1 | //===- Bufferize.cpp - Bufferization utilities ----------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "mlir/Dialect/Bufferization/Transforms/Passes.h" |
10 | |
11 | #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h" |
12 | #include "mlir/Dialect/Bufferization/IR/Bufferization.h" |
13 | #include "mlir/Dialect/Bufferization/Transforms/Bufferize.h" |
14 | #include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h" |
15 | #include "mlir/Dialect/Bufferization/Transforms/OneShotModuleBufferize.h" |
16 | #include "mlir/Dialect/Bufferization/Transforms/Transforms.h" |
17 | #include "mlir/Dialect/Func/IR/FuncOps.h" |
18 | #include "mlir/Dialect/MemRef/IR/MemRef.h" |
19 | #include "mlir/IR/Diagnostics.h" |
20 | #include "mlir/IR/Operation.h" |
21 | #include "mlir/Interfaces/ControlFlowInterfaces.h" |
22 | #include "mlir/Interfaces/SideEffectInterfaces.h" |
23 | #include "mlir/Pass/PassManager.h" |
24 | #include "mlir/Transforms/Passes.h" |
25 | #include <optional> |
26 | |
27 | namespace mlir { |
28 | namespace bufferization { |
29 | #define GEN_PASS_DEF_ONESHOTBUFFERIZEPASS |
30 | #include "mlir/Dialect/Bufferization/Transforms/Passes.h.inc" |
31 | } // namespace bufferization |
32 | } // namespace mlir |
33 | |
34 | #define DEBUG_TYPE "bufferize" |
35 | |
36 | using namespace mlir; |
37 | using namespace mlir::bufferization; |
38 | |
39 | namespace { |
40 | |
41 | static OneShotBufferizationOptions::AnalysisHeuristic |
42 | parseHeuristicOption(const std::string &s) { |
43 | if (s == "bottom-up" ) |
44 | return OneShotBufferizationOptions::AnalysisHeuristic::BottomUp; |
45 | if (s == "top-down" ) |
46 | return OneShotBufferizationOptions::AnalysisHeuristic::TopDown; |
47 | if (s == "bottom-up-from-terminators" ) |
48 | return OneShotBufferizationOptions::AnalysisHeuristic:: |
49 | BottomUpFromTerminators; |
50 | if (s == "fuzzer" ) |
51 | return OneShotBufferizationOptions::AnalysisHeuristic::Fuzzer; |
52 | llvm_unreachable("invalid analysisheuristic option" ); |
53 | } |
54 | |
55 | struct OneShotBufferizePass |
56 | : public bufferization::impl::OneShotBufferizePassBase< |
57 | OneShotBufferizePass> { |
58 | using Base::Base; |
59 | |
60 | void runOnOperation() override { |
61 | OneShotBufferizationOptions opt; |
62 | if (!options) { |
63 | // Make new bufferization options if none were provided when creating the |
64 | // pass. |
65 | opt.allowReturnAllocsFromLoops = allowReturnAllocsFromLoops; |
66 | opt.allowUnknownOps = allowUnknownOps; |
67 | opt.analysisFuzzerSeed = analysisFuzzerSeed; |
68 | opt.analysisHeuristic = parseHeuristicOption(analysisHeuristic); |
69 | opt.copyBeforeWrite = copyBeforeWrite; |
70 | opt.dumpAliasSets = dumpAliasSets; |
71 | opt.setFunctionBoundaryTypeConversion(functionBoundaryTypeConversion); |
72 | |
73 | if (mustInferMemorySpace && useEncodingForMemorySpace) { |
74 | emitError(getOperation()->getLoc()) |
75 | << "only one of 'must-infer-memory-space' and " |
76 | "'use-encoding-for-memory-space' are allowed in " |
77 | << getArgument(); |
78 | return signalPassFailure(); |
79 | } |
80 | |
81 | if (mustInferMemorySpace) { |
82 | opt.defaultMemorySpaceFn = |
83 | [](TensorType t) -> std::optional<Attribute> { |
84 | return std::nullopt; |
85 | }; |
86 | } |
87 | |
88 | if (useEncodingForMemorySpace) { |
89 | opt.defaultMemorySpaceFn = |
90 | [](TensorType t) -> std::optional<Attribute> { |
91 | if (auto rtt = dyn_cast<RankedTensorType>(t)) |
92 | return rtt.getEncoding(); |
93 | return std::nullopt; |
94 | }; |
95 | } |
96 | |
97 | opt.printConflicts = printConflicts; |
98 | opt.bufferAlignment = bufferAlignment; |
99 | opt.testAnalysisOnly = testAnalysisOnly; |
100 | opt.bufferizeFunctionBoundaries = bufferizeFunctionBoundaries; |
101 | opt.checkParallelRegions = checkParallelRegions; |
102 | opt.noAnalysisFuncFilter = noAnalysisFuncFilter; |
103 | |
104 | // Configure type converter. |
105 | LayoutMapOption unknownTypeConversionOption = unknownTypeConversion; |
106 | if (unknownTypeConversionOption == LayoutMapOption::InferLayoutMap) { |
107 | emitError(UnknownLoc::get(&getContext()), |
108 | "Invalid option: 'infer-layout-map' is not a valid value for " |
109 | "'unknown-type-conversion'" ); |
110 | return signalPassFailure(); |
111 | } |
112 | opt.unknownTypeConverterFn = [=](Value value, Attribute memorySpace, |
113 | const BufferizationOptions &options) { |
114 | auto tensorType = cast<TensorType>(value.getType()); |
115 | if (unknownTypeConversionOption == LayoutMapOption::IdentityLayoutMap) |
116 | return bufferization::getMemRefTypeWithStaticIdentityLayout( |
117 | tensorType, memorySpace); |
118 | assert(unknownTypeConversionOption == |
119 | LayoutMapOption::FullyDynamicLayoutMap && |
120 | "invalid layout map option" ); |
121 | return bufferization::getMemRefTypeWithFullyDynamicLayout(tensorType, |
122 | memorySpace); |
123 | }; |
124 | |
125 | // Configure op filter. |
126 | OpFilter::Entry::FilterFn filterFn = [&](Operation *op) { |
127 | // Filter may be specified via options. |
128 | if (this->dialectFilter.hasValue() && !(*this->dialectFilter).empty()) |
129 | return llvm::is_contained(this->dialectFilter, |
130 | op->getDialect()->getNamespace()); |
131 | // No filter specified: All other ops are allowed. |
132 | return true; |
133 | }; |
134 | opt.opFilter.allowOperation(filterFn); |
135 | } else { |
136 | opt = *options; |
137 | } |
138 | |
139 | if (opt.copyBeforeWrite && opt.testAnalysisOnly) { |
140 | // These two flags do not make sense together: "copy-before-write" |
141 | // indicates that copies should be inserted before every memory write, |
142 | // but "test-analysis-only" indicates that only the analysis should be |
143 | // tested. (I.e., no IR is bufferized.) |
144 | emitError(UnknownLoc::get(&getContext()), |
145 | "Invalid option: 'copy-before-write' cannot be used with " |
146 | "'test-analysis-only'" ); |
147 | return signalPassFailure(); |
148 | } |
149 | |
150 | if (opt.printConflicts && !opt.testAnalysisOnly) { |
151 | emitError( |
152 | UnknownLoc::get(&getContext()), |
153 | "Invalid option: 'print-conflicts' requires 'test-analysis-only'" ); |
154 | return signalPassFailure(); |
155 | } |
156 | |
157 | if (opt.dumpAliasSets && !opt.testAnalysisOnly) { |
158 | emitError( |
159 | UnknownLoc::get(&getContext()), |
160 | "Invalid option: 'dump-alias-sets' requires 'test-analysis-only'" ); |
161 | return signalPassFailure(); |
162 | } |
163 | |
164 | BufferizationState state; |
165 | BufferizationStatistics statistics; |
166 | ModuleOp moduleOp = getOperation(); |
167 | if (opt.bufferizeFunctionBoundaries) { |
168 | if (failed( |
169 | runOneShotModuleBufferize(moduleOp, opt, state, &statistics))) { |
170 | signalPassFailure(); |
171 | return; |
172 | } |
173 | } else { |
174 | if (!opt.noAnalysisFuncFilter.empty()) { |
175 | emitError(UnknownLoc::get(&getContext()), |
176 | "Invalid option: 'no-analysis-func-filter' requires " |
177 | "'bufferize-function-boundaries'" ); |
178 | return signalPassFailure(); |
179 | } |
180 | if (failed(runOneShotBufferize(moduleOp, opt, state, &statistics))) { |
181 | signalPassFailure(); |
182 | return; |
183 | } |
184 | } |
185 | |
186 | // Set pass statistics. |
187 | this->numBufferAlloc = statistics.numBufferAlloc; |
188 | this->numTensorInPlace = statistics.numTensorInPlace; |
189 | this->numTensorOutOfPlace = statistics.numTensorOutOfPlace; |
190 | } |
191 | |
192 | private: |
193 | std::optional<OneShotBufferizationOptions> options; |
194 | }; |
195 | } // namespace |
196 | |
197 | //===----------------------------------------------------------------------===// |
198 | // BufferizableOpInterface-based Bufferization |
199 | //===----------------------------------------------------------------------===// |
200 | |
201 | namespace { |
202 | /// A rewriter that keeps track of extra information during bufferization. |
203 | class BufferizationRewriter : public IRRewriter, public RewriterBase::Listener { |
204 | public: |
205 | BufferizationRewriter(MLIRContext *ctx, DenseSet<Operation *> &erasedOps, |
206 | DenseSet<Operation *> &toBufferOps, |
207 | SmallVector<Operation *> &worklist, |
208 | const BufferizationOptions &options, |
209 | BufferizationStatistics *statistics) |
210 | : IRRewriter(ctx), erasedOps(erasedOps), toBufferOps(toBufferOps), |
211 | worklist(worklist), analysisState(options), statistics(statistics) { |
212 | setListener(this); |
213 | } |
214 | |
215 | protected: |
216 | void notifyOperationErased(Operation *op) override { |
217 | erasedOps.insert(V: op); |
218 | // Erase if present. |
219 | toBufferOps.erase(V: op); |
220 | } |
221 | |
222 | void notifyOperationInserted(Operation *op, InsertPoint previous) override { |
223 | // We only care about newly created ops. |
224 | if (previous.isSet()) |
225 | return; |
226 | |
227 | erasedOps.erase(V: op); |
228 | |
229 | // Gather statistics about allocs. |
230 | if (statistics) { |
231 | if (auto sideEffectingOp = dyn_cast<MemoryEffectOpInterface>(op)) |
232 | statistics->numBufferAlloc += static_cast<int64_t>( |
233 | sideEffectingOp.hasEffect<MemoryEffects::Allocate>()); |
234 | } |
235 | |
236 | // Keep track of to_buffer ops. |
237 | if (isa<ToBufferOp>(op)) { |
238 | toBufferOps.insert(V: op); |
239 | return; |
240 | } |
241 | |
242 | // Skip to_tensor ops. |
243 | if (isa<ToTensorOp>(op)) |
244 | return; |
245 | |
246 | // Skip non-tensor ops. |
247 | if (!hasTensorSemantics(op)) |
248 | return; |
249 | |
250 | // Skip ops that are not allowed to be bufferized. |
251 | auto const &options = analysisState.getOptions(); |
252 | if (!options.isOpAllowed(op)) |
253 | return; |
254 | |
255 | // Add op to worklist. |
256 | worklist.push_back(Elt: op); |
257 | } |
258 | |
259 | private: |
260 | /// A set of all erased ops. |
261 | DenseSet<Operation *> &erasedOps; |
262 | |
263 | /// A set of all to_buffer ops. |
264 | DenseSet<Operation *> &toBufferOps; |
265 | |
266 | /// The worklist of ops to be bufferized. |
267 | SmallVector<Operation *> &worklist; |
268 | |
269 | /// The analysis state. Used for debug assertions and access to the |
270 | /// bufferization options. |
271 | const AnalysisState analysisState; |
272 | |
273 | /// Bufferization statistics for debugging. |
274 | BufferizationStatistics *statistics; |
275 | }; |
276 | } // namespace |
277 | |
278 | LogicalResult bufferization::bufferizeOp(Operation *op, |
279 | const BufferizationOptions &options, |
280 | BufferizationState &bufferizationState, |
281 | BufferizationStatistics *statistics) { |
282 | if (options.copyBeforeWrite) { |
283 | AnalysisState analysisState(options); |
284 | if (failed(Result: insertTensorCopies(op, analysisState, bufferizationState))) |
285 | return failure(); |
286 | } |
287 | |
288 | // Keep track of to_buffer ops. |
289 | DenseSet<Operation *> toBufferOps; |
290 | op->walk(callback: [&](ToBufferOp toBufferOp) { toBufferOps.insert(toBufferOp); }); |
291 | |
292 | // Gather all bufferizable ops in top-to-bottom order. |
293 | // |
294 | // We should ideally know the exact memref type of all operands when |
295 | // bufferizing an op. (This is the case when bufferizing top-to-bottom.) |
296 | // Otherwise, we have to use a memref type with a fully dynamic layout map to |
297 | // avoid copies. We are currently missing patterns for layout maps to |
298 | // canonicalize away (or canonicalize to more precise layouts). |
299 | SmallVector<Operation *> worklist; |
300 | op->walk<WalkOrder::PostOrder>(callback: [&](Operation *op) { |
301 | if (options.isOpAllowed(op) && hasTensorSemantics(op)) |
302 | worklist.push_back(Elt: op); |
303 | }); |
304 | |
305 | // Keep track of all erased ops. |
306 | DenseSet<Operation *> erasedOps; |
307 | |
308 | // Bufferize all ops. |
309 | BufferizationRewriter rewriter(op->getContext(), erasedOps, toBufferOps, |
310 | worklist, options, statistics); |
311 | for (unsigned i = 0; i < worklist.size(); ++i) { |
312 | Operation *nextOp = worklist[i]; |
313 | // Skip ops that were erased. |
314 | if (erasedOps.contains(V: nextOp)) |
315 | continue; |
316 | // Skip ops that are not bufferizable or not allowed. |
317 | auto bufferizableOp = options.dynCastBufferizableOp(nextOp); |
318 | if (!bufferizableOp) |
319 | continue; |
320 | // Skip ops that no longer have tensor semantics. |
321 | if (!hasTensorSemantics(op: nextOp)) |
322 | continue; |
323 | // Check for unsupported unstructured control flow. |
324 | if (!bufferizableOp.supportsUnstructuredControlFlow()) |
325 | for (Region &r : nextOp->getRegions()) |
326 | if (r.getBlocks().size() > 1) |
327 | return nextOp->emitOpError( |
328 | message: "op or BufferizableOpInterface implementation does not support " |
329 | "unstructured control flow, but at least one region has multiple " |
330 | "blocks" ); |
331 | |
332 | // Bufferize the op. |
333 | LLVM_DEBUG(llvm::dbgs() |
334 | << "//===-------------------------------------------===//\n" |
335 | << "IR after bufferizing: " << nextOp->getName() << "\n" ); |
336 | rewriter.setInsertionPoint(nextOp); |
337 | if (failed( |
338 | bufferizableOp.bufferize(rewriter, options, bufferizationState))) { |
339 | LLVM_DEBUG(llvm::dbgs() |
340 | << "failed to bufferize\n" |
341 | << "//===-------------------------------------------===//\n" ); |
342 | return nextOp->emitError(message: "failed to bufferize op" ); |
343 | } |
344 | LLVM_DEBUG(llvm::dbgs() |
345 | << *op |
346 | << "\n//===-------------------------------------------===//\n" ); |
347 | } |
348 | |
349 | // Return early if the top-level op is entirely gone. |
350 | if (erasedOps.contains(V: op)) |
351 | return success(); |
352 | |
353 | // Fold all to_buffer(to_tensor(x)) pairs. |
354 | for (Operation *op : toBufferOps) { |
355 | rewriter.setInsertionPoint(op); |
356 | (void)bufferization::foldToBufferToTensorPair( |
357 | rewriter, cast<ToBufferOp>(op), options); |
358 | } |
359 | |
360 | // Remove all dead to_tensor ops. |
361 | op->walk<WalkOrder::PostOrder>(callback: [&](ToTensorOp toTensorOp) { |
362 | if (toTensorOp->getUses().empty()) { |
363 | rewriter.eraseOp(op: toTensorOp); |
364 | return WalkResult::skip(); |
365 | } |
366 | return WalkResult::advance(); |
367 | }); |
368 | |
369 | /// Check the result of bufferization. Return an error if an op was not |
370 | /// bufferized, unless partial bufferization is allowed. |
371 | if (options.allowUnknownOps) |
372 | return success(); |
373 | |
374 | for (Operation *op : worklist) { |
375 | // Skip ops that are entirely gone. |
376 | if (erasedOps.contains(V: op)) |
377 | continue; |
378 | // Ops that no longer have tensor semantics (because they were updated |
379 | // in-place) are allowed. |
380 | if (!hasTensorSemantics(op)) |
381 | continue; |
382 | // Continue ops that are not allowed. |
383 | if (!options.isOpAllowed(op)) |
384 | continue; |
385 | // Ops without any uses and no side effects will fold away. |
386 | if (op->getUses().empty() && isMemoryEffectFree(op)) |
387 | continue; |
388 | // ToTensorOps/ToBufferOps are allowed in the output. |
389 | if (isa<ToTensorOp, ToBufferOp>(op)) |
390 | continue; |
391 | return op->emitError(message: "op was not bufferized" ); |
392 | } |
393 | |
394 | return success(); |
395 | } |
396 | |
397 | LogicalResult |
398 | bufferization::bufferizeBlockSignature(Block *block, RewriterBase &rewriter, |
399 | const BufferizationOptions &options, |
400 | BufferizationState &state) { |
401 | OpBuilder::InsertionGuard g(rewriter); |
402 | auto bufferizableOp = options.dynCastBufferizableOp(block->getParentOp()); |
403 | if (!bufferizableOp) |
404 | return failure(); |
405 | |
406 | // Compute the new signature. |
407 | SmallVector<Type> newTypes; |
408 | for (BlockArgument &bbArg : block->getArguments()) { |
409 | auto tensorType = dyn_cast<TensorType>(Val: bbArg.getType()); |
410 | if (!tensorType) { |
411 | newTypes.push_back(Elt: bbArg.getType()); |
412 | continue; |
413 | } |
414 | |
415 | FailureOr<BaseMemRefType> memrefType = |
416 | bufferization::getBufferType(value: bbArg, options, state); |
417 | if (failed(Result: memrefType)) |
418 | return failure(); |
419 | newTypes.push_back(Elt: *memrefType); |
420 | } |
421 | |
422 | // Change the type of all block arguments. |
423 | for (auto [bbArg, type] : llvm::zip(t: block->getArguments(), u&: newTypes)) { |
424 | if (bbArg.getType() == type) |
425 | continue; |
426 | |
427 | // Collect all uses of the bbArg. |
428 | SmallVector<OpOperand *> bbArgUses; |
429 | for (OpOperand &use : bbArg.getUses()) |
430 | bbArgUses.push_back(Elt: &use); |
431 | |
432 | Type tensorType = bbArg.getType(); |
433 | // Change the bbArg type to memref. |
434 | bbArg.setType(type); |
435 | |
436 | // Replace all uses of the original tensor bbArg. |
437 | rewriter.setInsertionPointToStart(block); |
438 | if (!bbArgUses.empty()) { |
439 | Value toTensorOp = rewriter.create<bufferization::ToTensorOp>( |
440 | bbArg.getLoc(), tensorType, bbArg); |
441 | for (OpOperand *use : bbArgUses) |
442 | use->set(toTensorOp); |
443 | } |
444 | } |
445 | |
446 | // Bufferize callers of the block. |
447 | for (Operation *op : block->getUsers()) { |
448 | auto branchOp = dyn_cast<BranchOpInterface>(op); |
449 | if (!branchOp) |
450 | return op->emitOpError(message: "cannot bufferize ops with block references that " |
451 | "do not implement BranchOpInterface" ); |
452 | |
453 | auto it = llvm::find(Range: op->getSuccessors(), Val: block); |
454 | assert(it != op->getSuccessors().end() && "could find successor" ); |
455 | int64_t successorIdx = std::distance(first: op->getSuccessors().begin(), last: it); |
456 | |
457 | SuccessorOperands operands = branchOp.getSuccessorOperands(successorIdx); |
458 | SmallVector<Value> newOperands; |
459 | for (auto [operand, type] : |
460 | llvm::zip(operands.getForwardedOperands(), newTypes)) { |
461 | if (operand.getType() == type) { |
462 | // Not a tensor type. Nothing to do for this operand. |
463 | newOperands.push_back(operand); |
464 | continue; |
465 | } |
466 | FailureOr<BaseMemRefType> operandBufferType = |
467 | bufferization::getBufferType(operand, options, state); |
468 | if (failed(operandBufferType)) |
469 | return failure(); |
470 | rewriter.setInsertionPointAfterValue(operand); |
471 | Value bufferizedOperand = rewriter.create<bufferization::ToBufferOp>( |
472 | operand.getLoc(), *operandBufferType, operand); |
473 | // A cast is needed if the operand and the block argument have different |
474 | // bufferized types. |
475 | if (type != *operandBufferType) |
476 | bufferizedOperand = rewriter.create<memref::CastOp>( |
477 | operand.getLoc(), type, bufferizedOperand); |
478 | newOperands.push_back(bufferizedOperand); |
479 | } |
480 | operands.getMutableForwardedOperands().assign(values: newOperands); |
481 | } |
482 | |
483 | return success(); |
484 | } |
485 | |