1 | //===- TosaToLinalgNamed.cpp - Lowering Tosa to Linalg Named Ops ----------===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // These rewriters lower from the Tosa to the Linalg named ops. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "mlir/Conversion/TosaToLinalg/TosaToLinalg.h" |
14 | #include "mlir/Dialect/Arith/IR/Arith.h" |
15 | #include "mlir/Dialect/Linalg/IR/Linalg.h" |
16 | #include "mlir/Dialect/Math/IR/Math.h" |
17 | #include "mlir/Dialect/SCF/IR/SCF.h" |
18 | #include "mlir/Dialect/Tensor/IR/Tensor.h" |
19 | #include "mlir/Dialect/Tensor/Utils/Utils.h" |
20 | #include "mlir/Dialect/Tosa/IR/TosaOps.h" |
21 | #include "mlir/Dialect/Tosa/Utils/ConversionUtils.h" |
22 | #include "mlir/Dialect/Utils/IndexingUtils.h" |
23 | #include "mlir/Dialect/Utils/ReshapeOpsUtils.h" |
24 | #include "mlir/IR/Matchers.h" |
25 | #include "mlir/IR/PatternMatch.h" |
26 | #include "mlir/Transforms/DialectConversion.h" |
27 | #include "mlir/Transforms/GreedyPatternRewriteDriver.h" |
28 | |
29 | #include "mlir/Interfaces/InferTypeOpInterface.h" |
30 | |
31 | #include <numeric> |
32 | #include <type_traits> |
33 | |
34 | using namespace mlir; |
35 | using namespace mlir::tosa; |
36 | |
37 | static mlir::Value applyPad(Location loc, Value input, ArrayRef<int64_t> pad, |
38 | TypedAttr padAttr, OpBuilder &rewriter) { |
39 | // Input should be padded only if necessary. |
40 | if (llvm::all_of(Range&: pad, P: [](int64_t p) { return p == 0; })) |
41 | return input; |
42 | |
43 | ShapedType inputTy = cast<ShapedType>(input.getType()); |
44 | Type inputETy = inputTy.getElementType(); |
45 | auto inputShape = inputTy.getShape(); |
46 | |
47 | assert((inputShape.size() * 2) == pad.size()); |
48 | |
49 | SmallVector<int64_t, 4> paddedShape; |
50 | SmallVector<OpFoldResult, 8> lowIndices; |
51 | SmallVector<OpFoldResult, 8> highIndices; |
52 | for (size_t i : llvm::seq(inputShape.size())) { |
53 | auto lowPad = pad[i * 2]; |
54 | auto highPad = pad[i * 2 + 1]; |
55 | if (ShapedType::isDynamic(inputShape[i])) |
56 | paddedShape.push_back(inputShape[i]); |
57 | else |
58 | paddedShape.push_back(inputShape[i] + highPad + lowPad); |
59 | lowIndices.push_back(rewriter.getIndexAttr(lowPad)); |
60 | highIndices.push_back(rewriter.getIndexAttr(highPad)); |
61 | } |
62 | |
63 | Value padValue = rewriter.create<arith::ConstantOp>(loc, padAttr); |
64 | |
65 | return rewriter.create<tensor::PadOp>( |
66 | loc, RankedTensorType::get(paddedShape, inputETy), input, lowIndices, |
67 | highIndices, padValue); |
68 | } |
69 | |
70 | static mlir::Value |
71 | linalgIntBroadcastExtSIAdd(PatternRewriter &rewriter, Location loc, Value bias, |
72 | Value conv, Value result, |
73 | ArrayRef<AffineMap> indexingMaps) { |
74 | ShapedType resultTy = cast<ShapedType>(conv.getType()); |
75 | return rewriter |
76 | .create<linalg::GenericOp>( |
77 | loc, resultTy, ValueRange({bias, conv}), result, indexingMaps, |
78 | getNParallelLoopsAttrs(resultTy.getRank()), |
79 | [](OpBuilder &builder, Location loc, ValueRange args) { |
80 | Value biasVal = args[0]; |
81 | Type resType = args[1].getType(); |
82 | if (resType != biasVal.getType()) { |
83 | biasVal = builder.create<arith::ExtSIOp>(loc, resType, biasVal); |
84 | } |
85 | Value added = builder.create<arith::AddIOp>(loc, biasVal, args[1]); |
86 | builder.create<linalg::YieldOp>(loc, added); |
87 | }) |
88 | .getResult(0); |
89 | } |
90 | |
91 | // Construct the affine map that a linalg generic would use to broadcast the |
92 | // source tensor into the shape of the result tensor. |
93 | static AffineMap getBroadcastingMap(PatternRewriter &rewriter, Value source, |
94 | Value result) { |
95 | ShapedType resultTy = cast<ShapedType>(result.getType()); |
96 | ShapedType sourceTy = cast<ShapedType>(source.getType()); |
97 | const int64_t resultRank = resultTy.getRank(); |
98 | const int64_t sourceRank = sourceTy.getRank(); |
99 | |
100 | // The source tensor is broadcast to all the outer dimensions of the |
101 | // result tensor. |
102 | SmallVector<AffineExpr> sourceDims; |
103 | // In the case of a rank one source tensor with a single element TOSA |
104 | // specifies that the value be broadcast meaning we need an edge case for a |
105 | // constant map. |
106 | assert(sourceTy.hasStaticShape() && |
107 | "Dynamic broadcasting shapes not supported!"); |
108 | if (sourceRank == 1 && sourceTy.getDimSize(0) == 1) { |
109 | sourceDims.push_back(Elt: rewriter.getAffineConstantExpr(constant: 0)); |
110 | } else { |
111 | for (auto dim : llvm::seq<int64_t>(0, sourceRank)) { |
112 | auto expr = rewriter.getAffineDimExpr(dim + resultRank - sourceRank); |
113 | sourceDims.push_back(expr); |
114 | } |
115 | } |
116 | |
117 | return AffineMap::get(/*dimCount=*/resultRank, |
118 | /*symbolCount=*/0, results: sourceDims, context: rewriter.getContext()); |
119 | } |
120 | |
121 | // Broadcast the source value to all the outer dimensions of the result value. |
122 | // If required, the element type is expanded using an arith.extsi or arith.extf |
123 | // operation as appropriate. |
124 | static mlir::Value linalgBroadcastAndMaybeExt(PatternRewriter &rewriter, |
125 | Location loc, Value source, |
126 | Value result) { |
127 | ShapedType resultTy = cast<ShapedType>(result.getType()); |
128 | const int64_t resultRank = resultTy.getRank(); |
129 | // Creating maps for the input and output of the broacast-like generic op. |
130 | SmallVector<AffineMap, 2> indexingMaps; |
131 | indexingMaps.push_back(Elt: getBroadcastingMap(rewriter, source, result)); |
132 | indexingMaps.push_back(Elt: rewriter.getMultiDimIdentityMap(rank: resultRank)); |
133 | |
134 | // Build the broadcast-like operation as a linalg.generic. |
135 | return rewriter |
136 | .create<linalg::GenericOp>( |
137 | loc, resultTy, ValueRange({source}), result, indexingMaps, |
138 | getNParallelLoopsAttrs(resultTy.getRank()), |
139 | [&resultTy](OpBuilder &builder, Location loc, ValueRange args) { |
140 | Value biasVal = args[0]; |
141 | Type resType = args[1].getType(); |
142 | if (resType != biasVal.getType()) { |
143 | biasVal = |
144 | resultTy.getElementType().isFloat() |
145 | ? builder.create<arith::ExtFOp>(loc, resType, biasVal) |
146 | .getResult() |
147 | : builder.create<arith::ExtSIOp>(loc, resType, biasVal) |
148 | .getResult(); |
149 | } |
150 | builder.create<linalg::YieldOp>(loc, biasVal); |
151 | }) |
152 | .getResult(0); |
153 | } |
154 | |
155 | static mlir::Value reifyConstantDim(int64_t attr, |
156 | ImplicitLocOpBuilder &builder) { |
157 | return builder.create<arith::ConstantIndexOp>(args&: attr); |
158 | } |
159 | |
160 | // Calculating the output width/height using the formula: |
161 | // H = ((IH+pad_top+pad_bottom-(dilation_y*(KH-1)+1))/stride_y)+1 |
162 | // W = ((IW+pad_left+pad_right-(dilation_x*(KW-1)+1))/stride_x)+1 |
163 | |
164 | static mlir::Value getConvOrPoolOutputDim(Location loc, Value inputDim, |
165 | int64_t padBeforeAttr, |
166 | int64_t padAfterAttr, Value kernelDim, |
167 | int64_t strideAttr, |
168 | int64_t dilationAttr, |
169 | OpBuilder &rewriter) { |
170 | ImplicitLocOpBuilder builder(loc, rewriter); |
171 | auto one = rewriter.create<arith::ConstantOp>( |
172 | loc, IntegerAttr::get(inputDim.getType(), 1)); |
173 | Value padBefore = reifyConstantDim(attr: padBeforeAttr, builder); |
174 | Value paddedBefore = builder.create<arith::AddIOp>(inputDim, padBefore); |
175 | Value padAfter = reifyConstantDim(attr: padAfterAttr, builder); |
176 | Value paddedAfter = builder.create<arith::AddIOp>(paddedBefore, padAfter); |
177 | |
178 | Value subOne = builder.create<arith::SubIOp>(kernelDim, one); |
179 | Value dilation = reifyConstantDim(attr: dilationAttr, builder); |
180 | Value dilated = builder.create<arith::MulIOp>(dilation, subOne); |
181 | Value addOne = builder.create<arith::AddIOp>(dilated, one); |
182 | |
183 | Value subtract = builder.create<arith::SubIOp>(paddedAfter, addOne); |
184 | Value stride = reifyConstantDim(attr: strideAttr, builder); |
185 | Value divide = builder.create<arith::DivUIOp>(subtract, stride); |
186 | return builder.create<arith::AddIOp>(divide, one); |
187 | } |
188 | |
189 | // Creates a vector of the dynamic output dims for Conv2D and Depthwise_Conv2D |
190 | static SmallVector<Value> inferDynamicDimsForConv( |
191 | Location loc, Value input, Value weight, ShapedType resultTy, |
192 | ArrayRef<int64_t> padAttr, ArrayRef<int64_t> strideAttr, |
193 | ArrayRef<int64_t> dilationAttr, ArrayRef<int64_t> inputSizeDims, |
194 | ArrayRef<int64_t> kernelSizeDims, OpBuilder &rewriter) { |
195 | ShapedType inputTy = cast<ShapedType>(input.getType()); |
196 | int64_t inputRank = inputTy.getRank(); |
197 | |
198 | SmallVector<Value> dynDims; |
199 | dynDims.resize(resultTy.getRank()); |
200 | |
201 | for (uint32_t i = 0, s = inputSizeDims.size(); i < s; ++i) { |
202 | int64_t inputDim = inputSizeDims[i]; |
203 | int64_t kernelDim = kernelSizeDims[i]; |
204 | if (resultTy.isDynamicDim(inputDim)) { |
205 | auto padTop = padAttr[i * 2]; |
206 | auto padBottom = padAttr[i * 2 + 1]; |
207 | auto stride = strideAttr[i]; |
208 | auto dilation = dilationAttr[i]; |
209 | Value initDynDim = rewriter.create<tensor::DimOp>(loc, input, inputDim); |
210 | Value kernelDynDim = |
211 | rewriter.create<tensor::DimOp>(loc, weight, kernelDim); |
212 | // H = F(IH, pad_top, pad_bottom, dilation_y, KH, stride_y) |
213 | dynDims[inputDim] = |
214 | getConvOrPoolOutputDim(loc, inputDim: initDynDim, padBeforeAttr: padTop, padAfterAttr: padBottom, |
215 | kernelDim: kernelDynDim, strideAttr: stride, dilationAttr: dilation, rewriter); |
216 | } |
217 | } |
218 | |
219 | // Get the batch/channels dimensions. |
220 | for (int i = 0; i < inputRank; i++) { |
221 | if (resultTy.isDynamicDim(i) && !dynDims[i]) |
222 | dynDims[i] = rewriter.create<tensor::DimOp>(loc, input, i); |
223 | } |
224 | |
225 | SmallVector<Value> filteredDims = condenseValues(values: dynDims); |
226 | return filteredDims; |
227 | } |
228 | |
229 | // Creates a map to collapse the last dimension of the Depthwise convolution op |
230 | // due to a shape mismatch |
231 | static void createDepthwiseConvCollapseMap( |
232 | int64_t outputRank, SmallVector<ReassociationExprs, 4> &reassociationMap, |
233 | OpBuilder &rewriter) { |
234 | reassociationMap.resize(N: outputRank); |
235 | for (int i = 0; i < outputRank; i++) { |
236 | reassociationMap[i].push_back(Elt: rewriter.getAffineDimExpr(position: i)); |
237 | } |
238 | reassociationMap[outputRank - 1].push_back( |
239 | Elt: rewriter.getAffineDimExpr(position: outputRank)); |
240 | } |
241 | |
242 | namespace { |
243 | |
244 | template <typename TosaConvOp, typename LinalgConvOp, typename LinalgConvQOp> |
245 | class ConvConverter : public OpConversionPattern<TosaConvOp> { |
246 | public: |
247 | using OpConversionPattern<TosaConvOp>::OpConversionPattern; |
248 | LogicalResult |
249 | matchAndRewrite(TosaConvOp op, typename TosaConvOp::Adaptor adaptor, |
250 | ConversionPatternRewriter &rewriter) const final { |
251 | Location loc = op->getLoc(); |
252 | Value input = op->getOperand(0); |
253 | Value weight = op->getOperand(1); |
254 | Value bias = op->getOperand(2); |
255 | |
256 | ShapedType inputTy = cast<ShapedType>(input.getType()); |
257 | ShapedType weightTy = cast<ShapedType>(weight.getType()); |
258 | ShapedType biasTy = cast<ShapedType>(bias.getType()); |
259 | ShapedType resultTy = cast<ShapedType>(op->getResult(0).getType()); |
260 | |
261 | Type inputETy = inputTy.getElementType(); |
262 | |
263 | DenseI64ArrayAttr padAttr = op.getPadAttr(); |
264 | DenseI64ArrayAttr strideTosaAttr = op.getStrideAttr(); |
265 | DenseI64ArrayAttr dilationTosaAttr = op.getDilationAttr(); |
266 | |
267 | Type accETy = op.getAccType(); |
268 | Type accTy = RankedTensorType::get(resultTy.getShape(), accETy); |
269 | |
270 | // Get and verify zero points. |
271 | FailureOr<int64_t> maybeIZp = op.getInputZeroPoint(); |
272 | if (failed(Result: maybeIZp)) |
273 | return rewriter.notifyMatchFailure( |
274 | op, "input zero point cannot be statically determined"); |
275 | |
276 | FailureOr<int64_t> maybeWZp = op.getWeightZeroPoint(); |
277 | if (failed(Result: maybeWZp)) |
278 | return rewriter.notifyMatchFailure( |
279 | op, "weight zero point cannot be statically determined"); |
280 | |
281 | const int64_t inputZpVal = *maybeIZp; |
282 | const int64_t weightZpVal = *maybeWZp; |
283 | |
284 | if (op.verifyInputZeroPoint(inputZpVal).failed()) |
285 | return rewriter.notifyMatchFailure( |
286 | op, "input zero point must be zero for non-int8 integer types"); |
287 | |
288 | if (op.verifyWeightZeroPoint(weightZpVal).failed()) |
289 | return rewriter.notifyMatchFailure( |
290 | op, "weight zero point must be zero for non-int8 integer types"); |
291 | |
292 | bool hasZp = (inputZpVal != 0) || (weightZpVal != 0); |
293 | |
294 | if (!weightTy.hasStaticShape() || !biasTy.hasStaticShape()) |
295 | return rewriter.notifyMatchFailure( |
296 | op, "tosa.conv ops require static shapes for weight and bias"); |
297 | |
298 | if (inputETy.isUnsignedInteger()) |
299 | return rewriter.notifyMatchFailure( |
300 | op, "tosa.conv ops does not support unsigned integer input"); |
301 | |
302 | llvm::SmallVector<int64_t> inputSizeDims; |
303 | llvm::SmallVector<int64_t> kernelSizeDims; |
304 | for (int i = 1; i < resultTy.getRank() - 1; i++) { |
305 | inputSizeDims.push_back(Elt: i); |
306 | kernelSizeDims.push_back(Elt: i); |
307 | } |
308 | |
309 | SmallVector<Value> filteredDims = inferDynamicDimsForConv( |
310 | loc, input, weight, resultTy, padAttr.asArrayRef(), |
311 | strideTosaAttr.asArrayRef(), dilationTosaAttr.asArrayRef(), |
312 | inputSizeDims, kernelSizeDims, rewriter); |
313 | |
314 | auto weightShape = weightTy.getShape(); |
315 | |
316 | // Apply padding as necessary. |
317 | TypedAttr zeroAttr = rewriter.getZeroAttr(inputETy); |
318 | if (hasZp) { |
319 | int64_t intMin = |
320 | APInt::getSignedMinValue(numBits: inputETy.getIntOrFloatBitWidth()) |
321 | .getSExtValue(); |
322 | int64_t intMax = |
323 | APInt::getSignedMaxValue(numBits: inputETy.getIntOrFloatBitWidth()) |
324 | .getSExtValue(); |
325 | |
326 | if (inputZpVal < intMin || inputZpVal > intMax) |
327 | return rewriter.notifyMatchFailure( |
328 | op, "tosa.conv op quantization has zp outside of input range"); |
329 | |
330 | zeroAttr = rewriter.getIntegerAttr(inputETy, inputZpVal); |
331 | } |
332 | |
333 | llvm::SmallVector<int64_t> pad; |
334 | pad.resize(N: 2, NV: 0); |
335 | llvm::append_range(pad, padAttr.asArrayRef()); |
336 | pad.resize(N: pad.size() + 2, NV: 0); |
337 | input = applyPad(loc, input, pad, zeroAttr, rewriter); |
338 | |
339 | if (4 == inputTy.getRank()) { |
340 | // For 2D convolutions, we need to check if the target convolution op |
341 | // wants a HWCF kernel layout. |
342 | bool wantHwcf = |
343 | hasZp ? std::is_same_v<LinalgConvQOp, linalg::Conv2DNhwcHwcfQOp> |
344 | : std::is_same_v<LinalgConvOp, linalg::Conv2DNhwcHwcfOp>; |
345 | if (wantHwcf) { |
346 | // Transpose the kernel to match dimension ordering of the linalg |
347 | // convolution operation. |
348 | // TODO(suderman): See if this can be efficiently folded - check whether |
349 | // the input is used anywhere else, if not fold the constant. |
350 | SmallVector<int32_t> weightPerm; |
351 | for (int i = 1; i < resultTy.getRank(); i++) |
352 | weightPerm.push_back(Elt: i); |
353 | weightPerm.push_back(Elt: 0); |
354 | |
355 | SmallVector<int64_t> newWeightShape; |
356 | for (auto dim : weightPerm) |
357 | newWeightShape.push_back(Elt: weightShape[dim]); |
358 | auto weightPermAttr = rewriter.getDenseI32ArrayAttr(weightPerm); |
359 | Type newWeightTy = |
360 | RankedTensorType::get(newWeightShape, weightTy.getElementType()); |
361 | weight = rewriter.create<tosa::TransposeOp>(loc, newWeightTy, weight, |
362 | weightPermAttr); |
363 | } |
364 | } |
365 | |
366 | // For Conv3D transpose the kernel to match dimension ordering of the linalg |
367 | // convolution operation. Conv2D has a 1-1 mapping in linalg so better to |
368 | // map directly and then transpose later if desired. |
369 | if (5 == inputTy.getRank()) { |
370 | // TODO(suderman): See if this can be efficiently folded - check whether |
371 | // the input is used anywhere else, if not fold the constant. |
372 | SmallVector<int32_t> weightPerm; |
373 | for (int i = 1; i < resultTy.getRank(); i++) |
374 | weightPerm.push_back(Elt: i); |
375 | weightPerm.push_back(Elt: 0); |
376 | |
377 | SmallVector<int64_t> newWeightShape; |
378 | for (auto dim : weightPerm) |
379 | newWeightShape.push_back(Elt: weightShape[dim]); |
380 | auto weightPermAttr = rewriter.getDenseI32ArrayAttr(weightPerm); |
381 | Type newWeightTy = |
382 | RankedTensorType::get(newWeightShape, weightTy.getElementType()); |
383 | weight = rewriter.create<tosa::TransposeOp>(loc, newWeightTy, weight, |
384 | weightPermAttr); |
385 | } |
386 | |
387 | // Extract the attributes for convolution. |
388 | ArrayRef<int64_t> stride = strideTosaAttr; |
389 | ArrayRef<int64_t> dilation = dilationTosaAttr; |
390 | |
391 | // Create the convolution op. |
392 | auto strideAttr = rewriter.getI64TensorAttr(values: stride); |
393 | auto dilationAttr = rewriter.getI64TensorAttr(values: dilation); |
394 | |
395 | Value biasEmptyTensor = rewriter.create<tensor::EmptyOp>( |
396 | loc, resultTy.getShape(), accETy, filteredDims); |
397 | |
398 | Value broadcastBias = |
399 | linalgBroadcastAndMaybeExt(rewriter, loc, source: bias, result: biasEmptyTensor); |
400 | |
401 | if (hasZp) { |
402 | auto iZp = rewriter.getI32IntegerAttr(inputZpVal); |
403 | auto kZp = rewriter.getI32IntegerAttr(weightZpVal); |
404 | |
405 | auto iZpVal = rewriter.create<arith::ConstantOp>(loc, iZp); |
406 | auto kZpVal = rewriter.create<arith::ConstantOp>(loc, kZp); |
407 | |
408 | Value conv = |
409 | rewriter |
410 | .create<LinalgConvQOp>( |
411 | loc, resultTy, ValueRange{input, weight, iZpVal, kZpVal}, |
412 | ValueRange{broadcastBias}, strideAttr, dilationAttr) |
413 | ->getResult(0); |
414 | |
415 | rewriter.replaceOp(op, conv); |
416 | return success(); |
417 | } |
418 | |
419 | Value conv = rewriter |
420 | .create<LinalgConvOp>( |
421 | loc, accTy, ValueRange{input, weight}, |
422 | ValueRange{broadcastBias}, strideAttr, dilationAttr) |
423 | ->getResult(0); |
424 | |
425 | // We may need to truncate back to the result type if the accumulator was |
426 | // wider than the result. |
427 | if (resultTy != accTy) |
428 | conv = rewriter.create<tosa::CastOp>(loc, resultTy, conv); |
429 | |
430 | rewriter.replaceOp(op, conv); |
431 | return success(); |
432 | } |
433 | }; |
434 | |
435 | class DepthwiseConvConverter |
436 | : public OpConversionPattern<tosa::DepthwiseConv2DOp> { |
437 | public: |
438 | using OpConversionPattern<tosa::DepthwiseConv2DOp>::OpConversionPattern; |
439 | LogicalResult |
440 | matchAndRewrite(tosa::DepthwiseConv2DOp op, OpAdaptor adaptor, |
441 | ConversionPatternRewriter &rewriter) const final { |
442 | Location loc = op->getLoc(); |
443 | Value input = op->getOperand(0); |
444 | Value weight = op->getOperand(1); |
445 | Value bias = op->getOperand(2); |
446 | |
447 | ShapedType inputTy = cast<ShapedType>(input.getType()); |
448 | ShapedType weightTy = cast<ShapedType>(weight.getType()); |
449 | ShapedType biasTy = cast<ShapedType>(bias.getType()); |
450 | ShapedType resultTy = cast<ShapedType>(op->getResult(0).getType()); |
451 | int64_t resultRank = resultTy.getRank(); |
452 | |
453 | Type inputETy = inputTy.getElementType(); |
454 | Type resultETy = resultTy.getElementType(); |
455 | |
456 | auto padAttr = cast<DenseI64ArrayAttr>(op->getAttr("pad")); |
457 | auto strideTosaAttr = cast<DenseI64ArrayAttr>(op->getAttr("stride")); |
458 | auto dilationTosaAttr = cast<DenseI64ArrayAttr>(op->getAttr("dilation")); |
459 | |
460 | Type accETy = op.getAccType(); |
461 | |
462 | if (!weightTy.hasStaticShape() || !biasTy.hasStaticShape()) |
463 | return rewriter.notifyMatchFailure( |
464 | op, "tosa.depthwise_conv ops require static shapes"); |
465 | |
466 | // Compute output dynamic dims |
467 | SmallVector<Value> filteredDims = inferDynamicDimsForConv( |
468 | loc, input, weight, resultTy, padAttr.asArrayRef(), |
469 | strideTosaAttr.asArrayRef(), dilationTosaAttr.asArrayRef(), |
470 | /*inputSizeDims=*/{1, 2}, |
471 | /*kernelSizeDims=*/{0, 1}, rewriter); |
472 | |
473 | // Get and verify zero points. |
474 | |
475 | FailureOr<int64_t> maybeIZp = op.getInputZeroPoint(); |
476 | FailureOr<int64_t> maybeWZp = op.getWeightZeroPoint(); |
477 | if (failed(Result: maybeIZp)) |
478 | return rewriter.notifyMatchFailure( |
479 | op, "input zero point cannot be statically determined"); |
480 | if (failed(Result: maybeWZp)) |
481 | return rewriter.notifyMatchFailure( |
482 | op, "weight zero point cannot be statically determined"); |
483 | |
484 | const int64_t inputZpVal = *maybeIZp; |
485 | const int64_t weightZpVal = *maybeWZp; |
486 | |
487 | if (op.verifyInputZeroPoint(inputZpVal).failed()) |
488 | return rewriter.notifyMatchFailure( |
489 | op, "input zero point must be zero for non-int8 integer types"); |
490 | |
491 | if (op.verifyWeightZeroPoint(weightZpVal).failed()) |
492 | return rewriter.notifyMatchFailure( |
493 | op, "weight zero point must be zero for non-int8 integer types"); |
494 | |
495 | bool hasNullZps = (inputZpVal == 0) && (weightZpVal == 0); |
496 | auto weightShape = weightTy.getShape(); |
497 | auto resultShape = resultTy.getShape(); |
498 | |
499 | // Apply padding as necessary. |
500 | TypedAttr zeroAttr = rewriter.getZeroAttr(inputETy); |
501 | if (!hasNullZps) { |
502 | int64_t intMin = |
503 | APInt::getSignedMinValue(numBits: inputETy.getIntOrFloatBitWidth()) |
504 | .getSExtValue(); |
505 | int64_t intMax = |
506 | APInt::getSignedMaxValue(numBits: inputETy.getIntOrFloatBitWidth()) |
507 | .getSExtValue(); |
508 | |
509 | if (inputZpVal < intMin || inputZpVal > intMax) |
510 | return rewriter.notifyMatchFailure( |
511 | op, "tosa.depthwise_conv op quantization has zp outside of input " |
512 | "range"); |
513 | |
514 | zeroAttr = rewriter.getIntegerAttr(inputETy, inputZpVal); |
515 | } |
516 | |
517 | llvm::SmallVector<int64_t> pad; |
518 | pad.resize(N: 2, NV: 0); |
519 | llvm::append_range(pad, padAttr.asArrayRef()); |
520 | pad.resize(N: pad.size() + 2, NV: 0); |
521 | |
522 | input = applyPad(loc, input, pad, zeroAttr, rewriter); |
523 | |
524 | // Extract the attributes for convolution. |
525 | ArrayRef<int64_t> stride = strideTosaAttr; |
526 | ArrayRef<int64_t> dilation = dilationTosaAttr; |
527 | |
528 | // Create the convolution op. |
529 | auto strideAttr = rewriter.getI64TensorAttr(values: stride); |
530 | auto dilationAttr = rewriter.getI64TensorAttr(values: dilation); |
531 | ShapedType linalgConvTy = |
532 | RankedTensorType::get({resultShape[0], resultShape[1], resultShape[2], |
533 | weightShape[2], weightShape[3]}, |
534 | accETy); |
535 | |
536 | auto resultZeroAttr = rewriter.getZeroAttr(accETy); |
537 | Value emptyTensor = rewriter.create<tensor::EmptyOp>( |
538 | loc, linalgConvTy.getShape(), accETy, filteredDims); |
539 | Value zero = rewriter.create<arith::ConstantOp>(loc, resultZeroAttr); |
540 | Value zeroTensor = rewriter |
541 | .create<linalg::FillOp>(loc, ValueRange{zero}, |
542 | ValueRange{emptyTensor}) |
543 | .result(); |
544 | |
545 | Value biasEmptyTensor = rewriter.create<tensor::EmptyOp>( |
546 | loc, resultTy.getShape(), resultETy, filteredDims); |
547 | |
548 | // Broadcast the initial value to the output tensor before convolving. |
549 | SmallVector<AffineMap, 4> indexingMaps; |
550 | indexingMaps.push_back(Elt: getBroadcastingMap(rewriter, source: bias, result: biasEmptyTensor)); |
551 | indexingMaps.push_back(Elt: rewriter.getMultiDimIdentityMap(rank: resultRank)); |
552 | indexingMaps.push_back(Elt: rewriter.getMultiDimIdentityMap(rank: resultRank)); |
553 | |
554 | if (hasNullZps) { |
555 | Value conv = rewriter |
556 | .create<linalg::DepthwiseConv2DNhwcHwcmOp>( |
557 | loc, linalgConvTy, ValueRange{input, weight}, |
558 | ValueRange{zeroTensor}, strideAttr, dilationAttr) |
559 | .getResult(0); |
560 | |
561 | // We may need to truncate back to the result type if the accumulator was |
562 | // wider than the result. |
563 | if (accETy != resultETy) |
564 | conv = rewriter.create<tosa::CastOp>( |
565 | loc, |
566 | RankedTensorType::get(cast<ShapedType>(conv.getType()).getShape(), |
567 | resultETy), |
568 | conv); |
569 | |
570 | SmallVector<ReassociationExprs, 4> reassociationMap; |
571 | createDepthwiseConvCollapseMap(outputRank: resultRank, reassociationMap, rewriter); |
572 | Value convReshape = rewriter.create<tensor::CollapseShapeOp>( |
573 | loc, resultTy, conv, reassociationMap); |
574 | |
575 | Value result = |
576 | rewriter |
577 | .create<linalg::GenericOp>( |
578 | loc, resultTy, ValueRange({bias, convReshape}), |
579 | biasEmptyTensor, indexingMaps, |
580 | getNParallelLoopsAttrs(resultRank), |
581 | [&](OpBuilder &nestedBuilder, Location nestedLoc, |
582 | ValueRange args) { |
583 | Value added; |
584 | if (llvm::isa<FloatType>(inputETy)) |
585 | added = nestedBuilder.create<arith::AddFOp>(loc, args[0], |
586 | args[1]); |
587 | else |
588 | added = nestedBuilder.create<arith::AddIOp>(loc, args[0], |
589 | args[1]); |
590 | nestedBuilder.create<linalg::YieldOp>(nestedLoc, added); |
591 | }) |
592 | .getResult(0); |
593 | rewriter.replaceOp(op, result); |
594 | } else { |
595 | IntegerAttr iZp = rewriter.getI32IntegerAttr(inputZpVal); |
596 | IntegerAttr wZp = rewriter.getI32IntegerAttr(weightZpVal); |
597 | auto iZpVal = rewriter.create<arith::ConstantOp>(loc, iZp); |
598 | auto kZpVal = rewriter.create<arith::ConstantOp>(loc, wZp); |
599 | Value conv = |
600 | rewriter |
601 | .create<linalg::DepthwiseConv2DNhwcHwcmQOp>( |
602 | loc, linalgConvTy, ValueRange{input, weight, iZpVal, kZpVal}, |
603 | ValueRange{zeroTensor}, strideAttr, dilationAttr) |
604 | .getResult(0); |
605 | SmallVector<ReassociationExprs, 4> reassociationMap; |
606 | createDepthwiseConvCollapseMap(outputRank: resultRank, reassociationMap, rewriter); |
607 | Value convReshape = rewriter.create<tensor::CollapseShapeOp>( |
608 | loc, resultTy, conv, reassociationMap); |
609 | Value result = linalgIntBroadcastExtSIAdd( |
610 | rewriter, loc, bias, conv: convReshape, result: biasEmptyTensor, indexingMaps); |
611 | rewriter.replaceOp(op, result); |
612 | } |
613 | return success(); |
614 | } |
615 | }; |
616 | |
617 | class MatMulConverter : public OpConversionPattern<tosa::MatMulOp> { |
618 | public: |
619 | using OpConversionPattern<tosa::MatMulOp>::OpConversionPattern; |
620 | LogicalResult |
621 | matchAndRewrite(tosa::MatMulOp op, OpAdaptor adaptor, |
622 | ConversionPatternRewriter &rewriter) const final { |
623 | Location loc = op.getLoc(); |
624 | |
625 | auto outputTy = cast<ShapedType>(op.getType()); |
626 | auto outputElementTy = outputTy.getElementType(); |
627 | |
628 | SmallVector<Value> dynDims; |
629 | dynDims.resize(cast<ShapedType>(op->getResult(0).getType()).getRank()); |
630 | |
631 | if (!outputTy.hasRank() || outputTy.isDynamicDim(0)) { |
632 | dynDims[0] = rewriter.create<tensor::DimOp>(loc, op->getOperand(0), 0); |
633 | } |
634 | |
635 | if (!outputTy.hasRank() || outputTy.isDynamicDim(1)) { |
636 | dynDims[1] = rewriter.create<tensor::DimOp>(loc, op->getOperand(0), 1); |
637 | } |
638 | |
639 | if (!outputTy.hasRank() || outputTy.isDynamicDim(2)) { |
640 | dynDims[2] = rewriter.create<tensor::DimOp>(loc, op->getOperand(1), 2); |
641 | } |
642 | |
643 | SmallVector<Value> filteredDims = condenseValues(values: dynDims); |
644 | |
645 | auto zeroAttr = rewriter.getZeroAttr(type: outputElementTy); |
646 | Value zero = rewriter.create<arith::ConstantOp>(loc, zeroAttr); |
647 | auto emptyTensor = rewriter.create<tensor::EmptyOp>( |
648 | loc, outputTy.getShape(), outputTy.getElementType(), filteredDims); |
649 | Value zeroTensor = rewriter |
650 | .create<linalg::FillOp>(loc, ValueRange{zero}, |
651 | ValueRange{emptyTensor}) |
652 | .result(); |
653 | |
654 | FailureOr<int64_t> maybeAZp = op.getAZeroPoint(); |
655 | FailureOr<int64_t> maybeBZp = op.getBZeroPoint(); |
656 | if (failed(Result: maybeAZp)) |
657 | return rewriter.notifyMatchFailure( |
658 | op, "input a zero point cannot be statically determined"); |
659 | if (failed(Result: maybeBZp)) |
660 | return rewriter.notifyMatchFailure( |
661 | op, "input b zero point cannot be statically determined"); |
662 | |
663 | const int64_t aZpVal = *maybeAZp; |
664 | const int64_t bZpVal = *maybeBZp; |
665 | |
666 | if (op.verifyAZeroPoint(aZpVal).failed()) |
667 | return rewriter.notifyMatchFailure( |
668 | op, "input a zero point must be zero for non-int8 integer types"); |
669 | |
670 | if (op.verifyBZeroPoint(bZpVal).failed()) |
671 | return rewriter.notifyMatchFailure( |
672 | op, "input b zero point must be zero for non-int8 integer types"); |
673 | |
674 | if (aZpVal == 0 && bZpVal == 0) { |
675 | rewriter.replaceOpWithNewOp<linalg::BatchMatmulOp>( |
676 | op, TypeRange{op.getType()}, |
677 | ValueRange{adaptor.getA(), adaptor.getB()}, ValueRange{zeroTensor}); |
678 | return success(); |
679 | } |
680 | |
681 | auto aZp = rewriter.create<arith::ConstantOp>( |
682 | loc, rewriter.getI32IntegerAttr(aZpVal)); |
683 | auto bZp = rewriter.create<arith::ConstantOp>( |
684 | loc, rewriter.getI32IntegerAttr(bZpVal)); |
685 | rewriter.replaceOpWithNewOp<linalg::QuantizedBatchMatmulOp>( |
686 | op, TypeRange{op.getType()}, |
687 | ValueRange{adaptor.getA(), adaptor.getB(), aZp, bZp}, zeroTensor); |
688 | |
689 | return success(); |
690 | } |
691 | }; |
692 | |
693 | class MaxPool2dConverter : public OpConversionPattern<tosa::MaxPool2dOp> { |
694 | public: |
695 | using OpConversionPattern::OpConversionPattern; |
696 | |
697 | // Compute the dynamic output sizes of the maxpool operation. |
698 | static SmallVector<Value> |
699 | computeDynamicOutputSizes(tosa::MaxPool2dOp op, OpAdaptor adaptor, |
700 | ConversionPatternRewriter &rewriter) { |
701 | TensorType resultTy = op.getType(); |
702 | Location loc = op.getLoc(); |
703 | |
704 | Value input = adaptor.getInput(); |
705 | ArrayRef<int64_t> kernel = op.getKernel(); |
706 | ArrayRef<int64_t> pad = op.getPad(); |
707 | ArrayRef<int64_t> stride = op.getStride(); |
708 | |
709 | SmallVector<Value> dynamicDims; |
710 | |
711 | // Batch dimension |
712 | if (resultTy.isDynamicDim(0)) |
713 | dynamicDims.push_back(rewriter.create<tensor::DimOp>(loc, input, 0)); |
714 | |
715 | // Height/width dimensions |
716 | for (int64_t dim : {1, 2}) { |
717 | if (!resultTy.isDynamicDim(dim)) |
718 | continue; |
719 | |
720 | // Index into the attribute arrays |
721 | int64_t index = dim - 1; |
722 | |
723 | // Input height/width |
724 | Value ihw = rewriter.create<tensor::DimOp>(loc, input, dim); |
725 | |
726 | // Kernel height/width |
727 | Value khw = rewriter.create<arith::ConstantIndexOp>(location: loc, args: kernel[index]); |
728 | |
729 | // Output height/width |
730 | Value ohw = getConvOrPoolOutputDim(loc, inputDim: ihw, padBeforeAttr: pad[index * 2], |
731 | padAfterAttr: pad[index * 2 + 1], kernelDim: khw, strideAttr: stride[index], |
732 | /*dilationAttr=*/1, rewriter); |
733 | dynamicDims.push_back(Elt: ohw); |
734 | } |
735 | |
736 | // Channel dimension |
737 | if (resultTy.isDynamicDim(3)) |
738 | dynamicDims.push_back(rewriter.create<tensor::DimOp>(loc, input, 3)); |
739 | |
740 | return dynamicDims; |
741 | } |
742 | |
743 | LogicalResult |
744 | matchAndRewrite(tosa::MaxPool2dOp op, OpAdaptor adaptor, |
745 | ConversionPatternRewriter &rewriter) const final { |
746 | Location loc = op.getLoc(); |
747 | Value input = adaptor.getInput(); |
748 | ShapedType inputTy = cast<ShapedType>(input.getType()); |
749 | |
750 | bool isUnsigned = op.getType().getElementType().isUnsignedInteger(); |
751 | ShapedType resultTy = |
752 | cast<ShapedType>(getTypeConverter()->convertType(op.getType())); |
753 | if (!resultTy) |
754 | return rewriter.notifyMatchFailure(op, "failed to convert type"); |
755 | Type resultETy = inputTy.getElementType(); |
756 | |
757 | SmallVector<Value> dynamicDims = |
758 | computeDynamicOutputSizes(op, adaptor, rewriter); |
759 | |
760 | // Determine what the initial value needs to be for the max pool op. |
761 | TypedAttr initialAttr; |
762 | if (resultETy.isF32() || resultETy.isBF16() || resultETy.isF16()) |
763 | initialAttr = rewriter.getFloatAttr( |
764 | resultETy, APFloat::getLargest( |
765 | Sem: cast<FloatType>(resultETy).getFloatSemantics(), Negative: true)); |
766 | |
767 | else if (isUnsigned) |
768 | initialAttr = rewriter.getIntegerAttr( |
769 | resultETy, APInt::getZero(numBits: resultETy.getIntOrFloatBitWidth())); |
770 | else if (isa<IntegerType>(Val: resultETy)) |
771 | initialAttr = rewriter.getIntegerAttr( |
772 | resultETy, |
773 | APInt::getSignedMinValue(numBits: resultETy.getIntOrFloatBitWidth())); |
774 | |
775 | if (!initialAttr) |
776 | return rewriter.notifyMatchFailure( |
777 | op, "Unsupported initial value for tosa.maxpool_2d op"); |
778 | |
779 | // Apply padding as necessary. |
780 | llvm::SmallVector<int64_t> pad; |
781 | pad.resize(N: 2, NV: 0); |
782 | llvm::append_range(pad, op.getPad()); |
783 | pad.resize(N: pad.size() + 2, NV: 0); |
784 | |
785 | Value paddedInput = applyPad(loc, input, pad, initialAttr, rewriter); |
786 | |
787 | Value initialValue = rewriter.create<arith::ConstantOp>(loc, initialAttr); |
788 | |
789 | ArrayRef<int64_t> kernel = op.getKernel(); |
790 | ArrayRef<int64_t> stride = op.getStride(); |
791 | |
792 | Attribute strideAttr = rewriter.getI64VectorAttr(values: stride); |
793 | Attribute dilationAttr = rewriter.getI64VectorAttr(values: {1, 1}); |
794 | |
795 | // Create the linalg op that performs pooling. |
796 | Value emptyTensor = rewriter.create<tensor::EmptyOp>( |
797 | loc, resultTy.getShape(), resultTy.getElementType(), dynamicDims); |
798 | |
799 | Value filledEmptyTensor = |
800 | rewriter.create<linalg::FillOp>(loc, initialValue, emptyTensor) |
801 | .result(); |
802 | |
803 | Value fakeWindowDims = |
804 | rewriter.create<tensor::EmptyOp>(loc, kernel, resultETy); |
805 | |
806 | if (isUnsigned) { |
807 | rewriter.replaceOpWithNewOp<linalg::PoolingNhwcMaxUnsignedOp>( |
808 | op, ArrayRef<Type>{resultTy}, ValueRange{paddedInput, fakeWindowDims}, |
809 | filledEmptyTensor, strideAttr, dilationAttr); |
810 | return llvm::success(); |
811 | } |
812 | |
813 | auto resultOp = rewriter.create<linalg::PoolingNhwcMaxOp>( |
814 | op->getLoc(), ArrayRef<Type>{resultTy}, |
815 | ValueRange{paddedInput, fakeWindowDims}, filledEmptyTensor, strideAttr, |
816 | dilationAttr); |
817 | |
818 | rewriter.replaceOp(op, resultOp); |
819 | |
820 | // NaN propagation has no meaning for non floating point types. |
821 | if (!isa<FloatType>(getElementTypeOrSelf(inputTy))) |
822 | return success(); |
823 | |
824 | // "PROPAGATE" mode matches the behaviour of the LinAlg named op, so no |
825 | // compare and select materialization is required. |
826 | // |
827 | // In the case of "IGNORE" we need to insert a compare and select. Since |
828 | // we've already produced a named op we will just take its body and modify |
829 | // it to include the appropriate checks. If the current value is NaN the |
830 | // old value of pool will be taken otherwise we use the result. |
831 | if (const auto nanMode = op.getNanMode(); nanMode == "IGNORE") { |
832 | auto genericOp = rewriter.create<linalg::GenericOp>( |
833 | op->getLoc(), resultOp.getType(0), resultOp.getInputs(), |
834 | resultOp.getOutputs(), resultOp.getIndexingMapsArray(), |
835 | resultOp.getIteratorTypesArray(), |
836 | [&](OpBuilder &opBuilder, Location loc, ValueRange blockArgs) { |
837 | IRMapping map; |
838 | auto oldBlock = resultOp.getRegion().begin(); |
839 | auto oldArgs = oldBlock->getArguments(); |
840 | auto &oldMaxOp = *resultOp.getBlock()->begin(); |
841 | map.map(oldArgs, blockArgs); |
842 | auto *newOp = opBuilder.clone(oldMaxOp, map); |
843 | Value isNaN = opBuilder.create<arith::CmpFOp>( |
844 | op->getLoc(), arith::CmpFPredicate::UNO, blockArgs.front(), |
845 | blockArgs.front()); |
846 | auto selectOp = opBuilder.create<arith::SelectOp>( |
847 | op->getLoc(), isNaN, blockArgs.back(), newOp->getResult(0)); |
848 | opBuilder.create<linalg::YieldOp>(loc, selectOp.getResult()); |
849 | }); |
850 | rewriter.replaceOp(resultOp, genericOp); |
851 | } |
852 | |
853 | return success(); |
854 | } |
855 | }; |
856 | |
857 | class AvgPool2dConverter : public OpRewritePattern<tosa::AvgPool2dOp> { |
858 | public: |
859 | using OpRewritePattern<tosa::AvgPool2dOp>::OpRewritePattern; |
860 | |
861 | LogicalResult matchAndRewrite(tosa::AvgPool2dOp op, |
862 | PatternRewriter &rewriter) const final { |
863 | Location loc = op.getLoc(); |
864 | Value input = op.getInput(); |
865 | ShapedType inputTy = cast<ShapedType>(input.getType()); |
866 | Type inElementTy = inputTy.getElementType(); |
867 | |
868 | ShapedType resultTy = cast<ShapedType>(op.getType()); |
869 | Type resultETy = cast<ShapedType>(op.getType()).getElementType(); |
870 | |
871 | Type accETy = op.getAccType(); |
872 | ShapedType accTy = resultTy.clone(accETy); |
873 | |
874 | auto dynamicDimsOr = |
875 | checkHasDynamicBatchDims(rewriter, op, {input, op.getOutput()}); |
876 | if (!dynamicDimsOr.has_value()) |
877 | return failure(); |
878 | SmallVector<Value> dynamicDims = *dynamicDimsOr; |
879 | |
880 | FailureOr<int64_t> maybeIZp = op.getInputZeroPoint(); |
881 | FailureOr<int64_t> maybeOZp = op.getOutputZeroPoint(); |
882 | if (failed(Result: maybeIZp)) |
883 | return rewriter.notifyMatchFailure( |
884 | op, "input zero point could not be statically determined"); |
885 | if (failed(Result: maybeOZp)) |
886 | return rewriter.notifyMatchFailure( |
887 | op, "output zero point could not be statically determined"); |
888 | |
889 | const int64_t inputZpVal = *maybeIZp; |
890 | const int64_t outputZpVal = *maybeOZp; |
891 | |
892 | // Apply padding as necessary. |
893 | llvm::SmallVector<int64_t> pad; |
894 | pad.resize(N: 2, NV: 0); |
895 | llvm::append_range(pad, op.getPad()); |
896 | pad.resize(N: pad.size() + 2, NV: 0); |
897 | TypedAttr padAttr = rewriter.getZeroAttr(inElementTy); |
898 | // Unsupported element type |
899 | if (!padAttr) |
900 | return failure(); |
901 | Value paddedInput = applyPad(loc, input, pad, padAttr, rewriter); |
902 | |
903 | auto initialAttr = rewriter.getZeroAttr(accETy); |
904 | Value initialValue = rewriter.create<arith::ConstantOp>(loc, initialAttr); |
905 | |
906 | ArrayRef<int64_t> kernel = op.getKernel(); |
907 | ArrayRef<int64_t> stride = op.getStride(); |
908 | |
909 | Attribute strideAttr = rewriter.getI64VectorAttr(values: stride); |
910 | Attribute dilationAttr = rewriter.getI64VectorAttr(values: {1, 1}); |
911 | |
912 | // Create the linalg op that performs pooling. |
913 | Value poolEmptyTensor = rewriter.create<tensor::EmptyOp>( |
914 | loc, accTy.getShape(), accETy, dynamicDims); |
915 | |
916 | Value filledEmptyTensor = |
917 | rewriter |
918 | .create<linalg::FillOp>(loc, ValueRange{initialValue}, |
919 | ValueRange{poolEmptyTensor}) |
920 | .result(); |
921 | |
922 | Value fakeWindowDims = |
923 | rewriter.create<tensor::EmptyOp>(loc, kernel, accETy); |
924 | |
925 | // Sum across the pooled region. |
926 | Value poolingOp = rewriter |
927 | .create<linalg::PoolingNhwcSumOp>( |
928 | loc, ArrayRef<Type>{accTy}, |
929 | ValueRange{paddedInput, fakeWindowDims}, |
930 | filledEmptyTensor, strideAttr, dilationAttr) |
931 | .getResult(0); |
932 | |
933 | // Normalize the summed value by the number of elements grouped in each |
934 | // pool. |
935 | Value iH = rewriter.create<tensor::DimOp>(loc, poolingOp, 1); |
936 | Value iW = rewriter.create<tensor::DimOp>(loc, poolingOp, 2); |
937 | |
938 | auto one = rewriter.create<arith::ConstantIndexOp>(location: loc, args: 1); |
939 | iH = rewriter.create<arith::SubIOp>(loc, iH, one); |
940 | iW = rewriter.create<arith::SubIOp>(loc, iW, one); |
941 | |
942 | Value genericEmptyTensor = rewriter.create<tensor::EmptyOp>( |
943 | loc, resultTy.getShape(), resultETy, dynamicDims); |
944 | |
945 | auto affineMap = rewriter.getMultiDimIdentityMap(rank: resultTy.getRank()); |
946 | auto genericOp = rewriter.create<linalg::GenericOp>( |
947 | loc, ArrayRef<Type>({resultTy}), ValueRange{poolingOp}, |
948 | ValueRange{genericEmptyTensor}, |
949 | ArrayRef<AffineMap>({affineMap, affineMap}), |
950 | getNParallelLoopsAttrs(resultTy.getRank()), |
951 | [&](OpBuilder &b, Location loc, ValueRange args) { |
952 | auto zero = rewriter.create<arith::ConstantIndexOp>(loc, 0); |
953 | |
954 | // Determines what the portion of valid input is covered by the |
955 | // kernel. |
956 | auto padFn = [&](Value valid, Value pos, int64_t pad) -> Value { |
957 | if (pad == 0) |
958 | return valid; |
959 | |
960 | auto padVal = rewriter.create<arith::ConstantIndexOp>(loc, pad); |
961 | Value dpos = rewriter.create<arith::SubIOp>(loc, pos, padVal); |
962 | |
963 | Value offset = rewriter.create<arith::MinSIOp>(loc, dpos, zero); |
964 | return rewriter.create<arith::AddIOp>(loc, valid, offset) |
965 | ->getResult(0); |
966 | }; |
967 | |
968 | auto coverageFn = [&](int64_t i, Value isize) -> Value { |
969 | Value strideVal = |
970 | rewriter.create<arith::ConstantIndexOp>(loc, stride[i - 1]); |
971 | Value val = |
972 | rewriter.create<arith::ConstantIndexOp>(loc, kernel[i - 1]); |
973 | |
974 | // Find the position relative to the input tensor's ends. |
975 | Value left = rewriter.create<linalg::IndexOp>(loc, i); |
976 | Value right = rewriter.create<arith::SubIOp>(loc, isize, left); |
977 | left = rewriter.create<arith::MulIOp>(loc, left, strideVal); |
978 | right = rewriter.create<arith::MulIOp>(loc, right, strideVal); |
979 | |
980 | // Determine how much padding was included. |
981 | val = padFn(val, left, pad[i * 2]); |
982 | val = padFn(val, right, pad[i * 2 + 1]); |
983 | return rewriter.create<arith::MaxSIOp>(loc, one, val); |
984 | }; |
985 | |
986 | // Compute the indices from either end. |
987 | Value kH3 = coverageFn(1, iH); |
988 | Value kW3 = coverageFn(2, iW); |
989 | |
990 | // Compute the total number of elements and normalize. |
991 | auto count = rewriter.create<arith::IndexCastOp>( |
992 | loc, rewriter.getI32Type(), |
993 | rewriter.create<arith::MulIOp>(loc, kH3, kW3)); |
994 | |
995 | // Divide by the number of summed values. For floats this is just |
996 | // a div however for quantized values input normalization had |
997 | // to be applied. |
998 | Value poolVal = args[0]; |
999 | if (isa<FloatType>(accETy)) { |
1000 | auto countF = rewriter.create<arith::SIToFPOp>(loc, accETy, count); |
1001 | poolVal = rewriter.create<arith::DivFOp>(loc, poolVal, countF) |
1002 | ->getResult(0); |
1003 | if (accETy.getIntOrFloatBitWidth() > |
1004 | resultETy.getIntOrFloatBitWidth()) |
1005 | poolVal = |
1006 | rewriter.create<arith::TruncFOp>(loc, resultETy, poolVal); |
1007 | } else { |
1008 | |
1009 | // If we have quantization information we need to apply an offset |
1010 | // for the input zp value. |
1011 | if (inputZpVal != 0) { |
1012 | auto inputZp = rewriter.create<arith::ConstantOp>( |
1013 | loc, b.getIntegerAttr(accETy, inputZpVal)); |
1014 | Value offset = |
1015 | rewriter.create<arith::MulIOp>(loc, accETy, count, inputZp); |
1016 | poolVal = |
1017 | rewriter.create<arith::SubIOp>(loc, accETy, poolVal, offset); |
1018 | } |
1019 | |
1020 | // Compute: k = 32 - count_leading_zeros(value - 1) |
1021 | Value one32 = rewriter.create<arith::ConstantOp>( |
1022 | loc, rewriter.getI32IntegerAttr(1)); |
1023 | Value thirtyTwo32 = rewriter.create<arith::ConstantOp>( |
1024 | loc, rewriter.getI32IntegerAttr(32)); |
1025 | |
1026 | Value countSubOne = |
1027 | rewriter.create<arith::SubIOp>(loc, count, one32); |
1028 | Value leadingZeros = |
1029 | rewriter.create<math::CountLeadingZerosOp>(loc, countSubOne); |
1030 | Value k = |
1031 | rewriter.create<arith::SubIOp>(loc, thirtyTwo32, leadingZeros); |
1032 | |
1033 | // Compute: numerator = ((1 << 30) + 1) << k |
1034 | Value k64 = |
1035 | rewriter.create<arith::ExtUIOp>(loc, rewriter.getI64Type(), k); |
1036 | Value thirtyShiftPlusOne = rewriter.create<arith::ConstantOp>( |
1037 | loc, rewriter.getI64IntegerAttr((1 << 30) + 1)); |
1038 | Value numerator = |
1039 | rewriter.create<arith::ShLIOp>(loc, thirtyShiftPlusOne, k64); |
1040 | |
1041 | // Compute: scale.multiplier = numerator / value; |
1042 | Value count64 = rewriter.create<arith::ExtUIOp>( |
1043 | loc, rewriter.getI64Type(), count); |
1044 | Value multiplier = |
1045 | rewriter.create<arith::DivUIOp>(loc, numerator, count64); |
1046 | multiplier = rewriter.create<arith::TruncIOp>( |
1047 | loc, rewriter.getI32Type(), multiplier); |
1048 | |
1049 | // Compute: scale.shift = 30 + k |
1050 | Value k8 = |
1051 | rewriter.create<arith::TruncIOp>(loc, rewriter.getI8Type(), k); |
1052 | Value thirty8 = rewriter.create<arith::ConstantOp>( |
1053 | loc, rewriter.getI8IntegerAttr(30)); |
1054 | Value shift = rewriter.create<arith::AddIOp>(loc, k8, thirty8); |
1055 | |
1056 | auto scaled = |
1057 | rewriter |
1058 | .create<tosa::ApplyScaleOp>( |
1059 | loc, rewriter.getI32Type(), poolVal, multiplier, shift, |
1060 | rewriter.getStringAttr("SINGLE_ROUND")) |
1061 | .getResult(); |
1062 | |
1063 | // If we have quantization information we need to apply output |
1064 | // zeropoint. |
1065 | if (outputZpVal != 0) { |
1066 | auto outputZp = rewriter.create<arith::ConstantOp>( |
1067 | loc, b.getIntegerAttr(scaled.getType(), outputZpVal)); |
1068 | scaled = rewriter.create<arith::AddIOp>(loc, scaled, outputZp) |
1069 | .getResult(); |
1070 | } |
1071 | |
1072 | // Apply Clip. |
1073 | int64_t outBitwidth = resultETy.getIntOrFloatBitWidth(); |
1074 | |
1075 | auto min = rewriter.create<arith::ConstantIntOp>( |
1076 | loc, APInt::getSignedMinValue(outBitwidth).getSExtValue(), |
1077 | accETy); |
1078 | auto max = rewriter.create<arith::ConstantIntOp>( |
1079 | loc, APInt::getSignedMaxValue(outBitwidth).getSExtValue(), |
1080 | accETy); |
1081 | auto clamp = clampIntHelper(loc, scaled, min, max, rewriter, |
1082 | /*isUnsigned=*/false); |
1083 | |
1084 | poolVal = clamp; |
1085 | // Convert type. |
1086 | if (resultETy != clamp.getType()) { |
1087 | poolVal = |
1088 | rewriter.create<arith::TruncIOp>(loc, resultETy, poolVal); |
1089 | } |
1090 | } |
1091 | |
1092 | rewriter.create<linalg::YieldOp>(loc, poolVal); |
1093 | }); |
1094 | |
1095 | rewriter.replaceOp(op, genericOp.getResult(0)); |
1096 | return success(); |
1097 | } |
1098 | }; |
1099 | |
1100 | class TransposeConverter : public OpRewritePattern<tosa::TransposeOp> { |
1101 | public: |
1102 | using OpRewritePattern<tosa::TransposeOp>::OpRewritePattern; |
1103 | |
1104 | LogicalResult matchAndRewrite(tosa::TransposeOp op, |
1105 | PatternRewriter &rewriter) const final { |
1106 | const llvm::ArrayRef<int32_t> constantPerms = op.getPerms(); |
1107 | |
1108 | Location loc = op.getLoc(); |
1109 | // The verifier should have made sure we have a valid TOSA permutation |
1110 | // tensor. isPermutationVector doesn't actually check the TOSA perms we |
1111 | // expect. |
1112 | SmallVector<OpFoldResult> inputSizes = |
1113 | tensor::getMixedSizes(builder&: rewriter, loc, value: op.getInput1()); |
1114 | auto permutedSizes = |
1115 | applyTOSAPermutation<OpFoldResult>(input: inputSizes, perms: constantPerms); |
1116 | |
1117 | auto permutedInit = rewriter.create<tensor::EmptyOp>( |
1118 | loc, permutedSizes, op.getInput1().getType().getElementType()); |
1119 | rewriter.replaceOpWithNewOp<linalg::TransposeOp>( |
1120 | op, op.getInput1(), permutedInit, |
1121 | llvm::to_vector(llvm::map_range( |
1122 | constantPerms, [](int32_t v) -> int64_t { return v; }))); |
1123 | return success(); |
1124 | } |
1125 | }; |
1126 | } // namespace |
1127 | |
1128 | void mlir::tosa::populateTosaToLinalgNamedConversionPatterns( |
1129 | const TypeConverter &converter, RewritePatternSet *patterns, |
1130 | const TosaToLinalgNamedOptions &options) { |
1131 | if (options.preferConv2DKernelLayoutHWCF) { |
1132 | patterns->add<ConvConverter<tosa::Conv2DOp, linalg::Conv2DNhwcHwcfOp, |
1133 | linalg::Conv2DNhwcHwcfQOp>>( |
1134 | patterns->getContext()); |
1135 | } else { |
1136 | patterns->add<ConvConverter<tosa::Conv2DOp, linalg::Conv2DNhwcFhwcOp, |
1137 | linalg::Conv2DNhwcFhwcQOp>>( |
1138 | patterns->getContext()); |
1139 | } |
1140 | patterns->add< |
1141 | // clang-format off |
1142 | ConvConverter<tosa::Conv3DOp, linalg::Conv3DNdhwcDhwcfOp, linalg::Conv3DNdhwcDhwcfQOp>, |
1143 | DepthwiseConvConverter, |
1144 | MatMulConverter, |
1145 | AvgPool2dConverter, |
1146 | TransposeConverter |
1147 | >(patterns->getContext()); |
1148 | |
1149 | patterns->add< |
1150 | MaxPool2dConverter |
1151 | >(arg: converter, args: patterns->getContext()); |
1152 | // clang-format on |
1153 | } |
1154 |
Definitions
- applyPad
- linalgIntBroadcastExtSIAdd
- getBroadcastingMap
- linalgBroadcastAndMaybeExt
- reifyConstantDim
- getConvOrPoolOutputDim
- inferDynamicDimsForConv
- createDepthwiseConvCollapseMap
- ConvConverter
- matchAndRewrite
- DepthwiseConvConverter
- matchAndRewrite
- MatMulConverter
- matchAndRewrite
- MaxPool2dConverter
- computeDynamicOutputSizes
- matchAndRewrite
- AvgPool2dConverter
- matchAndRewrite
- TransposeConverter
- matchAndRewrite
Update your C++ knowledge – Modern C++11/14/17 Training
Find out more