| 1 | //===- EmulateWideInt.cpp - Wide integer operation emulation ----*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "mlir/Dialect/Arith/Transforms/Passes.h" |
| 10 | |
| 11 | #include "mlir/Dialect/Arith/IR/Arith.h" |
| 12 | #include "mlir/Dialect/Arith/Transforms/WideIntEmulationConverter.h" |
| 13 | #include "mlir/Dialect/Arith/Utils/Utils.h" |
| 14 | #include "mlir/Dialect/Func/IR/FuncOps.h" |
| 15 | #include "mlir/Dialect/Func/Transforms/FuncConversions.h" |
| 16 | #include "mlir/Dialect/Vector/IR/VectorOps.h" |
| 17 | #include "mlir/IR/BuiltinTypes.h" |
| 18 | #include "mlir/IR/TypeUtilities.h" |
| 19 | #include "mlir/Transforms/DialectConversion.h" |
| 20 | #include "llvm/ADT/APFloat.h" |
| 21 | #include "llvm/ADT/APInt.h" |
| 22 | #include "llvm/Support/FormatVariadic.h" |
| 23 | #include "llvm/Support/MathExtras.h" |
| 24 | #include <cassert> |
| 25 | |
| 26 | namespace mlir::arith { |
| 27 | #define GEN_PASS_DEF_ARITHEMULATEWIDEINT |
| 28 | #include "mlir/Dialect/Arith/Transforms/Passes.h.inc" |
| 29 | } // namespace mlir::arith |
| 30 | |
| 31 | using namespace mlir; |
| 32 | |
| 33 | //===----------------------------------------------------------------------===// |
| 34 | // Common Helper Functions |
| 35 | //===----------------------------------------------------------------------===// |
| 36 | |
| 37 | /// Returns N bottom and N top bits from `value`, where N = `newBitWidth`. |
| 38 | /// Treats `value` as a 2*N bits-wide integer. |
| 39 | /// The bottom bits are returned in the first pair element, while the top bits |
| 40 | /// in the second one. |
| 41 | static std::pair<APInt, APInt> getHalves(const APInt &value, |
| 42 | unsigned newBitWidth) { |
| 43 | APInt low = value.extractBits(numBits: newBitWidth, bitPosition: 0); |
| 44 | APInt high = value.extractBits(numBits: newBitWidth, bitPosition: newBitWidth); |
| 45 | return {std::move(low), std::move(high)}; |
| 46 | } |
| 47 | |
| 48 | /// Returns the type with the last (innermost) dimension reduced to x1. |
| 49 | /// Scalarizes 1D vector inputs to match how we extract/insert vector values, |
| 50 | /// e.g.: |
| 51 | /// - vector<3x2xi16> --> vector<3x1xi16> |
| 52 | /// - vector<2xi16> --> i16 |
| 53 | static Type reduceInnermostDim(VectorType type) { |
| 54 | if (type.getShape().size() == 1) |
| 55 | return type.getElementType(); |
| 56 | |
| 57 | auto newShape = to_vector(type.getShape()); |
| 58 | newShape.back() = 1; |
| 59 | return VectorType::get(newShape, type.getElementType()); |
| 60 | } |
| 61 | |
| 62 | /// Extracts the `input` vector slice with elements at the last dimension offset |
| 63 | /// by `lastOffset`. Returns a value of vector type with the last dimension |
| 64 | /// reduced to x1 or fully scalarized, e.g.: |
| 65 | /// - vector<3x2xi16> --> vector<3x1xi16> |
| 66 | /// - vector<2xi16> --> i16 |
| 67 | static Value (ConversionPatternRewriter &rewriter, |
| 68 | Location loc, Value input, |
| 69 | int64_t lastOffset) { |
| 70 | ArrayRef<int64_t> shape = cast<VectorType>(input.getType()).getShape(); |
| 71 | assert(lastOffset < shape.back() && "Offset out of bounds" ); |
| 72 | |
| 73 | // Scalarize the result in case of 1D vectors. |
| 74 | if (shape.size() == 1) |
| 75 | return rewriter.create<vector::ExtractOp>(loc, input, lastOffset); |
| 76 | |
| 77 | SmallVector<int64_t> offsets(shape.size(), 0); |
| 78 | offsets.back() = lastOffset; |
| 79 | auto sizes = llvm::to_vector(Range&: shape); |
| 80 | sizes.back() = 1; |
| 81 | SmallVector<int64_t> strides(shape.size(), 1); |
| 82 | |
| 83 | return rewriter.create<vector::ExtractStridedSliceOp>(loc, input, offsets, |
| 84 | sizes, strides); |
| 85 | } |
| 86 | |
| 87 | /// Extracts two vector slices from the `input` whose type is `vector<...x2T>`, |
| 88 | /// with the first element at offset 0 and the second element at offset 1. |
| 89 | static std::pair<Value, Value> |
| 90 | (ConversionPatternRewriter &rewriter, Location loc, |
| 91 | Value input) { |
| 92 | return {extractLastDimSlice(rewriter, loc, input, lastOffset: 0), |
| 93 | extractLastDimSlice(rewriter, loc, input, lastOffset: 1)}; |
| 94 | } |
| 95 | |
| 96 | // Performs a vector shape cast to drop the trailing x1 dimension. If the |
| 97 | // `input` is a scalar, this is a noop. |
| 98 | static Value dropTrailingX1Dim(ConversionPatternRewriter &rewriter, |
| 99 | Location loc, Value input) { |
| 100 | auto vecTy = dyn_cast<VectorType>(input.getType()); |
| 101 | if (!vecTy) |
| 102 | return input; |
| 103 | |
| 104 | // Shape cast to drop the last x1 dimension. |
| 105 | ArrayRef<int64_t> shape = vecTy.getShape(); |
| 106 | assert(shape.size() >= 2 && "Expected vector with at list two dims" ); |
| 107 | assert(shape.back() == 1 && "Expected the last vector dim to be x1" ); |
| 108 | |
| 109 | auto newVecTy = VectorType::get(shape.drop_back(), vecTy.getElementType()); |
| 110 | return rewriter.create<vector::ShapeCastOp>(loc, newVecTy, input); |
| 111 | } |
| 112 | |
| 113 | /// Performs a vector shape cast to append an x1 dimension. If the |
| 114 | /// `input` is a scalar, this is a noop. |
| 115 | static Value appendX1Dim(ConversionPatternRewriter &rewriter, Location loc, |
| 116 | Value input) { |
| 117 | auto vecTy = dyn_cast<VectorType>(input.getType()); |
| 118 | if (!vecTy) |
| 119 | return input; |
| 120 | |
| 121 | // Add a trailing x1 dim. |
| 122 | auto newShape = llvm::to_vector(vecTy.getShape()); |
| 123 | newShape.push_back(1); |
| 124 | auto newTy = VectorType::get(newShape, vecTy.getElementType()); |
| 125 | return rewriter.create<vector::ShapeCastOp>(loc, newTy, input); |
| 126 | } |
| 127 | |
| 128 | /// Inserts the `source` vector slice into the `dest` vector at offset |
| 129 | /// `lastOffset` in the last dimension. `source` can be a scalar when `dest` is |
| 130 | /// a 1D vector. |
| 131 | static Value insertLastDimSlice(ConversionPatternRewriter &rewriter, |
| 132 | Location loc, Value source, Value dest, |
| 133 | int64_t lastOffset) { |
| 134 | ArrayRef<int64_t> shape = cast<VectorType>(dest.getType()).getShape(); |
| 135 | assert(lastOffset < shape.back() && "Offset out of bounds" ); |
| 136 | |
| 137 | // Handle scalar source. |
| 138 | if (isa<IntegerType>(source.getType())) |
| 139 | return rewriter.create<vector::InsertOp>(loc, source, dest, lastOffset); |
| 140 | |
| 141 | SmallVector<int64_t> offsets(shape.size(), 0); |
| 142 | offsets.back() = lastOffset; |
| 143 | SmallVector<int64_t> strides(shape.size(), 1); |
| 144 | return rewriter.create<vector::InsertStridedSliceOp>(loc, source, dest, |
| 145 | offsets, strides); |
| 146 | } |
| 147 | |
| 148 | /// Constructs a new vector of type `resultType` by creating a series of |
| 149 | /// insertions of `resultComponents`, each at the next offset of the last vector |
| 150 | /// dimension. |
| 151 | /// When all `resultComponents` are scalars, the result type is `vector<NxT>`; |
| 152 | /// when `resultComponents` are `vector<...x1xT>`s, the result type is |
| 153 | /// `vector<...xNxT>`, where `N` is the number of `resultComponents`. |
| 154 | static Value constructResultVector(ConversionPatternRewriter &rewriter, |
| 155 | Location loc, VectorType resultType, |
| 156 | ValueRange resultComponents) { |
| 157 | llvm::ArrayRef<int64_t> resultShape = resultType.getShape(); |
| 158 | (void)resultShape; |
| 159 | assert(!resultShape.empty() && "Result expected to have dimensions" ); |
| 160 | assert(resultShape.back() == static_cast<int64_t>(resultComponents.size()) && |
| 161 | "Wrong number of result components" ); |
| 162 | |
| 163 | Value resultVec = createScalarOrSplatConstant(rewriter, loc, resultType, 0); |
| 164 | for (auto [i, component] : llvm::enumerate(First&: resultComponents)) |
| 165 | resultVec = insertLastDimSlice(rewriter, loc, source: component, dest: resultVec, lastOffset: i); |
| 166 | |
| 167 | return resultVec; |
| 168 | } |
| 169 | |
| 170 | namespace { |
| 171 | //===----------------------------------------------------------------------===// |
| 172 | // ConvertConstant |
| 173 | //===----------------------------------------------------------------------===// |
| 174 | |
| 175 | struct ConvertConstant final : OpConversionPattern<arith::ConstantOp> { |
| 176 | using OpConversionPattern::OpConversionPattern; |
| 177 | |
| 178 | LogicalResult |
| 179 | matchAndRewrite(arith::ConstantOp op, OpAdaptor, |
| 180 | ConversionPatternRewriter &rewriter) const override { |
| 181 | Type oldType = op.getType(); |
| 182 | auto newType = getTypeConverter()->convertType<VectorType>(oldType); |
| 183 | if (!newType) |
| 184 | return rewriter.notifyMatchFailure( |
| 185 | op, llvm::formatv("unsupported type: {0}" , op.getType())); |
| 186 | |
| 187 | unsigned newBitWidth = newType.getElementTypeBitWidth(); |
| 188 | Attribute oldValue = op.getValueAttr(); |
| 189 | |
| 190 | if (auto intAttr = dyn_cast<IntegerAttr>(oldValue)) { |
| 191 | auto [low, high] = getHalves(intAttr.getValue(), newBitWidth); |
| 192 | auto newAttr = DenseElementsAttr::get(newType, {low, high}); |
| 193 | rewriter.replaceOpWithNewOp<arith::ConstantOp>(op, newAttr); |
| 194 | return success(); |
| 195 | } |
| 196 | |
| 197 | if (auto splatAttr = dyn_cast<SplatElementsAttr>(oldValue)) { |
| 198 | auto [low, high] = |
| 199 | getHalves(splatAttr.getSplatValue<APInt>(), newBitWidth); |
| 200 | int64_t numSplatElems = splatAttr.getNumElements(); |
| 201 | SmallVector<APInt> values; |
| 202 | values.reserve(N: numSplatElems * 2); |
| 203 | for (int64_t i = 0; i < numSplatElems; ++i) { |
| 204 | values.push_back(low); |
| 205 | values.push_back(high); |
| 206 | } |
| 207 | |
| 208 | auto attr = DenseElementsAttr::get(newType, values); |
| 209 | rewriter.replaceOpWithNewOp<arith::ConstantOp>(op, attr); |
| 210 | return success(); |
| 211 | } |
| 212 | |
| 213 | if (auto elemsAttr = dyn_cast<DenseElementsAttr>(oldValue)) { |
| 214 | int64_t numElems = elemsAttr.getNumElements(); |
| 215 | SmallVector<APInt> values; |
| 216 | values.reserve(N: numElems * 2); |
| 217 | for (const APInt &origVal : elemsAttr.getValues<APInt>()) { |
| 218 | auto [low, high] = getHalves(origVal, newBitWidth); |
| 219 | values.push_back(std::move(low)); |
| 220 | values.push_back(std::move(high)); |
| 221 | } |
| 222 | |
| 223 | auto attr = DenseElementsAttr::get(newType, values); |
| 224 | rewriter.replaceOpWithNewOp<arith::ConstantOp>(op, attr); |
| 225 | return success(); |
| 226 | } |
| 227 | |
| 228 | return rewriter.notifyMatchFailure(op.getLoc(), |
| 229 | "unhandled constant attribute" ); |
| 230 | } |
| 231 | }; |
| 232 | |
| 233 | //===----------------------------------------------------------------------===// |
| 234 | // ConvertAddI |
| 235 | //===----------------------------------------------------------------------===// |
| 236 | |
| 237 | struct ConvertAddI final : OpConversionPattern<arith::AddIOp> { |
| 238 | using OpConversionPattern::OpConversionPattern; |
| 239 | |
| 240 | LogicalResult |
| 241 | matchAndRewrite(arith::AddIOp op, OpAdaptor adaptor, |
| 242 | ConversionPatternRewriter &rewriter) const override { |
| 243 | Location loc = op->getLoc(); |
| 244 | auto newTy = getTypeConverter()->convertType<VectorType>(op.getType()); |
| 245 | if (!newTy) |
| 246 | return rewriter.notifyMatchFailure( |
| 247 | loc, llvm::formatv("unsupported type: {0}" , op.getType())); |
| 248 | |
| 249 | Type newElemTy = reduceInnermostDim(newTy); |
| 250 | |
| 251 | auto [lhsElem0, lhsElem1] = |
| 252 | extractLastDimHalves(rewriter, loc, adaptor.getLhs()); |
| 253 | auto [rhsElem0, rhsElem1] = |
| 254 | extractLastDimHalves(rewriter, loc, adaptor.getRhs()); |
| 255 | |
| 256 | auto lowSum = |
| 257 | rewriter.create<arith::AddUIExtendedOp>(loc, lhsElem0, rhsElem0); |
| 258 | Value overflowVal = |
| 259 | rewriter.create<arith::ExtUIOp>(loc, newElemTy, lowSum.getOverflow()); |
| 260 | |
| 261 | Value high0 = rewriter.create<arith::AddIOp>(loc, overflowVal, lhsElem1); |
| 262 | Value high = rewriter.create<arith::AddIOp>(loc, high0, rhsElem1); |
| 263 | |
| 264 | Value resultVec = |
| 265 | constructResultVector(rewriter, loc, newTy, {lowSum.getSum(), high}); |
| 266 | rewriter.replaceOp(op, resultVec); |
| 267 | return success(); |
| 268 | } |
| 269 | }; |
| 270 | |
| 271 | //===----------------------------------------------------------------------===// |
| 272 | // ConvertBitwiseBinary |
| 273 | //===----------------------------------------------------------------------===// |
| 274 | |
| 275 | /// Conversion pattern template for bitwise binary ops, e.g., `arith.andi`. |
| 276 | template <typename BinaryOp> |
| 277 | struct ConvertBitwiseBinary final : OpConversionPattern<BinaryOp> { |
| 278 | using OpConversionPattern<BinaryOp>::OpConversionPattern; |
| 279 | using OpAdaptor = typename OpConversionPattern<BinaryOp>::OpAdaptor; |
| 280 | |
| 281 | LogicalResult |
| 282 | matchAndRewrite(BinaryOp op, OpAdaptor adaptor, |
| 283 | ConversionPatternRewriter &rewriter) const override { |
| 284 | Location loc = op->getLoc(); |
| 285 | auto newTy = this->getTypeConverter()->template convertType<VectorType>( |
| 286 | op.getType()); |
| 287 | if (!newTy) |
| 288 | return rewriter.notifyMatchFailure( |
| 289 | loc, llvm::formatv("unsupported type: {0}" , op.getType())); |
| 290 | |
| 291 | auto [lhsElem0, lhsElem1] = |
| 292 | extractLastDimHalves(rewriter, loc, adaptor.getLhs()); |
| 293 | auto [rhsElem0, rhsElem1] = |
| 294 | extractLastDimHalves(rewriter, loc, adaptor.getRhs()); |
| 295 | |
| 296 | Value resElem0 = rewriter.create<BinaryOp>(loc, lhsElem0, rhsElem0); |
| 297 | Value resElem1 = rewriter.create<BinaryOp>(loc, lhsElem1, rhsElem1); |
| 298 | Value resultVec = |
| 299 | constructResultVector(rewriter, loc, newTy, {resElem0, resElem1}); |
| 300 | rewriter.replaceOp(op, resultVec); |
| 301 | return success(); |
| 302 | } |
| 303 | }; |
| 304 | |
| 305 | //===----------------------------------------------------------------------===// |
| 306 | // ConvertCmpI |
| 307 | //===----------------------------------------------------------------------===// |
| 308 | |
| 309 | /// Returns the matching unsigned version of the given predicate `pred`, or the |
| 310 | /// same predicate if `pred` is not a signed. |
| 311 | static arith::CmpIPredicate toUnsignedPredicate(arith::CmpIPredicate pred) { |
| 312 | using P = arith::CmpIPredicate; |
| 313 | switch (pred) { |
| 314 | case P::sge: |
| 315 | return P::uge; |
| 316 | case P::sgt: |
| 317 | return P::ugt; |
| 318 | case P::sle: |
| 319 | return P::ule; |
| 320 | case P::slt: |
| 321 | return P::ult; |
| 322 | default: |
| 323 | return pred; |
| 324 | } |
| 325 | } |
| 326 | |
| 327 | struct ConvertCmpI final : OpConversionPattern<arith::CmpIOp> { |
| 328 | using OpConversionPattern::OpConversionPattern; |
| 329 | |
| 330 | LogicalResult |
| 331 | matchAndRewrite(arith::CmpIOp op, OpAdaptor adaptor, |
| 332 | ConversionPatternRewriter &rewriter) const override { |
| 333 | Location loc = op->getLoc(); |
| 334 | auto inputTy = |
| 335 | getTypeConverter()->convertType<VectorType>(op.getLhs().getType()); |
| 336 | if (!inputTy) |
| 337 | return rewriter.notifyMatchFailure( |
| 338 | loc, llvm::formatv("unsupported type: {0}" , op.getType())); |
| 339 | |
| 340 | arith::CmpIPredicate highPred = adaptor.getPredicate(); |
| 341 | arith::CmpIPredicate lowPred = toUnsignedPredicate(highPred); |
| 342 | |
| 343 | auto [lhsElem0, lhsElem1] = |
| 344 | extractLastDimHalves(rewriter, loc, adaptor.getLhs()); |
| 345 | auto [rhsElem0, rhsElem1] = |
| 346 | extractLastDimHalves(rewriter, loc, adaptor.getRhs()); |
| 347 | |
| 348 | Value lowCmp = |
| 349 | rewriter.create<arith::CmpIOp>(loc, lowPred, lhsElem0, rhsElem0); |
| 350 | Value highCmp = |
| 351 | rewriter.create<arith::CmpIOp>(loc, highPred, lhsElem1, rhsElem1); |
| 352 | |
| 353 | Value cmpResult{}; |
| 354 | switch (highPred) { |
| 355 | case arith::CmpIPredicate::eq: { |
| 356 | cmpResult = rewriter.create<arith::AndIOp>(loc, lowCmp, highCmp); |
| 357 | break; |
| 358 | } |
| 359 | case arith::CmpIPredicate::ne: { |
| 360 | cmpResult = rewriter.create<arith::OrIOp>(loc, lowCmp, highCmp); |
| 361 | break; |
| 362 | } |
| 363 | default: { |
| 364 | // Handle inequality checks. |
| 365 | Value highEq = rewriter.create<arith::CmpIOp>( |
| 366 | loc, arith::CmpIPredicate::eq, lhsElem1, rhsElem1); |
| 367 | cmpResult = |
| 368 | rewriter.create<arith::SelectOp>(loc, highEq, lowCmp, highCmp); |
| 369 | break; |
| 370 | } |
| 371 | } |
| 372 | |
| 373 | assert(cmpResult && "Unhandled case" ); |
| 374 | rewriter.replaceOp(op, dropTrailingX1Dim(rewriter, loc, input: cmpResult)); |
| 375 | return success(); |
| 376 | } |
| 377 | }; |
| 378 | |
| 379 | //===----------------------------------------------------------------------===// |
| 380 | // ConvertMulI |
| 381 | //===----------------------------------------------------------------------===// |
| 382 | |
| 383 | struct ConvertMulI final : OpConversionPattern<arith::MulIOp> { |
| 384 | using OpConversionPattern::OpConversionPattern; |
| 385 | |
| 386 | LogicalResult |
| 387 | matchAndRewrite(arith::MulIOp op, OpAdaptor adaptor, |
| 388 | ConversionPatternRewriter &rewriter) const override { |
| 389 | Location loc = op->getLoc(); |
| 390 | auto newTy = getTypeConverter()->convertType<VectorType>(op.getType()); |
| 391 | if (!newTy) |
| 392 | return rewriter.notifyMatchFailure( |
| 393 | loc, llvm::formatv("unsupported type: {0}" , op.getType())); |
| 394 | |
| 395 | auto [lhsElem0, lhsElem1] = |
| 396 | extractLastDimHalves(rewriter, loc, adaptor.getLhs()); |
| 397 | auto [rhsElem0, rhsElem1] = |
| 398 | extractLastDimHalves(rewriter, loc, adaptor.getRhs()); |
| 399 | |
| 400 | // The multiplication algorithm used is the standard (long) multiplication. |
| 401 | // Multiplying two i2N integers produces (at most) an i4N result, but |
| 402 | // because the calculation of top i2N is not necessary, we omit it. |
| 403 | auto mulLowLow = |
| 404 | rewriter.create<arith::MulUIExtendedOp>(loc, lhsElem0, rhsElem0); |
| 405 | Value mulLowHi = rewriter.create<arith::MulIOp>(loc, lhsElem0, rhsElem1); |
| 406 | Value mulHiLow = rewriter.create<arith::MulIOp>(loc, lhsElem1, rhsElem0); |
| 407 | |
| 408 | Value resLow = mulLowLow.getLow(); |
| 409 | Value resHi = |
| 410 | rewriter.create<arith::AddIOp>(loc, mulLowLow.getHigh(), mulLowHi); |
| 411 | resHi = rewriter.create<arith::AddIOp>(loc, resHi, mulHiLow); |
| 412 | |
| 413 | Value resultVec = |
| 414 | constructResultVector(rewriter, loc, newTy, {resLow, resHi}); |
| 415 | rewriter.replaceOp(op, resultVec); |
| 416 | return success(); |
| 417 | } |
| 418 | }; |
| 419 | |
| 420 | //===----------------------------------------------------------------------===// |
| 421 | // ConvertExtSI |
| 422 | //===----------------------------------------------------------------------===// |
| 423 | |
| 424 | struct ConvertExtSI final : OpConversionPattern<arith::ExtSIOp> { |
| 425 | using OpConversionPattern::OpConversionPattern; |
| 426 | |
| 427 | LogicalResult |
| 428 | matchAndRewrite(arith::ExtSIOp op, OpAdaptor adaptor, |
| 429 | ConversionPatternRewriter &rewriter) const override { |
| 430 | Location loc = op->getLoc(); |
| 431 | auto newTy = getTypeConverter()->convertType<VectorType>(op.getType()); |
| 432 | if (!newTy) |
| 433 | return rewriter.notifyMatchFailure( |
| 434 | loc, llvm::formatv("unsupported type: {0}" , op.getType())); |
| 435 | |
| 436 | Type newResultComponentTy = reduceInnermostDim(newTy); |
| 437 | |
| 438 | // Sign-extend the input value to determine the low half of the result. |
| 439 | // Then, check if the low half is negative, and sign-extend the comparison |
| 440 | // result to get the high half. |
| 441 | Value newOperand = appendX1Dim(rewriter, loc, adaptor.getIn()); |
| 442 | Value extended = rewriter.createOrFold<arith::ExtSIOp>( |
| 443 | loc, newResultComponentTy, newOperand); |
| 444 | Value operandZeroCst = |
| 445 | createScalarOrSplatConstant(builder&: rewriter, loc, type: newResultComponentTy, value: 0); |
| 446 | Value signBit = rewriter.create<arith::CmpIOp>( |
| 447 | loc, arith::CmpIPredicate::slt, extended, operandZeroCst); |
| 448 | Value signValue = |
| 449 | rewriter.create<arith::ExtSIOp>(loc, newResultComponentTy, signBit); |
| 450 | |
| 451 | Value resultVec = |
| 452 | constructResultVector(rewriter, loc, newTy, {extended, signValue}); |
| 453 | rewriter.replaceOp(op, resultVec); |
| 454 | return success(); |
| 455 | } |
| 456 | }; |
| 457 | |
| 458 | //===----------------------------------------------------------------------===// |
| 459 | // ConvertExtUI |
| 460 | //===----------------------------------------------------------------------===// |
| 461 | |
| 462 | struct ConvertExtUI final : OpConversionPattern<arith::ExtUIOp> { |
| 463 | using OpConversionPattern::OpConversionPattern; |
| 464 | |
| 465 | LogicalResult |
| 466 | matchAndRewrite(arith::ExtUIOp op, OpAdaptor adaptor, |
| 467 | ConversionPatternRewriter &rewriter) const override { |
| 468 | Location loc = op->getLoc(); |
| 469 | auto newTy = getTypeConverter()->convertType<VectorType>(op.getType()); |
| 470 | if (!newTy) |
| 471 | return rewriter.notifyMatchFailure( |
| 472 | loc, llvm::formatv("unsupported type: {0}" , op.getType())); |
| 473 | |
| 474 | Type newResultComponentTy = reduceInnermostDim(newTy); |
| 475 | |
| 476 | // Zero-extend the input value to determine the low half of the result. |
| 477 | // The high half is always zero. |
| 478 | Value newOperand = appendX1Dim(rewriter, loc, adaptor.getIn()); |
| 479 | Value extended = rewriter.createOrFold<arith::ExtUIOp>( |
| 480 | loc, newResultComponentTy, newOperand); |
| 481 | Value zeroCst = createScalarOrSplatConstant(rewriter, loc, newTy, 0); |
| 482 | Value newRes = insertLastDimSlice(rewriter, loc, source: extended, dest: zeroCst, lastOffset: 0); |
| 483 | rewriter.replaceOp(op, newRes); |
| 484 | return success(); |
| 485 | } |
| 486 | }; |
| 487 | |
| 488 | //===----------------------------------------------------------------------===// |
| 489 | // ConvertMaxMin |
| 490 | //===----------------------------------------------------------------------===// |
| 491 | |
| 492 | template <typename SourceOp, arith::CmpIPredicate CmpPred> |
| 493 | struct ConvertMaxMin final : OpConversionPattern<SourceOp> { |
| 494 | using OpConversionPattern<SourceOp>::OpConversionPattern; |
| 495 | |
| 496 | LogicalResult |
| 497 | matchAndRewrite(SourceOp op, typename SourceOp::Adaptor adaptor, |
| 498 | ConversionPatternRewriter &rewriter) const override { |
| 499 | Location loc = op->getLoc(); |
| 500 | |
| 501 | Type oldTy = op.getType(); |
| 502 | auto newTy = dyn_cast_or_null<VectorType>( |
| 503 | this->getTypeConverter()->convertType(oldTy)); |
| 504 | if (!newTy) |
| 505 | return rewriter.notifyMatchFailure( |
| 506 | loc, llvm::formatv("unsupported type: {0}" , op.getType())); |
| 507 | |
| 508 | // Rewrite Max*I/Min*I as compare and select over original operands. Let |
| 509 | // the CmpI and Select emulation patterns handle the final legalization. |
| 510 | Value cmp = |
| 511 | rewriter.create<arith::CmpIOp>(loc, CmpPred, op.getLhs(), op.getRhs()); |
| 512 | rewriter.replaceOpWithNewOp<arith::SelectOp>(op, cmp, op.getLhs(), |
| 513 | op.getRhs()); |
| 514 | return success(); |
| 515 | } |
| 516 | }; |
| 517 | |
| 518 | // Convert IndexCast ops |
| 519 | //===----------------------------------------------------------------------===// |
| 520 | |
| 521 | /// Returns true iff the type is `index` or `vector<...index>`. |
| 522 | static bool isIndexOrIndexVector(Type type) { |
| 523 | if (isa<IndexType>(Val: type)) |
| 524 | return true; |
| 525 | |
| 526 | if (auto vectorTy = dyn_cast<VectorType>(type)) |
| 527 | if (isa<IndexType>(vectorTy.getElementType())) |
| 528 | return true; |
| 529 | |
| 530 | return false; |
| 531 | } |
| 532 | |
| 533 | template <typename CastOp> |
| 534 | struct ConvertIndexCastIntToIndex final : OpConversionPattern<CastOp> { |
| 535 | using OpConversionPattern<CastOp>::OpConversionPattern; |
| 536 | |
| 537 | LogicalResult |
| 538 | matchAndRewrite(CastOp op, typename CastOp::Adaptor adaptor, |
| 539 | ConversionPatternRewriter &rewriter) const override { |
| 540 | Type resultType = op.getType(); |
| 541 | if (!isIndexOrIndexVector(type: resultType)) |
| 542 | return failure(); |
| 543 | |
| 544 | Location loc = op.getLoc(); |
| 545 | Type inType = op.getIn().getType(); |
| 546 | auto newInTy = |
| 547 | this->getTypeConverter()->template convertType<VectorType>(inType); |
| 548 | if (!newInTy) |
| 549 | return rewriter.notifyMatchFailure( |
| 550 | arg&: loc, msg: llvm::formatv(Fmt: "unsupported type: {0}" , Vals&: inType)); |
| 551 | |
| 552 | // Discard the high half of the input truncating the original value. |
| 553 | Value = extractLastDimSlice(rewriter, loc, adaptor.getIn(), 0); |
| 554 | extracted = dropTrailingX1Dim(rewriter, loc, input: extracted); |
| 555 | rewriter.replaceOpWithNewOp<CastOp>(op, resultType, extracted); |
| 556 | return success(); |
| 557 | } |
| 558 | }; |
| 559 | |
| 560 | template <typename CastOp, typename ExtensionOp> |
| 561 | struct ConvertIndexCastIndexToInt final : OpConversionPattern<CastOp> { |
| 562 | using OpConversionPattern<CastOp>::OpConversionPattern; |
| 563 | |
| 564 | LogicalResult |
| 565 | matchAndRewrite(CastOp op, typename CastOp::Adaptor adaptor, |
| 566 | ConversionPatternRewriter &rewriter) const override { |
| 567 | Type inType = op.getIn().getType(); |
| 568 | if (!isIndexOrIndexVector(type: inType)) |
| 569 | return failure(); |
| 570 | |
| 571 | Location loc = op.getLoc(); |
| 572 | auto *typeConverter = |
| 573 | this->template getTypeConverter<arith::WideIntEmulationConverter>(); |
| 574 | |
| 575 | Type resultType = op.getType(); |
| 576 | auto newTy = typeConverter->template convertType<VectorType>(resultType); |
| 577 | if (!newTy) |
| 578 | return rewriter.notifyMatchFailure( |
| 579 | arg&: loc, msg: llvm::formatv(Fmt: "unsupported type: {0}" , Vals&: resultType)); |
| 580 | |
| 581 | // Emit an index cast over the matching narrow type. |
| 582 | Type narrowTy = |
| 583 | rewriter.getIntegerType(typeConverter->getMaxTargetIntBitWidth()); |
| 584 | if (auto vecTy = dyn_cast<VectorType>(resultType)) |
| 585 | narrowTy = VectorType::get(vecTy.getShape(), narrowTy); |
| 586 | |
| 587 | // Sign or zero-extend the result. Let the matching conversion pattern |
| 588 | // legalize the extension op. |
| 589 | Value underlyingVal = |
| 590 | rewriter.create<CastOp>(loc, narrowTy, adaptor.getIn()); |
| 591 | rewriter.replaceOpWithNewOp<ExtensionOp>(op, resultType, underlyingVal); |
| 592 | return success(); |
| 593 | } |
| 594 | }; |
| 595 | |
| 596 | //===----------------------------------------------------------------------===// |
| 597 | // ConvertSelect |
| 598 | //===----------------------------------------------------------------------===// |
| 599 | |
| 600 | struct ConvertSelect final : OpConversionPattern<arith::SelectOp> { |
| 601 | using OpConversionPattern::OpConversionPattern; |
| 602 | |
| 603 | LogicalResult |
| 604 | matchAndRewrite(arith::SelectOp op, OpAdaptor adaptor, |
| 605 | ConversionPatternRewriter &rewriter) const override { |
| 606 | Location loc = op->getLoc(); |
| 607 | auto newTy = getTypeConverter()->convertType<VectorType>(op.getType()); |
| 608 | if (!newTy) |
| 609 | return rewriter.notifyMatchFailure( |
| 610 | loc, llvm::formatv("unsupported type: {0}" , op.getType())); |
| 611 | |
| 612 | auto [trueElem0, trueElem1] = |
| 613 | extractLastDimHalves(rewriter, loc, adaptor.getTrueValue()); |
| 614 | auto [falseElem0, falseElem1] = |
| 615 | extractLastDimHalves(rewriter, loc, adaptor.getFalseValue()); |
| 616 | Value cond = appendX1Dim(rewriter, loc, adaptor.getCondition()); |
| 617 | |
| 618 | Value resElem0 = |
| 619 | rewriter.create<arith::SelectOp>(loc, cond, trueElem0, falseElem0); |
| 620 | Value resElem1 = |
| 621 | rewriter.create<arith::SelectOp>(loc, cond, trueElem1, falseElem1); |
| 622 | Value resultVec = |
| 623 | constructResultVector(rewriter, loc, newTy, {resElem0, resElem1}); |
| 624 | rewriter.replaceOp(op, resultVec); |
| 625 | return success(); |
| 626 | } |
| 627 | }; |
| 628 | |
| 629 | //===----------------------------------------------------------------------===// |
| 630 | // ConvertShLI |
| 631 | //===----------------------------------------------------------------------===// |
| 632 | |
| 633 | struct ConvertShLI final : OpConversionPattern<arith::ShLIOp> { |
| 634 | using OpConversionPattern::OpConversionPattern; |
| 635 | |
| 636 | LogicalResult |
| 637 | matchAndRewrite(arith::ShLIOp op, OpAdaptor adaptor, |
| 638 | ConversionPatternRewriter &rewriter) const override { |
| 639 | Location loc = op->getLoc(); |
| 640 | |
| 641 | Type oldTy = op.getType(); |
| 642 | auto newTy = getTypeConverter()->convertType<VectorType>(oldTy); |
| 643 | if (!newTy) |
| 644 | return rewriter.notifyMatchFailure( |
| 645 | loc, llvm::formatv("unsupported type: {0}" , op.getType())); |
| 646 | |
| 647 | Type newOperandTy = reduceInnermostDim(newTy); |
| 648 | // `oldBitWidth` == `2 * newBitWidth` |
| 649 | unsigned newBitWidth = newTy.getElementTypeBitWidth(); |
| 650 | |
| 651 | auto [lhsElem0, lhsElem1] = |
| 652 | extractLastDimHalves(rewriter, loc, adaptor.getLhs()); |
| 653 | Value rhsElem0 = extractLastDimSlice(rewriter, loc, adaptor.getRhs(), 0); |
| 654 | |
| 655 | // Assume that the shift amount is < 2 * newBitWidth. Calculate the low and |
| 656 | // high halves of the results separately: |
| 657 | // 1. low := LHS.low shli RHS |
| 658 | // |
| 659 | // 2. high := a or b or c, where: |
| 660 | // a) Bits from LHS.high, shifted by the RHS. |
| 661 | // b) Bits from LHS.low, shifted right. These come into play when |
| 662 | // RHS < newBitWidth, e.g.: |
| 663 | // [0000][llll] shli 3 --> [0lll][l000] |
| 664 | // ^ |
| 665 | // | |
| 666 | // [llll] shrui (4 - 3) |
| 667 | // c) Bits from LHS.low, shifted left. These matter when |
| 668 | // RHS > newBitWidth, e.g.: |
| 669 | // [0000][llll] shli 7 --> [l000][0000] |
| 670 | // ^ |
| 671 | // | |
| 672 | // [llll] shli (7 - 4) |
| 673 | // |
| 674 | // Because shifts by values >= newBitWidth are undefined, we ignore the high |
| 675 | // half of RHS, and introduce 'bounds checks' to account for |
| 676 | // RHS.low > newBitWidth. |
| 677 | // |
| 678 | // TODO: Explore possible optimizations. |
| 679 | Value zeroCst = createScalarOrSplatConstant(builder&: rewriter, loc, type: newOperandTy, value: 0); |
| 680 | Value elemBitWidth = |
| 681 | createScalarOrSplatConstant(builder&: rewriter, loc, type: newOperandTy, value: newBitWidth); |
| 682 | |
| 683 | Value illegalElemShift = rewriter.create<arith::CmpIOp>( |
| 684 | loc, arith::CmpIPredicate::uge, rhsElem0, elemBitWidth); |
| 685 | |
| 686 | Value shiftedElem0 = |
| 687 | rewriter.create<arith::ShLIOp>(loc, lhsElem0, rhsElem0); |
| 688 | Value resElem0 = rewriter.create<arith::SelectOp>(loc, illegalElemShift, |
| 689 | zeroCst, shiftedElem0); |
| 690 | |
| 691 | Value cappedShiftAmount = rewriter.create<arith::SelectOp>( |
| 692 | loc, illegalElemShift, elemBitWidth, rhsElem0); |
| 693 | Value rightShiftAmount = |
| 694 | rewriter.create<arith::SubIOp>(loc, elemBitWidth, cappedShiftAmount); |
| 695 | Value shiftedRight = |
| 696 | rewriter.create<arith::ShRUIOp>(loc, lhsElem0, rightShiftAmount); |
| 697 | Value overshotShiftAmount = |
| 698 | rewriter.create<arith::SubIOp>(loc, rhsElem0, elemBitWidth); |
| 699 | Value shiftedLeft = |
| 700 | rewriter.create<arith::ShLIOp>(loc, lhsElem0, overshotShiftAmount); |
| 701 | |
| 702 | Value shiftedElem1 = |
| 703 | rewriter.create<arith::ShLIOp>(loc, lhsElem1, rhsElem0); |
| 704 | Value resElem1High = rewriter.create<arith::SelectOp>( |
| 705 | loc, illegalElemShift, zeroCst, shiftedElem1); |
| 706 | Value resElem1Low = rewriter.create<arith::SelectOp>( |
| 707 | loc, illegalElemShift, shiftedLeft, shiftedRight); |
| 708 | Value resElem1 = |
| 709 | rewriter.create<arith::OrIOp>(loc, resElem1Low, resElem1High); |
| 710 | |
| 711 | Value resultVec = |
| 712 | constructResultVector(rewriter, loc, newTy, {resElem0, resElem1}); |
| 713 | rewriter.replaceOp(op, resultVec); |
| 714 | return success(); |
| 715 | } |
| 716 | }; |
| 717 | |
| 718 | //===----------------------------------------------------------------------===// |
| 719 | // ConvertShRUI |
| 720 | //===----------------------------------------------------------------------===// |
| 721 | |
| 722 | struct ConvertShRUI final : OpConversionPattern<arith::ShRUIOp> { |
| 723 | using OpConversionPattern::OpConversionPattern; |
| 724 | |
| 725 | LogicalResult |
| 726 | matchAndRewrite(arith::ShRUIOp op, OpAdaptor adaptor, |
| 727 | ConversionPatternRewriter &rewriter) const override { |
| 728 | Location loc = op->getLoc(); |
| 729 | |
| 730 | Type oldTy = op.getType(); |
| 731 | auto newTy = getTypeConverter()->convertType<VectorType>(oldTy); |
| 732 | if (!newTy) |
| 733 | return rewriter.notifyMatchFailure( |
| 734 | loc, llvm::formatv("unsupported type: {0}" , op.getType())); |
| 735 | |
| 736 | Type newOperandTy = reduceInnermostDim(newTy); |
| 737 | // `oldBitWidth` == `2 * newBitWidth` |
| 738 | unsigned newBitWidth = newTy.getElementTypeBitWidth(); |
| 739 | |
| 740 | auto [lhsElem0, lhsElem1] = |
| 741 | extractLastDimHalves(rewriter, loc, adaptor.getLhs()); |
| 742 | Value rhsElem0 = extractLastDimSlice(rewriter, loc, adaptor.getRhs(), 0); |
| 743 | |
| 744 | // Assume that the shift amount is < 2 * newBitWidth. Calculate the low and |
| 745 | // high halves of the results separately: |
| 746 | // 1. low := a or b or c, where: |
| 747 | // a) Bits from LHS.low, shifted by the RHS. |
| 748 | // b) Bits from LHS.high, shifted left. These matter when |
| 749 | // RHS < newBitWidth, e.g.: |
| 750 | // [hhhh][0000] shrui 3 --> [000h][hhh0] |
| 751 | // ^ |
| 752 | // | |
| 753 | // [hhhh] shli (4 - 1) |
| 754 | // c) Bits from LHS.high, shifted right. These come into play when |
| 755 | // RHS > newBitWidth, e.g.: |
| 756 | // [hhhh][0000] shrui 7 --> [0000][000h] |
| 757 | // ^ |
| 758 | // | |
| 759 | // [hhhh] shrui (7 - 4) |
| 760 | // |
| 761 | // 2. high := LHS.high shrui RHS |
| 762 | // |
| 763 | // Because shifts by values >= newBitWidth are undefined, we ignore the high |
| 764 | // half of RHS, and introduce 'bounds checks' to account for |
| 765 | // RHS.low > newBitWidth. |
| 766 | // |
| 767 | // TODO: Explore possible optimizations. |
| 768 | Value zeroCst = createScalarOrSplatConstant(builder&: rewriter, loc, type: newOperandTy, value: 0); |
| 769 | Value elemBitWidth = |
| 770 | createScalarOrSplatConstant(builder&: rewriter, loc, type: newOperandTy, value: newBitWidth); |
| 771 | |
| 772 | Value illegalElemShift = rewriter.create<arith::CmpIOp>( |
| 773 | loc, arith::CmpIPredicate::uge, rhsElem0, elemBitWidth); |
| 774 | |
| 775 | Value shiftedElem0 = |
| 776 | rewriter.create<arith::ShRUIOp>(loc, lhsElem0, rhsElem0); |
| 777 | Value resElem0Low = rewriter.create<arith::SelectOp>(loc, illegalElemShift, |
| 778 | zeroCst, shiftedElem0); |
| 779 | Value shiftedElem1 = |
| 780 | rewriter.create<arith::ShRUIOp>(loc, lhsElem1, rhsElem0); |
| 781 | Value resElem1 = rewriter.create<arith::SelectOp>(loc, illegalElemShift, |
| 782 | zeroCst, shiftedElem1); |
| 783 | |
| 784 | Value cappedShiftAmount = rewriter.create<arith::SelectOp>( |
| 785 | loc, illegalElemShift, elemBitWidth, rhsElem0); |
| 786 | Value leftShiftAmount = |
| 787 | rewriter.create<arith::SubIOp>(loc, elemBitWidth, cappedShiftAmount); |
| 788 | Value shiftedLeft = |
| 789 | rewriter.create<arith::ShLIOp>(loc, lhsElem1, leftShiftAmount); |
| 790 | Value overshotShiftAmount = |
| 791 | rewriter.create<arith::SubIOp>(loc, rhsElem0, elemBitWidth); |
| 792 | Value shiftedRight = |
| 793 | rewriter.create<arith::ShRUIOp>(loc, lhsElem1, overshotShiftAmount); |
| 794 | |
| 795 | Value resElem0High = rewriter.create<arith::SelectOp>( |
| 796 | loc, illegalElemShift, shiftedRight, shiftedLeft); |
| 797 | Value resElem0 = |
| 798 | rewriter.create<arith::OrIOp>(loc, resElem0Low, resElem0High); |
| 799 | |
| 800 | Value resultVec = |
| 801 | constructResultVector(rewriter, loc, newTy, {resElem0, resElem1}); |
| 802 | rewriter.replaceOp(op, resultVec); |
| 803 | return success(); |
| 804 | } |
| 805 | }; |
| 806 | |
| 807 | //===----------------------------------------------------------------------===// |
| 808 | // ConvertShRSI |
| 809 | //===----------------------------------------------------------------------===// |
| 810 | |
| 811 | struct ConvertShRSI final : OpConversionPattern<arith::ShRSIOp> { |
| 812 | using OpConversionPattern::OpConversionPattern; |
| 813 | |
| 814 | LogicalResult |
| 815 | matchAndRewrite(arith::ShRSIOp op, OpAdaptor adaptor, |
| 816 | ConversionPatternRewriter &rewriter) const override { |
| 817 | Location loc = op->getLoc(); |
| 818 | |
| 819 | Type oldTy = op.getType(); |
| 820 | auto newTy = getTypeConverter()->convertType<VectorType>(oldTy); |
| 821 | if (!newTy) |
| 822 | return rewriter.notifyMatchFailure( |
| 823 | loc, llvm::formatv("unsupported type: {0}" , op.getType())); |
| 824 | |
| 825 | Value lhsElem1 = extractLastDimSlice(rewriter, loc, adaptor.getLhs(), 1); |
| 826 | Value rhsElem0 = extractLastDimSlice(rewriter, loc, adaptor.getRhs(), 0); |
| 827 | |
| 828 | Type narrowTy = rhsElem0.getType(); |
| 829 | int64_t origBitwidth = newTy.getElementTypeBitWidth() * 2; |
| 830 | |
| 831 | // Rewrite this as an bitwise or of `arith.shrui` and sign extension bits. |
| 832 | // Perform as many ops over the narrow integer type as possible and let the |
| 833 | // other emulation patterns convert the rest. |
| 834 | Value elemZero = createScalarOrSplatConstant(builder&: rewriter, loc, type: narrowTy, value: 0); |
| 835 | Value signBit = rewriter.create<arith::CmpIOp>( |
| 836 | loc, arith::CmpIPredicate::slt, lhsElem1, elemZero); |
| 837 | signBit = dropTrailingX1Dim(rewriter, loc, input: signBit); |
| 838 | |
| 839 | // Create a bit pattern of either all ones or all zeros. Then shift it left |
| 840 | // to calculate the sign extension bits created by shifting the original |
| 841 | // sign bit right. |
| 842 | Value allSign = rewriter.create<arith::ExtSIOp>(loc, oldTy, signBit); |
| 843 | Value maxShift = |
| 844 | createScalarOrSplatConstant(builder&: rewriter, loc, type: narrowTy, value: origBitwidth); |
| 845 | Value numNonSignExtBits = |
| 846 | rewriter.create<arith::SubIOp>(loc, maxShift, rhsElem0); |
| 847 | numNonSignExtBits = dropTrailingX1Dim(rewriter, loc, input: numNonSignExtBits); |
| 848 | numNonSignExtBits = |
| 849 | rewriter.create<arith::ExtUIOp>(loc, oldTy, numNonSignExtBits); |
| 850 | Value signBits = |
| 851 | rewriter.create<arith::ShLIOp>(loc, allSign, numNonSignExtBits); |
| 852 | |
| 853 | // Use original arguments to create the right shift. |
| 854 | Value shrui = |
| 855 | rewriter.create<arith::ShRUIOp>(loc, op.getLhs(), op.getRhs()); |
| 856 | Value shrsi = rewriter.create<arith::OrIOp>(loc, shrui, signBits); |
| 857 | |
| 858 | // Handle shifting by zero. This is necessary when the `signBits` shift is |
| 859 | // invalid. |
| 860 | Value isNoop = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq, |
| 861 | rhsElem0, elemZero); |
| 862 | isNoop = dropTrailingX1Dim(rewriter, loc, input: isNoop); |
| 863 | rewriter.replaceOpWithNewOp<arith::SelectOp>(op, isNoop, op.getLhs(), |
| 864 | shrsi); |
| 865 | |
| 866 | return success(); |
| 867 | } |
| 868 | }; |
| 869 | |
| 870 | //===----------------------------------------------------------------------===// |
| 871 | // ConvertSubI |
| 872 | //===----------------------------------------------------------------------===// |
| 873 | |
| 874 | struct ConvertSubI final : OpConversionPattern<arith::SubIOp> { |
| 875 | using OpConversionPattern::OpConversionPattern; |
| 876 | |
| 877 | LogicalResult |
| 878 | matchAndRewrite(arith::SubIOp op, OpAdaptor adaptor, |
| 879 | ConversionPatternRewriter &rewriter) const override { |
| 880 | Location loc = op->getLoc(); |
| 881 | auto newTy = getTypeConverter()->convertType<VectorType>(op.getType()); |
| 882 | if (!newTy) |
| 883 | return rewriter.notifyMatchFailure( |
| 884 | loc, llvm::formatv("unsupported type: {}" , op.getType())); |
| 885 | |
| 886 | Type newElemTy = reduceInnermostDim(newTy); |
| 887 | |
| 888 | auto [lhsElem0, lhsElem1] = |
| 889 | extractLastDimHalves(rewriter, loc, adaptor.getLhs()); |
| 890 | auto [rhsElem0, rhsElem1] = |
| 891 | extractLastDimHalves(rewriter, loc, adaptor.getRhs()); |
| 892 | |
| 893 | // Emulates LHS - RHS by [LHS0 - RHS0, LHS1 - RHS1 - CARRY] where |
| 894 | // CARRY is 1 or 0. |
| 895 | Value low = rewriter.create<arith::SubIOp>(loc, lhsElem0, rhsElem0); |
| 896 | // We have a carry if lhsElem0 < rhsElem0. |
| 897 | Value carry0 = rewriter.create<arith::CmpIOp>( |
| 898 | loc, arith::CmpIPredicate::ult, lhsElem0, rhsElem0); |
| 899 | Value carryVal = rewriter.create<arith::ExtUIOp>(loc, newElemTy, carry0); |
| 900 | |
| 901 | Value high0 = rewriter.create<arith::SubIOp>(loc, lhsElem1, carryVal); |
| 902 | Value high = rewriter.create<arith::SubIOp>(loc, high0, rhsElem1); |
| 903 | |
| 904 | Value resultVec = constructResultVector(rewriter, loc, newTy, {low, high}); |
| 905 | rewriter.replaceOp(op, resultVec); |
| 906 | return success(); |
| 907 | } |
| 908 | }; |
| 909 | |
| 910 | //===----------------------------------------------------------------------===// |
| 911 | // ConvertSIToFP |
| 912 | //===----------------------------------------------------------------------===// |
| 913 | |
| 914 | struct ConvertSIToFP final : OpConversionPattern<arith::SIToFPOp> { |
| 915 | using OpConversionPattern::OpConversionPattern; |
| 916 | |
| 917 | LogicalResult |
| 918 | matchAndRewrite(arith::SIToFPOp op, OpAdaptor adaptor, |
| 919 | ConversionPatternRewriter &rewriter) const override { |
| 920 | Location loc = op.getLoc(); |
| 921 | |
| 922 | Value in = op.getIn(); |
| 923 | Type oldTy = in.getType(); |
| 924 | auto newTy = getTypeConverter()->convertType<VectorType>(oldTy); |
| 925 | if (!newTy) |
| 926 | return rewriter.notifyMatchFailure( |
| 927 | arg&: loc, msg: llvm::formatv(Fmt: "unsupported type: {0}" , Vals&: oldTy)); |
| 928 | |
| 929 | Value zeroCst = createScalarOrSplatConstant(builder&: rewriter, loc, type: oldTy, value: 0); |
| 930 | |
| 931 | // To avoid operating on very large unsigned numbers, perform the |
| 932 | // conversion on the absolute value. Then, decide whether to negate the |
| 933 | // result or not based on that sign bit. We implement negation by |
| 934 | // subtracting from zero. Note that this relies on the the other conversion |
| 935 | // patterns to legalize created ops and narrow the bit widths. |
| 936 | Value isNeg = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, |
| 937 | in, zeroCst); |
| 938 | Value neg = rewriter.create<arith::SubIOp>(loc, zeroCst, in); |
| 939 | Value abs = rewriter.create<arith::SelectOp>(loc, isNeg, neg, in); |
| 940 | |
| 941 | Value absResult = rewriter.create<arith::UIToFPOp>(loc, op.getType(), abs); |
| 942 | Value negResult = rewriter.create<arith::NegFOp>(loc, absResult); |
| 943 | rewriter.replaceOpWithNewOp<arith::SelectOp>(op, isNeg, negResult, |
| 944 | absResult); |
| 945 | return success(); |
| 946 | } |
| 947 | }; |
| 948 | |
| 949 | //===----------------------------------------------------------------------===// |
| 950 | // ConvertUIToFP |
| 951 | //===----------------------------------------------------------------------===// |
| 952 | |
| 953 | struct ConvertUIToFP final : OpConversionPattern<arith::UIToFPOp> { |
| 954 | using OpConversionPattern::OpConversionPattern; |
| 955 | |
| 956 | LogicalResult |
| 957 | matchAndRewrite(arith::UIToFPOp op, OpAdaptor adaptor, |
| 958 | ConversionPatternRewriter &rewriter) const override { |
| 959 | Location loc = op.getLoc(); |
| 960 | |
| 961 | Type oldTy = op.getIn().getType(); |
| 962 | auto newTy = getTypeConverter()->convertType<VectorType>(oldTy); |
| 963 | if (!newTy) |
| 964 | return rewriter.notifyMatchFailure( |
| 965 | arg&: loc, msg: llvm::formatv(Fmt: "unsupported type: {0}" , Vals&: oldTy)); |
| 966 | unsigned newBitWidth = newTy.getElementTypeBitWidth(); |
| 967 | |
| 968 | auto [low, hi] = extractLastDimHalves(rewriter, loc, adaptor.getIn()); |
| 969 | Value lowInt = dropTrailingX1Dim(rewriter, loc, low); |
| 970 | Value hiInt = dropTrailingX1Dim(rewriter, loc, hi); |
| 971 | Value zeroCst = |
| 972 | createScalarOrSplatConstant(builder&: rewriter, loc, type: hiInt.getType(), value: 0); |
| 973 | |
| 974 | // The final result has the following form: |
| 975 | // if (hi == 0) return uitofp(low) |
| 976 | // else return uitofp(low) + uitofp(hi) * 2^BW |
| 977 | // |
| 978 | // where `BW` is the bitwidth of the narrowed integer type. We emit a |
| 979 | // select to make it easier to fold-away the `hi` part calculation when it |
| 980 | // is known to be zero. |
| 981 | // |
| 982 | // Note 1: The emulation is precise only for input values that have exact |
| 983 | // integer representation in the result floating point type, and may lead |
| 984 | // loss of precision otherwise. |
| 985 | // |
| 986 | // Note 2: We do not strictly need the `hi == 0`, case, but it makes |
| 987 | // constant folding easier. |
| 988 | Value hiEqZero = rewriter.create<arith::CmpIOp>( |
| 989 | loc, arith::CmpIPredicate::eq, hiInt, zeroCst); |
| 990 | |
| 991 | Type resultTy = op.getType(); |
| 992 | Type resultElemTy = getElementTypeOrSelf(type: resultTy); |
| 993 | Value lowFp = rewriter.create<arith::UIToFPOp>(loc, resultTy, lowInt); |
| 994 | Value hiFp = rewriter.create<arith::UIToFPOp>(loc, resultTy, hiInt); |
| 995 | |
| 996 | int64_t pow2Int = int64_t(1) << newBitWidth; |
| 997 | TypedAttr pow2Attr = |
| 998 | rewriter.getFloatAttr(resultElemTy, static_cast<double>(pow2Int)); |
| 999 | if (auto vecTy = dyn_cast<VectorType>(resultTy)) |
| 1000 | pow2Attr = SplatElementsAttr::get(vecTy, pow2Attr); |
| 1001 | |
| 1002 | Value pow2Val = rewriter.create<arith::ConstantOp>(loc, resultTy, pow2Attr); |
| 1003 | |
| 1004 | Value hiVal = rewriter.create<arith::MulFOp>(loc, hiFp, pow2Val); |
| 1005 | Value result = rewriter.create<arith::AddFOp>(loc, lowFp, hiVal); |
| 1006 | |
| 1007 | rewriter.replaceOpWithNewOp<arith::SelectOp>(op, hiEqZero, lowFp, result); |
| 1008 | return success(); |
| 1009 | } |
| 1010 | }; |
| 1011 | |
| 1012 | //===----------------------------------------------------------------------===// |
| 1013 | // ConvertFPToSI |
| 1014 | //===----------------------------------------------------------------------===// |
| 1015 | |
| 1016 | struct ConvertFPToSI final : OpConversionPattern<arith::FPToSIOp> { |
| 1017 | using OpConversionPattern::OpConversionPattern; |
| 1018 | |
| 1019 | LogicalResult |
| 1020 | matchAndRewrite(arith::FPToSIOp op, OpAdaptor adaptor, |
| 1021 | ConversionPatternRewriter &rewriter) const override { |
| 1022 | Location loc = op.getLoc(); |
| 1023 | // Get the input float type. |
| 1024 | Value inFp = adaptor.getIn(); |
| 1025 | Type fpTy = inFp.getType(); |
| 1026 | |
| 1027 | Type intTy = op.getType(); |
| 1028 | |
| 1029 | auto newTy = getTypeConverter()->convertType<VectorType>(intTy); |
| 1030 | if (!newTy) |
| 1031 | return rewriter.notifyMatchFailure( |
| 1032 | arg&: loc, msg: llvm::formatv(Fmt: "unsupported type: {}" , Vals&: intTy)); |
| 1033 | |
| 1034 | // Work on the absolute value and then convert the result to signed integer. |
| 1035 | // Defer absolute value to fptoui. If minSInt < fp < maxSInt, i.e. if the fp |
| 1036 | // is representable in signed i2N, emits the correct result. Else, the |
| 1037 | // result is UB. |
| 1038 | |
| 1039 | TypedAttr zeroAttr = rewriter.getZeroAttr(fpTy); |
| 1040 | Value zeroCst = rewriter.create<arith::ConstantOp>(loc, zeroAttr); |
| 1041 | Value zeroCstInt = createScalarOrSplatConstant(builder&: rewriter, loc, type: intTy, value: 0); |
| 1042 | |
| 1043 | // Get the absolute value. One could have used math.absf here, but that |
| 1044 | // introduces an extra dependency. |
| 1045 | Value isNeg = rewriter.create<arith::CmpFOp>(loc, arith::CmpFPredicate::OLT, |
| 1046 | inFp, zeroCst); |
| 1047 | Value negInFp = rewriter.create<arith::NegFOp>(loc, inFp); |
| 1048 | |
| 1049 | Value absVal = rewriter.create<arith::SelectOp>(loc, isNeg, negInFp, inFp); |
| 1050 | |
| 1051 | // Defer the absolute value to fptoui. |
| 1052 | Value res = rewriter.create<arith::FPToUIOp>(loc, intTy, absVal); |
| 1053 | |
| 1054 | // Negate the value if < 0 . |
| 1055 | Value neg = rewriter.create<arith::SubIOp>(loc, zeroCstInt, res); |
| 1056 | |
| 1057 | rewriter.replaceOpWithNewOp<arith::SelectOp>(op, isNeg, neg, res); |
| 1058 | return success(); |
| 1059 | } |
| 1060 | }; |
| 1061 | |
| 1062 | //===----------------------------------------------------------------------===// |
| 1063 | // ConvertFPToUI |
| 1064 | //===----------------------------------------------------------------------===// |
| 1065 | |
| 1066 | struct ConvertFPToUI final : OpConversionPattern<arith::FPToUIOp> { |
| 1067 | using OpConversionPattern::OpConversionPattern; |
| 1068 | |
| 1069 | LogicalResult |
| 1070 | matchAndRewrite(arith::FPToUIOp op, OpAdaptor adaptor, |
| 1071 | ConversionPatternRewriter &rewriter) const override { |
| 1072 | Location loc = op.getLoc(); |
| 1073 | // Get the input float type. |
| 1074 | Value inFp = adaptor.getIn(); |
| 1075 | Type fpTy = inFp.getType(); |
| 1076 | |
| 1077 | Type intTy = op.getType(); |
| 1078 | auto newTy = getTypeConverter()->convertType<VectorType>(intTy); |
| 1079 | if (!newTy) |
| 1080 | return rewriter.notifyMatchFailure( |
| 1081 | arg&: loc, msg: llvm::formatv(Fmt: "unsupported type: {}" , Vals&: intTy)); |
| 1082 | unsigned newBitWidth = newTy.getElementTypeBitWidth(); |
| 1083 | |
| 1084 | Type newHalfType = IntegerType::get(inFp.getContext(), newBitWidth); |
| 1085 | if (auto vecType = dyn_cast<VectorType>(fpTy)) |
| 1086 | newHalfType = VectorType::get(vecType.getShape(), newHalfType); |
| 1087 | |
| 1088 | // The resulting integer has the upper part and the lower part. This would |
| 1089 | // be interpreted as 2^N * high + low, where N is the bitwidth. Therefore, |
| 1090 | // to calculate the higher part, we emit resHigh = fptoui(fp/2^N). For the |
| 1091 | // lower part, we emit fptoui(fp - resHigh * 2^N). The special cases of |
| 1092 | // overflows including +-inf, NaNs and negative numbers are UB. |
| 1093 | |
| 1094 | const llvm::fltSemantics &fSemantics = |
| 1095 | cast<FloatType>(getElementTypeOrSelf(type: fpTy)).getFloatSemantics(); |
| 1096 | |
| 1097 | auto powBitwidth = llvm::APFloat(fSemantics); |
| 1098 | // If the integer does not fit the floating point number, we set the |
| 1099 | // powBitwidth to inf. This ensures that the upper part is set |
| 1100 | // correctly to 0. The opStatus inexact here only occurs when we have an |
| 1101 | // overflow, since the number is always a power of two. |
| 1102 | if (powBitwidth.convertFromAPInt(APInt(newBitWidth * 2, 1).shl(shiftAmt: newBitWidth), |
| 1103 | false, llvm::RoundingMode::TowardZero) == |
| 1104 | llvm::detail::opStatus::opInexact) |
| 1105 | powBitwidth = llvm::APFloat::getInf(Sem: fSemantics); |
| 1106 | |
| 1107 | TypedAttr powBitwidthAttr = |
| 1108 | FloatAttr::get(getElementTypeOrSelf(fpTy), powBitwidth); |
| 1109 | if (auto vecType = dyn_cast<VectorType>(fpTy)) |
| 1110 | powBitwidthAttr = SplatElementsAttr::get(vecType, powBitwidthAttr); |
| 1111 | Value powBitwidthFloatCst = |
| 1112 | rewriter.create<arith::ConstantOp>(loc, powBitwidthAttr); |
| 1113 | |
| 1114 | Value fpDivPowBitwidth = |
| 1115 | rewriter.create<arith::DivFOp>(loc, inFp, powBitwidthFloatCst); |
| 1116 | Value resHigh = |
| 1117 | rewriter.create<arith::FPToUIOp>(loc, newHalfType, fpDivPowBitwidth); |
| 1118 | // Calculate fp - resHigh * 2^N by getting the remainder of the division |
| 1119 | Value remainder = |
| 1120 | rewriter.create<arith::RemFOp>(loc, inFp, powBitwidthFloatCst); |
| 1121 | Value resLow = |
| 1122 | rewriter.create<arith::FPToUIOp>(loc, newHalfType, remainder); |
| 1123 | |
| 1124 | Value high = appendX1Dim(rewriter, loc, input: resHigh); |
| 1125 | Value low = appendX1Dim(rewriter, loc, input: resLow); |
| 1126 | |
| 1127 | Value resultVec = constructResultVector(rewriter, loc, newTy, {low, high}); |
| 1128 | |
| 1129 | rewriter.replaceOp(op, resultVec); |
| 1130 | return success(); |
| 1131 | } |
| 1132 | }; |
| 1133 | |
| 1134 | //===----------------------------------------------------------------------===// |
| 1135 | // ConvertTruncI |
| 1136 | //===----------------------------------------------------------------------===// |
| 1137 | |
| 1138 | struct ConvertTruncI final : OpConversionPattern<arith::TruncIOp> { |
| 1139 | using OpConversionPattern::OpConversionPattern; |
| 1140 | |
| 1141 | LogicalResult |
| 1142 | matchAndRewrite(arith::TruncIOp op, OpAdaptor adaptor, |
| 1143 | ConversionPatternRewriter &rewriter) const override { |
| 1144 | Location loc = op.getLoc(); |
| 1145 | // Check if the result type is legal for this target. Currently, we do not |
| 1146 | // support truncation to types wider than supported by the target. |
| 1147 | if (!getTypeConverter()->isLegal(op.getType())) |
| 1148 | return rewriter.notifyMatchFailure( |
| 1149 | loc, llvm::formatv("unsupported truncation result type: {0}" , |
| 1150 | op.getType())); |
| 1151 | |
| 1152 | // Discard the high half of the input. Truncate the low half, if |
| 1153 | // necessary. |
| 1154 | Value = extractLastDimSlice(rewriter, loc, adaptor.getIn(), 0); |
| 1155 | extracted = dropTrailingX1Dim(rewriter, loc, input: extracted); |
| 1156 | Value truncated = |
| 1157 | rewriter.createOrFold<arith::TruncIOp>(loc, op.getType(), extracted); |
| 1158 | rewriter.replaceOp(op, truncated); |
| 1159 | return success(); |
| 1160 | } |
| 1161 | }; |
| 1162 | |
| 1163 | //===----------------------------------------------------------------------===// |
| 1164 | // ConvertVectorPrint |
| 1165 | //===----------------------------------------------------------------------===// |
| 1166 | |
| 1167 | struct ConvertVectorPrint final : OpConversionPattern<vector::PrintOp> { |
| 1168 | using OpConversionPattern::OpConversionPattern; |
| 1169 | |
| 1170 | LogicalResult |
| 1171 | matchAndRewrite(vector::PrintOp op, OpAdaptor adaptor, |
| 1172 | ConversionPatternRewriter &rewriter) const override { |
| 1173 | rewriter.replaceOpWithNewOp<vector::PrintOp>(op, adaptor.getSource()); |
| 1174 | return success(); |
| 1175 | } |
| 1176 | }; |
| 1177 | |
| 1178 | //===----------------------------------------------------------------------===// |
| 1179 | // Pass Definition |
| 1180 | //===----------------------------------------------------------------------===// |
| 1181 | |
| 1182 | struct EmulateWideIntPass final |
| 1183 | : arith::impl::ArithEmulateWideIntBase<EmulateWideIntPass> { |
| 1184 | using ArithEmulateWideIntBase::ArithEmulateWideIntBase; |
| 1185 | |
| 1186 | void runOnOperation() override { |
| 1187 | if (!llvm::isPowerOf2_32(widestIntSupported) || widestIntSupported < 2) { |
| 1188 | signalPassFailure(); |
| 1189 | return; |
| 1190 | } |
| 1191 | |
| 1192 | Operation *op = getOperation(); |
| 1193 | MLIRContext *ctx = op->getContext(); |
| 1194 | |
| 1195 | arith::WideIntEmulationConverter typeConverter(widestIntSupported); |
| 1196 | ConversionTarget target(*ctx); |
| 1197 | target.addDynamicallyLegalOp<func::FuncOp>([&typeConverter](Operation *op) { |
| 1198 | return typeConverter.isLegal(cast<func::FuncOp>(op).getFunctionType()); |
| 1199 | }); |
| 1200 | auto opLegalCallback = [&typeConverter](Operation *op) { |
| 1201 | return typeConverter.isLegal(op); |
| 1202 | }; |
| 1203 | target.addDynamicallyLegalOp<func::CallOp, func::ReturnOp>(opLegalCallback); |
| 1204 | target.addDynamicallyLegalOp<vector::PrintOp>(opLegalCallback); |
| 1205 | target.addDynamicallyLegalDialect<arith::ArithDialect>(opLegalCallback); |
| 1206 | target.addLegalDialect<vector::VectorDialect>(); |
| 1207 | |
| 1208 | RewritePatternSet patterns(ctx); |
| 1209 | arith::populateArithWideIntEmulationPatterns(typeConverter: typeConverter, patterns); |
| 1210 | |
| 1211 | // Populate `func.*` conversion patterns. |
| 1212 | populateFunctionOpInterfaceTypeConversionPattern<func::FuncOp>( |
| 1213 | patterns, typeConverter); |
| 1214 | populateCallOpTypeConversionPattern(patterns, typeConverter); |
| 1215 | populateReturnOpTypeConversionPattern(patterns, typeConverter); |
| 1216 | |
| 1217 | if (failed(applyPartialConversion(op, target, std::move(patterns)))) |
| 1218 | signalPassFailure(); |
| 1219 | } |
| 1220 | }; |
| 1221 | } // end anonymous namespace |
| 1222 | |
| 1223 | //===----------------------------------------------------------------------===// |
| 1224 | // Public Interface Definition |
| 1225 | //===----------------------------------------------------------------------===// |
| 1226 | |
| 1227 | arith::WideIntEmulationConverter::WideIntEmulationConverter( |
| 1228 | unsigned widestIntSupportedByTarget) |
| 1229 | : maxIntWidth(widestIntSupportedByTarget) { |
| 1230 | assert(llvm::isPowerOf2_32(widestIntSupportedByTarget) && |
| 1231 | "Only power-of-two integers with are supported" ); |
| 1232 | assert(widestIntSupportedByTarget >= 2 && "Integer type too narrow" ); |
| 1233 | |
| 1234 | // Allow unknown types. |
| 1235 | addConversion(callback: [](Type ty) -> std::optional<Type> { return ty; }); |
| 1236 | |
| 1237 | // Scalar case. |
| 1238 | addConversion(callback: [this](IntegerType ty) -> std::optional<Type> { |
| 1239 | unsigned width = ty.getWidth(); |
| 1240 | if (width <= maxIntWidth) |
| 1241 | return ty; |
| 1242 | |
| 1243 | // i2N --> vector<2xiN> |
| 1244 | if (width == 2 * maxIntWidth) |
| 1245 | return VectorType::get(2, IntegerType::get(ty.getContext(), maxIntWidth)); |
| 1246 | |
| 1247 | return nullptr; |
| 1248 | }); |
| 1249 | |
| 1250 | // Vector case. |
| 1251 | addConversion(callback: [this](VectorType ty) -> std::optional<Type> { |
| 1252 | auto intTy = dyn_cast<IntegerType>(ty.getElementType()); |
| 1253 | if (!intTy) |
| 1254 | return ty; |
| 1255 | |
| 1256 | unsigned width = intTy.getWidth(); |
| 1257 | if (width <= maxIntWidth) |
| 1258 | return ty; |
| 1259 | |
| 1260 | // vector<...xi2N> --> vector<...x2xiN> |
| 1261 | if (width == 2 * maxIntWidth) { |
| 1262 | auto newShape = to_vector(ty.getShape()); |
| 1263 | newShape.push_back(2); |
| 1264 | return VectorType::get(newShape, |
| 1265 | IntegerType::get(ty.getContext(), maxIntWidth)); |
| 1266 | } |
| 1267 | |
| 1268 | return nullptr; |
| 1269 | }); |
| 1270 | |
| 1271 | // Function case. |
| 1272 | addConversion(callback: [this](FunctionType ty) -> std::optional<Type> { |
| 1273 | // Convert inputs and results, e.g.: |
| 1274 | // (i2N, i2N) -> i2N --> (vector<2xiN>, vector<2xiN>) -> vector<2xiN> |
| 1275 | SmallVector<Type> inputs; |
| 1276 | if (failed(convertTypes(types: ty.getInputs(), results&: inputs))) |
| 1277 | return nullptr; |
| 1278 | |
| 1279 | SmallVector<Type> results; |
| 1280 | if (failed(convertTypes(types: ty.getResults(), results))) |
| 1281 | return nullptr; |
| 1282 | |
| 1283 | return FunctionType::get(ty.getContext(), inputs, results); |
| 1284 | }); |
| 1285 | } |
| 1286 | |
| 1287 | void arith::populateArithWideIntEmulationPatterns( |
| 1288 | const WideIntEmulationConverter &typeConverter, |
| 1289 | RewritePatternSet &patterns) { |
| 1290 | // Populate `arith.*` conversion patterns. |
| 1291 | patterns.add< |
| 1292 | // Misc ops. |
| 1293 | ConvertConstant, ConvertCmpI, ConvertSelect, ConvertVectorPrint, |
| 1294 | // Binary ops. |
| 1295 | ConvertAddI, ConvertMulI, ConvertShLI, ConvertShRSI, ConvertShRUI, |
| 1296 | ConvertMaxMin<arith::MaxUIOp, arith::CmpIPredicate::ugt>, |
| 1297 | ConvertMaxMin<arith::MaxSIOp, arith::CmpIPredicate::sgt>, |
| 1298 | ConvertMaxMin<arith::MinUIOp, arith::CmpIPredicate::ult>, |
| 1299 | ConvertMaxMin<arith::MinSIOp, arith::CmpIPredicate::slt>, ConvertSubI, |
| 1300 | // Bitwise binary ops. |
| 1301 | ConvertBitwiseBinary<arith::AndIOp>, ConvertBitwiseBinary<arith::OrIOp>, |
| 1302 | ConvertBitwiseBinary<arith::XOrIOp>, |
| 1303 | // Extension and truncation ops. |
| 1304 | ConvertExtSI, ConvertExtUI, ConvertTruncI, |
| 1305 | // Cast ops. |
| 1306 | ConvertIndexCastIntToIndex<arith::IndexCastOp>, |
| 1307 | ConvertIndexCastIntToIndex<arith::IndexCastUIOp>, |
| 1308 | ConvertIndexCastIndexToInt<arith::IndexCastOp, arith::ExtSIOp>, |
| 1309 | ConvertIndexCastIndexToInt<arith::IndexCastUIOp, arith::ExtUIOp>, |
| 1310 | ConvertSIToFP, ConvertUIToFP, ConvertFPToUI, ConvertFPToSI>( |
| 1311 | typeConverter, patterns.getContext()); |
| 1312 | } |
| 1313 | |