| 1 | //===- ArithOps.cpp - MLIR Arith dialect ops implementation -----===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include <cassert> |
| 10 | #include <cstdint> |
| 11 | #include <functional> |
| 12 | #include <utility> |
| 13 | |
| 14 | #include "mlir/Dialect/Arith/IR/Arith.h" |
| 15 | #include "mlir/Dialect/CommonFolders.h" |
| 16 | #include "mlir/Dialect/UB/IR/UBOps.h" |
| 17 | #include "mlir/IR/Builders.h" |
| 18 | #include "mlir/IR/BuiltinAttributeInterfaces.h" |
| 19 | #include "mlir/IR/BuiltinAttributes.h" |
| 20 | #include "mlir/IR/Matchers.h" |
| 21 | #include "mlir/IR/OpImplementation.h" |
| 22 | #include "mlir/IR/PatternMatch.h" |
| 23 | #include "mlir/IR/TypeUtilities.h" |
| 24 | #include "mlir/Support/LogicalResult.h" |
| 25 | |
| 26 | #include "llvm/ADT/APFloat.h" |
| 27 | #include "llvm/ADT/APInt.h" |
| 28 | #include "llvm/ADT/APSInt.h" |
| 29 | #include "llvm/ADT/FloatingPointMode.h" |
| 30 | #include "llvm/ADT/STLExtras.h" |
| 31 | #include "llvm/ADT/SmallString.h" |
| 32 | #include "llvm/ADT/SmallVector.h" |
| 33 | #include "llvm/ADT/TypeSwitch.h" |
| 34 | |
| 35 | using namespace mlir; |
| 36 | using namespace mlir::arith; |
| 37 | |
| 38 | //===----------------------------------------------------------------------===// |
| 39 | // Pattern helpers |
| 40 | //===----------------------------------------------------------------------===// |
| 41 | |
| 42 | static IntegerAttr |
| 43 | applyToIntegerAttrs(PatternRewriter &builder, Value res, Attribute lhs, |
| 44 | Attribute rhs, |
| 45 | function_ref<APInt(const APInt &, const APInt &)> binFn) { |
| 46 | APInt lhsVal = llvm::cast<IntegerAttr>(lhs).getValue(); |
| 47 | APInt rhsVal = llvm::cast<IntegerAttr>(rhs).getValue(); |
| 48 | APInt value = binFn(lhsVal, rhsVal); |
| 49 | return IntegerAttr::get(res.getType(), value); |
| 50 | } |
| 51 | |
| 52 | static IntegerAttr addIntegerAttrs(PatternRewriter &builder, Value res, |
| 53 | Attribute lhs, Attribute rhs) { |
| 54 | return applyToIntegerAttrs(builder, res, lhs, rhs, std::plus<APInt>()); |
| 55 | } |
| 56 | |
| 57 | static IntegerAttr subIntegerAttrs(PatternRewriter &builder, Value res, |
| 58 | Attribute lhs, Attribute rhs) { |
| 59 | return applyToIntegerAttrs(builder, res, lhs, rhs, std::minus<APInt>()); |
| 60 | } |
| 61 | |
| 62 | static IntegerAttr mulIntegerAttrs(PatternRewriter &builder, Value res, |
| 63 | Attribute lhs, Attribute rhs) { |
| 64 | return applyToIntegerAttrs(builder, res, lhs, rhs, std::multiplies<APInt>()); |
| 65 | } |
| 66 | |
| 67 | // Merge overflow flags from 2 ops, selecting the most conservative combination. |
| 68 | static IntegerOverflowFlagsAttr |
| 69 | mergeOverflowFlags(IntegerOverflowFlagsAttr val1, |
| 70 | IntegerOverflowFlagsAttr val2) { |
| 71 | return IntegerOverflowFlagsAttr::get(val1.getContext(), |
| 72 | val1.getValue() & val2.getValue()); |
| 73 | } |
| 74 | |
| 75 | /// Invert an integer comparison predicate. |
| 76 | arith::CmpIPredicate arith::invertPredicate(arith::CmpIPredicate pred) { |
| 77 | switch (pred) { |
| 78 | case arith::CmpIPredicate::eq: |
| 79 | return arith::CmpIPredicate::ne; |
| 80 | case arith::CmpIPredicate::ne: |
| 81 | return arith::CmpIPredicate::eq; |
| 82 | case arith::CmpIPredicate::slt: |
| 83 | return arith::CmpIPredicate::sge; |
| 84 | case arith::CmpIPredicate::sle: |
| 85 | return arith::CmpIPredicate::sgt; |
| 86 | case arith::CmpIPredicate::sgt: |
| 87 | return arith::CmpIPredicate::sle; |
| 88 | case arith::CmpIPredicate::sge: |
| 89 | return arith::CmpIPredicate::slt; |
| 90 | case arith::CmpIPredicate::ult: |
| 91 | return arith::CmpIPredicate::uge; |
| 92 | case arith::CmpIPredicate::ule: |
| 93 | return arith::CmpIPredicate::ugt; |
| 94 | case arith::CmpIPredicate::ugt: |
| 95 | return arith::CmpIPredicate::ule; |
| 96 | case arith::CmpIPredicate::uge: |
| 97 | return arith::CmpIPredicate::ult; |
| 98 | } |
| 99 | llvm_unreachable("unknown cmpi predicate kind" ); |
| 100 | } |
| 101 | |
| 102 | /// Equivalent to |
| 103 | /// convertRoundingModeToLLVM(convertArithRoundingModeToLLVM(roundingMode)). |
| 104 | /// |
| 105 | /// Not possible to implement as chain of calls as this would introduce a |
| 106 | /// circular dependency with MLIRArithAttrToLLVMConversion and make arith depend |
| 107 | /// on the LLVM dialect and on translation to LLVM. |
| 108 | static llvm::RoundingMode |
| 109 | convertArithRoundingModeToLLVMIR(RoundingMode roundingMode) { |
| 110 | switch (roundingMode) { |
| 111 | case RoundingMode::downward: |
| 112 | return llvm::RoundingMode::TowardNegative; |
| 113 | case RoundingMode::to_nearest_away: |
| 114 | return llvm::RoundingMode::NearestTiesToAway; |
| 115 | case RoundingMode::to_nearest_even: |
| 116 | return llvm::RoundingMode::NearestTiesToEven; |
| 117 | case RoundingMode::toward_zero: |
| 118 | return llvm::RoundingMode::TowardZero; |
| 119 | case RoundingMode::upward: |
| 120 | return llvm::RoundingMode::TowardPositive; |
| 121 | } |
| 122 | llvm_unreachable("Unhandled rounding mode" ); |
| 123 | } |
| 124 | |
| 125 | static arith::CmpIPredicateAttr invertPredicate(arith::CmpIPredicateAttr pred) { |
| 126 | return arith::CmpIPredicateAttr::get(pred.getContext(), |
| 127 | invertPredicate(pred.getValue())); |
| 128 | } |
| 129 | |
| 130 | static int64_t getScalarOrElementWidth(Type type) { |
| 131 | Type elemTy = getElementTypeOrSelf(type); |
| 132 | if (elemTy.isIntOrFloat()) |
| 133 | return elemTy.getIntOrFloatBitWidth(); |
| 134 | |
| 135 | return -1; |
| 136 | } |
| 137 | |
| 138 | static int64_t getScalarOrElementWidth(Value value) { |
| 139 | return getScalarOrElementWidth(type: value.getType()); |
| 140 | } |
| 141 | |
| 142 | static FailureOr<APInt> getIntOrSplatIntValue(Attribute attr) { |
| 143 | APInt value; |
| 144 | if (matchPattern(attr, m_ConstantInt(&value))) |
| 145 | return value; |
| 146 | |
| 147 | return failure(); |
| 148 | } |
| 149 | |
| 150 | static Attribute getBoolAttribute(Type type, bool value) { |
| 151 | auto boolAttr = BoolAttr::get(context: type.getContext(), value); |
| 152 | ShapedType shapedType = llvm::dyn_cast_or_null<ShapedType>(type); |
| 153 | if (!shapedType) |
| 154 | return boolAttr; |
| 155 | return DenseElementsAttr::get(shapedType, boolAttr); |
| 156 | } |
| 157 | |
| 158 | //===----------------------------------------------------------------------===// |
| 159 | // TableGen'd canonicalization patterns |
| 160 | //===----------------------------------------------------------------------===// |
| 161 | |
| 162 | namespace { |
| 163 | #include "ArithCanonicalization.inc" |
| 164 | } // namespace |
| 165 | |
| 166 | //===----------------------------------------------------------------------===// |
| 167 | // Common helpers |
| 168 | //===----------------------------------------------------------------------===// |
| 169 | |
| 170 | /// Return the type of the same shape (scalar, vector or tensor) containing i1. |
| 171 | static Type getI1SameShape(Type type) { |
| 172 | auto i1Type = IntegerType::get(type.getContext(), 1); |
| 173 | if (auto shapedType = llvm::dyn_cast<ShapedType>(type)) |
| 174 | return shapedType.cloneWith(std::nullopt, i1Type); |
| 175 | if (llvm::isa<UnrankedTensorType>(type)) |
| 176 | return UnrankedTensorType::get(i1Type); |
| 177 | return i1Type; |
| 178 | } |
| 179 | |
| 180 | //===----------------------------------------------------------------------===// |
| 181 | // ConstantOp |
| 182 | //===----------------------------------------------------------------------===// |
| 183 | |
| 184 | void arith::ConstantOp::getAsmResultNames( |
| 185 | function_ref<void(Value, StringRef)> setNameFn) { |
| 186 | auto type = getType(); |
| 187 | if (auto intCst = llvm::dyn_cast<IntegerAttr>(getValue())) { |
| 188 | auto intType = llvm::dyn_cast<IntegerType>(type); |
| 189 | |
| 190 | // Sugar i1 constants with 'true' and 'false'. |
| 191 | if (intType && intType.getWidth() == 1) |
| 192 | return setNameFn(getResult(), (intCst.getInt() ? "true" : "false" )); |
| 193 | |
| 194 | // Otherwise, build a complex name with the value and type. |
| 195 | SmallString<32> specialNameBuffer; |
| 196 | llvm::raw_svector_ostream specialName(specialNameBuffer); |
| 197 | specialName << 'c' << intCst.getValue(); |
| 198 | if (intType) |
| 199 | specialName << '_' << type; |
| 200 | setNameFn(getResult(), specialName.str()); |
| 201 | } else { |
| 202 | setNameFn(getResult(), "cst" ); |
| 203 | } |
| 204 | } |
| 205 | |
| 206 | /// TODO: disallow arith.constant to return anything other than signless integer |
| 207 | /// or float like. |
| 208 | LogicalResult arith::ConstantOp::verify() { |
| 209 | auto type = getType(); |
| 210 | // Integer values must be signless. |
| 211 | if (llvm::isa<IntegerType>(type) && |
| 212 | !llvm::cast<IntegerType>(type).isSignless()) |
| 213 | return emitOpError("integer return type must be signless" ); |
| 214 | // Any float or elements attribute are acceptable. |
| 215 | if (!llvm::isa<IntegerAttr, FloatAttr, ElementsAttr>(getValue())) { |
| 216 | return emitOpError( |
| 217 | "value must be an integer, float, or elements attribute" ); |
| 218 | } |
| 219 | |
| 220 | // Note, we could relax this for vectors with 1 scalable dim, e.g.: |
| 221 | // * arith.constant dense<[[3, 3], [1, 1]]> : vector<2 x [2] x i32> |
| 222 | // However, this would most likely require updating the lowerings to LLVM. |
| 223 | if (isa<ScalableVectorType>(type) && !isa<SplatElementsAttr>(getValue())) |
| 224 | return emitOpError( |
| 225 | "intializing scalable vectors with elements attribute is not supported" |
| 226 | " unless it's a vector splat" ); |
| 227 | return success(); |
| 228 | } |
| 229 | |
| 230 | bool arith::ConstantOp::isBuildableWith(Attribute value, Type type) { |
| 231 | // The value's type must be the same as the provided type. |
| 232 | auto typedAttr = llvm::dyn_cast<TypedAttr>(value); |
| 233 | if (!typedAttr || typedAttr.getType() != type) |
| 234 | return false; |
| 235 | // Integer values must be signless. |
| 236 | if (llvm::isa<IntegerType>(type) && |
| 237 | !llvm::cast<IntegerType>(type).isSignless()) |
| 238 | return false; |
| 239 | // Integer, float, and element attributes are buildable. |
| 240 | return llvm::isa<IntegerAttr, FloatAttr, ElementsAttr>(value); |
| 241 | } |
| 242 | |
| 243 | ConstantOp arith::ConstantOp::materialize(OpBuilder &builder, Attribute value, |
| 244 | Type type, Location loc) { |
| 245 | if (isBuildableWith(value, type)) |
| 246 | return builder.create<arith::ConstantOp>(loc, cast<TypedAttr>(value)); |
| 247 | return nullptr; |
| 248 | } |
| 249 | |
| 250 | OpFoldResult arith::ConstantOp::fold(FoldAdaptor adaptor) { return getValue(); } |
| 251 | |
| 252 | void arith::ConstantIntOp::build(OpBuilder &builder, OperationState &result, |
| 253 | int64_t value, unsigned width) { |
| 254 | auto type = builder.getIntegerType(width); |
| 255 | arith::ConstantOp::build(builder, result, type, |
| 256 | builder.getIntegerAttr(type, value)); |
| 257 | } |
| 258 | |
| 259 | void arith::ConstantIntOp::build(OpBuilder &builder, OperationState &result, |
| 260 | int64_t value, Type type) { |
| 261 | assert(type.isSignlessInteger() && |
| 262 | "ConstantIntOp can only have signless integer type values" ); |
| 263 | arith::ConstantOp::build(builder, result, type, |
| 264 | builder.getIntegerAttr(type, value)); |
| 265 | } |
| 266 | |
| 267 | bool arith::ConstantIntOp::classof(Operation *op) { |
| 268 | if (auto constOp = dyn_cast_or_null<arith::ConstantOp>(op)) |
| 269 | return constOp.getType().isSignlessInteger(); |
| 270 | return false; |
| 271 | } |
| 272 | |
| 273 | void arith::ConstantFloatOp::build(OpBuilder &builder, OperationState &result, |
| 274 | const APFloat &value, FloatType type) { |
| 275 | arith::ConstantOp::build(builder, result, type, |
| 276 | builder.getFloatAttr(type, value)); |
| 277 | } |
| 278 | |
| 279 | bool arith::ConstantFloatOp::classof(Operation *op) { |
| 280 | if (auto constOp = dyn_cast_or_null<arith::ConstantOp>(op)) |
| 281 | return llvm::isa<FloatType>(constOp.getType()); |
| 282 | return false; |
| 283 | } |
| 284 | |
| 285 | void arith::ConstantIndexOp::build(OpBuilder &builder, OperationState &result, |
| 286 | int64_t value) { |
| 287 | arith::ConstantOp::build(builder, result, builder.getIndexType(), |
| 288 | builder.getIndexAttr(value)); |
| 289 | } |
| 290 | |
| 291 | bool arith::ConstantIndexOp::classof(Operation *op) { |
| 292 | if (auto constOp = dyn_cast_or_null<arith::ConstantOp>(op)) |
| 293 | return constOp.getType().isIndex(); |
| 294 | return false; |
| 295 | } |
| 296 | |
| 297 | //===----------------------------------------------------------------------===// |
| 298 | // AddIOp |
| 299 | //===----------------------------------------------------------------------===// |
| 300 | |
| 301 | OpFoldResult arith::AddIOp::fold(FoldAdaptor adaptor) { |
| 302 | // addi(x, 0) -> x |
| 303 | if (matchPattern(adaptor.getRhs(), m_Zero())) |
| 304 | return getLhs(); |
| 305 | |
| 306 | // addi(subi(a, b), b) -> a |
| 307 | if (auto sub = getLhs().getDefiningOp<SubIOp>()) |
| 308 | if (getRhs() == sub.getRhs()) |
| 309 | return sub.getLhs(); |
| 310 | |
| 311 | // addi(b, subi(a, b)) -> a |
| 312 | if (auto sub = getRhs().getDefiningOp<SubIOp>()) |
| 313 | if (getLhs() == sub.getRhs()) |
| 314 | return sub.getLhs(); |
| 315 | |
| 316 | return constFoldBinaryOp<IntegerAttr>( |
| 317 | adaptor.getOperands(), |
| 318 | [](APInt a, const APInt &b) { return std::move(a) + b; }); |
| 319 | } |
| 320 | |
| 321 | void arith::AddIOp::getCanonicalizationPatterns(RewritePatternSet &patterns, |
| 322 | MLIRContext *context) { |
| 323 | patterns.add<AddIAddConstant, AddISubConstantRHS, AddISubConstantLHS, |
| 324 | AddIMulNegativeOneRhs, AddIMulNegativeOneLhs>(context); |
| 325 | } |
| 326 | |
| 327 | //===----------------------------------------------------------------------===// |
| 328 | // AddUIExtendedOp |
| 329 | //===----------------------------------------------------------------------===// |
| 330 | |
| 331 | std::optional<SmallVector<int64_t, 4>> |
| 332 | arith::AddUIExtendedOp::getShapeForUnroll() { |
| 333 | if (auto vt = llvm::dyn_cast<VectorType>(getType(0))) |
| 334 | return llvm::to_vector<4>(vt.getShape()); |
| 335 | return std::nullopt; |
| 336 | } |
| 337 | |
| 338 | // Returns the overflow bit, assuming that `sum` is the result of unsigned |
| 339 | // addition of `operand` and another number. |
| 340 | static APInt calculateUnsignedOverflow(const APInt &sum, const APInt &operand) { |
| 341 | return sum.ult(RHS: operand) ? APInt::getAllOnes(numBits: 1) : APInt::getZero(numBits: 1); |
| 342 | } |
| 343 | |
| 344 | LogicalResult |
| 345 | arith::AddUIExtendedOp::fold(FoldAdaptor adaptor, |
| 346 | SmallVectorImpl<OpFoldResult> &results) { |
| 347 | Type overflowTy = getOverflow().getType(); |
| 348 | // addui_extended(x, 0) -> x, false |
| 349 | if (matchPattern(getRhs(), m_Zero())) { |
| 350 | Builder builder(getContext()); |
| 351 | auto falseValue = builder.getZeroAttr(overflowTy); |
| 352 | |
| 353 | results.push_back(getLhs()); |
| 354 | results.push_back(falseValue); |
| 355 | return success(); |
| 356 | } |
| 357 | |
| 358 | // addui_extended(constant_a, constant_b) -> constant_sum, constant_carry |
| 359 | // Let the `constFoldBinaryOp` utility attempt to fold the sum of both |
| 360 | // operands. If that succeeds, calculate the overflow bit based on the sum |
| 361 | // and the first (constant) operand, `lhs`. |
| 362 | if (Attribute sumAttr = constFoldBinaryOp<IntegerAttr>( |
| 363 | adaptor.getOperands(), |
| 364 | [](APInt a, const APInt &b) { return std::move(a) + b; })) { |
| 365 | Attribute overflowAttr = constFoldBinaryOp<IntegerAttr>( |
| 366 | ArrayRef({sumAttr, adaptor.getLhs()}), |
| 367 | getI1SameShape(llvm::cast<TypedAttr>(sumAttr).getType()), |
| 368 | calculateUnsignedOverflow); |
| 369 | if (!overflowAttr) |
| 370 | return failure(); |
| 371 | |
| 372 | results.push_back(sumAttr); |
| 373 | results.push_back(overflowAttr); |
| 374 | return success(); |
| 375 | } |
| 376 | |
| 377 | return failure(); |
| 378 | } |
| 379 | |
| 380 | void arith::AddUIExtendedOp::getCanonicalizationPatterns( |
| 381 | RewritePatternSet &patterns, MLIRContext *context) { |
| 382 | patterns.add<AddUIExtendedToAddI>(context); |
| 383 | } |
| 384 | |
| 385 | //===----------------------------------------------------------------------===// |
| 386 | // SubIOp |
| 387 | //===----------------------------------------------------------------------===// |
| 388 | |
| 389 | OpFoldResult arith::SubIOp::fold(FoldAdaptor adaptor) { |
| 390 | // subi(x,x) -> 0 |
| 391 | if (getOperand(0) == getOperand(1)) { |
| 392 | auto shapedType = dyn_cast<ShapedType>(getType()); |
| 393 | // We can't generate a constant with a dynamic shaped tensor. |
| 394 | if (!shapedType || shapedType.hasStaticShape()) |
| 395 | return Builder(getContext()).getZeroAttr(getType()); |
| 396 | } |
| 397 | // subi(x,0) -> x |
| 398 | if (matchPattern(adaptor.getRhs(), m_Zero())) |
| 399 | return getLhs(); |
| 400 | |
| 401 | if (auto add = getLhs().getDefiningOp<AddIOp>()) { |
| 402 | // subi(addi(a, b), b) -> a |
| 403 | if (getRhs() == add.getRhs()) |
| 404 | return add.getLhs(); |
| 405 | // subi(addi(a, b), a) -> b |
| 406 | if (getRhs() == add.getLhs()) |
| 407 | return add.getRhs(); |
| 408 | } |
| 409 | |
| 410 | return constFoldBinaryOp<IntegerAttr>( |
| 411 | adaptor.getOperands(), |
| 412 | [](APInt a, const APInt &b) { return std::move(a) - b; }); |
| 413 | } |
| 414 | |
| 415 | void arith::SubIOp::getCanonicalizationPatterns(RewritePatternSet &patterns, |
| 416 | MLIRContext *context) { |
| 417 | patterns.add<SubIRHSAddConstant, SubILHSAddConstant, SubIRHSSubConstantRHS, |
| 418 | SubIRHSSubConstantLHS, SubILHSSubConstantRHS, |
| 419 | SubILHSSubConstantLHS, SubISubILHSRHSLHS>(context); |
| 420 | } |
| 421 | |
| 422 | //===----------------------------------------------------------------------===// |
| 423 | // MulIOp |
| 424 | //===----------------------------------------------------------------------===// |
| 425 | |
| 426 | OpFoldResult arith::MulIOp::fold(FoldAdaptor adaptor) { |
| 427 | // muli(x, 0) -> 0 |
| 428 | if (matchPattern(adaptor.getRhs(), m_Zero())) |
| 429 | return getRhs(); |
| 430 | // muli(x, 1) -> x |
| 431 | if (matchPattern(adaptor.getRhs(), m_One())) |
| 432 | return getLhs(); |
| 433 | // TODO: Handle the overflow case. |
| 434 | |
| 435 | // default folder |
| 436 | return constFoldBinaryOp<IntegerAttr>( |
| 437 | adaptor.getOperands(), |
| 438 | [](const APInt &a, const APInt &b) { return a * b; }); |
| 439 | } |
| 440 | |
| 441 | void arith::MulIOp::getAsmResultNames( |
| 442 | function_ref<void(Value, StringRef)> setNameFn) { |
| 443 | if (!isa<IndexType>(getType())) |
| 444 | return; |
| 445 | |
| 446 | // Match vector.vscale by name to avoid depending on the vector dialect (which |
| 447 | // is a circular dependency). |
| 448 | auto isVscale = [](Operation *op) { |
| 449 | return op && op->getName().getStringRef() == "vector.vscale" ; |
| 450 | }; |
| 451 | |
| 452 | IntegerAttr baseValue; |
| 453 | auto isVscaleExpr = [&](Value a, Value b) { |
| 454 | return matchPattern(a, m_Constant(&baseValue)) && |
| 455 | isVscale(b.getDefiningOp()); |
| 456 | }; |
| 457 | |
| 458 | if (!isVscaleExpr(getLhs(), getRhs()) && !isVscaleExpr(getRhs(), getLhs())) |
| 459 | return; |
| 460 | |
| 461 | // Name `base * vscale` or `vscale * base` as `c<base_value>_vscale`. |
| 462 | SmallString<32> specialNameBuffer; |
| 463 | llvm::raw_svector_ostream specialName(specialNameBuffer); |
| 464 | specialName << 'c' << baseValue.getInt() << "_vscale" ; |
| 465 | setNameFn(getResult(), specialName.str()); |
| 466 | } |
| 467 | |
| 468 | void arith::MulIOp::getCanonicalizationPatterns(RewritePatternSet &patterns, |
| 469 | MLIRContext *context) { |
| 470 | patterns.add<MulIMulIConstant>(context); |
| 471 | } |
| 472 | |
| 473 | //===----------------------------------------------------------------------===// |
| 474 | // MulSIExtendedOp |
| 475 | //===----------------------------------------------------------------------===// |
| 476 | |
| 477 | std::optional<SmallVector<int64_t, 4>> |
| 478 | arith::MulSIExtendedOp::getShapeForUnroll() { |
| 479 | if (auto vt = llvm::dyn_cast<VectorType>(getType(0))) |
| 480 | return llvm::to_vector<4>(vt.getShape()); |
| 481 | return std::nullopt; |
| 482 | } |
| 483 | |
| 484 | LogicalResult |
| 485 | arith::MulSIExtendedOp::fold(FoldAdaptor adaptor, |
| 486 | SmallVectorImpl<OpFoldResult> &results) { |
| 487 | // mulsi_extended(x, 0) -> 0, 0 |
| 488 | if (matchPattern(adaptor.getRhs(), m_Zero())) { |
| 489 | Attribute zero = adaptor.getRhs(); |
| 490 | results.push_back(zero); |
| 491 | results.push_back(zero); |
| 492 | return success(); |
| 493 | } |
| 494 | |
| 495 | // mulsi_extended(cst_a, cst_b) -> cst_low, cst_high |
| 496 | if (Attribute lowAttr = constFoldBinaryOp<IntegerAttr>( |
| 497 | adaptor.getOperands(), |
| 498 | [](const APInt &a, const APInt &b) { return a * b; })) { |
| 499 | // Invoke the constant fold helper again to calculate the 'high' result. |
| 500 | Attribute highAttr = constFoldBinaryOp<IntegerAttr>( |
| 501 | adaptor.getOperands(), [](const APInt &a, const APInt &b) { |
| 502 | return llvm::APIntOps::mulhs(a, b); |
| 503 | }); |
| 504 | assert(highAttr && "Unexpected constant-folding failure" ); |
| 505 | |
| 506 | results.push_back(lowAttr); |
| 507 | results.push_back(highAttr); |
| 508 | return success(); |
| 509 | } |
| 510 | |
| 511 | return failure(); |
| 512 | } |
| 513 | |
| 514 | void arith::MulSIExtendedOp::getCanonicalizationPatterns( |
| 515 | RewritePatternSet &patterns, MLIRContext *context) { |
| 516 | patterns.add<MulSIExtendedToMulI, MulSIExtendedRHSOne>(context); |
| 517 | } |
| 518 | |
| 519 | //===----------------------------------------------------------------------===// |
| 520 | // MulUIExtendedOp |
| 521 | //===----------------------------------------------------------------------===// |
| 522 | |
| 523 | std::optional<SmallVector<int64_t, 4>> |
| 524 | arith::MulUIExtendedOp::getShapeForUnroll() { |
| 525 | if (auto vt = llvm::dyn_cast<VectorType>(getType(0))) |
| 526 | return llvm::to_vector<4>(vt.getShape()); |
| 527 | return std::nullopt; |
| 528 | } |
| 529 | |
| 530 | LogicalResult |
| 531 | arith::MulUIExtendedOp::fold(FoldAdaptor adaptor, |
| 532 | SmallVectorImpl<OpFoldResult> &results) { |
| 533 | // mului_extended(x, 0) -> 0, 0 |
| 534 | if (matchPattern(adaptor.getRhs(), m_Zero())) { |
| 535 | Attribute zero = adaptor.getRhs(); |
| 536 | results.push_back(zero); |
| 537 | results.push_back(zero); |
| 538 | return success(); |
| 539 | } |
| 540 | |
| 541 | // mului_extended(x, 1) -> x, 0 |
| 542 | if (matchPattern(adaptor.getRhs(), m_One())) { |
| 543 | Builder builder(getContext()); |
| 544 | Attribute zero = builder.getZeroAttr(getLhs().getType()); |
| 545 | results.push_back(getLhs()); |
| 546 | results.push_back(zero); |
| 547 | return success(); |
| 548 | } |
| 549 | |
| 550 | // mului_extended(cst_a, cst_b) -> cst_low, cst_high |
| 551 | if (Attribute lowAttr = constFoldBinaryOp<IntegerAttr>( |
| 552 | adaptor.getOperands(), |
| 553 | [](const APInt &a, const APInt &b) { return a * b; })) { |
| 554 | // Invoke the constant fold helper again to calculate the 'high' result. |
| 555 | Attribute highAttr = constFoldBinaryOp<IntegerAttr>( |
| 556 | adaptor.getOperands(), [](const APInt &a, const APInt &b) { |
| 557 | return llvm::APIntOps::mulhu(a, b); |
| 558 | }); |
| 559 | assert(highAttr && "Unexpected constant-folding failure" ); |
| 560 | |
| 561 | results.push_back(lowAttr); |
| 562 | results.push_back(highAttr); |
| 563 | return success(); |
| 564 | } |
| 565 | |
| 566 | return failure(); |
| 567 | } |
| 568 | |
| 569 | void arith::MulUIExtendedOp::getCanonicalizationPatterns( |
| 570 | RewritePatternSet &patterns, MLIRContext *context) { |
| 571 | patterns.add<MulUIExtendedToMulI>(context); |
| 572 | } |
| 573 | |
| 574 | //===----------------------------------------------------------------------===// |
| 575 | // DivUIOp |
| 576 | //===----------------------------------------------------------------------===// |
| 577 | |
| 578 | /// Fold `(a * b) / b -> a` |
| 579 | static Value foldDivMul(Value lhs, Value rhs, |
| 580 | arith::IntegerOverflowFlags ovfFlags) { |
| 581 | auto mul = lhs.getDefiningOp<mlir::arith::MulIOp>(); |
| 582 | if (!mul || !bitEnumContainsAll(mul.getOverflowFlags(), ovfFlags)) |
| 583 | return {}; |
| 584 | |
| 585 | if (mul.getLhs() == rhs) |
| 586 | return mul.getRhs(); |
| 587 | |
| 588 | if (mul.getRhs() == rhs) |
| 589 | return mul.getLhs(); |
| 590 | |
| 591 | return {}; |
| 592 | } |
| 593 | |
| 594 | OpFoldResult arith::DivUIOp::fold(FoldAdaptor adaptor) { |
| 595 | // divui (x, 1) -> x. |
| 596 | if (matchPattern(adaptor.getRhs(), m_One())) |
| 597 | return getLhs(); |
| 598 | |
| 599 | // (a * b) / b -> a |
| 600 | if (Value val = foldDivMul(getLhs(), getRhs(), IntegerOverflowFlags::nuw)) |
| 601 | return val; |
| 602 | |
| 603 | // Don't fold if it would require a division by zero. |
| 604 | bool div0 = false; |
| 605 | auto result = constFoldBinaryOp<IntegerAttr>(adaptor.getOperands(), |
| 606 | [&](APInt a, const APInt &b) { |
| 607 | if (div0 || !b) { |
| 608 | div0 = true; |
| 609 | return a; |
| 610 | } |
| 611 | return a.udiv(b); |
| 612 | }); |
| 613 | |
| 614 | return div0 ? Attribute() : result; |
| 615 | } |
| 616 | |
| 617 | /// Returns whether an unsigned division by `divisor` is speculatable. |
| 618 | static Speculation::Speculatability getDivUISpeculatability(Value divisor) { |
| 619 | // X / 0 => UB |
| 620 | if (matchPattern(value: divisor, pattern: m_IntRangeWithoutZeroU())) |
| 621 | return Speculation::Speculatable; |
| 622 | |
| 623 | return Speculation::NotSpeculatable; |
| 624 | } |
| 625 | |
| 626 | Speculation::Speculatability arith::DivUIOp::getSpeculatability() { |
| 627 | return getDivUISpeculatability(getRhs()); |
| 628 | } |
| 629 | |
| 630 | //===----------------------------------------------------------------------===// |
| 631 | // DivSIOp |
| 632 | //===----------------------------------------------------------------------===// |
| 633 | |
| 634 | OpFoldResult arith::DivSIOp::fold(FoldAdaptor adaptor) { |
| 635 | // divsi (x, 1) -> x. |
| 636 | if (matchPattern(adaptor.getRhs(), m_One())) |
| 637 | return getLhs(); |
| 638 | |
| 639 | // (a * b) / b -> a |
| 640 | if (Value val = foldDivMul(getLhs(), getRhs(), IntegerOverflowFlags::nsw)) |
| 641 | return val; |
| 642 | |
| 643 | // Don't fold if it would overflow or if it requires a division by zero. |
| 644 | bool overflowOrDiv0 = false; |
| 645 | auto result = constFoldBinaryOp<IntegerAttr>( |
| 646 | adaptor.getOperands(), [&](APInt a, const APInt &b) { |
| 647 | if (overflowOrDiv0 || !b) { |
| 648 | overflowOrDiv0 = true; |
| 649 | return a; |
| 650 | } |
| 651 | return a.sdiv_ov(b, overflowOrDiv0); |
| 652 | }); |
| 653 | |
| 654 | return overflowOrDiv0 ? Attribute() : result; |
| 655 | } |
| 656 | |
| 657 | /// Returns whether a signed division by `divisor` is speculatable. This |
| 658 | /// function conservatively assumes that all signed division by -1 are not |
| 659 | /// speculatable. |
| 660 | static Speculation::Speculatability getDivSISpeculatability(Value divisor) { |
| 661 | // X / 0 => UB |
| 662 | // INT_MIN / -1 => UB |
| 663 | if (matchPattern(value: divisor, pattern: m_IntRangeWithoutZeroS()) && |
| 664 | matchPattern(value: divisor, pattern: m_IntRangeWithoutNegOneS())) |
| 665 | return Speculation::Speculatable; |
| 666 | |
| 667 | return Speculation::NotSpeculatable; |
| 668 | } |
| 669 | |
| 670 | Speculation::Speculatability arith::DivSIOp::getSpeculatability() { |
| 671 | return getDivSISpeculatability(getRhs()); |
| 672 | } |
| 673 | |
| 674 | //===----------------------------------------------------------------------===// |
| 675 | // Ceil and floor division folding helpers |
| 676 | //===----------------------------------------------------------------------===// |
| 677 | |
| 678 | static APInt signedCeilNonnegInputs(const APInt &a, const APInt &b, |
| 679 | bool &overflow) { |
| 680 | // Returns (a-1)/b + 1 |
| 681 | APInt one(a.getBitWidth(), 1, true); // Signed value 1. |
| 682 | APInt val = a.ssub_ov(RHS: one, Overflow&: overflow).sdiv_ov(RHS: b, Overflow&: overflow); |
| 683 | return val.sadd_ov(RHS: one, Overflow&: overflow); |
| 684 | } |
| 685 | |
| 686 | //===----------------------------------------------------------------------===// |
| 687 | // CeilDivUIOp |
| 688 | //===----------------------------------------------------------------------===// |
| 689 | |
| 690 | OpFoldResult arith::CeilDivUIOp::fold(FoldAdaptor adaptor) { |
| 691 | // ceildivui (x, 1) -> x. |
| 692 | if (matchPattern(adaptor.getRhs(), m_One())) |
| 693 | return getLhs(); |
| 694 | |
| 695 | bool overflowOrDiv0 = false; |
| 696 | auto result = constFoldBinaryOp<IntegerAttr>( |
| 697 | adaptor.getOperands(), [&](APInt a, const APInt &b) { |
| 698 | if (overflowOrDiv0 || !b) { |
| 699 | overflowOrDiv0 = true; |
| 700 | return a; |
| 701 | } |
| 702 | APInt quotient = a.udiv(b); |
| 703 | if (!a.urem(b)) |
| 704 | return quotient; |
| 705 | APInt one(a.getBitWidth(), 1, true); |
| 706 | return quotient.uadd_ov(one, overflowOrDiv0); |
| 707 | }); |
| 708 | |
| 709 | return overflowOrDiv0 ? Attribute() : result; |
| 710 | } |
| 711 | |
| 712 | Speculation::Speculatability arith::CeilDivUIOp::getSpeculatability() { |
| 713 | return getDivUISpeculatability(getRhs()); |
| 714 | } |
| 715 | |
| 716 | //===----------------------------------------------------------------------===// |
| 717 | // CeilDivSIOp |
| 718 | //===----------------------------------------------------------------------===// |
| 719 | |
| 720 | OpFoldResult arith::CeilDivSIOp::fold(FoldAdaptor adaptor) { |
| 721 | // ceildivsi (x, 1) -> x. |
| 722 | if (matchPattern(adaptor.getRhs(), m_One())) |
| 723 | return getLhs(); |
| 724 | |
| 725 | // Don't fold if it would overflow or if it requires a division by zero. |
| 726 | // TODO: This hook won't fold operations where a = MININT, because |
| 727 | // negating MININT overflows. This can be improved. |
| 728 | bool overflowOrDiv0 = false; |
| 729 | auto result = constFoldBinaryOp<IntegerAttr>( |
| 730 | adaptor.getOperands(), [&](APInt a, const APInt &b) { |
| 731 | if (overflowOrDiv0 || !b) { |
| 732 | overflowOrDiv0 = true; |
| 733 | return a; |
| 734 | } |
| 735 | if (!a) |
| 736 | return a; |
| 737 | // After this point we know that neither a or b are zero. |
| 738 | unsigned bits = a.getBitWidth(); |
| 739 | APInt zero = APInt::getZero(bits); |
| 740 | bool aGtZero = a.sgt(zero); |
| 741 | bool bGtZero = b.sgt(zero); |
| 742 | if (aGtZero && bGtZero) { |
| 743 | // Both positive, return ceil(a, b). |
| 744 | return signedCeilNonnegInputs(a, b, overflowOrDiv0); |
| 745 | } |
| 746 | |
| 747 | // No folding happens if any of the intermediate arithmetic operations |
| 748 | // overflows. |
| 749 | bool overflowNegA = false; |
| 750 | bool overflowNegB = false; |
| 751 | bool overflowDiv = false; |
| 752 | bool overflowNegRes = false; |
| 753 | if (!aGtZero && !bGtZero) { |
| 754 | // Both negative, return ceil(-a, -b). |
| 755 | APInt posA = zero.ssub_ov(a, overflowNegA); |
| 756 | APInt posB = zero.ssub_ov(b, overflowNegB); |
| 757 | APInt res = signedCeilNonnegInputs(posA, posB, overflowDiv); |
| 758 | overflowOrDiv0 = (overflowNegA || overflowNegB || overflowDiv); |
| 759 | return res; |
| 760 | } |
| 761 | if (!aGtZero && bGtZero) { |
| 762 | // A is negative, b is positive, return - ( -a / b). |
| 763 | APInt posA = zero.ssub_ov(a, overflowNegA); |
| 764 | APInt div = posA.sdiv_ov(b, overflowDiv); |
| 765 | APInt res = zero.ssub_ov(div, overflowNegRes); |
| 766 | overflowOrDiv0 = (overflowNegA || overflowDiv || overflowNegRes); |
| 767 | return res; |
| 768 | } |
| 769 | // A is positive, b is negative, return - (a / -b). |
| 770 | APInt posB = zero.ssub_ov(b, overflowNegB); |
| 771 | APInt div = a.sdiv_ov(posB, overflowDiv); |
| 772 | APInt res = zero.ssub_ov(div, overflowNegRes); |
| 773 | |
| 774 | overflowOrDiv0 = (overflowNegB || overflowDiv || overflowNegRes); |
| 775 | return res; |
| 776 | }); |
| 777 | |
| 778 | return overflowOrDiv0 ? Attribute() : result; |
| 779 | } |
| 780 | |
| 781 | Speculation::Speculatability arith::CeilDivSIOp::getSpeculatability() { |
| 782 | return getDivSISpeculatability(getRhs()); |
| 783 | } |
| 784 | |
| 785 | //===----------------------------------------------------------------------===// |
| 786 | // FloorDivSIOp |
| 787 | //===----------------------------------------------------------------------===// |
| 788 | |
| 789 | OpFoldResult arith::FloorDivSIOp::fold(FoldAdaptor adaptor) { |
| 790 | // floordivsi (x, 1) -> x. |
| 791 | if (matchPattern(adaptor.getRhs(), m_One())) |
| 792 | return getLhs(); |
| 793 | |
| 794 | // Don't fold if it would overflow or if it requires a division by zero. |
| 795 | bool overflowOrDiv = false; |
| 796 | auto result = constFoldBinaryOp<IntegerAttr>( |
| 797 | adaptor.getOperands(), [&](APInt a, const APInt &b) { |
| 798 | if (b.isZero()) { |
| 799 | overflowOrDiv = true; |
| 800 | return a; |
| 801 | } |
| 802 | return a.sfloordiv_ov(b, overflowOrDiv); |
| 803 | }); |
| 804 | |
| 805 | return overflowOrDiv ? Attribute() : result; |
| 806 | } |
| 807 | |
| 808 | //===----------------------------------------------------------------------===// |
| 809 | // RemUIOp |
| 810 | //===----------------------------------------------------------------------===// |
| 811 | |
| 812 | OpFoldResult arith::RemUIOp::fold(FoldAdaptor adaptor) { |
| 813 | // remui (x, 1) -> 0. |
| 814 | if (matchPattern(adaptor.getRhs(), m_One())) |
| 815 | return Builder(getContext()).getZeroAttr(getType()); |
| 816 | |
| 817 | // Don't fold if it would require a division by zero. |
| 818 | bool div0 = false; |
| 819 | auto result = constFoldBinaryOp<IntegerAttr>(adaptor.getOperands(), |
| 820 | [&](APInt a, const APInt &b) { |
| 821 | if (div0 || b.isZero()) { |
| 822 | div0 = true; |
| 823 | return a; |
| 824 | } |
| 825 | return a.urem(b); |
| 826 | }); |
| 827 | |
| 828 | return div0 ? Attribute() : result; |
| 829 | } |
| 830 | |
| 831 | //===----------------------------------------------------------------------===// |
| 832 | // RemSIOp |
| 833 | //===----------------------------------------------------------------------===// |
| 834 | |
| 835 | OpFoldResult arith::RemSIOp::fold(FoldAdaptor adaptor) { |
| 836 | // remsi (x, 1) -> 0. |
| 837 | if (matchPattern(adaptor.getRhs(), m_One())) |
| 838 | return Builder(getContext()).getZeroAttr(getType()); |
| 839 | |
| 840 | // Don't fold if it would require a division by zero. |
| 841 | bool div0 = false; |
| 842 | auto result = constFoldBinaryOp<IntegerAttr>(adaptor.getOperands(), |
| 843 | [&](APInt a, const APInt &b) { |
| 844 | if (div0 || b.isZero()) { |
| 845 | div0 = true; |
| 846 | return a; |
| 847 | } |
| 848 | return a.srem(b); |
| 849 | }); |
| 850 | |
| 851 | return div0 ? Attribute() : result; |
| 852 | } |
| 853 | |
| 854 | //===----------------------------------------------------------------------===// |
| 855 | // AndIOp |
| 856 | //===----------------------------------------------------------------------===// |
| 857 | |
| 858 | /// Fold `and(a, and(a, b))` to `and(a, b)` |
| 859 | static Value foldAndIofAndI(arith::AndIOp op) { |
| 860 | for (bool reversePrev : {false, true}) { |
| 861 | auto prev = (reversePrev ? op.getRhs() : op.getLhs()) |
| 862 | .getDefiningOp<arith::AndIOp>(); |
| 863 | if (!prev) |
| 864 | continue; |
| 865 | |
| 866 | Value other = (reversePrev ? op.getLhs() : op.getRhs()); |
| 867 | if (other != prev.getLhs() && other != prev.getRhs()) |
| 868 | continue; |
| 869 | |
| 870 | return prev.getResult(); |
| 871 | } |
| 872 | return {}; |
| 873 | } |
| 874 | |
| 875 | OpFoldResult arith::AndIOp::fold(FoldAdaptor adaptor) { |
| 876 | /// and(x, 0) -> 0 |
| 877 | if (matchPattern(adaptor.getRhs(), m_Zero())) |
| 878 | return getRhs(); |
| 879 | /// and(x, allOnes) -> x |
| 880 | APInt intValue; |
| 881 | if (matchPattern(adaptor.getRhs(), m_ConstantInt(&intValue)) && |
| 882 | intValue.isAllOnes()) |
| 883 | return getLhs(); |
| 884 | /// and(x, not(x)) -> 0 |
| 885 | if (matchPattern(getRhs(), m_Op<XOrIOp>(matchers::m_Val(getLhs()), |
| 886 | m_ConstantInt(&intValue))) && |
| 887 | intValue.isAllOnes()) |
| 888 | return Builder(getContext()).getZeroAttr(getType()); |
| 889 | /// and(not(x), x) -> 0 |
| 890 | if (matchPattern(getLhs(), m_Op<XOrIOp>(matchers::m_Val(getRhs()), |
| 891 | m_ConstantInt(&intValue))) && |
| 892 | intValue.isAllOnes()) |
| 893 | return Builder(getContext()).getZeroAttr(getType()); |
| 894 | |
| 895 | /// and(a, and(a, b)) -> and(a, b) |
| 896 | if (Value result = foldAndIofAndI(*this)) |
| 897 | return result; |
| 898 | |
| 899 | return constFoldBinaryOp<IntegerAttr>( |
| 900 | adaptor.getOperands(), |
| 901 | [](APInt a, const APInt &b) { return std::move(a) & b; }); |
| 902 | } |
| 903 | |
| 904 | //===----------------------------------------------------------------------===// |
| 905 | // OrIOp |
| 906 | //===----------------------------------------------------------------------===// |
| 907 | |
| 908 | OpFoldResult arith::OrIOp::fold(FoldAdaptor adaptor) { |
| 909 | if (APInt rhsVal; matchPattern(adaptor.getRhs(), m_ConstantInt(&rhsVal))) { |
| 910 | /// or(x, 0) -> x |
| 911 | if (rhsVal.isZero()) |
| 912 | return getLhs(); |
| 913 | /// or(x, <all ones>) -> <all ones> |
| 914 | if (rhsVal.isAllOnes()) |
| 915 | return adaptor.getRhs(); |
| 916 | } |
| 917 | |
| 918 | APInt intValue; |
| 919 | /// or(x, xor(x, 1)) -> 1 |
| 920 | if (matchPattern(getRhs(), m_Op<XOrIOp>(matchers::m_Val(getLhs()), |
| 921 | m_ConstantInt(&intValue))) && |
| 922 | intValue.isAllOnes()) |
| 923 | return getRhs().getDefiningOp<XOrIOp>().getRhs(); |
| 924 | /// or(xor(x, 1), x) -> 1 |
| 925 | if (matchPattern(getLhs(), m_Op<XOrIOp>(matchers::m_Val(getRhs()), |
| 926 | m_ConstantInt(&intValue))) && |
| 927 | intValue.isAllOnes()) |
| 928 | return getLhs().getDefiningOp<XOrIOp>().getRhs(); |
| 929 | |
| 930 | return constFoldBinaryOp<IntegerAttr>( |
| 931 | adaptor.getOperands(), |
| 932 | [](APInt a, const APInt &b) { return std::move(a) | b; }); |
| 933 | } |
| 934 | |
| 935 | //===----------------------------------------------------------------------===// |
| 936 | // XOrIOp |
| 937 | //===----------------------------------------------------------------------===// |
| 938 | |
| 939 | OpFoldResult arith::XOrIOp::fold(FoldAdaptor adaptor) { |
| 940 | /// xor(x, 0) -> x |
| 941 | if (matchPattern(adaptor.getRhs(), m_Zero())) |
| 942 | return getLhs(); |
| 943 | /// xor(x, x) -> 0 |
| 944 | if (getLhs() == getRhs()) |
| 945 | return Builder(getContext()).getZeroAttr(getType()); |
| 946 | /// xor(xor(x, a), a) -> x |
| 947 | /// xor(xor(a, x), a) -> x |
| 948 | if (arith::XOrIOp prev = getLhs().getDefiningOp<arith::XOrIOp>()) { |
| 949 | if (prev.getRhs() == getRhs()) |
| 950 | return prev.getLhs(); |
| 951 | if (prev.getLhs() == getRhs()) |
| 952 | return prev.getRhs(); |
| 953 | } |
| 954 | /// xor(a, xor(x, a)) -> x |
| 955 | /// xor(a, xor(a, x)) -> x |
| 956 | if (arith::XOrIOp prev = getRhs().getDefiningOp<arith::XOrIOp>()) { |
| 957 | if (prev.getRhs() == getLhs()) |
| 958 | return prev.getLhs(); |
| 959 | if (prev.getLhs() == getLhs()) |
| 960 | return prev.getRhs(); |
| 961 | } |
| 962 | |
| 963 | return constFoldBinaryOp<IntegerAttr>( |
| 964 | adaptor.getOperands(), |
| 965 | [](APInt a, const APInt &b) { return std::move(a) ^ b; }); |
| 966 | } |
| 967 | |
| 968 | void arith::XOrIOp::getCanonicalizationPatterns(RewritePatternSet &patterns, |
| 969 | MLIRContext *context) { |
| 970 | patterns.add<XOrINotCmpI, XOrIOfExtUI, XOrIOfExtSI>(context); |
| 971 | } |
| 972 | |
| 973 | //===----------------------------------------------------------------------===// |
| 974 | // NegFOp |
| 975 | //===----------------------------------------------------------------------===// |
| 976 | |
| 977 | OpFoldResult arith::NegFOp::fold(FoldAdaptor adaptor) { |
| 978 | /// negf(negf(x)) -> x |
| 979 | if (auto op = this->getOperand().getDefiningOp<arith::NegFOp>()) |
| 980 | return op.getOperand(); |
| 981 | return constFoldUnaryOp<FloatAttr>(adaptor.getOperands(), |
| 982 | [](const APFloat &a) { return -a; }); |
| 983 | } |
| 984 | |
| 985 | //===----------------------------------------------------------------------===// |
| 986 | // AddFOp |
| 987 | //===----------------------------------------------------------------------===// |
| 988 | |
| 989 | OpFoldResult arith::AddFOp::fold(FoldAdaptor adaptor) { |
| 990 | // addf(x, -0) -> x |
| 991 | if (matchPattern(adaptor.getRhs(), m_NegZeroFloat())) |
| 992 | return getLhs(); |
| 993 | |
| 994 | return constFoldBinaryOp<FloatAttr>( |
| 995 | adaptor.getOperands(), |
| 996 | [](const APFloat &a, const APFloat &b) { return a + b; }); |
| 997 | } |
| 998 | |
| 999 | //===----------------------------------------------------------------------===// |
| 1000 | // SubFOp |
| 1001 | //===----------------------------------------------------------------------===// |
| 1002 | |
| 1003 | OpFoldResult arith::SubFOp::fold(FoldAdaptor adaptor) { |
| 1004 | // subf(x, +0) -> x |
| 1005 | if (matchPattern(adaptor.getRhs(), m_PosZeroFloat())) |
| 1006 | return getLhs(); |
| 1007 | |
| 1008 | return constFoldBinaryOp<FloatAttr>( |
| 1009 | adaptor.getOperands(), |
| 1010 | [](const APFloat &a, const APFloat &b) { return a - b; }); |
| 1011 | } |
| 1012 | |
| 1013 | //===----------------------------------------------------------------------===// |
| 1014 | // MaximumFOp |
| 1015 | //===----------------------------------------------------------------------===// |
| 1016 | |
| 1017 | OpFoldResult arith::MaximumFOp::fold(FoldAdaptor adaptor) { |
| 1018 | // maximumf(x,x) -> x |
| 1019 | if (getLhs() == getRhs()) |
| 1020 | return getRhs(); |
| 1021 | |
| 1022 | // maximumf(x, -inf) -> x |
| 1023 | if (matchPattern(adaptor.getRhs(), m_NegInfFloat())) |
| 1024 | return getLhs(); |
| 1025 | |
| 1026 | return constFoldBinaryOp<FloatAttr>( |
| 1027 | adaptor.getOperands(), |
| 1028 | [](const APFloat &a, const APFloat &b) { return llvm::maximum(a, b); }); |
| 1029 | } |
| 1030 | |
| 1031 | //===----------------------------------------------------------------------===// |
| 1032 | // MaxNumFOp |
| 1033 | //===----------------------------------------------------------------------===// |
| 1034 | |
| 1035 | OpFoldResult arith::MaxNumFOp::fold(FoldAdaptor adaptor) { |
| 1036 | // maxnumf(x,x) -> x |
| 1037 | if (getLhs() == getRhs()) |
| 1038 | return getRhs(); |
| 1039 | |
| 1040 | // maxnumf(x, NaN) -> x |
| 1041 | if (matchPattern(adaptor.getRhs(), m_NaNFloat())) |
| 1042 | return getLhs(); |
| 1043 | |
| 1044 | return constFoldBinaryOp<FloatAttr>(adaptor.getOperands(), llvm::maxnum); |
| 1045 | } |
| 1046 | |
| 1047 | //===----------------------------------------------------------------------===// |
| 1048 | // MaxSIOp |
| 1049 | //===----------------------------------------------------------------------===// |
| 1050 | |
| 1051 | OpFoldResult MaxSIOp::fold(FoldAdaptor adaptor) { |
| 1052 | // maxsi(x,x) -> x |
| 1053 | if (getLhs() == getRhs()) |
| 1054 | return getRhs(); |
| 1055 | |
| 1056 | if (APInt intValue; |
| 1057 | matchPattern(adaptor.getRhs(), m_ConstantInt(&intValue))) { |
| 1058 | // maxsi(x,MAX_INT) -> MAX_INT |
| 1059 | if (intValue.isMaxSignedValue()) |
| 1060 | return getRhs(); |
| 1061 | // maxsi(x, MIN_INT) -> x |
| 1062 | if (intValue.isMinSignedValue()) |
| 1063 | return getLhs(); |
| 1064 | } |
| 1065 | |
| 1066 | return constFoldBinaryOp<IntegerAttr>(adaptor.getOperands(), |
| 1067 | [](const APInt &a, const APInt &b) { |
| 1068 | return llvm::APIntOps::smax(a, b); |
| 1069 | }); |
| 1070 | } |
| 1071 | |
| 1072 | //===----------------------------------------------------------------------===// |
| 1073 | // MaxUIOp |
| 1074 | //===----------------------------------------------------------------------===// |
| 1075 | |
| 1076 | OpFoldResult MaxUIOp::fold(FoldAdaptor adaptor) { |
| 1077 | // maxui(x,x) -> x |
| 1078 | if (getLhs() == getRhs()) |
| 1079 | return getRhs(); |
| 1080 | |
| 1081 | if (APInt intValue; |
| 1082 | matchPattern(adaptor.getRhs(), m_ConstantInt(&intValue))) { |
| 1083 | // maxui(x,MAX_INT) -> MAX_INT |
| 1084 | if (intValue.isMaxValue()) |
| 1085 | return getRhs(); |
| 1086 | // maxui(x, MIN_INT) -> x |
| 1087 | if (intValue.isMinValue()) |
| 1088 | return getLhs(); |
| 1089 | } |
| 1090 | |
| 1091 | return constFoldBinaryOp<IntegerAttr>(adaptor.getOperands(), |
| 1092 | [](const APInt &a, const APInt &b) { |
| 1093 | return llvm::APIntOps::umax(a, b); |
| 1094 | }); |
| 1095 | } |
| 1096 | |
| 1097 | //===----------------------------------------------------------------------===// |
| 1098 | // MinimumFOp |
| 1099 | //===----------------------------------------------------------------------===// |
| 1100 | |
| 1101 | OpFoldResult arith::MinimumFOp::fold(FoldAdaptor adaptor) { |
| 1102 | // minimumf(x,x) -> x |
| 1103 | if (getLhs() == getRhs()) |
| 1104 | return getRhs(); |
| 1105 | |
| 1106 | // minimumf(x, +inf) -> x |
| 1107 | if (matchPattern(adaptor.getRhs(), m_PosInfFloat())) |
| 1108 | return getLhs(); |
| 1109 | |
| 1110 | return constFoldBinaryOp<FloatAttr>( |
| 1111 | adaptor.getOperands(), |
| 1112 | [](const APFloat &a, const APFloat &b) { return llvm::minimum(a, b); }); |
| 1113 | } |
| 1114 | |
| 1115 | //===----------------------------------------------------------------------===// |
| 1116 | // MinNumFOp |
| 1117 | //===----------------------------------------------------------------------===// |
| 1118 | |
| 1119 | OpFoldResult arith::MinNumFOp::fold(FoldAdaptor adaptor) { |
| 1120 | // minnumf(x,x) -> x |
| 1121 | if (getLhs() == getRhs()) |
| 1122 | return getRhs(); |
| 1123 | |
| 1124 | // minnumf(x, NaN) -> x |
| 1125 | if (matchPattern(adaptor.getRhs(), m_NaNFloat())) |
| 1126 | return getLhs(); |
| 1127 | |
| 1128 | return constFoldBinaryOp<FloatAttr>( |
| 1129 | adaptor.getOperands(), |
| 1130 | [](const APFloat &a, const APFloat &b) { return llvm::minnum(a, b); }); |
| 1131 | } |
| 1132 | |
| 1133 | //===----------------------------------------------------------------------===// |
| 1134 | // MinSIOp |
| 1135 | //===----------------------------------------------------------------------===// |
| 1136 | |
| 1137 | OpFoldResult MinSIOp::fold(FoldAdaptor adaptor) { |
| 1138 | // minsi(x,x) -> x |
| 1139 | if (getLhs() == getRhs()) |
| 1140 | return getRhs(); |
| 1141 | |
| 1142 | if (APInt intValue; |
| 1143 | matchPattern(adaptor.getRhs(), m_ConstantInt(&intValue))) { |
| 1144 | // minsi(x,MIN_INT) -> MIN_INT |
| 1145 | if (intValue.isMinSignedValue()) |
| 1146 | return getRhs(); |
| 1147 | // minsi(x, MAX_INT) -> x |
| 1148 | if (intValue.isMaxSignedValue()) |
| 1149 | return getLhs(); |
| 1150 | } |
| 1151 | |
| 1152 | return constFoldBinaryOp<IntegerAttr>(adaptor.getOperands(), |
| 1153 | [](const APInt &a, const APInt &b) { |
| 1154 | return llvm::APIntOps::smin(a, b); |
| 1155 | }); |
| 1156 | } |
| 1157 | |
| 1158 | //===----------------------------------------------------------------------===// |
| 1159 | // MinUIOp |
| 1160 | //===----------------------------------------------------------------------===// |
| 1161 | |
| 1162 | OpFoldResult MinUIOp::fold(FoldAdaptor adaptor) { |
| 1163 | // minui(x,x) -> x |
| 1164 | if (getLhs() == getRhs()) |
| 1165 | return getRhs(); |
| 1166 | |
| 1167 | if (APInt intValue; |
| 1168 | matchPattern(adaptor.getRhs(), m_ConstantInt(&intValue))) { |
| 1169 | // minui(x,MIN_INT) -> MIN_INT |
| 1170 | if (intValue.isMinValue()) |
| 1171 | return getRhs(); |
| 1172 | // minui(x, MAX_INT) -> x |
| 1173 | if (intValue.isMaxValue()) |
| 1174 | return getLhs(); |
| 1175 | } |
| 1176 | |
| 1177 | return constFoldBinaryOp<IntegerAttr>(adaptor.getOperands(), |
| 1178 | [](const APInt &a, const APInt &b) { |
| 1179 | return llvm::APIntOps::umin(a, b); |
| 1180 | }); |
| 1181 | } |
| 1182 | |
| 1183 | //===----------------------------------------------------------------------===// |
| 1184 | // MulFOp |
| 1185 | //===----------------------------------------------------------------------===// |
| 1186 | |
| 1187 | OpFoldResult arith::MulFOp::fold(FoldAdaptor adaptor) { |
| 1188 | // mulf(x, 1) -> x |
| 1189 | if (matchPattern(adaptor.getRhs(), m_OneFloat())) |
| 1190 | return getLhs(); |
| 1191 | |
| 1192 | return constFoldBinaryOp<FloatAttr>( |
| 1193 | adaptor.getOperands(), |
| 1194 | [](const APFloat &a, const APFloat &b) { return a * b; }); |
| 1195 | } |
| 1196 | |
| 1197 | void arith::MulFOp::getCanonicalizationPatterns(RewritePatternSet &patterns, |
| 1198 | MLIRContext *context) { |
| 1199 | patterns.add<MulFOfNegF>(context); |
| 1200 | } |
| 1201 | |
| 1202 | //===----------------------------------------------------------------------===// |
| 1203 | // DivFOp |
| 1204 | //===----------------------------------------------------------------------===// |
| 1205 | |
| 1206 | OpFoldResult arith::DivFOp::fold(FoldAdaptor adaptor) { |
| 1207 | // divf(x, 1) -> x |
| 1208 | if (matchPattern(adaptor.getRhs(), m_OneFloat())) |
| 1209 | return getLhs(); |
| 1210 | |
| 1211 | return constFoldBinaryOp<FloatAttr>( |
| 1212 | adaptor.getOperands(), |
| 1213 | [](const APFloat &a, const APFloat &b) { return a / b; }); |
| 1214 | } |
| 1215 | |
| 1216 | void arith::DivFOp::getCanonicalizationPatterns(RewritePatternSet &patterns, |
| 1217 | MLIRContext *context) { |
| 1218 | patterns.add<DivFOfNegF>(context); |
| 1219 | } |
| 1220 | |
| 1221 | //===----------------------------------------------------------------------===// |
| 1222 | // RemFOp |
| 1223 | //===----------------------------------------------------------------------===// |
| 1224 | |
| 1225 | OpFoldResult arith::RemFOp::fold(FoldAdaptor adaptor) { |
| 1226 | return constFoldBinaryOp<FloatAttr>(adaptor.getOperands(), |
| 1227 | [](const APFloat &a, const APFloat &b) { |
| 1228 | APFloat result(a); |
| 1229 | // APFloat::mod() offers the remainder |
| 1230 | // behavior we want, i.e. the result has |
| 1231 | // the sign of LHS operand. |
| 1232 | (void)result.mod(b); |
| 1233 | return result; |
| 1234 | }); |
| 1235 | } |
| 1236 | |
| 1237 | //===----------------------------------------------------------------------===// |
| 1238 | // Utility functions for verifying cast ops |
| 1239 | //===----------------------------------------------------------------------===// |
| 1240 | |
| 1241 | template <typename... Types> |
| 1242 | using type_list = std::tuple<Types...> *; |
| 1243 | |
| 1244 | /// Returns a non-null type only if the provided type is one of the allowed |
| 1245 | /// types or one of the allowed shaped types of the allowed types. Returns the |
| 1246 | /// element type if a valid shaped type is provided. |
| 1247 | template <typename... ShapedTypes, typename... ElementTypes> |
| 1248 | static Type getUnderlyingType(Type type, type_list<ShapedTypes...>, |
| 1249 | type_list<ElementTypes...>) { |
| 1250 | if (llvm::isa<ShapedType>(type) && !llvm::isa<ShapedTypes...>(type)) |
| 1251 | return {}; |
| 1252 | |
| 1253 | auto underlyingType = getElementTypeOrSelf(type); |
| 1254 | if (!llvm::isa<ElementTypes...>(underlyingType)) |
| 1255 | return {}; |
| 1256 | |
| 1257 | return underlyingType; |
| 1258 | } |
| 1259 | |
| 1260 | /// Get allowed underlying types for vectors and tensors. |
| 1261 | template <typename... ElementTypes> |
| 1262 | static Type getTypeIfLike(Type type) { |
| 1263 | return getUnderlyingType(type, type_list<VectorType, TensorType>(), |
| 1264 | type_list<ElementTypes...>()); |
| 1265 | } |
| 1266 | |
| 1267 | /// Get allowed underlying types for vectors, tensors, and memrefs. |
| 1268 | template <typename... ElementTypes> |
| 1269 | static Type getTypeIfLikeOrMemRef(Type type) { |
| 1270 | return getUnderlyingType(type, |
| 1271 | type_list<VectorType, TensorType, MemRefType>(), |
| 1272 | type_list<ElementTypes...>()); |
| 1273 | } |
| 1274 | |
| 1275 | /// Return false if both types are ranked tensor with mismatching encoding. |
| 1276 | static bool hasSameEncoding(Type typeA, Type typeB) { |
| 1277 | auto rankedTensorA = dyn_cast<RankedTensorType>(typeA); |
| 1278 | auto rankedTensorB = dyn_cast<RankedTensorType>(typeB); |
| 1279 | if (!rankedTensorA || !rankedTensorB) |
| 1280 | return true; |
| 1281 | return rankedTensorA.getEncoding() == rankedTensorB.getEncoding(); |
| 1282 | } |
| 1283 | |
| 1284 | static bool areValidCastInputsAndOutputs(TypeRange inputs, TypeRange outputs) { |
| 1285 | if (inputs.size() != 1 || outputs.size() != 1) |
| 1286 | return false; |
| 1287 | if (!hasSameEncoding(typeA: inputs.front(), typeB: outputs.front())) |
| 1288 | return false; |
| 1289 | return succeeded(Result: verifyCompatibleShapes(types1: inputs.front(), types2: outputs.front())); |
| 1290 | } |
| 1291 | |
| 1292 | //===----------------------------------------------------------------------===// |
| 1293 | // Verifiers for integer and floating point extension/truncation ops |
| 1294 | //===----------------------------------------------------------------------===// |
| 1295 | |
| 1296 | // Extend ops can only extend to a wider type. |
| 1297 | template <typename ValType, typename Op> |
| 1298 | static LogicalResult verifyExtOp(Op op) { |
| 1299 | Type srcType = getElementTypeOrSelf(op.getIn().getType()); |
| 1300 | Type dstType = getElementTypeOrSelf(op.getType()); |
| 1301 | |
| 1302 | if (llvm::cast<ValType>(srcType).getWidth() >= |
| 1303 | llvm::cast<ValType>(dstType).getWidth()) |
| 1304 | return op.emitError("result type " ) |
| 1305 | << dstType << " must be wider than operand type " << srcType; |
| 1306 | |
| 1307 | return success(); |
| 1308 | } |
| 1309 | |
| 1310 | // Truncate ops can only truncate to a shorter type. |
| 1311 | template <typename ValType, typename Op> |
| 1312 | static LogicalResult verifyTruncateOp(Op op) { |
| 1313 | Type srcType = getElementTypeOrSelf(op.getIn().getType()); |
| 1314 | Type dstType = getElementTypeOrSelf(op.getType()); |
| 1315 | |
| 1316 | if (llvm::cast<ValType>(srcType).getWidth() <= |
| 1317 | llvm::cast<ValType>(dstType).getWidth()) |
| 1318 | return op.emitError("result type " ) |
| 1319 | << dstType << " must be shorter than operand type " << srcType; |
| 1320 | |
| 1321 | return success(); |
| 1322 | } |
| 1323 | |
| 1324 | /// Validate a cast that changes the width of a type. |
| 1325 | template <template <typename> class WidthComparator, typename... ElementTypes> |
| 1326 | static bool checkWidthChangeCast(TypeRange inputs, TypeRange outputs) { |
| 1327 | if (!areValidCastInputsAndOutputs(inputs, outputs)) |
| 1328 | return false; |
| 1329 | |
| 1330 | auto srcType = getTypeIfLike<ElementTypes...>(inputs.front()); |
| 1331 | auto dstType = getTypeIfLike<ElementTypes...>(outputs.front()); |
| 1332 | if (!srcType || !dstType) |
| 1333 | return false; |
| 1334 | |
| 1335 | return WidthComparator<unsigned>()(dstType.getIntOrFloatBitWidth(), |
| 1336 | srcType.getIntOrFloatBitWidth()); |
| 1337 | } |
| 1338 | |
| 1339 | /// Attempts to convert `sourceValue` to an APFloat value with |
| 1340 | /// `targetSemantics` and `roundingMode`, without any information loss. |
| 1341 | static FailureOr<APFloat> convertFloatValue( |
| 1342 | APFloat sourceValue, const llvm::fltSemantics &targetSemantics, |
| 1343 | llvm::RoundingMode roundingMode = llvm::RoundingMode::NearestTiesToEven) { |
| 1344 | bool losesInfo = false; |
| 1345 | auto status = sourceValue.convert(ToSemantics: targetSemantics, RM: roundingMode, losesInfo: &losesInfo); |
| 1346 | if (losesInfo || status != APFloat::opOK) |
| 1347 | return failure(); |
| 1348 | |
| 1349 | return sourceValue; |
| 1350 | } |
| 1351 | |
| 1352 | //===----------------------------------------------------------------------===// |
| 1353 | // ExtUIOp |
| 1354 | //===----------------------------------------------------------------------===// |
| 1355 | |
| 1356 | OpFoldResult arith::ExtUIOp::fold(FoldAdaptor adaptor) { |
| 1357 | if (auto lhs = getIn().getDefiningOp<ExtUIOp>()) { |
| 1358 | getInMutable().assign(lhs.getIn()); |
| 1359 | return getResult(); |
| 1360 | } |
| 1361 | |
| 1362 | Type resType = getElementTypeOrSelf(getType()); |
| 1363 | unsigned bitWidth = llvm::cast<IntegerType>(resType).getWidth(); |
| 1364 | return constFoldCastOp<IntegerAttr, IntegerAttr>( |
| 1365 | adaptor.getOperands(), getType(), |
| 1366 | [bitWidth](const APInt &a, bool &castStatus) { |
| 1367 | return a.zext(bitWidth); |
| 1368 | }); |
| 1369 | } |
| 1370 | |
| 1371 | bool arith::ExtUIOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { |
| 1372 | return checkWidthChangeCast<std::greater, IntegerType>(inputs, outputs); |
| 1373 | } |
| 1374 | |
| 1375 | LogicalResult arith::ExtUIOp::verify() { |
| 1376 | return verifyExtOp<IntegerType>(*this); |
| 1377 | } |
| 1378 | |
| 1379 | //===----------------------------------------------------------------------===// |
| 1380 | // ExtSIOp |
| 1381 | //===----------------------------------------------------------------------===// |
| 1382 | |
| 1383 | OpFoldResult arith::ExtSIOp::fold(FoldAdaptor adaptor) { |
| 1384 | if (auto lhs = getIn().getDefiningOp<ExtSIOp>()) { |
| 1385 | getInMutable().assign(lhs.getIn()); |
| 1386 | return getResult(); |
| 1387 | } |
| 1388 | |
| 1389 | Type resType = getElementTypeOrSelf(getType()); |
| 1390 | unsigned bitWidth = llvm::cast<IntegerType>(resType).getWidth(); |
| 1391 | return constFoldCastOp<IntegerAttr, IntegerAttr>( |
| 1392 | adaptor.getOperands(), getType(), |
| 1393 | [bitWidth](const APInt &a, bool &castStatus) { |
| 1394 | return a.sext(bitWidth); |
| 1395 | }); |
| 1396 | } |
| 1397 | |
| 1398 | bool arith::ExtSIOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { |
| 1399 | return checkWidthChangeCast<std::greater, IntegerType>(inputs, outputs); |
| 1400 | } |
| 1401 | |
| 1402 | void arith::ExtSIOp::getCanonicalizationPatterns(RewritePatternSet &patterns, |
| 1403 | MLIRContext *context) { |
| 1404 | patterns.add<ExtSIOfExtUI>(context); |
| 1405 | } |
| 1406 | |
| 1407 | LogicalResult arith::ExtSIOp::verify() { |
| 1408 | return verifyExtOp<IntegerType>(*this); |
| 1409 | } |
| 1410 | |
| 1411 | //===----------------------------------------------------------------------===// |
| 1412 | // ExtFOp |
| 1413 | //===----------------------------------------------------------------------===// |
| 1414 | |
| 1415 | /// Fold extension of float constants when there is no information loss due the |
| 1416 | /// difference in fp semantics. |
| 1417 | OpFoldResult arith::ExtFOp::fold(FoldAdaptor adaptor) { |
| 1418 | if (auto truncFOp = getOperand().getDefiningOp<TruncFOp>()) { |
| 1419 | if (truncFOp.getOperand().getType() == getType()) { |
| 1420 | arith::FastMathFlags truncFMF = |
| 1421 | truncFOp.getFastmath().value_or(arith::FastMathFlags::none); |
| 1422 | bool isTruncContract = |
| 1423 | bitEnumContainsAll(truncFMF, arith::FastMathFlags::contract); |
| 1424 | arith::FastMathFlags extFMF = |
| 1425 | getFastmath().value_or(arith::FastMathFlags::none); |
| 1426 | bool isExtContract = |
| 1427 | bitEnumContainsAll(extFMF, arith::FastMathFlags::contract); |
| 1428 | if (isTruncContract && isExtContract) { |
| 1429 | return truncFOp.getOperand(); |
| 1430 | } |
| 1431 | } |
| 1432 | } |
| 1433 | |
| 1434 | auto resElemType = cast<FloatType>(getElementTypeOrSelf(getType())); |
| 1435 | const llvm::fltSemantics &targetSemantics = resElemType.getFloatSemantics(); |
| 1436 | return constFoldCastOp<FloatAttr, FloatAttr>( |
| 1437 | adaptor.getOperands(), getType(), |
| 1438 | [&targetSemantics](const APFloat &a, bool &castStatus) { |
| 1439 | FailureOr<APFloat> result = convertFloatValue(a, targetSemantics); |
| 1440 | if (failed(result)) { |
| 1441 | castStatus = false; |
| 1442 | return a; |
| 1443 | } |
| 1444 | return *result; |
| 1445 | }); |
| 1446 | } |
| 1447 | |
| 1448 | bool arith::ExtFOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { |
| 1449 | return checkWidthChangeCast<std::greater, FloatType>(inputs, outputs); |
| 1450 | } |
| 1451 | |
| 1452 | LogicalResult arith::ExtFOp::verify() { return verifyExtOp<FloatType>(*this); } |
| 1453 | |
| 1454 | //===----------------------------------------------------------------------===// |
| 1455 | // ScalingExtFOp |
| 1456 | //===----------------------------------------------------------------------===// |
| 1457 | |
| 1458 | bool arith::ScalingExtFOp::areCastCompatible(TypeRange inputs, |
| 1459 | TypeRange outputs) { |
| 1460 | return checkWidthChangeCast<std::greater, FloatType>(inputs.front(), outputs); |
| 1461 | } |
| 1462 | |
| 1463 | LogicalResult arith::ScalingExtFOp::verify() { |
| 1464 | return verifyExtOp<FloatType>(*this); |
| 1465 | } |
| 1466 | |
| 1467 | //===----------------------------------------------------------------------===// |
| 1468 | // TruncIOp |
| 1469 | //===----------------------------------------------------------------------===// |
| 1470 | |
| 1471 | OpFoldResult arith::TruncIOp::fold(FoldAdaptor adaptor) { |
| 1472 | if (matchPattern(getOperand(), m_Op<arith::ExtUIOp>()) || |
| 1473 | matchPattern(getOperand(), m_Op<arith::ExtSIOp>())) { |
| 1474 | Value src = getOperand().getDefiningOp()->getOperand(0); |
| 1475 | Type srcType = getElementTypeOrSelf(src.getType()); |
| 1476 | Type dstType = getElementTypeOrSelf(getType()); |
| 1477 | // trunci(zexti(a)) -> trunci(a) |
| 1478 | // trunci(sexti(a)) -> trunci(a) |
| 1479 | if (llvm::cast<IntegerType>(srcType).getWidth() > |
| 1480 | llvm::cast<IntegerType>(dstType).getWidth()) { |
| 1481 | setOperand(src); |
| 1482 | return getResult(); |
| 1483 | } |
| 1484 | |
| 1485 | // trunci(zexti(a)) -> a |
| 1486 | // trunci(sexti(a)) -> a |
| 1487 | if (srcType == dstType) |
| 1488 | return src; |
| 1489 | } |
| 1490 | |
| 1491 | // trunci(trunci(a)) -> trunci(a)) |
| 1492 | if (matchPattern(getOperand(), m_Op<arith::TruncIOp>())) { |
| 1493 | setOperand(getOperand().getDefiningOp()->getOperand(0)); |
| 1494 | return getResult(); |
| 1495 | } |
| 1496 | |
| 1497 | Type resType = getElementTypeOrSelf(getType()); |
| 1498 | unsigned bitWidth = llvm::cast<IntegerType>(resType).getWidth(); |
| 1499 | return constFoldCastOp<IntegerAttr, IntegerAttr>( |
| 1500 | adaptor.getOperands(), getType(), |
| 1501 | [bitWidth](const APInt &a, bool &castStatus) { |
| 1502 | return a.trunc(bitWidth); |
| 1503 | }); |
| 1504 | } |
| 1505 | |
| 1506 | bool arith::TruncIOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { |
| 1507 | return checkWidthChangeCast<std::less, IntegerType>(inputs, outputs); |
| 1508 | } |
| 1509 | |
| 1510 | void arith::TruncIOp::getCanonicalizationPatterns(RewritePatternSet &patterns, |
| 1511 | MLIRContext *context) { |
| 1512 | patterns.add<TruncIExtSIToExtSI, TruncIExtUIToExtUI, TruncIShrSIToTrunciShrUI, |
| 1513 | TruncIShrUIMulIToMulSIExtended, TruncIShrUIMulIToMulUIExtended>( |
| 1514 | context); |
| 1515 | } |
| 1516 | |
| 1517 | LogicalResult arith::TruncIOp::verify() { |
| 1518 | return verifyTruncateOp<IntegerType>(*this); |
| 1519 | } |
| 1520 | |
| 1521 | //===----------------------------------------------------------------------===// |
| 1522 | // TruncFOp |
| 1523 | //===----------------------------------------------------------------------===// |
| 1524 | |
| 1525 | /// Perform safe const propagation for truncf, i.e., only propagate if FP value |
| 1526 | /// can be represented without precision loss. |
| 1527 | OpFoldResult arith::TruncFOp::fold(FoldAdaptor adaptor) { |
| 1528 | auto resElemType = cast<FloatType>(getElementTypeOrSelf(getType())); |
| 1529 | if (auto extOp = getOperand().getDefiningOp<arith::ExtFOp>()) { |
| 1530 | Value src = extOp.getIn(); |
| 1531 | auto srcType = cast<FloatType>(getElementTypeOrSelf(src.getType())); |
| 1532 | auto intermediateType = |
| 1533 | cast<FloatType>(getElementTypeOrSelf(extOp.getType())); |
| 1534 | // Check if the srcType is representable in the intermediateType. |
| 1535 | if (llvm::APFloatBase::isRepresentableBy( |
| 1536 | srcType.getFloatSemantics(), |
| 1537 | intermediateType.getFloatSemantics())) { |
| 1538 | // truncf(extf(a)) -> truncf(a) |
| 1539 | if (srcType.getWidth() > resElemType.getWidth()) { |
| 1540 | setOperand(src); |
| 1541 | return getResult(); |
| 1542 | } |
| 1543 | |
| 1544 | // truncf(extf(a)) -> a |
| 1545 | if (srcType == resElemType) |
| 1546 | return src; |
| 1547 | } |
| 1548 | } |
| 1549 | |
| 1550 | const llvm::fltSemantics &targetSemantics = resElemType.getFloatSemantics(); |
| 1551 | return constFoldCastOp<FloatAttr, FloatAttr>( |
| 1552 | adaptor.getOperands(), getType(), |
| 1553 | [this, &targetSemantics](const APFloat &a, bool &castStatus) { |
| 1554 | RoundingMode roundingMode = |
| 1555 | getRoundingmode().value_or(RoundingMode::to_nearest_even); |
| 1556 | llvm::RoundingMode llvmRoundingMode = |
| 1557 | convertArithRoundingModeToLLVMIR(roundingMode); |
| 1558 | FailureOr<APFloat> result = |
| 1559 | convertFloatValue(a, targetSemantics, llvmRoundingMode); |
| 1560 | if (failed(result)) { |
| 1561 | castStatus = false; |
| 1562 | return a; |
| 1563 | } |
| 1564 | return *result; |
| 1565 | }); |
| 1566 | } |
| 1567 | |
| 1568 | void arith::TruncFOp::getCanonicalizationPatterns(RewritePatternSet &patterns, |
| 1569 | MLIRContext *context) { |
| 1570 | patterns.add<TruncFSIToFPToSIToFP, TruncFUIToFPToUIToFP>(context); |
| 1571 | } |
| 1572 | |
| 1573 | bool arith::TruncFOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { |
| 1574 | return checkWidthChangeCast<std::less, FloatType>(inputs, outputs); |
| 1575 | } |
| 1576 | |
| 1577 | LogicalResult arith::TruncFOp::verify() { |
| 1578 | return verifyTruncateOp<FloatType>(*this); |
| 1579 | } |
| 1580 | |
| 1581 | //===----------------------------------------------------------------------===// |
| 1582 | // ScalingTruncFOp |
| 1583 | //===----------------------------------------------------------------------===// |
| 1584 | |
| 1585 | bool arith::ScalingTruncFOp::areCastCompatible(TypeRange inputs, |
| 1586 | TypeRange outputs) { |
| 1587 | return checkWidthChangeCast<std::less, FloatType>(inputs.front(), outputs); |
| 1588 | } |
| 1589 | |
| 1590 | LogicalResult arith::ScalingTruncFOp::verify() { |
| 1591 | return verifyTruncateOp<FloatType>(*this); |
| 1592 | } |
| 1593 | |
| 1594 | //===----------------------------------------------------------------------===// |
| 1595 | // AndIOp |
| 1596 | //===----------------------------------------------------------------------===// |
| 1597 | |
| 1598 | void arith::AndIOp::getCanonicalizationPatterns(RewritePatternSet &patterns, |
| 1599 | MLIRContext *context) { |
| 1600 | patterns.add<AndOfExtUI, AndOfExtSI>(context); |
| 1601 | } |
| 1602 | |
| 1603 | //===----------------------------------------------------------------------===// |
| 1604 | // OrIOp |
| 1605 | //===----------------------------------------------------------------------===// |
| 1606 | |
| 1607 | void arith::OrIOp::getCanonicalizationPatterns(RewritePatternSet &patterns, |
| 1608 | MLIRContext *context) { |
| 1609 | patterns.add<OrOfExtUI, OrOfExtSI>(context); |
| 1610 | } |
| 1611 | |
| 1612 | //===----------------------------------------------------------------------===// |
| 1613 | // Verifiers for casts between integers and floats. |
| 1614 | //===----------------------------------------------------------------------===// |
| 1615 | |
| 1616 | template <typename From, typename To> |
| 1617 | static bool checkIntFloatCast(TypeRange inputs, TypeRange outputs) { |
| 1618 | if (!areValidCastInputsAndOutputs(inputs, outputs)) |
| 1619 | return false; |
| 1620 | |
| 1621 | auto srcType = getTypeIfLike<From>(inputs.front()); |
| 1622 | auto dstType = getTypeIfLike<To>(outputs.back()); |
| 1623 | |
| 1624 | return srcType && dstType; |
| 1625 | } |
| 1626 | |
| 1627 | //===----------------------------------------------------------------------===// |
| 1628 | // UIToFPOp |
| 1629 | //===----------------------------------------------------------------------===// |
| 1630 | |
| 1631 | bool arith::UIToFPOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { |
| 1632 | return checkIntFloatCast<IntegerType, FloatType>(inputs, outputs); |
| 1633 | } |
| 1634 | |
| 1635 | OpFoldResult arith::UIToFPOp::fold(FoldAdaptor adaptor) { |
| 1636 | Type resEleType = getElementTypeOrSelf(getType()); |
| 1637 | return constFoldCastOp<IntegerAttr, FloatAttr>( |
| 1638 | adaptor.getOperands(), getType(), |
| 1639 | [&resEleType](const APInt &a, bool &castStatus) { |
| 1640 | FloatType floatTy = llvm::cast<FloatType>(resEleType); |
| 1641 | APFloat apf(floatTy.getFloatSemantics(), |
| 1642 | APInt::getZero(floatTy.getWidth())); |
| 1643 | apf.convertFromAPInt(a, /*IsSigned=*/false, |
| 1644 | APFloat::rmNearestTiesToEven); |
| 1645 | return apf; |
| 1646 | }); |
| 1647 | } |
| 1648 | |
| 1649 | //===----------------------------------------------------------------------===// |
| 1650 | // SIToFPOp |
| 1651 | //===----------------------------------------------------------------------===// |
| 1652 | |
| 1653 | bool arith::SIToFPOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { |
| 1654 | return checkIntFloatCast<IntegerType, FloatType>(inputs, outputs); |
| 1655 | } |
| 1656 | |
| 1657 | OpFoldResult arith::SIToFPOp::fold(FoldAdaptor adaptor) { |
| 1658 | Type resEleType = getElementTypeOrSelf(getType()); |
| 1659 | return constFoldCastOp<IntegerAttr, FloatAttr>( |
| 1660 | adaptor.getOperands(), getType(), |
| 1661 | [&resEleType](const APInt &a, bool &castStatus) { |
| 1662 | FloatType floatTy = llvm::cast<FloatType>(resEleType); |
| 1663 | APFloat apf(floatTy.getFloatSemantics(), |
| 1664 | APInt::getZero(floatTy.getWidth())); |
| 1665 | apf.convertFromAPInt(a, /*IsSigned=*/true, |
| 1666 | APFloat::rmNearestTiesToEven); |
| 1667 | return apf; |
| 1668 | }); |
| 1669 | } |
| 1670 | |
| 1671 | //===----------------------------------------------------------------------===// |
| 1672 | // FPToUIOp |
| 1673 | //===----------------------------------------------------------------------===// |
| 1674 | |
| 1675 | bool arith::FPToUIOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { |
| 1676 | return checkIntFloatCast<FloatType, IntegerType>(inputs, outputs); |
| 1677 | } |
| 1678 | |
| 1679 | OpFoldResult arith::FPToUIOp::fold(FoldAdaptor adaptor) { |
| 1680 | Type resType = getElementTypeOrSelf(getType()); |
| 1681 | unsigned bitWidth = llvm::cast<IntegerType>(resType).getWidth(); |
| 1682 | return constFoldCastOp<FloatAttr, IntegerAttr>( |
| 1683 | adaptor.getOperands(), getType(), |
| 1684 | [&bitWidth](const APFloat &a, bool &castStatus) { |
| 1685 | bool ignored; |
| 1686 | APSInt api(bitWidth, /*isUnsigned=*/true); |
| 1687 | castStatus = APFloat::opInvalidOp != |
| 1688 | a.convertToInteger(api, APFloat::rmTowardZero, &ignored); |
| 1689 | return api; |
| 1690 | }); |
| 1691 | } |
| 1692 | |
| 1693 | //===----------------------------------------------------------------------===// |
| 1694 | // FPToSIOp |
| 1695 | //===----------------------------------------------------------------------===// |
| 1696 | |
| 1697 | bool arith::FPToSIOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { |
| 1698 | return checkIntFloatCast<FloatType, IntegerType>(inputs, outputs); |
| 1699 | } |
| 1700 | |
| 1701 | OpFoldResult arith::FPToSIOp::fold(FoldAdaptor adaptor) { |
| 1702 | Type resType = getElementTypeOrSelf(getType()); |
| 1703 | unsigned bitWidth = llvm::cast<IntegerType>(resType).getWidth(); |
| 1704 | return constFoldCastOp<FloatAttr, IntegerAttr>( |
| 1705 | adaptor.getOperands(), getType(), |
| 1706 | [&bitWidth](const APFloat &a, bool &castStatus) { |
| 1707 | bool ignored; |
| 1708 | APSInt api(bitWidth, /*isUnsigned=*/false); |
| 1709 | castStatus = APFloat::opInvalidOp != |
| 1710 | a.convertToInteger(api, APFloat::rmTowardZero, &ignored); |
| 1711 | return api; |
| 1712 | }); |
| 1713 | } |
| 1714 | |
| 1715 | //===----------------------------------------------------------------------===// |
| 1716 | // IndexCastOp |
| 1717 | //===----------------------------------------------------------------------===// |
| 1718 | |
| 1719 | static bool areIndexCastCompatible(TypeRange inputs, TypeRange outputs) { |
| 1720 | if (!areValidCastInputsAndOutputs(inputs, outputs)) |
| 1721 | return false; |
| 1722 | |
| 1723 | auto srcType = getTypeIfLikeOrMemRef<IntegerType, IndexType>(type: inputs.front()); |
| 1724 | auto dstType = getTypeIfLikeOrMemRef<IntegerType, IndexType>(type: outputs.front()); |
| 1725 | if (!srcType || !dstType) |
| 1726 | return false; |
| 1727 | |
| 1728 | return (srcType.isIndex() && dstType.isSignlessInteger()) || |
| 1729 | (srcType.isSignlessInteger() && dstType.isIndex()); |
| 1730 | } |
| 1731 | |
| 1732 | bool arith::IndexCastOp::areCastCompatible(TypeRange inputs, |
| 1733 | TypeRange outputs) { |
| 1734 | return areIndexCastCompatible(inputs, outputs); |
| 1735 | } |
| 1736 | |
| 1737 | OpFoldResult arith::IndexCastOp::fold(FoldAdaptor adaptor) { |
| 1738 | // index_cast(constant) -> constant |
| 1739 | unsigned resultBitwidth = 64; // Default for index integer attributes. |
| 1740 | if (auto intTy = dyn_cast<IntegerType>(getElementTypeOrSelf(getType()))) |
| 1741 | resultBitwidth = intTy.getWidth(); |
| 1742 | |
| 1743 | return constFoldCastOp<IntegerAttr, IntegerAttr>( |
| 1744 | adaptor.getOperands(), getType(), |
| 1745 | [resultBitwidth](const APInt &a, bool & /*castStatus*/) { |
| 1746 | return a.sextOrTrunc(resultBitwidth); |
| 1747 | }); |
| 1748 | } |
| 1749 | |
| 1750 | void arith::IndexCastOp::getCanonicalizationPatterns( |
| 1751 | RewritePatternSet &patterns, MLIRContext *context) { |
| 1752 | patterns.add<IndexCastOfIndexCast, IndexCastOfExtSI>(context); |
| 1753 | } |
| 1754 | |
| 1755 | //===----------------------------------------------------------------------===// |
| 1756 | // IndexCastUIOp |
| 1757 | //===----------------------------------------------------------------------===// |
| 1758 | |
| 1759 | bool arith::IndexCastUIOp::areCastCompatible(TypeRange inputs, |
| 1760 | TypeRange outputs) { |
| 1761 | return areIndexCastCompatible(inputs, outputs); |
| 1762 | } |
| 1763 | |
| 1764 | OpFoldResult arith::IndexCastUIOp::fold(FoldAdaptor adaptor) { |
| 1765 | // index_castui(constant) -> constant |
| 1766 | unsigned resultBitwidth = 64; // Default for index integer attributes. |
| 1767 | if (auto intTy = dyn_cast<IntegerType>(getElementTypeOrSelf(getType()))) |
| 1768 | resultBitwidth = intTy.getWidth(); |
| 1769 | |
| 1770 | return constFoldCastOp<IntegerAttr, IntegerAttr>( |
| 1771 | adaptor.getOperands(), getType(), |
| 1772 | [resultBitwidth](const APInt &a, bool & /*castStatus*/) { |
| 1773 | return a.zextOrTrunc(resultBitwidth); |
| 1774 | }); |
| 1775 | } |
| 1776 | |
| 1777 | void arith::IndexCastUIOp::getCanonicalizationPatterns( |
| 1778 | RewritePatternSet &patterns, MLIRContext *context) { |
| 1779 | patterns.add<IndexCastUIOfIndexCastUI, IndexCastUIOfExtUI>(context); |
| 1780 | } |
| 1781 | |
| 1782 | //===----------------------------------------------------------------------===// |
| 1783 | // BitcastOp |
| 1784 | //===----------------------------------------------------------------------===// |
| 1785 | |
| 1786 | bool arith::BitcastOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { |
| 1787 | if (!areValidCastInputsAndOutputs(inputs, outputs)) |
| 1788 | return false; |
| 1789 | |
| 1790 | auto srcType = getTypeIfLikeOrMemRef<IntegerType, FloatType>(inputs.front()); |
| 1791 | auto dstType = getTypeIfLikeOrMemRef<IntegerType, FloatType>(outputs.front()); |
| 1792 | if (!srcType || !dstType) |
| 1793 | return false; |
| 1794 | |
| 1795 | return srcType.getIntOrFloatBitWidth() == dstType.getIntOrFloatBitWidth(); |
| 1796 | } |
| 1797 | |
| 1798 | OpFoldResult arith::BitcastOp::fold(FoldAdaptor adaptor) { |
| 1799 | auto resType = getType(); |
| 1800 | auto operand = adaptor.getIn(); |
| 1801 | if (!operand) |
| 1802 | return {}; |
| 1803 | |
| 1804 | /// Bitcast dense elements. |
| 1805 | if (auto denseAttr = llvm::dyn_cast_or_null<DenseElementsAttr>(operand)) |
| 1806 | return denseAttr.bitcast(llvm::cast<ShapedType>(resType).getElementType()); |
| 1807 | /// Other shaped types unhandled. |
| 1808 | if (llvm::isa<ShapedType>(resType)) |
| 1809 | return {}; |
| 1810 | |
| 1811 | /// Bitcast poison. |
| 1812 | if (llvm::isa<ub::PoisonAttr>(operand)) |
| 1813 | return ub::PoisonAttr::get(getContext()); |
| 1814 | |
| 1815 | /// Bitcast integer or float to integer or float. |
| 1816 | APInt bits = llvm::isa<FloatAttr>(operand) |
| 1817 | ? llvm::cast<FloatAttr>(operand).getValue().bitcastToAPInt() |
| 1818 | : llvm::cast<IntegerAttr>(operand).getValue(); |
| 1819 | assert(resType.getIntOrFloatBitWidth() == bits.getBitWidth() && |
| 1820 | "trying to fold on broken IR: operands have incompatible types" ); |
| 1821 | |
| 1822 | if (auto resFloatType = llvm::dyn_cast<FloatType>(resType)) |
| 1823 | return FloatAttr::get(resType, |
| 1824 | APFloat(resFloatType.getFloatSemantics(), bits)); |
| 1825 | return IntegerAttr::get(resType, bits); |
| 1826 | } |
| 1827 | |
| 1828 | void arith::BitcastOp::getCanonicalizationPatterns(RewritePatternSet &patterns, |
| 1829 | MLIRContext *context) { |
| 1830 | patterns.add<BitcastOfBitcast>(context); |
| 1831 | } |
| 1832 | |
| 1833 | //===----------------------------------------------------------------------===// |
| 1834 | // CmpIOp |
| 1835 | //===----------------------------------------------------------------------===// |
| 1836 | |
| 1837 | /// Compute `lhs` `pred` `rhs`, where `pred` is one of the known integer |
| 1838 | /// comparison predicates. |
| 1839 | bool mlir::arith::applyCmpPredicate(arith::CmpIPredicate predicate, |
| 1840 | const APInt &lhs, const APInt &rhs) { |
| 1841 | switch (predicate) { |
| 1842 | case arith::CmpIPredicate::eq: |
| 1843 | return lhs.eq(RHS: rhs); |
| 1844 | case arith::CmpIPredicate::ne: |
| 1845 | return lhs.ne(RHS: rhs); |
| 1846 | case arith::CmpIPredicate::slt: |
| 1847 | return lhs.slt(RHS: rhs); |
| 1848 | case arith::CmpIPredicate::sle: |
| 1849 | return lhs.sle(RHS: rhs); |
| 1850 | case arith::CmpIPredicate::sgt: |
| 1851 | return lhs.sgt(RHS: rhs); |
| 1852 | case arith::CmpIPredicate::sge: |
| 1853 | return lhs.sge(RHS: rhs); |
| 1854 | case arith::CmpIPredicate::ult: |
| 1855 | return lhs.ult(RHS: rhs); |
| 1856 | case arith::CmpIPredicate::ule: |
| 1857 | return lhs.ule(RHS: rhs); |
| 1858 | case arith::CmpIPredicate::ugt: |
| 1859 | return lhs.ugt(RHS: rhs); |
| 1860 | case arith::CmpIPredicate::uge: |
| 1861 | return lhs.uge(RHS: rhs); |
| 1862 | } |
| 1863 | llvm_unreachable("unknown cmpi predicate kind" ); |
| 1864 | } |
| 1865 | |
| 1866 | /// Returns true if the predicate is true for two equal operands. |
| 1867 | static bool applyCmpPredicateToEqualOperands(arith::CmpIPredicate predicate) { |
| 1868 | switch (predicate) { |
| 1869 | case arith::CmpIPredicate::eq: |
| 1870 | case arith::CmpIPredicate::sle: |
| 1871 | case arith::CmpIPredicate::sge: |
| 1872 | case arith::CmpIPredicate::ule: |
| 1873 | case arith::CmpIPredicate::uge: |
| 1874 | return true; |
| 1875 | case arith::CmpIPredicate::ne: |
| 1876 | case arith::CmpIPredicate::slt: |
| 1877 | case arith::CmpIPredicate::sgt: |
| 1878 | case arith::CmpIPredicate::ult: |
| 1879 | case arith::CmpIPredicate::ugt: |
| 1880 | return false; |
| 1881 | } |
| 1882 | llvm_unreachable("unknown cmpi predicate kind" ); |
| 1883 | } |
| 1884 | |
| 1885 | static std::optional<int64_t> getIntegerWidth(Type t) { |
| 1886 | if (auto intType = llvm::dyn_cast<IntegerType>(t)) { |
| 1887 | return intType.getWidth(); |
| 1888 | } |
| 1889 | if (auto vectorIntType = llvm::dyn_cast<VectorType>(t)) { |
| 1890 | return llvm::cast<IntegerType>(vectorIntType.getElementType()).getWidth(); |
| 1891 | } |
| 1892 | return std::nullopt; |
| 1893 | } |
| 1894 | |
| 1895 | OpFoldResult arith::CmpIOp::fold(FoldAdaptor adaptor) { |
| 1896 | // cmpi(pred, x, x) |
| 1897 | if (getLhs() == getRhs()) { |
| 1898 | auto val = applyCmpPredicateToEqualOperands(getPredicate()); |
| 1899 | return getBoolAttribute(getType(), val); |
| 1900 | } |
| 1901 | |
| 1902 | if (matchPattern(adaptor.getRhs(), m_Zero())) { |
| 1903 | if (auto extOp = getLhs().getDefiningOp<ExtSIOp>()) { |
| 1904 | // extsi(%x : i1 -> iN) != 0 -> %x |
| 1905 | std::optional<int64_t> integerWidth = |
| 1906 | getIntegerWidth(extOp.getOperand().getType()); |
| 1907 | if (integerWidth && integerWidth.value() == 1 && |
| 1908 | getPredicate() == arith::CmpIPredicate::ne) |
| 1909 | return extOp.getOperand(); |
| 1910 | } |
| 1911 | if (auto extOp = getLhs().getDefiningOp<ExtUIOp>()) { |
| 1912 | // extui(%x : i1 -> iN) != 0 -> %x |
| 1913 | std::optional<int64_t> integerWidth = |
| 1914 | getIntegerWidth(extOp.getOperand().getType()); |
| 1915 | if (integerWidth && integerWidth.value() == 1 && |
| 1916 | getPredicate() == arith::CmpIPredicate::ne) |
| 1917 | return extOp.getOperand(); |
| 1918 | } |
| 1919 | |
| 1920 | // arith.cmpi ne, %val, %zero : i1 -> %val |
| 1921 | if (getElementTypeOrSelf(getLhs().getType()).isInteger(1) && |
| 1922 | getPredicate() == arith::CmpIPredicate::ne) |
| 1923 | return getLhs(); |
| 1924 | } |
| 1925 | |
| 1926 | if (matchPattern(adaptor.getRhs(), m_One())) { |
| 1927 | // arith.cmpi eq, %val, %one : i1 -> %val |
| 1928 | if (getElementTypeOrSelf(getLhs().getType()).isInteger(1) && |
| 1929 | getPredicate() == arith::CmpIPredicate::eq) |
| 1930 | return getLhs(); |
| 1931 | } |
| 1932 | |
| 1933 | // Move constant to the right side. |
| 1934 | if (adaptor.getLhs() && !adaptor.getRhs()) { |
| 1935 | // Do not use invertPredicate, as it will change eq to ne and vice versa. |
| 1936 | using Pred = CmpIPredicate; |
| 1937 | const std::pair<Pred, Pred> invPreds[] = { |
| 1938 | {Pred::slt, Pred::sgt}, {Pred::sgt, Pred::slt}, {Pred::sle, Pred::sge}, |
| 1939 | {Pred::sge, Pred::sle}, {Pred::ult, Pred::ugt}, {Pred::ugt, Pred::ult}, |
| 1940 | {Pred::ule, Pred::uge}, {Pred::uge, Pred::ule}, {Pred::eq, Pred::eq}, |
| 1941 | {Pred::ne, Pred::ne}, |
| 1942 | }; |
| 1943 | Pred origPred = getPredicate(); |
| 1944 | for (auto pred : invPreds) { |
| 1945 | if (origPred == pred.first) { |
| 1946 | setPredicate(pred.second); |
| 1947 | Value lhs = getLhs(); |
| 1948 | Value rhs = getRhs(); |
| 1949 | getLhsMutable().assign(rhs); |
| 1950 | getRhsMutable().assign(lhs); |
| 1951 | return getResult(); |
| 1952 | } |
| 1953 | } |
| 1954 | llvm_unreachable("unknown cmpi predicate kind" ); |
| 1955 | } |
| 1956 | |
| 1957 | // We are moving constants to the right side; So if lhs is constant rhs is |
| 1958 | // guaranteed to be a constant. |
| 1959 | if (auto lhs = llvm::dyn_cast_if_present<TypedAttr>(adaptor.getLhs())) { |
| 1960 | return constFoldBinaryOp<IntegerAttr>( |
| 1961 | adaptor.getOperands(), getI1SameShape(lhs.getType()), |
| 1962 | [pred = getPredicate()](const APInt &lhs, const APInt &rhs) { |
| 1963 | return APInt(1, |
| 1964 | static_cast<int64_t>(applyCmpPredicate(pred, lhs, rhs))); |
| 1965 | }); |
| 1966 | } |
| 1967 | |
| 1968 | return {}; |
| 1969 | } |
| 1970 | |
| 1971 | void arith::CmpIOp::getCanonicalizationPatterns(RewritePatternSet &patterns, |
| 1972 | MLIRContext *context) { |
| 1973 | patterns.insert<CmpIExtSI, CmpIExtUI>(context); |
| 1974 | } |
| 1975 | |
| 1976 | //===----------------------------------------------------------------------===// |
| 1977 | // CmpFOp |
| 1978 | //===----------------------------------------------------------------------===// |
| 1979 | |
| 1980 | /// Compute `lhs` `pred` `rhs`, where `pred` is one of the known floating point |
| 1981 | /// comparison predicates. |
| 1982 | bool mlir::arith::applyCmpPredicate(arith::CmpFPredicate predicate, |
| 1983 | const APFloat &lhs, const APFloat &rhs) { |
| 1984 | auto cmpResult = lhs.compare(RHS: rhs); |
| 1985 | switch (predicate) { |
| 1986 | case arith::CmpFPredicate::AlwaysFalse: |
| 1987 | return false; |
| 1988 | case arith::CmpFPredicate::OEQ: |
| 1989 | return cmpResult == APFloat::cmpEqual; |
| 1990 | case arith::CmpFPredicate::OGT: |
| 1991 | return cmpResult == APFloat::cmpGreaterThan; |
| 1992 | case arith::CmpFPredicate::OGE: |
| 1993 | return cmpResult == APFloat::cmpGreaterThan || |
| 1994 | cmpResult == APFloat::cmpEqual; |
| 1995 | case arith::CmpFPredicate::OLT: |
| 1996 | return cmpResult == APFloat::cmpLessThan; |
| 1997 | case arith::CmpFPredicate::OLE: |
| 1998 | return cmpResult == APFloat::cmpLessThan || cmpResult == APFloat::cmpEqual; |
| 1999 | case arith::CmpFPredicate::ONE: |
| 2000 | return cmpResult != APFloat::cmpUnordered && cmpResult != APFloat::cmpEqual; |
| 2001 | case arith::CmpFPredicate::ORD: |
| 2002 | return cmpResult != APFloat::cmpUnordered; |
| 2003 | case arith::CmpFPredicate::UEQ: |
| 2004 | return cmpResult == APFloat::cmpUnordered || cmpResult == APFloat::cmpEqual; |
| 2005 | case arith::CmpFPredicate::UGT: |
| 2006 | return cmpResult == APFloat::cmpUnordered || |
| 2007 | cmpResult == APFloat::cmpGreaterThan; |
| 2008 | case arith::CmpFPredicate::UGE: |
| 2009 | return cmpResult == APFloat::cmpUnordered || |
| 2010 | cmpResult == APFloat::cmpGreaterThan || |
| 2011 | cmpResult == APFloat::cmpEqual; |
| 2012 | case arith::CmpFPredicate::ULT: |
| 2013 | return cmpResult == APFloat::cmpUnordered || |
| 2014 | cmpResult == APFloat::cmpLessThan; |
| 2015 | case arith::CmpFPredicate::ULE: |
| 2016 | return cmpResult == APFloat::cmpUnordered || |
| 2017 | cmpResult == APFloat::cmpLessThan || cmpResult == APFloat::cmpEqual; |
| 2018 | case arith::CmpFPredicate::UNE: |
| 2019 | return cmpResult != APFloat::cmpEqual; |
| 2020 | case arith::CmpFPredicate::UNO: |
| 2021 | return cmpResult == APFloat::cmpUnordered; |
| 2022 | case arith::CmpFPredicate::AlwaysTrue: |
| 2023 | return true; |
| 2024 | } |
| 2025 | llvm_unreachable("unknown cmpf predicate kind" ); |
| 2026 | } |
| 2027 | |
| 2028 | OpFoldResult arith::CmpFOp::fold(FoldAdaptor adaptor) { |
| 2029 | auto lhs = llvm::dyn_cast_if_present<FloatAttr>(adaptor.getLhs()); |
| 2030 | auto rhs = llvm::dyn_cast_if_present<FloatAttr>(adaptor.getRhs()); |
| 2031 | |
| 2032 | // If one operand is NaN, making them both NaN does not change the result. |
| 2033 | if (lhs && lhs.getValue().isNaN()) |
| 2034 | rhs = lhs; |
| 2035 | if (rhs && rhs.getValue().isNaN()) |
| 2036 | lhs = rhs; |
| 2037 | |
| 2038 | if (!lhs || !rhs) |
| 2039 | return {}; |
| 2040 | |
| 2041 | auto val = applyCmpPredicate(getPredicate(), lhs.getValue(), rhs.getValue()); |
| 2042 | return BoolAttr::get(getContext(), val); |
| 2043 | } |
| 2044 | |
| 2045 | class CmpFIntToFPConst final : public OpRewritePattern<CmpFOp> { |
| 2046 | public: |
| 2047 | using OpRewritePattern<CmpFOp>::OpRewritePattern; |
| 2048 | |
| 2049 | static CmpIPredicate convertToIntegerPredicate(CmpFPredicate pred, |
| 2050 | bool isUnsigned) { |
| 2051 | using namespace arith; |
| 2052 | switch (pred) { |
| 2053 | case CmpFPredicate::UEQ: |
| 2054 | case CmpFPredicate::OEQ: |
| 2055 | return CmpIPredicate::eq; |
| 2056 | case CmpFPredicate::UGT: |
| 2057 | case CmpFPredicate::OGT: |
| 2058 | return isUnsigned ? CmpIPredicate::ugt : CmpIPredicate::sgt; |
| 2059 | case CmpFPredicate::UGE: |
| 2060 | case CmpFPredicate::OGE: |
| 2061 | return isUnsigned ? CmpIPredicate::uge : CmpIPredicate::sge; |
| 2062 | case CmpFPredicate::ULT: |
| 2063 | case CmpFPredicate::OLT: |
| 2064 | return isUnsigned ? CmpIPredicate::ult : CmpIPredicate::slt; |
| 2065 | case CmpFPredicate::ULE: |
| 2066 | case CmpFPredicate::OLE: |
| 2067 | return isUnsigned ? CmpIPredicate::ule : CmpIPredicate::sle; |
| 2068 | case CmpFPredicate::UNE: |
| 2069 | case CmpFPredicate::ONE: |
| 2070 | return CmpIPredicate::ne; |
| 2071 | default: |
| 2072 | llvm_unreachable("Unexpected predicate!" ); |
| 2073 | } |
| 2074 | } |
| 2075 | |
| 2076 | LogicalResult matchAndRewrite(CmpFOp op, |
| 2077 | PatternRewriter &rewriter) const override { |
| 2078 | FloatAttr flt; |
| 2079 | if (!matchPattern(op.getRhs(), m_Constant(&flt))) |
| 2080 | return failure(); |
| 2081 | |
| 2082 | const APFloat &rhs = flt.getValue(); |
| 2083 | |
| 2084 | // Don't attempt to fold a nan. |
| 2085 | if (rhs.isNaN()) |
| 2086 | return failure(); |
| 2087 | |
| 2088 | // Get the width of the mantissa. We don't want to hack on conversions that |
| 2089 | // might lose information from the integer, e.g. "i64 -> float" |
| 2090 | FloatType floatTy = llvm::cast<FloatType>(op.getRhs().getType()); |
| 2091 | int mantissaWidth = floatTy.getFPMantissaWidth(); |
| 2092 | if (mantissaWidth <= 0) |
| 2093 | return failure(); |
| 2094 | |
| 2095 | bool isUnsigned; |
| 2096 | Value intVal; |
| 2097 | |
| 2098 | if (auto si = op.getLhs().getDefiningOp<SIToFPOp>()) { |
| 2099 | isUnsigned = false; |
| 2100 | intVal = si.getIn(); |
| 2101 | } else if (auto ui = op.getLhs().getDefiningOp<UIToFPOp>()) { |
| 2102 | isUnsigned = true; |
| 2103 | intVal = ui.getIn(); |
| 2104 | } else { |
| 2105 | return failure(); |
| 2106 | } |
| 2107 | |
| 2108 | // Check to see that the input is converted from an integer type that is |
| 2109 | // small enough that preserves all bits. |
| 2110 | auto intTy = llvm::cast<IntegerType>(intVal.getType()); |
| 2111 | auto intWidth = intTy.getWidth(); |
| 2112 | |
| 2113 | // Number of bits representing values, as opposed to the sign |
| 2114 | auto valueBits = isUnsigned ? intWidth : (intWidth - 1); |
| 2115 | |
| 2116 | // Following test does NOT adjust intWidth downwards for signed inputs, |
| 2117 | // because the most negative value still requires all the mantissa bits |
| 2118 | // to distinguish it from one less than that value. |
| 2119 | if ((int)intWidth > mantissaWidth) { |
| 2120 | // Conversion would lose accuracy. Check if loss can impact comparison. |
| 2121 | int exponent = ilogb(Arg: rhs); |
| 2122 | if (exponent == APFloat::IEK_Inf) { |
| 2123 | int maxExponent = ilogb(Arg: APFloat::getLargest(Sem: rhs.getSemantics())); |
| 2124 | if (maxExponent < (int)valueBits) { |
| 2125 | // Conversion could create infinity. |
| 2126 | return failure(); |
| 2127 | } |
| 2128 | } else { |
| 2129 | // Note that if rhs is zero or NaN, then Exp is negative |
| 2130 | // and first condition is trivially false. |
| 2131 | if (mantissaWidth <= exponent && exponent <= (int)valueBits) { |
| 2132 | // Conversion could affect comparison. |
| 2133 | return failure(); |
| 2134 | } |
| 2135 | } |
| 2136 | } |
| 2137 | |
| 2138 | // Convert to equivalent cmpi predicate |
| 2139 | CmpIPredicate pred; |
| 2140 | switch (op.getPredicate()) { |
| 2141 | case CmpFPredicate::ORD: |
| 2142 | // Int to fp conversion doesn't create a nan (ord checks neither is a nan) |
| 2143 | rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, |
| 2144 | /*width=*/1); |
| 2145 | return success(); |
| 2146 | case CmpFPredicate::UNO: |
| 2147 | // Int to fp conversion doesn't create a nan (uno checks either is a nan) |
| 2148 | rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, |
| 2149 | /*width=*/1); |
| 2150 | return success(); |
| 2151 | default: |
| 2152 | pred = convertToIntegerPredicate(op.getPredicate(), isUnsigned); |
| 2153 | break; |
| 2154 | } |
| 2155 | |
| 2156 | if (!isUnsigned) { |
| 2157 | // If the rhs value is > SignedMax, fold the comparison. This handles |
| 2158 | // +INF and large values. |
| 2159 | APFloat signedMax(rhs.getSemantics()); |
| 2160 | signedMax.convertFromAPInt(Input: APInt::getSignedMaxValue(numBits: intWidth), IsSigned: true, |
| 2161 | RM: APFloat::rmNearestTiesToEven); |
| 2162 | if (signedMax < rhs) { // smax < 13123.0 |
| 2163 | if (pred == CmpIPredicate::ne || pred == CmpIPredicate::slt || |
| 2164 | pred == CmpIPredicate::sle) |
| 2165 | rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, |
| 2166 | /*width=*/1); |
| 2167 | else |
| 2168 | rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, |
| 2169 | /*width=*/1); |
| 2170 | return success(); |
| 2171 | } |
| 2172 | } else { |
| 2173 | // If the rhs value is > UnsignedMax, fold the comparison. This handles |
| 2174 | // +INF and large values. |
| 2175 | APFloat unsignedMax(rhs.getSemantics()); |
| 2176 | unsignedMax.convertFromAPInt(Input: APInt::getMaxValue(numBits: intWidth), IsSigned: false, |
| 2177 | RM: APFloat::rmNearestTiesToEven); |
| 2178 | if (unsignedMax < rhs) { // umax < 13123.0 |
| 2179 | if (pred == CmpIPredicate::ne || pred == CmpIPredicate::ult || |
| 2180 | pred == CmpIPredicate::ule) |
| 2181 | rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, |
| 2182 | /*width=*/1); |
| 2183 | else |
| 2184 | rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, |
| 2185 | /*width=*/1); |
| 2186 | return success(); |
| 2187 | } |
| 2188 | } |
| 2189 | |
| 2190 | if (!isUnsigned) { |
| 2191 | // See if the rhs value is < SignedMin. |
| 2192 | APFloat signedMin(rhs.getSemantics()); |
| 2193 | signedMin.convertFromAPInt(Input: APInt::getSignedMinValue(numBits: intWidth), IsSigned: true, |
| 2194 | RM: APFloat::rmNearestTiesToEven); |
| 2195 | if (signedMin > rhs) { // smin > 12312.0 |
| 2196 | if (pred == CmpIPredicate::ne || pred == CmpIPredicate::sgt || |
| 2197 | pred == CmpIPredicate::sge) |
| 2198 | rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, |
| 2199 | /*width=*/1); |
| 2200 | else |
| 2201 | rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, |
| 2202 | /*width=*/1); |
| 2203 | return success(); |
| 2204 | } |
| 2205 | } else { |
| 2206 | // See if the rhs value is < UnsignedMin. |
| 2207 | APFloat unsignedMin(rhs.getSemantics()); |
| 2208 | unsignedMin.convertFromAPInt(Input: APInt::getMinValue(numBits: intWidth), IsSigned: false, |
| 2209 | RM: APFloat::rmNearestTiesToEven); |
| 2210 | if (unsignedMin > rhs) { // umin > 12312.0 |
| 2211 | if (pred == CmpIPredicate::ne || pred == CmpIPredicate::ugt || |
| 2212 | pred == CmpIPredicate::uge) |
| 2213 | rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, |
| 2214 | /*width=*/1); |
| 2215 | else |
| 2216 | rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, |
| 2217 | /*width=*/1); |
| 2218 | return success(); |
| 2219 | } |
| 2220 | } |
| 2221 | |
| 2222 | // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or |
| 2223 | // [0, UMAX], but it may still be fractional. See if it is fractional by |
| 2224 | // casting the FP value to the integer value and back, checking for |
| 2225 | // equality. Don't do this for zero, because -0.0 is not fractional. |
| 2226 | bool ignored; |
| 2227 | APSInt rhsInt(intWidth, isUnsigned); |
| 2228 | if (APFloat::opInvalidOp == |
| 2229 | rhs.convertToInteger(Result&: rhsInt, RM: APFloat::rmTowardZero, IsExact: &ignored)) { |
| 2230 | // Undefined behavior invoked - the destination type can't represent |
| 2231 | // the input constant. |
| 2232 | return failure(); |
| 2233 | } |
| 2234 | |
| 2235 | if (!rhs.isZero()) { |
| 2236 | APFloat apf(floatTy.getFloatSemantics(), |
| 2237 | APInt::getZero(numBits: floatTy.getWidth())); |
| 2238 | apf.convertFromAPInt(Input: rhsInt, IsSigned: !isUnsigned, RM: APFloat::rmNearestTiesToEven); |
| 2239 | |
| 2240 | bool equal = apf == rhs; |
| 2241 | if (!equal) { |
| 2242 | // If we had a comparison against a fractional value, we have to adjust |
| 2243 | // the compare predicate and sometimes the value. rhsInt is rounded |
| 2244 | // towards zero at this point. |
| 2245 | switch (pred) { |
| 2246 | case CmpIPredicate::ne: // (float)int != 4.4 --> true |
| 2247 | rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, |
| 2248 | /*width=*/1); |
| 2249 | return success(); |
| 2250 | case CmpIPredicate::eq: // (float)int == 4.4 --> false |
| 2251 | rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, |
| 2252 | /*width=*/1); |
| 2253 | return success(); |
| 2254 | case CmpIPredicate::ule: |
| 2255 | // (float)int <= 4.4 --> int <= 4 |
| 2256 | // (float)int <= -4.4 --> false |
| 2257 | if (rhs.isNegative()) { |
| 2258 | rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, |
| 2259 | /*width=*/1); |
| 2260 | return success(); |
| 2261 | } |
| 2262 | break; |
| 2263 | case CmpIPredicate::sle: |
| 2264 | // (float)int <= 4.4 --> int <= 4 |
| 2265 | // (float)int <= -4.4 --> int < -4 |
| 2266 | if (rhs.isNegative()) |
| 2267 | pred = CmpIPredicate::slt; |
| 2268 | break; |
| 2269 | case CmpIPredicate::ult: |
| 2270 | // (float)int < -4.4 --> false |
| 2271 | // (float)int < 4.4 --> int <= 4 |
| 2272 | if (rhs.isNegative()) { |
| 2273 | rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, |
| 2274 | /*width=*/1); |
| 2275 | return success(); |
| 2276 | } |
| 2277 | pred = CmpIPredicate::ule; |
| 2278 | break; |
| 2279 | case CmpIPredicate::slt: |
| 2280 | // (float)int < -4.4 --> int < -4 |
| 2281 | // (float)int < 4.4 --> int <= 4 |
| 2282 | if (!rhs.isNegative()) |
| 2283 | pred = CmpIPredicate::sle; |
| 2284 | break; |
| 2285 | case CmpIPredicate::ugt: |
| 2286 | // (float)int > 4.4 --> int > 4 |
| 2287 | // (float)int > -4.4 --> true |
| 2288 | if (rhs.isNegative()) { |
| 2289 | rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, |
| 2290 | /*width=*/1); |
| 2291 | return success(); |
| 2292 | } |
| 2293 | break; |
| 2294 | case CmpIPredicate::sgt: |
| 2295 | // (float)int > 4.4 --> int > 4 |
| 2296 | // (float)int > -4.4 --> int >= -4 |
| 2297 | if (rhs.isNegative()) |
| 2298 | pred = CmpIPredicate::sge; |
| 2299 | break; |
| 2300 | case CmpIPredicate::uge: |
| 2301 | // (float)int >= -4.4 --> true |
| 2302 | // (float)int >= 4.4 --> int > 4 |
| 2303 | if (rhs.isNegative()) { |
| 2304 | rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, |
| 2305 | /*width=*/1); |
| 2306 | return success(); |
| 2307 | } |
| 2308 | pred = CmpIPredicate::ugt; |
| 2309 | break; |
| 2310 | case CmpIPredicate::sge: |
| 2311 | // (float)int >= -4.4 --> int >= -4 |
| 2312 | // (float)int >= 4.4 --> int > 4 |
| 2313 | if (!rhs.isNegative()) |
| 2314 | pred = CmpIPredicate::sgt; |
| 2315 | break; |
| 2316 | } |
| 2317 | } |
| 2318 | } |
| 2319 | |
| 2320 | // Lower this FP comparison into an appropriate integer version of the |
| 2321 | // comparison. |
| 2322 | rewriter.replaceOpWithNewOp<CmpIOp>( |
| 2323 | op, pred, intVal, |
| 2324 | rewriter.create<ConstantOp>( |
| 2325 | op.getLoc(), intVal.getType(), |
| 2326 | rewriter.getIntegerAttr(intVal.getType(), rhsInt))); |
| 2327 | return success(); |
| 2328 | } |
| 2329 | }; |
| 2330 | |
| 2331 | void arith::CmpFOp::getCanonicalizationPatterns(RewritePatternSet &patterns, |
| 2332 | MLIRContext *context) { |
| 2333 | patterns.insert<CmpFIntToFPConst>(context); |
| 2334 | } |
| 2335 | |
| 2336 | //===----------------------------------------------------------------------===// |
| 2337 | // SelectOp |
| 2338 | //===----------------------------------------------------------------------===// |
| 2339 | |
| 2340 | // select %arg, %c1, %c0 => extui %arg |
| 2341 | struct SelectToExtUI : public OpRewritePattern<arith::SelectOp> { |
| 2342 | using OpRewritePattern<arith::SelectOp>::OpRewritePattern; |
| 2343 | |
| 2344 | LogicalResult matchAndRewrite(arith::SelectOp op, |
| 2345 | PatternRewriter &rewriter) const override { |
| 2346 | // Cannot extui i1 to i1, or i1 to f32 |
| 2347 | if (!llvm::isa<IntegerType>(op.getType()) || op.getType().isInteger(1)) |
| 2348 | return failure(); |
| 2349 | |
| 2350 | // select %x, c1, %c0 => extui %arg |
| 2351 | if (matchPattern(op.getTrueValue(), m_One()) && |
| 2352 | matchPattern(op.getFalseValue(), m_Zero())) { |
| 2353 | rewriter.replaceOpWithNewOp<arith::ExtUIOp>(op, op.getType(), |
| 2354 | op.getCondition()); |
| 2355 | return success(); |
| 2356 | } |
| 2357 | |
| 2358 | // select %x, c0, %c1 => extui (xor %arg, true) |
| 2359 | if (matchPattern(op.getTrueValue(), m_Zero()) && |
| 2360 | matchPattern(op.getFalseValue(), m_One())) { |
| 2361 | rewriter.replaceOpWithNewOp<arith::ExtUIOp>( |
| 2362 | op, op.getType(), |
| 2363 | rewriter.create<arith::XOrIOp>( |
| 2364 | op.getLoc(), op.getCondition(), |
| 2365 | rewriter.create<arith::ConstantIntOp>( |
| 2366 | op.getLoc(), 1, op.getCondition().getType()))); |
| 2367 | return success(); |
| 2368 | } |
| 2369 | |
| 2370 | return failure(); |
| 2371 | } |
| 2372 | }; |
| 2373 | |
| 2374 | void arith::SelectOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 2375 | MLIRContext *context) { |
| 2376 | results.add<RedundantSelectFalse, RedundantSelectTrue, SelectNotCond, |
| 2377 | SelectI1ToNot, SelectToExtUI>(context); |
| 2378 | } |
| 2379 | |
| 2380 | OpFoldResult arith::SelectOp::fold(FoldAdaptor adaptor) { |
| 2381 | Value trueVal = getTrueValue(); |
| 2382 | Value falseVal = getFalseValue(); |
| 2383 | if (trueVal == falseVal) |
| 2384 | return trueVal; |
| 2385 | |
| 2386 | Value condition = getCondition(); |
| 2387 | |
| 2388 | // select true, %0, %1 => %0 |
| 2389 | if (matchPattern(adaptor.getCondition(), m_One())) |
| 2390 | return trueVal; |
| 2391 | |
| 2392 | // select false, %0, %1 => %1 |
| 2393 | if (matchPattern(adaptor.getCondition(), m_Zero())) |
| 2394 | return falseVal; |
| 2395 | |
| 2396 | // If either operand is fully poisoned, return the other. |
| 2397 | if (isa_and_nonnull<ub::PoisonAttr>(adaptor.getTrueValue())) |
| 2398 | return falseVal; |
| 2399 | |
| 2400 | if (isa_and_nonnull<ub::PoisonAttr>(adaptor.getFalseValue())) |
| 2401 | return trueVal; |
| 2402 | |
| 2403 | // select %x, true, false => %x |
| 2404 | if (getType().isSignlessInteger(1) && |
| 2405 | matchPattern(adaptor.getTrueValue(), m_One()) && |
| 2406 | matchPattern(adaptor.getFalseValue(), m_Zero())) |
| 2407 | return condition; |
| 2408 | |
| 2409 | if (auto cmp = dyn_cast_or_null<arith::CmpIOp>(condition.getDefiningOp())) { |
| 2410 | auto pred = cmp.getPredicate(); |
| 2411 | if (pred == arith::CmpIPredicate::eq || pred == arith::CmpIPredicate::ne) { |
| 2412 | auto cmpLhs = cmp.getLhs(); |
| 2413 | auto cmpRhs = cmp.getRhs(); |
| 2414 | |
| 2415 | // %0 = arith.cmpi eq, %arg0, %arg1 |
| 2416 | // %1 = arith.select %0, %arg0, %arg1 => %arg1 |
| 2417 | |
| 2418 | // %0 = arith.cmpi ne, %arg0, %arg1 |
| 2419 | // %1 = arith.select %0, %arg0, %arg1 => %arg0 |
| 2420 | |
| 2421 | if ((cmpLhs == trueVal && cmpRhs == falseVal) || |
| 2422 | (cmpRhs == trueVal && cmpLhs == falseVal)) |
| 2423 | return pred == arith::CmpIPredicate::ne ? trueVal : falseVal; |
| 2424 | } |
| 2425 | } |
| 2426 | |
| 2427 | // Constant-fold constant operands over non-splat constant condition. |
| 2428 | // select %cst_vec, %cst0, %cst1 => %cst2 |
| 2429 | if (auto cond = |
| 2430 | llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getCondition())) { |
| 2431 | if (auto lhs = |
| 2432 | llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getTrueValue())) { |
| 2433 | if (auto rhs = |
| 2434 | llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getFalseValue())) { |
| 2435 | SmallVector<Attribute> results; |
| 2436 | results.reserve(static_cast<size_t>(cond.getNumElements())); |
| 2437 | auto condVals = llvm::make_range(cond.value_begin<BoolAttr>(), |
| 2438 | cond.value_end<BoolAttr>()); |
| 2439 | auto lhsVals = llvm::make_range(lhs.value_begin<Attribute>(), |
| 2440 | lhs.value_end<Attribute>()); |
| 2441 | auto rhsVals = llvm::make_range(rhs.value_begin<Attribute>(), |
| 2442 | rhs.value_end<Attribute>()); |
| 2443 | |
| 2444 | for (auto [condVal, lhsVal, rhsVal] : |
| 2445 | llvm::zip_equal(condVals, lhsVals, rhsVals)) |
| 2446 | results.push_back(condVal.getValue() ? lhsVal : rhsVal); |
| 2447 | |
| 2448 | return DenseElementsAttr::get(lhs.getType(), results); |
| 2449 | } |
| 2450 | } |
| 2451 | } |
| 2452 | |
| 2453 | return nullptr; |
| 2454 | } |
| 2455 | |
| 2456 | ParseResult SelectOp::parse(OpAsmParser &parser, OperationState &result) { |
| 2457 | Type conditionType, resultType; |
| 2458 | SmallVector<OpAsmParser::UnresolvedOperand, 3> operands; |
| 2459 | if (parser.parseOperandList(operands, /*requiredOperandCount=*/3) || |
| 2460 | parser.parseOptionalAttrDict(result.attributes) || |
| 2461 | parser.parseColonType(resultType)) |
| 2462 | return failure(); |
| 2463 | |
| 2464 | // Check for the explicit condition type if this is a masked tensor or vector. |
| 2465 | if (succeeded(parser.parseOptionalComma())) { |
| 2466 | conditionType = resultType; |
| 2467 | if (parser.parseType(resultType)) |
| 2468 | return failure(); |
| 2469 | } else { |
| 2470 | conditionType = parser.getBuilder().getI1Type(); |
| 2471 | } |
| 2472 | |
| 2473 | result.addTypes(resultType); |
| 2474 | return parser.resolveOperands(operands, |
| 2475 | {conditionType, resultType, resultType}, |
| 2476 | parser.getNameLoc(), result.operands); |
| 2477 | } |
| 2478 | |
| 2479 | void arith::SelectOp::print(OpAsmPrinter &p) { |
| 2480 | p << " " << getOperands(); |
| 2481 | p.printOptionalAttrDict((*this)->getAttrs()); |
| 2482 | p << " : " ; |
| 2483 | if (ShapedType condType = |
| 2484 | llvm::dyn_cast<ShapedType>(getCondition().getType())) |
| 2485 | p << condType << ", " ; |
| 2486 | p << getType(); |
| 2487 | } |
| 2488 | |
| 2489 | LogicalResult arith::SelectOp::verify() { |
| 2490 | Type conditionType = getCondition().getType(); |
| 2491 | if (conditionType.isSignlessInteger(1)) |
| 2492 | return success(); |
| 2493 | |
| 2494 | // If the result type is a vector or tensor, the type can be a mask with the |
| 2495 | // same elements. |
| 2496 | Type resultType = getType(); |
| 2497 | if (!llvm::isa<TensorType, VectorType>(resultType)) |
| 2498 | return emitOpError() << "expected condition to be a signless i1, but got " |
| 2499 | << conditionType; |
| 2500 | Type shapedConditionType = getI1SameShape(resultType); |
| 2501 | if (conditionType != shapedConditionType) { |
| 2502 | return emitOpError() << "expected condition type to have the same shape " |
| 2503 | "as the result type, expected " |
| 2504 | << shapedConditionType << ", but got " |
| 2505 | << conditionType; |
| 2506 | } |
| 2507 | return success(); |
| 2508 | } |
| 2509 | //===----------------------------------------------------------------------===// |
| 2510 | // ShLIOp |
| 2511 | //===----------------------------------------------------------------------===// |
| 2512 | |
| 2513 | OpFoldResult arith::ShLIOp::fold(FoldAdaptor adaptor) { |
| 2514 | // shli(x, 0) -> x |
| 2515 | if (matchPattern(adaptor.getRhs(), m_Zero())) |
| 2516 | return getLhs(); |
| 2517 | // Don't fold if shifting more or equal than the bit width. |
| 2518 | bool bounded = false; |
| 2519 | auto result = constFoldBinaryOp<IntegerAttr>( |
| 2520 | adaptor.getOperands(), [&](const APInt &a, const APInt &b) { |
| 2521 | bounded = b.ult(b.getBitWidth()); |
| 2522 | return a.shl(b); |
| 2523 | }); |
| 2524 | return bounded ? result : Attribute(); |
| 2525 | } |
| 2526 | |
| 2527 | //===----------------------------------------------------------------------===// |
| 2528 | // ShRUIOp |
| 2529 | //===----------------------------------------------------------------------===// |
| 2530 | |
| 2531 | OpFoldResult arith::ShRUIOp::fold(FoldAdaptor adaptor) { |
| 2532 | // shrui(x, 0) -> x |
| 2533 | if (matchPattern(adaptor.getRhs(), m_Zero())) |
| 2534 | return getLhs(); |
| 2535 | // Don't fold if shifting more or equal than the bit width. |
| 2536 | bool bounded = false; |
| 2537 | auto result = constFoldBinaryOp<IntegerAttr>( |
| 2538 | adaptor.getOperands(), [&](const APInt &a, const APInt &b) { |
| 2539 | bounded = b.ult(b.getBitWidth()); |
| 2540 | return a.lshr(b); |
| 2541 | }); |
| 2542 | return bounded ? result : Attribute(); |
| 2543 | } |
| 2544 | |
| 2545 | //===----------------------------------------------------------------------===// |
| 2546 | // ShRSIOp |
| 2547 | //===----------------------------------------------------------------------===// |
| 2548 | |
| 2549 | OpFoldResult arith::ShRSIOp::fold(FoldAdaptor adaptor) { |
| 2550 | // shrsi(x, 0) -> x |
| 2551 | if (matchPattern(adaptor.getRhs(), m_Zero())) |
| 2552 | return getLhs(); |
| 2553 | // Don't fold if shifting more or equal than the bit width. |
| 2554 | bool bounded = false; |
| 2555 | auto result = constFoldBinaryOp<IntegerAttr>( |
| 2556 | adaptor.getOperands(), [&](const APInt &a, const APInt &b) { |
| 2557 | bounded = b.ult(b.getBitWidth()); |
| 2558 | return a.ashr(b); |
| 2559 | }); |
| 2560 | return bounded ? result : Attribute(); |
| 2561 | } |
| 2562 | |
| 2563 | //===----------------------------------------------------------------------===// |
| 2564 | // Atomic Enum |
| 2565 | //===----------------------------------------------------------------------===// |
| 2566 | |
| 2567 | /// Returns the identity value attribute associated with an AtomicRMWKind op. |
| 2568 | TypedAttr mlir::arith::getIdentityValueAttr(AtomicRMWKind kind, Type resultType, |
| 2569 | OpBuilder &builder, Location loc, |
| 2570 | bool useOnlyFiniteValue) { |
| 2571 | switch (kind) { |
| 2572 | case AtomicRMWKind::maximumf: { |
| 2573 | const llvm::fltSemantics &semantic = |
| 2574 | llvm::cast<FloatType>(resultType).getFloatSemantics(); |
| 2575 | APFloat identity = useOnlyFiniteValue |
| 2576 | ? APFloat::getLargest(Sem: semantic, /*Negative=*/true) |
| 2577 | : APFloat::getInf(Sem: semantic, /*Negative=*/true); |
| 2578 | return builder.getFloatAttr(resultType, identity); |
| 2579 | } |
| 2580 | case AtomicRMWKind::maxnumf: { |
| 2581 | const llvm::fltSemantics &semantic = |
| 2582 | llvm::cast<FloatType>(resultType).getFloatSemantics(); |
| 2583 | APFloat identity = APFloat::getNaN(Sem: semantic, /*Negative=*/true); |
| 2584 | return builder.getFloatAttr(resultType, identity); |
| 2585 | } |
| 2586 | case AtomicRMWKind::addf: |
| 2587 | case AtomicRMWKind::addi: |
| 2588 | case AtomicRMWKind::maxu: |
| 2589 | case AtomicRMWKind::ori: |
| 2590 | return builder.getZeroAttr(resultType); |
| 2591 | case AtomicRMWKind::andi: |
| 2592 | return builder.getIntegerAttr( |
| 2593 | resultType, |
| 2594 | APInt::getAllOnes(numBits: llvm::cast<IntegerType>(resultType).getWidth())); |
| 2595 | case AtomicRMWKind::maxs: |
| 2596 | return builder.getIntegerAttr( |
| 2597 | resultType, APInt::getSignedMinValue( |
| 2598 | numBits: llvm::cast<IntegerType>(resultType).getWidth())); |
| 2599 | case AtomicRMWKind::minimumf: { |
| 2600 | const llvm::fltSemantics &semantic = |
| 2601 | llvm::cast<FloatType>(resultType).getFloatSemantics(); |
| 2602 | APFloat identity = useOnlyFiniteValue |
| 2603 | ? APFloat::getLargest(Sem: semantic, /*Negative=*/false) |
| 2604 | : APFloat::getInf(Sem: semantic, /*Negative=*/false); |
| 2605 | |
| 2606 | return builder.getFloatAttr(resultType, identity); |
| 2607 | } |
| 2608 | case AtomicRMWKind::minnumf: { |
| 2609 | const llvm::fltSemantics &semantic = |
| 2610 | llvm::cast<FloatType>(resultType).getFloatSemantics(); |
| 2611 | APFloat identity = APFloat::getNaN(Sem: semantic, /*Negative=*/false); |
| 2612 | return builder.getFloatAttr(resultType, identity); |
| 2613 | } |
| 2614 | case AtomicRMWKind::mins: |
| 2615 | return builder.getIntegerAttr( |
| 2616 | resultType, APInt::getSignedMaxValue( |
| 2617 | numBits: llvm::cast<IntegerType>(resultType).getWidth())); |
| 2618 | case AtomicRMWKind::minu: |
| 2619 | return builder.getIntegerAttr( |
| 2620 | resultType, |
| 2621 | APInt::getMaxValue(numBits: llvm::cast<IntegerType>(resultType).getWidth())); |
| 2622 | case AtomicRMWKind::muli: |
| 2623 | return builder.getIntegerAttr(resultType, 1); |
| 2624 | case AtomicRMWKind::mulf: |
| 2625 | return builder.getFloatAttr(resultType, 1); |
| 2626 | // TODO: Add remaining reduction operations. |
| 2627 | default: |
| 2628 | (void)emitOptionalError(loc, args: "Reduction operation type not supported" ); |
| 2629 | break; |
| 2630 | } |
| 2631 | return nullptr; |
| 2632 | } |
| 2633 | |
| 2634 | /// Return the identity numeric value associated to the give op. |
| 2635 | std::optional<TypedAttr> mlir::arith::getNeutralElement(Operation *op) { |
| 2636 | std::optional<AtomicRMWKind> maybeKind = |
| 2637 | llvm::TypeSwitch<Operation *, std::optional<AtomicRMWKind>>(op) |
| 2638 | // Floating-point operations. |
| 2639 | .Case([](arith::AddFOp op) { return AtomicRMWKind::addf; }) |
| 2640 | .Case([](arith::MulFOp op) { return AtomicRMWKind::mulf; }) |
| 2641 | .Case([](arith::MaximumFOp op) { return AtomicRMWKind::maximumf; }) |
| 2642 | .Case([](arith::MinimumFOp op) { return AtomicRMWKind::minimumf; }) |
| 2643 | .Case([](arith::MaxNumFOp op) { return AtomicRMWKind::maxnumf; }) |
| 2644 | .Case([](arith::MinNumFOp op) { return AtomicRMWKind::minnumf; }) |
| 2645 | // Integer operations. |
| 2646 | .Case([](arith::AddIOp op) { return AtomicRMWKind::addi; }) |
| 2647 | .Case([](arith::OrIOp op) { return AtomicRMWKind::ori; }) |
| 2648 | .Case([](arith::XOrIOp op) { return AtomicRMWKind::ori; }) |
| 2649 | .Case([](arith::AndIOp op) { return AtomicRMWKind::andi; }) |
| 2650 | .Case([](arith::MaxUIOp op) { return AtomicRMWKind::maxu; }) |
| 2651 | .Case([](arith::MinUIOp op) { return AtomicRMWKind::minu; }) |
| 2652 | .Case([](arith::MaxSIOp op) { return AtomicRMWKind::maxs; }) |
| 2653 | .Case([](arith::MinSIOp op) { return AtomicRMWKind::mins; }) |
| 2654 | .Case([](arith::MulIOp op) { return AtomicRMWKind::muli; }) |
| 2655 | .Default([](Operation *op) { return std::nullopt; }); |
| 2656 | if (!maybeKind) { |
| 2657 | return std::nullopt; |
| 2658 | } |
| 2659 | |
| 2660 | bool useOnlyFiniteValue = false; |
| 2661 | auto fmfOpInterface = dyn_cast<ArithFastMathInterface>(op); |
| 2662 | if (fmfOpInterface) { |
| 2663 | arith::FastMathFlagsAttr fmfAttr = fmfOpInterface.getFastMathFlagsAttr(); |
| 2664 | useOnlyFiniteValue = |
| 2665 | bitEnumContainsAny(fmfAttr.getValue(), arith::FastMathFlags::ninf); |
| 2666 | } |
| 2667 | |
| 2668 | // Builder only used as helper for attribute creation. |
| 2669 | OpBuilder b(op->getContext()); |
| 2670 | Type resultType = op->getResult(idx: 0).getType(); |
| 2671 | |
| 2672 | return getIdentityValueAttr(*maybeKind, resultType, b, op->getLoc(), |
| 2673 | useOnlyFiniteValue); |
| 2674 | } |
| 2675 | |
| 2676 | /// Returns the identity value associated with an AtomicRMWKind op. |
| 2677 | Value mlir::arith::getIdentityValue(AtomicRMWKind op, Type resultType, |
| 2678 | OpBuilder &builder, Location loc, |
| 2679 | bool useOnlyFiniteValue) { |
| 2680 | auto attr = |
| 2681 | getIdentityValueAttr(op, resultType, builder, loc, useOnlyFiniteValue); |
| 2682 | return builder.create<arith::ConstantOp>(loc, attr); |
| 2683 | } |
| 2684 | |
| 2685 | /// Return the value obtained by applying the reduction operation kind |
| 2686 | /// associated with a binary AtomicRMWKind op to `lhs` and `rhs`. |
| 2687 | Value mlir::arith::getReductionOp(AtomicRMWKind op, OpBuilder &builder, |
| 2688 | Location loc, Value lhs, Value rhs) { |
| 2689 | switch (op) { |
| 2690 | case AtomicRMWKind::addf: |
| 2691 | return builder.create<arith::AddFOp>(loc, lhs, rhs); |
| 2692 | case AtomicRMWKind::addi: |
| 2693 | return builder.create<arith::AddIOp>(loc, lhs, rhs); |
| 2694 | case AtomicRMWKind::mulf: |
| 2695 | return builder.create<arith::MulFOp>(loc, lhs, rhs); |
| 2696 | case AtomicRMWKind::muli: |
| 2697 | return builder.create<arith::MulIOp>(loc, lhs, rhs); |
| 2698 | case AtomicRMWKind::maximumf: |
| 2699 | return builder.create<arith::MaximumFOp>(loc, lhs, rhs); |
| 2700 | case AtomicRMWKind::minimumf: |
| 2701 | return builder.create<arith::MinimumFOp>(loc, lhs, rhs); |
| 2702 | case AtomicRMWKind::maxnumf: |
| 2703 | return builder.create<arith::MaxNumFOp>(loc, lhs, rhs); |
| 2704 | case AtomicRMWKind::minnumf: |
| 2705 | return builder.create<arith::MinNumFOp>(loc, lhs, rhs); |
| 2706 | case AtomicRMWKind::maxs: |
| 2707 | return builder.create<arith::MaxSIOp>(loc, lhs, rhs); |
| 2708 | case AtomicRMWKind::mins: |
| 2709 | return builder.create<arith::MinSIOp>(loc, lhs, rhs); |
| 2710 | case AtomicRMWKind::maxu: |
| 2711 | return builder.create<arith::MaxUIOp>(loc, lhs, rhs); |
| 2712 | case AtomicRMWKind::minu: |
| 2713 | return builder.create<arith::MinUIOp>(loc, lhs, rhs); |
| 2714 | case AtomicRMWKind::ori: |
| 2715 | return builder.create<arith::OrIOp>(loc, lhs, rhs); |
| 2716 | case AtomicRMWKind::andi: |
| 2717 | return builder.create<arith::AndIOp>(loc, lhs, rhs); |
| 2718 | // TODO: Add remaining reduction operations. |
| 2719 | default: |
| 2720 | (void)emitOptionalError(loc, args: "Reduction operation type not supported" ); |
| 2721 | break; |
| 2722 | } |
| 2723 | return nullptr; |
| 2724 | } |
| 2725 | |
| 2726 | //===----------------------------------------------------------------------===// |
| 2727 | // TableGen'd op method definitions |
| 2728 | //===----------------------------------------------------------------------===// |
| 2729 | |
| 2730 | #define GET_OP_CLASSES |
| 2731 | #include "mlir/Dialect/Arith/IR/ArithOps.cpp.inc" |
| 2732 | |
| 2733 | //===----------------------------------------------------------------------===// |
| 2734 | // TableGen'd enum attribute definitions |
| 2735 | //===----------------------------------------------------------------------===// |
| 2736 | |
| 2737 | #include "mlir/Dialect/Arith/IR/ArithOpsEnums.cpp.inc" |
| 2738 | |