |
1119 | (memrefType.getLayout().isIdentity() || |
1120 | (memrefType.hasStaticShape() && memrefType.getNumElements() > 0 && |
1121 | memref::isStaticShapeAndContiguousRowMajor(memrefType))); |
1122 | }; |
1123 | |
1124 | if (isContiguousMemrefType(srcType) && isContiguousMemrefType(targetType)) |
1125 | return lowerToMemCopyIntrinsic(op, adaptor, rewriter); |
1126 | |
1127 | return lowerToMemCopyFunctionCall(op, adaptor, rewriter); |
1128 | } |
1129 | }; |
1130 | |
1131 | struct MemorySpaceCastOpLowering |
1132 | : public ConvertOpToLLVMPattern<memref::MemorySpaceCastOp> { |
1133 | using ConvertOpToLLVMPattern< |
1134 | memref::MemorySpaceCastOp>::ConvertOpToLLVMPattern; |
1135 | |
1136 | LogicalResult |
1137 | matchAndRewrite(memref::MemorySpaceCastOp op, OpAdaptor adaptor, |
1138 | ConversionPatternRewriter &rewriter) const override { |
1139 | Location loc = op.getLoc(); |
1140 | |
1141 | Type resultType = op.getDest().getType(); |
1142 | if (auto resultTypeR = dyn_cast<MemRefType>(resultType)) { |
1143 | auto resultDescType = |
1144 | cast<LLVM::LLVMStructType>(typeConverter->convertType(resultTypeR)); |
1145 | Type newPtrType = resultDescType.getBody()[0]; |
1146 | |
1147 | SmallVector<Value> descVals; |
1148 | MemRefDescriptor::unpack(builder&: rewriter, loc, packed: adaptor.getSource(), type: resultTypeR, |
1149 | results&: descVals); |
1150 | descVals[0] = |
1151 | rewriter.create<LLVM::AddrSpaceCastOp>(loc, newPtrType, descVals[0]); |
1152 | descVals[1] = |
1153 | rewriter.create<LLVM::AddrSpaceCastOp>(loc, newPtrType, descVals[1]); |
1154 | Value result = MemRefDescriptor::pack(builder&: rewriter, loc, converter: *getTypeConverter(), |
1155 | type: resultTypeR, values: descVals); |
1156 | rewriter.replaceOp(op, result); |
1157 | return success(); |
1158 | } |
1159 | if (auto resultTypeU = dyn_cast<UnrankedMemRefType>(resultType)) { |
1160 | // Since the type converter won't be doing this for us, get the address |
1161 | // space. |
1162 | auto sourceType = cast<UnrankedMemRefType>(op.getSource().getType()); |
1163 | FailureOr<unsigned> maybeSourceAddrSpace = |
1164 | getTypeConverter()->getMemRefAddressSpace(sourceType); |
1165 | if (failed(Result: maybeSourceAddrSpace)) |
1166 | return rewriter.notifyMatchFailure(arg&: loc, |
1167 | msg: "non-integer source address space"); |
1168 | unsigned sourceAddrSpace = *maybeSourceAddrSpace; |
1169 | FailureOr<unsigned> maybeResultAddrSpace = |
1170 | getTypeConverter()->getMemRefAddressSpace(resultTypeU); |
1171 | if (failed(Result: maybeResultAddrSpace)) |
1172 | return rewriter.notifyMatchFailure(arg&: loc, |
1173 | msg: "non-integer result address space"); |
1174 | unsigned resultAddrSpace = *maybeResultAddrSpace; |
1175 | |
1176 | UnrankedMemRefDescriptor sourceDesc(adaptor.getSource()); |
1177 | Value rank = sourceDesc.rank(builder&: rewriter, loc); |
1178 | Value sourceUnderlyingDesc = sourceDesc.memRefDescPtr(builder&: rewriter, loc); |
1179 | |
1180 | // Create and allocate storage for new memref descriptor. |
1181 | auto result = UnrankedMemRefDescriptor::poison( |
1182 | rewriter, loc, typeConverter->convertType(resultTypeU)); |
1183 | result.setRank(rewriter, loc, rank); |
1184 | SmallVector<Value, 1> sizes; |
1185 | UnrankedMemRefDescriptor::computeSizes(builder&: rewriter, loc, typeConverter: *getTypeConverter(), |
1186 | values: result, addressSpaces: resultAddrSpace, sizes); |
1187 | Value resultUnderlyingSize = sizes.front(); |
1188 | Value resultUnderlyingDesc = rewriter.create<LLVM::AllocaOp>( |
1189 | loc, getVoidPtrType(), rewriter.getI8Type(), resultUnderlyingSize); |
1190 | result.setMemRefDescPtr(rewriter, loc, resultUnderlyingDesc); |
1191 | |
1192 | // Copy pointers, performing address space casts. |
1193 | auto sourceElemPtrType = |
1194 | LLVM::LLVMPointerType::get(rewriter.getContext(), sourceAddrSpace); |
1195 | auto resultElemPtrType = |
1196 | LLVM::LLVMPointerType::get(rewriter.getContext(), resultAddrSpace); |
1197 | |
1198 | Value allocatedPtr = sourceDesc.allocatedPtr( |
1199 | builder&: rewriter, loc, memRefDescPtr: sourceUnderlyingDesc, elemPtrType: sourceElemPtrType); |
1200 | Value alignedPtr = |
1201 | sourceDesc.alignedPtr(builder&: rewriter, loc, typeConverter: *getTypeConverter(), |
1202 | memRefDescPtr: sourceUnderlyingDesc, elemPtrType: sourceElemPtrType); |
1203 | allocatedPtr = rewriter.create<LLVM::AddrSpaceCastOp>( |
1204 | loc, resultElemPtrType, allocatedPtr); |
1205 | alignedPtr = rewriter.create<LLVM::AddrSpaceCastOp>( |
1206 | loc, resultElemPtrType, alignedPtr); |
1207 | |
1208 | result.setAllocatedPtr(rewriter, loc, resultUnderlyingDesc, |
1209 | resultElemPtrType, allocatedPtr); |
1210 | result.setAlignedPtr(rewriter, loc, *getTypeConverter(), |
1211 | resultUnderlyingDesc, resultElemPtrType, alignedPtr); |
1212 | |
1213 | // Copy all the index-valued operands. |
1214 | Value sourceIndexVals = |
1215 | sourceDesc.offsetBasePtr(builder&: rewriter, loc, typeConverter: *getTypeConverter(), |
1216 | memRefDescPtr: sourceUnderlyingDesc, elemPtrType: sourceElemPtrType); |
1217 | Value resultIndexVals = |
1218 | result.offsetBasePtr(rewriter, loc, *getTypeConverter(), |
1219 | resultUnderlyingDesc, resultElemPtrType); |
1220 | |
1221 | int64_t bytesToSkip = |
1222 | 2 * llvm::divideCeil( |
1223 | getTypeConverter()->getPointerBitwidth(resultAddrSpace), 8); |
1224 | Value bytesToSkipConst = rewriter.create<LLVM::ConstantOp>( |
1225 | loc, getIndexType(), rewriter.getIndexAttr(bytesToSkip)); |
1226 | Value copySize = rewriter.create<LLVM::SubOp>( |
1227 | loc, getIndexType(), resultUnderlyingSize, bytesToSkipConst); |
1228 | rewriter.create<LLVM::MemcpyOp>(loc, resultIndexVals, sourceIndexVals, |
1229 | copySize, /*isVolatile=*/false); |
1230 | |
1231 | rewriter.replaceOp(op, ValueRange{result}); |
1232 | return success(); |
1233 | } |
1234 | return rewriter.notifyMatchFailure(arg&: loc, msg: "unexpected memref type"); |
1235 | } |
1236 | }; |
1237 | |
1238 | /// Extracts allocated, aligned pointers and offset from a ranked or unranked |
1239 | /// memref type. In unranked case, the fields are extracted from the underlying |
1240 | /// ranked descriptor. |
1241 | static void extractPointersAndOffset(Location loc, |
1242 | ConversionPatternRewriter &rewriter, |
1243 | const LLVMTypeConverter &typeConverter, |
1244 | Value originalOperand, |
1245 | Value convertedOperand, |
1246 | Value *allocatedPtr, Value *alignedPtr, |
1247 | Value *offset = nullptr) { |
1248 | Type operandType = originalOperand.getType(); |
1249 | if (isa<MemRefType>(Val: operandType)) { |
1250 | MemRefDescriptor desc(convertedOperand); |
1251 | *allocatedPtr = desc.allocatedPtr(builder&: rewriter, loc); |
1252 | *alignedPtr = desc.alignedPtr(builder&: rewriter, loc); |
1253 | if (offset != nullptr) |
1254 | *offset = desc.offset(builder&: rewriter, loc); |
1255 | return; |
1256 | } |
1257 | |
1258 | // These will all cause assert()s on unconvertible types. |
1259 | unsigned memorySpace = *typeConverter.getMemRefAddressSpace( |
1260 | type: cast<UnrankedMemRefType>(operandType)); |
1261 | auto elementPtrType = |
1262 | LLVM::LLVMPointerType::get(rewriter.getContext(), memorySpace); |
1263 | |
1264 | // Extract pointer to the underlying ranked memref descriptor and cast it to |
1265 | // ElemType**. |
1266 | UnrankedMemRefDescriptor unrankedDesc(convertedOperand); |
1267 | Value underlyingDescPtr = unrankedDesc.memRefDescPtr(builder&: rewriter, loc); |
1268 | |
1269 | *allocatedPtr = UnrankedMemRefDescriptor::allocatedPtr( |
1270 | builder&: rewriter, loc, memRefDescPtr: underlyingDescPtr, elemPtrType: elementPtrType); |
1271 | *alignedPtr = UnrankedMemRefDescriptor::alignedPtr( |
1272 | builder&: rewriter, loc, typeConverter, memRefDescPtr: underlyingDescPtr, elemPtrType: elementPtrType); |
1273 | if (offset != nullptr) { |
1274 | *offset = UnrankedMemRefDescriptor::offset( |
1275 | builder&: rewriter, loc, typeConverter, memRefDescPtr: underlyingDescPtr, elemPtrType: elementPtrType); |
1276 | } |
1277 | } |
1278 | |
1279 | struct MemRefReinterpretCastOpLowering |
1280 | : public ConvertOpToLLVMPattern<memref::ReinterpretCastOp> { |
1281 | using ConvertOpToLLVMPattern< |
1282 | memref::ReinterpretCastOp>::ConvertOpToLLVMPattern; |
1283 | |
1284 | LogicalResult |
1285 | matchAndRewrite(memref::ReinterpretCastOp castOp, OpAdaptor adaptor, |
1286 | ConversionPatternRewriter &rewriter) const override { |
1287 | Type srcType = castOp.getSource().getType(); |
1288 | |
1289 | Value descriptor; |
1290 | if (failed(convertSourceMemRefToDescriptor(rewriter, srcType, castOp, |
1291 | adaptor, &descriptor))) |
1292 | return failure(); |
1293 | rewriter.replaceOp(castOp, {descriptor}); |
1294 | return success(); |
1295 | } |
1296 | |
1297 | private: |
1298 | LogicalResult convertSourceMemRefToDescriptor( |
1299 | ConversionPatternRewriter &rewriter, Type srcType, |
1300 | memref::ReinterpretCastOp castOp, |
1301 | memref::ReinterpretCastOp::Adaptor adaptor, Value *descriptor) const { |
1302 | MemRefType targetMemRefType = |
1303 | cast<MemRefType>(castOp.getResult().getType()); |
1304 | auto llvmTargetDescriptorTy = dyn_cast_or_null<LLVM::LLVMStructType>( |
1305 | typeConverter->convertType(targetMemRefType)); |
1306 | if (!llvmTargetDescriptorTy) |
1307 | return failure(); |
1308 | |
1309 | // Create descriptor. |
1310 | Location loc = castOp.getLoc(); |
1311 | auto desc = MemRefDescriptor::poison(builder&: rewriter, loc, descriptorType: llvmTargetDescriptorTy); |
1312 | |
1313 | // Set allocated and aligned pointers. |
1314 | Value allocatedPtr, alignedPtr; |
1315 | extractPointersAndOffset(loc, rewriter, *getTypeConverter(), |
1316 | castOp.getSource(), adaptor.getSource(), |
1317 | &allocatedPtr, &alignedPtr); |
1318 | desc.setAllocatedPtr(rewriter, loc, allocatedPtr); |
1319 | desc.setAlignedPtr(rewriter, loc, alignedPtr); |
1320 | |
1321 | // Set offset. |
1322 | if (castOp.isDynamicOffset(0)) |
1323 | desc.setOffset(rewriter, loc, adaptor.getOffsets()[0]); |
1324 | else |
1325 | desc.setConstantOffset(rewriter, loc, castOp.getStaticOffset(0)); |
1326 | |
1327 | // Set sizes and strides. |
1328 | unsigned dynSizeId = 0; |
1329 | unsigned dynStrideId = 0; |
1330 | for (unsigned i = 0, e = targetMemRefType.getRank(); i < e; ++i) { |
1331 | if (castOp.isDynamicSize(i)) |
1332 | desc.setSize(rewriter, loc, i, adaptor.getSizes()[dynSizeId++]); |
1333 | else |
1334 | desc.setConstantSize(rewriter, loc, i, castOp.getStaticSize(i)); |
1335 | |
1336 | if (castOp.isDynamicStride(i)) |
1337 | desc.setStride(rewriter, loc, i, adaptor.getStrides()[dynStrideId++]); |
1338 | else |
1339 | desc.setConstantStride(rewriter, loc, i, castOp.getStaticStride(i)); |
1340 | } |
1341 | *descriptor = desc; |
1342 | return success(); |
1343 | } |
1344 | }; |
1345 | |
1346 | struct MemRefReshapeOpLowering |
1347 | : public ConvertOpToLLVMPattern<memref::ReshapeOp> { |
1348 | using ConvertOpToLLVMPattern<memref::ReshapeOp>::ConvertOpToLLVMPattern; |
1349 | |
1350 | LogicalResult |
1351 | matchAndRewrite(memref::ReshapeOp reshapeOp, OpAdaptor adaptor, |
1352 | ConversionPatternRewriter &rewriter) const override { |
1353 | Type srcType = reshapeOp.getSource().getType(); |
1354 | |
1355 | Value descriptor; |
1356 | if (failed(convertSourceMemRefToDescriptor(rewriter, srcType, reshapeOp, |
1357 | adaptor, &descriptor))) |
1358 | return failure(); |
1359 | rewriter.replaceOp(reshapeOp, {descriptor}); |
1360 | return success(); |
1361 | } |
1362 | |
1363 | private: |
1364 | LogicalResult |
1365 | convertSourceMemRefToDescriptor(ConversionPatternRewriter &rewriter, |
1366 | Type srcType, memref::ReshapeOp reshapeOp, |
1367 | memref::ReshapeOp::Adaptor adaptor, |
1368 | Value *descriptor) const { |
1369 | auto shapeMemRefType = cast<MemRefType>(reshapeOp.getShape().getType()); |
1370 | if (shapeMemRefType.hasStaticShape()) { |
1371 | MemRefType targetMemRefType = |
1372 | cast<MemRefType>(reshapeOp.getResult().getType()); |
1373 | auto llvmTargetDescriptorTy = dyn_cast_or_null<LLVM::LLVMStructType>( |
1374 | typeConverter->convertType(targetMemRefType)); |
1375 | if (!llvmTargetDescriptorTy) |
1376 | return failure(); |
1377 | |
1378 | // Create descriptor. |
1379 | Location loc = reshapeOp.getLoc(); |
1380 | auto desc = |
1381 | MemRefDescriptor::poison(builder&: rewriter, loc, descriptorType: llvmTargetDescriptorTy); |
1382 | |
1383 | // Set allocated and aligned pointers. |
1384 | Value allocatedPtr, alignedPtr; |
1385 | extractPointersAndOffset(loc, rewriter, *getTypeConverter(), |
1386 | reshapeOp.getSource(), adaptor.getSource(), |
1387 | &allocatedPtr, &alignedPtr); |
1388 | desc.setAllocatedPtr(rewriter, loc, allocatedPtr); |
1389 | desc.setAlignedPtr(rewriter, loc, alignedPtr); |
1390 | |
1391 | // Extract the offset and strides from the type. |
1392 | int64_t offset; |
1393 | SmallVector<int64_t> strides; |
1394 | if (failed(targetMemRefType.getStridesAndOffset(strides, offset))) |
1395 | return rewriter.notifyMatchFailure( |
1396 | reshapeOp, "failed to get stride and offset exprs"); |
1397 | |
1398 | if (!isStaticStrideOrOffset(strideOrOffset: offset)) |
1399 | return rewriter.notifyMatchFailure(reshapeOp, |
1400 | "dynamic offset is unsupported"); |
1401 | |
1402 | desc.setConstantOffset(rewriter, loc, offset); |
1403 | |
1404 | assert(targetMemRefType.getLayout().isIdentity() && |
1405 | "Identity layout map is a precondition of a valid reshape op"); |
1406 | |
1407 | Type indexType = getIndexType(); |
1408 | Value stride = nullptr; |
1409 | int64_t targetRank = targetMemRefType.getRank(); |
1410 | for (auto i : llvm::reverse(llvm::seq<int64_t>(0, targetRank))) { |
1411 | if (!ShapedType::isDynamic(strides[i])) { |
1412 | // If the stride for this dimension is dynamic, then use the product |
1413 | // of the sizes of the inner dimensions. |
1414 | stride = |
1415 | createIndexAttrConstant(rewriter, loc, indexType, strides[i]); |
1416 | } else if (!stride) { |
1417 | // `stride` is null only in the first iteration of the loop. However, |
1418 | // since the target memref has an identity layout, we can safely set |
1419 | // the innermost stride to 1. |
1420 | stride = createIndexAttrConstant(rewriter, loc, indexType, 1); |
1421 | } |
1422 | |
1423 | Value dimSize; |
1424 | // If the size of this dimension is dynamic, then load it at runtime |
1425 | // from the shape operand. |
1426 | if (!targetMemRefType.isDynamicDim(i)) { |
1427 | dimSize = createIndexAttrConstant(rewriter, loc, indexType, |
1428 | targetMemRefType.getDimSize(i)); |
1429 | } else { |
1430 | Value shapeOp = reshapeOp.getShape(); |
1431 | Value index = createIndexAttrConstant(rewriter, loc, indexType, i); |
1432 | dimSize = rewriter.create<memref::LoadOp>(loc, shapeOp, index); |
1433 | Type indexType = getIndexType(); |
1434 | if (dimSize.getType() != indexType) |
1435 | dimSize = typeConverter->materializeTargetConversion( |
1436 | rewriter, loc, indexType, dimSize); |
1437 | assert(dimSize && "Invalid memref element type"); |
1438 | } |
1439 | |
1440 | desc.setSize(rewriter, loc, i, dimSize); |
1441 | desc.setStride(rewriter, loc, i, stride); |
1442 | |
1443 | // Prepare the stride value for the next dimension. |
1444 | stride = rewriter.create<LLVM::MulOp>(loc, stride, dimSize); |
1445 | } |
1446 | |
1447 | *descriptor = desc; |
1448 | return success(); |
1449 | } |
1450 | |
1451 | // The shape is a rank-1 tensor with unknown length. |
1452 | Location loc = reshapeOp.getLoc(); |
1453 | MemRefDescriptor shapeDesc(adaptor.getShape()); |
1454 | Value resultRank = shapeDesc.size(builder&: rewriter, loc, pos: 0); |
1455 | |
1456 | // Extract address space and element type. |
1457 | auto targetType = cast<UnrankedMemRefType>(reshapeOp.getResult().getType()); |
1458 | unsigned addressSpace = |
1459 | *getTypeConverter()->getMemRefAddressSpace(targetType); |
1460 | |
1461 | // Create the unranked memref descriptor that holds the ranked one. The |
1462 | // inner descriptor is allocated on stack. |
1463 | auto targetDesc = UnrankedMemRefDescriptor::poison( |
1464 | rewriter, loc, typeConverter->convertType(targetType)); |
1465 | targetDesc.setRank(rewriter, loc, resultRank); |
1466 | SmallVector<Value, 4> sizes; |
1467 | UnrankedMemRefDescriptor::computeSizes(builder&: rewriter, loc, typeConverter: *getTypeConverter(), |
1468 | values: targetDesc, addressSpaces: addressSpace, sizes); |
1469 | Value underlyingDescPtr = rewriter.create<LLVM::AllocaOp>( |
1470 | loc, getVoidPtrType(), IntegerType::get(getContext(), 8), |
1471 | sizes.front()); |
1472 | targetDesc.setMemRefDescPtr(rewriter, loc, underlyingDescPtr); |
1473 | |
1474 | // Extract pointers and offset from the source memref. |
1475 | Value allocatedPtr, alignedPtr, offset; |
1476 | extractPointersAndOffset(loc, rewriter, *getTypeConverter(), |
1477 | reshapeOp.getSource(), adaptor.getSource(), |
1478 | &allocatedPtr, &alignedPtr, &offset); |
1479 | |
1480 | // Set pointers and offset. |
1481 | auto elementPtrType = |
1482 | LLVM::LLVMPointerType::get(rewriter.getContext(), addressSpace); |
1483 | |
1484 | UnrankedMemRefDescriptor::setAllocatedPtr(builder&: rewriter, loc, memRefDescPtr: underlyingDescPtr, |
1485 | elemPtrType: elementPtrType, allocatedPtr); |
1486 | UnrankedMemRefDescriptor::setAlignedPtr(builder&: rewriter, loc, typeConverter: *getTypeConverter(), |
1487 | memRefDescPtr: underlyingDescPtr, elemPtrType: elementPtrType, |
1488 | alignedPtr); |
1489 | UnrankedMemRefDescriptor::setOffset(builder&: rewriter, loc, typeConverter: *getTypeConverter(), |
1490 | memRefDescPtr: underlyingDescPtr, elemPtrType: elementPtrType, |
1491 | offset); |
1492 | |
1493 | // Use the offset pointer as base for further addressing. Copy over the new |
1494 | // shape and compute strides. For this, we create a loop from rank-1 to 0. |
1495 | Value targetSizesBase = UnrankedMemRefDescriptor::sizeBasePtr( |
1496 | builder&: rewriter, loc, typeConverter: *getTypeConverter(), memRefDescPtr: underlyingDescPtr, elemPtrType: elementPtrType); |
1497 | Value targetStridesBase = UnrankedMemRefDescriptor::strideBasePtr( |
1498 | builder&: rewriter, loc, typeConverter: *getTypeConverter(), sizeBasePtr: targetSizesBase, rank: resultRank); |
1499 | Value shapeOperandPtr = shapeDesc.alignedPtr(builder&: rewriter, loc); |
1500 | Value oneIndex = createIndexAttrConstant(rewriter, loc, getIndexType(), 1); |
1501 | Value resultRankMinusOne = |
1502 | rewriter.create<LLVM::SubOp>(loc, resultRank, oneIndex); |
1503 | |
1504 | Block *initBlock = rewriter.getInsertionBlock(); |
1505 | Type indexType = getTypeConverter()->getIndexType(); |
1506 | Block::iterator remainingOpsIt = std::next(x: rewriter.getInsertionPoint()); |
1507 | |
1508 | Block *condBlock = rewriter.createBlock(parent: initBlock->getParent(), insertPt: {}, |
1509 | argTypes: {indexType, indexType}, locs: {loc, loc}); |
1510 | |
1511 | // Move the remaining initBlock ops to condBlock. |
1512 | Block *remainingBlock = rewriter.splitBlock(block: initBlock, before: remainingOpsIt); |
1513 | rewriter.mergeBlocks(source: remainingBlock, dest: condBlock, argValues: ValueRange()); |
1514 | |
1515 | rewriter.setInsertionPointToEnd(initBlock); |
1516 | rewriter.create<LLVM::BrOp>(loc, ValueRange({resultRankMinusOne, oneIndex}), |
1517 | condBlock); |
1518 | rewriter.setInsertionPointToStart(condBlock); |
1519 | Value indexArg = condBlock->getArgument(i: 0); |
1520 | Value strideArg = condBlock->getArgument(i: 1); |
1521 | |
1522 | Value zeroIndex = createIndexAttrConstant(rewriter, loc, indexType, 0); |
1523 | Value pred = rewriter.create<LLVM::ICmpOp>( |
1524 | loc, IntegerType::get(rewriter.getContext(), 1), |
1525 | LLVM::ICmpPredicate::sge, indexArg, zeroIndex); |
1526 | |
1527 | Block *bodyBlock = |
1528 | rewriter.splitBlock(block: condBlock, before: rewriter.getInsertionPoint()); |
1529 | rewriter.setInsertionPointToStart(bodyBlock); |
1530 | |
1531 | // Copy size from shape to descriptor. |
1532 | auto llvmIndexPtrType = LLVM::LLVMPointerType::get(rewriter.getContext()); |
1533 | Value sizeLoadGep = rewriter.create<LLVM::GEPOp>( |
1534 | loc, llvmIndexPtrType, |
1535 | typeConverter->convertType(shapeMemRefType.getElementType()), |
1536 | shapeOperandPtr, indexArg); |
1537 | Value size = rewriter.create<LLVM::LoadOp>(loc, indexType, sizeLoadGep); |
1538 | UnrankedMemRefDescriptor::setSize(builder&: rewriter, loc, typeConverter: *getTypeConverter(), |
1539 | sizeBasePtr: targetSizesBase, index: indexArg, size); |
1540 | |
1541 | // Write stride value and compute next one. |
1542 | UnrankedMemRefDescriptor::setStride(builder&: rewriter, loc, typeConverter: *getTypeConverter(), |
1543 | strideBasePtr: targetStridesBase, index: indexArg, stride: strideArg); |
1544 | Value nextStride = rewriter.create<LLVM::MulOp>(loc, strideArg, size); |
1545 | |
1546 | // Decrement loop counter and branch back. |
1547 | Value decrement = rewriter.create<LLVM::SubOp>(loc, indexArg, oneIndex); |
1548 | rewriter.create<LLVM::BrOp>(loc, ValueRange({decrement, nextStride}), |
1549 | condBlock); |
1550 | |
1551 | Block *remainder = |
1552 | rewriter.splitBlock(block: bodyBlock, before: rewriter.getInsertionPoint()); |
1553 | |
1554 | // Hook up the cond exit to the remainder. |
1555 | rewriter.setInsertionPointToEnd(condBlock); |
1556 | rewriter.create<LLVM::CondBrOp>(loc, pred, bodyBlock, std::nullopt, |
1557 | remainder, std::nullopt); |
1558 | |
1559 | // Reset position to beginning of new remainder block. |
1560 | rewriter.setInsertionPointToStart(remainder); |
1561 | |
1562 | *descriptor = targetDesc; |
1563 | return success(); |
1564 | } |
1565 | }; |
1566 | |
1567 | /// RessociatingReshapeOp must be expanded before we reach this stage. |
1568 | /// Report that information. |
1569 | template <typename ReshapeOp> |
1570 | class ReassociatingReshapeOpConversion |
1571 | : public ConvertOpToLLVMPattern<ReshapeOp> { |
1572 | public: |
1573 | using ConvertOpToLLVMPattern<ReshapeOp>::ConvertOpToLLVMPattern; |
1574 | using ReshapeOpAdaptor = typename ReshapeOp::Adaptor; |
1575 | |
1576 | LogicalResult |
1577 | matchAndRewrite(ReshapeOp reshapeOp, typename ReshapeOp::Adaptor adaptor, |
1578 | ConversionPatternRewriter &rewriter) const override { |
1579 | return rewriter.notifyMatchFailure( |
1580 | reshapeOp, |
1581 | "reassociation operations should have been expanded beforehand"); |
1582 | } |
1583 | }; |
1584 | |
1585 | /// Subviews must be expanded before we reach this stage. |
1586 | /// Report that information. |
1587 | struct SubViewOpLowering : public ConvertOpToLLVMPattern<memref::SubViewOp> { |
1588 | using ConvertOpToLLVMPattern<memref::SubViewOp>::ConvertOpToLLVMPattern; |
1589 | |
1590 | LogicalResult |
1591 | matchAndRewrite(memref::SubViewOp subViewOp, OpAdaptor adaptor, |
1592 | ConversionPatternRewriter &rewriter) const override { |
1593 | return rewriter.notifyMatchFailure( |
1594 | subViewOp, "subview operations should have been expanded beforehand"); |
1595 | } |
1596 | }; |
1597 | |
1598 | /// Conversion pattern that transforms a transpose op into: |
1599 | /// 1. A function entry `alloca` operation to allocate a ViewDescriptor. |
1600 | /// 2. A load of the ViewDescriptor from the pointer allocated in 1. |
1601 | /// 3. Updates to the ViewDescriptor to introduce the data ptr, offset, size |
1602 | /// and stride. Size and stride are permutations of the original values. |
1603 | /// 4. A store of the resulting ViewDescriptor to the alloca'ed pointer. |
1604 | /// The transpose op is replaced by the alloca'ed pointer. |
1605 | class TransposeOpLowering : public ConvertOpToLLVMPattern<memref::TransposeOp> { |
1606 | public: |
1607 | using ConvertOpToLLVMPattern<memref::TransposeOp>::ConvertOpToLLVMPattern; |
1608 | |
1609 | LogicalResult |
1610 | matchAndRewrite(memref::TransposeOp transposeOp, OpAdaptor adaptor, |
1611 | ConversionPatternRewriter &rewriter) const override { |
1612 | auto loc = transposeOp.getLoc(); |
1613 | MemRefDescriptor viewMemRef(adaptor.getIn()); |
1614 | |
1615 | // No permutation, early exit. |
1616 | if (transposeOp.getPermutation().isIdentity()) |
1617 | return rewriter.replaceOp(transposeOp, {viewMemRef}), success(); |
1618 | |
1619 | auto targetMemRef = MemRefDescriptor::poison( |
1620 | rewriter, loc, |
1621 | typeConverter->convertType(transposeOp.getIn().getType())); |
1622 | |
1623 | // Copy the base and aligned pointers from the old descriptor to the new |
1624 | // one. |
1625 | targetMemRef.setAllocatedPtr(rewriter, loc, |
1626 | viewMemRef.allocatedPtr(builder&: rewriter, loc: loc)); |
1627 | targetMemRef.setAlignedPtr(rewriter, loc, |
1628 | viewMemRef.alignedPtr(builder&: rewriter, loc: loc)); |
1629 | |
1630 | // Copy the offset pointer from the old descriptor to the new one. |
1631 | targetMemRef.setOffset(rewriter, loc, viewMemRef.offset(builder&: rewriter, loc: loc)); |
1632 | |
1633 | // Iterate over the dimensions and apply size/stride permutation: |
1634 | // When enumerating the results of the permutation map, the enumeration |
1635 | // index is the index into the target dimensions and the DimExpr points to |
1636 | // the dimension of the source memref. |
1637 | for (const auto &en : |
1638 | llvm::enumerate(transposeOp.getPermutation().getResults())) { |
1639 | int targetPos = en.index(); |
1640 | int sourcePos = cast<AffineDimExpr>(en.value()).getPosition(); |
1641 | targetMemRef.setSize(rewriter, loc, targetPos, |
1642 | viewMemRef.size(rewriter, loc, sourcePos)); |
1643 | targetMemRef.setStride(rewriter, loc, targetPos, |
1644 | viewMemRef.stride(rewriter, loc, sourcePos)); |
1645 | } |
1646 | |
1647 | rewriter.replaceOp(transposeOp, {targetMemRef}); |
1648 | return success(); |
1649 | } |
1650 | }; |
1651 | |
1652 | /// Conversion pattern that transforms an op into: |
1653 | /// 1. An `llvm.mlir.undef` operation to create a memref descriptor |
1654 | /// 2. Updates to the descriptor to introduce the data ptr, offset, size |
1655 | /// and stride. |
1656 | /// The view op is replaced by the descriptor. |
1657 | struct ViewOpLowering : public ConvertOpToLLVMPattern<memref::ViewOp> { |
1658 | using ConvertOpToLLVMPattern<memref::ViewOp>::ConvertOpToLLVMPattern; |
1659 | |
1660 | // Build and return the value for the idx^th shape dimension, either by |
1661 | // returning the constant shape dimension or counting the proper dynamic size. |
1662 | Value getSize(ConversionPatternRewriter &rewriter, Location loc, |
1663 | ArrayRef<int64_t> shape, ValueRange dynamicSizes, unsigned idx, |
1664 | Type indexType) const { |
1665 | assert(idx < shape.size()); |
1666 | if (!ShapedType::isDynamic(shape[idx])) |
1667 | return createIndexAttrConstant(rewriter, loc, indexType, shape[idx]); |
1668 | // Count the number of dynamic dims in range [0, idx] |
1669 | unsigned nDynamic = |
1670 | llvm::count_if(shape.take_front(idx), ShapedType::isDynamic); |
1671 | return dynamicSizes[nDynamic]; |
1672 | } |
1673 | |
1674 | // Build and return the idx^th stride, either by returning the constant stride |
1675 | // or by computing the dynamic stride from the current `runningStride` and |
1676 | // `nextSize`. The caller should keep a running stride and update it with the |
1677 | // result returned by this function. |
1678 | Value getStride(ConversionPatternRewriter &rewriter, Location loc, |
1679 | ArrayRef<int64_t> strides, Value nextSize, |
1680 | Value runningStride, unsigned idx, Type indexType) const { |
1681 | assert(idx < strides.size()); |
1682 | if (!ShapedType::isDynamic(strides[idx])) |
1683 | return createIndexAttrConstant(rewriter, loc, indexType, strides[idx]); |
1684 | if (nextSize) |
1685 | return runningStride |
1686 | ? rewriter.create<LLVM::MulOp>(loc, runningStride, nextSize) |
1687 | : nextSize; |
1688 | assert(!runningStride); |
1689 | return createIndexAttrConstant(rewriter, loc, indexType, 1); |
1690 | } |
1691 | |
1692 | LogicalResult |
1693 | matchAndRewrite(memref::ViewOp viewOp, OpAdaptor adaptor, |
1694 | ConversionPatternRewriter &rewriter) const override { |
1695 | auto loc = viewOp.getLoc(); |
1696 | |
1697 | auto viewMemRefType = viewOp.getType(); |
1698 | auto targetElementTy = |
1699 | typeConverter->convertType(viewMemRefType.getElementType()); |
1700 | auto targetDescTy = typeConverter->convertType(viewMemRefType); |
1701 | if (!targetDescTy || !targetElementTy || |
1702 | !LLVM::isCompatibleType(type: targetElementTy) || |
1703 | !LLVM::isCompatibleType(type: targetDescTy)) |
1704 | return viewOp.emitWarning("Target descriptor type not converted to LLVM"), |
1705 | failure(); |
1706 | |
1707 | int64_t offset; |
1708 | SmallVector<int64_t, 4> strides; |
1709 | auto successStrides = viewMemRefType.getStridesAndOffset(strides, offset); |
1710 | if (failed(successStrides)) |
1711 | return viewOp.emitWarning("cannot cast to non-strided shape"), failure(); |
1712 | assert(offset == 0 && "expected offset to be 0"); |
1713 | |
1714 | // Target memref must be contiguous in memory (innermost stride is 1), or |
1715 | // empty (special case when at least one of the memref dimensions is 0). |
1716 | if (!strides.empty() && (strides.back() != 1 && strides.back() != 0)) |
1717 | return viewOp.emitWarning("cannot cast to non-contiguous shape"), |
1718 | failure(); |
1719 | |
1720 | // Create the descriptor. |
1721 | MemRefDescriptor sourceMemRef(adaptor.getSource()); |
1722 | auto targetMemRef = MemRefDescriptor::poison(builder&: rewriter, loc: loc, descriptorType: targetDescTy); |
1723 | |
1724 | // Field 1: Copy the allocated pointer, used for malloc/free. |
1725 | Value allocatedPtr = sourceMemRef.allocatedPtr(builder&: rewriter, loc: loc); |
1726 | auto srcMemRefType = cast<MemRefType>(viewOp.getSource().getType()); |
1727 | targetMemRef.setAllocatedPtr(rewriter, loc, allocatedPtr); |
1728 | |
1729 | // Field 2: Copy the actual aligned pointer to payload. |
1730 | Value alignedPtr = sourceMemRef.alignedPtr(builder&: rewriter, loc: loc); |
1731 | alignedPtr = rewriter.create<LLVM::GEPOp>( |
1732 | loc, alignedPtr.getType(), |
1733 | typeConverter->convertType(srcMemRefType.getElementType()), alignedPtr, |
1734 | adaptor.getByteShift()); |
1735 | |
1736 | targetMemRef.setAlignedPtr(rewriter, loc, alignedPtr); |
1737 | |
1738 | Type indexType = getIndexType(); |
1739 | // Field 3: The offset in the resulting type must be 0. This is |
1740 | // because of the type change: an offset on srcType* may not be |
1741 | // expressible as an offset on dstType*. |
1742 | targetMemRef.setOffset( |
1743 | rewriter, loc, |
1744 | createIndexAttrConstant(rewriter, loc, indexType, offset)); |
1745 | |
1746 | // Early exit for 0-D corner case. |
1747 | if (viewMemRefType.getRank() == 0) |
1748 | return rewriter.replaceOp(viewOp, {targetMemRef}), success(); |
1749 | |
1750 | // Fields 4 and 5: Update sizes and strides. |
1751 | Value stride = nullptr, nextSize = nullptr; |
1752 | for (int i = viewMemRefType.getRank() - 1; i >= 0; --i) { |
1753 | // Update size. |
1754 | Value size = getSize(rewriter, loc: loc, shape: viewMemRefType.getShape(), |
1755 | dynamicSizes: adaptor.getSizes(), idx: i, indexType); |
1756 | targetMemRef.setSize(rewriter, loc, i, size); |
1757 | // Update stride. |
1758 | stride = |
1759 | getStride(rewriter, loc: loc, strides, nextSize, runningStride: stride, idx: i, indexType); |
1760 | targetMemRef.setStride(rewriter, loc, i, stride); |
1761 | nextSize = size; |
1762 | } |
1763 | |
1764 | rewriter.replaceOp(viewOp, {targetMemRef}); |
1765 | return success(); |
1766 | } |
1767 | }; |
1768 | |
1769 | //===----------------------------------------------------------------------===// |
1770 | // AtomicRMWOpLowering |
1771 | //===----------------------------------------------------------------------===// |
1772 | |
1773 | /// Try to match the kind of a memref.atomic_rmw to determine whether to use a |
1774 | /// lowering to llvm.atomicrmw or fallback to llvm.cmpxchg. |
1775 | static std::optional<LLVM::AtomicBinOp> |
1776 | matchSimpleAtomicOp(memref::AtomicRMWOp atomicOp) { |
1777 | switch (atomicOp.getKind()) { |
1778 | case arith::AtomicRMWKind::addf: |
1779 | return LLVM::AtomicBinOp::fadd; |
1780 | case arith::AtomicRMWKind::addi: |
1781 | return LLVM::AtomicBinOp::add; |
1782 | case arith::AtomicRMWKind::assign: |
1783 | return LLVM::AtomicBinOp::xchg; |
1784 | case arith::AtomicRMWKind::maximumf: |
1785 | return LLVM::AtomicBinOp::fmax; |
1786 | case arith::AtomicRMWKind::maxs: |
1787 | return LLVM::AtomicBinOp::max; |
1788 | case arith::AtomicRMWKind::maxu: |
1789 | return LLVM::AtomicBinOp::umax; |
1790 | case arith::AtomicRMWKind::minimumf: |
1791 | return LLVM::AtomicBinOp::fmin; |
1792 | case arith::AtomicRMWKind::mins: |
1793 | return LLVM::AtomicBinOp::min; |
1794 | case arith::AtomicRMWKind::minu: |
1795 | return LLVM::AtomicBinOp::umin; |
1796 | case arith::AtomicRMWKind::ori: |
1797 | return LLVM::AtomicBinOp::_or; |
1798 | case arith::AtomicRMWKind::andi: |
1799 | return LLVM::AtomicBinOp::_and; |
1800 | default: |
1801 | return std::nullopt; |
1802 | } |
1803 | llvm_unreachable("Invalid AtomicRMWKind"); |
1804 | } |
1805 | |
1806 | struct AtomicRMWOpLowering : public LoadStoreOpLowering<memref::AtomicRMWOp> { |
1807 | using Base::Base; |
1808 | |
1809 | LogicalResult |
1810 | matchAndRewrite(memref::AtomicRMWOp atomicOp, OpAdaptor adaptor, |
1811 | ConversionPatternRewriter &rewriter) const override { |
1812 | auto maybeKind = matchSimpleAtomicOp(atomicOp); |
1813 | if (!maybeKind) |
1814 | return failure(); |
1815 | auto memRefType = atomicOp.getMemRefType(); |
1816 | SmallVector<int64_t> strides; |
1817 | int64_t offset; |
1818 | if (failed(memRefType.getStridesAndOffset(strides, offset))) |
1819 | return failure(); |
1820 | auto dataPtr = |
1821 | getStridedElementPtr(rewriter, atomicOp.getLoc(), memRefType, |
1822 | adaptor.getMemref(), adaptor.getIndices()); |
1823 | rewriter.replaceOpWithNewOp<LLVM::AtomicRMWOp>( |
1824 | atomicOp, *maybeKind, dataPtr, adaptor.getValue(), |
1825 | LLVM::AtomicOrdering::acq_rel); |
1826 | return success(); |
1827 | } |
1828 | }; |
1829 | |
1830 | /// Unpack the pointer returned by a memref.extract_aligned_pointer_as_index. |
1831 | class ConvertExtractAlignedPointerAsIndex |
1832 | : public ConvertOpToLLVMPattern<memref::ExtractAlignedPointerAsIndexOp> { |
1833 | public: |
1834 | using ConvertOpToLLVMPattern< |
1835 | memref::ExtractAlignedPointerAsIndexOp>::ConvertOpToLLVMPattern; |
1836 | |
1837 | LogicalResult |
1838 | matchAndRewrite(memref::ExtractAlignedPointerAsIndexOp extractOp, |
1839 | OpAdaptor adaptor, |
1840 | ConversionPatternRewriter &rewriter) const override { |
1841 | BaseMemRefType sourceTy = extractOp.getSource().getType(); |
1842 | |
1843 | Value alignedPtr; |
1844 | if (sourceTy.hasRank()) { |
1845 | MemRefDescriptor desc(adaptor.getSource()); |
1846 | alignedPtr = desc.alignedPtr(builder&: rewriter, loc: extractOp->getLoc()); |
1847 | } else { |
1848 | auto elementPtrTy = LLVM::LLVMPointerType::get( |
1849 | rewriter.getContext(), sourceTy.getMemorySpaceAsInt()); |
1850 | |
1851 | UnrankedMemRefDescriptor desc(adaptor.getSource()); |
1852 | Value descPtr = desc.memRefDescPtr(builder&: rewriter, loc: extractOp->getLoc()); |
1853 | |
1854 | alignedPtr = UnrankedMemRefDescriptor::alignedPtr( |
1855 | builder&: rewriter, loc: extractOp->getLoc(), typeConverter: *getTypeConverter(), memRefDescPtr: descPtr, |
1856 | elemPtrType: elementPtrTy); |
1857 | } |
1858 | |
1859 | rewriter.replaceOpWithNewOp<LLVM::PtrToIntOp>( |
1860 | extractOp, getTypeConverter()->getIndexType(), alignedPtr); |
1861 | return success(); |
1862 | } |
1863 | }; |
1864 | |
1865 | /// Materialize the MemRef descriptor represented by the results of |
1866 | /// ExtractStridedMetadataOp. |
1867 | class ExtractStridedMetadataOpLowering |
1868 | : public ConvertOpToLLVMPattern<memref::ExtractStridedMetadataOp> { |
1869 | public: |
1870 | using ConvertOpToLLVMPattern< |
1871 | memref::ExtractStridedMetadataOp>::ConvertOpToLLVMPattern; |
1872 | |
1873 | LogicalResult |
1874 | matchAndRewrite(memref::ExtractStridedMetadataOp extractStridedMetadataOp, |
1875 | OpAdaptor adaptor, |
1876 | ConversionPatternRewriter &rewriter) const override { |
1877 | |
1878 | if (!LLVM::isCompatibleType(type: adaptor.getOperands().front().getType())) |
1879 | return failure(); |
1880 | |
1881 | // Create the descriptor. |
1882 | MemRefDescriptor sourceMemRef(adaptor.getSource()); |
1883 | Location loc = extractStridedMetadataOp.getLoc(); |
1884 | Value source = extractStridedMetadataOp.getSource(); |
1885 | |
1886 | auto sourceMemRefType = cast<MemRefType>(source.getType()); |
1887 | int64_t rank = sourceMemRefType.getRank(); |
1888 | SmallVector<Value> results; |
1889 | results.reserve(N: 2 + rank * 2); |
1890 | |
1891 | // Base buffer. |
1892 | Value baseBuffer = sourceMemRef.allocatedPtr(builder&: rewriter, loc); |
1893 | Value alignedBuffer = sourceMemRef.alignedPtr(builder&: rewriter, loc); |
1894 | MemRefDescriptor dstMemRef = MemRefDescriptor::fromStaticShape( |
1895 | rewriter, loc, *getTypeConverter(), |
1896 | cast<MemRefType>(extractStridedMetadataOp.getBaseBuffer().getType()), |
1897 | baseBuffer, alignedBuffer); |
1898 | results.push_back(Elt: (Value)dstMemRef); |
1899 | |
1900 | // Offset. |
1901 | results.push_back(Elt: sourceMemRef.offset(builder&: rewriter, loc)); |
1902 | |
1903 | // Sizes. |
1904 | for (unsigned i = 0; i < rank; ++i) |
1905 | results.push_back(Elt: sourceMemRef.size(builder&: rewriter, loc, pos: i)); |
1906 | // Strides. |
1907 | for (unsigned i = 0; i < rank; ++i) |
1908 | results.push_back(Elt: sourceMemRef.stride(builder&: rewriter, loc, pos: i)); |
1909 | |
1910 | rewriter.replaceOp(extractStridedMetadataOp, results); |
1911 | return success(); |
1912 | } |
1913 | }; |
1914 | |
1915 | } // namespace |
1916 | |
1917 | void mlir::populateFinalizeMemRefToLLVMConversionPatterns( |
1918 | const LLVMTypeConverter &converter, RewritePatternSet &patterns) { |
1919 | // clang-format off |
1920 | patterns.add< |
1921 | AllocaOpLowering, |
1922 | AllocaScopeOpLowering, |
1923 | AtomicRMWOpLowering, |
1924 | AssumeAlignmentOpLowering, |
1925 | ConvertExtractAlignedPointerAsIndex, |
1926 | DimOpLowering, |
1927 | ExtractStridedMetadataOpLowering, |
1928 | GenericAtomicRMWOpLowering, |
1929 | GlobalMemrefOpLowering, |
1930 | GetGlobalMemrefOpLowering, |
1931 | LoadOpLowering, |
1932 | MemRefCastOpLowering, |
1933 | MemRefCopyOpLowering, |
1934 | MemorySpaceCastOpLowering, |
1935 | MemRefReinterpretCastOpLowering, |
1936 | MemRefReshapeOpLowering, |
1937 | PrefetchOpLowering, |
1938 | RankOpLowering, |
1939 | ReassociatingReshapeOpConversion<memref::ExpandShapeOp>, |
1940 | ReassociatingReshapeOpConversion<memref::CollapseShapeOp>, |
1941 | StoreOpLowering, |
1942 | SubViewOpLowering, |
1943 | TransposeOpLowering, |
1944 | ViewOpLowering>(converter); |
1945 | // clang-format on |
1946 | auto allocLowering = converter.getOptions().allocLowering; |
1947 | if (allocLowering == LowerToLLVMOptions::AllocLowering::AlignedAlloc) |
1948 | patterns.add<AlignedAllocOpLowering, DeallocOpLowering>(arg: converter); |
1949 | else if (allocLowering == LowerToLLVMOptions::AllocLowering::Malloc) |
1950 | patterns.add<AllocOpLowering, DeallocOpLowering>(arg: converter); |
1951 | } |
1952 | |
1953 | namespace { |
1954 | struct FinalizeMemRefToLLVMConversionPass |
1955 | : public impl::FinalizeMemRefToLLVMConversionPassBase< |
1956 | FinalizeMemRefToLLVMConversionPass> { |
1957 | using FinalizeMemRefToLLVMConversionPassBase:: |
1958 | FinalizeMemRefToLLVMConversionPassBase; |
1959 | |
1960 | void runOnOperation() override { |
1961 | Operation *op = getOperation(); |
1962 | const auto &dataLayoutAnalysis = getAnalysis<DataLayoutAnalysis>(); |
1963 | LowerToLLVMOptions options(&getContext(), |
1964 | dataLayoutAnalysis.getAtOrAbove(op)); |
1965 | options.allocLowering = |
1966 | (useAlignedAlloc ? LowerToLLVMOptions::AllocLowering::AlignedAlloc |
1967 | : LowerToLLVMOptions::AllocLowering::Malloc); |
1968 | |
1969 | options.useGenericFunctions = useGenericFunctions; |
1970 | |
1971 | if (indexBitwidth != kDeriveIndexBitwidthFromDataLayout) |
1972 | options.overrideIndexBitwidth(indexBitwidth); |
1973 | |
1974 | LLVMTypeConverter typeConverter(&getContext(), options, |
1975 | &dataLayoutAnalysis); |
1976 | RewritePatternSet patterns(&getContext()); |
1977 | populateFinalizeMemRefToLLVMConversionPatterns(converter: typeConverter, patterns); |
1978 | LLVMConversionTarget target(getContext()); |
1979 | target.addLegalOp<func::FuncOp>(); |
1980 | if (failed(applyPartialConversion(op, target, std::move(patterns)))) |
1981 | signalPassFailure(); |
1982 | } |
1983 | }; |
1984 | |
1985 | /// Implement the interface to convert MemRef to LLVM. |
1986 | struct MemRefToLLVMDialectInterface : public ConvertToLLVMPatternInterface { |
1987 | using ConvertToLLVMPatternInterface::ConvertToLLVMPatternInterface; |
1988 | void loadDependentDialects(MLIRContext *context) const final { |
1989 | context->loadDialect<LLVM::LLVMDialect>(); |
1990 | } |
1991 | |
1992 | /// Hook for derived dialect interface to provide conversion patterns |
1993 | /// and mark dialect legal for the conversion target. |
1994 | void populateConvertToLLVMConversionPatterns( |
1995 | ConversionTarget &target, LLVMTypeConverter &typeConverter, |
1996 | RewritePatternSet &patterns) const final { |
1997 | populateFinalizeMemRefToLLVMConversionPatterns(converter: typeConverter, patterns); |
1998 | } |
1999 | }; |
2000 | |
2001 | } // namespace |
2002 | |
2003 | void mlir::registerConvertMemRefToLLVMInterface(DialectRegistry ®istry) { |
2004 | registry.addExtension(extensionFn: +[](MLIRContext *ctx, memref::MemRefDialect *dialect) { |
2005 | dialect->addInterfaces<MemRefToLLVMDialectInterface>(); |
2006 | }); |
2007 | } |
2008 |
Definitions
- kNoWrapFlags
- isStaticStrideOrOffset
- getFreeFn
- getNotalignedAllocFn
- getAlignedAllocFn
- createAligned
- getMemRefEltSizeInBytes
- castAllocFuncResult
- AllocOpLowering
- matchAndRewrite
- getAlignment
- AlignedAllocOpLowering
- matchAndRewrite
- kMinAlignedAllocAlignment
- alignedAllocationGetAlignment
- isMemRefSizeMultipleOf
- AllocaOpLowering
- matchAndRewrite
- AllocaScopeOpLowering
- matchAndRewrite
- AssumeAlignmentOpLowering
- AssumeAlignmentOpLowering
- matchAndRewrite
- DeallocOpLowering
- DeallocOpLowering
- matchAndRewrite
- DimOpLowering
- matchAndRewrite
- extractSizeOfUnrankedMemRef
- getConstantDimIndex
- extractSizeOfRankedMemRef
- LoadStoreOpLowering
- GenericAtomicRMWOpLowering
- matchAndRewrite
- convertGlobalMemrefTypeToLLVM
- GlobalMemrefOpLowering
- matchAndRewrite
- GetGlobalMemrefOpLowering
- matchAndRewrite
- LoadOpLowering
- matchAndRewrite
- StoreOpLowering
- matchAndRewrite
- PrefetchOpLowering
- matchAndRewrite
- RankOpLowering
- matchAndRewrite
- MemRefCastOpLowering
- matchAndRewrite
- MemRefCopyOpLowering
- lowerToMemCopyIntrinsic
- lowerToMemCopyFunctionCall
- matchAndRewrite
- MemorySpaceCastOpLowering
- matchAndRewrite
- extractPointersAndOffset
- MemRefReinterpretCastOpLowering
- matchAndRewrite
- convertSourceMemRefToDescriptor
- MemRefReshapeOpLowering
- matchAndRewrite
- convertSourceMemRefToDescriptor
- ReassociatingReshapeOpConversion
- matchAndRewrite
- SubViewOpLowering
- matchAndRewrite
- TransposeOpLowering
- matchAndRewrite
- ViewOpLowering
- getSize
- getStride
- matchAndRewrite
- matchSimpleAtomicOp
- AtomicRMWOpLowering
- matchAndRewrite
- ConvertExtractAlignedPointerAsIndex
- matchAndRewrite
- ExtractStridedMetadataOpLowering
- matchAndRewrite
- populateFinalizeMemRefToLLVMConversionPatterns
- FinalizeMemRefToLLVMConversionPass
- runOnOperation
- MemRefToLLVMDialectInterface
- loadDependentDialects
- populateConvertToLLVMConversionPatterns
Update your C++ knowledge – Modern C++11/14/17 Training
Find out more