| 1 | //===- Utils.cpp ---- Utilities for affine dialect transformation ---------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements miscellaneous transformation utilities for the Affine |
| 10 | // dialect. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "mlir/Dialect/Affine/Utils.h" |
| 15 | |
| 16 | #include "mlir/Dialect/Affine/Analysis/Utils.h" |
| 17 | #include "mlir/Dialect/Affine/IR/AffineOps.h" |
| 18 | #include "mlir/Dialect/Affine/IR/AffineValueMap.h" |
| 19 | #include "mlir/Dialect/Affine/LoopUtils.h" |
| 20 | #include "mlir/Dialect/Arith/Utils/Utils.h" |
| 21 | #include "mlir/Dialect/Func/IR/FuncOps.h" |
| 22 | #include "mlir/Dialect/MemRef/IR/MemRef.h" |
| 23 | #include "mlir/Dialect/Utils/IndexingUtils.h" |
| 24 | #include "mlir/IR/AffineExprVisitor.h" |
| 25 | #include "mlir/IR/Dominance.h" |
| 26 | #include "mlir/IR/IRMapping.h" |
| 27 | #include "mlir/IR/ImplicitLocOpBuilder.h" |
| 28 | #include "mlir/IR/IntegerSet.h" |
| 29 | #include "mlir/Transforms/GreedyPatternRewriteDriver.h" |
| 30 | #include "llvm/Support/LogicalResult.h" |
| 31 | #include <optional> |
| 32 | |
| 33 | #define DEBUG_TYPE "affine-utils" |
| 34 | |
| 35 | using namespace mlir; |
| 36 | using namespace affine; |
| 37 | using namespace presburger; |
| 38 | |
| 39 | namespace { |
| 40 | /// Visit affine expressions recursively and build the sequence of operations |
| 41 | /// that correspond to it. Visitation functions return an Value of the |
| 42 | /// expression subtree they visited or `nullptr` on error. |
| 43 | class AffineApplyExpander |
| 44 | : public AffineExprVisitor<AffineApplyExpander, Value> { |
| 45 | public: |
| 46 | /// This internal class expects arguments to be non-null, checks must be |
| 47 | /// performed at the call site. |
| 48 | AffineApplyExpander(OpBuilder &builder, ValueRange dimValues, |
| 49 | ValueRange symbolValues, Location loc) |
| 50 | : builder(builder), dimValues(dimValues), symbolValues(symbolValues), |
| 51 | loc(loc) {} |
| 52 | |
| 53 | template <typename OpTy> |
| 54 | Value buildBinaryExpr(AffineBinaryOpExpr expr, |
| 55 | arith::IntegerOverflowFlags overflowFlags = |
| 56 | arith::IntegerOverflowFlags::none) { |
| 57 | auto lhs = visit(expr: expr.getLHS()); |
| 58 | auto rhs = visit(expr: expr.getRHS()); |
| 59 | if (!lhs || !rhs) |
| 60 | return nullptr; |
| 61 | auto op = builder.create<OpTy>(loc, lhs, rhs, overflowFlags); |
| 62 | return op.getResult(); |
| 63 | } |
| 64 | |
| 65 | Value visitAddExpr(AffineBinaryOpExpr expr) { |
| 66 | return buildBinaryExpr<arith::AddIOp>(expr); |
| 67 | } |
| 68 | |
| 69 | Value visitMulExpr(AffineBinaryOpExpr expr) { |
| 70 | return buildBinaryExpr<arith::MulIOp>(expr, |
| 71 | arith::IntegerOverflowFlags::nsw); |
| 72 | } |
| 73 | |
| 74 | /// Euclidean modulo operation: negative RHS is not allowed. |
| 75 | /// Remainder of the euclidean integer division is always non-negative. |
| 76 | /// |
| 77 | /// Implemented as |
| 78 | /// |
| 79 | /// a mod b = |
| 80 | /// let remainder = srem a, b; |
| 81 | /// negative = a < 0 in |
| 82 | /// select negative, remainder + b, remainder. |
| 83 | Value visitModExpr(AffineBinaryOpExpr expr) { |
| 84 | if (auto rhsConst = dyn_cast<AffineConstantExpr>(Val: expr.getRHS())) { |
| 85 | if (rhsConst.getValue() <= 0) { |
| 86 | emitError(loc, message: "modulo by non-positive value is not supported" ); |
| 87 | return nullptr; |
| 88 | } |
| 89 | } |
| 90 | |
| 91 | auto lhs = visit(expr: expr.getLHS()); |
| 92 | auto rhs = visit(expr: expr.getRHS()); |
| 93 | assert(lhs && rhs && "unexpected affine expr lowering failure" ); |
| 94 | |
| 95 | Value remainder = builder.create<arith::RemSIOp>(loc, lhs, rhs); |
| 96 | Value zeroCst = builder.create<arith::ConstantIndexOp>(location: loc, args: 0); |
| 97 | Value isRemainderNegative = builder.create<arith::CmpIOp>( |
| 98 | loc, arith::CmpIPredicate::slt, remainder, zeroCst); |
| 99 | Value correctedRemainder = |
| 100 | builder.create<arith::AddIOp>(loc, remainder, rhs); |
| 101 | Value result = builder.create<arith::SelectOp>( |
| 102 | loc, isRemainderNegative, correctedRemainder, remainder); |
| 103 | return result; |
| 104 | } |
| 105 | |
| 106 | /// Floor division operation (rounds towards negative infinity). |
| 107 | /// |
| 108 | /// For positive divisors, it can be implemented without branching and with a |
| 109 | /// single division operation as |
| 110 | /// |
| 111 | /// a floordiv b = |
| 112 | /// let negative = a < 0 in |
| 113 | /// let absolute = negative ? -a - 1 : a in |
| 114 | /// let quotient = absolute / b in |
| 115 | /// negative ? -quotient - 1 : quotient |
| 116 | /// |
| 117 | /// Note: this lowering does not use arith.floordivsi because the lowering of |
| 118 | /// that to arith.divsi (see populateCeilFloorDivExpandOpsPatterns) generates |
| 119 | /// not one but two arith.divsi. That could be changed to one divsi, but one |
| 120 | /// way or another, going through arith.floordivsi will result in more complex |
| 121 | /// IR because arith.floordivsi is more general than affine floordiv in that |
| 122 | /// it supports negative RHS. |
| 123 | Value visitFloorDivExpr(AffineBinaryOpExpr expr) { |
| 124 | if (auto rhsConst = dyn_cast<AffineConstantExpr>(Val: expr.getRHS())) { |
| 125 | if (rhsConst.getValue() <= 0) { |
| 126 | emitError(loc, message: "division by non-positive value is not supported" ); |
| 127 | return nullptr; |
| 128 | } |
| 129 | } |
| 130 | auto lhs = visit(expr: expr.getLHS()); |
| 131 | auto rhs = visit(expr: expr.getRHS()); |
| 132 | assert(lhs && rhs && "unexpected affine expr lowering failure" ); |
| 133 | |
| 134 | Value zeroCst = builder.create<arith::ConstantIndexOp>(location: loc, args: 0); |
| 135 | Value noneCst = builder.create<arith::ConstantIndexOp>(location: loc, args: -1); |
| 136 | Value negative = builder.create<arith::CmpIOp>( |
| 137 | loc, arith::CmpIPredicate::slt, lhs, zeroCst); |
| 138 | Value negatedDecremented = builder.create<arith::SubIOp>(loc, noneCst, lhs); |
| 139 | Value dividend = |
| 140 | builder.create<arith::SelectOp>(loc, negative, negatedDecremented, lhs); |
| 141 | Value quotient = builder.create<arith::DivSIOp>(loc, dividend, rhs); |
| 142 | Value correctedQuotient = |
| 143 | builder.create<arith::SubIOp>(loc, noneCst, quotient); |
| 144 | Value result = builder.create<arith::SelectOp>(loc, negative, |
| 145 | correctedQuotient, quotient); |
| 146 | return result; |
| 147 | } |
| 148 | |
| 149 | /// Ceiling division operation (rounds towards positive infinity). |
| 150 | /// |
| 151 | /// For positive divisors, it can be implemented without branching and with a |
| 152 | /// single division operation as |
| 153 | /// |
| 154 | /// a ceildiv b = |
| 155 | /// let negative = a <= 0 in |
| 156 | /// let absolute = negative ? -a : a - 1 in |
| 157 | /// let quotient = absolute / b in |
| 158 | /// negative ? -quotient : quotient + 1 |
| 159 | /// |
| 160 | /// Note: not using arith.ceildivsi for the same reason as explained in the |
| 161 | /// visitFloorDivExpr comment. |
| 162 | Value visitCeilDivExpr(AffineBinaryOpExpr expr) { |
| 163 | if (auto rhsConst = dyn_cast<AffineConstantExpr>(Val: expr.getRHS())) { |
| 164 | if (rhsConst.getValue() <= 0) { |
| 165 | emitError(loc, message: "division by non-positive value is not supported" ); |
| 166 | return nullptr; |
| 167 | } |
| 168 | } |
| 169 | auto lhs = visit(expr: expr.getLHS()); |
| 170 | auto rhs = visit(expr: expr.getRHS()); |
| 171 | assert(lhs && rhs && "unexpected affine expr lowering failure" ); |
| 172 | |
| 173 | Value zeroCst = builder.create<arith::ConstantIndexOp>(location: loc, args: 0); |
| 174 | Value oneCst = builder.create<arith::ConstantIndexOp>(location: loc, args: 1); |
| 175 | Value nonPositive = builder.create<arith::CmpIOp>( |
| 176 | loc, arith::CmpIPredicate::sle, lhs, zeroCst); |
| 177 | Value negated = builder.create<arith::SubIOp>(loc, zeroCst, lhs); |
| 178 | Value decremented = builder.create<arith::SubIOp>(loc, lhs, oneCst); |
| 179 | Value dividend = |
| 180 | builder.create<arith::SelectOp>(loc, nonPositive, negated, decremented); |
| 181 | Value quotient = builder.create<arith::DivSIOp>(loc, dividend, rhs); |
| 182 | Value negatedQuotient = |
| 183 | builder.create<arith::SubIOp>(loc, zeroCst, quotient); |
| 184 | Value incrementedQuotient = |
| 185 | builder.create<arith::AddIOp>(loc, quotient, oneCst); |
| 186 | Value result = builder.create<arith::SelectOp>( |
| 187 | loc, nonPositive, negatedQuotient, incrementedQuotient); |
| 188 | return result; |
| 189 | } |
| 190 | |
| 191 | Value visitConstantExpr(AffineConstantExpr expr) { |
| 192 | auto op = builder.create<arith::ConstantIndexOp>(location: loc, args: expr.getValue()); |
| 193 | return op.getResult(); |
| 194 | } |
| 195 | |
| 196 | Value visitDimExpr(AffineDimExpr expr) { |
| 197 | assert(expr.getPosition() < dimValues.size() && |
| 198 | "affine dim position out of range" ); |
| 199 | return dimValues[expr.getPosition()]; |
| 200 | } |
| 201 | |
| 202 | Value visitSymbolExpr(AffineSymbolExpr expr) { |
| 203 | assert(expr.getPosition() < symbolValues.size() && |
| 204 | "symbol dim position out of range" ); |
| 205 | return symbolValues[expr.getPosition()]; |
| 206 | } |
| 207 | |
| 208 | private: |
| 209 | OpBuilder &builder; |
| 210 | ValueRange dimValues; |
| 211 | ValueRange symbolValues; |
| 212 | |
| 213 | Location loc; |
| 214 | }; |
| 215 | } // namespace |
| 216 | |
| 217 | /// Create a sequence of operations that implement the `expr` applied to the |
| 218 | /// given dimension and symbol values. |
| 219 | mlir::Value mlir::affine::expandAffineExpr(OpBuilder &builder, Location loc, |
| 220 | AffineExpr expr, |
| 221 | ValueRange dimValues, |
| 222 | ValueRange symbolValues) { |
| 223 | return AffineApplyExpander(builder, dimValues, symbolValues, loc).visit(expr); |
| 224 | } |
| 225 | |
| 226 | /// Create a sequence of operations that implement the `affineMap` applied to |
| 227 | /// the given `operands` (as it it were an AffineApplyOp). |
| 228 | std::optional<SmallVector<Value, 8>> |
| 229 | mlir::affine::expandAffineMap(OpBuilder &builder, Location loc, |
| 230 | AffineMap affineMap, ValueRange operands) { |
| 231 | auto numDims = affineMap.getNumDims(); |
| 232 | auto expanded = llvm::to_vector<8>( |
| 233 | Range: llvm::map_range(C: affineMap.getResults(), |
| 234 | F: [numDims, &builder, loc, operands](AffineExpr expr) { |
| 235 | return expandAffineExpr(builder, loc, expr, |
| 236 | dimValues: operands.take_front(n: numDims), |
| 237 | symbolValues: operands.drop_front(n: numDims)); |
| 238 | })); |
| 239 | if (llvm::all_of(Range&: expanded, P: [](Value v) { return v; })) |
| 240 | return expanded; |
| 241 | return std::nullopt; |
| 242 | } |
| 243 | |
| 244 | /// Promotes the `then` or the `else` block of `ifOp` (depending on whether |
| 245 | /// `elseBlock` is false or true) into `ifOp`'s containing block, and discards |
| 246 | /// the rest of the op. |
| 247 | static void promoteIfBlock(AffineIfOp ifOp, bool elseBlock) { |
| 248 | if (elseBlock) |
| 249 | assert(ifOp.hasElse() && "else block expected" ); |
| 250 | |
| 251 | Block *destBlock = ifOp->getBlock(); |
| 252 | Block *srcBlock = elseBlock ? ifOp.getElseBlock() : ifOp.getThenBlock(); |
| 253 | destBlock->getOperations().splice( |
| 254 | where: Block::iterator(ifOp), L2&: srcBlock->getOperations(), first: srcBlock->begin(), |
| 255 | last: std::prev(x: srcBlock->end())); |
| 256 | ifOp.erase(); |
| 257 | } |
| 258 | |
| 259 | /// Returns the outermost affine.for/parallel op that the `ifOp` is invariant |
| 260 | /// on. The `ifOp` could be hoisted and placed right before such an operation. |
| 261 | /// This method assumes that the ifOp has been canonicalized (to be correct and |
| 262 | /// effective). |
| 263 | static Operation *getOutermostInvariantForOp(AffineIfOp ifOp) { |
| 264 | // Walk up the parents past all for op that this conditional is invariant on. |
| 265 | auto ifOperands = ifOp.getOperands(); |
| 266 | Operation *res = ifOp; |
| 267 | while (!res->getParentOp()->hasTrait<OpTrait::IsIsolatedFromAbove>()) { |
| 268 | auto *parentOp = res->getParentOp(); |
| 269 | if (auto forOp = dyn_cast<AffineForOp>(parentOp)) { |
| 270 | if (llvm::is_contained(ifOperands, forOp.getInductionVar())) |
| 271 | break; |
| 272 | } else if (auto parallelOp = dyn_cast<AffineParallelOp>(parentOp)) { |
| 273 | if (llvm::any_of(parallelOp.getIVs(), [&](Value iv) { |
| 274 | return llvm::is_contained(ifOperands, iv); |
| 275 | })) |
| 276 | break; |
| 277 | } else if (!isa<AffineIfOp>(parentOp)) { |
| 278 | // Won't walk up past anything other than affine.for/if ops. |
| 279 | break; |
| 280 | } |
| 281 | // You can always hoist up past any affine.if ops. |
| 282 | res = parentOp; |
| 283 | } |
| 284 | return res; |
| 285 | } |
| 286 | |
| 287 | /// A helper for the mechanics of mlir::hoistAffineIfOp. Hoists `ifOp` just over |
| 288 | /// `hoistOverOp`. Returns the new hoisted op if any hoisting happened, |
| 289 | /// otherwise the same `ifOp`. |
| 290 | static AffineIfOp hoistAffineIfOp(AffineIfOp ifOp, Operation *hoistOverOp) { |
| 291 | // No hoisting to do. |
| 292 | if (hoistOverOp == ifOp) |
| 293 | return ifOp; |
| 294 | |
| 295 | // Create the hoisted 'if' first. Then, clone the op we are hoisting over for |
| 296 | // the else block. Then drop the else block of the original 'if' in the 'then' |
| 297 | // branch while promoting its then block, and analogously drop the 'then' |
| 298 | // block of the original 'if' from the 'else' branch while promoting its else |
| 299 | // block. |
| 300 | IRMapping operandMap; |
| 301 | OpBuilder b(hoistOverOp); |
| 302 | auto hoistedIfOp = b.create<AffineIfOp>(ifOp.getLoc(), ifOp.getIntegerSet(), |
| 303 | ifOp.getOperands(), |
| 304 | /*elseBlock=*/true); |
| 305 | |
| 306 | // Create a clone of hoistOverOp to use for the else branch of the hoisted |
| 307 | // conditional. The else block may get optimized away if empty. |
| 308 | Operation *hoistOverOpClone = nullptr; |
| 309 | // We use this unique name to identify/find `ifOp`'s clone in the else |
| 310 | // version. |
| 311 | StringAttr idForIfOp = b.getStringAttr("__mlir_if_hoisting" ); |
| 312 | operandMap.clear(); |
| 313 | b.setInsertionPointAfter(hoistOverOp); |
| 314 | // We'll set an attribute to identify this op in a clone of this sub-tree. |
| 315 | ifOp->setAttr(idForIfOp, b.getBoolAttr(value: true)); |
| 316 | hoistOverOpClone = b.clone(op&: *hoistOverOp, mapper&: operandMap); |
| 317 | |
| 318 | // Promote the 'then' block of the original affine.if in the then version. |
| 319 | promoteIfBlock(ifOp, /*elseBlock=*/false); |
| 320 | |
| 321 | // Move the then version to the hoisted if op's 'then' block. |
| 322 | auto *thenBlock = hoistedIfOp.getThenBlock(); |
| 323 | thenBlock->getOperations().splice(thenBlock->begin(), |
| 324 | hoistOverOp->getBlock()->getOperations(), |
| 325 | Block::iterator(hoistOverOp)); |
| 326 | |
| 327 | // Find the clone of the original affine.if op in the else version. |
| 328 | AffineIfOp ifCloneInElse; |
| 329 | hoistOverOpClone->walk([&](AffineIfOp ifClone) { |
| 330 | if (!ifClone->getAttr(idForIfOp)) |
| 331 | return WalkResult::advance(); |
| 332 | ifCloneInElse = ifClone; |
| 333 | return WalkResult::interrupt(); |
| 334 | }); |
| 335 | assert(ifCloneInElse && "if op clone should exist" ); |
| 336 | // For the else block, promote the else block of the original 'if' if it had |
| 337 | // one; otherwise, the op itself is to be erased. |
| 338 | if (!ifCloneInElse.hasElse()) |
| 339 | ifCloneInElse.erase(); |
| 340 | else |
| 341 | promoteIfBlock(ifCloneInElse, /*elseBlock=*/true); |
| 342 | |
| 343 | // Move the else version into the else block of the hoisted if op. |
| 344 | auto *elseBlock = hoistedIfOp.getElseBlock(); |
| 345 | elseBlock->getOperations().splice( |
| 346 | elseBlock->begin(), hoistOverOpClone->getBlock()->getOperations(), |
| 347 | Block::iterator(hoistOverOpClone)); |
| 348 | |
| 349 | return hoistedIfOp; |
| 350 | } |
| 351 | |
| 352 | LogicalResult |
| 353 | mlir::affine::affineParallelize(AffineForOp forOp, |
| 354 | ArrayRef<LoopReduction> parallelReductions, |
| 355 | AffineParallelOp *resOp) { |
| 356 | // Fail early if there are iter arguments that are not reductions. |
| 357 | unsigned numReductions = parallelReductions.size(); |
| 358 | if (numReductions != forOp.getNumIterOperands()) |
| 359 | return failure(); |
| 360 | |
| 361 | Location loc = forOp.getLoc(); |
| 362 | OpBuilder outsideBuilder(forOp); |
| 363 | AffineMap lowerBoundMap = forOp.getLowerBoundMap(); |
| 364 | ValueRange lowerBoundOperands = forOp.getLowerBoundOperands(); |
| 365 | AffineMap upperBoundMap = forOp.getUpperBoundMap(); |
| 366 | ValueRange upperBoundOperands = forOp.getUpperBoundOperands(); |
| 367 | |
| 368 | // Creating empty 1-D affine.parallel op. |
| 369 | auto reducedValues = llvm::to_vector<4>(Range: llvm::map_range( |
| 370 | C&: parallelReductions, F: [](const LoopReduction &red) { return red.value; })); |
| 371 | auto reductionKinds = llvm::to_vector<4>(llvm::map_range( |
| 372 | parallelReductions, [](const LoopReduction &red) { return red.kind; })); |
| 373 | AffineParallelOp newPloop = outsideBuilder.create<AffineParallelOp>( |
| 374 | loc, ValueRange(reducedValues).getTypes(), reductionKinds, |
| 375 | llvm::ArrayRef(lowerBoundMap), lowerBoundOperands, |
| 376 | llvm::ArrayRef(upperBoundMap), upperBoundOperands, |
| 377 | llvm::ArrayRef(forOp.getStepAsInt())); |
| 378 | // Steal the body of the old affine for op. |
| 379 | newPloop.getRegion().takeBody(forOp.getRegion()); |
| 380 | Operation *yieldOp = &newPloop.getBody()->back(); |
| 381 | |
| 382 | // Handle the initial values of reductions because the parallel loop always |
| 383 | // starts from the neutral value. |
| 384 | SmallVector<Value> newResults; |
| 385 | newResults.reserve(N: numReductions); |
| 386 | for (unsigned i = 0; i < numReductions; ++i) { |
| 387 | Value init = forOp.getInits()[i]; |
| 388 | // This works because we are only handling single-op reductions at the |
| 389 | // moment. A switch on reduction kind or a mechanism to collect operations |
| 390 | // participating in the reduction will be necessary for multi-op reductions. |
| 391 | Operation *reductionOp = yieldOp->getOperand(idx: i).getDefiningOp(); |
| 392 | assert(reductionOp && "yielded value is expected to be produced by an op" ); |
| 393 | outsideBuilder.getInsertionBlock()->getOperations().splice( |
| 394 | outsideBuilder.getInsertionPoint(), newPloop.getBody()->getOperations(), |
| 395 | reductionOp); |
| 396 | reductionOp->setOperands({init, newPloop->getResult(i)}); |
| 397 | forOp->getResult(i).replaceAllUsesWith(reductionOp->getResult(idx: 0)); |
| 398 | } |
| 399 | |
| 400 | // Update the loop terminator to yield reduced values bypassing the reduction |
| 401 | // operation itself (now moved outside of the loop) and erase the block |
| 402 | // arguments that correspond to reductions. Note that the loop always has one |
| 403 | // "main" induction variable whenc coming from a non-parallel for. |
| 404 | unsigned numIVs = 1; |
| 405 | yieldOp->setOperands(reducedValues); |
| 406 | newPloop.getBody()->eraseArguments(numIVs, numReductions); |
| 407 | |
| 408 | forOp.erase(); |
| 409 | if (resOp) |
| 410 | *resOp = newPloop; |
| 411 | return success(); |
| 412 | } |
| 413 | |
| 414 | // Returns success if any hoisting happened. |
| 415 | LogicalResult mlir::affine::hoistAffineIfOp(AffineIfOp ifOp, bool *folded) { |
| 416 | // Bail out early if the ifOp returns a result. TODO: Consider how to |
| 417 | // properly support this case. |
| 418 | if (ifOp.getNumResults() != 0) |
| 419 | return failure(); |
| 420 | |
| 421 | // Apply canonicalization patterns and folding - this is necessary for the |
| 422 | // hoisting check to be correct (operands should be composed), and to be more |
| 423 | // effective (no unused operands). Since the pattern rewriter's folding is |
| 424 | // entangled with application of patterns, we may fold/end up erasing the op, |
| 425 | // in which case we return with `folded` being set. |
| 426 | RewritePatternSet patterns(ifOp.getContext()); |
| 427 | AffineIfOp::getCanonicalizationPatterns(patterns, ifOp.getContext()); |
| 428 | FrozenRewritePatternSet frozenPatterns(std::move(patterns)); |
| 429 | bool erased; |
| 430 | (void)applyOpPatternsGreedily( |
| 431 | ifOp.getOperation(), frozenPatterns, |
| 432 | GreedyRewriteConfig().setStrictness(GreedyRewriteStrictness::ExistingOps), |
| 433 | /*changed=*/nullptr, &erased); |
| 434 | if (erased) { |
| 435 | if (folded) |
| 436 | *folded = true; |
| 437 | return failure(); |
| 438 | } |
| 439 | if (folded) |
| 440 | *folded = false; |
| 441 | |
| 442 | // The folding above should have ensured this. |
| 443 | assert(llvm::all_of(ifOp.getOperands(), |
| 444 | [](Value v) { |
| 445 | return isTopLevelValue(v) || isAffineInductionVar(v); |
| 446 | }) && |
| 447 | "operands not composed" ); |
| 448 | |
| 449 | // We are going hoist as high as possible. |
| 450 | // TODO: this could be customized in the future. |
| 451 | auto *hoistOverOp = getOutermostInvariantForOp(ifOp); |
| 452 | |
| 453 | AffineIfOp hoistedIfOp = ::hoistAffineIfOp(ifOp, hoistOverOp); |
| 454 | // Nothing to hoist over. |
| 455 | if (hoistedIfOp == ifOp) |
| 456 | return failure(); |
| 457 | |
| 458 | // Canonicalize to remove dead else blocks (happens whenever an 'if' moves up |
| 459 | // a sequence of affine.fors that are all perfectly nested). |
| 460 | (void)applyPatternsGreedily( |
| 461 | hoistedIfOp->getParentWithTrait<OpTrait::IsIsolatedFromAbove>(), |
| 462 | frozenPatterns); |
| 463 | |
| 464 | return success(); |
| 465 | } |
| 466 | |
| 467 | // Return the min expr after replacing the given dim. |
| 468 | AffineExpr mlir::affine::substWithMin(AffineExpr e, AffineExpr dim, |
| 469 | AffineExpr min, AffineExpr max, |
| 470 | bool positivePath) { |
| 471 | if (e == dim) |
| 472 | return positivePath ? min : max; |
| 473 | if (auto bin = dyn_cast<AffineBinaryOpExpr>(Val&: e)) { |
| 474 | AffineExpr lhs = bin.getLHS(); |
| 475 | AffineExpr rhs = bin.getRHS(); |
| 476 | if (bin.getKind() == mlir::AffineExprKind::Add) |
| 477 | return substWithMin(e: lhs, dim, min, max, positivePath) + |
| 478 | substWithMin(e: rhs, dim, min, max, positivePath); |
| 479 | |
| 480 | auto c1 = dyn_cast<AffineConstantExpr>(Val: bin.getLHS()); |
| 481 | auto c2 = dyn_cast<AffineConstantExpr>(Val: bin.getRHS()); |
| 482 | if (c1 && c1.getValue() < 0) |
| 483 | return getAffineBinaryOpExpr( |
| 484 | kind: bin.getKind(), lhs: c1, rhs: substWithMin(e: rhs, dim, min, max, positivePath: !positivePath)); |
| 485 | if (c2 && c2.getValue() < 0) |
| 486 | return getAffineBinaryOpExpr( |
| 487 | kind: bin.getKind(), lhs: substWithMin(e: lhs, dim, min, max, positivePath: !positivePath), rhs: c2); |
| 488 | return getAffineBinaryOpExpr( |
| 489 | kind: bin.getKind(), lhs: substWithMin(e: lhs, dim, min, max, positivePath), |
| 490 | rhs: substWithMin(e: rhs, dim, min, max, positivePath)); |
| 491 | } |
| 492 | return e; |
| 493 | } |
| 494 | |
| 495 | void mlir::affine::normalizeAffineParallel(AffineParallelOp op) { |
| 496 | // Loops with min/max in bounds are not normalized at the moment. |
| 497 | if (op.hasMinMaxBounds()) |
| 498 | return; |
| 499 | |
| 500 | AffineMap lbMap = op.getLowerBoundsMap(); |
| 501 | SmallVector<int64_t, 8> steps = op.getSteps(); |
| 502 | // No need to do any work if the parallel op is already normalized. |
| 503 | bool isAlreadyNormalized = |
| 504 | llvm::all_of(Range: llvm::zip(t&: steps, u: lbMap.getResults()), P: [](auto tuple) { |
| 505 | int64_t step = std::get<0>(tuple); |
| 506 | auto lbExpr = dyn_cast<AffineConstantExpr>(std::get<1>(tuple)); |
| 507 | return lbExpr && lbExpr.getValue() == 0 && step == 1; |
| 508 | }); |
| 509 | if (isAlreadyNormalized) |
| 510 | return; |
| 511 | |
| 512 | AffineValueMap ranges; |
| 513 | AffineValueMap::difference(a: op.getUpperBoundsValueMap(), |
| 514 | b: op.getLowerBoundsValueMap(), res: &ranges); |
| 515 | auto builder = OpBuilder::atBlockBegin(block: op.getBody()); |
| 516 | auto zeroExpr = builder.getAffineConstantExpr(0); |
| 517 | SmallVector<AffineExpr, 8> lbExprs; |
| 518 | SmallVector<AffineExpr, 8> ubExprs; |
| 519 | for (unsigned i = 0, e = steps.size(); i < e; ++i) { |
| 520 | int64_t step = steps[i]; |
| 521 | |
| 522 | // Adjust the lower bound to be 0. |
| 523 | lbExprs.push_back(Elt: zeroExpr); |
| 524 | |
| 525 | // Adjust the upper bound expression: 'range / step'. |
| 526 | AffineExpr ubExpr = ranges.getResult(i).ceilDiv(v: step); |
| 527 | ubExprs.push_back(Elt: ubExpr); |
| 528 | |
| 529 | // Adjust the corresponding IV: 'lb + i * step'. |
| 530 | BlockArgument iv = op.getBody()->getArgument(i); |
| 531 | AffineExpr lbExpr = lbMap.getResult(idx: i); |
| 532 | unsigned nDims = lbMap.getNumDims(); |
| 533 | auto expr = lbExpr + builder.getAffineDimExpr(nDims) * step; |
| 534 | auto map = AffineMap::get(/*dimCount=*/nDims + 1, |
| 535 | /*symbolCount=*/lbMap.getNumSymbols(), expr); |
| 536 | |
| 537 | // Use an 'affine.apply' op that will be simplified later in subsequent |
| 538 | // canonicalizations. |
| 539 | OperandRange lbOperands = op.getLowerBoundsOperands(); |
| 540 | OperandRange dimOperands = lbOperands.take_front(n: nDims); |
| 541 | OperandRange symbolOperands = lbOperands.drop_front(n: nDims); |
| 542 | SmallVector<Value, 8> applyOperands{dimOperands}; |
| 543 | applyOperands.push_back(Elt: iv); |
| 544 | applyOperands.append(in_start: symbolOperands.begin(), in_end: symbolOperands.end()); |
| 545 | auto apply = builder.create<AffineApplyOp>(op.getLoc(), map, applyOperands); |
| 546 | iv.replaceAllUsesExcept(apply, apply); |
| 547 | } |
| 548 | |
| 549 | SmallVector<int64_t, 8> newSteps(op.getNumDims(), 1); |
| 550 | op.setSteps(newSteps); |
| 551 | auto newLowerMap = AffineMap::get( |
| 552 | /*dimCount=*/0, /*symbolCount=*/0, lbExprs, op.getContext()); |
| 553 | op.setLowerBounds({}, newLowerMap); |
| 554 | auto newUpperMap = AffineMap::get(ranges.getNumDims(), ranges.getNumSymbols(), |
| 555 | ubExprs, op.getContext()); |
| 556 | op.setUpperBounds(ranges.getOperands(), newUpperMap); |
| 557 | } |
| 558 | |
| 559 | LogicalResult mlir::affine::normalizeAffineFor(AffineForOp op, |
| 560 | bool promoteSingleIter) { |
| 561 | if (promoteSingleIter && succeeded(promoteIfSingleIteration(op))) |
| 562 | return success(); |
| 563 | |
| 564 | // Check if the forop is already normalized. |
| 565 | if (op.hasConstantLowerBound() && (op.getConstantLowerBound() == 0) && |
| 566 | (op.getStep() == 1)) |
| 567 | return success(); |
| 568 | |
| 569 | // Check if the lower bound has a single result only. Loops with a max lower |
| 570 | // bound can't be normalized without additional support like |
| 571 | // affine.execute_region's. If the lower bound does not have a single result |
| 572 | // then skip this op. |
| 573 | if (op.getLowerBoundMap().getNumResults() != 1) |
| 574 | return failure(); |
| 575 | |
| 576 | Location loc = op.getLoc(); |
| 577 | OpBuilder opBuilder(op); |
| 578 | int64_t origLoopStep = op.getStepAsInt(); |
| 579 | |
| 580 | // Construct the new upper bound value map. |
| 581 | AffineMap oldLbMap = op.getLowerBoundMap(); |
| 582 | // The upper bound can have multiple results. To use |
| 583 | // AffineValueMap::difference, we need to have the same number of results in |
| 584 | // both lower and upper bound maps. So, we just create a value map for the |
| 585 | // lower bound with the only available lower bound result repeated to pad up |
| 586 | // to the number of upper bound results. |
| 587 | SmallVector<AffineExpr> lbExprs(op.getUpperBoundMap().getNumResults(), |
| 588 | op.getLowerBoundMap().getResult(0)); |
| 589 | AffineValueMap lbMap(oldLbMap, op.getLowerBoundOperands()); |
| 590 | AffineMap paddedLbMap = |
| 591 | AffineMap::get(oldLbMap.getNumDims(), oldLbMap.getNumSymbols(), lbExprs, |
| 592 | op.getContext()); |
| 593 | AffineValueMap paddedLbValueMap(paddedLbMap, op.getLowerBoundOperands()); |
| 594 | AffineValueMap ubValueMap(op.getUpperBoundMap(), op.getUpperBoundOperands()); |
| 595 | AffineValueMap newUbValueMap; |
| 596 | // Compute the `upper bound - lower bound`. |
| 597 | AffineValueMap::difference(a: ubValueMap, b: paddedLbValueMap, res: &newUbValueMap); |
| 598 | (void)newUbValueMap.canonicalize(); |
| 599 | |
| 600 | // Scale down the upper bound value map by the loop step. |
| 601 | unsigned numResult = newUbValueMap.getNumResults(); |
| 602 | SmallVector<AffineExpr> scaleDownExprs(numResult); |
| 603 | for (unsigned i = 0; i < numResult; ++i) |
| 604 | scaleDownExprs[i] = opBuilder.getAffineDimExpr(position: i).ceilDiv(v: origLoopStep); |
| 605 | // `scaleDownMap` is (d0, d1, ..., d_n) -> (d0 / step, d1 / step, ..., d_n / |
| 606 | // step). Where `n` is the number of results in the upper bound map. |
| 607 | AffineMap scaleDownMap = |
| 608 | AffineMap::get(numResult, 0, scaleDownExprs, op.getContext()); |
| 609 | AffineMap newUbMap = scaleDownMap.compose(map: newUbValueMap.getAffineMap()); |
| 610 | |
| 611 | // Set the newly create upper bound map and operands. |
| 612 | op.setUpperBound(newUbValueMap.getOperands(), newUbMap); |
| 613 | op.setLowerBound({}, opBuilder.getConstantAffineMap(val: 0)); |
| 614 | op.setStep(1); |
| 615 | |
| 616 | // Calculate the Value of new loopIV. Create affine.apply for the value of |
| 617 | // the loopIV in normalized loop. |
| 618 | opBuilder.setInsertionPointToStart(op.getBody()); |
| 619 | // Construct an affine.apply op mapping the new IV to the old IV. |
| 620 | AffineMap scaleIvMap = |
| 621 | AffineMap::get(dimCount: 1, symbolCount: 0, result: -opBuilder.getAffineDimExpr(position: 0) * origLoopStep); |
| 622 | AffineValueMap scaleIvValueMap(scaleIvMap, ValueRange{op.getInductionVar()}); |
| 623 | AffineValueMap newIvToOldIvMap; |
| 624 | AffineValueMap::difference(a: lbMap, b: scaleIvValueMap, res: &newIvToOldIvMap); |
| 625 | (void)newIvToOldIvMap.canonicalize(); |
| 626 | auto newIV = opBuilder.create<AffineApplyOp>( |
| 627 | loc, newIvToOldIvMap.getAffineMap(), newIvToOldIvMap.getOperands()); |
| 628 | op.getInductionVar().replaceAllUsesExcept(newIV->getResult(0), newIV); |
| 629 | return success(); |
| 630 | } |
| 631 | |
| 632 | /// Returns true if the memory operation of `destAccess` depends on `srcAccess` |
| 633 | /// inside of the innermost common surrounding affine loop between the two |
| 634 | /// accesses. |
| 635 | static bool mustReachAtInnermost(const MemRefAccess &srcAccess, |
| 636 | const MemRefAccess &destAccess) { |
| 637 | // Affine dependence analysis is possible only if both ops in the same |
| 638 | // AffineScope. |
| 639 | if (getAffineAnalysisScope(op: srcAccess.opInst) != |
| 640 | getAffineAnalysisScope(op: destAccess.opInst)) |
| 641 | return false; |
| 642 | |
| 643 | unsigned nsLoops = |
| 644 | getNumCommonSurroundingLoops(a&: *srcAccess.opInst, b&: *destAccess.opInst); |
| 645 | DependenceResult result = |
| 646 | checkMemrefAccessDependence(srcAccess, dstAccess: destAccess, loopDepth: nsLoops + 1); |
| 647 | return hasDependence(result); |
| 648 | } |
| 649 | |
| 650 | /// Returns true if `srcMemOp` may have an effect on `destMemOp` within the |
| 651 | /// scope of the outermost `minSurroundingLoops` loops that surround them. |
| 652 | /// `srcMemOp` and `destMemOp` are expected to be affine read/write ops. |
| 653 | static bool mayHaveEffect(Operation *srcMemOp, Operation *destMemOp, |
| 654 | unsigned minSurroundingLoops) { |
| 655 | MemRefAccess srcAccess(srcMemOp); |
| 656 | MemRefAccess destAccess(destMemOp); |
| 657 | |
| 658 | // Affine dependence analysis here is applicable only if both ops operate on |
| 659 | // the same memref and if `srcMemOp` and `destMemOp` are in the same |
| 660 | // AffineScope. Also, we can only check if our affine scope is isolated from |
| 661 | // above; otherwise, values can from outside of the affine scope that the |
| 662 | // check below cannot analyze. |
| 663 | Region *srcScope = getAffineAnalysisScope(op: srcMemOp); |
| 664 | if (srcAccess.memref == destAccess.memref && |
| 665 | srcScope == getAffineAnalysisScope(op: destMemOp)) { |
| 666 | unsigned nsLoops = getNumCommonSurroundingLoops(a&: *srcMemOp, b&: *destMemOp); |
| 667 | FlatAffineValueConstraints dependenceConstraints; |
| 668 | for (unsigned d = nsLoops + 1; d > minSurroundingLoops; d--) { |
| 669 | DependenceResult result = checkMemrefAccessDependence( |
| 670 | srcAccess, dstAccess: destAccess, loopDepth: d, dependenceConstraints: &dependenceConstraints, |
| 671 | /*dependenceComponents=*/nullptr); |
| 672 | // A dependence failure or the presence of a dependence implies a |
| 673 | // side effect. |
| 674 | if (!noDependence(result)) |
| 675 | return true; |
| 676 | } |
| 677 | // No side effect was seen. |
| 678 | return false; |
| 679 | } |
| 680 | // TODO: Check here if the memrefs alias: there is no side effect if |
| 681 | // `srcAccess.memref` and `destAccess.memref` don't alias. |
| 682 | return true; |
| 683 | } |
| 684 | |
| 685 | template <typename EffectType, typename T> |
| 686 | bool mlir::affine::hasNoInterveningEffect( |
| 687 | Operation *start, T memOp, |
| 688 | llvm::function_ref<bool(Value, Value)> mayAlias) { |
| 689 | // A boolean representing whether an intervening operation could have impacted |
| 690 | // memOp. |
| 691 | bool hasSideEffect = false; |
| 692 | |
| 693 | // Check whether the effect on memOp can be caused by a given operation op. |
| 694 | Value memref = memOp.getMemRef(); |
| 695 | std::function<void(Operation *)> checkOperation = [&](Operation *op) { |
| 696 | // If the effect has alreay been found, early exit, |
| 697 | if (hasSideEffect) |
| 698 | return; |
| 699 | |
| 700 | if (auto memEffect = dyn_cast<MemoryEffectOpInterface>(op)) { |
| 701 | SmallVector<MemoryEffects::EffectInstance, 1> effects; |
| 702 | memEffect.getEffects(effects); |
| 703 | |
| 704 | bool opMayHaveEffect = false; |
| 705 | for (auto effect : effects) { |
| 706 | // If op causes EffectType on a potentially aliasing location for |
| 707 | // memOp, mark as having the effect. |
| 708 | if (isa<EffectType>(effect.getEffect())) { |
| 709 | if (effect.getValue() && effect.getValue() != memref && |
| 710 | !mayAlias(effect.getValue(), memref)) |
| 711 | continue; |
| 712 | opMayHaveEffect = true; |
| 713 | break; |
| 714 | } |
| 715 | } |
| 716 | |
| 717 | if (!opMayHaveEffect) |
| 718 | return; |
| 719 | |
| 720 | // If the side effect comes from an affine read or write, try to |
| 721 | // prove the side effecting `op` cannot reach `memOp`. |
| 722 | if (isa<AffineReadOpInterface, AffineWriteOpInterface>(op)) { |
| 723 | // For ease, let's consider the case that `op` is a store and |
| 724 | // we're looking for other potential stores that overwrite memory after |
| 725 | // `start`, and before being read in `memOp`. In this case, we only |
| 726 | // need to consider other potential stores with depth > |
| 727 | // minSurroundingLoops since `start` would overwrite any store with a |
| 728 | // smaller number of surrounding loops before. |
| 729 | unsigned minSurroundingLoops = |
| 730 | getNumCommonSurroundingLoops(*start, *memOp); |
| 731 | if (mayHaveEffect(op, memOp, minSurroundingLoops)) |
| 732 | hasSideEffect = true; |
| 733 | return; |
| 734 | } |
| 735 | |
| 736 | // We have an op with a memory effect and we cannot prove if it |
| 737 | // intervenes. |
| 738 | hasSideEffect = true; |
| 739 | return; |
| 740 | } |
| 741 | |
| 742 | if (op->hasTrait<OpTrait::HasRecursiveMemoryEffects>()) { |
| 743 | // Recurse into the regions for this op and check whether the internal |
| 744 | // operations may have the side effect `EffectType` on memOp. |
| 745 | for (Region ®ion : op->getRegions()) |
| 746 | for (Block &block : region) |
| 747 | for (Operation &op : block) |
| 748 | checkOperation(&op); |
| 749 | return; |
| 750 | } |
| 751 | |
| 752 | // Otherwise, conservatively assume generic operations have the effect |
| 753 | // on the operation |
| 754 | hasSideEffect = true; |
| 755 | }; |
| 756 | |
| 757 | // Check all paths from ancestor op `parent` to the operation `to` for the |
| 758 | // effect. It is known that `to` must be contained within `parent`. |
| 759 | auto until = [&](Operation *parent, Operation *to) { |
| 760 | // TODO check only the paths from `parent` to `to`. |
| 761 | // Currently we fallback and check the entire parent op, rather than |
| 762 | // just the paths from the parent path, stopping after reaching `to`. |
| 763 | // This is conservatively correct, but could be made more aggressive. |
| 764 | assert(parent->isAncestor(to)); |
| 765 | checkOperation(parent); |
| 766 | }; |
| 767 | |
| 768 | // Check for all paths from operation `from` to operation `untilOp` for the |
| 769 | // given memory effect. |
| 770 | std::function<void(Operation *, Operation *)> recur = |
| 771 | [&](Operation *from, Operation *untilOp) { |
| 772 | assert( |
| 773 | from->getParentRegion()->isAncestor(untilOp->getParentRegion()) && |
| 774 | "Checking for side effect between two operations without a common " |
| 775 | "ancestor" ); |
| 776 | |
| 777 | // If the operations are in different regions, recursively consider all |
| 778 | // path from `from` to the parent of `to` and all paths from the parent |
| 779 | // of `to` to `to`. |
| 780 | if (from->getParentRegion() != untilOp->getParentRegion()) { |
| 781 | recur(from, untilOp->getParentOp()); |
| 782 | until(untilOp->getParentOp(), untilOp); |
| 783 | return; |
| 784 | } |
| 785 | |
| 786 | // Now, assuming that `from` and `to` exist in the same region, perform |
| 787 | // a CFG traversal to check all the relevant operations. |
| 788 | |
| 789 | // Additional blocks to consider. |
| 790 | SmallVector<Block *, 2> todoBlocks; |
| 791 | { |
| 792 | // First consider the parent block of `from` an check all operations |
| 793 | // after `from`. |
| 794 | for (auto iter = ++from->getIterator(), end = from->getBlock()->end(); |
| 795 | iter != end && &*iter != untilOp; ++iter) { |
| 796 | checkOperation(&*iter); |
| 797 | } |
| 798 | |
| 799 | // If the parent of `from` doesn't contain `to`, add the successors |
| 800 | // to the list of blocks to check. |
| 801 | if (untilOp->getBlock() != from->getBlock()) |
| 802 | for (Block *succ : from->getBlock()->getSuccessors()) |
| 803 | todoBlocks.push_back(Elt: succ); |
| 804 | } |
| 805 | |
| 806 | SmallPtrSet<Block *, 4> done; |
| 807 | // Traverse the CFG until hitting `to`. |
| 808 | while (!todoBlocks.empty()) { |
| 809 | Block *blk = todoBlocks.pop_back_val(); |
| 810 | if (done.count(Ptr: blk)) |
| 811 | continue; |
| 812 | done.insert(Ptr: blk); |
| 813 | for (auto &op : *blk) { |
| 814 | if (&op == untilOp) |
| 815 | break; |
| 816 | checkOperation(&op); |
| 817 | if (&op == blk->getTerminator()) |
| 818 | for (Block *succ : blk->getSuccessors()) |
| 819 | todoBlocks.push_back(Elt: succ); |
| 820 | } |
| 821 | } |
| 822 | }; |
| 823 | recur(start, memOp); |
| 824 | return !hasSideEffect; |
| 825 | } |
| 826 | |
| 827 | /// Attempt to eliminate loadOp by replacing it with a value stored into memory |
| 828 | /// which the load is guaranteed to retrieve. This check involves three |
| 829 | /// components: 1) The store and load must be on the same location 2) The store |
| 830 | /// must dominate (and therefore must always occur prior to) the load 3) No |
| 831 | /// other operations will overwrite the memory loaded between the given load |
| 832 | /// and store. If such a value exists, the replaced `loadOp` will be added to |
| 833 | /// `loadOpsToErase` and its memref will be added to `memrefsToErase`. |
| 834 | static void forwardStoreToLoad( |
| 835 | AffineReadOpInterface loadOp, SmallVectorImpl<Operation *> &loadOpsToErase, |
| 836 | SmallPtrSetImpl<Value> &memrefsToErase, DominanceInfo &domInfo, |
| 837 | llvm::function_ref<bool(Value, Value)> mayAlias) { |
| 838 | |
| 839 | // The store op candidate for forwarding that satisfies all conditions |
| 840 | // to replace the load, if any. |
| 841 | Operation *lastWriteStoreOp = nullptr; |
| 842 | |
| 843 | for (auto *user : loadOp.getMemRef().getUsers()) { |
| 844 | auto storeOp = dyn_cast<AffineWriteOpInterface>(user); |
| 845 | if (!storeOp) |
| 846 | continue; |
| 847 | MemRefAccess srcAccess(storeOp); |
| 848 | MemRefAccess destAccess(loadOp); |
| 849 | |
| 850 | // 1. Check if the store and the load have mathematically equivalent |
| 851 | // affine access functions; this implies that they statically refer to the |
| 852 | // same single memref element. As an example this filters out cases like: |
| 853 | // store %A[%i0 + 1] |
| 854 | // load %A[%i0] |
| 855 | // store %A[%M] |
| 856 | // load %A[%N] |
| 857 | // Use the AffineValueMap difference based memref access equality checking. |
| 858 | if (srcAccess != destAccess) |
| 859 | continue; |
| 860 | |
| 861 | // 2. The store has to dominate the load op to be candidate. |
| 862 | if (!domInfo.dominates(storeOp, loadOp)) |
| 863 | continue; |
| 864 | |
| 865 | // 3. The store must reach the load. Access function equivalence only |
| 866 | // guarantees this for accesses in the same block. The load could be in a |
| 867 | // nested block that is unreachable. |
| 868 | if (!mustReachAtInnermost(srcAccess, destAccess)) |
| 869 | continue; |
| 870 | |
| 871 | // 4. Ensure there is no intermediate operation which could replace the |
| 872 | // value in memory. |
| 873 | if (!affine::hasNoInterveningEffect<MemoryEffects::Write>(storeOp, loadOp, |
| 874 | mayAlias)) |
| 875 | continue; |
| 876 | |
| 877 | // We now have a candidate for forwarding. |
| 878 | assert(lastWriteStoreOp == nullptr && |
| 879 | "multiple simultaneous replacement stores" ); |
| 880 | lastWriteStoreOp = storeOp; |
| 881 | } |
| 882 | |
| 883 | if (!lastWriteStoreOp) |
| 884 | return; |
| 885 | |
| 886 | // Perform the actual store to load forwarding. |
| 887 | Value storeVal = |
| 888 | cast<AffineWriteOpInterface>(lastWriteStoreOp).getValueToStore(); |
| 889 | // Check if 2 values have the same shape. This is needed for affine vector |
| 890 | // loads and stores. |
| 891 | if (storeVal.getType() != loadOp.getValue().getType()) |
| 892 | return; |
| 893 | loadOp.getValue().replaceAllUsesWith(storeVal); |
| 894 | // Record the memref for a later sweep to optimize away. |
| 895 | memrefsToErase.insert(loadOp.getMemRef()); |
| 896 | // Record this to erase later. |
| 897 | loadOpsToErase.push_back(Elt: loadOp); |
| 898 | } |
| 899 | |
| 900 | template bool |
| 901 | mlir::affine::hasNoInterveningEffect<mlir::MemoryEffects::Read, |
| 902 | affine::AffineReadOpInterface>( |
| 903 | mlir::Operation *, affine::AffineReadOpInterface, |
| 904 | llvm::function_ref<bool(Value, Value)>); |
| 905 | |
| 906 | // This attempts to find stores which have no impact on the final result. |
| 907 | // A writing op writeA will be eliminated if there exists an op writeB if |
| 908 | // 1) writeA and writeB have mathematically equivalent affine access functions. |
| 909 | // 2) writeB postdominates writeA. |
| 910 | // 3) There is no potential read between writeA and writeB. |
| 911 | static void findUnusedStore(AffineWriteOpInterface writeA, |
| 912 | SmallVectorImpl<Operation *> &opsToErase, |
| 913 | PostDominanceInfo &postDominanceInfo, |
| 914 | llvm::function_ref<bool(Value, Value)> mayAlias) { |
| 915 | |
| 916 | for (Operation *user : writeA.getMemRef().getUsers()) { |
| 917 | // Only consider writing operations. |
| 918 | auto writeB = dyn_cast<AffineWriteOpInterface>(user); |
| 919 | if (!writeB) |
| 920 | continue; |
| 921 | |
| 922 | // The operations must be distinct. |
| 923 | if (writeB == writeA) |
| 924 | continue; |
| 925 | |
| 926 | // Both operations must lie in the same region. |
| 927 | if (writeB->getParentRegion() != writeA->getParentRegion()) |
| 928 | continue; |
| 929 | |
| 930 | // Both operations must write to the same memory. |
| 931 | MemRefAccess srcAccess(writeB); |
| 932 | MemRefAccess destAccess(writeA); |
| 933 | |
| 934 | if (srcAccess != destAccess) |
| 935 | continue; |
| 936 | |
| 937 | // writeB must postdominate writeA. |
| 938 | if (!postDominanceInfo.postDominates(writeB, writeA)) |
| 939 | continue; |
| 940 | |
| 941 | // There cannot be an operation which reads from memory between |
| 942 | // the two writes. |
| 943 | if (!affine::hasNoInterveningEffect<MemoryEffects::Read>(writeA, writeB, |
| 944 | mayAlias)) |
| 945 | continue; |
| 946 | |
| 947 | opsToErase.push_back(writeA); |
| 948 | break; |
| 949 | } |
| 950 | } |
| 951 | |
| 952 | // The load to load forwarding / redundant load elimination is similar to the |
| 953 | // store to load forwarding. |
| 954 | // loadA will be be replaced with loadB if: |
| 955 | // 1) loadA and loadB have mathematically equivalent affine access functions. |
| 956 | // 2) loadB dominates loadA. |
| 957 | // 3) There is no write between loadA and loadB. |
| 958 | static void loadCSE(AffineReadOpInterface loadA, |
| 959 | SmallVectorImpl<Operation *> &loadOpsToErase, |
| 960 | DominanceInfo &domInfo, |
| 961 | llvm::function_ref<bool(Value, Value)> mayAlias) { |
| 962 | SmallVector<AffineReadOpInterface, 4> loadCandidates; |
| 963 | for (auto *user : loadA.getMemRef().getUsers()) { |
| 964 | auto loadB = dyn_cast<AffineReadOpInterface>(user); |
| 965 | if (!loadB || loadB == loadA) |
| 966 | continue; |
| 967 | |
| 968 | MemRefAccess srcAccess(loadB); |
| 969 | MemRefAccess destAccess(loadA); |
| 970 | |
| 971 | // 1. The accesses should be to be to the same location. |
| 972 | if (srcAccess != destAccess) { |
| 973 | continue; |
| 974 | } |
| 975 | |
| 976 | // 2. loadB should dominate loadA. |
| 977 | if (!domInfo.dominates(loadB, loadA)) |
| 978 | continue; |
| 979 | |
| 980 | // 3. There should not be a write between loadA and loadB. |
| 981 | if (!affine::hasNoInterveningEffect<MemoryEffects::Write>( |
| 982 | loadB.getOperation(), loadA, mayAlias)) |
| 983 | continue; |
| 984 | |
| 985 | // Check if two values have the same shape. This is needed for affine vector |
| 986 | // loads. |
| 987 | if (loadB.getValue().getType() != loadA.getValue().getType()) |
| 988 | continue; |
| 989 | |
| 990 | loadCandidates.push_back(loadB); |
| 991 | } |
| 992 | |
| 993 | // Of the legal load candidates, use the one that dominates all others |
| 994 | // to minimize the subsequent need to loadCSE |
| 995 | Value loadB; |
| 996 | for (AffineReadOpInterface option : loadCandidates) { |
| 997 | if (llvm::all_of(loadCandidates, [&](AffineReadOpInterface depStore) { |
| 998 | return depStore == option || |
| 999 | domInfo.dominates(option.getOperation(), |
| 1000 | depStore.getOperation()); |
| 1001 | })) { |
| 1002 | loadB = option.getValue(); |
| 1003 | break; |
| 1004 | } |
| 1005 | } |
| 1006 | |
| 1007 | if (loadB) { |
| 1008 | loadA.getValue().replaceAllUsesWith(loadB); |
| 1009 | // Record this to erase later. |
| 1010 | loadOpsToErase.push_back(Elt: loadA); |
| 1011 | } |
| 1012 | } |
| 1013 | |
| 1014 | // The store to load forwarding and load CSE rely on three conditions: |
| 1015 | // |
| 1016 | // 1) store/load providing a replacement value and load being replaced need to |
| 1017 | // have mathematically equivalent affine access functions (checked after full |
| 1018 | // composition of load/store operands); this implies that they access the same |
| 1019 | // single memref element for all iterations of the common surrounding loop, |
| 1020 | // |
| 1021 | // 2) the store/load op should dominate the load op, |
| 1022 | // |
| 1023 | // 3) no operation that may write to memory read by the load being replaced can |
| 1024 | // occur after executing the instruction (load or store) providing the |
| 1025 | // replacement value and before the load being replaced (thus potentially |
| 1026 | // allowing overwriting the memory read by the load). |
| 1027 | // |
| 1028 | // The above conditions are simple to check, sufficient, and powerful for most |
| 1029 | // cases in practice - they are sufficient, but not necessary --- since they |
| 1030 | // don't reason about loops that are guaranteed to execute at least once or |
| 1031 | // multiple sources to forward from. |
| 1032 | // |
| 1033 | // TODO: more forwarding can be done when support for |
| 1034 | // loop/conditional live-out SSA values is available. |
| 1035 | // TODO: do general dead store elimination for memref's. This pass |
| 1036 | // currently only eliminates the stores only if no other loads/uses (other |
| 1037 | // than dealloc) remain. |
| 1038 | // |
| 1039 | void mlir::affine::affineScalarReplace(func::FuncOp f, DominanceInfo &domInfo, |
| 1040 | PostDominanceInfo &postDomInfo, |
| 1041 | AliasAnalysis &aliasAnalysis) { |
| 1042 | // Load op's whose results were replaced by those forwarded from stores. |
| 1043 | SmallVector<Operation *, 8> opsToErase; |
| 1044 | |
| 1045 | // A list of memref's that are potentially dead / could be eliminated. |
| 1046 | SmallPtrSet<Value, 4> memrefsToErase; |
| 1047 | |
| 1048 | auto mayAlias = [&](Value val1, Value val2) -> bool { |
| 1049 | return !aliasAnalysis.alias(lhs: val1, rhs: val2).isNo(); |
| 1050 | }; |
| 1051 | |
| 1052 | // Walk all load's and perform store to load forwarding. |
| 1053 | f.walk([&](AffineReadOpInterface loadOp) { |
| 1054 | forwardStoreToLoad(loadOp, opsToErase, memrefsToErase, domInfo, mayAlias); |
| 1055 | }); |
| 1056 | for (auto *op : opsToErase) |
| 1057 | op->erase(); |
| 1058 | opsToErase.clear(); |
| 1059 | |
| 1060 | // Walk all store's and perform unused store elimination |
| 1061 | f.walk([&](AffineWriteOpInterface storeOp) { |
| 1062 | findUnusedStore(storeOp, opsToErase, postDomInfo, mayAlias); |
| 1063 | }); |
| 1064 | for (auto *op : opsToErase) |
| 1065 | op->erase(); |
| 1066 | opsToErase.clear(); |
| 1067 | |
| 1068 | // Check if the store fwd'ed memrefs are now left with only stores and |
| 1069 | // deallocs and can thus be completely deleted. Note: the canonicalize pass |
| 1070 | // should be able to do this as well, but we'll do it here since we collected |
| 1071 | // these anyway. |
| 1072 | for (auto memref : memrefsToErase) { |
| 1073 | // If the memref hasn't been locally alloc'ed, skip. |
| 1074 | Operation *defOp = memref.getDefiningOp(); |
| 1075 | if (!defOp || !hasSingleEffect<MemoryEffects::Allocate>(op: defOp, value: memref)) |
| 1076 | // TODO: if the memref was returned by a 'call' operation, we |
| 1077 | // could still erase it if the call had no side-effects. |
| 1078 | continue; |
| 1079 | if (llvm::any_of(Range: memref.getUsers(), P: [&](Operation *ownerOp) { |
| 1080 | return !isa<AffineWriteOpInterface>(ownerOp) && |
| 1081 | !hasSingleEffect<MemoryEffects::Free>(ownerOp, memref); |
| 1082 | })) |
| 1083 | continue; |
| 1084 | |
| 1085 | // Erase all stores, the dealloc, and the alloc on the memref. |
| 1086 | for (auto *user : llvm::make_early_inc_range(Range: memref.getUsers())) |
| 1087 | user->erase(); |
| 1088 | defOp->erase(); |
| 1089 | } |
| 1090 | |
| 1091 | // To eliminate as many loads as possible, run load CSE after eliminating |
| 1092 | // stores. Otherwise, some stores are wrongly seen as having an intervening |
| 1093 | // effect. |
| 1094 | f.walk([&](AffineReadOpInterface loadOp) { |
| 1095 | loadCSE(loadOp, opsToErase, domInfo, mayAlias); |
| 1096 | }); |
| 1097 | for (auto *op : opsToErase) |
| 1098 | op->erase(); |
| 1099 | } |
| 1100 | |
| 1101 | // Checks if `op` is non dereferencing. |
| 1102 | // TODO: This hardcoded check will be removed once the right interface is added. |
| 1103 | static bool isDereferencingOp(Operation *op) { |
| 1104 | return isa<AffineMapAccessInterface, memref::LoadOp, memref::StoreOp>(op); |
| 1105 | } |
| 1106 | |
| 1107 | // Perform the replacement in `op`. |
| 1108 | LogicalResult mlir::affine::replaceAllMemRefUsesWith( |
| 1109 | Value oldMemRef, Value newMemRef, Operation *op, |
| 1110 | ArrayRef<Value> , AffineMap indexRemap, |
| 1111 | ArrayRef<Value> extraOperands, ArrayRef<Value> symbolOperands, |
| 1112 | bool allowNonDereferencingOps) { |
| 1113 | unsigned newMemRefRank = cast<MemRefType>(newMemRef.getType()).getRank(); |
| 1114 | (void)newMemRefRank; // unused in opt mode |
| 1115 | unsigned oldMemRefRank = cast<MemRefType>(oldMemRef.getType()).getRank(); |
| 1116 | (void)oldMemRefRank; // unused in opt mode |
| 1117 | if (indexRemap) { |
| 1118 | assert(indexRemap.getNumSymbols() == symbolOperands.size() && |
| 1119 | "symbolic operand count mismatch" ); |
| 1120 | assert(indexRemap.getNumInputs() == |
| 1121 | extraOperands.size() + oldMemRefRank + symbolOperands.size()); |
| 1122 | assert(indexRemap.getNumResults() + extraIndices.size() == newMemRefRank); |
| 1123 | } else { |
| 1124 | assert(oldMemRefRank + extraIndices.size() == newMemRefRank); |
| 1125 | } |
| 1126 | |
| 1127 | // Assert same elemental type. |
| 1128 | assert(cast<MemRefType>(oldMemRef.getType()).getElementType() == |
| 1129 | cast<MemRefType>(newMemRef.getType()).getElementType()); |
| 1130 | |
| 1131 | SmallVector<unsigned, 2> usePositions; |
| 1132 | for (const auto &opEntry : llvm::enumerate(First: op->getOperands())) { |
| 1133 | if (opEntry.value() == oldMemRef) |
| 1134 | usePositions.push_back(Elt: opEntry.index()); |
| 1135 | } |
| 1136 | |
| 1137 | // If memref doesn't appear, nothing to do. |
| 1138 | if (usePositions.empty()) |
| 1139 | return success(); |
| 1140 | |
| 1141 | unsigned memRefOperandPos = usePositions.front(); |
| 1142 | |
| 1143 | OpBuilder builder(op); |
| 1144 | // The following checks if op is dereferencing memref and performs the access |
| 1145 | // index rewrites. |
| 1146 | if (!isDereferencingOp(op)) { |
| 1147 | if (!allowNonDereferencingOps) { |
| 1148 | // Failure: memref used in a non-dereferencing context (potentially |
| 1149 | // escapes); no replacement in these cases unless allowNonDereferencingOps |
| 1150 | // is set. |
| 1151 | return failure(); |
| 1152 | } |
| 1153 | for (unsigned pos : usePositions) |
| 1154 | op->setOperand(idx: pos, value: newMemRef); |
| 1155 | return success(); |
| 1156 | } |
| 1157 | |
| 1158 | if (usePositions.size() > 1) { |
| 1159 | // TODO: extend it for this case when needed (rare). |
| 1160 | LLVM_DEBUG(llvm::dbgs() |
| 1161 | << "multiple dereferencing uses in a single op not supported" ); |
| 1162 | return failure(); |
| 1163 | } |
| 1164 | |
| 1165 | // Perform index rewrites for the dereferencing op and then replace the op. |
| 1166 | SmallVector<Value, 4> oldMapOperands; |
| 1167 | AffineMap oldMap; |
| 1168 | unsigned oldMemRefNumIndices = oldMemRefRank; |
| 1169 | auto startIdx = op->operand_begin() + memRefOperandPos + 1; |
| 1170 | auto affMapAccInterface = dyn_cast<AffineMapAccessInterface>(op); |
| 1171 | if (affMapAccInterface) { |
| 1172 | // If `op` implements AffineMapAccessInterface, we can get the indices by |
| 1173 | // quering the number of map operands from the operand list from a certain |
| 1174 | // offset (`memRefOperandPos` in this case). |
| 1175 | NamedAttribute oldMapAttrPair = |
| 1176 | affMapAccInterface.getAffineMapAttrForMemRef(oldMemRef); |
| 1177 | oldMap = cast<AffineMapAttr>(oldMapAttrPair.getValue()).getValue(); |
| 1178 | oldMemRefNumIndices = oldMap.getNumInputs(); |
| 1179 | } |
| 1180 | oldMapOperands.assign(in_start: startIdx, in_end: startIdx + oldMemRefNumIndices); |
| 1181 | |
| 1182 | // Apply 'oldMemRefOperands = oldMap(oldMapOperands)'. |
| 1183 | SmallVector<Value, 4> oldMemRefOperands; |
| 1184 | SmallVector<Value, 4> affineApplyOps; |
| 1185 | oldMemRefOperands.reserve(N: oldMemRefRank); |
| 1186 | if (affMapAccInterface && |
| 1187 | oldMap != builder.getMultiDimIdentityMap(rank: oldMap.getNumDims())) { |
| 1188 | for (auto resultExpr : oldMap.getResults()) { |
| 1189 | auto singleResMap = AffineMap::get(dimCount: oldMap.getNumDims(), |
| 1190 | symbolCount: oldMap.getNumSymbols(), result: resultExpr); |
| 1191 | auto afOp = builder.create<AffineApplyOp>(op->getLoc(), singleResMap, |
| 1192 | oldMapOperands); |
| 1193 | oldMemRefOperands.push_back(Elt: afOp); |
| 1194 | affineApplyOps.push_back(Elt: afOp); |
| 1195 | } |
| 1196 | } else { |
| 1197 | oldMemRefOperands.assign(in_start: oldMapOperands.begin(), in_end: oldMapOperands.end()); |
| 1198 | } |
| 1199 | |
| 1200 | // Construct new indices as a remap of the old ones if a remapping has been |
| 1201 | // provided. The indices of a memref come right after it, i.e., |
| 1202 | // at position memRefOperandPos + 1. |
| 1203 | SmallVector<Value, 4> remapOperands; |
| 1204 | remapOperands.reserve(N: extraOperands.size() + oldMemRefRank + |
| 1205 | symbolOperands.size()); |
| 1206 | remapOperands.append(in_start: extraOperands.begin(), in_end: extraOperands.end()); |
| 1207 | remapOperands.append(in_start: oldMemRefOperands.begin(), in_end: oldMemRefOperands.end()); |
| 1208 | remapOperands.append(in_start: symbolOperands.begin(), in_end: symbolOperands.end()); |
| 1209 | |
| 1210 | SmallVector<Value, 4> remapOutputs; |
| 1211 | remapOutputs.reserve(N: oldMemRefRank); |
| 1212 | if (indexRemap && |
| 1213 | indexRemap != builder.getMultiDimIdentityMap(rank: indexRemap.getNumDims())) { |
| 1214 | // Remapped indices. |
| 1215 | for (auto resultExpr : indexRemap.getResults()) { |
| 1216 | auto singleResMap = AffineMap::get( |
| 1217 | dimCount: indexRemap.getNumDims(), symbolCount: indexRemap.getNumSymbols(), result: resultExpr); |
| 1218 | auto afOp = builder.create<AffineApplyOp>(op->getLoc(), singleResMap, |
| 1219 | remapOperands); |
| 1220 | remapOutputs.push_back(Elt: afOp); |
| 1221 | affineApplyOps.push_back(Elt: afOp); |
| 1222 | } |
| 1223 | } else { |
| 1224 | // No remapping specified. |
| 1225 | remapOutputs.assign(in_start: remapOperands.begin(), in_end: remapOperands.end()); |
| 1226 | } |
| 1227 | SmallVector<Value, 4> newMapOperands; |
| 1228 | newMapOperands.reserve(N: newMemRefRank); |
| 1229 | |
| 1230 | // Prepend 'extraIndices' in 'newMapOperands'. |
| 1231 | for (Value : extraIndices) { |
| 1232 | assert((isValidDim(extraIndex) || isValidSymbol(extraIndex)) && |
| 1233 | "invalid memory op index" ); |
| 1234 | newMapOperands.push_back(Elt: extraIndex); |
| 1235 | } |
| 1236 | |
| 1237 | // Append 'remapOutputs' to 'newMapOperands'. |
| 1238 | newMapOperands.append(in_start: remapOutputs.begin(), in_end: remapOutputs.end()); |
| 1239 | |
| 1240 | // Create new fully composed AffineMap for new op to be created. |
| 1241 | assert(newMapOperands.size() == newMemRefRank); |
| 1242 | auto newMap = builder.getMultiDimIdentityMap(rank: newMemRefRank); |
| 1243 | fullyComposeAffineMapAndOperands(&newMap, &newMapOperands); |
| 1244 | newMap = simplifyAffineMap(newMap); |
| 1245 | canonicalizeMapAndOperands(&newMap, &newMapOperands); |
| 1246 | // Remove any affine.apply's that became dead as a result of composition. |
| 1247 | for (Value value : affineApplyOps) |
| 1248 | if (value.use_empty()) |
| 1249 | value.getDefiningOp()->erase(); |
| 1250 | |
| 1251 | OperationState state(op->getLoc(), op->getName()); |
| 1252 | // Construct the new operation using this memref. |
| 1253 | state.operands.reserve(N: op->getNumOperands() + extraIndices.size()); |
| 1254 | // Insert the non-memref operands. |
| 1255 | state.operands.append(in_start: op->operand_begin(), |
| 1256 | in_end: op->operand_begin() + memRefOperandPos); |
| 1257 | // Insert the new memref value. |
| 1258 | state.operands.push_back(Elt: newMemRef); |
| 1259 | |
| 1260 | // Insert the new memref map operands. |
| 1261 | if (affMapAccInterface) { |
| 1262 | state.operands.append(in_start: newMapOperands.begin(), in_end: newMapOperands.end()); |
| 1263 | } else { |
| 1264 | // In the case of dereferencing ops not implementing |
| 1265 | // AffineMapAccessInterface, we need to apply the values of `newMapOperands` |
| 1266 | // to the `newMap` to get the correct indices. |
| 1267 | for (unsigned i = 0; i < newMemRefRank; i++) { |
| 1268 | state.operands.push_back(Elt: builder.create<AffineApplyOp>( |
| 1269 | op->getLoc(), |
| 1270 | AffineMap::get(newMap.getNumDims(), newMap.getNumSymbols(), |
| 1271 | newMap.getResult(i)), |
| 1272 | newMapOperands)); |
| 1273 | } |
| 1274 | } |
| 1275 | |
| 1276 | // Insert the remaining operands unmodified. |
| 1277 | unsigned oldMapNumInputs = oldMapOperands.size(); |
| 1278 | state.operands.append(in_start: op->operand_begin() + memRefOperandPos + 1 + |
| 1279 | oldMapNumInputs, |
| 1280 | in_end: op->operand_end()); |
| 1281 | // Result types don't change. Both memref's are of the same elemental type. |
| 1282 | state.types.reserve(N: op->getNumResults()); |
| 1283 | for (auto result : op->getResults()) |
| 1284 | state.types.push_back(Elt: result.getType()); |
| 1285 | |
| 1286 | // Add attribute for 'newMap', other Attributes do not change. |
| 1287 | auto newMapAttr = AffineMapAttr::get(newMap); |
| 1288 | for (auto namedAttr : op->getAttrs()) { |
| 1289 | if (affMapAccInterface && |
| 1290 | namedAttr.getName() == |
| 1291 | affMapAccInterface.getAffineMapAttrForMemRef(oldMemRef).getName()) |
| 1292 | state.attributes.push_back(newAttribute: {namedAttr.getName(), newMapAttr}); |
| 1293 | else |
| 1294 | state.attributes.push_back(newAttribute: namedAttr); |
| 1295 | } |
| 1296 | |
| 1297 | // Create the new operation. |
| 1298 | auto *repOp = builder.create(state); |
| 1299 | op->replaceAllUsesWith(values&: repOp); |
| 1300 | op->erase(); |
| 1301 | |
| 1302 | return success(); |
| 1303 | } |
| 1304 | |
| 1305 | LogicalResult mlir::affine::replaceAllMemRefUsesWith( |
| 1306 | Value oldMemRef, Value newMemRef, ArrayRef<Value> , |
| 1307 | AffineMap indexRemap, ArrayRef<Value> extraOperands, |
| 1308 | ArrayRef<Value> symbolOperands, Operation *domOpFilter, |
| 1309 | Operation *postDomOpFilter, bool allowNonDereferencingOps, |
| 1310 | bool replaceInDeallocOp) { |
| 1311 | unsigned newMemRefRank = cast<MemRefType>(newMemRef.getType()).getRank(); |
| 1312 | (void)newMemRefRank; // unused in opt mode |
| 1313 | unsigned oldMemRefRank = cast<MemRefType>(oldMemRef.getType()).getRank(); |
| 1314 | (void)oldMemRefRank; |
| 1315 | if (indexRemap) { |
| 1316 | assert(indexRemap.getNumSymbols() == symbolOperands.size() && |
| 1317 | "symbol operand count mismatch" ); |
| 1318 | assert(indexRemap.getNumInputs() == |
| 1319 | extraOperands.size() + oldMemRefRank + symbolOperands.size()); |
| 1320 | assert(indexRemap.getNumResults() + extraIndices.size() == newMemRefRank); |
| 1321 | } else { |
| 1322 | assert(oldMemRefRank + extraIndices.size() == newMemRefRank); |
| 1323 | } |
| 1324 | |
| 1325 | // Assert same elemental type. |
| 1326 | assert(cast<MemRefType>(oldMemRef.getType()).getElementType() == |
| 1327 | cast<MemRefType>(newMemRef.getType()).getElementType()); |
| 1328 | |
| 1329 | std::unique_ptr<DominanceInfo> domInfo; |
| 1330 | std::unique_ptr<PostDominanceInfo> postDomInfo; |
| 1331 | if (domOpFilter) |
| 1332 | domInfo = std::make_unique<DominanceInfo>( |
| 1333 | args: domOpFilter->getParentOfType<FunctionOpInterface>()); |
| 1334 | |
| 1335 | if (postDomOpFilter) |
| 1336 | postDomInfo = std::make_unique<PostDominanceInfo>( |
| 1337 | args: postDomOpFilter->getParentOfType<FunctionOpInterface>()); |
| 1338 | |
| 1339 | // Walk all uses of old memref; collect ops to perform replacement. We use a |
| 1340 | // DenseSet since an operation could potentially have multiple uses of a |
| 1341 | // memref (although rare), and the replacement later is going to erase ops. |
| 1342 | DenseSet<Operation *> opsToReplace; |
| 1343 | for (auto *op : oldMemRef.getUsers()) { |
| 1344 | // Skip this use if it's not dominated by domOpFilter. |
| 1345 | if (domOpFilter && !domInfo->dominates(a: domOpFilter, b: op)) |
| 1346 | continue; |
| 1347 | |
| 1348 | // Skip this use if it's not post-dominated by postDomOpFilter. |
| 1349 | if (postDomOpFilter && !postDomInfo->postDominates(a: postDomOpFilter, b: op)) |
| 1350 | continue; |
| 1351 | |
| 1352 | // Skip dealloc's - no replacement is necessary, and a memref replacement |
| 1353 | // at other uses doesn't hurt these dealloc's. |
| 1354 | if (hasSingleEffect<MemoryEffects::Free>(op, value: oldMemRef) && |
| 1355 | !replaceInDeallocOp) |
| 1356 | continue; |
| 1357 | |
| 1358 | // Check if the memref was used in a non-dereferencing context. It is fine |
| 1359 | // for the memref to be used in a non-dereferencing way outside of the |
| 1360 | // region where this replacement is happening. |
| 1361 | if (!isa<AffineMapAccessInterface>(*op)) { |
| 1362 | if (!allowNonDereferencingOps) { |
| 1363 | LLVM_DEBUG(llvm::dbgs() |
| 1364 | << "Memref replacement failed: non-deferencing memref op: \n" |
| 1365 | << *op << '\n'); |
| 1366 | return failure(); |
| 1367 | } |
| 1368 | // Non-dereferencing ops with the MemRefsNormalizable trait are |
| 1369 | // supported for replacement. |
| 1370 | if (!op->hasTrait<OpTrait::MemRefsNormalizable>()) { |
| 1371 | LLVM_DEBUG(llvm::dbgs() << "Memref replacement failed: use without a " |
| 1372 | "memrefs normalizable trait: \n" |
| 1373 | << *op << '\n'); |
| 1374 | return failure(); |
| 1375 | } |
| 1376 | } |
| 1377 | |
| 1378 | // We'll first collect and then replace --- since replacement erases the op |
| 1379 | // that has the use, and that op could be postDomFilter or domFilter itself! |
| 1380 | opsToReplace.insert(V: op); |
| 1381 | } |
| 1382 | |
| 1383 | for (auto *op : opsToReplace) { |
| 1384 | if (failed(Result: replaceAllMemRefUsesWith( |
| 1385 | oldMemRef, newMemRef, op, extraIndices, indexRemap, extraOperands, |
| 1386 | symbolOperands, allowNonDereferencingOps))) |
| 1387 | llvm_unreachable("memref replacement guaranteed to succeed here" ); |
| 1388 | } |
| 1389 | |
| 1390 | return success(); |
| 1391 | } |
| 1392 | |
| 1393 | /// Given an operation, inserts one or more single result affine |
| 1394 | /// apply operations, results of which are exclusively used by this operation |
| 1395 | /// operation. The operands of these newly created affine apply ops are |
| 1396 | /// guaranteed to be loop iterators or terminal symbols of a function. |
| 1397 | /// |
| 1398 | /// Before |
| 1399 | /// |
| 1400 | /// affine.for %i = 0 to #map(%N) |
| 1401 | /// %idx = affine.apply (d0) -> (d0 mod 2) (%i) |
| 1402 | /// "send"(%idx, %A, ...) |
| 1403 | /// "compute"(%idx) |
| 1404 | /// |
| 1405 | /// After |
| 1406 | /// |
| 1407 | /// affine.for %i = 0 to #map(%N) |
| 1408 | /// %idx = affine.apply (d0) -> (d0 mod 2) (%i) |
| 1409 | /// "send"(%idx, %A, ...) |
| 1410 | /// %idx_ = affine.apply (d0) -> (d0 mod 2) (%i) |
| 1411 | /// "compute"(%idx_) |
| 1412 | /// |
| 1413 | /// This allows applying different transformations on send and compute (for eg. |
| 1414 | /// different shifts/delays). |
| 1415 | /// |
| 1416 | /// Returns nullptr either if none of opInst's operands were the result of an |
| 1417 | /// affine.apply and thus there was no affine computation slice to create, or if |
| 1418 | /// all the affine.apply op's supplying operands to this opInst did not have any |
| 1419 | /// uses besides this opInst; otherwise returns the list of affine.apply |
| 1420 | /// operations created in output argument `sliceOps`. |
| 1421 | void mlir::affine::createAffineComputationSlice( |
| 1422 | Operation *opInst, SmallVectorImpl<AffineApplyOp> *sliceOps) { |
| 1423 | // Collect all operands that are results of affine apply ops. |
| 1424 | SmallVector<Value, 4> subOperands; |
| 1425 | subOperands.reserve(N: opInst->getNumOperands()); |
| 1426 | for (auto operand : opInst->getOperands()) |
| 1427 | if (isa_and_nonnull<AffineApplyOp>(Val: operand.getDefiningOp())) |
| 1428 | subOperands.push_back(Elt: operand); |
| 1429 | |
| 1430 | // Gather sequence of AffineApplyOps reachable from 'subOperands'. |
| 1431 | SmallVector<Operation *, 4> affineApplyOps; |
| 1432 | getReachableAffineApplyOps(operands: subOperands, affineApplyOps); |
| 1433 | // Skip transforming if there are no affine maps to compose. |
| 1434 | if (affineApplyOps.empty()) |
| 1435 | return; |
| 1436 | |
| 1437 | // Check if all uses of the affine apply op's lie only in this op op, in |
| 1438 | // which case there would be nothing to do. |
| 1439 | bool localized = true; |
| 1440 | for (auto *op : affineApplyOps) { |
| 1441 | for (auto result : op->getResults()) { |
| 1442 | for (auto *user : result.getUsers()) { |
| 1443 | if (user != opInst) { |
| 1444 | localized = false; |
| 1445 | break; |
| 1446 | } |
| 1447 | } |
| 1448 | } |
| 1449 | } |
| 1450 | if (localized) |
| 1451 | return; |
| 1452 | |
| 1453 | OpBuilder builder(opInst); |
| 1454 | SmallVector<Value, 4> composedOpOperands(subOperands); |
| 1455 | auto composedMap = builder.getMultiDimIdentityMap(rank: composedOpOperands.size()); |
| 1456 | fullyComposeAffineMapAndOperands(map: &composedMap, operands: &composedOpOperands); |
| 1457 | |
| 1458 | // Create an affine.apply for each of the map results. |
| 1459 | sliceOps->reserve(composedMap.getNumResults()); |
| 1460 | for (auto resultExpr : composedMap.getResults()) { |
| 1461 | auto singleResMap = AffineMap::get(dimCount: composedMap.getNumDims(), |
| 1462 | symbolCount: composedMap.getNumSymbols(), result: resultExpr); |
| 1463 | sliceOps->push_back(builder.create<AffineApplyOp>( |
| 1464 | opInst->getLoc(), singleResMap, composedOpOperands)); |
| 1465 | } |
| 1466 | |
| 1467 | // Construct the new operands that include the results from the composed |
| 1468 | // affine apply op above instead of existing ones (subOperands). So, they |
| 1469 | // differ from opInst's operands only for those operands in 'subOperands', for |
| 1470 | // which they will be replaced by the corresponding one from 'sliceOps'. |
| 1471 | SmallVector<Value, 4> newOperands(opInst->getOperands()); |
| 1472 | for (Value &operand : newOperands) { |
| 1473 | // Replace the subOperands from among the new operands. |
| 1474 | unsigned j, f; |
| 1475 | for (j = 0, f = subOperands.size(); j < f; j++) { |
| 1476 | if (operand == subOperands[j]) |
| 1477 | break; |
| 1478 | } |
| 1479 | if (j < subOperands.size()) |
| 1480 | operand = (*sliceOps)[j]; |
| 1481 | } |
| 1482 | for (unsigned idx = 0, e = newOperands.size(); idx < e; idx++) |
| 1483 | opInst->setOperand(idx, value: newOperands[idx]); |
| 1484 | } |
| 1485 | |
| 1486 | /// Enum to set patterns of affine expr in tiled-layout map. |
| 1487 | /// TileFloorDiv: <dim expr> div <tile size> |
| 1488 | /// TileMod: <dim expr> mod <tile size> |
| 1489 | /// TileNone: None of the above |
| 1490 | /// Example: |
| 1491 | /// #tiled_2d_128x256 = affine_map<(d0, d1) |
| 1492 | /// -> (d0 div 128, d1 div 256, d0 mod 128, d1 mod 256)> |
| 1493 | /// "d0 div 128" and "d1 div 256" ==> TileFloorDiv |
| 1494 | /// "d0 mod 128" and "d1 mod 256" ==> TileMod |
| 1495 | enum TileExprPattern { TileFloorDiv, TileMod, TileNone }; |
| 1496 | |
| 1497 | /// Check if `map` is a tiled layout. In the tiled layout, specific k dimensions |
| 1498 | /// being floordiv'ed by respective tile sizes appeare in a mod with the same |
| 1499 | /// tile sizes, and no other expression involves those k dimensions. This |
| 1500 | /// function stores a vector of tuples (`tileSizePos`) including AffineExpr for |
| 1501 | /// tile size, positions of corresponding `floordiv` and `mod`. If it is not a |
| 1502 | /// tiled layout, an empty vector is returned. |
| 1503 | static LogicalResult getTileSizePos( |
| 1504 | AffineMap map, |
| 1505 | SmallVectorImpl<std::tuple<AffineExpr, unsigned, unsigned>> &tileSizePos) { |
| 1506 | // Create `floordivExprs` which is a vector of tuples including LHS and RHS of |
| 1507 | // `floordiv` and its position in `map` output. |
| 1508 | // Example: #tiled_2d_128x256 = affine_map<(d0, d1) |
| 1509 | // -> (d0 div 128, d1 div 256, d0 mod 128, d1 mod 256)> |
| 1510 | // In this example, `floordivExprs` includes {d0, 128, 0} and {d1, 256, 1}. |
| 1511 | SmallVector<std::tuple<AffineExpr, AffineExpr, unsigned>, 4> floordivExprs; |
| 1512 | unsigned pos = 0; |
| 1513 | for (AffineExpr expr : map.getResults()) { |
| 1514 | if (expr.getKind() == AffineExprKind::FloorDiv) { |
| 1515 | AffineBinaryOpExpr binaryExpr = cast<AffineBinaryOpExpr>(Val&: expr); |
| 1516 | if (isa<AffineConstantExpr>(Val: binaryExpr.getRHS())) |
| 1517 | floordivExprs.emplace_back( |
| 1518 | Args: std::make_tuple(args: binaryExpr.getLHS(), args: binaryExpr.getRHS(), args&: pos)); |
| 1519 | } |
| 1520 | pos++; |
| 1521 | } |
| 1522 | // Not tiled layout if `floordivExprs` is empty. |
| 1523 | if (floordivExprs.empty()) { |
| 1524 | tileSizePos = SmallVector<std::tuple<AffineExpr, unsigned, unsigned>>{}; |
| 1525 | return success(); |
| 1526 | } |
| 1527 | |
| 1528 | // Check if LHS of `floordiv` is used in LHS of `mod`. If not used, `map` is |
| 1529 | // not tiled layout. |
| 1530 | for (std::tuple<AffineExpr, AffineExpr, unsigned> fexpr : floordivExprs) { |
| 1531 | AffineExpr floordivExprLHS = std::get<0>(t&: fexpr); |
| 1532 | AffineExpr floordivExprRHS = std::get<1>(t&: fexpr); |
| 1533 | unsigned floordivPos = std::get<2>(t&: fexpr); |
| 1534 | |
| 1535 | // Walk affinexpr of `map` output except `fexpr`, and check if LHS and RHS |
| 1536 | // of `fexpr` are used in LHS and RHS of `mod`. If LHS of `fexpr` is used |
| 1537 | // other expr, the map is not tiled layout. Example of non tiled layout: |
| 1538 | // affine_map<(d0, d1, d2) -> (d0, d1, d2 floordiv 256, d2 floordiv 256)> |
| 1539 | // affine_map<(d0, d1, d2) -> (d0, d1, d2 floordiv 256, d2 mod 128)> |
| 1540 | // affine_map<(d0, d1, d2) -> (d0, d1, d2 floordiv 256, d2 mod 256, d2 mod |
| 1541 | // 256)> |
| 1542 | bool found = false; |
| 1543 | pos = 0; |
| 1544 | for (AffineExpr expr : map.getResults()) { |
| 1545 | bool notTiled = false; |
| 1546 | if (pos != floordivPos) { |
| 1547 | expr.walk(callback: [&](AffineExpr e) { |
| 1548 | if (e == floordivExprLHS) { |
| 1549 | if (expr.getKind() == AffineExprKind::Mod) { |
| 1550 | AffineBinaryOpExpr binaryExpr = cast<AffineBinaryOpExpr>(Val&: expr); |
| 1551 | // If LHS and RHS of `mod` are the same with those of floordiv. |
| 1552 | if (floordivExprLHS == binaryExpr.getLHS() && |
| 1553 | floordivExprRHS == binaryExpr.getRHS()) { |
| 1554 | // Save tile size (RHS of `mod`), and position of `floordiv` and |
| 1555 | // `mod` if same expr with `mod` is not found yet. |
| 1556 | if (!found) { |
| 1557 | tileSizePos.emplace_back( |
| 1558 | Args: std::make_tuple(args: binaryExpr.getRHS(), args&: floordivPos, args&: pos)); |
| 1559 | found = true; |
| 1560 | } else { |
| 1561 | // Non tiled layout: Have multilpe `mod` with the same LHS. |
| 1562 | // eg. affine_map<(d0, d1, d2) -> (d0, d1, d2 floordiv 256, d2 |
| 1563 | // mod 256, d2 mod 256)> |
| 1564 | notTiled = true; |
| 1565 | } |
| 1566 | } else { |
| 1567 | // Non tiled layout: RHS of `mod` is different from `floordiv`. |
| 1568 | // eg. affine_map<(d0, d1, d2) -> (d0, d1, d2 floordiv 256, d2 |
| 1569 | // mod 128)> |
| 1570 | notTiled = true; |
| 1571 | } |
| 1572 | } else { |
| 1573 | // Non tiled layout: LHS is the same, but not `mod`. |
| 1574 | // eg. affine_map<(d0, d1, d2) -> (d0, d1, d2 floordiv 256, d2 |
| 1575 | // floordiv 256)> |
| 1576 | notTiled = true; |
| 1577 | } |
| 1578 | } |
| 1579 | }); |
| 1580 | } |
| 1581 | if (notTiled) { |
| 1582 | tileSizePos = SmallVector<std::tuple<AffineExpr, unsigned, unsigned>>{}; |
| 1583 | return success(); |
| 1584 | } |
| 1585 | pos++; |
| 1586 | } |
| 1587 | } |
| 1588 | return success(); |
| 1589 | } |
| 1590 | |
| 1591 | /// Check if `dim` dimension of memrefType with `layoutMap` becomes dynamic |
| 1592 | /// after normalization. Dimensions that include dynamic dimensions in the map |
| 1593 | /// output will become dynamic dimensions. Return true if `dim` is dynamic |
| 1594 | /// dimension. |
| 1595 | /// |
| 1596 | /// Example: |
| 1597 | /// #map0 = affine_map<(d0, d1) -> (d0, d1 floordiv 32, d1 mod 32)> |
| 1598 | /// |
| 1599 | /// If d1 is dynamic dimension, 2nd and 3rd dimension of map output are dynamic. |
| 1600 | /// memref<4x?xf32, #map0> ==> memref<4x?x?xf32> |
| 1601 | static bool |
| 1602 | isNormalizedMemRefDynamicDim(unsigned dim, AffineMap layoutMap, |
| 1603 | SmallVectorImpl<unsigned> &inMemrefTypeDynDims) { |
| 1604 | AffineExpr expr = layoutMap.getResults()[dim]; |
| 1605 | // Check if affine expr of the dimension includes dynamic dimension of input |
| 1606 | // memrefType. |
| 1607 | MLIRContext *context = layoutMap.getContext(); |
| 1608 | return expr |
| 1609 | .walk(callback: [&](AffineExpr e) { |
| 1610 | if (isa<AffineDimExpr>(Val: e) && |
| 1611 | llvm::any_of(Range&: inMemrefTypeDynDims, P: [&](unsigned dim) { |
| 1612 | return e == getAffineDimExpr(position: dim, context); |
| 1613 | })) |
| 1614 | return WalkResult::interrupt(); |
| 1615 | return WalkResult::advance(); |
| 1616 | }) |
| 1617 | .wasInterrupted(); |
| 1618 | } |
| 1619 | |
| 1620 | /// Create affine expr to calculate dimension size for a tiled-layout map. |
| 1621 | static AffineExpr createDimSizeExprForTiledLayout(AffineExpr oldMapOutput, |
| 1622 | TileExprPattern pat) { |
| 1623 | // Create map output for the patterns. |
| 1624 | // "floordiv <tile size>" ==> "ceildiv <tile size>" |
| 1625 | // "mod <tile size>" ==> "<tile size>" |
| 1626 | AffineExpr newMapOutput; |
| 1627 | AffineBinaryOpExpr binaryExpr = nullptr; |
| 1628 | switch (pat) { |
| 1629 | case TileExprPattern::TileMod: |
| 1630 | binaryExpr = cast<AffineBinaryOpExpr>(Val&: oldMapOutput); |
| 1631 | newMapOutput = binaryExpr.getRHS(); |
| 1632 | break; |
| 1633 | case TileExprPattern::TileFloorDiv: |
| 1634 | binaryExpr = cast<AffineBinaryOpExpr>(Val&: oldMapOutput); |
| 1635 | newMapOutput = getAffineBinaryOpExpr( |
| 1636 | kind: AffineExprKind::CeilDiv, lhs: binaryExpr.getLHS(), rhs: binaryExpr.getRHS()); |
| 1637 | break; |
| 1638 | default: |
| 1639 | newMapOutput = oldMapOutput; |
| 1640 | } |
| 1641 | return newMapOutput; |
| 1642 | } |
| 1643 | |
| 1644 | /// Create new maps to calculate each dimension size of `newMemRefType`, and |
| 1645 | /// create `newDynamicSizes` from them by using AffineApplyOp. |
| 1646 | /// |
| 1647 | /// Steps for normalizing dynamic memrefs for a tiled layout map |
| 1648 | /// Example: |
| 1649 | /// #map0 = affine_map<(d0, d1) -> (d0, d1 floordiv 32, d1 mod 32)> |
| 1650 | /// %0 = dim %arg0, %c1 :memref<4x?xf32> |
| 1651 | /// %1 = alloc(%0) : memref<4x?xf32, #map0> |
| 1652 | /// |
| 1653 | /// (Before this function) |
| 1654 | /// 1. Check if `map`(#map0) is a tiled layout using `getTileSizePos()`. Only |
| 1655 | /// single layout map is supported. |
| 1656 | /// |
| 1657 | /// 2. Create normalized memrefType using `isNormalizedMemRefDynamicDim()`. It |
| 1658 | /// is memref<4x?x?xf32> in the above example. |
| 1659 | /// |
| 1660 | /// (In this function) |
| 1661 | /// 3. Create new maps to calculate each dimension of the normalized memrefType |
| 1662 | /// using `createDimSizeExprForTiledLayout()`. In the tiled layout, the |
| 1663 | /// dimension size can be calculated by replacing "floordiv <tile size>" with |
| 1664 | /// "ceildiv <tile size>" and "mod <tile size>" with "<tile size>". |
| 1665 | /// - New map in the above example |
| 1666 | /// #map0 = affine_map<(d0, d1) -> (d0)> |
| 1667 | /// #map1 = affine_map<(d0, d1) -> (d1 ceildiv 32)> |
| 1668 | /// #map2 = affine_map<(d0, d1) -> (32)> |
| 1669 | /// |
| 1670 | /// 4. Create AffineApplyOp to apply the new maps. The output of AffineApplyOp |
| 1671 | /// is used in dynamicSizes of new AllocOp. |
| 1672 | /// %0 = dim %arg0, %c1 : memref<4x?xf32> |
| 1673 | /// %c4 = arith.constant 4 : index |
| 1674 | /// %1 = affine.apply #map1(%c4, %0) |
| 1675 | /// %2 = affine.apply #map2(%c4, %0) |
| 1676 | template <typename AllocLikeOp> |
| 1677 | static void createNewDynamicSizes(MemRefType oldMemRefType, |
| 1678 | MemRefType newMemRefType, AffineMap map, |
| 1679 | AllocLikeOp allocOp, OpBuilder b, |
| 1680 | SmallVectorImpl<Value> &newDynamicSizes) { |
| 1681 | // Create new input for AffineApplyOp. |
| 1682 | SmallVector<Value, 4> inAffineApply; |
| 1683 | ArrayRef<int64_t> oldMemRefShape = oldMemRefType.getShape(); |
| 1684 | unsigned dynIdx = 0; |
| 1685 | for (unsigned d = 0; d < oldMemRefType.getRank(); ++d) { |
| 1686 | if (oldMemRefShape[d] < 0) { |
| 1687 | // Use dynamicSizes of allocOp for dynamic dimension. |
| 1688 | inAffineApply.emplace_back(allocOp.getDynamicSizes()[dynIdx]); |
| 1689 | dynIdx++; |
| 1690 | } else { |
| 1691 | // Create ConstantOp for static dimension. |
| 1692 | auto constantAttr = b.getIntegerAttr(b.getIndexType(), oldMemRefShape[d]); |
| 1693 | inAffineApply.emplace_back( |
| 1694 | b.create<arith::ConstantOp>(allocOp.getLoc(), constantAttr)); |
| 1695 | } |
| 1696 | } |
| 1697 | |
| 1698 | // Create new map to calculate each dimension size of new memref for each |
| 1699 | // original map output. Only for dynamic dimesion of `newMemRefType`. |
| 1700 | unsigned newDimIdx = 0; |
| 1701 | ArrayRef<int64_t> newMemRefShape = newMemRefType.getShape(); |
| 1702 | SmallVector<std::tuple<AffineExpr, unsigned, unsigned>> tileSizePos; |
| 1703 | (void)getTileSizePos(map, tileSizePos); |
| 1704 | for (AffineExpr expr : map.getResults()) { |
| 1705 | if (newMemRefShape[newDimIdx] < 0) { |
| 1706 | // Create new maps to calculate each dimension size of new memref. |
| 1707 | enum TileExprPattern pat = TileExprPattern::TileNone; |
| 1708 | for (auto pos : tileSizePos) { |
| 1709 | if (newDimIdx == std::get<1>(t&: pos)) |
| 1710 | pat = TileExprPattern::TileFloorDiv; |
| 1711 | else if (newDimIdx == std::get<2>(t&: pos)) |
| 1712 | pat = TileExprPattern::TileMod; |
| 1713 | } |
| 1714 | AffineExpr newMapOutput = createDimSizeExprForTiledLayout(oldMapOutput: expr, pat); |
| 1715 | AffineMap newMap = |
| 1716 | AffineMap::get(dimCount: map.getNumInputs(), symbolCount: map.getNumSymbols(), result: newMapOutput); |
| 1717 | Value affineApp = |
| 1718 | b.create<AffineApplyOp>(allocOp.getLoc(), newMap, inAffineApply); |
| 1719 | newDynamicSizes.emplace_back(Args&: affineApp); |
| 1720 | } |
| 1721 | newDimIdx++; |
| 1722 | } |
| 1723 | } |
| 1724 | |
| 1725 | template <typename AllocLikeOp> |
| 1726 | LogicalResult mlir::affine::normalizeMemRef(AllocLikeOp allocOp) { |
| 1727 | MemRefType memrefType = allocOp.getType(); |
| 1728 | OpBuilder b(allocOp); |
| 1729 | |
| 1730 | // Fetch a new memref type after normalizing the old memref to have an |
| 1731 | // identity map layout. |
| 1732 | MemRefType newMemRefType = normalizeMemRefType(memrefType); |
| 1733 | if (newMemRefType == memrefType) |
| 1734 | // Either memrefType already had an identity map or the map couldn't be |
| 1735 | // transformed to an identity map. |
| 1736 | return failure(); |
| 1737 | |
| 1738 | Value oldMemRef = allocOp.getResult(); |
| 1739 | |
| 1740 | SmallVector<Value, 4> symbolOperands(allocOp.getSymbolOperands()); |
| 1741 | AffineMap layoutMap = memrefType.getLayout().getAffineMap(); |
| 1742 | AllocLikeOp newAlloc; |
| 1743 | // Check if `layoutMap` is a tiled layout. Only single layout map is |
| 1744 | // supported for normalizing dynamic memrefs. |
| 1745 | SmallVector<std::tuple<AffineExpr, unsigned, unsigned>> tileSizePos; |
| 1746 | (void)getTileSizePos(map: layoutMap, tileSizePos); |
| 1747 | if (newMemRefType.getNumDynamicDims() > 0 && !tileSizePos.empty()) { |
| 1748 | auto oldMemRefType = cast<MemRefType>(oldMemRef.getType()); |
| 1749 | SmallVector<Value, 4> newDynamicSizes; |
| 1750 | createNewDynamicSizes(oldMemRefType, newMemRefType, layoutMap, allocOp, b, |
| 1751 | newDynamicSizes); |
| 1752 | // Add the new dynamic sizes in new AllocOp. |
| 1753 | newAlloc = |
| 1754 | b.create<AllocLikeOp>(allocOp.getLoc(), newMemRefType, newDynamicSizes, |
| 1755 | allocOp.getAlignmentAttr()); |
| 1756 | } else { |
| 1757 | newAlloc = b.create<AllocLikeOp>(allocOp.getLoc(), newMemRefType, |
| 1758 | allocOp.getAlignmentAttr()); |
| 1759 | } |
| 1760 | // Replace all uses of the old memref. |
| 1761 | if (failed(replaceAllMemRefUsesWith(oldMemRef, /*newMemRef=*/newAlloc, |
| 1762 | /*extraIndices=*/{}, |
| 1763 | /*indexRemap=*/layoutMap, |
| 1764 | /*extraOperands=*/{}, |
| 1765 | /*symbolOperands=*/symbolOperands, |
| 1766 | /*domOpFilter=*/nullptr, |
| 1767 | /*postDomOpFilter=*/nullptr, |
| 1768 | /*allowNonDereferencingOps=*/true))) { |
| 1769 | // If it failed (due to escapes for example), bail out. |
| 1770 | newAlloc.erase(); |
| 1771 | return failure(); |
| 1772 | } |
| 1773 | // Replace any uses of the original alloc op and erase it. All remaining uses |
| 1774 | // have to be dealloc's; RAMUW above would've failed otherwise. |
| 1775 | assert(llvm::all_of(oldMemRef.getUsers(), [&](Operation *op) { |
| 1776 | return hasSingleEffect<MemoryEffects::Free>(op, oldMemRef); |
| 1777 | })); |
| 1778 | oldMemRef.replaceAllUsesWith(newValue: newAlloc); |
| 1779 | allocOp.erase(); |
| 1780 | return success(); |
| 1781 | } |
| 1782 | |
| 1783 | LogicalResult |
| 1784 | mlir::affine::normalizeMemRef(memref::ReinterpretCastOp reinterpretCastOp) { |
| 1785 | MemRefType memrefType = reinterpretCastOp.getType(); |
| 1786 | AffineMap oldLayoutMap = memrefType.getLayout().getAffineMap(); |
| 1787 | Value oldMemRef = reinterpretCastOp.getResult(); |
| 1788 | |
| 1789 | // If `oldLayoutMap` is identity, `memrefType` is already normalized. |
| 1790 | if (oldLayoutMap.isIdentity()) |
| 1791 | return success(); |
| 1792 | |
| 1793 | // Fetch a new memref type after normalizing the old memref to have an |
| 1794 | // identity map layout. |
| 1795 | MemRefType newMemRefType = normalizeMemRefType(memrefType); |
| 1796 | if (newMemRefType == memrefType) |
| 1797 | // `oldLayoutMap` couldn't be transformed to an identity map. |
| 1798 | return failure(); |
| 1799 | |
| 1800 | uint64_t newRank = newMemRefType.getRank(); |
| 1801 | SmallVector<Value> mapOperands(oldLayoutMap.getNumDims() + |
| 1802 | oldLayoutMap.getNumSymbols()); |
| 1803 | SmallVector<Value> oldStrides = reinterpretCastOp.getStrides(); |
| 1804 | Location loc = reinterpretCastOp.getLoc(); |
| 1805 | // As `newMemRefType` is normalized, it is unit strided. |
| 1806 | SmallVector<int64_t> newStaticStrides(newRank, 1); |
| 1807 | SmallVector<int64_t> newStaticOffsets(newRank, 0); |
| 1808 | ArrayRef<int64_t> oldShape = memrefType.getShape(); |
| 1809 | ValueRange oldSizes = reinterpretCastOp.getSizes(); |
| 1810 | unsigned idx = 0; |
| 1811 | OpBuilder b(reinterpretCastOp); |
| 1812 | // Collect the map operands which will be used to compute the new normalized |
| 1813 | // memref shape. |
| 1814 | for (unsigned i = 0, e = memrefType.getRank(); i < e; i++) { |
| 1815 | if (memrefType.isDynamicDim(i)) |
| 1816 | mapOperands[i] = |
| 1817 | b.create<arith::SubIOp>(loc, oldSizes[0].getType(), oldSizes[idx++], |
| 1818 | b.create<arith::ConstantIndexOp>(loc, 1)); |
| 1819 | else |
| 1820 | mapOperands[i] = b.create<arith::ConstantIndexOp>(location: loc, args: oldShape[i] - 1); |
| 1821 | } |
| 1822 | for (unsigned i = 0, e = oldStrides.size(); i < e; i++) |
| 1823 | mapOperands[memrefType.getRank() + i] = oldStrides[i]; |
| 1824 | SmallVector<Value> newSizes; |
| 1825 | ArrayRef<int64_t> newShape = newMemRefType.getShape(); |
| 1826 | // Compute size along all the dimensions of the new normalized memref. |
| 1827 | for (unsigned i = 0; i < newRank; i++) { |
| 1828 | if (!newMemRefType.isDynamicDim(i)) |
| 1829 | continue; |
| 1830 | newSizes.push_back(b.create<AffineApplyOp>( |
| 1831 | loc, |
| 1832 | AffineMap::get(dimCount: oldLayoutMap.getNumDims(), symbolCount: oldLayoutMap.getNumSymbols(), |
| 1833 | result: oldLayoutMap.getResult(idx: i)), |
| 1834 | mapOperands)); |
| 1835 | } |
| 1836 | for (unsigned i = 0, e = newSizes.size(); i < e; i++) { |
| 1837 | newSizes[i] = |
| 1838 | b.create<arith::AddIOp>(loc, newSizes[i].getType(), newSizes[i], |
| 1839 | b.create<arith::ConstantIndexOp>(loc, 1)); |
| 1840 | } |
| 1841 | // Create the new reinterpret_cast op. |
| 1842 | auto newReinterpretCast = b.create<memref::ReinterpretCastOp>( |
| 1843 | loc, newMemRefType, reinterpretCastOp.getSource(), |
| 1844 | /*offsets=*/ValueRange(), newSizes, |
| 1845 | /*strides=*/ValueRange(), |
| 1846 | /*static_offsets=*/newStaticOffsets, |
| 1847 | /*static_sizes=*/newShape, |
| 1848 | /*static_strides=*/newStaticStrides); |
| 1849 | |
| 1850 | // Replace all uses of the old memref. |
| 1851 | if (failed(replaceAllMemRefUsesWith(oldMemRef, |
| 1852 | /*newMemRef=*/newReinterpretCast, |
| 1853 | /*extraIndices=*/{}, |
| 1854 | /*indexRemap=*/oldLayoutMap, |
| 1855 | /*extraOperands=*/{}, |
| 1856 | /*symbolOperands=*/oldStrides, |
| 1857 | /*domOpFilter=*/nullptr, |
| 1858 | /*postDomOpFilter=*/nullptr, |
| 1859 | /*allowNonDereferencingOps=*/true))) { |
| 1860 | // If it failed (due to escapes for example), bail out. |
| 1861 | newReinterpretCast.erase(); |
| 1862 | return failure(); |
| 1863 | } |
| 1864 | |
| 1865 | oldMemRef.replaceAllUsesWith(newValue: newReinterpretCast); |
| 1866 | reinterpretCastOp.erase(); |
| 1867 | return success(); |
| 1868 | } |
| 1869 | |
| 1870 | template LogicalResult |
| 1871 | mlir::affine::normalizeMemRef<memref::AllocaOp>(memref::AllocaOp op); |
| 1872 | template LogicalResult |
| 1873 | mlir::affine::normalizeMemRef<memref::AllocOp>(memref::AllocOp op); |
| 1874 | |
| 1875 | MemRefType mlir::affine::normalizeMemRefType(MemRefType memrefType) { |
| 1876 | unsigned rank = memrefType.getRank(); |
| 1877 | if (rank == 0) |
| 1878 | return memrefType; |
| 1879 | |
| 1880 | if (memrefType.getLayout().isIdentity()) { |
| 1881 | // Either no maps is associated with this memref or this memref has |
| 1882 | // a trivial (identity) map. |
| 1883 | return memrefType; |
| 1884 | } |
| 1885 | AffineMap layoutMap = memrefType.getLayout().getAffineMap(); |
| 1886 | unsigned numSymbolicOperands = layoutMap.getNumSymbols(); |
| 1887 | |
| 1888 | // We don't do any checks for one-to-one'ness; we assume that it is |
| 1889 | // one-to-one. |
| 1890 | |
| 1891 | // Normalize only static memrefs and dynamic memrefs with a tiled-layout map |
| 1892 | // for now. |
| 1893 | // TODO: Normalize the other types of dynamic memrefs. |
| 1894 | SmallVector<std::tuple<AffineExpr, unsigned, unsigned>> tileSizePos; |
| 1895 | (void)getTileSizePos(map: layoutMap, tileSizePos); |
| 1896 | if (memrefType.getNumDynamicDims() > 0 && tileSizePos.empty()) |
| 1897 | return memrefType; |
| 1898 | |
| 1899 | // We have a single map that is not an identity map. Create a new memref |
| 1900 | // with the right shape and an identity layout map. |
| 1901 | ArrayRef<int64_t> shape = memrefType.getShape(); |
| 1902 | // FlatAffineValueConstraint may later on use symbolicOperands. |
| 1903 | FlatAffineValueConstraints fac(rank, numSymbolicOperands); |
| 1904 | SmallVector<unsigned, 4> memrefTypeDynDims; |
| 1905 | for (unsigned d = 0; d < rank; ++d) { |
| 1906 | // Use constraint system only in static dimensions. |
| 1907 | if (shape[d] > 0) { |
| 1908 | fac.addBound(type: BoundType::LB, pos: d, value: 0); |
| 1909 | fac.addBound(type: BoundType::UB, pos: d, value: shape[d] - 1); |
| 1910 | } else { |
| 1911 | memrefTypeDynDims.emplace_back(Args&: d); |
| 1912 | } |
| 1913 | } |
| 1914 | // We compose this map with the original index (logical) space to derive |
| 1915 | // the upper bounds for the new index space. |
| 1916 | unsigned newRank = layoutMap.getNumResults(); |
| 1917 | if (failed(Result: fac.composeMatchingMap(other: layoutMap))) |
| 1918 | return memrefType; |
| 1919 | // TODO: Handle semi-affine maps. |
| 1920 | // Project out the old data dimensions. |
| 1921 | fac.projectOut(pos: newRank, num: fac.getNumVars() - newRank - fac.getNumLocalVars()); |
| 1922 | SmallVector<int64_t, 4> newShape(newRank); |
| 1923 | MLIRContext *context = memrefType.getContext(); |
| 1924 | for (unsigned d = 0; d < newRank; ++d) { |
| 1925 | // Check if this dimension is dynamic. |
| 1926 | if (isNormalizedMemRefDynamicDim(dim: d, layoutMap, inMemrefTypeDynDims&: memrefTypeDynDims)) { |
| 1927 | newShape[d] = ShapedType::kDynamic; |
| 1928 | continue; |
| 1929 | } |
| 1930 | // The lower bound for the shape is always zero. |
| 1931 | std::optional<int64_t> ubConst = fac.getConstantBound64(type: BoundType::UB, pos: d); |
| 1932 | // For a static memref and an affine map with no symbols, this is |
| 1933 | // always bounded. However, when we have symbols, we may not be able to |
| 1934 | // obtain a constant upper bound. Also, mapping to a negative space is |
| 1935 | // invalid for normalization. |
| 1936 | if (!ubConst.has_value() || *ubConst < 0) { |
| 1937 | LLVM_DEBUG(llvm::dbgs() |
| 1938 | << "can't normalize map due to unknown/invalid upper bound" ); |
| 1939 | return memrefType; |
| 1940 | } |
| 1941 | // If dimension of new memrefType is dynamic, the value is -1. |
| 1942 | newShape[d] = *ubConst + 1; |
| 1943 | } |
| 1944 | |
| 1945 | // Create the new memref type after trivializing the old layout map. |
| 1946 | auto newMemRefType = |
| 1947 | MemRefType::Builder(memrefType) |
| 1948 | .setShape(newShape) |
| 1949 | .setLayout(AffineMapAttr::get( |
| 1950 | AffineMap::getMultiDimIdentityMap(newRank, context))); |
| 1951 | return newMemRefType; |
| 1952 | } |
| 1953 | |
| 1954 | DivModValue mlir::affine::getDivMod(OpBuilder &b, Location loc, Value lhs, |
| 1955 | Value rhs) { |
| 1956 | DivModValue result; |
| 1957 | AffineExpr d0, d1; |
| 1958 | bindDims(ctx: b.getContext(), exprs&: d0, exprs&: d1); |
| 1959 | result.quotient = |
| 1960 | affine::makeComposedAffineApply(b, loc, d0.floorDiv(other: d1), {lhs, rhs}); |
| 1961 | result.remainder = |
| 1962 | affine::makeComposedAffineApply(b, loc, d0 % d1, {lhs, rhs}); |
| 1963 | return result; |
| 1964 | } |
| 1965 | |
| 1966 | /// Create an affine map that computes `lhs` * `rhs`, composing in any other |
| 1967 | /// affine maps. |
| 1968 | static FailureOr<OpFoldResult> composedAffineMultiply(OpBuilder &b, |
| 1969 | Location loc, |
| 1970 | OpFoldResult lhs, |
| 1971 | OpFoldResult rhs) { |
| 1972 | AffineExpr s0, s1; |
| 1973 | bindSymbols(ctx: b.getContext(), exprs&: s0, exprs&: s1); |
| 1974 | return makeComposedFoldedAffineApply(b, loc, expr: s0 * s1, operands: {lhs, rhs}); |
| 1975 | } |
| 1976 | |
| 1977 | FailureOr<SmallVector<Value>> |
| 1978 | mlir::affine::delinearizeIndex(OpBuilder &b, Location loc, Value linearIndex, |
| 1979 | ArrayRef<Value> basis, bool hasOuterBound) { |
| 1980 | if (hasOuterBound) |
| 1981 | basis = basis.drop_front(); |
| 1982 | |
| 1983 | // Note: the divisors are backwards due to the scan. |
| 1984 | SmallVector<Value> divisors; |
| 1985 | OpFoldResult basisProd = b.getIndexAttr(1); |
| 1986 | for (OpFoldResult basisElem : llvm::reverse(C&: basis)) { |
| 1987 | FailureOr<OpFoldResult> nextProd = |
| 1988 | composedAffineMultiply(b, loc, lhs: basisElem, rhs: basisProd); |
| 1989 | if (failed(Result: nextProd)) |
| 1990 | return failure(); |
| 1991 | basisProd = *nextProd; |
| 1992 | divisors.push_back(Elt: getValueOrCreateConstantIndexOp(b, loc, ofr: basisProd)); |
| 1993 | } |
| 1994 | |
| 1995 | SmallVector<Value> results; |
| 1996 | results.reserve(N: divisors.size() + 1); |
| 1997 | Value residual = linearIndex; |
| 1998 | for (Value divisor : llvm::reverse(C&: divisors)) { |
| 1999 | DivModValue divMod = getDivMod(b, loc, lhs: residual, rhs: divisor); |
| 2000 | results.push_back(Elt: divMod.quotient); |
| 2001 | residual = divMod.remainder; |
| 2002 | } |
| 2003 | results.push_back(Elt: residual); |
| 2004 | return results; |
| 2005 | } |
| 2006 | |
| 2007 | FailureOr<SmallVector<Value>> |
| 2008 | mlir::affine::delinearizeIndex(OpBuilder &b, Location loc, Value linearIndex, |
| 2009 | ArrayRef<OpFoldResult> basis, |
| 2010 | bool hasOuterBound) { |
| 2011 | if (hasOuterBound) |
| 2012 | basis = basis.drop_front(); |
| 2013 | |
| 2014 | // Note: the divisors are backwards due to the scan. |
| 2015 | SmallVector<Value> divisors; |
| 2016 | OpFoldResult basisProd = b.getIndexAttr(1); |
| 2017 | for (OpFoldResult basisElem : llvm::reverse(C&: basis)) { |
| 2018 | FailureOr<OpFoldResult> nextProd = |
| 2019 | composedAffineMultiply(b, loc, lhs: basisElem, rhs: basisProd); |
| 2020 | if (failed(Result: nextProd)) |
| 2021 | return failure(); |
| 2022 | basisProd = *nextProd; |
| 2023 | divisors.push_back(Elt: getValueOrCreateConstantIndexOp(b, loc, ofr: basisProd)); |
| 2024 | } |
| 2025 | |
| 2026 | SmallVector<Value> results; |
| 2027 | results.reserve(N: divisors.size() + 1); |
| 2028 | Value residual = linearIndex; |
| 2029 | for (Value divisor : llvm::reverse(C&: divisors)) { |
| 2030 | DivModValue divMod = getDivMod(b, loc, lhs: residual, rhs: divisor); |
| 2031 | results.push_back(Elt: divMod.quotient); |
| 2032 | residual = divMod.remainder; |
| 2033 | } |
| 2034 | results.push_back(Elt: residual); |
| 2035 | return results; |
| 2036 | } |
| 2037 | |
| 2038 | OpFoldResult mlir::affine::linearizeIndex(ArrayRef<OpFoldResult> multiIndex, |
| 2039 | ArrayRef<OpFoldResult> basis, |
| 2040 | ImplicitLocOpBuilder &builder) { |
| 2041 | return linearizeIndex(builder, loc: builder.getLoc(), multiIndex, basis); |
| 2042 | } |
| 2043 | |
| 2044 | OpFoldResult mlir::affine::linearizeIndex(OpBuilder &builder, Location loc, |
| 2045 | ArrayRef<OpFoldResult> multiIndex, |
| 2046 | ArrayRef<OpFoldResult> basis) { |
| 2047 | assert(multiIndex.size() == basis.size() || |
| 2048 | multiIndex.size() == basis.size() + 1); |
| 2049 | SmallVector<AffineExpr> basisAffine; |
| 2050 | |
| 2051 | // Add a fake initial size in order to make the later index linearization |
| 2052 | // computations line up if an outer bound is not provided. |
| 2053 | if (multiIndex.size() == basis.size() + 1) |
| 2054 | basisAffine.push_back(Elt: getAffineConstantExpr(constant: 1, context: builder.getContext())); |
| 2055 | |
| 2056 | for (size_t i = 0; i < basis.size(); ++i) { |
| 2057 | basisAffine.push_back(Elt: getAffineSymbolExpr(position: i, context: builder.getContext())); |
| 2058 | } |
| 2059 | |
| 2060 | SmallVector<AffineExpr> stridesAffine = computeStrides(sizes: basisAffine); |
| 2061 | SmallVector<OpFoldResult> strides; |
| 2062 | strides.reserve(N: stridesAffine.size()); |
| 2063 | llvm::transform(Range&: stridesAffine, d_first: std::back_inserter(x&: strides), |
| 2064 | F: [&builder, &basis, loc](AffineExpr strideExpr) { |
| 2065 | return affine::makeComposedFoldedAffineApply( |
| 2066 | b&: builder, loc, expr: strideExpr, operands: basis); |
| 2067 | }); |
| 2068 | |
| 2069 | auto &&[linearIndexExpr, multiIndexAndStrides] = computeLinearIndex( |
| 2070 | sourceOffset: OpFoldResult(builder.getIndexAttr(0)), strides, indices: multiIndex); |
| 2071 | return affine::makeComposedFoldedAffineApply(builder, loc, linearIndexExpr, |
| 2072 | multiIndexAndStrides); |
| 2073 | } |
| 2074 | |