| 1 | //===- TosaToLinalg.cpp - Lowering Tosa to Linalg Dialect -----------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // These rewriters lower from the Tosa to the Linalg dialect. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "mlir/Conversion/TosaToLinalg/TosaToLinalg.h" |
| 14 | #include "mlir/Dialect/Arith/IR/Arith.h" |
| 15 | #include "mlir/Dialect/Arith/Utils/Utils.h" |
| 16 | #include "mlir/Dialect/Index/IR/IndexOps.h" |
| 17 | #include "mlir/Dialect/Linalg/IR/Linalg.h" |
| 18 | #include "mlir/Dialect/Math/IR/Math.h" |
| 19 | #include "mlir/Dialect/SCF/IR/SCF.h" |
| 20 | #include "mlir/Dialect/Tensor/IR/Tensor.h" |
| 21 | #include "mlir/Dialect/Tosa/IR/TosaOps.h" |
| 22 | #include "mlir/Dialect/Tosa/Utils/ConversionUtils.h" |
| 23 | #include "mlir/Dialect/Utils/ReshapeOpsUtils.h" |
| 24 | #include "mlir/Dialect/Utils/StaticValueUtils.h" |
| 25 | #include "mlir/IR/ImplicitLocOpBuilder.h" |
| 26 | #include "mlir/IR/Matchers.h" |
| 27 | #include "mlir/IR/OpDefinition.h" |
| 28 | #include "mlir/IR/PatternMatch.h" |
| 29 | #include "mlir/Transforms/DialectConversion.h" |
| 30 | #include "mlir/Transforms/GreedyPatternRewriteDriver.h" |
| 31 | #include "llvm/ADT/STLExtras.h" |
| 32 | #include "llvm/ADT/Sequence.h" |
| 33 | |
| 34 | #include <numeric> |
| 35 | #include <type_traits> |
| 36 | |
| 37 | using namespace mlir; |
| 38 | using namespace mlir::tosa; |
| 39 | |
| 40 | // Helper function to materialize the semantically correct compare and select |
| 41 | // operations given a binary operation with a specific NaN propagation mode. |
| 42 | // |
| 43 | // In the case of "PROPAGATE" semantics no compare and selection is required and |
| 44 | // this function does nothing. |
| 45 | // |
| 46 | // In the case of "IGNORE" semantics this function materializes a comparison of |
| 47 | // the current operands to the op which will return true for any NaN |
| 48 | // argument and then selects between the non-NaN operation argument and the |
| 49 | // calculated result based on whether the lhs or rhs is NaN or not. In pseudo |
| 50 | // code: |
| 51 | // |
| 52 | // In the case that the op is operating on non floating point types we ignore |
| 53 | // the attribute completely, this is consistent with the TOSA spec which has |
| 54 | // the following wording: "This attribute is ignored by non floating-point |
| 55 | // types." |
| 56 | // |
| 57 | // binary<op>(lhs, rhs): |
| 58 | // result = op(lhs, rhs) |
| 59 | // if lhs == NaN return rhs |
| 60 | // if rhs == NaN return lhs |
| 61 | // return result |
| 62 | template <typename OpTy> |
| 63 | static Value |
| 64 | materializeBinaryNanCheckIfRequired(OpTy op, PatternRewriter &rewriter, |
| 65 | Value lhs, Value rhs, Value result) { |
| 66 | // NaN propagation has no meaning for non floating point types. |
| 67 | if (!isa<FloatType>(Val: getElementTypeOrSelf(val: lhs))) |
| 68 | return result; |
| 69 | |
| 70 | auto nanMode = op.getNanMode(); |
| 71 | if (nanMode == "PROPAGATE" ) |
| 72 | return result; |
| 73 | |
| 74 | // Unordered comparison of NaN against itself will always return true. |
| 75 | Value lhsIsNaN = rewriter.create<arith::CmpFOp>( |
| 76 | op.getLoc(), arith::CmpFPredicate::UNO, lhs, lhs); |
| 77 | Value rhsIsNaN = rewriter.create<arith::CmpFOp>( |
| 78 | op.getLoc(), arith::CmpFPredicate::UNO, rhs, rhs); |
| 79 | Value rhsOrResult = |
| 80 | rewriter.create<arith::SelectOp>(op.getLoc(), lhsIsNaN, rhs, result); |
| 81 | return rewriter.create<arith::SelectOp>(op.getLoc(), rhsIsNaN, lhs, |
| 82 | rhsOrResult); |
| 83 | } |
| 84 | |
| 85 | static Value createLinalgBodyCalculationForElementwiseOp( |
| 86 | Operation *op, ValueRange args, ArrayRef<Type> resultTypes, |
| 87 | ConversionPatternRewriter &rewriter) { |
| 88 | Location loc = op->getLoc(); |
| 89 | auto elementTy = |
| 90 | cast<ShapedType>(op->getOperand(0).getType()).getElementType(); |
| 91 | |
| 92 | // tosa::AbsOp |
| 93 | if (isa<tosa::AbsOp>(op) && isa<FloatType>(elementTy)) |
| 94 | return rewriter.create<math::AbsFOp>(loc, resultTypes, args); |
| 95 | |
| 96 | if (isa<tosa::AbsOp>(op) && isa<IntegerType>(elementTy)) { |
| 97 | auto zero = rewriter.create<arith::ConstantOp>( |
| 98 | loc, rewriter.getZeroAttr(elementTy)); |
| 99 | auto neg = rewriter.create<arith::SubIOp>(loc, zero, args[0]); |
| 100 | return rewriter.create<arith::MaxSIOp>(loc, args[0], neg); |
| 101 | } |
| 102 | |
| 103 | // tosa::AddOp |
| 104 | if (isa<tosa::AddOp>(op) && isa<FloatType>(elementTy)) |
| 105 | return rewriter.create<arith::AddFOp>(loc, resultTypes, args); |
| 106 | |
| 107 | if (isa<tosa::AddOp>(op) && isa<IntegerType>(elementTy)) |
| 108 | return rewriter.create<arith::AddIOp>(loc, resultTypes, args); |
| 109 | |
| 110 | // tosa::SubOp |
| 111 | if (isa<tosa::SubOp>(op) && isa<FloatType>(elementTy)) |
| 112 | return rewriter.create<arith::SubFOp>(loc, resultTypes, args); |
| 113 | |
| 114 | if (isa<tosa::SubOp>(op) && isa<IntegerType>(elementTy)) |
| 115 | return rewriter.create<arith::SubIOp>(loc, resultTypes, args); |
| 116 | |
| 117 | // tosa::IntDivOp |
| 118 | if (isa<tosa::IntDivOp>(op) && isa<IntegerType>(elementTy)) |
| 119 | return rewriter.create<arith::DivSIOp>(loc, resultTypes, args); |
| 120 | |
| 121 | // tosa::ReciprocalOp |
| 122 | if (isa<tosa::ReciprocalOp>(op) && isa<FloatType>(elementTy)) { |
| 123 | auto one = |
| 124 | rewriter.create<arith::ConstantOp>(loc, FloatAttr::get(elementTy, 1)); |
| 125 | return rewriter.create<arith::DivFOp>(loc, resultTypes, one, args[0]); |
| 126 | } |
| 127 | |
| 128 | // tosa::MulOp |
| 129 | if (isa<tosa::MulOp>(op)) { |
| 130 | auto shiftVal = cast<tosa::MulOp>(op).getShift(); |
| 131 | DenseElementsAttr shiftElem; |
| 132 | if (!matchPattern(shiftVal, m_Constant(bind_value: &shiftElem))) { |
| 133 | (void)rewriter.notifyMatchFailure(arg&: op, msg: "shift value of mul not found" ); |
| 134 | return nullptr; |
| 135 | } |
| 136 | |
| 137 | int32_t shift = shiftElem.getValues<IntegerAttr>()[0].getInt(); |
| 138 | |
| 139 | if (isa<FloatType>(elementTy)) { |
| 140 | if (shift != 0) { |
| 141 | (void)rewriter.notifyMatchFailure(arg&: op, |
| 142 | msg: "Cannot have shift value for float" ); |
| 143 | return nullptr; |
| 144 | } |
| 145 | return rewriter.create<arith::MulFOp>(loc, resultTypes, args[0], args[1]); |
| 146 | } |
| 147 | |
| 148 | if (isa<IntegerType>(elementTy)) { |
| 149 | Value a = args[0]; |
| 150 | Value b = args[1]; |
| 151 | |
| 152 | if (shift > 0) { |
| 153 | auto shiftConst = |
| 154 | rewriter.create<arith::ConstantIntOp>(location: loc, args&: shift, /*bitwidth=*/args: 8); |
| 155 | if (!a.getType().isInteger(32)) |
| 156 | a = rewriter.create<arith::ExtSIOp>(loc, rewriter.getI32Type(), a); |
| 157 | |
| 158 | if (!b.getType().isInteger(32)) |
| 159 | b = rewriter.create<arith::ExtSIOp>(loc, rewriter.getI32Type(), b); |
| 160 | |
| 161 | auto result = rewriter.create<tosa::ApplyScaleOp>( |
| 162 | loc, rewriter.getI32Type(), a, b, shiftConst, |
| 163 | rewriter.getStringAttr("SINGLE_ROUND" )); |
| 164 | |
| 165 | if (elementTy.isInteger(32)) |
| 166 | return result; |
| 167 | |
| 168 | return rewriter.create<arith::TruncIOp>(loc, elementTy, result); |
| 169 | } |
| 170 | |
| 171 | int aWidth = a.getType().getIntOrFloatBitWidth(); |
| 172 | int bWidth = b.getType().getIntOrFloatBitWidth(); |
| 173 | int cWidth = resultTypes[0].getIntOrFloatBitWidth(); |
| 174 | |
| 175 | if (aWidth < cWidth) |
| 176 | a = rewriter.create<arith::ExtSIOp>(loc, resultTypes[0], a); |
| 177 | if (bWidth < cWidth) |
| 178 | b = rewriter.create<arith::ExtSIOp>(loc, resultTypes[0], b); |
| 179 | |
| 180 | return rewriter.create<arith::MulIOp>(loc, resultTypes, a, b); |
| 181 | } |
| 182 | } |
| 183 | |
| 184 | // tosa::NegateOp |
| 185 | if (isa<tosa::NegateOp>(op)) { |
| 186 | auto negate = cast<tosa::NegateOp>(op); |
| 187 | |
| 188 | FailureOr<int64_t> maybeInZp = negate.getInput1ZeroPoint(); |
| 189 | if (failed(Result: maybeInZp)) { |
| 190 | (void)rewriter.notifyMatchFailure( |
| 191 | arg&: op, msg: "input1 zero point cannot be statically determined" ); |
| 192 | return nullptr; |
| 193 | } |
| 194 | |
| 195 | FailureOr<int64_t> maybeOutZp = negate.getOutputZeroPoint(); |
| 196 | if (failed(Result: maybeOutZp)) { |
| 197 | (void)rewriter.notifyMatchFailure( |
| 198 | arg&: op, msg: "output zero point cannot be statically determined" ); |
| 199 | return nullptr; |
| 200 | } |
| 201 | |
| 202 | int64_t inZp = *maybeInZp; |
| 203 | int64_t outZp = *maybeOutZp; |
| 204 | |
| 205 | if (isa<FloatType>(elementTy)) |
| 206 | return rewriter.create<arith::NegFOp>(loc, resultTypes, args[0]); |
| 207 | |
| 208 | if (isa<IntegerType>(elementTy)) { |
| 209 | if (!inZp && !outZp) { |
| 210 | auto constant = rewriter.create<arith::ConstantOp>( |
| 211 | loc, IntegerAttr::get(elementTy, 0)); |
| 212 | return rewriter.create<arith::SubIOp>(loc, resultTypes, constant, |
| 213 | args[0]); |
| 214 | } |
| 215 | |
| 216 | // Compute the maximum value that can occur in the intermediate buffer. |
| 217 | const int32_t inputBitWidth = elementTy.getIntOrFloatBitWidth(); |
| 218 | const int64_t zpAdd = inZp + outZp; |
| 219 | const int64_t maxValue = |
| 220 | APInt::getSignedMaxValue(numBits: inputBitWidth).getSExtValue() + |
| 221 | std::abs(i: zpAdd) + 1; |
| 222 | |
| 223 | // Convert that maximum value into the maximum bitwidth needed to |
| 224 | // represent it. We assume 48-bit numbers may be supported further in |
| 225 | // the pipeline. |
| 226 | int intermediateBitWidth = 64; |
| 227 | if (maxValue <= APInt::getSignedMaxValue(numBits: 16).getSExtValue()) { |
| 228 | intermediateBitWidth = 16; |
| 229 | } else if (maxValue <= APInt::getSignedMaxValue(numBits: 32).getSExtValue()) { |
| 230 | intermediateBitWidth = 32; |
| 231 | } else if (maxValue <= APInt::getSignedMaxValue(numBits: 48).getSExtValue()) { |
| 232 | intermediateBitWidth = 48; |
| 233 | } |
| 234 | |
| 235 | Type intermediateType = rewriter.getIntegerType(intermediateBitWidth); |
| 236 | Value zpAddValue = rewriter.create<arith::ConstantOp>( |
| 237 | loc, rewriter.getIntegerAttr(intermediateType, zpAdd)); |
| 238 | |
| 239 | // The negation can be applied by doing: |
| 240 | // outputValue = inZp + outZp - inputValue |
| 241 | auto ext = |
| 242 | rewriter.create<arith::ExtSIOp>(loc, intermediateType, args[0]); |
| 243 | auto sub = rewriter.create<arith::SubIOp>(loc, zpAddValue, ext); |
| 244 | |
| 245 | // Clamp to the negation range. |
| 246 | Value min = rewriter.create<arith::ConstantIntOp>( |
| 247 | location: loc, args: APInt::getSignedMinValue(numBits: inputBitWidth).getSExtValue(), |
| 248 | args&: intermediateType); |
| 249 | Value max = rewriter.create<arith::ConstantIntOp>( |
| 250 | location: loc, args: APInt::getSignedMaxValue(numBits: inputBitWidth).getSExtValue(), |
| 251 | args&: intermediateType); |
| 252 | auto clamp = clampIntHelper(loc, sub, min, max, rewriter, false); |
| 253 | |
| 254 | // Truncate to the final value. |
| 255 | return rewriter.create<arith::TruncIOp>(loc, elementTy, clamp); |
| 256 | } |
| 257 | } |
| 258 | |
| 259 | // tosa::BitwiseAndOp |
| 260 | if (isa<tosa::BitwiseAndOp>(op) && isa<IntegerType>(elementTy)) |
| 261 | return rewriter.create<arith::AndIOp>(loc, resultTypes, args); |
| 262 | |
| 263 | // tosa::BitwiseOrOp |
| 264 | if (isa<tosa::BitwiseOrOp>(op) && isa<IntegerType>(elementTy)) |
| 265 | return rewriter.create<arith::OrIOp>(loc, resultTypes, args); |
| 266 | |
| 267 | // tosa::BitwiseNotOp |
| 268 | if (isa<tosa::BitwiseNotOp>(op) && isa<IntegerType>(elementTy)) { |
| 269 | auto allOnesAttr = rewriter.getIntegerAttr( |
| 270 | elementTy, APInt::getAllOnes(numBits: elementTy.getIntOrFloatBitWidth())); |
| 271 | auto allOnes = rewriter.create<arith::ConstantOp>(loc, allOnesAttr); |
| 272 | return rewriter.create<arith::XOrIOp>(loc, resultTypes, args[0], allOnes); |
| 273 | } |
| 274 | |
| 275 | // tosa::BitwiseXOrOp |
| 276 | if (isa<tosa::BitwiseXorOp>(op) && isa<IntegerType>(elementTy)) |
| 277 | return rewriter.create<arith::XOrIOp>(loc, resultTypes, args); |
| 278 | |
| 279 | // tosa::LogicalLeftShiftOp |
| 280 | if (isa<tosa::LogicalLeftShiftOp>(op) && isa<IntegerType>(elementTy)) |
| 281 | return rewriter.create<arith::ShLIOp>(loc, resultTypes, args); |
| 282 | |
| 283 | // tosa::LogicalRightShiftOp |
| 284 | if (isa<tosa::LogicalRightShiftOp>(op) && isa<IntegerType>(elementTy)) |
| 285 | return rewriter.create<arith::ShRUIOp>(loc, resultTypes, args); |
| 286 | |
| 287 | // tosa::ArithmeticRightShiftOp |
| 288 | if (isa<tosa::ArithmeticRightShiftOp>(op) && isa<IntegerType>(elementTy)) { |
| 289 | auto result = rewriter.create<arith::ShRSIOp>(loc, resultTypes, args); |
| 290 | auto round = cast<BoolAttr>(Val: op->getAttr(name: "round" )).getValue(); |
| 291 | if (!round) { |
| 292 | return result; |
| 293 | } |
| 294 | |
| 295 | Type i1Ty = IntegerType::get(rewriter.getContext(), /*width=*/1); |
| 296 | auto one = |
| 297 | rewriter.create<arith::ConstantOp>(loc, IntegerAttr::get(elementTy, 1)); |
| 298 | auto zero = |
| 299 | rewriter.create<arith::ConstantOp>(loc, IntegerAttr::get(elementTy, 0)); |
| 300 | auto i1one = |
| 301 | rewriter.create<arith::ConstantOp>(loc, IntegerAttr::get(i1Ty, 1)); |
| 302 | |
| 303 | // Checking that input2 != 0 |
| 304 | auto shiftValueGreaterThanZero = rewriter.create<arith::CmpIOp>( |
| 305 | loc, arith::CmpIPredicate::sgt, args[1], zero); |
| 306 | |
| 307 | // Checking for the last bit of input1 to be 1 |
| 308 | auto subtract = |
| 309 | rewriter.create<arith::SubIOp>(loc, resultTypes, args[1], one); |
| 310 | auto shifted = |
| 311 | rewriter.create<arith::ShRSIOp>(loc, resultTypes, args[0], subtract) |
| 312 | ->getResults(); |
| 313 | auto truncated = |
| 314 | rewriter.create<arith::TruncIOp>(loc, i1Ty, shifted, std::nullopt); |
| 315 | auto isInputOdd = |
| 316 | rewriter.create<arith::AndIOp>(loc, i1Ty, truncated, i1one); |
| 317 | |
| 318 | auto shouldRound = rewriter.create<arith::AndIOp>( |
| 319 | loc, i1Ty, shiftValueGreaterThanZero, isInputOdd); |
| 320 | auto extended = |
| 321 | rewriter.create<arith::ExtUIOp>(loc, resultTypes, shouldRound); |
| 322 | return rewriter.create<arith::AddIOp>(loc, resultTypes, result, extended); |
| 323 | } |
| 324 | |
| 325 | // tosa::ClzOp |
| 326 | if (isa<tosa::ClzOp>(op) && isa<IntegerType>(elementTy)) { |
| 327 | return rewriter.create<math::CountLeadingZerosOp>(loc, elementTy, args[0]); |
| 328 | } |
| 329 | |
| 330 | // tosa::LogicalAnd |
| 331 | if (isa<tosa::LogicalAndOp>(op) && elementTy.isInteger(1)) |
| 332 | return rewriter.create<arith::AndIOp>(loc, resultTypes, args); |
| 333 | |
| 334 | // tosa::LogicalNot |
| 335 | if (isa<tosa::LogicalNotOp>(op) && elementTy.isInteger(1)) { |
| 336 | auto one = rewriter.create<arith::ConstantOp>( |
| 337 | loc, rewriter.getIntegerAttr(elementTy, 1)); |
| 338 | return rewriter.create<arith::XOrIOp>(loc, resultTypes, args[0], one); |
| 339 | } |
| 340 | |
| 341 | // tosa::LogicalOr |
| 342 | if (isa<tosa::LogicalOrOp>(op) && elementTy.isInteger(1)) |
| 343 | return rewriter.create<arith::OrIOp>(loc, resultTypes, args); |
| 344 | |
| 345 | // tosa::LogicalXor |
| 346 | if (isa<tosa::LogicalXorOp>(op) && elementTy.isInteger(1)) |
| 347 | return rewriter.create<arith::XOrIOp>(loc, resultTypes, args); |
| 348 | |
| 349 | // tosa::PowOp |
| 350 | if (isa<tosa::PowOp>(op) && isa<FloatType>(elementTy)) |
| 351 | return rewriter.create<mlir::math::PowFOp>(loc, resultTypes, args); |
| 352 | |
| 353 | // tosa::RsqrtOp |
| 354 | if (isa<tosa::RsqrtOp>(op) && isa<FloatType>(elementTy)) |
| 355 | return rewriter.create<mlir::math::RsqrtOp>(loc, resultTypes, args); |
| 356 | |
| 357 | // tosa::LogOp |
| 358 | if (isa<tosa::LogOp>(op) && isa<FloatType>(elementTy)) |
| 359 | return rewriter.create<mlir::math::LogOp>(loc, resultTypes, args); |
| 360 | |
| 361 | // tosa::ExpOp |
| 362 | if (isa<tosa::ExpOp>(op) && isa<FloatType>(elementTy)) |
| 363 | return rewriter.create<mlir::math::ExpOp>(loc, resultTypes, args); |
| 364 | |
| 365 | // tosa::SinOp |
| 366 | if (isa<tosa::SinOp>(op) && isa<FloatType>(elementTy)) |
| 367 | return rewriter.create<mlir::math::SinOp>(loc, resultTypes, args); |
| 368 | |
| 369 | // tosa::CosOp |
| 370 | if (isa<tosa::CosOp>(op) && isa<FloatType>(elementTy)) |
| 371 | return rewriter.create<mlir::math::CosOp>(loc, resultTypes, args); |
| 372 | |
| 373 | // tosa::TanhOp |
| 374 | if (isa<tosa::TanhOp>(op) && isa<FloatType>(elementTy)) |
| 375 | return rewriter.create<mlir::math::TanhOp>(loc, resultTypes, args); |
| 376 | |
| 377 | // tosa::ErfOp |
| 378 | if (isa<tosa::ErfOp>(op) && llvm::isa<FloatType>(elementTy)) |
| 379 | return rewriter.create<mlir::math::ErfOp>(loc, resultTypes, args); |
| 380 | |
| 381 | // tosa::GreaterOp |
| 382 | if (isa<tosa::GreaterOp>(op) && isa<FloatType>(elementTy)) |
| 383 | return rewriter.create<arith::CmpFOp>(loc, arith::CmpFPredicate::OGT, |
| 384 | args[0], args[1]); |
| 385 | |
| 386 | if (isa<tosa::GreaterOp>(op) && elementTy.isSignlessInteger()) |
| 387 | return rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::sgt, |
| 388 | args[0], args[1]); |
| 389 | |
| 390 | // tosa::GreaterEqualOp |
| 391 | if (isa<tosa::GreaterEqualOp>(op) && isa<FloatType>(elementTy)) |
| 392 | return rewriter.create<arith::CmpFOp>(loc, arith::CmpFPredicate::OGE, |
| 393 | args[0], args[1]); |
| 394 | |
| 395 | if (isa<tosa::GreaterEqualOp>(op) && elementTy.isSignlessInteger()) |
| 396 | return rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::sge, |
| 397 | args[0], args[1]); |
| 398 | |
| 399 | // tosa::EqualOp |
| 400 | if (isa<tosa::EqualOp>(op) && isa<FloatType>(elementTy)) |
| 401 | return rewriter.create<arith::CmpFOp>(loc, arith::CmpFPredicate::OEQ, |
| 402 | args[0], args[1]); |
| 403 | |
| 404 | if (isa<tosa::EqualOp>(op) && elementTy.isSignlessInteger()) |
| 405 | return rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq, |
| 406 | args[0], args[1]); |
| 407 | |
| 408 | // tosa::SelectOp |
| 409 | if (isa<tosa::SelectOp>(op)) { |
| 410 | elementTy = cast<ShapedType>(op->getOperand(1).getType()).getElementType(); |
| 411 | if (isa<FloatType>(elementTy) || isa<IntegerType>(elementTy)) |
| 412 | return rewriter.create<arith::SelectOp>(loc, args[0], args[1], args[2]); |
| 413 | } |
| 414 | |
| 415 | // tosa::MaximumOp |
| 416 | if (isa<tosa::MaximumOp>(op) && isa<FloatType>(elementTy)) { |
| 417 | auto max = rewriter.create<arith::MaximumFOp>(loc, args[0], args[1]); |
| 418 | return materializeBinaryNanCheckIfRequired(llvm::cast<tosa::MaximumOp>(op), |
| 419 | rewriter, args[0], args[1], max); |
| 420 | } |
| 421 | |
| 422 | if (isa<tosa::MaximumOp>(op) && elementTy.isSignlessInteger()) { |
| 423 | return rewriter.create<arith::MaxSIOp>(loc, args[0], args[1]); |
| 424 | } |
| 425 | |
| 426 | // tosa::MinimumOp |
| 427 | if (isa<tosa::MinimumOp>(op) && isa<FloatType>(elementTy)) { |
| 428 | auto min = rewriter.create<arith::MinimumFOp>(loc, args[0], args[1]); |
| 429 | return materializeBinaryNanCheckIfRequired(llvm::cast<tosa::MinimumOp>(op), |
| 430 | rewriter, args[0], args[1], min); |
| 431 | } |
| 432 | |
| 433 | if (isa<tosa::MinimumOp>(op) && elementTy.isSignlessInteger()) { |
| 434 | return rewriter.create<arith::MinSIOp>(loc, args[0], args[1]); |
| 435 | } |
| 436 | |
| 437 | // tosa::CeilOp |
| 438 | if (isa<tosa::CeilOp>(op) && isa<FloatType>(elementTy)) |
| 439 | return rewriter.create<math::CeilOp>(loc, resultTypes, args); |
| 440 | |
| 441 | // tosa::FloorOp |
| 442 | if (isa<tosa::FloorOp>(op) && isa<FloatType>(elementTy)) |
| 443 | return rewriter.create<math::FloorOp>(loc, resultTypes, args); |
| 444 | |
| 445 | // tosa::ClampOp |
| 446 | if (isa<tosa::ClampOp>(op) && isa<FloatType>(elementTy)) { |
| 447 | bool losesInfo = false; |
| 448 | APFloat minApf = cast<FloatAttr>(op->getAttr(name: "min_val" )).getValue(); |
| 449 | APFloat maxApf = cast<FloatAttr>(op->getAttr(name: "max_val" )).getValue(); |
| 450 | minApf.convert(ToSemantics: cast<FloatType>(elementTy).getFloatSemantics(), |
| 451 | RM: APFloat::rmNearestTiesToEven, losesInfo: &losesInfo); |
| 452 | maxApf.convert(ToSemantics: cast<FloatType>(elementTy).getFloatSemantics(), |
| 453 | RM: APFloat::rmNearestTiesToEven, losesInfo: &losesInfo); |
| 454 | auto min = rewriter.create<arith::ConstantOp>( |
| 455 | loc, elementTy, rewriter.getFloatAttr(elementTy, minApf)); |
| 456 | auto max = rewriter.create<arith::ConstantOp>( |
| 457 | loc, elementTy, rewriter.getFloatAttr(elementTy, maxApf)); |
| 458 | auto result = clampFloatHelper(loc, args[0], min, max, rewriter); |
| 459 | |
| 460 | auto clampOp = llvm::cast<tosa::ClampOp>(op); |
| 461 | const auto nanMode = clampOp.getNanMode(); |
| 462 | |
| 463 | // NaN propagation has no meaning for non floating point types. |
| 464 | if (!isa<FloatType>(elementTy)) |
| 465 | return result; |
| 466 | |
| 467 | // In the case of "PROPAGATE" semantics no compare and selection is |
| 468 | // required. |
| 469 | if (nanMode == "PROPAGATE" ) |
| 470 | return result; |
| 471 | |
| 472 | // In the case of "IGNORE" semantics materialize a comparison |
| 473 | // of the current operand to the reduction which will return true for a NaN |
| 474 | // argument and then selects between the initial reduction value and the |
| 475 | // calculated result based on whether the argument is NaN or not. In pseudo |
| 476 | // code: |
| 477 | // |
| 478 | // reduce<op>(x, init): |
| 479 | // result = op(init, x) |
| 480 | // return init if x == NaN else result |
| 481 | |
| 482 | // Unordered comparison of NaN against itself will always return true. |
| 483 | Value isNaN = rewriter.create<arith::CmpFOp>( |
| 484 | op->getLoc(), arith::CmpFPredicate::UNO, args[0], args[0]); |
| 485 | // TOSA specifies that in "ignore" NaN mode the result is "min" if the input |
| 486 | // is NaN. |
| 487 | return rewriter.create<arith::SelectOp>(op->getLoc(), isNaN, min, result); |
| 488 | } |
| 489 | |
| 490 | if (isa<tosa::ClampOp>(op) && isa<IntegerType>(elementTy)) { |
| 491 | auto intTy = cast<IntegerType>(elementTy); |
| 492 | int64_t min = |
| 493 | cast<IntegerAttr>(op->getAttr(name: "min_val" )).getValue().getSExtValue(); |
| 494 | int64_t max = |
| 495 | cast<IntegerAttr>(op->getAttr(name: "max_val" )).getValue().getSExtValue(); |
| 496 | |
| 497 | int64_t minRepresentable = std::numeric_limits<int64_t>::min(); |
| 498 | int64_t maxRepresentable = std::numeric_limits<int64_t>::max(); |
| 499 | if (intTy.isUnsignedInteger()) { |
| 500 | minRepresentable = 0; |
| 501 | if (intTy.getIntOrFloatBitWidth() <= 63) { |
| 502 | maxRepresentable = |
| 503 | (int64_t)APInt::getMaxValue(numBits: intTy.getIntOrFloatBitWidth()) |
| 504 | .getZExtValue(); |
| 505 | } |
| 506 | } else if (intTy.getIntOrFloatBitWidth() <= 64) { |
| 507 | // Ensure that min & max fit into signed n-bit constants. |
| 508 | minRepresentable = APInt::getSignedMinValue(numBits: intTy.getIntOrFloatBitWidth()) |
| 509 | .getSExtValue(); |
| 510 | maxRepresentable = APInt::getSignedMaxValue(numBits: intTy.getIntOrFloatBitWidth()) |
| 511 | .getSExtValue(); |
| 512 | } |
| 513 | // Ensure that the bounds are representable as n-bit signed/unsigned |
| 514 | // integers. |
| 515 | min = std::max(a: min, b: minRepresentable); |
| 516 | max = std::max(a: max, b: minRepresentable); |
| 517 | min = std::min(a: min, b: maxRepresentable); |
| 518 | max = std::min(a: max, b: maxRepresentable); |
| 519 | |
| 520 | auto minVal = rewriter.create<arith::ConstantIntOp>( |
| 521 | loc, min, intTy.getIntOrFloatBitWidth()); |
| 522 | auto maxVal = rewriter.create<arith::ConstantIntOp>( |
| 523 | loc, max, intTy.getIntOrFloatBitWidth()); |
| 524 | return clampIntHelper(loc, args[0], minVal, maxVal, rewriter, |
| 525 | intTy.isUnsignedInteger()); |
| 526 | } |
| 527 | |
| 528 | // tosa::SigmoidOp |
| 529 | if (isa<tosa::SigmoidOp>(op) && isa<FloatType>(elementTy)) { |
| 530 | auto one = |
| 531 | rewriter.create<arith::ConstantOp>(loc, FloatAttr::get(elementTy, 1)); |
| 532 | auto negate = rewriter.create<arith::NegFOp>(loc, resultTypes, args[0]); |
| 533 | auto exp = rewriter.create<mlir::math::ExpOp>(loc, resultTypes, negate); |
| 534 | auto added = rewriter.create<arith::AddFOp>(loc, resultTypes, exp, one); |
| 535 | return rewriter.create<arith::DivFOp>(loc, resultTypes, one, added); |
| 536 | } |
| 537 | |
| 538 | // tosa::CastOp |
| 539 | if (isa<tosa::CastOp>(op)) { |
| 540 | Type srcTy = elementTy; |
| 541 | Type dstTy = resultTypes.front(); |
| 542 | if (!srcTy.isIntOrFloat() || !dstTy.isIntOrFloat()) { |
| 543 | (void)rewriter.notifyMatchFailure(arg&: op, msg: "unsupported type" ); |
| 544 | return nullptr; |
| 545 | } |
| 546 | |
| 547 | bool bitExtend = |
| 548 | srcTy.getIntOrFloatBitWidth() < dstTy.getIntOrFloatBitWidth(); |
| 549 | |
| 550 | if (srcTy == dstTy) |
| 551 | return args.front(); |
| 552 | |
| 553 | if (isa<FloatType>(srcTy) && isa<FloatType>(dstTy) && bitExtend) |
| 554 | return rewriter.create<arith::ExtFOp>(loc, resultTypes, args, |
| 555 | std::nullopt); |
| 556 | |
| 557 | if (isa<FloatType>(srcTy) && isa<FloatType>(dstTy) && !bitExtend) |
| 558 | return rewriter.create<arith::TruncFOp>(loc, resultTypes, args, |
| 559 | std::nullopt); |
| 560 | |
| 561 | // 1-bit integers need to be treated as signless. |
| 562 | if (srcTy.isInteger(1) && arith::UIToFPOp::areCastCompatible(srcTy, dstTy)) |
| 563 | return rewriter.create<arith::UIToFPOp>(loc, resultTypes, args, |
| 564 | std::nullopt); |
| 565 | |
| 566 | if (srcTy.isInteger(1) && isa<IntegerType>(dstTy) && bitExtend) |
| 567 | return rewriter.create<arith::ExtUIOp>(loc, resultTypes, args, |
| 568 | std::nullopt); |
| 569 | |
| 570 | // Unsigned integers need an unrealized cast so that they can be passed |
| 571 | // to UIToFP. |
| 572 | if (srcTy.isUnsignedInteger() && isa<FloatType>(Val: dstTy)) { |
| 573 | auto unrealizedCast = |
| 574 | rewriter |
| 575 | .create<UnrealizedConversionCastOp>( |
| 576 | loc, rewriter.getIntegerType(srcTy.getIntOrFloatBitWidth()), |
| 577 | args[0]) |
| 578 | .getResult(0); |
| 579 | return rewriter.create<arith::UIToFPOp>(loc, resultTypes[0], |
| 580 | unrealizedCast); |
| 581 | } |
| 582 | |
| 583 | // All other si-to-fp conversions should be handled by SIToFP. |
| 584 | if (arith::SIToFPOp::areCastCompatible(srcTy, dstTy)) |
| 585 | return rewriter.create<arith::SIToFPOp>(loc, resultTypes, args, |
| 586 | std::nullopt); |
| 587 | |
| 588 | // Casting to boolean, floats need to only be checked as not-equal to zero. |
| 589 | if (isa<FloatType>(Val: srcTy) && dstTy.isInteger(width: 1)) { |
| 590 | Value zero = rewriter.create<arith::ConstantOp>( |
| 591 | loc, rewriter.getFloatAttr(srcTy, 0.0)); |
| 592 | return rewriter.create<arith::CmpFOp>(loc, arith::CmpFPredicate::UNE, |
| 593 | args.front(), zero); |
| 594 | } |
| 595 | |
| 596 | if (arith::FPToSIOp::areCastCompatible(srcTy, dstTy)) { |
| 597 | auto rounded = rewriter.create<math::RoundEvenOp>(loc, args[0]); |
| 598 | |
| 599 | const auto &fltSemantics = cast<FloatType>(srcTy).getFloatSemantics(); |
| 600 | // Check whether neither int min nor int max can be represented in the |
| 601 | // input floating-point type due to too short exponent range. |
| 602 | if (static_cast<int>(dstTy.getIntOrFloatBitWidth()) - 1 > |
| 603 | APFloat::semanticsMaxExponent(fltSemantics)) { |
| 604 | // Use cmp + select to replace infinites by int min / int max. Other |
| 605 | // integral values can be represented in the integer space. |
| 606 | auto conv = rewriter.create<arith::FPToSIOp>(loc, dstTy, rounded); |
| 607 | auto posInf = rewriter.create<arith::ConstantOp>( |
| 608 | loc, rewriter.getFloatAttr(getElementTypeOrSelf(srcTy), |
| 609 | APFloat::getInf(fltSemantics))); |
| 610 | auto negInf = rewriter.create<arith::ConstantOp>( |
| 611 | loc, rewriter.getFloatAttr( |
| 612 | getElementTypeOrSelf(srcTy), |
| 613 | APFloat::getInf(fltSemantics, /*Negative=*/true))); |
| 614 | auto overflow = rewriter.create<arith::CmpFOp>( |
| 615 | loc, arith::CmpFPredicate::UEQ, rounded, posInf); |
| 616 | auto underflow = rewriter.create<arith::CmpFOp>( |
| 617 | loc, arith::CmpFPredicate::UEQ, rounded, negInf); |
| 618 | auto intMin = rewriter.create<arith::ConstantOp>( |
| 619 | loc, rewriter.getIntegerAttr( |
| 620 | getElementTypeOrSelf(dstTy), |
| 621 | APInt::getSignedMinValue(dstTy.getIntOrFloatBitWidth()))); |
| 622 | auto intMax = rewriter.create<arith::ConstantOp>( |
| 623 | loc, rewriter.getIntegerAttr( |
| 624 | getElementTypeOrSelf(dstTy), |
| 625 | APInt::getSignedMaxValue(dstTy.getIntOrFloatBitWidth()))); |
| 626 | auto maxClamped = |
| 627 | rewriter.create<arith::SelectOp>(loc, overflow, intMax, conv); |
| 628 | return rewriter.create<arith::SelectOp>(loc, underflow, intMin, |
| 629 | maxClamped); |
| 630 | } |
| 631 | |
| 632 | auto intMinFP = rewriter.create<arith::ConstantOp>( |
| 633 | loc, rewriter.getFloatAttr( |
| 634 | getElementTypeOrSelf(srcTy), |
| 635 | APInt::getSignedMinValue(dstTy.getIntOrFloatBitWidth()) |
| 636 | .getSExtValue())); |
| 637 | |
| 638 | // Check whether the mantissa has enough bits to represent int max. |
| 639 | if (cast<FloatType>(srcTy).getFPMantissaWidth() >= |
| 640 | dstTy.getIntOrFloatBitWidth() - 1) { |
| 641 | // Int min can also be represented since it is a power of two and thus |
| 642 | // consists of a single leading bit. Therefore we can clamp the input |
| 643 | // in the floating-point domain. |
| 644 | |
| 645 | auto intMaxFP = rewriter.create<arith::ConstantOp>( |
| 646 | loc, rewriter.getFloatAttr( |
| 647 | getElementTypeOrSelf(srcTy), |
| 648 | APInt::getSignedMaxValue(dstTy.getIntOrFloatBitWidth()) |
| 649 | .getSExtValue())); |
| 650 | |
| 651 | Value clamped = |
| 652 | clampFloatHelper(loc, rounded, intMinFP, intMaxFP, rewriter); |
| 653 | return rewriter.create<arith::FPToSIOp>(loc, dstTy, clamped); |
| 654 | } |
| 655 | |
| 656 | // Due to earlier check we know exponant range is big enough to represent |
| 657 | // int min. We can therefore rely on int max + 1 being representable as |
| 658 | // well because it's just int min with a positive sign. So clamp the min |
| 659 | // value and compare against that to select the max int value if needed. |
| 660 | auto intMaxPlusOneFP = rewriter.create<arith::ConstantOp>( |
| 661 | loc, rewriter.getFloatAttr( |
| 662 | getElementTypeOrSelf(srcTy), |
| 663 | static_cast<double>( |
| 664 | APInt::getSignedMaxValue(dstTy.getIntOrFloatBitWidth()) |
| 665 | .getSExtValue()) + |
| 666 | 1.0f)); |
| 667 | |
| 668 | auto intMax = rewriter.create<arith::ConstantOp>( |
| 669 | loc, rewriter.getIntegerAttr( |
| 670 | getElementTypeOrSelf(dstTy), |
| 671 | APInt::getSignedMaxValue(dstTy.getIntOrFloatBitWidth()))); |
| 672 | auto minClampedFP = |
| 673 | rewriter.create<arith::MaximumFOp>(loc, rounded, intMinFP); |
| 674 | auto minClamped = |
| 675 | rewriter.create<arith::FPToSIOp>(loc, dstTy, minClampedFP); |
| 676 | auto overflow = rewriter.create<arith::CmpFOp>( |
| 677 | loc, arith::CmpFPredicate::UGE, rounded, intMaxPlusOneFP); |
| 678 | return rewriter.create<arith::SelectOp>(loc, overflow, intMax, |
| 679 | minClamped); |
| 680 | } |
| 681 | |
| 682 | // Casting to boolean, integers need to only be checked as not-equal to |
| 683 | // zero. |
| 684 | if (isa<IntegerType>(Val: srcTy) && dstTy.isInteger(width: 1)) { |
| 685 | Value zero = rewriter.create<arith::ConstantIntOp>( |
| 686 | location: loc, args: 0, args: srcTy.getIntOrFloatBitWidth()); |
| 687 | return rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ne, |
| 688 | args.front(), zero); |
| 689 | } |
| 690 | |
| 691 | if (isa<IntegerType>(srcTy) && isa<IntegerType>(dstTy) && bitExtend) |
| 692 | return rewriter.create<arith::ExtSIOp>(loc, resultTypes, args, |
| 693 | std::nullopt); |
| 694 | |
| 695 | if (isa<IntegerType>(Val: srcTy) && isa<IntegerType>(Val: dstTy) && !bitExtend) { |
| 696 | return rewriter.create<arith::TruncIOp>(loc, dstTy, args[0]); |
| 697 | } |
| 698 | } |
| 699 | |
| 700 | (void)rewriter.notifyMatchFailure( |
| 701 | arg&: op, msg: "unhandled op for linalg body calculation for elementwise op" ); |
| 702 | return nullptr; |
| 703 | } |
| 704 | |
| 705 | using IndexPool = DenseMap<int64_t, Value>; |
| 706 | |
| 707 | // Emit an 'arith.constant' op for the given index if it has not been created |
| 708 | // yet, or return an existing constant. This will prevent an excessive creation |
| 709 | // of redundant constants, easing readability of emitted code for unit tests. |
| 710 | static Value createIndex(PatternRewriter &rewriter, Location loc, |
| 711 | IndexPool &indexPool, int64_t index) { |
| 712 | auto [it, inserted] = indexPool.try_emplace(Key: index); |
| 713 | if (inserted) |
| 714 | it->second = |
| 715 | rewriter.create<arith::ConstantOp>(loc, rewriter.getIndexAttr(index)); |
| 716 | return it->second; |
| 717 | } |
| 718 | |
| 719 | static Value getTensorDim(PatternRewriter &rewriter, Location loc, |
| 720 | IndexPool &indexPool, Value tensor, int64_t index) { |
| 721 | auto indexValue = createIndex(rewriter, loc, indexPool, index); |
| 722 | return rewriter.create<tensor::DimOp>(loc, tensor, indexValue).getResult(); |
| 723 | } |
| 724 | |
| 725 | static OpFoldResult getOrFoldTensorDim(PatternRewriter &rewriter, Location loc, |
| 726 | IndexPool &indexPool, Value tensor, |
| 727 | int64_t index) { |
| 728 | auto shapedType = dyn_cast<ShapedType>(tensor.getType()); |
| 729 | assert(shapedType && shapedType.hasRank() && "expected a ranked shaped type" ); |
| 730 | assert(index >= 0 && index < shapedType.getRank() && "index out of bounds" ); |
| 731 | if (shapedType.isDynamicDim(index)) |
| 732 | return getTensorDim(rewriter, loc, indexPool, tensor, index); |
| 733 | return rewriter.getIndexAttr(value: shapedType.getDimSize(index)); |
| 734 | } |
| 735 | |
| 736 | static bool operandsAndResultsRanked(Operation *operation) { |
| 737 | auto isRanked = [](Value value) { |
| 738 | return isa<RankedTensorType>(Val: value.getType()); |
| 739 | }; |
| 740 | return llvm::all_of(Range: operation->getOperands(), P: isRanked) && |
| 741 | llvm::all_of(Range: operation->getResults(), P: isRanked); |
| 742 | } |
| 743 | |
| 744 | // Compute the runtime dimension size for dimension 'dim' of the output by |
| 745 | // inspecting input 'operands', all of which are expected to have the same rank. |
| 746 | // This function returns a pair {targetSize, masterOperand}. |
| 747 | // |
| 748 | // The runtime size of the output dimension is returned either as a statically |
| 749 | // computed attribute or as a runtime SSA value. |
| 750 | // |
| 751 | // If the target size was inferred directly from one dominating operand, that |
| 752 | // operand is returned in 'masterOperand'. If the target size is inferred from |
| 753 | // multiple operands, 'masterOperand' is set to nullptr. |
| 754 | static std::pair<OpFoldResult, Value> |
| 755 | computeTargetSize(PatternRewriter &rewriter, Location loc, IndexPool &indexPool, |
| 756 | ValueRange operands, int64_t dim) { |
| 757 | // If any input operand contains a static size greater than 1 for this |
| 758 | // dimension, that is the target size. An occurrence of an additional static |
| 759 | // dimension greater than 1 with a different value is undefined behavior. |
| 760 | for (auto operand : operands) { |
| 761 | auto size = cast<RankedTensorType>(operand.getType()).getDimSize(dim); |
| 762 | if (!ShapedType::isDynamic(size) && size > 1) |
| 763 | return {rewriter.getIndexAttr(value: size), operand}; |
| 764 | } |
| 765 | |
| 766 | // Filter operands with dynamic dimension |
| 767 | auto operandsWithDynamicDim = |
| 768 | llvm::filter_to_vector(C&: operands, Pred: [&](Value operand) { |
| 769 | return cast<RankedTensorType>(operand.getType()).isDynamicDim(dim); |
| 770 | }); |
| 771 | |
| 772 | // If no operand has a dynamic dimension, it means all sizes were 1 |
| 773 | if (operandsWithDynamicDim.empty()) |
| 774 | return {rewriter.getIndexAttr(1), operands.front()}; |
| 775 | |
| 776 | // Emit code that computes the runtime size for this dimension. If there is |
| 777 | // only one operand with a dynamic dimension, it is considered the master |
| 778 | // operand that determines the runtime size of the output dimension. |
| 779 | auto targetSize = |
| 780 | getTensorDim(rewriter, loc, indexPool, tensor: operandsWithDynamicDim[0], index: dim); |
| 781 | if (operandsWithDynamicDim.size() == 1) |
| 782 | return {targetSize, operandsWithDynamicDim[0]}; |
| 783 | |
| 784 | // Calculate maximum size among all dynamic dimensions |
| 785 | for (size_t i = 1; i < operandsWithDynamicDim.size(); i++) { |
| 786 | auto nextSize = |
| 787 | getTensorDim(rewriter, loc, indexPool, tensor: operandsWithDynamicDim[i], index: dim); |
| 788 | targetSize = rewriter.create<arith::MaxUIOp>(loc, targetSize, nextSize); |
| 789 | } |
| 790 | return {targetSize, nullptr}; |
| 791 | } |
| 792 | |
| 793 | // Compute the runtime output size for all dimensions. This function returns |
| 794 | // a pair {targetShape, masterOperands}. |
| 795 | static std::pair<SmallVector<OpFoldResult>, SmallVector<Value>> |
| 796 | computeTargetShape(PatternRewriter &rewriter, Location loc, |
| 797 | IndexPool &indexPool, ValueRange operands) { |
| 798 | assert(!operands.empty()); |
| 799 | auto rank = cast<RankedTensorType>(operands.front().getType()).getRank(); |
| 800 | SmallVector<OpFoldResult> targetShape; |
| 801 | SmallVector<Value> masterOperands; |
| 802 | for (auto dim : llvm::seq<int64_t>(0, rank)) { |
| 803 | auto [targetSize, masterOperand] = |
| 804 | computeTargetSize(rewriter, loc, indexPool, operands, dim); |
| 805 | targetShape.push_back(targetSize); |
| 806 | masterOperands.push_back(masterOperand); |
| 807 | } |
| 808 | return {targetShape, masterOperands}; |
| 809 | } |
| 810 | |
| 811 | static Value broadcastDynamicDimension(PatternRewriter &rewriter, Location loc, |
| 812 | IndexPool &indexPool, Value operand, |
| 813 | int64_t dim, OpFoldResult targetSize, |
| 814 | Value masterOperand) { |
| 815 | // Nothing to do if this is a static dimension |
| 816 | auto rankedTensorType = cast<RankedTensorType>(operand.getType()); |
| 817 | if (!rankedTensorType.isDynamicDim(dim)) |
| 818 | return operand; |
| 819 | |
| 820 | // If the target size for this dimension was directly inferred by only taking |
| 821 | // this operand into account, there is no need to broadcast. This is an |
| 822 | // optimization that will prevent redundant control flow, and constitutes the |
| 823 | // main motivation for tracking "master operands". |
| 824 | if (operand == masterOperand) |
| 825 | return operand; |
| 826 | |
| 827 | // Affine maps for 'linalg.generic' op |
| 828 | auto rank = rankedTensorType.getRank(); |
| 829 | SmallVector<AffineExpr> affineExprs; |
| 830 | for (auto index : llvm::seq<int64_t>(0, rank)) { |
| 831 | auto affineExpr = index == dim ? rewriter.getAffineConstantExpr(0) |
| 832 | : rewriter.getAffineDimExpr(index); |
| 833 | affineExprs.push_back(affineExpr); |
| 834 | } |
| 835 | auto broadcastAffineMap = |
| 836 | AffineMap::get(rank, 0, affineExprs, rewriter.getContext()); |
| 837 | auto identityAffineMap = rewriter.getMultiDimIdentityMap(rank: rank); |
| 838 | SmallVector<AffineMap> affineMaps = {broadcastAffineMap, identityAffineMap}; |
| 839 | |
| 840 | // Check if broadcast is necessary |
| 841 | auto one = createIndex(rewriter, loc, indexPool, index: 1); |
| 842 | auto runtimeSize = getTensorDim(rewriter, loc, indexPool, tensor: operand, index: dim); |
| 843 | auto broadcastNecessary = rewriter.create<arith::CmpIOp>( |
| 844 | loc, arith::CmpIPredicate::eq, runtimeSize, one); |
| 845 | |
| 846 | // Emit 'then' region of 'scf.if' |
| 847 | auto emitThenRegion = [&](OpBuilder &opBuilder, Location loc) { |
| 848 | // It is not safe to cache constants across regions. |
| 849 | // New constants could potentially violate dominance requirements. |
| 850 | IndexPool localPool; |
| 851 | |
| 852 | // Emit 'tensor.empty' op |
| 853 | SmallVector<OpFoldResult> outputTensorShape; |
| 854 | for (auto index : llvm::seq<int64_t>(0, rank)) { |
| 855 | auto size = index == dim ? targetSize |
| 856 | : getOrFoldTensorDim(rewriter, loc, localPool, |
| 857 | operand, index); |
| 858 | outputTensorShape.push_back(size); |
| 859 | } |
| 860 | Value outputTensor = opBuilder.create<tensor::EmptyOp>( |
| 861 | loc, outputTensorShape, rankedTensorType.getElementType()); |
| 862 | |
| 863 | // Emit 'linalg.generic' op |
| 864 | auto resultTensor = |
| 865 | opBuilder |
| 866 | .create<linalg::GenericOp>( |
| 867 | loc, outputTensor.getType(), operand, outputTensor, affineMaps, |
| 868 | getNParallelLoopsAttrs(rank), |
| 869 | [&](OpBuilder &opBuilder, Location loc, ValueRange blockArgs) { |
| 870 | // Emit 'linalg.yield' op |
| 871 | opBuilder.create<linalg::YieldOp>(loc, blockArgs.front()); |
| 872 | }) |
| 873 | .getResult(0); |
| 874 | |
| 875 | // Cast to original operand type if necessary |
| 876 | auto castResultTensor = rewriter.createOrFold<tensor::CastOp>( |
| 877 | loc, operand.getType(), resultTensor); |
| 878 | |
| 879 | // Emit 'scf.yield' op |
| 880 | opBuilder.create<scf::YieldOp>(loc, castResultTensor); |
| 881 | }; |
| 882 | |
| 883 | // Emit 'else' region of 'scf.if' |
| 884 | auto emitElseRegion = [&](OpBuilder &opBuilder, Location loc) { |
| 885 | opBuilder.create<scf::YieldOp>(loc, operand); |
| 886 | }; |
| 887 | |
| 888 | // Emit 'scf.if' op |
| 889 | auto ifOp = rewriter.create<scf::IfOp>(loc, broadcastNecessary, |
| 890 | emitThenRegion, emitElseRegion); |
| 891 | return ifOp.getResult(0); |
| 892 | } |
| 893 | |
| 894 | static Value broadcastDynamicDimensions(PatternRewriter &rewriter, Location loc, |
| 895 | IndexPool &indexPool, Value operand, |
| 896 | ArrayRef<OpFoldResult> targetShape, |
| 897 | ArrayRef<Value> masterOperands) { |
| 898 | int64_t rank = cast<RankedTensorType>(operand.getType()).getRank(); |
| 899 | assert((int64_t)targetShape.size() == rank); |
| 900 | assert((int64_t)masterOperands.size() == rank); |
| 901 | for (auto index : llvm::seq<int64_t>(0, rank)) |
| 902 | operand = |
| 903 | broadcastDynamicDimension(rewriter, loc, indexPool, operand, index, |
| 904 | targetShape[index], masterOperands[index]); |
| 905 | return operand; |
| 906 | } |
| 907 | |
| 908 | static SmallVector<Value> |
| 909 | broadcastDynamicDimensions(PatternRewriter &rewriter, Location loc, |
| 910 | IndexPool &indexPool, ValueRange operands, |
| 911 | ArrayRef<OpFoldResult> targetShape, |
| 912 | ArrayRef<Value> masterOperands) { |
| 913 | // No need to broadcast for unary operations |
| 914 | if (operands.size() == 1) |
| 915 | return operands; |
| 916 | |
| 917 | // Broadcast dynamic dimensions operand by operand |
| 918 | return llvm::map_to_vector(C&: operands, F: [&](Value operand) { |
| 919 | return broadcastDynamicDimensions(rewriter, loc, indexPool, operand, |
| 920 | targetShape, masterOperands); |
| 921 | }); |
| 922 | } |
| 923 | |
| 924 | static LogicalResult |
| 925 | emitElementwiseComputation(ConversionPatternRewriter &rewriter, Location loc, |
| 926 | Operation *operation, ValueRange operands, |
| 927 | ArrayRef<OpFoldResult> targetShape, |
| 928 | const TypeConverter &converter) { |
| 929 | // Generate output tensor |
| 930 | auto resultType = cast_or_null<RankedTensorType>( |
| 931 | converter.convertType(t: operation->getResultTypes().front())); |
| 932 | if (!resultType) { |
| 933 | return rewriter.notifyMatchFailure(arg&: operation, msg: "failed to convert type" ); |
| 934 | } |
| 935 | Value outputTensor = rewriter.create<tensor::EmptyOp>( |
| 936 | loc, targetShape, resultType.getElementType()); |
| 937 | |
| 938 | // Create affine maps. Input affine maps broadcast static dimensions of size |
| 939 | // 1. The output affine map is an identity map. |
| 940 | // |
| 941 | auto rank = resultType.getRank(); |
| 942 | auto affineMaps = llvm::map_to_vector(operands, [&](Value operand) { |
| 943 | auto shape = cast<ShapedType>(operand.getType()).getShape(); |
| 944 | SmallVector<AffineExpr> affineExprs; |
| 945 | for (auto it : llvm::enumerate(shape)) { |
| 946 | // Prefer producting identity maps whenever possible (i.e. no broadcasting |
| 947 | // needed) because some transforms (like reshape folding) |
| 948 | // do not support affine constant exprs. |
| 949 | bool requiresBroadcast = |
| 950 | (it.value() == 1 && resultType.getDimSize(it.index()) != 1); |
| 951 | auto affineExpr = requiresBroadcast |
| 952 | ? rewriter.getAffineConstantExpr(0) |
| 953 | : rewriter.getAffineDimExpr(it.index()); |
| 954 | affineExprs.push_back(affineExpr); |
| 955 | } |
| 956 | return AffineMap::get(rank, 0, affineExprs, rewriter.getContext()); |
| 957 | }); |
| 958 | affineMaps.push_back(rewriter.getMultiDimIdentityMap(rank: rank)); |
| 959 | |
| 960 | // Emit 'linalg.generic' op |
| 961 | bool encounteredError = false; |
| 962 | auto linalgOp = rewriter.create<linalg::GenericOp>( |
| 963 | loc, outputTensor.getType(), operands, outputTensor, affineMaps, |
| 964 | getNParallelLoopsAttrs(rank), |
| 965 | [&](OpBuilder &opBuilder, Location loc, ValueRange blockArgs) { |
| 966 | Value opResult = createLinalgBodyCalculationForElementwiseOp( |
| 967 | operation, blockArgs.take_front(operation->getNumOperands()), |
| 968 | {resultType.getElementType()}, rewriter); |
| 969 | if (!opResult) { |
| 970 | encounteredError = true; |
| 971 | return; |
| 972 | } |
| 973 | opBuilder.create<linalg::YieldOp>(loc, opResult); |
| 974 | }); |
| 975 | if (encounteredError) |
| 976 | return rewriter.notifyMatchFailure( |
| 977 | arg&: operation, msg: "unable to create linalg.generic body for elementwise op" ); |
| 978 | |
| 979 | // Cast 'linalg.generic' result into original result type if needed |
| 980 | auto castResult = rewriter.createOrFold<tensor::CastOp>( |
| 981 | loc, resultType, linalgOp->getResult(0)); |
| 982 | rewriter.replaceOp(operation, castResult); |
| 983 | return success(); |
| 984 | } |
| 985 | |
| 986 | static ValueRange getBroadcastableOperands(Operation *operation, |
| 987 | ValueRange operands) { |
| 988 | // Shift cannot broadcast |
| 989 | if (isa<tosa::MulOp>(operation)) |
| 990 | return operands.take_front(n: 2); |
| 991 | // Input1_zp and output_zp cannot broadcast |
| 992 | if (isa<tosa::NegateOp>(operation)) |
| 993 | return operands.take_front(n: 1); |
| 994 | return operands; |
| 995 | } |
| 996 | |
| 997 | static LogicalResult |
| 998 | elementwiseMatchAndRewriteHelper(Operation *operation, ValueRange operands, |
| 999 | ConversionPatternRewriter &rewriter, |
| 1000 | const TypeConverter &converter) { |
| 1001 | |
| 1002 | // Collect op properties |
| 1003 | assert(operation->getNumResults() == 1 && "elementwise op expects 1 result" ); |
| 1004 | assert(operation->getNumOperands() >= 1 && |
| 1005 | "elementwise op expects at least 1 operand" ); |
| 1006 | if (!operandsAndResultsRanked(operation)) |
| 1007 | return rewriter.notifyMatchFailure(arg&: operation, |
| 1008 | msg: "Unranked tensors not supported" ); |
| 1009 | |
| 1010 | // Lower operation |
| 1011 | IndexPool indexPool; |
| 1012 | auto loc = operation->getLoc(); |
| 1013 | auto operandsToBroadcast = getBroadcastableOperands(operation, operands); |
| 1014 | auto [targetShape, masterOperands] = |
| 1015 | computeTargetShape(rewriter, loc, indexPool, operands: operandsToBroadcast); |
| 1016 | auto broadcastOperands = |
| 1017 | broadcastDynamicDimensions(rewriter, loc, indexPool, operands: operandsToBroadcast, |
| 1018 | targetShape, masterOperands); |
| 1019 | return emitElementwiseComputation(rewriter, loc, operation, operands: broadcastOperands, |
| 1020 | targetShape, converter); |
| 1021 | } |
| 1022 | |
| 1023 | // Returns the constant initial value for a given reduction operation. The |
| 1024 | // attribute type varies depending on the element type required. |
| 1025 | static TypedAttr createInitialValueForReduceOp(Operation *op, Type elementTy, |
| 1026 | PatternRewriter &rewriter) { |
| 1027 | if (isa<tosa::ReduceSumOp>(op) && isa<FloatType>(elementTy)) |
| 1028 | return rewriter.getFloatAttr(elementTy, 0.0); |
| 1029 | |
| 1030 | if (isa<tosa::ReduceSumOp>(op) && isa<IntegerType>(elementTy)) |
| 1031 | return rewriter.getIntegerAttr(elementTy, 0); |
| 1032 | |
| 1033 | if (isa<tosa::ReduceProductOp>(op) && isa<FloatType>(elementTy)) |
| 1034 | return rewriter.getFloatAttr(elementTy, 1.0); |
| 1035 | |
| 1036 | if (isa<tosa::ReduceProductOp>(op) && isa<IntegerType>(elementTy)) |
| 1037 | return rewriter.getIntegerAttr(elementTy, 1); |
| 1038 | |
| 1039 | if (isa<tosa::ReduceMinOp>(op) && isa<FloatType>(elementTy)) |
| 1040 | return rewriter.getFloatAttr( |
| 1041 | elementTy, APFloat::getLargest( |
| 1042 | Sem: cast<FloatType>(elementTy).getFloatSemantics(), Negative: false)); |
| 1043 | |
| 1044 | if (isa<tosa::ReduceMinOp>(op) && isa<IntegerType>(elementTy)) |
| 1045 | return rewriter.getIntegerAttr( |
| 1046 | elementTy, APInt::getSignedMaxValue(numBits: elementTy.getIntOrFloatBitWidth())); |
| 1047 | |
| 1048 | if (isa<tosa::ReduceMaxOp>(op) && isa<FloatType>(elementTy)) |
| 1049 | return rewriter.getFloatAttr( |
| 1050 | elementTy, APFloat::getLargest( |
| 1051 | Sem: cast<FloatType>(elementTy).getFloatSemantics(), Negative: true)); |
| 1052 | |
| 1053 | if (isa<tosa::ReduceMaxOp>(op) && isa<IntegerType>(elementTy)) |
| 1054 | return rewriter.getIntegerAttr( |
| 1055 | elementTy, APInt::getSignedMinValue(numBits: elementTy.getIntOrFloatBitWidth())); |
| 1056 | |
| 1057 | if (isa<tosa::ReduceAllOp>(op) && elementTy.isInteger(1)) |
| 1058 | return rewriter.getIntegerAttr(elementTy, APInt::getAllOnes(numBits: 1)); |
| 1059 | |
| 1060 | if (isa<tosa::ReduceAnyOp>(op) && elementTy.isInteger(1)) |
| 1061 | return rewriter.getIntegerAttr(elementTy, APInt::getZero(numBits: 1)); |
| 1062 | |
| 1063 | if (isa<tosa::ArgMaxOp>(op) && isa<FloatType>(elementTy)) |
| 1064 | return rewriter.getFloatAttr( |
| 1065 | elementTy, APFloat::getLargest( |
| 1066 | Sem: cast<FloatType>(elementTy).getFloatSemantics(), Negative: true)); |
| 1067 | |
| 1068 | if (isa<tosa::ArgMaxOp>(op) && isa<IntegerType>(elementTy)) |
| 1069 | return rewriter.getIntegerAttr( |
| 1070 | elementTy, APInt::getSignedMinValue(numBits: elementTy.getIntOrFloatBitWidth())); |
| 1071 | |
| 1072 | return {}; |
| 1073 | } |
| 1074 | |
| 1075 | // Creates the body calculation for a reduction. The operations vary depending |
| 1076 | // on the input type. |
| 1077 | static Value createLinalgBodyCalculationForReduceOp(Operation *op, |
| 1078 | ValueRange args, |
| 1079 | Type elementTy, |
| 1080 | PatternRewriter &rewriter) { |
| 1081 | Location loc = op->getLoc(); |
| 1082 | if (isa<tosa::ReduceSumOp>(op) && isa<FloatType>(elementTy)) { |
| 1083 | return rewriter.create<arith::AddFOp>(loc, args); |
| 1084 | } |
| 1085 | |
| 1086 | if (isa<tosa::ReduceSumOp>(op) && isa<IntegerType>(elementTy)) { |
| 1087 | return rewriter.create<arith::AddIOp>(loc, args); |
| 1088 | } |
| 1089 | |
| 1090 | if (isa<tosa::ReduceProductOp>(op) && isa<FloatType>(elementTy)) { |
| 1091 | return rewriter.create<arith::MulFOp>(loc, args); |
| 1092 | } |
| 1093 | |
| 1094 | if (isa<tosa::ReduceProductOp>(op) && isa<IntegerType>(elementTy)) { |
| 1095 | return rewriter.create<arith::MulIOp>(loc, args); |
| 1096 | } |
| 1097 | |
| 1098 | if (isa<tosa::ReduceMinOp>(op) && isa<FloatType>(elementTy)) { |
| 1099 | return rewriter.create<arith::MinimumFOp>(loc, args[0], args[1]); |
| 1100 | } |
| 1101 | |
| 1102 | if (isa<tosa::ReduceMinOp>(op) && isa<IntegerType>(elementTy)) { |
| 1103 | return rewriter.create<arith::MinSIOp>(loc, args[0], args[1]); |
| 1104 | } |
| 1105 | |
| 1106 | if (isa<tosa::ReduceMaxOp>(op) && isa<FloatType>(elementTy)) { |
| 1107 | return rewriter.create<arith::MaximumFOp>(loc, args[0], args[1]); |
| 1108 | } |
| 1109 | |
| 1110 | if (isa<tosa::ReduceMaxOp>(op) && isa<IntegerType>(elementTy)) { |
| 1111 | return rewriter.create<arith::MaxSIOp>(loc, args[0], args[1]); |
| 1112 | } |
| 1113 | |
| 1114 | if (isa<tosa::ReduceAllOp>(op) && elementTy.isInteger(1)) |
| 1115 | return rewriter.create<arith::AndIOp>(loc, args); |
| 1116 | |
| 1117 | if (isa<tosa::ReduceAnyOp>(op) && elementTy.isInteger(1)) |
| 1118 | return rewriter.create<arith::OrIOp>(loc, args); |
| 1119 | |
| 1120 | return {}; |
| 1121 | } |
| 1122 | |
| 1123 | // Performs the match and rewrite for reduction operations. This includes |
| 1124 | // declaring a correctly sized initial value, and the linalg.generic operation |
| 1125 | // that reduces across the specified axis. |
| 1126 | template <typename OpTy> |
| 1127 | static LogicalResult reduceMatchAndRewriteHelper(OpTy op, uint64_t axis, |
| 1128 | PatternRewriter &rewriter) { |
| 1129 | auto loc = op->getLoc(); |
| 1130 | auto inputTy = dyn_cast<RankedTensorType>(op->getOperand(0).getType()); |
| 1131 | auto resultTy = dyn_cast<RankedTensorType>(op->getResult(0).getType()); |
| 1132 | if (!inputTy || !resultTy) |
| 1133 | return rewriter.notifyMatchFailure(op, "unranked tensors not supported" ); |
| 1134 | |
| 1135 | auto elementTy = resultTy.getElementType(); |
| 1136 | Value input = op->getOperand(0); |
| 1137 | |
| 1138 | SmallVector<int64_t> reduceShape; |
| 1139 | SmallVector<Value> dynDims; |
| 1140 | for (unsigned i = 0; i < inputTy.getRank(); i++) { |
| 1141 | if (axis != i) { |
| 1142 | reduceShape.push_back(Elt: inputTy.getDimSize(i)); |
| 1143 | if (inputTy.isDynamicDim(i)) |
| 1144 | dynDims.push_back(rewriter.create<tensor::DimOp>(loc, input, i)); |
| 1145 | } |
| 1146 | } |
| 1147 | |
| 1148 | SmallVector<Value> inputs, outputs; |
| 1149 | inputs.push_back(Elt: input); |
| 1150 | |
| 1151 | // First fill the output buffer with the init value. |
| 1152 | auto emptyTensor = |
| 1153 | rewriter |
| 1154 | .create<tensor::EmptyOp>(loc, reduceShape, resultTy.getElementType(), |
| 1155 | dynDims) |
| 1156 | .getResult(); |
| 1157 | |
| 1158 | auto fillValueAttr = createInitialValueForReduceOp(op, elementTy, rewriter); |
| 1159 | if (!fillValueAttr) |
| 1160 | return rewriter.notifyMatchFailure( |
| 1161 | op, "No initial value found for reduction operation" ); |
| 1162 | |
| 1163 | auto fillValue = rewriter.create<arith::ConstantOp>(loc, fillValueAttr); |
| 1164 | auto filledTensor = rewriter |
| 1165 | .create<linalg::FillOp>(loc, ValueRange{fillValue}, |
| 1166 | ValueRange{emptyTensor}) |
| 1167 | .result(); |
| 1168 | outputs.push_back(Elt: filledTensor); |
| 1169 | |
| 1170 | bool isNanIgnoreMode = false; |
| 1171 | if constexpr (std::is_same_v<OpTy, tosa::ReduceMinOp> || |
| 1172 | std::is_same_v<OpTy, tosa::ReduceMaxOp>) { |
| 1173 | // NaN propagation has no meaning for non floating point types. |
| 1174 | if (isa<FloatType>(elementTy) && op.getNanMode() == "IGNORE" ) { |
| 1175 | isNanIgnoreMode = true; |
| 1176 | // Because the TOSA spec requires the result be NaN iff all elements in |
| 1177 | // the reduction are NaN we can't simply perform a compare and select. |
| 1178 | // Additionally we have to keep track of whether we've seen any non-NaN |
| 1179 | // values and then do a final select based on this predicate. |
| 1180 | auto trueAttr = rewriter.getBoolAttr(value: true); |
| 1181 | auto trueValue = rewriter.create<arith::ConstantOp>(loc, trueAttr); |
| 1182 | auto emptyBoolTensor = |
| 1183 | rewriter |
| 1184 | .create<tensor::EmptyOp>(loc, reduceShape, trueValue.getType(), |
| 1185 | dynDims) |
| 1186 | .getResult(); |
| 1187 | auto allResultsNaNTensor = |
| 1188 | rewriter |
| 1189 | .create<linalg::FillOp>(loc, ValueRange{trueValue}, |
| 1190 | ValueRange{emptyBoolTensor}) |
| 1191 | .result(); |
| 1192 | // Note that because the linalg::ReduceOp has two variadic arguments |
| 1193 | // (inputs and outputs) and it has the SameVariadicOperandSize trait we |
| 1194 | // need to have the same number of inputs and outputs. |
| 1195 | // |
| 1196 | // The second input isn't actually used anywhere since the value used to |
| 1197 | // update the NaN flag is calculated inside the body of the reduction and |
| 1198 | // then used to update an out value. |
| 1199 | // In order to satisfy type constraints we just pass another copy of the |
| 1200 | // input here. |
| 1201 | inputs.push_back(Elt: input); |
| 1202 | outputs.push_back(Elt: allResultsNaNTensor); |
| 1203 | } |
| 1204 | } |
| 1205 | |
| 1206 | bool didEncounterError = false; |
| 1207 | linalg::LinalgOp linalgOp = rewriter.create<linalg::ReduceOp>( |
| 1208 | loc, inputs, outputs, axis, |
| 1209 | [&](OpBuilder &nestedBuilder, Location nestedLoc, ValueRange blockArgs) { |
| 1210 | std::array<Value, 2> binaryArgs{ |
| 1211 | blockArgs[0], isNanIgnoreMode ? blockArgs[2] : blockArgs[1]}; |
| 1212 | auto result = createLinalgBodyCalculationForReduceOp( |
| 1213 | op, binaryArgs, elementTy, rewriter); |
| 1214 | if (result) |
| 1215 | didEncounterError = true; |
| 1216 | |
| 1217 | SmallVector<Value> resultsToYield; |
| 1218 | if (isNanIgnoreMode) { |
| 1219 | auto inputValue = blockArgs[0]; |
| 1220 | auto initialValue = blockArgs[2]; |
| 1221 | auto oldAllResultsNanFlagValue = blockArgs[3]; |
| 1222 | |
| 1223 | // Unordered comparison of NaN against itself will always return true. |
| 1224 | Value isNaN = nestedBuilder.create<arith::CmpFOp>( |
| 1225 | op->getLoc(), arith::CmpFPredicate::UNO, inputValue, inputValue); |
| 1226 | // If we've encountered a NaN, take the non-NaN value. |
| 1227 | auto selectOp = nestedBuilder.create<arith::SelectOp>( |
| 1228 | op->getLoc(), isNaN, initialValue, result); |
| 1229 | // Update the flag which keeps track of whether we have seen a non-NaN |
| 1230 | // value. |
| 1231 | auto newAllResultsNanFlagValue = nestedBuilder.create<arith::AndIOp>( |
| 1232 | op->getLoc(), oldAllResultsNanFlagValue, isNaN); |
| 1233 | resultsToYield.push_back(selectOp); |
| 1234 | resultsToYield.push_back(newAllResultsNanFlagValue); |
| 1235 | } else { |
| 1236 | resultsToYield.push_back(result); |
| 1237 | } |
| 1238 | nestedBuilder.create<linalg::YieldOp>(loc, resultsToYield); |
| 1239 | }); |
| 1240 | |
| 1241 | if (!didEncounterError) |
| 1242 | return rewriter.notifyMatchFailure( |
| 1243 | op, "unable to create linalg.generic body for reduce op" ); |
| 1244 | |
| 1245 | if (isNanIgnoreMode) { |
| 1246 | // Materialize a check to see whether we encountered any non-NaN values, if |
| 1247 | // we didn't we need to select a tensor of NaNs since the result will just |
| 1248 | // be the initial identity value propagated through all the compares and |
| 1249 | // selects inside the reduction. |
| 1250 | |
| 1251 | // Create a tensor full of NaNs. |
| 1252 | auto nanValueAttr = rewriter.getFloatAttr( |
| 1253 | elementTy, |
| 1254 | APFloat::getNaN(Sem: cast<FloatType>(elementTy).getFloatSemantics(), Negative: false)); |
| 1255 | auto nanValue = rewriter.create<arith::ConstantOp>(loc, nanValueAttr); |
| 1256 | auto emptyNanTensor = |
| 1257 | rewriter |
| 1258 | .create<tensor::EmptyOp>(loc, reduceShape, |
| 1259 | resultTy.getElementType(), dynDims) |
| 1260 | .getResult(); |
| 1261 | auto nanFilledTensor = |
| 1262 | rewriter |
| 1263 | .create<linalg::FillOp>(loc, ValueRange{nanValue}, |
| 1264 | ValueRange{emptyNanTensor}) |
| 1265 | .result(); |
| 1266 | |
| 1267 | // Create an empty tensor, non need to fill this since it will be |
| 1268 | // overwritten by the select. |
| 1269 | auto finalEmptyTensor = |
| 1270 | rewriter |
| 1271 | .create<tensor::EmptyOp>(loc, reduceShape, |
| 1272 | resultTy.getElementType(), dynDims) |
| 1273 | .getResult(); |
| 1274 | |
| 1275 | // Do a selection between the tensors akin to: |
| 1276 | // result = NaN if "all results NaN" else result. |
| 1277 | SmallVector<Value> ins, outs; |
| 1278 | ins.push_back(Elt: linalgOp->getOpResult(1)); |
| 1279 | ins.push_back(Elt: nanFilledTensor); |
| 1280 | ins.push_back(Elt: linalgOp->getResult(0)); |
| 1281 | outs.push_back(Elt: finalEmptyTensor); |
| 1282 | auto linalgSelect = |
| 1283 | rewriter.create<linalg::SelectOp>(op->getLoc(), ins, outs); |
| 1284 | linalgOp = linalgSelect; |
| 1285 | } |
| 1286 | |
| 1287 | SmallVector<ReassociationExprs, 4> reassociationMap; |
| 1288 | uint64_t expandInputRank = |
| 1289 | cast<ShapedType>(linalgOp->getResults()[0].getType()).getRank(); |
| 1290 | reassociationMap.resize(N: expandInputRank); |
| 1291 | |
| 1292 | for (uint64_t i = 0; i < expandInputRank; i++) { |
| 1293 | int32_t dimToPush = i > axis ? i + 1 : i; |
| 1294 | reassociationMap[i].push_back(Elt: rewriter.getAffineDimExpr(position: dimToPush)); |
| 1295 | } |
| 1296 | |
| 1297 | if (expandInputRank != 0) { |
| 1298 | int32_t expandedDim = axis < expandInputRank ? axis : expandInputRank - 1; |
| 1299 | reassociationMap[expandedDim].push_back( |
| 1300 | Elt: rewriter.getAffineDimExpr(position: expandedDim + 1)); |
| 1301 | } |
| 1302 | |
| 1303 | // Lower directly to `tensor::ExpandShapeOp` instead of `tosa::ReshapeOp`, |
| 1304 | // since here we know which dimension to expand, and `tosa::ReshapeOp` would |
| 1305 | // not have access to such information. This matters when handling dynamically |
| 1306 | // sized tensors. |
| 1307 | rewriter.replaceOpWithNewOp<tensor::ExpandShapeOp>( |
| 1308 | op, resultTy, linalgOp->getResults()[0], reassociationMap); |
| 1309 | return success(); |
| 1310 | } |
| 1311 | |
| 1312 | namespace { |
| 1313 | |
| 1314 | template <typename SrcOp> |
| 1315 | class PointwiseConverter : public OpConversionPattern<SrcOp> { |
| 1316 | public: |
| 1317 | using OpConversionPattern<SrcOp>::OpConversionPattern; |
| 1318 | using typename OpConversionPattern<SrcOp>::OpAdaptor; |
| 1319 | |
| 1320 | LogicalResult |
| 1321 | matchAndRewrite(SrcOp op, OpAdaptor operands, |
| 1322 | ConversionPatternRewriter &rewriter) const final { |
| 1323 | return elementwiseMatchAndRewriteHelper( |
| 1324 | op, operands.getOperands(), rewriter, *this->getTypeConverter()); |
| 1325 | } |
| 1326 | }; |
| 1327 | |
| 1328 | class RescaleConverter : public OpRewritePattern<tosa::RescaleOp> { |
| 1329 | public: |
| 1330 | using OpRewritePattern<tosa::RescaleOp>::OpRewritePattern; |
| 1331 | |
| 1332 | LogicalResult matchAndRewrite(tosa::RescaleOp op, |
| 1333 | PatternRewriter &rewriter) const final { |
| 1334 | auto loc = op.getLoc(); |
| 1335 | auto input = op.getInput(); |
| 1336 | auto inputTy = cast<ShapedType>(op.getInput().getType()); |
| 1337 | auto outputTy = cast<ShapedType>(op.getOutput().getType()); |
| 1338 | unsigned rank = inputTy.getRank(); |
| 1339 | |
| 1340 | // This is an illegal configuration. terminate and log an error |
| 1341 | if (op.getRoundingMode() == "INEXACT_ROUND" ) |
| 1342 | return rewriter.notifyMatchFailure( |
| 1343 | op, "tosa.rescale with rounding mode = 'INEXACT_ROUND' is not " |
| 1344 | "currently supported" ); |
| 1345 | if (op.getRoundingMode() == "DOUBLE_ROUND" && !op.getScale32()) |
| 1346 | return rewriter.notifyMatchFailure( |
| 1347 | op, "tosa.rescale requires scale32 for double_round to be true" ); |
| 1348 | |
| 1349 | if (!isa<IntegerType>(inputTy.getElementType())) |
| 1350 | return rewriter.notifyMatchFailure(op, "only support integer type" ); |
| 1351 | |
| 1352 | SmallVector<Value> dynDims; |
| 1353 | for (int i = 0; i < outputTy.getRank(); i++) { |
| 1354 | if (outputTy.isDynamicDim(i)) { |
| 1355 | dynDims.push_back(rewriter.create<tensor::DimOp>(loc, input, i)); |
| 1356 | } |
| 1357 | } |
| 1358 | |
| 1359 | // The shift and multiplier values. |
| 1360 | DenseElementsAttr shiftElems; |
| 1361 | if (!matchPattern(op.getShift(), m_Constant(bind_value: &shiftElems))) |
| 1362 | return rewriter.notifyMatchFailure( |
| 1363 | op, "tosa.rescale requires constant shift input values" ); |
| 1364 | |
| 1365 | DenseElementsAttr multiplierElems; |
| 1366 | if (!matchPattern(op.getMultiplier(), m_Constant(bind_value: &multiplierElems))) |
| 1367 | return rewriter.notifyMatchFailure( |
| 1368 | op, "tosa.rescale requires constant multiplier input values" ); |
| 1369 | |
| 1370 | llvm::SmallVector<int8_t> shiftValues = |
| 1371 | llvm::to_vector(shiftElems.getValues<int8_t>()); |
| 1372 | // explicit cast is required here |
| 1373 | llvm::SmallVector<int32_t> multiplierValues = llvm::to_vector( |
| 1374 | llvm::map_range(multiplierElems.getValues<IntegerAttr>(), |
| 1375 | [](IntegerAttr attr) -> int32_t { |
| 1376 | return static_cast<int32_t>(attr.getInt()); |
| 1377 | })); |
| 1378 | |
| 1379 | // If we shift by more than the bitwidth, this just sets to 0. |
| 1380 | for (int i = 0, s = multiplierValues.size(); i < s; i++) { |
| 1381 | if (shiftValues[i] > 63) { |
| 1382 | shiftValues[i] = 0; |
| 1383 | multiplierValues[i] = 0; |
| 1384 | } |
| 1385 | } |
| 1386 | |
| 1387 | // Double round only occurs if shift is greater than 31, check that this |
| 1388 | // is ever true. |
| 1389 | |
| 1390 | bool doubleRound = |
| 1391 | op.getRoundingMode() == "DOUBLE_ROUND" && |
| 1392 | llvm::any_of(Range&: shiftValues, P: [](int32_t v) { return v > 31; }); |
| 1393 | StringAttr roundingMode = doubleRound |
| 1394 | ? rewriter.getStringAttr("DOUBLE_ROUND" ) |
| 1395 | : rewriter.getStringAttr("SINGLE_ROUND" ); |
| 1396 | |
| 1397 | SmallVector<AffineMap> indexingMaps = { |
| 1398 | rewriter.getMultiDimIdentityMap(rank)}; |
| 1399 | SmallVector<Value, 4> genericInputs = {input}; |
| 1400 | |
| 1401 | // If we are rescaling per-channel then we need to store the multiplier |
| 1402 | // values in a buffer. |
| 1403 | Value multiplierConstant; |
| 1404 | int64_t multiplierArg = 0; |
| 1405 | if (multiplierValues.size() == 1) { |
| 1406 | multiplierConstant = rewriter.create<arith::ConstantOp>( |
| 1407 | loc, rewriter.getI32IntegerAttr(multiplierValues.front())); |
| 1408 | } else { |
| 1409 | SmallVector<AffineExpr, 2> multiplierExprs{ |
| 1410 | rewriter.getAffineDimExpr(position: rank - 1)}; |
| 1411 | auto multiplierType = |
| 1412 | RankedTensorType::get({static_cast<int64_t>(multiplierValues.size())}, |
| 1413 | rewriter.getI32Type()); |
| 1414 | genericInputs.push_back(rewriter.create<arith::ConstantOp>( |
| 1415 | loc, DenseIntElementsAttr::get(multiplierType, multiplierValues))); |
| 1416 | |
| 1417 | indexingMaps.push_back(Elt: AffineMap::get(/*dimCount=*/rank, |
| 1418 | /*symbolCount=*/0, results: multiplierExprs, |
| 1419 | context: rewriter.getContext())); |
| 1420 | |
| 1421 | multiplierArg = indexingMaps.size() - 1; |
| 1422 | } |
| 1423 | |
| 1424 | // If we are rescaling per-channel then we need to store the shift |
| 1425 | // values in a buffer. |
| 1426 | Value shiftConstant; |
| 1427 | int64_t shiftArg = 0; |
| 1428 | if (shiftValues.size() == 1) { |
| 1429 | shiftConstant = rewriter.create<arith::ConstantOp>( |
| 1430 | loc, rewriter.getI8IntegerAttr(shiftValues.front())); |
| 1431 | } else { |
| 1432 | SmallVector<AffineExpr, 2> shiftExprs = { |
| 1433 | rewriter.getAffineDimExpr(position: rank - 1)}; |
| 1434 | auto shiftType = |
| 1435 | RankedTensorType::get({static_cast<int64_t>(shiftValues.size())}, |
| 1436 | rewriter.getIntegerType(8)); |
| 1437 | genericInputs.push_back(rewriter.create<arith::ConstantOp>( |
| 1438 | loc, DenseIntElementsAttr::get(shiftType, shiftValues))); |
| 1439 | indexingMaps.push_back(Elt: AffineMap::get(/*dimCount=*/rank, |
| 1440 | /*symbolCount=*/0, results: shiftExprs, |
| 1441 | context: rewriter.getContext())); |
| 1442 | shiftArg = indexingMaps.size() - 1; |
| 1443 | } |
| 1444 | |
| 1445 | // Indexing maps for output values. |
| 1446 | indexingMaps.push_back(Elt: rewriter.getMultiDimIdentityMap(rank)); |
| 1447 | |
| 1448 | // Construct the indexing maps needed for linalg.generic ops. |
| 1449 | Value emptyTensor = rewriter.create<tensor::EmptyOp>( |
| 1450 | loc, outputTy.getShape(), outputTy.getElementType(), |
| 1451 | ArrayRef<Value>({dynDims})); |
| 1452 | |
| 1453 | auto linalgOp = rewriter.create<linalg::GenericOp>( |
| 1454 | loc, outputTy, genericInputs, ValueRange{emptyTensor}, indexingMaps, |
| 1455 | getNParallelLoopsAttrs(rank), |
| 1456 | [&](OpBuilder &nestedBuilder, Location nestedLoc, |
| 1457 | ValueRange blockArgs) { |
| 1458 | Value value = blockArgs[0]; |
| 1459 | Type valueTy = value.getType(); |
| 1460 | |
| 1461 | FailureOr<int64_t> maybeIZp = op.getInputZeroPoint(); |
| 1462 | if (failed(maybeIZp)) { |
| 1463 | (void)rewriter.notifyMatchFailure( |
| 1464 | op, "input zero point cannot be statically determined" ); |
| 1465 | return; |
| 1466 | } |
| 1467 | |
| 1468 | const int32_t inBitwidth = valueTy.getIntOrFloatBitWidth(); |
| 1469 | // Extend zeropoint for sub-32bits widths. |
| 1470 | const int32_t inAttrBitwidth = inBitwidth > 32 ? inBitwidth : 32; |
| 1471 | auto inputZp = nestedBuilder.create<arith::ConstantOp>( |
| 1472 | loc, IntegerAttr::get(rewriter.getIntegerType(inAttrBitwidth), |
| 1473 | *maybeIZp)); |
| 1474 | |
| 1475 | FailureOr<int64_t> maybeOZp = op.getOutputZeroPoint(); |
| 1476 | if (failed(maybeOZp)) { |
| 1477 | (void)rewriter.notifyMatchFailure( |
| 1478 | op, "output zero point cannot be statically determined" ); |
| 1479 | return; |
| 1480 | }; |
| 1481 | |
| 1482 | IntegerType outIntType = |
| 1483 | cast<IntegerType>(blockArgs.back().getType()); |
| 1484 | unsigned outBitWidth = outIntType.getWidth(); |
| 1485 | const int32_t outAttrBitwidth = 32; |
| 1486 | assert(outBitWidth <= 32 && "Unexpected output zeropoint bitwidth" ); |
| 1487 | auto outputZp = nestedBuilder.create<arith::ConstantOp>( |
| 1488 | loc, IntegerAttr::get(rewriter.getIntegerType(outAttrBitwidth), |
| 1489 | *maybeOZp)); |
| 1490 | |
| 1491 | Value multiplier = multiplierConstant ? multiplierConstant |
| 1492 | : blockArgs[multiplierArg]; |
| 1493 | Value shift = shiftConstant ? shiftConstant : blockArgs[shiftArg]; |
| 1494 | |
| 1495 | if (valueTy.isUnsignedInteger()) { |
| 1496 | value = nestedBuilder |
| 1497 | .create<UnrealizedConversionCastOp>( |
| 1498 | nestedLoc, |
| 1499 | nestedBuilder.getIntegerType( |
| 1500 | valueTy.getIntOrFloatBitWidth()), |
| 1501 | value) |
| 1502 | .getResult(0); |
| 1503 | } |
| 1504 | if (valueTy.getIntOrFloatBitWidth() < 32) { |
| 1505 | if (op.getInputUnsigned()) { |
| 1506 | value = nestedBuilder.create<arith::ExtUIOp>( |
| 1507 | nestedLoc, nestedBuilder.getI32Type(), value); |
| 1508 | } else { |
| 1509 | value = nestedBuilder.create<arith::ExtSIOp>( |
| 1510 | nestedLoc, nestedBuilder.getI32Type(), value); |
| 1511 | } |
| 1512 | } |
| 1513 | |
| 1514 | value = |
| 1515 | nestedBuilder.create<arith::SubIOp>(nestedLoc, value, inputZp); |
| 1516 | |
| 1517 | value = nestedBuilder.create<tosa::ApplyScaleOp>( |
| 1518 | loc, nestedBuilder.getI32Type(), value, multiplier, shift, |
| 1519 | roundingMode); |
| 1520 | |
| 1521 | // Move to the new zero-point. |
| 1522 | value = |
| 1523 | nestedBuilder.create<arith::AddIOp>(nestedLoc, value, outputZp); |
| 1524 | |
| 1525 | // Saturate to the output size. |
| 1526 | int32_t intMin = APInt::getSignedMinValue(outBitWidth).getSExtValue(); |
| 1527 | int32_t intMax = APInt::getSignedMaxValue(outBitWidth).getSExtValue(); |
| 1528 | |
| 1529 | // Unsigned integers have a difference output value. |
| 1530 | if (op.getOutputUnsigned()) { |
| 1531 | intMin = 0; |
| 1532 | intMax = APInt::getMaxValue(outBitWidth).getZExtValue(); |
| 1533 | } |
| 1534 | |
| 1535 | auto intMinVal = nestedBuilder.create<arith::ConstantOp>( |
| 1536 | loc, nestedBuilder.getI32IntegerAttr(intMin)); |
| 1537 | auto intMaxVal = nestedBuilder.create<arith::ConstantOp>( |
| 1538 | loc, nestedBuilder.getI32IntegerAttr(intMax)); |
| 1539 | |
| 1540 | value = clampIntHelper(nestedLoc, value, intMinVal, intMaxVal, |
| 1541 | nestedBuilder, /*isUnsigned=*/false); |
| 1542 | |
| 1543 | if (outIntType.getWidth() < 32) { |
| 1544 | value = nestedBuilder.create<arith::TruncIOp>( |
| 1545 | nestedLoc, rewriter.getIntegerType(outIntType.getWidth()), |
| 1546 | value); |
| 1547 | } |
| 1548 | |
| 1549 | if (outIntType.isUnsignedInteger()) { |
| 1550 | value = nestedBuilder |
| 1551 | .create<UnrealizedConversionCastOp>(nestedLoc, |
| 1552 | outIntType, value) |
| 1553 | .getResult(0); |
| 1554 | } |
| 1555 | nestedBuilder.create<linalg::YieldOp>(loc, value); |
| 1556 | }); |
| 1557 | |
| 1558 | rewriter.replaceOp(op, linalgOp->getResults()); |
| 1559 | return success(); |
| 1560 | } |
| 1561 | }; |
| 1562 | |
| 1563 | // Handle the resize case where the input is a 1x1 image. This case |
| 1564 | // can entirely avoiding having extract operations which target much |
| 1565 | // more difficult to optimize away. |
| 1566 | class ResizeUnaryConverter : public OpRewritePattern<tosa::ResizeOp> { |
| 1567 | public: |
| 1568 | using OpRewritePattern<tosa::ResizeOp>::OpRewritePattern; |
| 1569 | |
| 1570 | LogicalResult matchAndRewrite(tosa::ResizeOp op, |
| 1571 | PatternRewriter &rewriter) const final { |
| 1572 | Location loc = op.getLoc(); |
| 1573 | ImplicitLocOpBuilder builder(loc, rewriter); |
| 1574 | auto input = op.getInput(); |
| 1575 | auto inputTy = cast<RankedTensorType>(input.getType()); |
| 1576 | auto resultTy = cast<RankedTensorType>(op.getType()); |
| 1577 | const bool isBilinear = op.getMode() == "BILINEAR" ; |
| 1578 | |
| 1579 | auto inputH = inputTy.getDimSize(1); |
| 1580 | auto inputW = inputTy.getDimSize(2); |
| 1581 | auto outputH = resultTy.getDimSize(1); |
| 1582 | auto outputW = resultTy.getDimSize(2); |
| 1583 | |
| 1584 | if (inputH != 1 || inputW != 1 || outputH != 1 || outputW != 1) |
| 1585 | return rewriter.notifyMatchFailure( |
| 1586 | op, "tosa.resize is not a pure 1x1->1x1 image operation" ); |
| 1587 | |
| 1588 | // TODO(suderman): These string values should be declared the TOSA dialect. |
| 1589 | if (op.getMode() != "NEAREST_NEIGHBOR" && op.getMode() != "BILINEAR" ) |
| 1590 | return rewriter.notifyMatchFailure( |
| 1591 | op, "tosa.resize mode should be NEAREST_NEIGHBOR or BILINEAR" ); |
| 1592 | |
| 1593 | if (inputTy == resultTy) { |
| 1594 | rewriter.replaceOp(op, input); |
| 1595 | return success(); |
| 1596 | } |
| 1597 | |
| 1598 | SmallVector<int64_t> scale; |
| 1599 | if (!tosa::getConstShapeValues(op: op.getScale().getDefiningOp(), result_shape&: scale)) { |
| 1600 | return failure(); |
| 1601 | } |
| 1602 | |
| 1603 | // Collapse the unit width and height away. |
| 1604 | SmallVector<ReassociationExprs, 4> reassociationMap(2); |
| 1605 | reassociationMap[0].push_back(Elt: builder.getAffineDimExpr(position: 0)); |
| 1606 | reassociationMap[1].push_back(Elt: builder.getAffineDimExpr(position: 1)); |
| 1607 | reassociationMap[1].push_back(Elt: builder.getAffineDimExpr(position: 2)); |
| 1608 | reassociationMap[1].push_back(Elt: builder.getAffineDimExpr(position: 3)); |
| 1609 | |
| 1610 | auto collapseTy = |
| 1611 | RankedTensorType::get({inputTy.getDimSize(0), inputTy.getDimSize(3)}, |
| 1612 | inputTy.getElementType()); |
| 1613 | Value collapse = builder.create<tensor::CollapseShapeOp>(collapseTy, input, |
| 1614 | reassociationMap); |
| 1615 | |
| 1616 | // Get any dynamic shapes that appear in the input format. |
| 1617 | llvm::SmallVector<Value> outputDynSize; |
| 1618 | if (inputTy.isDynamicDim(0)) |
| 1619 | outputDynSize.push_back(builder.create<tensor::DimOp>(input, 0)); |
| 1620 | if (inputTy.isDynamicDim(3)) |
| 1621 | outputDynSize.push_back(builder.create<tensor::DimOp>(input, 3)); |
| 1622 | |
| 1623 | // Generate the elementwise operation for casting scaling the input value. |
| 1624 | auto genericTy = collapseTy.clone(resultTy.getElementType()); |
| 1625 | Value empty = builder.create<tensor::EmptyOp>( |
| 1626 | genericTy.getShape(), resultTy.getElementType(), outputDynSize); |
| 1627 | auto genericMap = rewriter.getMultiDimIdentityMap(rank: genericTy.getRank()); |
| 1628 | SmallVector<utils::IteratorType> iterators(genericTy.getRank(), |
| 1629 | utils::IteratorType::parallel); |
| 1630 | |
| 1631 | auto generic = builder.create<linalg::GenericOp>( |
| 1632 | genericTy, ValueRange{collapse}, ValueRange{empty}, |
| 1633 | ArrayRef<AffineMap>{genericMap, genericMap}, iterators, |
| 1634 | [=](OpBuilder &b, Location loc, ValueRange args) { |
| 1635 | Value value = args[0]; |
| 1636 | // This is the quantized case. |
| 1637 | if (inputTy.getElementType() != resultTy.getElementType()) { |
| 1638 | value = |
| 1639 | b.create<arith::ExtSIOp>(loc, resultTy.getElementType(), value); |
| 1640 | |
| 1641 | if (isBilinear && scale[0] != 0) { |
| 1642 | Value scaleY = b.create<arith::ConstantOp>( |
| 1643 | loc, b.getI32IntegerAttr(scale[0])); |
| 1644 | value = b.create<arith::MulIOp>(loc, value, scaleY); |
| 1645 | } |
| 1646 | |
| 1647 | if (isBilinear && scale[2] != 0) { |
| 1648 | Value scaleX = b.create<arith::ConstantOp>( |
| 1649 | loc, b.getI32IntegerAttr(scale[2])); |
| 1650 | value = b.create<arith::MulIOp>(loc, value, scaleX); |
| 1651 | } |
| 1652 | } |
| 1653 | |
| 1654 | b.create<linalg::YieldOp>(loc, value); |
| 1655 | }); |
| 1656 | |
| 1657 | rewriter.replaceOpWithNewOp<tensor::ExpandShapeOp>( |
| 1658 | op, resultTy, generic.getResults()[0], reassociationMap); |
| 1659 | return success(); |
| 1660 | } |
| 1661 | }; |
| 1662 | |
| 1663 | // TOSA resize with width or height of 1 may be broadcasted to a wider |
| 1664 | // dimension. This is done by materializing a new tosa.resize without |
| 1665 | // the broadcasting behavior, and an explicit broadcast afterwards. |
| 1666 | class MaterializeResizeBroadcast : public OpRewritePattern<tosa::ResizeOp> { |
| 1667 | public: |
| 1668 | using OpRewritePattern<tosa::ResizeOp>::OpRewritePattern; |
| 1669 | |
| 1670 | LogicalResult matchAndRewrite(tosa::ResizeOp op, |
| 1671 | PatternRewriter &rewriter) const final { |
| 1672 | Location loc = op.getLoc(); |
| 1673 | ImplicitLocOpBuilder builder(loc, rewriter); |
| 1674 | auto input = op.getInput(); |
| 1675 | auto inputTy = dyn_cast<RankedTensorType>(input.getType()); |
| 1676 | auto resultTy = dyn_cast<RankedTensorType>(op.getType()); |
| 1677 | |
| 1678 | if (!inputTy || !resultTy) |
| 1679 | return rewriter.notifyMatchFailure(op, |
| 1680 | "requires ranked input/output types" ); |
| 1681 | |
| 1682 | auto batch = inputTy.getDimSize(0); |
| 1683 | auto channels = inputTy.getDimSize(3); |
| 1684 | auto inputH = inputTy.getDimSize(1); |
| 1685 | auto inputW = inputTy.getDimSize(2); |
| 1686 | auto outputH = resultTy.getDimSize(1); |
| 1687 | auto outputW = resultTy.getDimSize(2); |
| 1688 | |
| 1689 | if ((inputH != 1 || outputH == 1) && (inputW != 1 || outputW == 1)) |
| 1690 | return rewriter.notifyMatchFailure( |
| 1691 | op, "tosa.resize has no broadcasting behavior" ); |
| 1692 | |
| 1693 | // For any dimension that is broadcastable we generate a width of 1 |
| 1694 | // on the output. |
| 1695 | llvm::SmallVector<int64_t> resizeShape; |
| 1696 | resizeShape.push_back(Elt: batch); |
| 1697 | resizeShape.push_back(Elt: inputH == 1 ? 1 : outputH); |
| 1698 | resizeShape.push_back(Elt: inputW == 1 ? 1 : outputW); |
| 1699 | resizeShape.push_back(Elt: channels); |
| 1700 | |
| 1701 | auto resizeTy = resultTy.clone(resizeShape); |
| 1702 | auto resize = builder.create<tosa::ResizeOp>(resizeTy, input, op.getScale(), |
| 1703 | op.getOffset(), op.getBorder(), |
| 1704 | op.getMode()); |
| 1705 | |
| 1706 | // Collapse an unit result dims. |
| 1707 | SmallVector<ReassociationExprs, 4> reassociationMap(2); |
| 1708 | reassociationMap[0].push_back(Elt: builder.getAffineDimExpr(position: 0)); |
| 1709 | reassociationMap.back().push_back(Elt: builder.getAffineDimExpr(position: 1)); |
| 1710 | if (inputH != 1) |
| 1711 | reassociationMap.push_back(Elt: {}); |
| 1712 | reassociationMap.back().push_back(Elt: builder.getAffineDimExpr(position: 2)); |
| 1713 | if (inputW != 1) |
| 1714 | reassociationMap.push_back(Elt: {}); |
| 1715 | reassociationMap.back().push_back(Elt: builder.getAffineDimExpr(position: 3)); |
| 1716 | |
| 1717 | llvm::SmallVector<int64_t> collapseShape = {batch}; |
| 1718 | if (inputH != 1) |
| 1719 | collapseShape.push_back(Elt: outputH); |
| 1720 | if (inputW != 1) |
| 1721 | collapseShape.push_back(Elt: outputW); |
| 1722 | collapseShape.push_back(Elt: channels); |
| 1723 | |
| 1724 | auto collapseTy = resultTy.clone(collapseShape); |
| 1725 | Value collapse = builder.create<tensor::CollapseShapeOp>(collapseTy, resize, |
| 1726 | reassociationMap); |
| 1727 | |
| 1728 | // Broadcast the collapsed shape to the output result. |
| 1729 | llvm::SmallVector<Value> outputDynSize; |
| 1730 | if (inputTy.isDynamicDim(0)) |
| 1731 | outputDynSize.push_back(builder.create<tensor::DimOp>(input, 0)); |
| 1732 | if (inputTy.isDynamicDim(3)) |
| 1733 | outputDynSize.push_back(builder.create<tensor::DimOp>(input, 3)); |
| 1734 | |
| 1735 | SmallVector<utils::IteratorType> iterators(resultTy.getRank(), |
| 1736 | utils::IteratorType::parallel); |
| 1737 | Value empty = builder.create<tensor::EmptyOp>( |
| 1738 | resultTy.getShape(), resultTy.getElementType(), outputDynSize); |
| 1739 | |
| 1740 | SmallVector<AffineExpr, 4> inputExprs{rewriter.getAffineDimExpr(position: 0)}; |
| 1741 | if (inputH != 1) |
| 1742 | inputExprs.push_back(Elt: rewriter.getAffineDimExpr(position: 1)); |
| 1743 | if (inputW != 1) |
| 1744 | inputExprs.push_back(Elt: rewriter.getAffineDimExpr(position: 2)); |
| 1745 | inputExprs.push_back(Elt: rewriter.getAffineDimExpr(position: 3)); |
| 1746 | |
| 1747 | auto inputMap = AffineMap::get(resultTy.getRank(), /*symbolCount=*/0, |
| 1748 | inputExprs, rewriter.getContext()); |
| 1749 | |
| 1750 | auto outputMap = rewriter.getMultiDimIdentityMap(rank: resultTy.getRank()); |
| 1751 | rewriter.replaceOpWithNewOp<linalg::GenericOp>( |
| 1752 | op, resultTy, ValueRange{collapse}, ValueRange{empty}, |
| 1753 | ArrayRef<AffineMap>{inputMap, outputMap}, iterators, |
| 1754 | [=](OpBuilder &b, Location loc, ValueRange args) { |
| 1755 | Value value = args[0]; |
| 1756 | b.create<linalg::YieldOp>(loc, value); |
| 1757 | }); |
| 1758 | |
| 1759 | return success(); |
| 1760 | } |
| 1761 | }; |
| 1762 | |
| 1763 | class GenericResizeConverter : public OpRewritePattern<tosa::ResizeOp> { |
| 1764 | public: |
| 1765 | using OpRewritePattern<tosa::ResizeOp>::OpRewritePattern; |
| 1766 | |
| 1767 | LogicalResult matchAndRewrite(tosa::ResizeOp op, |
| 1768 | PatternRewriter &rewriter) const final { |
| 1769 | Location loc = op.getLoc(); |
| 1770 | ImplicitLocOpBuilder b(loc, rewriter); |
| 1771 | auto input = op.getInput(); |
| 1772 | auto inputTy = cast<ShapedType>(input.getType()); |
| 1773 | auto resultTy = cast<ShapedType>(op.getType()); |
| 1774 | auto resultETy = resultTy.getElementType(); |
| 1775 | |
| 1776 | bool floatingPointMode = resultETy.isF16() || resultETy.isF32(); |
| 1777 | auto floatTy = resultETy.isF16() ? b.getF16Type() : b.getF32Type(); |
| 1778 | |
| 1779 | auto imageH = inputTy.getShape()[1]; |
| 1780 | auto imageW = inputTy.getShape()[2]; |
| 1781 | |
| 1782 | auto dynamicDimsOr = |
| 1783 | checkHasDynamicBatchDims(rewriter, op, {input, op.getOutput()}); |
| 1784 | if (!dynamicDimsOr.has_value()) |
| 1785 | return rewriter.notifyMatchFailure( |
| 1786 | op, "unable to get dynamic dimensions of tosa.resize" ); |
| 1787 | |
| 1788 | if (op.getMode() != "NEAREST_NEIGHBOR" && op.getMode() != "BILINEAR" ) |
| 1789 | return rewriter.notifyMatchFailure( |
| 1790 | op, "tosa.resize mode should be NEAREST_NEIGHBOR or BILINEAR" ); |
| 1791 | |
| 1792 | SmallVector<AffineMap, 2> affineMaps = { |
| 1793 | rewriter.getMultiDimIdentityMap(rank: resultTy.getRank())}; |
| 1794 | auto emptyTensor = b.create<tensor::EmptyOp>(resultTy.getShape(), resultETy, |
| 1795 | *dynamicDimsOr); |
| 1796 | auto genericOp = b.create<linalg::GenericOp>( |
| 1797 | resultTy, ValueRange({}), ValueRange{emptyTensor}, affineMaps, |
| 1798 | getNParallelLoopsAttrs(resultTy.getRank())); |
| 1799 | Value resize = genericOp.getResult(0); |
| 1800 | |
| 1801 | { |
| 1802 | OpBuilder::InsertionGuard regionGuard(b); |
| 1803 | b.createBlock(&genericOp.getRegion(), genericOp.getRegion().end(), |
| 1804 | TypeRange({resultETy}), loc); |
| 1805 | Value batch = b.create<linalg::IndexOp>(0); |
| 1806 | Value y = b.create<linalg::IndexOp>(1); |
| 1807 | Value x = b.create<linalg::IndexOp>(2); |
| 1808 | Value channel = b.create<linalg::IndexOp>(3); |
| 1809 | |
| 1810 | Value zeroI32 = |
| 1811 | b.create<arith::ConstantOp>(b.getZeroAttr(b.getI32Type())); |
| 1812 | Value zeroFp = b.create<arith::ConstantOp>(b.getZeroAttr(floatTy)); |
| 1813 | Value hMax = b.create<arith::ConstantOp>(b.getI32IntegerAttr(imageH - 1)); |
| 1814 | Value wMax = b.create<arith::ConstantOp>(b.getI32IntegerAttr(imageW - 1)); |
| 1815 | |
| 1816 | Value inY = b.create<arith::IndexCastOp>(b.getI32Type(), y); |
| 1817 | Value inX = b.create<arith::IndexCastOp>(b.getI32Type(), x); |
| 1818 | |
| 1819 | SmallVector<int64_t> scale, offset, border; |
| 1820 | if (!tosa::getConstShapeValues(op: op.getScale().getDefiningOp(), result_shape&: scale) || |
| 1821 | !tosa::getConstShapeValues(op: op.getOffset().getDefiningOp(), result_shape&: offset) || |
| 1822 | !tosa::getConstShapeValues(op: op.getBorder().getDefiningOp(), result_shape&: border)) { |
| 1823 | return rewriter.notifyMatchFailure( |
| 1824 | op, "tosa.resize scale/offset/border should have compile time " |
| 1825 | "constant values." ); |
| 1826 | } |
| 1827 | |
| 1828 | Value yScaleN, yScaleD, xScaleN, xScaleD; |
| 1829 | yScaleN = b.create<arith::ConstantOp>(b.getI32IntegerAttr(scale[0])); |
| 1830 | yScaleD = b.create<arith::ConstantOp>(b.getI32IntegerAttr(scale[1])); |
| 1831 | xScaleN = b.create<arith::ConstantOp>(b.getI32IntegerAttr(scale[2])); |
| 1832 | xScaleD = b.create<arith::ConstantOp>(b.getI32IntegerAttr(scale[3])); |
| 1833 | |
| 1834 | Value yOffset, xOffset, yBorder, xBorder; |
| 1835 | yOffset = b.create<arith::ConstantOp>(b.getI32IntegerAttr(offset[0])); |
| 1836 | xOffset = b.create<arith::ConstantOp>(b.getI32IntegerAttr(offset[1])); |
| 1837 | yBorder = b.create<arith::ConstantOp>(b.getI32IntegerAttr(border[0])); |
| 1838 | xBorder = b.create<arith::ConstantOp>(b.getI32IntegerAttr(border[1])); |
| 1839 | |
| 1840 | // Compute the ix and dx values for both the X and Y dimensions. |
| 1841 | auto getIndexAndDeltaFp = [&](Value &index, Value &delta, Value in, |
| 1842 | Value scaleN, Value scaleD, Value offset, |
| 1843 | int size, ImplicitLocOpBuilder &b) { |
| 1844 | if (size == 1) { |
| 1845 | index = zeroI32; |
| 1846 | delta = zeroFp; |
| 1847 | return; |
| 1848 | } |
| 1849 | // x = x * scale_d + offset; |
| 1850 | // ix = floor(x / scale_n) |
| 1851 | Value val = b.create<arith::MulIOp>(in, scaleD); |
| 1852 | val = b.create<arith::AddIOp>(val, offset); |
| 1853 | index = b.create<arith::FloorDivSIOp>(val, scaleN); |
| 1854 | |
| 1855 | // rx = x % scale_n |
| 1856 | // dx = rx / scale_n |
| 1857 | Value r = b.create<arith::RemSIOp>(val, scaleN); |
| 1858 | Value rFp = b.create<arith::SIToFPOp>(floatTy, r); |
| 1859 | Value scaleNfp = b.create<arith::UIToFPOp>(floatTy, scaleN); |
| 1860 | delta = b.create<arith::DivFOp>(rFp, scaleNfp); |
| 1861 | }; |
| 1862 | |
| 1863 | // Compute the ix and dx values for the X and Y dimensions - int case. |
| 1864 | auto getIndexAndDeltaInt = [&](Value &index, Value &delta, Value in, |
| 1865 | Value scaleN, Value scaleD, Value offset, |
| 1866 | int size, ImplicitLocOpBuilder &b) { |
| 1867 | if (size == 1) { |
| 1868 | index = zeroI32; |
| 1869 | delta = zeroI32; |
| 1870 | return; |
| 1871 | } |
| 1872 | // x = x * scale_d + offset; |
| 1873 | // ix = floor(x / scale_n) |
| 1874 | // dx = x - ix * scale_n; |
| 1875 | Value val = b.create<arith::MulIOp>(in, scaleD); |
| 1876 | val = b.create<arith::AddIOp>(val, offset); |
| 1877 | index = b.create<arith::DivSIOp>(val, scaleN); |
| 1878 | delta = b.create<arith::MulIOp>(index, scaleN); |
| 1879 | delta = b.create<arith::SubIOp>(val, delta); |
| 1880 | }; |
| 1881 | |
| 1882 | Value ix, iy, dx, dy; |
| 1883 | if (floatingPointMode) { |
| 1884 | getIndexAndDeltaFp(iy, dy, inY, yScaleN, yScaleD, yOffset, imageH, b); |
| 1885 | getIndexAndDeltaFp(ix, dx, inX, xScaleN, xScaleD, xOffset, imageW, b); |
| 1886 | } else { |
| 1887 | getIndexAndDeltaInt(iy, dy, inY, yScaleN, yScaleD, yOffset, imageH, b); |
| 1888 | getIndexAndDeltaInt(ix, dx, inX, xScaleN, xScaleD, xOffset, imageW, b); |
| 1889 | } |
| 1890 | |
| 1891 | if (op.getMode() == "NEAREST_NEIGHBOR" ) { |
| 1892 | auto one = b.create<arith::ConstantOp>(b.getI32IntegerAttr(1)); |
| 1893 | |
| 1894 | auto getNearestIndexAndClamp = [&](Value val, Value dval, Value scale, |
| 1895 | Value max, int size, |
| 1896 | ImplicitLocOpBuilder &b) -> Value { |
| 1897 | if (size == 1) { |
| 1898 | return b.create<arith::ConstantIndexOp>(0); |
| 1899 | } |
| 1900 | |
| 1901 | Value pred; |
| 1902 | if (floatingPointMode) { |
| 1903 | auto h = b.create<arith::ConstantOp>(b.getFloatAttr(floatTy, 0.5f)); |
| 1904 | pred = b.create<arith::CmpFOp>(arith::CmpFPredicate::OGE, dval, h); |
| 1905 | } else { |
| 1906 | Value dvalDouble = b.create<arith::ShLIOp>(dval, one); |
| 1907 | pred = b.create<arith::CmpIOp>(arith::CmpIPredicate::sge, |
| 1908 | dvalDouble, scale); |
| 1909 | } |
| 1910 | |
| 1911 | auto offset = b.create<arith::SelectOp>(pred, one, zeroI32); |
| 1912 | val = b.create<arith::AddIOp>(val, offset); |
| 1913 | val = clampIntHelper(loc, arg: val, min: zeroI32, max, rewriter&: b, /*isUnsigned=*/false); |
| 1914 | return b.create<arith::IndexCastOp>(b.getIndexType(), val); |
| 1915 | }; |
| 1916 | |
| 1917 | iy = getNearestIndexAndClamp(iy, dy, yScaleN, hMax, imageH, b); |
| 1918 | ix = getNearestIndexAndClamp(ix, dx, xScaleN, wMax, imageW, b); |
| 1919 | |
| 1920 | Value result = b.create<tensor::ExtractOp>( |
| 1921 | input, ValueRange{batch, iy, ix, channel}); |
| 1922 | |
| 1923 | b.create<linalg::YieldOp>(result); |
| 1924 | } else { |
| 1925 | // The mode here must be BILINEAR. |
| 1926 | assert(op.getMode() == "BILINEAR" ); |
| 1927 | |
| 1928 | auto oneVal = b.create<arith::ConstantOp>(b.getI32IntegerAttr(1)); |
| 1929 | |
| 1930 | auto getClampedIdxs = [&](Value &val0, Value &val1, int size, Value in, |
| 1931 | Value max, ImplicitLocOpBuilder &b) { |
| 1932 | val0 = in; |
| 1933 | val1 = b.create<arith::AddIOp>(val0, oneVal); |
| 1934 | val0 = |
| 1935 | clampIntHelper(loc, arg: val0, min: zeroI32, max, rewriter&: b, /*isUnsigned=*/false); |
| 1936 | val1 = |
| 1937 | clampIntHelper(loc, arg: val1, min: zeroI32, max, rewriter&: b, /*isUnsigned=*/false); |
| 1938 | val0 = b.create<arith::IndexCastOp>(b.getIndexType(), val0); |
| 1939 | val1 = b.create<arith::IndexCastOp>(b.getIndexType(), val1); |
| 1940 | }; |
| 1941 | |
| 1942 | // Linalg equivalent to the section below: |
| 1943 | // int16_t iy0 = apply_max(iy, 0); |
| 1944 | // int16_t iy1 = apply_min(iy + 1, IH - 1); |
| 1945 | // int16_t ix0 = apply_max(ix, 0); |
| 1946 | // int16_t ix1 = apply_min(ix + 1, IW - 1); |
| 1947 | Value x0, x1, y0, y1; |
| 1948 | getClampedIdxs(y0, y1, imageH, iy, hMax, b); |
| 1949 | getClampedIdxs(x0, x1, imageW, ix, wMax, b); |
| 1950 | |
| 1951 | Value y0x0 = b.create<tensor::ExtractOp>( |
| 1952 | input, ValueRange{batch, y0, x0, channel}); |
| 1953 | Value y0x1 = b.create<tensor::ExtractOp>( |
| 1954 | input, ValueRange{batch, y0, x1, channel}); |
| 1955 | Value y1x0 = b.create<tensor::ExtractOp>( |
| 1956 | input, ValueRange{batch, y1, x0, channel}); |
| 1957 | Value y1x1 = b.create<tensor::ExtractOp>( |
| 1958 | input, ValueRange{batch, y1, x1, channel}); |
| 1959 | |
| 1960 | if (floatingPointMode) { |
| 1961 | auto oneVal = |
| 1962 | b.create<arith::ConstantOp>(b.getFloatAttr(floatTy, 1.0f)); |
| 1963 | auto interpolate = [&](Value val0, Value val1, Value delta, |
| 1964 | int inputSize, |
| 1965 | ImplicitLocOpBuilder &b) -> Value { |
| 1966 | if (inputSize == 1) |
| 1967 | return val0; |
| 1968 | Value oneMinusDelta = b.create<arith::SubFOp>(oneVal, delta); |
| 1969 | Value mul0 = b.create<arith::MulFOp>(val0, oneMinusDelta); |
| 1970 | Value mul1 = b.create<arith::MulFOp>(val1, delta); |
| 1971 | return b.create<arith::AddFOp>(mul0, mul1); |
| 1972 | }; |
| 1973 | |
| 1974 | // Linalg equivalent to the section below: |
| 1975 | // topAcc = v00 * (unit_x - dx); |
| 1976 | // topAcc += v01 * dx; |
| 1977 | Value topAcc = interpolate(y0x0, y0x1, dx, imageW, b); |
| 1978 | |
| 1979 | // Linalg equivalent to the section below: |
| 1980 | // bottomAcc = v10 * (unit_x - dx); |
| 1981 | // bottomAcc += v11 * dx; |
| 1982 | Value bottomAcc = interpolate(y1x0, y1x1, dx, imageW, b); |
| 1983 | |
| 1984 | // Linalg equivalent to the section below: |
| 1985 | // result = topAcc * (unit_y - dy) + bottomAcc * dy |
| 1986 | Value result = interpolate(topAcc, bottomAcc, dy, imageH, b); |
| 1987 | b.create<linalg::YieldOp>(result); |
| 1988 | } else { |
| 1989 | // Perform in quantized space. |
| 1990 | y0x0 = b.create<arith::ExtSIOp>(resultETy, y0x0); |
| 1991 | y0x1 = b.create<arith::ExtSIOp>(resultETy, y0x1); |
| 1992 | y1x0 = b.create<arith::ExtSIOp>(resultETy, y1x0); |
| 1993 | y1x1 = b.create<arith::ExtSIOp>(resultETy, y1x1); |
| 1994 | |
| 1995 | const int64_t deltaBitwidth = dx.getType().getIntOrFloatBitWidth(); |
| 1996 | if (resultETy.getIntOrFloatBitWidth() > deltaBitwidth) { |
| 1997 | dx = b.create<arith::ExtSIOp>(resultETy, dx); |
| 1998 | dy = b.create<arith::ExtSIOp>(resultETy, dy); |
| 1999 | } |
| 2000 | |
| 2001 | Value yScaleNExt = yScaleN; |
| 2002 | Value xScaleNExt = xScaleN; |
| 2003 | |
| 2004 | const int64_t scaleBitwidth = |
| 2005 | xScaleN.getType().getIntOrFloatBitWidth(); |
| 2006 | if (resultETy.getIntOrFloatBitWidth() > scaleBitwidth) { |
| 2007 | yScaleNExt = b.create<arith::ExtSIOp>(resultETy, yScaleN); |
| 2008 | xScaleNExt = b.create<arith::ExtSIOp>(resultETy, xScaleN); |
| 2009 | } |
| 2010 | |
| 2011 | auto interpolate = [](Value val0, Value val1, Value weight1, |
| 2012 | Value scale, int inputSize, |
| 2013 | ImplicitLocOpBuilder &b) -> Value { |
| 2014 | if (inputSize == 1) |
| 2015 | return b.create<arith::MulIOp>(val0, scale); |
| 2016 | Value weight0 = b.create<arith::SubIOp>(scale, weight1); |
| 2017 | Value mul0 = b.create<arith::MulIOp>(val0, weight0); |
| 2018 | Value mul1 = b.create<arith::MulIOp>(val1, weight1); |
| 2019 | return b.create<arith::AddIOp>(mul0, mul1); |
| 2020 | }; |
| 2021 | |
| 2022 | Value topAcc = interpolate(y0x0, y0x1, dx, xScaleNExt, imageW, b); |
| 2023 | Value bottomAcc = interpolate(y1x0, y1x1, dx, xScaleNExt, imageW, b); |
| 2024 | Value result = |
| 2025 | interpolate(topAcc, bottomAcc, dy, yScaleNExt, imageH, b); |
| 2026 | b.create<linalg::YieldOp>(result); |
| 2027 | } |
| 2028 | } |
| 2029 | } |
| 2030 | |
| 2031 | rewriter.replaceOp(op, resize); |
| 2032 | return success(); |
| 2033 | } |
| 2034 | }; |
| 2035 | |
| 2036 | // At the codegen level any identity operations should be removed. Any cases |
| 2037 | // where identity is load-bearing (e.g. cross device computation) should be |
| 2038 | // handled before lowering to codegen. |
| 2039 | template <typename SrcOp> |
| 2040 | class IdentityNConverter : public OpRewritePattern<SrcOp> { |
| 2041 | public: |
| 2042 | using OpRewritePattern<SrcOp>::OpRewritePattern; |
| 2043 | |
| 2044 | LogicalResult matchAndRewrite(SrcOp op, |
| 2045 | PatternRewriter &rewriter) const final { |
| 2046 | rewriter.replaceOp(op, op.getOperation()->getOperands()); |
| 2047 | return success(); |
| 2048 | } |
| 2049 | }; |
| 2050 | |
| 2051 | template <typename SrcOp> |
| 2052 | class ReduceConverter : public OpRewritePattern<SrcOp> { |
| 2053 | public: |
| 2054 | using OpRewritePattern<SrcOp>::OpRewritePattern; |
| 2055 | |
| 2056 | LogicalResult matchAndRewrite(SrcOp reduceOp, |
| 2057 | PatternRewriter &rewriter) const final { |
| 2058 | return reduceMatchAndRewriteHelper(reduceOp, reduceOp.getAxis(), rewriter); |
| 2059 | } |
| 2060 | }; |
| 2061 | |
| 2062 | class ReverseConverter : public OpRewritePattern<tosa::ReverseOp> { |
| 2063 | public: |
| 2064 | using OpRewritePattern<tosa::ReverseOp>::OpRewritePattern; |
| 2065 | |
| 2066 | LogicalResult matchAndRewrite(tosa::ReverseOp op, |
| 2067 | PatternRewriter &rewriter) const final { |
| 2068 | auto loc = op.getLoc(); |
| 2069 | Value input = op.getInput1(); |
| 2070 | auto inputTy = cast<ShapedType>(input.getType()); |
| 2071 | auto resultTy = cast<ShapedType>(op.getType()); |
| 2072 | auto axis = op.getAxis(); |
| 2073 | |
| 2074 | SmallVector<Value> dynDims; |
| 2075 | for (int i = 0; i < inputTy.getRank(); i++) { |
| 2076 | if (inputTy.isDynamicDim(i)) { |
| 2077 | dynDims.push_back(rewriter.create<tensor::DimOp>(loc, input, i)); |
| 2078 | } |
| 2079 | } |
| 2080 | |
| 2081 | Value axisDimSize = rewriter.create<tensor::DimOp>(loc, input, axis); |
| 2082 | |
| 2083 | // First fill the output buffer with the init value. |
| 2084 | auto emptyTensor = rewriter |
| 2085 | .create<tensor::EmptyOp>(loc, inputTy.getShape(), |
| 2086 | inputTy.getElementType(), |
| 2087 | ArrayRef<Value>({dynDims})) |
| 2088 | .getResult(); |
| 2089 | SmallVector<AffineMap, 2> affineMaps = { |
| 2090 | rewriter.getMultiDimIdentityMap(rank: resultTy.getRank())}; |
| 2091 | |
| 2092 | rewriter.replaceOpWithNewOp<linalg::GenericOp>( |
| 2093 | op, resultTy, ArrayRef<Value>({}), ValueRange{emptyTensor}, affineMaps, |
| 2094 | getNParallelLoopsAttrs(resultTy.getRank()), |
| 2095 | [&](OpBuilder &nestedBuilder, Location nestedLoc, ValueRange args) { |
| 2096 | llvm::SmallVector<Value> indices; |
| 2097 | for (unsigned int i = 0; i < inputTy.getRank(); i++) { |
| 2098 | Value index = |
| 2099 | rewriter.create<linalg::IndexOp>(nestedLoc, i).getResult(); |
| 2100 | if (i == axis) { |
| 2101 | auto one = rewriter.create<arith::ConstantIndexOp>(nestedLoc, 1); |
| 2102 | auto sizeMinusOne = |
| 2103 | rewriter.create<arith::SubIOp>(nestedLoc, axisDimSize, one); |
| 2104 | index = rewriter.create<arith::SubIOp>(nestedLoc, sizeMinusOne, |
| 2105 | index); |
| 2106 | } |
| 2107 | |
| 2108 | indices.push_back(index); |
| 2109 | } |
| 2110 | |
| 2111 | auto extract = nestedBuilder.create<tensor::ExtractOp>( |
| 2112 | nestedLoc, input, indices); |
| 2113 | nestedBuilder.create<linalg::YieldOp>(op.getLoc(), |
| 2114 | extract.getResult()); |
| 2115 | }); |
| 2116 | return success(); |
| 2117 | } |
| 2118 | }; |
| 2119 | |
| 2120 | // This converter translate a tile operation to a reshape, broadcast, reshape. |
| 2121 | // The first reshape minimally expands each tiled dimension to include a |
| 2122 | // proceding size-1 dim. This dim is then broadcasted to the appropriate |
| 2123 | // multiple. |
| 2124 | struct TileConverter : public OpConversionPattern<tosa::TileOp> { |
| 2125 | using OpConversionPattern<tosa::TileOp>::OpConversionPattern; |
| 2126 | |
| 2127 | LogicalResult |
| 2128 | matchAndRewrite(tosa::TileOp op, OpAdaptor adaptor, |
| 2129 | ConversionPatternRewriter &rewriter) const override { |
| 2130 | auto loc = op.getLoc(); |
| 2131 | auto input = op.getInput1(); |
| 2132 | auto inputTy = cast<ShapedType>(input.getType()); |
| 2133 | auto inputShape = inputTy.getShape(); |
| 2134 | auto resultTy = cast<ShapedType>(op.getType()); |
| 2135 | auto elementTy = inputTy.getElementType(); |
| 2136 | int64_t rank = inputTy.getRank(); |
| 2137 | |
| 2138 | SmallVector<int64_t> multiples; |
| 2139 | if (failed(op.getConstantMultiples(multiples))) |
| 2140 | return failure(); |
| 2141 | |
| 2142 | // Broadcast the newly added dimensions to their appropriate multiple. |
| 2143 | SmallVector<int64_t, 2> genericShape; |
| 2144 | for (int i = 0; i < rank; i++) { |
| 2145 | int64_t dim = multiples[i]; |
| 2146 | genericShape.push_back(dim == -1 ? ShapedType::kDynamic : dim); |
| 2147 | genericShape.push_back(Elt: inputShape[i]); |
| 2148 | } |
| 2149 | |
| 2150 | SmallVector<Value> dynDims; |
| 2151 | for (int i = 0; i < inputTy.getRank(); i++) { |
| 2152 | if (inputTy.isDynamicDim(i) || multiples[i] == -1) { |
| 2153 | dynDims.push_back(rewriter.create<tensor::DimOp>(loc, input, i)); |
| 2154 | } |
| 2155 | } |
| 2156 | |
| 2157 | auto emptyTensor = rewriter.create<tensor::EmptyOp>( |
| 2158 | op.getLoc(), genericShape, elementTy, dynDims); |
| 2159 | |
| 2160 | // We needs to map the input shape to the non-broadcasted dimensions. |
| 2161 | SmallVector<AffineExpr, 4> dimExprs; |
| 2162 | dimExprs.reserve(N: rank); |
| 2163 | for (unsigned i = 0; i < rank; ++i) |
| 2164 | dimExprs.push_back(Elt: rewriter.getAffineDimExpr(position: i * 2 + 1)); |
| 2165 | |
| 2166 | auto readAffineMap = |
| 2167 | AffineMap::get(/*dimCount=*/rank * 2, /*symbolCount=*/0, results: dimExprs, |
| 2168 | context: rewriter.getContext()); |
| 2169 | |
| 2170 | SmallVector<AffineMap, 2> affineMaps = { |
| 2171 | readAffineMap, rewriter.getMultiDimIdentityMap(rank: genericShape.size())}; |
| 2172 | |
| 2173 | auto genericOp = rewriter.create<linalg::GenericOp>( |
| 2174 | loc, RankedTensorType::get(genericShape, elementTy), input, |
| 2175 | ValueRange{emptyTensor}, affineMaps, |
| 2176 | getNParallelLoopsAttrs(genericShape.size()), |
| 2177 | [&](OpBuilder &nestedBuilder, Location nestedLoc, ValueRange args) { |
| 2178 | nestedBuilder.create<linalg::YieldOp>(op.getLoc(), *args.begin()); |
| 2179 | }); |
| 2180 | |
| 2181 | auto shapeValue = getTosaConstShape( |
| 2182 | rewriter, loc, mlir::tosa::convertFromMlirShape(shape: resultTy.getShape())); |
| 2183 | rewriter.replaceOpWithNewOp<tosa::ReshapeOp>( |
| 2184 | op, resultTy, genericOp.getResult(0), shapeValue); |
| 2185 | return success(); |
| 2186 | } |
| 2187 | }; |
| 2188 | |
| 2189 | // Tosa argmax lowering represents the ArgMax op as an linalg.indexed_generic |
| 2190 | // op, producing two output buffers. |
| 2191 | // |
| 2192 | // The first output buffer contains the index of the found maximum value. It is |
| 2193 | // initialized to 0 and is resulting integer type. |
| 2194 | // |
| 2195 | // The second output buffer contains the maximum value found. It is initialized |
| 2196 | // to the minimum representable value of the input element type. After being |
| 2197 | // populated by indexed_generic, this buffer is disgarded as only the index is |
| 2198 | // requested. |
| 2199 | // |
| 2200 | // The indexed_generic op updates both the maximum value and index if the |
| 2201 | // current value exceeds the running max. |
| 2202 | class ArgMaxConverter : public OpRewritePattern<tosa::ArgMaxOp> { |
| 2203 | public: |
| 2204 | using OpRewritePattern<tosa::ArgMaxOp>::OpRewritePattern; |
| 2205 | |
| 2206 | LogicalResult matchAndRewrite(tosa::ArgMaxOp argmaxOp, |
| 2207 | PatternRewriter &rewriter) const final { |
| 2208 | auto loc = argmaxOp.getLoc(); |
| 2209 | Value input = argmaxOp.getInput(); |
| 2210 | auto inputTy = cast<ShapedType>(input.getType()); |
| 2211 | auto resultTy = cast<ShapedType>(argmaxOp.getOutput().getType()); |
| 2212 | auto inElementTy = inputTy.getElementType(); |
| 2213 | auto outElementTy = resultTy.getElementType(); |
| 2214 | int axis = argmaxOp.getAxis(); |
| 2215 | auto resultMaxTy = RankedTensorType::get(resultTy.getShape(), inElementTy); |
| 2216 | |
| 2217 | if (!isa<IntegerType>(outElementTy)) |
| 2218 | return rewriter.notifyMatchFailure( |
| 2219 | argmaxOp, |
| 2220 | "tosa.arg_max to linalg.* requires integer-like result type" ); |
| 2221 | |
| 2222 | SmallVector<Value> dynDims; |
| 2223 | for (int i = 0; i < inputTy.getRank(); i++) { |
| 2224 | if (inputTy.isDynamicDim(i) && i != axis) { |
| 2225 | dynDims.push_back(rewriter.create<tensor::DimOp>(loc, input, i)); |
| 2226 | } |
| 2227 | } |
| 2228 | |
| 2229 | // First fill the output buffer for the index. |
| 2230 | auto emptyTensorIdx = rewriter |
| 2231 | .create<tensor::EmptyOp>(loc, resultTy.getShape(), |
| 2232 | outElementTy, dynDims) |
| 2233 | .getResult(); |
| 2234 | auto fillValueIdx = rewriter.create<arith::ConstantOp>( |
| 2235 | loc, rewriter.getIntegerAttr(outElementTy, 0)); |
| 2236 | auto filledTensorIdx = |
| 2237 | rewriter |
| 2238 | .create<linalg::FillOp>(loc, ValueRange{fillValueIdx}, |
| 2239 | ValueRange{emptyTensorIdx}) |
| 2240 | .result(); |
| 2241 | |
| 2242 | // Second fill the output buffer for the running max. |
| 2243 | auto emptyTensorMax = rewriter |
| 2244 | .create<tensor::EmptyOp>(loc, resultTy.getShape(), |
| 2245 | inElementTy, dynDims) |
| 2246 | .getResult(); |
| 2247 | auto fillValueMaxAttr = |
| 2248 | createInitialValueForReduceOp(argmaxOp, inElementTy, rewriter); |
| 2249 | |
| 2250 | if (!fillValueMaxAttr) |
| 2251 | return rewriter.notifyMatchFailure( |
| 2252 | argmaxOp, "unsupported tosa.argmax element type" ); |
| 2253 | |
| 2254 | auto fillValueMax = |
| 2255 | rewriter.create<arith::ConstantOp>(loc, fillValueMaxAttr); |
| 2256 | auto filledTensorMax = |
| 2257 | rewriter |
| 2258 | .create<linalg::FillOp>(loc, ValueRange{fillValueMax}, |
| 2259 | ValueRange{emptyTensorMax}) |
| 2260 | .result(); |
| 2261 | |
| 2262 | // We need to reduce along the arg-max axis, with parallel operations along |
| 2263 | // the rest. |
| 2264 | SmallVector<utils::IteratorType, 4> iteratorTypes; |
| 2265 | iteratorTypes.resize(inputTy.getRank(), utils::IteratorType::parallel); |
| 2266 | iteratorTypes[axis] = utils::IteratorType::reduction; |
| 2267 | |
| 2268 | SmallVector<AffineExpr, 2> srcExprs; |
| 2269 | SmallVector<AffineExpr, 2> dstExprs; |
| 2270 | for (int i = 0, rank = inputTy.getRank(); i != rank; ++i) { |
| 2271 | srcExprs.push_back(Elt: mlir::getAffineDimExpr(position: i, context: rewriter.getContext())); |
| 2272 | if (axis != i) |
| 2273 | dstExprs.push_back(Elt: mlir::getAffineDimExpr(position: i, context: rewriter.getContext())); |
| 2274 | } |
| 2275 | |
| 2276 | bool didEncounterError = false; |
| 2277 | auto maps = AffineMap::inferFromExprList(exprsList: {srcExprs, dstExprs, dstExprs}, |
| 2278 | context: rewriter.getContext()); |
| 2279 | auto linalgOp = rewriter.create<linalg::GenericOp>( |
| 2280 | loc, ArrayRef<Type>({resultTy, resultMaxTy}), input, |
| 2281 | ValueRange({filledTensorIdx, filledTensorMax}), maps, iteratorTypes, |
| 2282 | [&](OpBuilder &nestedBuilder, Location nestedLoc, |
| 2283 | ValueRange blockArgs) { |
| 2284 | auto newValue = blockArgs[0]; |
| 2285 | auto oldIndex = blockArgs[1]; |
| 2286 | auto oldValue = blockArgs[2]; |
| 2287 | |
| 2288 | Value newIndex = rewriter.create<arith::IndexCastOp>( |
| 2289 | nestedLoc, oldIndex.getType(), |
| 2290 | rewriter.create<linalg::IndexOp>(loc, axis)); |
| 2291 | |
| 2292 | Value predicate; |
| 2293 | if (isa<FloatType>(inElementTy)) { |
| 2294 | if (argmaxOp.getNanMode() == "IGNORE" ) { |
| 2295 | // Only update index & max value for non NaN values. If all |
| 2296 | // values are NaNs, the initial index will be return which is 0. |
| 2297 | predicate = rewriter.create<arith::CmpFOp>( |
| 2298 | nestedLoc, arith::CmpFPredicate::OGT, newValue, oldValue); |
| 2299 | } else { |
| 2300 | // Update max value if either of the following is true: |
| 2301 | // - new value is bigger |
| 2302 | // - cur max is not NaN and new value is NaN |
| 2303 | Value gt = rewriter.create<arith::CmpFOp>( |
| 2304 | nestedLoc, arith::CmpFPredicate::UGT, newValue, oldValue); |
| 2305 | Value oldNonNaN = rewriter.create<arith::CmpFOp>( |
| 2306 | nestedLoc, arith::CmpFPredicate::ORD, oldValue, oldValue); |
| 2307 | predicate = rewriter.create<arith::AndIOp>( |
| 2308 | nestedLoc, rewriter.getI1Type(), gt, oldNonNaN); |
| 2309 | } |
| 2310 | } else if (isa<IntegerType>(inElementTy)) { |
| 2311 | predicate = rewriter.create<arith::CmpIOp>( |
| 2312 | nestedLoc, arith::CmpIPredicate::sgt, newValue, oldValue); |
| 2313 | } else { |
| 2314 | didEncounterError = true; |
| 2315 | return; |
| 2316 | } |
| 2317 | |
| 2318 | auto resultMax = rewriter.create<arith::SelectOp>( |
| 2319 | nestedLoc, predicate, newValue, oldValue); |
| 2320 | auto resultIndex = rewriter.create<arith::SelectOp>( |
| 2321 | nestedLoc, predicate, newIndex, oldIndex); |
| 2322 | nestedBuilder.create<linalg::YieldOp>( |
| 2323 | nestedLoc, ValueRange({resultIndex, resultMax})); |
| 2324 | }); |
| 2325 | |
| 2326 | if (didEncounterError) |
| 2327 | return rewriter.notifyMatchFailure( |
| 2328 | argmaxOp, "unsupported tosa.argmax element type" ); |
| 2329 | |
| 2330 | rewriter.replaceOp(argmaxOp, linalgOp.getResult(0)); |
| 2331 | return success(); |
| 2332 | } |
| 2333 | }; |
| 2334 | |
| 2335 | class GatherConverter : public OpConversionPattern<tosa::GatherOp> { |
| 2336 | public: |
| 2337 | using OpConversionPattern<tosa::GatherOp>::OpConversionPattern; |
| 2338 | LogicalResult |
| 2339 | matchAndRewrite(tosa::GatherOp op, OpAdaptor adaptor, |
| 2340 | ConversionPatternRewriter &rewriter) const final { |
| 2341 | auto input = adaptor.getOperands()[0]; |
| 2342 | auto indices = adaptor.getOperands()[1]; |
| 2343 | |
| 2344 | auto valuesTy = dyn_cast<RankedTensorType>(op.getValues().getType()); |
| 2345 | auto resultTy = dyn_cast<RankedTensorType>(op.getType()); |
| 2346 | if (!valuesTy || !resultTy) |
| 2347 | return rewriter.notifyMatchFailure(op, "unranked tensors not supported" ); |
| 2348 | |
| 2349 | auto dynamicDims = inferDynamicDimsForGather( |
| 2350 | builder&: rewriter, loc: op.getLoc(), values: adaptor.getValues(), indices: adaptor.getIndices()); |
| 2351 | |
| 2352 | auto resultElementTy = resultTy.getElementType(); |
| 2353 | |
| 2354 | auto loc = op.getLoc(); |
| 2355 | auto emptyTensor = |
| 2356 | rewriter |
| 2357 | .create<tensor::EmptyOp>(loc, resultTy.getShape(), resultElementTy, |
| 2358 | dynamicDims) |
| 2359 | .getResult(); |
| 2360 | |
| 2361 | SmallVector<AffineMap, 2> affineMaps = { |
| 2362 | AffineMap::get( |
| 2363 | /*dimCount=*/resultTy.getRank(), /*symbolCount=*/0, |
| 2364 | {rewriter.getAffineDimExpr(position: 0), rewriter.getAffineDimExpr(position: 1)}, |
| 2365 | rewriter.getContext()), |
| 2366 | rewriter.getMultiDimIdentityMap(rank: resultTy.getRank())}; |
| 2367 | |
| 2368 | auto genericOp = rewriter.create<linalg::GenericOp>( |
| 2369 | loc, ArrayRef<Type>({resultTy}), ValueRange{indices}, |
| 2370 | ValueRange{emptyTensor}, affineMaps, |
| 2371 | getNParallelLoopsAttrs(resultTy.getRank()), |
| 2372 | [&](OpBuilder &b, Location loc, ValueRange args) { |
| 2373 | auto indexValue = args[0]; |
| 2374 | auto index0 = rewriter.create<linalg::IndexOp>(loc, 0); |
| 2375 | Value index1 = rewriter.create<arith::IndexCastOp>( |
| 2376 | loc, rewriter.getIndexType(), indexValue); |
| 2377 | auto index2 = rewriter.create<linalg::IndexOp>(loc, 2); |
| 2378 | Value extract = rewriter.create<tensor::ExtractOp>( |
| 2379 | loc, input, ValueRange{index0, index1, index2}); |
| 2380 | rewriter.create<linalg::YieldOp>(loc, extract); |
| 2381 | }); |
| 2382 | rewriter.replaceOp(op, genericOp.getResult(0)); |
| 2383 | return success(); |
| 2384 | } |
| 2385 | |
| 2386 | static llvm::SmallVector<Value> inferDynamicDimsForGather(OpBuilder &builder, |
| 2387 | Location loc, |
| 2388 | Value values, |
| 2389 | Value indices) { |
| 2390 | llvm::SmallVector<Value> results; |
| 2391 | |
| 2392 | auto addDynamicDimension = [&](Value source, int64_t dim) { |
| 2393 | auto sz = tensor::getMixedSize(builder, loc, value: source, dim); |
| 2394 | if (auto dimValue = llvm::dyn_cast_if_present<Value>(Val&: sz)) |
| 2395 | results.push_back(Elt: dimValue); |
| 2396 | }; |
| 2397 | |
| 2398 | addDynamicDimension(values, 0); |
| 2399 | addDynamicDimension(indices, 1); |
| 2400 | addDynamicDimension(values, 2); |
| 2401 | return results; |
| 2402 | } |
| 2403 | }; |
| 2404 | |
| 2405 | // Lowerings the TableOp to a series of gathers and numerica operations. This |
| 2406 | // includes interpolation between the high/low values. For the I8 varient, this |
| 2407 | // simplifies to a single gather operation. |
| 2408 | class TableConverter : public OpRewritePattern<tosa::TableOp> { |
| 2409 | public: |
| 2410 | using OpRewritePattern<tosa::TableOp>::OpRewritePattern; |
| 2411 | |
| 2412 | LogicalResult matchAndRewrite(tosa::TableOp op, |
| 2413 | PatternRewriter &rewriter) const final { |
| 2414 | auto loc = op.getLoc(); |
| 2415 | Value input = op.getInput1(); |
| 2416 | Value table = op.getTable(); |
| 2417 | auto inputTy = cast<ShapedType>(input.getType()); |
| 2418 | auto tableTy = cast<ShapedType>(table.getType()); |
| 2419 | auto resultTy = cast<ShapedType>(op.getType()); |
| 2420 | |
| 2421 | auto inputElementTy = inputTy.getElementType(); |
| 2422 | auto tableElementTy = tableTy.getElementType(); |
| 2423 | auto resultElementTy = resultTy.getElementType(); |
| 2424 | |
| 2425 | SmallVector<Value> dynDims; |
| 2426 | for (int i = 0; i < resultTy.getRank(); ++i) { |
| 2427 | if (inputTy.isDynamicDim(i)) { |
| 2428 | dynDims.push_back( |
| 2429 | rewriter.create<tensor::DimOp>(loc, op.getOperand(0), i)); |
| 2430 | } |
| 2431 | } |
| 2432 | |
| 2433 | auto emptyTensor = rewriter |
| 2434 | .create<tensor::EmptyOp>(loc, resultTy.getShape(), |
| 2435 | resultElementTy, dynDims) |
| 2436 | .getResult(); |
| 2437 | |
| 2438 | SmallVector<AffineMap, 2> affineMaps = { |
| 2439 | rewriter.getMultiDimIdentityMap(rank: resultTy.getRank()), |
| 2440 | rewriter.getMultiDimIdentityMap(rank: resultTy.getRank())}; |
| 2441 | |
| 2442 | auto genericOp = rewriter.create<linalg::GenericOp>( |
| 2443 | loc, resultTy, ValueRange({input}), ValueRange{emptyTensor}, affineMaps, |
| 2444 | getNParallelLoopsAttrs(resultTy.getRank())); |
| 2445 | rewriter.replaceOp(op, genericOp.getResult(0)); |
| 2446 | |
| 2447 | { |
| 2448 | OpBuilder::InsertionGuard regionGuard(rewriter); |
| 2449 | Block *block = rewriter.createBlock( |
| 2450 | &genericOp.getRegion(), genericOp.getRegion().end(), |
| 2451 | TypeRange({inputElementTy, resultElementTy}), {loc, loc}); |
| 2452 | |
| 2453 | auto inputValue = block->getArgument(i: 0); |
| 2454 | rewriter.setInsertionPointToStart(block); |
| 2455 | if (inputElementTy.isInteger(8) && tableElementTy.isInteger(8) && |
| 2456 | resultElementTy.isInteger(8)) { |
| 2457 | Value index = rewriter.create<arith::IndexCastOp>( |
| 2458 | loc, rewriter.getIndexType(), inputValue); |
| 2459 | Value offset = rewriter.create<arith::ConstantIndexOp>(loc, 128); |
| 2460 | index = rewriter.create<arith::AddIOp>(loc, rewriter.getIndexType(), |
| 2461 | index, offset); |
| 2462 | Value = |
| 2463 | rewriter.create<tensor::ExtractOp>(loc, table, ValueRange{index}); |
| 2464 | rewriter.create<linalg::YieldOp>(loc, extract); |
| 2465 | return success(); |
| 2466 | } |
| 2467 | |
| 2468 | if (inputElementTy.isInteger(16) && tableElementTy.isInteger(16) && |
| 2469 | resultElementTy.isInteger(32)) { |
| 2470 | Value extend = rewriter.create<arith::ExtSIOp>( |
| 2471 | loc, rewriter.getI32Type(), inputValue); |
| 2472 | |
| 2473 | auto offset = rewriter.create<arith::ConstantOp>( |
| 2474 | loc, rewriter.getI32IntegerAttr(32768)); |
| 2475 | auto seven = rewriter.create<arith::ConstantOp>( |
| 2476 | loc, rewriter.getI32IntegerAttr(7)); |
| 2477 | auto one = rewriter.create<arith::ConstantOp>( |
| 2478 | loc, rewriter.getI32IntegerAttr(1)); |
| 2479 | auto b1111111 = rewriter.create<arith::ConstantOp>( |
| 2480 | loc, rewriter.getI32IntegerAttr(127)); |
| 2481 | |
| 2482 | // Compute the index and fractional part from the input value: |
| 2483 | // value = value + 32768 |
| 2484 | // index = value >> 7; |
| 2485 | // fraction = 0x01111111 & value |
| 2486 | auto extendAdd = rewriter.create<arith::AddIOp>(loc, extend, offset); |
| 2487 | Value index = rewriter.create<arith::ShRUIOp>(loc, extendAdd, seven); |
| 2488 | Value fraction = |
| 2489 | rewriter.create<arith::AndIOp>(loc, extendAdd, b1111111); |
| 2490 | |
| 2491 | // Extract the base and next values from the table. |
| 2492 | // base = (int32_t) table[index]; |
| 2493 | // next = (int32_t) table[index + 1]; |
| 2494 | Value indexPlusOne = rewriter.create<arith::AddIOp>(loc, index, one); |
| 2495 | |
| 2496 | index = rewriter.create<arith::IndexCastOp>( |
| 2497 | loc, rewriter.getIndexType(), index); |
| 2498 | indexPlusOne = rewriter.create<arith::IndexCastOp>( |
| 2499 | loc, rewriter.getIndexType(), indexPlusOne); |
| 2500 | |
| 2501 | Value base = |
| 2502 | rewriter.create<tensor::ExtractOp>(loc, table, ValueRange{index}); |
| 2503 | Value next = rewriter.create<tensor::ExtractOp>( |
| 2504 | loc, table, ValueRange{indexPlusOne}); |
| 2505 | |
| 2506 | base = |
| 2507 | rewriter.create<arith::ExtSIOp>(loc, rewriter.getI32Type(), base); |
| 2508 | next = |
| 2509 | rewriter.create<arith::ExtSIOp>(loc, rewriter.getI32Type(), next); |
| 2510 | |
| 2511 | // Use the fractional part to interpolate between the input values: |
| 2512 | // result = (base << 7) + (next - base) * fraction |
| 2513 | Value baseScaled = rewriter.create<arith::ShLIOp>(loc, base, seven); |
| 2514 | Value diff = rewriter.create<arith::SubIOp>(loc, next, base); |
| 2515 | Value diffScaled = rewriter.create<arith::MulIOp>(loc, diff, fraction); |
| 2516 | Value result = |
| 2517 | rewriter.create<arith::AddIOp>(loc, baseScaled, diffScaled); |
| 2518 | |
| 2519 | rewriter.create<linalg::YieldOp>(loc, result); |
| 2520 | |
| 2521 | return success(); |
| 2522 | } |
| 2523 | } |
| 2524 | |
| 2525 | return rewriter.notifyMatchFailure( |
| 2526 | op, "unable to create body for tosa.table op" ); |
| 2527 | } |
| 2528 | }; |
| 2529 | |
| 2530 | struct RFFT2dConverter final : public OpRewritePattern<RFFT2dOp> { |
| 2531 | using OpRewritePattern<RFFT2dOp>::OpRewritePattern; |
| 2532 | |
| 2533 | static bool isRankedTensor(Type type) { return isa<RankedTensorType>(Val: type); } |
| 2534 | |
| 2535 | static OpFoldResult halfPlusOne(OpBuilder &builder, Location loc, |
| 2536 | OpFoldResult ofr) { |
| 2537 | auto one = builder.create<arith::ConstantIndexOp>(location: loc, args: 1); |
| 2538 | auto two = builder.create<arith::ConstantIndexOp>(location: loc, args: 2); |
| 2539 | |
| 2540 | auto value = getValueOrCreateConstantIndexOp(b&: builder, loc, ofr); |
| 2541 | auto divBy2 = builder.createOrFold<arith::DivUIOp>(loc, value, two); |
| 2542 | auto plusOne = builder.createOrFold<arith::AddIOp>(loc, divBy2, one); |
| 2543 | return getAsOpFoldResult(plusOne); |
| 2544 | } |
| 2545 | |
| 2546 | static RankedTensorType |
| 2547 | computeOutputShape(OpBuilder &builder, Location loc, Value input, |
| 2548 | llvm::SmallVectorImpl<Value> &dynamicSizes) { |
| 2549 | // Get [N, H, W] |
| 2550 | auto dims = tensor::getMixedSizes(builder, loc, value: input); |
| 2551 | |
| 2552 | // Set W = (W / 2) + 1 to account for the half-sized W dimension of the |
| 2553 | // output tensors. |
| 2554 | dims[2] = halfPlusOne(builder, loc, ofr: dims[2]); |
| 2555 | |
| 2556 | llvm::SmallVector<int64_t, 3> staticSizes; |
| 2557 | dispatchIndexOpFoldResults(ofrs: dims, dynamicVec&: dynamicSizes, staticVec&: staticSizes); |
| 2558 | |
| 2559 | auto elementType = cast<RankedTensorType>(input.getType()).getElementType(); |
| 2560 | return RankedTensorType::get(staticSizes, elementType); |
| 2561 | } |
| 2562 | |
| 2563 | static Value createZeroTensor(PatternRewriter &rewriter, Location loc, |
| 2564 | RankedTensorType type, |
| 2565 | llvm::ArrayRef<Value> dynamicSizes) { |
| 2566 | auto emptyTensor = |
| 2567 | rewriter.create<tensor::EmptyOp>(loc, type, dynamicSizes); |
| 2568 | auto fillValueAttr = rewriter.getZeroAttr(type: type.getElementType()); |
| 2569 | auto fillValue = rewriter.create<arith::ConstantOp>(loc, fillValueAttr); |
| 2570 | auto filledTensor = rewriter |
| 2571 | .create<linalg::FillOp>(loc, ValueRange{fillValue}, |
| 2572 | ValueRange{emptyTensor}) |
| 2573 | .result(); |
| 2574 | return filledTensor; |
| 2575 | } |
| 2576 | |
| 2577 | static Value castIndexToFloat(OpBuilder &builder, Location loc, |
| 2578 | FloatType type, Value value) { |
| 2579 | auto integerVal = builder.create<arith::IndexCastUIOp>( |
| 2580 | loc, |
| 2581 | type.getIntOrFloatBitWidth() > 32 ? builder.getI64Type() |
| 2582 | : builder.getI32Type(), |
| 2583 | value); |
| 2584 | |
| 2585 | return builder.create<arith::UIToFPOp>(loc, type, integerVal); |
| 2586 | } |
| 2587 | |
| 2588 | static Value createLinalgIndex(OpBuilder &builder, Location loc, |
| 2589 | FloatType type, int64_t index) { |
| 2590 | auto indexVal = builder.create<linalg::IndexOp>(loc, index); |
| 2591 | return castIndexToFloat(builder, loc, type: type, value: indexVal); |
| 2592 | } |
| 2593 | |
| 2594 | template <typename... Args> |
| 2595 | static llvm::SmallVector<AffineExpr, 4> affineDimsExpr(OpBuilder &builder, |
| 2596 | Args... args) { |
| 2597 | return {builder.getAffineDimExpr(position: args)...}; |
| 2598 | } |
| 2599 | |
| 2600 | LogicalResult matchAndRewrite(RFFT2dOp rfft2d, |
| 2601 | PatternRewriter &rewriter) const override { |
| 2602 | if (!llvm::all_of(rfft2d->getOperandTypes(), isRankedTensor) || |
| 2603 | !llvm::all_of(rfft2d->getResultTypes(), isRankedTensor)) { |
| 2604 | return rewriter.notifyMatchFailure(rfft2d, |
| 2605 | "only supports ranked tensors" ); |
| 2606 | } |
| 2607 | |
| 2608 | auto loc = rfft2d.getLoc(); |
| 2609 | auto input = rfft2d.getInputReal(); |
| 2610 | auto elementType = |
| 2611 | dyn_cast<FloatType>(cast<ShapedType>(input.getType()).getElementType()); |
| 2612 | if (!elementType) |
| 2613 | return rewriter.notifyMatchFailure(rfft2d, |
| 2614 | "only supports float element types" ); |
| 2615 | |
| 2616 | // Compute the output type and set of dynamic sizes |
| 2617 | llvm::SmallVector<Value> dynamicSizes; |
| 2618 | auto outputType = computeOutputShape(rewriter, loc, input, dynamicSizes); |
| 2619 | |
| 2620 | // Iterator types for the linalg.generic implementation |
| 2621 | llvm::SmallVector<utils::IteratorType, 5> iteratorTypes = { |
| 2622 | utils::IteratorType::parallel, utils::IteratorType::parallel, |
| 2623 | utils::IteratorType::parallel, utils::IteratorType::reduction, |
| 2624 | utils::IteratorType::reduction}; |
| 2625 | |
| 2626 | // Inputs/outputs to the linalg.generic implementation |
| 2627 | llvm::SmallVector<Value> genericOpInputs = {input}; |
| 2628 | llvm::SmallVector<Value> genericOpOutputs = { |
| 2629 | createZeroTensor(rewriter, loc: loc, type: outputType, dynamicSizes), |
| 2630 | createZeroTensor(rewriter, loc: loc, type: outputType, dynamicSizes)}; |
| 2631 | |
| 2632 | // Indexing maps for input and output tensors |
| 2633 | auto indexingMaps = AffineMap::inferFromExprList( |
| 2634 | exprsList: llvm::ArrayRef{affineDimsExpr(builder&: rewriter, args: 0, args: 3, args: 4), |
| 2635 | affineDimsExpr(builder&: rewriter, args: 0, args: 1, args: 2), |
| 2636 | affineDimsExpr(builder&: rewriter, args: 0, args: 1, args: 2)}, |
| 2637 | context: rewriter.getContext()); |
| 2638 | |
| 2639 | // Width and height dimensions of the original input. |
| 2640 | auto dimH = rewriter.createOrFold<tensor::DimOp>(loc, input, 1); |
| 2641 | auto dimW = rewriter.createOrFold<tensor::DimOp>(loc, input, 2); |
| 2642 | |
| 2643 | // Constants and dimension sizes |
| 2644 | auto twoPiAttr = rewriter.getFloatAttr(elementType, 6.283185307179586); |
| 2645 | auto twoPi = rewriter.create<arith::ConstantOp>(loc, twoPiAttr); |
| 2646 | auto constH = castIndexToFloat(builder&: rewriter, loc: loc, type: elementType, value: dimH); |
| 2647 | auto constW = castIndexToFloat(builder&: rewriter, loc: loc, type: elementType, value: dimW); |
| 2648 | |
| 2649 | auto buildBody = [&](OpBuilder &builder, Location loc, ValueRange args) { |
| 2650 | Value valReal = args[0]; |
| 2651 | Value sumReal = args[1]; |
| 2652 | Value sumImag = args[2]; |
| 2653 | |
| 2654 | // Indices for angle computation |
| 2655 | Value oy = builder.create<linalg::IndexOp>(loc, 1); |
| 2656 | Value ox = builder.create<linalg::IndexOp>(loc, 2); |
| 2657 | Value iy = builder.create<linalg::IndexOp>(loc, 3); |
| 2658 | Value ix = builder.create<linalg::IndexOp>(loc, 4); |
| 2659 | |
| 2660 | // Calculating angle without integer parts of components as sin/cos are |
| 2661 | // periodic: angle = 2 * pi() * ( ( (iy * oy) % H) / H + ( (ix * ox) % W ) |
| 2662 | // / W); |
| 2663 | auto iyXoy = builder.create<index::MulOp>(loc, iy, oy); |
| 2664 | auto ixXox = builder.create<index::MulOp>(loc, ix, ox); |
| 2665 | |
| 2666 | auto iyRem = builder.create<index::RemUOp>(loc, iyXoy, dimH); |
| 2667 | auto ixRem = builder.create<index::RemUOp>(loc, ixXox, dimW); |
| 2668 | |
| 2669 | auto iyRemFloat = castIndexToFloat(builder, loc, type: elementType, value: iyRem); |
| 2670 | auto ixRemFloat = castIndexToFloat(builder, loc, type: elementType, value: ixRem); |
| 2671 | |
| 2672 | auto yComponent = builder.create<arith::DivFOp>(loc, iyRemFloat, constH); |
| 2673 | auto xComponent = builder.create<arith::DivFOp>(loc, ixRemFloat, constW); |
| 2674 | auto sumXY = builder.create<arith::AddFOp>(loc, yComponent, xComponent); |
| 2675 | auto angle = builder.create<arith::MulFOp>(loc, twoPi, sumXY); |
| 2676 | |
| 2677 | // realComponent = valReal * cos(angle) |
| 2678 | // imagComponent = valReal * sin(angle) |
| 2679 | auto cosAngle = builder.create<math::CosOp>(loc, angle); |
| 2680 | auto sinAngle = builder.create<math::SinOp>(loc, angle); |
| 2681 | auto realComponent = |
| 2682 | builder.create<arith::MulFOp>(loc, valReal, cosAngle); |
| 2683 | auto imagComponent = |
| 2684 | builder.create<arith::MulFOp>(loc, valReal, sinAngle); |
| 2685 | |
| 2686 | // outReal = sumReal + realComponent |
| 2687 | // outImag = sumImag - imagComponent |
| 2688 | auto outReal = builder.create<arith::AddFOp>(loc, sumReal, realComponent); |
| 2689 | auto outImag = builder.create<arith::SubFOp>(loc, sumImag, imagComponent); |
| 2690 | |
| 2691 | builder.create<linalg::YieldOp>(loc, ValueRange{outReal, outImag}); |
| 2692 | }; |
| 2693 | |
| 2694 | rewriter.replaceOpWithNewOp<linalg::GenericOp>( |
| 2695 | rfft2d, rfft2d.getResultTypes(), genericOpInputs, genericOpOutputs, |
| 2696 | indexingMaps, iteratorTypes, buildBody); |
| 2697 | |
| 2698 | return success(); |
| 2699 | } |
| 2700 | }; |
| 2701 | |
| 2702 | struct FFT2dConverter final : OpRewritePattern<FFT2dOp> { |
| 2703 | using OpRewritePattern::OpRewritePattern; |
| 2704 | |
| 2705 | LogicalResult matchAndRewrite(FFT2dOp fft2d, |
| 2706 | PatternRewriter &rewriter) const override { |
| 2707 | if (!llvm::all_of(fft2d->getOperandTypes(), |
| 2708 | RFFT2dConverter::isRankedTensor) || |
| 2709 | !llvm::all_of(fft2d->getResultTypes(), |
| 2710 | RFFT2dConverter::isRankedTensor)) { |
| 2711 | return rewriter.notifyMatchFailure(fft2d, "only supports ranked tensors" ); |
| 2712 | } |
| 2713 | |
| 2714 | Location loc = fft2d.getLoc(); |
| 2715 | Value input_real = fft2d.getInputReal(); |
| 2716 | Value input_imag = fft2d.getInputImag(); |
| 2717 | BoolAttr inverse = fft2d.getInverseAttr(); |
| 2718 | |
| 2719 | auto real_el_ty = cast<FloatType>( |
| 2720 | cast<ShapedType>(input_real.getType()).getElementType()); |
| 2721 | [[maybe_unused]] auto imag_el_ty = cast<FloatType>( |
| 2722 | cast<ShapedType>(input_imag.getType()).getElementType()); |
| 2723 | |
| 2724 | assert(real_el_ty == imag_el_ty); |
| 2725 | |
| 2726 | // Compute the output type and set of dynamic sizes |
| 2727 | SmallVector<Value> dynamicSizes; |
| 2728 | |
| 2729 | // Get [N, H, W] |
| 2730 | auto dims = tensor::getMixedSizes(builder&: rewriter, loc, value: input_real); |
| 2731 | |
| 2732 | SmallVector<int64_t, 3> staticSizes; |
| 2733 | dispatchIndexOpFoldResults(dims, dynamicSizes, staticSizes); |
| 2734 | |
| 2735 | auto outputType = RankedTensorType::get(staticSizes, real_el_ty); |
| 2736 | |
| 2737 | // Iterator types for the linalg.generic implementation |
| 2738 | SmallVector<utils::IteratorType, 5> iteratorTypes = { |
| 2739 | utils::IteratorType::parallel, utils::IteratorType::parallel, |
| 2740 | utils::IteratorType::parallel, utils::IteratorType::reduction, |
| 2741 | utils::IteratorType::reduction}; |
| 2742 | |
| 2743 | // Inputs/outputs to the linalg.generic implementation |
| 2744 | SmallVector<Value> genericOpInputs = {input_real, input_imag}; |
| 2745 | SmallVector<Value> genericOpOutputs = { |
| 2746 | RFFT2dConverter::createZeroTensor(rewriter, loc, type: outputType, |
| 2747 | dynamicSizes), |
| 2748 | RFFT2dConverter::createZeroTensor(rewriter, loc, type: outputType, |
| 2749 | dynamicSizes)}; |
| 2750 | |
| 2751 | // Indexing maps for input and output tensors |
| 2752 | auto indexingMaps = AffineMap::inferFromExprList( |
| 2753 | exprsList: ArrayRef{RFFT2dConverter::affineDimsExpr(builder&: rewriter, args: 0, args: 3, args: 4), |
| 2754 | RFFT2dConverter::affineDimsExpr(builder&: rewriter, args: 0, args: 3, args: 4), |
| 2755 | RFFT2dConverter::affineDimsExpr(builder&: rewriter, args: 0, args: 1, args: 2), |
| 2756 | RFFT2dConverter::affineDimsExpr(builder&: rewriter, args: 0, args: 1, args: 2)}, |
| 2757 | context: rewriter.getContext()); |
| 2758 | |
| 2759 | // Width and height dimensions of the original input. |
| 2760 | auto dimH = rewriter.createOrFold<tensor::DimOp>(loc, input_real, 1); |
| 2761 | auto dimW = rewriter.createOrFold<tensor::DimOp>(loc, input_real, 2); |
| 2762 | |
| 2763 | // Constants and dimension sizes |
| 2764 | auto twoPiAttr = rewriter.getFloatAttr(real_el_ty, 6.283185307179586); |
| 2765 | auto twoPi = rewriter.create<arith::ConstantOp>(loc, twoPiAttr); |
| 2766 | Value constH = |
| 2767 | RFFT2dConverter::castIndexToFloat(builder&: rewriter, loc, type: real_el_ty, value: dimH); |
| 2768 | Value constW = |
| 2769 | RFFT2dConverter::castIndexToFloat(builder&: rewriter, loc, type: real_el_ty, value: dimW); |
| 2770 | |
| 2771 | auto buildBody = [&](OpBuilder &builder, Location loc, ValueRange args) { |
| 2772 | Value valReal = args[0]; |
| 2773 | Value valImag = args[1]; |
| 2774 | Value sumReal = args[2]; |
| 2775 | Value sumImag = args[3]; |
| 2776 | |
| 2777 | // Indices for angle computation |
| 2778 | Value oy = builder.create<linalg::IndexOp>(loc, 1); |
| 2779 | Value ox = builder.create<linalg::IndexOp>(loc, 2); |
| 2780 | Value iy = builder.create<linalg::IndexOp>(loc, 3); |
| 2781 | Value ix = builder.create<linalg::IndexOp>(loc, 4); |
| 2782 | |
| 2783 | // float_t angle = sign_val * 2 * pi() * ( ( (iy * oy) % H) / H + ( (ix * |
| 2784 | // ox) % W ) / W); |
| 2785 | auto iyXoy = builder.create<index::MulOp>(loc, iy, oy); |
| 2786 | auto ixXox = builder.create<index::MulOp>(loc, ix, ox); |
| 2787 | |
| 2788 | auto iyRem = builder.create<index::RemUOp>(loc, iyXoy, dimH); |
| 2789 | auto ixRem = builder.create<index::RemUOp>(loc, ixXox, dimW); |
| 2790 | |
| 2791 | auto iyRemFloat = |
| 2792 | RFFT2dConverter::castIndexToFloat(builder, loc, type: real_el_ty, value: iyRem); |
| 2793 | auto ixRemFloat = |
| 2794 | RFFT2dConverter::castIndexToFloat(builder, loc, type: real_el_ty, value: ixRem); |
| 2795 | |
| 2796 | auto yComponent = builder.create<arith::DivFOp>(loc, iyRemFloat, constH); |
| 2797 | auto xComponent = builder.create<arith::DivFOp>(loc, ixRemFloat, constW); |
| 2798 | |
| 2799 | auto sumXY = builder.create<arith::AddFOp>(loc, yComponent, xComponent); |
| 2800 | auto angle = builder.create<arith::MulFOp>(loc, twoPi, sumXY); |
| 2801 | |
| 2802 | if (inverse.getValue()) { |
| 2803 | angle = builder.create<arith::MulFOp>( |
| 2804 | loc, angle, |
| 2805 | rewriter.create<arith::ConstantOp>( |
| 2806 | loc, rewriter.getFloatAttr(real_el_ty, -1.0))); |
| 2807 | } |
| 2808 | |
| 2809 | // realComponent = val_real * cos(a) + val_imag * sin(a); |
| 2810 | // imagComponent = -val_real * sin(a) + val_imag * cos(a); |
| 2811 | auto cosAngle = builder.create<math::CosOp>(loc, angle); |
| 2812 | auto sinAngle = builder.create<math::SinOp>(loc, angle); |
| 2813 | |
| 2814 | auto rcos = builder.create<arith::MulFOp>(loc, valReal, cosAngle); |
| 2815 | auto rsin = builder.create<arith::MulFOp>(loc, valImag, sinAngle); |
| 2816 | auto realComponent = builder.create<arith::AddFOp>(loc, rcos, rsin); |
| 2817 | |
| 2818 | auto icos = builder.create<arith::MulFOp>(loc, valImag, cosAngle); |
| 2819 | auto isin = builder.create<arith::MulFOp>(loc, valReal, sinAngle); |
| 2820 | |
| 2821 | auto imagComponent = builder.create<arith::SubFOp>(loc, icos, isin); |
| 2822 | |
| 2823 | // outReal = sumReal + realComponent |
| 2824 | // outImag = sumImag - imagComponent |
| 2825 | auto outReal = builder.create<arith::AddFOp>(loc, sumReal, realComponent); |
| 2826 | auto outImag = builder.create<arith::AddFOp>(loc, sumImag, imagComponent); |
| 2827 | |
| 2828 | builder.create<linalg::YieldOp>(loc, ValueRange{outReal, outImag}); |
| 2829 | }; |
| 2830 | |
| 2831 | rewriter.replaceOpWithNewOp<linalg::GenericOp>( |
| 2832 | fft2d, fft2d.getResultTypes(), genericOpInputs, genericOpOutputs, |
| 2833 | indexingMaps, iteratorTypes, buildBody); |
| 2834 | |
| 2835 | return success(); |
| 2836 | } |
| 2837 | }; |
| 2838 | |
| 2839 | } // namespace |
| 2840 | |
| 2841 | void mlir::tosa::populateTosaToLinalgConversionPatterns( |
| 2842 | const TypeConverter &converter, RewritePatternSet *patterns) { |
| 2843 | |
| 2844 | // We have multiple resize coverters to handle degenerate cases. |
| 2845 | patterns->add<GenericResizeConverter>(arg: patterns->getContext(), |
| 2846 | /*benefit=*/args: 100); |
| 2847 | patterns->add<ResizeUnaryConverter>(arg: patterns->getContext(), |
| 2848 | /*benefit=*/args: 200); |
| 2849 | patterns->add<MaterializeResizeBroadcast>(arg: patterns->getContext(), |
| 2850 | /*benefit=*/args: 300); |
| 2851 | |
| 2852 | patterns->add< |
| 2853 | // clang-format off |
| 2854 | PointwiseConverter<tosa::AddOp>, |
| 2855 | PointwiseConverter<tosa::SubOp>, |
| 2856 | PointwiseConverter<tosa::MulOp>, |
| 2857 | PointwiseConverter<tosa::IntDivOp>, |
| 2858 | PointwiseConverter<tosa::NegateOp>, |
| 2859 | PointwiseConverter<tosa::PowOp>, |
| 2860 | PointwiseConverter<tosa::ReciprocalOp>, |
| 2861 | PointwiseConverter<tosa::RsqrtOp>, |
| 2862 | PointwiseConverter<tosa::LogOp>, |
| 2863 | PointwiseConverter<tosa::ExpOp>, |
| 2864 | PointwiseConverter<tosa::AbsOp>, |
| 2865 | PointwiseConverter<tosa::SinOp>, |
| 2866 | PointwiseConverter<tosa::CosOp>, |
| 2867 | PointwiseConverter<tosa::TanhOp>, |
| 2868 | PointwiseConverter<tosa::ErfOp>, |
| 2869 | PointwiseConverter<tosa::BitwiseAndOp>, |
| 2870 | PointwiseConverter<tosa::BitwiseOrOp>, |
| 2871 | PointwiseConverter<tosa::BitwiseNotOp>, |
| 2872 | PointwiseConverter<tosa::BitwiseXorOp>, |
| 2873 | PointwiseConverter<tosa::LogicalAndOp>, |
| 2874 | PointwiseConverter<tosa::LogicalNotOp>, |
| 2875 | PointwiseConverter<tosa::LogicalOrOp>, |
| 2876 | PointwiseConverter<tosa::LogicalXorOp>, |
| 2877 | PointwiseConverter<tosa::CastOp>, |
| 2878 | PointwiseConverter<tosa::LogicalLeftShiftOp>, |
| 2879 | PointwiseConverter<tosa::LogicalRightShiftOp>, |
| 2880 | PointwiseConverter<tosa::ArithmeticRightShiftOp>, |
| 2881 | PointwiseConverter<tosa::ClzOp>, |
| 2882 | PointwiseConverter<tosa::SelectOp>, |
| 2883 | PointwiseConverter<tosa::GreaterOp>, |
| 2884 | PointwiseConverter<tosa::GreaterEqualOp>, |
| 2885 | PointwiseConverter<tosa::EqualOp>, |
| 2886 | PointwiseConverter<tosa::MaximumOp>, |
| 2887 | PointwiseConverter<tosa::MinimumOp>, |
| 2888 | PointwiseConverter<tosa::CeilOp>, |
| 2889 | PointwiseConverter<tosa::FloorOp>, |
| 2890 | PointwiseConverter<tosa::ClampOp>, |
| 2891 | PointwiseConverter<tosa::SigmoidOp> |
| 2892 | >(converter, patterns->getContext()); |
| 2893 | |
| 2894 | patterns->add< |
| 2895 | IdentityNConverter<tosa::IdentityOp>, |
| 2896 | ReduceConverter<tosa::ReduceAllOp>, |
| 2897 | ReduceConverter<tosa::ReduceAnyOp>, |
| 2898 | ReduceConverter<tosa::ReduceMinOp>, |
| 2899 | ReduceConverter<tosa::ReduceMaxOp>, |
| 2900 | ReduceConverter<tosa::ReduceSumOp>, |
| 2901 | ReduceConverter<tosa::ReduceProductOp>, |
| 2902 | ArgMaxConverter, |
| 2903 | GatherConverter, |
| 2904 | RescaleConverter, |
| 2905 | ReverseConverter, |
| 2906 | RFFT2dConverter, |
| 2907 | FFT2dConverter, |
| 2908 | TableConverter, |
| 2909 | TileConverter>(patterns->getContext()); |
| 2910 | // clang-format on |
| 2911 | } |
| 2912 | |