| 1 | //===- Bufferize.cpp - Bufferization utilities ----------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "mlir/Dialect/Bufferization/Transforms/Passes.h" |
| 10 | |
| 11 | #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h" |
| 12 | #include "mlir/Dialect/Bufferization/IR/Bufferization.h" |
| 13 | #include "mlir/Dialect/Bufferization/Transforms/Bufferize.h" |
| 14 | #include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h" |
| 15 | #include "mlir/Dialect/Bufferization/Transforms/OneShotModuleBufferize.h" |
| 16 | #include "mlir/Dialect/Bufferization/Transforms/Transforms.h" |
| 17 | #include "mlir/Dialect/Func/IR/FuncOps.h" |
| 18 | #include "mlir/Dialect/MemRef/IR/MemRef.h" |
| 19 | #include "mlir/IR/Diagnostics.h" |
| 20 | #include "mlir/IR/Operation.h" |
| 21 | #include "mlir/Interfaces/ControlFlowInterfaces.h" |
| 22 | #include "mlir/Interfaces/SideEffectInterfaces.h" |
| 23 | #include "mlir/Pass/PassManager.h" |
| 24 | #include "mlir/Transforms/Passes.h" |
| 25 | #include <optional> |
| 26 | |
| 27 | namespace mlir { |
| 28 | namespace bufferization { |
| 29 | #define GEN_PASS_DEF_ONESHOTBUFFERIZEPASS |
| 30 | #include "mlir/Dialect/Bufferization/Transforms/Passes.h.inc" |
| 31 | } // namespace bufferization |
| 32 | } // namespace mlir |
| 33 | |
| 34 | #define DEBUG_TYPE "bufferize" |
| 35 | |
| 36 | using namespace mlir; |
| 37 | using namespace mlir::bufferization; |
| 38 | |
| 39 | namespace { |
| 40 | |
| 41 | static OneShotBufferizationOptions::AnalysisHeuristic |
| 42 | parseHeuristicOption(const std::string &s) { |
| 43 | if (s == "bottom-up" ) |
| 44 | return OneShotBufferizationOptions::AnalysisHeuristic::BottomUp; |
| 45 | if (s == "top-down" ) |
| 46 | return OneShotBufferizationOptions::AnalysisHeuristic::TopDown; |
| 47 | if (s == "bottom-up-from-terminators" ) |
| 48 | return OneShotBufferizationOptions::AnalysisHeuristic:: |
| 49 | BottomUpFromTerminators; |
| 50 | if (s == "fuzzer" ) |
| 51 | return OneShotBufferizationOptions::AnalysisHeuristic::Fuzzer; |
| 52 | llvm_unreachable("invalid analysisheuristic option" ); |
| 53 | } |
| 54 | |
| 55 | struct OneShotBufferizePass |
| 56 | : public bufferization::impl::OneShotBufferizePassBase< |
| 57 | OneShotBufferizePass> { |
| 58 | using Base::Base; |
| 59 | |
| 60 | void runOnOperation() override { |
| 61 | OneShotBufferizationOptions opt; |
| 62 | if (!options) { |
| 63 | // Make new bufferization options if none were provided when creating the |
| 64 | // pass. |
| 65 | opt.allowReturnAllocsFromLoops = allowReturnAllocsFromLoops; |
| 66 | opt.allowUnknownOps = allowUnknownOps; |
| 67 | opt.analysisFuzzerSeed = analysisFuzzerSeed; |
| 68 | opt.analysisHeuristic = parseHeuristicOption(analysisHeuristic); |
| 69 | opt.copyBeforeWrite = copyBeforeWrite; |
| 70 | opt.dumpAliasSets = dumpAliasSets; |
| 71 | opt.setFunctionBoundaryTypeConversion(functionBoundaryTypeConversion); |
| 72 | |
| 73 | if (mustInferMemorySpace && useEncodingForMemorySpace) { |
| 74 | emitError(getOperation()->getLoc()) |
| 75 | << "only one of 'must-infer-memory-space' and " |
| 76 | "'use-encoding-for-memory-space' are allowed in " |
| 77 | << getArgument(); |
| 78 | return signalPassFailure(); |
| 79 | } |
| 80 | |
| 81 | if (mustInferMemorySpace) { |
| 82 | opt.defaultMemorySpaceFn = |
| 83 | [](TensorType t) -> std::optional<Attribute> { |
| 84 | return std::nullopt; |
| 85 | }; |
| 86 | } |
| 87 | |
| 88 | if (useEncodingForMemorySpace) { |
| 89 | opt.defaultMemorySpaceFn = |
| 90 | [](TensorType t) -> std::optional<Attribute> { |
| 91 | if (auto rtt = dyn_cast<RankedTensorType>(t)) |
| 92 | return rtt.getEncoding(); |
| 93 | return std::nullopt; |
| 94 | }; |
| 95 | } |
| 96 | |
| 97 | opt.printConflicts = printConflicts; |
| 98 | opt.bufferAlignment = bufferAlignment; |
| 99 | opt.testAnalysisOnly = testAnalysisOnly; |
| 100 | opt.bufferizeFunctionBoundaries = bufferizeFunctionBoundaries; |
| 101 | opt.checkParallelRegions = checkParallelRegions; |
| 102 | opt.noAnalysisFuncFilter = noAnalysisFuncFilter; |
| 103 | |
| 104 | // Configure type converter. |
| 105 | LayoutMapOption unknownTypeConversionOption = unknownTypeConversion; |
| 106 | if (unknownTypeConversionOption == LayoutMapOption::InferLayoutMap) { |
| 107 | emitError(UnknownLoc::get(&getContext()), |
| 108 | "Invalid option: 'infer-layout-map' is not a valid value for " |
| 109 | "'unknown-type-conversion'" ); |
| 110 | return signalPassFailure(); |
| 111 | } |
| 112 | opt.unknownTypeConverterFn = [=](Value value, Attribute memorySpace, |
| 113 | const BufferizationOptions &options) { |
| 114 | auto tensorType = cast<TensorType>(value.getType()); |
| 115 | if (unknownTypeConversionOption == LayoutMapOption::IdentityLayoutMap) |
| 116 | return bufferization::getMemRefTypeWithStaticIdentityLayout( |
| 117 | tensorType, memorySpace); |
| 118 | assert(unknownTypeConversionOption == |
| 119 | LayoutMapOption::FullyDynamicLayoutMap && |
| 120 | "invalid layout map option" ); |
| 121 | return bufferization::getMemRefTypeWithFullyDynamicLayout(tensorType, |
| 122 | memorySpace); |
| 123 | }; |
| 124 | |
| 125 | // Configure op filter. |
| 126 | OpFilter::Entry::FilterFn filterFn = [&](Operation *op) { |
| 127 | // Filter may be specified via options. |
| 128 | if (this->dialectFilter.hasValue() && !(*this->dialectFilter).empty()) |
| 129 | return llvm::is_contained(this->dialectFilter, |
| 130 | op->getDialect()->getNamespace()); |
| 131 | // No filter specified: All other ops are allowed. |
| 132 | return true; |
| 133 | }; |
| 134 | opt.opFilter.allowOperation(filterFn); |
| 135 | } else { |
| 136 | opt = *options; |
| 137 | } |
| 138 | |
| 139 | if (opt.copyBeforeWrite && opt.testAnalysisOnly) { |
| 140 | // These two flags do not make sense together: "copy-before-write" |
| 141 | // indicates that copies should be inserted before every memory write, |
| 142 | // but "test-analysis-only" indicates that only the analysis should be |
| 143 | // tested. (I.e., no IR is bufferized.) |
| 144 | emitError(UnknownLoc::get(&getContext()), |
| 145 | "Invalid option: 'copy-before-write' cannot be used with " |
| 146 | "'test-analysis-only'" ); |
| 147 | return signalPassFailure(); |
| 148 | } |
| 149 | |
| 150 | if (opt.printConflicts && !opt.testAnalysisOnly) { |
| 151 | emitError( |
| 152 | UnknownLoc::get(&getContext()), |
| 153 | "Invalid option: 'print-conflicts' requires 'test-analysis-only'" ); |
| 154 | return signalPassFailure(); |
| 155 | } |
| 156 | |
| 157 | if (opt.dumpAliasSets && !opt.testAnalysisOnly) { |
| 158 | emitError( |
| 159 | UnknownLoc::get(&getContext()), |
| 160 | "Invalid option: 'dump-alias-sets' requires 'test-analysis-only'" ); |
| 161 | return signalPassFailure(); |
| 162 | } |
| 163 | |
| 164 | BufferizationState state; |
| 165 | BufferizationStatistics statistics; |
| 166 | ModuleOp moduleOp = getOperation(); |
| 167 | if (opt.bufferizeFunctionBoundaries) { |
| 168 | if (failed( |
| 169 | runOneShotModuleBufferize(moduleOp, opt, state, &statistics))) { |
| 170 | signalPassFailure(); |
| 171 | return; |
| 172 | } |
| 173 | } else { |
| 174 | if (!opt.noAnalysisFuncFilter.empty()) { |
| 175 | emitError(UnknownLoc::get(&getContext()), |
| 176 | "Invalid option: 'no-analysis-func-filter' requires " |
| 177 | "'bufferize-function-boundaries'" ); |
| 178 | return signalPassFailure(); |
| 179 | } |
| 180 | if (failed(runOneShotBufferize(moduleOp, opt, state, &statistics))) { |
| 181 | signalPassFailure(); |
| 182 | return; |
| 183 | } |
| 184 | } |
| 185 | |
| 186 | // Set pass statistics. |
| 187 | this->numBufferAlloc = statistics.numBufferAlloc; |
| 188 | this->numTensorInPlace = statistics.numTensorInPlace; |
| 189 | this->numTensorOutOfPlace = statistics.numTensorOutOfPlace; |
| 190 | } |
| 191 | |
| 192 | private: |
| 193 | std::optional<OneShotBufferizationOptions> options; |
| 194 | }; |
| 195 | } // namespace |
| 196 | |
| 197 | //===----------------------------------------------------------------------===// |
| 198 | // BufferizableOpInterface-based Bufferization |
| 199 | //===----------------------------------------------------------------------===// |
| 200 | |
| 201 | namespace { |
| 202 | /// A rewriter that keeps track of extra information during bufferization. |
| 203 | class BufferizationRewriter : public IRRewriter, public RewriterBase::Listener { |
| 204 | public: |
| 205 | BufferizationRewriter(MLIRContext *ctx, DenseSet<Operation *> &erasedOps, |
| 206 | DenseSet<Operation *> &toBufferOps, |
| 207 | SmallVector<Operation *> &worklist, |
| 208 | const BufferizationOptions &options, |
| 209 | BufferizationStatistics *statistics) |
| 210 | : IRRewriter(ctx), erasedOps(erasedOps), toBufferOps(toBufferOps), |
| 211 | worklist(worklist), analysisState(options), statistics(statistics) { |
| 212 | setListener(this); |
| 213 | } |
| 214 | |
| 215 | protected: |
| 216 | void notifyOperationErased(Operation *op) override { |
| 217 | erasedOps.insert(V: op); |
| 218 | // Erase if present. |
| 219 | toBufferOps.erase(V: op); |
| 220 | } |
| 221 | |
| 222 | void notifyOperationInserted(Operation *op, InsertPoint previous) override { |
| 223 | // We only care about newly created ops. |
| 224 | if (previous.isSet()) |
| 225 | return; |
| 226 | |
| 227 | erasedOps.erase(V: op); |
| 228 | |
| 229 | // Gather statistics about allocs. |
| 230 | if (statistics) { |
| 231 | if (auto sideEffectingOp = dyn_cast<MemoryEffectOpInterface>(op)) |
| 232 | statistics->numBufferAlloc += static_cast<int64_t>( |
| 233 | sideEffectingOp.hasEffect<MemoryEffects::Allocate>()); |
| 234 | } |
| 235 | |
| 236 | // Keep track of to_buffer ops. |
| 237 | if (isa<ToBufferOp>(op)) { |
| 238 | toBufferOps.insert(V: op); |
| 239 | return; |
| 240 | } |
| 241 | |
| 242 | // Skip to_tensor ops. |
| 243 | if (isa<ToTensorOp>(op)) |
| 244 | return; |
| 245 | |
| 246 | // Skip non-tensor ops. |
| 247 | if (!hasTensorSemantics(op)) |
| 248 | return; |
| 249 | |
| 250 | // Skip ops that are not allowed to be bufferized. |
| 251 | auto const &options = analysisState.getOptions(); |
| 252 | if (!options.isOpAllowed(op)) |
| 253 | return; |
| 254 | |
| 255 | // Add op to worklist. |
| 256 | worklist.push_back(Elt: op); |
| 257 | } |
| 258 | |
| 259 | private: |
| 260 | /// A set of all erased ops. |
| 261 | DenseSet<Operation *> &erasedOps; |
| 262 | |
| 263 | /// A set of all to_buffer ops. |
| 264 | DenseSet<Operation *> &toBufferOps; |
| 265 | |
| 266 | /// The worklist of ops to be bufferized. |
| 267 | SmallVector<Operation *> &worklist; |
| 268 | |
| 269 | /// The analysis state. Used for debug assertions and access to the |
| 270 | /// bufferization options. |
| 271 | const AnalysisState analysisState; |
| 272 | |
| 273 | /// Bufferization statistics for debugging. |
| 274 | BufferizationStatistics *statistics; |
| 275 | }; |
| 276 | } // namespace |
| 277 | |
| 278 | LogicalResult bufferization::bufferizeOp(Operation *op, |
| 279 | const BufferizationOptions &options, |
| 280 | BufferizationState &bufferizationState, |
| 281 | BufferizationStatistics *statistics) { |
| 282 | if (options.copyBeforeWrite) { |
| 283 | AnalysisState analysisState(options); |
| 284 | if (failed(Result: insertTensorCopies(op, analysisState, bufferizationState))) |
| 285 | return failure(); |
| 286 | } |
| 287 | |
| 288 | // Keep track of to_buffer ops. |
| 289 | DenseSet<Operation *> toBufferOps; |
| 290 | op->walk(callback: [&](ToBufferOp toBufferOp) { toBufferOps.insert(toBufferOp); }); |
| 291 | |
| 292 | // Gather all bufferizable ops in top-to-bottom order. |
| 293 | // |
| 294 | // We should ideally know the exact memref type of all operands when |
| 295 | // bufferizing an op. (This is the case when bufferizing top-to-bottom.) |
| 296 | // Otherwise, we have to use a memref type with a fully dynamic layout map to |
| 297 | // avoid copies. We are currently missing patterns for layout maps to |
| 298 | // canonicalize away (or canonicalize to more precise layouts). |
| 299 | SmallVector<Operation *> worklist; |
| 300 | op->walk<WalkOrder::PostOrder>(callback: [&](Operation *op) { |
| 301 | if (options.isOpAllowed(op) && hasTensorSemantics(op)) |
| 302 | worklist.push_back(Elt: op); |
| 303 | }); |
| 304 | |
| 305 | // Keep track of all erased ops. |
| 306 | DenseSet<Operation *> erasedOps; |
| 307 | |
| 308 | // Bufferize all ops. |
| 309 | BufferizationRewriter rewriter(op->getContext(), erasedOps, toBufferOps, |
| 310 | worklist, options, statistics); |
| 311 | for (unsigned i = 0; i < worklist.size(); ++i) { |
| 312 | Operation *nextOp = worklist[i]; |
| 313 | // Skip ops that were erased. |
| 314 | if (erasedOps.contains(V: nextOp)) |
| 315 | continue; |
| 316 | // Skip ops that are not bufferizable or not allowed. |
| 317 | auto bufferizableOp = options.dynCastBufferizableOp(nextOp); |
| 318 | if (!bufferizableOp) |
| 319 | continue; |
| 320 | // Skip ops that no longer have tensor semantics. |
| 321 | if (!hasTensorSemantics(op: nextOp)) |
| 322 | continue; |
| 323 | // Check for unsupported unstructured control flow. |
| 324 | if (!bufferizableOp.supportsUnstructuredControlFlow()) |
| 325 | for (Region &r : nextOp->getRegions()) |
| 326 | if (r.getBlocks().size() > 1) |
| 327 | return nextOp->emitOpError( |
| 328 | message: "op or BufferizableOpInterface implementation does not support " |
| 329 | "unstructured control flow, but at least one region has multiple " |
| 330 | "blocks" ); |
| 331 | |
| 332 | // Bufferize the op. |
| 333 | LLVM_DEBUG(llvm::dbgs() |
| 334 | << "//===-------------------------------------------===//\n" |
| 335 | << "IR after bufferizing: " << nextOp->getName() << "\n" ); |
| 336 | rewriter.setInsertionPoint(nextOp); |
| 337 | if (failed( |
| 338 | bufferizableOp.bufferize(rewriter, options, bufferizationState))) { |
| 339 | LLVM_DEBUG(llvm::dbgs() |
| 340 | << "failed to bufferize\n" |
| 341 | << "//===-------------------------------------------===//\n" ); |
| 342 | return nextOp->emitError(message: "failed to bufferize op" ); |
| 343 | } |
| 344 | LLVM_DEBUG(llvm::dbgs() |
| 345 | << *op |
| 346 | << "\n//===-------------------------------------------===//\n" ); |
| 347 | } |
| 348 | |
| 349 | // Return early if the top-level op is entirely gone. |
| 350 | if (erasedOps.contains(V: op)) |
| 351 | return success(); |
| 352 | |
| 353 | // Fold all to_buffer(to_tensor(x)) pairs. |
| 354 | for (Operation *op : toBufferOps) { |
| 355 | rewriter.setInsertionPoint(op); |
| 356 | (void)bufferization::foldToBufferToTensorPair( |
| 357 | rewriter, cast<ToBufferOp>(op), options); |
| 358 | } |
| 359 | |
| 360 | // Remove all dead to_tensor ops. |
| 361 | op->walk<WalkOrder::PostOrder>(callback: [&](ToTensorOp toTensorOp) { |
| 362 | if (toTensorOp->getUses().empty()) { |
| 363 | rewriter.eraseOp(op: toTensorOp); |
| 364 | return WalkResult::skip(); |
| 365 | } |
| 366 | return WalkResult::advance(); |
| 367 | }); |
| 368 | |
| 369 | /// Check the result of bufferization. Return an error if an op was not |
| 370 | /// bufferized, unless partial bufferization is allowed. |
| 371 | if (options.allowUnknownOps) |
| 372 | return success(); |
| 373 | |
| 374 | for (Operation *op : worklist) { |
| 375 | // Skip ops that are entirely gone. |
| 376 | if (erasedOps.contains(V: op)) |
| 377 | continue; |
| 378 | // Ops that no longer have tensor semantics (because they were updated |
| 379 | // in-place) are allowed. |
| 380 | if (!hasTensorSemantics(op)) |
| 381 | continue; |
| 382 | // Continue ops that are not allowed. |
| 383 | if (!options.isOpAllowed(op)) |
| 384 | continue; |
| 385 | // Ops without any uses and no side effects will fold away. |
| 386 | if (op->getUses().empty() && isMemoryEffectFree(op)) |
| 387 | continue; |
| 388 | // ToTensorOps/ToBufferOps are allowed in the output. |
| 389 | if (isa<ToTensorOp, ToBufferOp>(op)) |
| 390 | continue; |
| 391 | return op->emitError(message: "op was not bufferized" ); |
| 392 | } |
| 393 | |
| 394 | return success(); |
| 395 | } |
| 396 | |
| 397 | LogicalResult |
| 398 | bufferization::bufferizeBlockSignature(Block *block, RewriterBase &rewriter, |
| 399 | const BufferizationOptions &options, |
| 400 | BufferizationState &state) { |
| 401 | OpBuilder::InsertionGuard g(rewriter); |
| 402 | auto bufferizableOp = options.dynCastBufferizableOp(block->getParentOp()); |
| 403 | if (!bufferizableOp) |
| 404 | return failure(); |
| 405 | |
| 406 | // Compute the new signature. |
| 407 | SmallVector<Type> newTypes; |
| 408 | for (BlockArgument &bbArg : block->getArguments()) { |
| 409 | auto tensorType = dyn_cast<TensorType>(Val: bbArg.getType()); |
| 410 | if (!tensorType) { |
| 411 | newTypes.push_back(Elt: bbArg.getType()); |
| 412 | continue; |
| 413 | } |
| 414 | |
| 415 | FailureOr<BaseMemRefType> memrefType = |
| 416 | bufferization::getBufferType(value: bbArg, options, state); |
| 417 | if (failed(Result: memrefType)) |
| 418 | return failure(); |
| 419 | newTypes.push_back(Elt: *memrefType); |
| 420 | } |
| 421 | |
| 422 | // Change the type of all block arguments. |
| 423 | for (auto [bbArg, type] : llvm::zip(t: block->getArguments(), u&: newTypes)) { |
| 424 | if (bbArg.getType() == type) |
| 425 | continue; |
| 426 | |
| 427 | // Collect all uses of the bbArg. |
| 428 | SmallVector<OpOperand *> bbArgUses; |
| 429 | for (OpOperand &use : bbArg.getUses()) |
| 430 | bbArgUses.push_back(Elt: &use); |
| 431 | |
| 432 | Type tensorType = bbArg.getType(); |
| 433 | // Change the bbArg type to memref. |
| 434 | bbArg.setType(type); |
| 435 | |
| 436 | // Replace all uses of the original tensor bbArg. |
| 437 | rewriter.setInsertionPointToStart(block); |
| 438 | if (!bbArgUses.empty()) { |
| 439 | Value toTensorOp = rewriter.create<bufferization::ToTensorOp>( |
| 440 | bbArg.getLoc(), tensorType, bbArg); |
| 441 | for (OpOperand *use : bbArgUses) |
| 442 | use->set(toTensorOp); |
| 443 | } |
| 444 | } |
| 445 | |
| 446 | // Bufferize callers of the block. |
| 447 | for (Operation *op : block->getUsers()) { |
| 448 | auto branchOp = dyn_cast<BranchOpInterface>(op); |
| 449 | if (!branchOp) |
| 450 | return op->emitOpError(message: "cannot bufferize ops with block references that " |
| 451 | "do not implement BranchOpInterface" ); |
| 452 | |
| 453 | auto it = llvm::find(Range: op->getSuccessors(), Val: block); |
| 454 | assert(it != op->getSuccessors().end() && "could find successor" ); |
| 455 | int64_t successorIdx = std::distance(first: op->getSuccessors().begin(), last: it); |
| 456 | |
| 457 | SuccessorOperands operands = branchOp.getSuccessorOperands(successorIdx); |
| 458 | SmallVector<Value> newOperands; |
| 459 | for (auto [operand, type] : |
| 460 | llvm::zip(operands.getForwardedOperands(), newTypes)) { |
| 461 | if (operand.getType() == type) { |
| 462 | // Not a tensor type. Nothing to do for this operand. |
| 463 | newOperands.push_back(operand); |
| 464 | continue; |
| 465 | } |
| 466 | FailureOr<BaseMemRefType> operandBufferType = |
| 467 | bufferization::getBufferType(operand, options, state); |
| 468 | if (failed(operandBufferType)) |
| 469 | return failure(); |
| 470 | rewriter.setInsertionPointAfterValue(operand); |
| 471 | Value bufferizedOperand = rewriter.create<bufferization::ToBufferOp>( |
| 472 | operand.getLoc(), *operandBufferType, operand); |
| 473 | // A cast is needed if the operand and the block argument have different |
| 474 | // bufferized types. |
| 475 | if (type != *operandBufferType) |
| 476 | bufferizedOperand = rewriter.create<memref::CastOp>( |
| 477 | operand.getLoc(), type, bufferizedOperand); |
| 478 | newOperands.push_back(bufferizedOperand); |
| 479 | } |
| 480 | operands.getMutableForwardedOperands().assign(values: newOperands); |
| 481 | } |
| 482 | |
| 483 | return success(); |
| 484 | } |
| 485 | |