1 | //===- TosaToLinalg.cpp - Lowering Tosa to Linalg Dialect -----------------===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // These rewriters lower from the Tosa to the Linalg dialect. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "mlir/Conversion/TosaToLinalg/TosaToLinalg.h" |
14 | #include "mlir/Dialect/Arith/IR/Arith.h" |
15 | #include "mlir/Dialect/Arith/Utils/Utils.h" |
16 | #include "mlir/Dialect/Index/IR/IndexOps.h" |
17 | #include "mlir/Dialect/Linalg/IR/Linalg.h" |
18 | #include "mlir/Dialect/Math/IR/Math.h" |
19 | #include "mlir/Dialect/SCF/IR/SCF.h" |
20 | #include "mlir/Dialect/Tensor/IR/Tensor.h" |
21 | #include "mlir/Dialect/Tosa/IR/TosaOps.h" |
22 | #include "mlir/Dialect/Tosa/Utils/ConversionUtils.h" |
23 | #include "mlir/Dialect/Utils/ReshapeOpsUtils.h" |
24 | #include "mlir/Dialect/Utils/StaticValueUtils.h" |
25 | #include "mlir/IR/ImplicitLocOpBuilder.h" |
26 | #include "mlir/IR/Matchers.h" |
27 | #include "mlir/IR/OpDefinition.h" |
28 | #include "mlir/IR/PatternMatch.h" |
29 | #include "mlir/Transforms/DialectConversion.h" |
30 | #include "mlir/Transforms/GreedyPatternRewriteDriver.h" |
31 | #include "llvm/ADT/STLExtras.h" |
32 | #include "llvm/ADT/Sequence.h" |
33 | |
34 | #include <numeric> |
35 | #include <type_traits> |
36 | |
37 | using namespace mlir; |
38 | using namespace mlir::tosa; |
39 | |
40 | // Helper function to materialize the semantically correct compare and select |
41 | // operations given a binary operation with a specific NaN propagation mode. |
42 | // |
43 | // In the case of "PROPAGATE" semantics no compare and selection is required and |
44 | // this function does nothing. |
45 | // |
46 | // In the case of "IGNORE" semantics this function materializes a comparison of |
47 | // the current operands to the op which will return true for any NaN |
48 | // argument and then selects between the non-NaN operation argument and the |
49 | // calculated result based on whether the lhs or rhs is NaN or not. In pseudo |
50 | // code: |
51 | // |
52 | // In the case that the op is operating on non floating point types we ignore |
53 | // the attribute completely, this is consistent with the TOSA spec which has |
54 | // the following wording: "This attribute is ignored by non floating-point |
55 | // types." |
56 | // |
57 | // binary<op>(lhs, rhs): |
58 | // result = op(lhs, rhs) |
59 | // if lhs == NaN return rhs |
60 | // if rhs == NaN return lhs |
61 | // return result |
62 | template <typename OpTy> |
63 | static Value |
64 | materializeBinaryNanCheckIfRequired(OpTy op, PatternRewriter &rewriter, |
65 | Value lhs, Value rhs, Value result) { |
66 | // NaN propagation has no meaning for non floating point types. |
67 | if (!isa<FloatType>(Val: getElementTypeOrSelf(val: lhs))) |
68 | return result; |
69 | |
70 | auto nanMode = op.getNanMode(); |
71 | if (nanMode == "PROPAGATE") |
72 | return result; |
73 | |
74 | // Unordered comparison of NaN against itself will always return true. |
75 | Value lhsIsNaN = rewriter.create<arith::CmpFOp>( |
76 | op.getLoc(), arith::CmpFPredicate::UNO, lhs, lhs); |
77 | Value rhsIsNaN = rewriter.create<arith::CmpFOp>( |
78 | op.getLoc(), arith::CmpFPredicate::UNO, rhs, rhs); |
79 | Value rhsOrResult = |
80 | rewriter.create<arith::SelectOp>(op.getLoc(), lhsIsNaN, rhs, result); |
81 | return rewriter.create<arith::SelectOp>(op.getLoc(), rhsIsNaN, lhs, |
82 | rhsOrResult); |
83 | } |
84 | |
85 | static Value createLinalgBodyCalculationForElementwiseOp( |
86 | Operation *op, ValueRange args, ArrayRef<Type> resultTypes, |
87 | ConversionPatternRewriter &rewriter) { |
88 | Location loc = op->getLoc(); |
89 | auto elementTy = |
90 | cast<ShapedType>(op->getOperand(0).getType()).getElementType(); |
91 | |
92 | // tosa::AbsOp |
93 | if (isa<tosa::AbsOp>(op) && isa<FloatType>(elementTy)) |
94 | return rewriter.create<math::AbsFOp>(loc, resultTypes, args); |
95 | |
96 | if (isa<tosa::AbsOp>(op) && isa<IntegerType>(elementTy)) { |
97 | auto zero = rewriter.create<arith::ConstantOp>( |
98 | loc, rewriter.getZeroAttr(elementTy)); |
99 | auto neg = rewriter.create<arith::SubIOp>(loc, zero, args[0]); |
100 | return rewriter.create<arith::MaxSIOp>(loc, args[0], neg); |
101 | } |
102 | |
103 | // tosa::AddOp |
104 | if (isa<tosa::AddOp>(op) && isa<FloatType>(elementTy)) |
105 | return rewriter.create<arith::AddFOp>(loc, resultTypes, args); |
106 | |
107 | if (isa<tosa::AddOp>(op) && isa<IntegerType>(elementTy)) |
108 | return rewriter.create<arith::AddIOp>(loc, resultTypes, args); |
109 | |
110 | // tosa::SubOp |
111 | if (isa<tosa::SubOp>(op) && isa<FloatType>(elementTy)) |
112 | return rewriter.create<arith::SubFOp>(loc, resultTypes, args); |
113 | |
114 | if (isa<tosa::SubOp>(op) && isa<IntegerType>(elementTy)) |
115 | return rewriter.create<arith::SubIOp>(loc, resultTypes, args); |
116 | |
117 | // tosa::IntDivOp |
118 | if (isa<tosa::IntDivOp>(op) && isa<IntegerType>(elementTy)) |
119 | return rewriter.create<arith::DivSIOp>(loc, resultTypes, args); |
120 | |
121 | // tosa::ReciprocalOp |
122 | if (isa<tosa::ReciprocalOp>(op) && isa<FloatType>(elementTy)) { |
123 | auto one = |
124 | rewriter.create<arith::ConstantOp>(loc, FloatAttr::get(elementTy, 1)); |
125 | return rewriter.create<arith::DivFOp>(loc, resultTypes, one, args[0]); |
126 | } |
127 | |
128 | // tosa::MulOp |
129 | if (isa<tosa::MulOp>(op)) { |
130 | auto shiftVal = cast<tosa::MulOp>(op).getShift(); |
131 | DenseElementsAttr shiftElem; |
132 | if (!matchPattern(shiftVal, m_Constant(bind_value: &shiftElem))) { |
133 | (void)rewriter.notifyMatchFailure(arg&: op, msg: "shift value of mul not found"); |
134 | return nullptr; |
135 | } |
136 | |
137 | int32_t shift = shiftElem.getValues<IntegerAttr>()[0].getInt(); |
138 | |
139 | if (isa<FloatType>(elementTy)) { |
140 | if (shift != 0) { |
141 | (void)rewriter.notifyMatchFailure(arg&: op, |
142 | msg: "Cannot have shift value for float"); |
143 | return nullptr; |
144 | } |
145 | return rewriter.create<arith::MulFOp>(loc, resultTypes, args[0], args[1]); |
146 | } |
147 | |
148 | if (isa<IntegerType>(elementTy)) { |
149 | Value a = args[0]; |
150 | Value b = args[1]; |
151 | |
152 | if (shift > 0) { |
153 | auto shiftConst = |
154 | rewriter.create<arith::ConstantIntOp>(location: loc, args&: shift, /*bitwidth=*/args: 8); |
155 | if (!a.getType().isInteger(32)) |
156 | a = rewriter.create<arith::ExtSIOp>(loc, rewriter.getI32Type(), a); |
157 | |
158 | if (!b.getType().isInteger(32)) |
159 | b = rewriter.create<arith::ExtSIOp>(loc, rewriter.getI32Type(), b); |
160 | |
161 | auto result = rewriter.create<tosa::ApplyScaleOp>( |
162 | loc, rewriter.getI32Type(), a, b, shiftConst, |
163 | rewriter.getStringAttr("SINGLE_ROUND")); |
164 | |
165 | if (elementTy.isInteger(32)) |
166 | return result; |
167 | |
168 | return rewriter.create<arith::TruncIOp>(loc, elementTy, result); |
169 | } |
170 | |
171 | int aWidth = a.getType().getIntOrFloatBitWidth(); |
172 | int bWidth = b.getType().getIntOrFloatBitWidth(); |
173 | int cWidth = resultTypes[0].getIntOrFloatBitWidth(); |
174 | |
175 | if (aWidth < cWidth) |
176 | a = rewriter.create<arith::ExtSIOp>(loc, resultTypes[0], a); |
177 | if (bWidth < cWidth) |
178 | b = rewriter.create<arith::ExtSIOp>(loc, resultTypes[0], b); |
179 | |
180 | return rewriter.create<arith::MulIOp>(loc, resultTypes, a, b); |
181 | } |
182 | } |
183 | |
184 | // tosa::NegateOp |
185 | if (isa<tosa::NegateOp>(op)) { |
186 | auto negate = cast<tosa::NegateOp>(op); |
187 | |
188 | FailureOr<int64_t> maybeInZp = negate.getInput1ZeroPoint(); |
189 | if (failed(Result: maybeInZp)) { |
190 | (void)rewriter.notifyMatchFailure( |
191 | arg&: op, msg: "input1 zero point cannot be statically determined"); |
192 | return nullptr; |
193 | } |
194 | |
195 | FailureOr<int64_t> maybeOutZp = negate.getOutputZeroPoint(); |
196 | if (failed(Result: maybeOutZp)) { |
197 | (void)rewriter.notifyMatchFailure( |
198 | arg&: op, msg: "output zero point cannot be statically determined"); |
199 | return nullptr; |
200 | } |
201 | |
202 | int64_t inZp = *maybeInZp; |
203 | int64_t outZp = *maybeOutZp; |
204 | |
205 | if (isa<FloatType>(elementTy)) |
206 | return rewriter.create<arith::NegFOp>(loc, resultTypes, args[0]); |
207 | |
208 | if (isa<IntegerType>(elementTy)) { |
209 | if (!inZp && !outZp) { |
210 | auto constant = rewriter.create<arith::ConstantOp>( |
211 | loc, IntegerAttr::get(elementTy, 0)); |
212 | return rewriter.create<arith::SubIOp>(loc, resultTypes, constant, |
213 | args[0]); |
214 | } |
215 | |
216 | // Compute the maximum value that can occur in the intermediate buffer. |
217 | const int32_t inputBitWidth = elementTy.getIntOrFloatBitWidth(); |
218 | const int64_t zpAdd = inZp + outZp; |
219 | const int64_t maxValue = |
220 | APInt::getSignedMaxValue(numBits: inputBitWidth).getSExtValue() + |
221 | std::abs(i: zpAdd) + 1; |
222 | |
223 | // Convert that maximum value into the maximum bitwidth needed to |
224 | // represent it. We assume 48-bit numbers may be supported further in |
225 | // the pipeline. |
226 | int intermediateBitWidth = 64; |
227 | if (maxValue <= APInt::getSignedMaxValue(numBits: 16).getSExtValue()) { |
228 | intermediateBitWidth = 16; |
229 | } else if (maxValue <= APInt::getSignedMaxValue(numBits: 32).getSExtValue()) { |
230 | intermediateBitWidth = 32; |
231 | } else if (maxValue <= APInt::getSignedMaxValue(numBits: 48).getSExtValue()) { |
232 | intermediateBitWidth = 48; |
233 | } |
234 | |
235 | Type intermediateType = rewriter.getIntegerType(intermediateBitWidth); |
236 | Value zpAddValue = rewriter.create<arith::ConstantOp>( |
237 | loc, rewriter.getIntegerAttr(intermediateType, zpAdd)); |
238 | |
239 | // The negation can be applied by doing: |
240 | // outputValue = inZp + outZp - inputValue |
241 | auto ext = |
242 | rewriter.create<arith::ExtSIOp>(loc, intermediateType, args[0]); |
243 | auto sub = rewriter.create<arith::SubIOp>(loc, zpAddValue, ext); |
244 | |
245 | // Clamp to the negation range. |
246 | Value min = rewriter.create<arith::ConstantIntOp>( |
247 | location: loc, args: APInt::getSignedMinValue(numBits: inputBitWidth).getSExtValue(), |
248 | args&: intermediateType); |
249 | Value max = rewriter.create<arith::ConstantIntOp>( |
250 | location: loc, args: APInt::getSignedMaxValue(numBits: inputBitWidth).getSExtValue(), |
251 | args&: intermediateType); |
252 | auto clamp = clampIntHelper(loc, sub, min, max, rewriter, false); |
253 | |
254 | // Truncate to the final value. |
255 | return rewriter.create<arith::TruncIOp>(loc, elementTy, clamp); |
256 | } |
257 | } |
258 | |
259 | // tosa::BitwiseAndOp |
260 | if (isa<tosa::BitwiseAndOp>(op) && isa<IntegerType>(elementTy)) |
261 | return rewriter.create<arith::AndIOp>(loc, resultTypes, args); |
262 | |
263 | // tosa::BitwiseOrOp |
264 | if (isa<tosa::BitwiseOrOp>(op) && isa<IntegerType>(elementTy)) |
265 | return rewriter.create<arith::OrIOp>(loc, resultTypes, args); |
266 | |
267 | // tosa::BitwiseNotOp |
268 | if (isa<tosa::BitwiseNotOp>(op) && isa<IntegerType>(elementTy)) { |
269 | auto allOnesAttr = rewriter.getIntegerAttr( |
270 | elementTy, APInt::getAllOnes(numBits: elementTy.getIntOrFloatBitWidth())); |
271 | auto allOnes = rewriter.create<arith::ConstantOp>(loc, allOnesAttr); |
272 | return rewriter.create<arith::XOrIOp>(loc, resultTypes, args[0], allOnes); |
273 | } |
274 | |
275 | // tosa::BitwiseXOrOp |
276 | if (isa<tosa::BitwiseXorOp>(op) && isa<IntegerType>(elementTy)) |
277 | return rewriter.create<arith::XOrIOp>(loc, resultTypes, args); |
278 | |
279 | // tosa::LogicalLeftShiftOp |
280 | if (isa<tosa::LogicalLeftShiftOp>(op) && isa<IntegerType>(elementTy)) |
281 | return rewriter.create<arith::ShLIOp>(loc, resultTypes, args); |
282 | |
283 | // tosa::LogicalRightShiftOp |
284 | if (isa<tosa::LogicalRightShiftOp>(op) && isa<IntegerType>(elementTy)) |
285 | return rewriter.create<arith::ShRUIOp>(loc, resultTypes, args); |
286 | |
287 | // tosa::ArithmeticRightShiftOp |
288 | if (isa<tosa::ArithmeticRightShiftOp>(op) && isa<IntegerType>(elementTy)) { |
289 | auto result = rewriter.create<arith::ShRSIOp>(loc, resultTypes, args); |
290 | auto round = cast<BoolAttr>(Val: op->getAttr(name: "round")).getValue(); |
291 | if (!round) { |
292 | return result; |
293 | } |
294 | |
295 | Type i1Ty = IntegerType::get(rewriter.getContext(), /*width=*/1); |
296 | auto one = |
297 | rewriter.create<arith::ConstantOp>(loc, IntegerAttr::get(elementTy, 1)); |
298 | auto zero = |
299 | rewriter.create<arith::ConstantOp>(loc, IntegerAttr::get(elementTy, 0)); |
300 | auto i1one = |
301 | rewriter.create<arith::ConstantOp>(loc, IntegerAttr::get(i1Ty, 1)); |
302 | |
303 | // Checking that input2 != 0 |
304 | auto shiftValueGreaterThanZero = rewriter.create<arith::CmpIOp>( |
305 | loc, arith::CmpIPredicate::sgt, args[1], zero); |
306 | |
307 | // Checking for the last bit of input1 to be 1 |
308 | auto subtract = |
309 | rewriter.create<arith::SubIOp>(loc, resultTypes, args[1], one); |
310 | auto shifted = |
311 | rewriter.create<arith::ShRSIOp>(loc, resultTypes, args[0], subtract) |
312 | ->getResults(); |
313 | auto truncated = |
314 | rewriter.create<arith::TruncIOp>(loc, i1Ty, shifted, std::nullopt); |
315 | auto isInputOdd = |
316 | rewriter.create<arith::AndIOp>(loc, i1Ty, truncated, i1one); |
317 | |
318 | auto shouldRound = rewriter.create<arith::AndIOp>( |
319 | loc, i1Ty, shiftValueGreaterThanZero, isInputOdd); |
320 | auto extended = |
321 | rewriter.create<arith::ExtUIOp>(loc, resultTypes, shouldRound); |
322 | return rewriter.create<arith::AddIOp>(loc, resultTypes, result, extended); |
323 | } |
324 | |
325 | // tosa::ClzOp |
326 | if (isa<tosa::ClzOp>(op) && isa<IntegerType>(elementTy)) { |
327 | return rewriter.create<math::CountLeadingZerosOp>(loc, elementTy, args[0]); |
328 | } |
329 | |
330 | // tosa::LogicalAnd |
331 | if (isa<tosa::LogicalAndOp>(op) && elementTy.isInteger(1)) |
332 | return rewriter.create<arith::AndIOp>(loc, resultTypes, args); |
333 | |
334 | // tosa::LogicalNot |
335 | if (isa<tosa::LogicalNotOp>(op) && elementTy.isInteger(1)) { |
336 | auto one = rewriter.create<arith::ConstantOp>( |
337 | loc, rewriter.getIntegerAttr(elementTy, 1)); |
338 | return rewriter.create<arith::XOrIOp>(loc, resultTypes, args[0], one); |
339 | } |
340 | |
341 | // tosa::LogicalOr |
342 | if (isa<tosa::LogicalOrOp>(op) && elementTy.isInteger(1)) |
343 | return rewriter.create<arith::OrIOp>(loc, resultTypes, args); |
344 | |
345 | // tosa::LogicalXor |
346 | if (isa<tosa::LogicalXorOp>(op) && elementTy.isInteger(1)) |
347 | return rewriter.create<arith::XOrIOp>(loc, resultTypes, args); |
348 | |
349 | // tosa::PowOp |
350 | if (isa<tosa::PowOp>(op) && isa<FloatType>(elementTy)) |
351 | return rewriter.create<mlir::math::PowFOp>(loc, resultTypes, args); |
352 | |
353 | // tosa::RsqrtOp |
354 | if (isa<tosa::RsqrtOp>(op) && isa<FloatType>(elementTy)) |
355 | return rewriter.create<mlir::math::RsqrtOp>(loc, resultTypes, args); |
356 | |
357 | // tosa::LogOp |
358 | if (isa<tosa::LogOp>(op) && isa<FloatType>(elementTy)) |
359 | return rewriter.create<mlir::math::LogOp>(loc, resultTypes, args); |
360 | |
361 | // tosa::ExpOp |
362 | if (isa<tosa::ExpOp>(op) && isa<FloatType>(elementTy)) |
363 | return rewriter.create<mlir::math::ExpOp>(loc, resultTypes, args); |
364 | |
365 | // tosa::SinOp |
366 | if (isa<tosa::SinOp>(op) && isa<FloatType>(elementTy)) |
367 | return rewriter.create<mlir::math::SinOp>(loc, resultTypes, args); |
368 | |
369 | // tosa::CosOp |
370 | if (isa<tosa::CosOp>(op) && isa<FloatType>(elementTy)) |
371 | return rewriter.create<mlir::math::CosOp>(loc, resultTypes, args); |
372 | |
373 | // tosa::TanhOp |
374 | if (isa<tosa::TanhOp>(op) && isa<FloatType>(elementTy)) |
375 | return rewriter.create<mlir::math::TanhOp>(loc, resultTypes, args); |
376 | |
377 | // tosa::ErfOp |
378 | if (isa<tosa::ErfOp>(op) && llvm::isa<FloatType>(elementTy)) |
379 | return rewriter.create<mlir::math::ErfOp>(loc, resultTypes, args); |
380 | |
381 | // tosa::GreaterOp |
382 | if (isa<tosa::GreaterOp>(op) && isa<FloatType>(elementTy)) |
383 | return rewriter.create<arith::CmpFOp>(loc, arith::CmpFPredicate::OGT, |
384 | args[0], args[1]); |
385 | |
386 | if (isa<tosa::GreaterOp>(op) && elementTy.isSignlessInteger()) |
387 | return rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::sgt, |
388 | args[0], args[1]); |
389 | |
390 | // tosa::GreaterEqualOp |
391 | if (isa<tosa::GreaterEqualOp>(op) && isa<FloatType>(elementTy)) |
392 | return rewriter.create<arith::CmpFOp>(loc, arith::CmpFPredicate::OGE, |
393 | args[0], args[1]); |
394 | |
395 | if (isa<tosa::GreaterEqualOp>(op) && elementTy.isSignlessInteger()) |
396 | return rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::sge, |
397 | args[0], args[1]); |
398 | |
399 | // tosa::EqualOp |
400 | if (isa<tosa::EqualOp>(op) && isa<FloatType>(elementTy)) |
401 | return rewriter.create<arith::CmpFOp>(loc, arith::CmpFPredicate::OEQ, |
402 | args[0], args[1]); |
403 | |
404 | if (isa<tosa::EqualOp>(op) && elementTy.isSignlessInteger()) |
405 | return rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq, |
406 | args[0], args[1]); |
407 | |
408 | // tosa::SelectOp |
409 | if (isa<tosa::SelectOp>(op)) { |
410 | elementTy = cast<ShapedType>(op->getOperand(1).getType()).getElementType(); |
411 | if (isa<FloatType>(elementTy) || isa<IntegerType>(elementTy)) |
412 | return rewriter.create<arith::SelectOp>(loc, args[0], args[1], args[2]); |
413 | } |
414 | |
415 | // tosa::MaximumOp |
416 | if (isa<tosa::MaximumOp>(op) && isa<FloatType>(elementTy)) { |
417 | auto max = rewriter.create<arith::MaximumFOp>(loc, args[0], args[1]); |
418 | return materializeBinaryNanCheckIfRequired(llvm::cast<tosa::MaximumOp>(op), |
419 | rewriter, args[0], args[1], max); |
420 | } |
421 | |
422 | if (isa<tosa::MaximumOp>(op) && elementTy.isSignlessInteger()) { |
423 | return rewriter.create<arith::MaxSIOp>(loc, args[0], args[1]); |
424 | } |
425 | |
426 | // tosa::MinimumOp |
427 | if (isa<tosa::MinimumOp>(op) && isa<FloatType>(elementTy)) { |
428 | auto min = rewriter.create<arith::MinimumFOp>(loc, args[0], args[1]); |
429 | return materializeBinaryNanCheckIfRequired(llvm::cast<tosa::MinimumOp>(op), |
430 | rewriter, args[0], args[1], min); |
431 | } |
432 | |
433 | if (isa<tosa::MinimumOp>(op) && elementTy.isSignlessInteger()) { |
434 | return rewriter.create<arith::MinSIOp>(loc, args[0], args[1]); |
435 | } |
436 | |
437 | // tosa::CeilOp |
438 | if (isa<tosa::CeilOp>(op) && isa<FloatType>(elementTy)) |
439 | return rewriter.create<math::CeilOp>(loc, resultTypes, args); |
440 | |
441 | // tosa::FloorOp |
442 | if (isa<tosa::FloorOp>(op) && isa<FloatType>(elementTy)) |
443 | return rewriter.create<math::FloorOp>(loc, resultTypes, args); |
444 | |
445 | // tosa::ClampOp |
446 | if (isa<tosa::ClampOp>(op) && isa<FloatType>(elementTy)) { |
447 | bool losesInfo = false; |
448 | APFloat minApf = cast<FloatAttr>(op->getAttr(name: "min_val")).getValue(); |
449 | APFloat maxApf = cast<FloatAttr>(op->getAttr(name: "max_val")).getValue(); |
450 | minApf.convert(ToSemantics: cast<FloatType>(elementTy).getFloatSemantics(), |
451 | RM: APFloat::rmNearestTiesToEven, losesInfo: &losesInfo); |
452 | maxApf.convert(ToSemantics: cast<FloatType>(elementTy).getFloatSemantics(), |
453 | RM: APFloat::rmNearestTiesToEven, losesInfo: &losesInfo); |
454 | auto min = rewriter.create<arith::ConstantOp>( |
455 | loc, elementTy, rewriter.getFloatAttr(elementTy, minApf)); |
456 | auto max = rewriter.create<arith::ConstantOp>( |
457 | loc, elementTy, rewriter.getFloatAttr(elementTy, maxApf)); |
458 | auto result = clampFloatHelper(loc, args[0], min, max, rewriter); |
459 | |
460 | auto clampOp = llvm::cast<tosa::ClampOp>(op); |
461 | const auto nanMode = clampOp.getNanMode(); |
462 | |
463 | // NaN propagation has no meaning for non floating point types. |
464 | if (!isa<FloatType>(elementTy)) |
465 | return result; |
466 | |
467 | // In the case of "PROPAGATE" semantics no compare and selection is |
468 | // required. |
469 | if (nanMode == "PROPAGATE") |
470 | return result; |
471 | |
472 | // In the case of "IGNORE" semantics materialize a comparison |
473 | // of the current operand to the reduction which will return true for a NaN |
474 | // argument and then selects between the initial reduction value and the |
475 | // calculated result based on whether the argument is NaN or not. In pseudo |
476 | // code: |
477 | // |
478 | // reduce<op>(x, init): |
479 | // result = op(init, x) |
480 | // return init if x == NaN else result |
481 | |
482 | // Unordered comparison of NaN against itself will always return true. |
483 | Value isNaN = rewriter.create<arith::CmpFOp>( |
484 | op->getLoc(), arith::CmpFPredicate::UNO, args[0], args[0]); |
485 | // TOSA specifies that in "ignore" NaN mode the result is "min" if the input |
486 | // is NaN. |
487 | return rewriter.create<arith::SelectOp>(op->getLoc(), isNaN, min, result); |
488 | } |
489 | |
490 | if (isa<tosa::ClampOp>(op) && isa<IntegerType>(elementTy)) { |
491 | auto intTy = cast<IntegerType>(elementTy); |
492 | int64_t min = |
493 | cast<IntegerAttr>(op->getAttr(name: "min_val")).getValue().getSExtValue(); |
494 | int64_t max = |
495 | cast<IntegerAttr>(op->getAttr(name: "max_val")).getValue().getSExtValue(); |
496 | |
497 | int64_t minRepresentable = std::numeric_limits<int64_t>::min(); |
498 | int64_t maxRepresentable = std::numeric_limits<int64_t>::max(); |
499 | if (intTy.isUnsignedInteger()) { |
500 | minRepresentable = 0; |
501 | if (intTy.getIntOrFloatBitWidth() <= 63) { |
502 | maxRepresentable = |
503 | (int64_t)APInt::getMaxValue(numBits: intTy.getIntOrFloatBitWidth()) |
504 | .getZExtValue(); |
505 | } |
506 | } else if (intTy.getIntOrFloatBitWidth() <= 64) { |
507 | // Ensure that min & max fit into signed n-bit constants. |
508 | minRepresentable = APInt::getSignedMinValue(numBits: intTy.getIntOrFloatBitWidth()) |
509 | .getSExtValue(); |
510 | maxRepresentable = APInt::getSignedMaxValue(numBits: intTy.getIntOrFloatBitWidth()) |
511 | .getSExtValue(); |
512 | } |
513 | // Ensure that the bounds are representable as n-bit signed/unsigned |
514 | // integers. |
515 | min = std::max(a: min, b: minRepresentable); |
516 | max = std::max(a: max, b: minRepresentable); |
517 | min = std::min(a: min, b: maxRepresentable); |
518 | max = std::min(a: max, b: maxRepresentable); |
519 | |
520 | auto minVal = rewriter.create<arith::ConstantIntOp>( |
521 | loc, min, intTy.getIntOrFloatBitWidth()); |
522 | auto maxVal = rewriter.create<arith::ConstantIntOp>( |
523 | loc, max, intTy.getIntOrFloatBitWidth()); |
524 | return clampIntHelper(loc, args[0], minVal, maxVal, rewriter, |
525 | intTy.isUnsignedInteger()); |
526 | } |
527 | |
528 | // tosa::SigmoidOp |
529 | if (isa<tosa::SigmoidOp>(op) && isa<FloatType>(elementTy)) { |
530 | auto one = |
531 | rewriter.create<arith::ConstantOp>(loc, FloatAttr::get(elementTy, 1)); |
532 | auto negate = rewriter.create<arith::NegFOp>(loc, resultTypes, args[0]); |
533 | auto exp = rewriter.create<mlir::math::ExpOp>(loc, resultTypes, negate); |
534 | auto added = rewriter.create<arith::AddFOp>(loc, resultTypes, exp, one); |
535 | return rewriter.create<arith::DivFOp>(loc, resultTypes, one, added); |
536 | } |
537 | |
538 | // tosa::CastOp |
539 | if (isa<tosa::CastOp>(op)) { |
540 | Type srcTy = elementTy; |
541 | Type dstTy = resultTypes.front(); |
542 | if (!srcTy.isIntOrFloat() || !dstTy.isIntOrFloat()) { |
543 | (void)rewriter.notifyMatchFailure(arg&: op, msg: "unsupported type"); |
544 | return nullptr; |
545 | } |
546 | |
547 | bool bitExtend = |
548 | srcTy.getIntOrFloatBitWidth() < dstTy.getIntOrFloatBitWidth(); |
549 | |
550 | if (srcTy == dstTy) |
551 | return args.front(); |
552 | |
553 | if (isa<FloatType>(srcTy) && isa<FloatType>(dstTy) && bitExtend) |
554 | return rewriter.create<arith::ExtFOp>(loc, resultTypes, args, |
555 | std::nullopt); |
556 | |
557 | if (isa<FloatType>(srcTy) && isa<FloatType>(dstTy) && !bitExtend) |
558 | return rewriter.create<arith::TruncFOp>(loc, resultTypes, args, |
559 | std::nullopt); |
560 | |
561 | // 1-bit integers need to be treated as signless. |
562 | if (srcTy.isInteger(1) && arith::UIToFPOp::areCastCompatible(srcTy, dstTy)) |
563 | return rewriter.create<arith::UIToFPOp>(loc, resultTypes, args, |
564 | std::nullopt); |
565 | |
566 | if (srcTy.isInteger(1) && isa<IntegerType>(dstTy) && bitExtend) |
567 | return rewriter.create<arith::ExtUIOp>(loc, resultTypes, args, |
568 | std::nullopt); |
569 | |
570 | // Unsigned integers need an unrealized cast so that they can be passed |
571 | // to UIToFP. |
572 | if (srcTy.isUnsignedInteger() && isa<FloatType>(Val: dstTy)) { |
573 | auto unrealizedCast = |
574 | rewriter |
575 | .create<UnrealizedConversionCastOp>( |
576 | loc, rewriter.getIntegerType(srcTy.getIntOrFloatBitWidth()), |
577 | args[0]) |
578 | .getResult(0); |
579 | return rewriter.create<arith::UIToFPOp>(loc, resultTypes[0], |
580 | unrealizedCast); |
581 | } |
582 | |
583 | // All other si-to-fp conversions should be handled by SIToFP. |
584 | if (arith::SIToFPOp::areCastCompatible(srcTy, dstTy)) |
585 | return rewriter.create<arith::SIToFPOp>(loc, resultTypes, args, |
586 | std::nullopt); |
587 | |
588 | // Casting to boolean, floats need to only be checked as not-equal to zero. |
589 | if (isa<FloatType>(Val: srcTy) && dstTy.isInteger(width: 1)) { |
590 | Value zero = rewriter.create<arith::ConstantOp>( |
591 | loc, rewriter.getFloatAttr(srcTy, 0.0)); |
592 | return rewriter.create<arith::CmpFOp>(loc, arith::CmpFPredicate::UNE, |
593 | args.front(), zero); |
594 | } |
595 | |
596 | if (arith::FPToSIOp::areCastCompatible(srcTy, dstTy)) { |
597 | auto rounded = rewriter.create<math::RoundEvenOp>(loc, args[0]); |
598 | |
599 | const auto &fltSemantics = cast<FloatType>(srcTy).getFloatSemantics(); |
600 | // Check whether neither int min nor int max can be represented in the |
601 | // input floating-point type due to too short exponent range. |
602 | if (static_cast<int>(dstTy.getIntOrFloatBitWidth()) - 1 > |
603 | APFloat::semanticsMaxExponent(fltSemantics)) { |
604 | // Use cmp + select to replace infinites by int min / int max. Other |
605 | // integral values can be represented in the integer space. |
606 | auto conv = rewriter.create<arith::FPToSIOp>(loc, dstTy, rounded); |
607 | auto posInf = rewriter.create<arith::ConstantOp>( |
608 | loc, rewriter.getFloatAttr(getElementTypeOrSelf(srcTy), |
609 | APFloat::getInf(fltSemantics))); |
610 | auto negInf = rewriter.create<arith::ConstantOp>( |
611 | loc, rewriter.getFloatAttr( |
612 | getElementTypeOrSelf(srcTy), |
613 | APFloat::getInf(fltSemantics, /*Negative=*/true))); |
614 | auto overflow = rewriter.create<arith::CmpFOp>( |
615 | loc, arith::CmpFPredicate::UEQ, rounded, posInf); |
616 | auto underflow = rewriter.create<arith::CmpFOp>( |
617 | loc, arith::CmpFPredicate::UEQ, rounded, negInf); |
618 | auto intMin = rewriter.create<arith::ConstantOp>( |
619 | loc, rewriter.getIntegerAttr( |
620 | getElementTypeOrSelf(dstTy), |
621 | APInt::getSignedMinValue(dstTy.getIntOrFloatBitWidth()))); |
622 | auto intMax = rewriter.create<arith::ConstantOp>( |
623 | loc, rewriter.getIntegerAttr( |
624 | getElementTypeOrSelf(dstTy), |
625 | APInt::getSignedMaxValue(dstTy.getIntOrFloatBitWidth()))); |
626 | auto maxClamped = |
627 | rewriter.create<arith::SelectOp>(loc, overflow, intMax, conv); |
628 | return rewriter.create<arith::SelectOp>(loc, underflow, intMin, |
629 | maxClamped); |
630 | } |
631 | |
632 | auto intMinFP = rewriter.create<arith::ConstantOp>( |
633 | loc, rewriter.getFloatAttr( |
634 | getElementTypeOrSelf(srcTy), |
635 | APInt::getSignedMinValue(dstTy.getIntOrFloatBitWidth()) |
636 | .getSExtValue())); |
637 | |
638 | // Check whether the mantissa has enough bits to represent int max. |
639 | if (cast<FloatType>(srcTy).getFPMantissaWidth() >= |
640 | dstTy.getIntOrFloatBitWidth() - 1) { |
641 | // Int min can also be represented since it is a power of two and thus |
642 | // consists of a single leading bit. Therefore we can clamp the input |
643 | // in the floating-point domain. |
644 | |
645 | auto intMaxFP = rewriter.create<arith::ConstantOp>( |
646 | loc, rewriter.getFloatAttr( |
647 | getElementTypeOrSelf(srcTy), |
648 | APInt::getSignedMaxValue(dstTy.getIntOrFloatBitWidth()) |
649 | .getSExtValue())); |
650 | |
651 | Value clamped = |
652 | clampFloatHelper(loc, rounded, intMinFP, intMaxFP, rewriter); |
653 | return rewriter.create<arith::FPToSIOp>(loc, dstTy, clamped); |
654 | } |
655 | |
656 | // Due to earlier check we know exponant range is big enough to represent |
657 | // int min. We can therefore rely on int max + 1 being representable as |
658 | // well because it's just int min with a positive sign. So clamp the min |
659 | // value and compare against that to select the max int value if needed. |
660 | auto intMaxPlusOneFP = rewriter.create<arith::ConstantOp>( |
661 | loc, rewriter.getFloatAttr( |
662 | getElementTypeOrSelf(srcTy), |
663 | static_cast<double>( |
664 | APInt::getSignedMaxValue(dstTy.getIntOrFloatBitWidth()) |
665 | .getSExtValue()) + |
666 | 1.0f)); |
667 | |
668 | auto intMax = rewriter.create<arith::ConstantOp>( |
669 | loc, rewriter.getIntegerAttr( |
670 | getElementTypeOrSelf(dstTy), |
671 | APInt::getSignedMaxValue(dstTy.getIntOrFloatBitWidth()))); |
672 | auto minClampedFP = |
673 | rewriter.create<arith::MaximumFOp>(loc, rounded, intMinFP); |
674 | auto minClamped = |
675 | rewriter.create<arith::FPToSIOp>(loc, dstTy, minClampedFP); |
676 | auto overflow = rewriter.create<arith::CmpFOp>( |
677 | loc, arith::CmpFPredicate::UGE, rounded, intMaxPlusOneFP); |
678 | return rewriter.create<arith::SelectOp>(loc, overflow, intMax, |
679 | minClamped); |
680 | } |
681 | |
682 | // Casting to boolean, integers need to only be checked as not-equal to |
683 | // zero. |
684 | if (isa<IntegerType>(Val: srcTy) && dstTy.isInteger(width: 1)) { |
685 | Value zero = rewriter.create<arith::ConstantIntOp>( |
686 | location: loc, args: 0, args: srcTy.getIntOrFloatBitWidth()); |
687 | return rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ne, |
688 | args.front(), zero); |
689 | } |
690 | |
691 | if (isa<IntegerType>(srcTy) && isa<IntegerType>(dstTy) && bitExtend) |
692 | return rewriter.create<arith::ExtSIOp>(loc, resultTypes, args, |
693 | std::nullopt); |
694 | |
695 | if (isa<IntegerType>(Val: srcTy) && isa<IntegerType>(Val: dstTy) && !bitExtend) { |
696 | return rewriter.create<arith::TruncIOp>(loc, dstTy, args[0]); |
697 | } |
698 | } |
699 | |
700 | (void)rewriter.notifyMatchFailure( |
701 | arg&: op, msg: "unhandled op for linalg body calculation for elementwise op"); |
702 | return nullptr; |
703 | } |
704 | |
705 | using IndexPool = DenseMap<int64_t, Value>; |
706 | |
707 | // Emit an 'arith.constant' op for the given index if it has not been created |
708 | // yet, or return an existing constant. This will prevent an excessive creation |
709 | // of redundant constants, easing readability of emitted code for unit tests. |
710 | static Value createIndex(PatternRewriter &rewriter, Location loc, |
711 | IndexPool &indexPool, int64_t index) { |
712 | auto [it, inserted] = indexPool.try_emplace(Key: index); |
713 | if (inserted) |
714 | it->second = |
715 | rewriter.create<arith::ConstantOp>(loc, rewriter.getIndexAttr(index)); |
716 | return it->second; |
717 | } |
718 | |
719 | static Value getTensorDim(PatternRewriter &rewriter, Location loc, |
720 | IndexPool &indexPool, Value tensor, int64_t index) { |
721 | auto indexValue = createIndex(rewriter, loc, indexPool, index); |
722 | return rewriter.create<tensor::DimOp>(loc, tensor, indexValue).getResult(); |
723 | } |
724 | |
725 | static OpFoldResult getOrFoldTensorDim(PatternRewriter &rewriter, Location loc, |
726 | IndexPool &indexPool, Value tensor, |
727 | int64_t index) { |
728 | auto shapedType = dyn_cast<ShapedType>(tensor.getType()); |
729 | assert(shapedType && shapedType.hasRank() && "expected a ranked shaped type"); |
730 | assert(index >= 0 && index < shapedType.getRank() && "index out of bounds"); |
731 | if (shapedType.isDynamicDim(index)) |
732 | return getTensorDim(rewriter, loc, indexPool, tensor, index); |
733 | return rewriter.getIndexAttr(value: shapedType.getDimSize(index)); |
734 | } |
735 | |
736 | static bool operandsAndResultsRanked(Operation *operation) { |
737 | auto isRanked = [](Value value) { |
738 | return isa<RankedTensorType>(Val: value.getType()); |
739 | }; |
740 | return llvm::all_of(Range: operation->getOperands(), P: isRanked) && |
741 | llvm::all_of(Range: operation->getResults(), P: isRanked); |
742 | } |
743 | |
744 | // Compute the runtime dimension size for dimension 'dim' of the output by |
745 | // inspecting input 'operands', all of which are expected to have the same rank. |
746 | // This function returns a pair {targetSize, masterOperand}. |
747 | // |
748 | // The runtime size of the output dimension is returned either as a statically |
749 | // computed attribute or as a runtime SSA value. |
750 | // |
751 | // If the target size was inferred directly from one dominating operand, that |
752 | // operand is returned in 'masterOperand'. If the target size is inferred from |
753 | // multiple operands, 'masterOperand' is set to nullptr. |
754 | static std::pair<OpFoldResult, Value> |
755 | computeTargetSize(PatternRewriter &rewriter, Location loc, IndexPool &indexPool, |
756 | ValueRange operands, int64_t dim) { |
757 | // If any input operand contains a static size greater than 1 for this |
758 | // dimension, that is the target size. An occurrence of an additional static |
759 | // dimension greater than 1 with a different value is undefined behavior. |
760 | for (auto operand : operands) { |
761 | auto size = cast<RankedTensorType>(operand.getType()).getDimSize(dim); |
762 | if (!ShapedType::isDynamic(size) && size > 1) |
763 | return {rewriter.getIndexAttr(value: size), operand}; |
764 | } |
765 | |
766 | // Filter operands with dynamic dimension |
767 | auto operandsWithDynamicDim = |
768 | llvm::filter_to_vector(C&: operands, Pred: [&](Value operand) { |
769 | return cast<RankedTensorType>(operand.getType()).isDynamicDim(dim); |
770 | }); |
771 | |
772 | // If no operand has a dynamic dimension, it means all sizes were 1 |
773 | if (operandsWithDynamicDim.empty()) |
774 | return {rewriter.getIndexAttr(1), operands.front()}; |
775 | |
776 | // Emit code that computes the runtime size for this dimension. If there is |
777 | // only one operand with a dynamic dimension, it is considered the master |
778 | // operand that determines the runtime size of the output dimension. |
779 | auto targetSize = |
780 | getTensorDim(rewriter, loc, indexPool, tensor: operandsWithDynamicDim[0], index: dim); |
781 | if (operandsWithDynamicDim.size() == 1) |
782 | return {targetSize, operandsWithDynamicDim[0]}; |
783 | |
784 | // Calculate maximum size among all dynamic dimensions |
785 | for (size_t i = 1; i < operandsWithDynamicDim.size(); i++) { |
786 | auto nextSize = |
787 | getTensorDim(rewriter, loc, indexPool, tensor: operandsWithDynamicDim[i], index: dim); |
788 | targetSize = rewriter.create<arith::MaxUIOp>(loc, targetSize, nextSize); |
789 | } |
790 | return {targetSize, nullptr}; |
791 | } |
792 | |
793 | // Compute the runtime output size for all dimensions. This function returns |
794 | // a pair {targetShape, masterOperands}. |
795 | static std::pair<SmallVector<OpFoldResult>, SmallVector<Value>> |
796 | computeTargetShape(PatternRewriter &rewriter, Location loc, |
797 | IndexPool &indexPool, ValueRange operands) { |
798 | assert(!operands.empty()); |
799 | auto rank = cast<RankedTensorType>(operands.front().getType()).getRank(); |
800 | SmallVector<OpFoldResult> targetShape; |
801 | SmallVector<Value> masterOperands; |
802 | for (auto dim : llvm::seq<int64_t>(0, rank)) { |
803 | auto [targetSize, masterOperand] = |
804 | computeTargetSize(rewriter, loc, indexPool, operands, dim); |
805 | targetShape.push_back(targetSize); |
806 | masterOperands.push_back(masterOperand); |
807 | } |
808 | return {targetShape, masterOperands}; |
809 | } |
810 | |
811 | static Value broadcastDynamicDimension(PatternRewriter &rewriter, Location loc, |
812 | IndexPool &indexPool, Value operand, |
813 | int64_t dim, OpFoldResult targetSize, |
814 | Value masterOperand) { |
815 | // Nothing to do if this is a static dimension |
816 | auto rankedTensorType = cast<RankedTensorType>(operand.getType()); |
817 | if (!rankedTensorType.isDynamicDim(dim)) |
818 | return operand; |
819 | |
820 | // If the target size for this dimension was directly inferred by only taking |
821 | // this operand into account, there is no need to broadcast. This is an |
822 | // optimization that will prevent redundant control flow, and constitutes the |
823 | // main motivation for tracking "master operands". |
824 | if (operand == masterOperand) |
825 | return operand; |
826 | |
827 | // Affine maps for 'linalg.generic' op |
828 | auto rank = rankedTensorType.getRank(); |
829 | SmallVector<AffineExpr> affineExprs; |
830 | for (auto index : llvm::seq<int64_t>(0, rank)) { |
831 | auto affineExpr = index == dim ? rewriter.getAffineConstantExpr(0) |
832 | : rewriter.getAffineDimExpr(index); |
833 | affineExprs.push_back(affineExpr); |
834 | } |
835 | auto broadcastAffineMap = |
836 | AffineMap::get(rank, 0, affineExprs, rewriter.getContext()); |
837 | auto identityAffineMap = rewriter.getMultiDimIdentityMap(rank: rank); |
838 | SmallVector<AffineMap> affineMaps = {broadcastAffineMap, identityAffineMap}; |
839 | |
840 | // Check if broadcast is necessary |
841 | auto one = createIndex(rewriter, loc, indexPool, index: 1); |
842 | auto runtimeSize = getTensorDim(rewriter, loc, indexPool, tensor: operand, index: dim); |
843 | auto broadcastNecessary = rewriter.create<arith::CmpIOp>( |
844 | loc, arith::CmpIPredicate::eq, runtimeSize, one); |
845 | |
846 | // Emit 'then' region of 'scf.if' |
847 | auto emitThenRegion = [&](OpBuilder &opBuilder, Location loc) { |
848 | // It is not safe to cache constants across regions. |
849 | // New constants could potentially violate dominance requirements. |
850 | IndexPool localPool; |
851 | |
852 | // Emit 'tensor.empty' op |
853 | SmallVector<OpFoldResult> outputTensorShape; |
854 | for (auto index : llvm::seq<int64_t>(0, rank)) { |
855 | auto size = index == dim ? targetSize |
856 | : getOrFoldTensorDim(rewriter, loc, localPool, |
857 | operand, index); |
858 | outputTensorShape.push_back(size); |
859 | } |
860 | Value outputTensor = opBuilder.create<tensor::EmptyOp>( |
861 | loc, outputTensorShape, rankedTensorType.getElementType()); |
862 | |
863 | // Emit 'linalg.generic' op |
864 | auto resultTensor = |
865 | opBuilder |
866 | .create<linalg::GenericOp>( |
867 | loc, outputTensor.getType(), operand, outputTensor, affineMaps, |
868 | getNParallelLoopsAttrs(rank), |
869 | [&](OpBuilder &opBuilder, Location loc, ValueRange blockArgs) { |
870 | // Emit 'linalg.yield' op |
871 | opBuilder.create<linalg::YieldOp>(loc, blockArgs.front()); |
872 | }) |
873 | .getResult(0); |
874 | |
875 | // Cast to original operand type if necessary |
876 | auto castResultTensor = rewriter.createOrFold<tensor::CastOp>( |
877 | loc, operand.getType(), resultTensor); |
878 | |
879 | // Emit 'scf.yield' op |
880 | opBuilder.create<scf::YieldOp>(loc, castResultTensor); |
881 | }; |
882 | |
883 | // Emit 'else' region of 'scf.if' |
884 | auto emitElseRegion = [&](OpBuilder &opBuilder, Location loc) { |
885 | opBuilder.create<scf::YieldOp>(loc, operand); |
886 | }; |
887 | |
888 | // Emit 'scf.if' op |
889 | auto ifOp = rewriter.create<scf::IfOp>(loc, broadcastNecessary, |
890 | emitThenRegion, emitElseRegion); |
891 | return ifOp.getResult(0); |
892 | } |
893 | |
894 | static Value broadcastDynamicDimensions(PatternRewriter &rewriter, Location loc, |
895 | IndexPool &indexPool, Value operand, |
896 | ArrayRef<OpFoldResult> targetShape, |
897 | ArrayRef<Value> masterOperands) { |
898 | int64_t rank = cast<RankedTensorType>(operand.getType()).getRank(); |
899 | assert((int64_t)targetShape.size() == rank); |
900 | assert((int64_t)masterOperands.size() == rank); |
901 | for (auto index : llvm::seq<int64_t>(0, rank)) |
902 | operand = |
903 | broadcastDynamicDimension(rewriter, loc, indexPool, operand, index, |
904 | targetShape[index], masterOperands[index]); |
905 | return operand; |
906 | } |
907 | |
908 | static SmallVector<Value> |
909 | broadcastDynamicDimensions(PatternRewriter &rewriter, Location loc, |
910 | IndexPool &indexPool, ValueRange operands, |
911 | ArrayRef<OpFoldResult> targetShape, |
912 | ArrayRef<Value> masterOperands) { |
913 | // No need to broadcast for unary operations |
914 | if (operands.size() == 1) |
915 | return operands; |
916 | |
917 | // Broadcast dynamic dimensions operand by operand |
918 | return llvm::map_to_vector(C&: operands, F: [&](Value operand) { |
919 | return broadcastDynamicDimensions(rewriter, loc, indexPool, operand, |
920 | targetShape, masterOperands); |
921 | }); |
922 | } |
923 | |
924 | static LogicalResult |
925 | emitElementwiseComputation(ConversionPatternRewriter &rewriter, Location loc, |
926 | Operation *operation, ValueRange operands, |
927 | ArrayRef<OpFoldResult> targetShape, |
928 | const TypeConverter &converter) { |
929 | // Generate output tensor |
930 | auto resultType = cast_or_null<RankedTensorType>( |
931 | converter.convertType(t: operation->getResultTypes().front())); |
932 | if (!resultType) { |
933 | return rewriter.notifyMatchFailure(arg&: operation, msg: "failed to convert type"); |
934 | } |
935 | Value outputTensor = rewriter.create<tensor::EmptyOp>( |
936 | loc, targetShape, resultType.getElementType()); |
937 | |
938 | // Create affine maps. Input affine maps broadcast static dimensions of size |
939 | // 1. The output affine map is an identity map. |
940 | // |
941 | auto rank = resultType.getRank(); |
942 | auto affineMaps = llvm::map_to_vector(operands, [&](Value operand) { |
943 | auto shape = cast<ShapedType>(operand.getType()).getShape(); |
944 | SmallVector<AffineExpr> affineExprs; |
945 | for (auto it : llvm::enumerate(shape)) { |
946 | // Prefer producting identity maps whenever possible (i.e. no broadcasting |
947 | // needed) because some transforms (like reshape folding) |
948 | // do not support affine constant exprs. |
949 | bool requiresBroadcast = |
950 | (it.value() == 1 && resultType.getDimSize(it.index()) != 1); |
951 | auto affineExpr = requiresBroadcast |
952 | ? rewriter.getAffineConstantExpr(0) |
953 | : rewriter.getAffineDimExpr(it.index()); |
954 | affineExprs.push_back(affineExpr); |
955 | } |
956 | return AffineMap::get(rank, 0, affineExprs, rewriter.getContext()); |
957 | }); |
958 | affineMaps.push_back(rewriter.getMultiDimIdentityMap(rank: rank)); |
959 | |
960 | // Emit 'linalg.generic' op |
961 | bool encounteredError = false; |
962 | auto linalgOp = rewriter.create<linalg::GenericOp>( |
963 | loc, outputTensor.getType(), operands, outputTensor, affineMaps, |
964 | getNParallelLoopsAttrs(rank), |
965 | [&](OpBuilder &opBuilder, Location loc, ValueRange blockArgs) { |
966 | Value opResult = createLinalgBodyCalculationForElementwiseOp( |
967 | operation, blockArgs.take_front(operation->getNumOperands()), |
968 | {resultType.getElementType()}, rewriter); |
969 | if (!opResult) { |
970 | encounteredError = true; |
971 | return; |
972 | } |
973 | opBuilder.create<linalg::YieldOp>(loc, opResult); |
974 | }); |
975 | if (encounteredError) |
976 | return rewriter.notifyMatchFailure( |
977 | arg&: operation, msg: "unable to create linalg.generic body for elementwise op"); |
978 | |
979 | // Cast 'linalg.generic' result into original result type if needed |
980 | auto castResult = rewriter.createOrFold<tensor::CastOp>( |
981 | loc, resultType, linalgOp->getResult(0)); |
982 | rewriter.replaceOp(operation, castResult); |
983 | return success(); |
984 | } |
985 | |
986 | static ValueRange getBroadcastableOperands(Operation *operation, |
987 | ValueRange operands) { |
988 | // Shift cannot broadcast |
989 | if (isa<tosa::MulOp>(operation)) |
990 | return operands.take_front(n: 2); |
991 | // Input1_zp and output_zp cannot broadcast |
992 | if (isa<tosa::NegateOp>(operation)) |
993 | return operands.take_front(n: 1); |
994 | return operands; |
995 | } |
996 | |
997 | static LogicalResult |
998 | elementwiseMatchAndRewriteHelper(Operation *operation, ValueRange operands, |
999 | ConversionPatternRewriter &rewriter, |
1000 | const TypeConverter &converter) { |
1001 | |
1002 | // Collect op properties |
1003 | assert(operation->getNumResults() == 1 && "elementwise op expects 1 result"); |
1004 | assert(operation->getNumOperands() >= 1 && |
1005 | "elementwise op expects at least 1 operand"); |
1006 | if (!operandsAndResultsRanked(operation)) |
1007 | return rewriter.notifyMatchFailure(arg&: operation, |
1008 | msg: "Unranked tensors not supported"); |
1009 | |
1010 | // Lower operation |
1011 | IndexPool indexPool; |
1012 | auto loc = operation->getLoc(); |
1013 | auto operandsToBroadcast = getBroadcastableOperands(operation, operands); |
1014 | auto [targetShape, masterOperands] = |
1015 | computeTargetShape(rewriter, loc, indexPool, operands: operandsToBroadcast); |
1016 | auto broadcastOperands = |
1017 | broadcastDynamicDimensions(rewriter, loc, indexPool, operands: operandsToBroadcast, |
1018 | targetShape, masterOperands); |
1019 | return emitElementwiseComputation(rewriter, loc, operation, operands: broadcastOperands, |
1020 | targetShape, converter); |
1021 | } |
1022 | |
1023 | // Returns the constant initial value for a given reduction operation. The |
1024 | // attribute type varies depending on the element type required. |
1025 | static TypedAttr createInitialValueForReduceOp(Operation *op, Type elementTy, |
1026 | PatternRewriter &rewriter) { |
1027 | if (isa<tosa::ReduceSumOp>(op) && isa<FloatType>(elementTy)) |
1028 | return rewriter.getFloatAttr(elementTy, 0.0); |
1029 | |
1030 | if (isa<tosa::ReduceSumOp>(op) && isa<IntegerType>(elementTy)) |
1031 | return rewriter.getIntegerAttr(elementTy, 0); |
1032 | |
1033 | if (isa<tosa::ReduceProductOp>(op) && isa<FloatType>(elementTy)) |
1034 | return rewriter.getFloatAttr(elementTy, 1.0); |
1035 | |
1036 | if (isa<tosa::ReduceProductOp>(op) && isa<IntegerType>(elementTy)) |
1037 | return rewriter.getIntegerAttr(elementTy, 1); |
1038 | |
1039 | if (isa<tosa::ReduceMinOp>(op) && isa<FloatType>(elementTy)) |
1040 | return rewriter.getFloatAttr( |
1041 | elementTy, APFloat::getLargest( |
1042 | Sem: cast<FloatType>(elementTy).getFloatSemantics(), Negative: false)); |
1043 | |
1044 | if (isa<tosa::ReduceMinOp>(op) && isa<IntegerType>(elementTy)) |
1045 | return rewriter.getIntegerAttr( |
1046 | elementTy, APInt::getSignedMaxValue(numBits: elementTy.getIntOrFloatBitWidth())); |
1047 | |
1048 | if (isa<tosa::ReduceMaxOp>(op) && isa<FloatType>(elementTy)) |
1049 | return rewriter.getFloatAttr( |
1050 | elementTy, APFloat::getLargest( |
1051 | Sem: cast<FloatType>(elementTy).getFloatSemantics(), Negative: true)); |
1052 | |
1053 | if (isa<tosa::ReduceMaxOp>(op) && isa<IntegerType>(elementTy)) |
1054 | return rewriter.getIntegerAttr( |
1055 | elementTy, APInt::getSignedMinValue(numBits: elementTy.getIntOrFloatBitWidth())); |
1056 | |
1057 | if (isa<tosa::ReduceAllOp>(op) && elementTy.isInteger(1)) |
1058 | return rewriter.getIntegerAttr(elementTy, APInt::getAllOnes(numBits: 1)); |
1059 | |
1060 | if (isa<tosa::ReduceAnyOp>(op) && elementTy.isInteger(1)) |
1061 | return rewriter.getIntegerAttr(elementTy, APInt::getZero(numBits: 1)); |
1062 | |
1063 | if (isa<tosa::ArgMaxOp>(op) && isa<FloatType>(elementTy)) |
1064 | return rewriter.getFloatAttr( |
1065 | elementTy, APFloat::getLargest( |
1066 | Sem: cast<FloatType>(elementTy).getFloatSemantics(), Negative: true)); |
1067 | |
1068 | if (isa<tosa::ArgMaxOp>(op) && isa<IntegerType>(elementTy)) |
1069 | return rewriter.getIntegerAttr( |
1070 | elementTy, APInt::getSignedMinValue(numBits: elementTy.getIntOrFloatBitWidth())); |
1071 | |
1072 | return {}; |
1073 | } |
1074 | |
1075 | // Creates the body calculation for a reduction. The operations vary depending |
1076 | // on the input type. |
1077 | static Value createLinalgBodyCalculationForReduceOp(Operation *op, |
1078 | ValueRange args, |
1079 | Type elementTy, |
1080 | PatternRewriter &rewriter) { |
1081 | Location loc = op->getLoc(); |
1082 | if (isa<tosa::ReduceSumOp>(op) && isa<FloatType>(elementTy)) { |
1083 | return rewriter.create<arith::AddFOp>(loc, args); |
1084 | } |
1085 | |
1086 | if (isa<tosa::ReduceSumOp>(op) && isa<IntegerType>(elementTy)) { |
1087 | return rewriter.create<arith::AddIOp>(loc, args); |
1088 | } |
1089 | |
1090 | if (isa<tosa::ReduceProductOp>(op) && isa<FloatType>(elementTy)) { |
1091 | return rewriter.create<arith::MulFOp>(loc, args); |
1092 | } |
1093 | |
1094 | if (isa<tosa::ReduceProductOp>(op) && isa<IntegerType>(elementTy)) { |
1095 | return rewriter.create<arith::MulIOp>(loc, args); |
1096 | } |
1097 | |
1098 | if (isa<tosa::ReduceMinOp>(op) && isa<FloatType>(elementTy)) { |
1099 | return rewriter.create<arith::MinimumFOp>(loc, args[0], args[1]); |
1100 | } |
1101 | |
1102 | if (isa<tosa::ReduceMinOp>(op) && isa<IntegerType>(elementTy)) { |
1103 | return rewriter.create<arith::MinSIOp>(loc, args[0], args[1]); |
1104 | } |
1105 | |
1106 | if (isa<tosa::ReduceMaxOp>(op) && isa<FloatType>(elementTy)) { |
1107 | return rewriter.create<arith::MaximumFOp>(loc, args[0], args[1]); |
1108 | } |
1109 | |
1110 | if (isa<tosa::ReduceMaxOp>(op) && isa<IntegerType>(elementTy)) { |
1111 | return rewriter.create<arith::MaxSIOp>(loc, args[0], args[1]); |
1112 | } |
1113 | |
1114 | if (isa<tosa::ReduceAllOp>(op) && elementTy.isInteger(1)) |
1115 | return rewriter.create<arith::AndIOp>(loc, args); |
1116 | |
1117 | if (isa<tosa::ReduceAnyOp>(op) && elementTy.isInteger(1)) |
1118 | return rewriter.create<arith::OrIOp>(loc, args); |
1119 | |
1120 | return {}; |
1121 | } |
1122 | |
1123 | // Performs the match and rewrite for reduction operations. This includes |
1124 | // declaring a correctly sized initial value, and the linalg.generic operation |
1125 | // that reduces across the specified axis. |
1126 | template <typename OpTy> |
1127 | static LogicalResult reduceMatchAndRewriteHelper(OpTy op, uint64_t axis, |
1128 | PatternRewriter &rewriter) { |
1129 | auto loc = op->getLoc(); |
1130 | auto inputTy = dyn_cast<RankedTensorType>(op->getOperand(0).getType()); |
1131 | auto resultTy = dyn_cast<RankedTensorType>(op->getResult(0).getType()); |
1132 | if (!inputTy || !resultTy) |
1133 | return rewriter.notifyMatchFailure(op, "unranked tensors not supported"); |
1134 | |
1135 | auto elementTy = resultTy.getElementType(); |
1136 | Value input = op->getOperand(0); |
1137 | |
1138 | SmallVector<int64_t> reduceShape; |
1139 | SmallVector<Value> dynDims; |
1140 | for (unsigned i = 0; i < inputTy.getRank(); i++) { |
1141 | if (axis != i) { |
1142 | reduceShape.push_back(Elt: inputTy.getDimSize(i)); |
1143 | if (inputTy.isDynamicDim(i)) |
1144 | dynDims.push_back(rewriter.create<tensor::DimOp>(loc, input, i)); |
1145 | } |
1146 | } |
1147 | |
1148 | SmallVector<Value> inputs, outputs; |
1149 | inputs.push_back(Elt: input); |
1150 | |
1151 | // First fill the output buffer with the init value. |
1152 | auto emptyTensor = |
1153 | rewriter |
1154 | .create<tensor::EmptyOp>(loc, reduceShape, resultTy.getElementType(), |
1155 | dynDims) |
1156 | .getResult(); |
1157 | |
1158 | auto fillValueAttr = createInitialValueForReduceOp(op, elementTy, rewriter); |
1159 | if (!fillValueAttr) |
1160 | return rewriter.notifyMatchFailure( |
1161 | op, "No initial value found for reduction operation"); |
1162 | |
1163 | auto fillValue = rewriter.create<arith::ConstantOp>(loc, fillValueAttr); |
1164 | auto filledTensor = rewriter |
1165 | .create<linalg::FillOp>(loc, ValueRange{fillValue}, |
1166 | ValueRange{emptyTensor}) |
1167 | .result(); |
1168 | outputs.push_back(Elt: filledTensor); |
1169 | |
1170 | bool isNanIgnoreMode = false; |
1171 | if constexpr (std::is_same_v<OpTy, tosa::ReduceMinOp> || |
1172 | std::is_same_v<OpTy, tosa::ReduceMaxOp>) { |
1173 | // NaN propagation has no meaning for non floating point types. |
1174 | if (isa<FloatType>(elementTy) && op.getNanMode() == "IGNORE") { |
1175 | isNanIgnoreMode = true; |
1176 | // Because the TOSA spec requires the result be NaN iff all elements in |
1177 | // the reduction are NaN we can't simply perform a compare and select. |
1178 | // Additionally we have to keep track of whether we've seen any non-NaN |
1179 | // values and then do a final select based on this predicate. |
1180 | auto trueAttr = rewriter.getBoolAttr(value: true); |
1181 | auto trueValue = rewriter.create<arith::ConstantOp>(loc, trueAttr); |
1182 | auto emptyBoolTensor = |
1183 | rewriter |
1184 | .create<tensor::EmptyOp>(loc, reduceShape, trueValue.getType(), |
1185 | dynDims) |
1186 | .getResult(); |
1187 | auto allResultsNaNTensor = |
1188 | rewriter |
1189 | .create<linalg::FillOp>(loc, ValueRange{trueValue}, |
1190 | ValueRange{emptyBoolTensor}) |
1191 | .result(); |
1192 | // Note that because the linalg::ReduceOp has two variadic arguments |
1193 | // (inputs and outputs) and it has the SameVariadicOperandSize trait we |
1194 | // need to have the same number of inputs and outputs. |
1195 | // |
1196 | // The second input isn't actually used anywhere since the value used to |
1197 | // update the NaN flag is calculated inside the body of the reduction and |
1198 | // then used to update an out value. |
1199 | // In order to satisfy type constraints we just pass another copy of the |
1200 | // input here. |
1201 | inputs.push_back(Elt: input); |
1202 | outputs.push_back(Elt: allResultsNaNTensor); |
1203 | } |
1204 | } |
1205 | |
1206 | bool didEncounterError = false; |
1207 | linalg::LinalgOp linalgOp = rewriter.create<linalg::ReduceOp>( |
1208 | loc, inputs, outputs, axis, |
1209 | [&](OpBuilder &nestedBuilder, Location nestedLoc, ValueRange blockArgs) { |
1210 | std::array<Value, 2> binaryArgs{ |
1211 | blockArgs[0], isNanIgnoreMode ? blockArgs[2] : blockArgs[1]}; |
1212 | auto result = createLinalgBodyCalculationForReduceOp( |
1213 | op, binaryArgs, elementTy, rewriter); |
1214 | if (result) |
1215 | didEncounterError = true; |
1216 | |
1217 | SmallVector<Value> resultsToYield; |
1218 | if (isNanIgnoreMode) { |
1219 | auto inputValue = blockArgs[0]; |
1220 | auto initialValue = blockArgs[2]; |
1221 | auto oldAllResultsNanFlagValue = blockArgs[3]; |
1222 | |
1223 | // Unordered comparison of NaN against itself will always return true. |
1224 | Value isNaN = nestedBuilder.create<arith::CmpFOp>( |
1225 | op->getLoc(), arith::CmpFPredicate::UNO, inputValue, inputValue); |
1226 | // If we've encountered a NaN, take the non-NaN value. |
1227 | auto selectOp = nestedBuilder.create<arith::SelectOp>( |
1228 | op->getLoc(), isNaN, initialValue, result); |
1229 | // Update the flag which keeps track of whether we have seen a non-NaN |
1230 | // value. |
1231 | auto newAllResultsNanFlagValue = nestedBuilder.create<arith::AndIOp>( |
1232 | op->getLoc(), oldAllResultsNanFlagValue, isNaN); |
1233 | resultsToYield.push_back(selectOp); |
1234 | resultsToYield.push_back(newAllResultsNanFlagValue); |
1235 | } else { |
1236 | resultsToYield.push_back(result); |
1237 | } |
1238 | nestedBuilder.create<linalg::YieldOp>(loc, resultsToYield); |
1239 | }); |
1240 | |
1241 | if (!didEncounterError) |
1242 | return rewriter.notifyMatchFailure( |
1243 | op, "unable to create linalg.generic body for reduce op"); |
1244 | |
1245 | if (isNanIgnoreMode) { |
1246 | // Materialize a check to see whether we encountered any non-NaN values, if |
1247 | // we didn't we need to select a tensor of NaNs since the result will just |
1248 | // be the initial identity value propagated through all the compares and |
1249 | // selects inside the reduction. |
1250 | |
1251 | // Create a tensor full of NaNs. |
1252 | auto nanValueAttr = rewriter.getFloatAttr( |
1253 | elementTy, |
1254 | APFloat::getNaN(Sem: cast<FloatType>(elementTy).getFloatSemantics(), Negative: false)); |
1255 | auto nanValue = rewriter.create<arith::ConstantOp>(loc, nanValueAttr); |
1256 | auto emptyNanTensor = |
1257 | rewriter |
1258 | .create<tensor::EmptyOp>(loc, reduceShape, |
1259 | resultTy.getElementType(), dynDims) |
1260 | .getResult(); |
1261 | auto nanFilledTensor = |
1262 | rewriter |
1263 | .create<linalg::FillOp>(loc, ValueRange{nanValue}, |
1264 | ValueRange{emptyNanTensor}) |
1265 | .result(); |
1266 | |
1267 | // Create an empty tensor, non need to fill this since it will be |
1268 | // overwritten by the select. |
1269 | auto finalEmptyTensor = |
1270 | rewriter |
1271 | .create<tensor::EmptyOp>(loc, reduceShape, |
1272 | resultTy.getElementType(), dynDims) |
1273 | .getResult(); |
1274 | |
1275 | // Do a selection between the tensors akin to: |
1276 | // result = NaN if "all results NaN" else result. |
1277 | SmallVector<Value> ins, outs; |
1278 | ins.push_back(Elt: linalgOp->getOpResult(1)); |
1279 | ins.push_back(Elt: nanFilledTensor); |
1280 | ins.push_back(Elt: linalgOp->getResult(0)); |
1281 | outs.push_back(Elt: finalEmptyTensor); |
1282 | auto linalgSelect = |
1283 | rewriter.create<linalg::SelectOp>(op->getLoc(), ins, outs); |
1284 | linalgOp = linalgSelect; |
1285 | } |
1286 | |
1287 | SmallVector<ReassociationExprs, 4> reassociationMap; |
1288 | uint64_t expandInputRank = |
1289 | cast<ShapedType>(linalgOp->getResults()[0].getType()).getRank(); |
1290 | reassociationMap.resize(N: expandInputRank); |
1291 | |
1292 | for (uint64_t i = 0; i < expandInputRank; i++) { |
1293 | int32_t dimToPush = i > axis ? i + 1 : i; |
1294 | reassociationMap[i].push_back(Elt: rewriter.getAffineDimExpr(position: dimToPush)); |
1295 | } |
1296 | |
1297 | if (expandInputRank != 0) { |
1298 | int32_t expandedDim = axis < expandInputRank ? axis : expandInputRank - 1; |
1299 | reassociationMap[expandedDim].push_back( |
1300 | Elt: rewriter.getAffineDimExpr(position: expandedDim + 1)); |
1301 | } |
1302 | |
1303 | // Lower directly to `tensor::ExpandShapeOp` instead of `tosa::ReshapeOp`, |
1304 | // since here we know which dimension to expand, and `tosa::ReshapeOp` would |
1305 | // not have access to such information. This matters when handling dynamically |
1306 | // sized tensors. |
1307 | rewriter.replaceOpWithNewOp<tensor::ExpandShapeOp>( |
1308 | op, resultTy, linalgOp->getResults()[0], reassociationMap); |
1309 | return success(); |
1310 | } |
1311 | |
1312 | namespace { |
1313 | |
1314 | template <typename SrcOp> |
1315 | class PointwiseConverter : public OpConversionPattern<SrcOp> { |
1316 | public: |
1317 | using OpConversionPattern<SrcOp>::OpConversionPattern; |
1318 | using typename OpConversionPattern<SrcOp>::OpAdaptor; |
1319 | |
1320 | LogicalResult |
1321 | matchAndRewrite(SrcOp op, OpAdaptor operands, |
1322 | ConversionPatternRewriter &rewriter) const final { |
1323 | return elementwiseMatchAndRewriteHelper( |
1324 | op, operands.getOperands(), rewriter, *this->getTypeConverter()); |
1325 | } |
1326 | }; |
1327 | |
1328 | class RescaleConverter : public OpRewritePattern<tosa::RescaleOp> { |
1329 | public: |
1330 | using OpRewritePattern<tosa::RescaleOp>::OpRewritePattern; |
1331 | |
1332 | LogicalResult matchAndRewrite(tosa::RescaleOp op, |
1333 | PatternRewriter &rewriter) const final { |
1334 | auto loc = op.getLoc(); |
1335 | auto input = op.getInput(); |
1336 | auto inputTy = cast<ShapedType>(op.getInput().getType()); |
1337 | auto outputTy = cast<ShapedType>(op.getOutput().getType()); |
1338 | unsigned rank = inputTy.getRank(); |
1339 | |
1340 | // This is an illegal configuration. terminate and log an error |
1341 | if (op.getRoundingMode() == "INEXACT_ROUND") |
1342 | return rewriter.notifyMatchFailure( |
1343 | op, "tosa.rescale with rounding mode = 'INEXACT_ROUND' is not " |
1344 | "currently supported"); |
1345 | if (op.getRoundingMode() == "DOUBLE_ROUND"&& !op.getScale32()) |
1346 | return rewriter.notifyMatchFailure( |
1347 | op, "tosa.rescale requires scale32 for double_round to be true"); |
1348 | |
1349 | if (!isa<IntegerType>(inputTy.getElementType())) |
1350 | return rewriter.notifyMatchFailure(op, "only support integer type"); |
1351 | |
1352 | SmallVector<Value> dynDims; |
1353 | for (int i = 0; i < outputTy.getRank(); i++) { |
1354 | if (outputTy.isDynamicDim(i)) { |
1355 | dynDims.push_back(rewriter.create<tensor::DimOp>(loc, input, i)); |
1356 | } |
1357 | } |
1358 | |
1359 | // The shift and multiplier values. |
1360 | DenseElementsAttr shiftElems; |
1361 | if (!matchPattern(op.getShift(), m_Constant(bind_value: &shiftElems))) |
1362 | return rewriter.notifyMatchFailure( |
1363 | op, "tosa.rescale requires constant shift input values"); |
1364 | |
1365 | DenseElementsAttr multiplierElems; |
1366 | if (!matchPattern(op.getMultiplier(), m_Constant(bind_value: &multiplierElems))) |
1367 | return rewriter.notifyMatchFailure( |
1368 | op, "tosa.rescale requires constant multiplier input values"); |
1369 | |
1370 | llvm::SmallVector<int8_t> shiftValues = |
1371 | llvm::to_vector(shiftElems.getValues<int8_t>()); |
1372 | // explicit cast is required here |
1373 | llvm::SmallVector<int32_t> multiplierValues = llvm::to_vector( |
1374 | llvm::map_range(multiplierElems.getValues<IntegerAttr>(), |
1375 | [](IntegerAttr attr) -> int32_t { |
1376 | return static_cast<int32_t>(attr.getInt()); |
1377 | })); |
1378 | |
1379 | // If we shift by more than the bitwidth, this just sets to 0. |
1380 | for (int i = 0, s = multiplierValues.size(); i < s; i++) { |
1381 | if (shiftValues[i] > 63) { |
1382 | shiftValues[i] = 0; |
1383 | multiplierValues[i] = 0; |
1384 | } |
1385 | } |
1386 | |
1387 | // Double round only occurs if shift is greater than 31, check that this |
1388 | // is ever true. |
1389 | |
1390 | bool doubleRound = |
1391 | op.getRoundingMode() == "DOUBLE_ROUND"&& |
1392 | llvm::any_of(Range&: shiftValues, P: [](int32_t v) { return v > 31; }); |
1393 | StringAttr roundingMode = doubleRound |
1394 | ? rewriter.getStringAttr("DOUBLE_ROUND") |
1395 | : rewriter.getStringAttr("SINGLE_ROUND"); |
1396 | |
1397 | SmallVector<AffineMap> indexingMaps = { |
1398 | rewriter.getMultiDimIdentityMap(rank)}; |
1399 | SmallVector<Value, 4> genericInputs = {input}; |
1400 | |
1401 | // If we are rescaling per-channel then we need to store the multiplier |
1402 | // values in a buffer. |
1403 | Value multiplierConstant; |
1404 | int64_t multiplierArg = 0; |
1405 | if (multiplierValues.size() == 1) { |
1406 | multiplierConstant = rewriter.create<arith::ConstantOp>( |
1407 | loc, rewriter.getI32IntegerAttr(multiplierValues.front())); |
1408 | } else { |
1409 | SmallVector<AffineExpr, 2> multiplierExprs{ |
1410 | rewriter.getAffineDimExpr(position: rank - 1)}; |
1411 | auto multiplierType = |
1412 | RankedTensorType::get({static_cast<int64_t>(multiplierValues.size())}, |
1413 | rewriter.getI32Type()); |
1414 | genericInputs.push_back(rewriter.create<arith::ConstantOp>( |
1415 | loc, DenseIntElementsAttr::get(multiplierType, multiplierValues))); |
1416 | |
1417 | indexingMaps.push_back(Elt: AffineMap::get(/*dimCount=*/rank, |
1418 | /*symbolCount=*/0, results: multiplierExprs, |
1419 | context: rewriter.getContext())); |
1420 | |
1421 | multiplierArg = indexingMaps.size() - 1; |
1422 | } |
1423 | |
1424 | // If we are rescaling per-channel then we need to store the shift |
1425 | // values in a buffer. |
1426 | Value shiftConstant; |
1427 | int64_t shiftArg = 0; |
1428 | if (shiftValues.size() == 1) { |
1429 | shiftConstant = rewriter.create<arith::ConstantOp>( |
1430 | loc, rewriter.getI8IntegerAttr(shiftValues.front())); |
1431 | } else { |
1432 | SmallVector<AffineExpr, 2> shiftExprs = { |
1433 | rewriter.getAffineDimExpr(position: rank - 1)}; |
1434 | auto shiftType = |
1435 | RankedTensorType::get({static_cast<int64_t>(shiftValues.size())}, |
1436 | rewriter.getIntegerType(8)); |
1437 | genericInputs.push_back(rewriter.create<arith::ConstantOp>( |
1438 | loc, DenseIntElementsAttr::get(shiftType, shiftValues))); |
1439 | indexingMaps.push_back(Elt: AffineMap::get(/*dimCount=*/rank, |
1440 | /*symbolCount=*/0, results: shiftExprs, |
1441 | context: rewriter.getContext())); |
1442 | shiftArg = indexingMaps.size() - 1; |
1443 | } |
1444 | |
1445 | // Indexing maps for output values. |
1446 | indexingMaps.push_back(Elt: rewriter.getMultiDimIdentityMap(rank)); |
1447 | |
1448 | // Construct the indexing maps needed for linalg.generic ops. |
1449 | Value emptyTensor = rewriter.create<tensor::EmptyOp>( |
1450 | loc, outputTy.getShape(), outputTy.getElementType(), |
1451 | ArrayRef<Value>({dynDims})); |
1452 | |
1453 | auto linalgOp = rewriter.create<linalg::GenericOp>( |
1454 | loc, outputTy, genericInputs, ValueRange{emptyTensor}, indexingMaps, |
1455 | getNParallelLoopsAttrs(rank), |
1456 | [&](OpBuilder &nestedBuilder, Location nestedLoc, |
1457 | ValueRange blockArgs) { |
1458 | Value value = blockArgs[0]; |
1459 | Type valueTy = value.getType(); |
1460 | |
1461 | FailureOr<int64_t> maybeIZp = op.getInputZeroPoint(); |
1462 | if (failed(maybeIZp)) { |
1463 | (void)rewriter.notifyMatchFailure( |
1464 | op, "input zero point cannot be statically determined"); |
1465 | return; |
1466 | } |
1467 | |
1468 | const int32_t inBitwidth = valueTy.getIntOrFloatBitWidth(); |
1469 | // Extend zeropoint for sub-32bits widths. |
1470 | const int32_t inAttrBitwidth = inBitwidth > 32 ? inBitwidth : 32; |
1471 | auto inputZp = nestedBuilder.create<arith::ConstantOp>( |
1472 | loc, IntegerAttr::get(rewriter.getIntegerType(inAttrBitwidth), |
1473 | *maybeIZp)); |
1474 | |
1475 | FailureOr<int64_t> maybeOZp = op.getOutputZeroPoint(); |
1476 | if (failed(maybeOZp)) { |
1477 | (void)rewriter.notifyMatchFailure( |
1478 | op, "output zero point cannot be statically determined"); |
1479 | return; |
1480 | }; |
1481 | |
1482 | IntegerType outIntType = |
1483 | cast<IntegerType>(blockArgs.back().getType()); |
1484 | unsigned outBitWidth = outIntType.getWidth(); |
1485 | const int32_t outAttrBitwidth = 32; |
1486 | assert(outBitWidth <= 32 && "Unexpected output zeropoint bitwidth"); |
1487 | auto outputZp = nestedBuilder.create<arith::ConstantOp>( |
1488 | loc, IntegerAttr::get(rewriter.getIntegerType(outAttrBitwidth), |
1489 | *maybeOZp)); |
1490 | |
1491 | Value multiplier = multiplierConstant ? multiplierConstant |
1492 | : blockArgs[multiplierArg]; |
1493 | Value shift = shiftConstant ? shiftConstant : blockArgs[shiftArg]; |
1494 | |
1495 | if (valueTy.isUnsignedInteger()) { |
1496 | value = nestedBuilder |
1497 | .create<UnrealizedConversionCastOp>( |
1498 | nestedLoc, |
1499 | nestedBuilder.getIntegerType( |
1500 | valueTy.getIntOrFloatBitWidth()), |
1501 | value) |
1502 | .getResult(0); |
1503 | } |
1504 | if (valueTy.getIntOrFloatBitWidth() < 32) { |
1505 | if (op.getInputUnsigned()) { |
1506 | value = nestedBuilder.create<arith::ExtUIOp>( |
1507 | nestedLoc, nestedBuilder.getI32Type(), value); |
1508 | } else { |
1509 | value = nestedBuilder.create<arith::ExtSIOp>( |
1510 | nestedLoc, nestedBuilder.getI32Type(), value); |
1511 | } |
1512 | } |
1513 | |
1514 | value = |
1515 | nestedBuilder.create<arith::SubIOp>(nestedLoc, value, inputZp); |
1516 | |
1517 | value = nestedBuilder.create<tosa::ApplyScaleOp>( |
1518 | loc, nestedBuilder.getI32Type(), value, multiplier, shift, |
1519 | roundingMode); |
1520 | |
1521 | // Move to the new zero-point. |
1522 | value = |
1523 | nestedBuilder.create<arith::AddIOp>(nestedLoc, value, outputZp); |
1524 | |
1525 | // Saturate to the output size. |
1526 | int32_t intMin = APInt::getSignedMinValue(outBitWidth).getSExtValue(); |
1527 | int32_t intMax = APInt::getSignedMaxValue(outBitWidth).getSExtValue(); |
1528 | |
1529 | // Unsigned integers have a difference output value. |
1530 | if (op.getOutputUnsigned()) { |
1531 | intMin = 0; |
1532 | intMax = APInt::getMaxValue(outBitWidth).getZExtValue(); |
1533 | } |
1534 | |
1535 | auto intMinVal = nestedBuilder.create<arith::ConstantOp>( |
1536 | loc, nestedBuilder.getI32IntegerAttr(intMin)); |
1537 | auto intMaxVal = nestedBuilder.create<arith::ConstantOp>( |
1538 | loc, nestedBuilder.getI32IntegerAttr(intMax)); |
1539 | |
1540 | value = clampIntHelper(nestedLoc, value, intMinVal, intMaxVal, |
1541 | nestedBuilder, /*isUnsigned=*/false); |
1542 | |
1543 | if (outIntType.getWidth() < 32) { |
1544 | value = nestedBuilder.create<arith::TruncIOp>( |
1545 | nestedLoc, rewriter.getIntegerType(outIntType.getWidth()), |
1546 | value); |
1547 | } |
1548 | |
1549 | if (outIntType.isUnsignedInteger()) { |
1550 | value = nestedBuilder |
1551 | .create<UnrealizedConversionCastOp>(nestedLoc, |
1552 | outIntType, value) |
1553 | .getResult(0); |
1554 | } |
1555 | nestedBuilder.create<linalg::YieldOp>(loc, value); |
1556 | }); |
1557 | |
1558 | rewriter.replaceOp(op, linalgOp->getResults()); |
1559 | return success(); |
1560 | } |
1561 | }; |
1562 | |
1563 | // Handle the resize case where the input is a 1x1 image. This case |
1564 | // can entirely avoiding having extract operations which target much |
1565 | // more difficult to optimize away. |
1566 | class ResizeUnaryConverter : public OpRewritePattern<tosa::ResizeOp> { |
1567 | public: |
1568 | using OpRewritePattern<tosa::ResizeOp>::OpRewritePattern; |
1569 | |
1570 | LogicalResult matchAndRewrite(tosa::ResizeOp op, |
1571 | PatternRewriter &rewriter) const final { |
1572 | Location loc = op.getLoc(); |
1573 | ImplicitLocOpBuilder builder(loc, rewriter); |
1574 | auto input = op.getInput(); |
1575 | auto inputTy = cast<RankedTensorType>(input.getType()); |
1576 | auto resultTy = cast<RankedTensorType>(op.getType()); |
1577 | const bool isBilinear = op.getMode() == "BILINEAR"; |
1578 | |
1579 | auto inputH = inputTy.getDimSize(1); |
1580 | auto inputW = inputTy.getDimSize(2); |
1581 | auto outputH = resultTy.getDimSize(1); |
1582 | auto outputW = resultTy.getDimSize(2); |
1583 | |
1584 | if (inputH != 1 || inputW != 1 || outputH != 1 || outputW != 1) |
1585 | return rewriter.notifyMatchFailure( |
1586 | op, "tosa.resize is not a pure 1x1->1x1 image operation"); |
1587 | |
1588 | // TODO(suderman): These string values should be declared the TOSA dialect. |
1589 | if (op.getMode() != "NEAREST_NEIGHBOR"&& op.getMode() != "BILINEAR") |
1590 | return rewriter.notifyMatchFailure( |
1591 | op, "tosa.resize mode should be NEAREST_NEIGHBOR or BILINEAR"); |
1592 | |
1593 | if (inputTy == resultTy) { |
1594 | rewriter.replaceOp(op, input); |
1595 | return success(); |
1596 | } |
1597 | |
1598 | SmallVector<int64_t> scale; |
1599 | if (!tosa::getConstShapeValues(op: op.getScale().getDefiningOp(), result_shape&: scale)) { |
1600 | return failure(); |
1601 | } |
1602 | |
1603 | // Collapse the unit width and height away. |
1604 | SmallVector<ReassociationExprs, 4> reassociationMap(2); |
1605 | reassociationMap[0].push_back(Elt: builder.getAffineDimExpr(position: 0)); |
1606 | reassociationMap[1].push_back(Elt: builder.getAffineDimExpr(position: 1)); |
1607 | reassociationMap[1].push_back(Elt: builder.getAffineDimExpr(position: 2)); |
1608 | reassociationMap[1].push_back(Elt: builder.getAffineDimExpr(position: 3)); |
1609 | |
1610 | auto collapseTy = |
1611 | RankedTensorType::get({inputTy.getDimSize(0), inputTy.getDimSize(3)}, |
1612 | inputTy.getElementType()); |
1613 | Value collapse = builder.create<tensor::CollapseShapeOp>(collapseTy, input, |
1614 | reassociationMap); |
1615 | |
1616 | // Get any dynamic shapes that appear in the input format. |
1617 | llvm::SmallVector<Value> outputDynSize; |
1618 | if (inputTy.isDynamicDim(0)) |
1619 | outputDynSize.push_back(builder.create<tensor::DimOp>(input, 0)); |
1620 | if (inputTy.isDynamicDim(3)) |
1621 | outputDynSize.push_back(builder.create<tensor::DimOp>(input, 3)); |
1622 | |
1623 | // Generate the elementwise operation for casting scaling the input value. |
1624 | auto genericTy = collapseTy.clone(resultTy.getElementType()); |
1625 | Value empty = builder.create<tensor::EmptyOp>( |
1626 | genericTy.getShape(), resultTy.getElementType(), outputDynSize); |
1627 | auto genericMap = rewriter.getMultiDimIdentityMap(rank: genericTy.getRank()); |
1628 | SmallVector<utils::IteratorType> iterators(genericTy.getRank(), |
1629 | utils::IteratorType::parallel); |
1630 | |
1631 | auto generic = builder.create<linalg::GenericOp>( |
1632 | genericTy, ValueRange{collapse}, ValueRange{empty}, |
1633 | ArrayRef<AffineMap>{genericMap, genericMap}, iterators, |
1634 | [=](OpBuilder &b, Location loc, ValueRange args) { |
1635 | Value value = args[0]; |
1636 | // This is the quantized case. |
1637 | if (inputTy.getElementType() != resultTy.getElementType()) { |
1638 | value = |
1639 | b.create<arith::ExtSIOp>(loc, resultTy.getElementType(), value); |
1640 | |
1641 | if (isBilinear && scale[0] != 0) { |
1642 | Value scaleY = b.create<arith::ConstantOp>( |
1643 | loc, b.getI32IntegerAttr(scale[0])); |
1644 | value = b.create<arith::MulIOp>(loc, value, scaleY); |
1645 | } |
1646 | |
1647 | if (isBilinear && scale[2] != 0) { |
1648 | Value scaleX = b.create<arith::ConstantOp>( |
1649 | loc, b.getI32IntegerAttr(scale[2])); |
1650 | value = b.create<arith::MulIOp>(loc, value, scaleX); |
1651 | } |
1652 | } |
1653 | |
1654 | b.create<linalg::YieldOp>(loc, value); |
1655 | }); |
1656 | |
1657 | rewriter.replaceOpWithNewOp<tensor::ExpandShapeOp>( |
1658 | op, resultTy, generic.getResults()[0], reassociationMap); |
1659 | return success(); |
1660 | } |
1661 | }; |
1662 | |
1663 | // TOSA resize with width or height of 1 may be broadcasted to a wider |
1664 | // dimension. This is done by materializing a new tosa.resize without |
1665 | // the broadcasting behavior, and an explicit broadcast afterwards. |
1666 | class MaterializeResizeBroadcast : public OpRewritePattern<tosa::ResizeOp> { |
1667 | public: |
1668 | using OpRewritePattern<tosa::ResizeOp>::OpRewritePattern; |
1669 | |
1670 | LogicalResult matchAndRewrite(tosa::ResizeOp op, |
1671 | PatternRewriter &rewriter) const final { |
1672 | Location loc = op.getLoc(); |
1673 | ImplicitLocOpBuilder builder(loc, rewriter); |
1674 | auto input = op.getInput(); |
1675 | auto inputTy = dyn_cast<RankedTensorType>(input.getType()); |
1676 | auto resultTy = dyn_cast<RankedTensorType>(op.getType()); |
1677 | |
1678 | if (!inputTy || !resultTy) |
1679 | return rewriter.notifyMatchFailure(op, |
1680 | "requires ranked input/output types"); |
1681 | |
1682 | auto batch = inputTy.getDimSize(0); |
1683 | auto channels = inputTy.getDimSize(3); |
1684 | auto inputH = inputTy.getDimSize(1); |
1685 | auto inputW = inputTy.getDimSize(2); |
1686 | auto outputH = resultTy.getDimSize(1); |
1687 | auto outputW = resultTy.getDimSize(2); |
1688 | |
1689 | if ((inputH != 1 || outputH == 1) && (inputW != 1 || outputW == 1)) |
1690 | return rewriter.notifyMatchFailure( |
1691 | op, "tosa.resize has no broadcasting behavior"); |
1692 | |
1693 | // For any dimension that is broadcastable we generate a width of 1 |
1694 | // on the output. |
1695 | llvm::SmallVector<int64_t> resizeShape; |
1696 | resizeShape.push_back(Elt: batch); |
1697 | resizeShape.push_back(Elt: inputH == 1 ? 1 : outputH); |
1698 | resizeShape.push_back(Elt: inputW == 1 ? 1 : outputW); |
1699 | resizeShape.push_back(Elt: channels); |
1700 | |
1701 | auto resizeTy = resultTy.clone(resizeShape); |
1702 | auto resize = builder.create<tosa::ResizeOp>(resizeTy, input, op.getScale(), |
1703 | op.getOffset(), op.getBorder(), |
1704 | op.getMode()); |
1705 | |
1706 | // Collapse an unit result dims. |
1707 | SmallVector<ReassociationExprs, 4> reassociationMap(2); |
1708 | reassociationMap[0].push_back(Elt: builder.getAffineDimExpr(position: 0)); |
1709 | reassociationMap.back().push_back(Elt: builder.getAffineDimExpr(position: 1)); |
1710 | if (inputH != 1) |
1711 | reassociationMap.push_back(Elt: {}); |
1712 | reassociationMap.back().push_back(Elt: builder.getAffineDimExpr(position: 2)); |
1713 | if (inputW != 1) |
1714 | reassociationMap.push_back(Elt: {}); |
1715 | reassociationMap.back().push_back(Elt: builder.getAffineDimExpr(position: 3)); |
1716 | |
1717 | llvm::SmallVector<int64_t> collapseShape = {batch}; |
1718 | if (inputH != 1) |
1719 | collapseShape.push_back(Elt: outputH); |
1720 | if (inputW != 1) |
1721 | collapseShape.push_back(Elt: outputW); |
1722 | collapseShape.push_back(Elt: channels); |
1723 | |
1724 | auto collapseTy = resultTy.clone(collapseShape); |
1725 | Value collapse = builder.create<tensor::CollapseShapeOp>(collapseTy, resize, |
1726 | reassociationMap); |
1727 | |
1728 | // Broadcast the collapsed shape to the output result. |
1729 | llvm::SmallVector<Value> outputDynSize; |
1730 | if (inputTy.isDynamicDim(0)) |
1731 | outputDynSize.push_back(builder.create<tensor::DimOp>(input, 0)); |
1732 | if (inputTy.isDynamicDim(3)) |
1733 | outputDynSize.push_back(builder.create<tensor::DimOp>(input, 3)); |
1734 | |
1735 | SmallVector<utils::IteratorType> iterators(resultTy.getRank(), |
1736 | utils::IteratorType::parallel); |
1737 | Value empty = builder.create<tensor::EmptyOp>( |
1738 | resultTy.getShape(), resultTy.getElementType(), outputDynSize); |
1739 | |
1740 | SmallVector<AffineExpr, 4> inputExprs{rewriter.getAffineDimExpr(position: 0)}; |
1741 | if (inputH != 1) |
1742 | inputExprs.push_back(Elt: rewriter.getAffineDimExpr(position: 1)); |
1743 | if (inputW != 1) |
1744 | inputExprs.push_back(Elt: rewriter.getAffineDimExpr(position: 2)); |
1745 | inputExprs.push_back(Elt: rewriter.getAffineDimExpr(position: 3)); |
1746 | |
1747 | auto inputMap = AffineMap::get(resultTy.getRank(), /*symbolCount=*/0, |
1748 | inputExprs, rewriter.getContext()); |
1749 | |
1750 | auto outputMap = rewriter.getMultiDimIdentityMap(rank: resultTy.getRank()); |
1751 | rewriter.replaceOpWithNewOp<linalg::GenericOp>( |
1752 | op, resultTy, ValueRange{collapse}, ValueRange{empty}, |
1753 | ArrayRef<AffineMap>{inputMap, outputMap}, iterators, |
1754 | [=](OpBuilder &b, Location loc, ValueRange args) { |
1755 | Value value = args[0]; |
1756 | b.create<linalg::YieldOp>(loc, value); |
1757 | }); |
1758 | |
1759 | return success(); |
1760 | } |
1761 | }; |
1762 | |
1763 | class GenericResizeConverter : public OpRewritePattern<tosa::ResizeOp> { |
1764 | public: |
1765 | using OpRewritePattern<tosa::ResizeOp>::OpRewritePattern; |
1766 | |
1767 | LogicalResult matchAndRewrite(tosa::ResizeOp op, |
1768 | PatternRewriter &rewriter) const final { |
1769 | Location loc = op.getLoc(); |
1770 | ImplicitLocOpBuilder b(loc, rewriter); |
1771 | auto input = op.getInput(); |
1772 | auto inputTy = cast<ShapedType>(input.getType()); |
1773 | auto resultTy = cast<ShapedType>(op.getType()); |
1774 | auto resultETy = resultTy.getElementType(); |
1775 | |
1776 | bool floatingPointMode = resultETy.isF16() || resultETy.isF32(); |
1777 | auto floatTy = resultETy.isF16() ? b.getF16Type() : b.getF32Type(); |
1778 | |
1779 | auto imageH = inputTy.getShape()[1]; |
1780 | auto imageW = inputTy.getShape()[2]; |
1781 | |
1782 | auto dynamicDimsOr = |
1783 | checkHasDynamicBatchDims(rewriter, op, {input, op.getOutput()}); |
1784 | if (!dynamicDimsOr.has_value()) |
1785 | return rewriter.notifyMatchFailure( |
1786 | op, "unable to get dynamic dimensions of tosa.resize"); |
1787 | |
1788 | if (op.getMode() != "NEAREST_NEIGHBOR"&& op.getMode() != "BILINEAR") |
1789 | return rewriter.notifyMatchFailure( |
1790 | op, "tosa.resize mode should be NEAREST_NEIGHBOR or BILINEAR"); |
1791 | |
1792 | SmallVector<AffineMap, 2> affineMaps = { |
1793 | rewriter.getMultiDimIdentityMap(rank: resultTy.getRank())}; |
1794 | auto emptyTensor = b.create<tensor::EmptyOp>(resultTy.getShape(), resultETy, |
1795 | *dynamicDimsOr); |
1796 | auto genericOp = b.create<linalg::GenericOp>( |
1797 | resultTy, ValueRange({}), ValueRange{emptyTensor}, affineMaps, |
1798 | getNParallelLoopsAttrs(resultTy.getRank())); |
1799 | Value resize = genericOp.getResult(0); |
1800 | |
1801 | { |
1802 | OpBuilder::InsertionGuard regionGuard(b); |
1803 | b.createBlock(&genericOp.getRegion(), genericOp.getRegion().end(), |
1804 | TypeRange({resultETy}), loc); |
1805 | Value batch = b.create<linalg::IndexOp>(0); |
1806 | Value y = b.create<linalg::IndexOp>(1); |
1807 | Value x = b.create<linalg::IndexOp>(2); |
1808 | Value channel = b.create<linalg::IndexOp>(3); |
1809 | |
1810 | Value zeroI32 = |
1811 | b.create<arith::ConstantOp>(b.getZeroAttr(b.getI32Type())); |
1812 | Value zeroFp = b.create<arith::ConstantOp>(b.getZeroAttr(floatTy)); |
1813 | Value hMax = b.create<arith::ConstantOp>(b.getI32IntegerAttr(imageH - 1)); |
1814 | Value wMax = b.create<arith::ConstantOp>(b.getI32IntegerAttr(imageW - 1)); |
1815 | |
1816 | Value inY = b.create<arith::IndexCastOp>(b.getI32Type(), y); |
1817 | Value inX = b.create<arith::IndexCastOp>(b.getI32Type(), x); |
1818 | |
1819 | SmallVector<int64_t> scale, offset, border; |
1820 | if (!tosa::getConstShapeValues(op: op.getScale().getDefiningOp(), result_shape&: scale) || |
1821 | !tosa::getConstShapeValues(op: op.getOffset().getDefiningOp(), result_shape&: offset) || |
1822 | !tosa::getConstShapeValues(op: op.getBorder().getDefiningOp(), result_shape&: border)) { |
1823 | return rewriter.notifyMatchFailure( |
1824 | op, "tosa.resize scale/offset/border should have compile time " |
1825 | "constant values."); |
1826 | } |
1827 | |
1828 | Value yScaleN, yScaleD, xScaleN, xScaleD; |
1829 | yScaleN = b.create<arith::ConstantOp>(b.getI32IntegerAttr(scale[0])); |
1830 | yScaleD = b.create<arith::ConstantOp>(b.getI32IntegerAttr(scale[1])); |
1831 | xScaleN = b.create<arith::ConstantOp>(b.getI32IntegerAttr(scale[2])); |
1832 | xScaleD = b.create<arith::ConstantOp>(b.getI32IntegerAttr(scale[3])); |
1833 | |
1834 | Value yOffset, xOffset, yBorder, xBorder; |
1835 | yOffset = b.create<arith::ConstantOp>(b.getI32IntegerAttr(offset[0])); |
1836 | xOffset = b.create<arith::ConstantOp>(b.getI32IntegerAttr(offset[1])); |
1837 | yBorder = b.create<arith::ConstantOp>(b.getI32IntegerAttr(border[0])); |
1838 | xBorder = b.create<arith::ConstantOp>(b.getI32IntegerAttr(border[1])); |
1839 | |
1840 | // Compute the ix and dx values for both the X and Y dimensions. |
1841 | auto getIndexAndDeltaFp = [&](Value &index, Value &delta, Value in, |
1842 | Value scaleN, Value scaleD, Value offset, |
1843 | int size, ImplicitLocOpBuilder &b) { |
1844 | if (size == 1) { |
1845 | index = zeroI32; |
1846 | delta = zeroFp; |
1847 | return; |
1848 | } |
1849 | // x = x * scale_d + offset; |
1850 | // ix = floor(x / scale_n) |
1851 | Value val = b.create<arith::MulIOp>(in, scaleD); |
1852 | val = b.create<arith::AddIOp>(val, offset); |
1853 | index = b.create<arith::FloorDivSIOp>(val, scaleN); |
1854 | |
1855 | // rx = x % scale_n |
1856 | // dx = rx / scale_n |
1857 | Value r = b.create<arith::RemSIOp>(val, scaleN); |
1858 | Value rFp = b.create<arith::SIToFPOp>(floatTy, r); |
1859 | Value scaleNfp = b.create<arith::UIToFPOp>(floatTy, scaleN); |
1860 | delta = b.create<arith::DivFOp>(rFp, scaleNfp); |
1861 | }; |
1862 | |
1863 | // Compute the ix and dx values for the X and Y dimensions - int case. |
1864 | auto getIndexAndDeltaInt = [&](Value &index, Value &delta, Value in, |
1865 | Value scaleN, Value scaleD, Value offset, |
1866 | int size, ImplicitLocOpBuilder &b) { |
1867 | if (size == 1) { |
1868 | index = zeroI32; |
1869 | delta = zeroI32; |
1870 | return; |
1871 | } |
1872 | // x = x * scale_d + offset; |
1873 | // ix = floor(x / scale_n) |
1874 | // dx = x - ix * scale_n; |
1875 | Value val = b.create<arith::MulIOp>(in, scaleD); |
1876 | val = b.create<arith::AddIOp>(val, offset); |
1877 | index = b.create<arith::DivSIOp>(val, scaleN); |
1878 | delta = b.create<arith::MulIOp>(index, scaleN); |
1879 | delta = b.create<arith::SubIOp>(val, delta); |
1880 | }; |
1881 | |
1882 | Value ix, iy, dx, dy; |
1883 | if (floatingPointMode) { |
1884 | getIndexAndDeltaFp(iy, dy, inY, yScaleN, yScaleD, yOffset, imageH, b); |
1885 | getIndexAndDeltaFp(ix, dx, inX, xScaleN, xScaleD, xOffset, imageW, b); |
1886 | } else { |
1887 | getIndexAndDeltaInt(iy, dy, inY, yScaleN, yScaleD, yOffset, imageH, b); |
1888 | getIndexAndDeltaInt(ix, dx, inX, xScaleN, xScaleD, xOffset, imageW, b); |
1889 | } |
1890 | |
1891 | if (op.getMode() == "NEAREST_NEIGHBOR") { |
1892 | auto one = b.create<arith::ConstantOp>(b.getI32IntegerAttr(1)); |
1893 | |
1894 | auto getNearestIndexAndClamp = [&](Value val, Value dval, Value scale, |
1895 | Value max, int size, |
1896 | ImplicitLocOpBuilder &b) -> Value { |
1897 | if (size == 1) { |
1898 | return b.create<arith::ConstantIndexOp>(0); |
1899 | } |
1900 | |
1901 | Value pred; |
1902 | if (floatingPointMode) { |
1903 | auto h = b.create<arith::ConstantOp>(b.getFloatAttr(floatTy, 0.5f)); |
1904 | pred = b.create<arith::CmpFOp>(arith::CmpFPredicate::OGE, dval, h); |
1905 | } else { |
1906 | Value dvalDouble = b.create<arith::ShLIOp>(dval, one); |
1907 | pred = b.create<arith::CmpIOp>(arith::CmpIPredicate::sge, |
1908 | dvalDouble, scale); |
1909 | } |
1910 | |
1911 | auto offset = b.create<arith::SelectOp>(pred, one, zeroI32); |
1912 | val = b.create<arith::AddIOp>(val, offset); |
1913 | val = clampIntHelper(loc, arg: val, min: zeroI32, max, rewriter&: b, /*isUnsigned=*/false); |
1914 | return b.create<arith::IndexCastOp>(b.getIndexType(), val); |
1915 | }; |
1916 | |
1917 | iy = getNearestIndexAndClamp(iy, dy, yScaleN, hMax, imageH, b); |
1918 | ix = getNearestIndexAndClamp(ix, dx, xScaleN, wMax, imageW, b); |
1919 | |
1920 | Value result = b.create<tensor::ExtractOp>( |
1921 | input, ValueRange{batch, iy, ix, channel}); |
1922 | |
1923 | b.create<linalg::YieldOp>(result); |
1924 | } else { |
1925 | // The mode here must be BILINEAR. |
1926 | assert(op.getMode() == "BILINEAR"); |
1927 | |
1928 | auto oneVal = b.create<arith::ConstantOp>(b.getI32IntegerAttr(1)); |
1929 | |
1930 | auto getClampedIdxs = [&](Value &val0, Value &val1, int size, Value in, |
1931 | Value max, ImplicitLocOpBuilder &b) { |
1932 | val0 = in; |
1933 | val1 = b.create<arith::AddIOp>(val0, oneVal); |
1934 | val0 = |
1935 | clampIntHelper(loc, arg: val0, min: zeroI32, max, rewriter&: b, /*isUnsigned=*/false); |
1936 | val1 = |
1937 | clampIntHelper(loc, arg: val1, min: zeroI32, max, rewriter&: b, /*isUnsigned=*/false); |
1938 | val0 = b.create<arith::IndexCastOp>(b.getIndexType(), val0); |
1939 | val1 = b.create<arith::IndexCastOp>(b.getIndexType(), val1); |
1940 | }; |
1941 | |
1942 | // Linalg equivalent to the section below: |
1943 | // int16_t iy0 = apply_max(iy, 0); |
1944 | // int16_t iy1 = apply_min(iy + 1, IH - 1); |
1945 | // int16_t ix0 = apply_max(ix, 0); |
1946 | // int16_t ix1 = apply_min(ix + 1, IW - 1); |
1947 | Value x0, x1, y0, y1; |
1948 | getClampedIdxs(y0, y1, imageH, iy, hMax, b); |
1949 | getClampedIdxs(x0, x1, imageW, ix, wMax, b); |
1950 | |
1951 | Value y0x0 = b.create<tensor::ExtractOp>( |
1952 | input, ValueRange{batch, y0, x0, channel}); |
1953 | Value y0x1 = b.create<tensor::ExtractOp>( |
1954 | input, ValueRange{batch, y0, x1, channel}); |
1955 | Value y1x0 = b.create<tensor::ExtractOp>( |
1956 | input, ValueRange{batch, y1, x0, channel}); |
1957 | Value y1x1 = b.create<tensor::ExtractOp>( |
1958 | input, ValueRange{batch, y1, x1, channel}); |
1959 | |
1960 | if (floatingPointMode) { |
1961 | auto oneVal = |
1962 | b.create<arith::ConstantOp>(b.getFloatAttr(floatTy, 1.0f)); |
1963 | auto interpolate = [&](Value val0, Value val1, Value delta, |
1964 | int inputSize, |
1965 | ImplicitLocOpBuilder &b) -> Value { |
1966 | if (inputSize == 1) |
1967 | return val0; |
1968 | Value oneMinusDelta = b.create<arith::SubFOp>(oneVal, delta); |
1969 | Value mul0 = b.create<arith::MulFOp>(val0, oneMinusDelta); |
1970 | Value mul1 = b.create<arith::MulFOp>(val1, delta); |
1971 | return b.create<arith::AddFOp>(mul0, mul1); |
1972 | }; |
1973 | |
1974 | // Linalg equivalent to the section below: |
1975 | // topAcc = v00 * (unit_x - dx); |
1976 | // topAcc += v01 * dx; |
1977 | Value topAcc = interpolate(y0x0, y0x1, dx, imageW, b); |
1978 | |
1979 | // Linalg equivalent to the section below: |
1980 | // bottomAcc = v10 * (unit_x - dx); |
1981 | // bottomAcc += v11 * dx; |
1982 | Value bottomAcc = interpolate(y1x0, y1x1, dx, imageW, b); |
1983 | |
1984 | // Linalg equivalent to the section below: |
1985 | // result = topAcc * (unit_y - dy) + bottomAcc * dy |
1986 | Value result = interpolate(topAcc, bottomAcc, dy, imageH, b); |
1987 | b.create<linalg::YieldOp>(result); |
1988 | } else { |
1989 | // Perform in quantized space. |
1990 | y0x0 = b.create<arith::ExtSIOp>(resultETy, y0x0); |
1991 | y0x1 = b.create<arith::ExtSIOp>(resultETy, y0x1); |
1992 | y1x0 = b.create<arith::ExtSIOp>(resultETy, y1x0); |
1993 | y1x1 = b.create<arith::ExtSIOp>(resultETy, y1x1); |
1994 | |
1995 | const int64_t deltaBitwidth = dx.getType().getIntOrFloatBitWidth(); |
1996 | if (resultETy.getIntOrFloatBitWidth() > deltaBitwidth) { |
1997 | dx = b.create<arith::ExtSIOp>(resultETy, dx); |
1998 | dy = b.create<arith::ExtSIOp>(resultETy, dy); |
1999 | } |
2000 | |
2001 | Value yScaleNExt = yScaleN; |
2002 | Value xScaleNExt = xScaleN; |
2003 | |
2004 | const int64_t scaleBitwidth = |
2005 | xScaleN.getType().getIntOrFloatBitWidth(); |
2006 | if (resultETy.getIntOrFloatBitWidth() > scaleBitwidth) { |
2007 | yScaleNExt = b.create<arith::ExtSIOp>(resultETy, yScaleN); |
2008 | xScaleNExt = b.create<arith::ExtSIOp>(resultETy, xScaleN); |
2009 | } |
2010 | |
2011 | auto interpolate = [](Value val0, Value val1, Value weight1, |
2012 | Value scale, int inputSize, |
2013 | ImplicitLocOpBuilder &b) -> Value { |
2014 | if (inputSize == 1) |
2015 | return b.create<arith::MulIOp>(val0, scale); |
2016 | Value weight0 = b.create<arith::SubIOp>(scale, weight1); |
2017 | Value mul0 = b.create<arith::MulIOp>(val0, weight0); |
2018 | Value mul1 = b.create<arith::MulIOp>(val1, weight1); |
2019 | return b.create<arith::AddIOp>(mul0, mul1); |
2020 | }; |
2021 | |
2022 | Value topAcc = interpolate(y0x0, y0x1, dx, xScaleNExt, imageW, b); |
2023 | Value bottomAcc = interpolate(y1x0, y1x1, dx, xScaleNExt, imageW, b); |
2024 | Value result = |
2025 | interpolate(topAcc, bottomAcc, dy, yScaleNExt, imageH, b); |
2026 | b.create<linalg::YieldOp>(result); |
2027 | } |
2028 | } |
2029 | } |
2030 | |
2031 | rewriter.replaceOp(op, resize); |
2032 | return success(); |
2033 | } |
2034 | }; |
2035 | |
2036 | // At the codegen level any identity operations should be removed. Any cases |
2037 | // where identity is load-bearing (e.g. cross device computation) should be |
2038 | // handled before lowering to codegen. |
2039 | template <typename SrcOp> |
2040 | class IdentityNConverter : public OpRewritePattern<SrcOp> { |
2041 | public: |
2042 | using OpRewritePattern<SrcOp>::OpRewritePattern; |
2043 | |
2044 | LogicalResult matchAndRewrite(SrcOp op, |
2045 | PatternRewriter &rewriter) const final { |
2046 | rewriter.replaceOp(op, op.getOperation()->getOperands()); |
2047 | return success(); |
2048 | } |
2049 | }; |
2050 | |
2051 | template <typename SrcOp> |
2052 | class ReduceConverter : public OpRewritePattern<SrcOp> { |
2053 | public: |
2054 | using OpRewritePattern<SrcOp>::OpRewritePattern; |
2055 | |
2056 | LogicalResult matchAndRewrite(SrcOp reduceOp, |
2057 | PatternRewriter &rewriter) const final { |
2058 | return reduceMatchAndRewriteHelper(reduceOp, reduceOp.getAxis(), rewriter); |
2059 | } |
2060 | }; |
2061 | |
2062 | class ReverseConverter : public OpRewritePattern<tosa::ReverseOp> { |
2063 | public: |
2064 | using OpRewritePattern<tosa::ReverseOp>::OpRewritePattern; |
2065 | |
2066 | LogicalResult matchAndRewrite(tosa::ReverseOp op, |
2067 | PatternRewriter &rewriter) const final { |
2068 | auto loc = op.getLoc(); |
2069 | Value input = op.getInput1(); |
2070 | auto inputTy = cast<ShapedType>(input.getType()); |
2071 | auto resultTy = cast<ShapedType>(op.getType()); |
2072 | auto axis = op.getAxis(); |
2073 | |
2074 | SmallVector<Value> dynDims; |
2075 | for (int i = 0; i < inputTy.getRank(); i++) { |
2076 | if (inputTy.isDynamicDim(i)) { |
2077 | dynDims.push_back(rewriter.create<tensor::DimOp>(loc, input, i)); |
2078 | } |
2079 | } |
2080 | |
2081 | Value axisDimSize = rewriter.create<tensor::DimOp>(loc, input, axis); |
2082 | |
2083 | // First fill the output buffer with the init value. |
2084 | auto emptyTensor = rewriter |
2085 | .create<tensor::EmptyOp>(loc, inputTy.getShape(), |
2086 | inputTy.getElementType(), |
2087 | ArrayRef<Value>({dynDims})) |
2088 | .getResult(); |
2089 | SmallVector<AffineMap, 2> affineMaps = { |
2090 | rewriter.getMultiDimIdentityMap(rank: resultTy.getRank())}; |
2091 | |
2092 | rewriter.replaceOpWithNewOp<linalg::GenericOp>( |
2093 | op, resultTy, ArrayRef<Value>({}), ValueRange{emptyTensor}, affineMaps, |
2094 | getNParallelLoopsAttrs(resultTy.getRank()), |
2095 | [&](OpBuilder &nestedBuilder, Location nestedLoc, ValueRange args) { |
2096 | llvm::SmallVector<Value> indices; |
2097 | for (unsigned int i = 0; i < inputTy.getRank(); i++) { |
2098 | Value index = |
2099 | rewriter.create<linalg::IndexOp>(nestedLoc, i).getResult(); |
2100 | if (i == axis) { |
2101 | auto one = rewriter.create<arith::ConstantIndexOp>(nestedLoc, 1); |
2102 | auto sizeMinusOne = |
2103 | rewriter.create<arith::SubIOp>(nestedLoc, axisDimSize, one); |
2104 | index = rewriter.create<arith::SubIOp>(nestedLoc, sizeMinusOne, |
2105 | index); |
2106 | } |
2107 | |
2108 | indices.push_back(index); |
2109 | } |
2110 | |
2111 | auto extract = nestedBuilder.create<tensor::ExtractOp>( |
2112 | nestedLoc, input, indices); |
2113 | nestedBuilder.create<linalg::YieldOp>(op.getLoc(), |
2114 | extract.getResult()); |
2115 | }); |
2116 | return success(); |
2117 | } |
2118 | }; |
2119 | |
2120 | // This converter translate a tile operation to a reshape, broadcast, reshape. |
2121 | // The first reshape minimally expands each tiled dimension to include a |
2122 | // proceding size-1 dim. This dim is then broadcasted to the appropriate |
2123 | // multiple. |
2124 | struct TileConverter : public OpConversionPattern<tosa::TileOp> { |
2125 | using OpConversionPattern<tosa::TileOp>::OpConversionPattern; |
2126 | |
2127 | LogicalResult |
2128 | matchAndRewrite(tosa::TileOp op, OpAdaptor adaptor, |
2129 | ConversionPatternRewriter &rewriter) const override { |
2130 | auto loc = op.getLoc(); |
2131 | auto input = op.getInput1(); |
2132 | auto inputTy = cast<ShapedType>(input.getType()); |
2133 | auto inputShape = inputTy.getShape(); |
2134 | auto resultTy = cast<ShapedType>(op.getType()); |
2135 | auto elementTy = inputTy.getElementType(); |
2136 | int64_t rank = inputTy.getRank(); |
2137 | |
2138 | SmallVector<int64_t> multiples; |
2139 | if (failed(op.getConstantMultiples(multiples))) |
2140 | return failure(); |
2141 | |
2142 | // Broadcast the newly added dimensions to their appropriate multiple. |
2143 | SmallVector<int64_t, 2> genericShape; |
2144 | for (int i = 0; i < rank; i++) { |
2145 | int64_t dim = multiples[i]; |
2146 | genericShape.push_back(dim == -1 ? ShapedType::kDynamic : dim); |
2147 | genericShape.push_back(Elt: inputShape[i]); |
2148 | } |
2149 | |
2150 | SmallVector<Value> dynDims; |
2151 | for (int i = 0; i < inputTy.getRank(); i++) { |
2152 | if (inputTy.isDynamicDim(i) || multiples[i] == -1) { |
2153 | dynDims.push_back(rewriter.create<tensor::DimOp>(loc, input, i)); |
2154 | } |
2155 | } |
2156 | |
2157 | auto emptyTensor = rewriter.create<tensor::EmptyOp>( |
2158 | op.getLoc(), genericShape, elementTy, dynDims); |
2159 | |
2160 | // We needs to map the input shape to the non-broadcasted dimensions. |
2161 | SmallVector<AffineExpr, 4> dimExprs; |
2162 | dimExprs.reserve(N: rank); |
2163 | for (unsigned i = 0; i < rank; ++i) |
2164 | dimExprs.push_back(Elt: rewriter.getAffineDimExpr(position: i * 2 + 1)); |
2165 | |
2166 | auto readAffineMap = |
2167 | AffineMap::get(/*dimCount=*/rank * 2, /*symbolCount=*/0, results: dimExprs, |
2168 | context: rewriter.getContext()); |
2169 | |
2170 | SmallVector<AffineMap, 2> affineMaps = { |
2171 | readAffineMap, rewriter.getMultiDimIdentityMap(rank: genericShape.size())}; |
2172 | |
2173 | auto genericOp = rewriter.create<linalg::GenericOp>( |
2174 | loc, RankedTensorType::get(genericShape, elementTy), input, |
2175 | ValueRange{emptyTensor}, affineMaps, |
2176 | getNParallelLoopsAttrs(genericShape.size()), |
2177 | [&](OpBuilder &nestedBuilder, Location nestedLoc, ValueRange args) { |
2178 | nestedBuilder.create<linalg::YieldOp>(op.getLoc(), *args.begin()); |
2179 | }); |
2180 | |
2181 | auto shapeValue = getTosaConstShape( |
2182 | rewriter, loc, mlir::tosa::convertFromMlirShape(shape: resultTy.getShape())); |
2183 | rewriter.replaceOpWithNewOp<tosa::ReshapeOp>( |
2184 | op, resultTy, genericOp.getResult(0), shapeValue); |
2185 | return success(); |
2186 | } |
2187 | }; |
2188 | |
2189 | // Tosa argmax lowering represents the ArgMax op as an linalg.indexed_generic |
2190 | // op, producing two output buffers. |
2191 | // |
2192 | // The first output buffer contains the index of the found maximum value. It is |
2193 | // initialized to 0 and is resulting integer type. |
2194 | // |
2195 | // The second output buffer contains the maximum value found. It is initialized |
2196 | // to the minimum representable value of the input element type. After being |
2197 | // populated by indexed_generic, this buffer is disgarded as only the index is |
2198 | // requested. |
2199 | // |
2200 | // The indexed_generic op updates both the maximum value and index if the |
2201 | // current value exceeds the running max. |
2202 | class ArgMaxConverter : public OpRewritePattern<tosa::ArgMaxOp> { |
2203 | public: |
2204 | using OpRewritePattern<tosa::ArgMaxOp>::OpRewritePattern; |
2205 | |
2206 | LogicalResult matchAndRewrite(tosa::ArgMaxOp argmaxOp, |
2207 | PatternRewriter &rewriter) const final { |
2208 | auto loc = argmaxOp.getLoc(); |
2209 | Value input = argmaxOp.getInput(); |
2210 | auto inputTy = cast<ShapedType>(input.getType()); |
2211 | auto resultTy = cast<ShapedType>(argmaxOp.getOutput().getType()); |
2212 | auto inElementTy = inputTy.getElementType(); |
2213 | auto outElementTy = resultTy.getElementType(); |
2214 | int axis = argmaxOp.getAxis(); |
2215 | auto resultMaxTy = RankedTensorType::get(resultTy.getShape(), inElementTy); |
2216 | |
2217 | if (!isa<IntegerType>(outElementTy)) |
2218 | return rewriter.notifyMatchFailure( |
2219 | argmaxOp, |
2220 | "tosa.arg_max to linalg.* requires integer-like result type"); |
2221 | |
2222 | SmallVector<Value> dynDims; |
2223 | for (int i = 0; i < inputTy.getRank(); i++) { |
2224 | if (inputTy.isDynamicDim(i) && i != axis) { |
2225 | dynDims.push_back(rewriter.create<tensor::DimOp>(loc, input, i)); |
2226 | } |
2227 | } |
2228 | |
2229 | // First fill the output buffer for the index. |
2230 | auto emptyTensorIdx = rewriter |
2231 | .create<tensor::EmptyOp>(loc, resultTy.getShape(), |
2232 | outElementTy, dynDims) |
2233 | .getResult(); |
2234 | auto fillValueIdx = rewriter.create<arith::ConstantOp>( |
2235 | loc, rewriter.getIntegerAttr(outElementTy, 0)); |
2236 | auto filledTensorIdx = |
2237 | rewriter |
2238 | .create<linalg::FillOp>(loc, ValueRange{fillValueIdx}, |
2239 | ValueRange{emptyTensorIdx}) |
2240 | .result(); |
2241 | |
2242 | // Second fill the output buffer for the running max. |
2243 | auto emptyTensorMax = rewriter |
2244 | .create<tensor::EmptyOp>(loc, resultTy.getShape(), |
2245 | inElementTy, dynDims) |
2246 | .getResult(); |
2247 | auto fillValueMaxAttr = |
2248 | createInitialValueForReduceOp(argmaxOp, inElementTy, rewriter); |
2249 | |
2250 | if (!fillValueMaxAttr) |
2251 | return rewriter.notifyMatchFailure( |
2252 | argmaxOp, "unsupported tosa.argmax element type"); |
2253 | |
2254 | auto fillValueMax = |
2255 | rewriter.create<arith::ConstantOp>(loc, fillValueMaxAttr); |
2256 | auto filledTensorMax = |
2257 | rewriter |
2258 | .create<linalg::FillOp>(loc, ValueRange{fillValueMax}, |
2259 | ValueRange{emptyTensorMax}) |
2260 | .result(); |
2261 | |
2262 | // We need to reduce along the arg-max axis, with parallel operations along |
2263 | // the rest. |
2264 | SmallVector<utils::IteratorType, 4> iteratorTypes; |
2265 | iteratorTypes.resize(inputTy.getRank(), utils::IteratorType::parallel); |
2266 | iteratorTypes[axis] = utils::IteratorType::reduction; |
2267 | |
2268 | SmallVector<AffineExpr, 2> srcExprs; |
2269 | SmallVector<AffineExpr, 2> dstExprs; |
2270 | for (int i = 0, rank = inputTy.getRank(); i != rank; ++i) { |
2271 | srcExprs.push_back(Elt: mlir::getAffineDimExpr(position: i, context: rewriter.getContext())); |
2272 | if (axis != i) |
2273 | dstExprs.push_back(Elt: mlir::getAffineDimExpr(position: i, context: rewriter.getContext())); |
2274 | } |
2275 | |
2276 | bool didEncounterError = false; |
2277 | auto maps = AffineMap::inferFromExprList(exprsList: {srcExprs, dstExprs, dstExprs}, |
2278 | context: rewriter.getContext()); |
2279 | auto linalgOp = rewriter.create<linalg::GenericOp>( |
2280 | loc, ArrayRef<Type>({resultTy, resultMaxTy}), input, |
2281 | ValueRange({filledTensorIdx, filledTensorMax}), maps, iteratorTypes, |
2282 | [&](OpBuilder &nestedBuilder, Location nestedLoc, |
2283 | ValueRange blockArgs) { |
2284 | auto newValue = blockArgs[0]; |
2285 | auto oldIndex = blockArgs[1]; |
2286 | auto oldValue = blockArgs[2]; |
2287 | |
2288 | Value newIndex = rewriter.create<arith::IndexCastOp>( |
2289 | nestedLoc, oldIndex.getType(), |
2290 | rewriter.create<linalg::IndexOp>(loc, axis)); |
2291 | |
2292 | Value predicate; |
2293 | if (isa<FloatType>(inElementTy)) { |
2294 | if (argmaxOp.getNanMode() == "IGNORE") { |
2295 | // Only update index & max value for non NaN values. If all |
2296 | // values are NaNs, the initial index will be return which is 0. |
2297 | predicate = rewriter.create<arith::CmpFOp>( |
2298 | nestedLoc, arith::CmpFPredicate::OGT, newValue, oldValue); |
2299 | } else { |
2300 | // Update max value if either of the following is true: |
2301 | // - new value is bigger |
2302 | // - cur max is not NaN and new value is NaN |
2303 | Value gt = rewriter.create<arith::CmpFOp>( |
2304 | nestedLoc, arith::CmpFPredicate::UGT, newValue, oldValue); |
2305 | Value oldNonNaN = rewriter.create<arith::CmpFOp>( |
2306 | nestedLoc, arith::CmpFPredicate::ORD, oldValue, oldValue); |
2307 | predicate = rewriter.create<arith::AndIOp>( |
2308 | nestedLoc, rewriter.getI1Type(), gt, oldNonNaN); |
2309 | } |
2310 | } else if (isa<IntegerType>(inElementTy)) { |
2311 | predicate = rewriter.create<arith::CmpIOp>( |
2312 | nestedLoc, arith::CmpIPredicate::sgt, newValue, oldValue); |
2313 | } else { |
2314 | didEncounterError = true; |
2315 | return; |
2316 | } |
2317 | |
2318 | auto resultMax = rewriter.create<arith::SelectOp>( |
2319 | nestedLoc, predicate, newValue, oldValue); |
2320 | auto resultIndex = rewriter.create<arith::SelectOp>( |
2321 | nestedLoc, predicate, newIndex, oldIndex); |
2322 | nestedBuilder.create<linalg::YieldOp>( |
2323 | nestedLoc, ValueRange({resultIndex, resultMax})); |
2324 | }); |
2325 | |
2326 | if (didEncounterError) |
2327 | return rewriter.notifyMatchFailure( |
2328 | argmaxOp, "unsupported tosa.argmax element type"); |
2329 | |
2330 | rewriter.replaceOp(argmaxOp, linalgOp.getResult(0)); |
2331 | return success(); |
2332 | } |
2333 | }; |
2334 | |
2335 | class GatherConverter : public OpConversionPattern<tosa::GatherOp> { |
2336 | public: |
2337 | using OpConversionPattern<tosa::GatherOp>::OpConversionPattern; |
2338 | LogicalResult |
2339 | matchAndRewrite(tosa::GatherOp op, OpAdaptor adaptor, |
2340 | ConversionPatternRewriter &rewriter) const final { |
2341 | auto input = adaptor.getOperands()[0]; |
2342 | auto indices = adaptor.getOperands()[1]; |
2343 | |
2344 | auto valuesTy = dyn_cast<RankedTensorType>(op.getValues().getType()); |
2345 | auto resultTy = dyn_cast<RankedTensorType>(op.getType()); |
2346 | if (!valuesTy || !resultTy) |
2347 | return rewriter.notifyMatchFailure(op, "unranked tensors not supported"); |
2348 | |
2349 | auto dynamicDims = inferDynamicDimsForGather( |
2350 | builder&: rewriter, loc: op.getLoc(), values: adaptor.getValues(), indices: adaptor.getIndices()); |
2351 | |
2352 | auto resultElementTy = resultTy.getElementType(); |
2353 | |
2354 | auto loc = op.getLoc(); |
2355 | auto emptyTensor = |
2356 | rewriter |
2357 | .create<tensor::EmptyOp>(loc, resultTy.getShape(), resultElementTy, |
2358 | dynamicDims) |
2359 | .getResult(); |
2360 | |
2361 | SmallVector<AffineMap, 2> affineMaps = { |
2362 | AffineMap::get( |
2363 | /*dimCount=*/resultTy.getRank(), /*symbolCount=*/0, |
2364 | {rewriter.getAffineDimExpr(position: 0), rewriter.getAffineDimExpr(position: 1)}, |
2365 | rewriter.getContext()), |
2366 | rewriter.getMultiDimIdentityMap(rank: resultTy.getRank())}; |
2367 | |
2368 | auto genericOp = rewriter.create<linalg::GenericOp>( |
2369 | loc, ArrayRef<Type>({resultTy}), ValueRange{indices}, |
2370 | ValueRange{emptyTensor}, affineMaps, |
2371 | getNParallelLoopsAttrs(resultTy.getRank()), |
2372 | [&](OpBuilder &b, Location loc, ValueRange args) { |
2373 | auto indexValue = args[0]; |
2374 | auto index0 = rewriter.create<linalg::IndexOp>(loc, 0); |
2375 | Value index1 = rewriter.create<arith::IndexCastOp>( |
2376 | loc, rewriter.getIndexType(), indexValue); |
2377 | auto index2 = rewriter.create<linalg::IndexOp>(loc, 2); |
2378 | Value extract = rewriter.create<tensor::ExtractOp>( |
2379 | loc, input, ValueRange{index0, index1, index2}); |
2380 | rewriter.create<linalg::YieldOp>(loc, extract); |
2381 | }); |
2382 | rewriter.replaceOp(op, genericOp.getResult(0)); |
2383 | return success(); |
2384 | } |
2385 | |
2386 | static llvm::SmallVector<Value> inferDynamicDimsForGather(OpBuilder &builder, |
2387 | Location loc, |
2388 | Value values, |
2389 | Value indices) { |
2390 | llvm::SmallVector<Value> results; |
2391 | |
2392 | auto addDynamicDimension = [&](Value source, int64_t dim) { |
2393 | auto sz = tensor::getMixedSize(builder, loc, value: source, dim); |
2394 | if (auto dimValue = llvm::dyn_cast_if_present<Value>(Val&: sz)) |
2395 | results.push_back(Elt: dimValue); |
2396 | }; |
2397 | |
2398 | addDynamicDimension(values, 0); |
2399 | addDynamicDimension(indices, 1); |
2400 | addDynamicDimension(values, 2); |
2401 | return results; |
2402 | } |
2403 | }; |
2404 | |
2405 | // Lowerings the TableOp to a series of gathers and numerica operations. This |
2406 | // includes interpolation between the high/low values. For the I8 varient, this |
2407 | // simplifies to a single gather operation. |
2408 | class TableConverter : public OpRewritePattern<tosa::TableOp> { |
2409 | public: |
2410 | using OpRewritePattern<tosa::TableOp>::OpRewritePattern; |
2411 | |
2412 | LogicalResult matchAndRewrite(tosa::TableOp op, |
2413 | PatternRewriter &rewriter) const final { |
2414 | auto loc = op.getLoc(); |
2415 | Value input = op.getInput1(); |
2416 | Value table = op.getTable(); |
2417 | auto inputTy = cast<ShapedType>(input.getType()); |
2418 | auto tableTy = cast<ShapedType>(table.getType()); |
2419 | auto resultTy = cast<ShapedType>(op.getType()); |
2420 | |
2421 | auto inputElementTy = inputTy.getElementType(); |
2422 | auto tableElementTy = tableTy.getElementType(); |
2423 | auto resultElementTy = resultTy.getElementType(); |
2424 | |
2425 | SmallVector<Value> dynDims; |
2426 | for (int i = 0; i < resultTy.getRank(); ++i) { |
2427 | if (inputTy.isDynamicDim(i)) { |
2428 | dynDims.push_back( |
2429 | rewriter.create<tensor::DimOp>(loc, op.getOperand(0), i)); |
2430 | } |
2431 | } |
2432 | |
2433 | auto emptyTensor = rewriter |
2434 | .create<tensor::EmptyOp>(loc, resultTy.getShape(), |
2435 | resultElementTy, dynDims) |
2436 | .getResult(); |
2437 | |
2438 | SmallVector<AffineMap, 2> affineMaps = { |
2439 | rewriter.getMultiDimIdentityMap(rank: resultTy.getRank()), |
2440 | rewriter.getMultiDimIdentityMap(rank: resultTy.getRank())}; |
2441 | |
2442 | auto genericOp = rewriter.create<linalg::GenericOp>( |
2443 | loc, resultTy, ValueRange({input}), ValueRange{emptyTensor}, affineMaps, |
2444 | getNParallelLoopsAttrs(resultTy.getRank())); |
2445 | rewriter.replaceOp(op, genericOp.getResult(0)); |
2446 | |
2447 | { |
2448 | OpBuilder::InsertionGuard regionGuard(rewriter); |
2449 | Block *block = rewriter.createBlock( |
2450 | &genericOp.getRegion(), genericOp.getRegion().end(), |
2451 | TypeRange({inputElementTy, resultElementTy}), {loc, loc}); |
2452 | |
2453 | auto inputValue = block->getArgument(i: 0); |
2454 | rewriter.setInsertionPointToStart(block); |
2455 | if (inputElementTy.isInteger(8) && tableElementTy.isInteger(8) && |
2456 | resultElementTy.isInteger(8)) { |
2457 | Value index = rewriter.create<arith::IndexCastOp>( |
2458 | loc, rewriter.getIndexType(), inputValue); |
2459 | Value offset = rewriter.create<arith::ConstantIndexOp>(loc, 128); |
2460 | index = rewriter.create<arith::AddIOp>(loc, rewriter.getIndexType(), |
2461 | index, offset); |
2462 | Value extract = |
2463 | rewriter.create<tensor::ExtractOp>(loc, table, ValueRange{index}); |
2464 | rewriter.create<linalg::YieldOp>(loc, extract); |
2465 | return success(); |
2466 | } |
2467 | |
2468 | if (inputElementTy.isInteger(16) && tableElementTy.isInteger(16) && |
2469 | resultElementTy.isInteger(32)) { |
2470 | Value extend = rewriter.create<arith::ExtSIOp>( |
2471 | loc, rewriter.getI32Type(), inputValue); |
2472 | |
2473 | auto offset = rewriter.create<arith::ConstantOp>( |
2474 | loc, rewriter.getI32IntegerAttr(32768)); |
2475 | auto seven = rewriter.create<arith::ConstantOp>( |
2476 | loc, rewriter.getI32IntegerAttr(7)); |
2477 | auto one = rewriter.create<arith::ConstantOp>( |
2478 | loc, rewriter.getI32IntegerAttr(1)); |
2479 | auto b1111111 = rewriter.create<arith::ConstantOp>( |
2480 | loc, rewriter.getI32IntegerAttr(127)); |
2481 | |
2482 | // Compute the index and fractional part from the input value: |
2483 | // value = value + 32768 |
2484 | // index = value >> 7; |
2485 | // fraction = 0x01111111 & value |
2486 | auto extendAdd = rewriter.create<arith::AddIOp>(loc, extend, offset); |
2487 | Value index = rewriter.create<arith::ShRUIOp>(loc, extendAdd, seven); |
2488 | Value fraction = |
2489 | rewriter.create<arith::AndIOp>(loc, extendAdd, b1111111); |
2490 | |
2491 | // Extract the base and next values from the table. |
2492 | // base = (int32_t) table[index]; |
2493 | // next = (int32_t) table[index + 1]; |
2494 | Value indexPlusOne = rewriter.create<arith::AddIOp>(loc, index, one); |
2495 | |
2496 | index = rewriter.create<arith::IndexCastOp>( |
2497 | loc, rewriter.getIndexType(), index); |
2498 | indexPlusOne = rewriter.create<arith::IndexCastOp>( |
2499 | loc, rewriter.getIndexType(), indexPlusOne); |
2500 | |
2501 | Value base = |
2502 | rewriter.create<tensor::ExtractOp>(loc, table, ValueRange{index}); |
2503 | Value next = rewriter.create<tensor::ExtractOp>( |
2504 | loc, table, ValueRange{indexPlusOne}); |
2505 | |
2506 | base = |
2507 | rewriter.create<arith::ExtSIOp>(loc, rewriter.getI32Type(), base); |
2508 | next = |
2509 | rewriter.create<arith::ExtSIOp>(loc, rewriter.getI32Type(), next); |
2510 | |
2511 | // Use the fractional part to interpolate between the input values: |
2512 | // result = (base << 7) + (next - base) * fraction |
2513 | Value baseScaled = rewriter.create<arith::ShLIOp>(loc, base, seven); |
2514 | Value diff = rewriter.create<arith::SubIOp>(loc, next, base); |
2515 | Value diffScaled = rewriter.create<arith::MulIOp>(loc, diff, fraction); |
2516 | Value result = |
2517 | rewriter.create<arith::AddIOp>(loc, baseScaled, diffScaled); |
2518 | |
2519 | rewriter.create<linalg::YieldOp>(loc, result); |
2520 | |
2521 | return success(); |
2522 | } |
2523 | } |
2524 | |
2525 | return rewriter.notifyMatchFailure( |
2526 | op, "unable to create body for tosa.table op"); |
2527 | } |
2528 | }; |
2529 | |
2530 | struct RFFT2dConverter final : public OpRewritePattern<RFFT2dOp> { |
2531 | using OpRewritePattern<RFFT2dOp>::OpRewritePattern; |
2532 | |
2533 | static bool isRankedTensor(Type type) { return isa<RankedTensorType>(Val: type); } |
2534 | |
2535 | static OpFoldResult halfPlusOne(OpBuilder &builder, Location loc, |
2536 | OpFoldResult ofr) { |
2537 | auto one = builder.create<arith::ConstantIndexOp>(location: loc, args: 1); |
2538 | auto two = builder.create<arith::ConstantIndexOp>(location: loc, args: 2); |
2539 | |
2540 | auto value = getValueOrCreateConstantIndexOp(b&: builder, loc, ofr); |
2541 | auto divBy2 = builder.createOrFold<arith::DivUIOp>(loc, value, two); |
2542 | auto plusOne = builder.createOrFold<arith::AddIOp>(loc, divBy2, one); |
2543 | return getAsOpFoldResult(plusOne); |
2544 | } |
2545 | |
2546 | static RankedTensorType |
2547 | computeOutputShape(OpBuilder &builder, Location loc, Value input, |
2548 | llvm::SmallVectorImpl<Value> &dynamicSizes) { |
2549 | // Get [N, H, W] |
2550 | auto dims = tensor::getMixedSizes(builder, loc, value: input); |
2551 | |
2552 | // Set W = (W / 2) + 1 to account for the half-sized W dimension of the |
2553 | // output tensors. |
2554 | dims[2] = halfPlusOne(builder, loc, ofr: dims[2]); |
2555 | |
2556 | llvm::SmallVector<int64_t, 3> staticSizes; |
2557 | dispatchIndexOpFoldResults(ofrs: dims, dynamicVec&: dynamicSizes, staticVec&: staticSizes); |
2558 | |
2559 | auto elementType = cast<RankedTensorType>(input.getType()).getElementType(); |
2560 | return RankedTensorType::get(staticSizes, elementType); |
2561 | } |
2562 | |
2563 | static Value createZeroTensor(PatternRewriter &rewriter, Location loc, |
2564 | RankedTensorType type, |
2565 | llvm::ArrayRef<Value> dynamicSizes) { |
2566 | auto emptyTensor = |
2567 | rewriter.create<tensor::EmptyOp>(loc, type, dynamicSizes); |
2568 | auto fillValueAttr = rewriter.getZeroAttr(type: type.getElementType()); |
2569 | auto fillValue = rewriter.create<arith::ConstantOp>(loc, fillValueAttr); |
2570 | auto filledTensor = rewriter |
2571 | .create<linalg::FillOp>(loc, ValueRange{fillValue}, |
2572 | ValueRange{emptyTensor}) |
2573 | .result(); |
2574 | return filledTensor; |
2575 | } |
2576 | |
2577 | static Value castIndexToFloat(OpBuilder &builder, Location loc, |
2578 | FloatType type, Value value) { |
2579 | auto integerVal = builder.create<arith::IndexCastUIOp>( |
2580 | loc, |
2581 | type.getIntOrFloatBitWidth() > 32 ? builder.getI64Type() |
2582 | : builder.getI32Type(), |
2583 | value); |
2584 | |
2585 | return builder.create<arith::UIToFPOp>(loc, type, integerVal); |
2586 | } |
2587 | |
2588 | static Value createLinalgIndex(OpBuilder &builder, Location loc, |
2589 | FloatType type, int64_t index) { |
2590 | auto indexVal = builder.create<linalg::IndexOp>(loc, index); |
2591 | return castIndexToFloat(builder, loc, type: type, value: indexVal); |
2592 | } |
2593 | |
2594 | template <typename... Args> |
2595 | static llvm::SmallVector<AffineExpr, 4> affineDimsExpr(OpBuilder &builder, |
2596 | Args... args) { |
2597 | return {builder.getAffineDimExpr(position: args)...}; |
2598 | } |
2599 | |
2600 | LogicalResult matchAndRewrite(RFFT2dOp rfft2d, |
2601 | PatternRewriter &rewriter) const override { |
2602 | if (!llvm::all_of(rfft2d->getOperandTypes(), isRankedTensor) || |
2603 | !llvm::all_of(rfft2d->getResultTypes(), isRankedTensor)) { |
2604 | return rewriter.notifyMatchFailure(rfft2d, |
2605 | "only supports ranked tensors"); |
2606 | } |
2607 | |
2608 | auto loc = rfft2d.getLoc(); |
2609 | auto input = rfft2d.getInputReal(); |
2610 | auto elementType = |
2611 | dyn_cast<FloatType>(cast<ShapedType>(input.getType()).getElementType()); |
2612 | if (!elementType) |
2613 | return rewriter.notifyMatchFailure(rfft2d, |
2614 | "only supports float element types"); |
2615 | |
2616 | // Compute the output type and set of dynamic sizes |
2617 | llvm::SmallVector<Value> dynamicSizes; |
2618 | auto outputType = computeOutputShape(rewriter, loc, input, dynamicSizes); |
2619 | |
2620 | // Iterator types for the linalg.generic implementation |
2621 | llvm::SmallVector<utils::IteratorType, 5> iteratorTypes = { |
2622 | utils::IteratorType::parallel, utils::IteratorType::parallel, |
2623 | utils::IteratorType::parallel, utils::IteratorType::reduction, |
2624 | utils::IteratorType::reduction}; |
2625 | |
2626 | // Inputs/outputs to the linalg.generic implementation |
2627 | llvm::SmallVector<Value> genericOpInputs = {input}; |
2628 | llvm::SmallVector<Value> genericOpOutputs = { |
2629 | createZeroTensor(rewriter, loc: loc, type: outputType, dynamicSizes), |
2630 | createZeroTensor(rewriter, loc: loc, type: outputType, dynamicSizes)}; |
2631 | |
2632 | // Indexing maps for input and output tensors |
2633 | auto indexingMaps = AffineMap::inferFromExprList( |
2634 | exprsList: llvm::ArrayRef{affineDimsExpr(builder&: rewriter, args: 0, args: 3, args: 4), |
2635 | affineDimsExpr(builder&: rewriter, args: 0, args: 1, args: 2), |
2636 | affineDimsExpr(builder&: rewriter, args: 0, args: 1, args: 2)}, |
2637 | context: rewriter.getContext()); |
2638 | |
2639 | // Width and height dimensions of the original input. |
2640 | auto dimH = rewriter.createOrFold<tensor::DimOp>(loc, input, 1); |
2641 | auto dimW = rewriter.createOrFold<tensor::DimOp>(loc, input, 2); |
2642 | |
2643 | // Constants and dimension sizes |
2644 | auto twoPiAttr = rewriter.getFloatAttr(elementType, 6.283185307179586); |
2645 | auto twoPi = rewriter.create<arith::ConstantOp>(loc, twoPiAttr); |
2646 | auto constH = castIndexToFloat(builder&: rewriter, loc: loc, type: elementType, value: dimH); |
2647 | auto constW = castIndexToFloat(builder&: rewriter, loc: loc, type: elementType, value: dimW); |
2648 | |
2649 | auto buildBody = [&](OpBuilder &builder, Location loc, ValueRange args) { |
2650 | Value valReal = args[0]; |
2651 | Value sumReal = args[1]; |
2652 | Value sumImag = args[2]; |
2653 | |
2654 | // Indices for angle computation |
2655 | Value oy = builder.create<linalg::IndexOp>(loc, 1); |
2656 | Value ox = builder.create<linalg::IndexOp>(loc, 2); |
2657 | Value iy = builder.create<linalg::IndexOp>(loc, 3); |
2658 | Value ix = builder.create<linalg::IndexOp>(loc, 4); |
2659 | |
2660 | // Calculating angle without integer parts of components as sin/cos are |
2661 | // periodic: angle = 2 * pi() * ( ( (iy * oy) % H) / H + ( (ix * ox) % W ) |
2662 | // / W); |
2663 | auto iyXoy = builder.create<index::MulOp>(loc, iy, oy); |
2664 | auto ixXox = builder.create<index::MulOp>(loc, ix, ox); |
2665 | |
2666 | auto iyRem = builder.create<index::RemUOp>(loc, iyXoy, dimH); |
2667 | auto ixRem = builder.create<index::RemUOp>(loc, ixXox, dimW); |
2668 | |
2669 | auto iyRemFloat = castIndexToFloat(builder, loc, type: elementType, value: iyRem); |
2670 | auto ixRemFloat = castIndexToFloat(builder, loc, type: elementType, value: ixRem); |
2671 | |
2672 | auto yComponent = builder.create<arith::DivFOp>(loc, iyRemFloat, constH); |
2673 | auto xComponent = builder.create<arith::DivFOp>(loc, ixRemFloat, constW); |
2674 | auto sumXY = builder.create<arith::AddFOp>(loc, yComponent, xComponent); |
2675 | auto angle = builder.create<arith::MulFOp>(loc, twoPi, sumXY); |
2676 | |
2677 | // realComponent = valReal * cos(angle) |
2678 | // imagComponent = valReal * sin(angle) |
2679 | auto cosAngle = builder.create<math::CosOp>(loc, angle); |
2680 | auto sinAngle = builder.create<math::SinOp>(loc, angle); |
2681 | auto realComponent = |
2682 | builder.create<arith::MulFOp>(loc, valReal, cosAngle); |
2683 | auto imagComponent = |
2684 | builder.create<arith::MulFOp>(loc, valReal, sinAngle); |
2685 | |
2686 | // outReal = sumReal + realComponent |
2687 | // outImag = sumImag - imagComponent |
2688 | auto outReal = builder.create<arith::AddFOp>(loc, sumReal, realComponent); |
2689 | auto outImag = builder.create<arith::SubFOp>(loc, sumImag, imagComponent); |
2690 | |
2691 | builder.create<linalg::YieldOp>(loc, ValueRange{outReal, outImag}); |
2692 | }; |
2693 | |
2694 | rewriter.replaceOpWithNewOp<linalg::GenericOp>( |
2695 | rfft2d, rfft2d.getResultTypes(), genericOpInputs, genericOpOutputs, |
2696 | indexingMaps, iteratorTypes, buildBody); |
2697 | |
2698 | return success(); |
2699 | } |
2700 | }; |
2701 | |
2702 | struct FFT2dConverter final : OpRewritePattern<FFT2dOp> { |
2703 | using OpRewritePattern::OpRewritePattern; |
2704 | |
2705 | LogicalResult matchAndRewrite(FFT2dOp fft2d, |
2706 | PatternRewriter &rewriter) const override { |
2707 | if (!llvm::all_of(fft2d->getOperandTypes(), |
2708 | RFFT2dConverter::isRankedTensor) || |
2709 | !llvm::all_of(fft2d->getResultTypes(), |
2710 | RFFT2dConverter::isRankedTensor)) { |
2711 | return rewriter.notifyMatchFailure(fft2d, "only supports ranked tensors"); |
2712 | } |
2713 | |
2714 | Location loc = fft2d.getLoc(); |
2715 | Value input_real = fft2d.getInputReal(); |
2716 | Value input_imag = fft2d.getInputImag(); |
2717 | BoolAttr inverse = fft2d.getInverseAttr(); |
2718 | |
2719 | auto real_el_ty = cast<FloatType>( |
2720 | cast<ShapedType>(input_real.getType()).getElementType()); |
2721 | [[maybe_unused]] auto imag_el_ty = cast<FloatType>( |
2722 | cast<ShapedType>(input_imag.getType()).getElementType()); |
2723 | |
2724 | assert(real_el_ty == imag_el_ty); |
2725 | |
2726 | // Compute the output type and set of dynamic sizes |
2727 | SmallVector<Value> dynamicSizes; |
2728 | |
2729 | // Get [N, H, W] |
2730 | auto dims = tensor::getMixedSizes(builder&: rewriter, loc, value: input_real); |
2731 | |
2732 | SmallVector<int64_t, 3> staticSizes; |
2733 | dispatchIndexOpFoldResults(dims, dynamicSizes, staticSizes); |
2734 | |
2735 | auto outputType = RankedTensorType::get(staticSizes, real_el_ty); |
2736 | |
2737 | // Iterator types for the linalg.generic implementation |
2738 | SmallVector<utils::IteratorType, 5> iteratorTypes = { |
2739 | utils::IteratorType::parallel, utils::IteratorType::parallel, |
2740 | utils::IteratorType::parallel, utils::IteratorType::reduction, |
2741 | utils::IteratorType::reduction}; |
2742 | |
2743 | // Inputs/outputs to the linalg.generic implementation |
2744 | SmallVector<Value> genericOpInputs = {input_real, input_imag}; |
2745 | SmallVector<Value> genericOpOutputs = { |
2746 | RFFT2dConverter::createZeroTensor(rewriter, loc, type: outputType, |
2747 | dynamicSizes), |
2748 | RFFT2dConverter::createZeroTensor(rewriter, loc, type: outputType, |
2749 | dynamicSizes)}; |
2750 | |
2751 | // Indexing maps for input and output tensors |
2752 | auto indexingMaps = AffineMap::inferFromExprList( |
2753 | exprsList: ArrayRef{RFFT2dConverter::affineDimsExpr(builder&: rewriter, args: 0, args: 3, args: 4), |
2754 | RFFT2dConverter::affineDimsExpr(builder&: rewriter, args: 0, args: 3, args: 4), |
2755 | RFFT2dConverter::affineDimsExpr(builder&: rewriter, args: 0, args: 1, args: 2), |
2756 | RFFT2dConverter::affineDimsExpr(builder&: rewriter, args: 0, args: 1, args: 2)}, |
2757 | context: rewriter.getContext()); |
2758 | |
2759 | // Width and height dimensions of the original input. |
2760 | auto dimH = rewriter.createOrFold<tensor::DimOp>(loc, input_real, 1); |
2761 | auto dimW = rewriter.createOrFold<tensor::DimOp>(loc, input_real, 2); |
2762 | |
2763 | // Constants and dimension sizes |
2764 | auto twoPiAttr = rewriter.getFloatAttr(real_el_ty, 6.283185307179586); |
2765 | auto twoPi = rewriter.create<arith::ConstantOp>(loc, twoPiAttr); |
2766 | Value constH = |
2767 | RFFT2dConverter::castIndexToFloat(builder&: rewriter, loc, type: real_el_ty, value: dimH); |
2768 | Value constW = |
2769 | RFFT2dConverter::castIndexToFloat(builder&: rewriter, loc, type: real_el_ty, value: dimW); |
2770 | |
2771 | auto buildBody = [&](OpBuilder &builder, Location loc, ValueRange args) { |
2772 | Value valReal = args[0]; |
2773 | Value valImag = args[1]; |
2774 | Value sumReal = args[2]; |
2775 | Value sumImag = args[3]; |
2776 | |
2777 | // Indices for angle computation |
2778 | Value oy = builder.create<linalg::IndexOp>(loc, 1); |
2779 | Value ox = builder.create<linalg::IndexOp>(loc, 2); |
2780 | Value iy = builder.create<linalg::IndexOp>(loc, 3); |
2781 | Value ix = builder.create<linalg::IndexOp>(loc, 4); |
2782 | |
2783 | // float_t angle = sign_val * 2 * pi() * ( ( (iy * oy) % H) / H + ( (ix * |
2784 | // ox) % W ) / W); |
2785 | auto iyXoy = builder.create<index::MulOp>(loc, iy, oy); |
2786 | auto ixXox = builder.create<index::MulOp>(loc, ix, ox); |
2787 | |
2788 | auto iyRem = builder.create<index::RemUOp>(loc, iyXoy, dimH); |
2789 | auto ixRem = builder.create<index::RemUOp>(loc, ixXox, dimW); |
2790 | |
2791 | auto iyRemFloat = |
2792 | RFFT2dConverter::castIndexToFloat(builder, loc, type: real_el_ty, value: iyRem); |
2793 | auto ixRemFloat = |
2794 | RFFT2dConverter::castIndexToFloat(builder, loc, type: real_el_ty, value: ixRem); |
2795 | |
2796 | auto yComponent = builder.create<arith::DivFOp>(loc, iyRemFloat, constH); |
2797 | auto xComponent = builder.create<arith::DivFOp>(loc, ixRemFloat, constW); |
2798 | |
2799 | auto sumXY = builder.create<arith::AddFOp>(loc, yComponent, xComponent); |
2800 | auto angle = builder.create<arith::MulFOp>(loc, twoPi, sumXY); |
2801 | |
2802 | if (inverse.getValue()) { |
2803 | angle = builder.create<arith::MulFOp>( |
2804 | loc, angle, |
2805 | rewriter.create<arith::ConstantOp>( |
2806 | loc, rewriter.getFloatAttr(real_el_ty, -1.0))); |
2807 | } |
2808 | |
2809 | // realComponent = val_real * cos(a) + val_imag * sin(a); |
2810 | // imagComponent = -val_real * sin(a) + val_imag * cos(a); |
2811 | auto cosAngle = builder.create<math::CosOp>(loc, angle); |
2812 | auto sinAngle = builder.create<math::SinOp>(loc, angle); |
2813 | |
2814 | auto rcos = builder.create<arith::MulFOp>(loc, valReal, cosAngle); |
2815 | auto rsin = builder.create<arith::MulFOp>(loc, valImag, sinAngle); |
2816 | auto realComponent = builder.create<arith::AddFOp>(loc, rcos, rsin); |
2817 | |
2818 | auto icos = builder.create<arith::MulFOp>(loc, valImag, cosAngle); |
2819 | auto isin = builder.create<arith::MulFOp>(loc, valReal, sinAngle); |
2820 | |
2821 | auto imagComponent = builder.create<arith::SubFOp>(loc, icos, isin); |
2822 | |
2823 | // outReal = sumReal + realComponent |
2824 | // outImag = sumImag - imagComponent |
2825 | auto outReal = builder.create<arith::AddFOp>(loc, sumReal, realComponent); |
2826 | auto outImag = builder.create<arith::AddFOp>(loc, sumImag, imagComponent); |
2827 | |
2828 | builder.create<linalg::YieldOp>(loc, ValueRange{outReal, outImag}); |
2829 | }; |
2830 | |
2831 | rewriter.replaceOpWithNewOp<linalg::GenericOp>( |
2832 | fft2d, fft2d.getResultTypes(), genericOpInputs, genericOpOutputs, |
2833 | indexingMaps, iteratorTypes, buildBody); |
2834 | |
2835 | return success(); |
2836 | } |
2837 | }; |
2838 | |
2839 | } // namespace |
2840 | |
2841 | void mlir::tosa::populateTosaToLinalgConversionPatterns( |
2842 | const TypeConverter &converter, RewritePatternSet *patterns) { |
2843 | |
2844 | // We have multiple resize coverters to handle degenerate cases. |
2845 | patterns->add<GenericResizeConverter>(arg: patterns->getContext(), |
2846 | /*benefit=*/args: 100); |
2847 | patterns->add<ResizeUnaryConverter>(arg: patterns->getContext(), |
2848 | /*benefit=*/args: 200); |
2849 | patterns->add<MaterializeResizeBroadcast>(arg: patterns->getContext(), |
2850 | /*benefit=*/args: 300); |
2851 | |
2852 | patterns->add< |
2853 | // clang-format off |
2854 | PointwiseConverter<tosa::AddOp>, |
2855 | PointwiseConverter<tosa::SubOp>, |
2856 | PointwiseConverter<tosa::MulOp>, |
2857 | PointwiseConverter<tosa::IntDivOp>, |
2858 | PointwiseConverter<tosa::NegateOp>, |
2859 | PointwiseConverter<tosa::PowOp>, |
2860 | PointwiseConverter<tosa::ReciprocalOp>, |
2861 | PointwiseConverter<tosa::RsqrtOp>, |
2862 | PointwiseConverter<tosa::LogOp>, |
2863 | PointwiseConverter<tosa::ExpOp>, |
2864 | PointwiseConverter<tosa::AbsOp>, |
2865 | PointwiseConverter<tosa::SinOp>, |
2866 | PointwiseConverter<tosa::CosOp>, |
2867 | PointwiseConverter<tosa::TanhOp>, |
2868 | PointwiseConverter<tosa::ErfOp>, |
2869 | PointwiseConverter<tosa::BitwiseAndOp>, |
2870 | PointwiseConverter<tosa::BitwiseOrOp>, |
2871 | PointwiseConverter<tosa::BitwiseNotOp>, |
2872 | PointwiseConverter<tosa::BitwiseXorOp>, |
2873 | PointwiseConverter<tosa::LogicalAndOp>, |
2874 | PointwiseConverter<tosa::LogicalNotOp>, |
2875 | PointwiseConverter<tosa::LogicalOrOp>, |
2876 | PointwiseConverter<tosa::LogicalXorOp>, |
2877 | PointwiseConverter<tosa::CastOp>, |
2878 | PointwiseConverter<tosa::LogicalLeftShiftOp>, |
2879 | PointwiseConverter<tosa::LogicalRightShiftOp>, |
2880 | PointwiseConverter<tosa::ArithmeticRightShiftOp>, |
2881 | PointwiseConverter<tosa::ClzOp>, |
2882 | PointwiseConverter<tosa::SelectOp>, |
2883 | PointwiseConverter<tosa::GreaterOp>, |
2884 | PointwiseConverter<tosa::GreaterEqualOp>, |
2885 | PointwiseConverter<tosa::EqualOp>, |
2886 | PointwiseConverter<tosa::MaximumOp>, |
2887 | PointwiseConverter<tosa::MinimumOp>, |
2888 | PointwiseConverter<tosa::CeilOp>, |
2889 | PointwiseConverter<tosa::FloorOp>, |
2890 | PointwiseConverter<tosa::ClampOp>, |
2891 | PointwiseConverter<tosa::SigmoidOp> |
2892 | >(converter, patterns->getContext()); |
2893 | |
2894 | patterns->add< |
2895 | IdentityNConverter<tosa::IdentityOp>, |
2896 | ReduceConverter<tosa::ReduceAllOp>, |
2897 | ReduceConverter<tosa::ReduceAnyOp>, |
2898 | ReduceConverter<tosa::ReduceMinOp>, |
2899 | ReduceConverter<tosa::ReduceMaxOp>, |
2900 | ReduceConverter<tosa::ReduceSumOp>, |
2901 | ReduceConverter<tosa::ReduceProductOp>, |
2902 | ArgMaxConverter, |
2903 | GatherConverter, |
2904 | RescaleConverter, |
2905 | ReverseConverter, |
2906 | RFFT2dConverter, |
2907 | FFT2dConverter, |
2908 | TableConverter, |
2909 | TileConverter>(patterns->getContext()); |
2910 | // clang-format on |
2911 | } |
2912 |
Definitions
- materializeBinaryNanCheckIfRequired
- createLinalgBodyCalculationForElementwiseOp
- createIndex
- getTensorDim
- getOrFoldTensorDim
- operandsAndResultsRanked
- computeTargetSize
- computeTargetShape
- broadcastDynamicDimension
- broadcastDynamicDimensions
- broadcastDynamicDimensions
- emitElementwiseComputation
- getBroadcastableOperands
- elementwiseMatchAndRewriteHelper
- createInitialValueForReduceOp
- createLinalgBodyCalculationForReduceOp
- reduceMatchAndRewriteHelper
- PointwiseConverter
- matchAndRewrite
- RescaleConverter
- matchAndRewrite
- ResizeUnaryConverter
- matchAndRewrite
- MaterializeResizeBroadcast
- matchAndRewrite
- GenericResizeConverter
- matchAndRewrite
- IdentityNConverter
- matchAndRewrite
- ReduceConverter
- matchAndRewrite
- ReverseConverter
- matchAndRewrite
- TileConverter
- matchAndRewrite
- ArgMaxConverter
- matchAndRewrite
- GatherConverter
- matchAndRewrite
- inferDynamicDimsForGather
- TableConverter
- matchAndRewrite
- RFFT2dConverter
- isRankedTensor
- halfPlusOne
- computeOutputShape
- createZeroTensor
- castIndexToFloat
- createLinalgIndex
- affineDimsExpr
- matchAndRewrite
- FFT2dConverter
- matchAndRewrite
Update your C++ knowledge – Modern C++11/14/17 Training
Find out more