| 1 | //===- AffineOps.cpp - MLIR Affine Operations -----------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "mlir/Dialect/Affine/IR/AffineOps.h" |
| 10 | #include "mlir/Dialect/Affine/IR/AffineValueMap.h" |
| 11 | #include "mlir/Dialect/MemRef/IR/MemRef.h" |
| 12 | #include "mlir/Dialect/UB/IR/UBOps.h" |
| 13 | #include "mlir/Dialect/Utils/StaticValueUtils.h" |
| 14 | #include "mlir/IR/AffineExprVisitor.h" |
| 15 | #include "mlir/IR/IRMapping.h" |
| 16 | #include "mlir/IR/IntegerSet.h" |
| 17 | #include "mlir/IR/Matchers.h" |
| 18 | #include "mlir/IR/OpDefinition.h" |
| 19 | #include "mlir/IR/PatternMatch.h" |
| 20 | #include "mlir/Interfaces/ShapedOpInterfaces.h" |
| 21 | #include "mlir/Interfaces/ValueBoundsOpInterface.h" |
| 22 | #include "mlir/Transforms/InliningUtils.h" |
| 23 | #include "llvm/ADT/STLExtras.h" |
| 24 | #include "llvm/ADT/ScopeExit.h" |
| 25 | #include "llvm/ADT/SmallBitVector.h" |
| 26 | #include "llvm/ADT/SmallVectorExtras.h" |
| 27 | #include "llvm/ADT/TypeSwitch.h" |
| 28 | #include "llvm/Support/Debug.h" |
| 29 | #include "llvm/Support/MathExtras.h" |
| 30 | #include <numeric> |
| 31 | #include <optional> |
| 32 | |
| 33 | using namespace mlir; |
| 34 | using namespace mlir::affine; |
| 35 | |
| 36 | using llvm::divideCeilSigned; |
| 37 | using llvm::divideFloorSigned; |
| 38 | using llvm::mod; |
| 39 | |
| 40 | #define DEBUG_TYPE "affine-ops" |
| 41 | |
| 42 | #include "mlir/Dialect/Affine/IR/AffineOpsDialect.cpp.inc" |
| 43 | |
| 44 | /// A utility function to check if a value is defined at the top level of |
| 45 | /// `region` or is an argument of `region`. A value of index type defined at the |
| 46 | /// top level of a `AffineScope` region is always a valid symbol for all |
| 47 | /// uses in that region. |
| 48 | bool mlir::affine::isTopLevelValue(Value value, Region *region) { |
| 49 | if (auto arg = llvm::dyn_cast<BlockArgument>(value)) |
| 50 | return arg.getParentRegion() == region; |
| 51 | return value.getDefiningOp()->getParentRegion() == region; |
| 52 | } |
| 53 | |
| 54 | /// Checks if `value` known to be a legal affine dimension or symbol in `src` |
| 55 | /// region remains legal if the operation that uses it is inlined into `dest` |
| 56 | /// with the given value mapping. `legalityCheck` is either `isValidDim` or |
| 57 | /// `isValidSymbol`, depending on the value being required to remain a valid |
| 58 | /// dimension or symbol. |
| 59 | static bool |
| 60 | remainsLegalAfterInline(Value value, Region *src, Region *dest, |
| 61 | const IRMapping &mapping, |
| 62 | function_ref<bool(Value, Region *)> legalityCheck) { |
| 63 | // If the value is a valid dimension for any other reason than being |
| 64 | // a top-level value, it will remain valid: constants get inlined |
| 65 | // with the function, transitive affine applies also get inlined and |
| 66 | // will be checked themselves, etc. |
| 67 | if (!isTopLevelValue(value, region: src)) |
| 68 | return true; |
| 69 | |
| 70 | // If it's a top-level value because it's a block operand, i.e. a |
| 71 | // function argument, check whether the value replacing it after |
| 72 | // inlining is a valid dimension in the new region. |
| 73 | if (llvm::isa<BlockArgument>(Val: value)) |
| 74 | return legalityCheck(mapping.lookup(from: value), dest); |
| 75 | |
| 76 | // If it's a top-level value because it's defined in the region, |
| 77 | // it can only be inlined if the defining op is a constant or a |
| 78 | // `dim`, which can appear anywhere and be valid, since the defining |
| 79 | // op won't be top-level anymore after inlining. |
| 80 | Attribute operandCst; |
| 81 | bool isDimLikeOp = isa<ShapedDimOpInterface>(value.getDefiningOp()); |
| 82 | return matchPattern(op: value.getDefiningOp(), pattern: m_Constant(bind_value: &operandCst)) || |
| 83 | isDimLikeOp; |
| 84 | } |
| 85 | |
| 86 | /// Checks if all values known to be legal affine dimensions or symbols in `src` |
| 87 | /// remain so if their respective users are inlined into `dest`. |
| 88 | static bool |
| 89 | remainsLegalAfterInline(ValueRange values, Region *src, Region *dest, |
| 90 | const IRMapping &mapping, |
| 91 | function_ref<bool(Value, Region *)> legalityCheck) { |
| 92 | return llvm::all_of(Range&: values, P: [&](Value v) { |
| 93 | return remainsLegalAfterInline(value: v, src, dest, mapping, legalityCheck); |
| 94 | }); |
| 95 | } |
| 96 | |
| 97 | /// Checks if an affine read or write operation remains legal after inlining |
| 98 | /// from `src` to `dest`. |
| 99 | template <typename OpTy> |
| 100 | static bool remainsLegalAfterInline(OpTy op, Region *src, Region *dest, |
| 101 | const IRMapping &mapping) { |
| 102 | static_assert(llvm::is_one_of<OpTy, AffineReadOpInterface, |
| 103 | AffineWriteOpInterface>::value, |
| 104 | "only ops with affine read/write interface are supported" ); |
| 105 | |
| 106 | AffineMap map = op.getAffineMap(); |
| 107 | ValueRange dimOperands = op.getMapOperands().take_front(map.getNumDims()); |
| 108 | ValueRange symbolOperands = |
| 109 | op.getMapOperands().take_back(map.getNumSymbols()); |
| 110 | if (!remainsLegalAfterInline( |
| 111 | values: dimOperands, src, dest, mapping, |
| 112 | legalityCheck: static_cast<bool (*)(Value, Region *)>(isValidDim))) |
| 113 | return false; |
| 114 | if (!remainsLegalAfterInline( |
| 115 | values: symbolOperands, src, dest, mapping, |
| 116 | legalityCheck: static_cast<bool (*)(Value, Region *)>(isValidSymbol))) |
| 117 | return false; |
| 118 | return true; |
| 119 | } |
| 120 | |
| 121 | /// Checks if an affine apply operation remains legal after inlining from `src` |
| 122 | /// to `dest`. |
| 123 | // Use "unused attribute" marker to silence clang-tidy warning stemming from |
| 124 | // the inability to see through "llvm::TypeSwitch". |
| 125 | template <> |
| 126 | bool LLVM_ATTRIBUTE_UNUSED remainsLegalAfterInline(AffineApplyOp op, |
| 127 | Region *src, Region *dest, |
| 128 | const IRMapping &mapping) { |
| 129 | // If it's a valid dimension, we need to check that it remains so. |
| 130 | if (isValidDim(op.getResult(), src)) |
| 131 | return remainsLegalAfterInline( |
| 132 | op.getMapOperands(), src, dest, mapping, |
| 133 | static_cast<bool (*)(Value, Region *)>(isValidDim)); |
| 134 | |
| 135 | // Otherwise it must be a valid symbol, check that it remains so. |
| 136 | return remainsLegalAfterInline( |
| 137 | op.getMapOperands(), src, dest, mapping, |
| 138 | static_cast<bool (*)(Value, Region *)>(isValidSymbol)); |
| 139 | } |
| 140 | |
| 141 | //===----------------------------------------------------------------------===// |
| 142 | // AffineDialect Interfaces |
| 143 | //===----------------------------------------------------------------------===// |
| 144 | |
| 145 | namespace { |
| 146 | /// This class defines the interface for handling inlining with affine |
| 147 | /// operations. |
| 148 | struct AffineInlinerInterface : public DialectInlinerInterface { |
| 149 | using DialectInlinerInterface::DialectInlinerInterface; |
| 150 | |
| 151 | //===--------------------------------------------------------------------===// |
| 152 | // Analysis Hooks |
| 153 | //===--------------------------------------------------------------------===// |
| 154 | |
| 155 | /// Returns true if the given region 'src' can be inlined into the region |
| 156 | /// 'dest' that is attached to an operation registered to the current dialect. |
| 157 | /// 'wouldBeCloned' is set if the region is cloned into its new location |
| 158 | /// rather than moved, indicating there may be other users. |
| 159 | bool isLegalToInline(Region *dest, Region *src, bool wouldBeCloned, |
| 160 | IRMapping &valueMapping) const final { |
| 161 | // We can inline into affine loops and conditionals if this doesn't break |
| 162 | // affine value categorization rules. |
| 163 | Operation *destOp = dest->getParentOp(); |
| 164 | if (!isa<AffineParallelOp, AffineForOp, AffineIfOp>(destOp)) |
| 165 | return false; |
| 166 | |
| 167 | // Multi-block regions cannot be inlined into affine constructs, all of |
| 168 | // which require single-block regions. |
| 169 | if (!llvm::hasSingleElement(C&: *src)) |
| 170 | return false; |
| 171 | |
| 172 | // Side-effecting operations that the affine dialect cannot understand |
| 173 | // should not be inlined. |
| 174 | Block &srcBlock = src->front(); |
| 175 | for (Operation &op : srcBlock) { |
| 176 | // Ops with no side effects are fine, |
| 177 | if (auto iface = dyn_cast<MemoryEffectOpInterface>(op)) { |
| 178 | if (iface.hasNoEffect()) |
| 179 | continue; |
| 180 | } |
| 181 | |
| 182 | // Assuming the inlined region is valid, we only need to check if the |
| 183 | // inlining would change it. |
| 184 | bool remainsValid = |
| 185 | llvm::TypeSwitch<Operation *, bool>(&op) |
| 186 | .Case<AffineApplyOp, AffineReadOpInterface, |
| 187 | AffineWriteOpInterface>([&](auto op) { |
| 188 | return remainsLegalAfterInline(op, src, dest, valueMapping); |
| 189 | }) |
| 190 | .Default([](Operation *) { |
| 191 | // Conservatively disallow inlining ops we cannot reason about. |
| 192 | return false; |
| 193 | }); |
| 194 | |
| 195 | if (!remainsValid) |
| 196 | return false; |
| 197 | } |
| 198 | |
| 199 | return true; |
| 200 | } |
| 201 | |
| 202 | /// Returns true if the given operation 'op', that is registered to this |
| 203 | /// dialect, can be inlined into the given region, false otherwise. |
| 204 | bool isLegalToInline(Operation *op, Region *region, bool wouldBeCloned, |
| 205 | IRMapping &valueMapping) const final { |
| 206 | // Always allow inlining affine operations into a region that is marked as |
| 207 | // affine scope, or into affine loops and conditionals. There are some edge |
| 208 | // cases when inlining *into* affine structures, but that is handled in the |
| 209 | // other 'isLegalToInline' hook above. |
| 210 | Operation *parentOp = region->getParentOp(); |
| 211 | return parentOp->hasTrait<OpTrait::AffineScope>() || |
| 212 | isa<AffineForOp, AffineParallelOp, AffineIfOp>(parentOp); |
| 213 | } |
| 214 | |
| 215 | /// Affine regions should be analyzed recursively. |
| 216 | bool shouldAnalyzeRecursively(Operation *op) const final { return true; } |
| 217 | }; |
| 218 | } // namespace |
| 219 | |
| 220 | //===----------------------------------------------------------------------===// |
| 221 | // AffineDialect |
| 222 | //===----------------------------------------------------------------------===// |
| 223 | |
| 224 | void AffineDialect::initialize() { |
| 225 | addOperations<AffineDmaStartOp, AffineDmaWaitOp, |
| 226 | #define GET_OP_LIST |
| 227 | #include "mlir/Dialect/Affine/IR/AffineOps.cpp.inc" |
| 228 | >(); |
| 229 | addInterfaces<AffineInlinerInterface>(); |
| 230 | declarePromisedInterfaces<ValueBoundsOpInterface, AffineApplyOp, AffineMaxOp, |
| 231 | AffineMinOp>(); |
| 232 | } |
| 233 | |
| 234 | /// Materialize a single constant operation from a given attribute value with |
| 235 | /// the desired resultant type. |
| 236 | Operation *AffineDialect::materializeConstant(OpBuilder &builder, |
| 237 | Attribute value, Type type, |
| 238 | Location loc) { |
| 239 | if (auto poison = dyn_cast<ub::PoisonAttr>(value)) |
| 240 | return builder.create<ub::PoisonOp>(loc, type, poison); |
| 241 | return arith::ConstantOp::materialize(builder, value, type, loc); |
| 242 | } |
| 243 | |
| 244 | /// A utility function to check if a value is defined at the top level of an |
| 245 | /// op with trait `AffineScope`. If the value is defined in an unlinked region, |
| 246 | /// conservatively assume it is not top-level. A value of index type defined at |
| 247 | /// the top level is always a valid symbol. |
| 248 | bool mlir::affine::isTopLevelValue(Value value) { |
| 249 | if (auto arg = llvm::dyn_cast<BlockArgument>(value)) { |
| 250 | // The block owning the argument may be unlinked, e.g. when the surrounding |
| 251 | // region has not yet been attached to an Op, at which point the parent Op |
| 252 | // is null. |
| 253 | Operation *parentOp = arg.getOwner()->getParentOp(); |
| 254 | return parentOp && parentOp->hasTrait<OpTrait::AffineScope>(); |
| 255 | } |
| 256 | // The defining Op may live in an unlinked block so its parent Op may be null. |
| 257 | Operation *parentOp = value.getDefiningOp()->getParentOp(); |
| 258 | return parentOp && parentOp->hasTrait<OpTrait::AffineScope>(); |
| 259 | } |
| 260 | |
| 261 | /// Returns the closest region enclosing `op` that is held by an operation with |
| 262 | /// trait `AffineScope`; `nullptr` if there is no such region. |
| 263 | Region *mlir::affine::getAffineScope(Operation *op) { |
| 264 | auto *curOp = op; |
| 265 | while (auto *parentOp = curOp->getParentOp()) { |
| 266 | if (parentOp->hasTrait<OpTrait::AffineScope>()) |
| 267 | return curOp->getParentRegion(); |
| 268 | curOp = parentOp; |
| 269 | } |
| 270 | return nullptr; |
| 271 | } |
| 272 | |
| 273 | Region *mlir::affine::getAffineAnalysisScope(Operation *op) { |
| 274 | Operation *curOp = op; |
| 275 | while (auto *parentOp = curOp->getParentOp()) { |
| 276 | if (!isa<AffineForOp, AffineIfOp, AffineParallelOp>(parentOp)) |
| 277 | return curOp->getParentRegion(); |
| 278 | curOp = parentOp; |
| 279 | } |
| 280 | return nullptr; |
| 281 | } |
| 282 | |
| 283 | // A Value can be used as a dimension id iff it meets one of the following |
| 284 | // conditions: |
| 285 | // *) It is valid as a symbol. |
| 286 | // *) It is an induction variable. |
| 287 | // *) It is the result of affine apply operation with dimension id arguments. |
| 288 | bool mlir::affine::isValidDim(Value value) { |
| 289 | // The value must be an index type. |
| 290 | if (!value.getType().isIndex()) |
| 291 | return false; |
| 292 | |
| 293 | if (auto *defOp = value.getDefiningOp()) |
| 294 | return isValidDim(value, region: getAffineScope(op: defOp)); |
| 295 | |
| 296 | // This value has to be a block argument for an op that has the |
| 297 | // `AffineScope` trait or an induction var of an affine.for or |
| 298 | // affine.parallel. |
| 299 | if (isAffineInductionVar(val: value)) |
| 300 | return true; |
| 301 | auto *parentOp = llvm::cast<BlockArgument>(Val&: value).getOwner()->getParentOp(); |
| 302 | return parentOp && parentOp->hasTrait<OpTrait::AffineScope>(); |
| 303 | } |
| 304 | |
| 305 | // Value can be used as a dimension id iff it meets one of the following |
| 306 | // conditions: |
| 307 | // *) It is valid as a symbol. |
| 308 | // *) It is an induction variable. |
| 309 | // *) It is the result of an affine apply operation with dimension id operands. |
| 310 | // *) It is the result of a more specialized index transformation (ex. |
| 311 | // delinearize_index or linearize_index) with dimension id operands. |
| 312 | bool mlir::affine::isValidDim(Value value, Region *region) { |
| 313 | // The value must be an index type. |
| 314 | if (!value.getType().isIndex()) |
| 315 | return false; |
| 316 | |
| 317 | // All valid symbols are okay. |
| 318 | if (isValidSymbol(value, region)) |
| 319 | return true; |
| 320 | |
| 321 | auto *op = value.getDefiningOp(); |
| 322 | if (!op) { |
| 323 | // This value has to be an induction var for an affine.for or an |
| 324 | // affine.parallel. |
| 325 | return isAffineInductionVar(val: value); |
| 326 | } |
| 327 | |
| 328 | // Affine apply operation is ok if all of its operands are ok. |
| 329 | if (auto applyOp = dyn_cast<AffineApplyOp>(op)) |
| 330 | return applyOp.isValidDim(region); |
| 331 | // delinearize_index and linearize_index are special forms of apply |
| 332 | // and so are valid dimensions if all their arguments are valid dimensions. |
| 333 | if (isa<AffineDelinearizeIndexOp, AffineLinearizeIndexOp>(op)) |
| 334 | return llvm::all_of(Range: op->getOperands(), |
| 335 | P: [&](Value arg) { return ::isValidDim(value: arg, region); }); |
| 336 | // The dim op is okay if its operand memref/tensor is defined at the top |
| 337 | // level. |
| 338 | if (auto dimOp = dyn_cast<ShapedDimOpInterface>(op)) |
| 339 | return isTopLevelValue(dimOp.getShapedValue()); |
| 340 | return false; |
| 341 | } |
| 342 | |
| 343 | /// Returns true if the 'index' dimension of the `memref` defined by |
| 344 | /// `memrefDefOp` is a statically shaped one or defined using a valid symbol |
| 345 | /// for `region`. |
| 346 | template <typename AnyMemRefDefOp> |
| 347 | static bool isMemRefSizeValidSymbol(AnyMemRefDefOp memrefDefOp, unsigned index, |
| 348 | Region *region) { |
| 349 | MemRefType memRefType = memrefDefOp.getType(); |
| 350 | |
| 351 | // Dimension index is out of bounds. |
| 352 | if (index >= memRefType.getRank()) { |
| 353 | return false; |
| 354 | } |
| 355 | |
| 356 | // Statically shaped. |
| 357 | if (!memRefType.isDynamicDim(index)) |
| 358 | return true; |
| 359 | // Get the position of the dimension among dynamic dimensions; |
| 360 | unsigned dynamicDimPos = memRefType.getDynamicDimIndex(index); |
| 361 | return isValidSymbol(*(memrefDefOp.getDynamicSizes().begin() + dynamicDimPos), |
| 362 | region); |
| 363 | } |
| 364 | |
| 365 | /// Returns true if the result of the dim op is a valid symbol for `region`. |
| 366 | static bool isDimOpValidSymbol(ShapedDimOpInterface dimOp, Region *region) { |
| 367 | // The dim op is okay if its source is defined at the top level. |
| 368 | if (isTopLevelValue(dimOp.getShapedValue())) |
| 369 | return true; |
| 370 | |
| 371 | // Conservatively handle remaining BlockArguments as non-valid symbols. |
| 372 | // E.g. scf.for iterArgs. |
| 373 | if (llvm::isa<BlockArgument>(dimOp.getShapedValue())) |
| 374 | return false; |
| 375 | |
| 376 | // The dim op is also okay if its operand memref is a view/subview whose |
| 377 | // corresponding size is a valid symbol. |
| 378 | std::optional<int64_t> index = getConstantIntValue(dimOp.getDimension()); |
| 379 | |
| 380 | // Be conservative if we can't understand the dimension. |
| 381 | if (!index.has_value()) |
| 382 | return false; |
| 383 | |
| 384 | // Skip over all memref.cast ops (if any). |
| 385 | Operation *op = dimOp.getShapedValue().getDefiningOp(); |
| 386 | while (auto castOp = dyn_cast<memref::CastOp>(op)) { |
| 387 | // Bail on unranked memrefs. |
| 388 | if (isa<UnrankedMemRefType>(castOp.getSource().getType())) |
| 389 | return false; |
| 390 | op = castOp.getSource().getDefiningOp(); |
| 391 | if (!op) |
| 392 | return false; |
| 393 | } |
| 394 | |
| 395 | int64_t i = index.value(); |
| 396 | return TypeSwitch<Operation *, bool>(op) |
| 397 | .Case<memref::ViewOp, memref::SubViewOp, memref::AllocOp>( |
| 398 | [&](auto op) { return isMemRefSizeValidSymbol(op, i, region); }) |
| 399 | .Default([](Operation *) { return false; }); |
| 400 | } |
| 401 | |
| 402 | // A value can be used as a symbol (at all its use sites) iff it meets one of |
| 403 | // the following conditions: |
| 404 | // *) It is a constant. |
| 405 | // *) Its defining op or block arg appearance is immediately enclosed by an op |
| 406 | // with `AffineScope` trait. |
| 407 | // *) It is the result of an affine.apply operation with symbol operands. |
| 408 | // *) It is a result of the dim op on a memref whose corresponding size is a |
| 409 | // valid symbol. |
| 410 | bool mlir::affine::isValidSymbol(Value value) { |
| 411 | if (!value) |
| 412 | return false; |
| 413 | |
| 414 | // The value must be an index type. |
| 415 | if (!value.getType().isIndex()) |
| 416 | return false; |
| 417 | |
| 418 | // Check that the value is a top level value. |
| 419 | if (isTopLevelValue(value)) |
| 420 | return true; |
| 421 | |
| 422 | if (auto *defOp = value.getDefiningOp()) |
| 423 | return isValidSymbol(value, region: getAffineScope(op: defOp)); |
| 424 | |
| 425 | return false; |
| 426 | } |
| 427 | |
| 428 | /// A value can be used as a symbol for `region` iff it meets one of the |
| 429 | /// following conditions: |
| 430 | /// *) It is a constant. |
| 431 | /// *) It is a result of a `Pure` operation whose operands are valid symbolic |
| 432 | /// *) identifiers. |
| 433 | /// *) It is a result of the dim op on a memref whose corresponding size is |
| 434 | /// a valid symbol. |
| 435 | /// *) It is defined at the top level of 'region' or is its argument. |
| 436 | /// *) It dominates `region`'s parent op. |
| 437 | /// If `region` is null, conservatively assume the symbol definition scope does |
| 438 | /// not exist and only accept the values that would be symbols regardless of |
| 439 | /// the surrounding region structure, i.e. the first three cases above. |
| 440 | bool mlir::affine::isValidSymbol(Value value, Region *region) { |
| 441 | // The value must be an index type. |
| 442 | if (!value.getType().isIndex()) |
| 443 | return false; |
| 444 | |
| 445 | // A top-level value is a valid symbol. |
| 446 | if (region && ::isTopLevelValue(value, region)) |
| 447 | return true; |
| 448 | |
| 449 | auto *defOp = value.getDefiningOp(); |
| 450 | if (!defOp) { |
| 451 | // A block argument that is not a top-level value is a valid symbol if it |
| 452 | // dominates region's parent op. |
| 453 | Operation *regionOp = region ? region->getParentOp() : nullptr; |
| 454 | if (regionOp && !regionOp->hasTrait<OpTrait::IsIsolatedFromAbove>()) |
| 455 | if (auto *parentOpRegion = region->getParentOp()->getParentRegion()) |
| 456 | return isValidSymbol(value, region: parentOpRegion); |
| 457 | return false; |
| 458 | } |
| 459 | |
| 460 | // Constant operation is ok. |
| 461 | Attribute operandCst; |
| 462 | if (matchPattern(op: defOp, pattern: m_Constant(bind_value: &operandCst))) |
| 463 | return true; |
| 464 | |
| 465 | // `Pure` operation that whose operands are valid symbolic identifiers. |
| 466 | if (isPure(op: defOp) && llvm::all_of(Range: defOp->getOperands(), P: [&](Value operand) { |
| 467 | return affine::isValidSymbol(value: operand, region); |
| 468 | })) { |
| 469 | return true; |
| 470 | } |
| 471 | |
| 472 | // Dim op results could be valid symbols at any level. |
| 473 | if (auto dimOp = dyn_cast<ShapedDimOpInterface>(defOp)) |
| 474 | return isDimOpValidSymbol(dimOp, region); |
| 475 | |
| 476 | // Check for values dominating `region`'s parent op. |
| 477 | Operation *regionOp = region ? region->getParentOp() : nullptr; |
| 478 | if (regionOp && !regionOp->hasTrait<OpTrait::IsIsolatedFromAbove>()) |
| 479 | if (auto *parentRegion = region->getParentOp()->getParentRegion()) |
| 480 | return isValidSymbol(value, region: parentRegion); |
| 481 | |
| 482 | return false; |
| 483 | } |
| 484 | |
| 485 | // Returns true if 'value' is a valid index to an affine operation (e.g. |
| 486 | // affine.load, affine.store, affine.dma_start, affine.dma_wait) where |
| 487 | // `region` provides the polyhedral symbol scope. Returns false otherwise. |
| 488 | static bool isValidAffineIndexOperand(Value value, Region *region) { |
| 489 | return isValidDim(value, region) || isValidSymbol(value, region); |
| 490 | } |
| 491 | |
| 492 | /// Prints dimension and symbol list. |
| 493 | static void printDimAndSymbolList(Operation::operand_iterator begin, |
| 494 | Operation::operand_iterator end, |
| 495 | unsigned numDims, OpAsmPrinter &printer) { |
| 496 | OperandRange operands(begin, end); |
| 497 | printer << '(' << operands.take_front(n: numDims) << ')'; |
| 498 | if (operands.size() > numDims) |
| 499 | printer << '[' << operands.drop_front(n: numDims) << ']'; |
| 500 | } |
| 501 | |
| 502 | /// Parses dimension and symbol list and returns true if parsing failed. |
| 503 | ParseResult mlir::affine::parseDimAndSymbolList( |
| 504 | OpAsmParser &parser, SmallVectorImpl<Value> &operands, unsigned &numDims) { |
| 505 | SmallVector<OpAsmParser::UnresolvedOperand, 8> opInfos; |
| 506 | if (parser.parseOperandList(result&: opInfos, delimiter: OpAsmParser::Delimiter::Paren)) |
| 507 | return failure(); |
| 508 | // Store number of dimensions for validation by caller. |
| 509 | numDims = opInfos.size(); |
| 510 | |
| 511 | // Parse the optional symbol operands. |
| 512 | auto indexTy = parser.getBuilder().getIndexType(); |
| 513 | return failure(parser.parseOperandList( |
| 514 | result&: opInfos, delimiter: OpAsmParser::Delimiter::OptionalSquare) || |
| 515 | parser.resolveOperands(opInfos, indexTy, operands)); |
| 516 | } |
| 517 | |
| 518 | /// Utility function to verify that a set of operands are valid dimension and |
| 519 | /// symbol identifiers. The operands should be laid out such that the dimension |
| 520 | /// operands are before the symbol operands. This function returns failure if |
| 521 | /// there was an invalid operand. An operation is provided to emit any necessary |
| 522 | /// errors. |
| 523 | template <typename OpTy> |
| 524 | static LogicalResult |
| 525 | verifyDimAndSymbolIdentifiers(OpTy &op, Operation::operand_range operands, |
| 526 | unsigned numDims) { |
| 527 | unsigned opIt = 0; |
| 528 | for (auto operand : operands) { |
| 529 | if (opIt++ < numDims) { |
| 530 | if (!isValidDim(operand, getAffineScope(op))) |
| 531 | return op.emitOpError("operand cannot be used as a dimension id" ); |
| 532 | } else if (!isValidSymbol(operand, getAffineScope(op))) { |
| 533 | return op.emitOpError("operand cannot be used as a symbol" ); |
| 534 | } |
| 535 | } |
| 536 | return success(); |
| 537 | } |
| 538 | |
| 539 | //===----------------------------------------------------------------------===// |
| 540 | // AffineApplyOp |
| 541 | //===----------------------------------------------------------------------===// |
| 542 | |
| 543 | AffineValueMap AffineApplyOp::getAffineValueMap() { |
| 544 | return AffineValueMap(getAffineMap(), getOperands(), getResult()); |
| 545 | } |
| 546 | |
| 547 | ParseResult AffineApplyOp::parse(OpAsmParser &parser, OperationState &result) { |
| 548 | auto &builder = parser.getBuilder(); |
| 549 | auto indexTy = builder.getIndexType(); |
| 550 | |
| 551 | AffineMapAttr mapAttr; |
| 552 | unsigned numDims; |
| 553 | if (parser.parseAttribute(mapAttr, "map" , result.attributes) || |
| 554 | parseDimAndSymbolList(parser, result.operands, numDims) || |
| 555 | parser.parseOptionalAttrDict(result.attributes)) |
| 556 | return failure(); |
| 557 | auto map = mapAttr.getValue(); |
| 558 | |
| 559 | if (map.getNumDims() != numDims || |
| 560 | numDims + map.getNumSymbols() != result.operands.size()) { |
| 561 | return parser.emitError(parser.getNameLoc(), |
| 562 | "dimension or symbol index mismatch" ); |
| 563 | } |
| 564 | |
| 565 | result.types.append(map.getNumResults(), indexTy); |
| 566 | return success(); |
| 567 | } |
| 568 | |
| 569 | void AffineApplyOp::print(OpAsmPrinter &p) { |
| 570 | p << " " << getMapAttr(); |
| 571 | printDimAndSymbolList(operand_begin(), operand_end(), |
| 572 | getAffineMap().getNumDims(), p); |
| 573 | p.printOptionalAttrDict((*this)->getAttrs(), /*elidedAttrs=*/{"map" }); |
| 574 | } |
| 575 | |
| 576 | LogicalResult AffineApplyOp::verify() { |
| 577 | // Check input and output dimensions match. |
| 578 | AffineMap affineMap = getMap(); |
| 579 | |
| 580 | // Verify that operand count matches affine map dimension and symbol count. |
| 581 | if (getNumOperands() != affineMap.getNumDims() + affineMap.getNumSymbols()) |
| 582 | return emitOpError( |
| 583 | "operand count and affine map dimension and symbol count must match" ); |
| 584 | |
| 585 | // Verify that the map only produces one result. |
| 586 | if (affineMap.getNumResults() != 1) |
| 587 | return emitOpError("mapping must produce one value" ); |
| 588 | |
| 589 | // Do not allow valid dims to be used in symbol positions. We do allow |
| 590 | // affine.apply to use operands for values that may neither qualify as affine |
| 591 | // dims or affine symbols due to usage outside of affine ops, analyses, etc. |
| 592 | Region *region = getAffineScope(*this); |
| 593 | for (Value operand : getMapOperands().drop_front(affineMap.getNumDims())) { |
| 594 | if (::isValidDim(operand, region) && !::isValidSymbol(operand, region)) |
| 595 | return emitError("dimensional operand cannot be used as a symbol" ); |
| 596 | } |
| 597 | |
| 598 | return success(); |
| 599 | } |
| 600 | |
| 601 | // The result of the affine apply operation can be used as a dimension id if all |
| 602 | // its operands are valid dimension ids. |
| 603 | bool AffineApplyOp::isValidDim() { |
| 604 | return llvm::all_of(getOperands(), |
| 605 | [](Value op) { return affine::isValidDim(op); }); |
| 606 | } |
| 607 | |
| 608 | // The result of the affine apply operation can be used as a dimension id if all |
| 609 | // its operands are valid dimension ids with the parent operation of `region` |
| 610 | // defining the polyhedral scope for symbols. |
| 611 | bool AffineApplyOp::isValidDim(Region *region) { |
| 612 | return llvm::all_of(getOperands(), |
| 613 | [&](Value op) { return ::isValidDim(op, region); }); |
| 614 | } |
| 615 | |
| 616 | // The result of the affine apply operation can be used as a symbol if all its |
| 617 | // operands are symbols. |
| 618 | bool AffineApplyOp::isValidSymbol() { |
| 619 | return llvm::all_of(getOperands(), |
| 620 | [](Value op) { return affine::isValidSymbol(op); }); |
| 621 | } |
| 622 | |
| 623 | // The result of the affine apply operation can be used as a symbol in `region` |
| 624 | // if all its operands are symbols in `region`. |
| 625 | bool AffineApplyOp::isValidSymbol(Region *region) { |
| 626 | return llvm::all_of(getOperands(), [&](Value operand) { |
| 627 | return affine::isValidSymbol(operand, region); |
| 628 | }); |
| 629 | } |
| 630 | |
| 631 | OpFoldResult AffineApplyOp::fold(FoldAdaptor adaptor) { |
| 632 | auto map = getAffineMap(); |
| 633 | |
| 634 | // Fold dims and symbols to existing values. |
| 635 | auto expr = map.getResult(0); |
| 636 | if (auto dim = dyn_cast<AffineDimExpr>(expr)) |
| 637 | return getOperand(dim.getPosition()); |
| 638 | if (auto sym = dyn_cast<AffineSymbolExpr>(expr)) |
| 639 | return getOperand(map.getNumDims() + sym.getPosition()); |
| 640 | |
| 641 | // Otherwise, default to folding the map. |
| 642 | SmallVector<Attribute, 1> result; |
| 643 | bool hasPoison = false; |
| 644 | auto foldResult = |
| 645 | map.constantFold(adaptor.getMapOperands(), result, &hasPoison); |
| 646 | if (hasPoison) |
| 647 | return ub::PoisonAttr::get(getContext()); |
| 648 | if (failed(foldResult)) |
| 649 | return {}; |
| 650 | return result[0]; |
| 651 | } |
| 652 | |
| 653 | /// Returns the largest known divisor of `e`. Exploits information from the |
| 654 | /// values in `operands`. |
| 655 | static int64_t getLargestKnownDivisor(AffineExpr e, ArrayRef<Value> operands) { |
| 656 | // This method isn't aware of `operands`. |
| 657 | int64_t div = e.getLargestKnownDivisor(); |
| 658 | |
| 659 | // We now make use of operands for the case `e` is a dim expression. |
| 660 | // TODO: More powerful simplification would have to modify |
| 661 | // getLargestKnownDivisor to take `operands` and exploit that information as |
| 662 | // well for dim/sym expressions, but in that case, getLargestKnownDivisor |
| 663 | // can't be part of the IR library but of the `Analysis` library. The IR |
| 664 | // library can only really depend on simple O(1) checks. |
| 665 | auto dimExpr = dyn_cast<AffineDimExpr>(Val&: e); |
| 666 | // If it's not a dim expr, `div` is the best we have. |
| 667 | if (!dimExpr) |
| 668 | return div; |
| 669 | |
| 670 | // We simply exploit information from loop IVs. |
| 671 | // We don't need to use mlir::getLargestKnownDivisorOfValue since the other |
| 672 | // desired simplifications are expected to be part of other |
| 673 | // canonicalizations. Also, mlir::getLargestKnownDivisorOfValue is part of the |
| 674 | // LoopAnalysis library. |
| 675 | Value operand = operands[dimExpr.getPosition()]; |
| 676 | int64_t operandDivisor = 1; |
| 677 | // TODO: With the right accessors, this can be extended to |
| 678 | // LoopLikeOpInterface. |
| 679 | if (AffineForOp forOp = getForInductionVarOwner(operand)) { |
| 680 | if (forOp.hasConstantLowerBound() && forOp.getConstantLowerBound() == 0) { |
| 681 | operandDivisor = forOp.getStepAsInt(); |
| 682 | } else { |
| 683 | uint64_t lbLargestKnownDivisor = |
| 684 | forOp.getLowerBoundMap().getLargestKnownDivisorOfMapExprs(); |
| 685 | operandDivisor = std::gcd(lbLargestKnownDivisor, forOp.getStepAsInt()); |
| 686 | } |
| 687 | } |
| 688 | return operandDivisor; |
| 689 | } |
| 690 | |
| 691 | /// Check if `e` is known to be: 0 <= `e` < `k`. Handles the simple cases of `e` |
| 692 | /// being an affine dim expression or a constant. |
| 693 | static bool isNonNegativeBoundedBy(AffineExpr e, ArrayRef<Value> operands, |
| 694 | int64_t k) { |
| 695 | if (auto constExpr = dyn_cast<AffineConstantExpr>(Val&: e)) { |
| 696 | int64_t constVal = constExpr.getValue(); |
| 697 | return constVal >= 0 && constVal < k; |
| 698 | } |
| 699 | auto dimExpr = dyn_cast<AffineDimExpr>(Val&: e); |
| 700 | if (!dimExpr) |
| 701 | return false; |
| 702 | Value operand = operands[dimExpr.getPosition()]; |
| 703 | // TODO: With the right accessors, this can be extended to |
| 704 | // LoopLikeOpInterface. |
| 705 | if (AffineForOp forOp = getForInductionVarOwner(operand)) { |
| 706 | if (forOp.hasConstantLowerBound() && forOp.getConstantLowerBound() >= 0 && |
| 707 | forOp.hasConstantUpperBound() && forOp.getConstantUpperBound() <= k) { |
| 708 | return true; |
| 709 | } |
| 710 | } |
| 711 | |
| 712 | // We don't consider other cases like `operand` being defined by a constant or |
| 713 | // an affine.apply op since such cases will already be handled by other |
| 714 | // patterns and propagation of loop IVs or constant would happen. |
| 715 | return false; |
| 716 | } |
| 717 | |
| 718 | /// Check if expression `e` is of the form d*e_1 + e_2 where 0 <= e_2 < d. |
| 719 | /// Set `div` to `d`, `quotientTimesDiv` to e_1 and `rem` to e_2 if the |
| 720 | /// expression is in that form. |
| 721 | static bool isQTimesDPlusR(AffineExpr e, ArrayRef<Value> operands, int64_t &div, |
| 722 | AffineExpr "ientTimesDiv, AffineExpr &rem) { |
| 723 | auto bin = dyn_cast<AffineBinaryOpExpr>(Val&: e); |
| 724 | if (!bin || bin.getKind() != AffineExprKind::Add) |
| 725 | return false; |
| 726 | |
| 727 | AffineExpr llhs = bin.getLHS(); |
| 728 | AffineExpr rlhs = bin.getRHS(); |
| 729 | div = getLargestKnownDivisor(e: llhs, operands); |
| 730 | if (isNonNegativeBoundedBy(e: rlhs, operands, k: div)) { |
| 731 | quotientTimesDiv = llhs; |
| 732 | rem = rlhs; |
| 733 | return true; |
| 734 | } |
| 735 | div = getLargestKnownDivisor(e: rlhs, operands); |
| 736 | if (isNonNegativeBoundedBy(e: llhs, operands, k: div)) { |
| 737 | quotientTimesDiv = rlhs; |
| 738 | rem = llhs; |
| 739 | return true; |
| 740 | } |
| 741 | return false; |
| 742 | } |
| 743 | |
| 744 | /// Gets the constant lower bound on an `iv`. |
| 745 | static std::optional<int64_t> getLowerBound(Value iv) { |
| 746 | AffineForOp forOp = getForInductionVarOwner(iv); |
| 747 | if (forOp && forOp.hasConstantLowerBound()) |
| 748 | return forOp.getConstantLowerBound(); |
| 749 | return std::nullopt; |
| 750 | } |
| 751 | |
| 752 | /// Gets the constant upper bound on an affine.for `iv`. |
| 753 | static std::optional<int64_t> getUpperBound(Value iv) { |
| 754 | AffineForOp forOp = getForInductionVarOwner(iv); |
| 755 | if (!forOp || !forOp.hasConstantUpperBound()) |
| 756 | return std::nullopt; |
| 757 | |
| 758 | // If its lower bound is also known, we can get a more precise bound |
| 759 | // whenever the step is not one. |
| 760 | if (forOp.hasConstantLowerBound()) { |
| 761 | return forOp.getConstantUpperBound() - 1 - |
| 762 | (forOp.getConstantUpperBound() - forOp.getConstantLowerBound() - 1) % |
| 763 | forOp.getStepAsInt(); |
| 764 | } |
| 765 | return forOp.getConstantUpperBound() - 1; |
| 766 | } |
| 767 | |
| 768 | /// Determine a constant upper bound for `expr` if one exists while exploiting |
| 769 | /// values in `operands`. Note that the upper bound is an inclusive one. `expr` |
| 770 | /// is guaranteed to be less than or equal to it. |
| 771 | static std::optional<int64_t> getUpperBound(AffineExpr expr, unsigned numDims, |
| 772 | unsigned numSymbols, |
| 773 | ArrayRef<Value> operands) { |
| 774 | // Get the constant lower or upper bounds on the operands. |
| 775 | SmallVector<std::optional<int64_t>> constLowerBounds, constUpperBounds; |
| 776 | constLowerBounds.reserve(N: operands.size()); |
| 777 | constUpperBounds.reserve(N: operands.size()); |
| 778 | for (Value operand : operands) { |
| 779 | constLowerBounds.push_back(Elt: getLowerBound(iv: operand)); |
| 780 | constUpperBounds.push_back(Elt: getUpperBound(iv: operand)); |
| 781 | } |
| 782 | |
| 783 | if (auto constExpr = dyn_cast<AffineConstantExpr>(Val&: expr)) |
| 784 | return constExpr.getValue(); |
| 785 | |
| 786 | return getBoundForAffineExpr(expr, numDims, numSymbols, constLowerBounds, |
| 787 | constUpperBounds, |
| 788 | /*isUpper=*/true); |
| 789 | } |
| 790 | |
| 791 | /// Determine a constant lower bound for `expr` if one exists while exploiting |
| 792 | /// values in `operands`. Note that the upper bound is an inclusive one. `expr` |
| 793 | /// is guaranteed to be less than or equal to it. |
| 794 | static std::optional<int64_t> getLowerBound(AffineExpr expr, unsigned numDims, |
| 795 | unsigned numSymbols, |
| 796 | ArrayRef<Value> operands) { |
| 797 | // Get the constant lower or upper bounds on the operands. |
| 798 | SmallVector<std::optional<int64_t>> constLowerBounds, constUpperBounds; |
| 799 | constLowerBounds.reserve(N: operands.size()); |
| 800 | constUpperBounds.reserve(N: operands.size()); |
| 801 | for (Value operand : operands) { |
| 802 | constLowerBounds.push_back(Elt: getLowerBound(iv: operand)); |
| 803 | constUpperBounds.push_back(Elt: getUpperBound(iv: operand)); |
| 804 | } |
| 805 | |
| 806 | std::optional<int64_t> lowerBound; |
| 807 | if (auto constExpr = dyn_cast<AffineConstantExpr>(Val&: expr)) { |
| 808 | lowerBound = constExpr.getValue(); |
| 809 | } else { |
| 810 | lowerBound = getBoundForAffineExpr(expr, numDims, numSymbols, |
| 811 | constLowerBounds, constUpperBounds, |
| 812 | /*isUpper=*/false); |
| 813 | } |
| 814 | return lowerBound; |
| 815 | } |
| 816 | |
| 817 | /// Simplify `expr` while exploiting information from the values in `operands`. |
| 818 | static void simplifyExprAndOperands(AffineExpr &expr, unsigned numDims, |
| 819 | unsigned numSymbols, |
| 820 | ArrayRef<Value> operands) { |
| 821 | // We do this only for certain floordiv/mod expressions. |
| 822 | auto binExpr = dyn_cast<AffineBinaryOpExpr>(Val&: expr); |
| 823 | if (!binExpr) |
| 824 | return; |
| 825 | |
| 826 | // Simplify the child expressions first. |
| 827 | AffineExpr lhs = binExpr.getLHS(); |
| 828 | AffineExpr rhs = binExpr.getRHS(); |
| 829 | simplifyExprAndOperands(expr&: lhs, numDims, numSymbols, operands); |
| 830 | simplifyExprAndOperands(expr&: rhs, numDims, numSymbols, operands); |
| 831 | expr = getAffineBinaryOpExpr(kind: binExpr.getKind(), lhs, rhs); |
| 832 | |
| 833 | binExpr = dyn_cast<AffineBinaryOpExpr>(Val&: expr); |
| 834 | if (!binExpr || (expr.getKind() != AffineExprKind::FloorDiv && |
| 835 | expr.getKind() != AffineExprKind::CeilDiv && |
| 836 | expr.getKind() != AffineExprKind::Mod)) { |
| 837 | return; |
| 838 | } |
| 839 | |
| 840 | // The `lhs` and `rhs` may be different post construction of simplified expr. |
| 841 | lhs = binExpr.getLHS(); |
| 842 | rhs = binExpr.getRHS(); |
| 843 | auto rhsConst = dyn_cast<AffineConstantExpr>(Val&: rhs); |
| 844 | if (!rhsConst) |
| 845 | return; |
| 846 | |
| 847 | int64_t rhsConstVal = rhsConst.getValue(); |
| 848 | // Undefined exprsessions aren't touched; IR can still be valid with them. |
| 849 | if (rhsConstVal <= 0) |
| 850 | return; |
| 851 | |
| 852 | // Exploit constant lower/upper bounds to simplify a floordiv or mod. |
| 853 | MLIRContext *context = expr.getContext(); |
| 854 | std::optional<int64_t> lhsLbConst = |
| 855 | getLowerBound(expr: lhs, numDims, numSymbols, operands); |
| 856 | std::optional<int64_t> lhsUbConst = |
| 857 | getUpperBound(expr: lhs, numDims, numSymbols, operands); |
| 858 | if (lhsLbConst && lhsUbConst) { |
| 859 | int64_t lhsLbConstVal = *lhsLbConst; |
| 860 | int64_t lhsUbConstVal = *lhsUbConst; |
| 861 | // lhs floordiv c is a single value lhs is bounded in a range `c` that has |
| 862 | // the same quotient. |
| 863 | if (binExpr.getKind() == AffineExprKind::FloorDiv && |
| 864 | divideFloorSigned(Numerator: lhsLbConstVal, Denominator: rhsConstVal) == |
| 865 | divideFloorSigned(Numerator: lhsUbConstVal, Denominator: rhsConstVal)) { |
| 866 | expr = getAffineConstantExpr( |
| 867 | constant: divideFloorSigned(Numerator: lhsLbConstVal, Denominator: rhsConstVal), context); |
| 868 | return; |
| 869 | } |
| 870 | // lhs ceildiv c is a single value if the entire range has the same ceil |
| 871 | // quotient. |
| 872 | if (binExpr.getKind() == AffineExprKind::CeilDiv && |
| 873 | divideCeilSigned(Numerator: lhsLbConstVal, Denominator: rhsConstVal) == |
| 874 | divideCeilSigned(Numerator: lhsUbConstVal, Denominator: rhsConstVal)) { |
| 875 | expr = getAffineConstantExpr(constant: divideCeilSigned(Numerator: lhsLbConstVal, Denominator: rhsConstVal), |
| 876 | context); |
| 877 | return; |
| 878 | } |
| 879 | // lhs mod c is lhs if the entire range has quotient 0 w.r.t the rhs. |
| 880 | if (binExpr.getKind() == AffineExprKind::Mod && lhsLbConstVal >= 0 && |
| 881 | lhsLbConstVal < rhsConstVal && lhsUbConstVal < rhsConstVal) { |
| 882 | expr = lhs; |
| 883 | return; |
| 884 | } |
| 885 | } |
| 886 | |
| 887 | // Simplify expressions of the form e = (e_1 + e_2) floordiv c or (e_1 + e_2) |
| 888 | // mod c, where e_1 is a multiple of `k` and 0 <= e_2 < k. In such cases, if |
| 889 | // `c` % `k` == 0, (e_1 + e_2) floordiv c can be simplified to e_1 floordiv c. |
| 890 | // And when k % c == 0, (e_1 + e_2) mod c can be simplified to e_2 mod c. |
| 891 | AffineExpr quotientTimesDiv, rem; |
| 892 | int64_t divisor; |
| 893 | if (isQTimesDPlusR(e: lhs, operands, div&: divisor, quotientTimesDiv, rem)) { |
| 894 | if (rhsConstVal % divisor == 0 && |
| 895 | binExpr.getKind() == AffineExprKind::FloorDiv) { |
| 896 | expr = quotientTimesDiv.floorDiv(other: rhsConst); |
| 897 | } else if (divisor % rhsConstVal == 0 && |
| 898 | binExpr.getKind() == AffineExprKind::Mod) { |
| 899 | expr = rem % rhsConst; |
| 900 | } |
| 901 | return; |
| 902 | } |
| 903 | |
| 904 | // Handle the simple case when the LHS expression can be either upper |
| 905 | // bounded or is a known multiple of RHS constant. |
| 906 | // lhs floordiv c -> 0 if 0 <= lhs < c, |
| 907 | // lhs mod c -> 0 if lhs % c = 0. |
| 908 | if ((isNonNegativeBoundedBy(e: lhs, operands, k: rhsConstVal) && |
| 909 | binExpr.getKind() == AffineExprKind::FloorDiv) || |
| 910 | (getLargestKnownDivisor(e: lhs, operands) % rhsConstVal == 0 && |
| 911 | binExpr.getKind() == AffineExprKind::Mod)) { |
| 912 | expr = getAffineConstantExpr(constant: 0, context: expr.getContext()); |
| 913 | } |
| 914 | } |
| 915 | |
| 916 | /// Simplify the expressions in `map` while making use of lower or upper bounds |
| 917 | /// of its operands. If `isMax` is true, the map is to be treated as a max of |
| 918 | /// its result expressions, and min otherwise. Eg: min (d0, d1) -> (8, 4 * d0 + |
| 919 | /// d1) can be simplified to (8) if the operands are respectively lower bounded |
| 920 | /// by 2 and 0 (the second expression can't be lower than 8). |
| 921 | static void simplifyMinOrMaxExprWithOperands(AffineMap &map, |
| 922 | ArrayRef<Value> operands, |
| 923 | bool isMax) { |
| 924 | // Can't simplify. |
| 925 | if (operands.empty()) |
| 926 | return; |
| 927 | |
| 928 | // Get the upper or lower bound on an affine.for op IV using its range. |
| 929 | // Get the constant lower or upper bounds on the operands. |
| 930 | SmallVector<std::optional<int64_t>> constLowerBounds, constUpperBounds; |
| 931 | constLowerBounds.reserve(N: operands.size()); |
| 932 | constUpperBounds.reserve(N: operands.size()); |
| 933 | for (Value operand : operands) { |
| 934 | constLowerBounds.push_back(Elt: getLowerBound(iv: operand)); |
| 935 | constUpperBounds.push_back(Elt: getUpperBound(iv: operand)); |
| 936 | } |
| 937 | |
| 938 | // We will compute the lower and upper bounds on each of the expressions |
| 939 | // Then, we will check (depending on max or min) as to whether a specific |
| 940 | // bound is redundant by checking if its highest (in case of max) and its |
| 941 | // lowest (in the case of min) value is already lower than (or higher than) |
| 942 | // the lower bound (or upper bound in the case of min) of another bound. |
| 943 | SmallVector<std::optional<int64_t>, 4> lowerBounds, upperBounds; |
| 944 | lowerBounds.reserve(N: map.getNumResults()); |
| 945 | upperBounds.reserve(N: map.getNumResults()); |
| 946 | for (AffineExpr e : map.getResults()) { |
| 947 | if (auto constExpr = dyn_cast<AffineConstantExpr>(Val&: e)) { |
| 948 | lowerBounds.push_back(Elt: constExpr.getValue()); |
| 949 | upperBounds.push_back(Elt: constExpr.getValue()); |
| 950 | } else { |
| 951 | lowerBounds.push_back( |
| 952 | Elt: getBoundForAffineExpr(expr: e, numDims: map.getNumDims(), numSymbols: map.getNumSymbols(), |
| 953 | constLowerBounds, constUpperBounds, |
| 954 | /*isUpper=*/false)); |
| 955 | upperBounds.push_back( |
| 956 | Elt: getBoundForAffineExpr(expr: e, numDims: map.getNumDims(), numSymbols: map.getNumSymbols(), |
| 957 | constLowerBounds, constUpperBounds, |
| 958 | /*isUpper=*/true)); |
| 959 | } |
| 960 | } |
| 961 | |
| 962 | // Collect expressions that are not redundant. |
| 963 | SmallVector<AffineExpr, 4> irredundantExprs; |
| 964 | for (auto exprEn : llvm::enumerate(First: map.getResults())) { |
| 965 | AffineExpr e = exprEn.value(); |
| 966 | unsigned i = exprEn.index(); |
| 967 | // Some expressions can be turned into constants. |
| 968 | if (lowerBounds[i] && upperBounds[i] && *lowerBounds[i] == *upperBounds[i]) |
| 969 | e = getAffineConstantExpr(constant: *lowerBounds[i], context: e.getContext()); |
| 970 | |
| 971 | // Check if the expression is redundant. |
| 972 | if (isMax) { |
| 973 | if (!upperBounds[i]) { |
| 974 | irredundantExprs.push_back(Elt: e); |
| 975 | continue; |
| 976 | } |
| 977 | // If there exists another expression such that its lower bound is greater |
| 978 | // than this expression's upper bound, it's redundant. |
| 979 | if (!llvm::any_of(Range: llvm::enumerate(First&: lowerBounds), P: [&](const auto &en) { |
| 980 | auto otherLowerBound = en.value(); |
| 981 | unsigned pos = en.index(); |
| 982 | if (pos == i || !otherLowerBound) |
| 983 | return false; |
| 984 | if (*otherLowerBound > *upperBounds[i]) |
| 985 | return true; |
| 986 | if (*otherLowerBound < *upperBounds[i]) |
| 987 | return false; |
| 988 | // Equality case. When both expressions are considered redundant, we |
| 989 | // don't want to get both of them. We keep the one that appears |
| 990 | // first. |
| 991 | if (upperBounds[pos] && lowerBounds[i] && |
| 992 | lowerBounds[i] == upperBounds[i] && |
| 993 | otherLowerBound == *upperBounds[pos] && i < pos) |
| 994 | return false; |
| 995 | return true; |
| 996 | })) |
| 997 | irredundantExprs.push_back(Elt: e); |
| 998 | } else { |
| 999 | if (!lowerBounds[i]) { |
| 1000 | irredundantExprs.push_back(Elt: e); |
| 1001 | continue; |
| 1002 | } |
| 1003 | // Likewise for the `min` case. Use the complement of the condition above. |
| 1004 | if (!llvm::any_of(Range: llvm::enumerate(First&: upperBounds), P: [&](const auto &en) { |
| 1005 | auto otherUpperBound = en.value(); |
| 1006 | unsigned pos = en.index(); |
| 1007 | if (pos == i || !otherUpperBound) |
| 1008 | return false; |
| 1009 | if (*otherUpperBound < *lowerBounds[i]) |
| 1010 | return true; |
| 1011 | if (*otherUpperBound > *lowerBounds[i]) |
| 1012 | return false; |
| 1013 | if (lowerBounds[pos] && upperBounds[i] && |
| 1014 | lowerBounds[i] == upperBounds[i] && |
| 1015 | otherUpperBound == lowerBounds[pos] && i < pos) |
| 1016 | return false; |
| 1017 | return true; |
| 1018 | })) |
| 1019 | irredundantExprs.push_back(Elt: e); |
| 1020 | } |
| 1021 | } |
| 1022 | |
| 1023 | // Create the map without the redundant expressions. |
| 1024 | map = AffineMap::get(dimCount: map.getNumDims(), symbolCount: map.getNumSymbols(), results: irredundantExprs, |
| 1025 | context: map.getContext()); |
| 1026 | } |
| 1027 | |
| 1028 | /// Simplify the map while exploiting information on the values in `operands`. |
| 1029 | // Use "unused attribute" marker to silence warning stemming from the inability |
| 1030 | // to see through the template expansion. |
| 1031 | static void LLVM_ATTRIBUTE_UNUSED |
| 1032 | simplifyMapWithOperands(AffineMap &map, ArrayRef<Value> operands) { |
| 1033 | assert(map.getNumInputs() == operands.size() && "invalid operands for map" ); |
| 1034 | SmallVector<AffineExpr> newResults; |
| 1035 | newResults.reserve(N: map.getNumResults()); |
| 1036 | for (AffineExpr expr : map.getResults()) { |
| 1037 | simplifyExprAndOperands(expr, numDims: map.getNumDims(), numSymbols: map.getNumSymbols(), |
| 1038 | operands); |
| 1039 | newResults.push_back(Elt: expr); |
| 1040 | } |
| 1041 | map = AffineMap::get(dimCount: map.getNumDims(), symbolCount: map.getNumSymbols(), results: newResults, |
| 1042 | context: map.getContext()); |
| 1043 | } |
| 1044 | |
| 1045 | /// Replace all occurrences of AffineExpr at position `pos` in `map` by the |
| 1046 | /// defining AffineApplyOp expression and operands. |
| 1047 | /// When `dimOrSymbolPosition < dims.size()`, AffineDimExpr@[pos] is replaced. |
| 1048 | /// When `dimOrSymbolPosition >= dims.size()`, |
| 1049 | /// AffineSymbolExpr@[pos - dims.size()] is replaced. |
| 1050 | /// Mutate `map`,`dims` and `syms` in place as follows: |
| 1051 | /// 1. `dims` and `syms` are only appended to. |
| 1052 | /// 2. `map` dim and symbols are gradually shifted to higher positions. |
| 1053 | /// 3. Old `dim` and `sym` entries are replaced by nullptr |
| 1054 | /// This avoids the need for any bookkeeping. |
| 1055 | static LogicalResult replaceDimOrSym(AffineMap *map, |
| 1056 | unsigned dimOrSymbolPosition, |
| 1057 | SmallVectorImpl<Value> &dims, |
| 1058 | SmallVectorImpl<Value> &syms) { |
| 1059 | MLIRContext *ctx = map->getContext(); |
| 1060 | bool isDimReplacement = (dimOrSymbolPosition < dims.size()); |
| 1061 | unsigned pos = isDimReplacement ? dimOrSymbolPosition |
| 1062 | : dimOrSymbolPosition - dims.size(); |
| 1063 | Value &v = isDimReplacement ? dims[pos] : syms[pos]; |
| 1064 | if (!v) |
| 1065 | return failure(); |
| 1066 | |
| 1067 | auto affineApply = v.getDefiningOp<AffineApplyOp>(); |
| 1068 | if (!affineApply) |
| 1069 | return failure(); |
| 1070 | |
| 1071 | // At this point we will perform a replacement of `v`, set the entry in `dim` |
| 1072 | // or `sym` to nullptr immediately. |
| 1073 | v = nullptr; |
| 1074 | |
| 1075 | // Compute the map, dims and symbols coming from the AffineApplyOp. |
| 1076 | AffineMap composeMap = affineApply.getAffineMap(); |
| 1077 | assert(composeMap.getNumResults() == 1 && "affine.apply with >1 results" ); |
| 1078 | SmallVector<Value> composeOperands(affineApply.getMapOperands().begin(), |
| 1079 | affineApply.getMapOperands().end()); |
| 1080 | // Canonicalize the map to promote dims to symbols when possible. This is to |
| 1081 | // avoid generating invalid maps. |
| 1082 | canonicalizeMapAndOperands(map: &composeMap, operands: &composeOperands); |
| 1083 | AffineExpr replacementExpr = |
| 1084 | composeMap.shiftDims(shift: dims.size()).shiftSymbols(shift: syms.size()).getResult(idx: 0); |
| 1085 | ValueRange composeDims = |
| 1086 | ArrayRef<Value>(composeOperands).take_front(N: composeMap.getNumDims()); |
| 1087 | ValueRange composeSyms = |
| 1088 | ArrayRef<Value>(composeOperands).take_back(N: composeMap.getNumSymbols()); |
| 1089 | AffineExpr toReplace = isDimReplacement ? getAffineDimExpr(position: pos, context: ctx) |
| 1090 | : getAffineSymbolExpr(position: pos, context: ctx); |
| 1091 | |
| 1092 | // Append the dims and symbols where relevant and perform the replacement. |
| 1093 | dims.append(in_start: composeDims.begin(), in_end: composeDims.end()); |
| 1094 | syms.append(in_start: composeSyms.begin(), in_end: composeSyms.end()); |
| 1095 | *map = map->replace(expr: toReplace, replacement: replacementExpr, numResultDims: dims.size(), numResultSyms: syms.size()); |
| 1096 | |
| 1097 | return success(); |
| 1098 | } |
| 1099 | |
| 1100 | /// Iterate over `operands` and fold away all those produced by an AffineApplyOp |
| 1101 | /// iteratively. Perform canonicalization of map and operands as well as |
| 1102 | /// AffineMap simplification. `map` and `operands` are mutated in place. |
| 1103 | static void composeAffineMapAndOperands(AffineMap *map, |
| 1104 | SmallVectorImpl<Value> *operands) { |
| 1105 | if (map->getNumResults() == 0) { |
| 1106 | canonicalizeMapAndOperands(map, operands); |
| 1107 | *map = simplifyAffineMap(map: *map); |
| 1108 | return; |
| 1109 | } |
| 1110 | |
| 1111 | MLIRContext *ctx = map->getContext(); |
| 1112 | SmallVector<Value, 4> dims(operands->begin(), |
| 1113 | operands->begin() + map->getNumDims()); |
| 1114 | SmallVector<Value, 4> syms(operands->begin() + map->getNumDims(), |
| 1115 | operands->end()); |
| 1116 | |
| 1117 | // Iterate over dims and symbols coming from AffineApplyOp and replace until |
| 1118 | // exhaustion. This iteratively mutates `map`, `dims` and `syms`. Both `dims` |
| 1119 | // and `syms` can only increase by construction. |
| 1120 | // The implementation uses a `while` loop to support the case of symbols |
| 1121 | // that may be constructed from dims ;this may be overkill. |
| 1122 | while (true) { |
| 1123 | bool changed = false; |
| 1124 | for (unsigned pos = 0; pos != dims.size() + syms.size(); ++pos) |
| 1125 | if ((changed |= succeeded(Result: replaceDimOrSym(map, dimOrSymbolPosition: pos, dims, syms)))) |
| 1126 | break; |
| 1127 | if (!changed) |
| 1128 | break; |
| 1129 | } |
| 1130 | |
| 1131 | // Clear operands so we can fill them anew. |
| 1132 | operands->clear(); |
| 1133 | |
| 1134 | // At this point we may have introduced null operands, prune them out before |
| 1135 | // canonicalizing map and operands. |
| 1136 | unsigned nDims = 0, nSyms = 0; |
| 1137 | SmallVector<AffineExpr, 4> dimReplacements, symReplacements; |
| 1138 | dimReplacements.reserve(N: dims.size()); |
| 1139 | symReplacements.reserve(N: syms.size()); |
| 1140 | for (auto *container : {&dims, &syms}) { |
| 1141 | bool isDim = (container == &dims); |
| 1142 | auto &repls = isDim ? dimReplacements : symReplacements; |
| 1143 | for (const auto &en : llvm::enumerate(First&: *container)) { |
| 1144 | Value v = en.value(); |
| 1145 | if (!v) { |
| 1146 | assert(isDim ? !map->isFunctionOfDim(en.index()) |
| 1147 | : !map->isFunctionOfSymbol(en.index()) && |
| 1148 | "map is function of unexpected expr@pos" ); |
| 1149 | repls.push_back(Elt: getAffineConstantExpr(constant: 0, context: ctx)); |
| 1150 | continue; |
| 1151 | } |
| 1152 | repls.push_back(Elt: isDim ? getAffineDimExpr(position: nDims++, context: ctx) |
| 1153 | : getAffineSymbolExpr(position: nSyms++, context: ctx)); |
| 1154 | operands->push_back(Elt: v); |
| 1155 | } |
| 1156 | } |
| 1157 | *map = map->replaceDimsAndSymbols(dimReplacements, symReplacements, numResultDims: nDims, |
| 1158 | numResultSyms: nSyms); |
| 1159 | |
| 1160 | // Canonicalize and simplify before returning. |
| 1161 | canonicalizeMapAndOperands(map, operands); |
| 1162 | *map = simplifyAffineMap(map: *map); |
| 1163 | } |
| 1164 | |
| 1165 | void mlir::affine::fullyComposeAffineMapAndOperands( |
| 1166 | AffineMap *map, SmallVectorImpl<Value> *operands) { |
| 1167 | while (llvm::any_of(Range&: *operands, P: [](Value v) { |
| 1168 | return isa_and_nonnull<AffineApplyOp>(Val: v.getDefiningOp()); |
| 1169 | })) { |
| 1170 | composeAffineMapAndOperands(map, operands); |
| 1171 | } |
| 1172 | } |
| 1173 | |
| 1174 | AffineApplyOp |
| 1175 | mlir::affine::makeComposedAffineApply(OpBuilder &b, Location loc, AffineMap map, |
| 1176 | ArrayRef<OpFoldResult> operands) { |
| 1177 | SmallVector<Value> valueOperands; |
| 1178 | map = foldAttributesIntoMap(b, map, operands, remainingValues&: valueOperands); |
| 1179 | composeAffineMapAndOperands(map: &map, operands: &valueOperands); |
| 1180 | assert(map); |
| 1181 | return b.create<AffineApplyOp>(loc, map, valueOperands); |
| 1182 | } |
| 1183 | |
| 1184 | AffineApplyOp |
| 1185 | mlir::affine::makeComposedAffineApply(OpBuilder &b, Location loc, AffineExpr e, |
| 1186 | ArrayRef<OpFoldResult> operands) { |
| 1187 | return makeComposedAffineApply( |
| 1188 | b, loc, |
| 1189 | AffineMap::inferFromExprList(exprsList: ArrayRef<AffineExpr>{e}, context: b.getContext()) |
| 1190 | .front(), |
| 1191 | operands); |
| 1192 | } |
| 1193 | |
| 1194 | /// Composes the given affine map with the given list of operands, pulling in |
| 1195 | /// the maps from any affine.apply operations that supply the operands. |
| 1196 | static void composeMultiResultAffineMap(AffineMap &map, |
| 1197 | SmallVectorImpl<Value> &operands) { |
| 1198 | // Compose and canonicalize each expression in the map individually because |
| 1199 | // composition only applies to single-result maps, collecting potentially |
| 1200 | // duplicate operands in a single list with shifted dimensions and symbols. |
| 1201 | SmallVector<Value> dims, symbols; |
| 1202 | SmallVector<AffineExpr> exprs; |
| 1203 | for (unsigned i : llvm::seq<unsigned>(Begin: 0, End: map.getNumResults())) { |
| 1204 | SmallVector<Value> submapOperands(operands.begin(), operands.end()); |
| 1205 | AffineMap submap = map.getSubMap(resultPos: {i}); |
| 1206 | fullyComposeAffineMapAndOperands(map: &submap, operands: &submapOperands); |
| 1207 | canonicalizeMapAndOperands(map: &submap, operands: &submapOperands); |
| 1208 | unsigned numNewDims = submap.getNumDims(); |
| 1209 | submap = submap.shiftDims(shift: dims.size()).shiftSymbols(shift: symbols.size()); |
| 1210 | llvm::append_range(C&: dims, |
| 1211 | R: ArrayRef<Value>(submapOperands).take_front(N: numNewDims)); |
| 1212 | llvm::append_range(C&: symbols, |
| 1213 | R: ArrayRef<Value>(submapOperands).drop_front(N: numNewDims)); |
| 1214 | exprs.push_back(Elt: submap.getResult(idx: 0)); |
| 1215 | } |
| 1216 | |
| 1217 | // Canonicalize the map created from composed expressions to deduplicate the |
| 1218 | // dimension and symbol operands. |
| 1219 | operands = llvm::to_vector(Range: llvm::concat<Value>(Ranges&: dims, Ranges&: symbols)); |
| 1220 | map = AffineMap::get(dimCount: dims.size(), symbolCount: symbols.size(), results: exprs, context: map.getContext()); |
| 1221 | canonicalizeMapAndOperands(map: &map, operands: &operands); |
| 1222 | } |
| 1223 | |
| 1224 | OpFoldResult |
| 1225 | mlir::affine::makeComposedFoldedAffineApply(OpBuilder &b, Location loc, |
| 1226 | AffineMap map, |
| 1227 | ArrayRef<OpFoldResult> operands) { |
| 1228 | assert(map.getNumResults() == 1 && "building affine.apply with !=1 result" ); |
| 1229 | |
| 1230 | // Create new builder without a listener, so that no notification is |
| 1231 | // triggered if the op is folded. |
| 1232 | // TODO: OpBuilder::createOrFold should return OpFoldResults, then this |
| 1233 | // workaround is no longer needed. |
| 1234 | OpBuilder newBuilder(b.getContext()); |
| 1235 | newBuilder.setInsertionPoint(block: b.getInsertionBlock(), insertPoint: b.getInsertionPoint()); |
| 1236 | |
| 1237 | // Create op. |
| 1238 | AffineApplyOp applyOp = |
| 1239 | makeComposedAffineApply(newBuilder, loc, map, operands); |
| 1240 | |
| 1241 | // Get constant operands. |
| 1242 | SmallVector<Attribute> constOperands(applyOp->getNumOperands()); |
| 1243 | for (unsigned i = 0, e = constOperands.size(); i != e; ++i) |
| 1244 | matchPattern(applyOp->getOperand(i), m_Constant(bind_value: &constOperands[i])); |
| 1245 | |
| 1246 | // Try to fold the operation. |
| 1247 | SmallVector<OpFoldResult> foldResults; |
| 1248 | if (failed(applyOp->fold(constOperands, foldResults)) || |
| 1249 | foldResults.empty()) { |
| 1250 | if (OpBuilder::Listener *listener = b.getListener()) |
| 1251 | listener->notifyOperationInserted(op: applyOp, /*previous=*/{}); |
| 1252 | return applyOp.getResult(); |
| 1253 | } |
| 1254 | |
| 1255 | applyOp->erase(); |
| 1256 | return llvm::getSingleElement(C&: foldResults); |
| 1257 | } |
| 1258 | |
| 1259 | OpFoldResult |
| 1260 | mlir::affine::makeComposedFoldedAffineApply(OpBuilder &b, Location loc, |
| 1261 | AffineExpr expr, |
| 1262 | ArrayRef<OpFoldResult> operands) { |
| 1263 | return makeComposedFoldedAffineApply( |
| 1264 | b, loc, |
| 1265 | map: AffineMap::inferFromExprList(exprsList: ArrayRef<AffineExpr>{expr}, context: b.getContext()) |
| 1266 | .front(), |
| 1267 | operands); |
| 1268 | } |
| 1269 | |
| 1270 | SmallVector<OpFoldResult> |
| 1271 | mlir::affine::makeComposedFoldedMultiResultAffineApply( |
| 1272 | OpBuilder &b, Location loc, AffineMap map, |
| 1273 | ArrayRef<OpFoldResult> operands) { |
| 1274 | return llvm::map_to_vector(C: llvm::seq<unsigned>(Begin: 0, End: map.getNumResults()), |
| 1275 | F: [&](unsigned i) { |
| 1276 | return makeComposedFoldedAffineApply( |
| 1277 | b, loc, map: map.getSubMap(resultPos: {i}), operands); |
| 1278 | }); |
| 1279 | } |
| 1280 | |
| 1281 | template <typename OpTy> |
| 1282 | static OpTy makeComposedMinMax(OpBuilder &b, Location loc, AffineMap map, |
| 1283 | ArrayRef<OpFoldResult> operands) { |
| 1284 | SmallVector<Value> valueOperands; |
| 1285 | map = foldAttributesIntoMap(b, map, operands, remainingValues&: valueOperands); |
| 1286 | composeMultiResultAffineMap(map, operands&: valueOperands); |
| 1287 | return b.create<OpTy>(loc, b.getIndexType(), map, valueOperands); |
| 1288 | } |
| 1289 | |
| 1290 | AffineMinOp |
| 1291 | mlir::affine::makeComposedAffineMin(OpBuilder &b, Location loc, AffineMap map, |
| 1292 | ArrayRef<OpFoldResult> operands) { |
| 1293 | return makeComposedMinMax<AffineMinOp>(b, loc, map, operands); |
| 1294 | } |
| 1295 | |
| 1296 | template <typename OpTy> |
| 1297 | static OpFoldResult makeComposedFoldedMinMax(OpBuilder &b, Location loc, |
| 1298 | AffineMap map, |
| 1299 | ArrayRef<OpFoldResult> operands) { |
| 1300 | // Create new builder without a listener, so that no notification is |
| 1301 | // triggered if the op is folded. |
| 1302 | // TODO: OpBuilder::createOrFold should return OpFoldResults, then this |
| 1303 | // workaround is no longer needed. |
| 1304 | OpBuilder newBuilder(b.getContext()); |
| 1305 | newBuilder.setInsertionPoint(block: b.getInsertionBlock(), insertPoint: b.getInsertionPoint()); |
| 1306 | |
| 1307 | // Create op. |
| 1308 | auto minMaxOp = makeComposedMinMax<OpTy>(newBuilder, loc, map, operands); |
| 1309 | |
| 1310 | // Get constant operands. |
| 1311 | SmallVector<Attribute> constOperands(minMaxOp->getNumOperands()); |
| 1312 | for (unsigned i = 0, e = constOperands.size(); i != e; ++i) |
| 1313 | matchPattern(minMaxOp->getOperand(i), m_Constant(bind_value: &constOperands[i])); |
| 1314 | |
| 1315 | // Try to fold the operation. |
| 1316 | SmallVector<OpFoldResult> foldResults; |
| 1317 | if (failed(minMaxOp->fold(constOperands, foldResults)) || |
| 1318 | foldResults.empty()) { |
| 1319 | if (OpBuilder::Listener *listener = b.getListener()) |
| 1320 | listener->notifyOperationInserted(op: minMaxOp, /*previous=*/{}); |
| 1321 | return minMaxOp.getResult(); |
| 1322 | } |
| 1323 | |
| 1324 | minMaxOp->erase(); |
| 1325 | return llvm::getSingleElement(C&: foldResults); |
| 1326 | } |
| 1327 | |
| 1328 | OpFoldResult |
| 1329 | mlir::affine::makeComposedFoldedAffineMin(OpBuilder &b, Location loc, |
| 1330 | AffineMap map, |
| 1331 | ArrayRef<OpFoldResult> operands) { |
| 1332 | return makeComposedFoldedMinMax<AffineMinOp>(b, loc, map, operands); |
| 1333 | } |
| 1334 | |
| 1335 | OpFoldResult |
| 1336 | mlir::affine::makeComposedFoldedAffineMax(OpBuilder &b, Location loc, |
| 1337 | AffineMap map, |
| 1338 | ArrayRef<OpFoldResult> operands) { |
| 1339 | return makeComposedFoldedMinMax<AffineMaxOp>(b, loc, map, operands); |
| 1340 | } |
| 1341 | |
| 1342 | // A symbol may appear as a dim in affine.apply operations. This function |
| 1343 | // canonicalizes dims that are valid symbols into actual symbols. |
| 1344 | template <class MapOrSet> |
| 1345 | static void canonicalizePromotedSymbols(MapOrSet *mapOrSet, |
| 1346 | SmallVectorImpl<Value> *operands) { |
| 1347 | if (!mapOrSet || operands->empty()) |
| 1348 | return; |
| 1349 | |
| 1350 | assert(mapOrSet->getNumInputs() == operands->size() && |
| 1351 | "map/set inputs must match number of operands" ); |
| 1352 | |
| 1353 | auto *context = mapOrSet->getContext(); |
| 1354 | SmallVector<Value, 8> resultOperands; |
| 1355 | resultOperands.reserve(N: operands->size()); |
| 1356 | SmallVector<Value, 8> remappedSymbols; |
| 1357 | remappedSymbols.reserve(N: operands->size()); |
| 1358 | unsigned nextDim = 0; |
| 1359 | unsigned nextSym = 0; |
| 1360 | unsigned oldNumSyms = mapOrSet->getNumSymbols(); |
| 1361 | SmallVector<AffineExpr, 8> dimRemapping(mapOrSet->getNumDims()); |
| 1362 | for (unsigned i = 0, e = mapOrSet->getNumInputs(); i != e; ++i) { |
| 1363 | if (i < mapOrSet->getNumDims()) { |
| 1364 | if (isValidSymbol(value: (*operands)[i])) { |
| 1365 | // This is a valid symbol that appears as a dim, canonicalize it. |
| 1366 | dimRemapping[i] = getAffineSymbolExpr(oldNumSyms + nextSym++, context); |
| 1367 | remappedSymbols.push_back(Elt: (*operands)[i]); |
| 1368 | } else { |
| 1369 | dimRemapping[i] = getAffineDimExpr(nextDim++, context); |
| 1370 | resultOperands.push_back(Elt: (*operands)[i]); |
| 1371 | } |
| 1372 | } else { |
| 1373 | resultOperands.push_back(Elt: (*operands)[i]); |
| 1374 | } |
| 1375 | } |
| 1376 | |
| 1377 | resultOperands.append(in_start: remappedSymbols.begin(), in_end: remappedSymbols.end()); |
| 1378 | *operands = resultOperands; |
| 1379 | *mapOrSet = mapOrSet->replaceDimsAndSymbols( |
| 1380 | dimRemapping, /*symReplacements=*/{}, nextDim, oldNumSyms + nextSym); |
| 1381 | |
| 1382 | assert(mapOrSet->getNumInputs() == operands->size() && |
| 1383 | "map/set inputs must match number of operands" ); |
| 1384 | } |
| 1385 | |
| 1386 | /// A valid affine dimension may appear as a symbol in affine.apply operations. |
| 1387 | /// Given an application of `operands` to an affine map or integer set |
| 1388 | /// `mapOrSet`, this function canonicalizes symbols of `mapOrSet` that are valid |
| 1389 | /// dims, but not valid symbols into actual dims. Without such a legalization, |
| 1390 | /// the affine.apply will be invalid. This method is the exact inverse of |
| 1391 | /// canonicalizePromotedSymbols. |
| 1392 | template <class MapOrSet> |
| 1393 | static void legalizeDemotedDims(MapOrSet &mapOrSet, |
| 1394 | SmallVectorImpl<Value> &operands) { |
| 1395 | if (!mapOrSet || operands.empty()) |
| 1396 | return; |
| 1397 | |
| 1398 | unsigned numOperands = operands.size(); |
| 1399 | |
| 1400 | assert(mapOrSet.getNumInputs() == numOperands && |
| 1401 | "map/set inputs must match number of operands" ); |
| 1402 | |
| 1403 | auto *context = mapOrSet.getContext(); |
| 1404 | SmallVector<Value, 8> resultOperands; |
| 1405 | resultOperands.reserve(N: numOperands); |
| 1406 | SmallVector<Value, 8> remappedDims; |
| 1407 | remappedDims.reserve(N: numOperands); |
| 1408 | SmallVector<Value, 8> symOperands; |
| 1409 | symOperands.reserve(N: mapOrSet.getNumSymbols()); |
| 1410 | unsigned nextSym = 0; |
| 1411 | unsigned nextDim = 0; |
| 1412 | unsigned oldNumDims = mapOrSet.getNumDims(); |
| 1413 | SmallVector<AffineExpr, 8> symRemapping(mapOrSet.getNumSymbols()); |
| 1414 | resultOperands.assign(in_start: operands.begin(), in_end: operands.begin() + oldNumDims); |
| 1415 | for (unsigned i = oldNumDims, e = mapOrSet.getNumInputs(); i != e; ++i) { |
| 1416 | if (operands[i] && isValidDim(value: operands[i]) && !isValidSymbol(value: operands[i])) { |
| 1417 | // This is a valid dim that appears as a symbol, legalize it. |
| 1418 | symRemapping[i - oldNumDims] = |
| 1419 | getAffineDimExpr(oldNumDims + nextDim++, context); |
| 1420 | remappedDims.push_back(Elt: operands[i]); |
| 1421 | } else { |
| 1422 | symRemapping[i - oldNumDims] = getAffineSymbolExpr(nextSym++, context); |
| 1423 | symOperands.push_back(Elt: operands[i]); |
| 1424 | } |
| 1425 | } |
| 1426 | |
| 1427 | append_range(C&: resultOperands, R&: remappedDims); |
| 1428 | append_range(C&: resultOperands, R&: symOperands); |
| 1429 | operands = resultOperands; |
| 1430 | mapOrSet = mapOrSet.replaceDimsAndSymbols( |
| 1431 | /*dimReplacements=*/{}, symRemapping, oldNumDims + nextDim, nextSym); |
| 1432 | |
| 1433 | assert(mapOrSet.getNumInputs() == operands.size() && |
| 1434 | "map/set inputs must match number of operands" ); |
| 1435 | } |
| 1436 | |
| 1437 | // Works for either an affine map or an integer set. |
| 1438 | template <class MapOrSet> |
| 1439 | static void canonicalizeMapOrSetAndOperands(MapOrSet *mapOrSet, |
| 1440 | SmallVectorImpl<Value> *operands) { |
| 1441 | static_assert(llvm::is_one_of<MapOrSet, AffineMap, IntegerSet>::value, |
| 1442 | "Argument must be either of AffineMap or IntegerSet type" ); |
| 1443 | |
| 1444 | if (!mapOrSet || operands->empty()) |
| 1445 | return; |
| 1446 | |
| 1447 | assert(mapOrSet->getNumInputs() == operands->size() && |
| 1448 | "map/set inputs must match number of operands" ); |
| 1449 | |
| 1450 | canonicalizePromotedSymbols<MapOrSet>(mapOrSet, operands); |
| 1451 | legalizeDemotedDims<MapOrSet>(*mapOrSet, *operands); |
| 1452 | |
| 1453 | // Check to see what dims are used. |
| 1454 | llvm::SmallBitVector usedDims(mapOrSet->getNumDims()); |
| 1455 | llvm::SmallBitVector usedSyms(mapOrSet->getNumSymbols()); |
| 1456 | mapOrSet->walkExprs([&](AffineExpr expr) { |
| 1457 | if (auto dimExpr = dyn_cast<AffineDimExpr>(Val&: expr)) |
| 1458 | usedDims[dimExpr.getPosition()] = true; |
| 1459 | else if (auto symExpr = dyn_cast<AffineSymbolExpr>(Val&: expr)) |
| 1460 | usedSyms[symExpr.getPosition()] = true; |
| 1461 | }); |
| 1462 | |
| 1463 | auto *context = mapOrSet->getContext(); |
| 1464 | |
| 1465 | SmallVector<Value, 8> resultOperands; |
| 1466 | resultOperands.reserve(N: operands->size()); |
| 1467 | |
| 1468 | llvm::SmallDenseMap<Value, AffineExpr, 8> seenDims; |
| 1469 | SmallVector<AffineExpr, 8> dimRemapping(mapOrSet->getNumDims()); |
| 1470 | unsigned nextDim = 0; |
| 1471 | for (unsigned i = 0, e = mapOrSet->getNumDims(); i != e; ++i) { |
| 1472 | if (usedDims[i]) { |
| 1473 | // Remap dim positions for duplicate operands. |
| 1474 | auto it = seenDims.find(Val: (*operands)[i]); |
| 1475 | if (it == seenDims.end()) { |
| 1476 | dimRemapping[i] = getAffineDimExpr(nextDim++, context); |
| 1477 | resultOperands.push_back(Elt: (*operands)[i]); |
| 1478 | seenDims.insert(KV: std::make_pair(x&: (*operands)[i], y&: dimRemapping[i])); |
| 1479 | } else { |
| 1480 | dimRemapping[i] = it->second; |
| 1481 | } |
| 1482 | } |
| 1483 | } |
| 1484 | llvm::SmallDenseMap<Value, AffineExpr, 8> seenSymbols; |
| 1485 | SmallVector<AffineExpr, 8> symRemapping(mapOrSet->getNumSymbols()); |
| 1486 | unsigned nextSym = 0; |
| 1487 | for (unsigned i = 0, e = mapOrSet->getNumSymbols(); i != e; ++i) { |
| 1488 | if (!usedSyms[i]) |
| 1489 | continue; |
| 1490 | // Handle constant operands (only needed for symbolic operands since |
| 1491 | // constant operands in dimensional positions would have already been |
| 1492 | // promoted to symbolic positions above). |
| 1493 | IntegerAttr operandCst; |
| 1494 | if (matchPattern((*operands)[i + mapOrSet->getNumDims()], |
| 1495 | m_Constant(&operandCst))) { |
| 1496 | symRemapping[i] = |
| 1497 | getAffineConstantExpr(operandCst.getValue().getSExtValue(), context); |
| 1498 | continue; |
| 1499 | } |
| 1500 | // Remap symbol positions for duplicate operands. |
| 1501 | auto it = seenSymbols.find((*operands)[i + mapOrSet->getNumDims()]); |
| 1502 | if (it == seenSymbols.end()) { |
| 1503 | symRemapping[i] = getAffineSymbolExpr(nextSym++, context); |
| 1504 | resultOperands.push_back(Elt: (*operands)[i + mapOrSet->getNumDims()]); |
| 1505 | seenSymbols.insert(std::make_pair((*operands)[i + mapOrSet->getNumDims()], |
| 1506 | symRemapping[i])); |
| 1507 | } else { |
| 1508 | symRemapping[i] = it->second; |
| 1509 | } |
| 1510 | } |
| 1511 | *mapOrSet = mapOrSet->replaceDimsAndSymbols(dimRemapping, symRemapping, |
| 1512 | nextDim, nextSym); |
| 1513 | *operands = resultOperands; |
| 1514 | } |
| 1515 | |
| 1516 | void mlir::affine::canonicalizeMapAndOperands( |
| 1517 | AffineMap *map, SmallVectorImpl<Value> *operands) { |
| 1518 | canonicalizeMapOrSetAndOperands<AffineMap>(mapOrSet: map, operands); |
| 1519 | } |
| 1520 | |
| 1521 | void mlir::affine::canonicalizeSetAndOperands( |
| 1522 | IntegerSet *set, SmallVectorImpl<Value> *operands) { |
| 1523 | canonicalizeMapOrSetAndOperands<IntegerSet>(mapOrSet: set, operands); |
| 1524 | } |
| 1525 | |
| 1526 | namespace { |
| 1527 | /// Simplify AffineApply, AffineLoad, and AffineStore operations by composing |
| 1528 | /// maps that supply results into them. |
| 1529 | /// |
| 1530 | template <typename AffineOpTy> |
| 1531 | struct SimplifyAffineOp : public OpRewritePattern<AffineOpTy> { |
| 1532 | using OpRewritePattern<AffineOpTy>::OpRewritePattern; |
| 1533 | |
| 1534 | /// Replace the affine op with another instance of it with the supplied |
| 1535 | /// map and mapOperands. |
| 1536 | void replaceAffineOp(PatternRewriter &rewriter, AffineOpTy affineOp, |
| 1537 | AffineMap map, ArrayRef<Value> mapOperands) const; |
| 1538 | |
| 1539 | LogicalResult matchAndRewrite(AffineOpTy affineOp, |
| 1540 | PatternRewriter &rewriter) const override { |
| 1541 | static_assert( |
| 1542 | llvm::is_one_of<AffineOpTy, AffineLoadOp, AffinePrefetchOp, |
| 1543 | AffineStoreOp, AffineApplyOp, AffineMinOp, AffineMaxOp, |
| 1544 | AffineVectorStoreOp, AffineVectorLoadOp>::value, |
| 1545 | "affine load/store/vectorstore/vectorload/apply/prefetch/min/max op " |
| 1546 | "expected" ); |
| 1547 | auto map = affineOp.getAffineMap(); |
| 1548 | AffineMap oldMap = map; |
| 1549 | auto oldOperands = affineOp.getMapOperands(); |
| 1550 | SmallVector<Value, 8> resultOperands(oldOperands); |
| 1551 | composeAffineMapAndOperands(&map, &resultOperands); |
| 1552 | canonicalizeMapAndOperands(&map, &resultOperands); |
| 1553 | simplifyMapWithOperands(map, resultOperands); |
| 1554 | if (map == oldMap && std::equal(oldOperands.begin(), oldOperands.end(), |
| 1555 | resultOperands.begin())) |
| 1556 | return failure(); |
| 1557 | |
| 1558 | replaceAffineOp(rewriter, affineOp, map, mapOperands: resultOperands); |
| 1559 | return success(); |
| 1560 | } |
| 1561 | }; |
| 1562 | |
| 1563 | // Specialize the template to account for the different build signatures for |
| 1564 | // affine load, store, and apply ops. |
| 1565 | template <> |
| 1566 | void SimplifyAffineOp<AffineLoadOp>::replaceAffineOp( |
| 1567 | PatternRewriter &rewriter, AffineLoadOp load, AffineMap map, |
| 1568 | ArrayRef<Value> mapOperands) const { |
| 1569 | rewriter.replaceOpWithNewOp<AffineLoadOp>(load, load.getMemRef(), map, |
| 1570 | mapOperands); |
| 1571 | } |
| 1572 | template <> |
| 1573 | void SimplifyAffineOp<AffinePrefetchOp>::replaceAffineOp( |
| 1574 | PatternRewriter &rewriter, AffinePrefetchOp prefetch, AffineMap map, |
| 1575 | ArrayRef<Value> mapOperands) const { |
| 1576 | rewriter.replaceOpWithNewOp<AffinePrefetchOp>( |
| 1577 | prefetch, prefetch.getMemref(), map, mapOperands, prefetch.getIsWrite(), |
| 1578 | prefetch.getLocalityHint(), prefetch.getIsDataCache()); |
| 1579 | } |
| 1580 | template <> |
| 1581 | void SimplifyAffineOp<AffineStoreOp>::replaceAffineOp( |
| 1582 | PatternRewriter &rewriter, AffineStoreOp store, AffineMap map, |
| 1583 | ArrayRef<Value> mapOperands) const { |
| 1584 | rewriter.replaceOpWithNewOp<AffineStoreOp>( |
| 1585 | store, store.getValueToStore(), store.getMemRef(), map, mapOperands); |
| 1586 | } |
| 1587 | template <> |
| 1588 | void SimplifyAffineOp<AffineVectorLoadOp>::replaceAffineOp( |
| 1589 | PatternRewriter &rewriter, AffineVectorLoadOp vectorload, AffineMap map, |
| 1590 | ArrayRef<Value> mapOperands) const { |
| 1591 | rewriter.replaceOpWithNewOp<AffineVectorLoadOp>( |
| 1592 | vectorload, vectorload.getVectorType(), vectorload.getMemRef(), map, |
| 1593 | mapOperands); |
| 1594 | } |
| 1595 | template <> |
| 1596 | void SimplifyAffineOp<AffineVectorStoreOp>::replaceAffineOp( |
| 1597 | PatternRewriter &rewriter, AffineVectorStoreOp vectorstore, AffineMap map, |
| 1598 | ArrayRef<Value> mapOperands) const { |
| 1599 | rewriter.replaceOpWithNewOp<AffineVectorStoreOp>( |
| 1600 | vectorstore, vectorstore.getValueToStore(), vectorstore.getMemRef(), map, |
| 1601 | mapOperands); |
| 1602 | } |
| 1603 | |
| 1604 | // Generic version for ops that don't have extra operands. |
| 1605 | template <typename AffineOpTy> |
| 1606 | void SimplifyAffineOp<AffineOpTy>::replaceAffineOp( |
| 1607 | PatternRewriter &rewriter, AffineOpTy op, AffineMap map, |
| 1608 | ArrayRef<Value> mapOperands) const { |
| 1609 | rewriter.replaceOpWithNewOp<AffineOpTy>(op, map, mapOperands); |
| 1610 | } |
| 1611 | } // namespace |
| 1612 | |
| 1613 | void AffineApplyOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 1614 | MLIRContext *context) { |
| 1615 | results.add<SimplifyAffineOp<AffineApplyOp>>(context); |
| 1616 | } |
| 1617 | |
| 1618 | //===----------------------------------------------------------------------===// |
| 1619 | // AffineDmaStartOp |
| 1620 | //===----------------------------------------------------------------------===// |
| 1621 | |
| 1622 | // TODO: Check that map operands are loop IVs or symbols. |
| 1623 | void AffineDmaStartOp::build(OpBuilder &builder, OperationState &result, |
| 1624 | Value srcMemRef, AffineMap srcMap, |
| 1625 | ValueRange srcIndices, Value destMemRef, |
| 1626 | AffineMap dstMap, ValueRange destIndices, |
| 1627 | Value tagMemRef, AffineMap tagMap, |
| 1628 | ValueRange tagIndices, Value numElements, |
| 1629 | Value stride, Value elementsPerStride) { |
| 1630 | result.addOperands(newOperands: srcMemRef); |
| 1631 | result.addAttribute(getSrcMapAttrStrName(), AffineMapAttr::get(srcMap)); |
| 1632 | result.addOperands(newOperands: srcIndices); |
| 1633 | result.addOperands(newOperands: destMemRef); |
| 1634 | result.addAttribute(getDstMapAttrStrName(), AffineMapAttr::get(dstMap)); |
| 1635 | result.addOperands(newOperands: destIndices); |
| 1636 | result.addOperands(newOperands: tagMemRef); |
| 1637 | result.addAttribute(getTagMapAttrStrName(), AffineMapAttr::get(tagMap)); |
| 1638 | result.addOperands(newOperands: tagIndices); |
| 1639 | result.addOperands(newOperands: numElements); |
| 1640 | if (stride) { |
| 1641 | result.addOperands(newOperands: {stride, elementsPerStride}); |
| 1642 | } |
| 1643 | } |
| 1644 | |
| 1645 | void AffineDmaStartOp::print(OpAsmPrinter &p) { |
| 1646 | p << " " << getSrcMemRef() << '['; |
| 1647 | p.printAffineMapOfSSAIds(getSrcMapAttr(), getSrcIndices()); |
| 1648 | p << "], " << getDstMemRef() << '['; |
| 1649 | p.printAffineMapOfSSAIds(getDstMapAttr(), getDstIndices()); |
| 1650 | p << "], " << getTagMemRef() << '['; |
| 1651 | p.printAffineMapOfSSAIds(getTagMapAttr(), getTagIndices()); |
| 1652 | p << "], " << getNumElements(); |
| 1653 | if (isStrided()) { |
| 1654 | p << ", " << getStride(); |
| 1655 | p << ", " << getNumElementsPerStride(); |
| 1656 | } |
| 1657 | p << " : " << getSrcMemRefType() << ", " << getDstMemRefType() << ", " |
| 1658 | << getTagMemRefType(); |
| 1659 | } |
| 1660 | |
| 1661 | // Parse AffineDmaStartOp. |
| 1662 | // Ex: |
| 1663 | // affine.dma_start %src[%i, %j], %dst[%k, %l], %tag[%index], %size, |
| 1664 | // %stride, %num_elt_per_stride |
| 1665 | // : memref<3076 x f32, 0>, memref<1024 x f32, 2>, memref<1 x i32> |
| 1666 | // |
| 1667 | ParseResult AffineDmaStartOp::parse(OpAsmParser &parser, |
| 1668 | OperationState &result) { |
| 1669 | OpAsmParser::UnresolvedOperand srcMemRefInfo; |
| 1670 | AffineMapAttr srcMapAttr; |
| 1671 | SmallVector<OpAsmParser::UnresolvedOperand, 4> srcMapOperands; |
| 1672 | OpAsmParser::UnresolvedOperand dstMemRefInfo; |
| 1673 | AffineMapAttr dstMapAttr; |
| 1674 | SmallVector<OpAsmParser::UnresolvedOperand, 4> dstMapOperands; |
| 1675 | OpAsmParser::UnresolvedOperand tagMemRefInfo; |
| 1676 | AffineMapAttr tagMapAttr; |
| 1677 | SmallVector<OpAsmParser::UnresolvedOperand, 4> tagMapOperands; |
| 1678 | OpAsmParser::UnresolvedOperand numElementsInfo; |
| 1679 | SmallVector<OpAsmParser::UnresolvedOperand, 2> strideInfo; |
| 1680 | |
| 1681 | SmallVector<Type, 3> types; |
| 1682 | auto indexType = parser.getBuilder().getIndexType(); |
| 1683 | |
| 1684 | // Parse and resolve the following list of operands: |
| 1685 | // *) dst memref followed by its affine maps operands (in square brackets). |
| 1686 | // *) src memref followed by its affine map operands (in square brackets). |
| 1687 | // *) tag memref followed by its affine map operands (in square brackets). |
| 1688 | // *) number of elements transferred by DMA operation. |
| 1689 | if (parser.parseOperand(result&: srcMemRefInfo) || |
| 1690 | parser.parseAffineMapOfSSAIds(operands&: srcMapOperands, map&: srcMapAttr, |
| 1691 | attrName: getSrcMapAttrStrName(), |
| 1692 | attrs&: result.attributes) || |
| 1693 | parser.parseComma() || parser.parseOperand(result&: dstMemRefInfo) || |
| 1694 | parser.parseAffineMapOfSSAIds(operands&: dstMapOperands, map&: dstMapAttr, |
| 1695 | attrName: getDstMapAttrStrName(), |
| 1696 | attrs&: result.attributes) || |
| 1697 | parser.parseComma() || parser.parseOperand(result&: tagMemRefInfo) || |
| 1698 | parser.parseAffineMapOfSSAIds(operands&: tagMapOperands, map&: tagMapAttr, |
| 1699 | attrName: getTagMapAttrStrName(), |
| 1700 | attrs&: result.attributes) || |
| 1701 | parser.parseComma() || parser.parseOperand(result&: numElementsInfo)) |
| 1702 | return failure(); |
| 1703 | |
| 1704 | // Parse optional stride and elements per stride. |
| 1705 | if (parser.parseTrailingOperandList(result&: strideInfo)) |
| 1706 | return failure(); |
| 1707 | |
| 1708 | if (!strideInfo.empty() && strideInfo.size() != 2) { |
| 1709 | return parser.emitError(loc: parser.getNameLoc(), |
| 1710 | message: "expected two stride related operands" ); |
| 1711 | } |
| 1712 | bool isStrided = strideInfo.size() == 2; |
| 1713 | |
| 1714 | if (parser.parseColonTypeList(result&: types)) |
| 1715 | return failure(); |
| 1716 | |
| 1717 | if (types.size() != 3) |
| 1718 | return parser.emitError(loc: parser.getNameLoc(), message: "expected three types" ); |
| 1719 | |
| 1720 | if (parser.resolveOperand(operand: srcMemRefInfo, type: types[0], result&: result.operands) || |
| 1721 | parser.resolveOperands(srcMapOperands, indexType, result.operands) || |
| 1722 | parser.resolveOperand(operand: dstMemRefInfo, type: types[1], result&: result.operands) || |
| 1723 | parser.resolveOperands(dstMapOperands, indexType, result.operands) || |
| 1724 | parser.resolveOperand(operand: tagMemRefInfo, type: types[2], result&: result.operands) || |
| 1725 | parser.resolveOperands(tagMapOperands, indexType, result.operands) || |
| 1726 | parser.resolveOperand(operand: numElementsInfo, type: indexType, result&: result.operands)) |
| 1727 | return failure(); |
| 1728 | |
| 1729 | if (isStrided) { |
| 1730 | if (parser.resolveOperands(strideInfo, indexType, result.operands)) |
| 1731 | return failure(); |
| 1732 | } |
| 1733 | |
| 1734 | // Check that src/dst/tag operand counts match their map.numInputs. |
| 1735 | if (srcMapOperands.size() != srcMapAttr.getValue().getNumInputs() || |
| 1736 | dstMapOperands.size() != dstMapAttr.getValue().getNumInputs() || |
| 1737 | tagMapOperands.size() != tagMapAttr.getValue().getNumInputs()) |
| 1738 | return parser.emitError(loc: parser.getNameLoc(), |
| 1739 | message: "memref operand count not equal to map.numInputs" ); |
| 1740 | return success(); |
| 1741 | } |
| 1742 | |
| 1743 | LogicalResult AffineDmaStartOp::verifyInvariantsImpl() { |
| 1744 | if (!llvm::isa<MemRefType>(getOperand(getSrcMemRefOperandIndex()).getType())) |
| 1745 | return emitOpError("expected DMA source to be of memref type" ); |
| 1746 | if (!llvm::isa<MemRefType>(getOperand(getDstMemRefOperandIndex()).getType())) |
| 1747 | return emitOpError("expected DMA destination to be of memref type" ); |
| 1748 | if (!llvm::isa<MemRefType>(getOperand(getTagMemRefOperandIndex()).getType())) |
| 1749 | return emitOpError("expected DMA tag to be of memref type" ); |
| 1750 | |
| 1751 | unsigned numInputsAllMaps = getSrcMap().getNumInputs() + |
| 1752 | getDstMap().getNumInputs() + |
| 1753 | getTagMap().getNumInputs(); |
| 1754 | if (getNumOperands() != numInputsAllMaps + 3 + 1 && |
| 1755 | getNumOperands() != numInputsAllMaps + 3 + 1 + 2) { |
| 1756 | return emitOpError("incorrect number of operands" ); |
| 1757 | } |
| 1758 | |
| 1759 | Region *scope = getAffineScope(*this); |
| 1760 | for (auto idx : getSrcIndices()) { |
| 1761 | if (!idx.getType().isIndex()) |
| 1762 | return emitOpError("src index to dma_start must have 'index' type" ); |
| 1763 | if (!isValidAffineIndexOperand(idx, scope)) |
| 1764 | return emitOpError( |
| 1765 | "src index must be a valid dimension or symbol identifier" ); |
| 1766 | } |
| 1767 | for (auto idx : getDstIndices()) { |
| 1768 | if (!idx.getType().isIndex()) |
| 1769 | return emitOpError("dst index to dma_start must have 'index' type" ); |
| 1770 | if (!isValidAffineIndexOperand(idx, scope)) |
| 1771 | return emitOpError( |
| 1772 | "dst index must be a valid dimension or symbol identifier" ); |
| 1773 | } |
| 1774 | for (auto idx : getTagIndices()) { |
| 1775 | if (!idx.getType().isIndex()) |
| 1776 | return emitOpError("tag index to dma_start must have 'index' type" ); |
| 1777 | if (!isValidAffineIndexOperand(idx, scope)) |
| 1778 | return emitOpError( |
| 1779 | "tag index must be a valid dimension or symbol identifier" ); |
| 1780 | } |
| 1781 | return success(); |
| 1782 | } |
| 1783 | |
| 1784 | LogicalResult AffineDmaStartOp::fold(ArrayRef<Attribute> cstOperands, |
| 1785 | SmallVectorImpl<OpFoldResult> &results) { |
| 1786 | /// dma_start(memrefcast) -> dma_start |
| 1787 | return memref::foldMemRefCast(*this); |
| 1788 | } |
| 1789 | |
| 1790 | void AffineDmaStartOp::getEffects( |
| 1791 | SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> |
| 1792 | &effects) { |
| 1793 | effects.emplace_back(Args: MemoryEffects::Read::get(), Args: &getSrcMemRefMutable(), |
| 1794 | Args: SideEffects::DefaultResource::get()); |
| 1795 | effects.emplace_back(Args: MemoryEffects::Write::get(), Args: &getDstMemRefMutable(), |
| 1796 | Args: SideEffects::DefaultResource::get()); |
| 1797 | effects.emplace_back(Args: MemoryEffects::Read::get(), Args: &getTagMemRefMutable(), |
| 1798 | Args: SideEffects::DefaultResource::get()); |
| 1799 | } |
| 1800 | |
| 1801 | //===----------------------------------------------------------------------===// |
| 1802 | // AffineDmaWaitOp |
| 1803 | //===----------------------------------------------------------------------===// |
| 1804 | |
| 1805 | // TODO: Check that map operands are loop IVs or symbols. |
| 1806 | void AffineDmaWaitOp::build(OpBuilder &builder, OperationState &result, |
| 1807 | Value tagMemRef, AffineMap tagMap, |
| 1808 | ValueRange tagIndices, Value numElements) { |
| 1809 | result.addOperands(newOperands: tagMemRef); |
| 1810 | result.addAttribute(getTagMapAttrStrName(), AffineMapAttr::get(tagMap)); |
| 1811 | result.addOperands(newOperands: tagIndices); |
| 1812 | result.addOperands(newOperands: numElements); |
| 1813 | } |
| 1814 | |
| 1815 | void AffineDmaWaitOp::print(OpAsmPrinter &p) { |
| 1816 | p << " " << getTagMemRef() << '['; |
| 1817 | SmallVector<Value, 2> operands(getTagIndices()); |
| 1818 | p.printAffineMapOfSSAIds(getTagMapAttr(), operands); |
| 1819 | p << "], " ; |
| 1820 | p.printOperand(value: getNumElements()); |
| 1821 | p << " : " << getTagMemRef().getType(); |
| 1822 | } |
| 1823 | |
| 1824 | // Parse AffineDmaWaitOp. |
| 1825 | // Eg: |
| 1826 | // affine.dma_wait %tag[%index], %num_elements |
| 1827 | // : memref<1 x i32, (d0) -> (d0), 4> |
| 1828 | // |
| 1829 | ParseResult AffineDmaWaitOp::parse(OpAsmParser &parser, |
| 1830 | OperationState &result) { |
| 1831 | OpAsmParser::UnresolvedOperand tagMemRefInfo; |
| 1832 | AffineMapAttr tagMapAttr; |
| 1833 | SmallVector<OpAsmParser::UnresolvedOperand, 2> tagMapOperands; |
| 1834 | Type type; |
| 1835 | auto indexType = parser.getBuilder().getIndexType(); |
| 1836 | OpAsmParser::UnresolvedOperand numElementsInfo; |
| 1837 | |
| 1838 | // Parse tag memref, its map operands, and dma size. |
| 1839 | if (parser.parseOperand(result&: tagMemRefInfo) || |
| 1840 | parser.parseAffineMapOfSSAIds(operands&: tagMapOperands, map&: tagMapAttr, |
| 1841 | attrName: getTagMapAttrStrName(), |
| 1842 | attrs&: result.attributes) || |
| 1843 | parser.parseComma() || parser.parseOperand(result&: numElementsInfo) || |
| 1844 | parser.parseColonType(result&: type) || |
| 1845 | parser.resolveOperand(operand: tagMemRefInfo, type, result&: result.operands) || |
| 1846 | parser.resolveOperands(tagMapOperands, indexType, result.operands) || |
| 1847 | parser.resolveOperand(operand: numElementsInfo, type: indexType, result&: result.operands)) |
| 1848 | return failure(); |
| 1849 | |
| 1850 | if (!llvm::isa<MemRefType>(Val: type)) |
| 1851 | return parser.emitError(loc: parser.getNameLoc(), |
| 1852 | message: "expected tag to be of memref type" ); |
| 1853 | |
| 1854 | if (tagMapOperands.size() != tagMapAttr.getValue().getNumInputs()) |
| 1855 | return parser.emitError(loc: parser.getNameLoc(), |
| 1856 | message: "tag memref operand count != to map.numInputs" ); |
| 1857 | return success(); |
| 1858 | } |
| 1859 | |
| 1860 | LogicalResult AffineDmaWaitOp::verifyInvariantsImpl() { |
| 1861 | if (!llvm::isa<MemRefType>(getOperand(0).getType())) |
| 1862 | return emitOpError("expected DMA tag to be of memref type" ); |
| 1863 | Region *scope = getAffineScope(*this); |
| 1864 | for (auto idx : getTagIndices()) { |
| 1865 | if (!idx.getType().isIndex()) |
| 1866 | return emitOpError("index to dma_wait must have 'index' type" ); |
| 1867 | if (!isValidAffineIndexOperand(idx, scope)) |
| 1868 | return emitOpError( |
| 1869 | "index must be a valid dimension or symbol identifier" ); |
| 1870 | } |
| 1871 | return success(); |
| 1872 | } |
| 1873 | |
| 1874 | LogicalResult AffineDmaWaitOp::fold(ArrayRef<Attribute> cstOperands, |
| 1875 | SmallVectorImpl<OpFoldResult> &results) { |
| 1876 | /// dma_wait(memrefcast) -> dma_wait |
| 1877 | return memref::foldMemRefCast(*this); |
| 1878 | } |
| 1879 | |
| 1880 | void AffineDmaWaitOp::getEffects( |
| 1881 | SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> |
| 1882 | &effects) { |
| 1883 | effects.emplace_back(Args: MemoryEffects::Read::get(), Args: &getTagMemRefMutable(), |
| 1884 | Args: SideEffects::DefaultResource::get()); |
| 1885 | } |
| 1886 | |
| 1887 | //===----------------------------------------------------------------------===// |
| 1888 | // AffineForOp |
| 1889 | //===----------------------------------------------------------------------===// |
| 1890 | |
| 1891 | /// 'bodyBuilder' is used to build the body of affine.for. If iterArgs and |
| 1892 | /// bodyBuilder are empty/null, we include default terminator op. |
| 1893 | void AffineForOp::build(OpBuilder &builder, OperationState &result, |
| 1894 | ValueRange lbOperands, AffineMap lbMap, |
| 1895 | ValueRange ubOperands, AffineMap ubMap, int64_t step, |
| 1896 | ValueRange iterArgs, BodyBuilderFn bodyBuilder) { |
| 1897 | assert(((!lbMap && lbOperands.empty()) || |
| 1898 | lbOperands.size() == lbMap.getNumInputs()) && |
| 1899 | "lower bound operand count does not match the affine map" ); |
| 1900 | assert(((!ubMap && ubOperands.empty()) || |
| 1901 | ubOperands.size() == ubMap.getNumInputs()) && |
| 1902 | "upper bound operand count does not match the affine map" ); |
| 1903 | assert(step > 0 && "step has to be a positive integer constant" ); |
| 1904 | |
| 1905 | OpBuilder::InsertionGuard guard(builder); |
| 1906 | |
| 1907 | // Set variadic segment sizes. |
| 1908 | result.addAttribute( |
| 1909 | getOperandSegmentSizeAttr(), |
| 1910 | builder.getDenseI32ArrayAttr({static_cast<int32_t>(lbOperands.size()), |
| 1911 | static_cast<int32_t>(ubOperands.size()), |
| 1912 | static_cast<int32_t>(iterArgs.size())})); |
| 1913 | |
| 1914 | for (Value val : iterArgs) |
| 1915 | result.addTypes(val.getType()); |
| 1916 | |
| 1917 | // Add an attribute for the step. |
| 1918 | result.addAttribute(getStepAttrName(result.name), |
| 1919 | builder.getIntegerAttr(builder.getIndexType(), step)); |
| 1920 | |
| 1921 | // Add the lower bound. |
| 1922 | result.addAttribute(getLowerBoundMapAttrName(result.name), |
| 1923 | AffineMapAttr::get(lbMap)); |
| 1924 | result.addOperands(lbOperands); |
| 1925 | |
| 1926 | // Add the upper bound. |
| 1927 | result.addAttribute(getUpperBoundMapAttrName(result.name), |
| 1928 | AffineMapAttr::get(ubMap)); |
| 1929 | result.addOperands(ubOperands); |
| 1930 | |
| 1931 | result.addOperands(iterArgs); |
| 1932 | // Create a region and a block for the body. The argument of the region is |
| 1933 | // the loop induction variable. |
| 1934 | Region *bodyRegion = result.addRegion(); |
| 1935 | Block *bodyBlock = builder.createBlock(bodyRegion); |
| 1936 | Value inductionVar = |
| 1937 | bodyBlock->addArgument(builder.getIndexType(), result.location); |
| 1938 | for (Value val : iterArgs) |
| 1939 | bodyBlock->addArgument(val.getType(), val.getLoc()); |
| 1940 | |
| 1941 | // Create the default terminator if the builder is not provided and if the |
| 1942 | // iteration arguments are not provided. Otherwise, leave this to the caller |
| 1943 | // because we don't know which values to return from the loop. |
| 1944 | if (iterArgs.empty() && !bodyBuilder) { |
| 1945 | ensureTerminator(*bodyRegion, builder, result.location); |
| 1946 | } else if (bodyBuilder) { |
| 1947 | OpBuilder::InsertionGuard guard(builder); |
| 1948 | builder.setInsertionPointToStart(bodyBlock); |
| 1949 | bodyBuilder(builder, result.location, inductionVar, |
| 1950 | bodyBlock->getArguments().drop_front()); |
| 1951 | } |
| 1952 | } |
| 1953 | |
| 1954 | void AffineForOp::build(OpBuilder &builder, OperationState &result, int64_t lb, |
| 1955 | int64_t ub, int64_t step, ValueRange iterArgs, |
| 1956 | BodyBuilderFn bodyBuilder) { |
| 1957 | auto lbMap = AffineMap::getConstantMap(lb, builder.getContext()); |
| 1958 | auto ubMap = AffineMap::getConstantMap(ub, builder.getContext()); |
| 1959 | return build(builder, result, {}, lbMap, {}, ubMap, step, iterArgs, |
| 1960 | bodyBuilder); |
| 1961 | } |
| 1962 | |
| 1963 | LogicalResult AffineForOp::verifyRegions() { |
| 1964 | // Check that the body defines as single block argument for the induction |
| 1965 | // variable. |
| 1966 | auto *body = getBody(); |
| 1967 | if (body->getNumArguments() == 0 || !body->getArgument(0).getType().isIndex()) |
| 1968 | return emitOpError("expected body to have a single index argument for the " |
| 1969 | "induction variable" ); |
| 1970 | |
| 1971 | // Verify that the bound operands are valid dimension/symbols. |
| 1972 | /// Lower bound. |
| 1973 | if (getLowerBoundMap().getNumInputs() > 0) |
| 1974 | if (failed(verifyDimAndSymbolIdentifiers(*this, getLowerBoundOperands(), |
| 1975 | getLowerBoundMap().getNumDims()))) |
| 1976 | return failure(); |
| 1977 | /// Upper bound. |
| 1978 | if (getUpperBoundMap().getNumInputs() > 0) |
| 1979 | if (failed(verifyDimAndSymbolIdentifiers(*this, getUpperBoundOperands(), |
| 1980 | getUpperBoundMap().getNumDims()))) |
| 1981 | return failure(); |
| 1982 | if (getLowerBoundMap().getNumResults() < 1) |
| 1983 | return emitOpError("expected lower bound map to have at least one result" ); |
| 1984 | if (getUpperBoundMap().getNumResults() < 1) |
| 1985 | return emitOpError("expected upper bound map to have at least one result" ); |
| 1986 | |
| 1987 | unsigned opNumResults = getNumResults(); |
| 1988 | if (opNumResults == 0) |
| 1989 | return success(); |
| 1990 | |
| 1991 | // If ForOp defines values, check that the number and types of the defined |
| 1992 | // values match ForOp initial iter operands and backedge basic block |
| 1993 | // arguments. |
| 1994 | if (getNumIterOperands() != opNumResults) |
| 1995 | return emitOpError( |
| 1996 | "mismatch between the number of loop-carried values and results" ); |
| 1997 | if (getNumRegionIterArgs() != opNumResults) |
| 1998 | return emitOpError( |
| 1999 | "mismatch between the number of basic block args and results" ); |
| 2000 | |
| 2001 | return success(); |
| 2002 | } |
| 2003 | |
| 2004 | /// Parse a for operation loop bounds. |
| 2005 | static ParseResult parseBound(bool isLower, OperationState &result, |
| 2006 | OpAsmParser &p) { |
| 2007 | // 'min' / 'max' prefixes are generally syntactic sugar, but are required if |
| 2008 | // the map has multiple results. |
| 2009 | bool failedToParsedMinMax = |
| 2010 | failed(Result: p.parseOptionalKeyword(keyword: isLower ? "max" : "min" )); |
| 2011 | |
| 2012 | auto &builder = p.getBuilder(); |
| 2013 | auto boundAttrStrName = |
| 2014 | isLower ? AffineForOp::getLowerBoundMapAttrName(result.name) |
| 2015 | : AffineForOp::getUpperBoundMapAttrName(result.name); |
| 2016 | |
| 2017 | // Parse ssa-id as identity map. |
| 2018 | SmallVector<OpAsmParser::UnresolvedOperand, 1> boundOpInfos; |
| 2019 | if (p.parseOperandList(result&: boundOpInfos)) |
| 2020 | return failure(); |
| 2021 | |
| 2022 | if (!boundOpInfos.empty()) { |
| 2023 | // Check that only one operand was parsed. |
| 2024 | if (boundOpInfos.size() > 1) |
| 2025 | return p.emitError(loc: p.getNameLoc(), |
| 2026 | message: "expected only one loop bound operand" ); |
| 2027 | |
| 2028 | // TODO: improve error message when SSA value is not of index type. |
| 2029 | // Currently it is 'use of value ... expects different type than prior uses' |
| 2030 | if (p.resolveOperand(boundOpInfos.front(), builder.getIndexType(), |
| 2031 | result.operands)) |
| 2032 | return failure(); |
| 2033 | |
| 2034 | // Create an identity map using symbol id. This representation is optimized |
| 2035 | // for storage. Analysis passes may expand it into a multi-dimensional map |
| 2036 | // if desired. |
| 2037 | AffineMap map = builder.getSymbolIdentityMap(); |
| 2038 | result.addAttribute(boundAttrStrName, AffineMapAttr::get(map)); |
| 2039 | return success(); |
| 2040 | } |
| 2041 | |
| 2042 | // Get the attribute location. |
| 2043 | SMLoc attrLoc = p.getCurrentLocation(); |
| 2044 | |
| 2045 | Attribute boundAttr; |
| 2046 | if (p.parseAttribute(boundAttr, builder.getIndexType(), boundAttrStrName, |
| 2047 | result.attributes)) |
| 2048 | return failure(); |
| 2049 | |
| 2050 | // Parse full form - affine map followed by dim and symbol list. |
| 2051 | if (auto affineMapAttr = llvm::dyn_cast<AffineMapAttr>(boundAttr)) { |
| 2052 | unsigned currentNumOperands = result.operands.size(); |
| 2053 | unsigned numDims; |
| 2054 | if (parseDimAndSymbolList(parser&: p, operands&: result.operands, numDims)) |
| 2055 | return failure(); |
| 2056 | |
| 2057 | auto map = affineMapAttr.getValue(); |
| 2058 | if (map.getNumDims() != numDims) |
| 2059 | return p.emitError( |
| 2060 | loc: p.getNameLoc(), |
| 2061 | message: "dim operand count and affine map dim count must match" ); |
| 2062 | |
| 2063 | unsigned numDimAndSymbolOperands = |
| 2064 | result.operands.size() - currentNumOperands; |
| 2065 | if (numDims + map.getNumSymbols() != numDimAndSymbolOperands) |
| 2066 | return p.emitError( |
| 2067 | loc: p.getNameLoc(), |
| 2068 | message: "symbol operand count and affine map symbol count must match" ); |
| 2069 | |
| 2070 | // If the map has multiple results, make sure that we parsed the min/max |
| 2071 | // prefix. |
| 2072 | if (map.getNumResults() > 1 && failedToParsedMinMax) { |
| 2073 | if (isLower) { |
| 2074 | return p.emitError(loc: attrLoc, message: "lower loop bound affine map with " |
| 2075 | "multiple results requires 'max' prefix" ); |
| 2076 | } |
| 2077 | return p.emitError(loc: attrLoc, message: "upper loop bound affine map with multiple " |
| 2078 | "results requires 'min' prefix" ); |
| 2079 | } |
| 2080 | return success(); |
| 2081 | } |
| 2082 | |
| 2083 | // Parse custom assembly form. |
| 2084 | if (auto integerAttr = llvm::dyn_cast<IntegerAttr>(boundAttr)) { |
| 2085 | result.attributes.pop_back(); |
| 2086 | result.addAttribute( |
| 2087 | boundAttrStrName, |
| 2088 | AffineMapAttr::get(builder.getConstantAffineMap(integerAttr.getInt()))); |
| 2089 | return success(); |
| 2090 | } |
| 2091 | |
| 2092 | return p.emitError( |
| 2093 | loc: p.getNameLoc(), |
| 2094 | message: "expected valid affine map representation for loop bounds" ); |
| 2095 | } |
| 2096 | |
| 2097 | ParseResult AffineForOp::parse(OpAsmParser &parser, OperationState &result) { |
| 2098 | auto &builder = parser.getBuilder(); |
| 2099 | OpAsmParser::Argument inductionVariable; |
| 2100 | inductionVariable.type = builder.getIndexType(); |
| 2101 | // Parse the induction variable followed by '='. |
| 2102 | if (parser.parseArgument(inductionVariable) || parser.parseEqual()) |
| 2103 | return failure(); |
| 2104 | |
| 2105 | // Parse loop bounds. |
| 2106 | int64_t numOperands = result.operands.size(); |
| 2107 | if (parseBound(/*isLower=*/true, result, parser)) |
| 2108 | return failure(); |
| 2109 | int64_t numLbOperands = result.operands.size() - numOperands; |
| 2110 | if (parser.parseKeyword("to" , " between bounds" )) |
| 2111 | return failure(); |
| 2112 | numOperands = result.operands.size(); |
| 2113 | if (parseBound(/*isLower=*/false, result, parser)) |
| 2114 | return failure(); |
| 2115 | int64_t numUbOperands = result.operands.size() - numOperands; |
| 2116 | |
| 2117 | // Parse the optional loop step, we default to 1 if one is not present. |
| 2118 | if (parser.parseOptionalKeyword("step" )) { |
| 2119 | result.addAttribute( |
| 2120 | getStepAttrName(result.name), |
| 2121 | builder.getIntegerAttr(builder.getIndexType(), /*value=*/1)); |
| 2122 | } else { |
| 2123 | SMLoc stepLoc = parser.getCurrentLocation(); |
| 2124 | IntegerAttr stepAttr; |
| 2125 | if (parser.parseAttribute(stepAttr, builder.getIndexType(), |
| 2126 | getStepAttrName(result.name).data(), |
| 2127 | result.attributes)) |
| 2128 | return failure(); |
| 2129 | |
| 2130 | if (stepAttr.getValue().isNegative()) |
| 2131 | return parser.emitError( |
| 2132 | stepLoc, |
| 2133 | "expected step to be representable as a positive signed integer" ); |
| 2134 | } |
| 2135 | |
| 2136 | // Parse the optional initial iteration arguments. |
| 2137 | SmallVector<OpAsmParser::Argument, 4> regionArgs; |
| 2138 | SmallVector<OpAsmParser::UnresolvedOperand, 4> operands; |
| 2139 | |
| 2140 | // Induction variable. |
| 2141 | regionArgs.push_back(inductionVariable); |
| 2142 | |
| 2143 | if (succeeded(parser.parseOptionalKeyword("iter_args" ))) { |
| 2144 | // Parse assignment list and results type list. |
| 2145 | if (parser.parseAssignmentList(regionArgs, operands) || |
| 2146 | parser.parseArrowTypeList(result.types)) |
| 2147 | return failure(); |
| 2148 | // Resolve input operands. |
| 2149 | for (auto argOperandType : |
| 2150 | llvm::zip(llvm::drop_begin(regionArgs), operands, result.types)) { |
| 2151 | Type type = std::get<2>(argOperandType); |
| 2152 | std::get<0>(argOperandType).type = type; |
| 2153 | if (parser.resolveOperand(std::get<1>(argOperandType), type, |
| 2154 | result.operands)) |
| 2155 | return failure(); |
| 2156 | } |
| 2157 | } |
| 2158 | |
| 2159 | result.addAttribute( |
| 2160 | getOperandSegmentSizeAttr(), |
| 2161 | builder.getDenseI32ArrayAttr({static_cast<int32_t>(numLbOperands), |
| 2162 | static_cast<int32_t>(numUbOperands), |
| 2163 | static_cast<int32_t>(operands.size())})); |
| 2164 | |
| 2165 | // Parse the body region. |
| 2166 | Region *body = result.addRegion(); |
| 2167 | if (regionArgs.size() != result.types.size() + 1) |
| 2168 | return parser.emitError( |
| 2169 | parser.getNameLoc(), |
| 2170 | "mismatch between the number of loop-carried values and results" ); |
| 2171 | if (parser.parseRegion(*body, regionArgs)) |
| 2172 | return failure(); |
| 2173 | |
| 2174 | AffineForOp::ensureTerminator(*body, builder, result.location); |
| 2175 | |
| 2176 | // Parse the optional attribute list. |
| 2177 | return parser.parseOptionalAttrDict(result.attributes); |
| 2178 | } |
| 2179 | |
| 2180 | static void printBound(AffineMapAttr boundMap, |
| 2181 | Operation::operand_range boundOperands, |
| 2182 | const char *prefix, OpAsmPrinter &p) { |
| 2183 | AffineMap map = boundMap.getValue(); |
| 2184 | |
| 2185 | // Check if this bound should be printed using custom assembly form. |
| 2186 | // The decision to restrict printing custom assembly form to trivial cases |
| 2187 | // comes from the will to roundtrip MLIR binary -> text -> binary in a |
| 2188 | // lossless way. |
| 2189 | // Therefore, custom assembly form parsing and printing is only supported for |
| 2190 | // zero-operand constant maps and single symbol operand identity maps. |
| 2191 | if (map.getNumResults() == 1) { |
| 2192 | AffineExpr expr = map.getResult(idx: 0); |
| 2193 | |
| 2194 | // Print constant bound. |
| 2195 | if (map.getNumDims() == 0 && map.getNumSymbols() == 0) { |
| 2196 | if (auto constExpr = dyn_cast<AffineConstantExpr>(expr)) { |
| 2197 | p << constExpr.getValue(); |
| 2198 | return; |
| 2199 | } |
| 2200 | } |
| 2201 | |
| 2202 | // Print bound that consists of a single SSA symbol if the map is over a |
| 2203 | // single symbol. |
| 2204 | if (map.getNumDims() == 0 && map.getNumSymbols() == 1) { |
| 2205 | if (isa<AffineSymbolExpr>(Val: expr)) { |
| 2206 | p.printOperand(value: *boundOperands.begin()); |
| 2207 | return; |
| 2208 | } |
| 2209 | } |
| 2210 | } else { |
| 2211 | // Map has multiple results. Print 'min' or 'max' prefix. |
| 2212 | p << prefix << ' '; |
| 2213 | } |
| 2214 | |
| 2215 | // Print the map and its operands. |
| 2216 | p << boundMap; |
| 2217 | printDimAndSymbolList(begin: boundOperands.begin(), end: boundOperands.end(), |
| 2218 | numDims: map.getNumDims(), printer&: p); |
| 2219 | } |
| 2220 | |
| 2221 | unsigned AffineForOp::getNumIterOperands() { |
| 2222 | AffineMap lbMap = getLowerBoundMapAttr().getValue(); |
| 2223 | AffineMap ubMap = getUpperBoundMapAttr().getValue(); |
| 2224 | |
| 2225 | return getNumOperands() - lbMap.getNumInputs() - ubMap.getNumInputs(); |
| 2226 | } |
| 2227 | |
| 2228 | std::optional<MutableArrayRef<OpOperand>> |
| 2229 | AffineForOp::getYieldedValuesMutable() { |
| 2230 | return cast<AffineYieldOp>(getBody()->getTerminator()).getOperandsMutable(); |
| 2231 | } |
| 2232 | |
| 2233 | void AffineForOp::print(OpAsmPrinter &p) { |
| 2234 | p << ' '; |
| 2235 | p.printRegionArgument(getBody()->getArgument(0), /*argAttrs=*/{}, |
| 2236 | /*omitType=*/true); |
| 2237 | p << " = " ; |
| 2238 | printBound(getLowerBoundMapAttr(), getLowerBoundOperands(), "max" , p); |
| 2239 | p << " to " ; |
| 2240 | printBound(getUpperBoundMapAttr(), getUpperBoundOperands(), "min" , p); |
| 2241 | |
| 2242 | if (getStepAsInt() != 1) |
| 2243 | p << " step " << getStepAsInt(); |
| 2244 | |
| 2245 | bool printBlockTerminators = false; |
| 2246 | if (getNumIterOperands() > 0) { |
| 2247 | p << " iter_args(" ; |
| 2248 | auto regionArgs = getRegionIterArgs(); |
| 2249 | auto operands = getInits(); |
| 2250 | |
| 2251 | llvm::interleaveComma(llvm::zip(regionArgs, operands), p, [&](auto it) { |
| 2252 | p << std::get<0>(it) << " = " << std::get<1>(it); |
| 2253 | }); |
| 2254 | p << ") -> (" << getResultTypes() << ")" ; |
| 2255 | printBlockTerminators = true; |
| 2256 | } |
| 2257 | |
| 2258 | p << ' '; |
| 2259 | p.printRegion(getRegion(), /*printEntryBlockArgs=*/false, |
| 2260 | printBlockTerminators); |
| 2261 | p.printOptionalAttrDict( |
| 2262 | (*this)->getAttrs(), |
| 2263 | /*elidedAttrs=*/{getLowerBoundMapAttrName(getOperation()->getName()), |
| 2264 | getUpperBoundMapAttrName(getOperation()->getName()), |
| 2265 | getStepAttrName(getOperation()->getName()), |
| 2266 | getOperandSegmentSizeAttr()}); |
| 2267 | } |
| 2268 | |
| 2269 | /// Fold the constant bounds of a loop. |
| 2270 | static LogicalResult foldLoopBounds(AffineForOp forOp) { |
| 2271 | auto foldLowerOrUpperBound = [&forOp](bool lower) { |
| 2272 | // Check to see if each of the operands is the result of a constant. If |
| 2273 | // so, get the value. If not, ignore it. |
| 2274 | SmallVector<Attribute, 8> operandConstants; |
| 2275 | auto boundOperands = |
| 2276 | lower ? forOp.getLowerBoundOperands() : forOp.getUpperBoundOperands(); |
| 2277 | for (auto operand : boundOperands) { |
| 2278 | Attribute operandCst; |
| 2279 | matchPattern(operand, m_Constant(&operandCst)); |
| 2280 | operandConstants.push_back(operandCst); |
| 2281 | } |
| 2282 | |
| 2283 | AffineMap boundMap = |
| 2284 | lower ? forOp.getLowerBoundMap() : forOp.getUpperBoundMap(); |
| 2285 | assert(boundMap.getNumResults() >= 1 && |
| 2286 | "bound maps should have at least one result" ); |
| 2287 | SmallVector<Attribute, 4> foldedResults; |
| 2288 | if (failed(Result: boundMap.constantFold(operandConstants, results&: foldedResults))) |
| 2289 | return failure(); |
| 2290 | |
| 2291 | // Compute the max or min as applicable over the results. |
| 2292 | assert(!foldedResults.empty() && "bounds should have at least one result" ); |
| 2293 | auto maxOrMin = llvm::cast<IntegerAttr>(foldedResults[0]).getValue(); |
| 2294 | for (unsigned i = 1, e = foldedResults.size(); i < e; i++) { |
| 2295 | auto foldedResult = llvm::cast<IntegerAttr>(foldedResults[i]).getValue(); |
| 2296 | maxOrMin = lower ? llvm::APIntOps::smax(A: maxOrMin, B: foldedResult) |
| 2297 | : llvm::APIntOps::smin(A: maxOrMin, B: foldedResult); |
| 2298 | } |
| 2299 | lower ? forOp.setConstantLowerBound(maxOrMin.getSExtValue()) |
| 2300 | : forOp.setConstantUpperBound(maxOrMin.getSExtValue()); |
| 2301 | return success(); |
| 2302 | }; |
| 2303 | |
| 2304 | // Try to fold the lower bound. |
| 2305 | bool folded = false; |
| 2306 | if (!forOp.hasConstantLowerBound()) |
| 2307 | folded |= succeeded(Result: foldLowerOrUpperBound(/*lower=*/true)); |
| 2308 | |
| 2309 | // Try to fold the upper bound. |
| 2310 | if (!forOp.hasConstantUpperBound()) |
| 2311 | folded |= succeeded(Result: foldLowerOrUpperBound(/*lower=*/false)); |
| 2312 | return success(IsSuccess: folded); |
| 2313 | } |
| 2314 | |
| 2315 | /// Canonicalize the bounds of the given loop. |
| 2316 | static LogicalResult canonicalizeLoopBounds(AffineForOp forOp) { |
| 2317 | SmallVector<Value, 4> lbOperands(forOp.getLowerBoundOperands()); |
| 2318 | SmallVector<Value, 4> ubOperands(forOp.getUpperBoundOperands()); |
| 2319 | |
| 2320 | auto lbMap = forOp.getLowerBoundMap(); |
| 2321 | auto ubMap = forOp.getUpperBoundMap(); |
| 2322 | auto prevLbMap = lbMap; |
| 2323 | auto prevUbMap = ubMap; |
| 2324 | |
| 2325 | composeAffineMapAndOperands(&lbMap, &lbOperands); |
| 2326 | canonicalizeMapAndOperands(&lbMap, &lbOperands); |
| 2327 | simplifyMinOrMaxExprWithOperands(lbMap, lbOperands, /*isMax=*/true); |
| 2328 | simplifyMinOrMaxExprWithOperands(ubMap, ubOperands, /*isMax=*/false); |
| 2329 | lbMap = removeDuplicateExprs(lbMap); |
| 2330 | |
| 2331 | composeAffineMapAndOperands(&ubMap, &ubOperands); |
| 2332 | canonicalizeMapAndOperands(&ubMap, &ubOperands); |
| 2333 | ubMap = removeDuplicateExprs(ubMap); |
| 2334 | |
| 2335 | // Any canonicalization change always leads to updated map(s). |
| 2336 | if (lbMap == prevLbMap && ubMap == prevUbMap) |
| 2337 | return failure(); |
| 2338 | |
| 2339 | if (lbMap != prevLbMap) |
| 2340 | forOp.setLowerBound(lbOperands, lbMap); |
| 2341 | if (ubMap != prevUbMap) |
| 2342 | forOp.setUpperBound(ubOperands, ubMap); |
| 2343 | return success(); |
| 2344 | } |
| 2345 | |
| 2346 | namespace { |
| 2347 | /// Returns constant trip count in trivial cases. |
| 2348 | static std::optional<uint64_t> getTrivialConstantTripCount(AffineForOp forOp) { |
| 2349 | int64_t step = forOp.getStepAsInt(); |
| 2350 | if (!forOp.hasConstantBounds() || step <= 0) |
| 2351 | return std::nullopt; |
| 2352 | int64_t lb = forOp.getConstantLowerBound(); |
| 2353 | int64_t ub = forOp.getConstantUpperBound(); |
| 2354 | return ub - lb <= 0 ? 0 : (ub - lb + step - 1) / step; |
| 2355 | } |
| 2356 | |
| 2357 | /// This is a pattern to fold trivially empty loop bodies. |
| 2358 | /// TODO: This should be moved into the folding hook. |
| 2359 | struct AffineForEmptyLoopFolder : public OpRewritePattern<AffineForOp> { |
| 2360 | using OpRewritePattern<AffineForOp>::OpRewritePattern; |
| 2361 | |
| 2362 | LogicalResult matchAndRewrite(AffineForOp forOp, |
| 2363 | PatternRewriter &rewriter) const override { |
| 2364 | // Check that the body only contains a yield. |
| 2365 | if (!llvm::hasSingleElement(*forOp.getBody())) |
| 2366 | return failure(); |
| 2367 | if (forOp.getNumResults() == 0) |
| 2368 | return success(); |
| 2369 | std::optional<uint64_t> tripCount = getTrivialConstantTripCount(forOp); |
| 2370 | if (tripCount && *tripCount == 0) { |
| 2371 | // The initial values of the iteration arguments would be the op's |
| 2372 | // results. |
| 2373 | rewriter.replaceOp(forOp, forOp.getInits()); |
| 2374 | return success(); |
| 2375 | } |
| 2376 | SmallVector<Value, 4> replacements; |
| 2377 | auto yieldOp = cast<AffineYieldOp>(forOp.getBody()->getTerminator()); |
| 2378 | auto iterArgs = forOp.getRegionIterArgs(); |
| 2379 | bool hasValDefinedOutsideLoop = false; |
| 2380 | bool iterArgsNotInOrder = false; |
| 2381 | for (unsigned i = 0, e = yieldOp->getNumOperands(); i < e; ++i) { |
| 2382 | Value val = yieldOp.getOperand(i); |
| 2383 | auto *iterArgIt = llvm::find(iterArgs, val); |
| 2384 | // TODO: It should be possible to perform a replacement by computing the |
| 2385 | // last value of the IV based on the bounds and the step. |
| 2386 | if (val == forOp.getInductionVar()) |
| 2387 | return failure(); |
| 2388 | if (iterArgIt == iterArgs.end()) { |
| 2389 | // `val` is defined outside of the loop. |
| 2390 | assert(forOp.isDefinedOutsideOfLoop(val) && |
| 2391 | "must be defined outside of the loop" ); |
| 2392 | hasValDefinedOutsideLoop = true; |
| 2393 | replacements.push_back(Elt: val); |
| 2394 | } else { |
| 2395 | unsigned pos = std::distance(iterArgs.begin(), iterArgIt); |
| 2396 | if (pos != i) |
| 2397 | iterArgsNotInOrder = true; |
| 2398 | replacements.push_back(Elt: forOp.getInits()[pos]); |
| 2399 | } |
| 2400 | } |
| 2401 | // Bail out when the trip count is unknown and the loop returns any value |
| 2402 | // defined outside of the loop or any iterArg out of order. |
| 2403 | if (!tripCount.has_value() && |
| 2404 | (hasValDefinedOutsideLoop || iterArgsNotInOrder)) |
| 2405 | return failure(); |
| 2406 | // Bail out when the loop iterates more than once and it returns any iterArg |
| 2407 | // out of order. |
| 2408 | if (tripCount.has_value() && tripCount.value() >= 2 && iterArgsNotInOrder) |
| 2409 | return failure(); |
| 2410 | rewriter.replaceOp(forOp, replacements); |
| 2411 | return success(); |
| 2412 | } |
| 2413 | }; |
| 2414 | } // namespace |
| 2415 | |
| 2416 | void AffineForOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 2417 | MLIRContext *context) { |
| 2418 | results.add<AffineForEmptyLoopFolder>(context); |
| 2419 | } |
| 2420 | |
| 2421 | OperandRange AffineForOp::getEntrySuccessorOperands(RegionBranchPoint point) { |
| 2422 | assert((point.isParent() || point == getRegion()) && "invalid region point" ); |
| 2423 | |
| 2424 | // The initial operands map to the loop arguments after the induction |
| 2425 | // variable or are forwarded to the results when the trip count is zero. |
| 2426 | return getInits(); |
| 2427 | } |
| 2428 | |
| 2429 | void AffineForOp::getSuccessorRegions( |
| 2430 | RegionBranchPoint point, SmallVectorImpl<RegionSuccessor> ®ions) { |
| 2431 | assert((point.isParent() || point == getRegion()) && "expected loop region" ); |
| 2432 | // The loop may typically branch back to its body or to the parent operation. |
| 2433 | // If the predecessor is the parent op and the trip count is known to be at |
| 2434 | // least one, branch into the body using the iterator arguments. And in cases |
| 2435 | // we know the trip count is zero, it can only branch back to its parent. |
| 2436 | std::optional<uint64_t> tripCount = getTrivialConstantTripCount(*this); |
| 2437 | if (point.isParent() && tripCount.has_value()) { |
| 2438 | if (tripCount.value() > 0) { |
| 2439 | regions.push_back(RegionSuccessor(&getRegion(), getRegionIterArgs())); |
| 2440 | return; |
| 2441 | } |
| 2442 | if (tripCount.value() == 0) { |
| 2443 | regions.push_back(RegionSuccessor(getResults())); |
| 2444 | return; |
| 2445 | } |
| 2446 | } |
| 2447 | |
| 2448 | // From the loop body, if the trip count is one, we can only branch back to |
| 2449 | // the parent. |
| 2450 | if (!point.isParent() && tripCount && *tripCount == 1) { |
| 2451 | regions.push_back(RegionSuccessor(getResults())); |
| 2452 | return; |
| 2453 | } |
| 2454 | |
| 2455 | // In all other cases, the loop may branch back to itself or the parent |
| 2456 | // operation. |
| 2457 | regions.push_back(RegionSuccessor(&getRegion(), getRegionIterArgs())); |
| 2458 | regions.push_back(RegionSuccessor(getResults())); |
| 2459 | } |
| 2460 | |
| 2461 | /// Returns true if the affine.for has zero iterations in trivial cases. |
| 2462 | static bool hasTrivialZeroTripCount(AffineForOp op) { |
| 2463 | std::optional<uint64_t> tripCount = getTrivialConstantTripCount(op); |
| 2464 | return tripCount && *tripCount == 0; |
| 2465 | } |
| 2466 | |
| 2467 | LogicalResult AffineForOp::fold(FoldAdaptor adaptor, |
| 2468 | SmallVectorImpl<OpFoldResult> &results) { |
| 2469 | bool folded = succeeded(foldLoopBounds(*this)); |
| 2470 | folded |= succeeded(canonicalizeLoopBounds(*this)); |
| 2471 | if (hasTrivialZeroTripCount(*this) && getNumResults() != 0) { |
| 2472 | // The initial values of the loop-carried variables (iter_args) are the |
| 2473 | // results of the op. But this must be avoided for an affine.for op that |
| 2474 | // does not return any results. Since ops that do not return results cannot |
| 2475 | // be folded away, we would enter an infinite loop of folds on the same |
| 2476 | // affine.for op. |
| 2477 | results.assign(getInits().begin(), getInits().end()); |
| 2478 | folded = true; |
| 2479 | } |
| 2480 | return success(folded); |
| 2481 | } |
| 2482 | |
| 2483 | AffineBound AffineForOp::getLowerBound() { |
| 2484 | return AffineBound(*this, getLowerBoundOperands(), getLowerBoundMap()); |
| 2485 | } |
| 2486 | |
| 2487 | AffineBound AffineForOp::getUpperBound() { |
| 2488 | return AffineBound(*this, getUpperBoundOperands(), getUpperBoundMap()); |
| 2489 | } |
| 2490 | |
| 2491 | void AffineForOp::setLowerBound(ValueRange lbOperands, AffineMap map) { |
| 2492 | assert(lbOperands.size() == map.getNumInputs()); |
| 2493 | assert(map.getNumResults() >= 1 && "bound map has at least one result" ); |
| 2494 | getLowerBoundOperandsMutable().assign(lbOperands); |
| 2495 | setLowerBoundMap(map); |
| 2496 | } |
| 2497 | |
| 2498 | void AffineForOp::setUpperBound(ValueRange ubOperands, AffineMap map) { |
| 2499 | assert(ubOperands.size() == map.getNumInputs()); |
| 2500 | assert(map.getNumResults() >= 1 && "bound map has at least one result" ); |
| 2501 | getUpperBoundOperandsMutable().assign(ubOperands); |
| 2502 | setUpperBoundMap(map); |
| 2503 | } |
| 2504 | |
| 2505 | bool AffineForOp::hasConstantLowerBound() { |
| 2506 | return getLowerBoundMap().isSingleConstant(); |
| 2507 | } |
| 2508 | |
| 2509 | bool AffineForOp::hasConstantUpperBound() { |
| 2510 | return getUpperBoundMap().isSingleConstant(); |
| 2511 | } |
| 2512 | |
| 2513 | int64_t AffineForOp::getConstantLowerBound() { |
| 2514 | return getLowerBoundMap().getSingleConstantResult(); |
| 2515 | } |
| 2516 | |
| 2517 | int64_t AffineForOp::getConstantUpperBound() { |
| 2518 | return getUpperBoundMap().getSingleConstantResult(); |
| 2519 | } |
| 2520 | |
| 2521 | void AffineForOp::setConstantLowerBound(int64_t value) { |
| 2522 | setLowerBound({}, AffineMap::getConstantMap(value, getContext())); |
| 2523 | } |
| 2524 | |
| 2525 | void AffineForOp::setConstantUpperBound(int64_t value) { |
| 2526 | setUpperBound({}, AffineMap::getConstantMap(value, getContext())); |
| 2527 | } |
| 2528 | |
| 2529 | AffineForOp::operand_range AffineForOp::getControlOperands() { |
| 2530 | return {operand_begin(), operand_begin() + getLowerBoundOperands().size() + |
| 2531 | getUpperBoundOperands().size()}; |
| 2532 | } |
| 2533 | |
| 2534 | bool AffineForOp::matchingBoundOperandList() { |
| 2535 | auto lbMap = getLowerBoundMap(); |
| 2536 | auto ubMap = getUpperBoundMap(); |
| 2537 | if (lbMap.getNumDims() != ubMap.getNumDims() || |
| 2538 | lbMap.getNumSymbols() != ubMap.getNumSymbols()) |
| 2539 | return false; |
| 2540 | |
| 2541 | unsigned numOperands = lbMap.getNumInputs(); |
| 2542 | for (unsigned i = 0, e = lbMap.getNumInputs(); i < e; i++) { |
| 2543 | // Compare Value 's. |
| 2544 | if (getOperand(i) != getOperand(numOperands + i)) |
| 2545 | return false; |
| 2546 | } |
| 2547 | return true; |
| 2548 | } |
| 2549 | |
| 2550 | SmallVector<Region *> AffineForOp::getLoopRegions() { return {&getRegion()}; } |
| 2551 | |
| 2552 | std::optional<SmallVector<Value>> AffineForOp::getLoopInductionVars() { |
| 2553 | return SmallVector<Value>{getInductionVar()}; |
| 2554 | } |
| 2555 | |
| 2556 | std::optional<SmallVector<OpFoldResult>> AffineForOp::getLoopLowerBounds() { |
| 2557 | if (!hasConstantLowerBound()) |
| 2558 | return std::nullopt; |
| 2559 | OpBuilder b(getContext()); |
| 2560 | return SmallVector<OpFoldResult>{ |
| 2561 | OpFoldResult(b.getI64IntegerAttr(getConstantLowerBound()))}; |
| 2562 | } |
| 2563 | |
| 2564 | std::optional<SmallVector<OpFoldResult>> AffineForOp::getLoopSteps() { |
| 2565 | OpBuilder b(getContext()); |
| 2566 | return SmallVector<OpFoldResult>{ |
| 2567 | OpFoldResult(b.getI64IntegerAttr(getStepAsInt()))}; |
| 2568 | } |
| 2569 | |
| 2570 | std::optional<SmallVector<OpFoldResult>> AffineForOp::getLoopUpperBounds() { |
| 2571 | if (!hasConstantUpperBound()) |
| 2572 | return {}; |
| 2573 | OpBuilder b(getContext()); |
| 2574 | return SmallVector<OpFoldResult>{ |
| 2575 | OpFoldResult(b.getI64IntegerAttr(getConstantUpperBound()))}; |
| 2576 | } |
| 2577 | |
| 2578 | FailureOr<LoopLikeOpInterface> AffineForOp::replaceWithAdditionalYields( |
| 2579 | RewriterBase &rewriter, ValueRange newInitOperands, |
| 2580 | bool replaceInitOperandUsesInLoop, |
| 2581 | const NewYieldValuesFn &newYieldValuesFn) { |
| 2582 | // Create a new loop before the existing one, with the extra operands. |
| 2583 | OpBuilder::InsertionGuard g(rewriter); |
| 2584 | rewriter.setInsertionPoint(getOperation()); |
| 2585 | auto inits = llvm::to_vector(getInits()); |
| 2586 | inits.append(newInitOperands.begin(), newInitOperands.end()); |
| 2587 | AffineForOp newLoop = rewriter.create<AffineForOp>( |
| 2588 | getLoc(), getLowerBoundOperands(), getLowerBoundMap(), |
| 2589 | getUpperBoundOperands(), getUpperBoundMap(), getStepAsInt(), inits); |
| 2590 | |
| 2591 | // Generate the new yield values and append them to the scf.yield operation. |
| 2592 | auto yieldOp = cast<AffineYieldOp>(getBody()->getTerminator()); |
| 2593 | ArrayRef<BlockArgument> newIterArgs = |
| 2594 | newLoop.getBody()->getArguments().take_back(newInitOperands.size()); |
| 2595 | { |
| 2596 | OpBuilder::InsertionGuard g(rewriter); |
| 2597 | rewriter.setInsertionPoint(yieldOp); |
| 2598 | SmallVector<Value> newYieldedValues = |
| 2599 | newYieldValuesFn(rewriter, getLoc(), newIterArgs); |
| 2600 | assert(newInitOperands.size() == newYieldedValues.size() && |
| 2601 | "expected as many new yield values as new iter operands" ); |
| 2602 | rewriter.modifyOpInPlace(yieldOp, [&]() { |
| 2603 | yieldOp.getOperandsMutable().append(newYieldedValues); |
| 2604 | }); |
| 2605 | } |
| 2606 | |
| 2607 | // Move the loop body to the new op. |
| 2608 | rewriter.mergeBlocks(getBody(), newLoop.getBody(), |
| 2609 | newLoop.getBody()->getArguments().take_front( |
| 2610 | getBody()->getNumArguments())); |
| 2611 | |
| 2612 | if (replaceInitOperandUsesInLoop) { |
| 2613 | // Replace all uses of `newInitOperands` with the corresponding basic block |
| 2614 | // arguments. |
| 2615 | for (auto it : llvm::zip(newInitOperands, newIterArgs)) { |
| 2616 | rewriter.replaceUsesWithIf(std::get<0>(it), std::get<1>(it), |
| 2617 | [&](OpOperand &use) { |
| 2618 | Operation *user = use.getOwner(); |
| 2619 | return newLoop->isProperAncestor(user); |
| 2620 | }); |
| 2621 | } |
| 2622 | } |
| 2623 | |
| 2624 | // Replace the old loop. |
| 2625 | rewriter.replaceOp(getOperation(), |
| 2626 | newLoop->getResults().take_front(getNumResults())); |
| 2627 | return cast<LoopLikeOpInterface>(newLoop.getOperation()); |
| 2628 | } |
| 2629 | |
| 2630 | Speculation::Speculatability AffineForOp::getSpeculatability() { |
| 2631 | // `affine.for (I = Start; I < End; I += 1)` terminates for all values of |
| 2632 | // Start and End. |
| 2633 | // |
| 2634 | // For Step != 1, the loop may not terminate. We can add more smarts here if |
| 2635 | // needed. |
| 2636 | return getStepAsInt() == 1 ? Speculation::RecursivelySpeculatable |
| 2637 | : Speculation::NotSpeculatable; |
| 2638 | } |
| 2639 | |
| 2640 | /// Returns true if the provided value is the induction variable of a |
| 2641 | /// AffineForOp. |
| 2642 | bool mlir::affine::isAffineForInductionVar(Value val) { |
| 2643 | return getForInductionVarOwner(val) != AffineForOp(); |
| 2644 | } |
| 2645 | |
| 2646 | bool mlir::affine::isAffineParallelInductionVar(Value val) { |
| 2647 | return getAffineParallelInductionVarOwner(val) != nullptr; |
| 2648 | } |
| 2649 | |
| 2650 | bool mlir::affine::isAffineInductionVar(Value val) { |
| 2651 | return isAffineForInductionVar(val) || isAffineParallelInductionVar(val); |
| 2652 | } |
| 2653 | |
| 2654 | AffineForOp mlir::affine::getForInductionVarOwner(Value val) { |
| 2655 | auto ivArg = llvm::dyn_cast<BlockArgument>(Val&: val); |
| 2656 | if (!ivArg || !ivArg.getOwner() || !ivArg.getOwner()->getParent()) |
| 2657 | return AffineForOp(); |
| 2658 | if (auto forOp = |
| 2659 | ivArg.getOwner()->getParent()->getParentOfType<AffineForOp>()) |
| 2660 | // Check to make sure `val` is the induction variable, not an iter_arg. |
| 2661 | return forOp.getInductionVar() == val ? forOp : AffineForOp(); |
| 2662 | return AffineForOp(); |
| 2663 | } |
| 2664 | |
| 2665 | AffineParallelOp mlir::affine::getAffineParallelInductionVarOwner(Value val) { |
| 2666 | auto ivArg = llvm::dyn_cast<BlockArgument>(Val&: val); |
| 2667 | if (!ivArg || !ivArg.getOwner()) |
| 2668 | return nullptr; |
| 2669 | Operation *containingOp = ivArg.getOwner()->getParentOp(); |
| 2670 | auto parallelOp = dyn_cast_if_present<AffineParallelOp>(containingOp); |
| 2671 | if (parallelOp && llvm::is_contained(parallelOp.getIVs(), val)) |
| 2672 | return parallelOp; |
| 2673 | return nullptr; |
| 2674 | } |
| 2675 | |
| 2676 | /// Extracts the induction variables from a list of AffineForOps and returns |
| 2677 | /// them. |
| 2678 | void mlir::affine::(ArrayRef<AffineForOp> forInsts, |
| 2679 | SmallVectorImpl<Value> *ivs) { |
| 2680 | ivs->reserve(N: forInsts.size()); |
| 2681 | for (auto forInst : forInsts) |
| 2682 | ivs->push_back(forInst.getInductionVar()); |
| 2683 | } |
| 2684 | |
| 2685 | void mlir::affine::(ArrayRef<mlir::Operation *> affineOps, |
| 2686 | SmallVectorImpl<mlir::Value> &ivs) { |
| 2687 | ivs.reserve(N: affineOps.size()); |
| 2688 | for (Operation *op : affineOps) { |
| 2689 | // Add constraints from forOp's bounds. |
| 2690 | if (auto forOp = dyn_cast<AffineForOp>(op)) |
| 2691 | ivs.push_back(Elt: forOp.getInductionVar()); |
| 2692 | else if (auto parallelOp = dyn_cast<AffineParallelOp>(op)) |
| 2693 | for (size_t i = 0; i < parallelOp.getBody()->getNumArguments(); i++) |
| 2694 | ivs.push_back(Elt: parallelOp.getBody()->getArgument(i)); |
| 2695 | } |
| 2696 | } |
| 2697 | |
| 2698 | /// Builds an affine loop nest, using "loopCreatorFn" to create individual loop |
| 2699 | /// operations. |
| 2700 | template <typename BoundListTy, typename LoopCreatorTy> |
| 2701 | static void buildAffineLoopNestImpl( |
| 2702 | OpBuilder &builder, Location loc, BoundListTy lbs, BoundListTy ubs, |
| 2703 | ArrayRef<int64_t> steps, |
| 2704 | function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilderFn, |
| 2705 | LoopCreatorTy &&loopCreatorFn) { |
| 2706 | assert(lbs.size() == ubs.size() && "Mismatch in number of arguments" ); |
| 2707 | assert(lbs.size() == steps.size() && "Mismatch in number of arguments" ); |
| 2708 | |
| 2709 | // If there are no loops to be constructed, construct the body anyway. |
| 2710 | OpBuilder::InsertionGuard guard(builder); |
| 2711 | if (lbs.empty()) { |
| 2712 | if (bodyBuilderFn) |
| 2713 | bodyBuilderFn(builder, loc, ValueRange()); |
| 2714 | return; |
| 2715 | } |
| 2716 | |
| 2717 | // Create the loops iteratively and store the induction variables. |
| 2718 | SmallVector<Value, 4> ivs; |
| 2719 | ivs.reserve(N: lbs.size()); |
| 2720 | for (unsigned i = 0, e = lbs.size(); i < e; ++i) { |
| 2721 | // Callback for creating the loop body, always creates the terminator. |
| 2722 | auto loopBody = [&](OpBuilder &nestedBuilder, Location nestedLoc, Value iv, |
| 2723 | ValueRange iterArgs) { |
| 2724 | ivs.push_back(Elt: iv); |
| 2725 | // In the innermost loop, call the body builder. |
| 2726 | if (i == e - 1 && bodyBuilderFn) { |
| 2727 | OpBuilder::InsertionGuard nestedGuard(nestedBuilder); |
| 2728 | bodyBuilderFn(nestedBuilder, nestedLoc, ivs); |
| 2729 | } |
| 2730 | nestedBuilder.create<AffineYieldOp>(nestedLoc); |
| 2731 | }; |
| 2732 | |
| 2733 | // Delegate actual loop creation to the callback in order to dispatch |
| 2734 | // between constant- and variable-bound loops. |
| 2735 | auto loop = loopCreatorFn(builder, loc, lbs[i], ubs[i], steps[i], loopBody); |
| 2736 | builder.setInsertionPointToStart(loop.getBody()); |
| 2737 | } |
| 2738 | } |
| 2739 | |
| 2740 | /// Creates an affine loop from the bounds known to be constants. |
| 2741 | static AffineForOp |
| 2742 | buildAffineLoopFromConstants(OpBuilder &builder, Location loc, int64_t lb, |
| 2743 | int64_t ub, int64_t step, |
| 2744 | AffineForOp::BodyBuilderFn bodyBuilderFn) { |
| 2745 | return builder.create<AffineForOp>(loc, lb, ub, step, |
| 2746 | /*iterArgs=*/std::nullopt, bodyBuilderFn); |
| 2747 | } |
| 2748 | |
| 2749 | /// Creates an affine loop from the bounds that may or may not be constants. |
| 2750 | static AffineForOp |
| 2751 | buildAffineLoopFromValues(OpBuilder &builder, Location loc, Value lb, Value ub, |
| 2752 | int64_t step, |
| 2753 | AffineForOp::BodyBuilderFn bodyBuilderFn) { |
| 2754 | std::optional<int64_t> lbConst = getConstantIntValue(ofr: lb); |
| 2755 | std::optional<int64_t> ubConst = getConstantIntValue(ofr: ub); |
| 2756 | if (lbConst && ubConst) |
| 2757 | return buildAffineLoopFromConstants(builder, loc, lbConst.value(), |
| 2758 | ubConst.value(), step, bodyBuilderFn); |
| 2759 | return builder.create<AffineForOp>(loc, lb, builder.getDimIdentityMap(), ub, |
| 2760 | builder.getDimIdentityMap(), step, |
| 2761 | /*iterArgs=*/std::nullopt, bodyBuilderFn); |
| 2762 | } |
| 2763 | |
| 2764 | void mlir::affine::buildAffineLoopNest( |
| 2765 | OpBuilder &builder, Location loc, ArrayRef<int64_t> lbs, |
| 2766 | ArrayRef<int64_t> ubs, ArrayRef<int64_t> steps, |
| 2767 | function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilderFn) { |
| 2768 | buildAffineLoopNestImpl(builder, loc, lbs, ubs, steps, bodyBuilderFn, |
| 2769 | buildAffineLoopFromConstants); |
| 2770 | } |
| 2771 | |
| 2772 | void mlir::affine::buildAffineLoopNest( |
| 2773 | OpBuilder &builder, Location loc, ValueRange lbs, ValueRange ubs, |
| 2774 | ArrayRef<int64_t> steps, |
| 2775 | function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilderFn) { |
| 2776 | buildAffineLoopNestImpl(builder, loc, lbs, ubs, steps, bodyBuilderFn, |
| 2777 | buildAffineLoopFromValues); |
| 2778 | } |
| 2779 | |
| 2780 | //===----------------------------------------------------------------------===// |
| 2781 | // AffineIfOp |
| 2782 | //===----------------------------------------------------------------------===// |
| 2783 | |
| 2784 | namespace { |
| 2785 | /// Remove else blocks that have nothing other than a zero value yield. |
| 2786 | struct SimplifyDeadElse : public OpRewritePattern<AffineIfOp> { |
| 2787 | using OpRewritePattern<AffineIfOp>::OpRewritePattern; |
| 2788 | |
| 2789 | LogicalResult matchAndRewrite(AffineIfOp ifOp, |
| 2790 | PatternRewriter &rewriter) const override { |
| 2791 | if (ifOp.getElseRegion().empty() || |
| 2792 | !llvm::hasSingleElement(*ifOp.getElseBlock()) || ifOp.getNumResults()) |
| 2793 | return failure(); |
| 2794 | |
| 2795 | rewriter.startOpModification(op: ifOp); |
| 2796 | rewriter.eraseBlock(block: ifOp.getElseBlock()); |
| 2797 | rewriter.finalizeOpModification(op: ifOp); |
| 2798 | return success(); |
| 2799 | } |
| 2800 | }; |
| 2801 | |
| 2802 | /// Removes affine.if cond if the condition is always true or false in certain |
| 2803 | /// trivial cases. Promotes the then/else block in the parent operation block. |
| 2804 | struct AlwaysTrueOrFalseIf : public OpRewritePattern<AffineIfOp> { |
| 2805 | using OpRewritePattern<AffineIfOp>::OpRewritePattern; |
| 2806 | |
| 2807 | LogicalResult matchAndRewrite(AffineIfOp op, |
| 2808 | PatternRewriter &rewriter) const override { |
| 2809 | |
| 2810 | auto isTriviallyFalse = [](IntegerSet iSet) { |
| 2811 | return iSet.isEmptyIntegerSet(); |
| 2812 | }; |
| 2813 | |
| 2814 | auto isTriviallyTrue = [](IntegerSet iSet) { |
| 2815 | return (iSet.getNumEqualities() == 1 && iSet.getNumInequalities() == 0 && |
| 2816 | iSet.getConstraint(idx: 0) == 0); |
| 2817 | }; |
| 2818 | |
| 2819 | IntegerSet affineIfConditions = op.getIntegerSet(); |
| 2820 | Block *blockToMove; |
| 2821 | if (isTriviallyFalse(affineIfConditions)) { |
| 2822 | // The absence, or equivalently, the emptiness of the else region need not |
| 2823 | // be checked when affine.if is returning results because if an affine.if |
| 2824 | // operation is returning results, it always has a non-empty else region. |
| 2825 | if (op.getNumResults() == 0 && !op.hasElse()) { |
| 2826 | // If the else region is absent, or equivalently, empty, remove the |
| 2827 | // affine.if operation (which is not returning any results). |
| 2828 | rewriter.eraseOp(op: op); |
| 2829 | return success(); |
| 2830 | } |
| 2831 | blockToMove = op.getElseBlock(); |
| 2832 | } else if (isTriviallyTrue(affineIfConditions)) { |
| 2833 | blockToMove = op.getThenBlock(); |
| 2834 | } else { |
| 2835 | return failure(); |
| 2836 | } |
| 2837 | Operation *blockToMoveTerminator = blockToMove->getTerminator(); |
| 2838 | // Promote the "blockToMove" block to the parent operation block between the |
| 2839 | // prologue and epilogue of "op". |
| 2840 | rewriter.inlineBlockBefore(blockToMove, op); |
| 2841 | // Replace the "op" operation with the operands of the |
| 2842 | // "blockToMoveTerminator" operation. Note that "blockToMoveTerminator" is |
| 2843 | // the affine.yield operation present in the "blockToMove" block. It has no |
| 2844 | // operands when affine.if is not returning results and therefore, in that |
| 2845 | // case, replaceOp just erases "op". When affine.if is not returning |
| 2846 | // results, the affine.yield operation can be omitted. It gets inserted |
| 2847 | // implicitly. |
| 2848 | rewriter.replaceOp(op, blockToMoveTerminator->getOperands()); |
| 2849 | // Erase the "blockToMoveTerminator" operation since it is now in the parent |
| 2850 | // operation block, which already has its own terminator. |
| 2851 | rewriter.eraseOp(op: blockToMoveTerminator); |
| 2852 | return success(); |
| 2853 | } |
| 2854 | }; |
| 2855 | } // namespace |
| 2856 | |
| 2857 | /// AffineIfOp has two regions -- `then` and `else`. The flow of data should be |
| 2858 | /// as follows: AffineIfOp -> `then`/`else` -> AffineIfOp |
| 2859 | void AffineIfOp::getSuccessorRegions( |
| 2860 | RegionBranchPoint point, SmallVectorImpl<RegionSuccessor> ®ions) { |
| 2861 | // If the predecessor is an AffineIfOp, then branching into both `then` and |
| 2862 | // `else` region is valid. |
| 2863 | if (point.isParent()) { |
| 2864 | regions.reserve(2); |
| 2865 | regions.push_back( |
| 2866 | RegionSuccessor(&getThenRegion(), getThenRegion().getArguments())); |
| 2867 | // If the "else" region is empty, branch bach into parent. |
| 2868 | if (getElseRegion().empty()) { |
| 2869 | regions.push_back(getResults()); |
| 2870 | } else { |
| 2871 | regions.push_back( |
| 2872 | RegionSuccessor(&getElseRegion(), getElseRegion().getArguments())); |
| 2873 | } |
| 2874 | return; |
| 2875 | } |
| 2876 | |
| 2877 | // If the predecessor is the `else`/`then` region, then branching into parent |
| 2878 | // op is valid. |
| 2879 | regions.push_back(RegionSuccessor(getResults())); |
| 2880 | } |
| 2881 | |
| 2882 | LogicalResult AffineIfOp::verify() { |
| 2883 | // Verify that we have a condition attribute. |
| 2884 | // FIXME: This should be specified in the arguments list in ODS. |
| 2885 | auto conditionAttr = |
| 2886 | (*this)->getAttrOfType<IntegerSetAttr>(getConditionAttrStrName()); |
| 2887 | if (!conditionAttr) |
| 2888 | return emitOpError("requires an integer set attribute named 'condition'" ); |
| 2889 | |
| 2890 | // Verify that there are enough operands for the condition. |
| 2891 | IntegerSet condition = conditionAttr.getValue(); |
| 2892 | if (getNumOperands() != condition.getNumInputs()) |
| 2893 | return emitOpError("operand count and condition integer set dimension and " |
| 2894 | "symbol count must match" ); |
| 2895 | |
| 2896 | // Verify that the operands are valid dimension/symbols. |
| 2897 | if (failed(verifyDimAndSymbolIdentifiers(*this, getOperands(), |
| 2898 | condition.getNumDims()))) |
| 2899 | return failure(); |
| 2900 | |
| 2901 | return success(); |
| 2902 | } |
| 2903 | |
| 2904 | ParseResult AffineIfOp::parse(OpAsmParser &parser, OperationState &result) { |
| 2905 | // Parse the condition attribute set. |
| 2906 | IntegerSetAttr conditionAttr; |
| 2907 | unsigned numDims; |
| 2908 | if (parser.parseAttribute(conditionAttr, |
| 2909 | AffineIfOp::getConditionAttrStrName(), |
| 2910 | result.attributes) || |
| 2911 | parseDimAndSymbolList(parser, result.operands, numDims)) |
| 2912 | return failure(); |
| 2913 | |
| 2914 | // Verify the condition operands. |
| 2915 | auto set = conditionAttr.getValue(); |
| 2916 | if (set.getNumDims() != numDims) |
| 2917 | return parser.emitError( |
| 2918 | parser.getNameLoc(), |
| 2919 | "dim operand count and integer set dim count must match" ); |
| 2920 | if (numDims + set.getNumSymbols() != result.operands.size()) |
| 2921 | return parser.emitError( |
| 2922 | parser.getNameLoc(), |
| 2923 | "symbol operand count and integer set symbol count must match" ); |
| 2924 | |
| 2925 | if (parser.parseOptionalArrowTypeList(result.types)) |
| 2926 | return failure(); |
| 2927 | |
| 2928 | // Create the regions for 'then' and 'else'. The latter must be created even |
| 2929 | // if it remains empty for the validity of the operation. |
| 2930 | result.regions.reserve(2); |
| 2931 | Region *thenRegion = result.addRegion(); |
| 2932 | Region *elseRegion = result.addRegion(); |
| 2933 | |
| 2934 | // Parse the 'then' region. |
| 2935 | if (parser.parseRegion(*thenRegion, {}, {})) |
| 2936 | return failure(); |
| 2937 | AffineIfOp::ensureTerminator(*thenRegion, parser.getBuilder(), |
| 2938 | result.location); |
| 2939 | |
| 2940 | // If we find an 'else' keyword then parse the 'else' region. |
| 2941 | if (!parser.parseOptionalKeyword("else" )) { |
| 2942 | if (parser.parseRegion(*elseRegion, {}, {})) |
| 2943 | return failure(); |
| 2944 | AffineIfOp::ensureTerminator(*elseRegion, parser.getBuilder(), |
| 2945 | result.location); |
| 2946 | } |
| 2947 | |
| 2948 | // Parse the optional attribute list. |
| 2949 | if (parser.parseOptionalAttrDict(result.attributes)) |
| 2950 | return failure(); |
| 2951 | |
| 2952 | return success(); |
| 2953 | } |
| 2954 | |
| 2955 | void AffineIfOp::print(OpAsmPrinter &p) { |
| 2956 | auto conditionAttr = |
| 2957 | (*this)->getAttrOfType<IntegerSetAttr>(getConditionAttrStrName()); |
| 2958 | p << " " << conditionAttr; |
| 2959 | printDimAndSymbolList(operand_begin(), operand_end(), |
| 2960 | conditionAttr.getValue().getNumDims(), p); |
| 2961 | p.printOptionalArrowTypeList(getResultTypes()); |
| 2962 | p << ' '; |
| 2963 | p.printRegion(getThenRegion(), /*printEntryBlockArgs=*/false, |
| 2964 | /*printBlockTerminators=*/getNumResults()); |
| 2965 | |
| 2966 | // Print the 'else' regions if it has any blocks. |
| 2967 | auto &elseRegion = this->getElseRegion(); |
| 2968 | if (!elseRegion.empty()) { |
| 2969 | p << " else " ; |
| 2970 | p.printRegion(elseRegion, |
| 2971 | /*printEntryBlockArgs=*/false, |
| 2972 | /*printBlockTerminators=*/getNumResults()); |
| 2973 | } |
| 2974 | |
| 2975 | // Print the attribute list. |
| 2976 | p.printOptionalAttrDict((*this)->getAttrs(), |
| 2977 | /*elidedAttrs=*/getConditionAttrStrName()); |
| 2978 | } |
| 2979 | |
| 2980 | IntegerSet AffineIfOp::getIntegerSet() { |
| 2981 | return (*this) |
| 2982 | ->getAttrOfType<IntegerSetAttr>(getConditionAttrStrName()) |
| 2983 | .getValue(); |
| 2984 | } |
| 2985 | |
| 2986 | void AffineIfOp::setIntegerSet(IntegerSet newSet) { |
| 2987 | (*this)->setAttr(getConditionAttrStrName(), IntegerSetAttr::get(newSet)); |
| 2988 | } |
| 2989 | |
| 2990 | void AffineIfOp::setConditional(IntegerSet set, ValueRange operands) { |
| 2991 | setIntegerSet(set); |
| 2992 | (*this)->setOperands(operands); |
| 2993 | } |
| 2994 | |
| 2995 | void AffineIfOp::build(OpBuilder &builder, OperationState &result, |
| 2996 | TypeRange resultTypes, IntegerSet set, ValueRange args, |
| 2997 | bool withElseRegion) { |
| 2998 | assert(resultTypes.empty() || withElseRegion); |
| 2999 | OpBuilder::InsertionGuard guard(builder); |
| 3000 | |
| 3001 | result.addTypes(resultTypes); |
| 3002 | result.addOperands(args); |
| 3003 | result.addAttribute(getConditionAttrStrName(), IntegerSetAttr::get(set)); |
| 3004 | |
| 3005 | Region *thenRegion = result.addRegion(); |
| 3006 | builder.createBlock(thenRegion); |
| 3007 | if (resultTypes.empty()) |
| 3008 | AffineIfOp::ensureTerminator(*thenRegion, builder, result.location); |
| 3009 | |
| 3010 | Region *elseRegion = result.addRegion(); |
| 3011 | if (withElseRegion) { |
| 3012 | builder.createBlock(elseRegion); |
| 3013 | if (resultTypes.empty()) |
| 3014 | AffineIfOp::ensureTerminator(*elseRegion, builder, result.location); |
| 3015 | } |
| 3016 | } |
| 3017 | |
| 3018 | void AffineIfOp::build(OpBuilder &builder, OperationState &result, |
| 3019 | IntegerSet set, ValueRange args, bool withElseRegion) { |
| 3020 | AffineIfOp::build(builder, result, /*resultTypes=*/{}, set, args, |
| 3021 | withElseRegion); |
| 3022 | } |
| 3023 | |
| 3024 | /// Compose any affine.apply ops feeding into `operands` of the integer set |
| 3025 | /// `set` by composing the maps of such affine.apply ops with the integer |
| 3026 | /// set constraints. |
| 3027 | static void composeSetAndOperands(IntegerSet &set, |
| 3028 | SmallVectorImpl<Value> &operands) { |
| 3029 | // We will simply reuse the API of the map composition by viewing the LHSs of |
| 3030 | // the equalities and inequalities of `set` as the affine exprs of an affine |
| 3031 | // map. Convert to equivalent map, compose, and convert back to set. |
| 3032 | auto map = AffineMap::get(dimCount: set.getNumDims(), symbolCount: set.getNumSymbols(), |
| 3033 | results: set.getConstraints(), context: set.getContext()); |
| 3034 | // Check if any composition is possible. |
| 3035 | if (llvm::none_of(Range&: operands, |
| 3036 | P: [](Value v) { return v.getDefiningOp<AffineApplyOp>(); })) |
| 3037 | return; |
| 3038 | |
| 3039 | composeAffineMapAndOperands(map: &map, operands: &operands); |
| 3040 | set = IntegerSet::get(dimCount: map.getNumDims(), symbolCount: map.getNumSymbols(), constraints: map.getResults(), |
| 3041 | eqFlags: set.getEqFlags()); |
| 3042 | } |
| 3043 | |
| 3044 | /// Canonicalize an affine if op's conditional (integer set + operands). |
| 3045 | LogicalResult AffineIfOp::fold(FoldAdaptor, SmallVectorImpl<OpFoldResult> &) { |
| 3046 | auto set = getIntegerSet(); |
| 3047 | SmallVector<Value, 4> operands(getOperands()); |
| 3048 | composeSetAndOperands(set, operands); |
| 3049 | canonicalizeSetAndOperands(&set, &operands); |
| 3050 | |
| 3051 | // Check if the canonicalization or composition led to any change. |
| 3052 | if (getIntegerSet() == set && llvm::equal(operands, getOperands())) |
| 3053 | return failure(); |
| 3054 | |
| 3055 | setConditional(set, operands); |
| 3056 | return success(); |
| 3057 | } |
| 3058 | |
| 3059 | void AffineIfOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 3060 | MLIRContext *context) { |
| 3061 | results.add<SimplifyDeadElse, AlwaysTrueOrFalseIf>(context); |
| 3062 | } |
| 3063 | |
| 3064 | //===----------------------------------------------------------------------===// |
| 3065 | // AffineLoadOp |
| 3066 | //===----------------------------------------------------------------------===// |
| 3067 | |
| 3068 | void AffineLoadOp::build(OpBuilder &builder, OperationState &result, |
| 3069 | AffineMap map, ValueRange operands) { |
| 3070 | assert(operands.size() == 1 + map.getNumInputs() && "inconsistent operands" ); |
| 3071 | result.addOperands(operands); |
| 3072 | if (map) |
| 3073 | result.addAttribute(getMapAttrStrName(), AffineMapAttr::get(map)); |
| 3074 | auto memrefType = llvm::cast<MemRefType>(operands[0].getType()); |
| 3075 | result.types.push_back(memrefType.getElementType()); |
| 3076 | } |
| 3077 | |
| 3078 | void AffineLoadOp::build(OpBuilder &builder, OperationState &result, |
| 3079 | Value memref, AffineMap map, ValueRange mapOperands) { |
| 3080 | assert(map.getNumInputs() == mapOperands.size() && "inconsistent index info" ); |
| 3081 | result.addOperands(memref); |
| 3082 | result.addOperands(mapOperands); |
| 3083 | auto memrefType = llvm::cast<MemRefType>(memref.getType()); |
| 3084 | result.addAttribute(getMapAttrStrName(), AffineMapAttr::get(map)); |
| 3085 | result.types.push_back(memrefType.getElementType()); |
| 3086 | } |
| 3087 | |
| 3088 | void AffineLoadOp::build(OpBuilder &builder, OperationState &result, |
| 3089 | Value memref, ValueRange indices) { |
| 3090 | auto memrefType = llvm::cast<MemRefType>(memref.getType()); |
| 3091 | int64_t rank = memrefType.getRank(); |
| 3092 | // Create identity map for memrefs with at least one dimension or () -> () |
| 3093 | // for zero-dimensional memrefs. |
| 3094 | auto map = |
| 3095 | rank ? builder.getMultiDimIdentityMap(rank) : builder.getEmptyAffineMap(); |
| 3096 | build(builder, result, memref, map, indices); |
| 3097 | } |
| 3098 | |
| 3099 | ParseResult AffineLoadOp::parse(OpAsmParser &parser, OperationState &result) { |
| 3100 | auto &builder = parser.getBuilder(); |
| 3101 | auto indexTy = builder.getIndexType(); |
| 3102 | |
| 3103 | MemRefType type; |
| 3104 | OpAsmParser::UnresolvedOperand memrefInfo; |
| 3105 | AffineMapAttr mapAttr; |
| 3106 | SmallVector<OpAsmParser::UnresolvedOperand, 1> mapOperands; |
| 3107 | return failure( |
| 3108 | parser.parseOperand(memrefInfo) || |
| 3109 | parser.parseAffineMapOfSSAIds(mapOperands, mapAttr, |
| 3110 | AffineLoadOp::getMapAttrStrName(), |
| 3111 | result.attributes) || |
| 3112 | parser.parseOptionalAttrDict(result.attributes) || |
| 3113 | parser.parseColonType(type) || |
| 3114 | parser.resolveOperand(memrefInfo, type, result.operands) || |
| 3115 | parser.resolveOperands(mapOperands, indexTy, result.operands) || |
| 3116 | parser.addTypeToList(type.getElementType(), result.types)); |
| 3117 | } |
| 3118 | |
| 3119 | void AffineLoadOp::print(OpAsmPrinter &p) { |
| 3120 | p << " " << getMemRef() << '['; |
| 3121 | if (AffineMapAttr mapAttr = |
| 3122 | (*this)->getAttrOfType<AffineMapAttr>(getMapAttrStrName())) |
| 3123 | p.printAffineMapOfSSAIds(mapAttr, getMapOperands()); |
| 3124 | p << ']'; |
| 3125 | p.printOptionalAttrDict((*this)->getAttrs(), |
| 3126 | /*elidedAttrs=*/{getMapAttrStrName()}); |
| 3127 | p << " : " << getMemRefType(); |
| 3128 | } |
| 3129 | |
| 3130 | /// Verify common indexing invariants of affine.load, affine.store, |
| 3131 | /// affine.vector_load and affine.vector_store. |
| 3132 | template <typename AffineMemOpTy> |
| 3133 | static LogicalResult |
| 3134 | verifyMemoryOpIndexing(AffineMemOpTy op, AffineMapAttr mapAttr, |
| 3135 | Operation::operand_range mapOperands, |
| 3136 | MemRefType memrefType, unsigned numIndexOperands) { |
| 3137 | AffineMap map = mapAttr.getValue(); |
| 3138 | if (map.getNumResults() != memrefType.getRank()) |
| 3139 | return op->emitOpError("affine map num results must equal memref rank" ); |
| 3140 | if (map.getNumInputs() != numIndexOperands) |
| 3141 | return op->emitOpError("expects as many subscripts as affine map inputs" ); |
| 3142 | |
| 3143 | for (auto idx : mapOperands) { |
| 3144 | if (!idx.getType().isIndex()) |
| 3145 | return op->emitOpError("index to load must have 'index' type" ); |
| 3146 | } |
| 3147 | if (failed(verifyDimAndSymbolIdentifiers(op, mapOperands, map.getNumDims()))) |
| 3148 | return failure(); |
| 3149 | |
| 3150 | return success(); |
| 3151 | } |
| 3152 | |
| 3153 | LogicalResult AffineLoadOp::verify() { |
| 3154 | auto memrefType = getMemRefType(); |
| 3155 | if (getType() != memrefType.getElementType()) |
| 3156 | return emitOpError("result type must match element type of memref" ); |
| 3157 | |
| 3158 | if (failed(verifyMemoryOpIndexing( |
| 3159 | *this, (*this)->getAttrOfType<AffineMapAttr>(getMapAttrStrName()), |
| 3160 | getMapOperands(), memrefType, |
| 3161 | /*numIndexOperands=*/getNumOperands() - 1))) |
| 3162 | return failure(); |
| 3163 | |
| 3164 | return success(); |
| 3165 | } |
| 3166 | |
| 3167 | void AffineLoadOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 3168 | MLIRContext *context) { |
| 3169 | results.add<SimplifyAffineOp<AffineLoadOp>>(context); |
| 3170 | } |
| 3171 | |
| 3172 | OpFoldResult AffineLoadOp::fold(FoldAdaptor adaptor) { |
| 3173 | /// load(memrefcast) -> load |
| 3174 | if (succeeded(memref::foldMemRefCast(*this))) |
| 3175 | return getResult(); |
| 3176 | |
| 3177 | // Fold load from a global constant memref. |
| 3178 | auto getGlobalOp = getMemref().getDefiningOp<memref::GetGlobalOp>(); |
| 3179 | if (!getGlobalOp) |
| 3180 | return {}; |
| 3181 | // Get to the memref.global defining the symbol. |
| 3182 | auto *symbolTableOp = getGlobalOp->getParentWithTrait<OpTrait::SymbolTable>(); |
| 3183 | if (!symbolTableOp) |
| 3184 | return {}; |
| 3185 | auto global = dyn_cast_or_null<memref::GlobalOp>( |
| 3186 | SymbolTable::lookupSymbolIn(symbolTableOp, getGlobalOp.getNameAttr())); |
| 3187 | if (!global) |
| 3188 | return {}; |
| 3189 | |
| 3190 | // Check if the global memref is a constant. |
| 3191 | auto cstAttr = |
| 3192 | llvm::dyn_cast_or_null<DenseElementsAttr>(global.getConstantInitValue()); |
| 3193 | if (!cstAttr) |
| 3194 | return {}; |
| 3195 | // If it's a splat constant, we can fold irrespective of indices. |
| 3196 | if (auto splatAttr = llvm::dyn_cast<SplatElementsAttr>(cstAttr)) |
| 3197 | return splatAttr.getSplatValue<Attribute>(); |
| 3198 | // Otherwise, we can fold only if we know the indices. |
| 3199 | if (!getAffineMap().isConstant()) |
| 3200 | return {}; |
| 3201 | auto indices = llvm::to_vector<4>( |
| 3202 | llvm::map_range(getAffineMap().getConstantResults(), |
| 3203 | [](int64_t v) -> uint64_t { return v; })); |
| 3204 | return cstAttr.getValues<Attribute>()[indices]; |
| 3205 | } |
| 3206 | |
| 3207 | //===----------------------------------------------------------------------===// |
| 3208 | // AffineStoreOp |
| 3209 | //===----------------------------------------------------------------------===// |
| 3210 | |
| 3211 | void AffineStoreOp::build(OpBuilder &builder, OperationState &result, |
| 3212 | Value valueToStore, Value memref, AffineMap map, |
| 3213 | ValueRange mapOperands) { |
| 3214 | assert(map.getNumInputs() == mapOperands.size() && "inconsistent index info" ); |
| 3215 | result.addOperands(valueToStore); |
| 3216 | result.addOperands(memref); |
| 3217 | result.addOperands(mapOperands); |
| 3218 | result.getOrAddProperties<Properties>().map = AffineMapAttr::get(map); |
| 3219 | } |
| 3220 | |
| 3221 | // Use identity map. |
| 3222 | void AffineStoreOp::build(OpBuilder &builder, OperationState &result, |
| 3223 | Value valueToStore, Value memref, |
| 3224 | ValueRange indices) { |
| 3225 | auto memrefType = llvm::cast<MemRefType>(memref.getType()); |
| 3226 | int64_t rank = memrefType.getRank(); |
| 3227 | // Create identity map for memrefs with at least one dimension or () -> () |
| 3228 | // for zero-dimensional memrefs. |
| 3229 | auto map = |
| 3230 | rank ? builder.getMultiDimIdentityMap(rank) : builder.getEmptyAffineMap(); |
| 3231 | build(builder, result, valueToStore, memref, map, indices); |
| 3232 | } |
| 3233 | |
| 3234 | ParseResult AffineStoreOp::parse(OpAsmParser &parser, OperationState &result) { |
| 3235 | auto indexTy = parser.getBuilder().getIndexType(); |
| 3236 | |
| 3237 | MemRefType type; |
| 3238 | OpAsmParser::UnresolvedOperand storeValueInfo; |
| 3239 | OpAsmParser::UnresolvedOperand memrefInfo; |
| 3240 | AffineMapAttr mapAttr; |
| 3241 | SmallVector<OpAsmParser::UnresolvedOperand, 1> mapOperands; |
| 3242 | return failure(parser.parseOperand(storeValueInfo) || parser.parseComma() || |
| 3243 | parser.parseOperand(memrefInfo) || |
| 3244 | parser.parseAffineMapOfSSAIds( |
| 3245 | mapOperands, mapAttr, AffineStoreOp::getMapAttrStrName(), |
| 3246 | result.attributes) || |
| 3247 | parser.parseOptionalAttrDict(result.attributes) || |
| 3248 | parser.parseColonType(type) || |
| 3249 | parser.resolveOperand(storeValueInfo, type.getElementType(), |
| 3250 | result.operands) || |
| 3251 | parser.resolveOperand(memrefInfo, type, result.operands) || |
| 3252 | parser.resolveOperands(mapOperands, indexTy, result.operands)); |
| 3253 | } |
| 3254 | |
| 3255 | void AffineStoreOp::print(OpAsmPrinter &p) { |
| 3256 | p << " " << getValueToStore(); |
| 3257 | p << ", " << getMemRef() << '['; |
| 3258 | if (AffineMapAttr mapAttr = |
| 3259 | (*this)->getAttrOfType<AffineMapAttr>(getMapAttrStrName())) |
| 3260 | p.printAffineMapOfSSAIds(mapAttr, getMapOperands()); |
| 3261 | p << ']'; |
| 3262 | p.printOptionalAttrDict((*this)->getAttrs(), |
| 3263 | /*elidedAttrs=*/{getMapAttrStrName()}); |
| 3264 | p << " : " << getMemRefType(); |
| 3265 | } |
| 3266 | |
| 3267 | LogicalResult AffineStoreOp::verify() { |
| 3268 | // The value to store must have the same type as memref element type. |
| 3269 | auto memrefType = getMemRefType(); |
| 3270 | if (getValueToStore().getType() != memrefType.getElementType()) |
| 3271 | return emitOpError( |
| 3272 | "value to store must have the same type as memref element type" ); |
| 3273 | |
| 3274 | if (failed(verifyMemoryOpIndexing( |
| 3275 | *this, (*this)->getAttrOfType<AffineMapAttr>(getMapAttrStrName()), |
| 3276 | getMapOperands(), memrefType, |
| 3277 | /*numIndexOperands=*/getNumOperands() - 2))) |
| 3278 | return failure(); |
| 3279 | |
| 3280 | return success(); |
| 3281 | } |
| 3282 | |
| 3283 | void AffineStoreOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 3284 | MLIRContext *context) { |
| 3285 | results.add<SimplifyAffineOp<AffineStoreOp>>(context); |
| 3286 | } |
| 3287 | |
| 3288 | LogicalResult AffineStoreOp::fold(FoldAdaptor adaptor, |
| 3289 | SmallVectorImpl<OpFoldResult> &results) { |
| 3290 | /// store(memrefcast) -> store |
| 3291 | return memref::foldMemRefCast(*this, getValueToStore()); |
| 3292 | } |
| 3293 | |
| 3294 | //===----------------------------------------------------------------------===// |
| 3295 | // AffineMinMaxOpBase |
| 3296 | //===----------------------------------------------------------------------===// |
| 3297 | |
| 3298 | template <typename T> |
| 3299 | static LogicalResult verifyAffineMinMaxOp(T op) { |
| 3300 | // Verify that operand count matches affine map dimension and symbol count. |
| 3301 | if (op.getNumOperands() != |
| 3302 | op.getMap().getNumDims() + op.getMap().getNumSymbols()) |
| 3303 | return op.emitOpError( |
| 3304 | "operand count and affine map dimension and symbol count must match" ); |
| 3305 | |
| 3306 | if (op.getMap().getNumResults() == 0) |
| 3307 | return op.emitOpError("affine map expect at least one result" ); |
| 3308 | return success(); |
| 3309 | } |
| 3310 | |
| 3311 | template <typename T> |
| 3312 | static void printAffineMinMaxOp(OpAsmPrinter &p, T op) { |
| 3313 | p << ' ' << op->getAttr(T::getMapAttrStrName()); |
| 3314 | auto operands = op.getOperands(); |
| 3315 | unsigned numDims = op.getMap().getNumDims(); |
| 3316 | p << '(' << operands.take_front(numDims) << ')'; |
| 3317 | |
| 3318 | if (operands.size() != numDims) |
| 3319 | p << '[' << operands.drop_front(numDims) << ']'; |
| 3320 | p.printOptionalAttrDict(attrs: op->getAttrs(), |
| 3321 | /*elidedAttrs=*/{T::getMapAttrStrName()}); |
| 3322 | } |
| 3323 | |
| 3324 | template <typename T> |
| 3325 | static ParseResult parseAffineMinMaxOp(OpAsmParser &parser, |
| 3326 | OperationState &result) { |
| 3327 | auto &builder = parser.getBuilder(); |
| 3328 | auto indexType = builder.getIndexType(); |
| 3329 | SmallVector<OpAsmParser::UnresolvedOperand, 8> dimInfos; |
| 3330 | SmallVector<OpAsmParser::UnresolvedOperand, 8> symInfos; |
| 3331 | AffineMapAttr mapAttr; |
| 3332 | return failure( |
| 3333 | parser.parseAttribute(mapAttr, T::getMapAttrStrName(), |
| 3334 | result.attributes) || |
| 3335 | parser.parseOperandList(result&: dimInfos, delimiter: OpAsmParser::Delimiter::Paren) || |
| 3336 | parser.parseOperandList(result&: symInfos, |
| 3337 | delimiter: OpAsmParser::Delimiter::OptionalSquare) || |
| 3338 | parser.parseOptionalAttrDict(result&: result.attributes) || |
| 3339 | parser.resolveOperands(dimInfos, indexType, result.operands) || |
| 3340 | parser.resolveOperands(symInfos, indexType, result.operands) || |
| 3341 | parser.addTypeToList(type: indexType, result&: result.types)); |
| 3342 | } |
| 3343 | |
| 3344 | /// Fold an affine min or max operation with the given operands. The operand |
| 3345 | /// list may contain nulls, which are interpreted as the operand not being a |
| 3346 | /// constant. |
| 3347 | template <typename T> |
| 3348 | static OpFoldResult foldMinMaxOp(T op, ArrayRef<Attribute> operands) { |
| 3349 | static_assert(llvm::is_one_of<T, AffineMinOp, AffineMaxOp>::value, |
| 3350 | "expected affine min or max op" ); |
| 3351 | |
| 3352 | // Fold the affine map. |
| 3353 | // TODO: Fold more cases: |
| 3354 | // min(some_affine, some_affine + constant, ...), etc. |
| 3355 | SmallVector<int64_t, 2> results; |
| 3356 | auto foldedMap = op.getMap().partialConstantFold(operands, &results); |
| 3357 | |
| 3358 | if (foldedMap.getNumSymbols() == 1 && foldedMap.isSymbolIdentity()) |
| 3359 | return op.getOperand(0); |
| 3360 | |
| 3361 | // If some of the map results are not constant, try changing the map in-place. |
| 3362 | if (results.empty()) { |
| 3363 | // If the map is the same, report that folding did not happen. |
| 3364 | if (foldedMap == op.getMap()) |
| 3365 | return {}; |
| 3366 | op->setAttr("map" , AffineMapAttr::get(foldedMap)); |
| 3367 | return op.getResult(); |
| 3368 | } |
| 3369 | |
| 3370 | // Otherwise, completely fold the op into a constant. |
| 3371 | auto resultIt = std::is_same<T, AffineMinOp>::value |
| 3372 | ? llvm::min_element(Range&: results) |
| 3373 | : llvm::max_element(Range&: results); |
| 3374 | if (resultIt == results.end()) |
| 3375 | return {}; |
| 3376 | return IntegerAttr::get(IndexType::get(op.getContext()), *resultIt); |
| 3377 | } |
| 3378 | |
| 3379 | /// Remove duplicated expressions in affine min/max ops. |
| 3380 | template <typename T> |
| 3381 | struct DeduplicateAffineMinMaxExpressions : public OpRewritePattern<T> { |
| 3382 | using OpRewritePattern<T>::OpRewritePattern; |
| 3383 | |
| 3384 | LogicalResult matchAndRewrite(T affineOp, |
| 3385 | PatternRewriter &rewriter) const override { |
| 3386 | AffineMap oldMap = affineOp.getAffineMap(); |
| 3387 | |
| 3388 | SmallVector<AffineExpr, 4> newExprs; |
| 3389 | for (AffineExpr expr : oldMap.getResults()) { |
| 3390 | // This is a linear scan over newExprs, but it should be fine given that |
| 3391 | // we typically just have a few expressions per op. |
| 3392 | if (!llvm::is_contained(Range&: newExprs, Element: expr)) |
| 3393 | newExprs.push_back(Elt: expr); |
| 3394 | } |
| 3395 | |
| 3396 | if (newExprs.size() == oldMap.getNumResults()) |
| 3397 | return failure(); |
| 3398 | |
| 3399 | auto newMap = AffineMap::get(dimCount: oldMap.getNumDims(), symbolCount: oldMap.getNumSymbols(), |
| 3400 | results: newExprs, context: rewriter.getContext()); |
| 3401 | rewriter.replaceOpWithNewOp<T>(affineOp, newMap, affineOp.getMapOperands()); |
| 3402 | |
| 3403 | return success(); |
| 3404 | } |
| 3405 | }; |
| 3406 | |
| 3407 | /// Merge an affine min/max op to its consumers if its consumer is also an |
| 3408 | /// affine min/max op. |
| 3409 | /// |
| 3410 | /// This pattern requires the producer affine min/max op is bound to a |
| 3411 | /// dimension/symbol that is used as a standalone expression in the consumer |
| 3412 | /// affine op's map. |
| 3413 | /// |
| 3414 | /// For example, a pattern like the following: |
| 3415 | /// |
| 3416 | /// %0 = affine.min affine_map<()[s0] -> (s0 + 16, s0 * 8)> ()[%sym1] |
| 3417 | /// %1 = affine.min affine_map<(d0)[s0] -> (s0 + 4, d0)> (%0)[%sym2] |
| 3418 | /// |
| 3419 | /// Can be turned into: |
| 3420 | /// |
| 3421 | /// %1 = affine.min affine_map< |
| 3422 | /// ()[s0, s1] -> (s0 + 4, s1 + 16, s1 * 8)> ()[%sym2, %sym1] |
| 3423 | template <typename T> |
| 3424 | struct MergeAffineMinMaxOp : public OpRewritePattern<T> { |
| 3425 | using OpRewritePattern<T>::OpRewritePattern; |
| 3426 | |
| 3427 | LogicalResult matchAndRewrite(T affineOp, |
| 3428 | PatternRewriter &rewriter) const override { |
| 3429 | AffineMap oldMap = affineOp.getAffineMap(); |
| 3430 | ValueRange dimOperands = |
| 3431 | affineOp.getMapOperands().take_front(oldMap.getNumDims()); |
| 3432 | ValueRange symOperands = |
| 3433 | affineOp.getMapOperands().take_back(oldMap.getNumSymbols()); |
| 3434 | |
| 3435 | auto newDimOperands = llvm::to_vector<8>(Range&: dimOperands); |
| 3436 | auto newSymOperands = llvm::to_vector<8>(Range&: symOperands); |
| 3437 | SmallVector<AffineExpr, 4> newExprs; |
| 3438 | SmallVector<T, 4> producerOps; |
| 3439 | |
| 3440 | // Go over each expression to see whether it's a single dimension/symbol |
| 3441 | // with the corresponding operand which is the result of another affine |
| 3442 | // min/max op. If So it can be merged into this affine op. |
| 3443 | for (AffineExpr expr : oldMap.getResults()) { |
| 3444 | if (auto symExpr = dyn_cast<AffineSymbolExpr>(Val&: expr)) { |
| 3445 | Value symValue = symOperands[symExpr.getPosition()]; |
| 3446 | if (auto producerOp = symValue.getDefiningOp<T>()) { |
| 3447 | producerOps.push_back(producerOp); |
| 3448 | continue; |
| 3449 | } |
| 3450 | } else if (auto dimExpr = dyn_cast<AffineDimExpr>(Val&: expr)) { |
| 3451 | Value dimValue = dimOperands[dimExpr.getPosition()]; |
| 3452 | if (auto producerOp = dimValue.getDefiningOp<T>()) { |
| 3453 | producerOps.push_back(producerOp); |
| 3454 | continue; |
| 3455 | } |
| 3456 | } |
| 3457 | // For the above cases we will remove the expression by merging the |
| 3458 | // producer affine min/max's affine expressions. Otherwise we need to |
| 3459 | // keep the existing expression. |
| 3460 | newExprs.push_back(Elt: expr); |
| 3461 | } |
| 3462 | |
| 3463 | if (producerOps.empty()) |
| 3464 | return failure(); |
| 3465 | |
| 3466 | unsigned numUsedDims = oldMap.getNumDims(); |
| 3467 | unsigned numUsedSyms = oldMap.getNumSymbols(); |
| 3468 | |
| 3469 | // Now go over all producer affine ops and merge their expressions. |
| 3470 | for (T producerOp : producerOps) { |
| 3471 | AffineMap producerMap = producerOp.getAffineMap(); |
| 3472 | unsigned numProducerDims = producerMap.getNumDims(); |
| 3473 | unsigned numProducerSyms = producerMap.getNumSymbols(); |
| 3474 | |
| 3475 | // Collect all dimension/symbol values. |
| 3476 | ValueRange dimValues = |
| 3477 | producerOp.getMapOperands().take_front(numProducerDims); |
| 3478 | ValueRange symValues = |
| 3479 | producerOp.getMapOperands().take_back(numProducerSyms); |
| 3480 | newDimOperands.append(in_start: dimValues.begin(), in_end: dimValues.end()); |
| 3481 | newSymOperands.append(in_start: symValues.begin(), in_end: symValues.end()); |
| 3482 | |
| 3483 | // For expressions we need to shift to avoid overlap. |
| 3484 | for (AffineExpr expr : producerMap.getResults()) { |
| 3485 | newExprs.push_back(Elt: expr.shiftDims(numDims: numProducerDims, shift: numUsedDims) |
| 3486 | .shiftSymbols(numSymbols: numProducerSyms, shift: numUsedSyms)); |
| 3487 | } |
| 3488 | |
| 3489 | numUsedDims += numProducerDims; |
| 3490 | numUsedSyms += numProducerSyms; |
| 3491 | } |
| 3492 | |
| 3493 | auto newMap = AffineMap::get(dimCount: numUsedDims, symbolCount: numUsedSyms, results: newExprs, |
| 3494 | context: rewriter.getContext()); |
| 3495 | auto newOperands = |
| 3496 | llvm::to_vector<8>(Range: llvm::concat<Value>(Ranges&: newDimOperands, Ranges&: newSymOperands)); |
| 3497 | rewriter.replaceOpWithNewOp<T>(affineOp, newMap, newOperands); |
| 3498 | |
| 3499 | return success(); |
| 3500 | } |
| 3501 | }; |
| 3502 | |
| 3503 | /// Canonicalize the result expression order of an affine map and return success |
| 3504 | /// if the order changed. |
| 3505 | /// |
| 3506 | /// The function flattens the map's affine expressions to coefficient arrays and |
| 3507 | /// sorts them in lexicographic order. A coefficient array contains a multiplier |
| 3508 | /// for every dimension/symbol and a constant term. The canonicalization fails |
| 3509 | /// if a result expression is not pure or if the flattening requires local |
| 3510 | /// variables that, unlike dimensions and symbols, have no global order. |
| 3511 | static LogicalResult canonicalizeMapExprAndTermOrder(AffineMap &map) { |
| 3512 | SmallVector<SmallVector<int64_t>> flattenedExprs; |
| 3513 | for (const AffineExpr &resultExpr : map.getResults()) { |
| 3514 | // Fail if the expression is not pure. |
| 3515 | if (!resultExpr.isPureAffine()) |
| 3516 | return failure(); |
| 3517 | |
| 3518 | SimpleAffineExprFlattener flattener(map.getNumDims(), map.getNumSymbols()); |
| 3519 | auto flattenResult = flattener.walkPostOrder(expr: resultExpr); |
| 3520 | if (failed(Result: flattenResult)) |
| 3521 | return failure(); |
| 3522 | |
| 3523 | // Fail if the flattened expression has local variables. |
| 3524 | if (flattener.operandExprStack.back().size() != |
| 3525 | map.getNumDims() + map.getNumSymbols() + 1) |
| 3526 | return failure(); |
| 3527 | |
| 3528 | flattenedExprs.emplace_back(Args: flattener.operandExprStack.back().begin(), |
| 3529 | Args: flattener.operandExprStack.back().end()); |
| 3530 | } |
| 3531 | |
| 3532 | // Fail if sorting is not necessary. |
| 3533 | if (llvm::is_sorted(Range&: flattenedExprs)) |
| 3534 | return failure(); |
| 3535 | |
| 3536 | // Reorder the result expressions according to their flattened form. |
| 3537 | SmallVector<unsigned> resultPermutation = |
| 3538 | llvm::to_vector(Range: llvm::seq<unsigned>(Begin: 0, End: map.getNumResults())); |
| 3539 | llvm::sort(C&: resultPermutation, Comp: [&](unsigned lhs, unsigned rhs) { |
| 3540 | return flattenedExprs[lhs] < flattenedExprs[rhs]; |
| 3541 | }); |
| 3542 | SmallVector<AffineExpr> newExprs; |
| 3543 | for (unsigned idx : resultPermutation) |
| 3544 | newExprs.push_back(Elt: map.getResult(idx)); |
| 3545 | |
| 3546 | map = AffineMap::get(dimCount: map.getNumDims(), symbolCount: map.getNumSymbols(), results: newExprs, |
| 3547 | context: map.getContext()); |
| 3548 | return success(); |
| 3549 | } |
| 3550 | |
| 3551 | /// Canonicalize the affine map result expression order of an affine min/max |
| 3552 | /// operation. |
| 3553 | /// |
| 3554 | /// The pattern calls `canonicalizeMapExprAndTermOrder` to order the result |
| 3555 | /// expressions and replaces the operation if the order changed. |
| 3556 | /// |
| 3557 | /// For example, the following operation: |
| 3558 | /// |
| 3559 | /// %0 = affine.min affine_map<(d0, d1) -> (d0 + d1, d1 + 16, 32)> (%i0, %i1) |
| 3560 | /// |
| 3561 | /// Turns into: |
| 3562 | /// |
| 3563 | /// %0 = affine.min affine_map<(d0, d1) -> (32, d1 + 16, d0 + d1)> (%i0, %i1) |
| 3564 | template <typename T> |
| 3565 | struct CanonicalizeAffineMinMaxOpExprAndTermOrder : public OpRewritePattern<T> { |
| 3566 | using OpRewritePattern<T>::OpRewritePattern; |
| 3567 | |
| 3568 | LogicalResult matchAndRewrite(T affineOp, |
| 3569 | PatternRewriter &rewriter) const override { |
| 3570 | AffineMap map = affineOp.getAffineMap(); |
| 3571 | if (failed(Result: canonicalizeMapExprAndTermOrder(map))) |
| 3572 | return failure(); |
| 3573 | rewriter.replaceOpWithNewOp<T>(affineOp, map, affineOp.getMapOperands()); |
| 3574 | return success(); |
| 3575 | } |
| 3576 | }; |
| 3577 | |
| 3578 | template <typename T> |
| 3579 | struct CanonicalizeSingleResultAffineMinMaxOp : public OpRewritePattern<T> { |
| 3580 | using OpRewritePattern<T>::OpRewritePattern; |
| 3581 | |
| 3582 | LogicalResult matchAndRewrite(T affineOp, |
| 3583 | PatternRewriter &rewriter) const override { |
| 3584 | if (affineOp.getMap().getNumResults() != 1) |
| 3585 | return failure(); |
| 3586 | rewriter.replaceOpWithNewOp<AffineApplyOp>(affineOp, affineOp.getMap(), |
| 3587 | affineOp.getOperands()); |
| 3588 | return success(); |
| 3589 | } |
| 3590 | }; |
| 3591 | |
| 3592 | //===----------------------------------------------------------------------===// |
| 3593 | // AffineMinOp |
| 3594 | //===----------------------------------------------------------------------===// |
| 3595 | // |
| 3596 | // %0 = affine.min (d0) -> (1000, d0 + 512) (%i0) |
| 3597 | // |
| 3598 | |
| 3599 | OpFoldResult AffineMinOp::fold(FoldAdaptor adaptor) { |
| 3600 | return foldMinMaxOp(*this, adaptor.getOperands()); |
| 3601 | } |
| 3602 | |
| 3603 | void AffineMinOp::getCanonicalizationPatterns(RewritePatternSet &patterns, |
| 3604 | MLIRContext *context) { |
| 3605 | patterns.add<CanonicalizeSingleResultAffineMinMaxOp<AffineMinOp>, |
| 3606 | DeduplicateAffineMinMaxExpressions<AffineMinOp>, |
| 3607 | MergeAffineMinMaxOp<AffineMinOp>, SimplifyAffineOp<AffineMinOp>, |
| 3608 | CanonicalizeAffineMinMaxOpExprAndTermOrder<AffineMinOp>>( |
| 3609 | context); |
| 3610 | } |
| 3611 | |
| 3612 | LogicalResult AffineMinOp::verify() { return verifyAffineMinMaxOp(*this); } |
| 3613 | |
| 3614 | ParseResult AffineMinOp::parse(OpAsmParser &parser, OperationState &result) { |
| 3615 | return parseAffineMinMaxOp<AffineMinOp>(parser, result); |
| 3616 | } |
| 3617 | |
| 3618 | void AffineMinOp::print(OpAsmPrinter &p) { printAffineMinMaxOp(p, *this); } |
| 3619 | |
| 3620 | //===----------------------------------------------------------------------===// |
| 3621 | // AffineMaxOp |
| 3622 | //===----------------------------------------------------------------------===// |
| 3623 | // |
| 3624 | // %0 = affine.max (d0) -> (1000, d0 + 512) (%i0) |
| 3625 | // |
| 3626 | |
| 3627 | OpFoldResult AffineMaxOp::fold(FoldAdaptor adaptor) { |
| 3628 | return foldMinMaxOp(*this, adaptor.getOperands()); |
| 3629 | } |
| 3630 | |
| 3631 | void AffineMaxOp::getCanonicalizationPatterns(RewritePatternSet &patterns, |
| 3632 | MLIRContext *context) { |
| 3633 | patterns.add<CanonicalizeSingleResultAffineMinMaxOp<AffineMaxOp>, |
| 3634 | DeduplicateAffineMinMaxExpressions<AffineMaxOp>, |
| 3635 | MergeAffineMinMaxOp<AffineMaxOp>, SimplifyAffineOp<AffineMaxOp>, |
| 3636 | CanonicalizeAffineMinMaxOpExprAndTermOrder<AffineMaxOp>>( |
| 3637 | context); |
| 3638 | } |
| 3639 | |
| 3640 | LogicalResult AffineMaxOp::verify() { return verifyAffineMinMaxOp(*this); } |
| 3641 | |
| 3642 | ParseResult AffineMaxOp::parse(OpAsmParser &parser, OperationState &result) { |
| 3643 | return parseAffineMinMaxOp<AffineMaxOp>(parser, result); |
| 3644 | } |
| 3645 | |
| 3646 | void AffineMaxOp::print(OpAsmPrinter &p) { printAffineMinMaxOp(p, *this); } |
| 3647 | |
| 3648 | //===----------------------------------------------------------------------===// |
| 3649 | // AffinePrefetchOp |
| 3650 | //===----------------------------------------------------------------------===// |
| 3651 | |
| 3652 | // |
| 3653 | // affine.prefetch %0[%i, %j + 5], read, locality<3>, data : memref<400x400xi32> |
| 3654 | // |
| 3655 | ParseResult AffinePrefetchOp::parse(OpAsmParser &parser, |
| 3656 | OperationState &result) { |
| 3657 | auto &builder = parser.getBuilder(); |
| 3658 | auto indexTy = builder.getIndexType(); |
| 3659 | |
| 3660 | MemRefType type; |
| 3661 | OpAsmParser::UnresolvedOperand memrefInfo; |
| 3662 | IntegerAttr hintInfo; |
| 3663 | auto i32Type = parser.getBuilder().getIntegerType(32); |
| 3664 | StringRef readOrWrite, cacheType; |
| 3665 | |
| 3666 | AffineMapAttr mapAttr; |
| 3667 | SmallVector<OpAsmParser::UnresolvedOperand, 1> mapOperands; |
| 3668 | if (parser.parseOperand(memrefInfo) || |
| 3669 | parser.parseAffineMapOfSSAIds(mapOperands, mapAttr, |
| 3670 | AffinePrefetchOp::getMapAttrStrName(), |
| 3671 | result.attributes) || |
| 3672 | parser.parseComma() || parser.parseKeyword(&readOrWrite) || |
| 3673 | parser.parseComma() || parser.parseKeyword("locality" ) || |
| 3674 | parser.parseLess() || |
| 3675 | parser.parseAttribute(hintInfo, i32Type, |
| 3676 | AffinePrefetchOp::getLocalityHintAttrStrName(), |
| 3677 | result.attributes) || |
| 3678 | parser.parseGreater() || parser.parseComma() || |
| 3679 | parser.parseKeyword(&cacheType) || |
| 3680 | parser.parseOptionalAttrDict(result.attributes) || |
| 3681 | parser.parseColonType(type) || |
| 3682 | parser.resolveOperand(memrefInfo, type, result.operands) || |
| 3683 | parser.resolveOperands(mapOperands, indexTy, result.operands)) |
| 3684 | return failure(); |
| 3685 | |
| 3686 | if (readOrWrite != "read" && readOrWrite != "write" ) |
| 3687 | return parser.emitError(parser.getNameLoc(), |
| 3688 | "rw specifier has to be 'read' or 'write'" ); |
| 3689 | result.addAttribute(AffinePrefetchOp::getIsWriteAttrStrName(), |
| 3690 | parser.getBuilder().getBoolAttr(readOrWrite == "write" )); |
| 3691 | |
| 3692 | if (cacheType != "data" && cacheType != "instr" ) |
| 3693 | return parser.emitError(parser.getNameLoc(), |
| 3694 | "cache type has to be 'data' or 'instr'" ); |
| 3695 | |
| 3696 | result.addAttribute(AffinePrefetchOp::getIsDataCacheAttrStrName(), |
| 3697 | parser.getBuilder().getBoolAttr(cacheType == "data" )); |
| 3698 | |
| 3699 | return success(); |
| 3700 | } |
| 3701 | |
| 3702 | void AffinePrefetchOp::print(OpAsmPrinter &p) { |
| 3703 | p << " " << getMemref() << '['; |
| 3704 | AffineMapAttr mapAttr = |
| 3705 | (*this)->getAttrOfType<AffineMapAttr>(getMapAttrStrName()); |
| 3706 | if (mapAttr) |
| 3707 | p.printAffineMapOfSSAIds(mapAttr, getMapOperands()); |
| 3708 | p << ']' << ", " << (getIsWrite() ? "write" : "read" ) << ", " |
| 3709 | << "locality<" << getLocalityHint() << ">, " |
| 3710 | << (getIsDataCache() ? "data" : "instr" ); |
| 3711 | p.printOptionalAttrDict( |
| 3712 | (*this)->getAttrs(), |
| 3713 | /*elidedAttrs=*/{getMapAttrStrName(), getLocalityHintAttrStrName(), |
| 3714 | getIsDataCacheAttrStrName(), getIsWriteAttrStrName()}); |
| 3715 | p << " : " << getMemRefType(); |
| 3716 | } |
| 3717 | |
| 3718 | LogicalResult AffinePrefetchOp::verify() { |
| 3719 | auto mapAttr = (*this)->getAttrOfType<AffineMapAttr>(getMapAttrStrName()); |
| 3720 | if (mapAttr) { |
| 3721 | AffineMap map = mapAttr.getValue(); |
| 3722 | if (map.getNumResults() != getMemRefType().getRank()) |
| 3723 | return emitOpError("affine.prefetch affine map num results must equal" |
| 3724 | " memref rank" ); |
| 3725 | if (map.getNumInputs() + 1 != getNumOperands()) |
| 3726 | return emitOpError("too few operands" ); |
| 3727 | } else { |
| 3728 | if (getNumOperands() != 1) |
| 3729 | return emitOpError("too few operands" ); |
| 3730 | } |
| 3731 | |
| 3732 | Region *scope = getAffineScope(*this); |
| 3733 | for (auto idx : getMapOperands()) { |
| 3734 | if (!isValidAffineIndexOperand(idx, scope)) |
| 3735 | return emitOpError( |
| 3736 | "index must be a valid dimension or symbol identifier" ); |
| 3737 | } |
| 3738 | return success(); |
| 3739 | } |
| 3740 | |
| 3741 | void AffinePrefetchOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 3742 | MLIRContext *context) { |
| 3743 | // prefetch(memrefcast) -> prefetch |
| 3744 | results.add<SimplifyAffineOp<AffinePrefetchOp>>(context); |
| 3745 | } |
| 3746 | |
| 3747 | LogicalResult AffinePrefetchOp::fold(FoldAdaptor adaptor, |
| 3748 | SmallVectorImpl<OpFoldResult> &results) { |
| 3749 | /// prefetch(memrefcast) -> prefetch |
| 3750 | return memref::foldMemRefCast(*this); |
| 3751 | } |
| 3752 | |
| 3753 | //===----------------------------------------------------------------------===// |
| 3754 | // AffineParallelOp |
| 3755 | //===----------------------------------------------------------------------===// |
| 3756 | |
| 3757 | void AffineParallelOp::build(OpBuilder &builder, OperationState &result, |
| 3758 | TypeRange resultTypes, |
| 3759 | ArrayRef<arith::AtomicRMWKind> reductions, |
| 3760 | ArrayRef<int64_t> ranges) { |
| 3761 | SmallVector<AffineMap> lbs(ranges.size(), builder.getConstantAffineMap(0)); |
| 3762 | auto ubs = llvm::to_vector<4>(llvm::map_range(ranges, [&](int64_t value) { |
| 3763 | return builder.getConstantAffineMap(value); |
| 3764 | })); |
| 3765 | SmallVector<int64_t> steps(ranges.size(), 1); |
| 3766 | build(builder, result, resultTypes, reductions, lbs, /*lbArgs=*/{}, ubs, |
| 3767 | /*ubArgs=*/{}, steps); |
| 3768 | } |
| 3769 | |
| 3770 | void AffineParallelOp::build(OpBuilder &builder, OperationState &result, |
| 3771 | TypeRange resultTypes, |
| 3772 | ArrayRef<arith::AtomicRMWKind> reductions, |
| 3773 | ArrayRef<AffineMap> lbMaps, ValueRange lbArgs, |
| 3774 | ArrayRef<AffineMap> ubMaps, ValueRange ubArgs, |
| 3775 | ArrayRef<int64_t> steps) { |
| 3776 | assert(llvm::all_of(lbMaps, |
| 3777 | [lbMaps](AffineMap m) { |
| 3778 | return m.getNumDims() == lbMaps[0].getNumDims() && |
| 3779 | m.getNumSymbols() == lbMaps[0].getNumSymbols(); |
| 3780 | }) && |
| 3781 | "expected all lower bounds maps to have the same number of dimensions " |
| 3782 | "and symbols" ); |
| 3783 | assert(llvm::all_of(ubMaps, |
| 3784 | [ubMaps](AffineMap m) { |
| 3785 | return m.getNumDims() == ubMaps[0].getNumDims() && |
| 3786 | m.getNumSymbols() == ubMaps[0].getNumSymbols(); |
| 3787 | }) && |
| 3788 | "expected all upper bounds maps to have the same number of dimensions " |
| 3789 | "and symbols" ); |
| 3790 | assert((lbMaps.empty() || lbMaps[0].getNumInputs() == lbArgs.size()) && |
| 3791 | "expected lower bound maps to have as many inputs as lower bound " |
| 3792 | "operands" ); |
| 3793 | assert((ubMaps.empty() || ubMaps[0].getNumInputs() == ubArgs.size()) && |
| 3794 | "expected upper bound maps to have as many inputs as upper bound " |
| 3795 | "operands" ); |
| 3796 | |
| 3797 | OpBuilder::InsertionGuard guard(builder); |
| 3798 | result.addTypes(resultTypes); |
| 3799 | |
| 3800 | // Convert the reductions to integer attributes. |
| 3801 | SmallVector<Attribute, 4> reductionAttrs; |
| 3802 | for (arith::AtomicRMWKind reduction : reductions) |
| 3803 | reductionAttrs.push_back( |
| 3804 | builder.getI64IntegerAttr(static_cast<int64_t>(reduction))); |
| 3805 | result.addAttribute(getReductionsAttrStrName(), |
| 3806 | builder.getArrayAttr(reductionAttrs)); |
| 3807 | |
| 3808 | // Concatenates maps defined in the same input space (same dimensions and |
| 3809 | // symbols), assumes there is at least one map. |
| 3810 | auto concatMapsSameInput = [&builder](ArrayRef<AffineMap> maps, |
| 3811 | SmallVectorImpl<int32_t> &groups) { |
| 3812 | if (maps.empty()) |
| 3813 | return AffineMap::get(builder.getContext()); |
| 3814 | SmallVector<AffineExpr> exprs; |
| 3815 | groups.reserve(groups.size() + maps.size()); |
| 3816 | exprs.reserve(maps.size()); |
| 3817 | for (AffineMap m : maps) { |
| 3818 | llvm::append_range(exprs, m.getResults()); |
| 3819 | groups.push_back(m.getNumResults()); |
| 3820 | } |
| 3821 | return AffineMap::get(maps[0].getNumDims(), maps[0].getNumSymbols(), exprs, |
| 3822 | maps[0].getContext()); |
| 3823 | }; |
| 3824 | |
| 3825 | // Set up the bounds. |
| 3826 | SmallVector<int32_t> lbGroups, ubGroups; |
| 3827 | AffineMap lbMap = concatMapsSameInput(lbMaps, lbGroups); |
| 3828 | AffineMap ubMap = concatMapsSameInput(ubMaps, ubGroups); |
| 3829 | result.addAttribute(getLowerBoundsMapAttrStrName(), |
| 3830 | AffineMapAttr::get(lbMap)); |
| 3831 | result.addAttribute(getLowerBoundsGroupsAttrStrName(), |
| 3832 | builder.getI32TensorAttr(lbGroups)); |
| 3833 | result.addAttribute(getUpperBoundsMapAttrStrName(), |
| 3834 | AffineMapAttr::get(ubMap)); |
| 3835 | result.addAttribute(getUpperBoundsGroupsAttrStrName(), |
| 3836 | builder.getI32TensorAttr(ubGroups)); |
| 3837 | result.addAttribute(getStepsAttrStrName(), builder.getI64ArrayAttr(steps)); |
| 3838 | result.addOperands(lbArgs); |
| 3839 | result.addOperands(ubArgs); |
| 3840 | |
| 3841 | // Create a region and a block for the body. |
| 3842 | auto *bodyRegion = result.addRegion(); |
| 3843 | Block *body = builder.createBlock(bodyRegion); |
| 3844 | |
| 3845 | // Add all the block arguments. |
| 3846 | for (unsigned i = 0, e = steps.size(); i < e; ++i) |
| 3847 | body->addArgument(IndexType::get(builder.getContext()), result.location); |
| 3848 | if (resultTypes.empty()) |
| 3849 | ensureTerminator(*bodyRegion, builder, result.location); |
| 3850 | } |
| 3851 | |
| 3852 | SmallVector<Region *> AffineParallelOp::getLoopRegions() { |
| 3853 | return {&getRegion()}; |
| 3854 | } |
| 3855 | |
| 3856 | unsigned AffineParallelOp::getNumDims() { return getSteps().size(); } |
| 3857 | |
| 3858 | AffineParallelOp::operand_range AffineParallelOp::getLowerBoundsOperands() { |
| 3859 | return getOperands().take_front(getLowerBoundsMap().getNumInputs()); |
| 3860 | } |
| 3861 | |
| 3862 | AffineParallelOp::operand_range AffineParallelOp::getUpperBoundsOperands() { |
| 3863 | return getOperands().drop_front(getLowerBoundsMap().getNumInputs()); |
| 3864 | } |
| 3865 | |
| 3866 | AffineMap AffineParallelOp::getLowerBoundMap(unsigned pos) { |
| 3867 | auto values = getLowerBoundsGroups().getValues<int32_t>(); |
| 3868 | unsigned start = 0; |
| 3869 | for (unsigned i = 0; i < pos; ++i) |
| 3870 | start += values[i]; |
| 3871 | return getLowerBoundsMap().getSliceMap(start, values[pos]); |
| 3872 | } |
| 3873 | |
| 3874 | AffineMap AffineParallelOp::getUpperBoundMap(unsigned pos) { |
| 3875 | auto values = getUpperBoundsGroups().getValues<int32_t>(); |
| 3876 | unsigned start = 0; |
| 3877 | for (unsigned i = 0; i < pos; ++i) |
| 3878 | start += values[i]; |
| 3879 | return getUpperBoundsMap().getSliceMap(start, values[pos]); |
| 3880 | } |
| 3881 | |
| 3882 | AffineValueMap AffineParallelOp::getLowerBoundsValueMap() { |
| 3883 | return AffineValueMap(getLowerBoundsMap(), getLowerBoundsOperands()); |
| 3884 | } |
| 3885 | |
| 3886 | AffineValueMap AffineParallelOp::getUpperBoundsValueMap() { |
| 3887 | return AffineValueMap(getUpperBoundsMap(), getUpperBoundsOperands()); |
| 3888 | } |
| 3889 | |
| 3890 | std::optional<SmallVector<int64_t, 8>> AffineParallelOp::getConstantRanges() { |
| 3891 | if (hasMinMaxBounds()) |
| 3892 | return std::nullopt; |
| 3893 | |
| 3894 | // Try to convert all the ranges to constant expressions. |
| 3895 | SmallVector<int64_t, 8> out; |
| 3896 | AffineValueMap rangesValueMap; |
| 3897 | AffineValueMap::difference(getUpperBoundsValueMap(), getLowerBoundsValueMap(), |
| 3898 | &rangesValueMap); |
| 3899 | out.reserve(rangesValueMap.getNumResults()); |
| 3900 | for (unsigned i = 0, e = rangesValueMap.getNumResults(); i < e; ++i) { |
| 3901 | auto expr = rangesValueMap.getResult(i); |
| 3902 | auto cst = dyn_cast<AffineConstantExpr>(expr); |
| 3903 | if (!cst) |
| 3904 | return std::nullopt; |
| 3905 | out.push_back(cst.getValue()); |
| 3906 | } |
| 3907 | return out; |
| 3908 | } |
| 3909 | |
| 3910 | Block *AffineParallelOp::getBody() { return &getRegion().front(); } |
| 3911 | |
| 3912 | OpBuilder AffineParallelOp::getBodyBuilder() { |
| 3913 | return OpBuilder(getBody(), std::prev(getBody()->end())); |
| 3914 | } |
| 3915 | |
| 3916 | void AffineParallelOp::setLowerBounds(ValueRange lbOperands, AffineMap map) { |
| 3917 | assert(lbOperands.size() == map.getNumInputs() && |
| 3918 | "operands to map must match number of inputs" ); |
| 3919 | |
| 3920 | auto ubOperands = getUpperBoundsOperands(); |
| 3921 | |
| 3922 | SmallVector<Value, 4> newOperands(lbOperands); |
| 3923 | newOperands.append(ubOperands.begin(), ubOperands.end()); |
| 3924 | (*this)->setOperands(newOperands); |
| 3925 | |
| 3926 | setLowerBoundsMapAttr(AffineMapAttr::get(map)); |
| 3927 | } |
| 3928 | |
| 3929 | void AffineParallelOp::setUpperBounds(ValueRange ubOperands, AffineMap map) { |
| 3930 | assert(ubOperands.size() == map.getNumInputs() && |
| 3931 | "operands to map must match number of inputs" ); |
| 3932 | |
| 3933 | SmallVector<Value, 4> newOperands(getLowerBoundsOperands()); |
| 3934 | newOperands.append(ubOperands.begin(), ubOperands.end()); |
| 3935 | (*this)->setOperands(newOperands); |
| 3936 | |
| 3937 | setUpperBoundsMapAttr(AffineMapAttr::get(map)); |
| 3938 | } |
| 3939 | |
| 3940 | void AffineParallelOp::setSteps(ArrayRef<int64_t> newSteps) { |
| 3941 | setStepsAttr(getBodyBuilder().getI64ArrayAttr(newSteps)); |
| 3942 | } |
| 3943 | |
| 3944 | // check whether resultType match op or not in affine.parallel |
| 3945 | static bool isResultTypeMatchAtomicRMWKind(Type resultType, |
| 3946 | arith::AtomicRMWKind op) { |
| 3947 | switch (op) { |
| 3948 | case arith::AtomicRMWKind::addf: |
| 3949 | return isa<FloatType>(Val: resultType); |
| 3950 | case arith::AtomicRMWKind::addi: |
| 3951 | return isa<IntegerType>(Val: resultType); |
| 3952 | case arith::AtomicRMWKind::assign: |
| 3953 | return true; |
| 3954 | case arith::AtomicRMWKind::mulf: |
| 3955 | return isa<FloatType>(Val: resultType); |
| 3956 | case arith::AtomicRMWKind::muli: |
| 3957 | return isa<IntegerType>(Val: resultType); |
| 3958 | case arith::AtomicRMWKind::maximumf: |
| 3959 | return isa<FloatType>(Val: resultType); |
| 3960 | case arith::AtomicRMWKind::minimumf: |
| 3961 | return isa<FloatType>(Val: resultType); |
| 3962 | case arith::AtomicRMWKind::maxs: { |
| 3963 | auto intType = llvm::dyn_cast<IntegerType>(resultType); |
| 3964 | return intType && intType.isSigned(); |
| 3965 | } |
| 3966 | case arith::AtomicRMWKind::mins: { |
| 3967 | auto intType = llvm::dyn_cast<IntegerType>(resultType); |
| 3968 | return intType && intType.isSigned(); |
| 3969 | } |
| 3970 | case arith::AtomicRMWKind::maxu: { |
| 3971 | auto intType = llvm::dyn_cast<IntegerType>(resultType); |
| 3972 | return intType && intType.isUnsigned(); |
| 3973 | } |
| 3974 | case arith::AtomicRMWKind::minu: { |
| 3975 | auto intType = llvm::dyn_cast<IntegerType>(resultType); |
| 3976 | return intType && intType.isUnsigned(); |
| 3977 | } |
| 3978 | case arith::AtomicRMWKind::ori: |
| 3979 | return isa<IntegerType>(Val: resultType); |
| 3980 | case arith::AtomicRMWKind::andi: |
| 3981 | return isa<IntegerType>(Val: resultType); |
| 3982 | default: |
| 3983 | return false; |
| 3984 | } |
| 3985 | } |
| 3986 | |
| 3987 | LogicalResult AffineParallelOp::verify() { |
| 3988 | auto numDims = getNumDims(); |
| 3989 | if (getLowerBoundsGroups().getNumElements() != numDims || |
| 3990 | getUpperBoundsGroups().getNumElements() != numDims || |
| 3991 | getSteps().size() != numDims || getBody()->getNumArguments() != numDims) { |
| 3992 | return emitOpError() << "the number of region arguments (" |
| 3993 | << getBody()->getNumArguments() |
| 3994 | << ") and the number of map groups for lower (" |
| 3995 | << getLowerBoundsGroups().getNumElements() |
| 3996 | << ") and upper bound (" |
| 3997 | << getUpperBoundsGroups().getNumElements() |
| 3998 | << "), and the number of steps (" << getSteps().size() |
| 3999 | << ") must all match" ; |
| 4000 | } |
| 4001 | |
| 4002 | unsigned expectedNumLBResults = 0; |
| 4003 | for (APInt v : getLowerBoundsGroups()) { |
| 4004 | unsigned results = v.getZExtValue(); |
| 4005 | if (results == 0) |
| 4006 | return emitOpError() |
| 4007 | << "expected lower bound map to have at least one result" ; |
| 4008 | expectedNumLBResults += results; |
| 4009 | } |
| 4010 | if (expectedNumLBResults != getLowerBoundsMap().getNumResults()) |
| 4011 | return emitOpError() << "expected lower bounds map to have " |
| 4012 | << expectedNumLBResults << " results" ; |
| 4013 | unsigned expectedNumUBResults = 0; |
| 4014 | for (APInt v : getUpperBoundsGroups()) { |
| 4015 | unsigned results = v.getZExtValue(); |
| 4016 | if (results == 0) |
| 4017 | return emitOpError() |
| 4018 | << "expected upper bound map to have at least one result" ; |
| 4019 | expectedNumUBResults += results; |
| 4020 | } |
| 4021 | if (expectedNumUBResults != getUpperBoundsMap().getNumResults()) |
| 4022 | return emitOpError() << "expected upper bounds map to have " |
| 4023 | << expectedNumUBResults << " results" ; |
| 4024 | |
| 4025 | if (getReductions().size() != getNumResults()) |
| 4026 | return emitOpError("a reduction must be specified for each output" ); |
| 4027 | |
| 4028 | // Verify reduction ops are all valid and each result type matches reduction |
| 4029 | // ops |
| 4030 | for (auto it : llvm::enumerate((getReductions()))) { |
| 4031 | Attribute attr = it.value(); |
| 4032 | auto intAttr = llvm::dyn_cast<IntegerAttr>(attr); |
| 4033 | if (!intAttr || !arith::symbolizeAtomicRMWKind(intAttr.getInt())) |
| 4034 | return emitOpError("invalid reduction attribute" ); |
| 4035 | auto kind = arith::symbolizeAtomicRMWKind(intAttr.getInt()).value(); |
| 4036 | if (!isResultTypeMatchAtomicRMWKind(getResult(it.index()).getType(), kind)) |
| 4037 | return emitOpError("result type cannot match reduction attribute" ); |
| 4038 | } |
| 4039 | |
| 4040 | // Verify that the bound operands are valid dimension/symbols. |
| 4041 | /// Lower bounds. |
| 4042 | if (failed(verifyDimAndSymbolIdentifiers(*this, getLowerBoundsOperands(), |
| 4043 | getLowerBoundsMap().getNumDims()))) |
| 4044 | return failure(); |
| 4045 | /// Upper bounds. |
| 4046 | if (failed(verifyDimAndSymbolIdentifiers(*this, getUpperBoundsOperands(), |
| 4047 | getUpperBoundsMap().getNumDims()))) |
| 4048 | return failure(); |
| 4049 | return success(); |
| 4050 | } |
| 4051 | |
| 4052 | LogicalResult AffineValueMap::canonicalize() { |
| 4053 | SmallVector<Value, 4> newOperands{operands}; |
| 4054 | auto newMap = getAffineMap(); |
| 4055 | composeAffineMapAndOperands(map: &newMap, operands: &newOperands); |
| 4056 | if (newMap == getAffineMap() && newOperands == operands) |
| 4057 | return failure(); |
| 4058 | reset(map: newMap, operands: newOperands); |
| 4059 | return success(); |
| 4060 | } |
| 4061 | |
| 4062 | /// Canonicalize the bounds of the given loop. |
| 4063 | static LogicalResult canonicalizeLoopBounds(AffineParallelOp op) { |
| 4064 | AffineValueMap lb = op.getLowerBoundsValueMap(); |
| 4065 | bool lbCanonicalized = succeeded(Result: lb.canonicalize()); |
| 4066 | |
| 4067 | AffineValueMap ub = op.getUpperBoundsValueMap(); |
| 4068 | bool ubCanonicalized = succeeded(Result: ub.canonicalize()); |
| 4069 | |
| 4070 | // Any canonicalization change always leads to updated map(s). |
| 4071 | if (!lbCanonicalized && !ubCanonicalized) |
| 4072 | return failure(); |
| 4073 | |
| 4074 | if (lbCanonicalized) |
| 4075 | op.setLowerBounds(lb.getOperands(), lb.getAffineMap()); |
| 4076 | if (ubCanonicalized) |
| 4077 | op.setUpperBounds(ub.getOperands(), ub.getAffineMap()); |
| 4078 | |
| 4079 | return success(); |
| 4080 | } |
| 4081 | |
| 4082 | LogicalResult AffineParallelOp::fold(FoldAdaptor adaptor, |
| 4083 | SmallVectorImpl<OpFoldResult> &results) { |
| 4084 | return canonicalizeLoopBounds(*this); |
| 4085 | } |
| 4086 | |
| 4087 | /// Prints a lower(upper) bound of an affine parallel loop with max(min) |
| 4088 | /// conditions in it. `mapAttr` is a flat list of affine expressions and `group` |
| 4089 | /// identifies which of the those expressions form max/min groups. `operands` |
| 4090 | /// are the SSA values of dimensions and symbols and `keyword` is either "min" |
| 4091 | /// or "max". |
| 4092 | static void printMinMaxBound(OpAsmPrinter &p, AffineMapAttr mapAttr, |
| 4093 | DenseIntElementsAttr group, ValueRange operands, |
| 4094 | StringRef keyword) { |
| 4095 | AffineMap map = mapAttr.getValue(); |
| 4096 | unsigned numDims = map.getNumDims(); |
| 4097 | ValueRange dimOperands = operands.take_front(n: numDims); |
| 4098 | ValueRange symOperands = operands.drop_front(n: numDims); |
| 4099 | unsigned start = 0; |
| 4100 | for (llvm::APInt groupSize : group) { |
| 4101 | if (start != 0) |
| 4102 | p << ", " ; |
| 4103 | |
| 4104 | unsigned size = groupSize.getZExtValue(); |
| 4105 | if (size == 1) { |
| 4106 | p.printAffineExprOfSSAIds(expr: map.getResult(idx: start), dimOperands, symOperands); |
| 4107 | ++start; |
| 4108 | } else { |
| 4109 | p << keyword << '('; |
| 4110 | AffineMap submap = map.getSliceMap(start, length: size); |
| 4111 | p.printAffineMapOfSSAIds(AffineMapAttr::get(submap), operands); |
| 4112 | p << ')'; |
| 4113 | start += size; |
| 4114 | } |
| 4115 | } |
| 4116 | } |
| 4117 | |
| 4118 | void AffineParallelOp::print(OpAsmPrinter &p) { |
| 4119 | p << " (" << getBody()->getArguments() << ") = (" ; |
| 4120 | printMinMaxBound(p, getLowerBoundsMapAttr(), getLowerBoundsGroupsAttr(), |
| 4121 | getLowerBoundsOperands(), "max" ); |
| 4122 | p << ") to (" ; |
| 4123 | printMinMaxBound(p, getUpperBoundsMapAttr(), getUpperBoundsGroupsAttr(), |
| 4124 | getUpperBoundsOperands(), "min" ); |
| 4125 | p << ')'; |
| 4126 | SmallVector<int64_t, 8> steps = getSteps(); |
| 4127 | bool elideSteps = llvm::all_of(steps, [](int64_t step) { return step == 1; }); |
| 4128 | if (!elideSteps) { |
| 4129 | p << " step (" ; |
| 4130 | llvm::interleaveComma(steps, p); |
| 4131 | p << ')'; |
| 4132 | } |
| 4133 | if (getNumResults()) { |
| 4134 | p << " reduce (" ; |
| 4135 | llvm::interleaveComma(getReductions(), p, [&](auto &attr) { |
| 4136 | arith::AtomicRMWKind sym = *arith::symbolizeAtomicRMWKind( |
| 4137 | llvm::cast<IntegerAttr>(attr).getInt()); |
| 4138 | p << "\"" << arith::stringifyAtomicRMWKind(sym) << "\"" ; |
| 4139 | }); |
| 4140 | p << ") -> (" << getResultTypes() << ")" ; |
| 4141 | } |
| 4142 | |
| 4143 | p << ' '; |
| 4144 | p.printRegion(getRegion(), /*printEntryBlockArgs=*/false, |
| 4145 | /*printBlockTerminators=*/getNumResults()); |
| 4146 | p.printOptionalAttrDict( |
| 4147 | (*this)->getAttrs(), |
| 4148 | /*elidedAttrs=*/{AffineParallelOp::getReductionsAttrStrName(), |
| 4149 | AffineParallelOp::getLowerBoundsMapAttrStrName(), |
| 4150 | AffineParallelOp::getLowerBoundsGroupsAttrStrName(), |
| 4151 | AffineParallelOp::getUpperBoundsMapAttrStrName(), |
| 4152 | AffineParallelOp::getUpperBoundsGroupsAttrStrName(), |
| 4153 | AffineParallelOp::getStepsAttrStrName()}); |
| 4154 | } |
| 4155 | |
| 4156 | /// Given a list of lists of parsed operands, populates `uniqueOperands` with |
| 4157 | /// unique operands. Also populates `replacements with affine expressions of |
| 4158 | /// `kind` that can be used to update affine maps previously accepting a |
| 4159 | /// `operands` to accept `uniqueOperands` instead. |
| 4160 | static ParseResult deduplicateAndResolveOperands( |
| 4161 | OpAsmParser &parser, |
| 4162 | ArrayRef<SmallVector<OpAsmParser::UnresolvedOperand>> operands, |
| 4163 | SmallVectorImpl<Value> &uniqueOperands, |
| 4164 | SmallVectorImpl<AffineExpr> &replacements, AffineExprKind kind) { |
| 4165 | assert((kind == AffineExprKind::DimId || kind == AffineExprKind::SymbolId) && |
| 4166 | "expected operands to be dim or symbol expression" ); |
| 4167 | |
| 4168 | Type indexType = parser.getBuilder().getIndexType(); |
| 4169 | for (const auto &list : operands) { |
| 4170 | SmallVector<Value> valueOperands; |
| 4171 | if (parser.resolveOperands(operands: list, type: indexType, result&: valueOperands)) |
| 4172 | return failure(); |
| 4173 | for (Value operand : valueOperands) { |
| 4174 | unsigned pos = std::distance(first: uniqueOperands.begin(), |
| 4175 | last: llvm::find(Range&: uniqueOperands, Val: operand)); |
| 4176 | if (pos == uniqueOperands.size()) |
| 4177 | uniqueOperands.push_back(Elt: operand); |
| 4178 | replacements.push_back( |
| 4179 | Elt: kind == AffineExprKind::DimId |
| 4180 | ? getAffineDimExpr(position: pos, context: parser.getContext()) |
| 4181 | : getAffineSymbolExpr(position: pos, context: parser.getContext())); |
| 4182 | } |
| 4183 | } |
| 4184 | return success(); |
| 4185 | } |
| 4186 | |
| 4187 | namespace { |
| 4188 | enum class MinMaxKind { Min, Max }; |
| 4189 | } // namespace |
| 4190 | |
| 4191 | /// Parses an affine map that can contain a min/max for groups of its results, |
| 4192 | /// e.g., max(expr-1, expr-2), expr-3, max(expr-4, expr-5, expr-6). Populates |
| 4193 | /// `result` attributes with the map (flat list of expressions) and the grouping |
| 4194 | /// (list of integers that specify how many expressions to put into each |
| 4195 | /// min/max) attributes. Deduplicates repeated operands. |
| 4196 | /// |
| 4197 | /// parallel-bound ::= `(` parallel-group-list `)` |
| 4198 | /// parallel-group-list ::= parallel-group (`,` parallel-group-list)? |
| 4199 | /// parallel-group ::= simple-group | min-max-group |
| 4200 | /// simple-group ::= expr-of-ssa-ids |
| 4201 | /// min-max-group ::= ( `min` | `max` ) `(` expr-of-ssa-ids-list `)` |
| 4202 | /// expr-of-ssa-ids-list ::= expr-of-ssa-ids (`,` expr-of-ssa-id-list)? |
| 4203 | /// |
| 4204 | /// Examples: |
| 4205 | /// (%0, min(%1 + %2, %3), %4, min(%5 floordiv 32, %6)) |
| 4206 | /// (%0, max(%1 - 2 * %2)) |
| 4207 | static ParseResult parseAffineMapWithMinMax(OpAsmParser &parser, |
| 4208 | OperationState &result, |
| 4209 | MinMaxKind kind) { |
| 4210 | // Using `const` not `constexpr` below to workaround a MSVC optimizer bug, |
| 4211 | // see: https://reviews.llvm.org/D134227#3821753 |
| 4212 | const llvm::StringLiteral tmpAttrStrName = "__pseudo_bound_map" ; |
| 4213 | |
| 4214 | StringRef mapName = kind == MinMaxKind::Min |
| 4215 | ? AffineParallelOp::getUpperBoundsMapAttrStrName() |
| 4216 | : AffineParallelOp::getLowerBoundsMapAttrStrName(); |
| 4217 | StringRef groupsName = |
| 4218 | kind == MinMaxKind::Min |
| 4219 | ? AffineParallelOp::getUpperBoundsGroupsAttrStrName() |
| 4220 | : AffineParallelOp::getLowerBoundsGroupsAttrStrName(); |
| 4221 | |
| 4222 | if (failed(Result: parser.parseLParen())) |
| 4223 | return failure(); |
| 4224 | |
| 4225 | if (succeeded(Result: parser.parseOptionalRParen())) { |
| 4226 | result.addAttribute( |
| 4227 | mapName, AffineMapAttr::get(parser.getBuilder().getEmptyAffineMap())); |
| 4228 | result.addAttribute(groupsName, parser.getBuilder().getI32TensorAttr(values: {})); |
| 4229 | return success(); |
| 4230 | } |
| 4231 | |
| 4232 | SmallVector<AffineExpr> flatExprs; |
| 4233 | SmallVector<SmallVector<OpAsmParser::UnresolvedOperand>> flatDimOperands; |
| 4234 | SmallVector<SmallVector<OpAsmParser::UnresolvedOperand>> flatSymOperands; |
| 4235 | SmallVector<int32_t> numMapsPerGroup; |
| 4236 | SmallVector<OpAsmParser::UnresolvedOperand> mapOperands; |
| 4237 | auto parseOperands = [&]() { |
| 4238 | if (succeeded(Result: parser.parseOptionalKeyword( |
| 4239 | keyword: kind == MinMaxKind::Min ? "min" : "max" ))) { |
| 4240 | mapOperands.clear(); |
| 4241 | AffineMapAttr map; |
| 4242 | if (failed(parser.parseAffineMapOfSSAIds(operands&: mapOperands, map&: map, attrName: tmpAttrStrName, |
| 4243 | attrs&: result.attributes, |
| 4244 | delimiter: OpAsmParser::Delimiter::Paren))) |
| 4245 | return failure(); |
| 4246 | result.attributes.erase(name: tmpAttrStrName); |
| 4247 | llvm::append_range(flatExprs, map.getValue().getResults()); |
| 4248 | auto operandsRef = llvm::ArrayRef(mapOperands); |
| 4249 | auto dimsRef = operandsRef.take_front(N: map.getValue().getNumDims()); |
| 4250 | SmallVector<OpAsmParser::UnresolvedOperand> dims(dimsRef); |
| 4251 | auto symsRef = operandsRef.drop_front(N: map.getValue().getNumDims()); |
| 4252 | SmallVector<OpAsmParser::UnresolvedOperand> syms(symsRef); |
| 4253 | flatDimOperands.append(map.getValue().getNumResults(), dims); |
| 4254 | flatSymOperands.append(map.getValue().getNumResults(), syms); |
| 4255 | numMapsPerGroup.push_back(Elt: map.getValue().getNumResults()); |
| 4256 | } else { |
| 4257 | if (failed(Result: parser.parseAffineExprOfSSAIds(dimOperands&: flatDimOperands.emplace_back(), |
| 4258 | symbOperands&: flatSymOperands.emplace_back(), |
| 4259 | expr&: flatExprs.emplace_back()))) |
| 4260 | return failure(); |
| 4261 | numMapsPerGroup.push_back(Elt: 1); |
| 4262 | } |
| 4263 | return success(); |
| 4264 | }; |
| 4265 | if (parser.parseCommaSeparatedList(parseElementFn: parseOperands) || parser.parseRParen()) |
| 4266 | return failure(); |
| 4267 | |
| 4268 | unsigned totalNumDims = 0; |
| 4269 | unsigned totalNumSyms = 0; |
| 4270 | for (unsigned i = 0, e = flatExprs.size(); i < e; ++i) { |
| 4271 | unsigned numDims = flatDimOperands[i].size(); |
| 4272 | unsigned numSyms = flatSymOperands[i].size(); |
| 4273 | flatExprs[i] = flatExprs[i] |
| 4274 | .shiftDims(numDims, shift: totalNumDims) |
| 4275 | .shiftSymbols(numSymbols: numSyms, shift: totalNumSyms); |
| 4276 | totalNumDims += numDims; |
| 4277 | totalNumSyms += numSyms; |
| 4278 | } |
| 4279 | |
| 4280 | // Deduplicate map operands. |
| 4281 | SmallVector<Value> dimOperands, symOperands; |
| 4282 | SmallVector<AffineExpr> dimRplacements, symRepacements; |
| 4283 | if (deduplicateAndResolveOperands(parser, operands: flatDimOperands, uniqueOperands&: dimOperands, |
| 4284 | replacements&: dimRplacements, kind: AffineExprKind::DimId) || |
| 4285 | deduplicateAndResolveOperands(parser, operands: flatSymOperands, uniqueOperands&: symOperands, |
| 4286 | replacements&: symRepacements, kind: AffineExprKind::SymbolId)) |
| 4287 | return failure(); |
| 4288 | |
| 4289 | result.operands.append(in_start: dimOperands.begin(), in_end: dimOperands.end()); |
| 4290 | result.operands.append(in_start: symOperands.begin(), in_end: symOperands.end()); |
| 4291 | |
| 4292 | Builder &builder = parser.getBuilder(); |
| 4293 | auto flatMap = AffineMap::get(dimCount: totalNumDims, symbolCount: totalNumSyms, results: flatExprs, |
| 4294 | context: parser.getContext()); |
| 4295 | flatMap = flatMap.replaceDimsAndSymbols( |
| 4296 | dimReplacements: dimRplacements, symReplacements: symRepacements, numResultDims: dimOperands.size(), numResultSyms: symOperands.size()); |
| 4297 | |
| 4298 | result.addAttribute(mapName, AffineMapAttr::get(flatMap)); |
| 4299 | result.addAttribute(groupsName, builder.getI32TensorAttr(values: numMapsPerGroup)); |
| 4300 | return success(); |
| 4301 | } |
| 4302 | |
| 4303 | // |
| 4304 | // operation ::= `affine.parallel` `(` ssa-ids `)` `=` parallel-bound |
| 4305 | // `to` parallel-bound steps? region attr-dict? |
| 4306 | // steps ::= `steps` `(` integer-literals `)` |
| 4307 | // |
| 4308 | ParseResult AffineParallelOp::parse(OpAsmParser &parser, |
| 4309 | OperationState &result) { |
| 4310 | auto &builder = parser.getBuilder(); |
| 4311 | auto indexType = builder.getIndexType(); |
| 4312 | SmallVector<OpAsmParser::Argument, 4> ivs; |
| 4313 | if (parser.parseArgumentList(ivs, OpAsmParser::Delimiter::Paren) || |
| 4314 | parser.parseEqual() || |
| 4315 | parseAffineMapWithMinMax(parser, result, MinMaxKind::Max) || |
| 4316 | parser.parseKeyword("to" ) || |
| 4317 | parseAffineMapWithMinMax(parser, result, MinMaxKind::Min)) |
| 4318 | return failure(); |
| 4319 | |
| 4320 | AffineMapAttr stepsMapAttr; |
| 4321 | NamedAttrList stepsAttrs; |
| 4322 | SmallVector<OpAsmParser::UnresolvedOperand, 4> stepsMapOperands; |
| 4323 | if (failed(parser.parseOptionalKeyword("step" ))) { |
| 4324 | SmallVector<int64_t, 4> steps(ivs.size(), 1); |
| 4325 | result.addAttribute(AffineParallelOp::getStepsAttrStrName(), |
| 4326 | builder.getI64ArrayAttr(steps)); |
| 4327 | } else { |
| 4328 | if (parser.parseAffineMapOfSSAIds(stepsMapOperands, stepsMapAttr, |
| 4329 | AffineParallelOp::getStepsAttrStrName(), |
| 4330 | stepsAttrs, |
| 4331 | OpAsmParser::Delimiter::Paren)) |
| 4332 | return failure(); |
| 4333 | |
| 4334 | // Convert steps from an AffineMap into an I64ArrayAttr. |
| 4335 | SmallVector<int64_t, 4> steps; |
| 4336 | auto stepsMap = stepsMapAttr.getValue(); |
| 4337 | for (const auto &result : stepsMap.getResults()) { |
| 4338 | auto constExpr = dyn_cast<AffineConstantExpr>(result); |
| 4339 | if (!constExpr) |
| 4340 | return parser.emitError(parser.getNameLoc(), |
| 4341 | "steps must be constant integers" ); |
| 4342 | steps.push_back(constExpr.getValue()); |
| 4343 | } |
| 4344 | result.addAttribute(AffineParallelOp::getStepsAttrStrName(), |
| 4345 | builder.getI64ArrayAttr(steps)); |
| 4346 | } |
| 4347 | |
| 4348 | // Parse optional clause of the form: `reduce ("addf", "maxf")`, where the |
| 4349 | // quoted strings are a member of the enum AtomicRMWKind. |
| 4350 | SmallVector<Attribute, 4> reductions; |
| 4351 | if (succeeded(parser.parseOptionalKeyword("reduce" ))) { |
| 4352 | if (parser.parseLParen()) |
| 4353 | return failure(); |
| 4354 | auto parseAttributes = [&]() -> ParseResult { |
| 4355 | // Parse a single quoted string via the attribute parsing, and then |
| 4356 | // verify it is a member of the enum and convert to it's integer |
| 4357 | // representation. |
| 4358 | StringAttr attrVal; |
| 4359 | NamedAttrList attrStorage; |
| 4360 | auto loc = parser.getCurrentLocation(); |
| 4361 | if (parser.parseAttribute(attrVal, builder.getNoneType(), "reduce" , |
| 4362 | attrStorage)) |
| 4363 | return failure(); |
| 4364 | std::optional<arith::AtomicRMWKind> reduction = |
| 4365 | arith::symbolizeAtomicRMWKind(attrVal.getValue()); |
| 4366 | if (!reduction) |
| 4367 | return parser.emitError(loc, "invalid reduction value: " ) << attrVal; |
| 4368 | reductions.push_back( |
| 4369 | builder.getI64IntegerAttr(static_cast<int64_t>(reduction.value()))); |
| 4370 | // While we keep getting commas, keep parsing. |
| 4371 | return success(); |
| 4372 | }; |
| 4373 | if (parser.parseCommaSeparatedList(parseAttributes) || parser.parseRParen()) |
| 4374 | return failure(); |
| 4375 | } |
| 4376 | result.addAttribute(AffineParallelOp::getReductionsAttrStrName(), |
| 4377 | builder.getArrayAttr(reductions)); |
| 4378 | |
| 4379 | // Parse return types of reductions (if any) |
| 4380 | if (parser.parseOptionalArrowTypeList(result.types)) |
| 4381 | return failure(); |
| 4382 | |
| 4383 | // Now parse the body. |
| 4384 | Region *body = result.addRegion(); |
| 4385 | for (auto &iv : ivs) |
| 4386 | iv.type = indexType; |
| 4387 | if (parser.parseRegion(*body, ivs) || |
| 4388 | parser.parseOptionalAttrDict(result.attributes)) |
| 4389 | return failure(); |
| 4390 | |
| 4391 | // Add a terminator if none was parsed. |
| 4392 | AffineParallelOp::ensureTerminator(*body, builder, result.location); |
| 4393 | return success(); |
| 4394 | } |
| 4395 | |
| 4396 | //===----------------------------------------------------------------------===// |
| 4397 | // AffineYieldOp |
| 4398 | //===----------------------------------------------------------------------===// |
| 4399 | |
| 4400 | LogicalResult AffineYieldOp::verify() { |
| 4401 | auto *parentOp = (*this)->getParentOp(); |
| 4402 | auto results = parentOp->getResults(); |
| 4403 | auto operands = getOperands(); |
| 4404 | |
| 4405 | if (!isa<AffineParallelOp, AffineIfOp, AffineForOp>(parentOp)) |
| 4406 | return emitOpError() << "only terminates affine.if/for/parallel regions" ; |
| 4407 | if (parentOp->getNumResults() != getNumOperands()) |
| 4408 | return emitOpError() << "parent of yield must have same number of " |
| 4409 | "results as the yield operands" ; |
| 4410 | for (auto it : llvm::zip(results, operands)) { |
| 4411 | if (std::get<0>(it).getType() != std::get<1>(it).getType()) |
| 4412 | return emitOpError() << "types mismatch between yield op and its parent" ; |
| 4413 | } |
| 4414 | |
| 4415 | return success(); |
| 4416 | } |
| 4417 | |
| 4418 | //===----------------------------------------------------------------------===// |
| 4419 | // AffineVectorLoadOp |
| 4420 | //===----------------------------------------------------------------------===// |
| 4421 | |
| 4422 | void AffineVectorLoadOp::build(OpBuilder &builder, OperationState &result, |
| 4423 | VectorType resultType, AffineMap map, |
| 4424 | ValueRange operands) { |
| 4425 | assert(operands.size() == 1 + map.getNumInputs() && "inconsistent operands" ); |
| 4426 | result.addOperands(operands); |
| 4427 | if (map) |
| 4428 | result.addAttribute(getMapAttrStrName(), AffineMapAttr::get(map)); |
| 4429 | result.types.push_back(resultType); |
| 4430 | } |
| 4431 | |
| 4432 | void AffineVectorLoadOp::build(OpBuilder &builder, OperationState &result, |
| 4433 | VectorType resultType, Value memref, |
| 4434 | AffineMap map, ValueRange mapOperands) { |
| 4435 | assert(map.getNumInputs() == mapOperands.size() && "inconsistent index info" ); |
| 4436 | result.addOperands(memref); |
| 4437 | result.addOperands(mapOperands); |
| 4438 | result.addAttribute(getMapAttrStrName(), AffineMapAttr::get(map)); |
| 4439 | result.types.push_back(resultType); |
| 4440 | } |
| 4441 | |
| 4442 | void AffineVectorLoadOp::build(OpBuilder &builder, OperationState &result, |
| 4443 | VectorType resultType, Value memref, |
| 4444 | ValueRange indices) { |
| 4445 | auto memrefType = llvm::cast<MemRefType>(memref.getType()); |
| 4446 | int64_t rank = memrefType.getRank(); |
| 4447 | // Create identity map for memrefs with at least one dimension or () -> () |
| 4448 | // for zero-dimensional memrefs. |
| 4449 | auto map = |
| 4450 | rank ? builder.getMultiDimIdentityMap(rank) : builder.getEmptyAffineMap(); |
| 4451 | build(builder, result, resultType, memref, map, indices); |
| 4452 | } |
| 4453 | |
| 4454 | void AffineVectorLoadOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 4455 | MLIRContext *context) { |
| 4456 | results.add<SimplifyAffineOp<AffineVectorLoadOp>>(context); |
| 4457 | } |
| 4458 | |
| 4459 | ParseResult AffineVectorLoadOp::parse(OpAsmParser &parser, |
| 4460 | OperationState &result) { |
| 4461 | auto &builder = parser.getBuilder(); |
| 4462 | auto indexTy = builder.getIndexType(); |
| 4463 | |
| 4464 | MemRefType memrefType; |
| 4465 | VectorType resultType; |
| 4466 | OpAsmParser::UnresolvedOperand memrefInfo; |
| 4467 | AffineMapAttr mapAttr; |
| 4468 | SmallVector<OpAsmParser::UnresolvedOperand, 1> mapOperands; |
| 4469 | return failure( |
| 4470 | parser.parseOperand(memrefInfo) || |
| 4471 | parser.parseAffineMapOfSSAIds(mapOperands, mapAttr, |
| 4472 | AffineVectorLoadOp::getMapAttrStrName(), |
| 4473 | result.attributes) || |
| 4474 | parser.parseOptionalAttrDict(result.attributes) || |
| 4475 | parser.parseColonType(memrefType) || parser.parseComma() || |
| 4476 | parser.parseType(resultType) || |
| 4477 | parser.resolveOperand(memrefInfo, memrefType, result.operands) || |
| 4478 | parser.resolveOperands(mapOperands, indexTy, result.operands) || |
| 4479 | parser.addTypeToList(resultType, result.types)); |
| 4480 | } |
| 4481 | |
| 4482 | void AffineVectorLoadOp::print(OpAsmPrinter &p) { |
| 4483 | p << " " << getMemRef() << '['; |
| 4484 | if (AffineMapAttr mapAttr = |
| 4485 | (*this)->getAttrOfType<AffineMapAttr>(getMapAttrStrName())) |
| 4486 | p.printAffineMapOfSSAIds(mapAttr, getMapOperands()); |
| 4487 | p << ']'; |
| 4488 | p.printOptionalAttrDict((*this)->getAttrs(), |
| 4489 | /*elidedAttrs=*/{getMapAttrStrName()}); |
| 4490 | p << " : " << getMemRefType() << ", " << getType(); |
| 4491 | } |
| 4492 | |
| 4493 | /// Verify common invariants of affine.vector_load and affine.vector_store. |
| 4494 | static LogicalResult verifyVectorMemoryOp(Operation *op, MemRefType memrefType, |
| 4495 | VectorType vectorType) { |
| 4496 | // Check that memref and vector element types match. |
| 4497 | if (memrefType.getElementType() != vectorType.getElementType()) |
| 4498 | return op->emitOpError( |
| 4499 | message: "requires memref and vector types of the same elemental type" ); |
| 4500 | return success(); |
| 4501 | } |
| 4502 | |
| 4503 | LogicalResult AffineVectorLoadOp::verify() { |
| 4504 | MemRefType memrefType = getMemRefType(); |
| 4505 | if (failed(verifyMemoryOpIndexing( |
| 4506 | *this, (*this)->getAttrOfType<AffineMapAttr>(getMapAttrStrName()), |
| 4507 | getMapOperands(), memrefType, |
| 4508 | /*numIndexOperands=*/getNumOperands() - 1))) |
| 4509 | return failure(); |
| 4510 | |
| 4511 | if (failed(verifyVectorMemoryOp(getOperation(), memrefType, getVectorType()))) |
| 4512 | return failure(); |
| 4513 | |
| 4514 | return success(); |
| 4515 | } |
| 4516 | |
| 4517 | //===----------------------------------------------------------------------===// |
| 4518 | // AffineVectorStoreOp |
| 4519 | //===----------------------------------------------------------------------===// |
| 4520 | |
| 4521 | void AffineVectorStoreOp::build(OpBuilder &builder, OperationState &result, |
| 4522 | Value valueToStore, Value memref, AffineMap map, |
| 4523 | ValueRange mapOperands) { |
| 4524 | assert(map.getNumInputs() == mapOperands.size() && "inconsistent index info" ); |
| 4525 | result.addOperands(valueToStore); |
| 4526 | result.addOperands(memref); |
| 4527 | result.addOperands(mapOperands); |
| 4528 | result.addAttribute(getMapAttrStrName(), AffineMapAttr::get(map)); |
| 4529 | } |
| 4530 | |
| 4531 | // Use identity map. |
| 4532 | void AffineVectorStoreOp::build(OpBuilder &builder, OperationState &result, |
| 4533 | Value valueToStore, Value memref, |
| 4534 | ValueRange indices) { |
| 4535 | auto memrefType = llvm::cast<MemRefType>(memref.getType()); |
| 4536 | int64_t rank = memrefType.getRank(); |
| 4537 | // Create identity map for memrefs with at least one dimension or () -> () |
| 4538 | // for zero-dimensional memrefs. |
| 4539 | auto map = |
| 4540 | rank ? builder.getMultiDimIdentityMap(rank) : builder.getEmptyAffineMap(); |
| 4541 | build(builder, result, valueToStore, memref, map, indices); |
| 4542 | } |
| 4543 | void AffineVectorStoreOp::getCanonicalizationPatterns( |
| 4544 | RewritePatternSet &results, MLIRContext *context) { |
| 4545 | results.add<SimplifyAffineOp<AffineVectorStoreOp>>(context); |
| 4546 | } |
| 4547 | |
| 4548 | ParseResult AffineVectorStoreOp::parse(OpAsmParser &parser, |
| 4549 | OperationState &result) { |
| 4550 | auto indexTy = parser.getBuilder().getIndexType(); |
| 4551 | |
| 4552 | MemRefType memrefType; |
| 4553 | VectorType resultType; |
| 4554 | OpAsmParser::UnresolvedOperand storeValueInfo; |
| 4555 | OpAsmParser::UnresolvedOperand memrefInfo; |
| 4556 | AffineMapAttr mapAttr; |
| 4557 | SmallVector<OpAsmParser::UnresolvedOperand, 1> mapOperands; |
| 4558 | return failure( |
| 4559 | parser.parseOperand(storeValueInfo) || parser.parseComma() || |
| 4560 | parser.parseOperand(memrefInfo) || |
| 4561 | parser.parseAffineMapOfSSAIds(mapOperands, mapAttr, |
| 4562 | AffineVectorStoreOp::getMapAttrStrName(), |
| 4563 | result.attributes) || |
| 4564 | parser.parseOptionalAttrDict(result.attributes) || |
| 4565 | parser.parseColonType(memrefType) || parser.parseComma() || |
| 4566 | parser.parseType(resultType) || |
| 4567 | parser.resolveOperand(storeValueInfo, resultType, result.operands) || |
| 4568 | parser.resolveOperand(memrefInfo, memrefType, result.operands) || |
| 4569 | parser.resolveOperands(mapOperands, indexTy, result.operands)); |
| 4570 | } |
| 4571 | |
| 4572 | void AffineVectorStoreOp::print(OpAsmPrinter &p) { |
| 4573 | p << " " << getValueToStore(); |
| 4574 | p << ", " << getMemRef() << '['; |
| 4575 | if (AffineMapAttr mapAttr = |
| 4576 | (*this)->getAttrOfType<AffineMapAttr>(getMapAttrStrName())) |
| 4577 | p.printAffineMapOfSSAIds(mapAttr, getMapOperands()); |
| 4578 | p << ']'; |
| 4579 | p.printOptionalAttrDict((*this)->getAttrs(), |
| 4580 | /*elidedAttrs=*/{getMapAttrStrName()}); |
| 4581 | p << " : " << getMemRefType() << ", " << getValueToStore().getType(); |
| 4582 | } |
| 4583 | |
| 4584 | LogicalResult AffineVectorStoreOp::verify() { |
| 4585 | MemRefType memrefType = getMemRefType(); |
| 4586 | if (failed(verifyMemoryOpIndexing( |
| 4587 | *this, (*this)->getAttrOfType<AffineMapAttr>(getMapAttrStrName()), |
| 4588 | getMapOperands(), memrefType, |
| 4589 | /*numIndexOperands=*/getNumOperands() - 2))) |
| 4590 | return failure(); |
| 4591 | |
| 4592 | if (failed(verifyVectorMemoryOp(*this, memrefType, getVectorType()))) |
| 4593 | return failure(); |
| 4594 | |
| 4595 | return success(); |
| 4596 | } |
| 4597 | |
| 4598 | //===----------------------------------------------------------------------===// |
| 4599 | // DelinearizeIndexOp |
| 4600 | //===----------------------------------------------------------------------===// |
| 4601 | |
| 4602 | void AffineDelinearizeIndexOp::build(OpBuilder &odsBuilder, |
| 4603 | OperationState &odsState, |
| 4604 | Value linearIndex, ValueRange dynamicBasis, |
| 4605 | ArrayRef<int64_t> staticBasis, |
| 4606 | bool hasOuterBound) { |
| 4607 | SmallVector<Type> returnTypes(hasOuterBound ? staticBasis.size() |
| 4608 | : staticBasis.size() + 1, |
| 4609 | linearIndex.getType()); |
| 4610 | build(odsBuilder, odsState, returnTypes, linearIndex, dynamicBasis, |
| 4611 | staticBasis); |
| 4612 | } |
| 4613 | |
| 4614 | void AffineDelinearizeIndexOp::build(OpBuilder &odsBuilder, |
| 4615 | OperationState &odsState, |
| 4616 | Value linearIndex, ValueRange basis, |
| 4617 | bool hasOuterBound) { |
| 4618 | if (hasOuterBound && !basis.empty() && basis.front() == nullptr) { |
| 4619 | hasOuterBound = false; |
| 4620 | basis = basis.drop_front(); |
| 4621 | } |
| 4622 | SmallVector<Value> dynamicBasis; |
| 4623 | SmallVector<int64_t> staticBasis; |
| 4624 | dispatchIndexOpFoldResults(getAsOpFoldResult(basis), dynamicBasis, |
| 4625 | staticBasis); |
| 4626 | build(odsBuilder, odsState, linearIndex, dynamicBasis, staticBasis, |
| 4627 | hasOuterBound); |
| 4628 | } |
| 4629 | |
| 4630 | void AffineDelinearizeIndexOp::build(OpBuilder &odsBuilder, |
| 4631 | OperationState &odsState, |
| 4632 | Value linearIndex, |
| 4633 | ArrayRef<OpFoldResult> basis, |
| 4634 | bool hasOuterBound) { |
| 4635 | if (hasOuterBound && !basis.empty() && basis.front() == OpFoldResult()) { |
| 4636 | hasOuterBound = false; |
| 4637 | basis = basis.drop_front(); |
| 4638 | } |
| 4639 | SmallVector<Value> dynamicBasis; |
| 4640 | SmallVector<int64_t> staticBasis; |
| 4641 | dispatchIndexOpFoldResults(basis, dynamicBasis, staticBasis); |
| 4642 | build(odsBuilder, odsState, linearIndex, dynamicBasis, staticBasis, |
| 4643 | hasOuterBound); |
| 4644 | } |
| 4645 | |
| 4646 | void AffineDelinearizeIndexOp::build(OpBuilder &odsBuilder, |
| 4647 | OperationState &odsState, |
| 4648 | Value linearIndex, ArrayRef<int64_t> basis, |
| 4649 | bool hasOuterBound) { |
| 4650 | build(odsBuilder, odsState, linearIndex, ValueRange{}, basis, hasOuterBound); |
| 4651 | } |
| 4652 | |
| 4653 | LogicalResult AffineDelinearizeIndexOp::verify() { |
| 4654 | ArrayRef<int64_t> staticBasis = getStaticBasis(); |
| 4655 | if (getNumResults() != staticBasis.size() && |
| 4656 | getNumResults() != staticBasis.size() + 1) |
| 4657 | return emitOpError("should return an index for each basis element and up " |
| 4658 | "to one extra index" ); |
| 4659 | |
| 4660 | auto dynamicMarkersCount = llvm::count_if(staticBasis, ShapedType::isDynamic); |
| 4661 | if (static_cast<size_t>(dynamicMarkersCount) != getDynamicBasis().size()) |
| 4662 | return emitOpError( |
| 4663 | "mismatch between dynamic and static basis (kDynamic marker but no " |
| 4664 | "corresponding dynamic basis entry) -- this can only happen due to an " |
| 4665 | "incorrect fold/rewrite" ); |
| 4666 | |
| 4667 | if (!llvm::all_of(staticBasis, [](int64_t v) { |
| 4668 | return v > 0 || ShapedType::isDynamic(v); |
| 4669 | })) |
| 4670 | return emitOpError("no basis element may be statically non-positive" ); |
| 4671 | |
| 4672 | return success(); |
| 4673 | } |
| 4674 | |
| 4675 | /// Given mixed basis of affine.delinearize_index/linearize_index replace |
| 4676 | /// constant SSA values with the constant integer value and return the new |
| 4677 | /// static basis. In case no such candidate for replacement exists, this utility |
| 4678 | /// returns std::nullopt. |
| 4679 | static std::optional<SmallVector<int64_t>> |
| 4680 | foldCstValueToCstAttrBasis(ArrayRef<OpFoldResult> mixedBasis, |
| 4681 | MutableOperandRange mutableDynamicBasis, |
| 4682 | ArrayRef<Attribute> dynamicBasis) { |
| 4683 | uint64_t dynamicBasisIndex = 0; |
| 4684 | for (OpFoldResult basis : dynamicBasis) { |
| 4685 | if (basis) { |
| 4686 | mutableDynamicBasis.erase(subStart: dynamicBasisIndex); |
| 4687 | } else { |
| 4688 | ++dynamicBasisIndex; |
| 4689 | } |
| 4690 | } |
| 4691 | |
| 4692 | // No constant SSA value exists. |
| 4693 | if (dynamicBasisIndex == dynamicBasis.size()) |
| 4694 | return std::nullopt; |
| 4695 | |
| 4696 | SmallVector<int64_t> staticBasis; |
| 4697 | for (OpFoldResult basis : mixedBasis) { |
| 4698 | std::optional<int64_t> basisVal = getConstantIntValue(ofr: basis); |
| 4699 | if (!basisVal) |
| 4700 | staticBasis.push_back(ShapedType::kDynamic); |
| 4701 | else |
| 4702 | staticBasis.push_back(Elt: *basisVal); |
| 4703 | } |
| 4704 | |
| 4705 | return staticBasis; |
| 4706 | } |
| 4707 | |
| 4708 | LogicalResult |
| 4709 | AffineDelinearizeIndexOp::fold(FoldAdaptor adaptor, |
| 4710 | SmallVectorImpl<OpFoldResult> &result) { |
| 4711 | std::optional<SmallVector<int64_t>> maybeStaticBasis = |
| 4712 | foldCstValueToCstAttrBasis(getMixedBasis(), getDynamicBasisMutable(), |
| 4713 | adaptor.getDynamicBasis()); |
| 4714 | if (maybeStaticBasis) { |
| 4715 | setStaticBasis(*maybeStaticBasis); |
| 4716 | return success(); |
| 4717 | } |
| 4718 | // If we won't be doing any division or modulo (no basis or the one basis |
| 4719 | // element is purely advisory), simply return the input value. |
| 4720 | if (getNumResults() == 1) { |
| 4721 | result.push_back(getLinearIndex()); |
| 4722 | return success(); |
| 4723 | } |
| 4724 | |
| 4725 | if (adaptor.getLinearIndex() == nullptr) |
| 4726 | return failure(); |
| 4727 | |
| 4728 | if (!adaptor.getDynamicBasis().empty()) |
| 4729 | return failure(); |
| 4730 | |
| 4731 | int64_t highPart = cast<IntegerAttr>(adaptor.getLinearIndex()).getInt(); |
| 4732 | Type attrType = getLinearIndex().getType(); |
| 4733 | |
| 4734 | ArrayRef<int64_t> staticBasis = getStaticBasis(); |
| 4735 | if (hasOuterBound()) |
| 4736 | staticBasis = staticBasis.drop_front(); |
| 4737 | for (int64_t modulus : llvm::reverse(staticBasis)) { |
| 4738 | result.push_back(IntegerAttr::get(attrType, llvm::mod(highPart, modulus))); |
| 4739 | highPart = llvm::divideFloorSigned(highPart, modulus); |
| 4740 | } |
| 4741 | result.push_back(IntegerAttr::get(attrType, highPart)); |
| 4742 | std::reverse(result.begin(), result.end()); |
| 4743 | return success(); |
| 4744 | } |
| 4745 | |
| 4746 | SmallVector<OpFoldResult> AffineDelinearizeIndexOp::getEffectiveBasis() { |
| 4747 | OpBuilder builder(getContext()); |
| 4748 | if (hasOuterBound()) { |
| 4749 | if (getStaticBasis().front() == ::mlir::ShapedType::kDynamic) |
| 4750 | return getMixedValues(getStaticBasis().drop_front(), |
| 4751 | getDynamicBasis().drop_front(), builder); |
| 4752 | |
| 4753 | return getMixedValues(getStaticBasis().drop_front(), getDynamicBasis(), |
| 4754 | builder); |
| 4755 | } |
| 4756 | |
| 4757 | return getMixedValues(getStaticBasis(), getDynamicBasis(), builder); |
| 4758 | } |
| 4759 | |
| 4760 | SmallVector<OpFoldResult> AffineDelinearizeIndexOp::getPaddedBasis() { |
| 4761 | SmallVector<OpFoldResult> ret = getMixedBasis(); |
| 4762 | if (!hasOuterBound()) |
| 4763 | ret.insert(ret.begin(), OpFoldResult()); |
| 4764 | return ret; |
| 4765 | } |
| 4766 | |
| 4767 | namespace { |
| 4768 | |
| 4769 | // Drops delinearization indices that correspond to unit-extent basis |
| 4770 | struct DropUnitExtentBasis |
| 4771 | : public OpRewritePattern<affine::AffineDelinearizeIndexOp> { |
| 4772 | using OpRewritePattern::OpRewritePattern; |
| 4773 | |
| 4774 | LogicalResult matchAndRewrite(affine::AffineDelinearizeIndexOp delinearizeOp, |
| 4775 | PatternRewriter &rewriter) const override { |
| 4776 | SmallVector<Value> replacements(delinearizeOp->getNumResults(), nullptr); |
| 4777 | std::optional<Value> zero = std::nullopt; |
| 4778 | Location loc = delinearizeOp->getLoc(); |
| 4779 | auto getZero = [&]() -> Value { |
| 4780 | if (!zero) |
| 4781 | zero = rewriter.create<arith::ConstantIndexOp>(location: loc, args: 0); |
| 4782 | return zero.value(); |
| 4783 | }; |
| 4784 | |
| 4785 | // Replace all indices corresponding to unit-extent basis with 0. |
| 4786 | // Remaining basis can be used to get a new `affine.delinearize_index` op. |
| 4787 | SmallVector<OpFoldResult> newBasis; |
| 4788 | for (auto [index, basis] : |
| 4789 | llvm::enumerate(delinearizeOp.getPaddedBasis())) { |
| 4790 | std::optional<int64_t> basisVal = |
| 4791 | basis ? getConstantIntValue(basis) : std::nullopt; |
| 4792 | if (basisVal && *basisVal == 1) |
| 4793 | replacements[index] = getZero(); |
| 4794 | else |
| 4795 | newBasis.push_back(basis); |
| 4796 | } |
| 4797 | |
| 4798 | if (newBasis.size() == delinearizeOp.getNumResults()) |
| 4799 | return rewriter.notifyMatchFailure(delinearizeOp, |
| 4800 | "no unit basis elements" ); |
| 4801 | |
| 4802 | if (!newBasis.empty()) { |
| 4803 | // Will drop the leading nullptr from `basis` if there was no outer bound. |
| 4804 | auto newDelinearizeOp = rewriter.create<affine::AffineDelinearizeIndexOp>( |
| 4805 | loc, delinearizeOp.getLinearIndex(), newBasis); |
| 4806 | int newIndex = 0; |
| 4807 | // Map back the new delinearized indices to the values they replace. |
| 4808 | for (auto &replacement : replacements) { |
| 4809 | if (replacement) |
| 4810 | continue; |
| 4811 | replacement = newDelinearizeOp->getResult(newIndex++); |
| 4812 | } |
| 4813 | } |
| 4814 | |
| 4815 | rewriter.replaceOp(delinearizeOp, replacements); |
| 4816 | return success(); |
| 4817 | } |
| 4818 | }; |
| 4819 | |
| 4820 | /// If a `affine.delinearize_index`'s input is a `affine.linearize_index |
| 4821 | /// disjoint` and the two operations end with the same basis elements, |
| 4822 | /// cancel those parts of the operations out because they are inverses |
| 4823 | /// of each other. |
| 4824 | /// |
| 4825 | /// If the operations have the same basis, cancel them entirely. |
| 4826 | /// |
| 4827 | /// The `disjoint` flag is needed on the `affine.linearize_index` because |
| 4828 | /// otherwise, there is no guarantee that the inputs to the linearization are |
| 4829 | /// in-bounds the way the outputs of the delinearization would be. |
| 4830 | struct CancelDelinearizeOfLinearizeDisjointExactTail |
| 4831 | : public OpRewritePattern<affine::AffineDelinearizeIndexOp> { |
| 4832 | using OpRewritePattern::OpRewritePattern; |
| 4833 | |
| 4834 | LogicalResult matchAndRewrite(affine::AffineDelinearizeIndexOp delinearizeOp, |
| 4835 | PatternRewriter &rewriter) const override { |
| 4836 | auto linearizeOp = delinearizeOp.getLinearIndex() |
| 4837 | .getDefiningOp<affine::AffineLinearizeIndexOp>(); |
| 4838 | if (!linearizeOp) |
| 4839 | return rewriter.notifyMatchFailure(delinearizeOp, |
| 4840 | "index doesn't come from linearize" ); |
| 4841 | |
| 4842 | if (!linearizeOp.getDisjoint()) |
| 4843 | return rewriter.notifyMatchFailure(linearizeOp, "not disjoint" ); |
| 4844 | |
| 4845 | ValueRange linearizeIns = linearizeOp.getMultiIndex(); |
| 4846 | // Note: we use the full basis so we don't lose outer bounds later. |
| 4847 | SmallVector<OpFoldResult> linearizeBasis = linearizeOp.getMixedBasis(); |
| 4848 | SmallVector<OpFoldResult> delinearizeBasis = delinearizeOp.getMixedBasis(); |
| 4849 | size_t numMatches = 0; |
| 4850 | for (auto [linSize, delinSize] : llvm::zip( |
| 4851 | llvm::reverse(linearizeBasis), llvm::reverse(delinearizeBasis))) { |
| 4852 | if (linSize != delinSize) |
| 4853 | break; |
| 4854 | ++numMatches; |
| 4855 | } |
| 4856 | |
| 4857 | if (numMatches == 0) |
| 4858 | return rewriter.notifyMatchFailure( |
| 4859 | delinearizeOp, "final basis element doesn't match linearize" ); |
| 4860 | |
| 4861 | // The easy case: everything lines up and the basis match sup completely. |
| 4862 | if (numMatches == linearizeBasis.size() && |
| 4863 | numMatches == delinearizeBasis.size() && |
| 4864 | linearizeIns.size() == delinearizeOp.getNumResults()) { |
| 4865 | rewriter.replaceOp(delinearizeOp, linearizeOp.getMultiIndex()); |
| 4866 | return success(); |
| 4867 | } |
| 4868 | |
| 4869 | Value newLinearize = rewriter.create<affine::AffineLinearizeIndexOp>( |
| 4870 | linearizeOp.getLoc(), linearizeIns.drop_back(numMatches), |
| 4871 | ArrayRef<OpFoldResult>{linearizeBasis}.drop_back(numMatches), |
| 4872 | linearizeOp.getDisjoint()); |
| 4873 | auto newDelinearize = rewriter.create<affine::AffineDelinearizeIndexOp>( |
| 4874 | delinearizeOp.getLoc(), newLinearize, |
| 4875 | ArrayRef<OpFoldResult>{delinearizeBasis}.drop_back(numMatches), |
| 4876 | delinearizeOp.hasOuterBound()); |
| 4877 | SmallVector<Value> mergedResults(newDelinearize.getResults()); |
| 4878 | mergedResults.append(in_start: linearizeIns.take_back(n: numMatches).begin(), |
| 4879 | in_end: linearizeIns.take_back(n: numMatches).end()); |
| 4880 | rewriter.replaceOp(delinearizeOp, mergedResults); |
| 4881 | return success(); |
| 4882 | } |
| 4883 | }; |
| 4884 | |
| 4885 | /// If the input to a delinearization is a disjoint linearization, and the |
| 4886 | /// last k > 1 components of the delinearization basis multiply to the |
| 4887 | /// last component of the linearization basis, break the linearization and |
| 4888 | /// delinearization into two parts, peeling off the last input to linearization. |
| 4889 | /// |
| 4890 | /// For example: |
| 4891 | /// %0 = affine.linearize_index [%z, %y, %x] by (3, 2, 32) : index |
| 4892 | /// %1:4 = affine.delinearize_index %0 by (2, 3, 8, 4) : index, ... |
| 4893 | /// becomes |
| 4894 | /// %0 = affine.linearize_index [%z, %y] by (3, 2) : index |
| 4895 | /// %1:2 = affine.delinearize_index %0 by (2, 3) : index |
| 4896 | /// %2:2 = affine.delinearize_index %x by (8, 4) : index |
| 4897 | /// where the original %1:4 is replaced by %1:2 ++ %2:2 |
| 4898 | struct SplitDelinearizeSpanningLastLinearizeArg final |
| 4899 | : OpRewritePattern<affine::AffineDelinearizeIndexOp> { |
| 4900 | using OpRewritePattern::OpRewritePattern; |
| 4901 | |
| 4902 | LogicalResult matchAndRewrite(affine::AffineDelinearizeIndexOp delinearizeOp, |
| 4903 | PatternRewriter &rewriter) const override { |
| 4904 | auto linearizeOp = delinearizeOp.getLinearIndex() |
| 4905 | .getDefiningOp<affine::AffineLinearizeIndexOp>(); |
| 4906 | if (!linearizeOp) |
| 4907 | return rewriter.notifyMatchFailure(delinearizeOp, |
| 4908 | "index doesn't come from linearize" ); |
| 4909 | |
| 4910 | if (!linearizeOp.getDisjoint()) |
| 4911 | return rewriter.notifyMatchFailure(linearizeOp, |
| 4912 | "linearize isn't disjoint" ); |
| 4913 | |
| 4914 | int64_t target = linearizeOp.getStaticBasis().back(); |
| 4915 | if (ShapedType::isDynamic(target)) |
| 4916 | return rewriter.notifyMatchFailure( |
| 4917 | linearizeOp, "linearize ends with dynamic basis value" ); |
| 4918 | |
| 4919 | int64_t sizeToSplit = 1; |
| 4920 | size_t elemsToSplit = 0; |
| 4921 | ArrayRef<int64_t> basis = delinearizeOp.getStaticBasis(); |
| 4922 | for (int64_t basisElem : llvm::reverse(basis)) { |
| 4923 | if (ShapedType::isDynamic(basisElem)) |
| 4924 | return rewriter.notifyMatchFailure( |
| 4925 | delinearizeOp, "dynamic basis element while scanning for split" ); |
| 4926 | sizeToSplit *= basisElem; |
| 4927 | elemsToSplit += 1; |
| 4928 | |
| 4929 | if (sizeToSplit > target) |
| 4930 | return rewriter.notifyMatchFailure(delinearizeOp, |
| 4931 | "overshot last argument size" ); |
| 4932 | if (sizeToSplit == target) |
| 4933 | break; |
| 4934 | } |
| 4935 | |
| 4936 | if (sizeToSplit < target) |
| 4937 | return rewriter.notifyMatchFailure( |
| 4938 | delinearizeOp, "product of known basis elements doesn't exceed last " |
| 4939 | "linearize argument" ); |
| 4940 | |
| 4941 | if (elemsToSplit < 2) |
| 4942 | return rewriter.notifyMatchFailure( |
| 4943 | delinearizeOp, |
| 4944 | "need at least two elements to form the basis product" ); |
| 4945 | |
| 4946 | Value linearizeWithoutBack = |
| 4947 | rewriter.create<affine::AffineLinearizeIndexOp>( |
| 4948 | linearizeOp.getLoc(), linearizeOp.getMultiIndex().drop_back(), |
| 4949 | linearizeOp.getDynamicBasis(), |
| 4950 | linearizeOp.getStaticBasis().drop_back(), |
| 4951 | linearizeOp.getDisjoint()); |
| 4952 | auto delinearizeWithoutSplitPart = |
| 4953 | rewriter.create<affine::AffineDelinearizeIndexOp>( |
| 4954 | delinearizeOp.getLoc(), linearizeWithoutBack, |
| 4955 | delinearizeOp.getDynamicBasis(), basis.drop_back(elemsToSplit), |
| 4956 | delinearizeOp.hasOuterBound()); |
| 4957 | auto delinearizeBack = rewriter.create<affine::AffineDelinearizeIndexOp>( |
| 4958 | delinearizeOp.getLoc(), linearizeOp.getMultiIndex().back(), |
| 4959 | basis.take_back(elemsToSplit), /*hasOuterBound=*/true); |
| 4960 | SmallVector<Value> results = llvm::to_vector( |
| 4961 | llvm::concat<Value>(delinearizeWithoutSplitPart.getResults(), |
| 4962 | delinearizeBack.getResults())); |
| 4963 | rewriter.replaceOp(delinearizeOp, results); |
| 4964 | |
| 4965 | return success(); |
| 4966 | } |
| 4967 | }; |
| 4968 | } // namespace |
| 4969 | |
| 4970 | void affine::AffineDelinearizeIndexOp::getCanonicalizationPatterns( |
| 4971 | RewritePatternSet &patterns, MLIRContext *context) { |
| 4972 | patterns |
| 4973 | .insert<CancelDelinearizeOfLinearizeDisjointExactTail, |
| 4974 | DropUnitExtentBasis, SplitDelinearizeSpanningLastLinearizeArg>( |
| 4975 | context); |
| 4976 | } |
| 4977 | |
| 4978 | //===----------------------------------------------------------------------===// |
| 4979 | // LinearizeIndexOp |
| 4980 | //===----------------------------------------------------------------------===// |
| 4981 | |
| 4982 | void AffineLinearizeIndexOp::build(OpBuilder &odsBuilder, |
| 4983 | OperationState &odsState, |
| 4984 | ValueRange multiIndex, ValueRange basis, |
| 4985 | bool disjoint) { |
| 4986 | if (!basis.empty() && basis.front() == Value()) |
| 4987 | basis = basis.drop_front(); |
| 4988 | SmallVector<Value> dynamicBasis; |
| 4989 | SmallVector<int64_t> staticBasis; |
| 4990 | dispatchIndexOpFoldResults(getAsOpFoldResult(basis), dynamicBasis, |
| 4991 | staticBasis); |
| 4992 | build(odsBuilder, odsState, multiIndex, dynamicBasis, staticBasis, disjoint); |
| 4993 | } |
| 4994 | |
| 4995 | void AffineLinearizeIndexOp::build(OpBuilder &odsBuilder, |
| 4996 | OperationState &odsState, |
| 4997 | ValueRange multiIndex, |
| 4998 | ArrayRef<OpFoldResult> basis, |
| 4999 | bool disjoint) { |
| 5000 | if (!basis.empty() && basis.front() == OpFoldResult()) |
| 5001 | basis = basis.drop_front(); |
| 5002 | SmallVector<Value> dynamicBasis; |
| 5003 | SmallVector<int64_t> staticBasis; |
| 5004 | dispatchIndexOpFoldResults(basis, dynamicBasis, staticBasis); |
| 5005 | build(odsBuilder, odsState, multiIndex, dynamicBasis, staticBasis, disjoint); |
| 5006 | } |
| 5007 | |
| 5008 | void AffineLinearizeIndexOp::build(OpBuilder &odsBuilder, |
| 5009 | OperationState &odsState, |
| 5010 | ValueRange multiIndex, |
| 5011 | ArrayRef<int64_t> basis, bool disjoint) { |
| 5012 | build(odsBuilder, odsState, multiIndex, ValueRange{}, basis, disjoint); |
| 5013 | } |
| 5014 | |
| 5015 | LogicalResult AffineLinearizeIndexOp::verify() { |
| 5016 | size_t numIndexes = getMultiIndex().size(); |
| 5017 | size_t numBasisElems = getStaticBasis().size(); |
| 5018 | if (numIndexes != numBasisElems && numIndexes != numBasisElems + 1) |
| 5019 | return emitOpError("should be passed a basis element for each index except " |
| 5020 | "possibly the first" ); |
| 5021 | |
| 5022 | auto dynamicMarkersCount = |
| 5023 | llvm::count_if(getStaticBasis(), ShapedType::isDynamic); |
| 5024 | if (static_cast<size_t>(dynamicMarkersCount) != getDynamicBasis().size()) |
| 5025 | return emitOpError( |
| 5026 | "mismatch between dynamic and static basis (kDynamic marker but no " |
| 5027 | "corresponding dynamic basis entry) -- this can only happen due to an " |
| 5028 | "incorrect fold/rewrite" ); |
| 5029 | |
| 5030 | return success(); |
| 5031 | } |
| 5032 | |
| 5033 | OpFoldResult AffineLinearizeIndexOp::fold(FoldAdaptor adaptor) { |
| 5034 | std::optional<SmallVector<int64_t>> maybeStaticBasis = |
| 5035 | foldCstValueToCstAttrBasis(getMixedBasis(), getDynamicBasisMutable(), |
| 5036 | adaptor.getDynamicBasis()); |
| 5037 | if (maybeStaticBasis) { |
| 5038 | setStaticBasis(*maybeStaticBasis); |
| 5039 | return getResult(); |
| 5040 | } |
| 5041 | // No indices linearizes to zero. |
| 5042 | if (getMultiIndex().empty()) |
| 5043 | return IntegerAttr::get(getResult().getType(), 0); |
| 5044 | |
| 5045 | // One single index linearizes to itself. |
| 5046 | if (getMultiIndex().size() == 1) |
| 5047 | return getMultiIndex().front(); |
| 5048 | |
| 5049 | if (llvm::is_contained(adaptor.getMultiIndex(), nullptr)) |
| 5050 | return nullptr; |
| 5051 | |
| 5052 | if (!adaptor.getDynamicBasis().empty()) |
| 5053 | return nullptr; |
| 5054 | |
| 5055 | int64_t result = 0; |
| 5056 | int64_t stride = 1; |
| 5057 | for (auto [length, indexAttr] : |
| 5058 | llvm::zip_first(llvm::reverse(getStaticBasis()), |
| 5059 | llvm::reverse(adaptor.getMultiIndex()))) { |
| 5060 | result = result + cast<IntegerAttr>(indexAttr).getInt() * stride; |
| 5061 | stride = stride * length; |
| 5062 | } |
| 5063 | // Handle the index element with no basis element. |
| 5064 | if (!hasOuterBound()) |
| 5065 | result = |
| 5066 | result + |
| 5067 | cast<IntegerAttr>(adaptor.getMultiIndex().front()).getInt() * stride; |
| 5068 | |
| 5069 | return IntegerAttr::get(getResult().getType(), result); |
| 5070 | } |
| 5071 | |
| 5072 | SmallVector<OpFoldResult> AffineLinearizeIndexOp::getEffectiveBasis() { |
| 5073 | OpBuilder builder(getContext()); |
| 5074 | if (hasOuterBound()) { |
| 5075 | if (getStaticBasis().front() == ::mlir::ShapedType::kDynamic) |
| 5076 | return getMixedValues(getStaticBasis().drop_front(), |
| 5077 | getDynamicBasis().drop_front(), builder); |
| 5078 | |
| 5079 | return getMixedValues(getStaticBasis().drop_front(), getDynamicBasis(), |
| 5080 | builder); |
| 5081 | } |
| 5082 | |
| 5083 | return getMixedValues(getStaticBasis(), getDynamicBasis(), builder); |
| 5084 | } |
| 5085 | |
| 5086 | SmallVector<OpFoldResult> AffineLinearizeIndexOp::getPaddedBasis() { |
| 5087 | SmallVector<OpFoldResult> ret = getMixedBasis(); |
| 5088 | if (!hasOuterBound()) |
| 5089 | ret.insert(ret.begin(), OpFoldResult()); |
| 5090 | return ret; |
| 5091 | } |
| 5092 | |
| 5093 | namespace { |
| 5094 | /// Rewrite `affine.linearize_index disjoint [%...a, %x, %...b] by (%...c, 1, |
| 5095 | /// %...d)` to `affine.linearize_index disjoint [%...a, %...b] by (%...c, |
| 5096 | /// %...d)`. |
| 5097 | |
| 5098 | /// Note that `disjoint` is required here, because, without it, we could have |
| 5099 | /// `affine.linearize_index [%...a, %c64, %...b] by (%...c, 1, %...d)` |
| 5100 | /// is a valid operation where the `%c64` cannot be trivially dropped. |
| 5101 | /// |
| 5102 | /// Alternatively, if `%x` in the above is a known constant 0, remove it even if |
| 5103 | /// the operation isn't asserted to be `disjoint`. |
| 5104 | struct DropLinearizeUnitComponentsIfDisjointOrZero final |
| 5105 | : OpRewritePattern<affine::AffineLinearizeIndexOp> { |
| 5106 | using OpRewritePattern::OpRewritePattern; |
| 5107 | |
| 5108 | LogicalResult matchAndRewrite(affine::AffineLinearizeIndexOp op, |
| 5109 | PatternRewriter &rewriter) const override { |
| 5110 | ValueRange multiIndex = op.getMultiIndex(); |
| 5111 | size_t numIndices = multiIndex.size(); |
| 5112 | SmallVector<Value> newIndices; |
| 5113 | newIndices.reserve(N: numIndices); |
| 5114 | SmallVector<OpFoldResult> newBasis; |
| 5115 | newBasis.reserve(N: numIndices); |
| 5116 | |
| 5117 | if (!op.hasOuterBound()) { |
| 5118 | newIndices.push_back(Elt: multiIndex.front()); |
| 5119 | multiIndex = multiIndex.drop_front(); |
| 5120 | } |
| 5121 | |
| 5122 | SmallVector<OpFoldResult> basis = op.getMixedBasis(); |
| 5123 | for (auto [index, basisElem] : llvm::zip_equal(multiIndex, basis)) { |
| 5124 | std::optional<int64_t> basisEntry = getConstantIntValue(basisElem); |
| 5125 | if (!basisEntry || *basisEntry != 1) { |
| 5126 | newIndices.push_back(index); |
| 5127 | newBasis.push_back(basisElem); |
| 5128 | continue; |
| 5129 | } |
| 5130 | |
| 5131 | std::optional<int64_t> indexValue = getConstantIntValue(index); |
| 5132 | if (!op.getDisjoint() && (!indexValue || *indexValue != 0)) { |
| 5133 | newIndices.push_back(index); |
| 5134 | newBasis.push_back(basisElem); |
| 5135 | continue; |
| 5136 | } |
| 5137 | } |
| 5138 | if (newIndices.size() == numIndices) |
| 5139 | return rewriter.notifyMatchFailure(op, |
| 5140 | "no unit basis entries to replace" ); |
| 5141 | |
| 5142 | if (newIndices.size() == 0) { |
| 5143 | rewriter.replaceOpWithNewOp<arith::ConstantIndexOp>(op, 0); |
| 5144 | return success(); |
| 5145 | } |
| 5146 | rewriter.replaceOpWithNewOp<affine::AffineLinearizeIndexOp>( |
| 5147 | op, newIndices, newBasis, op.getDisjoint()); |
| 5148 | return success(); |
| 5149 | } |
| 5150 | }; |
| 5151 | |
| 5152 | OpFoldResult computeProduct(Location loc, OpBuilder &builder, |
| 5153 | ArrayRef<OpFoldResult> terms) { |
| 5154 | int64_t nDynamic = 0; |
| 5155 | SmallVector<Value> dynamicPart; |
| 5156 | AffineExpr result = builder.getAffineConstantExpr(constant: 1); |
| 5157 | for (OpFoldResult term : terms) { |
| 5158 | if (!term) |
| 5159 | return term; |
| 5160 | std::optional<int64_t> maybeConst = getConstantIntValue(ofr: term); |
| 5161 | if (maybeConst) { |
| 5162 | result = result * builder.getAffineConstantExpr(constant: *maybeConst); |
| 5163 | } else { |
| 5164 | dynamicPart.push_back(Elt: cast<Value>(Val&: term)); |
| 5165 | result = result * builder.getAffineSymbolExpr(position: nDynamic++); |
| 5166 | } |
| 5167 | } |
| 5168 | if (auto constant = dyn_cast<AffineConstantExpr>(Val&: result)) |
| 5169 | return getAsIndexOpFoldResult(ctx: builder.getContext(), val: constant.getValue()); |
| 5170 | return builder.create<AffineApplyOp>(loc, result, dynamicPart).getResult(); |
| 5171 | } |
| 5172 | |
| 5173 | /// If conseceutive outputs of a delinearize_index are linearized with the same |
| 5174 | /// bounds, canonicalize away the redundant arithmetic. |
| 5175 | /// |
| 5176 | /// That is, if we have |
| 5177 | /// ``` |
| 5178 | /// %s:N = affine.delinearize_index %x into (...a, B1, B2, ... BK, ...b) |
| 5179 | /// %t = affine.linearize_index [...c, %s#I, %s#(I + 1), ... %s#(I+K-1), ...d] |
| 5180 | /// by (...e, B1, B2, ..., BK, ...f) |
| 5181 | /// ``` |
| 5182 | /// |
| 5183 | /// We can rewrite this to |
| 5184 | /// ``` |
| 5185 | /// B = B1 * B2 ... BK |
| 5186 | /// %sMerged:(N-K+1) affine.delinearize_index %x into (...a, B, ...b) |
| 5187 | /// %t = affine.linearize_index [...c, %s#I, ...d] by (...e, B, ...f) |
| 5188 | /// ``` |
| 5189 | /// where we replace all results of %s unaffected by the change with results |
| 5190 | /// from %sMerged. |
| 5191 | /// |
| 5192 | /// As a special case, if all results of the delinearize are merged in this way |
| 5193 | /// we can replace those usages with %x, thus cancelling the delinearization |
| 5194 | /// entirely, as in |
| 5195 | /// ``` |
| 5196 | /// %s:3 = affine.delinearize_index %x into (2, 4, 8) |
| 5197 | /// %t = affine.linearize_index [%s#0, %s#1, %s#2, %c0] by (2, 4, 8, 16) |
| 5198 | /// ``` |
| 5199 | /// becoming `%t = affine.linearize_index [%x, %c0] by (64, 16)` |
| 5200 | struct CancelLinearizeOfDelinearizePortion final |
| 5201 | : OpRewritePattern<affine::AffineLinearizeIndexOp> { |
| 5202 | using OpRewritePattern::OpRewritePattern; |
| 5203 | |
| 5204 | private: |
| 5205 | // Struct representing a case where the cancellation pattern |
| 5206 | // applies. A `Match` means that `length` inputs to the linearize operation |
| 5207 | // starting at `linStart` can be cancelled with `length` outputs of |
| 5208 | // `delinearize`, starting from `delinStart`. |
| 5209 | struct Match { |
| 5210 | AffineDelinearizeIndexOp delinearize; |
| 5211 | unsigned linStart = 0; |
| 5212 | unsigned delinStart = 0; |
| 5213 | unsigned length = 0; |
| 5214 | }; |
| 5215 | |
| 5216 | public: |
| 5217 | LogicalResult matchAndRewrite(affine::AffineLinearizeIndexOp linearizeOp, |
| 5218 | PatternRewriter &rewriter) const override { |
| 5219 | SmallVector<Match> matches; |
| 5220 | |
| 5221 | const SmallVector<OpFoldResult> linBasis = linearizeOp.getPaddedBasis(); |
| 5222 | ArrayRef<OpFoldResult> linBasisRef = linBasis; |
| 5223 | |
| 5224 | ValueRange multiIndex = linearizeOp.getMultiIndex(); |
| 5225 | unsigned numLinArgs = multiIndex.size(); |
| 5226 | unsigned linArgIdx = 0; |
| 5227 | // We only want to replace one run from the same delinearize op per |
| 5228 | // pattern invocation lest we run into invalidation issues. |
| 5229 | llvm::SmallPtrSet<Operation *, 2> alreadyMatchedDelinearize; |
| 5230 | while (linArgIdx < numLinArgs) { |
| 5231 | auto asResult = dyn_cast<OpResult>(Val: multiIndex[linArgIdx]); |
| 5232 | if (!asResult) { |
| 5233 | linArgIdx++; |
| 5234 | continue; |
| 5235 | } |
| 5236 | |
| 5237 | auto delinearizeOp = |
| 5238 | dyn_cast<AffineDelinearizeIndexOp>(asResult.getOwner()); |
| 5239 | if (!delinearizeOp) { |
| 5240 | linArgIdx++; |
| 5241 | continue; |
| 5242 | } |
| 5243 | |
| 5244 | /// Result 0 of the delinearize and argument 0 of the linearize can |
| 5245 | /// leave their maximum value unspecified. However, even if this happens |
| 5246 | /// we can still sometimes start the match process. Specifically, if |
| 5247 | /// - The argument we're matching is result 0 and argument 0 (so the |
| 5248 | /// bounds don't matter). For example, |
| 5249 | /// |
| 5250 | /// %0:2 = affine.delinearize_index %x into (8) : index, index |
| 5251 | /// %1 = affine.linearize_index [%s#0, %s#1, ...] (8, ...) |
| 5252 | /// allows cancellation |
| 5253 | /// - The delinearization doesn't specify a bound, but the linearization |
| 5254 | /// is `disjoint`, which asserts that the bound on the linearization is |
| 5255 | /// correct. |
| 5256 | unsigned delinArgIdx = asResult.getResultNumber(); |
| 5257 | SmallVector<OpFoldResult> delinBasis = delinearizeOp.getPaddedBasis(); |
| 5258 | OpFoldResult firstDelinBound = delinBasis[delinArgIdx]; |
| 5259 | OpFoldResult firstLinBound = linBasis[linArgIdx]; |
| 5260 | bool boundsMatch = firstDelinBound == firstLinBound; |
| 5261 | bool bothAtFront = linArgIdx == 0 && delinArgIdx == 0; |
| 5262 | bool knownByDisjoint = |
| 5263 | linearizeOp.getDisjoint() && delinArgIdx == 0 && !firstDelinBound; |
| 5264 | if (!boundsMatch && !bothAtFront && !knownByDisjoint) { |
| 5265 | linArgIdx++; |
| 5266 | continue; |
| 5267 | } |
| 5268 | |
| 5269 | unsigned j = 1; |
| 5270 | unsigned numDelinOuts = delinearizeOp.getNumResults(); |
| 5271 | for (; j + linArgIdx < numLinArgs && j + delinArgIdx < numDelinOuts; |
| 5272 | ++j) { |
| 5273 | if (multiIndex[linArgIdx + j] != |
| 5274 | delinearizeOp.getResult(delinArgIdx + j)) |
| 5275 | break; |
| 5276 | if (linBasis[linArgIdx + j] != delinBasis[delinArgIdx + j]) |
| 5277 | break; |
| 5278 | } |
| 5279 | // If there're multiple matches against the same delinearize_index, |
| 5280 | // only rewrite the first one we find to prevent invalidations. The next |
| 5281 | // ones will be taken care of by subsequent pattern invocations. |
| 5282 | if (j <= 1 || !alreadyMatchedDelinearize.insert(delinearizeOp).second) { |
| 5283 | linArgIdx++; |
| 5284 | continue; |
| 5285 | } |
| 5286 | matches.push_back(Elt: Match{delinearizeOp, linArgIdx, delinArgIdx, j}); |
| 5287 | linArgIdx += j; |
| 5288 | } |
| 5289 | |
| 5290 | if (matches.empty()) |
| 5291 | return rewriter.notifyMatchFailure( |
| 5292 | linearizeOp, "no run of delinearize outputs to deal with" ); |
| 5293 | |
| 5294 | // Record all the delinearize replacements so we can do them after creating |
| 5295 | // the new linearization operation, since the new operation might use |
| 5296 | // outputs of something we're replacing. |
| 5297 | SmallVector<SmallVector<Value>> delinearizeReplacements; |
| 5298 | |
| 5299 | SmallVector<Value> newIndex; |
| 5300 | newIndex.reserve(N: numLinArgs); |
| 5301 | SmallVector<OpFoldResult> newBasis; |
| 5302 | newBasis.reserve(N: numLinArgs); |
| 5303 | unsigned prevMatchEnd = 0; |
| 5304 | for (Match m : matches) { |
| 5305 | unsigned gap = m.linStart - prevMatchEnd; |
| 5306 | llvm::append_range(C&: newIndex, R: multiIndex.slice(n: prevMatchEnd, m: gap)); |
| 5307 | llvm::append_range(C&: newBasis, R: linBasisRef.slice(N: prevMatchEnd, M: gap)); |
| 5308 | // Update here so we don't forget this during early continues |
| 5309 | prevMatchEnd = m.linStart + m.length; |
| 5310 | |
| 5311 | PatternRewriter::InsertionGuard g(rewriter); |
| 5312 | rewriter.setInsertionPoint(m.delinearize); |
| 5313 | |
| 5314 | ArrayRef<OpFoldResult> basisToMerge = |
| 5315 | linBasisRef.slice(N: m.linStart, M: m.length); |
| 5316 | // We use the slice from the linearize's basis above because of the |
| 5317 | // "bounds inferred from `disjoint`" case above. |
| 5318 | OpFoldResult newSize = |
| 5319 | computeProduct(linearizeOp.getLoc(), rewriter, basisToMerge); |
| 5320 | |
| 5321 | // Trivial case where we can just skip past the delinearize all together |
| 5322 | if (m.length == m.delinearize.getNumResults()) { |
| 5323 | newIndex.push_back(Elt: m.delinearize.getLinearIndex()); |
| 5324 | newBasis.push_back(Elt: newSize); |
| 5325 | // Pad out set of replacements so we don't do anything with this one. |
| 5326 | delinearizeReplacements.push_back(Elt: SmallVector<Value>()); |
| 5327 | continue; |
| 5328 | } |
| 5329 | |
| 5330 | SmallVector<Value> newDelinResults; |
| 5331 | SmallVector<OpFoldResult> newDelinBasis = m.delinearize.getPaddedBasis(); |
| 5332 | newDelinBasis.erase(CS: newDelinBasis.begin() + m.delinStart, |
| 5333 | CE: newDelinBasis.begin() + m.delinStart + m.length); |
| 5334 | newDelinBasis.insert(I: newDelinBasis.begin() + m.delinStart, Elt: newSize); |
| 5335 | auto newDelinearize = rewriter.create<AffineDelinearizeIndexOp>( |
| 5336 | m.delinearize.getLoc(), m.delinearize.getLinearIndex(), |
| 5337 | newDelinBasis); |
| 5338 | |
| 5339 | // Since there may be other uses of the indices we just merged together, |
| 5340 | // create a residual affine.delinearize_index that delinearizes the |
| 5341 | // merged output into its component parts. |
| 5342 | Value combinedElem = newDelinearize.getResult(m.delinStart); |
| 5343 | auto residualDelinearize = rewriter.create<AffineDelinearizeIndexOp>( |
| 5344 | m.delinearize.getLoc(), combinedElem, basisToMerge); |
| 5345 | |
| 5346 | // Swap all the uses of the unaffected delinearize outputs to the new |
| 5347 | // delinearization so that the old code can be removed if this |
| 5348 | // linearize_index is the only user of the merged results. |
| 5349 | llvm::append_range(newDelinResults, |
| 5350 | newDelinearize.getResults().take_front(m.delinStart)); |
| 5351 | llvm::append_range(newDelinResults, residualDelinearize.getResults()); |
| 5352 | llvm::append_range( |
| 5353 | newDelinResults, |
| 5354 | newDelinearize.getResults().drop_front(m.delinStart + 1)); |
| 5355 | |
| 5356 | delinearizeReplacements.push_back(Elt: newDelinResults); |
| 5357 | newIndex.push_back(Elt: combinedElem); |
| 5358 | newBasis.push_back(Elt: newSize); |
| 5359 | } |
| 5360 | llvm::append_range(C&: newIndex, R: multiIndex.drop_front(n: prevMatchEnd)); |
| 5361 | llvm::append_range(C&: newBasis, R: linBasisRef.drop_front(N: prevMatchEnd)); |
| 5362 | rewriter.replaceOpWithNewOp<AffineLinearizeIndexOp>( |
| 5363 | linearizeOp, newIndex, newBasis, linearizeOp.getDisjoint()); |
| 5364 | |
| 5365 | for (auto [m, newResults] : |
| 5366 | llvm::zip_equal(t&: matches, u&: delinearizeReplacements)) { |
| 5367 | if (newResults.empty()) |
| 5368 | continue; |
| 5369 | rewriter.replaceOp(m.delinearize, newResults); |
| 5370 | } |
| 5371 | |
| 5372 | return success(); |
| 5373 | } |
| 5374 | }; |
| 5375 | |
| 5376 | /// Strip leading zero from affine.linearize_index. |
| 5377 | /// |
| 5378 | /// `affine.linearize_index [%c0, ...a] by (%x, ...b)` can be rewritten |
| 5379 | /// to `affine.linearize_index [...a] by (...b)` in all cases. |
| 5380 | struct DropLinearizeLeadingZero final |
| 5381 | : OpRewritePattern<affine::AffineLinearizeIndexOp> { |
| 5382 | using OpRewritePattern::OpRewritePattern; |
| 5383 | |
| 5384 | LogicalResult matchAndRewrite(affine::AffineLinearizeIndexOp op, |
| 5385 | PatternRewriter &rewriter) const override { |
| 5386 | Value leadingIdx = op.getMultiIndex().front(); |
| 5387 | if (!matchPattern(value: leadingIdx, pattern: m_Zero())) |
| 5388 | return failure(); |
| 5389 | |
| 5390 | if (op.getMultiIndex().size() == 1) { |
| 5391 | rewriter.replaceOp(op, leadingIdx); |
| 5392 | return success(); |
| 5393 | } |
| 5394 | |
| 5395 | SmallVector<OpFoldResult> mixedBasis = op.getMixedBasis(); |
| 5396 | ArrayRef<OpFoldResult> newMixedBasis = mixedBasis; |
| 5397 | if (op.hasOuterBound()) |
| 5398 | newMixedBasis = newMixedBasis.drop_front(); |
| 5399 | |
| 5400 | rewriter.replaceOpWithNewOp<affine::AffineLinearizeIndexOp>( |
| 5401 | op, op.getMultiIndex().drop_front(), newMixedBasis, op.getDisjoint()); |
| 5402 | return success(); |
| 5403 | } |
| 5404 | }; |
| 5405 | } // namespace |
| 5406 | |
| 5407 | void affine::AffineLinearizeIndexOp::getCanonicalizationPatterns( |
| 5408 | RewritePatternSet &patterns, MLIRContext *context) { |
| 5409 | patterns.add<CancelLinearizeOfDelinearizePortion, DropLinearizeLeadingZero, |
| 5410 | DropLinearizeUnitComponentsIfDisjointOrZero>(context); |
| 5411 | } |
| 5412 | |
| 5413 | //===----------------------------------------------------------------------===// |
| 5414 | // TableGen'd op method definitions |
| 5415 | //===----------------------------------------------------------------------===// |
| 5416 | |
| 5417 | #define GET_OP_CLASSES |
| 5418 | #include "mlir/Dialect/Affine/IR/AffineOps.cpp.inc" |
| 5419 | |