1 | //===- AffineOps.cpp - MLIR Affine Operations -----------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "mlir/Dialect/Affine/IR/AffineOps.h" |
10 | #include "mlir/Dialect/Affine/IR/AffineValueMap.h" |
11 | #include "mlir/Dialect/MemRef/IR/MemRef.h" |
12 | #include "mlir/Dialect/UB/IR/UBOps.h" |
13 | #include "mlir/Dialect/Utils/StaticValueUtils.h" |
14 | #include "mlir/IR/AffineExprVisitor.h" |
15 | #include "mlir/IR/IRMapping.h" |
16 | #include "mlir/IR/IntegerSet.h" |
17 | #include "mlir/IR/Matchers.h" |
18 | #include "mlir/IR/OpDefinition.h" |
19 | #include "mlir/IR/PatternMatch.h" |
20 | #include "mlir/Interfaces/ShapedOpInterfaces.h" |
21 | #include "mlir/Interfaces/ValueBoundsOpInterface.h" |
22 | #include "mlir/Transforms/InliningUtils.h" |
23 | #include "llvm/ADT/STLExtras.h" |
24 | #include "llvm/ADT/ScopeExit.h" |
25 | #include "llvm/ADT/SmallBitVector.h" |
26 | #include "llvm/ADT/SmallVectorExtras.h" |
27 | #include "llvm/ADT/TypeSwitch.h" |
28 | #include "llvm/Support/Debug.h" |
29 | #include "llvm/Support/MathExtras.h" |
30 | #include <numeric> |
31 | #include <optional> |
32 | |
33 | using namespace mlir; |
34 | using namespace mlir::affine; |
35 | |
36 | using llvm::divideCeilSigned; |
37 | using llvm::divideFloorSigned; |
38 | using llvm::mod; |
39 | |
40 | #define DEBUG_TYPE "affine-ops" |
41 | |
42 | #include "mlir/Dialect/Affine/IR/AffineOpsDialect.cpp.inc" |
43 | |
44 | /// A utility function to check if a value is defined at the top level of |
45 | /// `region` or is an argument of `region`. A value of index type defined at the |
46 | /// top level of a `AffineScope` region is always a valid symbol for all |
47 | /// uses in that region. |
48 | bool mlir::affine::isTopLevelValue(Value value, Region *region) { |
49 | if (auto arg = llvm::dyn_cast<BlockArgument>(value)) |
50 | return arg.getParentRegion() == region; |
51 | return value.getDefiningOp()->getParentRegion() == region; |
52 | } |
53 | |
54 | /// Checks if `value` known to be a legal affine dimension or symbol in `src` |
55 | /// region remains legal if the operation that uses it is inlined into `dest` |
56 | /// with the given value mapping. `legalityCheck` is either `isValidDim` or |
57 | /// `isValidSymbol`, depending on the value being required to remain a valid |
58 | /// dimension or symbol. |
59 | static bool |
60 | remainsLegalAfterInline(Value value, Region *src, Region *dest, |
61 | const IRMapping &mapping, |
62 | function_ref<bool(Value, Region *)> legalityCheck) { |
63 | // If the value is a valid dimension for any other reason than being |
64 | // a top-level value, it will remain valid: constants get inlined |
65 | // with the function, transitive affine applies also get inlined and |
66 | // will be checked themselves, etc. |
67 | if (!isTopLevelValue(value, region: src)) |
68 | return true; |
69 | |
70 | // If it's a top-level value because it's a block operand, i.e. a |
71 | // function argument, check whether the value replacing it after |
72 | // inlining is a valid dimension in the new region. |
73 | if (llvm::isa<BlockArgument>(Val: value)) |
74 | return legalityCheck(mapping.lookup(from: value), dest); |
75 | |
76 | // If it's a top-level value because it's defined in the region, |
77 | // it can only be inlined if the defining op is a constant or a |
78 | // `dim`, which can appear anywhere and be valid, since the defining |
79 | // op won't be top-level anymore after inlining. |
80 | Attribute operandCst; |
81 | bool isDimLikeOp = isa<ShapedDimOpInterface>(value.getDefiningOp()); |
82 | return matchPattern(op: value.getDefiningOp(), pattern: m_Constant(bind_value: &operandCst)) || |
83 | isDimLikeOp; |
84 | } |
85 | |
86 | /// Checks if all values known to be legal affine dimensions or symbols in `src` |
87 | /// remain so if their respective users are inlined into `dest`. |
88 | static bool |
89 | remainsLegalAfterInline(ValueRange values, Region *src, Region *dest, |
90 | const IRMapping &mapping, |
91 | function_ref<bool(Value, Region *)> legalityCheck) { |
92 | return llvm::all_of(Range&: values, P: [&](Value v) { |
93 | return remainsLegalAfterInline(value: v, src, dest, mapping, legalityCheck); |
94 | }); |
95 | } |
96 | |
97 | /// Checks if an affine read or write operation remains legal after inlining |
98 | /// from `src` to `dest`. |
99 | template <typename OpTy> |
100 | static bool remainsLegalAfterInline(OpTy op, Region *src, Region *dest, |
101 | const IRMapping &mapping) { |
102 | static_assert(llvm::is_one_of<OpTy, AffineReadOpInterface, |
103 | AffineWriteOpInterface>::value, |
104 | "only ops with affine read/write interface are supported" ); |
105 | |
106 | AffineMap map = op.getAffineMap(); |
107 | ValueRange dimOperands = op.getMapOperands().take_front(map.getNumDims()); |
108 | ValueRange symbolOperands = |
109 | op.getMapOperands().take_back(map.getNumSymbols()); |
110 | if (!remainsLegalAfterInline( |
111 | values: dimOperands, src, dest, mapping, |
112 | legalityCheck: static_cast<bool (*)(Value, Region *)>(isValidDim))) |
113 | return false; |
114 | if (!remainsLegalAfterInline( |
115 | values: symbolOperands, src, dest, mapping, |
116 | legalityCheck: static_cast<bool (*)(Value, Region *)>(isValidSymbol))) |
117 | return false; |
118 | return true; |
119 | } |
120 | |
121 | /// Checks if an affine apply operation remains legal after inlining from `src` |
122 | /// to `dest`. |
123 | // Use "unused attribute" marker to silence clang-tidy warning stemming from |
124 | // the inability to see through "llvm::TypeSwitch". |
125 | template <> |
126 | bool LLVM_ATTRIBUTE_UNUSED remainsLegalAfterInline(AffineApplyOp op, |
127 | Region *src, Region *dest, |
128 | const IRMapping &mapping) { |
129 | // If it's a valid dimension, we need to check that it remains so. |
130 | if (isValidDim(op.getResult(), src)) |
131 | return remainsLegalAfterInline( |
132 | op.getMapOperands(), src, dest, mapping, |
133 | static_cast<bool (*)(Value, Region *)>(isValidDim)); |
134 | |
135 | // Otherwise it must be a valid symbol, check that it remains so. |
136 | return remainsLegalAfterInline( |
137 | op.getMapOperands(), src, dest, mapping, |
138 | static_cast<bool (*)(Value, Region *)>(isValidSymbol)); |
139 | } |
140 | |
141 | //===----------------------------------------------------------------------===// |
142 | // AffineDialect Interfaces |
143 | //===----------------------------------------------------------------------===// |
144 | |
145 | namespace { |
146 | /// This class defines the interface for handling inlining with affine |
147 | /// operations. |
148 | struct AffineInlinerInterface : public DialectInlinerInterface { |
149 | using DialectInlinerInterface::DialectInlinerInterface; |
150 | |
151 | //===--------------------------------------------------------------------===// |
152 | // Analysis Hooks |
153 | //===--------------------------------------------------------------------===// |
154 | |
155 | /// Returns true if the given region 'src' can be inlined into the region |
156 | /// 'dest' that is attached to an operation registered to the current dialect. |
157 | /// 'wouldBeCloned' is set if the region is cloned into its new location |
158 | /// rather than moved, indicating there may be other users. |
159 | bool isLegalToInline(Region *dest, Region *src, bool wouldBeCloned, |
160 | IRMapping &valueMapping) const final { |
161 | // We can inline into affine loops and conditionals if this doesn't break |
162 | // affine value categorization rules. |
163 | Operation *destOp = dest->getParentOp(); |
164 | if (!isa<AffineParallelOp, AffineForOp, AffineIfOp>(destOp)) |
165 | return false; |
166 | |
167 | // Multi-block regions cannot be inlined into affine constructs, all of |
168 | // which require single-block regions. |
169 | if (!llvm::hasSingleElement(C&: *src)) |
170 | return false; |
171 | |
172 | // Side-effecting operations that the affine dialect cannot understand |
173 | // should not be inlined. |
174 | Block &srcBlock = src->front(); |
175 | for (Operation &op : srcBlock) { |
176 | // Ops with no side effects are fine, |
177 | if (auto iface = dyn_cast<MemoryEffectOpInterface>(op)) { |
178 | if (iface.hasNoEffect()) |
179 | continue; |
180 | } |
181 | |
182 | // Assuming the inlined region is valid, we only need to check if the |
183 | // inlining would change it. |
184 | bool remainsValid = |
185 | llvm::TypeSwitch<Operation *, bool>(&op) |
186 | .Case<AffineApplyOp, AffineReadOpInterface, |
187 | AffineWriteOpInterface>([&](auto op) { |
188 | return remainsLegalAfterInline(op, src, dest, valueMapping); |
189 | }) |
190 | .Default([](Operation *) { |
191 | // Conservatively disallow inlining ops we cannot reason about. |
192 | return false; |
193 | }); |
194 | |
195 | if (!remainsValid) |
196 | return false; |
197 | } |
198 | |
199 | return true; |
200 | } |
201 | |
202 | /// Returns true if the given operation 'op', that is registered to this |
203 | /// dialect, can be inlined into the given region, false otherwise. |
204 | bool isLegalToInline(Operation *op, Region *region, bool wouldBeCloned, |
205 | IRMapping &valueMapping) const final { |
206 | // Always allow inlining affine operations into a region that is marked as |
207 | // affine scope, or into affine loops and conditionals. There are some edge |
208 | // cases when inlining *into* affine structures, but that is handled in the |
209 | // other 'isLegalToInline' hook above. |
210 | Operation *parentOp = region->getParentOp(); |
211 | return parentOp->hasTrait<OpTrait::AffineScope>() || |
212 | isa<AffineForOp, AffineParallelOp, AffineIfOp>(parentOp); |
213 | } |
214 | |
215 | /// Affine regions should be analyzed recursively. |
216 | bool shouldAnalyzeRecursively(Operation *op) const final { return true; } |
217 | }; |
218 | } // namespace |
219 | |
220 | //===----------------------------------------------------------------------===// |
221 | // AffineDialect |
222 | //===----------------------------------------------------------------------===// |
223 | |
224 | void AffineDialect::initialize() { |
225 | addOperations<AffineDmaStartOp, AffineDmaWaitOp, |
226 | #define GET_OP_LIST |
227 | #include "mlir/Dialect/Affine/IR/AffineOps.cpp.inc" |
228 | >(); |
229 | addInterfaces<AffineInlinerInterface>(); |
230 | declarePromisedInterfaces<ValueBoundsOpInterface, AffineApplyOp, AffineMaxOp, |
231 | AffineMinOp>(); |
232 | } |
233 | |
234 | /// Materialize a single constant operation from a given attribute value with |
235 | /// the desired resultant type. |
236 | Operation *AffineDialect::materializeConstant(OpBuilder &builder, |
237 | Attribute value, Type type, |
238 | Location loc) { |
239 | if (auto poison = dyn_cast<ub::PoisonAttr>(value)) |
240 | return builder.create<ub::PoisonOp>(loc, type, poison); |
241 | return arith::ConstantOp::materialize(builder, value, type, loc); |
242 | } |
243 | |
244 | /// A utility function to check if a value is defined at the top level of an |
245 | /// op with trait `AffineScope`. If the value is defined in an unlinked region, |
246 | /// conservatively assume it is not top-level. A value of index type defined at |
247 | /// the top level is always a valid symbol. |
248 | bool mlir::affine::isTopLevelValue(Value value) { |
249 | if (auto arg = llvm::dyn_cast<BlockArgument>(value)) { |
250 | // The block owning the argument may be unlinked, e.g. when the surrounding |
251 | // region has not yet been attached to an Op, at which point the parent Op |
252 | // is null. |
253 | Operation *parentOp = arg.getOwner()->getParentOp(); |
254 | return parentOp && parentOp->hasTrait<OpTrait::AffineScope>(); |
255 | } |
256 | // The defining Op may live in an unlinked block so its parent Op may be null. |
257 | Operation *parentOp = value.getDefiningOp()->getParentOp(); |
258 | return parentOp && parentOp->hasTrait<OpTrait::AffineScope>(); |
259 | } |
260 | |
261 | /// Returns the closest region enclosing `op` that is held by an operation with |
262 | /// trait `AffineScope`; `nullptr` if there is no such region. |
263 | Region *mlir::affine::getAffineScope(Operation *op) { |
264 | auto *curOp = op; |
265 | while (auto *parentOp = curOp->getParentOp()) { |
266 | if (parentOp->hasTrait<OpTrait::AffineScope>()) |
267 | return curOp->getParentRegion(); |
268 | curOp = parentOp; |
269 | } |
270 | return nullptr; |
271 | } |
272 | |
273 | Region *mlir::affine::getAffineAnalysisScope(Operation *op) { |
274 | Operation *curOp = op; |
275 | while (auto *parentOp = curOp->getParentOp()) { |
276 | if (!isa<AffineForOp, AffineIfOp, AffineParallelOp>(parentOp)) |
277 | return curOp->getParentRegion(); |
278 | curOp = parentOp; |
279 | } |
280 | return nullptr; |
281 | } |
282 | |
283 | // A Value can be used as a dimension id iff it meets one of the following |
284 | // conditions: |
285 | // *) It is valid as a symbol. |
286 | // *) It is an induction variable. |
287 | // *) It is the result of affine apply operation with dimension id arguments. |
288 | bool mlir::affine::isValidDim(Value value) { |
289 | // The value must be an index type. |
290 | if (!value.getType().isIndex()) |
291 | return false; |
292 | |
293 | if (auto *defOp = value.getDefiningOp()) |
294 | return isValidDim(value, region: getAffineScope(op: defOp)); |
295 | |
296 | // This value has to be a block argument for an op that has the |
297 | // `AffineScope` trait or an induction var of an affine.for or |
298 | // affine.parallel. |
299 | if (isAffineInductionVar(val: value)) |
300 | return true; |
301 | auto *parentOp = llvm::cast<BlockArgument>(Val&: value).getOwner()->getParentOp(); |
302 | return parentOp && parentOp->hasTrait<OpTrait::AffineScope>(); |
303 | } |
304 | |
305 | // Value can be used as a dimension id iff it meets one of the following |
306 | // conditions: |
307 | // *) It is valid as a symbol. |
308 | // *) It is an induction variable. |
309 | // *) It is the result of an affine apply operation with dimension id operands. |
310 | // *) It is the result of a more specialized index transformation (ex. |
311 | // delinearize_index or linearize_index) with dimension id operands. |
312 | bool mlir::affine::isValidDim(Value value, Region *region) { |
313 | // The value must be an index type. |
314 | if (!value.getType().isIndex()) |
315 | return false; |
316 | |
317 | // All valid symbols are okay. |
318 | if (isValidSymbol(value, region)) |
319 | return true; |
320 | |
321 | auto *op = value.getDefiningOp(); |
322 | if (!op) { |
323 | // This value has to be an induction var for an affine.for or an |
324 | // affine.parallel. |
325 | return isAffineInductionVar(val: value); |
326 | } |
327 | |
328 | // Affine apply operation is ok if all of its operands are ok. |
329 | if (auto applyOp = dyn_cast<AffineApplyOp>(op)) |
330 | return applyOp.isValidDim(region); |
331 | // delinearize_index and linearize_index are special forms of apply |
332 | // and so are valid dimensions if all their arguments are valid dimensions. |
333 | if (isa<AffineDelinearizeIndexOp, AffineLinearizeIndexOp>(op)) |
334 | return llvm::all_of(Range: op->getOperands(), |
335 | P: [&](Value arg) { return ::isValidDim(value: arg, region); }); |
336 | // The dim op is okay if its operand memref/tensor is defined at the top |
337 | // level. |
338 | if (auto dimOp = dyn_cast<ShapedDimOpInterface>(op)) |
339 | return isTopLevelValue(dimOp.getShapedValue()); |
340 | return false; |
341 | } |
342 | |
343 | /// Returns true if the 'index' dimension of the `memref` defined by |
344 | /// `memrefDefOp` is a statically shaped one or defined using a valid symbol |
345 | /// for `region`. |
346 | template <typename AnyMemRefDefOp> |
347 | static bool isMemRefSizeValidSymbol(AnyMemRefDefOp memrefDefOp, unsigned index, |
348 | Region *region) { |
349 | MemRefType memRefType = memrefDefOp.getType(); |
350 | |
351 | // Dimension index is out of bounds. |
352 | if (index >= memRefType.getRank()) { |
353 | return false; |
354 | } |
355 | |
356 | // Statically shaped. |
357 | if (!memRefType.isDynamicDim(index)) |
358 | return true; |
359 | // Get the position of the dimension among dynamic dimensions; |
360 | unsigned dynamicDimPos = memRefType.getDynamicDimIndex(index); |
361 | return isValidSymbol(*(memrefDefOp.getDynamicSizes().begin() + dynamicDimPos), |
362 | region); |
363 | } |
364 | |
365 | /// Returns true if the result of the dim op is a valid symbol for `region`. |
366 | static bool isDimOpValidSymbol(ShapedDimOpInterface dimOp, Region *region) { |
367 | // The dim op is okay if its source is defined at the top level. |
368 | if (isTopLevelValue(dimOp.getShapedValue())) |
369 | return true; |
370 | |
371 | // Conservatively handle remaining BlockArguments as non-valid symbols. |
372 | // E.g. scf.for iterArgs. |
373 | if (llvm::isa<BlockArgument>(dimOp.getShapedValue())) |
374 | return false; |
375 | |
376 | // The dim op is also okay if its operand memref is a view/subview whose |
377 | // corresponding size is a valid symbol. |
378 | std::optional<int64_t> index = getConstantIntValue(dimOp.getDimension()); |
379 | |
380 | // Be conservative if we can't understand the dimension. |
381 | if (!index.has_value()) |
382 | return false; |
383 | |
384 | // Skip over all memref.cast ops (if any). |
385 | Operation *op = dimOp.getShapedValue().getDefiningOp(); |
386 | while (auto castOp = dyn_cast<memref::CastOp>(op)) { |
387 | // Bail on unranked memrefs. |
388 | if (isa<UnrankedMemRefType>(castOp.getSource().getType())) |
389 | return false; |
390 | op = castOp.getSource().getDefiningOp(); |
391 | if (!op) |
392 | return false; |
393 | } |
394 | |
395 | int64_t i = index.value(); |
396 | return TypeSwitch<Operation *, bool>(op) |
397 | .Case<memref::ViewOp, memref::SubViewOp, memref::AllocOp>( |
398 | [&](auto op) { return isMemRefSizeValidSymbol(op, i, region); }) |
399 | .Default([](Operation *) { return false; }); |
400 | } |
401 | |
402 | // A value can be used as a symbol (at all its use sites) iff it meets one of |
403 | // the following conditions: |
404 | // *) It is a constant. |
405 | // *) Its defining op or block arg appearance is immediately enclosed by an op |
406 | // with `AffineScope` trait. |
407 | // *) It is the result of an affine.apply operation with symbol operands. |
408 | // *) It is a result of the dim op on a memref whose corresponding size is a |
409 | // valid symbol. |
410 | bool mlir::affine::isValidSymbol(Value value) { |
411 | if (!value) |
412 | return false; |
413 | |
414 | // The value must be an index type. |
415 | if (!value.getType().isIndex()) |
416 | return false; |
417 | |
418 | // Check that the value is a top level value. |
419 | if (isTopLevelValue(value)) |
420 | return true; |
421 | |
422 | if (auto *defOp = value.getDefiningOp()) |
423 | return isValidSymbol(value, region: getAffineScope(op: defOp)); |
424 | |
425 | return false; |
426 | } |
427 | |
428 | /// A value can be used as a symbol for `region` iff it meets one of the |
429 | /// following conditions: |
430 | /// *) It is a constant. |
431 | /// *) It is a result of a `Pure` operation whose operands are valid symbolic |
432 | /// *) identifiers. |
433 | /// *) It is a result of the dim op on a memref whose corresponding size is |
434 | /// a valid symbol. |
435 | /// *) It is defined at the top level of 'region' or is its argument. |
436 | /// *) It dominates `region`'s parent op. |
437 | /// If `region` is null, conservatively assume the symbol definition scope does |
438 | /// not exist and only accept the values that would be symbols regardless of |
439 | /// the surrounding region structure, i.e. the first three cases above. |
440 | bool mlir::affine::isValidSymbol(Value value, Region *region) { |
441 | // The value must be an index type. |
442 | if (!value.getType().isIndex()) |
443 | return false; |
444 | |
445 | // A top-level value is a valid symbol. |
446 | if (region && ::isTopLevelValue(value, region)) |
447 | return true; |
448 | |
449 | auto *defOp = value.getDefiningOp(); |
450 | if (!defOp) { |
451 | // A block argument that is not a top-level value is a valid symbol if it |
452 | // dominates region's parent op. |
453 | Operation *regionOp = region ? region->getParentOp() : nullptr; |
454 | if (regionOp && !regionOp->hasTrait<OpTrait::IsIsolatedFromAbove>()) |
455 | if (auto *parentOpRegion = region->getParentOp()->getParentRegion()) |
456 | return isValidSymbol(value, region: parentOpRegion); |
457 | return false; |
458 | } |
459 | |
460 | // Constant operation is ok. |
461 | Attribute operandCst; |
462 | if (matchPattern(op: defOp, pattern: m_Constant(bind_value: &operandCst))) |
463 | return true; |
464 | |
465 | // `Pure` operation that whose operands are valid symbolic identifiers. |
466 | if (isPure(op: defOp) && llvm::all_of(Range: defOp->getOperands(), P: [&](Value operand) { |
467 | return affine::isValidSymbol(value: operand, region); |
468 | })) { |
469 | return true; |
470 | } |
471 | |
472 | // Dim op results could be valid symbols at any level. |
473 | if (auto dimOp = dyn_cast<ShapedDimOpInterface>(defOp)) |
474 | return isDimOpValidSymbol(dimOp, region); |
475 | |
476 | // Check for values dominating `region`'s parent op. |
477 | Operation *regionOp = region ? region->getParentOp() : nullptr; |
478 | if (regionOp && !regionOp->hasTrait<OpTrait::IsIsolatedFromAbove>()) |
479 | if (auto *parentRegion = region->getParentOp()->getParentRegion()) |
480 | return isValidSymbol(value, region: parentRegion); |
481 | |
482 | return false; |
483 | } |
484 | |
485 | // Returns true if 'value' is a valid index to an affine operation (e.g. |
486 | // affine.load, affine.store, affine.dma_start, affine.dma_wait) where |
487 | // `region` provides the polyhedral symbol scope. Returns false otherwise. |
488 | static bool isValidAffineIndexOperand(Value value, Region *region) { |
489 | return isValidDim(value, region) || isValidSymbol(value, region); |
490 | } |
491 | |
492 | /// Prints dimension and symbol list. |
493 | static void printDimAndSymbolList(Operation::operand_iterator begin, |
494 | Operation::operand_iterator end, |
495 | unsigned numDims, OpAsmPrinter &printer) { |
496 | OperandRange operands(begin, end); |
497 | printer << '(' << operands.take_front(n: numDims) << ')'; |
498 | if (operands.size() > numDims) |
499 | printer << '[' << operands.drop_front(n: numDims) << ']'; |
500 | } |
501 | |
502 | /// Parses dimension and symbol list and returns true if parsing failed. |
503 | ParseResult mlir::affine::parseDimAndSymbolList( |
504 | OpAsmParser &parser, SmallVectorImpl<Value> &operands, unsigned &numDims) { |
505 | SmallVector<OpAsmParser::UnresolvedOperand, 8> opInfos; |
506 | if (parser.parseOperandList(result&: opInfos, delimiter: OpAsmParser::Delimiter::Paren)) |
507 | return failure(); |
508 | // Store number of dimensions for validation by caller. |
509 | numDims = opInfos.size(); |
510 | |
511 | // Parse the optional symbol operands. |
512 | auto indexTy = parser.getBuilder().getIndexType(); |
513 | return failure(parser.parseOperandList( |
514 | result&: opInfos, delimiter: OpAsmParser::Delimiter::OptionalSquare) || |
515 | parser.resolveOperands(opInfos, indexTy, operands)); |
516 | } |
517 | |
518 | /// Utility function to verify that a set of operands are valid dimension and |
519 | /// symbol identifiers. The operands should be laid out such that the dimension |
520 | /// operands are before the symbol operands. This function returns failure if |
521 | /// there was an invalid operand. An operation is provided to emit any necessary |
522 | /// errors. |
523 | template <typename OpTy> |
524 | static LogicalResult |
525 | verifyDimAndSymbolIdentifiers(OpTy &op, Operation::operand_range operands, |
526 | unsigned numDims) { |
527 | unsigned opIt = 0; |
528 | for (auto operand : operands) { |
529 | if (opIt++ < numDims) { |
530 | if (!isValidDim(operand, getAffineScope(op))) |
531 | return op.emitOpError("operand cannot be used as a dimension id" ); |
532 | } else if (!isValidSymbol(operand, getAffineScope(op))) { |
533 | return op.emitOpError("operand cannot be used as a symbol" ); |
534 | } |
535 | } |
536 | return success(); |
537 | } |
538 | |
539 | //===----------------------------------------------------------------------===// |
540 | // AffineApplyOp |
541 | //===----------------------------------------------------------------------===// |
542 | |
543 | AffineValueMap AffineApplyOp::getAffineValueMap() { |
544 | return AffineValueMap(getAffineMap(), getOperands(), getResult()); |
545 | } |
546 | |
547 | ParseResult AffineApplyOp::parse(OpAsmParser &parser, OperationState &result) { |
548 | auto &builder = parser.getBuilder(); |
549 | auto indexTy = builder.getIndexType(); |
550 | |
551 | AffineMapAttr mapAttr; |
552 | unsigned numDims; |
553 | if (parser.parseAttribute(mapAttr, "map" , result.attributes) || |
554 | parseDimAndSymbolList(parser, result.operands, numDims) || |
555 | parser.parseOptionalAttrDict(result.attributes)) |
556 | return failure(); |
557 | auto map = mapAttr.getValue(); |
558 | |
559 | if (map.getNumDims() != numDims || |
560 | numDims + map.getNumSymbols() != result.operands.size()) { |
561 | return parser.emitError(parser.getNameLoc(), |
562 | "dimension or symbol index mismatch" ); |
563 | } |
564 | |
565 | result.types.append(map.getNumResults(), indexTy); |
566 | return success(); |
567 | } |
568 | |
569 | void AffineApplyOp::print(OpAsmPrinter &p) { |
570 | p << " " << getMapAttr(); |
571 | printDimAndSymbolList(operand_begin(), operand_end(), |
572 | getAffineMap().getNumDims(), p); |
573 | p.printOptionalAttrDict((*this)->getAttrs(), /*elidedAttrs=*/{"map" }); |
574 | } |
575 | |
576 | LogicalResult AffineApplyOp::verify() { |
577 | // Check input and output dimensions match. |
578 | AffineMap affineMap = getMap(); |
579 | |
580 | // Verify that operand count matches affine map dimension and symbol count. |
581 | if (getNumOperands() != affineMap.getNumDims() + affineMap.getNumSymbols()) |
582 | return emitOpError( |
583 | "operand count and affine map dimension and symbol count must match" ); |
584 | |
585 | // Verify that the map only produces one result. |
586 | if (affineMap.getNumResults() != 1) |
587 | return emitOpError("mapping must produce one value" ); |
588 | |
589 | // Do not allow valid dims to be used in symbol positions. We do allow |
590 | // affine.apply to use operands for values that may neither qualify as affine |
591 | // dims or affine symbols due to usage outside of affine ops, analyses, etc. |
592 | Region *region = getAffineScope(*this); |
593 | for (Value operand : getMapOperands().drop_front(affineMap.getNumDims())) { |
594 | if (::isValidDim(operand, region) && !::isValidSymbol(operand, region)) |
595 | return emitError("dimensional operand cannot be used as a symbol" ); |
596 | } |
597 | |
598 | return success(); |
599 | } |
600 | |
601 | // The result of the affine apply operation can be used as a dimension id if all |
602 | // its operands are valid dimension ids. |
603 | bool AffineApplyOp::isValidDim() { |
604 | return llvm::all_of(getOperands(), |
605 | [](Value op) { return affine::isValidDim(op); }); |
606 | } |
607 | |
608 | // The result of the affine apply operation can be used as a dimension id if all |
609 | // its operands are valid dimension ids with the parent operation of `region` |
610 | // defining the polyhedral scope for symbols. |
611 | bool AffineApplyOp::isValidDim(Region *region) { |
612 | return llvm::all_of(getOperands(), |
613 | [&](Value op) { return ::isValidDim(op, region); }); |
614 | } |
615 | |
616 | // The result of the affine apply operation can be used as a symbol if all its |
617 | // operands are symbols. |
618 | bool AffineApplyOp::isValidSymbol() { |
619 | return llvm::all_of(getOperands(), |
620 | [](Value op) { return affine::isValidSymbol(op); }); |
621 | } |
622 | |
623 | // The result of the affine apply operation can be used as a symbol in `region` |
624 | // if all its operands are symbols in `region`. |
625 | bool AffineApplyOp::isValidSymbol(Region *region) { |
626 | return llvm::all_of(getOperands(), [&](Value operand) { |
627 | return affine::isValidSymbol(operand, region); |
628 | }); |
629 | } |
630 | |
631 | OpFoldResult AffineApplyOp::fold(FoldAdaptor adaptor) { |
632 | auto map = getAffineMap(); |
633 | |
634 | // Fold dims and symbols to existing values. |
635 | auto expr = map.getResult(0); |
636 | if (auto dim = dyn_cast<AffineDimExpr>(expr)) |
637 | return getOperand(dim.getPosition()); |
638 | if (auto sym = dyn_cast<AffineSymbolExpr>(expr)) |
639 | return getOperand(map.getNumDims() + sym.getPosition()); |
640 | |
641 | // Otherwise, default to folding the map. |
642 | SmallVector<Attribute, 1> result; |
643 | bool hasPoison = false; |
644 | auto foldResult = |
645 | map.constantFold(adaptor.getMapOperands(), result, &hasPoison); |
646 | if (hasPoison) |
647 | return ub::PoisonAttr::get(getContext()); |
648 | if (failed(foldResult)) |
649 | return {}; |
650 | return result[0]; |
651 | } |
652 | |
653 | /// Returns the largest known divisor of `e`. Exploits information from the |
654 | /// values in `operands`. |
655 | static int64_t getLargestKnownDivisor(AffineExpr e, ArrayRef<Value> operands) { |
656 | // This method isn't aware of `operands`. |
657 | int64_t div = e.getLargestKnownDivisor(); |
658 | |
659 | // We now make use of operands for the case `e` is a dim expression. |
660 | // TODO: More powerful simplification would have to modify |
661 | // getLargestKnownDivisor to take `operands` and exploit that information as |
662 | // well for dim/sym expressions, but in that case, getLargestKnownDivisor |
663 | // can't be part of the IR library but of the `Analysis` library. The IR |
664 | // library can only really depend on simple O(1) checks. |
665 | auto dimExpr = dyn_cast<AffineDimExpr>(Val&: e); |
666 | // If it's not a dim expr, `div` is the best we have. |
667 | if (!dimExpr) |
668 | return div; |
669 | |
670 | // We simply exploit information from loop IVs. |
671 | // We don't need to use mlir::getLargestKnownDivisorOfValue since the other |
672 | // desired simplifications are expected to be part of other |
673 | // canonicalizations. Also, mlir::getLargestKnownDivisorOfValue is part of the |
674 | // LoopAnalysis library. |
675 | Value operand = operands[dimExpr.getPosition()]; |
676 | int64_t operandDivisor = 1; |
677 | // TODO: With the right accessors, this can be extended to |
678 | // LoopLikeOpInterface. |
679 | if (AffineForOp forOp = getForInductionVarOwner(operand)) { |
680 | if (forOp.hasConstantLowerBound() && forOp.getConstantLowerBound() == 0) { |
681 | operandDivisor = forOp.getStepAsInt(); |
682 | } else { |
683 | uint64_t lbLargestKnownDivisor = |
684 | forOp.getLowerBoundMap().getLargestKnownDivisorOfMapExprs(); |
685 | operandDivisor = std::gcd(lbLargestKnownDivisor, forOp.getStepAsInt()); |
686 | } |
687 | } |
688 | return operandDivisor; |
689 | } |
690 | |
691 | /// Check if `e` is known to be: 0 <= `e` < `k`. Handles the simple cases of `e` |
692 | /// being an affine dim expression or a constant. |
693 | static bool isNonNegativeBoundedBy(AffineExpr e, ArrayRef<Value> operands, |
694 | int64_t k) { |
695 | if (auto constExpr = dyn_cast<AffineConstantExpr>(Val&: e)) { |
696 | int64_t constVal = constExpr.getValue(); |
697 | return constVal >= 0 && constVal < k; |
698 | } |
699 | auto dimExpr = dyn_cast<AffineDimExpr>(Val&: e); |
700 | if (!dimExpr) |
701 | return false; |
702 | Value operand = operands[dimExpr.getPosition()]; |
703 | // TODO: With the right accessors, this can be extended to |
704 | // LoopLikeOpInterface. |
705 | if (AffineForOp forOp = getForInductionVarOwner(operand)) { |
706 | if (forOp.hasConstantLowerBound() && forOp.getConstantLowerBound() >= 0 && |
707 | forOp.hasConstantUpperBound() && forOp.getConstantUpperBound() <= k) { |
708 | return true; |
709 | } |
710 | } |
711 | |
712 | // We don't consider other cases like `operand` being defined by a constant or |
713 | // an affine.apply op since such cases will already be handled by other |
714 | // patterns and propagation of loop IVs or constant would happen. |
715 | return false; |
716 | } |
717 | |
718 | /// Check if expression `e` is of the form d*e_1 + e_2 where 0 <= e_2 < d. |
719 | /// Set `div` to `d`, `quotientTimesDiv` to e_1 and `rem` to e_2 if the |
720 | /// expression is in that form. |
721 | static bool isQTimesDPlusR(AffineExpr e, ArrayRef<Value> operands, int64_t &div, |
722 | AffineExpr "ientTimesDiv, AffineExpr &rem) { |
723 | auto bin = dyn_cast<AffineBinaryOpExpr>(Val&: e); |
724 | if (!bin || bin.getKind() != AffineExprKind::Add) |
725 | return false; |
726 | |
727 | AffineExpr llhs = bin.getLHS(); |
728 | AffineExpr rlhs = bin.getRHS(); |
729 | div = getLargestKnownDivisor(e: llhs, operands); |
730 | if (isNonNegativeBoundedBy(e: rlhs, operands, k: div)) { |
731 | quotientTimesDiv = llhs; |
732 | rem = rlhs; |
733 | return true; |
734 | } |
735 | div = getLargestKnownDivisor(e: rlhs, operands); |
736 | if (isNonNegativeBoundedBy(e: llhs, operands, k: div)) { |
737 | quotientTimesDiv = rlhs; |
738 | rem = llhs; |
739 | return true; |
740 | } |
741 | return false; |
742 | } |
743 | |
744 | /// Gets the constant lower bound on an `iv`. |
745 | static std::optional<int64_t> getLowerBound(Value iv) { |
746 | AffineForOp forOp = getForInductionVarOwner(iv); |
747 | if (forOp && forOp.hasConstantLowerBound()) |
748 | return forOp.getConstantLowerBound(); |
749 | return std::nullopt; |
750 | } |
751 | |
752 | /// Gets the constant upper bound on an affine.for `iv`. |
753 | static std::optional<int64_t> getUpperBound(Value iv) { |
754 | AffineForOp forOp = getForInductionVarOwner(iv); |
755 | if (!forOp || !forOp.hasConstantUpperBound()) |
756 | return std::nullopt; |
757 | |
758 | // If its lower bound is also known, we can get a more precise bound |
759 | // whenever the step is not one. |
760 | if (forOp.hasConstantLowerBound()) { |
761 | return forOp.getConstantUpperBound() - 1 - |
762 | (forOp.getConstantUpperBound() - forOp.getConstantLowerBound() - 1) % |
763 | forOp.getStepAsInt(); |
764 | } |
765 | return forOp.getConstantUpperBound() - 1; |
766 | } |
767 | |
768 | /// Determine a constant upper bound for `expr` if one exists while exploiting |
769 | /// values in `operands`. Note that the upper bound is an inclusive one. `expr` |
770 | /// is guaranteed to be less than or equal to it. |
771 | static std::optional<int64_t> getUpperBound(AffineExpr expr, unsigned numDims, |
772 | unsigned numSymbols, |
773 | ArrayRef<Value> operands) { |
774 | // Get the constant lower or upper bounds on the operands. |
775 | SmallVector<std::optional<int64_t>> constLowerBounds, constUpperBounds; |
776 | constLowerBounds.reserve(N: operands.size()); |
777 | constUpperBounds.reserve(N: operands.size()); |
778 | for (Value operand : operands) { |
779 | constLowerBounds.push_back(Elt: getLowerBound(iv: operand)); |
780 | constUpperBounds.push_back(Elt: getUpperBound(iv: operand)); |
781 | } |
782 | |
783 | if (auto constExpr = dyn_cast<AffineConstantExpr>(Val&: expr)) |
784 | return constExpr.getValue(); |
785 | |
786 | return getBoundForAffineExpr(expr, numDims, numSymbols, constLowerBounds, |
787 | constUpperBounds, |
788 | /*isUpper=*/true); |
789 | } |
790 | |
791 | /// Determine a constant lower bound for `expr` if one exists while exploiting |
792 | /// values in `operands`. Note that the upper bound is an inclusive one. `expr` |
793 | /// is guaranteed to be less than or equal to it. |
794 | static std::optional<int64_t> getLowerBound(AffineExpr expr, unsigned numDims, |
795 | unsigned numSymbols, |
796 | ArrayRef<Value> operands) { |
797 | // Get the constant lower or upper bounds on the operands. |
798 | SmallVector<std::optional<int64_t>> constLowerBounds, constUpperBounds; |
799 | constLowerBounds.reserve(N: operands.size()); |
800 | constUpperBounds.reserve(N: operands.size()); |
801 | for (Value operand : operands) { |
802 | constLowerBounds.push_back(Elt: getLowerBound(iv: operand)); |
803 | constUpperBounds.push_back(Elt: getUpperBound(iv: operand)); |
804 | } |
805 | |
806 | std::optional<int64_t> lowerBound; |
807 | if (auto constExpr = dyn_cast<AffineConstantExpr>(Val&: expr)) { |
808 | lowerBound = constExpr.getValue(); |
809 | } else { |
810 | lowerBound = getBoundForAffineExpr(expr, numDims, numSymbols, |
811 | constLowerBounds, constUpperBounds, |
812 | /*isUpper=*/false); |
813 | } |
814 | return lowerBound; |
815 | } |
816 | |
817 | /// Simplify `expr` while exploiting information from the values in `operands`. |
818 | static void simplifyExprAndOperands(AffineExpr &expr, unsigned numDims, |
819 | unsigned numSymbols, |
820 | ArrayRef<Value> operands) { |
821 | // We do this only for certain floordiv/mod expressions. |
822 | auto binExpr = dyn_cast<AffineBinaryOpExpr>(Val&: expr); |
823 | if (!binExpr) |
824 | return; |
825 | |
826 | // Simplify the child expressions first. |
827 | AffineExpr lhs = binExpr.getLHS(); |
828 | AffineExpr rhs = binExpr.getRHS(); |
829 | simplifyExprAndOperands(expr&: lhs, numDims, numSymbols, operands); |
830 | simplifyExprAndOperands(expr&: rhs, numDims, numSymbols, operands); |
831 | expr = getAffineBinaryOpExpr(kind: binExpr.getKind(), lhs, rhs); |
832 | |
833 | binExpr = dyn_cast<AffineBinaryOpExpr>(Val&: expr); |
834 | if (!binExpr || (expr.getKind() != AffineExprKind::FloorDiv && |
835 | expr.getKind() != AffineExprKind::CeilDiv && |
836 | expr.getKind() != AffineExprKind::Mod)) { |
837 | return; |
838 | } |
839 | |
840 | // The `lhs` and `rhs` may be different post construction of simplified expr. |
841 | lhs = binExpr.getLHS(); |
842 | rhs = binExpr.getRHS(); |
843 | auto rhsConst = dyn_cast<AffineConstantExpr>(Val&: rhs); |
844 | if (!rhsConst) |
845 | return; |
846 | |
847 | int64_t rhsConstVal = rhsConst.getValue(); |
848 | // Undefined exprsessions aren't touched; IR can still be valid with them. |
849 | if (rhsConstVal <= 0) |
850 | return; |
851 | |
852 | // Exploit constant lower/upper bounds to simplify a floordiv or mod. |
853 | MLIRContext *context = expr.getContext(); |
854 | std::optional<int64_t> lhsLbConst = |
855 | getLowerBound(expr: lhs, numDims, numSymbols, operands); |
856 | std::optional<int64_t> lhsUbConst = |
857 | getUpperBound(expr: lhs, numDims, numSymbols, operands); |
858 | if (lhsLbConst && lhsUbConst) { |
859 | int64_t lhsLbConstVal = *lhsLbConst; |
860 | int64_t lhsUbConstVal = *lhsUbConst; |
861 | // lhs floordiv c is a single value lhs is bounded in a range `c` that has |
862 | // the same quotient. |
863 | if (binExpr.getKind() == AffineExprKind::FloorDiv && |
864 | divideFloorSigned(Numerator: lhsLbConstVal, Denominator: rhsConstVal) == |
865 | divideFloorSigned(Numerator: lhsUbConstVal, Denominator: rhsConstVal)) { |
866 | expr = getAffineConstantExpr( |
867 | constant: divideFloorSigned(Numerator: lhsLbConstVal, Denominator: rhsConstVal), context); |
868 | return; |
869 | } |
870 | // lhs ceildiv c is a single value if the entire range has the same ceil |
871 | // quotient. |
872 | if (binExpr.getKind() == AffineExprKind::CeilDiv && |
873 | divideCeilSigned(Numerator: lhsLbConstVal, Denominator: rhsConstVal) == |
874 | divideCeilSigned(Numerator: lhsUbConstVal, Denominator: rhsConstVal)) { |
875 | expr = getAffineConstantExpr(constant: divideCeilSigned(Numerator: lhsLbConstVal, Denominator: rhsConstVal), |
876 | context); |
877 | return; |
878 | } |
879 | // lhs mod c is lhs if the entire range has quotient 0 w.r.t the rhs. |
880 | if (binExpr.getKind() == AffineExprKind::Mod && lhsLbConstVal >= 0 && |
881 | lhsLbConstVal < rhsConstVal && lhsUbConstVal < rhsConstVal) { |
882 | expr = lhs; |
883 | return; |
884 | } |
885 | } |
886 | |
887 | // Simplify expressions of the form e = (e_1 + e_2) floordiv c or (e_1 + e_2) |
888 | // mod c, where e_1 is a multiple of `k` and 0 <= e_2 < k. In such cases, if |
889 | // `c` % `k` == 0, (e_1 + e_2) floordiv c can be simplified to e_1 floordiv c. |
890 | // And when k % c == 0, (e_1 + e_2) mod c can be simplified to e_2 mod c. |
891 | AffineExpr quotientTimesDiv, rem; |
892 | int64_t divisor; |
893 | if (isQTimesDPlusR(e: lhs, operands, div&: divisor, quotientTimesDiv, rem)) { |
894 | if (rhsConstVal % divisor == 0 && |
895 | binExpr.getKind() == AffineExprKind::FloorDiv) { |
896 | expr = quotientTimesDiv.floorDiv(other: rhsConst); |
897 | } else if (divisor % rhsConstVal == 0 && |
898 | binExpr.getKind() == AffineExprKind::Mod) { |
899 | expr = rem % rhsConst; |
900 | } |
901 | return; |
902 | } |
903 | |
904 | // Handle the simple case when the LHS expression can be either upper |
905 | // bounded or is a known multiple of RHS constant. |
906 | // lhs floordiv c -> 0 if 0 <= lhs < c, |
907 | // lhs mod c -> 0 if lhs % c = 0. |
908 | if ((isNonNegativeBoundedBy(e: lhs, operands, k: rhsConstVal) && |
909 | binExpr.getKind() == AffineExprKind::FloorDiv) || |
910 | (getLargestKnownDivisor(e: lhs, operands) % rhsConstVal == 0 && |
911 | binExpr.getKind() == AffineExprKind::Mod)) { |
912 | expr = getAffineConstantExpr(constant: 0, context: expr.getContext()); |
913 | } |
914 | } |
915 | |
916 | /// Simplify the expressions in `map` while making use of lower or upper bounds |
917 | /// of its operands. If `isMax` is true, the map is to be treated as a max of |
918 | /// its result expressions, and min otherwise. Eg: min (d0, d1) -> (8, 4 * d0 + |
919 | /// d1) can be simplified to (8) if the operands are respectively lower bounded |
920 | /// by 2 and 0 (the second expression can't be lower than 8). |
921 | static void simplifyMinOrMaxExprWithOperands(AffineMap &map, |
922 | ArrayRef<Value> operands, |
923 | bool isMax) { |
924 | // Can't simplify. |
925 | if (operands.empty()) |
926 | return; |
927 | |
928 | // Get the upper or lower bound on an affine.for op IV using its range. |
929 | // Get the constant lower or upper bounds on the operands. |
930 | SmallVector<std::optional<int64_t>> constLowerBounds, constUpperBounds; |
931 | constLowerBounds.reserve(N: operands.size()); |
932 | constUpperBounds.reserve(N: operands.size()); |
933 | for (Value operand : operands) { |
934 | constLowerBounds.push_back(Elt: getLowerBound(iv: operand)); |
935 | constUpperBounds.push_back(Elt: getUpperBound(iv: operand)); |
936 | } |
937 | |
938 | // We will compute the lower and upper bounds on each of the expressions |
939 | // Then, we will check (depending on max or min) as to whether a specific |
940 | // bound is redundant by checking if its highest (in case of max) and its |
941 | // lowest (in the case of min) value is already lower than (or higher than) |
942 | // the lower bound (or upper bound in the case of min) of another bound. |
943 | SmallVector<std::optional<int64_t>, 4> lowerBounds, upperBounds; |
944 | lowerBounds.reserve(N: map.getNumResults()); |
945 | upperBounds.reserve(N: map.getNumResults()); |
946 | for (AffineExpr e : map.getResults()) { |
947 | if (auto constExpr = dyn_cast<AffineConstantExpr>(Val&: e)) { |
948 | lowerBounds.push_back(Elt: constExpr.getValue()); |
949 | upperBounds.push_back(Elt: constExpr.getValue()); |
950 | } else { |
951 | lowerBounds.push_back( |
952 | Elt: getBoundForAffineExpr(expr: e, numDims: map.getNumDims(), numSymbols: map.getNumSymbols(), |
953 | constLowerBounds, constUpperBounds, |
954 | /*isUpper=*/false)); |
955 | upperBounds.push_back( |
956 | Elt: getBoundForAffineExpr(expr: e, numDims: map.getNumDims(), numSymbols: map.getNumSymbols(), |
957 | constLowerBounds, constUpperBounds, |
958 | /*isUpper=*/true)); |
959 | } |
960 | } |
961 | |
962 | // Collect expressions that are not redundant. |
963 | SmallVector<AffineExpr, 4> irredundantExprs; |
964 | for (auto exprEn : llvm::enumerate(First: map.getResults())) { |
965 | AffineExpr e = exprEn.value(); |
966 | unsigned i = exprEn.index(); |
967 | // Some expressions can be turned into constants. |
968 | if (lowerBounds[i] && upperBounds[i] && *lowerBounds[i] == *upperBounds[i]) |
969 | e = getAffineConstantExpr(constant: *lowerBounds[i], context: e.getContext()); |
970 | |
971 | // Check if the expression is redundant. |
972 | if (isMax) { |
973 | if (!upperBounds[i]) { |
974 | irredundantExprs.push_back(Elt: e); |
975 | continue; |
976 | } |
977 | // If there exists another expression such that its lower bound is greater |
978 | // than this expression's upper bound, it's redundant. |
979 | if (!llvm::any_of(Range: llvm::enumerate(First&: lowerBounds), P: [&](const auto &en) { |
980 | auto otherLowerBound = en.value(); |
981 | unsigned pos = en.index(); |
982 | if (pos == i || !otherLowerBound) |
983 | return false; |
984 | if (*otherLowerBound > *upperBounds[i]) |
985 | return true; |
986 | if (*otherLowerBound < *upperBounds[i]) |
987 | return false; |
988 | // Equality case. When both expressions are considered redundant, we |
989 | // don't want to get both of them. We keep the one that appears |
990 | // first. |
991 | if (upperBounds[pos] && lowerBounds[i] && |
992 | lowerBounds[i] == upperBounds[i] && |
993 | otherLowerBound == *upperBounds[pos] && i < pos) |
994 | return false; |
995 | return true; |
996 | })) |
997 | irredundantExprs.push_back(Elt: e); |
998 | } else { |
999 | if (!lowerBounds[i]) { |
1000 | irredundantExprs.push_back(Elt: e); |
1001 | continue; |
1002 | } |
1003 | // Likewise for the `min` case. Use the complement of the condition above. |
1004 | if (!llvm::any_of(Range: llvm::enumerate(First&: upperBounds), P: [&](const auto &en) { |
1005 | auto otherUpperBound = en.value(); |
1006 | unsigned pos = en.index(); |
1007 | if (pos == i || !otherUpperBound) |
1008 | return false; |
1009 | if (*otherUpperBound < *lowerBounds[i]) |
1010 | return true; |
1011 | if (*otherUpperBound > *lowerBounds[i]) |
1012 | return false; |
1013 | if (lowerBounds[pos] && upperBounds[i] && |
1014 | lowerBounds[i] == upperBounds[i] && |
1015 | otherUpperBound == lowerBounds[pos] && i < pos) |
1016 | return false; |
1017 | return true; |
1018 | })) |
1019 | irredundantExprs.push_back(Elt: e); |
1020 | } |
1021 | } |
1022 | |
1023 | // Create the map without the redundant expressions. |
1024 | map = AffineMap::get(dimCount: map.getNumDims(), symbolCount: map.getNumSymbols(), results: irredundantExprs, |
1025 | context: map.getContext()); |
1026 | } |
1027 | |
1028 | /// Simplify the map while exploiting information on the values in `operands`. |
1029 | // Use "unused attribute" marker to silence warning stemming from the inability |
1030 | // to see through the template expansion. |
1031 | static void LLVM_ATTRIBUTE_UNUSED |
1032 | simplifyMapWithOperands(AffineMap &map, ArrayRef<Value> operands) { |
1033 | assert(map.getNumInputs() == operands.size() && "invalid operands for map" ); |
1034 | SmallVector<AffineExpr> newResults; |
1035 | newResults.reserve(N: map.getNumResults()); |
1036 | for (AffineExpr expr : map.getResults()) { |
1037 | simplifyExprAndOperands(expr, numDims: map.getNumDims(), numSymbols: map.getNumSymbols(), |
1038 | operands); |
1039 | newResults.push_back(Elt: expr); |
1040 | } |
1041 | map = AffineMap::get(dimCount: map.getNumDims(), symbolCount: map.getNumSymbols(), results: newResults, |
1042 | context: map.getContext()); |
1043 | } |
1044 | |
1045 | /// Replace all occurrences of AffineExpr at position `pos` in `map` by the |
1046 | /// defining AffineApplyOp expression and operands. |
1047 | /// When `dimOrSymbolPosition < dims.size()`, AffineDimExpr@[pos] is replaced. |
1048 | /// When `dimOrSymbolPosition >= dims.size()`, |
1049 | /// AffineSymbolExpr@[pos - dims.size()] is replaced. |
1050 | /// Mutate `map`,`dims` and `syms` in place as follows: |
1051 | /// 1. `dims` and `syms` are only appended to. |
1052 | /// 2. `map` dim and symbols are gradually shifted to higher positions. |
1053 | /// 3. Old `dim` and `sym` entries are replaced by nullptr |
1054 | /// This avoids the need for any bookkeeping. |
1055 | static LogicalResult replaceDimOrSym(AffineMap *map, |
1056 | unsigned dimOrSymbolPosition, |
1057 | SmallVectorImpl<Value> &dims, |
1058 | SmallVectorImpl<Value> &syms) { |
1059 | MLIRContext *ctx = map->getContext(); |
1060 | bool isDimReplacement = (dimOrSymbolPosition < dims.size()); |
1061 | unsigned pos = isDimReplacement ? dimOrSymbolPosition |
1062 | : dimOrSymbolPosition - dims.size(); |
1063 | Value &v = isDimReplacement ? dims[pos] : syms[pos]; |
1064 | if (!v) |
1065 | return failure(); |
1066 | |
1067 | auto affineApply = v.getDefiningOp<AffineApplyOp>(); |
1068 | if (!affineApply) |
1069 | return failure(); |
1070 | |
1071 | // At this point we will perform a replacement of `v`, set the entry in `dim` |
1072 | // or `sym` to nullptr immediately. |
1073 | v = nullptr; |
1074 | |
1075 | // Compute the map, dims and symbols coming from the AffineApplyOp. |
1076 | AffineMap composeMap = affineApply.getAffineMap(); |
1077 | assert(composeMap.getNumResults() == 1 && "affine.apply with >1 results" ); |
1078 | SmallVector<Value> composeOperands(affineApply.getMapOperands().begin(), |
1079 | affineApply.getMapOperands().end()); |
1080 | // Canonicalize the map to promote dims to symbols when possible. This is to |
1081 | // avoid generating invalid maps. |
1082 | canonicalizeMapAndOperands(map: &composeMap, operands: &composeOperands); |
1083 | AffineExpr replacementExpr = |
1084 | composeMap.shiftDims(shift: dims.size()).shiftSymbols(shift: syms.size()).getResult(idx: 0); |
1085 | ValueRange composeDims = |
1086 | ArrayRef<Value>(composeOperands).take_front(N: composeMap.getNumDims()); |
1087 | ValueRange composeSyms = |
1088 | ArrayRef<Value>(composeOperands).take_back(N: composeMap.getNumSymbols()); |
1089 | AffineExpr toReplace = isDimReplacement ? getAffineDimExpr(position: pos, context: ctx) |
1090 | : getAffineSymbolExpr(position: pos, context: ctx); |
1091 | |
1092 | // Append the dims and symbols where relevant and perform the replacement. |
1093 | dims.append(in_start: composeDims.begin(), in_end: composeDims.end()); |
1094 | syms.append(in_start: composeSyms.begin(), in_end: composeSyms.end()); |
1095 | *map = map->replace(expr: toReplace, replacement: replacementExpr, numResultDims: dims.size(), numResultSyms: syms.size()); |
1096 | |
1097 | return success(); |
1098 | } |
1099 | |
1100 | /// Iterate over `operands` and fold away all those produced by an AffineApplyOp |
1101 | /// iteratively. Perform canonicalization of map and operands as well as |
1102 | /// AffineMap simplification. `map` and `operands` are mutated in place. |
1103 | static void composeAffineMapAndOperands(AffineMap *map, |
1104 | SmallVectorImpl<Value> *operands) { |
1105 | if (map->getNumResults() == 0) { |
1106 | canonicalizeMapAndOperands(map, operands); |
1107 | *map = simplifyAffineMap(map: *map); |
1108 | return; |
1109 | } |
1110 | |
1111 | MLIRContext *ctx = map->getContext(); |
1112 | SmallVector<Value, 4> dims(operands->begin(), |
1113 | operands->begin() + map->getNumDims()); |
1114 | SmallVector<Value, 4> syms(operands->begin() + map->getNumDims(), |
1115 | operands->end()); |
1116 | |
1117 | // Iterate over dims and symbols coming from AffineApplyOp and replace until |
1118 | // exhaustion. This iteratively mutates `map`, `dims` and `syms`. Both `dims` |
1119 | // and `syms` can only increase by construction. |
1120 | // The implementation uses a `while` loop to support the case of symbols |
1121 | // that may be constructed from dims ;this may be overkill. |
1122 | while (true) { |
1123 | bool changed = false; |
1124 | for (unsigned pos = 0; pos != dims.size() + syms.size(); ++pos) |
1125 | if ((changed |= succeeded(Result: replaceDimOrSym(map, dimOrSymbolPosition: pos, dims, syms)))) |
1126 | break; |
1127 | if (!changed) |
1128 | break; |
1129 | } |
1130 | |
1131 | // Clear operands so we can fill them anew. |
1132 | operands->clear(); |
1133 | |
1134 | // At this point we may have introduced null operands, prune them out before |
1135 | // canonicalizing map and operands. |
1136 | unsigned nDims = 0, nSyms = 0; |
1137 | SmallVector<AffineExpr, 4> dimReplacements, symReplacements; |
1138 | dimReplacements.reserve(N: dims.size()); |
1139 | symReplacements.reserve(N: syms.size()); |
1140 | for (auto *container : {&dims, &syms}) { |
1141 | bool isDim = (container == &dims); |
1142 | auto &repls = isDim ? dimReplacements : symReplacements; |
1143 | for (const auto &en : llvm::enumerate(First&: *container)) { |
1144 | Value v = en.value(); |
1145 | if (!v) { |
1146 | assert(isDim ? !map->isFunctionOfDim(en.index()) |
1147 | : !map->isFunctionOfSymbol(en.index()) && |
1148 | "map is function of unexpected expr@pos" ); |
1149 | repls.push_back(Elt: getAffineConstantExpr(constant: 0, context: ctx)); |
1150 | continue; |
1151 | } |
1152 | repls.push_back(Elt: isDim ? getAffineDimExpr(position: nDims++, context: ctx) |
1153 | : getAffineSymbolExpr(position: nSyms++, context: ctx)); |
1154 | operands->push_back(Elt: v); |
1155 | } |
1156 | } |
1157 | *map = map->replaceDimsAndSymbols(dimReplacements, symReplacements, numResultDims: nDims, |
1158 | numResultSyms: nSyms); |
1159 | |
1160 | // Canonicalize and simplify before returning. |
1161 | canonicalizeMapAndOperands(map, operands); |
1162 | *map = simplifyAffineMap(map: *map); |
1163 | } |
1164 | |
1165 | void mlir::affine::fullyComposeAffineMapAndOperands( |
1166 | AffineMap *map, SmallVectorImpl<Value> *operands) { |
1167 | while (llvm::any_of(Range&: *operands, P: [](Value v) { |
1168 | return isa_and_nonnull<AffineApplyOp>(Val: v.getDefiningOp()); |
1169 | })) { |
1170 | composeAffineMapAndOperands(map, operands); |
1171 | } |
1172 | } |
1173 | |
1174 | AffineApplyOp |
1175 | mlir::affine::makeComposedAffineApply(OpBuilder &b, Location loc, AffineMap map, |
1176 | ArrayRef<OpFoldResult> operands) { |
1177 | SmallVector<Value> valueOperands; |
1178 | map = foldAttributesIntoMap(b, map, operands, remainingValues&: valueOperands); |
1179 | composeAffineMapAndOperands(map: &map, operands: &valueOperands); |
1180 | assert(map); |
1181 | return b.create<AffineApplyOp>(loc, map, valueOperands); |
1182 | } |
1183 | |
1184 | AffineApplyOp |
1185 | mlir::affine::makeComposedAffineApply(OpBuilder &b, Location loc, AffineExpr e, |
1186 | ArrayRef<OpFoldResult> operands) { |
1187 | return makeComposedAffineApply( |
1188 | b, loc, |
1189 | AffineMap::inferFromExprList(exprsList: ArrayRef<AffineExpr>{e}, context: b.getContext()) |
1190 | .front(), |
1191 | operands); |
1192 | } |
1193 | |
1194 | /// Composes the given affine map with the given list of operands, pulling in |
1195 | /// the maps from any affine.apply operations that supply the operands. |
1196 | static void composeMultiResultAffineMap(AffineMap &map, |
1197 | SmallVectorImpl<Value> &operands) { |
1198 | // Compose and canonicalize each expression in the map individually because |
1199 | // composition only applies to single-result maps, collecting potentially |
1200 | // duplicate operands in a single list with shifted dimensions and symbols. |
1201 | SmallVector<Value> dims, symbols; |
1202 | SmallVector<AffineExpr> exprs; |
1203 | for (unsigned i : llvm::seq<unsigned>(Begin: 0, End: map.getNumResults())) { |
1204 | SmallVector<Value> submapOperands(operands.begin(), operands.end()); |
1205 | AffineMap submap = map.getSubMap(resultPos: {i}); |
1206 | fullyComposeAffineMapAndOperands(map: &submap, operands: &submapOperands); |
1207 | canonicalizeMapAndOperands(map: &submap, operands: &submapOperands); |
1208 | unsigned numNewDims = submap.getNumDims(); |
1209 | submap = submap.shiftDims(shift: dims.size()).shiftSymbols(shift: symbols.size()); |
1210 | llvm::append_range(C&: dims, |
1211 | R: ArrayRef<Value>(submapOperands).take_front(N: numNewDims)); |
1212 | llvm::append_range(C&: symbols, |
1213 | R: ArrayRef<Value>(submapOperands).drop_front(N: numNewDims)); |
1214 | exprs.push_back(Elt: submap.getResult(idx: 0)); |
1215 | } |
1216 | |
1217 | // Canonicalize the map created from composed expressions to deduplicate the |
1218 | // dimension and symbol operands. |
1219 | operands = llvm::to_vector(Range: llvm::concat<Value>(Ranges&: dims, Ranges&: symbols)); |
1220 | map = AffineMap::get(dimCount: dims.size(), symbolCount: symbols.size(), results: exprs, context: map.getContext()); |
1221 | canonicalizeMapAndOperands(map: &map, operands: &operands); |
1222 | } |
1223 | |
1224 | OpFoldResult |
1225 | mlir::affine::makeComposedFoldedAffineApply(OpBuilder &b, Location loc, |
1226 | AffineMap map, |
1227 | ArrayRef<OpFoldResult> operands) { |
1228 | assert(map.getNumResults() == 1 && "building affine.apply with !=1 result" ); |
1229 | |
1230 | // Create new builder without a listener, so that no notification is |
1231 | // triggered if the op is folded. |
1232 | // TODO: OpBuilder::createOrFold should return OpFoldResults, then this |
1233 | // workaround is no longer needed. |
1234 | OpBuilder newBuilder(b.getContext()); |
1235 | newBuilder.setInsertionPoint(block: b.getInsertionBlock(), insertPoint: b.getInsertionPoint()); |
1236 | |
1237 | // Create op. |
1238 | AffineApplyOp applyOp = |
1239 | makeComposedAffineApply(newBuilder, loc, map, operands); |
1240 | |
1241 | // Get constant operands. |
1242 | SmallVector<Attribute> constOperands(applyOp->getNumOperands()); |
1243 | for (unsigned i = 0, e = constOperands.size(); i != e; ++i) |
1244 | matchPattern(applyOp->getOperand(i), m_Constant(bind_value: &constOperands[i])); |
1245 | |
1246 | // Try to fold the operation. |
1247 | SmallVector<OpFoldResult> foldResults; |
1248 | if (failed(applyOp->fold(constOperands, foldResults)) || |
1249 | foldResults.empty()) { |
1250 | if (OpBuilder::Listener *listener = b.getListener()) |
1251 | listener->notifyOperationInserted(op: applyOp, /*previous=*/{}); |
1252 | return applyOp.getResult(); |
1253 | } |
1254 | |
1255 | applyOp->erase(); |
1256 | return llvm::getSingleElement(C&: foldResults); |
1257 | } |
1258 | |
1259 | OpFoldResult |
1260 | mlir::affine::makeComposedFoldedAffineApply(OpBuilder &b, Location loc, |
1261 | AffineExpr expr, |
1262 | ArrayRef<OpFoldResult> operands) { |
1263 | return makeComposedFoldedAffineApply( |
1264 | b, loc, |
1265 | map: AffineMap::inferFromExprList(exprsList: ArrayRef<AffineExpr>{expr}, context: b.getContext()) |
1266 | .front(), |
1267 | operands); |
1268 | } |
1269 | |
1270 | SmallVector<OpFoldResult> |
1271 | mlir::affine::makeComposedFoldedMultiResultAffineApply( |
1272 | OpBuilder &b, Location loc, AffineMap map, |
1273 | ArrayRef<OpFoldResult> operands) { |
1274 | return llvm::map_to_vector(C: llvm::seq<unsigned>(Begin: 0, End: map.getNumResults()), |
1275 | F: [&](unsigned i) { |
1276 | return makeComposedFoldedAffineApply( |
1277 | b, loc, map: map.getSubMap(resultPos: {i}), operands); |
1278 | }); |
1279 | } |
1280 | |
1281 | template <typename OpTy> |
1282 | static OpTy makeComposedMinMax(OpBuilder &b, Location loc, AffineMap map, |
1283 | ArrayRef<OpFoldResult> operands) { |
1284 | SmallVector<Value> valueOperands; |
1285 | map = foldAttributesIntoMap(b, map, operands, remainingValues&: valueOperands); |
1286 | composeMultiResultAffineMap(map, operands&: valueOperands); |
1287 | return b.create<OpTy>(loc, b.getIndexType(), map, valueOperands); |
1288 | } |
1289 | |
1290 | AffineMinOp |
1291 | mlir::affine::makeComposedAffineMin(OpBuilder &b, Location loc, AffineMap map, |
1292 | ArrayRef<OpFoldResult> operands) { |
1293 | return makeComposedMinMax<AffineMinOp>(b, loc, map, operands); |
1294 | } |
1295 | |
1296 | template <typename OpTy> |
1297 | static OpFoldResult makeComposedFoldedMinMax(OpBuilder &b, Location loc, |
1298 | AffineMap map, |
1299 | ArrayRef<OpFoldResult> operands) { |
1300 | // Create new builder without a listener, so that no notification is |
1301 | // triggered if the op is folded. |
1302 | // TODO: OpBuilder::createOrFold should return OpFoldResults, then this |
1303 | // workaround is no longer needed. |
1304 | OpBuilder newBuilder(b.getContext()); |
1305 | newBuilder.setInsertionPoint(block: b.getInsertionBlock(), insertPoint: b.getInsertionPoint()); |
1306 | |
1307 | // Create op. |
1308 | auto minMaxOp = makeComposedMinMax<OpTy>(newBuilder, loc, map, operands); |
1309 | |
1310 | // Get constant operands. |
1311 | SmallVector<Attribute> constOperands(minMaxOp->getNumOperands()); |
1312 | for (unsigned i = 0, e = constOperands.size(); i != e; ++i) |
1313 | matchPattern(minMaxOp->getOperand(i), m_Constant(bind_value: &constOperands[i])); |
1314 | |
1315 | // Try to fold the operation. |
1316 | SmallVector<OpFoldResult> foldResults; |
1317 | if (failed(minMaxOp->fold(constOperands, foldResults)) || |
1318 | foldResults.empty()) { |
1319 | if (OpBuilder::Listener *listener = b.getListener()) |
1320 | listener->notifyOperationInserted(op: minMaxOp, /*previous=*/{}); |
1321 | return minMaxOp.getResult(); |
1322 | } |
1323 | |
1324 | minMaxOp->erase(); |
1325 | return llvm::getSingleElement(C&: foldResults); |
1326 | } |
1327 | |
1328 | OpFoldResult |
1329 | mlir::affine::makeComposedFoldedAffineMin(OpBuilder &b, Location loc, |
1330 | AffineMap map, |
1331 | ArrayRef<OpFoldResult> operands) { |
1332 | return makeComposedFoldedMinMax<AffineMinOp>(b, loc, map, operands); |
1333 | } |
1334 | |
1335 | OpFoldResult |
1336 | mlir::affine::makeComposedFoldedAffineMax(OpBuilder &b, Location loc, |
1337 | AffineMap map, |
1338 | ArrayRef<OpFoldResult> operands) { |
1339 | return makeComposedFoldedMinMax<AffineMaxOp>(b, loc, map, operands); |
1340 | } |
1341 | |
1342 | // A symbol may appear as a dim in affine.apply operations. This function |
1343 | // canonicalizes dims that are valid symbols into actual symbols. |
1344 | template <class MapOrSet> |
1345 | static void canonicalizePromotedSymbols(MapOrSet *mapOrSet, |
1346 | SmallVectorImpl<Value> *operands) { |
1347 | if (!mapOrSet || operands->empty()) |
1348 | return; |
1349 | |
1350 | assert(mapOrSet->getNumInputs() == operands->size() && |
1351 | "map/set inputs must match number of operands" ); |
1352 | |
1353 | auto *context = mapOrSet->getContext(); |
1354 | SmallVector<Value, 8> resultOperands; |
1355 | resultOperands.reserve(N: operands->size()); |
1356 | SmallVector<Value, 8> remappedSymbols; |
1357 | remappedSymbols.reserve(N: operands->size()); |
1358 | unsigned nextDim = 0; |
1359 | unsigned nextSym = 0; |
1360 | unsigned oldNumSyms = mapOrSet->getNumSymbols(); |
1361 | SmallVector<AffineExpr, 8> dimRemapping(mapOrSet->getNumDims()); |
1362 | for (unsigned i = 0, e = mapOrSet->getNumInputs(); i != e; ++i) { |
1363 | if (i < mapOrSet->getNumDims()) { |
1364 | if (isValidSymbol(value: (*operands)[i])) { |
1365 | // This is a valid symbol that appears as a dim, canonicalize it. |
1366 | dimRemapping[i] = getAffineSymbolExpr(oldNumSyms + nextSym++, context); |
1367 | remappedSymbols.push_back(Elt: (*operands)[i]); |
1368 | } else { |
1369 | dimRemapping[i] = getAffineDimExpr(nextDim++, context); |
1370 | resultOperands.push_back(Elt: (*operands)[i]); |
1371 | } |
1372 | } else { |
1373 | resultOperands.push_back(Elt: (*operands)[i]); |
1374 | } |
1375 | } |
1376 | |
1377 | resultOperands.append(in_start: remappedSymbols.begin(), in_end: remappedSymbols.end()); |
1378 | *operands = resultOperands; |
1379 | *mapOrSet = mapOrSet->replaceDimsAndSymbols( |
1380 | dimRemapping, /*symReplacements=*/{}, nextDim, oldNumSyms + nextSym); |
1381 | |
1382 | assert(mapOrSet->getNumInputs() == operands->size() && |
1383 | "map/set inputs must match number of operands" ); |
1384 | } |
1385 | |
1386 | /// A valid affine dimension may appear as a symbol in affine.apply operations. |
1387 | /// Given an application of `operands` to an affine map or integer set |
1388 | /// `mapOrSet`, this function canonicalizes symbols of `mapOrSet` that are valid |
1389 | /// dims, but not valid symbols into actual dims. Without such a legalization, |
1390 | /// the affine.apply will be invalid. This method is the exact inverse of |
1391 | /// canonicalizePromotedSymbols. |
1392 | template <class MapOrSet> |
1393 | static void legalizeDemotedDims(MapOrSet &mapOrSet, |
1394 | SmallVectorImpl<Value> &operands) { |
1395 | if (!mapOrSet || operands.empty()) |
1396 | return; |
1397 | |
1398 | unsigned numOperands = operands.size(); |
1399 | |
1400 | assert(mapOrSet.getNumInputs() == numOperands && |
1401 | "map/set inputs must match number of operands" ); |
1402 | |
1403 | auto *context = mapOrSet.getContext(); |
1404 | SmallVector<Value, 8> resultOperands; |
1405 | resultOperands.reserve(N: numOperands); |
1406 | SmallVector<Value, 8> remappedDims; |
1407 | remappedDims.reserve(N: numOperands); |
1408 | SmallVector<Value, 8> symOperands; |
1409 | symOperands.reserve(N: mapOrSet.getNumSymbols()); |
1410 | unsigned nextSym = 0; |
1411 | unsigned nextDim = 0; |
1412 | unsigned oldNumDims = mapOrSet.getNumDims(); |
1413 | SmallVector<AffineExpr, 8> symRemapping(mapOrSet.getNumSymbols()); |
1414 | resultOperands.assign(in_start: operands.begin(), in_end: operands.begin() + oldNumDims); |
1415 | for (unsigned i = oldNumDims, e = mapOrSet.getNumInputs(); i != e; ++i) { |
1416 | if (operands[i] && isValidDim(value: operands[i]) && !isValidSymbol(value: operands[i])) { |
1417 | // This is a valid dim that appears as a symbol, legalize it. |
1418 | symRemapping[i - oldNumDims] = |
1419 | getAffineDimExpr(oldNumDims + nextDim++, context); |
1420 | remappedDims.push_back(Elt: operands[i]); |
1421 | } else { |
1422 | symRemapping[i - oldNumDims] = getAffineSymbolExpr(nextSym++, context); |
1423 | symOperands.push_back(Elt: operands[i]); |
1424 | } |
1425 | } |
1426 | |
1427 | append_range(C&: resultOperands, R&: remappedDims); |
1428 | append_range(C&: resultOperands, R&: symOperands); |
1429 | operands = resultOperands; |
1430 | mapOrSet = mapOrSet.replaceDimsAndSymbols( |
1431 | /*dimReplacements=*/{}, symRemapping, oldNumDims + nextDim, nextSym); |
1432 | |
1433 | assert(mapOrSet.getNumInputs() == operands.size() && |
1434 | "map/set inputs must match number of operands" ); |
1435 | } |
1436 | |
1437 | // Works for either an affine map or an integer set. |
1438 | template <class MapOrSet> |
1439 | static void canonicalizeMapOrSetAndOperands(MapOrSet *mapOrSet, |
1440 | SmallVectorImpl<Value> *operands) { |
1441 | static_assert(llvm::is_one_of<MapOrSet, AffineMap, IntegerSet>::value, |
1442 | "Argument must be either of AffineMap or IntegerSet type" ); |
1443 | |
1444 | if (!mapOrSet || operands->empty()) |
1445 | return; |
1446 | |
1447 | assert(mapOrSet->getNumInputs() == operands->size() && |
1448 | "map/set inputs must match number of operands" ); |
1449 | |
1450 | canonicalizePromotedSymbols<MapOrSet>(mapOrSet, operands); |
1451 | legalizeDemotedDims<MapOrSet>(*mapOrSet, *operands); |
1452 | |
1453 | // Check to see what dims are used. |
1454 | llvm::SmallBitVector usedDims(mapOrSet->getNumDims()); |
1455 | llvm::SmallBitVector usedSyms(mapOrSet->getNumSymbols()); |
1456 | mapOrSet->walkExprs([&](AffineExpr expr) { |
1457 | if (auto dimExpr = dyn_cast<AffineDimExpr>(Val&: expr)) |
1458 | usedDims[dimExpr.getPosition()] = true; |
1459 | else if (auto symExpr = dyn_cast<AffineSymbolExpr>(Val&: expr)) |
1460 | usedSyms[symExpr.getPosition()] = true; |
1461 | }); |
1462 | |
1463 | auto *context = mapOrSet->getContext(); |
1464 | |
1465 | SmallVector<Value, 8> resultOperands; |
1466 | resultOperands.reserve(N: operands->size()); |
1467 | |
1468 | llvm::SmallDenseMap<Value, AffineExpr, 8> seenDims; |
1469 | SmallVector<AffineExpr, 8> dimRemapping(mapOrSet->getNumDims()); |
1470 | unsigned nextDim = 0; |
1471 | for (unsigned i = 0, e = mapOrSet->getNumDims(); i != e; ++i) { |
1472 | if (usedDims[i]) { |
1473 | // Remap dim positions for duplicate operands. |
1474 | auto it = seenDims.find(Val: (*operands)[i]); |
1475 | if (it == seenDims.end()) { |
1476 | dimRemapping[i] = getAffineDimExpr(nextDim++, context); |
1477 | resultOperands.push_back(Elt: (*operands)[i]); |
1478 | seenDims.insert(KV: std::make_pair(x&: (*operands)[i], y&: dimRemapping[i])); |
1479 | } else { |
1480 | dimRemapping[i] = it->second; |
1481 | } |
1482 | } |
1483 | } |
1484 | llvm::SmallDenseMap<Value, AffineExpr, 8> seenSymbols; |
1485 | SmallVector<AffineExpr, 8> symRemapping(mapOrSet->getNumSymbols()); |
1486 | unsigned nextSym = 0; |
1487 | for (unsigned i = 0, e = mapOrSet->getNumSymbols(); i != e; ++i) { |
1488 | if (!usedSyms[i]) |
1489 | continue; |
1490 | // Handle constant operands (only needed for symbolic operands since |
1491 | // constant operands in dimensional positions would have already been |
1492 | // promoted to symbolic positions above). |
1493 | IntegerAttr operandCst; |
1494 | if (matchPattern((*operands)[i + mapOrSet->getNumDims()], |
1495 | m_Constant(&operandCst))) { |
1496 | symRemapping[i] = |
1497 | getAffineConstantExpr(operandCst.getValue().getSExtValue(), context); |
1498 | continue; |
1499 | } |
1500 | // Remap symbol positions for duplicate operands. |
1501 | auto it = seenSymbols.find((*operands)[i + mapOrSet->getNumDims()]); |
1502 | if (it == seenSymbols.end()) { |
1503 | symRemapping[i] = getAffineSymbolExpr(nextSym++, context); |
1504 | resultOperands.push_back(Elt: (*operands)[i + mapOrSet->getNumDims()]); |
1505 | seenSymbols.insert(std::make_pair((*operands)[i + mapOrSet->getNumDims()], |
1506 | symRemapping[i])); |
1507 | } else { |
1508 | symRemapping[i] = it->second; |
1509 | } |
1510 | } |
1511 | *mapOrSet = mapOrSet->replaceDimsAndSymbols(dimRemapping, symRemapping, |
1512 | nextDim, nextSym); |
1513 | *operands = resultOperands; |
1514 | } |
1515 | |
1516 | void mlir::affine::canonicalizeMapAndOperands( |
1517 | AffineMap *map, SmallVectorImpl<Value> *operands) { |
1518 | canonicalizeMapOrSetAndOperands<AffineMap>(mapOrSet: map, operands); |
1519 | } |
1520 | |
1521 | void mlir::affine::canonicalizeSetAndOperands( |
1522 | IntegerSet *set, SmallVectorImpl<Value> *operands) { |
1523 | canonicalizeMapOrSetAndOperands<IntegerSet>(mapOrSet: set, operands); |
1524 | } |
1525 | |
1526 | namespace { |
1527 | /// Simplify AffineApply, AffineLoad, and AffineStore operations by composing |
1528 | /// maps that supply results into them. |
1529 | /// |
1530 | template <typename AffineOpTy> |
1531 | struct SimplifyAffineOp : public OpRewritePattern<AffineOpTy> { |
1532 | using OpRewritePattern<AffineOpTy>::OpRewritePattern; |
1533 | |
1534 | /// Replace the affine op with another instance of it with the supplied |
1535 | /// map and mapOperands. |
1536 | void replaceAffineOp(PatternRewriter &rewriter, AffineOpTy affineOp, |
1537 | AffineMap map, ArrayRef<Value> mapOperands) const; |
1538 | |
1539 | LogicalResult matchAndRewrite(AffineOpTy affineOp, |
1540 | PatternRewriter &rewriter) const override { |
1541 | static_assert( |
1542 | llvm::is_one_of<AffineOpTy, AffineLoadOp, AffinePrefetchOp, |
1543 | AffineStoreOp, AffineApplyOp, AffineMinOp, AffineMaxOp, |
1544 | AffineVectorStoreOp, AffineVectorLoadOp>::value, |
1545 | "affine load/store/vectorstore/vectorload/apply/prefetch/min/max op " |
1546 | "expected" ); |
1547 | auto map = affineOp.getAffineMap(); |
1548 | AffineMap oldMap = map; |
1549 | auto oldOperands = affineOp.getMapOperands(); |
1550 | SmallVector<Value, 8> resultOperands(oldOperands); |
1551 | composeAffineMapAndOperands(&map, &resultOperands); |
1552 | canonicalizeMapAndOperands(&map, &resultOperands); |
1553 | simplifyMapWithOperands(map, resultOperands); |
1554 | if (map == oldMap && std::equal(oldOperands.begin(), oldOperands.end(), |
1555 | resultOperands.begin())) |
1556 | return failure(); |
1557 | |
1558 | replaceAffineOp(rewriter, affineOp, map, mapOperands: resultOperands); |
1559 | return success(); |
1560 | } |
1561 | }; |
1562 | |
1563 | // Specialize the template to account for the different build signatures for |
1564 | // affine load, store, and apply ops. |
1565 | template <> |
1566 | void SimplifyAffineOp<AffineLoadOp>::replaceAffineOp( |
1567 | PatternRewriter &rewriter, AffineLoadOp load, AffineMap map, |
1568 | ArrayRef<Value> mapOperands) const { |
1569 | rewriter.replaceOpWithNewOp<AffineLoadOp>(load, load.getMemRef(), map, |
1570 | mapOperands); |
1571 | } |
1572 | template <> |
1573 | void SimplifyAffineOp<AffinePrefetchOp>::replaceAffineOp( |
1574 | PatternRewriter &rewriter, AffinePrefetchOp prefetch, AffineMap map, |
1575 | ArrayRef<Value> mapOperands) const { |
1576 | rewriter.replaceOpWithNewOp<AffinePrefetchOp>( |
1577 | prefetch, prefetch.getMemref(), map, mapOperands, prefetch.getIsWrite(), |
1578 | prefetch.getLocalityHint(), prefetch.getIsDataCache()); |
1579 | } |
1580 | template <> |
1581 | void SimplifyAffineOp<AffineStoreOp>::replaceAffineOp( |
1582 | PatternRewriter &rewriter, AffineStoreOp store, AffineMap map, |
1583 | ArrayRef<Value> mapOperands) const { |
1584 | rewriter.replaceOpWithNewOp<AffineStoreOp>( |
1585 | store, store.getValueToStore(), store.getMemRef(), map, mapOperands); |
1586 | } |
1587 | template <> |
1588 | void SimplifyAffineOp<AffineVectorLoadOp>::replaceAffineOp( |
1589 | PatternRewriter &rewriter, AffineVectorLoadOp vectorload, AffineMap map, |
1590 | ArrayRef<Value> mapOperands) const { |
1591 | rewriter.replaceOpWithNewOp<AffineVectorLoadOp>( |
1592 | vectorload, vectorload.getVectorType(), vectorload.getMemRef(), map, |
1593 | mapOperands); |
1594 | } |
1595 | template <> |
1596 | void SimplifyAffineOp<AffineVectorStoreOp>::replaceAffineOp( |
1597 | PatternRewriter &rewriter, AffineVectorStoreOp vectorstore, AffineMap map, |
1598 | ArrayRef<Value> mapOperands) const { |
1599 | rewriter.replaceOpWithNewOp<AffineVectorStoreOp>( |
1600 | vectorstore, vectorstore.getValueToStore(), vectorstore.getMemRef(), map, |
1601 | mapOperands); |
1602 | } |
1603 | |
1604 | // Generic version for ops that don't have extra operands. |
1605 | template <typename AffineOpTy> |
1606 | void SimplifyAffineOp<AffineOpTy>::replaceAffineOp( |
1607 | PatternRewriter &rewriter, AffineOpTy op, AffineMap map, |
1608 | ArrayRef<Value> mapOperands) const { |
1609 | rewriter.replaceOpWithNewOp<AffineOpTy>(op, map, mapOperands); |
1610 | } |
1611 | } // namespace |
1612 | |
1613 | void AffineApplyOp::getCanonicalizationPatterns(RewritePatternSet &results, |
1614 | MLIRContext *context) { |
1615 | results.add<SimplifyAffineOp<AffineApplyOp>>(context); |
1616 | } |
1617 | |
1618 | //===----------------------------------------------------------------------===// |
1619 | // AffineDmaStartOp |
1620 | //===----------------------------------------------------------------------===// |
1621 | |
1622 | // TODO: Check that map operands are loop IVs or symbols. |
1623 | void AffineDmaStartOp::build(OpBuilder &builder, OperationState &result, |
1624 | Value srcMemRef, AffineMap srcMap, |
1625 | ValueRange srcIndices, Value destMemRef, |
1626 | AffineMap dstMap, ValueRange destIndices, |
1627 | Value tagMemRef, AffineMap tagMap, |
1628 | ValueRange tagIndices, Value numElements, |
1629 | Value stride, Value elementsPerStride) { |
1630 | result.addOperands(newOperands: srcMemRef); |
1631 | result.addAttribute(getSrcMapAttrStrName(), AffineMapAttr::get(srcMap)); |
1632 | result.addOperands(newOperands: srcIndices); |
1633 | result.addOperands(newOperands: destMemRef); |
1634 | result.addAttribute(getDstMapAttrStrName(), AffineMapAttr::get(dstMap)); |
1635 | result.addOperands(newOperands: destIndices); |
1636 | result.addOperands(newOperands: tagMemRef); |
1637 | result.addAttribute(getTagMapAttrStrName(), AffineMapAttr::get(tagMap)); |
1638 | result.addOperands(newOperands: tagIndices); |
1639 | result.addOperands(newOperands: numElements); |
1640 | if (stride) { |
1641 | result.addOperands(newOperands: {stride, elementsPerStride}); |
1642 | } |
1643 | } |
1644 | |
1645 | void AffineDmaStartOp::print(OpAsmPrinter &p) { |
1646 | p << " " << getSrcMemRef() << '['; |
1647 | p.printAffineMapOfSSAIds(getSrcMapAttr(), getSrcIndices()); |
1648 | p << "], " << getDstMemRef() << '['; |
1649 | p.printAffineMapOfSSAIds(getDstMapAttr(), getDstIndices()); |
1650 | p << "], " << getTagMemRef() << '['; |
1651 | p.printAffineMapOfSSAIds(getTagMapAttr(), getTagIndices()); |
1652 | p << "], " << getNumElements(); |
1653 | if (isStrided()) { |
1654 | p << ", " << getStride(); |
1655 | p << ", " << getNumElementsPerStride(); |
1656 | } |
1657 | p << " : " << getSrcMemRefType() << ", " << getDstMemRefType() << ", " |
1658 | << getTagMemRefType(); |
1659 | } |
1660 | |
1661 | // Parse AffineDmaStartOp. |
1662 | // Ex: |
1663 | // affine.dma_start %src[%i, %j], %dst[%k, %l], %tag[%index], %size, |
1664 | // %stride, %num_elt_per_stride |
1665 | // : memref<3076 x f32, 0>, memref<1024 x f32, 2>, memref<1 x i32> |
1666 | // |
1667 | ParseResult AffineDmaStartOp::parse(OpAsmParser &parser, |
1668 | OperationState &result) { |
1669 | OpAsmParser::UnresolvedOperand srcMemRefInfo; |
1670 | AffineMapAttr srcMapAttr; |
1671 | SmallVector<OpAsmParser::UnresolvedOperand, 4> srcMapOperands; |
1672 | OpAsmParser::UnresolvedOperand dstMemRefInfo; |
1673 | AffineMapAttr dstMapAttr; |
1674 | SmallVector<OpAsmParser::UnresolvedOperand, 4> dstMapOperands; |
1675 | OpAsmParser::UnresolvedOperand tagMemRefInfo; |
1676 | AffineMapAttr tagMapAttr; |
1677 | SmallVector<OpAsmParser::UnresolvedOperand, 4> tagMapOperands; |
1678 | OpAsmParser::UnresolvedOperand numElementsInfo; |
1679 | SmallVector<OpAsmParser::UnresolvedOperand, 2> strideInfo; |
1680 | |
1681 | SmallVector<Type, 3> types; |
1682 | auto indexType = parser.getBuilder().getIndexType(); |
1683 | |
1684 | // Parse and resolve the following list of operands: |
1685 | // *) dst memref followed by its affine maps operands (in square brackets). |
1686 | // *) src memref followed by its affine map operands (in square brackets). |
1687 | // *) tag memref followed by its affine map operands (in square brackets). |
1688 | // *) number of elements transferred by DMA operation. |
1689 | if (parser.parseOperand(result&: srcMemRefInfo) || |
1690 | parser.parseAffineMapOfSSAIds(operands&: srcMapOperands, map&: srcMapAttr, |
1691 | attrName: getSrcMapAttrStrName(), |
1692 | attrs&: result.attributes) || |
1693 | parser.parseComma() || parser.parseOperand(result&: dstMemRefInfo) || |
1694 | parser.parseAffineMapOfSSAIds(operands&: dstMapOperands, map&: dstMapAttr, |
1695 | attrName: getDstMapAttrStrName(), |
1696 | attrs&: result.attributes) || |
1697 | parser.parseComma() || parser.parseOperand(result&: tagMemRefInfo) || |
1698 | parser.parseAffineMapOfSSAIds(operands&: tagMapOperands, map&: tagMapAttr, |
1699 | attrName: getTagMapAttrStrName(), |
1700 | attrs&: result.attributes) || |
1701 | parser.parseComma() || parser.parseOperand(result&: numElementsInfo)) |
1702 | return failure(); |
1703 | |
1704 | // Parse optional stride and elements per stride. |
1705 | if (parser.parseTrailingOperandList(result&: strideInfo)) |
1706 | return failure(); |
1707 | |
1708 | if (!strideInfo.empty() && strideInfo.size() != 2) { |
1709 | return parser.emitError(loc: parser.getNameLoc(), |
1710 | message: "expected two stride related operands" ); |
1711 | } |
1712 | bool isStrided = strideInfo.size() == 2; |
1713 | |
1714 | if (parser.parseColonTypeList(result&: types)) |
1715 | return failure(); |
1716 | |
1717 | if (types.size() != 3) |
1718 | return parser.emitError(loc: parser.getNameLoc(), message: "expected three types" ); |
1719 | |
1720 | if (parser.resolveOperand(operand: srcMemRefInfo, type: types[0], result&: result.operands) || |
1721 | parser.resolveOperands(srcMapOperands, indexType, result.operands) || |
1722 | parser.resolveOperand(operand: dstMemRefInfo, type: types[1], result&: result.operands) || |
1723 | parser.resolveOperands(dstMapOperands, indexType, result.operands) || |
1724 | parser.resolveOperand(operand: tagMemRefInfo, type: types[2], result&: result.operands) || |
1725 | parser.resolveOperands(tagMapOperands, indexType, result.operands) || |
1726 | parser.resolveOperand(operand: numElementsInfo, type: indexType, result&: result.operands)) |
1727 | return failure(); |
1728 | |
1729 | if (isStrided) { |
1730 | if (parser.resolveOperands(strideInfo, indexType, result.operands)) |
1731 | return failure(); |
1732 | } |
1733 | |
1734 | // Check that src/dst/tag operand counts match their map.numInputs. |
1735 | if (srcMapOperands.size() != srcMapAttr.getValue().getNumInputs() || |
1736 | dstMapOperands.size() != dstMapAttr.getValue().getNumInputs() || |
1737 | tagMapOperands.size() != tagMapAttr.getValue().getNumInputs()) |
1738 | return parser.emitError(loc: parser.getNameLoc(), |
1739 | message: "memref operand count not equal to map.numInputs" ); |
1740 | return success(); |
1741 | } |
1742 | |
1743 | LogicalResult AffineDmaStartOp::verifyInvariantsImpl() { |
1744 | if (!llvm::isa<MemRefType>(getOperand(getSrcMemRefOperandIndex()).getType())) |
1745 | return emitOpError("expected DMA source to be of memref type" ); |
1746 | if (!llvm::isa<MemRefType>(getOperand(getDstMemRefOperandIndex()).getType())) |
1747 | return emitOpError("expected DMA destination to be of memref type" ); |
1748 | if (!llvm::isa<MemRefType>(getOperand(getTagMemRefOperandIndex()).getType())) |
1749 | return emitOpError("expected DMA tag to be of memref type" ); |
1750 | |
1751 | unsigned numInputsAllMaps = getSrcMap().getNumInputs() + |
1752 | getDstMap().getNumInputs() + |
1753 | getTagMap().getNumInputs(); |
1754 | if (getNumOperands() != numInputsAllMaps + 3 + 1 && |
1755 | getNumOperands() != numInputsAllMaps + 3 + 1 + 2) { |
1756 | return emitOpError("incorrect number of operands" ); |
1757 | } |
1758 | |
1759 | Region *scope = getAffineScope(*this); |
1760 | for (auto idx : getSrcIndices()) { |
1761 | if (!idx.getType().isIndex()) |
1762 | return emitOpError("src index to dma_start must have 'index' type" ); |
1763 | if (!isValidAffineIndexOperand(idx, scope)) |
1764 | return emitOpError( |
1765 | "src index must be a valid dimension or symbol identifier" ); |
1766 | } |
1767 | for (auto idx : getDstIndices()) { |
1768 | if (!idx.getType().isIndex()) |
1769 | return emitOpError("dst index to dma_start must have 'index' type" ); |
1770 | if (!isValidAffineIndexOperand(idx, scope)) |
1771 | return emitOpError( |
1772 | "dst index must be a valid dimension or symbol identifier" ); |
1773 | } |
1774 | for (auto idx : getTagIndices()) { |
1775 | if (!idx.getType().isIndex()) |
1776 | return emitOpError("tag index to dma_start must have 'index' type" ); |
1777 | if (!isValidAffineIndexOperand(idx, scope)) |
1778 | return emitOpError( |
1779 | "tag index must be a valid dimension or symbol identifier" ); |
1780 | } |
1781 | return success(); |
1782 | } |
1783 | |
1784 | LogicalResult AffineDmaStartOp::fold(ArrayRef<Attribute> cstOperands, |
1785 | SmallVectorImpl<OpFoldResult> &results) { |
1786 | /// dma_start(memrefcast) -> dma_start |
1787 | return memref::foldMemRefCast(*this); |
1788 | } |
1789 | |
1790 | void AffineDmaStartOp::getEffects( |
1791 | SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> |
1792 | &effects) { |
1793 | effects.emplace_back(Args: MemoryEffects::Read::get(), Args: &getSrcMemRefMutable(), |
1794 | Args: SideEffects::DefaultResource::get()); |
1795 | effects.emplace_back(Args: MemoryEffects::Write::get(), Args: &getDstMemRefMutable(), |
1796 | Args: SideEffects::DefaultResource::get()); |
1797 | effects.emplace_back(Args: MemoryEffects::Read::get(), Args: &getTagMemRefMutable(), |
1798 | Args: SideEffects::DefaultResource::get()); |
1799 | } |
1800 | |
1801 | //===----------------------------------------------------------------------===// |
1802 | // AffineDmaWaitOp |
1803 | //===----------------------------------------------------------------------===// |
1804 | |
1805 | // TODO: Check that map operands are loop IVs or symbols. |
1806 | void AffineDmaWaitOp::build(OpBuilder &builder, OperationState &result, |
1807 | Value tagMemRef, AffineMap tagMap, |
1808 | ValueRange tagIndices, Value numElements) { |
1809 | result.addOperands(newOperands: tagMemRef); |
1810 | result.addAttribute(getTagMapAttrStrName(), AffineMapAttr::get(tagMap)); |
1811 | result.addOperands(newOperands: tagIndices); |
1812 | result.addOperands(newOperands: numElements); |
1813 | } |
1814 | |
1815 | void AffineDmaWaitOp::print(OpAsmPrinter &p) { |
1816 | p << " " << getTagMemRef() << '['; |
1817 | SmallVector<Value, 2> operands(getTagIndices()); |
1818 | p.printAffineMapOfSSAIds(getTagMapAttr(), operands); |
1819 | p << "], " ; |
1820 | p.printOperand(value: getNumElements()); |
1821 | p << " : " << getTagMemRef().getType(); |
1822 | } |
1823 | |
1824 | // Parse AffineDmaWaitOp. |
1825 | // Eg: |
1826 | // affine.dma_wait %tag[%index], %num_elements |
1827 | // : memref<1 x i32, (d0) -> (d0), 4> |
1828 | // |
1829 | ParseResult AffineDmaWaitOp::parse(OpAsmParser &parser, |
1830 | OperationState &result) { |
1831 | OpAsmParser::UnresolvedOperand tagMemRefInfo; |
1832 | AffineMapAttr tagMapAttr; |
1833 | SmallVector<OpAsmParser::UnresolvedOperand, 2> tagMapOperands; |
1834 | Type type; |
1835 | auto indexType = parser.getBuilder().getIndexType(); |
1836 | OpAsmParser::UnresolvedOperand numElementsInfo; |
1837 | |
1838 | // Parse tag memref, its map operands, and dma size. |
1839 | if (parser.parseOperand(result&: tagMemRefInfo) || |
1840 | parser.parseAffineMapOfSSAIds(operands&: tagMapOperands, map&: tagMapAttr, |
1841 | attrName: getTagMapAttrStrName(), |
1842 | attrs&: result.attributes) || |
1843 | parser.parseComma() || parser.parseOperand(result&: numElementsInfo) || |
1844 | parser.parseColonType(result&: type) || |
1845 | parser.resolveOperand(operand: tagMemRefInfo, type, result&: result.operands) || |
1846 | parser.resolveOperands(tagMapOperands, indexType, result.operands) || |
1847 | parser.resolveOperand(operand: numElementsInfo, type: indexType, result&: result.operands)) |
1848 | return failure(); |
1849 | |
1850 | if (!llvm::isa<MemRefType>(Val: type)) |
1851 | return parser.emitError(loc: parser.getNameLoc(), |
1852 | message: "expected tag to be of memref type" ); |
1853 | |
1854 | if (tagMapOperands.size() != tagMapAttr.getValue().getNumInputs()) |
1855 | return parser.emitError(loc: parser.getNameLoc(), |
1856 | message: "tag memref operand count != to map.numInputs" ); |
1857 | return success(); |
1858 | } |
1859 | |
1860 | LogicalResult AffineDmaWaitOp::verifyInvariantsImpl() { |
1861 | if (!llvm::isa<MemRefType>(getOperand(0).getType())) |
1862 | return emitOpError("expected DMA tag to be of memref type" ); |
1863 | Region *scope = getAffineScope(*this); |
1864 | for (auto idx : getTagIndices()) { |
1865 | if (!idx.getType().isIndex()) |
1866 | return emitOpError("index to dma_wait must have 'index' type" ); |
1867 | if (!isValidAffineIndexOperand(idx, scope)) |
1868 | return emitOpError( |
1869 | "index must be a valid dimension or symbol identifier" ); |
1870 | } |
1871 | return success(); |
1872 | } |
1873 | |
1874 | LogicalResult AffineDmaWaitOp::fold(ArrayRef<Attribute> cstOperands, |
1875 | SmallVectorImpl<OpFoldResult> &results) { |
1876 | /// dma_wait(memrefcast) -> dma_wait |
1877 | return memref::foldMemRefCast(*this); |
1878 | } |
1879 | |
1880 | void AffineDmaWaitOp::getEffects( |
1881 | SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> |
1882 | &effects) { |
1883 | effects.emplace_back(Args: MemoryEffects::Read::get(), Args: &getTagMemRefMutable(), |
1884 | Args: SideEffects::DefaultResource::get()); |
1885 | } |
1886 | |
1887 | //===----------------------------------------------------------------------===// |
1888 | // AffineForOp |
1889 | //===----------------------------------------------------------------------===// |
1890 | |
1891 | /// 'bodyBuilder' is used to build the body of affine.for. If iterArgs and |
1892 | /// bodyBuilder are empty/null, we include default terminator op. |
1893 | void AffineForOp::build(OpBuilder &builder, OperationState &result, |
1894 | ValueRange lbOperands, AffineMap lbMap, |
1895 | ValueRange ubOperands, AffineMap ubMap, int64_t step, |
1896 | ValueRange iterArgs, BodyBuilderFn bodyBuilder) { |
1897 | assert(((!lbMap && lbOperands.empty()) || |
1898 | lbOperands.size() == lbMap.getNumInputs()) && |
1899 | "lower bound operand count does not match the affine map" ); |
1900 | assert(((!ubMap && ubOperands.empty()) || |
1901 | ubOperands.size() == ubMap.getNumInputs()) && |
1902 | "upper bound operand count does not match the affine map" ); |
1903 | assert(step > 0 && "step has to be a positive integer constant" ); |
1904 | |
1905 | OpBuilder::InsertionGuard guard(builder); |
1906 | |
1907 | // Set variadic segment sizes. |
1908 | result.addAttribute( |
1909 | getOperandSegmentSizeAttr(), |
1910 | builder.getDenseI32ArrayAttr({static_cast<int32_t>(lbOperands.size()), |
1911 | static_cast<int32_t>(ubOperands.size()), |
1912 | static_cast<int32_t>(iterArgs.size())})); |
1913 | |
1914 | for (Value val : iterArgs) |
1915 | result.addTypes(val.getType()); |
1916 | |
1917 | // Add an attribute for the step. |
1918 | result.addAttribute(getStepAttrName(result.name), |
1919 | builder.getIntegerAttr(builder.getIndexType(), step)); |
1920 | |
1921 | // Add the lower bound. |
1922 | result.addAttribute(getLowerBoundMapAttrName(result.name), |
1923 | AffineMapAttr::get(lbMap)); |
1924 | result.addOperands(lbOperands); |
1925 | |
1926 | // Add the upper bound. |
1927 | result.addAttribute(getUpperBoundMapAttrName(result.name), |
1928 | AffineMapAttr::get(ubMap)); |
1929 | result.addOperands(ubOperands); |
1930 | |
1931 | result.addOperands(iterArgs); |
1932 | // Create a region and a block for the body. The argument of the region is |
1933 | // the loop induction variable. |
1934 | Region *bodyRegion = result.addRegion(); |
1935 | Block *bodyBlock = builder.createBlock(bodyRegion); |
1936 | Value inductionVar = |
1937 | bodyBlock->addArgument(builder.getIndexType(), result.location); |
1938 | for (Value val : iterArgs) |
1939 | bodyBlock->addArgument(val.getType(), val.getLoc()); |
1940 | |
1941 | // Create the default terminator if the builder is not provided and if the |
1942 | // iteration arguments are not provided. Otherwise, leave this to the caller |
1943 | // because we don't know which values to return from the loop. |
1944 | if (iterArgs.empty() && !bodyBuilder) { |
1945 | ensureTerminator(*bodyRegion, builder, result.location); |
1946 | } else if (bodyBuilder) { |
1947 | OpBuilder::InsertionGuard guard(builder); |
1948 | builder.setInsertionPointToStart(bodyBlock); |
1949 | bodyBuilder(builder, result.location, inductionVar, |
1950 | bodyBlock->getArguments().drop_front()); |
1951 | } |
1952 | } |
1953 | |
1954 | void AffineForOp::build(OpBuilder &builder, OperationState &result, int64_t lb, |
1955 | int64_t ub, int64_t step, ValueRange iterArgs, |
1956 | BodyBuilderFn bodyBuilder) { |
1957 | auto lbMap = AffineMap::getConstantMap(lb, builder.getContext()); |
1958 | auto ubMap = AffineMap::getConstantMap(ub, builder.getContext()); |
1959 | return build(builder, result, {}, lbMap, {}, ubMap, step, iterArgs, |
1960 | bodyBuilder); |
1961 | } |
1962 | |
1963 | LogicalResult AffineForOp::verifyRegions() { |
1964 | // Check that the body defines as single block argument for the induction |
1965 | // variable. |
1966 | auto *body = getBody(); |
1967 | if (body->getNumArguments() == 0 || !body->getArgument(0).getType().isIndex()) |
1968 | return emitOpError("expected body to have a single index argument for the " |
1969 | "induction variable" ); |
1970 | |
1971 | // Verify that the bound operands are valid dimension/symbols. |
1972 | /// Lower bound. |
1973 | if (getLowerBoundMap().getNumInputs() > 0) |
1974 | if (failed(verifyDimAndSymbolIdentifiers(*this, getLowerBoundOperands(), |
1975 | getLowerBoundMap().getNumDims()))) |
1976 | return failure(); |
1977 | /// Upper bound. |
1978 | if (getUpperBoundMap().getNumInputs() > 0) |
1979 | if (failed(verifyDimAndSymbolIdentifiers(*this, getUpperBoundOperands(), |
1980 | getUpperBoundMap().getNumDims()))) |
1981 | return failure(); |
1982 | if (getLowerBoundMap().getNumResults() < 1) |
1983 | return emitOpError("expected lower bound map to have at least one result" ); |
1984 | if (getUpperBoundMap().getNumResults() < 1) |
1985 | return emitOpError("expected upper bound map to have at least one result" ); |
1986 | |
1987 | unsigned opNumResults = getNumResults(); |
1988 | if (opNumResults == 0) |
1989 | return success(); |
1990 | |
1991 | // If ForOp defines values, check that the number and types of the defined |
1992 | // values match ForOp initial iter operands and backedge basic block |
1993 | // arguments. |
1994 | if (getNumIterOperands() != opNumResults) |
1995 | return emitOpError( |
1996 | "mismatch between the number of loop-carried values and results" ); |
1997 | if (getNumRegionIterArgs() != opNumResults) |
1998 | return emitOpError( |
1999 | "mismatch between the number of basic block args and results" ); |
2000 | |
2001 | return success(); |
2002 | } |
2003 | |
2004 | /// Parse a for operation loop bounds. |
2005 | static ParseResult parseBound(bool isLower, OperationState &result, |
2006 | OpAsmParser &p) { |
2007 | // 'min' / 'max' prefixes are generally syntactic sugar, but are required if |
2008 | // the map has multiple results. |
2009 | bool failedToParsedMinMax = |
2010 | failed(Result: p.parseOptionalKeyword(keyword: isLower ? "max" : "min" )); |
2011 | |
2012 | auto &builder = p.getBuilder(); |
2013 | auto boundAttrStrName = |
2014 | isLower ? AffineForOp::getLowerBoundMapAttrName(result.name) |
2015 | : AffineForOp::getUpperBoundMapAttrName(result.name); |
2016 | |
2017 | // Parse ssa-id as identity map. |
2018 | SmallVector<OpAsmParser::UnresolvedOperand, 1> boundOpInfos; |
2019 | if (p.parseOperandList(result&: boundOpInfos)) |
2020 | return failure(); |
2021 | |
2022 | if (!boundOpInfos.empty()) { |
2023 | // Check that only one operand was parsed. |
2024 | if (boundOpInfos.size() > 1) |
2025 | return p.emitError(loc: p.getNameLoc(), |
2026 | message: "expected only one loop bound operand" ); |
2027 | |
2028 | // TODO: improve error message when SSA value is not of index type. |
2029 | // Currently it is 'use of value ... expects different type than prior uses' |
2030 | if (p.resolveOperand(boundOpInfos.front(), builder.getIndexType(), |
2031 | result.operands)) |
2032 | return failure(); |
2033 | |
2034 | // Create an identity map using symbol id. This representation is optimized |
2035 | // for storage. Analysis passes may expand it into a multi-dimensional map |
2036 | // if desired. |
2037 | AffineMap map = builder.getSymbolIdentityMap(); |
2038 | result.addAttribute(boundAttrStrName, AffineMapAttr::get(map)); |
2039 | return success(); |
2040 | } |
2041 | |
2042 | // Get the attribute location. |
2043 | SMLoc attrLoc = p.getCurrentLocation(); |
2044 | |
2045 | Attribute boundAttr; |
2046 | if (p.parseAttribute(boundAttr, builder.getIndexType(), boundAttrStrName, |
2047 | result.attributes)) |
2048 | return failure(); |
2049 | |
2050 | // Parse full form - affine map followed by dim and symbol list. |
2051 | if (auto affineMapAttr = llvm::dyn_cast<AffineMapAttr>(boundAttr)) { |
2052 | unsigned currentNumOperands = result.operands.size(); |
2053 | unsigned numDims; |
2054 | if (parseDimAndSymbolList(parser&: p, operands&: result.operands, numDims)) |
2055 | return failure(); |
2056 | |
2057 | auto map = affineMapAttr.getValue(); |
2058 | if (map.getNumDims() != numDims) |
2059 | return p.emitError( |
2060 | loc: p.getNameLoc(), |
2061 | message: "dim operand count and affine map dim count must match" ); |
2062 | |
2063 | unsigned numDimAndSymbolOperands = |
2064 | result.operands.size() - currentNumOperands; |
2065 | if (numDims + map.getNumSymbols() != numDimAndSymbolOperands) |
2066 | return p.emitError( |
2067 | loc: p.getNameLoc(), |
2068 | message: "symbol operand count and affine map symbol count must match" ); |
2069 | |
2070 | // If the map has multiple results, make sure that we parsed the min/max |
2071 | // prefix. |
2072 | if (map.getNumResults() > 1 && failedToParsedMinMax) { |
2073 | if (isLower) { |
2074 | return p.emitError(loc: attrLoc, message: "lower loop bound affine map with " |
2075 | "multiple results requires 'max' prefix" ); |
2076 | } |
2077 | return p.emitError(loc: attrLoc, message: "upper loop bound affine map with multiple " |
2078 | "results requires 'min' prefix" ); |
2079 | } |
2080 | return success(); |
2081 | } |
2082 | |
2083 | // Parse custom assembly form. |
2084 | if (auto integerAttr = llvm::dyn_cast<IntegerAttr>(boundAttr)) { |
2085 | result.attributes.pop_back(); |
2086 | result.addAttribute( |
2087 | boundAttrStrName, |
2088 | AffineMapAttr::get(builder.getConstantAffineMap(integerAttr.getInt()))); |
2089 | return success(); |
2090 | } |
2091 | |
2092 | return p.emitError( |
2093 | loc: p.getNameLoc(), |
2094 | message: "expected valid affine map representation for loop bounds" ); |
2095 | } |
2096 | |
2097 | ParseResult AffineForOp::parse(OpAsmParser &parser, OperationState &result) { |
2098 | auto &builder = parser.getBuilder(); |
2099 | OpAsmParser::Argument inductionVariable; |
2100 | inductionVariable.type = builder.getIndexType(); |
2101 | // Parse the induction variable followed by '='. |
2102 | if (parser.parseArgument(inductionVariable) || parser.parseEqual()) |
2103 | return failure(); |
2104 | |
2105 | // Parse loop bounds. |
2106 | int64_t numOperands = result.operands.size(); |
2107 | if (parseBound(/*isLower=*/true, result, parser)) |
2108 | return failure(); |
2109 | int64_t numLbOperands = result.operands.size() - numOperands; |
2110 | if (parser.parseKeyword("to" , " between bounds" )) |
2111 | return failure(); |
2112 | numOperands = result.operands.size(); |
2113 | if (parseBound(/*isLower=*/false, result, parser)) |
2114 | return failure(); |
2115 | int64_t numUbOperands = result.operands.size() - numOperands; |
2116 | |
2117 | // Parse the optional loop step, we default to 1 if one is not present. |
2118 | if (parser.parseOptionalKeyword("step" )) { |
2119 | result.addAttribute( |
2120 | getStepAttrName(result.name), |
2121 | builder.getIntegerAttr(builder.getIndexType(), /*value=*/1)); |
2122 | } else { |
2123 | SMLoc stepLoc = parser.getCurrentLocation(); |
2124 | IntegerAttr stepAttr; |
2125 | if (parser.parseAttribute(stepAttr, builder.getIndexType(), |
2126 | getStepAttrName(result.name).data(), |
2127 | result.attributes)) |
2128 | return failure(); |
2129 | |
2130 | if (stepAttr.getValue().isNegative()) |
2131 | return parser.emitError( |
2132 | stepLoc, |
2133 | "expected step to be representable as a positive signed integer" ); |
2134 | } |
2135 | |
2136 | // Parse the optional initial iteration arguments. |
2137 | SmallVector<OpAsmParser::Argument, 4> regionArgs; |
2138 | SmallVector<OpAsmParser::UnresolvedOperand, 4> operands; |
2139 | |
2140 | // Induction variable. |
2141 | regionArgs.push_back(inductionVariable); |
2142 | |
2143 | if (succeeded(parser.parseOptionalKeyword("iter_args" ))) { |
2144 | // Parse assignment list and results type list. |
2145 | if (parser.parseAssignmentList(regionArgs, operands) || |
2146 | parser.parseArrowTypeList(result.types)) |
2147 | return failure(); |
2148 | // Resolve input operands. |
2149 | for (auto argOperandType : |
2150 | llvm::zip(llvm::drop_begin(regionArgs), operands, result.types)) { |
2151 | Type type = std::get<2>(argOperandType); |
2152 | std::get<0>(argOperandType).type = type; |
2153 | if (parser.resolveOperand(std::get<1>(argOperandType), type, |
2154 | result.operands)) |
2155 | return failure(); |
2156 | } |
2157 | } |
2158 | |
2159 | result.addAttribute( |
2160 | getOperandSegmentSizeAttr(), |
2161 | builder.getDenseI32ArrayAttr({static_cast<int32_t>(numLbOperands), |
2162 | static_cast<int32_t>(numUbOperands), |
2163 | static_cast<int32_t>(operands.size())})); |
2164 | |
2165 | // Parse the body region. |
2166 | Region *body = result.addRegion(); |
2167 | if (regionArgs.size() != result.types.size() + 1) |
2168 | return parser.emitError( |
2169 | parser.getNameLoc(), |
2170 | "mismatch between the number of loop-carried values and results" ); |
2171 | if (parser.parseRegion(*body, regionArgs)) |
2172 | return failure(); |
2173 | |
2174 | AffineForOp::ensureTerminator(*body, builder, result.location); |
2175 | |
2176 | // Parse the optional attribute list. |
2177 | return parser.parseOptionalAttrDict(result.attributes); |
2178 | } |
2179 | |
2180 | static void printBound(AffineMapAttr boundMap, |
2181 | Operation::operand_range boundOperands, |
2182 | const char *prefix, OpAsmPrinter &p) { |
2183 | AffineMap map = boundMap.getValue(); |
2184 | |
2185 | // Check if this bound should be printed using custom assembly form. |
2186 | // The decision to restrict printing custom assembly form to trivial cases |
2187 | // comes from the will to roundtrip MLIR binary -> text -> binary in a |
2188 | // lossless way. |
2189 | // Therefore, custom assembly form parsing and printing is only supported for |
2190 | // zero-operand constant maps and single symbol operand identity maps. |
2191 | if (map.getNumResults() == 1) { |
2192 | AffineExpr expr = map.getResult(idx: 0); |
2193 | |
2194 | // Print constant bound. |
2195 | if (map.getNumDims() == 0 && map.getNumSymbols() == 0) { |
2196 | if (auto constExpr = dyn_cast<AffineConstantExpr>(expr)) { |
2197 | p << constExpr.getValue(); |
2198 | return; |
2199 | } |
2200 | } |
2201 | |
2202 | // Print bound that consists of a single SSA symbol if the map is over a |
2203 | // single symbol. |
2204 | if (map.getNumDims() == 0 && map.getNumSymbols() == 1) { |
2205 | if (isa<AffineSymbolExpr>(Val: expr)) { |
2206 | p.printOperand(value: *boundOperands.begin()); |
2207 | return; |
2208 | } |
2209 | } |
2210 | } else { |
2211 | // Map has multiple results. Print 'min' or 'max' prefix. |
2212 | p << prefix << ' '; |
2213 | } |
2214 | |
2215 | // Print the map and its operands. |
2216 | p << boundMap; |
2217 | printDimAndSymbolList(begin: boundOperands.begin(), end: boundOperands.end(), |
2218 | numDims: map.getNumDims(), printer&: p); |
2219 | } |
2220 | |
2221 | unsigned AffineForOp::getNumIterOperands() { |
2222 | AffineMap lbMap = getLowerBoundMapAttr().getValue(); |
2223 | AffineMap ubMap = getUpperBoundMapAttr().getValue(); |
2224 | |
2225 | return getNumOperands() - lbMap.getNumInputs() - ubMap.getNumInputs(); |
2226 | } |
2227 | |
2228 | std::optional<MutableArrayRef<OpOperand>> |
2229 | AffineForOp::getYieldedValuesMutable() { |
2230 | return cast<AffineYieldOp>(getBody()->getTerminator()).getOperandsMutable(); |
2231 | } |
2232 | |
2233 | void AffineForOp::print(OpAsmPrinter &p) { |
2234 | p << ' '; |
2235 | p.printRegionArgument(getBody()->getArgument(0), /*argAttrs=*/{}, |
2236 | /*omitType=*/true); |
2237 | p << " = " ; |
2238 | printBound(getLowerBoundMapAttr(), getLowerBoundOperands(), "max" , p); |
2239 | p << " to " ; |
2240 | printBound(getUpperBoundMapAttr(), getUpperBoundOperands(), "min" , p); |
2241 | |
2242 | if (getStepAsInt() != 1) |
2243 | p << " step " << getStepAsInt(); |
2244 | |
2245 | bool printBlockTerminators = false; |
2246 | if (getNumIterOperands() > 0) { |
2247 | p << " iter_args(" ; |
2248 | auto regionArgs = getRegionIterArgs(); |
2249 | auto operands = getInits(); |
2250 | |
2251 | llvm::interleaveComma(llvm::zip(regionArgs, operands), p, [&](auto it) { |
2252 | p << std::get<0>(it) << " = " << std::get<1>(it); |
2253 | }); |
2254 | p << ") -> (" << getResultTypes() << ")" ; |
2255 | printBlockTerminators = true; |
2256 | } |
2257 | |
2258 | p << ' '; |
2259 | p.printRegion(getRegion(), /*printEntryBlockArgs=*/false, |
2260 | printBlockTerminators); |
2261 | p.printOptionalAttrDict( |
2262 | (*this)->getAttrs(), |
2263 | /*elidedAttrs=*/{getLowerBoundMapAttrName(getOperation()->getName()), |
2264 | getUpperBoundMapAttrName(getOperation()->getName()), |
2265 | getStepAttrName(getOperation()->getName()), |
2266 | getOperandSegmentSizeAttr()}); |
2267 | } |
2268 | |
2269 | /// Fold the constant bounds of a loop. |
2270 | static LogicalResult foldLoopBounds(AffineForOp forOp) { |
2271 | auto foldLowerOrUpperBound = [&forOp](bool lower) { |
2272 | // Check to see if each of the operands is the result of a constant. If |
2273 | // so, get the value. If not, ignore it. |
2274 | SmallVector<Attribute, 8> operandConstants; |
2275 | auto boundOperands = |
2276 | lower ? forOp.getLowerBoundOperands() : forOp.getUpperBoundOperands(); |
2277 | for (auto operand : boundOperands) { |
2278 | Attribute operandCst; |
2279 | matchPattern(operand, m_Constant(&operandCst)); |
2280 | operandConstants.push_back(operandCst); |
2281 | } |
2282 | |
2283 | AffineMap boundMap = |
2284 | lower ? forOp.getLowerBoundMap() : forOp.getUpperBoundMap(); |
2285 | assert(boundMap.getNumResults() >= 1 && |
2286 | "bound maps should have at least one result" ); |
2287 | SmallVector<Attribute, 4> foldedResults; |
2288 | if (failed(Result: boundMap.constantFold(operandConstants, results&: foldedResults))) |
2289 | return failure(); |
2290 | |
2291 | // Compute the max or min as applicable over the results. |
2292 | assert(!foldedResults.empty() && "bounds should have at least one result" ); |
2293 | auto maxOrMin = llvm::cast<IntegerAttr>(foldedResults[0]).getValue(); |
2294 | for (unsigned i = 1, e = foldedResults.size(); i < e; i++) { |
2295 | auto foldedResult = llvm::cast<IntegerAttr>(foldedResults[i]).getValue(); |
2296 | maxOrMin = lower ? llvm::APIntOps::smax(A: maxOrMin, B: foldedResult) |
2297 | : llvm::APIntOps::smin(A: maxOrMin, B: foldedResult); |
2298 | } |
2299 | lower ? forOp.setConstantLowerBound(maxOrMin.getSExtValue()) |
2300 | : forOp.setConstantUpperBound(maxOrMin.getSExtValue()); |
2301 | return success(); |
2302 | }; |
2303 | |
2304 | // Try to fold the lower bound. |
2305 | bool folded = false; |
2306 | if (!forOp.hasConstantLowerBound()) |
2307 | folded |= succeeded(Result: foldLowerOrUpperBound(/*lower=*/true)); |
2308 | |
2309 | // Try to fold the upper bound. |
2310 | if (!forOp.hasConstantUpperBound()) |
2311 | folded |= succeeded(Result: foldLowerOrUpperBound(/*lower=*/false)); |
2312 | return success(IsSuccess: folded); |
2313 | } |
2314 | |
2315 | /// Canonicalize the bounds of the given loop. |
2316 | static LogicalResult canonicalizeLoopBounds(AffineForOp forOp) { |
2317 | SmallVector<Value, 4> lbOperands(forOp.getLowerBoundOperands()); |
2318 | SmallVector<Value, 4> ubOperands(forOp.getUpperBoundOperands()); |
2319 | |
2320 | auto lbMap = forOp.getLowerBoundMap(); |
2321 | auto ubMap = forOp.getUpperBoundMap(); |
2322 | auto prevLbMap = lbMap; |
2323 | auto prevUbMap = ubMap; |
2324 | |
2325 | composeAffineMapAndOperands(&lbMap, &lbOperands); |
2326 | canonicalizeMapAndOperands(&lbMap, &lbOperands); |
2327 | simplifyMinOrMaxExprWithOperands(lbMap, lbOperands, /*isMax=*/true); |
2328 | simplifyMinOrMaxExprWithOperands(ubMap, ubOperands, /*isMax=*/false); |
2329 | lbMap = removeDuplicateExprs(lbMap); |
2330 | |
2331 | composeAffineMapAndOperands(&ubMap, &ubOperands); |
2332 | canonicalizeMapAndOperands(&ubMap, &ubOperands); |
2333 | ubMap = removeDuplicateExprs(ubMap); |
2334 | |
2335 | // Any canonicalization change always leads to updated map(s). |
2336 | if (lbMap == prevLbMap && ubMap == prevUbMap) |
2337 | return failure(); |
2338 | |
2339 | if (lbMap != prevLbMap) |
2340 | forOp.setLowerBound(lbOperands, lbMap); |
2341 | if (ubMap != prevUbMap) |
2342 | forOp.setUpperBound(ubOperands, ubMap); |
2343 | return success(); |
2344 | } |
2345 | |
2346 | namespace { |
2347 | /// Returns constant trip count in trivial cases. |
2348 | static std::optional<uint64_t> getTrivialConstantTripCount(AffineForOp forOp) { |
2349 | int64_t step = forOp.getStepAsInt(); |
2350 | if (!forOp.hasConstantBounds() || step <= 0) |
2351 | return std::nullopt; |
2352 | int64_t lb = forOp.getConstantLowerBound(); |
2353 | int64_t ub = forOp.getConstantUpperBound(); |
2354 | return ub - lb <= 0 ? 0 : (ub - lb + step - 1) / step; |
2355 | } |
2356 | |
2357 | /// This is a pattern to fold trivially empty loop bodies. |
2358 | /// TODO: This should be moved into the folding hook. |
2359 | struct AffineForEmptyLoopFolder : public OpRewritePattern<AffineForOp> { |
2360 | using OpRewritePattern<AffineForOp>::OpRewritePattern; |
2361 | |
2362 | LogicalResult matchAndRewrite(AffineForOp forOp, |
2363 | PatternRewriter &rewriter) const override { |
2364 | // Check that the body only contains a yield. |
2365 | if (!llvm::hasSingleElement(*forOp.getBody())) |
2366 | return failure(); |
2367 | if (forOp.getNumResults() == 0) |
2368 | return success(); |
2369 | std::optional<uint64_t> tripCount = getTrivialConstantTripCount(forOp); |
2370 | if (tripCount && *tripCount == 0) { |
2371 | // The initial values of the iteration arguments would be the op's |
2372 | // results. |
2373 | rewriter.replaceOp(forOp, forOp.getInits()); |
2374 | return success(); |
2375 | } |
2376 | SmallVector<Value, 4> replacements; |
2377 | auto yieldOp = cast<AffineYieldOp>(forOp.getBody()->getTerminator()); |
2378 | auto iterArgs = forOp.getRegionIterArgs(); |
2379 | bool hasValDefinedOutsideLoop = false; |
2380 | bool iterArgsNotInOrder = false; |
2381 | for (unsigned i = 0, e = yieldOp->getNumOperands(); i < e; ++i) { |
2382 | Value val = yieldOp.getOperand(i); |
2383 | auto *iterArgIt = llvm::find(iterArgs, val); |
2384 | // TODO: It should be possible to perform a replacement by computing the |
2385 | // last value of the IV based on the bounds and the step. |
2386 | if (val == forOp.getInductionVar()) |
2387 | return failure(); |
2388 | if (iterArgIt == iterArgs.end()) { |
2389 | // `val` is defined outside of the loop. |
2390 | assert(forOp.isDefinedOutsideOfLoop(val) && |
2391 | "must be defined outside of the loop" ); |
2392 | hasValDefinedOutsideLoop = true; |
2393 | replacements.push_back(Elt: val); |
2394 | } else { |
2395 | unsigned pos = std::distance(iterArgs.begin(), iterArgIt); |
2396 | if (pos != i) |
2397 | iterArgsNotInOrder = true; |
2398 | replacements.push_back(Elt: forOp.getInits()[pos]); |
2399 | } |
2400 | } |
2401 | // Bail out when the trip count is unknown and the loop returns any value |
2402 | // defined outside of the loop or any iterArg out of order. |
2403 | if (!tripCount.has_value() && |
2404 | (hasValDefinedOutsideLoop || iterArgsNotInOrder)) |
2405 | return failure(); |
2406 | // Bail out when the loop iterates more than once and it returns any iterArg |
2407 | // out of order. |
2408 | if (tripCount.has_value() && tripCount.value() >= 2 && iterArgsNotInOrder) |
2409 | return failure(); |
2410 | rewriter.replaceOp(forOp, replacements); |
2411 | return success(); |
2412 | } |
2413 | }; |
2414 | } // namespace |
2415 | |
2416 | void AffineForOp::getCanonicalizationPatterns(RewritePatternSet &results, |
2417 | MLIRContext *context) { |
2418 | results.add<AffineForEmptyLoopFolder>(context); |
2419 | } |
2420 | |
2421 | OperandRange AffineForOp::getEntrySuccessorOperands(RegionBranchPoint point) { |
2422 | assert((point.isParent() || point == getRegion()) && "invalid region point" ); |
2423 | |
2424 | // The initial operands map to the loop arguments after the induction |
2425 | // variable or are forwarded to the results when the trip count is zero. |
2426 | return getInits(); |
2427 | } |
2428 | |
2429 | void AffineForOp::getSuccessorRegions( |
2430 | RegionBranchPoint point, SmallVectorImpl<RegionSuccessor> ®ions) { |
2431 | assert((point.isParent() || point == getRegion()) && "expected loop region" ); |
2432 | // The loop may typically branch back to its body or to the parent operation. |
2433 | // If the predecessor is the parent op and the trip count is known to be at |
2434 | // least one, branch into the body using the iterator arguments. And in cases |
2435 | // we know the trip count is zero, it can only branch back to its parent. |
2436 | std::optional<uint64_t> tripCount = getTrivialConstantTripCount(*this); |
2437 | if (point.isParent() && tripCount.has_value()) { |
2438 | if (tripCount.value() > 0) { |
2439 | regions.push_back(RegionSuccessor(&getRegion(), getRegionIterArgs())); |
2440 | return; |
2441 | } |
2442 | if (tripCount.value() == 0) { |
2443 | regions.push_back(RegionSuccessor(getResults())); |
2444 | return; |
2445 | } |
2446 | } |
2447 | |
2448 | // From the loop body, if the trip count is one, we can only branch back to |
2449 | // the parent. |
2450 | if (!point.isParent() && tripCount && *tripCount == 1) { |
2451 | regions.push_back(RegionSuccessor(getResults())); |
2452 | return; |
2453 | } |
2454 | |
2455 | // In all other cases, the loop may branch back to itself or the parent |
2456 | // operation. |
2457 | regions.push_back(RegionSuccessor(&getRegion(), getRegionIterArgs())); |
2458 | regions.push_back(RegionSuccessor(getResults())); |
2459 | } |
2460 | |
2461 | /// Returns true if the affine.for has zero iterations in trivial cases. |
2462 | static bool hasTrivialZeroTripCount(AffineForOp op) { |
2463 | std::optional<uint64_t> tripCount = getTrivialConstantTripCount(op); |
2464 | return tripCount && *tripCount == 0; |
2465 | } |
2466 | |
2467 | LogicalResult AffineForOp::fold(FoldAdaptor adaptor, |
2468 | SmallVectorImpl<OpFoldResult> &results) { |
2469 | bool folded = succeeded(foldLoopBounds(*this)); |
2470 | folded |= succeeded(canonicalizeLoopBounds(*this)); |
2471 | if (hasTrivialZeroTripCount(*this) && getNumResults() != 0) { |
2472 | // The initial values of the loop-carried variables (iter_args) are the |
2473 | // results of the op. But this must be avoided for an affine.for op that |
2474 | // does not return any results. Since ops that do not return results cannot |
2475 | // be folded away, we would enter an infinite loop of folds on the same |
2476 | // affine.for op. |
2477 | results.assign(getInits().begin(), getInits().end()); |
2478 | folded = true; |
2479 | } |
2480 | return success(folded); |
2481 | } |
2482 | |
2483 | AffineBound AffineForOp::getLowerBound() { |
2484 | return AffineBound(*this, getLowerBoundOperands(), getLowerBoundMap()); |
2485 | } |
2486 | |
2487 | AffineBound AffineForOp::getUpperBound() { |
2488 | return AffineBound(*this, getUpperBoundOperands(), getUpperBoundMap()); |
2489 | } |
2490 | |
2491 | void AffineForOp::setLowerBound(ValueRange lbOperands, AffineMap map) { |
2492 | assert(lbOperands.size() == map.getNumInputs()); |
2493 | assert(map.getNumResults() >= 1 && "bound map has at least one result" ); |
2494 | getLowerBoundOperandsMutable().assign(lbOperands); |
2495 | setLowerBoundMap(map); |
2496 | } |
2497 | |
2498 | void AffineForOp::setUpperBound(ValueRange ubOperands, AffineMap map) { |
2499 | assert(ubOperands.size() == map.getNumInputs()); |
2500 | assert(map.getNumResults() >= 1 && "bound map has at least one result" ); |
2501 | getUpperBoundOperandsMutable().assign(ubOperands); |
2502 | setUpperBoundMap(map); |
2503 | } |
2504 | |
2505 | bool AffineForOp::hasConstantLowerBound() { |
2506 | return getLowerBoundMap().isSingleConstant(); |
2507 | } |
2508 | |
2509 | bool AffineForOp::hasConstantUpperBound() { |
2510 | return getUpperBoundMap().isSingleConstant(); |
2511 | } |
2512 | |
2513 | int64_t AffineForOp::getConstantLowerBound() { |
2514 | return getLowerBoundMap().getSingleConstantResult(); |
2515 | } |
2516 | |
2517 | int64_t AffineForOp::getConstantUpperBound() { |
2518 | return getUpperBoundMap().getSingleConstantResult(); |
2519 | } |
2520 | |
2521 | void AffineForOp::setConstantLowerBound(int64_t value) { |
2522 | setLowerBound({}, AffineMap::getConstantMap(value, getContext())); |
2523 | } |
2524 | |
2525 | void AffineForOp::setConstantUpperBound(int64_t value) { |
2526 | setUpperBound({}, AffineMap::getConstantMap(value, getContext())); |
2527 | } |
2528 | |
2529 | AffineForOp::operand_range AffineForOp::getControlOperands() { |
2530 | return {operand_begin(), operand_begin() + getLowerBoundOperands().size() + |
2531 | getUpperBoundOperands().size()}; |
2532 | } |
2533 | |
2534 | bool AffineForOp::matchingBoundOperandList() { |
2535 | auto lbMap = getLowerBoundMap(); |
2536 | auto ubMap = getUpperBoundMap(); |
2537 | if (lbMap.getNumDims() != ubMap.getNumDims() || |
2538 | lbMap.getNumSymbols() != ubMap.getNumSymbols()) |
2539 | return false; |
2540 | |
2541 | unsigned numOperands = lbMap.getNumInputs(); |
2542 | for (unsigned i = 0, e = lbMap.getNumInputs(); i < e; i++) { |
2543 | // Compare Value 's. |
2544 | if (getOperand(i) != getOperand(numOperands + i)) |
2545 | return false; |
2546 | } |
2547 | return true; |
2548 | } |
2549 | |
2550 | SmallVector<Region *> AffineForOp::getLoopRegions() { return {&getRegion()}; } |
2551 | |
2552 | std::optional<SmallVector<Value>> AffineForOp::getLoopInductionVars() { |
2553 | return SmallVector<Value>{getInductionVar()}; |
2554 | } |
2555 | |
2556 | std::optional<SmallVector<OpFoldResult>> AffineForOp::getLoopLowerBounds() { |
2557 | if (!hasConstantLowerBound()) |
2558 | return std::nullopt; |
2559 | OpBuilder b(getContext()); |
2560 | return SmallVector<OpFoldResult>{ |
2561 | OpFoldResult(b.getI64IntegerAttr(getConstantLowerBound()))}; |
2562 | } |
2563 | |
2564 | std::optional<SmallVector<OpFoldResult>> AffineForOp::getLoopSteps() { |
2565 | OpBuilder b(getContext()); |
2566 | return SmallVector<OpFoldResult>{ |
2567 | OpFoldResult(b.getI64IntegerAttr(getStepAsInt()))}; |
2568 | } |
2569 | |
2570 | std::optional<SmallVector<OpFoldResult>> AffineForOp::getLoopUpperBounds() { |
2571 | if (!hasConstantUpperBound()) |
2572 | return {}; |
2573 | OpBuilder b(getContext()); |
2574 | return SmallVector<OpFoldResult>{ |
2575 | OpFoldResult(b.getI64IntegerAttr(getConstantUpperBound()))}; |
2576 | } |
2577 | |
2578 | FailureOr<LoopLikeOpInterface> AffineForOp::replaceWithAdditionalYields( |
2579 | RewriterBase &rewriter, ValueRange newInitOperands, |
2580 | bool replaceInitOperandUsesInLoop, |
2581 | const NewYieldValuesFn &newYieldValuesFn) { |
2582 | // Create a new loop before the existing one, with the extra operands. |
2583 | OpBuilder::InsertionGuard g(rewriter); |
2584 | rewriter.setInsertionPoint(getOperation()); |
2585 | auto inits = llvm::to_vector(getInits()); |
2586 | inits.append(newInitOperands.begin(), newInitOperands.end()); |
2587 | AffineForOp newLoop = rewriter.create<AffineForOp>( |
2588 | getLoc(), getLowerBoundOperands(), getLowerBoundMap(), |
2589 | getUpperBoundOperands(), getUpperBoundMap(), getStepAsInt(), inits); |
2590 | |
2591 | // Generate the new yield values and append them to the scf.yield operation. |
2592 | auto yieldOp = cast<AffineYieldOp>(getBody()->getTerminator()); |
2593 | ArrayRef<BlockArgument> newIterArgs = |
2594 | newLoop.getBody()->getArguments().take_back(newInitOperands.size()); |
2595 | { |
2596 | OpBuilder::InsertionGuard g(rewriter); |
2597 | rewriter.setInsertionPoint(yieldOp); |
2598 | SmallVector<Value> newYieldedValues = |
2599 | newYieldValuesFn(rewriter, getLoc(), newIterArgs); |
2600 | assert(newInitOperands.size() == newYieldedValues.size() && |
2601 | "expected as many new yield values as new iter operands" ); |
2602 | rewriter.modifyOpInPlace(yieldOp, [&]() { |
2603 | yieldOp.getOperandsMutable().append(newYieldedValues); |
2604 | }); |
2605 | } |
2606 | |
2607 | // Move the loop body to the new op. |
2608 | rewriter.mergeBlocks(getBody(), newLoop.getBody(), |
2609 | newLoop.getBody()->getArguments().take_front( |
2610 | getBody()->getNumArguments())); |
2611 | |
2612 | if (replaceInitOperandUsesInLoop) { |
2613 | // Replace all uses of `newInitOperands` with the corresponding basic block |
2614 | // arguments. |
2615 | for (auto it : llvm::zip(newInitOperands, newIterArgs)) { |
2616 | rewriter.replaceUsesWithIf(std::get<0>(it), std::get<1>(it), |
2617 | [&](OpOperand &use) { |
2618 | Operation *user = use.getOwner(); |
2619 | return newLoop->isProperAncestor(user); |
2620 | }); |
2621 | } |
2622 | } |
2623 | |
2624 | // Replace the old loop. |
2625 | rewriter.replaceOp(getOperation(), |
2626 | newLoop->getResults().take_front(getNumResults())); |
2627 | return cast<LoopLikeOpInterface>(newLoop.getOperation()); |
2628 | } |
2629 | |
2630 | Speculation::Speculatability AffineForOp::getSpeculatability() { |
2631 | // `affine.for (I = Start; I < End; I += 1)` terminates for all values of |
2632 | // Start and End. |
2633 | // |
2634 | // For Step != 1, the loop may not terminate. We can add more smarts here if |
2635 | // needed. |
2636 | return getStepAsInt() == 1 ? Speculation::RecursivelySpeculatable |
2637 | : Speculation::NotSpeculatable; |
2638 | } |
2639 | |
2640 | /// Returns true if the provided value is the induction variable of a |
2641 | /// AffineForOp. |
2642 | bool mlir::affine::isAffineForInductionVar(Value val) { |
2643 | return getForInductionVarOwner(val) != AffineForOp(); |
2644 | } |
2645 | |
2646 | bool mlir::affine::isAffineParallelInductionVar(Value val) { |
2647 | return getAffineParallelInductionVarOwner(val) != nullptr; |
2648 | } |
2649 | |
2650 | bool mlir::affine::isAffineInductionVar(Value val) { |
2651 | return isAffineForInductionVar(val) || isAffineParallelInductionVar(val); |
2652 | } |
2653 | |
2654 | AffineForOp mlir::affine::getForInductionVarOwner(Value val) { |
2655 | auto ivArg = llvm::dyn_cast<BlockArgument>(Val&: val); |
2656 | if (!ivArg || !ivArg.getOwner() || !ivArg.getOwner()->getParent()) |
2657 | return AffineForOp(); |
2658 | if (auto forOp = |
2659 | ivArg.getOwner()->getParent()->getParentOfType<AffineForOp>()) |
2660 | // Check to make sure `val` is the induction variable, not an iter_arg. |
2661 | return forOp.getInductionVar() == val ? forOp : AffineForOp(); |
2662 | return AffineForOp(); |
2663 | } |
2664 | |
2665 | AffineParallelOp mlir::affine::getAffineParallelInductionVarOwner(Value val) { |
2666 | auto ivArg = llvm::dyn_cast<BlockArgument>(Val&: val); |
2667 | if (!ivArg || !ivArg.getOwner()) |
2668 | return nullptr; |
2669 | Operation *containingOp = ivArg.getOwner()->getParentOp(); |
2670 | auto parallelOp = dyn_cast_if_present<AffineParallelOp>(containingOp); |
2671 | if (parallelOp && llvm::is_contained(parallelOp.getIVs(), val)) |
2672 | return parallelOp; |
2673 | return nullptr; |
2674 | } |
2675 | |
2676 | /// Extracts the induction variables from a list of AffineForOps and returns |
2677 | /// them. |
2678 | void mlir::affine::(ArrayRef<AffineForOp> forInsts, |
2679 | SmallVectorImpl<Value> *ivs) { |
2680 | ivs->reserve(N: forInsts.size()); |
2681 | for (auto forInst : forInsts) |
2682 | ivs->push_back(forInst.getInductionVar()); |
2683 | } |
2684 | |
2685 | void mlir::affine::(ArrayRef<mlir::Operation *> affineOps, |
2686 | SmallVectorImpl<mlir::Value> &ivs) { |
2687 | ivs.reserve(N: affineOps.size()); |
2688 | for (Operation *op : affineOps) { |
2689 | // Add constraints from forOp's bounds. |
2690 | if (auto forOp = dyn_cast<AffineForOp>(op)) |
2691 | ivs.push_back(Elt: forOp.getInductionVar()); |
2692 | else if (auto parallelOp = dyn_cast<AffineParallelOp>(op)) |
2693 | for (size_t i = 0; i < parallelOp.getBody()->getNumArguments(); i++) |
2694 | ivs.push_back(Elt: parallelOp.getBody()->getArgument(i)); |
2695 | } |
2696 | } |
2697 | |
2698 | /// Builds an affine loop nest, using "loopCreatorFn" to create individual loop |
2699 | /// operations. |
2700 | template <typename BoundListTy, typename LoopCreatorTy> |
2701 | static void buildAffineLoopNestImpl( |
2702 | OpBuilder &builder, Location loc, BoundListTy lbs, BoundListTy ubs, |
2703 | ArrayRef<int64_t> steps, |
2704 | function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilderFn, |
2705 | LoopCreatorTy &&loopCreatorFn) { |
2706 | assert(lbs.size() == ubs.size() && "Mismatch in number of arguments" ); |
2707 | assert(lbs.size() == steps.size() && "Mismatch in number of arguments" ); |
2708 | |
2709 | // If there are no loops to be constructed, construct the body anyway. |
2710 | OpBuilder::InsertionGuard guard(builder); |
2711 | if (lbs.empty()) { |
2712 | if (bodyBuilderFn) |
2713 | bodyBuilderFn(builder, loc, ValueRange()); |
2714 | return; |
2715 | } |
2716 | |
2717 | // Create the loops iteratively and store the induction variables. |
2718 | SmallVector<Value, 4> ivs; |
2719 | ivs.reserve(N: lbs.size()); |
2720 | for (unsigned i = 0, e = lbs.size(); i < e; ++i) { |
2721 | // Callback for creating the loop body, always creates the terminator. |
2722 | auto loopBody = [&](OpBuilder &nestedBuilder, Location nestedLoc, Value iv, |
2723 | ValueRange iterArgs) { |
2724 | ivs.push_back(Elt: iv); |
2725 | // In the innermost loop, call the body builder. |
2726 | if (i == e - 1 && bodyBuilderFn) { |
2727 | OpBuilder::InsertionGuard nestedGuard(nestedBuilder); |
2728 | bodyBuilderFn(nestedBuilder, nestedLoc, ivs); |
2729 | } |
2730 | nestedBuilder.create<AffineYieldOp>(nestedLoc); |
2731 | }; |
2732 | |
2733 | // Delegate actual loop creation to the callback in order to dispatch |
2734 | // between constant- and variable-bound loops. |
2735 | auto loop = loopCreatorFn(builder, loc, lbs[i], ubs[i], steps[i], loopBody); |
2736 | builder.setInsertionPointToStart(loop.getBody()); |
2737 | } |
2738 | } |
2739 | |
2740 | /// Creates an affine loop from the bounds known to be constants. |
2741 | static AffineForOp |
2742 | buildAffineLoopFromConstants(OpBuilder &builder, Location loc, int64_t lb, |
2743 | int64_t ub, int64_t step, |
2744 | AffineForOp::BodyBuilderFn bodyBuilderFn) { |
2745 | return builder.create<AffineForOp>(loc, lb, ub, step, |
2746 | /*iterArgs=*/std::nullopt, bodyBuilderFn); |
2747 | } |
2748 | |
2749 | /// Creates an affine loop from the bounds that may or may not be constants. |
2750 | static AffineForOp |
2751 | buildAffineLoopFromValues(OpBuilder &builder, Location loc, Value lb, Value ub, |
2752 | int64_t step, |
2753 | AffineForOp::BodyBuilderFn bodyBuilderFn) { |
2754 | std::optional<int64_t> lbConst = getConstantIntValue(ofr: lb); |
2755 | std::optional<int64_t> ubConst = getConstantIntValue(ofr: ub); |
2756 | if (lbConst && ubConst) |
2757 | return buildAffineLoopFromConstants(builder, loc, lbConst.value(), |
2758 | ubConst.value(), step, bodyBuilderFn); |
2759 | return builder.create<AffineForOp>(loc, lb, builder.getDimIdentityMap(), ub, |
2760 | builder.getDimIdentityMap(), step, |
2761 | /*iterArgs=*/std::nullopt, bodyBuilderFn); |
2762 | } |
2763 | |
2764 | void mlir::affine::buildAffineLoopNest( |
2765 | OpBuilder &builder, Location loc, ArrayRef<int64_t> lbs, |
2766 | ArrayRef<int64_t> ubs, ArrayRef<int64_t> steps, |
2767 | function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilderFn) { |
2768 | buildAffineLoopNestImpl(builder, loc, lbs, ubs, steps, bodyBuilderFn, |
2769 | buildAffineLoopFromConstants); |
2770 | } |
2771 | |
2772 | void mlir::affine::buildAffineLoopNest( |
2773 | OpBuilder &builder, Location loc, ValueRange lbs, ValueRange ubs, |
2774 | ArrayRef<int64_t> steps, |
2775 | function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilderFn) { |
2776 | buildAffineLoopNestImpl(builder, loc, lbs, ubs, steps, bodyBuilderFn, |
2777 | buildAffineLoopFromValues); |
2778 | } |
2779 | |
2780 | //===----------------------------------------------------------------------===// |
2781 | // AffineIfOp |
2782 | //===----------------------------------------------------------------------===// |
2783 | |
2784 | namespace { |
2785 | /// Remove else blocks that have nothing other than a zero value yield. |
2786 | struct SimplifyDeadElse : public OpRewritePattern<AffineIfOp> { |
2787 | using OpRewritePattern<AffineIfOp>::OpRewritePattern; |
2788 | |
2789 | LogicalResult matchAndRewrite(AffineIfOp ifOp, |
2790 | PatternRewriter &rewriter) const override { |
2791 | if (ifOp.getElseRegion().empty() || |
2792 | !llvm::hasSingleElement(*ifOp.getElseBlock()) || ifOp.getNumResults()) |
2793 | return failure(); |
2794 | |
2795 | rewriter.startOpModification(op: ifOp); |
2796 | rewriter.eraseBlock(block: ifOp.getElseBlock()); |
2797 | rewriter.finalizeOpModification(op: ifOp); |
2798 | return success(); |
2799 | } |
2800 | }; |
2801 | |
2802 | /// Removes affine.if cond if the condition is always true or false in certain |
2803 | /// trivial cases. Promotes the then/else block in the parent operation block. |
2804 | struct AlwaysTrueOrFalseIf : public OpRewritePattern<AffineIfOp> { |
2805 | using OpRewritePattern<AffineIfOp>::OpRewritePattern; |
2806 | |
2807 | LogicalResult matchAndRewrite(AffineIfOp op, |
2808 | PatternRewriter &rewriter) const override { |
2809 | |
2810 | auto isTriviallyFalse = [](IntegerSet iSet) { |
2811 | return iSet.isEmptyIntegerSet(); |
2812 | }; |
2813 | |
2814 | auto isTriviallyTrue = [](IntegerSet iSet) { |
2815 | return (iSet.getNumEqualities() == 1 && iSet.getNumInequalities() == 0 && |
2816 | iSet.getConstraint(idx: 0) == 0); |
2817 | }; |
2818 | |
2819 | IntegerSet affineIfConditions = op.getIntegerSet(); |
2820 | Block *blockToMove; |
2821 | if (isTriviallyFalse(affineIfConditions)) { |
2822 | // The absence, or equivalently, the emptiness of the else region need not |
2823 | // be checked when affine.if is returning results because if an affine.if |
2824 | // operation is returning results, it always has a non-empty else region. |
2825 | if (op.getNumResults() == 0 && !op.hasElse()) { |
2826 | // If the else region is absent, or equivalently, empty, remove the |
2827 | // affine.if operation (which is not returning any results). |
2828 | rewriter.eraseOp(op: op); |
2829 | return success(); |
2830 | } |
2831 | blockToMove = op.getElseBlock(); |
2832 | } else if (isTriviallyTrue(affineIfConditions)) { |
2833 | blockToMove = op.getThenBlock(); |
2834 | } else { |
2835 | return failure(); |
2836 | } |
2837 | Operation *blockToMoveTerminator = blockToMove->getTerminator(); |
2838 | // Promote the "blockToMove" block to the parent operation block between the |
2839 | // prologue and epilogue of "op". |
2840 | rewriter.inlineBlockBefore(blockToMove, op); |
2841 | // Replace the "op" operation with the operands of the |
2842 | // "blockToMoveTerminator" operation. Note that "blockToMoveTerminator" is |
2843 | // the affine.yield operation present in the "blockToMove" block. It has no |
2844 | // operands when affine.if is not returning results and therefore, in that |
2845 | // case, replaceOp just erases "op". When affine.if is not returning |
2846 | // results, the affine.yield operation can be omitted. It gets inserted |
2847 | // implicitly. |
2848 | rewriter.replaceOp(op, blockToMoveTerminator->getOperands()); |
2849 | // Erase the "blockToMoveTerminator" operation since it is now in the parent |
2850 | // operation block, which already has its own terminator. |
2851 | rewriter.eraseOp(op: blockToMoveTerminator); |
2852 | return success(); |
2853 | } |
2854 | }; |
2855 | } // namespace |
2856 | |
2857 | /// AffineIfOp has two regions -- `then` and `else`. The flow of data should be |
2858 | /// as follows: AffineIfOp -> `then`/`else` -> AffineIfOp |
2859 | void AffineIfOp::getSuccessorRegions( |
2860 | RegionBranchPoint point, SmallVectorImpl<RegionSuccessor> ®ions) { |
2861 | // If the predecessor is an AffineIfOp, then branching into both `then` and |
2862 | // `else` region is valid. |
2863 | if (point.isParent()) { |
2864 | regions.reserve(2); |
2865 | regions.push_back( |
2866 | RegionSuccessor(&getThenRegion(), getThenRegion().getArguments())); |
2867 | // If the "else" region is empty, branch bach into parent. |
2868 | if (getElseRegion().empty()) { |
2869 | regions.push_back(getResults()); |
2870 | } else { |
2871 | regions.push_back( |
2872 | RegionSuccessor(&getElseRegion(), getElseRegion().getArguments())); |
2873 | } |
2874 | return; |
2875 | } |
2876 | |
2877 | // If the predecessor is the `else`/`then` region, then branching into parent |
2878 | // op is valid. |
2879 | regions.push_back(RegionSuccessor(getResults())); |
2880 | } |
2881 | |
2882 | LogicalResult AffineIfOp::verify() { |
2883 | // Verify that we have a condition attribute. |
2884 | // FIXME: This should be specified in the arguments list in ODS. |
2885 | auto conditionAttr = |
2886 | (*this)->getAttrOfType<IntegerSetAttr>(getConditionAttrStrName()); |
2887 | if (!conditionAttr) |
2888 | return emitOpError("requires an integer set attribute named 'condition'" ); |
2889 | |
2890 | // Verify that there are enough operands for the condition. |
2891 | IntegerSet condition = conditionAttr.getValue(); |
2892 | if (getNumOperands() != condition.getNumInputs()) |
2893 | return emitOpError("operand count and condition integer set dimension and " |
2894 | "symbol count must match" ); |
2895 | |
2896 | // Verify that the operands are valid dimension/symbols. |
2897 | if (failed(verifyDimAndSymbolIdentifiers(*this, getOperands(), |
2898 | condition.getNumDims()))) |
2899 | return failure(); |
2900 | |
2901 | return success(); |
2902 | } |
2903 | |
2904 | ParseResult AffineIfOp::parse(OpAsmParser &parser, OperationState &result) { |
2905 | // Parse the condition attribute set. |
2906 | IntegerSetAttr conditionAttr; |
2907 | unsigned numDims; |
2908 | if (parser.parseAttribute(conditionAttr, |
2909 | AffineIfOp::getConditionAttrStrName(), |
2910 | result.attributes) || |
2911 | parseDimAndSymbolList(parser, result.operands, numDims)) |
2912 | return failure(); |
2913 | |
2914 | // Verify the condition operands. |
2915 | auto set = conditionAttr.getValue(); |
2916 | if (set.getNumDims() != numDims) |
2917 | return parser.emitError( |
2918 | parser.getNameLoc(), |
2919 | "dim operand count and integer set dim count must match" ); |
2920 | if (numDims + set.getNumSymbols() != result.operands.size()) |
2921 | return parser.emitError( |
2922 | parser.getNameLoc(), |
2923 | "symbol operand count and integer set symbol count must match" ); |
2924 | |
2925 | if (parser.parseOptionalArrowTypeList(result.types)) |
2926 | return failure(); |
2927 | |
2928 | // Create the regions for 'then' and 'else'. The latter must be created even |
2929 | // if it remains empty for the validity of the operation. |
2930 | result.regions.reserve(2); |
2931 | Region *thenRegion = result.addRegion(); |
2932 | Region *elseRegion = result.addRegion(); |
2933 | |
2934 | // Parse the 'then' region. |
2935 | if (parser.parseRegion(*thenRegion, {}, {})) |
2936 | return failure(); |
2937 | AffineIfOp::ensureTerminator(*thenRegion, parser.getBuilder(), |
2938 | result.location); |
2939 | |
2940 | // If we find an 'else' keyword then parse the 'else' region. |
2941 | if (!parser.parseOptionalKeyword("else" )) { |
2942 | if (parser.parseRegion(*elseRegion, {}, {})) |
2943 | return failure(); |
2944 | AffineIfOp::ensureTerminator(*elseRegion, parser.getBuilder(), |
2945 | result.location); |
2946 | } |
2947 | |
2948 | // Parse the optional attribute list. |
2949 | if (parser.parseOptionalAttrDict(result.attributes)) |
2950 | return failure(); |
2951 | |
2952 | return success(); |
2953 | } |
2954 | |
2955 | void AffineIfOp::print(OpAsmPrinter &p) { |
2956 | auto conditionAttr = |
2957 | (*this)->getAttrOfType<IntegerSetAttr>(getConditionAttrStrName()); |
2958 | p << " " << conditionAttr; |
2959 | printDimAndSymbolList(operand_begin(), operand_end(), |
2960 | conditionAttr.getValue().getNumDims(), p); |
2961 | p.printOptionalArrowTypeList(getResultTypes()); |
2962 | p << ' '; |
2963 | p.printRegion(getThenRegion(), /*printEntryBlockArgs=*/false, |
2964 | /*printBlockTerminators=*/getNumResults()); |
2965 | |
2966 | // Print the 'else' regions if it has any blocks. |
2967 | auto &elseRegion = this->getElseRegion(); |
2968 | if (!elseRegion.empty()) { |
2969 | p << " else " ; |
2970 | p.printRegion(elseRegion, |
2971 | /*printEntryBlockArgs=*/false, |
2972 | /*printBlockTerminators=*/getNumResults()); |
2973 | } |
2974 | |
2975 | // Print the attribute list. |
2976 | p.printOptionalAttrDict((*this)->getAttrs(), |
2977 | /*elidedAttrs=*/getConditionAttrStrName()); |
2978 | } |
2979 | |
2980 | IntegerSet AffineIfOp::getIntegerSet() { |
2981 | return (*this) |
2982 | ->getAttrOfType<IntegerSetAttr>(getConditionAttrStrName()) |
2983 | .getValue(); |
2984 | } |
2985 | |
2986 | void AffineIfOp::setIntegerSet(IntegerSet newSet) { |
2987 | (*this)->setAttr(getConditionAttrStrName(), IntegerSetAttr::get(newSet)); |
2988 | } |
2989 | |
2990 | void AffineIfOp::setConditional(IntegerSet set, ValueRange operands) { |
2991 | setIntegerSet(set); |
2992 | (*this)->setOperands(operands); |
2993 | } |
2994 | |
2995 | void AffineIfOp::build(OpBuilder &builder, OperationState &result, |
2996 | TypeRange resultTypes, IntegerSet set, ValueRange args, |
2997 | bool withElseRegion) { |
2998 | assert(resultTypes.empty() || withElseRegion); |
2999 | OpBuilder::InsertionGuard guard(builder); |
3000 | |
3001 | result.addTypes(resultTypes); |
3002 | result.addOperands(args); |
3003 | result.addAttribute(getConditionAttrStrName(), IntegerSetAttr::get(set)); |
3004 | |
3005 | Region *thenRegion = result.addRegion(); |
3006 | builder.createBlock(thenRegion); |
3007 | if (resultTypes.empty()) |
3008 | AffineIfOp::ensureTerminator(*thenRegion, builder, result.location); |
3009 | |
3010 | Region *elseRegion = result.addRegion(); |
3011 | if (withElseRegion) { |
3012 | builder.createBlock(elseRegion); |
3013 | if (resultTypes.empty()) |
3014 | AffineIfOp::ensureTerminator(*elseRegion, builder, result.location); |
3015 | } |
3016 | } |
3017 | |
3018 | void AffineIfOp::build(OpBuilder &builder, OperationState &result, |
3019 | IntegerSet set, ValueRange args, bool withElseRegion) { |
3020 | AffineIfOp::build(builder, result, /*resultTypes=*/{}, set, args, |
3021 | withElseRegion); |
3022 | } |
3023 | |
3024 | /// Compose any affine.apply ops feeding into `operands` of the integer set |
3025 | /// `set` by composing the maps of such affine.apply ops with the integer |
3026 | /// set constraints. |
3027 | static void composeSetAndOperands(IntegerSet &set, |
3028 | SmallVectorImpl<Value> &operands) { |
3029 | // We will simply reuse the API of the map composition by viewing the LHSs of |
3030 | // the equalities and inequalities of `set` as the affine exprs of an affine |
3031 | // map. Convert to equivalent map, compose, and convert back to set. |
3032 | auto map = AffineMap::get(dimCount: set.getNumDims(), symbolCount: set.getNumSymbols(), |
3033 | results: set.getConstraints(), context: set.getContext()); |
3034 | // Check if any composition is possible. |
3035 | if (llvm::none_of(Range&: operands, |
3036 | P: [](Value v) { return v.getDefiningOp<AffineApplyOp>(); })) |
3037 | return; |
3038 | |
3039 | composeAffineMapAndOperands(map: &map, operands: &operands); |
3040 | set = IntegerSet::get(dimCount: map.getNumDims(), symbolCount: map.getNumSymbols(), constraints: map.getResults(), |
3041 | eqFlags: set.getEqFlags()); |
3042 | } |
3043 | |
3044 | /// Canonicalize an affine if op's conditional (integer set + operands). |
3045 | LogicalResult AffineIfOp::fold(FoldAdaptor, SmallVectorImpl<OpFoldResult> &) { |
3046 | auto set = getIntegerSet(); |
3047 | SmallVector<Value, 4> operands(getOperands()); |
3048 | composeSetAndOperands(set, operands); |
3049 | canonicalizeSetAndOperands(&set, &operands); |
3050 | |
3051 | // Check if the canonicalization or composition led to any change. |
3052 | if (getIntegerSet() == set && llvm::equal(operands, getOperands())) |
3053 | return failure(); |
3054 | |
3055 | setConditional(set, operands); |
3056 | return success(); |
3057 | } |
3058 | |
3059 | void AffineIfOp::getCanonicalizationPatterns(RewritePatternSet &results, |
3060 | MLIRContext *context) { |
3061 | results.add<SimplifyDeadElse, AlwaysTrueOrFalseIf>(context); |
3062 | } |
3063 | |
3064 | //===----------------------------------------------------------------------===// |
3065 | // AffineLoadOp |
3066 | //===----------------------------------------------------------------------===// |
3067 | |
3068 | void AffineLoadOp::build(OpBuilder &builder, OperationState &result, |
3069 | AffineMap map, ValueRange operands) { |
3070 | assert(operands.size() == 1 + map.getNumInputs() && "inconsistent operands" ); |
3071 | result.addOperands(operands); |
3072 | if (map) |
3073 | result.addAttribute(getMapAttrStrName(), AffineMapAttr::get(map)); |
3074 | auto memrefType = llvm::cast<MemRefType>(operands[0].getType()); |
3075 | result.types.push_back(memrefType.getElementType()); |
3076 | } |
3077 | |
3078 | void AffineLoadOp::build(OpBuilder &builder, OperationState &result, |
3079 | Value memref, AffineMap map, ValueRange mapOperands) { |
3080 | assert(map.getNumInputs() == mapOperands.size() && "inconsistent index info" ); |
3081 | result.addOperands(memref); |
3082 | result.addOperands(mapOperands); |
3083 | auto memrefType = llvm::cast<MemRefType>(memref.getType()); |
3084 | result.addAttribute(getMapAttrStrName(), AffineMapAttr::get(map)); |
3085 | result.types.push_back(memrefType.getElementType()); |
3086 | } |
3087 | |
3088 | void AffineLoadOp::build(OpBuilder &builder, OperationState &result, |
3089 | Value memref, ValueRange indices) { |
3090 | auto memrefType = llvm::cast<MemRefType>(memref.getType()); |
3091 | int64_t rank = memrefType.getRank(); |
3092 | // Create identity map for memrefs with at least one dimension or () -> () |
3093 | // for zero-dimensional memrefs. |
3094 | auto map = |
3095 | rank ? builder.getMultiDimIdentityMap(rank) : builder.getEmptyAffineMap(); |
3096 | build(builder, result, memref, map, indices); |
3097 | } |
3098 | |
3099 | ParseResult AffineLoadOp::parse(OpAsmParser &parser, OperationState &result) { |
3100 | auto &builder = parser.getBuilder(); |
3101 | auto indexTy = builder.getIndexType(); |
3102 | |
3103 | MemRefType type; |
3104 | OpAsmParser::UnresolvedOperand memrefInfo; |
3105 | AffineMapAttr mapAttr; |
3106 | SmallVector<OpAsmParser::UnresolvedOperand, 1> mapOperands; |
3107 | return failure( |
3108 | parser.parseOperand(memrefInfo) || |
3109 | parser.parseAffineMapOfSSAIds(mapOperands, mapAttr, |
3110 | AffineLoadOp::getMapAttrStrName(), |
3111 | result.attributes) || |
3112 | parser.parseOptionalAttrDict(result.attributes) || |
3113 | parser.parseColonType(type) || |
3114 | parser.resolveOperand(memrefInfo, type, result.operands) || |
3115 | parser.resolveOperands(mapOperands, indexTy, result.operands) || |
3116 | parser.addTypeToList(type.getElementType(), result.types)); |
3117 | } |
3118 | |
3119 | void AffineLoadOp::print(OpAsmPrinter &p) { |
3120 | p << " " << getMemRef() << '['; |
3121 | if (AffineMapAttr mapAttr = |
3122 | (*this)->getAttrOfType<AffineMapAttr>(getMapAttrStrName())) |
3123 | p.printAffineMapOfSSAIds(mapAttr, getMapOperands()); |
3124 | p << ']'; |
3125 | p.printOptionalAttrDict((*this)->getAttrs(), |
3126 | /*elidedAttrs=*/{getMapAttrStrName()}); |
3127 | p << " : " << getMemRefType(); |
3128 | } |
3129 | |
3130 | /// Verify common indexing invariants of affine.load, affine.store, |
3131 | /// affine.vector_load and affine.vector_store. |
3132 | template <typename AffineMemOpTy> |
3133 | static LogicalResult |
3134 | verifyMemoryOpIndexing(AffineMemOpTy op, AffineMapAttr mapAttr, |
3135 | Operation::operand_range mapOperands, |
3136 | MemRefType memrefType, unsigned numIndexOperands) { |
3137 | AffineMap map = mapAttr.getValue(); |
3138 | if (map.getNumResults() != memrefType.getRank()) |
3139 | return op->emitOpError("affine map num results must equal memref rank" ); |
3140 | if (map.getNumInputs() != numIndexOperands) |
3141 | return op->emitOpError("expects as many subscripts as affine map inputs" ); |
3142 | |
3143 | for (auto idx : mapOperands) { |
3144 | if (!idx.getType().isIndex()) |
3145 | return op->emitOpError("index to load must have 'index' type" ); |
3146 | } |
3147 | if (failed(verifyDimAndSymbolIdentifiers(op, mapOperands, map.getNumDims()))) |
3148 | return failure(); |
3149 | |
3150 | return success(); |
3151 | } |
3152 | |
3153 | LogicalResult AffineLoadOp::verify() { |
3154 | auto memrefType = getMemRefType(); |
3155 | if (getType() != memrefType.getElementType()) |
3156 | return emitOpError("result type must match element type of memref" ); |
3157 | |
3158 | if (failed(verifyMemoryOpIndexing( |
3159 | *this, (*this)->getAttrOfType<AffineMapAttr>(getMapAttrStrName()), |
3160 | getMapOperands(), memrefType, |
3161 | /*numIndexOperands=*/getNumOperands() - 1))) |
3162 | return failure(); |
3163 | |
3164 | return success(); |
3165 | } |
3166 | |
3167 | void AffineLoadOp::getCanonicalizationPatterns(RewritePatternSet &results, |
3168 | MLIRContext *context) { |
3169 | results.add<SimplifyAffineOp<AffineLoadOp>>(context); |
3170 | } |
3171 | |
3172 | OpFoldResult AffineLoadOp::fold(FoldAdaptor adaptor) { |
3173 | /// load(memrefcast) -> load |
3174 | if (succeeded(memref::foldMemRefCast(*this))) |
3175 | return getResult(); |
3176 | |
3177 | // Fold load from a global constant memref. |
3178 | auto getGlobalOp = getMemref().getDefiningOp<memref::GetGlobalOp>(); |
3179 | if (!getGlobalOp) |
3180 | return {}; |
3181 | // Get to the memref.global defining the symbol. |
3182 | auto *symbolTableOp = getGlobalOp->getParentWithTrait<OpTrait::SymbolTable>(); |
3183 | if (!symbolTableOp) |
3184 | return {}; |
3185 | auto global = dyn_cast_or_null<memref::GlobalOp>( |
3186 | SymbolTable::lookupSymbolIn(symbolTableOp, getGlobalOp.getNameAttr())); |
3187 | if (!global) |
3188 | return {}; |
3189 | |
3190 | // Check if the global memref is a constant. |
3191 | auto cstAttr = |
3192 | llvm::dyn_cast_or_null<DenseElementsAttr>(global.getConstantInitValue()); |
3193 | if (!cstAttr) |
3194 | return {}; |
3195 | // If it's a splat constant, we can fold irrespective of indices. |
3196 | if (auto splatAttr = llvm::dyn_cast<SplatElementsAttr>(cstAttr)) |
3197 | return splatAttr.getSplatValue<Attribute>(); |
3198 | // Otherwise, we can fold only if we know the indices. |
3199 | if (!getAffineMap().isConstant()) |
3200 | return {}; |
3201 | auto indices = llvm::to_vector<4>( |
3202 | llvm::map_range(getAffineMap().getConstantResults(), |
3203 | [](int64_t v) -> uint64_t { return v; })); |
3204 | return cstAttr.getValues<Attribute>()[indices]; |
3205 | } |
3206 | |
3207 | //===----------------------------------------------------------------------===// |
3208 | // AffineStoreOp |
3209 | //===----------------------------------------------------------------------===// |
3210 | |
3211 | void AffineStoreOp::build(OpBuilder &builder, OperationState &result, |
3212 | Value valueToStore, Value memref, AffineMap map, |
3213 | ValueRange mapOperands) { |
3214 | assert(map.getNumInputs() == mapOperands.size() && "inconsistent index info" ); |
3215 | result.addOperands(valueToStore); |
3216 | result.addOperands(memref); |
3217 | result.addOperands(mapOperands); |
3218 | result.getOrAddProperties<Properties>().map = AffineMapAttr::get(map); |
3219 | } |
3220 | |
3221 | // Use identity map. |
3222 | void AffineStoreOp::build(OpBuilder &builder, OperationState &result, |
3223 | Value valueToStore, Value memref, |
3224 | ValueRange indices) { |
3225 | auto memrefType = llvm::cast<MemRefType>(memref.getType()); |
3226 | int64_t rank = memrefType.getRank(); |
3227 | // Create identity map for memrefs with at least one dimension or () -> () |
3228 | // for zero-dimensional memrefs. |
3229 | auto map = |
3230 | rank ? builder.getMultiDimIdentityMap(rank) : builder.getEmptyAffineMap(); |
3231 | build(builder, result, valueToStore, memref, map, indices); |
3232 | } |
3233 | |
3234 | ParseResult AffineStoreOp::parse(OpAsmParser &parser, OperationState &result) { |
3235 | auto indexTy = parser.getBuilder().getIndexType(); |
3236 | |
3237 | MemRefType type; |
3238 | OpAsmParser::UnresolvedOperand storeValueInfo; |
3239 | OpAsmParser::UnresolvedOperand memrefInfo; |
3240 | AffineMapAttr mapAttr; |
3241 | SmallVector<OpAsmParser::UnresolvedOperand, 1> mapOperands; |
3242 | return failure(parser.parseOperand(storeValueInfo) || parser.parseComma() || |
3243 | parser.parseOperand(memrefInfo) || |
3244 | parser.parseAffineMapOfSSAIds( |
3245 | mapOperands, mapAttr, AffineStoreOp::getMapAttrStrName(), |
3246 | result.attributes) || |
3247 | parser.parseOptionalAttrDict(result.attributes) || |
3248 | parser.parseColonType(type) || |
3249 | parser.resolveOperand(storeValueInfo, type.getElementType(), |
3250 | result.operands) || |
3251 | parser.resolveOperand(memrefInfo, type, result.operands) || |
3252 | parser.resolveOperands(mapOperands, indexTy, result.operands)); |
3253 | } |
3254 | |
3255 | void AffineStoreOp::print(OpAsmPrinter &p) { |
3256 | p << " " << getValueToStore(); |
3257 | p << ", " << getMemRef() << '['; |
3258 | if (AffineMapAttr mapAttr = |
3259 | (*this)->getAttrOfType<AffineMapAttr>(getMapAttrStrName())) |
3260 | p.printAffineMapOfSSAIds(mapAttr, getMapOperands()); |
3261 | p << ']'; |
3262 | p.printOptionalAttrDict((*this)->getAttrs(), |
3263 | /*elidedAttrs=*/{getMapAttrStrName()}); |
3264 | p << " : " << getMemRefType(); |
3265 | } |
3266 | |
3267 | LogicalResult AffineStoreOp::verify() { |
3268 | // The value to store must have the same type as memref element type. |
3269 | auto memrefType = getMemRefType(); |
3270 | if (getValueToStore().getType() != memrefType.getElementType()) |
3271 | return emitOpError( |
3272 | "value to store must have the same type as memref element type" ); |
3273 | |
3274 | if (failed(verifyMemoryOpIndexing( |
3275 | *this, (*this)->getAttrOfType<AffineMapAttr>(getMapAttrStrName()), |
3276 | getMapOperands(), memrefType, |
3277 | /*numIndexOperands=*/getNumOperands() - 2))) |
3278 | return failure(); |
3279 | |
3280 | return success(); |
3281 | } |
3282 | |
3283 | void AffineStoreOp::getCanonicalizationPatterns(RewritePatternSet &results, |
3284 | MLIRContext *context) { |
3285 | results.add<SimplifyAffineOp<AffineStoreOp>>(context); |
3286 | } |
3287 | |
3288 | LogicalResult AffineStoreOp::fold(FoldAdaptor adaptor, |
3289 | SmallVectorImpl<OpFoldResult> &results) { |
3290 | /// store(memrefcast) -> store |
3291 | return memref::foldMemRefCast(*this, getValueToStore()); |
3292 | } |
3293 | |
3294 | //===----------------------------------------------------------------------===// |
3295 | // AffineMinMaxOpBase |
3296 | //===----------------------------------------------------------------------===// |
3297 | |
3298 | template <typename T> |
3299 | static LogicalResult verifyAffineMinMaxOp(T op) { |
3300 | // Verify that operand count matches affine map dimension and symbol count. |
3301 | if (op.getNumOperands() != |
3302 | op.getMap().getNumDims() + op.getMap().getNumSymbols()) |
3303 | return op.emitOpError( |
3304 | "operand count and affine map dimension and symbol count must match" ); |
3305 | |
3306 | if (op.getMap().getNumResults() == 0) |
3307 | return op.emitOpError("affine map expect at least one result" ); |
3308 | return success(); |
3309 | } |
3310 | |
3311 | template <typename T> |
3312 | static void printAffineMinMaxOp(OpAsmPrinter &p, T op) { |
3313 | p << ' ' << op->getAttr(T::getMapAttrStrName()); |
3314 | auto operands = op.getOperands(); |
3315 | unsigned numDims = op.getMap().getNumDims(); |
3316 | p << '(' << operands.take_front(numDims) << ')'; |
3317 | |
3318 | if (operands.size() != numDims) |
3319 | p << '[' << operands.drop_front(numDims) << ']'; |
3320 | p.printOptionalAttrDict(attrs: op->getAttrs(), |
3321 | /*elidedAttrs=*/{T::getMapAttrStrName()}); |
3322 | } |
3323 | |
3324 | template <typename T> |
3325 | static ParseResult parseAffineMinMaxOp(OpAsmParser &parser, |
3326 | OperationState &result) { |
3327 | auto &builder = parser.getBuilder(); |
3328 | auto indexType = builder.getIndexType(); |
3329 | SmallVector<OpAsmParser::UnresolvedOperand, 8> dimInfos; |
3330 | SmallVector<OpAsmParser::UnresolvedOperand, 8> symInfos; |
3331 | AffineMapAttr mapAttr; |
3332 | return failure( |
3333 | parser.parseAttribute(mapAttr, T::getMapAttrStrName(), |
3334 | result.attributes) || |
3335 | parser.parseOperandList(result&: dimInfos, delimiter: OpAsmParser::Delimiter::Paren) || |
3336 | parser.parseOperandList(result&: symInfos, |
3337 | delimiter: OpAsmParser::Delimiter::OptionalSquare) || |
3338 | parser.parseOptionalAttrDict(result&: result.attributes) || |
3339 | parser.resolveOperands(dimInfos, indexType, result.operands) || |
3340 | parser.resolveOperands(symInfos, indexType, result.operands) || |
3341 | parser.addTypeToList(type: indexType, result&: result.types)); |
3342 | } |
3343 | |
3344 | /// Fold an affine min or max operation with the given operands. The operand |
3345 | /// list may contain nulls, which are interpreted as the operand not being a |
3346 | /// constant. |
3347 | template <typename T> |
3348 | static OpFoldResult foldMinMaxOp(T op, ArrayRef<Attribute> operands) { |
3349 | static_assert(llvm::is_one_of<T, AffineMinOp, AffineMaxOp>::value, |
3350 | "expected affine min or max op" ); |
3351 | |
3352 | // Fold the affine map. |
3353 | // TODO: Fold more cases: |
3354 | // min(some_affine, some_affine + constant, ...), etc. |
3355 | SmallVector<int64_t, 2> results; |
3356 | auto foldedMap = op.getMap().partialConstantFold(operands, &results); |
3357 | |
3358 | if (foldedMap.getNumSymbols() == 1 && foldedMap.isSymbolIdentity()) |
3359 | return op.getOperand(0); |
3360 | |
3361 | // If some of the map results are not constant, try changing the map in-place. |
3362 | if (results.empty()) { |
3363 | // If the map is the same, report that folding did not happen. |
3364 | if (foldedMap == op.getMap()) |
3365 | return {}; |
3366 | op->setAttr("map" , AffineMapAttr::get(foldedMap)); |
3367 | return op.getResult(); |
3368 | } |
3369 | |
3370 | // Otherwise, completely fold the op into a constant. |
3371 | auto resultIt = std::is_same<T, AffineMinOp>::value |
3372 | ? llvm::min_element(Range&: results) |
3373 | : llvm::max_element(Range&: results); |
3374 | if (resultIt == results.end()) |
3375 | return {}; |
3376 | return IntegerAttr::get(IndexType::get(op.getContext()), *resultIt); |
3377 | } |
3378 | |
3379 | /// Remove duplicated expressions in affine min/max ops. |
3380 | template <typename T> |
3381 | struct DeduplicateAffineMinMaxExpressions : public OpRewritePattern<T> { |
3382 | using OpRewritePattern<T>::OpRewritePattern; |
3383 | |
3384 | LogicalResult matchAndRewrite(T affineOp, |
3385 | PatternRewriter &rewriter) const override { |
3386 | AffineMap oldMap = affineOp.getAffineMap(); |
3387 | |
3388 | SmallVector<AffineExpr, 4> newExprs; |
3389 | for (AffineExpr expr : oldMap.getResults()) { |
3390 | // This is a linear scan over newExprs, but it should be fine given that |
3391 | // we typically just have a few expressions per op. |
3392 | if (!llvm::is_contained(Range&: newExprs, Element: expr)) |
3393 | newExprs.push_back(Elt: expr); |
3394 | } |
3395 | |
3396 | if (newExprs.size() == oldMap.getNumResults()) |
3397 | return failure(); |
3398 | |
3399 | auto newMap = AffineMap::get(dimCount: oldMap.getNumDims(), symbolCount: oldMap.getNumSymbols(), |
3400 | results: newExprs, context: rewriter.getContext()); |
3401 | rewriter.replaceOpWithNewOp<T>(affineOp, newMap, affineOp.getMapOperands()); |
3402 | |
3403 | return success(); |
3404 | } |
3405 | }; |
3406 | |
3407 | /// Merge an affine min/max op to its consumers if its consumer is also an |
3408 | /// affine min/max op. |
3409 | /// |
3410 | /// This pattern requires the producer affine min/max op is bound to a |
3411 | /// dimension/symbol that is used as a standalone expression in the consumer |
3412 | /// affine op's map. |
3413 | /// |
3414 | /// For example, a pattern like the following: |
3415 | /// |
3416 | /// %0 = affine.min affine_map<()[s0] -> (s0 + 16, s0 * 8)> ()[%sym1] |
3417 | /// %1 = affine.min affine_map<(d0)[s0] -> (s0 + 4, d0)> (%0)[%sym2] |
3418 | /// |
3419 | /// Can be turned into: |
3420 | /// |
3421 | /// %1 = affine.min affine_map< |
3422 | /// ()[s0, s1] -> (s0 + 4, s1 + 16, s1 * 8)> ()[%sym2, %sym1] |
3423 | template <typename T> |
3424 | struct MergeAffineMinMaxOp : public OpRewritePattern<T> { |
3425 | using OpRewritePattern<T>::OpRewritePattern; |
3426 | |
3427 | LogicalResult matchAndRewrite(T affineOp, |
3428 | PatternRewriter &rewriter) const override { |
3429 | AffineMap oldMap = affineOp.getAffineMap(); |
3430 | ValueRange dimOperands = |
3431 | affineOp.getMapOperands().take_front(oldMap.getNumDims()); |
3432 | ValueRange symOperands = |
3433 | affineOp.getMapOperands().take_back(oldMap.getNumSymbols()); |
3434 | |
3435 | auto newDimOperands = llvm::to_vector<8>(Range&: dimOperands); |
3436 | auto newSymOperands = llvm::to_vector<8>(Range&: symOperands); |
3437 | SmallVector<AffineExpr, 4> newExprs; |
3438 | SmallVector<T, 4> producerOps; |
3439 | |
3440 | // Go over each expression to see whether it's a single dimension/symbol |
3441 | // with the corresponding operand which is the result of another affine |
3442 | // min/max op. If So it can be merged into this affine op. |
3443 | for (AffineExpr expr : oldMap.getResults()) { |
3444 | if (auto symExpr = dyn_cast<AffineSymbolExpr>(Val&: expr)) { |
3445 | Value symValue = symOperands[symExpr.getPosition()]; |
3446 | if (auto producerOp = symValue.getDefiningOp<T>()) { |
3447 | producerOps.push_back(producerOp); |
3448 | continue; |
3449 | } |
3450 | } else if (auto dimExpr = dyn_cast<AffineDimExpr>(Val&: expr)) { |
3451 | Value dimValue = dimOperands[dimExpr.getPosition()]; |
3452 | if (auto producerOp = dimValue.getDefiningOp<T>()) { |
3453 | producerOps.push_back(producerOp); |
3454 | continue; |
3455 | } |
3456 | } |
3457 | // For the above cases we will remove the expression by merging the |
3458 | // producer affine min/max's affine expressions. Otherwise we need to |
3459 | // keep the existing expression. |
3460 | newExprs.push_back(Elt: expr); |
3461 | } |
3462 | |
3463 | if (producerOps.empty()) |
3464 | return failure(); |
3465 | |
3466 | unsigned numUsedDims = oldMap.getNumDims(); |
3467 | unsigned numUsedSyms = oldMap.getNumSymbols(); |
3468 | |
3469 | // Now go over all producer affine ops and merge their expressions. |
3470 | for (T producerOp : producerOps) { |
3471 | AffineMap producerMap = producerOp.getAffineMap(); |
3472 | unsigned numProducerDims = producerMap.getNumDims(); |
3473 | unsigned numProducerSyms = producerMap.getNumSymbols(); |
3474 | |
3475 | // Collect all dimension/symbol values. |
3476 | ValueRange dimValues = |
3477 | producerOp.getMapOperands().take_front(numProducerDims); |
3478 | ValueRange symValues = |
3479 | producerOp.getMapOperands().take_back(numProducerSyms); |
3480 | newDimOperands.append(in_start: dimValues.begin(), in_end: dimValues.end()); |
3481 | newSymOperands.append(in_start: symValues.begin(), in_end: symValues.end()); |
3482 | |
3483 | // For expressions we need to shift to avoid overlap. |
3484 | for (AffineExpr expr : producerMap.getResults()) { |
3485 | newExprs.push_back(Elt: expr.shiftDims(numDims: numProducerDims, shift: numUsedDims) |
3486 | .shiftSymbols(numSymbols: numProducerSyms, shift: numUsedSyms)); |
3487 | } |
3488 | |
3489 | numUsedDims += numProducerDims; |
3490 | numUsedSyms += numProducerSyms; |
3491 | } |
3492 | |
3493 | auto newMap = AffineMap::get(dimCount: numUsedDims, symbolCount: numUsedSyms, results: newExprs, |
3494 | context: rewriter.getContext()); |
3495 | auto newOperands = |
3496 | llvm::to_vector<8>(Range: llvm::concat<Value>(Ranges&: newDimOperands, Ranges&: newSymOperands)); |
3497 | rewriter.replaceOpWithNewOp<T>(affineOp, newMap, newOperands); |
3498 | |
3499 | return success(); |
3500 | } |
3501 | }; |
3502 | |
3503 | /// Canonicalize the result expression order of an affine map and return success |
3504 | /// if the order changed. |
3505 | /// |
3506 | /// The function flattens the map's affine expressions to coefficient arrays and |
3507 | /// sorts them in lexicographic order. A coefficient array contains a multiplier |
3508 | /// for every dimension/symbol and a constant term. The canonicalization fails |
3509 | /// if a result expression is not pure or if the flattening requires local |
3510 | /// variables that, unlike dimensions and symbols, have no global order. |
3511 | static LogicalResult canonicalizeMapExprAndTermOrder(AffineMap &map) { |
3512 | SmallVector<SmallVector<int64_t>> flattenedExprs; |
3513 | for (const AffineExpr &resultExpr : map.getResults()) { |
3514 | // Fail if the expression is not pure. |
3515 | if (!resultExpr.isPureAffine()) |
3516 | return failure(); |
3517 | |
3518 | SimpleAffineExprFlattener flattener(map.getNumDims(), map.getNumSymbols()); |
3519 | auto flattenResult = flattener.walkPostOrder(expr: resultExpr); |
3520 | if (failed(Result: flattenResult)) |
3521 | return failure(); |
3522 | |
3523 | // Fail if the flattened expression has local variables. |
3524 | if (flattener.operandExprStack.back().size() != |
3525 | map.getNumDims() + map.getNumSymbols() + 1) |
3526 | return failure(); |
3527 | |
3528 | flattenedExprs.emplace_back(Args: flattener.operandExprStack.back().begin(), |
3529 | Args: flattener.operandExprStack.back().end()); |
3530 | } |
3531 | |
3532 | // Fail if sorting is not necessary. |
3533 | if (llvm::is_sorted(Range&: flattenedExprs)) |
3534 | return failure(); |
3535 | |
3536 | // Reorder the result expressions according to their flattened form. |
3537 | SmallVector<unsigned> resultPermutation = |
3538 | llvm::to_vector(Range: llvm::seq<unsigned>(Begin: 0, End: map.getNumResults())); |
3539 | llvm::sort(C&: resultPermutation, Comp: [&](unsigned lhs, unsigned rhs) { |
3540 | return flattenedExprs[lhs] < flattenedExprs[rhs]; |
3541 | }); |
3542 | SmallVector<AffineExpr> newExprs; |
3543 | for (unsigned idx : resultPermutation) |
3544 | newExprs.push_back(Elt: map.getResult(idx)); |
3545 | |
3546 | map = AffineMap::get(dimCount: map.getNumDims(), symbolCount: map.getNumSymbols(), results: newExprs, |
3547 | context: map.getContext()); |
3548 | return success(); |
3549 | } |
3550 | |
3551 | /// Canonicalize the affine map result expression order of an affine min/max |
3552 | /// operation. |
3553 | /// |
3554 | /// The pattern calls `canonicalizeMapExprAndTermOrder` to order the result |
3555 | /// expressions and replaces the operation if the order changed. |
3556 | /// |
3557 | /// For example, the following operation: |
3558 | /// |
3559 | /// %0 = affine.min affine_map<(d0, d1) -> (d0 + d1, d1 + 16, 32)> (%i0, %i1) |
3560 | /// |
3561 | /// Turns into: |
3562 | /// |
3563 | /// %0 = affine.min affine_map<(d0, d1) -> (32, d1 + 16, d0 + d1)> (%i0, %i1) |
3564 | template <typename T> |
3565 | struct CanonicalizeAffineMinMaxOpExprAndTermOrder : public OpRewritePattern<T> { |
3566 | using OpRewritePattern<T>::OpRewritePattern; |
3567 | |
3568 | LogicalResult matchAndRewrite(T affineOp, |
3569 | PatternRewriter &rewriter) const override { |
3570 | AffineMap map = affineOp.getAffineMap(); |
3571 | if (failed(Result: canonicalizeMapExprAndTermOrder(map))) |
3572 | return failure(); |
3573 | rewriter.replaceOpWithNewOp<T>(affineOp, map, affineOp.getMapOperands()); |
3574 | return success(); |
3575 | } |
3576 | }; |
3577 | |
3578 | template <typename T> |
3579 | struct CanonicalizeSingleResultAffineMinMaxOp : public OpRewritePattern<T> { |
3580 | using OpRewritePattern<T>::OpRewritePattern; |
3581 | |
3582 | LogicalResult matchAndRewrite(T affineOp, |
3583 | PatternRewriter &rewriter) const override { |
3584 | if (affineOp.getMap().getNumResults() != 1) |
3585 | return failure(); |
3586 | rewriter.replaceOpWithNewOp<AffineApplyOp>(affineOp, affineOp.getMap(), |
3587 | affineOp.getOperands()); |
3588 | return success(); |
3589 | } |
3590 | }; |
3591 | |
3592 | //===----------------------------------------------------------------------===// |
3593 | // AffineMinOp |
3594 | //===----------------------------------------------------------------------===// |
3595 | // |
3596 | // %0 = affine.min (d0) -> (1000, d0 + 512) (%i0) |
3597 | // |
3598 | |
3599 | OpFoldResult AffineMinOp::fold(FoldAdaptor adaptor) { |
3600 | return foldMinMaxOp(*this, adaptor.getOperands()); |
3601 | } |
3602 | |
3603 | void AffineMinOp::getCanonicalizationPatterns(RewritePatternSet &patterns, |
3604 | MLIRContext *context) { |
3605 | patterns.add<CanonicalizeSingleResultAffineMinMaxOp<AffineMinOp>, |
3606 | DeduplicateAffineMinMaxExpressions<AffineMinOp>, |
3607 | MergeAffineMinMaxOp<AffineMinOp>, SimplifyAffineOp<AffineMinOp>, |
3608 | CanonicalizeAffineMinMaxOpExprAndTermOrder<AffineMinOp>>( |
3609 | context); |
3610 | } |
3611 | |
3612 | LogicalResult AffineMinOp::verify() { return verifyAffineMinMaxOp(*this); } |
3613 | |
3614 | ParseResult AffineMinOp::parse(OpAsmParser &parser, OperationState &result) { |
3615 | return parseAffineMinMaxOp<AffineMinOp>(parser, result); |
3616 | } |
3617 | |
3618 | void AffineMinOp::print(OpAsmPrinter &p) { printAffineMinMaxOp(p, *this); } |
3619 | |
3620 | //===----------------------------------------------------------------------===// |
3621 | // AffineMaxOp |
3622 | //===----------------------------------------------------------------------===// |
3623 | // |
3624 | // %0 = affine.max (d0) -> (1000, d0 + 512) (%i0) |
3625 | // |
3626 | |
3627 | OpFoldResult AffineMaxOp::fold(FoldAdaptor adaptor) { |
3628 | return foldMinMaxOp(*this, adaptor.getOperands()); |
3629 | } |
3630 | |
3631 | void AffineMaxOp::getCanonicalizationPatterns(RewritePatternSet &patterns, |
3632 | MLIRContext *context) { |
3633 | patterns.add<CanonicalizeSingleResultAffineMinMaxOp<AffineMaxOp>, |
3634 | DeduplicateAffineMinMaxExpressions<AffineMaxOp>, |
3635 | MergeAffineMinMaxOp<AffineMaxOp>, SimplifyAffineOp<AffineMaxOp>, |
3636 | CanonicalizeAffineMinMaxOpExprAndTermOrder<AffineMaxOp>>( |
3637 | context); |
3638 | } |
3639 | |
3640 | LogicalResult AffineMaxOp::verify() { return verifyAffineMinMaxOp(*this); } |
3641 | |
3642 | ParseResult AffineMaxOp::parse(OpAsmParser &parser, OperationState &result) { |
3643 | return parseAffineMinMaxOp<AffineMaxOp>(parser, result); |
3644 | } |
3645 | |
3646 | void AffineMaxOp::print(OpAsmPrinter &p) { printAffineMinMaxOp(p, *this); } |
3647 | |
3648 | //===----------------------------------------------------------------------===// |
3649 | // AffinePrefetchOp |
3650 | //===----------------------------------------------------------------------===// |
3651 | |
3652 | // |
3653 | // affine.prefetch %0[%i, %j + 5], read, locality<3>, data : memref<400x400xi32> |
3654 | // |
3655 | ParseResult AffinePrefetchOp::parse(OpAsmParser &parser, |
3656 | OperationState &result) { |
3657 | auto &builder = parser.getBuilder(); |
3658 | auto indexTy = builder.getIndexType(); |
3659 | |
3660 | MemRefType type; |
3661 | OpAsmParser::UnresolvedOperand memrefInfo; |
3662 | IntegerAttr hintInfo; |
3663 | auto i32Type = parser.getBuilder().getIntegerType(32); |
3664 | StringRef readOrWrite, cacheType; |
3665 | |
3666 | AffineMapAttr mapAttr; |
3667 | SmallVector<OpAsmParser::UnresolvedOperand, 1> mapOperands; |
3668 | if (parser.parseOperand(memrefInfo) || |
3669 | parser.parseAffineMapOfSSAIds(mapOperands, mapAttr, |
3670 | AffinePrefetchOp::getMapAttrStrName(), |
3671 | result.attributes) || |
3672 | parser.parseComma() || parser.parseKeyword(&readOrWrite) || |
3673 | parser.parseComma() || parser.parseKeyword("locality" ) || |
3674 | parser.parseLess() || |
3675 | parser.parseAttribute(hintInfo, i32Type, |
3676 | AffinePrefetchOp::getLocalityHintAttrStrName(), |
3677 | result.attributes) || |
3678 | parser.parseGreater() || parser.parseComma() || |
3679 | parser.parseKeyword(&cacheType) || |
3680 | parser.parseOptionalAttrDict(result.attributes) || |
3681 | parser.parseColonType(type) || |
3682 | parser.resolveOperand(memrefInfo, type, result.operands) || |
3683 | parser.resolveOperands(mapOperands, indexTy, result.operands)) |
3684 | return failure(); |
3685 | |
3686 | if (readOrWrite != "read" && readOrWrite != "write" ) |
3687 | return parser.emitError(parser.getNameLoc(), |
3688 | "rw specifier has to be 'read' or 'write'" ); |
3689 | result.addAttribute(AffinePrefetchOp::getIsWriteAttrStrName(), |
3690 | parser.getBuilder().getBoolAttr(readOrWrite == "write" )); |
3691 | |
3692 | if (cacheType != "data" && cacheType != "instr" ) |
3693 | return parser.emitError(parser.getNameLoc(), |
3694 | "cache type has to be 'data' or 'instr'" ); |
3695 | |
3696 | result.addAttribute(AffinePrefetchOp::getIsDataCacheAttrStrName(), |
3697 | parser.getBuilder().getBoolAttr(cacheType == "data" )); |
3698 | |
3699 | return success(); |
3700 | } |
3701 | |
3702 | void AffinePrefetchOp::print(OpAsmPrinter &p) { |
3703 | p << " " << getMemref() << '['; |
3704 | AffineMapAttr mapAttr = |
3705 | (*this)->getAttrOfType<AffineMapAttr>(getMapAttrStrName()); |
3706 | if (mapAttr) |
3707 | p.printAffineMapOfSSAIds(mapAttr, getMapOperands()); |
3708 | p << ']' << ", " << (getIsWrite() ? "write" : "read" ) << ", " |
3709 | << "locality<" << getLocalityHint() << ">, " |
3710 | << (getIsDataCache() ? "data" : "instr" ); |
3711 | p.printOptionalAttrDict( |
3712 | (*this)->getAttrs(), |
3713 | /*elidedAttrs=*/{getMapAttrStrName(), getLocalityHintAttrStrName(), |
3714 | getIsDataCacheAttrStrName(), getIsWriteAttrStrName()}); |
3715 | p << " : " << getMemRefType(); |
3716 | } |
3717 | |
3718 | LogicalResult AffinePrefetchOp::verify() { |
3719 | auto mapAttr = (*this)->getAttrOfType<AffineMapAttr>(getMapAttrStrName()); |
3720 | if (mapAttr) { |
3721 | AffineMap map = mapAttr.getValue(); |
3722 | if (map.getNumResults() != getMemRefType().getRank()) |
3723 | return emitOpError("affine.prefetch affine map num results must equal" |
3724 | " memref rank" ); |
3725 | if (map.getNumInputs() + 1 != getNumOperands()) |
3726 | return emitOpError("too few operands" ); |
3727 | } else { |
3728 | if (getNumOperands() != 1) |
3729 | return emitOpError("too few operands" ); |
3730 | } |
3731 | |
3732 | Region *scope = getAffineScope(*this); |
3733 | for (auto idx : getMapOperands()) { |
3734 | if (!isValidAffineIndexOperand(idx, scope)) |
3735 | return emitOpError( |
3736 | "index must be a valid dimension or symbol identifier" ); |
3737 | } |
3738 | return success(); |
3739 | } |
3740 | |
3741 | void AffinePrefetchOp::getCanonicalizationPatterns(RewritePatternSet &results, |
3742 | MLIRContext *context) { |
3743 | // prefetch(memrefcast) -> prefetch |
3744 | results.add<SimplifyAffineOp<AffinePrefetchOp>>(context); |
3745 | } |
3746 | |
3747 | LogicalResult AffinePrefetchOp::fold(FoldAdaptor adaptor, |
3748 | SmallVectorImpl<OpFoldResult> &results) { |
3749 | /// prefetch(memrefcast) -> prefetch |
3750 | return memref::foldMemRefCast(*this); |
3751 | } |
3752 | |
3753 | //===----------------------------------------------------------------------===// |
3754 | // AffineParallelOp |
3755 | //===----------------------------------------------------------------------===// |
3756 | |
3757 | void AffineParallelOp::build(OpBuilder &builder, OperationState &result, |
3758 | TypeRange resultTypes, |
3759 | ArrayRef<arith::AtomicRMWKind> reductions, |
3760 | ArrayRef<int64_t> ranges) { |
3761 | SmallVector<AffineMap> lbs(ranges.size(), builder.getConstantAffineMap(0)); |
3762 | auto ubs = llvm::to_vector<4>(llvm::map_range(ranges, [&](int64_t value) { |
3763 | return builder.getConstantAffineMap(value); |
3764 | })); |
3765 | SmallVector<int64_t> steps(ranges.size(), 1); |
3766 | build(builder, result, resultTypes, reductions, lbs, /*lbArgs=*/{}, ubs, |
3767 | /*ubArgs=*/{}, steps); |
3768 | } |
3769 | |
3770 | void AffineParallelOp::build(OpBuilder &builder, OperationState &result, |
3771 | TypeRange resultTypes, |
3772 | ArrayRef<arith::AtomicRMWKind> reductions, |
3773 | ArrayRef<AffineMap> lbMaps, ValueRange lbArgs, |
3774 | ArrayRef<AffineMap> ubMaps, ValueRange ubArgs, |
3775 | ArrayRef<int64_t> steps) { |
3776 | assert(llvm::all_of(lbMaps, |
3777 | [lbMaps](AffineMap m) { |
3778 | return m.getNumDims() == lbMaps[0].getNumDims() && |
3779 | m.getNumSymbols() == lbMaps[0].getNumSymbols(); |
3780 | }) && |
3781 | "expected all lower bounds maps to have the same number of dimensions " |
3782 | "and symbols" ); |
3783 | assert(llvm::all_of(ubMaps, |
3784 | [ubMaps](AffineMap m) { |
3785 | return m.getNumDims() == ubMaps[0].getNumDims() && |
3786 | m.getNumSymbols() == ubMaps[0].getNumSymbols(); |
3787 | }) && |
3788 | "expected all upper bounds maps to have the same number of dimensions " |
3789 | "and symbols" ); |
3790 | assert((lbMaps.empty() || lbMaps[0].getNumInputs() == lbArgs.size()) && |
3791 | "expected lower bound maps to have as many inputs as lower bound " |
3792 | "operands" ); |
3793 | assert((ubMaps.empty() || ubMaps[0].getNumInputs() == ubArgs.size()) && |
3794 | "expected upper bound maps to have as many inputs as upper bound " |
3795 | "operands" ); |
3796 | |
3797 | OpBuilder::InsertionGuard guard(builder); |
3798 | result.addTypes(resultTypes); |
3799 | |
3800 | // Convert the reductions to integer attributes. |
3801 | SmallVector<Attribute, 4> reductionAttrs; |
3802 | for (arith::AtomicRMWKind reduction : reductions) |
3803 | reductionAttrs.push_back( |
3804 | builder.getI64IntegerAttr(static_cast<int64_t>(reduction))); |
3805 | result.addAttribute(getReductionsAttrStrName(), |
3806 | builder.getArrayAttr(reductionAttrs)); |
3807 | |
3808 | // Concatenates maps defined in the same input space (same dimensions and |
3809 | // symbols), assumes there is at least one map. |
3810 | auto concatMapsSameInput = [&builder](ArrayRef<AffineMap> maps, |
3811 | SmallVectorImpl<int32_t> &groups) { |
3812 | if (maps.empty()) |
3813 | return AffineMap::get(builder.getContext()); |
3814 | SmallVector<AffineExpr> exprs; |
3815 | groups.reserve(groups.size() + maps.size()); |
3816 | exprs.reserve(maps.size()); |
3817 | for (AffineMap m : maps) { |
3818 | llvm::append_range(exprs, m.getResults()); |
3819 | groups.push_back(m.getNumResults()); |
3820 | } |
3821 | return AffineMap::get(maps[0].getNumDims(), maps[0].getNumSymbols(), exprs, |
3822 | maps[0].getContext()); |
3823 | }; |
3824 | |
3825 | // Set up the bounds. |
3826 | SmallVector<int32_t> lbGroups, ubGroups; |
3827 | AffineMap lbMap = concatMapsSameInput(lbMaps, lbGroups); |
3828 | AffineMap ubMap = concatMapsSameInput(ubMaps, ubGroups); |
3829 | result.addAttribute(getLowerBoundsMapAttrStrName(), |
3830 | AffineMapAttr::get(lbMap)); |
3831 | result.addAttribute(getLowerBoundsGroupsAttrStrName(), |
3832 | builder.getI32TensorAttr(lbGroups)); |
3833 | result.addAttribute(getUpperBoundsMapAttrStrName(), |
3834 | AffineMapAttr::get(ubMap)); |
3835 | result.addAttribute(getUpperBoundsGroupsAttrStrName(), |
3836 | builder.getI32TensorAttr(ubGroups)); |
3837 | result.addAttribute(getStepsAttrStrName(), builder.getI64ArrayAttr(steps)); |
3838 | result.addOperands(lbArgs); |
3839 | result.addOperands(ubArgs); |
3840 | |
3841 | // Create a region and a block for the body. |
3842 | auto *bodyRegion = result.addRegion(); |
3843 | Block *body = builder.createBlock(bodyRegion); |
3844 | |
3845 | // Add all the block arguments. |
3846 | for (unsigned i = 0, e = steps.size(); i < e; ++i) |
3847 | body->addArgument(IndexType::get(builder.getContext()), result.location); |
3848 | if (resultTypes.empty()) |
3849 | ensureTerminator(*bodyRegion, builder, result.location); |
3850 | } |
3851 | |
3852 | SmallVector<Region *> AffineParallelOp::getLoopRegions() { |
3853 | return {&getRegion()}; |
3854 | } |
3855 | |
3856 | unsigned AffineParallelOp::getNumDims() { return getSteps().size(); } |
3857 | |
3858 | AffineParallelOp::operand_range AffineParallelOp::getLowerBoundsOperands() { |
3859 | return getOperands().take_front(getLowerBoundsMap().getNumInputs()); |
3860 | } |
3861 | |
3862 | AffineParallelOp::operand_range AffineParallelOp::getUpperBoundsOperands() { |
3863 | return getOperands().drop_front(getLowerBoundsMap().getNumInputs()); |
3864 | } |
3865 | |
3866 | AffineMap AffineParallelOp::getLowerBoundMap(unsigned pos) { |
3867 | auto values = getLowerBoundsGroups().getValues<int32_t>(); |
3868 | unsigned start = 0; |
3869 | for (unsigned i = 0; i < pos; ++i) |
3870 | start += values[i]; |
3871 | return getLowerBoundsMap().getSliceMap(start, values[pos]); |
3872 | } |
3873 | |
3874 | AffineMap AffineParallelOp::getUpperBoundMap(unsigned pos) { |
3875 | auto values = getUpperBoundsGroups().getValues<int32_t>(); |
3876 | unsigned start = 0; |
3877 | for (unsigned i = 0; i < pos; ++i) |
3878 | start += values[i]; |
3879 | return getUpperBoundsMap().getSliceMap(start, values[pos]); |
3880 | } |
3881 | |
3882 | AffineValueMap AffineParallelOp::getLowerBoundsValueMap() { |
3883 | return AffineValueMap(getLowerBoundsMap(), getLowerBoundsOperands()); |
3884 | } |
3885 | |
3886 | AffineValueMap AffineParallelOp::getUpperBoundsValueMap() { |
3887 | return AffineValueMap(getUpperBoundsMap(), getUpperBoundsOperands()); |
3888 | } |
3889 | |
3890 | std::optional<SmallVector<int64_t, 8>> AffineParallelOp::getConstantRanges() { |
3891 | if (hasMinMaxBounds()) |
3892 | return std::nullopt; |
3893 | |
3894 | // Try to convert all the ranges to constant expressions. |
3895 | SmallVector<int64_t, 8> out; |
3896 | AffineValueMap rangesValueMap; |
3897 | AffineValueMap::difference(getUpperBoundsValueMap(), getLowerBoundsValueMap(), |
3898 | &rangesValueMap); |
3899 | out.reserve(rangesValueMap.getNumResults()); |
3900 | for (unsigned i = 0, e = rangesValueMap.getNumResults(); i < e; ++i) { |
3901 | auto expr = rangesValueMap.getResult(i); |
3902 | auto cst = dyn_cast<AffineConstantExpr>(expr); |
3903 | if (!cst) |
3904 | return std::nullopt; |
3905 | out.push_back(cst.getValue()); |
3906 | } |
3907 | return out; |
3908 | } |
3909 | |
3910 | Block *AffineParallelOp::getBody() { return &getRegion().front(); } |
3911 | |
3912 | OpBuilder AffineParallelOp::getBodyBuilder() { |
3913 | return OpBuilder(getBody(), std::prev(getBody()->end())); |
3914 | } |
3915 | |
3916 | void AffineParallelOp::setLowerBounds(ValueRange lbOperands, AffineMap map) { |
3917 | assert(lbOperands.size() == map.getNumInputs() && |
3918 | "operands to map must match number of inputs" ); |
3919 | |
3920 | auto ubOperands = getUpperBoundsOperands(); |
3921 | |
3922 | SmallVector<Value, 4> newOperands(lbOperands); |
3923 | newOperands.append(ubOperands.begin(), ubOperands.end()); |
3924 | (*this)->setOperands(newOperands); |
3925 | |
3926 | setLowerBoundsMapAttr(AffineMapAttr::get(map)); |
3927 | } |
3928 | |
3929 | void AffineParallelOp::setUpperBounds(ValueRange ubOperands, AffineMap map) { |
3930 | assert(ubOperands.size() == map.getNumInputs() && |
3931 | "operands to map must match number of inputs" ); |
3932 | |
3933 | SmallVector<Value, 4> newOperands(getLowerBoundsOperands()); |
3934 | newOperands.append(ubOperands.begin(), ubOperands.end()); |
3935 | (*this)->setOperands(newOperands); |
3936 | |
3937 | setUpperBoundsMapAttr(AffineMapAttr::get(map)); |
3938 | } |
3939 | |
3940 | void AffineParallelOp::setSteps(ArrayRef<int64_t> newSteps) { |
3941 | setStepsAttr(getBodyBuilder().getI64ArrayAttr(newSteps)); |
3942 | } |
3943 | |
3944 | // check whether resultType match op or not in affine.parallel |
3945 | static bool isResultTypeMatchAtomicRMWKind(Type resultType, |
3946 | arith::AtomicRMWKind op) { |
3947 | switch (op) { |
3948 | case arith::AtomicRMWKind::addf: |
3949 | return isa<FloatType>(Val: resultType); |
3950 | case arith::AtomicRMWKind::addi: |
3951 | return isa<IntegerType>(Val: resultType); |
3952 | case arith::AtomicRMWKind::assign: |
3953 | return true; |
3954 | case arith::AtomicRMWKind::mulf: |
3955 | return isa<FloatType>(Val: resultType); |
3956 | case arith::AtomicRMWKind::muli: |
3957 | return isa<IntegerType>(Val: resultType); |
3958 | case arith::AtomicRMWKind::maximumf: |
3959 | return isa<FloatType>(Val: resultType); |
3960 | case arith::AtomicRMWKind::minimumf: |
3961 | return isa<FloatType>(Val: resultType); |
3962 | case arith::AtomicRMWKind::maxs: { |
3963 | auto intType = llvm::dyn_cast<IntegerType>(resultType); |
3964 | return intType && intType.isSigned(); |
3965 | } |
3966 | case arith::AtomicRMWKind::mins: { |
3967 | auto intType = llvm::dyn_cast<IntegerType>(resultType); |
3968 | return intType && intType.isSigned(); |
3969 | } |
3970 | case arith::AtomicRMWKind::maxu: { |
3971 | auto intType = llvm::dyn_cast<IntegerType>(resultType); |
3972 | return intType && intType.isUnsigned(); |
3973 | } |
3974 | case arith::AtomicRMWKind::minu: { |
3975 | auto intType = llvm::dyn_cast<IntegerType>(resultType); |
3976 | return intType && intType.isUnsigned(); |
3977 | } |
3978 | case arith::AtomicRMWKind::ori: |
3979 | return isa<IntegerType>(Val: resultType); |
3980 | case arith::AtomicRMWKind::andi: |
3981 | return isa<IntegerType>(Val: resultType); |
3982 | default: |
3983 | return false; |
3984 | } |
3985 | } |
3986 | |
3987 | LogicalResult AffineParallelOp::verify() { |
3988 | auto numDims = getNumDims(); |
3989 | if (getLowerBoundsGroups().getNumElements() != numDims || |
3990 | getUpperBoundsGroups().getNumElements() != numDims || |
3991 | getSteps().size() != numDims || getBody()->getNumArguments() != numDims) { |
3992 | return emitOpError() << "the number of region arguments (" |
3993 | << getBody()->getNumArguments() |
3994 | << ") and the number of map groups for lower (" |
3995 | << getLowerBoundsGroups().getNumElements() |
3996 | << ") and upper bound (" |
3997 | << getUpperBoundsGroups().getNumElements() |
3998 | << "), and the number of steps (" << getSteps().size() |
3999 | << ") must all match" ; |
4000 | } |
4001 | |
4002 | unsigned expectedNumLBResults = 0; |
4003 | for (APInt v : getLowerBoundsGroups()) { |
4004 | unsigned results = v.getZExtValue(); |
4005 | if (results == 0) |
4006 | return emitOpError() |
4007 | << "expected lower bound map to have at least one result" ; |
4008 | expectedNumLBResults += results; |
4009 | } |
4010 | if (expectedNumLBResults != getLowerBoundsMap().getNumResults()) |
4011 | return emitOpError() << "expected lower bounds map to have " |
4012 | << expectedNumLBResults << " results" ; |
4013 | unsigned expectedNumUBResults = 0; |
4014 | for (APInt v : getUpperBoundsGroups()) { |
4015 | unsigned results = v.getZExtValue(); |
4016 | if (results == 0) |
4017 | return emitOpError() |
4018 | << "expected upper bound map to have at least one result" ; |
4019 | expectedNumUBResults += results; |
4020 | } |
4021 | if (expectedNumUBResults != getUpperBoundsMap().getNumResults()) |
4022 | return emitOpError() << "expected upper bounds map to have " |
4023 | << expectedNumUBResults << " results" ; |
4024 | |
4025 | if (getReductions().size() != getNumResults()) |
4026 | return emitOpError("a reduction must be specified for each output" ); |
4027 | |
4028 | // Verify reduction ops are all valid and each result type matches reduction |
4029 | // ops |
4030 | for (auto it : llvm::enumerate((getReductions()))) { |
4031 | Attribute attr = it.value(); |
4032 | auto intAttr = llvm::dyn_cast<IntegerAttr>(attr); |
4033 | if (!intAttr || !arith::symbolizeAtomicRMWKind(intAttr.getInt())) |
4034 | return emitOpError("invalid reduction attribute" ); |
4035 | auto kind = arith::symbolizeAtomicRMWKind(intAttr.getInt()).value(); |
4036 | if (!isResultTypeMatchAtomicRMWKind(getResult(it.index()).getType(), kind)) |
4037 | return emitOpError("result type cannot match reduction attribute" ); |
4038 | } |
4039 | |
4040 | // Verify that the bound operands are valid dimension/symbols. |
4041 | /// Lower bounds. |
4042 | if (failed(verifyDimAndSymbolIdentifiers(*this, getLowerBoundsOperands(), |
4043 | getLowerBoundsMap().getNumDims()))) |
4044 | return failure(); |
4045 | /// Upper bounds. |
4046 | if (failed(verifyDimAndSymbolIdentifiers(*this, getUpperBoundsOperands(), |
4047 | getUpperBoundsMap().getNumDims()))) |
4048 | return failure(); |
4049 | return success(); |
4050 | } |
4051 | |
4052 | LogicalResult AffineValueMap::canonicalize() { |
4053 | SmallVector<Value, 4> newOperands{operands}; |
4054 | auto newMap = getAffineMap(); |
4055 | composeAffineMapAndOperands(map: &newMap, operands: &newOperands); |
4056 | if (newMap == getAffineMap() && newOperands == operands) |
4057 | return failure(); |
4058 | reset(map: newMap, operands: newOperands); |
4059 | return success(); |
4060 | } |
4061 | |
4062 | /// Canonicalize the bounds of the given loop. |
4063 | static LogicalResult canonicalizeLoopBounds(AffineParallelOp op) { |
4064 | AffineValueMap lb = op.getLowerBoundsValueMap(); |
4065 | bool lbCanonicalized = succeeded(Result: lb.canonicalize()); |
4066 | |
4067 | AffineValueMap ub = op.getUpperBoundsValueMap(); |
4068 | bool ubCanonicalized = succeeded(Result: ub.canonicalize()); |
4069 | |
4070 | // Any canonicalization change always leads to updated map(s). |
4071 | if (!lbCanonicalized && !ubCanonicalized) |
4072 | return failure(); |
4073 | |
4074 | if (lbCanonicalized) |
4075 | op.setLowerBounds(lb.getOperands(), lb.getAffineMap()); |
4076 | if (ubCanonicalized) |
4077 | op.setUpperBounds(ub.getOperands(), ub.getAffineMap()); |
4078 | |
4079 | return success(); |
4080 | } |
4081 | |
4082 | LogicalResult AffineParallelOp::fold(FoldAdaptor adaptor, |
4083 | SmallVectorImpl<OpFoldResult> &results) { |
4084 | return canonicalizeLoopBounds(*this); |
4085 | } |
4086 | |
4087 | /// Prints a lower(upper) bound of an affine parallel loop with max(min) |
4088 | /// conditions in it. `mapAttr` is a flat list of affine expressions and `group` |
4089 | /// identifies which of the those expressions form max/min groups. `operands` |
4090 | /// are the SSA values of dimensions and symbols and `keyword` is either "min" |
4091 | /// or "max". |
4092 | static void printMinMaxBound(OpAsmPrinter &p, AffineMapAttr mapAttr, |
4093 | DenseIntElementsAttr group, ValueRange operands, |
4094 | StringRef keyword) { |
4095 | AffineMap map = mapAttr.getValue(); |
4096 | unsigned numDims = map.getNumDims(); |
4097 | ValueRange dimOperands = operands.take_front(n: numDims); |
4098 | ValueRange symOperands = operands.drop_front(n: numDims); |
4099 | unsigned start = 0; |
4100 | for (llvm::APInt groupSize : group) { |
4101 | if (start != 0) |
4102 | p << ", " ; |
4103 | |
4104 | unsigned size = groupSize.getZExtValue(); |
4105 | if (size == 1) { |
4106 | p.printAffineExprOfSSAIds(expr: map.getResult(idx: start), dimOperands, symOperands); |
4107 | ++start; |
4108 | } else { |
4109 | p << keyword << '('; |
4110 | AffineMap submap = map.getSliceMap(start, length: size); |
4111 | p.printAffineMapOfSSAIds(AffineMapAttr::get(submap), operands); |
4112 | p << ')'; |
4113 | start += size; |
4114 | } |
4115 | } |
4116 | } |
4117 | |
4118 | void AffineParallelOp::print(OpAsmPrinter &p) { |
4119 | p << " (" << getBody()->getArguments() << ") = (" ; |
4120 | printMinMaxBound(p, getLowerBoundsMapAttr(), getLowerBoundsGroupsAttr(), |
4121 | getLowerBoundsOperands(), "max" ); |
4122 | p << ") to (" ; |
4123 | printMinMaxBound(p, getUpperBoundsMapAttr(), getUpperBoundsGroupsAttr(), |
4124 | getUpperBoundsOperands(), "min" ); |
4125 | p << ')'; |
4126 | SmallVector<int64_t, 8> steps = getSteps(); |
4127 | bool elideSteps = llvm::all_of(steps, [](int64_t step) { return step == 1; }); |
4128 | if (!elideSteps) { |
4129 | p << " step (" ; |
4130 | llvm::interleaveComma(steps, p); |
4131 | p << ')'; |
4132 | } |
4133 | if (getNumResults()) { |
4134 | p << " reduce (" ; |
4135 | llvm::interleaveComma(getReductions(), p, [&](auto &attr) { |
4136 | arith::AtomicRMWKind sym = *arith::symbolizeAtomicRMWKind( |
4137 | llvm::cast<IntegerAttr>(attr).getInt()); |
4138 | p << "\"" << arith::stringifyAtomicRMWKind(sym) << "\"" ; |
4139 | }); |
4140 | p << ") -> (" << getResultTypes() << ")" ; |
4141 | } |
4142 | |
4143 | p << ' '; |
4144 | p.printRegion(getRegion(), /*printEntryBlockArgs=*/false, |
4145 | /*printBlockTerminators=*/getNumResults()); |
4146 | p.printOptionalAttrDict( |
4147 | (*this)->getAttrs(), |
4148 | /*elidedAttrs=*/{AffineParallelOp::getReductionsAttrStrName(), |
4149 | AffineParallelOp::getLowerBoundsMapAttrStrName(), |
4150 | AffineParallelOp::getLowerBoundsGroupsAttrStrName(), |
4151 | AffineParallelOp::getUpperBoundsMapAttrStrName(), |
4152 | AffineParallelOp::getUpperBoundsGroupsAttrStrName(), |
4153 | AffineParallelOp::getStepsAttrStrName()}); |
4154 | } |
4155 | |
4156 | /// Given a list of lists of parsed operands, populates `uniqueOperands` with |
4157 | /// unique operands. Also populates `replacements with affine expressions of |
4158 | /// `kind` that can be used to update affine maps previously accepting a |
4159 | /// `operands` to accept `uniqueOperands` instead. |
4160 | static ParseResult deduplicateAndResolveOperands( |
4161 | OpAsmParser &parser, |
4162 | ArrayRef<SmallVector<OpAsmParser::UnresolvedOperand>> operands, |
4163 | SmallVectorImpl<Value> &uniqueOperands, |
4164 | SmallVectorImpl<AffineExpr> &replacements, AffineExprKind kind) { |
4165 | assert((kind == AffineExprKind::DimId || kind == AffineExprKind::SymbolId) && |
4166 | "expected operands to be dim or symbol expression" ); |
4167 | |
4168 | Type indexType = parser.getBuilder().getIndexType(); |
4169 | for (const auto &list : operands) { |
4170 | SmallVector<Value> valueOperands; |
4171 | if (parser.resolveOperands(operands: list, type: indexType, result&: valueOperands)) |
4172 | return failure(); |
4173 | for (Value operand : valueOperands) { |
4174 | unsigned pos = std::distance(first: uniqueOperands.begin(), |
4175 | last: llvm::find(Range&: uniqueOperands, Val: operand)); |
4176 | if (pos == uniqueOperands.size()) |
4177 | uniqueOperands.push_back(Elt: operand); |
4178 | replacements.push_back( |
4179 | Elt: kind == AffineExprKind::DimId |
4180 | ? getAffineDimExpr(position: pos, context: parser.getContext()) |
4181 | : getAffineSymbolExpr(position: pos, context: parser.getContext())); |
4182 | } |
4183 | } |
4184 | return success(); |
4185 | } |
4186 | |
4187 | namespace { |
4188 | enum class MinMaxKind { Min, Max }; |
4189 | } // namespace |
4190 | |
4191 | /// Parses an affine map that can contain a min/max for groups of its results, |
4192 | /// e.g., max(expr-1, expr-2), expr-3, max(expr-4, expr-5, expr-6). Populates |
4193 | /// `result` attributes with the map (flat list of expressions) and the grouping |
4194 | /// (list of integers that specify how many expressions to put into each |
4195 | /// min/max) attributes. Deduplicates repeated operands. |
4196 | /// |
4197 | /// parallel-bound ::= `(` parallel-group-list `)` |
4198 | /// parallel-group-list ::= parallel-group (`,` parallel-group-list)? |
4199 | /// parallel-group ::= simple-group | min-max-group |
4200 | /// simple-group ::= expr-of-ssa-ids |
4201 | /// min-max-group ::= ( `min` | `max` ) `(` expr-of-ssa-ids-list `)` |
4202 | /// expr-of-ssa-ids-list ::= expr-of-ssa-ids (`,` expr-of-ssa-id-list)? |
4203 | /// |
4204 | /// Examples: |
4205 | /// (%0, min(%1 + %2, %3), %4, min(%5 floordiv 32, %6)) |
4206 | /// (%0, max(%1 - 2 * %2)) |
4207 | static ParseResult parseAffineMapWithMinMax(OpAsmParser &parser, |
4208 | OperationState &result, |
4209 | MinMaxKind kind) { |
4210 | // Using `const` not `constexpr` below to workaround a MSVC optimizer bug, |
4211 | // see: https://reviews.llvm.org/D134227#3821753 |
4212 | const llvm::StringLiteral tmpAttrStrName = "__pseudo_bound_map" ; |
4213 | |
4214 | StringRef mapName = kind == MinMaxKind::Min |
4215 | ? AffineParallelOp::getUpperBoundsMapAttrStrName() |
4216 | : AffineParallelOp::getLowerBoundsMapAttrStrName(); |
4217 | StringRef groupsName = |
4218 | kind == MinMaxKind::Min |
4219 | ? AffineParallelOp::getUpperBoundsGroupsAttrStrName() |
4220 | : AffineParallelOp::getLowerBoundsGroupsAttrStrName(); |
4221 | |
4222 | if (failed(Result: parser.parseLParen())) |
4223 | return failure(); |
4224 | |
4225 | if (succeeded(Result: parser.parseOptionalRParen())) { |
4226 | result.addAttribute( |
4227 | mapName, AffineMapAttr::get(parser.getBuilder().getEmptyAffineMap())); |
4228 | result.addAttribute(groupsName, parser.getBuilder().getI32TensorAttr(values: {})); |
4229 | return success(); |
4230 | } |
4231 | |
4232 | SmallVector<AffineExpr> flatExprs; |
4233 | SmallVector<SmallVector<OpAsmParser::UnresolvedOperand>> flatDimOperands; |
4234 | SmallVector<SmallVector<OpAsmParser::UnresolvedOperand>> flatSymOperands; |
4235 | SmallVector<int32_t> numMapsPerGroup; |
4236 | SmallVector<OpAsmParser::UnresolvedOperand> mapOperands; |
4237 | auto parseOperands = [&]() { |
4238 | if (succeeded(Result: parser.parseOptionalKeyword( |
4239 | keyword: kind == MinMaxKind::Min ? "min" : "max" ))) { |
4240 | mapOperands.clear(); |
4241 | AffineMapAttr map; |
4242 | if (failed(parser.parseAffineMapOfSSAIds(operands&: mapOperands, map&: map, attrName: tmpAttrStrName, |
4243 | attrs&: result.attributes, |
4244 | delimiter: OpAsmParser::Delimiter::Paren))) |
4245 | return failure(); |
4246 | result.attributes.erase(name: tmpAttrStrName); |
4247 | llvm::append_range(flatExprs, map.getValue().getResults()); |
4248 | auto operandsRef = llvm::ArrayRef(mapOperands); |
4249 | auto dimsRef = operandsRef.take_front(N: map.getValue().getNumDims()); |
4250 | SmallVector<OpAsmParser::UnresolvedOperand> dims(dimsRef); |
4251 | auto symsRef = operandsRef.drop_front(N: map.getValue().getNumDims()); |
4252 | SmallVector<OpAsmParser::UnresolvedOperand> syms(symsRef); |
4253 | flatDimOperands.append(map.getValue().getNumResults(), dims); |
4254 | flatSymOperands.append(map.getValue().getNumResults(), syms); |
4255 | numMapsPerGroup.push_back(Elt: map.getValue().getNumResults()); |
4256 | } else { |
4257 | if (failed(Result: parser.parseAffineExprOfSSAIds(dimOperands&: flatDimOperands.emplace_back(), |
4258 | symbOperands&: flatSymOperands.emplace_back(), |
4259 | expr&: flatExprs.emplace_back()))) |
4260 | return failure(); |
4261 | numMapsPerGroup.push_back(Elt: 1); |
4262 | } |
4263 | return success(); |
4264 | }; |
4265 | if (parser.parseCommaSeparatedList(parseElementFn: parseOperands) || parser.parseRParen()) |
4266 | return failure(); |
4267 | |
4268 | unsigned totalNumDims = 0; |
4269 | unsigned totalNumSyms = 0; |
4270 | for (unsigned i = 0, e = flatExprs.size(); i < e; ++i) { |
4271 | unsigned numDims = flatDimOperands[i].size(); |
4272 | unsigned numSyms = flatSymOperands[i].size(); |
4273 | flatExprs[i] = flatExprs[i] |
4274 | .shiftDims(numDims, shift: totalNumDims) |
4275 | .shiftSymbols(numSymbols: numSyms, shift: totalNumSyms); |
4276 | totalNumDims += numDims; |
4277 | totalNumSyms += numSyms; |
4278 | } |
4279 | |
4280 | // Deduplicate map operands. |
4281 | SmallVector<Value> dimOperands, symOperands; |
4282 | SmallVector<AffineExpr> dimRplacements, symRepacements; |
4283 | if (deduplicateAndResolveOperands(parser, operands: flatDimOperands, uniqueOperands&: dimOperands, |
4284 | replacements&: dimRplacements, kind: AffineExprKind::DimId) || |
4285 | deduplicateAndResolveOperands(parser, operands: flatSymOperands, uniqueOperands&: symOperands, |
4286 | replacements&: symRepacements, kind: AffineExprKind::SymbolId)) |
4287 | return failure(); |
4288 | |
4289 | result.operands.append(in_start: dimOperands.begin(), in_end: dimOperands.end()); |
4290 | result.operands.append(in_start: symOperands.begin(), in_end: symOperands.end()); |
4291 | |
4292 | Builder &builder = parser.getBuilder(); |
4293 | auto flatMap = AffineMap::get(dimCount: totalNumDims, symbolCount: totalNumSyms, results: flatExprs, |
4294 | context: parser.getContext()); |
4295 | flatMap = flatMap.replaceDimsAndSymbols( |
4296 | dimReplacements: dimRplacements, symReplacements: symRepacements, numResultDims: dimOperands.size(), numResultSyms: symOperands.size()); |
4297 | |
4298 | result.addAttribute(mapName, AffineMapAttr::get(flatMap)); |
4299 | result.addAttribute(groupsName, builder.getI32TensorAttr(values: numMapsPerGroup)); |
4300 | return success(); |
4301 | } |
4302 | |
4303 | // |
4304 | // operation ::= `affine.parallel` `(` ssa-ids `)` `=` parallel-bound |
4305 | // `to` parallel-bound steps? region attr-dict? |
4306 | // steps ::= `steps` `(` integer-literals `)` |
4307 | // |
4308 | ParseResult AffineParallelOp::parse(OpAsmParser &parser, |
4309 | OperationState &result) { |
4310 | auto &builder = parser.getBuilder(); |
4311 | auto indexType = builder.getIndexType(); |
4312 | SmallVector<OpAsmParser::Argument, 4> ivs; |
4313 | if (parser.parseArgumentList(ivs, OpAsmParser::Delimiter::Paren) || |
4314 | parser.parseEqual() || |
4315 | parseAffineMapWithMinMax(parser, result, MinMaxKind::Max) || |
4316 | parser.parseKeyword("to" ) || |
4317 | parseAffineMapWithMinMax(parser, result, MinMaxKind::Min)) |
4318 | return failure(); |
4319 | |
4320 | AffineMapAttr stepsMapAttr; |
4321 | NamedAttrList stepsAttrs; |
4322 | SmallVector<OpAsmParser::UnresolvedOperand, 4> stepsMapOperands; |
4323 | if (failed(parser.parseOptionalKeyword("step" ))) { |
4324 | SmallVector<int64_t, 4> steps(ivs.size(), 1); |
4325 | result.addAttribute(AffineParallelOp::getStepsAttrStrName(), |
4326 | builder.getI64ArrayAttr(steps)); |
4327 | } else { |
4328 | if (parser.parseAffineMapOfSSAIds(stepsMapOperands, stepsMapAttr, |
4329 | AffineParallelOp::getStepsAttrStrName(), |
4330 | stepsAttrs, |
4331 | OpAsmParser::Delimiter::Paren)) |
4332 | return failure(); |
4333 | |
4334 | // Convert steps from an AffineMap into an I64ArrayAttr. |
4335 | SmallVector<int64_t, 4> steps; |
4336 | auto stepsMap = stepsMapAttr.getValue(); |
4337 | for (const auto &result : stepsMap.getResults()) { |
4338 | auto constExpr = dyn_cast<AffineConstantExpr>(result); |
4339 | if (!constExpr) |
4340 | return parser.emitError(parser.getNameLoc(), |
4341 | "steps must be constant integers" ); |
4342 | steps.push_back(constExpr.getValue()); |
4343 | } |
4344 | result.addAttribute(AffineParallelOp::getStepsAttrStrName(), |
4345 | builder.getI64ArrayAttr(steps)); |
4346 | } |
4347 | |
4348 | // Parse optional clause of the form: `reduce ("addf", "maxf")`, where the |
4349 | // quoted strings are a member of the enum AtomicRMWKind. |
4350 | SmallVector<Attribute, 4> reductions; |
4351 | if (succeeded(parser.parseOptionalKeyword("reduce" ))) { |
4352 | if (parser.parseLParen()) |
4353 | return failure(); |
4354 | auto parseAttributes = [&]() -> ParseResult { |
4355 | // Parse a single quoted string via the attribute parsing, and then |
4356 | // verify it is a member of the enum and convert to it's integer |
4357 | // representation. |
4358 | StringAttr attrVal; |
4359 | NamedAttrList attrStorage; |
4360 | auto loc = parser.getCurrentLocation(); |
4361 | if (parser.parseAttribute(attrVal, builder.getNoneType(), "reduce" , |
4362 | attrStorage)) |
4363 | return failure(); |
4364 | std::optional<arith::AtomicRMWKind> reduction = |
4365 | arith::symbolizeAtomicRMWKind(attrVal.getValue()); |
4366 | if (!reduction) |
4367 | return parser.emitError(loc, "invalid reduction value: " ) << attrVal; |
4368 | reductions.push_back( |
4369 | builder.getI64IntegerAttr(static_cast<int64_t>(reduction.value()))); |
4370 | // While we keep getting commas, keep parsing. |
4371 | return success(); |
4372 | }; |
4373 | if (parser.parseCommaSeparatedList(parseAttributes) || parser.parseRParen()) |
4374 | return failure(); |
4375 | } |
4376 | result.addAttribute(AffineParallelOp::getReductionsAttrStrName(), |
4377 | builder.getArrayAttr(reductions)); |
4378 | |
4379 | // Parse return types of reductions (if any) |
4380 | if (parser.parseOptionalArrowTypeList(result.types)) |
4381 | return failure(); |
4382 | |
4383 | // Now parse the body. |
4384 | Region *body = result.addRegion(); |
4385 | for (auto &iv : ivs) |
4386 | iv.type = indexType; |
4387 | if (parser.parseRegion(*body, ivs) || |
4388 | parser.parseOptionalAttrDict(result.attributes)) |
4389 | return failure(); |
4390 | |
4391 | // Add a terminator if none was parsed. |
4392 | AffineParallelOp::ensureTerminator(*body, builder, result.location); |
4393 | return success(); |
4394 | } |
4395 | |
4396 | //===----------------------------------------------------------------------===// |
4397 | // AffineYieldOp |
4398 | //===----------------------------------------------------------------------===// |
4399 | |
4400 | LogicalResult AffineYieldOp::verify() { |
4401 | auto *parentOp = (*this)->getParentOp(); |
4402 | auto results = parentOp->getResults(); |
4403 | auto operands = getOperands(); |
4404 | |
4405 | if (!isa<AffineParallelOp, AffineIfOp, AffineForOp>(parentOp)) |
4406 | return emitOpError() << "only terminates affine.if/for/parallel regions" ; |
4407 | if (parentOp->getNumResults() != getNumOperands()) |
4408 | return emitOpError() << "parent of yield must have same number of " |
4409 | "results as the yield operands" ; |
4410 | for (auto it : llvm::zip(results, operands)) { |
4411 | if (std::get<0>(it).getType() != std::get<1>(it).getType()) |
4412 | return emitOpError() << "types mismatch between yield op and its parent" ; |
4413 | } |
4414 | |
4415 | return success(); |
4416 | } |
4417 | |
4418 | //===----------------------------------------------------------------------===// |
4419 | // AffineVectorLoadOp |
4420 | //===----------------------------------------------------------------------===// |
4421 | |
4422 | void AffineVectorLoadOp::build(OpBuilder &builder, OperationState &result, |
4423 | VectorType resultType, AffineMap map, |
4424 | ValueRange operands) { |
4425 | assert(operands.size() == 1 + map.getNumInputs() && "inconsistent operands" ); |
4426 | result.addOperands(operands); |
4427 | if (map) |
4428 | result.addAttribute(getMapAttrStrName(), AffineMapAttr::get(map)); |
4429 | result.types.push_back(resultType); |
4430 | } |
4431 | |
4432 | void AffineVectorLoadOp::build(OpBuilder &builder, OperationState &result, |
4433 | VectorType resultType, Value memref, |
4434 | AffineMap map, ValueRange mapOperands) { |
4435 | assert(map.getNumInputs() == mapOperands.size() && "inconsistent index info" ); |
4436 | result.addOperands(memref); |
4437 | result.addOperands(mapOperands); |
4438 | result.addAttribute(getMapAttrStrName(), AffineMapAttr::get(map)); |
4439 | result.types.push_back(resultType); |
4440 | } |
4441 | |
4442 | void AffineVectorLoadOp::build(OpBuilder &builder, OperationState &result, |
4443 | VectorType resultType, Value memref, |
4444 | ValueRange indices) { |
4445 | auto memrefType = llvm::cast<MemRefType>(memref.getType()); |
4446 | int64_t rank = memrefType.getRank(); |
4447 | // Create identity map for memrefs with at least one dimension or () -> () |
4448 | // for zero-dimensional memrefs. |
4449 | auto map = |
4450 | rank ? builder.getMultiDimIdentityMap(rank) : builder.getEmptyAffineMap(); |
4451 | build(builder, result, resultType, memref, map, indices); |
4452 | } |
4453 | |
4454 | void AffineVectorLoadOp::getCanonicalizationPatterns(RewritePatternSet &results, |
4455 | MLIRContext *context) { |
4456 | results.add<SimplifyAffineOp<AffineVectorLoadOp>>(context); |
4457 | } |
4458 | |
4459 | ParseResult AffineVectorLoadOp::parse(OpAsmParser &parser, |
4460 | OperationState &result) { |
4461 | auto &builder = parser.getBuilder(); |
4462 | auto indexTy = builder.getIndexType(); |
4463 | |
4464 | MemRefType memrefType; |
4465 | VectorType resultType; |
4466 | OpAsmParser::UnresolvedOperand memrefInfo; |
4467 | AffineMapAttr mapAttr; |
4468 | SmallVector<OpAsmParser::UnresolvedOperand, 1> mapOperands; |
4469 | return failure( |
4470 | parser.parseOperand(memrefInfo) || |
4471 | parser.parseAffineMapOfSSAIds(mapOperands, mapAttr, |
4472 | AffineVectorLoadOp::getMapAttrStrName(), |
4473 | result.attributes) || |
4474 | parser.parseOptionalAttrDict(result.attributes) || |
4475 | parser.parseColonType(memrefType) || parser.parseComma() || |
4476 | parser.parseType(resultType) || |
4477 | parser.resolveOperand(memrefInfo, memrefType, result.operands) || |
4478 | parser.resolveOperands(mapOperands, indexTy, result.operands) || |
4479 | parser.addTypeToList(resultType, result.types)); |
4480 | } |
4481 | |
4482 | void AffineVectorLoadOp::print(OpAsmPrinter &p) { |
4483 | p << " " << getMemRef() << '['; |
4484 | if (AffineMapAttr mapAttr = |
4485 | (*this)->getAttrOfType<AffineMapAttr>(getMapAttrStrName())) |
4486 | p.printAffineMapOfSSAIds(mapAttr, getMapOperands()); |
4487 | p << ']'; |
4488 | p.printOptionalAttrDict((*this)->getAttrs(), |
4489 | /*elidedAttrs=*/{getMapAttrStrName()}); |
4490 | p << " : " << getMemRefType() << ", " << getType(); |
4491 | } |
4492 | |
4493 | /// Verify common invariants of affine.vector_load and affine.vector_store. |
4494 | static LogicalResult verifyVectorMemoryOp(Operation *op, MemRefType memrefType, |
4495 | VectorType vectorType) { |
4496 | // Check that memref and vector element types match. |
4497 | if (memrefType.getElementType() != vectorType.getElementType()) |
4498 | return op->emitOpError( |
4499 | message: "requires memref and vector types of the same elemental type" ); |
4500 | return success(); |
4501 | } |
4502 | |
4503 | LogicalResult AffineVectorLoadOp::verify() { |
4504 | MemRefType memrefType = getMemRefType(); |
4505 | if (failed(verifyMemoryOpIndexing( |
4506 | *this, (*this)->getAttrOfType<AffineMapAttr>(getMapAttrStrName()), |
4507 | getMapOperands(), memrefType, |
4508 | /*numIndexOperands=*/getNumOperands() - 1))) |
4509 | return failure(); |
4510 | |
4511 | if (failed(verifyVectorMemoryOp(getOperation(), memrefType, getVectorType()))) |
4512 | return failure(); |
4513 | |
4514 | return success(); |
4515 | } |
4516 | |
4517 | //===----------------------------------------------------------------------===// |
4518 | // AffineVectorStoreOp |
4519 | //===----------------------------------------------------------------------===// |
4520 | |
4521 | void AffineVectorStoreOp::build(OpBuilder &builder, OperationState &result, |
4522 | Value valueToStore, Value memref, AffineMap map, |
4523 | ValueRange mapOperands) { |
4524 | assert(map.getNumInputs() == mapOperands.size() && "inconsistent index info" ); |
4525 | result.addOperands(valueToStore); |
4526 | result.addOperands(memref); |
4527 | result.addOperands(mapOperands); |
4528 | result.addAttribute(getMapAttrStrName(), AffineMapAttr::get(map)); |
4529 | } |
4530 | |
4531 | // Use identity map. |
4532 | void AffineVectorStoreOp::build(OpBuilder &builder, OperationState &result, |
4533 | Value valueToStore, Value memref, |
4534 | ValueRange indices) { |
4535 | auto memrefType = llvm::cast<MemRefType>(memref.getType()); |
4536 | int64_t rank = memrefType.getRank(); |
4537 | // Create identity map for memrefs with at least one dimension or () -> () |
4538 | // for zero-dimensional memrefs. |
4539 | auto map = |
4540 | rank ? builder.getMultiDimIdentityMap(rank) : builder.getEmptyAffineMap(); |
4541 | build(builder, result, valueToStore, memref, map, indices); |
4542 | } |
4543 | void AffineVectorStoreOp::getCanonicalizationPatterns( |
4544 | RewritePatternSet &results, MLIRContext *context) { |
4545 | results.add<SimplifyAffineOp<AffineVectorStoreOp>>(context); |
4546 | } |
4547 | |
4548 | ParseResult AffineVectorStoreOp::parse(OpAsmParser &parser, |
4549 | OperationState &result) { |
4550 | auto indexTy = parser.getBuilder().getIndexType(); |
4551 | |
4552 | MemRefType memrefType; |
4553 | VectorType resultType; |
4554 | OpAsmParser::UnresolvedOperand storeValueInfo; |
4555 | OpAsmParser::UnresolvedOperand memrefInfo; |
4556 | AffineMapAttr mapAttr; |
4557 | SmallVector<OpAsmParser::UnresolvedOperand, 1> mapOperands; |
4558 | return failure( |
4559 | parser.parseOperand(storeValueInfo) || parser.parseComma() || |
4560 | parser.parseOperand(memrefInfo) || |
4561 | parser.parseAffineMapOfSSAIds(mapOperands, mapAttr, |
4562 | AffineVectorStoreOp::getMapAttrStrName(), |
4563 | result.attributes) || |
4564 | parser.parseOptionalAttrDict(result.attributes) || |
4565 | parser.parseColonType(memrefType) || parser.parseComma() || |
4566 | parser.parseType(resultType) || |
4567 | parser.resolveOperand(storeValueInfo, resultType, result.operands) || |
4568 | parser.resolveOperand(memrefInfo, memrefType, result.operands) || |
4569 | parser.resolveOperands(mapOperands, indexTy, result.operands)); |
4570 | } |
4571 | |
4572 | void AffineVectorStoreOp::print(OpAsmPrinter &p) { |
4573 | p << " " << getValueToStore(); |
4574 | p << ", " << getMemRef() << '['; |
4575 | if (AffineMapAttr mapAttr = |
4576 | (*this)->getAttrOfType<AffineMapAttr>(getMapAttrStrName())) |
4577 | p.printAffineMapOfSSAIds(mapAttr, getMapOperands()); |
4578 | p << ']'; |
4579 | p.printOptionalAttrDict((*this)->getAttrs(), |
4580 | /*elidedAttrs=*/{getMapAttrStrName()}); |
4581 | p << " : " << getMemRefType() << ", " << getValueToStore().getType(); |
4582 | } |
4583 | |
4584 | LogicalResult AffineVectorStoreOp::verify() { |
4585 | MemRefType memrefType = getMemRefType(); |
4586 | if (failed(verifyMemoryOpIndexing( |
4587 | *this, (*this)->getAttrOfType<AffineMapAttr>(getMapAttrStrName()), |
4588 | getMapOperands(), memrefType, |
4589 | /*numIndexOperands=*/getNumOperands() - 2))) |
4590 | return failure(); |
4591 | |
4592 | if (failed(verifyVectorMemoryOp(*this, memrefType, getVectorType()))) |
4593 | return failure(); |
4594 | |
4595 | return success(); |
4596 | } |
4597 | |
4598 | //===----------------------------------------------------------------------===// |
4599 | // DelinearizeIndexOp |
4600 | //===----------------------------------------------------------------------===// |
4601 | |
4602 | void AffineDelinearizeIndexOp::build(OpBuilder &odsBuilder, |
4603 | OperationState &odsState, |
4604 | Value linearIndex, ValueRange dynamicBasis, |
4605 | ArrayRef<int64_t> staticBasis, |
4606 | bool hasOuterBound) { |
4607 | SmallVector<Type> returnTypes(hasOuterBound ? staticBasis.size() |
4608 | : staticBasis.size() + 1, |
4609 | linearIndex.getType()); |
4610 | build(odsBuilder, odsState, returnTypes, linearIndex, dynamicBasis, |
4611 | staticBasis); |
4612 | } |
4613 | |
4614 | void AffineDelinearizeIndexOp::build(OpBuilder &odsBuilder, |
4615 | OperationState &odsState, |
4616 | Value linearIndex, ValueRange basis, |
4617 | bool hasOuterBound) { |
4618 | if (hasOuterBound && !basis.empty() && basis.front() == nullptr) { |
4619 | hasOuterBound = false; |
4620 | basis = basis.drop_front(); |
4621 | } |
4622 | SmallVector<Value> dynamicBasis; |
4623 | SmallVector<int64_t> staticBasis; |
4624 | dispatchIndexOpFoldResults(getAsOpFoldResult(basis), dynamicBasis, |
4625 | staticBasis); |
4626 | build(odsBuilder, odsState, linearIndex, dynamicBasis, staticBasis, |
4627 | hasOuterBound); |
4628 | } |
4629 | |
4630 | void AffineDelinearizeIndexOp::build(OpBuilder &odsBuilder, |
4631 | OperationState &odsState, |
4632 | Value linearIndex, |
4633 | ArrayRef<OpFoldResult> basis, |
4634 | bool hasOuterBound) { |
4635 | if (hasOuterBound && !basis.empty() && basis.front() == OpFoldResult()) { |
4636 | hasOuterBound = false; |
4637 | basis = basis.drop_front(); |
4638 | } |
4639 | SmallVector<Value> dynamicBasis; |
4640 | SmallVector<int64_t> staticBasis; |
4641 | dispatchIndexOpFoldResults(basis, dynamicBasis, staticBasis); |
4642 | build(odsBuilder, odsState, linearIndex, dynamicBasis, staticBasis, |
4643 | hasOuterBound); |
4644 | } |
4645 | |
4646 | void AffineDelinearizeIndexOp::build(OpBuilder &odsBuilder, |
4647 | OperationState &odsState, |
4648 | Value linearIndex, ArrayRef<int64_t> basis, |
4649 | bool hasOuterBound) { |
4650 | build(odsBuilder, odsState, linearIndex, ValueRange{}, basis, hasOuterBound); |
4651 | } |
4652 | |
4653 | LogicalResult AffineDelinearizeIndexOp::verify() { |
4654 | ArrayRef<int64_t> staticBasis = getStaticBasis(); |
4655 | if (getNumResults() != staticBasis.size() && |
4656 | getNumResults() != staticBasis.size() + 1) |
4657 | return emitOpError("should return an index for each basis element and up " |
4658 | "to one extra index" ); |
4659 | |
4660 | auto dynamicMarkersCount = llvm::count_if(staticBasis, ShapedType::isDynamic); |
4661 | if (static_cast<size_t>(dynamicMarkersCount) != getDynamicBasis().size()) |
4662 | return emitOpError( |
4663 | "mismatch between dynamic and static basis (kDynamic marker but no " |
4664 | "corresponding dynamic basis entry) -- this can only happen due to an " |
4665 | "incorrect fold/rewrite" ); |
4666 | |
4667 | if (!llvm::all_of(staticBasis, [](int64_t v) { |
4668 | return v > 0 || ShapedType::isDynamic(v); |
4669 | })) |
4670 | return emitOpError("no basis element may be statically non-positive" ); |
4671 | |
4672 | return success(); |
4673 | } |
4674 | |
4675 | /// Given mixed basis of affine.delinearize_index/linearize_index replace |
4676 | /// constant SSA values with the constant integer value and return the new |
4677 | /// static basis. In case no such candidate for replacement exists, this utility |
4678 | /// returns std::nullopt. |
4679 | static std::optional<SmallVector<int64_t>> |
4680 | foldCstValueToCstAttrBasis(ArrayRef<OpFoldResult> mixedBasis, |
4681 | MutableOperandRange mutableDynamicBasis, |
4682 | ArrayRef<Attribute> dynamicBasis) { |
4683 | uint64_t dynamicBasisIndex = 0; |
4684 | for (OpFoldResult basis : dynamicBasis) { |
4685 | if (basis) { |
4686 | mutableDynamicBasis.erase(subStart: dynamicBasisIndex); |
4687 | } else { |
4688 | ++dynamicBasisIndex; |
4689 | } |
4690 | } |
4691 | |
4692 | // No constant SSA value exists. |
4693 | if (dynamicBasisIndex == dynamicBasis.size()) |
4694 | return std::nullopt; |
4695 | |
4696 | SmallVector<int64_t> staticBasis; |
4697 | for (OpFoldResult basis : mixedBasis) { |
4698 | std::optional<int64_t> basisVal = getConstantIntValue(ofr: basis); |
4699 | if (!basisVal) |
4700 | staticBasis.push_back(ShapedType::kDynamic); |
4701 | else |
4702 | staticBasis.push_back(Elt: *basisVal); |
4703 | } |
4704 | |
4705 | return staticBasis; |
4706 | } |
4707 | |
4708 | LogicalResult |
4709 | AffineDelinearizeIndexOp::fold(FoldAdaptor adaptor, |
4710 | SmallVectorImpl<OpFoldResult> &result) { |
4711 | std::optional<SmallVector<int64_t>> maybeStaticBasis = |
4712 | foldCstValueToCstAttrBasis(getMixedBasis(), getDynamicBasisMutable(), |
4713 | adaptor.getDynamicBasis()); |
4714 | if (maybeStaticBasis) { |
4715 | setStaticBasis(*maybeStaticBasis); |
4716 | return success(); |
4717 | } |
4718 | // If we won't be doing any division or modulo (no basis or the one basis |
4719 | // element is purely advisory), simply return the input value. |
4720 | if (getNumResults() == 1) { |
4721 | result.push_back(getLinearIndex()); |
4722 | return success(); |
4723 | } |
4724 | |
4725 | if (adaptor.getLinearIndex() == nullptr) |
4726 | return failure(); |
4727 | |
4728 | if (!adaptor.getDynamicBasis().empty()) |
4729 | return failure(); |
4730 | |
4731 | int64_t highPart = cast<IntegerAttr>(adaptor.getLinearIndex()).getInt(); |
4732 | Type attrType = getLinearIndex().getType(); |
4733 | |
4734 | ArrayRef<int64_t> staticBasis = getStaticBasis(); |
4735 | if (hasOuterBound()) |
4736 | staticBasis = staticBasis.drop_front(); |
4737 | for (int64_t modulus : llvm::reverse(staticBasis)) { |
4738 | result.push_back(IntegerAttr::get(attrType, llvm::mod(highPart, modulus))); |
4739 | highPart = llvm::divideFloorSigned(highPart, modulus); |
4740 | } |
4741 | result.push_back(IntegerAttr::get(attrType, highPart)); |
4742 | std::reverse(result.begin(), result.end()); |
4743 | return success(); |
4744 | } |
4745 | |
4746 | SmallVector<OpFoldResult> AffineDelinearizeIndexOp::getEffectiveBasis() { |
4747 | OpBuilder builder(getContext()); |
4748 | if (hasOuterBound()) { |
4749 | if (getStaticBasis().front() == ::mlir::ShapedType::kDynamic) |
4750 | return getMixedValues(getStaticBasis().drop_front(), |
4751 | getDynamicBasis().drop_front(), builder); |
4752 | |
4753 | return getMixedValues(getStaticBasis().drop_front(), getDynamicBasis(), |
4754 | builder); |
4755 | } |
4756 | |
4757 | return getMixedValues(getStaticBasis(), getDynamicBasis(), builder); |
4758 | } |
4759 | |
4760 | SmallVector<OpFoldResult> AffineDelinearizeIndexOp::getPaddedBasis() { |
4761 | SmallVector<OpFoldResult> ret = getMixedBasis(); |
4762 | if (!hasOuterBound()) |
4763 | ret.insert(ret.begin(), OpFoldResult()); |
4764 | return ret; |
4765 | } |
4766 | |
4767 | namespace { |
4768 | |
4769 | // Drops delinearization indices that correspond to unit-extent basis |
4770 | struct DropUnitExtentBasis |
4771 | : public OpRewritePattern<affine::AffineDelinearizeIndexOp> { |
4772 | using OpRewritePattern::OpRewritePattern; |
4773 | |
4774 | LogicalResult matchAndRewrite(affine::AffineDelinearizeIndexOp delinearizeOp, |
4775 | PatternRewriter &rewriter) const override { |
4776 | SmallVector<Value> replacements(delinearizeOp->getNumResults(), nullptr); |
4777 | std::optional<Value> zero = std::nullopt; |
4778 | Location loc = delinearizeOp->getLoc(); |
4779 | auto getZero = [&]() -> Value { |
4780 | if (!zero) |
4781 | zero = rewriter.create<arith::ConstantIndexOp>(location: loc, args: 0); |
4782 | return zero.value(); |
4783 | }; |
4784 | |
4785 | // Replace all indices corresponding to unit-extent basis with 0. |
4786 | // Remaining basis can be used to get a new `affine.delinearize_index` op. |
4787 | SmallVector<OpFoldResult> newBasis; |
4788 | for (auto [index, basis] : |
4789 | llvm::enumerate(delinearizeOp.getPaddedBasis())) { |
4790 | std::optional<int64_t> basisVal = |
4791 | basis ? getConstantIntValue(basis) : std::nullopt; |
4792 | if (basisVal && *basisVal == 1) |
4793 | replacements[index] = getZero(); |
4794 | else |
4795 | newBasis.push_back(basis); |
4796 | } |
4797 | |
4798 | if (newBasis.size() == delinearizeOp.getNumResults()) |
4799 | return rewriter.notifyMatchFailure(delinearizeOp, |
4800 | "no unit basis elements" ); |
4801 | |
4802 | if (!newBasis.empty()) { |
4803 | // Will drop the leading nullptr from `basis` if there was no outer bound. |
4804 | auto newDelinearizeOp = rewriter.create<affine::AffineDelinearizeIndexOp>( |
4805 | loc, delinearizeOp.getLinearIndex(), newBasis); |
4806 | int newIndex = 0; |
4807 | // Map back the new delinearized indices to the values they replace. |
4808 | for (auto &replacement : replacements) { |
4809 | if (replacement) |
4810 | continue; |
4811 | replacement = newDelinearizeOp->getResult(newIndex++); |
4812 | } |
4813 | } |
4814 | |
4815 | rewriter.replaceOp(delinearizeOp, replacements); |
4816 | return success(); |
4817 | } |
4818 | }; |
4819 | |
4820 | /// If a `affine.delinearize_index`'s input is a `affine.linearize_index |
4821 | /// disjoint` and the two operations end with the same basis elements, |
4822 | /// cancel those parts of the operations out because they are inverses |
4823 | /// of each other. |
4824 | /// |
4825 | /// If the operations have the same basis, cancel them entirely. |
4826 | /// |
4827 | /// The `disjoint` flag is needed on the `affine.linearize_index` because |
4828 | /// otherwise, there is no guarantee that the inputs to the linearization are |
4829 | /// in-bounds the way the outputs of the delinearization would be. |
4830 | struct CancelDelinearizeOfLinearizeDisjointExactTail |
4831 | : public OpRewritePattern<affine::AffineDelinearizeIndexOp> { |
4832 | using OpRewritePattern::OpRewritePattern; |
4833 | |
4834 | LogicalResult matchAndRewrite(affine::AffineDelinearizeIndexOp delinearizeOp, |
4835 | PatternRewriter &rewriter) const override { |
4836 | auto linearizeOp = delinearizeOp.getLinearIndex() |
4837 | .getDefiningOp<affine::AffineLinearizeIndexOp>(); |
4838 | if (!linearizeOp) |
4839 | return rewriter.notifyMatchFailure(delinearizeOp, |
4840 | "index doesn't come from linearize" ); |
4841 | |
4842 | if (!linearizeOp.getDisjoint()) |
4843 | return rewriter.notifyMatchFailure(linearizeOp, "not disjoint" ); |
4844 | |
4845 | ValueRange linearizeIns = linearizeOp.getMultiIndex(); |
4846 | // Note: we use the full basis so we don't lose outer bounds later. |
4847 | SmallVector<OpFoldResult> linearizeBasis = linearizeOp.getMixedBasis(); |
4848 | SmallVector<OpFoldResult> delinearizeBasis = delinearizeOp.getMixedBasis(); |
4849 | size_t numMatches = 0; |
4850 | for (auto [linSize, delinSize] : llvm::zip( |
4851 | llvm::reverse(linearizeBasis), llvm::reverse(delinearizeBasis))) { |
4852 | if (linSize != delinSize) |
4853 | break; |
4854 | ++numMatches; |
4855 | } |
4856 | |
4857 | if (numMatches == 0) |
4858 | return rewriter.notifyMatchFailure( |
4859 | delinearizeOp, "final basis element doesn't match linearize" ); |
4860 | |
4861 | // The easy case: everything lines up and the basis match sup completely. |
4862 | if (numMatches == linearizeBasis.size() && |
4863 | numMatches == delinearizeBasis.size() && |
4864 | linearizeIns.size() == delinearizeOp.getNumResults()) { |
4865 | rewriter.replaceOp(delinearizeOp, linearizeOp.getMultiIndex()); |
4866 | return success(); |
4867 | } |
4868 | |
4869 | Value newLinearize = rewriter.create<affine::AffineLinearizeIndexOp>( |
4870 | linearizeOp.getLoc(), linearizeIns.drop_back(numMatches), |
4871 | ArrayRef<OpFoldResult>{linearizeBasis}.drop_back(numMatches), |
4872 | linearizeOp.getDisjoint()); |
4873 | auto newDelinearize = rewriter.create<affine::AffineDelinearizeIndexOp>( |
4874 | delinearizeOp.getLoc(), newLinearize, |
4875 | ArrayRef<OpFoldResult>{delinearizeBasis}.drop_back(numMatches), |
4876 | delinearizeOp.hasOuterBound()); |
4877 | SmallVector<Value> mergedResults(newDelinearize.getResults()); |
4878 | mergedResults.append(in_start: linearizeIns.take_back(n: numMatches).begin(), |
4879 | in_end: linearizeIns.take_back(n: numMatches).end()); |
4880 | rewriter.replaceOp(delinearizeOp, mergedResults); |
4881 | return success(); |
4882 | } |
4883 | }; |
4884 | |
4885 | /// If the input to a delinearization is a disjoint linearization, and the |
4886 | /// last k > 1 components of the delinearization basis multiply to the |
4887 | /// last component of the linearization basis, break the linearization and |
4888 | /// delinearization into two parts, peeling off the last input to linearization. |
4889 | /// |
4890 | /// For example: |
4891 | /// %0 = affine.linearize_index [%z, %y, %x] by (3, 2, 32) : index |
4892 | /// %1:4 = affine.delinearize_index %0 by (2, 3, 8, 4) : index, ... |
4893 | /// becomes |
4894 | /// %0 = affine.linearize_index [%z, %y] by (3, 2) : index |
4895 | /// %1:2 = affine.delinearize_index %0 by (2, 3) : index |
4896 | /// %2:2 = affine.delinearize_index %x by (8, 4) : index |
4897 | /// where the original %1:4 is replaced by %1:2 ++ %2:2 |
4898 | struct SplitDelinearizeSpanningLastLinearizeArg final |
4899 | : OpRewritePattern<affine::AffineDelinearizeIndexOp> { |
4900 | using OpRewritePattern::OpRewritePattern; |
4901 | |
4902 | LogicalResult matchAndRewrite(affine::AffineDelinearizeIndexOp delinearizeOp, |
4903 | PatternRewriter &rewriter) const override { |
4904 | auto linearizeOp = delinearizeOp.getLinearIndex() |
4905 | .getDefiningOp<affine::AffineLinearizeIndexOp>(); |
4906 | if (!linearizeOp) |
4907 | return rewriter.notifyMatchFailure(delinearizeOp, |
4908 | "index doesn't come from linearize" ); |
4909 | |
4910 | if (!linearizeOp.getDisjoint()) |
4911 | return rewriter.notifyMatchFailure(linearizeOp, |
4912 | "linearize isn't disjoint" ); |
4913 | |
4914 | int64_t target = linearizeOp.getStaticBasis().back(); |
4915 | if (ShapedType::isDynamic(target)) |
4916 | return rewriter.notifyMatchFailure( |
4917 | linearizeOp, "linearize ends with dynamic basis value" ); |
4918 | |
4919 | int64_t sizeToSplit = 1; |
4920 | size_t elemsToSplit = 0; |
4921 | ArrayRef<int64_t> basis = delinearizeOp.getStaticBasis(); |
4922 | for (int64_t basisElem : llvm::reverse(basis)) { |
4923 | if (ShapedType::isDynamic(basisElem)) |
4924 | return rewriter.notifyMatchFailure( |
4925 | delinearizeOp, "dynamic basis element while scanning for split" ); |
4926 | sizeToSplit *= basisElem; |
4927 | elemsToSplit += 1; |
4928 | |
4929 | if (sizeToSplit > target) |
4930 | return rewriter.notifyMatchFailure(delinearizeOp, |
4931 | "overshot last argument size" ); |
4932 | if (sizeToSplit == target) |
4933 | break; |
4934 | } |
4935 | |
4936 | if (sizeToSplit < target) |
4937 | return rewriter.notifyMatchFailure( |
4938 | delinearizeOp, "product of known basis elements doesn't exceed last " |
4939 | "linearize argument" ); |
4940 | |
4941 | if (elemsToSplit < 2) |
4942 | return rewriter.notifyMatchFailure( |
4943 | delinearizeOp, |
4944 | "need at least two elements to form the basis product" ); |
4945 | |
4946 | Value linearizeWithoutBack = |
4947 | rewriter.create<affine::AffineLinearizeIndexOp>( |
4948 | linearizeOp.getLoc(), linearizeOp.getMultiIndex().drop_back(), |
4949 | linearizeOp.getDynamicBasis(), |
4950 | linearizeOp.getStaticBasis().drop_back(), |
4951 | linearizeOp.getDisjoint()); |
4952 | auto delinearizeWithoutSplitPart = |
4953 | rewriter.create<affine::AffineDelinearizeIndexOp>( |
4954 | delinearizeOp.getLoc(), linearizeWithoutBack, |
4955 | delinearizeOp.getDynamicBasis(), basis.drop_back(elemsToSplit), |
4956 | delinearizeOp.hasOuterBound()); |
4957 | auto delinearizeBack = rewriter.create<affine::AffineDelinearizeIndexOp>( |
4958 | delinearizeOp.getLoc(), linearizeOp.getMultiIndex().back(), |
4959 | basis.take_back(elemsToSplit), /*hasOuterBound=*/true); |
4960 | SmallVector<Value> results = llvm::to_vector( |
4961 | llvm::concat<Value>(delinearizeWithoutSplitPart.getResults(), |
4962 | delinearizeBack.getResults())); |
4963 | rewriter.replaceOp(delinearizeOp, results); |
4964 | |
4965 | return success(); |
4966 | } |
4967 | }; |
4968 | } // namespace |
4969 | |
4970 | void affine::AffineDelinearizeIndexOp::getCanonicalizationPatterns( |
4971 | RewritePatternSet &patterns, MLIRContext *context) { |
4972 | patterns |
4973 | .insert<CancelDelinearizeOfLinearizeDisjointExactTail, |
4974 | DropUnitExtentBasis, SplitDelinearizeSpanningLastLinearizeArg>( |
4975 | context); |
4976 | } |
4977 | |
4978 | //===----------------------------------------------------------------------===// |
4979 | // LinearizeIndexOp |
4980 | //===----------------------------------------------------------------------===// |
4981 | |
4982 | void AffineLinearizeIndexOp::build(OpBuilder &odsBuilder, |
4983 | OperationState &odsState, |
4984 | ValueRange multiIndex, ValueRange basis, |
4985 | bool disjoint) { |
4986 | if (!basis.empty() && basis.front() == Value()) |
4987 | basis = basis.drop_front(); |
4988 | SmallVector<Value> dynamicBasis; |
4989 | SmallVector<int64_t> staticBasis; |
4990 | dispatchIndexOpFoldResults(getAsOpFoldResult(basis), dynamicBasis, |
4991 | staticBasis); |
4992 | build(odsBuilder, odsState, multiIndex, dynamicBasis, staticBasis, disjoint); |
4993 | } |
4994 | |
4995 | void AffineLinearizeIndexOp::build(OpBuilder &odsBuilder, |
4996 | OperationState &odsState, |
4997 | ValueRange multiIndex, |
4998 | ArrayRef<OpFoldResult> basis, |
4999 | bool disjoint) { |
5000 | if (!basis.empty() && basis.front() == OpFoldResult()) |
5001 | basis = basis.drop_front(); |
5002 | SmallVector<Value> dynamicBasis; |
5003 | SmallVector<int64_t> staticBasis; |
5004 | dispatchIndexOpFoldResults(basis, dynamicBasis, staticBasis); |
5005 | build(odsBuilder, odsState, multiIndex, dynamicBasis, staticBasis, disjoint); |
5006 | } |
5007 | |
5008 | void AffineLinearizeIndexOp::build(OpBuilder &odsBuilder, |
5009 | OperationState &odsState, |
5010 | ValueRange multiIndex, |
5011 | ArrayRef<int64_t> basis, bool disjoint) { |
5012 | build(odsBuilder, odsState, multiIndex, ValueRange{}, basis, disjoint); |
5013 | } |
5014 | |
5015 | LogicalResult AffineLinearizeIndexOp::verify() { |
5016 | size_t numIndexes = getMultiIndex().size(); |
5017 | size_t numBasisElems = getStaticBasis().size(); |
5018 | if (numIndexes != numBasisElems && numIndexes != numBasisElems + 1) |
5019 | return emitOpError("should be passed a basis element for each index except " |
5020 | "possibly the first" ); |
5021 | |
5022 | auto dynamicMarkersCount = |
5023 | llvm::count_if(getStaticBasis(), ShapedType::isDynamic); |
5024 | if (static_cast<size_t>(dynamicMarkersCount) != getDynamicBasis().size()) |
5025 | return emitOpError( |
5026 | "mismatch between dynamic and static basis (kDynamic marker but no " |
5027 | "corresponding dynamic basis entry) -- this can only happen due to an " |
5028 | "incorrect fold/rewrite" ); |
5029 | |
5030 | return success(); |
5031 | } |
5032 | |
5033 | OpFoldResult AffineLinearizeIndexOp::fold(FoldAdaptor adaptor) { |
5034 | std::optional<SmallVector<int64_t>> maybeStaticBasis = |
5035 | foldCstValueToCstAttrBasis(getMixedBasis(), getDynamicBasisMutable(), |
5036 | adaptor.getDynamicBasis()); |
5037 | if (maybeStaticBasis) { |
5038 | setStaticBasis(*maybeStaticBasis); |
5039 | return getResult(); |
5040 | } |
5041 | // No indices linearizes to zero. |
5042 | if (getMultiIndex().empty()) |
5043 | return IntegerAttr::get(getResult().getType(), 0); |
5044 | |
5045 | // One single index linearizes to itself. |
5046 | if (getMultiIndex().size() == 1) |
5047 | return getMultiIndex().front(); |
5048 | |
5049 | if (llvm::is_contained(adaptor.getMultiIndex(), nullptr)) |
5050 | return nullptr; |
5051 | |
5052 | if (!adaptor.getDynamicBasis().empty()) |
5053 | return nullptr; |
5054 | |
5055 | int64_t result = 0; |
5056 | int64_t stride = 1; |
5057 | for (auto [length, indexAttr] : |
5058 | llvm::zip_first(llvm::reverse(getStaticBasis()), |
5059 | llvm::reverse(adaptor.getMultiIndex()))) { |
5060 | result = result + cast<IntegerAttr>(indexAttr).getInt() * stride; |
5061 | stride = stride * length; |
5062 | } |
5063 | // Handle the index element with no basis element. |
5064 | if (!hasOuterBound()) |
5065 | result = |
5066 | result + |
5067 | cast<IntegerAttr>(adaptor.getMultiIndex().front()).getInt() * stride; |
5068 | |
5069 | return IntegerAttr::get(getResult().getType(), result); |
5070 | } |
5071 | |
5072 | SmallVector<OpFoldResult> AffineLinearizeIndexOp::getEffectiveBasis() { |
5073 | OpBuilder builder(getContext()); |
5074 | if (hasOuterBound()) { |
5075 | if (getStaticBasis().front() == ::mlir::ShapedType::kDynamic) |
5076 | return getMixedValues(getStaticBasis().drop_front(), |
5077 | getDynamicBasis().drop_front(), builder); |
5078 | |
5079 | return getMixedValues(getStaticBasis().drop_front(), getDynamicBasis(), |
5080 | builder); |
5081 | } |
5082 | |
5083 | return getMixedValues(getStaticBasis(), getDynamicBasis(), builder); |
5084 | } |
5085 | |
5086 | SmallVector<OpFoldResult> AffineLinearizeIndexOp::getPaddedBasis() { |
5087 | SmallVector<OpFoldResult> ret = getMixedBasis(); |
5088 | if (!hasOuterBound()) |
5089 | ret.insert(ret.begin(), OpFoldResult()); |
5090 | return ret; |
5091 | } |
5092 | |
5093 | namespace { |
5094 | /// Rewrite `affine.linearize_index disjoint [%...a, %x, %...b] by (%...c, 1, |
5095 | /// %...d)` to `affine.linearize_index disjoint [%...a, %...b] by (%...c, |
5096 | /// %...d)`. |
5097 | |
5098 | /// Note that `disjoint` is required here, because, without it, we could have |
5099 | /// `affine.linearize_index [%...a, %c64, %...b] by (%...c, 1, %...d)` |
5100 | /// is a valid operation where the `%c64` cannot be trivially dropped. |
5101 | /// |
5102 | /// Alternatively, if `%x` in the above is a known constant 0, remove it even if |
5103 | /// the operation isn't asserted to be `disjoint`. |
5104 | struct DropLinearizeUnitComponentsIfDisjointOrZero final |
5105 | : OpRewritePattern<affine::AffineLinearizeIndexOp> { |
5106 | using OpRewritePattern::OpRewritePattern; |
5107 | |
5108 | LogicalResult matchAndRewrite(affine::AffineLinearizeIndexOp op, |
5109 | PatternRewriter &rewriter) const override { |
5110 | ValueRange multiIndex = op.getMultiIndex(); |
5111 | size_t numIndices = multiIndex.size(); |
5112 | SmallVector<Value> newIndices; |
5113 | newIndices.reserve(N: numIndices); |
5114 | SmallVector<OpFoldResult> newBasis; |
5115 | newBasis.reserve(N: numIndices); |
5116 | |
5117 | if (!op.hasOuterBound()) { |
5118 | newIndices.push_back(Elt: multiIndex.front()); |
5119 | multiIndex = multiIndex.drop_front(); |
5120 | } |
5121 | |
5122 | SmallVector<OpFoldResult> basis = op.getMixedBasis(); |
5123 | for (auto [index, basisElem] : llvm::zip_equal(multiIndex, basis)) { |
5124 | std::optional<int64_t> basisEntry = getConstantIntValue(basisElem); |
5125 | if (!basisEntry || *basisEntry != 1) { |
5126 | newIndices.push_back(index); |
5127 | newBasis.push_back(basisElem); |
5128 | continue; |
5129 | } |
5130 | |
5131 | std::optional<int64_t> indexValue = getConstantIntValue(index); |
5132 | if (!op.getDisjoint() && (!indexValue || *indexValue != 0)) { |
5133 | newIndices.push_back(index); |
5134 | newBasis.push_back(basisElem); |
5135 | continue; |
5136 | } |
5137 | } |
5138 | if (newIndices.size() == numIndices) |
5139 | return rewriter.notifyMatchFailure(op, |
5140 | "no unit basis entries to replace" ); |
5141 | |
5142 | if (newIndices.size() == 0) { |
5143 | rewriter.replaceOpWithNewOp<arith::ConstantIndexOp>(op, 0); |
5144 | return success(); |
5145 | } |
5146 | rewriter.replaceOpWithNewOp<affine::AffineLinearizeIndexOp>( |
5147 | op, newIndices, newBasis, op.getDisjoint()); |
5148 | return success(); |
5149 | } |
5150 | }; |
5151 | |
5152 | OpFoldResult computeProduct(Location loc, OpBuilder &builder, |
5153 | ArrayRef<OpFoldResult> terms) { |
5154 | int64_t nDynamic = 0; |
5155 | SmallVector<Value> dynamicPart; |
5156 | AffineExpr result = builder.getAffineConstantExpr(constant: 1); |
5157 | for (OpFoldResult term : terms) { |
5158 | if (!term) |
5159 | return term; |
5160 | std::optional<int64_t> maybeConst = getConstantIntValue(ofr: term); |
5161 | if (maybeConst) { |
5162 | result = result * builder.getAffineConstantExpr(constant: *maybeConst); |
5163 | } else { |
5164 | dynamicPart.push_back(Elt: cast<Value>(Val&: term)); |
5165 | result = result * builder.getAffineSymbolExpr(position: nDynamic++); |
5166 | } |
5167 | } |
5168 | if (auto constant = dyn_cast<AffineConstantExpr>(Val&: result)) |
5169 | return getAsIndexOpFoldResult(ctx: builder.getContext(), val: constant.getValue()); |
5170 | return builder.create<AffineApplyOp>(loc, result, dynamicPart).getResult(); |
5171 | } |
5172 | |
5173 | /// If conseceutive outputs of a delinearize_index are linearized with the same |
5174 | /// bounds, canonicalize away the redundant arithmetic. |
5175 | /// |
5176 | /// That is, if we have |
5177 | /// ``` |
5178 | /// %s:N = affine.delinearize_index %x into (...a, B1, B2, ... BK, ...b) |
5179 | /// %t = affine.linearize_index [...c, %s#I, %s#(I + 1), ... %s#(I+K-1), ...d] |
5180 | /// by (...e, B1, B2, ..., BK, ...f) |
5181 | /// ``` |
5182 | /// |
5183 | /// We can rewrite this to |
5184 | /// ``` |
5185 | /// B = B1 * B2 ... BK |
5186 | /// %sMerged:(N-K+1) affine.delinearize_index %x into (...a, B, ...b) |
5187 | /// %t = affine.linearize_index [...c, %s#I, ...d] by (...e, B, ...f) |
5188 | /// ``` |
5189 | /// where we replace all results of %s unaffected by the change with results |
5190 | /// from %sMerged. |
5191 | /// |
5192 | /// As a special case, if all results of the delinearize are merged in this way |
5193 | /// we can replace those usages with %x, thus cancelling the delinearization |
5194 | /// entirely, as in |
5195 | /// ``` |
5196 | /// %s:3 = affine.delinearize_index %x into (2, 4, 8) |
5197 | /// %t = affine.linearize_index [%s#0, %s#1, %s#2, %c0] by (2, 4, 8, 16) |
5198 | /// ``` |
5199 | /// becoming `%t = affine.linearize_index [%x, %c0] by (64, 16)` |
5200 | struct CancelLinearizeOfDelinearizePortion final |
5201 | : OpRewritePattern<affine::AffineLinearizeIndexOp> { |
5202 | using OpRewritePattern::OpRewritePattern; |
5203 | |
5204 | private: |
5205 | // Struct representing a case where the cancellation pattern |
5206 | // applies. A `Match` means that `length` inputs to the linearize operation |
5207 | // starting at `linStart` can be cancelled with `length` outputs of |
5208 | // `delinearize`, starting from `delinStart`. |
5209 | struct Match { |
5210 | AffineDelinearizeIndexOp delinearize; |
5211 | unsigned linStart = 0; |
5212 | unsigned delinStart = 0; |
5213 | unsigned length = 0; |
5214 | }; |
5215 | |
5216 | public: |
5217 | LogicalResult matchAndRewrite(affine::AffineLinearizeIndexOp linearizeOp, |
5218 | PatternRewriter &rewriter) const override { |
5219 | SmallVector<Match> matches; |
5220 | |
5221 | const SmallVector<OpFoldResult> linBasis = linearizeOp.getPaddedBasis(); |
5222 | ArrayRef<OpFoldResult> linBasisRef = linBasis; |
5223 | |
5224 | ValueRange multiIndex = linearizeOp.getMultiIndex(); |
5225 | unsigned numLinArgs = multiIndex.size(); |
5226 | unsigned linArgIdx = 0; |
5227 | // We only want to replace one run from the same delinearize op per |
5228 | // pattern invocation lest we run into invalidation issues. |
5229 | llvm::SmallPtrSet<Operation *, 2> alreadyMatchedDelinearize; |
5230 | while (linArgIdx < numLinArgs) { |
5231 | auto asResult = dyn_cast<OpResult>(Val: multiIndex[linArgIdx]); |
5232 | if (!asResult) { |
5233 | linArgIdx++; |
5234 | continue; |
5235 | } |
5236 | |
5237 | auto delinearizeOp = |
5238 | dyn_cast<AffineDelinearizeIndexOp>(asResult.getOwner()); |
5239 | if (!delinearizeOp) { |
5240 | linArgIdx++; |
5241 | continue; |
5242 | } |
5243 | |
5244 | /// Result 0 of the delinearize and argument 0 of the linearize can |
5245 | /// leave their maximum value unspecified. However, even if this happens |
5246 | /// we can still sometimes start the match process. Specifically, if |
5247 | /// - The argument we're matching is result 0 and argument 0 (so the |
5248 | /// bounds don't matter). For example, |
5249 | /// |
5250 | /// %0:2 = affine.delinearize_index %x into (8) : index, index |
5251 | /// %1 = affine.linearize_index [%s#0, %s#1, ...] (8, ...) |
5252 | /// allows cancellation |
5253 | /// - The delinearization doesn't specify a bound, but the linearization |
5254 | /// is `disjoint`, which asserts that the bound on the linearization is |
5255 | /// correct. |
5256 | unsigned delinArgIdx = asResult.getResultNumber(); |
5257 | SmallVector<OpFoldResult> delinBasis = delinearizeOp.getPaddedBasis(); |
5258 | OpFoldResult firstDelinBound = delinBasis[delinArgIdx]; |
5259 | OpFoldResult firstLinBound = linBasis[linArgIdx]; |
5260 | bool boundsMatch = firstDelinBound == firstLinBound; |
5261 | bool bothAtFront = linArgIdx == 0 && delinArgIdx == 0; |
5262 | bool knownByDisjoint = |
5263 | linearizeOp.getDisjoint() && delinArgIdx == 0 && !firstDelinBound; |
5264 | if (!boundsMatch && !bothAtFront && !knownByDisjoint) { |
5265 | linArgIdx++; |
5266 | continue; |
5267 | } |
5268 | |
5269 | unsigned j = 1; |
5270 | unsigned numDelinOuts = delinearizeOp.getNumResults(); |
5271 | for (; j + linArgIdx < numLinArgs && j + delinArgIdx < numDelinOuts; |
5272 | ++j) { |
5273 | if (multiIndex[linArgIdx + j] != |
5274 | delinearizeOp.getResult(delinArgIdx + j)) |
5275 | break; |
5276 | if (linBasis[linArgIdx + j] != delinBasis[delinArgIdx + j]) |
5277 | break; |
5278 | } |
5279 | // If there're multiple matches against the same delinearize_index, |
5280 | // only rewrite the first one we find to prevent invalidations. The next |
5281 | // ones will be taken care of by subsequent pattern invocations. |
5282 | if (j <= 1 || !alreadyMatchedDelinearize.insert(delinearizeOp).second) { |
5283 | linArgIdx++; |
5284 | continue; |
5285 | } |
5286 | matches.push_back(Elt: Match{delinearizeOp, linArgIdx, delinArgIdx, j}); |
5287 | linArgIdx += j; |
5288 | } |
5289 | |
5290 | if (matches.empty()) |
5291 | return rewriter.notifyMatchFailure( |
5292 | linearizeOp, "no run of delinearize outputs to deal with" ); |
5293 | |
5294 | // Record all the delinearize replacements so we can do them after creating |
5295 | // the new linearization operation, since the new operation might use |
5296 | // outputs of something we're replacing. |
5297 | SmallVector<SmallVector<Value>> delinearizeReplacements; |
5298 | |
5299 | SmallVector<Value> newIndex; |
5300 | newIndex.reserve(N: numLinArgs); |
5301 | SmallVector<OpFoldResult> newBasis; |
5302 | newBasis.reserve(N: numLinArgs); |
5303 | unsigned prevMatchEnd = 0; |
5304 | for (Match m : matches) { |
5305 | unsigned gap = m.linStart - prevMatchEnd; |
5306 | llvm::append_range(C&: newIndex, R: multiIndex.slice(n: prevMatchEnd, m: gap)); |
5307 | llvm::append_range(C&: newBasis, R: linBasisRef.slice(N: prevMatchEnd, M: gap)); |
5308 | // Update here so we don't forget this during early continues |
5309 | prevMatchEnd = m.linStart + m.length; |
5310 | |
5311 | PatternRewriter::InsertionGuard g(rewriter); |
5312 | rewriter.setInsertionPoint(m.delinearize); |
5313 | |
5314 | ArrayRef<OpFoldResult> basisToMerge = |
5315 | linBasisRef.slice(N: m.linStart, M: m.length); |
5316 | // We use the slice from the linearize's basis above because of the |
5317 | // "bounds inferred from `disjoint`" case above. |
5318 | OpFoldResult newSize = |
5319 | computeProduct(linearizeOp.getLoc(), rewriter, basisToMerge); |
5320 | |
5321 | // Trivial case where we can just skip past the delinearize all together |
5322 | if (m.length == m.delinearize.getNumResults()) { |
5323 | newIndex.push_back(Elt: m.delinearize.getLinearIndex()); |
5324 | newBasis.push_back(Elt: newSize); |
5325 | // Pad out set of replacements so we don't do anything with this one. |
5326 | delinearizeReplacements.push_back(Elt: SmallVector<Value>()); |
5327 | continue; |
5328 | } |
5329 | |
5330 | SmallVector<Value> newDelinResults; |
5331 | SmallVector<OpFoldResult> newDelinBasis = m.delinearize.getPaddedBasis(); |
5332 | newDelinBasis.erase(CS: newDelinBasis.begin() + m.delinStart, |
5333 | CE: newDelinBasis.begin() + m.delinStart + m.length); |
5334 | newDelinBasis.insert(I: newDelinBasis.begin() + m.delinStart, Elt: newSize); |
5335 | auto newDelinearize = rewriter.create<AffineDelinearizeIndexOp>( |
5336 | m.delinearize.getLoc(), m.delinearize.getLinearIndex(), |
5337 | newDelinBasis); |
5338 | |
5339 | // Since there may be other uses of the indices we just merged together, |
5340 | // create a residual affine.delinearize_index that delinearizes the |
5341 | // merged output into its component parts. |
5342 | Value combinedElem = newDelinearize.getResult(m.delinStart); |
5343 | auto residualDelinearize = rewriter.create<AffineDelinearizeIndexOp>( |
5344 | m.delinearize.getLoc(), combinedElem, basisToMerge); |
5345 | |
5346 | // Swap all the uses of the unaffected delinearize outputs to the new |
5347 | // delinearization so that the old code can be removed if this |
5348 | // linearize_index is the only user of the merged results. |
5349 | llvm::append_range(newDelinResults, |
5350 | newDelinearize.getResults().take_front(m.delinStart)); |
5351 | llvm::append_range(newDelinResults, residualDelinearize.getResults()); |
5352 | llvm::append_range( |
5353 | newDelinResults, |
5354 | newDelinearize.getResults().drop_front(m.delinStart + 1)); |
5355 | |
5356 | delinearizeReplacements.push_back(Elt: newDelinResults); |
5357 | newIndex.push_back(Elt: combinedElem); |
5358 | newBasis.push_back(Elt: newSize); |
5359 | } |
5360 | llvm::append_range(C&: newIndex, R: multiIndex.drop_front(n: prevMatchEnd)); |
5361 | llvm::append_range(C&: newBasis, R: linBasisRef.drop_front(N: prevMatchEnd)); |
5362 | rewriter.replaceOpWithNewOp<AffineLinearizeIndexOp>( |
5363 | linearizeOp, newIndex, newBasis, linearizeOp.getDisjoint()); |
5364 | |
5365 | for (auto [m, newResults] : |
5366 | llvm::zip_equal(t&: matches, u&: delinearizeReplacements)) { |
5367 | if (newResults.empty()) |
5368 | continue; |
5369 | rewriter.replaceOp(m.delinearize, newResults); |
5370 | } |
5371 | |
5372 | return success(); |
5373 | } |
5374 | }; |
5375 | |
5376 | /// Strip leading zero from affine.linearize_index. |
5377 | /// |
5378 | /// `affine.linearize_index [%c0, ...a] by (%x, ...b)` can be rewritten |
5379 | /// to `affine.linearize_index [...a] by (...b)` in all cases. |
5380 | struct DropLinearizeLeadingZero final |
5381 | : OpRewritePattern<affine::AffineLinearizeIndexOp> { |
5382 | using OpRewritePattern::OpRewritePattern; |
5383 | |
5384 | LogicalResult matchAndRewrite(affine::AffineLinearizeIndexOp op, |
5385 | PatternRewriter &rewriter) const override { |
5386 | Value leadingIdx = op.getMultiIndex().front(); |
5387 | if (!matchPattern(value: leadingIdx, pattern: m_Zero())) |
5388 | return failure(); |
5389 | |
5390 | if (op.getMultiIndex().size() == 1) { |
5391 | rewriter.replaceOp(op, leadingIdx); |
5392 | return success(); |
5393 | } |
5394 | |
5395 | SmallVector<OpFoldResult> mixedBasis = op.getMixedBasis(); |
5396 | ArrayRef<OpFoldResult> newMixedBasis = mixedBasis; |
5397 | if (op.hasOuterBound()) |
5398 | newMixedBasis = newMixedBasis.drop_front(); |
5399 | |
5400 | rewriter.replaceOpWithNewOp<affine::AffineLinearizeIndexOp>( |
5401 | op, op.getMultiIndex().drop_front(), newMixedBasis, op.getDisjoint()); |
5402 | return success(); |
5403 | } |
5404 | }; |
5405 | } // namespace |
5406 | |
5407 | void affine::AffineLinearizeIndexOp::getCanonicalizationPatterns( |
5408 | RewritePatternSet &patterns, MLIRContext *context) { |
5409 | patterns.add<CancelLinearizeOfDelinearizePortion, DropLinearizeLeadingZero, |
5410 | DropLinearizeUnitComponentsIfDisjointOrZero>(context); |
5411 | } |
5412 | |
5413 | //===----------------------------------------------------------------------===// |
5414 | // TableGen'd op method definitions |
5415 | //===----------------------------------------------------------------------===// |
5416 | |
5417 | #define GET_OP_CLASSES |
5418 | #include "mlir/Dialect/Affine/IR/AffineOps.cpp.inc" |
5419 | |