1 | //===- Utils.cpp ---- Utilities for affine dialect transformation ---------===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements miscellaneous transformation utilities for the Affine |
10 | // dialect. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "mlir/Dialect/Affine/Utils.h" |
15 | |
16 | #include "mlir/Dialect/Affine/Analysis/Utils.h" |
17 | #include "mlir/Dialect/Affine/IR/AffineOps.h" |
18 | #include "mlir/Dialect/Affine/IR/AffineValueMap.h" |
19 | #include "mlir/Dialect/Affine/LoopUtils.h" |
20 | #include "mlir/Dialect/Arith/Utils/Utils.h" |
21 | #include "mlir/Dialect/Func/IR/FuncOps.h" |
22 | #include "mlir/Dialect/MemRef/IR/MemRef.h" |
23 | #include "mlir/Dialect/Utils/IndexingUtils.h" |
24 | #include "mlir/IR/AffineExprVisitor.h" |
25 | #include "mlir/IR/Dominance.h" |
26 | #include "mlir/IR/IRMapping.h" |
27 | #include "mlir/IR/ImplicitLocOpBuilder.h" |
28 | #include "mlir/IR/IntegerSet.h" |
29 | #include "mlir/Transforms/GreedyPatternRewriteDriver.h" |
30 | #include "llvm/Support/LogicalResult.h" |
31 | #include <optional> |
32 | |
33 | #define DEBUG_TYPE "affine-utils" |
34 | |
35 | using namespace mlir; |
36 | using namespace affine; |
37 | using namespace presburger; |
38 | |
39 | namespace { |
40 | /// Visit affine expressions recursively and build the sequence of operations |
41 | /// that correspond to it. Visitation functions return an Value of the |
42 | /// expression subtree they visited or `nullptr` on error. |
43 | class AffineApplyExpander |
44 | : public AffineExprVisitor<AffineApplyExpander, Value> { |
45 | public: |
46 | /// This internal class expects arguments to be non-null, checks must be |
47 | /// performed at the call site. |
48 | AffineApplyExpander(OpBuilder &builder, ValueRange dimValues, |
49 | ValueRange symbolValues, Location loc) |
50 | : builder(builder), dimValues(dimValues), symbolValues(symbolValues), |
51 | loc(loc) {} |
52 | |
53 | template <typename OpTy> |
54 | Value buildBinaryExpr(AffineBinaryOpExpr expr, |
55 | arith::IntegerOverflowFlags overflowFlags = |
56 | arith::IntegerOverflowFlags::none) { |
57 | auto lhs = visit(expr: expr.getLHS()); |
58 | auto rhs = visit(expr: expr.getRHS()); |
59 | if (!lhs || !rhs) |
60 | return nullptr; |
61 | auto op = builder.create<OpTy>(loc, lhs, rhs, overflowFlags); |
62 | return op.getResult(); |
63 | } |
64 | |
65 | Value visitAddExpr(AffineBinaryOpExpr expr) { |
66 | return buildBinaryExpr<arith::AddIOp>(expr); |
67 | } |
68 | |
69 | Value visitMulExpr(AffineBinaryOpExpr expr) { |
70 | return buildBinaryExpr<arith::MulIOp>(expr, |
71 | arith::IntegerOverflowFlags::nsw); |
72 | } |
73 | |
74 | /// Euclidean modulo operation: negative RHS is not allowed. |
75 | /// Remainder of the euclidean integer division is always non-negative. |
76 | /// |
77 | /// Implemented as |
78 | /// |
79 | /// a mod b = |
80 | /// let remainder = srem a, b; |
81 | /// negative = a < 0 in |
82 | /// select negative, remainder + b, remainder. |
83 | Value visitModExpr(AffineBinaryOpExpr expr) { |
84 | if (auto rhsConst = dyn_cast<AffineConstantExpr>(Val: expr.getRHS())) { |
85 | if (rhsConst.getValue() <= 0) { |
86 | emitError(loc, message: "modulo by non-positive value is not supported"); |
87 | return nullptr; |
88 | } |
89 | } |
90 | |
91 | auto lhs = visit(expr: expr.getLHS()); |
92 | auto rhs = visit(expr: expr.getRHS()); |
93 | assert(lhs && rhs && "unexpected affine expr lowering failure"); |
94 | |
95 | Value remainder = builder.create<arith::RemSIOp>(loc, lhs, rhs); |
96 | Value zeroCst = builder.create<arith::ConstantIndexOp>(location: loc, args: 0); |
97 | Value isRemainderNegative = builder.create<arith::CmpIOp>( |
98 | loc, arith::CmpIPredicate::slt, remainder, zeroCst); |
99 | Value correctedRemainder = |
100 | builder.create<arith::AddIOp>(loc, remainder, rhs); |
101 | Value result = builder.create<arith::SelectOp>( |
102 | loc, isRemainderNegative, correctedRemainder, remainder); |
103 | return result; |
104 | } |
105 | |
106 | /// Floor division operation (rounds towards negative infinity). |
107 | /// |
108 | /// For positive divisors, it can be implemented without branching and with a |
109 | /// single division operation as |
110 | /// |
111 | /// a floordiv b = |
112 | /// let negative = a < 0 in |
113 | /// let absolute = negative ? -a - 1 : a in |
114 | /// let quotient = absolute / b in |
115 | /// negative ? -quotient - 1 : quotient |
116 | /// |
117 | /// Note: this lowering does not use arith.floordivsi because the lowering of |
118 | /// that to arith.divsi (see populateCeilFloorDivExpandOpsPatterns) generates |
119 | /// not one but two arith.divsi. That could be changed to one divsi, but one |
120 | /// way or another, going through arith.floordivsi will result in more complex |
121 | /// IR because arith.floordivsi is more general than affine floordiv in that |
122 | /// it supports negative RHS. |
123 | Value visitFloorDivExpr(AffineBinaryOpExpr expr) { |
124 | if (auto rhsConst = dyn_cast<AffineConstantExpr>(Val: expr.getRHS())) { |
125 | if (rhsConst.getValue() <= 0) { |
126 | emitError(loc, message: "division by non-positive value is not supported"); |
127 | return nullptr; |
128 | } |
129 | } |
130 | auto lhs = visit(expr: expr.getLHS()); |
131 | auto rhs = visit(expr: expr.getRHS()); |
132 | assert(lhs && rhs && "unexpected affine expr lowering failure"); |
133 | |
134 | Value zeroCst = builder.create<arith::ConstantIndexOp>(location: loc, args: 0); |
135 | Value noneCst = builder.create<arith::ConstantIndexOp>(location: loc, args: -1); |
136 | Value negative = builder.create<arith::CmpIOp>( |
137 | loc, arith::CmpIPredicate::slt, lhs, zeroCst); |
138 | Value negatedDecremented = builder.create<arith::SubIOp>(loc, noneCst, lhs); |
139 | Value dividend = |
140 | builder.create<arith::SelectOp>(loc, negative, negatedDecremented, lhs); |
141 | Value quotient = builder.create<arith::DivSIOp>(loc, dividend, rhs); |
142 | Value correctedQuotient = |
143 | builder.create<arith::SubIOp>(loc, noneCst, quotient); |
144 | Value result = builder.create<arith::SelectOp>(loc, negative, |
145 | correctedQuotient, quotient); |
146 | return result; |
147 | } |
148 | |
149 | /// Ceiling division operation (rounds towards positive infinity). |
150 | /// |
151 | /// For positive divisors, it can be implemented without branching and with a |
152 | /// single division operation as |
153 | /// |
154 | /// a ceildiv b = |
155 | /// let negative = a <= 0 in |
156 | /// let absolute = negative ? -a : a - 1 in |
157 | /// let quotient = absolute / b in |
158 | /// negative ? -quotient : quotient + 1 |
159 | /// |
160 | /// Note: not using arith.ceildivsi for the same reason as explained in the |
161 | /// visitFloorDivExpr comment. |
162 | Value visitCeilDivExpr(AffineBinaryOpExpr expr) { |
163 | if (auto rhsConst = dyn_cast<AffineConstantExpr>(Val: expr.getRHS())) { |
164 | if (rhsConst.getValue() <= 0) { |
165 | emitError(loc, message: "division by non-positive value is not supported"); |
166 | return nullptr; |
167 | } |
168 | } |
169 | auto lhs = visit(expr: expr.getLHS()); |
170 | auto rhs = visit(expr: expr.getRHS()); |
171 | assert(lhs && rhs && "unexpected affine expr lowering failure"); |
172 | |
173 | Value zeroCst = builder.create<arith::ConstantIndexOp>(location: loc, args: 0); |
174 | Value oneCst = builder.create<arith::ConstantIndexOp>(location: loc, args: 1); |
175 | Value nonPositive = builder.create<arith::CmpIOp>( |
176 | loc, arith::CmpIPredicate::sle, lhs, zeroCst); |
177 | Value negated = builder.create<arith::SubIOp>(loc, zeroCst, lhs); |
178 | Value decremented = builder.create<arith::SubIOp>(loc, lhs, oneCst); |
179 | Value dividend = |
180 | builder.create<arith::SelectOp>(loc, nonPositive, negated, decremented); |
181 | Value quotient = builder.create<arith::DivSIOp>(loc, dividend, rhs); |
182 | Value negatedQuotient = |
183 | builder.create<arith::SubIOp>(loc, zeroCst, quotient); |
184 | Value incrementedQuotient = |
185 | builder.create<arith::AddIOp>(loc, quotient, oneCst); |
186 | Value result = builder.create<arith::SelectOp>( |
187 | loc, nonPositive, negatedQuotient, incrementedQuotient); |
188 | return result; |
189 | } |
190 | |
191 | Value visitConstantExpr(AffineConstantExpr expr) { |
192 | auto op = builder.create<arith::ConstantIndexOp>(location: loc, args: expr.getValue()); |
193 | return op.getResult(); |
194 | } |
195 | |
196 | Value visitDimExpr(AffineDimExpr expr) { |
197 | assert(expr.getPosition() < dimValues.size() && |
198 | "affine dim position out of range"); |
199 | return dimValues[expr.getPosition()]; |
200 | } |
201 | |
202 | Value visitSymbolExpr(AffineSymbolExpr expr) { |
203 | assert(expr.getPosition() < symbolValues.size() && |
204 | "symbol dim position out of range"); |
205 | return symbolValues[expr.getPosition()]; |
206 | } |
207 | |
208 | private: |
209 | OpBuilder &builder; |
210 | ValueRange dimValues; |
211 | ValueRange symbolValues; |
212 | |
213 | Location loc; |
214 | }; |
215 | } // namespace |
216 | |
217 | /// Create a sequence of operations that implement the `expr` applied to the |
218 | /// given dimension and symbol values. |
219 | mlir::Value mlir::affine::expandAffineExpr(OpBuilder &builder, Location loc, |
220 | AffineExpr expr, |
221 | ValueRange dimValues, |
222 | ValueRange symbolValues) { |
223 | return AffineApplyExpander(builder, dimValues, symbolValues, loc).visit(expr); |
224 | } |
225 | |
226 | /// Create a sequence of operations that implement the `affineMap` applied to |
227 | /// the given `operands` (as it it were an AffineApplyOp). |
228 | std::optional<SmallVector<Value, 8>> |
229 | mlir::affine::expandAffineMap(OpBuilder &builder, Location loc, |
230 | AffineMap affineMap, ValueRange operands) { |
231 | auto numDims = affineMap.getNumDims(); |
232 | auto expanded = llvm::to_vector<8>( |
233 | Range: llvm::map_range(C: affineMap.getResults(), |
234 | F: [numDims, &builder, loc, operands](AffineExpr expr) { |
235 | return expandAffineExpr(builder, loc, expr, |
236 | dimValues: operands.take_front(n: numDims), |
237 | symbolValues: operands.drop_front(n: numDims)); |
238 | })); |
239 | if (llvm::all_of(Range&: expanded, P: [](Value v) { return v; })) |
240 | return expanded; |
241 | return std::nullopt; |
242 | } |
243 | |
244 | /// Promotes the `then` or the `else` block of `ifOp` (depending on whether |
245 | /// `elseBlock` is false or true) into `ifOp`'s containing block, and discards |
246 | /// the rest of the op. |
247 | static void promoteIfBlock(AffineIfOp ifOp, bool elseBlock) { |
248 | if (elseBlock) |
249 | assert(ifOp.hasElse() && "else block expected"); |
250 | |
251 | Block *destBlock = ifOp->getBlock(); |
252 | Block *srcBlock = elseBlock ? ifOp.getElseBlock() : ifOp.getThenBlock(); |
253 | destBlock->getOperations().splice( |
254 | where: Block::iterator(ifOp), L2&: srcBlock->getOperations(), first: srcBlock->begin(), |
255 | last: std::prev(x: srcBlock->end())); |
256 | ifOp.erase(); |
257 | } |
258 | |
259 | /// Returns the outermost affine.for/parallel op that the `ifOp` is invariant |
260 | /// on. The `ifOp` could be hoisted and placed right before such an operation. |
261 | /// This method assumes that the ifOp has been canonicalized (to be correct and |
262 | /// effective). |
263 | static Operation *getOutermostInvariantForOp(AffineIfOp ifOp) { |
264 | // Walk up the parents past all for op that this conditional is invariant on. |
265 | auto ifOperands = ifOp.getOperands(); |
266 | Operation *res = ifOp; |
267 | while (!res->getParentOp()->hasTrait<OpTrait::IsIsolatedFromAbove>()) { |
268 | auto *parentOp = res->getParentOp(); |
269 | if (auto forOp = dyn_cast<AffineForOp>(parentOp)) { |
270 | if (llvm::is_contained(ifOperands, forOp.getInductionVar())) |
271 | break; |
272 | } else if (auto parallelOp = dyn_cast<AffineParallelOp>(parentOp)) { |
273 | if (llvm::any_of(parallelOp.getIVs(), [&](Value iv) { |
274 | return llvm::is_contained(ifOperands, iv); |
275 | })) |
276 | break; |
277 | } else if (!isa<AffineIfOp>(parentOp)) { |
278 | // Won't walk up past anything other than affine.for/if ops. |
279 | break; |
280 | } |
281 | // You can always hoist up past any affine.if ops. |
282 | res = parentOp; |
283 | } |
284 | return res; |
285 | } |
286 | |
287 | /// A helper for the mechanics of mlir::hoistAffineIfOp. Hoists `ifOp` just over |
288 | /// `hoistOverOp`. Returns the new hoisted op if any hoisting happened, |
289 | /// otherwise the same `ifOp`. |
290 | static AffineIfOp hoistAffineIfOp(AffineIfOp ifOp, Operation *hoistOverOp) { |
291 | // No hoisting to do. |
292 | if (hoistOverOp == ifOp) |
293 | return ifOp; |
294 | |
295 | // Create the hoisted 'if' first. Then, clone the op we are hoisting over for |
296 | // the else block. Then drop the else block of the original 'if' in the 'then' |
297 | // branch while promoting its then block, and analogously drop the 'then' |
298 | // block of the original 'if' from the 'else' branch while promoting its else |
299 | // block. |
300 | IRMapping operandMap; |
301 | OpBuilder b(hoistOverOp); |
302 | auto hoistedIfOp = b.create<AffineIfOp>(ifOp.getLoc(), ifOp.getIntegerSet(), |
303 | ifOp.getOperands(), |
304 | /*elseBlock=*/true); |
305 | |
306 | // Create a clone of hoistOverOp to use for the else branch of the hoisted |
307 | // conditional. The else block may get optimized away if empty. |
308 | Operation *hoistOverOpClone = nullptr; |
309 | // We use this unique name to identify/find `ifOp`'s clone in the else |
310 | // version. |
311 | StringAttr idForIfOp = b.getStringAttr("__mlir_if_hoisting"); |
312 | operandMap.clear(); |
313 | b.setInsertionPointAfter(hoistOverOp); |
314 | // We'll set an attribute to identify this op in a clone of this sub-tree. |
315 | ifOp->setAttr(idForIfOp, b.getBoolAttr(value: true)); |
316 | hoistOverOpClone = b.clone(op&: *hoistOverOp, mapper&: operandMap); |
317 | |
318 | // Promote the 'then' block of the original affine.if in the then version. |
319 | promoteIfBlock(ifOp, /*elseBlock=*/false); |
320 | |
321 | // Move the then version to the hoisted if op's 'then' block. |
322 | auto *thenBlock = hoistedIfOp.getThenBlock(); |
323 | thenBlock->getOperations().splice(thenBlock->begin(), |
324 | hoistOverOp->getBlock()->getOperations(), |
325 | Block::iterator(hoistOverOp)); |
326 | |
327 | // Find the clone of the original affine.if op in the else version. |
328 | AffineIfOp ifCloneInElse; |
329 | hoistOverOpClone->walk([&](AffineIfOp ifClone) { |
330 | if (!ifClone->getAttr(idForIfOp)) |
331 | return WalkResult::advance(); |
332 | ifCloneInElse = ifClone; |
333 | return WalkResult::interrupt(); |
334 | }); |
335 | assert(ifCloneInElse && "if op clone should exist"); |
336 | // For the else block, promote the else block of the original 'if' if it had |
337 | // one; otherwise, the op itself is to be erased. |
338 | if (!ifCloneInElse.hasElse()) |
339 | ifCloneInElse.erase(); |
340 | else |
341 | promoteIfBlock(ifCloneInElse, /*elseBlock=*/true); |
342 | |
343 | // Move the else version into the else block of the hoisted if op. |
344 | auto *elseBlock = hoistedIfOp.getElseBlock(); |
345 | elseBlock->getOperations().splice( |
346 | elseBlock->begin(), hoistOverOpClone->getBlock()->getOperations(), |
347 | Block::iterator(hoistOverOpClone)); |
348 | |
349 | return hoistedIfOp; |
350 | } |
351 | |
352 | LogicalResult |
353 | mlir::affine::affineParallelize(AffineForOp forOp, |
354 | ArrayRef<LoopReduction> parallelReductions, |
355 | AffineParallelOp *resOp) { |
356 | // Fail early if there are iter arguments that are not reductions. |
357 | unsigned numReductions = parallelReductions.size(); |
358 | if (numReductions != forOp.getNumIterOperands()) |
359 | return failure(); |
360 | |
361 | Location loc = forOp.getLoc(); |
362 | OpBuilder outsideBuilder(forOp); |
363 | AffineMap lowerBoundMap = forOp.getLowerBoundMap(); |
364 | ValueRange lowerBoundOperands = forOp.getLowerBoundOperands(); |
365 | AffineMap upperBoundMap = forOp.getUpperBoundMap(); |
366 | ValueRange upperBoundOperands = forOp.getUpperBoundOperands(); |
367 | |
368 | // Creating empty 1-D affine.parallel op. |
369 | auto reducedValues = llvm::to_vector<4>(Range: llvm::map_range( |
370 | C&: parallelReductions, F: [](const LoopReduction &red) { return red.value; })); |
371 | auto reductionKinds = llvm::to_vector<4>(llvm::map_range( |
372 | parallelReductions, [](const LoopReduction &red) { return red.kind; })); |
373 | AffineParallelOp newPloop = outsideBuilder.create<AffineParallelOp>( |
374 | loc, ValueRange(reducedValues).getTypes(), reductionKinds, |
375 | llvm::ArrayRef(lowerBoundMap), lowerBoundOperands, |
376 | llvm::ArrayRef(upperBoundMap), upperBoundOperands, |
377 | llvm::ArrayRef(forOp.getStepAsInt())); |
378 | // Steal the body of the old affine for op. |
379 | newPloop.getRegion().takeBody(forOp.getRegion()); |
380 | Operation *yieldOp = &newPloop.getBody()->back(); |
381 | |
382 | // Handle the initial values of reductions because the parallel loop always |
383 | // starts from the neutral value. |
384 | SmallVector<Value> newResults; |
385 | newResults.reserve(N: numReductions); |
386 | for (unsigned i = 0; i < numReductions; ++i) { |
387 | Value init = forOp.getInits()[i]; |
388 | // This works because we are only handling single-op reductions at the |
389 | // moment. A switch on reduction kind or a mechanism to collect operations |
390 | // participating in the reduction will be necessary for multi-op reductions. |
391 | Operation *reductionOp = yieldOp->getOperand(idx: i).getDefiningOp(); |
392 | assert(reductionOp && "yielded value is expected to be produced by an op"); |
393 | outsideBuilder.getInsertionBlock()->getOperations().splice( |
394 | outsideBuilder.getInsertionPoint(), newPloop.getBody()->getOperations(), |
395 | reductionOp); |
396 | reductionOp->setOperands({init, newPloop->getResult(i)}); |
397 | forOp->getResult(i).replaceAllUsesWith(reductionOp->getResult(idx: 0)); |
398 | } |
399 | |
400 | // Update the loop terminator to yield reduced values bypassing the reduction |
401 | // operation itself (now moved outside of the loop) and erase the block |
402 | // arguments that correspond to reductions. Note that the loop always has one |
403 | // "main" induction variable whenc coming from a non-parallel for. |
404 | unsigned numIVs = 1; |
405 | yieldOp->setOperands(reducedValues); |
406 | newPloop.getBody()->eraseArguments(numIVs, numReductions); |
407 | |
408 | forOp.erase(); |
409 | if (resOp) |
410 | *resOp = newPloop; |
411 | return success(); |
412 | } |
413 | |
414 | // Returns success if any hoisting happened. |
415 | LogicalResult mlir::affine::hoistAffineIfOp(AffineIfOp ifOp, bool *folded) { |
416 | // Bail out early if the ifOp returns a result. TODO: Consider how to |
417 | // properly support this case. |
418 | if (ifOp.getNumResults() != 0) |
419 | return failure(); |
420 | |
421 | // Apply canonicalization patterns and folding - this is necessary for the |
422 | // hoisting check to be correct (operands should be composed), and to be more |
423 | // effective (no unused operands). Since the pattern rewriter's folding is |
424 | // entangled with application of patterns, we may fold/end up erasing the op, |
425 | // in which case we return with `folded` being set. |
426 | RewritePatternSet patterns(ifOp.getContext()); |
427 | AffineIfOp::getCanonicalizationPatterns(patterns, ifOp.getContext()); |
428 | FrozenRewritePatternSet frozenPatterns(std::move(patterns)); |
429 | bool erased; |
430 | (void)applyOpPatternsGreedily( |
431 | ifOp.getOperation(), frozenPatterns, |
432 | GreedyRewriteConfig().setStrictness(GreedyRewriteStrictness::ExistingOps), |
433 | /*changed=*/nullptr, &erased); |
434 | if (erased) { |
435 | if (folded) |
436 | *folded = true; |
437 | return failure(); |
438 | } |
439 | if (folded) |
440 | *folded = false; |
441 | |
442 | // The folding above should have ensured this. |
443 | assert(llvm::all_of(ifOp.getOperands(), |
444 | [](Value v) { |
445 | return isTopLevelValue(v) || isAffineInductionVar(v); |
446 | }) && |
447 | "operands not composed"); |
448 | |
449 | // We are going hoist as high as possible. |
450 | // TODO: this could be customized in the future. |
451 | auto *hoistOverOp = getOutermostInvariantForOp(ifOp); |
452 | |
453 | AffineIfOp hoistedIfOp = ::hoistAffineIfOp(ifOp, hoistOverOp); |
454 | // Nothing to hoist over. |
455 | if (hoistedIfOp == ifOp) |
456 | return failure(); |
457 | |
458 | // Canonicalize to remove dead else blocks (happens whenever an 'if' moves up |
459 | // a sequence of affine.fors that are all perfectly nested). |
460 | (void)applyPatternsGreedily( |
461 | hoistedIfOp->getParentWithTrait<OpTrait::IsIsolatedFromAbove>(), |
462 | frozenPatterns); |
463 | |
464 | return success(); |
465 | } |
466 | |
467 | // Return the min expr after replacing the given dim. |
468 | AffineExpr mlir::affine::substWithMin(AffineExpr e, AffineExpr dim, |
469 | AffineExpr min, AffineExpr max, |
470 | bool positivePath) { |
471 | if (e == dim) |
472 | return positivePath ? min : max; |
473 | if (auto bin = dyn_cast<AffineBinaryOpExpr>(Val&: e)) { |
474 | AffineExpr lhs = bin.getLHS(); |
475 | AffineExpr rhs = bin.getRHS(); |
476 | if (bin.getKind() == mlir::AffineExprKind::Add) |
477 | return substWithMin(e: lhs, dim, min, max, positivePath) + |
478 | substWithMin(e: rhs, dim, min, max, positivePath); |
479 | |
480 | auto c1 = dyn_cast<AffineConstantExpr>(Val: bin.getLHS()); |
481 | auto c2 = dyn_cast<AffineConstantExpr>(Val: bin.getRHS()); |
482 | if (c1 && c1.getValue() < 0) |
483 | return getAffineBinaryOpExpr( |
484 | kind: bin.getKind(), lhs: c1, rhs: substWithMin(e: rhs, dim, min, max, positivePath: !positivePath)); |
485 | if (c2 && c2.getValue() < 0) |
486 | return getAffineBinaryOpExpr( |
487 | kind: bin.getKind(), lhs: substWithMin(e: lhs, dim, min, max, positivePath: !positivePath), rhs: c2); |
488 | return getAffineBinaryOpExpr( |
489 | kind: bin.getKind(), lhs: substWithMin(e: lhs, dim, min, max, positivePath), |
490 | rhs: substWithMin(e: rhs, dim, min, max, positivePath)); |
491 | } |
492 | return e; |
493 | } |
494 | |
495 | void mlir::affine::normalizeAffineParallel(AffineParallelOp op) { |
496 | // Loops with min/max in bounds are not normalized at the moment. |
497 | if (op.hasMinMaxBounds()) |
498 | return; |
499 | |
500 | AffineMap lbMap = op.getLowerBoundsMap(); |
501 | SmallVector<int64_t, 8> steps = op.getSteps(); |
502 | // No need to do any work if the parallel op is already normalized. |
503 | bool isAlreadyNormalized = |
504 | llvm::all_of(Range: llvm::zip(t&: steps, u: lbMap.getResults()), P: [](auto tuple) { |
505 | int64_t step = std::get<0>(tuple); |
506 | auto lbExpr = dyn_cast<AffineConstantExpr>(std::get<1>(tuple)); |
507 | return lbExpr && lbExpr.getValue() == 0 && step == 1; |
508 | }); |
509 | if (isAlreadyNormalized) |
510 | return; |
511 | |
512 | AffineValueMap ranges; |
513 | AffineValueMap::difference(a: op.getUpperBoundsValueMap(), |
514 | b: op.getLowerBoundsValueMap(), res: &ranges); |
515 | auto builder = OpBuilder::atBlockBegin(block: op.getBody()); |
516 | auto zeroExpr = builder.getAffineConstantExpr(0); |
517 | SmallVector<AffineExpr, 8> lbExprs; |
518 | SmallVector<AffineExpr, 8> ubExprs; |
519 | for (unsigned i = 0, e = steps.size(); i < e; ++i) { |
520 | int64_t step = steps[i]; |
521 | |
522 | // Adjust the lower bound to be 0. |
523 | lbExprs.push_back(Elt: zeroExpr); |
524 | |
525 | // Adjust the upper bound expression: 'range / step'. |
526 | AffineExpr ubExpr = ranges.getResult(i).ceilDiv(v: step); |
527 | ubExprs.push_back(Elt: ubExpr); |
528 | |
529 | // Adjust the corresponding IV: 'lb + i * step'. |
530 | BlockArgument iv = op.getBody()->getArgument(i); |
531 | AffineExpr lbExpr = lbMap.getResult(idx: i); |
532 | unsigned nDims = lbMap.getNumDims(); |
533 | auto expr = lbExpr + builder.getAffineDimExpr(nDims) * step; |
534 | auto map = AffineMap::get(/*dimCount=*/nDims + 1, |
535 | /*symbolCount=*/lbMap.getNumSymbols(), expr); |
536 | |
537 | // Use an 'affine.apply' op that will be simplified later in subsequent |
538 | // canonicalizations. |
539 | OperandRange lbOperands = op.getLowerBoundsOperands(); |
540 | OperandRange dimOperands = lbOperands.take_front(n: nDims); |
541 | OperandRange symbolOperands = lbOperands.drop_front(n: nDims); |
542 | SmallVector<Value, 8> applyOperands{dimOperands}; |
543 | applyOperands.push_back(Elt: iv); |
544 | applyOperands.append(in_start: symbolOperands.begin(), in_end: symbolOperands.end()); |
545 | auto apply = builder.create<AffineApplyOp>(op.getLoc(), map, applyOperands); |
546 | iv.replaceAllUsesExcept(apply, apply); |
547 | } |
548 | |
549 | SmallVector<int64_t, 8> newSteps(op.getNumDims(), 1); |
550 | op.setSteps(newSteps); |
551 | auto newLowerMap = AffineMap::get( |
552 | /*dimCount=*/0, /*symbolCount=*/0, lbExprs, op.getContext()); |
553 | op.setLowerBounds({}, newLowerMap); |
554 | auto newUpperMap = AffineMap::get(ranges.getNumDims(), ranges.getNumSymbols(), |
555 | ubExprs, op.getContext()); |
556 | op.setUpperBounds(ranges.getOperands(), newUpperMap); |
557 | } |
558 | |
559 | LogicalResult mlir::affine::normalizeAffineFor(AffineForOp op, |
560 | bool promoteSingleIter) { |
561 | if (promoteSingleIter && succeeded(promoteIfSingleIteration(op))) |
562 | return success(); |
563 | |
564 | // Check if the forop is already normalized. |
565 | if (op.hasConstantLowerBound() && (op.getConstantLowerBound() == 0) && |
566 | (op.getStep() == 1)) |
567 | return success(); |
568 | |
569 | // Check if the lower bound has a single result only. Loops with a max lower |
570 | // bound can't be normalized without additional support like |
571 | // affine.execute_region's. If the lower bound does not have a single result |
572 | // then skip this op. |
573 | if (op.getLowerBoundMap().getNumResults() != 1) |
574 | return failure(); |
575 | |
576 | Location loc = op.getLoc(); |
577 | OpBuilder opBuilder(op); |
578 | int64_t origLoopStep = op.getStepAsInt(); |
579 | |
580 | // Construct the new upper bound value map. |
581 | AffineMap oldLbMap = op.getLowerBoundMap(); |
582 | // The upper bound can have multiple results. To use |
583 | // AffineValueMap::difference, we need to have the same number of results in |
584 | // both lower and upper bound maps. So, we just create a value map for the |
585 | // lower bound with the only available lower bound result repeated to pad up |
586 | // to the number of upper bound results. |
587 | SmallVector<AffineExpr> lbExprs(op.getUpperBoundMap().getNumResults(), |
588 | op.getLowerBoundMap().getResult(0)); |
589 | AffineValueMap lbMap(oldLbMap, op.getLowerBoundOperands()); |
590 | AffineMap paddedLbMap = |
591 | AffineMap::get(oldLbMap.getNumDims(), oldLbMap.getNumSymbols(), lbExprs, |
592 | op.getContext()); |
593 | AffineValueMap paddedLbValueMap(paddedLbMap, op.getLowerBoundOperands()); |
594 | AffineValueMap ubValueMap(op.getUpperBoundMap(), op.getUpperBoundOperands()); |
595 | AffineValueMap newUbValueMap; |
596 | // Compute the `upper bound - lower bound`. |
597 | AffineValueMap::difference(a: ubValueMap, b: paddedLbValueMap, res: &newUbValueMap); |
598 | (void)newUbValueMap.canonicalize(); |
599 | |
600 | // Scale down the upper bound value map by the loop step. |
601 | unsigned numResult = newUbValueMap.getNumResults(); |
602 | SmallVector<AffineExpr> scaleDownExprs(numResult); |
603 | for (unsigned i = 0; i < numResult; ++i) |
604 | scaleDownExprs[i] = opBuilder.getAffineDimExpr(position: i).ceilDiv(v: origLoopStep); |
605 | // `scaleDownMap` is (d0, d1, ..., d_n) -> (d0 / step, d1 / step, ..., d_n / |
606 | // step). Where `n` is the number of results in the upper bound map. |
607 | AffineMap scaleDownMap = |
608 | AffineMap::get(numResult, 0, scaleDownExprs, op.getContext()); |
609 | AffineMap newUbMap = scaleDownMap.compose(map: newUbValueMap.getAffineMap()); |
610 | |
611 | // Set the newly create upper bound map and operands. |
612 | op.setUpperBound(newUbValueMap.getOperands(), newUbMap); |
613 | op.setLowerBound({}, opBuilder.getConstantAffineMap(val: 0)); |
614 | op.setStep(1); |
615 | |
616 | // Calculate the Value of new loopIV. Create affine.apply for the value of |
617 | // the loopIV in normalized loop. |
618 | opBuilder.setInsertionPointToStart(op.getBody()); |
619 | // Construct an affine.apply op mapping the new IV to the old IV. |
620 | AffineMap scaleIvMap = |
621 | AffineMap::get(dimCount: 1, symbolCount: 0, result: -opBuilder.getAffineDimExpr(position: 0) * origLoopStep); |
622 | AffineValueMap scaleIvValueMap(scaleIvMap, ValueRange{op.getInductionVar()}); |
623 | AffineValueMap newIvToOldIvMap; |
624 | AffineValueMap::difference(a: lbMap, b: scaleIvValueMap, res: &newIvToOldIvMap); |
625 | (void)newIvToOldIvMap.canonicalize(); |
626 | auto newIV = opBuilder.create<AffineApplyOp>( |
627 | loc, newIvToOldIvMap.getAffineMap(), newIvToOldIvMap.getOperands()); |
628 | op.getInductionVar().replaceAllUsesExcept(newIV->getResult(0), newIV); |
629 | return success(); |
630 | } |
631 | |
632 | /// Returns true if the memory operation of `destAccess` depends on `srcAccess` |
633 | /// inside of the innermost common surrounding affine loop between the two |
634 | /// accesses. |
635 | static bool mustReachAtInnermost(const MemRefAccess &srcAccess, |
636 | const MemRefAccess &destAccess) { |
637 | // Affine dependence analysis is possible only if both ops in the same |
638 | // AffineScope. |
639 | if (getAffineAnalysisScope(op: srcAccess.opInst) != |
640 | getAffineAnalysisScope(op: destAccess.opInst)) |
641 | return false; |
642 | |
643 | unsigned nsLoops = |
644 | getNumCommonSurroundingLoops(a&: *srcAccess.opInst, b&: *destAccess.opInst); |
645 | DependenceResult result = |
646 | checkMemrefAccessDependence(srcAccess, dstAccess: destAccess, loopDepth: nsLoops + 1); |
647 | return hasDependence(result); |
648 | } |
649 | |
650 | /// Returns true if `srcMemOp` may have an effect on `destMemOp` within the |
651 | /// scope of the outermost `minSurroundingLoops` loops that surround them. |
652 | /// `srcMemOp` and `destMemOp` are expected to be affine read/write ops. |
653 | static bool mayHaveEffect(Operation *srcMemOp, Operation *destMemOp, |
654 | unsigned minSurroundingLoops) { |
655 | MemRefAccess srcAccess(srcMemOp); |
656 | MemRefAccess destAccess(destMemOp); |
657 | |
658 | // Affine dependence analysis here is applicable only if both ops operate on |
659 | // the same memref and if `srcMemOp` and `destMemOp` are in the same |
660 | // AffineScope. Also, we can only check if our affine scope is isolated from |
661 | // above; otherwise, values can from outside of the affine scope that the |
662 | // check below cannot analyze. |
663 | Region *srcScope = getAffineAnalysisScope(op: srcMemOp); |
664 | if (srcAccess.memref == destAccess.memref && |
665 | srcScope == getAffineAnalysisScope(op: destMemOp)) { |
666 | unsigned nsLoops = getNumCommonSurroundingLoops(a&: *srcMemOp, b&: *destMemOp); |
667 | FlatAffineValueConstraints dependenceConstraints; |
668 | for (unsigned d = nsLoops + 1; d > minSurroundingLoops; d--) { |
669 | DependenceResult result = checkMemrefAccessDependence( |
670 | srcAccess, dstAccess: destAccess, loopDepth: d, dependenceConstraints: &dependenceConstraints, |
671 | /*dependenceComponents=*/nullptr); |
672 | // A dependence failure or the presence of a dependence implies a |
673 | // side effect. |
674 | if (!noDependence(result)) |
675 | return true; |
676 | } |
677 | // No side effect was seen. |
678 | return false; |
679 | } |
680 | // TODO: Check here if the memrefs alias: there is no side effect if |
681 | // `srcAccess.memref` and `destAccess.memref` don't alias. |
682 | return true; |
683 | } |
684 | |
685 | template <typename EffectType, typename T> |
686 | bool mlir::affine::hasNoInterveningEffect( |
687 | Operation *start, T memOp, |
688 | llvm::function_ref<bool(Value, Value)> mayAlias) { |
689 | // A boolean representing whether an intervening operation could have impacted |
690 | // memOp. |
691 | bool hasSideEffect = false; |
692 | |
693 | // Check whether the effect on memOp can be caused by a given operation op. |
694 | Value memref = memOp.getMemRef(); |
695 | std::function<void(Operation *)> checkOperation = [&](Operation *op) { |
696 | // If the effect has alreay been found, early exit, |
697 | if (hasSideEffect) |
698 | return; |
699 | |
700 | if (auto memEffect = dyn_cast<MemoryEffectOpInterface>(op)) { |
701 | SmallVector<MemoryEffects::EffectInstance, 1> effects; |
702 | memEffect.getEffects(effects); |
703 | |
704 | bool opMayHaveEffect = false; |
705 | for (auto effect : effects) { |
706 | // If op causes EffectType on a potentially aliasing location for |
707 | // memOp, mark as having the effect. |
708 | if (isa<EffectType>(effect.getEffect())) { |
709 | if (effect.getValue() && effect.getValue() != memref && |
710 | !mayAlias(effect.getValue(), memref)) |
711 | continue; |
712 | opMayHaveEffect = true; |
713 | break; |
714 | } |
715 | } |
716 | |
717 | if (!opMayHaveEffect) |
718 | return; |
719 | |
720 | // If the side effect comes from an affine read or write, try to |
721 | // prove the side effecting `op` cannot reach `memOp`. |
722 | if (isa<AffineReadOpInterface, AffineWriteOpInterface>(op)) { |
723 | // For ease, let's consider the case that `op` is a store and |
724 | // we're looking for other potential stores that overwrite memory after |
725 | // `start`, and before being read in `memOp`. In this case, we only |
726 | // need to consider other potential stores with depth > |
727 | // minSurroundingLoops since `start` would overwrite any store with a |
728 | // smaller number of surrounding loops before. |
729 | unsigned minSurroundingLoops = |
730 | getNumCommonSurroundingLoops(*start, *memOp); |
731 | if (mayHaveEffect(op, memOp, minSurroundingLoops)) |
732 | hasSideEffect = true; |
733 | return; |
734 | } |
735 | |
736 | // We have an op with a memory effect and we cannot prove if it |
737 | // intervenes. |
738 | hasSideEffect = true; |
739 | return; |
740 | } |
741 | |
742 | if (op->hasTrait<OpTrait::HasRecursiveMemoryEffects>()) { |
743 | // Recurse into the regions for this op and check whether the internal |
744 | // operations may have the side effect `EffectType` on memOp. |
745 | for (Region ®ion : op->getRegions()) |
746 | for (Block &block : region) |
747 | for (Operation &op : block) |
748 | checkOperation(&op); |
749 | return; |
750 | } |
751 | |
752 | // Otherwise, conservatively assume generic operations have the effect |
753 | // on the operation |
754 | hasSideEffect = true; |
755 | }; |
756 | |
757 | // Check all paths from ancestor op `parent` to the operation `to` for the |
758 | // effect. It is known that `to` must be contained within `parent`. |
759 | auto until = [&](Operation *parent, Operation *to) { |
760 | // TODO check only the paths from `parent` to `to`. |
761 | // Currently we fallback and check the entire parent op, rather than |
762 | // just the paths from the parent path, stopping after reaching `to`. |
763 | // This is conservatively correct, but could be made more aggressive. |
764 | assert(parent->isAncestor(to)); |
765 | checkOperation(parent); |
766 | }; |
767 | |
768 | // Check for all paths from operation `from` to operation `untilOp` for the |
769 | // given memory effect. |
770 | std::function<void(Operation *, Operation *)> recur = |
771 | [&](Operation *from, Operation *untilOp) { |
772 | assert( |
773 | from->getParentRegion()->isAncestor(untilOp->getParentRegion()) && |
774 | "Checking for side effect between two operations without a common " |
775 | "ancestor"); |
776 | |
777 | // If the operations are in different regions, recursively consider all |
778 | // path from `from` to the parent of `to` and all paths from the parent |
779 | // of `to` to `to`. |
780 | if (from->getParentRegion() != untilOp->getParentRegion()) { |
781 | recur(from, untilOp->getParentOp()); |
782 | until(untilOp->getParentOp(), untilOp); |
783 | return; |
784 | } |
785 | |
786 | // Now, assuming that `from` and `to` exist in the same region, perform |
787 | // a CFG traversal to check all the relevant operations. |
788 | |
789 | // Additional blocks to consider. |
790 | SmallVector<Block *, 2> todoBlocks; |
791 | { |
792 | // First consider the parent block of `from` an check all operations |
793 | // after `from`. |
794 | for (auto iter = ++from->getIterator(), end = from->getBlock()->end(); |
795 | iter != end && &*iter != untilOp; ++iter) { |
796 | checkOperation(&*iter); |
797 | } |
798 | |
799 | // If the parent of `from` doesn't contain `to`, add the successors |
800 | // to the list of blocks to check. |
801 | if (untilOp->getBlock() != from->getBlock()) |
802 | for (Block *succ : from->getBlock()->getSuccessors()) |
803 | todoBlocks.push_back(Elt: succ); |
804 | } |
805 | |
806 | SmallPtrSet<Block *, 4> done; |
807 | // Traverse the CFG until hitting `to`. |
808 | while (!todoBlocks.empty()) { |
809 | Block *blk = todoBlocks.pop_back_val(); |
810 | if (done.count(Ptr: blk)) |
811 | continue; |
812 | done.insert(Ptr: blk); |
813 | for (auto &op : *blk) { |
814 | if (&op == untilOp) |
815 | break; |
816 | checkOperation(&op); |
817 | if (&op == blk->getTerminator()) |
818 | for (Block *succ : blk->getSuccessors()) |
819 | todoBlocks.push_back(Elt: succ); |
820 | } |
821 | } |
822 | }; |
823 | recur(start, memOp); |
824 | return !hasSideEffect; |
825 | } |
826 | |
827 | /// Attempt to eliminate loadOp by replacing it with a value stored into memory |
828 | /// which the load is guaranteed to retrieve. This check involves three |
829 | /// components: 1) The store and load must be on the same location 2) The store |
830 | /// must dominate (and therefore must always occur prior to) the load 3) No |
831 | /// other operations will overwrite the memory loaded between the given load |
832 | /// and store. If such a value exists, the replaced `loadOp` will be added to |
833 | /// `loadOpsToErase` and its memref will be added to `memrefsToErase`. |
834 | static void forwardStoreToLoad( |
835 | AffineReadOpInterface loadOp, SmallVectorImpl<Operation *> &loadOpsToErase, |
836 | SmallPtrSetImpl<Value> &memrefsToErase, DominanceInfo &domInfo, |
837 | llvm::function_ref<bool(Value, Value)> mayAlias) { |
838 | |
839 | // The store op candidate for forwarding that satisfies all conditions |
840 | // to replace the load, if any. |
841 | Operation *lastWriteStoreOp = nullptr; |
842 | |
843 | for (auto *user : loadOp.getMemRef().getUsers()) { |
844 | auto storeOp = dyn_cast<AffineWriteOpInterface>(user); |
845 | if (!storeOp) |
846 | continue; |
847 | MemRefAccess srcAccess(storeOp); |
848 | MemRefAccess destAccess(loadOp); |
849 | |
850 | // 1. Check if the store and the load have mathematically equivalent |
851 | // affine access functions; this implies that they statically refer to the |
852 | // same single memref element. As an example this filters out cases like: |
853 | // store %A[%i0 + 1] |
854 | // load %A[%i0] |
855 | // store %A[%M] |
856 | // load %A[%N] |
857 | // Use the AffineValueMap difference based memref access equality checking. |
858 | if (srcAccess != destAccess) |
859 | continue; |
860 | |
861 | // 2. The store has to dominate the load op to be candidate. |
862 | if (!domInfo.dominates(storeOp, loadOp)) |
863 | continue; |
864 | |
865 | // 3. The store must reach the load. Access function equivalence only |
866 | // guarantees this for accesses in the same block. The load could be in a |
867 | // nested block that is unreachable. |
868 | if (!mustReachAtInnermost(srcAccess, destAccess)) |
869 | continue; |
870 | |
871 | // 4. Ensure there is no intermediate operation which could replace the |
872 | // value in memory. |
873 | if (!affine::hasNoInterveningEffect<MemoryEffects::Write>(storeOp, loadOp, |
874 | mayAlias)) |
875 | continue; |
876 | |
877 | // We now have a candidate for forwarding. |
878 | assert(lastWriteStoreOp == nullptr && |
879 | "multiple simultaneous replacement stores"); |
880 | lastWriteStoreOp = storeOp; |
881 | } |
882 | |
883 | if (!lastWriteStoreOp) |
884 | return; |
885 | |
886 | // Perform the actual store to load forwarding. |
887 | Value storeVal = |
888 | cast<AffineWriteOpInterface>(lastWriteStoreOp).getValueToStore(); |
889 | // Check if 2 values have the same shape. This is needed for affine vector |
890 | // loads and stores. |
891 | if (storeVal.getType() != loadOp.getValue().getType()) |
892 | return; |
893 | loadOp.getValue().replaceAllUsesWith(storeVal); |
894 | // Record the memref for a later sweep to optimize away. |
895 | memrefsToErase.insert(loadOp.getMemRef()); |
896 | // Record this to erase later. |
897 | loadOpsToErase.push_back(Elt: loadOp); |
898 | } |
899 | |
900 | template bool |
901 | mlir::affine::hasNoInterveningEffect<mlir::MemoryEffects::Read, |
902 | affine::AffineReadOpInterface>( |
903 | mlir::Operation *, affine::AffineReadOpInterface, |
904 | llvm::function_ref<bool(Value, Value)>); |
905 | |
906 | // This attempts to find stores which have no impact on the final result. |
907 | // A writing op writeA will be eliminated if there exists an op writeB if |
908 | // 1) writeA and writeB have mathematically equivalent affine access functions. |
909 | // 2) writeB postdominates writeA. |
910 | // 3) There is no potential read between writeA and writeB. |
911 | static void findUnusedStore(AffineWriteOpInterface writeA, |
912 | SmallVectorImpl<Operation *> &opsToErase, |
913 | PostDominanceInfo &postDominanceInfo, |
914 | llvm::function_ref<bool(Value, Value)> mayAlias) { |
915 | |
916 | for (Operation *user : writeA.getMemRef().getUsers()) { |
917 | // Only consider writing operations. |
918 | auto writeB = dyn_cast<AffineWriteOpInterface>(user); |
919 | if (!writeB) |
920 | continue; |
921 | |
922 | // The operations must be distinct. |
923 | if (writeB == writeA) |
924 | continue; |
925 | |
926 | // Both operations must lie in the same region. |
927 | if (writeB->getParentRegion() != writeA->getParentRegion()) |
928 | continue; |
929 | |
930 | // Both operations must write to the same memory. |
931 | MemRefAccess srcAccess(writeB); |
932 | MemRefAccess destAccess(writeA); |
933 | |
934 | if (srcAccess != destAccess) |
935 | continue; |
936 | |
937 | // writeB must postdominate writeA. |
938 | if (!postDominanceInfo.postDominates(writeB, writeA)) |
939 | continue; |
940 | |
941 | // There cannot be an operation which reads from memory between |
942 | // the two writes. |
943 | if (!affine::hasNoInterveningEffect<MemoryEffects::Read>(writeA, writeB, |
944 | mayAlias)) |
945 | continue; |
946 | |
947 | opsToErase.push_back(writeA); |
948 | break; |
949 | } |
950 | } |
951 | |
952 | // The load to load forwarding / redundant load elimination is similar to the |
953 | // store to load forwarding. |
954 | // loadA will be be replaced with loadB if: |
955 | // 1) loadA and loadB have mathematically equivalent affine access functions. |
956 | // 2) loadB dominates loadA. |
957 | // 3) There is no write between loadA and loadB. |
958 | static void loadCSE(AffineReadOpInterface loadA, |
959 | SmallVectorImpl<Operation *> &loadOpsToErase, |
960 | DominanceInfo &domInfo, |
961 | llvm::function_ref<bool(Value, Value)> mayAlias) { |
962 | SmallVector<AffineReadOpInterface, 4> loadCandidates; |
963 | for (auto *user : loadA.getMemRef().getUsers()) { |
964 | auto loadB = dyn_cast<AffineReadOpInterface>(user); |
965 | if (!loadB || loadB == loadA) |
966 | continue; |
967 | |
968 | MemRefAccess srcAccess(loadB); |
969 | MemRefAccess destAccess(loadA); |
970 | |
971 | // 1. The accesses should be to be to the same location. |
972 | if (srcAccess != destAccess) { |
973 | continue; |
974 | } |
975 | |
976 | // 2. loadB should dominate loadA. |
977 | if (!domInfo.dominates(loadB, loadA)) |
978 | continue; |
979 | |
980 | // 3. There should not be a write between loadA and loadB. |
981 | if (!affine::hasNoInterveningEffect<MemoryEffects::Write>( |
982 | loadB.getOperation(), loadA, mayAlias)) |
983 | continue; |
984 | |
985 | // Check if two values have the same shape. This is needed for affine vector |
986 | // loads. |
987 | if (loadB.getValue().getType() != loadA.getValue().getType()) |
988 | continue; |
989 | |
990 | loadCandidates.push_back(loadB); |
991 | } |
992 | |
993 | // Of the legal load candidates, use the one that dominates all others |
994 | // to minimize the subsequent need to loadCSE |
995 | Value loadB; |
996 | for (AffineReadOpInterface option : loadCandidates) { |
997 | if (llvm::all_of(loadCandidates, [&](AffineReadOpInterface depStore) { |
998 | return depStore == option || |
999 | domInfo.dominates(option.getOperation(), |
1000 | depStore.getOperation()); |
1001 | })) { |
1002 | loadB = option.getValue(); |
1003 | break; |
1004 | } |
1005 | } |
1006 | |
1007 | if (loadB) { |
1008 | loadA.getValue().replaceAllUsesWith(loadB); |
1009 | // Record this to erase later. |
1010 | loadOpsToErase.push_back(Elt: loadA); |
1011 | } |
1012 | } |
1013 | |
1014 | // The store to load forwarding and load CSE rely on three conditions: |
1015 | // |
1016 | // 1) store/load providing a replacement value and load being replaced need to |
1017 | // have mathematically equivalent affine access functions (checked after full |
1018 | // composition of load/store operands); this implies that they access the same |
1019 | // single memref element for all iterations of the common surrounding loop, |
1020 | // |
1021 | // 2) the store/load op should dominate the load op, |
1022 | // |
1023 | // 3) no operation that may write to memory read by the load being replaced can |
1024 | // occur after executing the instruction (load or store) providing the |
1025 | // replacement value and before the load being replaced (thus potentially |
1026 | // allowing overwriting the memory read by the load). |
1027 | // |
1028 | // The above conditions are simple to check, sufficient, and powerful for most |
1029 | // cases in practice - they are sufficient, but not necessary --- since they |
1030 | // don't reason about loops that are guaranteed to execute at least once or |
1031 | // multiple sources to forward from. |
1032 | // |
1033 | // TODO: more forwarding can be done when support for |
1034 | // loop/conditional live-out SSA values is available. |
1035 | // TODO: do general dead store elimination for memref's. This pass |
1036 | // currently only eliminates the stores only if no other loads/uses (other |
1037 | // than dealloc) remain. |
1038 | // |
1039 | void mlir::affine::affineScalarReplace(func::FuncOp f, DominanceInfo &domInfo, |
1040 | PostDominanceInfo &postDomInfo, |
1041 | AliasAnalysis &aliasAnalysis) { |
1042 | // Load op's whose results were replaced by those forwarded from stores. |
1043 | SmallVector<Operation *, 8> opsToErase; |
1044 | |
1045 | // A list of memref's that are potentially dead / could be eliminated. |
1046 | SmallPtrSet<Value, 4> memrefsToErase; |
1047 | |
1048 | auto mayAlias = [&](Value val1, Value val2) -> bool { |
1049 | return !aliasAnalysis.alias(lhs: val1, rhs: val2).isNo(); |
1050 | }; |
1051 | |
1052 | // Walk all load's and perform store to load forwarding. |
1053 | f.walk([&](AffineReadOpInterface loadOp) { |
1054 | forwardStoreToLoad(loadOp, opsToErase, memrefsToErase, domInfo, mayAlias); |
1055 | }); |
1056 | for (auto *op : opsToErase) |
1057 | op->erase(); |
1058 | opsToErase.clear(); |
1059 | |
1060 | // Walk all store's and perform unused store elimination |
1061 | f.walk([&](AffineWriteOpInterface storeOp) { |
1062 | findUnusedStore(storeOp, opsToErase, postDomInfo, mayAlias); |
1063 | }); |
1064 | for (auto *op : opsToErase) |
1065 | op->erase(); |
1066 | opsToErase.clear(); |
1067 | |
1068 | // Check if the store fwd'ed memrefs are now left with only stores and |
1069 | // deallocs and can thus be completely deleted. Note: the canonicalize pass |
1070 | // should be able to do this as well, but we'll do it here since we collected |
1071 | // these anyway. |
1072 | for (auto memref : memrefsToErase) { |
1073 | // If the memref hasn't been locally alloc'ed, skip. |
1074 | Operation *defOp = memref.getDefiningOp(); |
1075 | if (!defOp || !hasSingleEffect<MemoryEffects::Allocate>(op: defOp, value: memref)) |
1076 | // TODO: if the memref was returned by a 'call' operation, we |
1077 | // could still erase it if the call had no side-effects. |
1078 | continue; |
1079 | if (llvm::any_of(Range: memref.getUsers(), P: [&](Operation *ownerOp) { |
1080 | return !isa<AffineWriteOpInterface>(ownerOp) && |
1081 | !hasSingleEffect<MemoryEffects::Free>(ownerOp, memref); |
1082 | })) |
1083 | continue; |
1084 | |
1085 | // Erase all stores, the dealloc, and the alloc on the memref. |
1086 | for (auto *user : llvm::make_early_inc_range(Range: memref.getUsers())) |
1087 | user->erase(); |
1088 | defOp->erase(); |
1089 | } |
1090 | |
1091 | // To eliminate as many loads as possible, run load CSE after eliminating |
1092 | // stores. Otherwise, some stores are wrongly seen as having an intervening |
1093 | // effect. |
1094 | f.walk([&](AffineReadOpInterface loadOp) { |
1095 | loadCSE(loadOp, opsToErase, domInfo, mayAlias); |
1096 | }); |
1097 | for (auto *op : opsToErase) |
1098 | op->erase(); |
1099 | } |
1100 | |
1101 | // Checks if `op` is non dereferencing. |
1102 | // TODO: This hardcoded check will be removed once the right interface is added. |
1103 | static bool isDereferencingOp(Operation *op) { |
1104 | return isa<AffineMapAccessInterface, memref::LoadOp, memref::StoreOp>(op); |
1105 | } |
1106 | |
1107 | // Perform the replacement in `op`. |
1108 | LogicalResult mlir::affine::replaceAllMemRefUsesWith( |
1109 | Value oldMemRef, Value newMemRef, Operation *op, |
1110 | ArrayRef<Value> extraIndices, AffineMap indexRemap, |
1111 | ArrayRef<Value> extraOperands, ArrayRef<Value> symbolOperands, |
1112 | bool allowNonDereferencingOps) { |
1113 | unsigned newMemRefRank = cast<MemRefType>(newMemRef.getType()).getRank(); |
1114 | (void)newMemRefRank; // unused in opt mode |
1115 | unsigned oldMemRefRank = cast<MemRefType>(oldMemRef.getType()).getRank(); |
1116 | (void)oldMemRefRank; // unused in opt mode |
1117 | if (indexRemap) { |
1118 | assert(indexRemap.getNumSymbols() == symbolOperands.size() && |
1119 | "symbolic operand count mismatch"); |
1120 | assert(indexRemap.getNumInputs() == |
1121 | extraOperands.size() + oldMemRefRank + symbolOperands.size()); |
1122 | assert(indexRemap.getNumResults() + extraIndices.size() == newMemRefRank); |
1123 | } else { |
1124 | assert(oldMemRefRank + extraIndices.size() == newMemRefRank); |
1125 | } |
1126 | |
1127 | // Assert same elemental type. |
1128 | assert(cast<MemRefType>(oldMemRef.getType()).getElementType() == |
1129 | cast<MemRefType>(newMemRef.getType()).getElementType()); |
1130 | |
1131 | SmallVector<unsigned, 2> usePositions; |
1132 | for (const auto &opEntry : llvm::enumerate(First: op->getOperands())) { |
1133 | if (opEntry.value() == oldMemRef) |
1134 | usePositions.push_back(Elt: opEntry.index()); |
1135 | } |
1136 | |
1137 | // If memref doesn't appear, nothing to do. |
1138 | if (usePositions.empty()) |
1139 | return success(); |
1140 | |
1141 | unsigned memRefOperandPos = usePositions.front(); |
1142 | |
1143 | OpBuilder builder(op); |
1144 | // The following checks if op is dereferencing memref and performs the access |
1145 | // index rewrites. |
1146 | if (!isDereferencingOp(op)) { |
1147 | if (!allowNonDereferencingOps) { |
1148 | // Failure: memref used in a non-dereferencing context (potentially |
1149 | // escapes); no replacement in these cases unless allowNonDereferencingOps |
1150 | // is set. |
1151 | return failure(); |
1152 | } |
1153 | for (unsigned pos : usePositions) |
1154 | op->setOperand(idx: pos, value: newMemRef); |
1155 | return success(); |
1156 | } |
1157 | |
1158 | if (usePositions.size() > 1) { |
1159 | // TODO: extend it for this case when needed (rare). |
1160 | LLVM_DEBUG(llvm::dbgs() |
1161 | << "multiple dereferencing uses in a single op not supported"); |
1162 | return failure(); |
1163 | } |
1164 | |
1165 | // Perform index rewrites for the dereferencing op and then replace the op. |
1166 | SmallVector<Value, 4> oldMapOperands; |
1167 | AffineMap oldMap; |
1168 | unsigned oldMemRefNumIndices = oldMemRefRank; |
1169 | auto startIdx = op->operand_begin() + memRefOperandPos + 1; |
1170 | auto affMapAccInterface = dyn_cast<AffineMapAccessInterface>(op); |
1171 | if (affMapAccInterface) { |
1172 | // If `op` implements AffineMapAccessInterface, we can get the indices by |
1173 | // quering the number of map operands from the operand list from a certain |
1174 | // offset (`memRefOperandPos` in this case). |
1175 | NamedAttribute oldMapAttrPair = |
1176 | affMapAccInterface.getAffineMapAttrForMemRef(oldMemRef); |
1177 | oldMap = cast<AffineMapAttr>(oldMapAttrPair.getValue()).getValue(); |
1178 | oldMemRefNumIndices = oldMap.getNumInputs(); |
1179 | } |
1180 | oldMapOperands.assign(in_start: startIdx, in_end: startIdx + oldMemRefNumIndices); |
1181 | |
1182 | // Apply 'oldMemRefOperands = oldMap(oldMapOperands)'. |
1183 | SmallVector<Value, 4> oldMemRefOperands; |
1184 | SmallVector<Value, 4> affineApplyOps; |
1185 | oldMemRefOperands.reserve(N: oldMemRefRank); |
1186 | if (affMapAccInterface && |
1187 | oldMap != builder.getMultiDimIdentityMap(rank: oldMap.getNumDims())) { |
1188 | for (auto resultExpr : oldMap.getResults()) { |
1189 | auto singleResMap = AffineMap::get(dimCount: oldMap.getNumDims(), |
1190 | symbolCount: oldMap.getNumSymbols(), result: resultExpr); |
1191 | auto afOp = builder.create<AffineApplyOp>(op->getLoc(), singleResMap, |
1192 | oldMapOperands); |
1193 | oldMemRefOperands.push_back(Elt: afOp); |
1194 | affineApplyOps.push_back(Elt: afOp); |
1195 | } |
1196 | } else { |
1197 | oldMemRefOperands.assign(in_start: oldMapOperands.begin(), in_end: oldMapOperands.end()); |
1198 | } |
1199 | |
1200 | // Construct new indices as a remap of the old ones if a remapping has been |
1201 | // provided. The indices of a memref come right after it, i.e., |
1202 | // at position memRefOperandPos + 1. |
1203 | SmallVector<Value, 4> remapOperands; |
1204 | remapOperands.reserve(N: extraOperands.size() + oldMemRefRank + |
1205 | symbolOperands.size()); |
1206 | remapOperands.append(in_start: extraOperands.begin(), in_end: extraOperands.end()); |
1207 | remapOperands.append(in_start: oldMemRefOperands.begin(), in_end: oldMemRefOperands.end()); |
1208 | remapOperands.append(in_start: symbolOperands.begin(), in_end: symbolOperands.end()); |
1209 | |
1210 | SmallVector<Value, 4> remapOutputs; |
1211 | remapOutputs.reserve(N: oldMemRefRank); |
1212 | if (indexRemap && |
1213 | indexRemap != builder.getMultiDimIdentityMap(rank: indexRemap.getNumDims())) { |
1214 | // Remapped indices. |
1215 | for (auto resultExpr : indexRemap.getResults()) { |
1216 | auto singleResMap = AffineMap::get( |
1217 | dimCount: indexRemap.getNumDims(), symbolCount: indexRemap.getNumSymbols(), result: resultExpr); |
1218 | auto afOp = builder.create<AffineApplyOp>(op->getLoc(), singleResMap, |
1219 | remapOperands); |
1220 | remapOutputs.push_back(Elt: afOp); |
1221 | affineApplyOps.push_back(Elt: afOp); |
1222 | } |
1223 | } else { |
1224 | // No remapping specified. |
1225 | remapOutputs.assign(in_start: remapOperands.begin(), in_end: remapOperands.end()); |
1226 | } |
1227 | SmallVector<Value, 4> newMapOperands; |
1228 | newMapOperands.reserve(N: newMemRefRank); |
1229 | |
1230 | // Prepend 'extraIndices' in 'newMapOperands'. |
1231 | for (Value extraIndex : extraIndices) { |
1232 | assert((isValidDim(extraIndex) || isValidSymbol(extraIndex)) && |
1233 | "invalid memory op index"); |
1234 | newMapOperands.push_back(Elt: extraIndex); |
1235 | } |
1236 | |
1237 | // Append 'remapOutputs' to 'newMapOperands'. |
1238 | newMapOperands.append(in_start: remapOutputs.begin(), in_end: remapOutputs.end()); |
1239 | |
1240 | // Create new fully composed AffineMap for new op to be created. |
1241 | assert(newMapOperands.size() == newMemRefRank); |
1242 | auto newMap = builder.getMultiDimIdentityMap(rank: newMemRefRank); |
1243 | fullyComposeAffineMapAndOperands(&newMap, &newMapOperands); |
1244 | newMap = simplifyAffineMap(newMap); |
1245 | canonicalizeMapAndOperands(&newMap, &newMapOperands); |
1246 | // Remove any affine.apply's that became dead as a result of composition. |
1247 | for (Value value : affineApplyOps) |
1248 | if (value.use_empty()) |
1249 | value.getDefiningOp()->erase(); |
1250 | |
1251 | OperationState state(op->getLoc(), op->getName()); |
1252 | // Construct the new operation using this memref. |
1253 | state.operands.reserve(N: op->getNumOperands() + extraIndices.size()); |
1254 | // Insert the non-memref operands. |
1255 | state.operands.append(in_start: op->operand_begin(), |
1256 | in_end: op->operand_begin() + memRefOperandPos); |
1257 | // Insert the new memref value. |
1258 | state.operands.push_back(Elt: newMemRef); |
1259 | |
1260 | // Insert the new memref map operands. |
1261 | if (affMapAccInterface) { |
1262 | state.operands.append(in_start: newMapOperands.begin(), in_end: newMapOperands.end()); |
1263 | } else { |
1264 | // In the case of dereferencing ops not implementing |
1265 | // AffineMapAccessInterface, we need to apply the values of `newMapOperands` |
1266 | // to the `newMap` to get the correct indices. |
1267 | for (unsigned i = 0; i < newMemRefRank; i++) { |
1268 | state.operands.push_back(Elt: builder.create<AffineApplyOp>( |
1269 | op->getLoc(), |
1270 | AffineMap::get(newMap.getNumDims(), newMap.getNumSymbols(), |
1271 | newMap.getResult(i)), |
1272 | newMapOperands)); |
1273 | } |
1274 | } |
1275 | |
1276 | // Insert the remaining operands unmodified. |
1277 | unsigned oldMapNumInputs = oldMapOperands.size(); |
1278 | state.operands.append(in_start: op->operand_begin() + memRefOperandPos + 1 + |
1279 | oldMapNumInputs, |
1280 | in_end: op->operand_end()); |
1281 | // Result types don't change. Both memref's are of the same elemental type. |
1282 | state.types.reserve(N: op->getNumResults()); |
1283 | for (auto result : op->getResults()) |
1284 | state.types.push_back(Elt: result.getType()); |
1285 | |
1286 | // Add attribute for 'newMap', other Attributes do not change. |
1287 | auto newMapAttr = AffineMapAttr::get(newMap); |
1288 | for (auto namedAttr : op->getAttrs()) { |
1289 | if (affMapAccInterface && |
1290 | namedAttr.getName() == |
1291 | affMapAccInterface.getAffineMapAttrForMemRef(oldMemRef).getName()) |
1292 | state.attributes.push_back(newAttribute: {namedAttr.getName(), newMapAttr}); |
1293 | else |
1294 | state.attributes.push_back(newAttribute: namedAttr); |
1295 | } |
1296 | |
1297 | // Create the new operation. |
1298 | auto *repOp = builder.create(state); |
1299 | op->replaceAllUsesWith(values&: repOp); |
1300 | op->erase(); |
1301 | |
1302 | return success(); |
1303 | } |
1304 | |
1305 | LogicalResult mlir::affine::replaceAllMemRefUsesWith( |
1306 | Value oldMemRef, Value newMemRef, ArrayRef<Value> extraIndices, |
1307 | AffineMap indexRemap, ArrayRef<Value> extraOperands, |
1308 | ArrayRef<Value> symbolOperands, Operation *domOpFilter, |
1309 | Operation *postDomOpFilter, bool allowNonDereferencingOps, |
1310 | bool replaceInDeallocOp) { |
1311 | unsigned newMemRefRank = cast<MemRefType>(newMemRef.getType()).getRank(); |
1312 | (void)newMemRefRank; // unused in opt mode |
1313 | unsigned oldMemRefRank = cast<MemRefType>(oldMemRef.getType()).getRank(); |
1314 | (void)oldMemRefRank; |
1315 | if (indexRemap) { |
1316 | assert(indexRemap.getNumSymbols() == symbolOperands.size() && |
1317 | "symbol operand count mismatch"); |
1318 | assert(indexRemap.getNumInputs() == |
1319 | extraOperands.size() + oldMemRefRank + symbolOperands.size()); |
1320 | assert(indexRemap.getNumResults() + extraIndices.size() == newMemRefRank); |
1321 | } else { |
1322 | assert(oldMemRefRank + extraIndices.size() == newMemRefRank); |
1323 | } |
1324 | |
1325 | // Assert same elemental type. |
1326 | assert(cast<MemRefType>(oldMemRef.getType()).getElementType() == |
1327 | cast<MemRefType>(newMemRef.getType()).getElementType()); |
1328 | |
1329 | std::unique_ptr<DominanceInfo> domInfo; |
1330 | std::unique_ptr<PostDominanceInfo> postDomInfo; |
1331 | if (domOpFilter) |
1332 | domInfo = std::make_unique<DominanceInfo>( |
1333 | args: domOpFilter->getParentOfType<FunctionOpInterface>()); |
1334 | |
1335 | if (postDomOpFilter) |
1336 | postDomInfo = std::make_unique<PostDominanceInfo>( |
1337 | args: postDomOpFilter->getParentOfType<FunctionOpInterface>()); |
1338 | |
1339 | // Walk all uses of old memref; collect ops to perform replacement. We use a |
1340 | // DenseSet since an operation could potentially have multiple uses of a |
1341 | // memref (although rare), and the replacement later is going to erase ops. |
1342 | DenseSet<Operation *> opsToReplace; |
1343 | for (auto *op : oldMemRef.getUsers()) { |
1344 | // Skip this use if it's not dominated by domOpFilter. |
1345 | if (domOpFilter && !domInfo->dominates(a: domOpFilter, b: op)) |
1346 | continue; |
1347 | |
1348 | // Skip this use if it's not post-dominated by postDomOpFilter. |
1349 | if (postDomOpFilter && !postDomInfo->postDominates(a: postDomOpFilter, b: op)) |
1350 | continue; |
1351 | |
1352 | // Skip dealloc's - no replacement is necessary, and a memref replacement |
1353 | // at other uses doesn't hurt these dealloc's. |
1354 | if (hasSingleEffect<MemoryEffects::Free>(op, value: oldMemRef) && |
1355 | !replaceInDeallocOp) |
1356 | continue; |
1357 | |
1358 | // Check if the memref was used in a non-dereferencing context. It is fine |
1359 | // for the memref to be used in a non-dereferencing way outside of the |
1360 | // region where this replacement is happening. |
1361 | if (!isa<AffineMapAccessInterface>(*op)) { |
1362 | if (!allowNonDereferencingOps) { |
1363 | LLVM_DEBUG(llvm::dbgs() |
1364 | << "Memref replacement failed: non-deferencing memref op: \n" |
1365 | << *op << '\n'); |
1366 | return failure(); |
1367 | } |
1368 | // Non-dereferencing ops with the MemRefsNormalizable trait are |
1369 | // supported for replacement. |
1370 | if (!op->hasTrait<OpTrait::MemRefsNormalizable>()) { |
1371 | LLVM_DEBUG(llvm::dbgs() << "Memref replacement failed: use without a " |
1372 | "memrefs normalizable trait: \n" |
1373 | << *op << '\n'); |
1374 | return failure(); |
1375 | } |
1376 | } |
1377 | |
1378 | // We'll first collect and then replace --- since replacement erases the op |
1379 | // that has the use, and that op could be postDomFilter or domFilter itself! |
1380 | opsToReplace.insert(V: op); |
1381 | } |
1382 | |
1383 | for (auto *op : opsToReplace) { |
1384 | if (failed(Result: replaceAllMemRefUsesWith( |
1385 | oldMemRef, newMemRef, op, extraIndices, indexRemap, extraOperands, |
1386 | symbolOperands, allowNonDereferencingOps))) |
1387 | llvm_unreachable("memref replacement guaranteed to succeed here"); |
1388 | } |
1389 | |
1390 | return success(); |
1391 | } |
1392 | |
1393 | /// Given an operation, inserts one or more single result affine |
1394 | /// apply operations, results of which are exclusively used by this operation |
1395 | /// operation. The operands of these newly created affine apply ops are |
1396 | /// guaranteed to be loop iterators or terminal symbols of a function. |
1397 | /// |
1398 | /// Before |
1399 | /// |
1400 | /// affine.for %i = 0 to #map(%N) |
1401 | /// %idx = affine.apply (d0) -> (d0 mod 2) (%i) |
1402 | /// "send"(%idx, %A, ...) |
1403 | /// "compute"(%idx) |
1404 | /// |
1405 | /// After |
1406 | /// |
1407 | /// affine.for %i = 0 to #map(%N) |
1408 | /// %idx = affine.apply (d0) -> (d0 mod 2) (%i) |
1409 | /// "send"(%idx, %A, ...) |
1410 | /// %idx_ = affine.apply (d0) -> (d0 mod 2) (%i) |
1411 | /// "compute"(%idx_) |
1412 | /// |
1413 | /// This allows applying different transformations on send and compute (for eg. |
1414 | /// different shifts/delays). |
1415 | /// |
1416 | /// Returns nullptr either if none of opInst's operands were the result of an |
1417 | /// affine.apply and thus there was no affine computation slice to create, or if |
1418 | /// all the affine.apply op's supplying operands to this opInst did not have any |
1419 | /// uses besides this opInst; otherwise returns the list of affine.apply |
1420 | /// operations created in output argument `sliceOps`. |
1421 | void mlir::affine::createAffineComputationSlice( |
1422 | Operation *opInst, SmallVectorImpl<AffineApplyOp> *sliceOps) { |
1423 | // Collect all operands that are results of affine apply ops. |
1424 | SmallVector<Value, 4> subOperands; |
1425 | subOperands.reserve(N: opInst->getNumOperands()); |
1426 | for (auto operand : opInst->getOperands()) |
1427 | if (isa_and_nonnull<AffineApplyOp>(Val: operand.getDefiningOp())) |
1428 | subOperands.push_back(Elt: operand); |
1429 | |
1430 | // Gather sequence of AffineApplyOps reachable from 'subOperands'. |
1431 | SmallVector<Operation *, 4> affineApplyOps; |
1432 | getReachableAffineApplyOps(operands: subOperands, affineApplyOps); |
1433 | // Skip transforming if there are no affine maps to compose. |
1434 | if (affineApplyOps.empty()) |
1435 | return; |
1436 | |
1437 | // Check if all uses of the affine apply op's lie only in this op op, in |
1438 | // which case there would be nothing to do. |
1439 | bool localized = true; |
1440 | for (auto *op : affineApplyOps) { |
1441 | for (auto result : op->getResults()) { |
1442 | for (auto *user : result.getUsers()) { |
1443 | if (user != opInst) { |
1444 | localized = false; |
1445 | break; |
1446 | } |
1447 | } |
1448 | } |
1449 | } |
1450 | if (localized) |
1451 | return; |
1452 | |
1453 | OpBuilder builder(opInst); |
1454 | SmallVector<Value, 4> composedOpOperands(subOperands); |
1455 | auto composedMap = builder.getMultiDimIdentityMap(rank: composedOpOperands.size()); |
1456 | fullyComposeAffineMapAndOperands(map: &composedMap, operands: &composedOpOperands); |
1457 | |
1458 | // Create an affine.apply for each of the map results. |
1459 | sliceOps->reserve(composedMap.getNumResults()); |
1460 | for (auto resultExpr : composedMap.getResults()) { |
1461 | auto singleResMap = AffineMap::get(dimCount: composedMap.getNumDims(), |
1462 | symbolCount: composedMap.getNumSymbols(), result: resultExpr); |
1463 | sliceOps->push_back(builder.create<AffineApplyOp>( |
1464 | opInst->getLoc(), singleResMap, composedOpOperands)); |
1465 | } |
1466 | |
1467 | // Construct the new operands that include the results from the composed |
1468 | // affine apply op above instead of existing ones (subOperands). So, they |
1469 | // differ from opInst's operands only for those operands in 'subOperands', for |
1470 | // which they will be replaced by the corresponding one from 'sliceOps'. |
1471 | SmallVector<Value, 4> newOperands(opInst->getOperands()); |
1472 | for (Value &operand : newOperands) { |
1473 | // Replace the subOperands from among the new operands. |
1474 | unsigned j, f; |
1475 | for (j = 0, f = subOperands.size(); j < f; j++) { |
1476 | if (operand == subOperands[j]) |
1477 | break; |
1478 | } |
1479 | if (j < subOperands.size()) |
1480 | operand = (*sliceOps)[j]; |
1481 | } |
1482 | for (unsigned idx = 0, e = newOperands.size(); idx < e; idx++) |
1483 | opInst->setOperand(idx, value: newOperands[idx]); |
1484 | } |
1485 | |
1486 | /// Enum to set patterns of affine expr in tiled-layout map. |
1487 | /// TileFloorDiv: <dim expr> div <tile size> |
1488 | /// TileMod: <dim expr> mod <tile size> |
1489 | /// TileNone: None of the above |
1490 | /// Example: |
1491 | /// #tiled_2d_128x256 = affine_map<(d0, d1) |
1492 | /// -> (d0 div 128, d1 div 256, d0 mod 128, d1 mod 256)> |
1493 | /// "d0 div 128" and "d1 div 256" ==> TileFloorDiv |
1494 | /// "d0 mod 128" and "d1 mod 256" ==> TileMod |
1495 | enum TileExprPattern { TileFloorDiv, TileMod, TileNone }; |
1496 | |
1497 | /// Check if `map` is a tiled layout. In the tiled layout, specific k dimensions |
1498 | /// being floordiv'ed by respective tile sizes appeare in a mod with the same |
1499 | /// tile sizes, and no other expression involves those k dimensions. This |
1500 | /// function stores a vector of tuples (`tileSizePos`) including AffineExpr for |
1501 | /// tile size, positions of corresponding `floordiv` and `mod`. If it is not a |
1502 | /// tiled layout, an empty vector is returned. |
1503 | static LogicalResult getTileSizePos( |
1504 | AffineMap map, |
1505 | SmallVectorImpl<std::tuple<AffineExpr, unsigned, unsigned>> &tileSizePos) { |
1506 | // Create `floordivExprs` which is a vector of tuples including LHS and RHS of |
1507 | // `floordiv` and its position in `map` output. |
1508 | // Example: #tiled_2d_128x256 = affine_map<(d0, d1) |
1509 | // -> (d0 div 128, d1 div 256, d0 mod 128, d1 mod 256)> |
1510 | // In this example, `floordivExprs` includes {d0, 128, 0} and {d1, 256, 1}. |
1511 | SmallVector<std::tuple<AffineExpr, AffineExpr, unsigned>, 4> floordivExprs; |
1512 | unsigned pos = 0; |
1513 | for (AffineExpr expr : map.getResults()) { |
1514 | if (expr.getKind() == AffineExprKind::FloorDiv) { |
1515 | AffineBinaryOpExpr binaryExpr = cast<AffineBinaryOpExpr>(Val&: expr); |
1516 | if (isa<AffineConstantExpr>(Val: binaryExpr.getRHS())) |
1517 | floordivExprs.emplace_back( |
1518 | Args: std::make_tuple(args: binaryExpr.getLHS(), args: binaryExpr.getRHS(), args&: pos)); |
1519 | } |
1520 | pos++; |
1521 | } |
1522 | // Not tiled layout if `floordivExprs` is empty. |
1523 | if (floordivExprs.empty()) { |
1524 | tileSizePos = SmallVector<std::tuple<AffineExpr, unsigned, unsigned>>{}; |
1525 | return success(); |
1526 | } |
1527 | |
1528 | // Check if LHS of `floordiv` is used in LHS of `mod`. If not used, `map` is |
1529 | // not tiled layout. |
1530 | for (std::tuple<AffineExpr, AffineExpr, unsigned> fexpr : floordivExprs) { |
1531 | AffineExpr floordivExprLHS = std::get<0>(t&: fexpr); |
1532 | AffineExpr floordivExprRHS = std::get<1>(t&: fexpr); |
1533 | unsigned floordivPos = std::get<2>(t&: fexpr); |
1534 | |
1535 | // Walk affinexpr of `map` output except `fexpr`, and check if LHS and RHS |
1536 | // of `fexpr` are used in LHS and RHS of `mod`. If LHS of `fexpr` is used |
1537 | // other expr, the map is not tiled layout. Example of non tiled layout: |
1538 | // affine_map<(d0, d1, d2) -> (d0, d1, d2 floordiv 256, d2 floordiv 256)> |
1539 | // affine_map<(d0, d1, d2) -> (d0, d1, d2 floordiv 256, d2 mod 128)> |
1540 | // affine_map<(d0, d1, d2) -> (d0, d1, d2 floordiv 256, d2 mod 256, d2 mod |
1541 | // 256)> |
1542 | bool found = false; |
1543 | pos = 0; |
1544 | for (AffineExpr expr : map.getResults()) { |
1545 | bool notTiled = false; |
1546 | if (pos != floordivPos) { |
1547 | expr.walk(callback: [&](AffineExpr e) { |
1548 | if (e == floordivExprLHS) { |
1549 | if (expr.getKind() == AffineExprKind::Mod) { |
1550 | AffineBinaryOpExpr binaryExpr = cast<AffineBinaryOpExpr>(Val&: expr); |
1551 | // If LHS and RHS of `mod` are the same with those of floordiv. |
1552 | if (floordivExprLHS == binaryExpr.getLHS() && |
1553 | floordivExprRHS == binaryExpr.getRHS()) { |
1554 | // Save tile size (RHS of `mod`), and position of `floordiv` and |
1555 | // `mod` if same expr with `mod` is not found yet. |
1556 | if (!found) { |
1557 | tileSizePos.emplace_back( |
1558 | Args: std::make_tuple(args: binaryExpr.getRHS(), args&: floordivPos, args&: pos)); |
1559 | found = true; |
1560 | } else { |
1561 | // Non tiled layout: Have multilpe `mod` with the same LHS. |
1562 | // eg. affine_map<(d0, d1, d2) -> (d0, d1, d2 floordiv 256, d2 |
1563 | // mod 256, d2 mod 256)> |
1564 | notTiled = true; |
1565 | } |
1566 | } else { |
1567 | // Non tiled layout: RHS of `mod` is different from `floordiv`. |
1568 | // eg. affine_map<(d0, d1, d2) -> (d0, d1, d2 floordiv 256, d2 |
1569 | // mod 128)> |
1570 | notTiled = true; |
1571 | } |
1572 | } else { |
1573 | // Non tiled layout: LHS is the same, but not `mod`. |
1574 | // eg. affine_map<(d0, d1, d2) -> (d0, d1, d2 floordiv 256, d2 |
1575 | // floordiv 256)> |
1576 | notTiled = true; |
1577 | } |
1578 | } |
1579 | }); |
1580 | } |
1581 | if (notTiled) { |
1582 | tileSizePos = SmallVector<std::tuple<AffineExpr, unsigned, unsigned>>{}; |
1583 | return success(); |
1584 | } |
1585 | pos++; |
1586 | } |
1587 | } |
1588 | return success(); |
1589 | } |
1590 | |
1591 | /// Check if `dim` dimension of memrefType with `layoutMap` becomes dynamic |
1592 | /// after normalization. Dimensions that include dynamic dimensions in the map |
1593 | /// output will become dynamic dimensions. Return true if `dim` is dynamic |
1594 | /// dimension. |
1595 | /// |
1596 | /// Example: |
1597 | /// #map0 = affine_map<(d0, d1) -> (d0, d1 floordiv 32, d1 mod 32)> |
1598 | /// |
1599 | /// If d1 is dynamic dimension, 2nd and 3rd dimension of map output are dynamic. |
1600 | /// memref<4x?xf32, #map0> ==> memref<4x?x?xf32> |
1601 | static bool |
1602 | isNormalizedMemRefDynamicDim(unsigned dim, AffineMap layoutMap, |
1603 | SmallVectorImpl<unsigned> &inMemrefTypeDynDims) { |
1604 | AffineExpr expr = layoutMap.getResults()[dim]; |
1605 | // Check if affine expr of the dimension includes dynamic dimension of input |
1606 | // memrefType. |
1607 | MLIRContext *context = layoutMap.getContext(); |
1608 | return expr |
1609 | .walk(callback: [&](AffineExpr e) { |
1610 | if (isa<AffineDimExpr>(Val: e) && |
1611 | llvm::any_of(Range&: inMemrefTypeDynDims, P: [&](unsigned dim) { |
1612 | return e == getAffineDimExpr(position: dim, context); |
1613 | })) |
1614 | return WalkResult::interrupt(); |
1615 | return WalkResult::advance(); |
1616 | }) |
1617 | .wasInterrupted(); |
1618 | } |
1619 | |
1620 | /// Create affine expr to calculate dimension size for a tiled-layout map. |
1621 | static AffineExpr createDimSizeExprForTiledLayout(AffineExpr oldMapOutput, |
1622 | TileExprPattern pat) { |
1623 | // Create map output for the patterns. |
1624 | // "floordiv <tile size>" ==> "ceildiv <tile size>" |
1625 | // "mod <tile size>" ==> "<tile size>" |
1626 | AffineExpr newMapOutput; |
1627 | AffineBinaryOpExpr binaryExpr = nullptr; |
1628 | switch (pat) { |
1629 | case TileExprPattern::TileMod: |
1630 | binaryExpr = cast<AffineBinaryOpExpr>(Val&: oldMapOutput); |
1631 | newMapOutput = binaryExpr.getRHS(); |
1632 | break; |
1633 | case TileExprPattern::TileFloorDiv: |
1634 | binaryExpr = cast<AffineBinaryOpExpr>(Val&: oldMapOutput); |
1635 | newMapOutput = getAffineBinaryOpExpr( |
1636 | kind: AffineExprKind::CeilDiv, lhs: binaryExpr.getLHS(), rhs: binaryExpr.getRHS()); |
1637 | break; |
1638 | default: |
1639 | newMapOutput = oldMapOutput; |
1640 | } |
1641 | return newMapOutput; |
1642 | } |
1643 | |
1644 | /// Create new maps to calculate each dimension size of `newMemRefType`, and |
1645 | /// create `newDynamicSizes` from them by using AffineApplyOp. |
1646 | /// |
1647 | /// Steps for normalizing dynamic memrefs for a tiled layout map |
1648 | /// Example: |
1649 | /// #map0 = affine_map<(d0, d1) -> (d0, d1 floordiv 32, d1 mod 32)> |
1650 | /// %0 = dim %arg0, %c1 :memref<4x?xf32> |
1651 | /// %1 = alloc(%0) : memref<4x?xf32, #map0> |
1652 | /// |
1653 | /// (Before this function) |
1654 | /// 1. Check if `map`(#map0) is a tiled layout using `getTileSizePos()`. Only |
1655 | /// single layout map is supported. |
1656 | /// |
1657 | /// 2. Create normalized memrefType using `isNormalizedMemRefDynamicDim()`. It |
1658 | /// is memref<4x?x?xf32> in the above example. |
1659 | /// |
1660 | /// (In this function) |
1661 | /// 3. Create new maps to calculate each dimension of the normalized memrefType |
1662 | /// using `createDimSizeExprForTiledLayout()`. In the tiled layout, the |
1663 | /// dimension size can be calculated by replacing "floordiv <tile size>" with |
1664 | /// "ceildiv <tile size>" and "mod <tile size>" with "<tile size>". |
1665 | /// - New map in the above example |
1666 | /// #map0 = affine_map<(d0, d1) -> (d0)> |
1667 | /// #map1 = affine_map<(d0, d1) -> (d1 ceildiv 32)> |
1668 | /// #map2 = affine_map<(d0, d1) -> (32)> |
1669 | /// |
1670 | /// 4. Create AffineApplyOp to apply the new maps. The output of AffineApplyOp |
1671 | /// is used in dynamicSizes of new AllocOp. |
1672 | /// %0 = dim %arg0, %c1 : memref<4x?xf32> |
1673 | /// %c4 = arith.constant 4 : index |
1674 | /// %1 = affine.apply #map1(%c4, %0) |
1675 | /// %2 = affine.apply #map2(%c4, %0) |
1676 | template <typename AllocLikeOp> |
1677 | static void createNewDynamicSizes(MemRefType oldMemRefType, |
1678 | MemRefType newMemRefType, AffineMap map, |
1679 | AllocLikeOp allocOp, OpBuilder b, |
1680 | SmallVectorImpl<Value> &newDynamicSizes) { |
1681 | // Create new input for AffineApplyOp. |
1682 | SmallVector<Value, 4> inAffineApply; |
1683 | ArrayRef<int64_t> oldMemRefShape = oldMemRefType.getShape(); |
1684 | unsigned dynIdx = 0; |
1685 | for (unsigned d = 0; d < oldMemRefType.getRank(); ++d) { |
1686 | if (oldMemRefShape[d] < 0) { |
1687 | // Use dynamicSizes of allocOp for dynamic dimension. |
1688 | inAffineApply.emplace_back(allocOp.getDynamicSizes()[dynIdx]); |
1689 | dynIdx++; |
1690 | } else { |
1691 | // Create ConstantOp for static dimension. |
1692 | auto constantAttr = b.getIntegerAttr(b.getIndexType(), oldMemRefShape[d]); |
1693 | inAffineApply.emplace_back( |
1694 | b.create<arith::ConstantOp>(allocOp.getLoc(), constantAttr)); |
1695 | } |
1696 | } |
1697 | |
1698 | // Create new map to calculate each dimension size of new memref for each |
1699 | // original map output. Only for dynamic dimesion of `newMemRefType`. |
1700 | unsigned newDimIdx = 0; |
1701 | ArrayRef<int64_t> newMemRefShape = newMemRefType.getShape(); |
1702 | SmallVector<std::tuple<AffineExpr, unsigned, unsigned>> tileSizePos; |
1703 | (void)getTileSizePos(map, tileSizePos); |
1704 | for (AffineExpr expr : map.getResults()) { |
1705 | if (newMemRefShape[newDimIdx] < 0) { |
1706 | // Create new maps to calculate each dimension size of new memref. |
1707 | enum TileExprPattern pat = TileExprPattern::TileNone; |
1708 | for (auto pos : tileSizePos) { |
1709 | if (newDimIdx == std::get<1>(t&: pos)) |
1710 | pat = TileExprPattern::TileFloorDiv; |
1711 | else if (newDimIdx == std::get<2>(t&: pos)) |
1712 | pat = TileExprPattern::TileMod; |
1713 | } |
1714 | AffineExpr newMapOutput = createDimSizeExprForTiledLayout(oldMapOutput: expr, pat); |
1715 | AffineMap newMap = |
1716 | AffineMap::get(dimCount: map.getNumInputs(), symbolCount: map.getNumSymbols(), result: newMapOutput); |
1717 | Value affineApp = |
1718 | b.create<AffineApplyOp>(allocOp.getLoc(), newMap, inAffineApply); |
1719 | newDynamicSizes.emplace_back(Args&: affineApp); |
1720 | } |
1721 | newDimIdx++; |
1722 | } |
1723 | } |
1724 | |
1725 | template <typename AllocLikeOp> |
1726 | LogicalResult mlir::affine::normalizeMemRef(AllocLikeOp allocOp) { |
1727 | MemRefType memrefType = allocOp.getType(); |
1728 | OpBuilder b(allocOp); |
1729 | |
1730 | // Fetch a new memref type after normalizing the old memref to have an |
1731 | // identity map layout. |
1732 | MemRefType newMemRefType = normalizeMemRefType(memrefType); |
1733 | if (newMemRefType == memrefType) |
1734 | // Either memrefType already had an identity map or the map couldn't be |
1735 | // transformed to an identity map. |
1736 | return failure(); |
1737 | |
1738 | Value oldMemRef = allocOp.getResult(); |
1739 | |
1740 | SmallVector<Value, 4> symbolOperands(allocOp.getSymbolOperands()); |
1741 | AffineMap layoutMap = memrefType.getLayout().getAffineMap(); |
1742 | AllocLikeOp newAlloc; |
1743 | // Check if `layoutMap` is a tiled layout. Only single layout map is |
1744 | // supported for normalizing dynamic memrefs. |
1745 | SmallVector<std::tuple<AffineExpr, unsigned, unsigned>> tileSizePos; |
1746 | (void)getTileSizePos(map: layoutMap, tileSizePos); |
1747 | if (newMemRefType.getNumDynamicDims() > 0 && !tileSizePos.empty()) { |
1748 | auto oldMemRefType = cast<MemRefType>(oldMemRef.getType()); |
1749 | SmallVector<Value, 4> newDynamicSizes; |
1750 | createNewDynamicSizes(oldMemRefType, newMemRefType, layoutMap, allocOp, b, |
1751 | newDynamicSizes); |
1752 | // Add the new dynamic sizes in new AllocOp. |
1753 | newAlloc = |
1754 | b.create<AllocLikeOp>(allocOp.getLoc(), newMemRefType, newDynamicSizes, |
1755 | allocOp.getAlignmentAttr()); |
1756 | } else { |
1757 | newAlloc = b.create<AllocLikeOp>(allocOp.getLoc(), newMemRefType, |
1758 | allocOp.getAlignmentAttr()); |
1759 | } |
1760 | // Replace all uses of the old memref. |
1761 | if (failed(replaceAllMemRefUsesWith(oldMemRef, /*newMemRef=*/newAlloc, |
1762 | /*extraIndices=*/{}, |
1763 | /*indexRemap=*/layoutMap, |
1764 | /*extraOperands=*/{}, |
1765 | /*symbolOperands=*/symbolOperands, |
1766 | /*domOpFilter=*/nullptr, |
1767 | /*postDomOpFilter=*/nullptr, |
1768 | /*allowNonDereferencingOps=*/true))) { |
1769 | // If it failed (due to escapes for example), bail out. |
1770 | newAlloc.erase(); |
1771 | return failure(); |
1772 | } |
1773 | // Replace any uses of the original alloc op and erase it. All remaining uses |
1774 | // have to be dealloc's; RAMUW above would've failed otherwise. |
1775 | assert(llvm::all_of(oldMemRef.getUsers(), [&](Operation *op) { |
1776 | return hasSingleEffect<MemoryEffects::Free>(op, oldMemRef); |
1777 | })); |
1778 | oldMemRef.replaceAllUsesWith(newValue: newAlloc); |
1779 | allocOp.erase(); |
1780 | return success(); |
1781 | } |
1782 | |
1783 | LogicalResult |
1784 | mlir::affine::normalizeMemRef(memref::ReinterpretCastOp reinterpretCastOp) { |
1785 | MemRefType memrefType = reinterpretCastOp.getType(); |
1786 | AffineMap oldLayoutMap = memrefType.getLayout().getAffineMap(); |
1787 | Value oldMemRef = reinterpretCastOp.getResult(); |
1788 | |
1789 | // If `oldLayoutMap` is identity, `memrefType` is already normalized. |
1790 | if (oldLayoutMap.isIdentity()) |
1791 | return success(); |
1792 | |
1793 | // Fetch a new memref type after normalizing the old memref to have an |
1794 | // identity map layout. |
1795 | MemRefType newMemRefType = normalizeMemRefType(memrefType); |
1796 | if (newMemRefType == memrefType) |
1797 | // `oldLayoutMap` couldn't be transformed to an identity map. |
1798 | return failure(); |
1799 | |
1800 | uint64_t newRank = newMemRefType.getRank(); |
1801 | SmallVector<Value> mapOperands(oldLayoutMap.getNumDims() + |
1802 | oldLayoutMap.getNumSymbols()); |
1803 | SmallVector<Value> oldStrides = reinterpretCastOp.getStrides(); |
1804 | Location loc = reinterpretCastOp.getLoc(); |
1805 | // As `newMemRefType` is normalized, it is unit strided. |
1806 | SmallVector<int64_t> newStaticStrides(newRank, 1); |
1807 | SmallVector<int64_t> newStaticOffsets(newRank, 0); |
1808 | ArrayRef<int64_t> oldShape = memrefType.getShape(); |
1809 | ValueRange oldSizes = reinterpretCastOp.getSizes(); |
1810 | unsigned idx = 0; |
1811 | OpBuilder b(reinterpretCastOp); |
1812 | // Collect the map operands which will be used to compute the new normalized |
1813 | // memref shape. |
1814 | for (unsigned i = 0, e = memrefType.getRank(); i < e; i++) { |
1815 | if (memrefType.isDynamicDim(i)) |
1816 | mapOperands[i] = |
1817 | b.create<arith::SubIOp>(loc, oldSizes[0].getType(), oldSizes[idx++], |
1818 | b.create<arith::ConstantIndexOp>(loc, 1)); |
1819 | else |
1820 | mapOperands[i] = b.create<arith::ConstantIndexOp>(location: loc, args: oldShape[i] - 1); |
1821 | } |
1822 | for (unsigned i = 0, e = oldStrides.size(); i < e; i++) |
1823 | mapOperands[memrefType.getRank() + i] = oldStrides[i]; |
1824 | SmallVector<Value> newSizes; |
1825 | ArrayRef<int64_t> newShape = newMemRefType.getShape(); |
1826 | // Compute size along all the dimensions of the new normalized memref. |
1827 | for (unsigned i = 0; i < newRank; i++) { |
1828 | if (!newMemRefType.isDynamicDim(i)) |
1829 | continue; |
1830 | newSizes.push_back(b.create<AffineApplyOp>( |
1831 | loc, |
1832 | AffineMap::get(dimCount: oldLayoutMap.getNumDims(), symbolCount: oldLayoutMap.getNumSymbols(), |
1833 | result: oldLayoutMap.getResult(idx: i)), |
1834 | mapOperands)); |
1835 | } |
1836 | for (unsigned i = 0, e = newSizes.size(); i < e; i++) { |
1837 | newSizes[i] = |
1838 | b.create<arith::AddIOp>(loc, newSizes[i].getType(), newSizes[i], |
1839 | b.create<arith::ConstantIndexOp>(loc, 1)); |
1840 | } |
1841 | // Create the new reinterpret_cast op. |
1842 | auto newReinterpretCast = b.create<memref::ReinterpretCastOp>( |
1843 | loc, newMemRefType, reinterpretCastOp.getSource(), |
1844 | /*offsets=*/ValueRange(), newSizes, |
1845 | /*strides=*/ValueRange(), |
1846 | /*static_offsets=*/newStaticOffsets, |
1847 | /*static_sizes=*/newShape, |
1848 | /*static_strides=*/newStaticStrides); |
1849 | |
1850 | // Replace all uses of the old memref. |
1851 | if (failed(replaceAllMemRefUsesWith(oldMemRef, |
1852 | /*newMemRef=*/newReinterpretCast, |
1853 | /*extraIndices=*/{}, |
1854 | /*indexRemap=*/oldLayoutMap, |
1855 | /*extraOperands=*/{}, |
1856 | /*symbolOperands=*/oldStrides, |
1857 | /*domOpFilter=*/nullptr, |
1858 | /*postDomOpFilter=*/nullptr, |
1859 | /*allowNonDereferencingOps=*/true))) { |
1860 | // If it failed (due to escapes for example), bail out. |
1861 | newReinterpretCast.erase(); |
1862 | return failure(); |
1863 | } |
1864 | |
1865 | oldMemRef.replaceAllUsesWith(newValue: newReinterpretCast); |
1866 | reinterpretCastOp.erase(); |
1867 | return success(); |
1868 | } |
1869 | |
1870 | template LogicalResult |
1871 | mlir::affine::normalizeMemRef<memref::AllocaOp>(memref::AllocaOp op); |
1872 | template LogicalResult |
1873 | mlir::affine::normalizeMemRef<memref::AllocOp>(memref::AllocOp op); |
1874 | |
1875 | MemRefType mlir::affine::normalizeMemRefType(MemRefType memrefType) { |
1876 | unsigned rank = memrefType.getRank(); |
1877 | if (rank == 0) |
1878 | return memrefType; |
1879 | |
1880 | if (memrefType.getLayout().isIdentity()) { |
1881 | // Either no maps is associated with this memref or this memref has |
1882 | // a trivial (identity) map. |
1883 | return memrefType; |
1884 | } |
1885 | AffineMap layoutMap = memrefType.getLayout().getAffineMap(); |
1886 | unsigned numSymbolicOperands = layoutMap.getNumSymbols(); |
1887 | |
1888 | // We don't do any checks for one-to-one'ness; we assume that it is |
1889 | // one-to-one. |
1890 | |
1891 | // Normalize only static memrefs and dynamic memrefs with a tiled-layout map |
1892 | // for now. |
1893 | // TODO: Normalize the other types of dynamic memrefs. |
1894 | SmallVector<std::tuple<AffineExpr, unsigned, unsigned>> tileSizePos; |
1895 | (void)getTileSizePos(map: layoutMap, tileSizePos); |
1896 | if (memrefType.getNumDynamicDims() > 0 && tileSizePos.empty()) |
1897 | return memrefType; |
1898 | |
1899 | // We have a single map that is not an identity map. Create a new memref |
1900 | // with the right shape and an identity layout map. |
1901 | ArrayRef<int64_t> shape = memrefType.getShape(); |
1902 | // FlatAffineValueConstraint may later on use symbolicOperands. |
1903 | FlatAffineValueConstraints fac(rank, numSymbolicOperands); |
1904 | SmallVector<unsigned, 4> memrefTypeDynDims; |
1905 | for (unsigned d = 0; d < rank; ++d) { |
1906 | // Use constraint system only in static dimensions. |
1907 | if (shape[d] > 0) { |
1908 | fac.addBound(type: BoundType::LB, pos: d, value: 0); |
1909 | fac.addBound(type: BoundType::UB, pos: d, value: shape[d] - 1); |
1910 | } else { |
1911 | memrefTypeDynDims.emplace_back(Args&: d); |
1912 | } |
1913 | } |
1914 | // We compose this map with the original index (logical) space to derive |
1915 | // the upper bounds for the new index space. |
1916 | unsigned newRank = layoutMap.getNumResults(); |
1917 | if (failed(Result: fac.composeMatchingMap(other: layoutMap))) |
1918 | return memrefType; |
1919 | // TODO: Handle semi-affine maps. |
1920 | // Project out the old data dimensions. |
1921 | fac.projectOut(pos: newRank, num: fac.getNumVars() - newRank - fac.getNumLocalVars()); |
1922 | SmallVector<int64_t, 4> newShape(newRank); |
1923 | MLIRContext *context = memrefType.getContext(); |
1924 | for (unsigned d = 0; d < newRank; ++d) { |
1925 | // Check if this dimension is dynamic. |
1926 | if (isNormalizedMemRefDynamicDim(dim: d, layoutMap, inMemrefTypeDynDims&: memrefTypeDynDims)) { |
1927 | newShape[d] = ShapedType::kDynamic; |
1928 | continue; |
1929 | } |
1930 | // The lower bound for the shape is always zero. |
1931 | std::optional<int64_t> ubConst = fac.getConstantBound64(type: BoundType::UB, pos: d); |
1932 | // For a static memref and an affine map with no symbols, this is |
1933 | // always bounded. However, when we have symbols, we may not be able to |
1934 | // obtain a constant upper bound. Also, mapping to a negative space is |
1935 | // invalid for normalization. |
1936 | if (!ubConst.has_value() || *ubConst < 0) { |
1937 | LLVM_DEBUG(llvm::dbgs() |
1938 | << "can't normalize map due to unknown/invalid upper bound"); |
1939 | return memrefType; |
1940 | } |
1941 | // If dimension of new memrefType is dynamic, the value is -1. |
1942 | newShape[d] = *ubConst + 1; |
1943 | } |
1944 | |
1945 | // Create the new memref type after trivializing the old layout map. |
1946 | auto newMemRefType = |
1947 | MemRefType::Builder(memrefType) |
1948 | .setShape(newShape) |
1949 | .setLayout(AffineMapAttr::get( |
1950 | AffineMap::getMultiDimIdentityMap(newRank, context))); |
1951 | return newMemRefType; |
1952 | } |
1953 | |
1954 | DivModValue mlir::affine::getDivMod(OpBuilder &b, Location loc, Value lhs, |
1955 | Value rhs) { |
1956 | DivModValue result; |
1957 | AffineExpr d0, d1; |
1958 | bindDims(ctx: b.getContext(), exprs&: d0, exprs&: d1); |
1959 | result.quotient = |
1960 | affine::makeComposedAffineApply(b, loc, d0.floorDiv(other: d1), {lhs, rhs}); |
1961 | result.remainder = |
1962 | affine::makeComposedAffineApply(b, loc, d0 % d1, {lhs, rhs}); |
1963 | return result; |
1964 | } |
1965 | |
1966 | /// Create an affine map that computes `lhs` * `rhs`, composing in any other |
1967 | /// affine maps. |
1968 | static FailureOr<OpFoldResult> composedAffineMultiply(OpBuilder &b, |
1969 | Location loc, |
1970 | OpFoldResult lhs, |
1971 | OpFoldResult rhs) { |
1972 | AffineExpr s0, s1; |
1973 | bindSymbols(ctx: b.getContext(), exprs&: s0, exprs&: s1); |
1974 | return makeComposedFoldedAffineApply(b, loc, expr: s0 * s1, operands: {lhs, rhs}); |
1975 | } |
1976 | |
1977 | FailureOr<SmallVector<Value>> |
1978 | mlir::affine::delinearizeIndex(OpBuilder &b, Location loc, Value linearIndex, |
1979 | ArrayRef<Value> basis, bool hasOuterBound) { |
1980 | if (hasOuterBound) |
1981 | basis = basis.drop_front(); |
1982 | |
1983 | // Note: the divisors are backwards due to the scan. |
1984 | SmallVector<Value> divisors; |
1985 | OpFoldResult basisProd = b.getIndexAttr(1); |
1986 | for (OpFoldResult basisElem : llvm::reverse(C&: basis)) { |
1987 | FailureOr<OpFoldResult> nextProd = |
1988 | composedAffineMultiply(b, loc, lhs: basisElem, rhs: basisProd); |
1989 | if (failed(Result: nextProd)) |
1990 | return failure(); |
1991 | basisProd = *nextProd; |
1992 | divisors.push_back(Elt: getValueOrCreateConstantIndexOp(b, loc, ofr: basisProd)); |
1993 | } |
1994 | |
1995 | SmallVector<Value> results; |
1996 | results.reserve(N: divisors.size() + 1); |
1997 | Value residual = linearIndex; |
1998 | for (Value divisor : llvm::reverse(C&: divisors)) { |
1999 | DivModValue divMod = getDivMod(b, loc, lhs: residual, rhs: divisor); |
2000 | results.push_back(Elt: divMod.quotient); |
2001 | residual = divMod.remainder; |
2002 | } |
2003 | results.push_back(Elt: residual); |
2004 | return results; |
2005 | } |
2006 | |
2007 | FailureOr<SmallVector<Value>> |
2008 | mlir::affine::delinearizeIndex(OpBuilder &b, Location loc, Value linearIndex, |
2009 | ArrayRef<OpFoldResult> basis, |
2010 | bool hasOuterBound) { |
2011 | if (hasOuterBound) |
2012 | basis = basis.drop_front(); |
2013 | |
2014 | // Note: the divisors are backwards due to the scan. |
2015 | SmallVector<Value> divisors; |
2016 | OpFoldResult basisProd = b.getIndexAttr(1); |
2017 | for (OpFoldResult basisElem : llvm::reverse(C&: basis)) { |
2018 | FailureOr<OpFoldResult> nextProd = |
2019 | composedAffineMultiply(b, loc, lhs: basisElem, rhs: basisProd); |
2020 | if (failed(Result: nextProd)) |
2021 | return failure(); |
2022 | basisProd = *nextProd; |
2023 | divisors.push_back(Elt: getValueOrCreateConstantIndexOp(b, loc, ofr: basisProd)); |
2024 | } |
2025 | |
2026 | SmallVector<Value> results; |
2027 | results.reserve(N: divisors.size() + 1); |
2028 | Value residual = linearIndex; |
2029 | for (Value divisor : llvm::reverse(C&: divisors)) { |
2030 | DivModValue divMod = getDivMod(b, loc, lhs: residual, rhs: divisor); |
2031 | results.push_back(Elt: divMod.quotient); |
2032 | residual = divMod.remainder; |
2033 | } |
2034 | results.push_back(Elt: residual); |
2035 | return results; |
2036 | } |
2037 | |
2038 | OpFoldResult mlir::affine::linearizeIndex(ArrayRef<OpFoldResult> multiIndex, |
2039 | ArrayRef<OpFoldResult> basis, |
2040 | ImplicitLocOpBuilder &builder) { |
2041 | return linearizeIndex(builder, loc: builder.getLoc(), multiIndex, basis); |
2042 | } |
2043 | |
2044 | OpFoldResult mlir::affine::linearizeIndex(OpBuilder &builder, Location loc, |
2045 | ArrayRef<OpFoldResult> multiIndex, |
2046 | ArrayRef<OpFoldResult> basis) { |
2047 | assert(multiIndex.size() == basis.size() || |
2048 | multiIndex.size() == basis.size() + 1); |
2049 | SmallVector<AffineExpr> basisAffine; |
2050 | |
2051 | // Add a fake initial size in order to make the later index linearization |
2052 | // computations line up if an outer bound is not provided. |
2053 | if (multiIndex.size() == basis.size() + 1) |
2054 | basisAffine.push_back(Elt: getAffineConstantExpr(constant: 1, context: builder.getContext())); |
2055 | |
2056 | for (size_t i = 0; i < basis.size(); ++i) { |
2057 | basisAffine.push_back(Elt: getAffineSymbolExpr(position: i, context: builder.getContext())); |
2058 | } |
2059 | |
2060 | SmallVector<AffineExpr> stridesAffine = computeStrides(sizes: basisAffine); |
2061 | SmallVector<OpFoldResult> strides; |
2062 | strides.reserve(N: stridesAffine.size()); |
2063 | llvm::transform(Range&: stridesAffine, d_first: std::back_inserter(x&: strides), |
2064 | F: [&builder, &basis, loc](AffineExpr strideExpr) { |
2065 | return affine::makeComposedFoldedAffineApply( |
2066 | b&: builder, loc, expr: strideExpr, operands: basis); |
2067 | }); |
2068 | |
2069 | auto &&[linearIndexExpr, multiIndexAndStrides] = computeLinearIndex( |
2070 | sourceOffset: OpFoldResult(builder.getIndexAttr(0)), strides, indices: multiIndex); |
2071 | return affine::makeComposedFoldedAffineApply(builder, loc, linearIndexExpr, |
2072 | multiIndexAndStrides); |
2073 | } |
2074 |
Definitions
- AffineApplyExpander
- AffineApplyExpander
- buildBinaryExpr
- visitAddExpr
- visitMulExpr
- visitModExpr
- visitFloorDivExpr
- visitCeilDivExpr
- visitConstantExpr
- visitDimExpr
- visitSymbolExpr
- expandAffineExpr
- expandAffineMap
- promoteIfBlock
- getOutermostInvariantForOp
- hoistAffineIfOp
- affineParallelize
- hoistAffineIfOp
- substWithMin
- normalizeAffineParallel
- normalizeAffineFor
- mustReachAtInnermost
- mayHaveEffect
- hasNoInterveningEffect
- forwardStoreToLoad
- findUnusedStore
- loadCSE
- affineScalarReplace
- isDereferencingOp
- replaceAllMemRefUsesWith
- replaceAllMemRefUsesWith
- createAffineComputationSlice
- TileExprPattern
- getTileSizePos
- isNormalizedMemRefDynamicDim
- createDimSizeExprForTiledLayout
- createNewDynamicSizes
- normalizeMemRef
- normalizeMemRef
- normalizeMemRefType
- getDivMod
- composedAffineMultiply
- delinearizeIndex
- delinearizeIndex
- linearizeIndex
Update your C++ knowledge – Modern C++11/14/17 Training
Find out more