1 | //===- LLVMDialect.cpp - LLVM IR Ops and Dialect registration -------------===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file defines the types and operation details for the LLVM IR dialect in |
10 | // MLIR, and the LLVM IR dialect. It also registers the dialect. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "mlir/Dialect/LLVMIR/LLVMDialect.h" |
15 | #include "TypeDetail.h" |
16 | #include "mlir/Dialect/LLVMIR/LLVMAttrs.h" |
17 | #include "mlir/Dialect/LLVMIR/LLVMInterfaces.h" |
18 | #include "mlir/Dialect/LLVMIR/LLVMTypes.h" |
19 | #include "mlir/IR/Attributes.h" |
20 | #include "mlir/IR/Builders.h" |
21 | #include "mlir/IR/BuiltinOps.h" |
22 | #include "mlir/IR/BuiltinTypes.h" |
23 | #include "mlir/IR/DialectImplementation.h" |
24 | #include "mlir/IR/MLIRContext.h" |
25 | #include "mlir/IR/Matchers.h" |
26 | #include "mlir/Interfaces/FunctionImplementation.h" |
27 | #include "mlir/Transforms/InliningUtils.h" |
28 | |
29 | #include "llvm/ADT/SCCIterator.h" |
30 | #include "llvm/ADT/TypeSwitch.h" |
31 | #include "llvm/AsmParser/Parser.h" |
32 | #include "llvm/Bitcode/BitcodeReader.h" |
33 | #include "llvm/Bitcode/BitcodeWriter.h" |
34 | #include "llvm/IR/Attributes.h" |
35 | #include "llvm/IR/Function.h" |
36 | #include "llvm/IR/Type.h" |
37 | #include "llvm/Support/Error.h" |
38 | #include "llvm/Support/Mutex.h" |
39 | #include "llvm/Support/SourceMgr.h" |
40 | |
41 | #include <numeric> |
42 | #include <optional> |
43 | |
44 | using namespace mlir; |
45 | using namespace mlir::LLVM; |
46 | using mlir::LLVM::cconv::getMaxEnumValForCConv; |
47 | using mlir::LLVM::linkage::getMaxEnumValForLinkage; |
48 | using mlir::LLVM::tailcallkind::getMaxEnumValForTailCallKind; |
49 | |
50 | #include "mlir/Dialect/LLVMIR/LLVMOpsDialect.cpp.inc" |
51 | |
52 | //===----------------------------------------------------------------------===// |
53 | // Attribute Helpers |
54 | //===----------------------------------------------------------------------===// |
55 | |
56 | static constexpr const char kElemTypeAttrName[] = "elem_type"; |
57 | |
58 | static auto processFMFAttr(ArrayRef<NamedAttribute> attrs) { |
59 | SmallVector<NamedAttribute, 8> filteredAttrs( |
60 | llvm::make_filter_range(Range&: attrs, Pred: [&](NamedAttribute attr) { |
61 | if (attr.getName() == "fastmathFlags") { |
62 | auto defAttr = |
63 | FastmathFlagsAttr::get(attr.getValue().getContext(), {}); |
64 | return defAttr != attr.getValue(); |
65 | } |
66 | return true; |
67 | })); |
68 | return filteredAttrs; |
69 | } |
70 | |
71 | /// Verifies `symbol`'s use in `op` to ensure the symbol is a valid and |
72 | /// fully defined llvm.func. |
73 | static LogicalResult verifySymbolAttrUse(FlatSymbolRefAttr symbol, |
74 | Operation *op, |
75 | SymbolTableCollection &symbolTable) { |
76 | StringRef name = symbol.getValue(); |
77 | auto func = |
78 | symbolTable.lookupNearestSymbolFrom<LLVMFuncOp>(op, symbol.getAttr()); |
79 | if (!func) |
80 | return op->emitOpError(message: "'") |
81 | << name << "' does not reference a valid LLVM function"; |
82 | if (func.isExternal()) |
83 | return op->emitOpError(message: "'") << name << "' does not have a definition"; |
84 | return success(); |
85 | } |
86 | |
87 | /// Returns a boolean type that has the same shape as `type`. It supports both |
88 | /// fixed size vectors as well as scalable vectors. |
89 | static Type getI1SameShape(Type type) { |
90 | Type i1Type = IntegerType::get(type.getContext(), 1); |
91 | if (LLVM::isCompatibleVectorType(type)) |
92 | return LLVM::getVectorType(elementType: i1Type, numElements: LLVM::getVectorNumElements(type)); |
93 | return i1Type; |
94 | } |
95 | |
96 | // Parses one of the keywords provided in the list `keywords` and returns the |
97 | // position of the parsed keyword in the list. If none of the keywords from the |
98 | // list is parsed, returns -1. |
99 | static int parseOptionalKeywordAlternative(OpAsmParser &parser, |
100 | ArrayRef<StringRef> keywords) { |
101 | for (const auto &en : llvm::enumerate(First&: keywords)) { |
102 | if (succeeded(Result: parser.parseOptionalKeyword(keyword: en.value()))) |
103 | return en.index(); |
104 | } |
105 | return -1; |
106 | } |
107 | |
108 | namespace { |
109 | template <typename Ty> |
110 | struct EnumTraits {}; |
111 | |
112 | #define REGISTER_ENUM_TYPE(Ty) \ |
113 | template <> \ |
114 | struct EnumTraits<Ty> { \ |
115 | static StringRef stringify(Ty value) { return stringify##Ty(value); } \ |
116 | static unsigned getMaxEnumVal() { return getMaxEnumValFor##Ty(); } \ |
117 | } |
118 | |
119 | REGISTER_ENUM_TYPE(Linkage); |
120 | REGISTER_ENUM_TYPE(UnnamedAddr); |
121 | REGISTER_ENUM_TYPE(CConv); |
122 | REGISTER_ENUM_TYPE(TailCallKind); |
123 | REGISTER_ENUM_TYPE(Visibility); |
124 | } // namespace |
125 | |
126 | /// Parse an enum from the keyword, or default to the provided default value. |
127 | /// The return type is the enum type by default, unless overridden with the |
128 | /// second template argument. |
129 | template <typename EnumTy, typename RetTy = EnumTy> |
130 | static RetTy parseOptionalLLVMKeyword(OpAsmParser &parser, |
131 | OperationState &result, |
132 | EnumTy defaultValue) { |
133 | SmallVector<StringRef, 10> names; |
134 | for (unsigned i = 0, e = EnumTraits<EnumTy>::getMaxEnumVal(); i <= e; ++i) |
135 | names.push_back(Elt: EnumTraits<EnumTy>::stringify(static_cast<EnumTy>(i))); |
136 | |
137 | int index = parseOptionalKeywordAlternative(parser, keywords: names); |
138 | if (index == -1) |
139 | return static_cast<RetTy>(defaultValue); |
140 | return static_cast<RetTy>(index); |
141 | } |
142 | |
143 | //===----------------------------------------------------------------------===// |
144 | // Operand bundle helpers. |
145 | //===----------------------------------------------------------------------===// |
146 | |
147 | static void printOneOpBundle(OpAsmPrinter &p, OperandRange operands, |
148 | TypeRange operandTypes, StringRef tag) { |
149 | p.printString(string: tag); |
150 | p << "("; |
151 | |
152 | if (!operands.empty()) { |
153 | p.printOperands(container: operands); |
154 | p << " : "; |
155 | llvm::interleaveComma(c: operandTypes, os&: p); |
156 | } |
157 | |
158 | p << ")"; |
159 | } |
160 | |
161 | static void printOpBundles(OpAsmPrinter &p, Operation *op, |
162 | OperandRangeRange opBundleOperands, |
163 | TypeRangeRange opBundleOperandTypes, |
164 | std::optional<ArrayAttr> opBundleTags) { |
165 | if (opBundleOperands.empty()) |
166 | return; |
167 | assert(opBundleTags && "expect operand bundle tags"); |
168 | |
169 | p << "["; |
170 | llvm::interleaveComma( |
171 | llvm::zip(opBundleOperands, opBundleOperandTypes, *opBundleTags), p, |
172 | [&p](auto bundle) { |
173 | auto bundleTag = cast<StringAttr>(std::get<2>(bundle)).getValue(); |
174 | printOneOpBundle(p, std::get<0>(bundle), std::get<1>(bundle), |
175 | bundleTag); |
176 | }); |
177 | p << "]"; |
178 | } |
179 | |
180 | static ParseResult parseOneOpBundle( |
181 | OpAsmParser &p, |
182 | SmallVector<SmallVector<OpAsmParser::UnresolvedOperand>> &opBundleOperands, |
183 | SmallVector<SmallVector<Type>> &opBundleOperandTypes, |
184 | SmallVector<Attribute> &opBundleTags) { |
185 | SMLoc currentParserLoc = p.getCurrentLocation(); |
186 | SmallVector<OpAsmParser::UnresolvedOperand> operands; |
187 | SmallVector<Type> types; |
188 | std::string tag; |
189 | |
190 | if (p.parseString(string: &tag)) |
191 | return p.emitError(loc: currentParserLoc, message: "expect operand bundle tag"); |
192 | |
193 | if (p.parseLParen()) |
194 | return failure(); |
195 | |
196 | if (p.parseOptionalRParen()) { |
197 | if (p.parseOperandList(result&: operands) || p.parseColon() || |
198 | p.parseTypeList(result&: types) || p.parseRParen()) |
199 | return failure(); |
200 | } |
201 | |
202 | opBundleOperands.push_back(Elt: std::move(operands)); |
203 | opBundleOperandTypes.push_back(Elt: std::move(types)); |
204 | opBundleTags.push_back(StringAttr::get(p.getContext(), tag)); |
205 | |
206 | return success(); |
207 | } |
208 | |
209 | static std::optional<ParseResult> parseOpBundles( |
210 | OpAsmParser &p, |
211 | SmallVector<SmallVector<OpAsmParser::UnresolvedOperand>> &opBundleOperands, |
212 | SmallVector<SmallVector<Type>> &opBundleOperandTypes, |
213 | ArrayAttr &opBundleTags) { |
214 | if (p.parseOptionalLSquare()) |
215 | return std::nullopt; |
216 | |
217 | if (succeeded(Result: p.parseOptionalRSquare())) |
218 | return success(); |
219 | |
220 | SmallVector<Attribute> opBundleTagAttrs; |
221 | auto bundleParser = [&] { |
222 | return parseOneOpBundle(p, opBundleOperands, opBundleOperandTypes, |
223 | opBundleTags&: opBundleTagAttrs); |
224 | }; |
225 | if (p.parseCommaSeparatedList(parseElementFn: bundleParser)) |
226 | return failure(); |
227 | |
228 | if (p.parseRSquare()) |
229 | return failure(); |
230 | |
231 | opBundleTags = ArrayAttr::get(p.getContext(), opBundleTagAttrs); |
232 | |
233 | return success(); |
234 | } |
235 | |
236 | //===----------------------------------------------------------------------===// |
237 | // Printing, parsing, folding and builder for LLVM::CmpOp. |
238 | //===----------------------------------------------------------------------===// |
239 | |
240 | void ICmpOp::print(OpAsmPrinter &p) { |
241 | p << " \""<< stringifyICmpPredicate(getPredicate()) << "\" "<< getOperand(0) |
242 | << ", "<< getOperand(1); |
243 | p.printOptionalAttrDict((*this)->getAttrs(), {"predicate"}); |
244 | p << " : "<< getLhs().getType(); |
245 | } |
246 | |
247 | void FCmpOp::print(OpAsmPrinter &p) { |
248 | p << " \""<< stringifyFCmpPredicate(getPredicate()) << "\" "<< getOperand(0) |
249 | << ", "<< getOperand(1); |
250 | p.printOptionalAttrDict(processFMFAttr((*this)->getAttrs()), {"predicate"}); |
251 | p << " : "<< getLhs().getType(); |
252 | } |
253 | |
254 | // <operation> ::= `llvm.icmp` string-literal ssa-use `,` ssa-use |
255 | // attribute-dict? `:` type |
256 | // <operation> ::= `llvm.fcmp` string-literal ssa-use `,` ssa-use |
257 | // attribute-dict? `:` type |
258 | template <typename CmpPredicateType> |
259 | static ParseResult parseCmpOp(OpAsmParser &parser, OperationState &result) { |
260 | StringAttr predicateAttr; |
261 | OpAsmParser::UnresolvedOperand lhs, rhs; |
262 | Type type; |
263 | SMLoc predicateLoc, trailingTypeLoc; |
264 | if (parser.getCurrentLocation(loc: &predicateLoc) || |
265 | parser.parseAttribute(predicateAttr, "predicate", result.attributes) || |
266 | parser.parseOperand(result&: lhs) || parser.parseComma() || |
267 | parser.parseOperand(result&: rhs) || |
268 | parser.parseOptionalAttrDict(result&: result.attributes) || parser.parseColon() || |
269 | parser.getCurrentLocation(loc: &trailingTypeLoc) || parser.parseType(result&: type) || |
270 | parser.resolveOperand(operand: lhs, type, result&: result.operands) || |
271 | parser.resolveOperand(operand: rhs, type, result&: result.operands)) |
272 | return failure(); |
273 | |
274 | // Replace the string attribute `predicate` with an integer attribute. |
275 | int64_t predicateValue = 0; |
276 | if (std::is_same<CmpPredicateType, ICmpPredicate>()) { |
277 | std::optional<ICmpPredicate> predicate = |
278 | symbolizeICmpPredicate(predicateAttr.getValue()); |
279 | if (!predicate) |
280 | return parser.emitError(loc: predicateLoc) |
281 | << "'"<< predicateAttr.getValue() |
282 | << "' is an incorrect value of the 'predicate' attribute"; |
283 | predicateValue = static_cast<int64_t>(*predicate); |
284 | } else { |
285 | std::optional<FCmpPredicate> predicate = |
286 | symbolizeFCmpPredicate(predicateAttr.getValue()); |
287 | if (!predicate) |
288 | return parser.emitError(loc: predicateLoc) |
289 | << "'"<< predicateAttr.getValue() |
290 | << "' is an incorrect value of the 'predicate' attribute"; |
291 | predicateValue = static_cast<int64_t>(*predicate); |
292 | } |
293 | |
294 | result.attributes.set("predicate", |
295 | parser.getBuilder().getI64IntegerAttr(predicateValue)); |
296 | |
297 | // The result type is either i1 or a vector type <? x i1> if the inputs are |
298 | // vectors. |
299 | if (!isCompatibleType(type)) |
300 | return parser.emitError(loc: trailingTypeLoc, |
301 | message: "expected LLVM dialect-compatible type"); |
302 | result.addTypes(newTypes: getI1SameShape(type)); |
303 | return success(); |
304 | } |
305 | |
306 | ParseResult ICmpOp::parse(OpAsmParser &parser, OperationState &result) { |
307 | return parseCmpOp<ICmpPredicate>(parser, result); |
308 | } |
309 | |
310 | ParseResult FCmpOp::parse(OpAsmParser &parser, OperationState &result) { |
311 | return parseCmpOp<FCmpPredicate>(parser, result); |
312 | } |
313 | |
314 | /// Returns a scalar or vector boolean attribute of the given type. |
315 | static Attribute getBoolAttribute(Type type, MLIRContext *ctx, bool value) { |
316 | auto boolAttr = BoolAttr::get(context: ctx, value); |
317 | ShapedType shapedType = dyn_cast<ShapedType>(type); |
318 | if (!shapedType) |
319 | return boolAttr; |
320 | return DenseElementsAttr::get(shapedType, boolAttr); |
321 | } |
322 | |
323 | OpFoldResult ICmpOp::fold(FoldAdaptor adaptor) { |
324 | if (getPredicate() != ICmpPredicate::eq && |
325 | getPredicate() != ICmpPredicate::ne) |
326 | return {}; |
327 | |
328 | // cmpi(eq/ne, x, x) -> true/false |
329 | if (getLhs() == getRhs()) |
330 | return getBoolAttribute(getType(), getContext(), |
331 | getPredicate() == ICmpPredicate::eq); |
332 | |
333 | // cmpi(eq/ne, alloca, null) -> false/true |
334 | if (getLhs().getDefiningOp<AllocaOp>() && getRhs().getDefiningOp<ZeroOp>()) |
335 | return getBoolAttribute(getType(), getContext(), |
336 | getPredicate() == ICmpPredicate::ne); |
337 | |
338 | // cmpi(eq/ne, null, alloca) -> cmpi(eq/ne, alloca, null) |
339 | if (getLhs().getDefiningOp<ZeroOp>() && getRhs().getDefiningOp<AllocaOp>()) { |
340 | Value lhs = getLhs(); |
341 | Value rhs = getRhs(); |
342 | getLhsMutable().assign(rhs); |
343 | getRhsMutable().assign(lhs); |
344 | return getResult(); |
345 | } |
346 | |
347 | return {}; |
348 | } |
349 | |
350 | //===----------------------------------------------------------------------===// |
351 | // Printing, parsing and verification for LLVM::AllocaOp. |
352 | //===----------------------------------------------------------------------===// |
353 | |
354 | void AllocaOp::print(OpAsmPrinter &p) { |
355 | auto funcTy = |
356 | FunctionType::get(getContext(), {getArraySize().getType()}, {getType()}); |
357 | |
358 | if (getInalloca()) |
359 | p << " inalloca"; |
360 | |
361 | p << ' ' << getArraySize() << " x "<< getElemType(); |
362 | if (getAlignment() && *getAlignment() != 0) |
363 | p.printOptionalAttrDict((*this)->getAttrs(), |
364 | {kElemTypeAttrName, getInallocaAttrName()}); |
365 | else |
366 | p.printOptionalAttrDict( |
367 | (*this)->getAttrs(), |
368 | {getAlignmentAttrName(), kElemTypeAttrName, getInallocaAttrName()}); |
369 | p << " : "<< funcTy; |
370 | } |
371 | |
372 | // <operation> ::= `llvm.alloca` `inalloca`? ssa-use `x` type |
373 | // attribute-dict? `:` type `,` type |
374 | ParseResult AllocaOp::parse(OpAsmParser &parser, OperationState &result) { |
375 | OpAsmParser::UnresolvedOperand arraySize; |
376 | Type type, elemType; |
377 | SMLoc trailingTypeLoc; |
378 | |
379 | if (succeeded(parser.parseOptionalKeyword("inalloca"))) |
380 | result.addAttribute(getInallocaAttrName(result.name), |
381 | UnitAttr::get(parser.getContext())); |
382 | |
383 | if (parser.parseOperand(arraySize) || parser.parseKeyword("x") || |
384 | parser.parseType(elemType) || |
385 | parser.parseOptionalAttrDict(result.attributes) || parser.parseColon() || |
386 | parser.getCurrentLocation(&trailingTypeLoc) || parser.parseType(type)) |
387 | return failure(); |
388 | |
389 | std::optional<NamedAttribute> alignmentAttr = |
390 | result.attributes.getNamed("alignment"); |
391 | if (alignmentAttr.has_value()) { |
392 | auto alignmentInt = llvm::dyn_cast<IntegerAttr>(alignmentAttr->getValue()); |
393 | if (!alignmentInt) |
394 | return parser.emitError(parser.getNameLoc(), |
395 | "expected integer alignment"); |
396 | if (alignmentInt.getValue().isZero()) |
397 | result.attributes.erase("alignment"); |
398 | } |
399 | |
400 | // Extract the result type from the trailing function type. |
401 | auto funcType = llvm::dyn_cast<FunctionType>(type); |
402 | if (!funcType || funcType.getNumInputs() != 1 || |
403 | funcType.getNumResults() != 1) |
404 | return parser.emitError( |
405 | trailingTypeLoc, |
406 | "expected trailing function type with one argument and one result"); |
407 | |
408 | if (parser.resolveOperand(arraySize, funcType.getInput(0), result.operands)) |
409 | return failure(); |
410 | |
411 | Type resultType = funcType.getResult(0); |
412 | if (auto ptrResultType = llvm::dyn_cast<LLVMPointerType>(resultType)) |
413 | result.addAttribute(kElemTypeAttrName, TypeAttr::get(elemType)); |
414 | |
415 | result.addTypes({funcType.getResult(0)}); |
416 | return success(); |
417 | } |
418 | |
419 | LogicalResult AllocaOp::verify() { |
420 | // Only certain target extension types can be used in 'alloca'. |
421 | if (auto targetExtType = dyn_cast<LLVMTargetExtType>(getElemType()); |
422 | targetExtType && !targetExtType.supportsMemOps()) |
423 | return emitOpError() |
424 | << "this target extension type cannot be used in alloca"; |
425 | |
426 | return success(); |
427 | } |
428 | |
429 | //===----------------------------------------------------------------------===// |
430 | // LLVM::BrOp |
431 | //===----------------------------------------------------------------------===// |
432 | |
433 | SuccessorOperands BrOp::getSuccessorOperands(unsigned index) { |
434 | assert(index == 0 && "invalid successor index"); |
435 | return SuccessorOperands(getDestOperandsMutable()); |
436 | } |
437 | |
438 | //===----------------------------------------------------------------------===// |
439 | // LLVM::CondBrOp |
440 | //===----------------------------------------------------------------------===// |
441 | |
442 | SuccessorOperands CondBrOp::getSuccessorOperands(unsigned index) { |
443 | assert(index < getNumSuccessors() && "invalid successor index"); |
444 | return SuccessorOperands(index == 0 ? getTrueDestOperandsMutable() |
445 | : getFalseDestOperandsMutable()); |
446 | } |
447 | |
448 | void CondBrOp::build(OpBuilder &builder, OperationState &result, |
449 | Value condition, Block *trueDest, ValueRange trueOperands, |
450 | Block *falseDest, ValueRange falseOperands, |
451 | std::optional<std::pair<uint32_t, uint32_t>> weights) { |
452 | DenseI32ArrayAttr weightsAttr; |
453 | if (weights) |
454 | weightsAttr = |
455 | builder.getDenseI32ArrayAttr({static_cast<int32_t>(weights->first), |
456 | static_cast<int32_t>(weights->second)}); |
457 | |
458 | build(builder, result, condition, trueOperands, falseOperands, weightsAttr, |
459 | /*loop_annotation=*/{}, trueDest, falseDest); |
460 | } |
461 | |
462 | //===----------------------------------------------------------------------===// |
463 | // LLVM::SwitchOp |
464 | //===----------------------------------------------------------------------===// |
465 | |
466 | void SwitchOp::build(OpBuilder &builder, OperationState &result, Value value, |
467 | Block *defaultDestination, ValueRange defaultOperands, |
468 | DenseIntElementsAttr caseValues, |
469 | BlockRange caseDestinations, |
470 | ArrayRef<ValueRange> caseOperands, |
471 | ArrayRef<int32_t> branchWeights) { |
472 | DenseI32ArrayAttr weightsAttr; |
473 | if (!branchWeights.empty()) |
474 | weightsAttr = builder.getDenseI32ArrayAttr(branchWeights); |
475 | |
476 | build(builder, result, value, defaultOperands, caseOperands, caseValues, |
477 | weightsAttr, defaultDestination, caseDestinations); |
478 | } |
479 | |
480 | void SwitchOp::build(OpBuilder &builder, OperationState &result, Value value, |
481 | Block *defaultDestination, ValueRange defaultOperands, |
482 | ArrayRef<APInt> caseValues, BlockRange caseDestinations, |
483 | ArrayRef<ValueRange> caseOperands, |
484 | ArrayRef<int32_t> branchWeights) { |
485 | DenseIntElementsAttr caseValuesAttr; |
486 | if (!caseValues.empty()) { |
487 | ShapedType caseValueType = VectorType::get( |
488 | static_cast<int64_t>(caseValues.size()), value.getType()); |
489 | caseValuesAttr = DenseIntElementsAttr::get(caseValueType, caseValues); |
490 | } |
491 | |
492 | build(builder, result, value, defaultDestination, defaultOperands, |
493 | caseValuesAttr, caseDestinations, caseOperands, branchWeights); |
494 | } |
495 | |
496 | void SwitchOp::build(OpBuilder &builder, OperationState &result, Value value, |
497 | Block *defaultDestination, ValueRange defaultOperands, |
498 | ArrayRef<int32_t> caseValues, BlockRange caseDestinations, |
499 | ArrayRef<ValueRange> caseOperands, |
500 | ArrayRef<int32_t> branchWeights) { |
501 | DenseIntElementsAttr caseValuesAttr; |
502 | if (!caseValues.empty()) { |
503 | ShapedType caseValueType = VectorType::get( |
504 | static_cast<int64_t>(caseValues.size()), value.getType()); |
505 | caseValuesAttr = DenseIntElementsAttr::get(caseValueType, caseValues); |
506 | } |
507 | |
508 | build(builder, result, value, defaultDestination, defaultOperands, |
509 | caseValuesAttr, caseDestinations, caseOperands, branchWeights); |
510 | } |
511 | |
512 | /// <cases> ::= `[` (case (`,` case )* )? `]` |
513 | /// <case> ::= integer `:` bb-id (`(` ssa-use-and-type-list `)`)? |
514 | static ParseResult parseSwitchOpCases( |
515 | OpAsmParser &parser, Type flagType, DenseIntElementsAttr &caseValues, |
516 | SmallVectorImpl<Block *> &caseDestinations, |
517 | SmallVectorImpl<SmallVector<OpAsmParser::UnresolvedOperand>> &caseOperands, |
518 | SmallVectorImpl<SmallVector<Type>> &caseOperandTypes) { |
519 | if (failed(Result: parser.parseLSquare())) |
520 | return failure(); |
521 | if (succeeded(Result: parser.parseOptionalRSquare())) |
522 | return success(); |
523 | SmallVector<APInt> values; |
524 | unsigned bitWidth = flagType.getIntOrFloatBitWidth(); |
525 | auto parseCase = [&]() { |
526 | int64_t value = 0; |
527 | if (failed(Result: parser.parseInteger(result&: value))) |
528 | return failure(); |
529 | values.push_back(Elt: APInt(bitWidth, value, /*isSigned=*/true)); |
530 | |
531 | Block *destination; |
532 | SmallVector<OpAsmParser::UnresolvedOperand> operands; |
533 | SmallVector<Type> operandTypes; |
534 | if (parser.parseColon() || parser.parseSuccessor(dest&: destination)) |
535 | return failure(); |
536 | if (!parser.parseOptionalLParen()) { |
537 | if (parser.parseOperandList(result&: operands, delimiter: OpAsmParser::Delimiter::None, |
538 | /*allowResultNumber=*/false) || |
539 | parser.parseColonTypeList(result&: operandTypes) || parser.parseRParen()) |
540 | return failure(); |
541 | } |
542 | caseDestinations.push_back(Elt: destination); |
543 | caseOperands.emplace_back(Args&: operands); |
544 | caseOperandTypes.emplace_back(Args&: operandTypes); |
545 | return success(); |
546 | }; |
547 | if (failed(Result: parser.parseCommaSeparatedList(parseElementFn: parseCase))) |
548 | return failure(); |
549 | |
550 | ShapedType caseValueType = |
551 | VectorType::get(static_cast<int64_t>(values.size()), flagType); |
552 | caseValues = DenseIntElementsAttr::get(caseValueType, values); |
553 | return parser.parseRSquare(); |
554 | } |
555 | |
556 | static void printSwitchOpCases(OpAsmPrinter &p, SwitchOp op, Type flagType, |
557 | DenseIntElementsAttr caseValues, |
558 | SuccessorRange caseDestinations, |
559 | OperandRangeRange caseOperands, |
560 | const TypeRangeRange &caseOperandTypes) { |
561 | p << '['; |
562 | p.printNewline(); |
563 | if (!caseValues) { |
564 | p << ']'; |
565 | return; |
566 | } |
567 | |
568 | size_t index = 0; |
569 | llvm::interleave( |
570 | c: llvm::zip(t&: caseValues, u&: caseDestinations), |
571 | each_fn: [&](auto i) { |
572 | p << " "; |
573 | p << std::get<0>(i); |
574 | p << ": "; |
575 | p.printSuccessorAndUseList(successor: std::get<1>(i), succOperands: caseOperands[index++]); |
576 | }, |
577 | between_fn: [&] { |
578 | p << ','; |
579 | p.printNewline(); |
580 | }); |
581 | p.printNewline(); |
582 | p << ']'; |
583 | } |
584 | |
585 | LogicalResult SwitchOp::verify() { |
586 | if ((!getCaseValues() && !getCaseDestinations().empty()) || |
587 | (getCaseValues() && |
588 | getCaseValues()->size() != |
589 | static_cast<int64_t>(getCaseDestinations().size()))) |
590 | return emitOpError("expects number of case values to match number of " |
591 | "case destinations"); |
592 | if (getBranchWeights() && getBranchWeights()->size() != getNumSuccessors()) |
593 | return emitError("expects number of branch weights to match number of " |
594 | "successors: ") |
595 | << getBranchWeights()->size() << " vs "<< getNumSuccessors(); |
596 | if (getCaseValues() && |
597 | getValue().getType() != getCaseValues()->getElementType()) |
598 | return emitError("expects case value type to match condition value type"); |
599 | return success(); |
600 | } |
601 | |
602 | SuccessorOperands SwitchOp::getSuccessorOperands(unsigned index) { |
603 | assert(index < getNumSuccessors() && "invalid successor index"); |
604 | return SuccessorOperands(index == 0 ? getDefaultOperandsMutable() |
605 | : getCaseOperandsMutable(index - 1)); |
606 | } |
607 | |
608 | //===----------------------------------------------------------------------===// |
609 | // Code for LLVM::GEPOp. |
610 | //===----------------------------------------------------------------------===// |
611 | |
612 | constexpr int32_t GEPOp::kDynamicIndex; |
613 | |
614 | GEPIndicesAdaptor<ValueRange> GEPOp::getIndices() { |
615 | return GEPIndicesAdaptor<ValueRange>(getRawConstantIndicesAttr(), |
616 | getDynamicIndices()); |
617 | } |
618 | |
619 | /// Returns the elemental type of any LLVM-compatible vector type or self. |
620 | static Type extractVectorElementType(Type type) { |
621 | if (auto vectorType = llvm::dyn_cast<VectorType>(type)) |
622 | return vectorType.getElementType(); |
623 | return type; |
624 | } |
625 | |
626 | /// Destructures the 'indices' parameter into 'rawConstantIndices' and |
627 | /// 'dynamicIndices', encoding the former in the process. In the process, |
628 | /// dynamic indices which are used to index into a structure type are converted |
629 | /// to constant indices when possible. To do this, the GEPs element type should |
630 | /// be passed as first parameter. |
631 | static void destructureIndices(Type currType, ArrayRef<GEPArg> indices, |
632 | SmallVectorImpl<int32_t> &rawConstantIndices, |
633 | SmallVectorImpl<Value> &dynamicIndices) { |
634 | for (const GEPArg &iter : indices) { |
635 | // If the thing we are currently indexing into is a struct we must turn |
636 | // any integer constants into constant indices. If this is not possible |
637 | // we don't do anything here. The verifier will catch it and emit a proper |
638 | // error. All other canonicalization is done in the fold method. |
639 | bool requiresConst = !rawConstantIndices.empty() && |
640 | isa_and_nonnull<LLVMStructType>(currType); |
641 | if (Value val = llvm::dyn_cast_if_present<Value>(Val: iter)) { |
642 | APInt intC; |
643 | if (requiresConst && matchPattern(val, m_ConstantInt(&intC)) && |
644 | intC.isSignedIntN(kGEPConstantBitWidth)) { |
645 | rawConstantIndices.push_back(Elt: intC.getSExtValue()); |
646 | } else { |
647 | rawConstantIndices.push_back(GEPOp::kDynamicIndex); |
648 | dynamicIndices.push_back(Elt: val); |
649 | } |
650 | } else { |
651 | rawConstantIndices.push_back(Elt: cast<GEPConstantIndex>(Val: iter)); |
652 | } |
653 | |
654 | // Skip for very first iteration of this loop. First index does not index |
655 | // within the aggregates, but is just a pointer offset. |
656 | if (rawConstantIndices.size() == 1 || !currType) |
657 | continue; |
658 | |
659 | currType = TypeSwitch<Type, Type>(currType) |
660 | .Case<VectorType, LLVMArrayType>([](auto containerType) { |
661 | return containerType.getElementType(); |
662 | }) |
663 | .Case([&](LLVMStructType structType) -> Type { |
664 | int64_t memberIndex = rawConstantIndices.back(); |
665 | if (memberIndex >= 0 && static_cast<size_t>(memberIndex) < |
666 | structType.getBody().size()) |
667 | return structType.getBody()[memberIndex]; |
668 | return nullptr; |
669 | }) |
670 | .Default(Type(nullptr)); |
671 | } |
672 | } |
673 | |
674 | void GEPOp::build(OpBuilder &builder, OperationState &result, Type resultType, |
675 | Type elementType, Value basePtr, ArrayRef<GEPArg> indices, |
676 | GEPNoWrapFlags noWrapFlags, |
677 | ArrayRef<NamedAttribute> attributes) { |
678 | SmallVector<int32_t> rawConstantIndices; |
679 | SmallVector<Value> dynamicIndices; |
680 | destructureIndices(elementType, indices, rawConstantIndices, dynamicIndices); |
681 | |
682 | result.addTypes(resultType); |
683 | result.addAttributes(attributes); |
684 | result.getOrAddProperties<Properties>().rawConstantIndices = |
685 | builder.getDenseI32ArrayAttr(rawConstantIndices); |
686 | result.getOrAddProperties<Properties>().noWrapFlags = noWrapFlags; |
687 | result.getOrAddProperties<Properties>().elem_type = |
688 | TypeAttr::get(elementType); |
689 | result.addOperands(basePtr); |
690 | result.addOperands(dynamicIndices); |
691 | } |
692 | |
693 | void GEPOp::build(OpBuilder &builder, OperationState &result, Type resultType, |
694 | Type elementType, Value basePtr, ValueRange indices, |
695 | GEPNoWrapFlags noWrapFlags, |
696 | ArrayRef<NamedAttribute> attributes) { |
697 | build(builder, result, resultType, elementType, basePtr, |
698 | SmallVector<GEPArg>(indices), noWrapFlags, attributes); |
699 | } |
700 | |
701 | static ParseResult |
702 | parseGEPIndices(OpAsmParser &parser, |
703 | SmallVectorImpl<OpAsmParser::UnresolvedOperand> &indices, |
704 | DenseI32ArrayAttr &rawConstantIndices) { |
705 | SmallVector<int32_t> constantIndices; |
706 | |
707 | auto idxParser = [&]() -> ParseResult { |
708 | int32_t constantIndex; |
709 | OptionalParseResult parsedInteger = |
710 | parser.parseOptionalInteger(result&: constantIndex); |
711 | if (parsedInteger.has_value()) { |
712 | if (failed(Result: parsedInteger.value())) |
713 | return failure(); |
714 | constantIndices.push_back(Elt: constantIndex); |
715 | return success(); |
716 | } |
717 | |
718 | constantIndices.push_back(LLVM::GEPOp::kDynamicIndex); |
719 | return parser.parseOperand(result&: indices.emplace_back()); |
720 | }; |
721 | if (parser.parseCommaSeparatedList(parseElementFn: idxParser)) |
722 | return failure(); |
723 | |
724 | rawConstantIndices = |
725 | DenseI32ArrayAttr::get(parser.getContext(), constantIndices); |
726 | return success(); |
727 | } |
728 | |
729 | static void printGEPIndices(OpAsmPrinter &printer, LLVM::GEPOp gepOp, |
730 | OperandRange indices, |
731 | DenseI32ArrayAttr rawConstantIndices) { |
732 | llvm::interleaveComma( |
733 | c: GEPIndicesAdaptor<OperandRange>(rawConstantIndices, indices), os&: printer, |
734 | each_fn: [&](PointerUnion<IntegerAttr, Value> cst) { |
735 | if (Value val = llvm::dyn_cast_if_present<Value>(Val&: cst)) |
736 | printer.printOperand(value: val); |
737 | else |
738 | printer << cast<IntegerAttr>(cst).getInt(); |
739 | }); |
740 | } |
741 | |
742 | /// For the given `indices`, check if they comply with `baseGEPType`, |
743 | /// especially check against LLVMStructTypes nested within. |
744 | static LogicalResult |
745 | verifyStructIndices(Type baseGEPType, unsigned indexPos, |
746 | GEPIndicesAdaptor<ValueRange> indices, |
747 | function_ref<InFlightDiagnostic()> emitOpError) { |
748 | if (indexPos >= indices.size()) |
749 | // Stop searching |
750 | return success(); |
751 | |
752 | return TypeSwitch<Type, LogicalResult>(baseGEPType) |
753 | .Case<LLVMStructType>([&](LLVMStructType structType) -> LogicalResult { |
754 | auto attr = dyn_cast<IntegerAttr>(indices[indexPos]); |
755 | if (!attr) |
756 | return emitOpError() << "expected index "<< indexPos |
757 | << " indexing a struct to be constant"; |
758 | |
759 | int32_t gepIndex = attr.getInt(); |
760 | ArrayRef<Type> elementTypes = structType.getBody(); |
761 | if (gepIndex < 0 || |
762 | static_cast<size_t>(gepIndex) >= elementTypes.size()) |
763 | return emitOpError() << "index "<< indexPos |
764 | << " indexing a struct is out of bounds"; |
765 | |
766 | // Instead of recursively going into every children types, we only |
767 | // dive into the one indexed by gepIndex. |
768 | return verifyStructIndices(elementTypes[gepIndex], indexPos + 1, |
769 | indices, emitOpError); |
770 | }) |
771 | .Case<VectorType, LLVMArrayType>( |
772 | [&](auto containerType) -> LogicalResult { |
773 | return verifyStructIndices(containerType.getElementType(), |
774 | indexPos + 1, indices, emitOpError); |
775 | }) |
776 | .Default([&](auto otherType) -> LogicalResult { |
777 | return emitOpError() |
778 | << "type "<< otherType << " cannot be indexed (index #" |
779 | << indexPos << ")"; |
780 | }); |
781 | } |
782 | |
783 | /// Driver function around `verifyStructIndices`. |
784 | static LogicalResult |
785 | verifyStructIndices(Type baseGEPType, GEPIndicesAdaptor<ValueRange> indices, |
786 | function_ref<InFlightDiagnostic()> emitOpError) { |
787 | return verifyStructIndices(baseGEPType, /*indexPos=*/1, indices, emitOpError); |
788 | } |
789 | |
790 | LogicalResult LLVM::GEPOp::verify() { |
791 | if (static_cast<size_t>( |
792 | llvm::count(getRawConstantIndices(), kDynamicIndex)) != |
793 | getDynamicIndices().size()) |
794 | return emitOpError("expected as many dynamic indices as specified in '") |
795 | << getRawConstantIndicesAttrName().getValue() << "'"; |
796 | |
797 | if (getNoWrapFlags() == GEPNoWrapFlags::inboundsFlag) |
798 | return emitOpError("'inbounds_flag' cannot be used directly."); |
799 | |
800 | return verifyStructIndices(getElemType(), getIndices(), |
801 | [&] { return emitOpError(); }); |
802 | } |
803 | |
804 | //===----------------------------------------------------------------------===// |
805 | // LoadOp |
806 | //===----------------------------------------------------------------------===// |
807 | |
808 | void LoadOp::getEffects( |
809 | SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> |
810 | &effects) { |
811 | effects.emplace_back(MemoryEffects::Read::get(), &getAddrMutable()); |
812 | // Volatile operations can have target-specific read-write effects on |
813 | // memory besides the one referred to by the pointer operand. |
814 | // Similarly, atomic operations that are monotonic or stricter cause |
815 | // synchronization that from a language point-of-view, are arbitrary |
816 | // read-writes into memory. |
817 | if (getVolatile_() || (getOrdering() != AtomicOrdering::not_atomic && |
818 | getOrdering() != AtomicOrdering::unordered)) { |
819 | effects.emplace_back(MemoryEffects::Write::get()); |
820 | effects.emplace_back(MemoryEffects::Read::get()); |
821 | } |
822 | } |
823 | |
824 | /// Returns true if the given type is supported by atomic operations. All |
825 | /// integer, float, and pointer types with a power-of-two bitsize and a minimal |
826 | /// size of 8 bits are supported. |
827 | static bool isTypeCompatibleWithAtomicOp(Type type, |
828 | const DataLayout &dataLayout) { |
829 | if (!isa<IntegerType, LLVMPointerType>(type)) |
830 | if (!isCompatibleFloatingPointType(type)) |
831 | return false; |
832 | |
833 | llvm::TypeSize bitWidth = dataLayout.getTypeSizeInBits(t: type); |
834 | if (bitWidth.isScalable()) |
835 | return false; |
836 | // Needs to be at least 8 bits and a power of two. |
837 | return bitWidth >= 8 && (bitWidth & (bitWidth - 1)) == 0; |
838 | } |
839 | |
840 | /// Verifies the attributes and the type of atomic memory access operations. |
841 | template <typename OpTy> |
842 | LogicalResult verifyAtomicMemOp(OpTy memOp, Type valueType, |
843 | ArrayRef<AtomicOrdering> unsupportedOrderings) { |
844 | if (memOp.getOrdering() != AtomicOrdering::not_atomic) { |
845 | DataLayout dataLayout = DataLayout::closest(op: memOp); |
846 | if (!isTypeCompatibleWithAtomicOp(type: valueType, dataLayout)) |
847 | return memOp.emitOpError("unsupported type ") |
848 | << valueType << " for atomic access"; |
849 | if (llvm::is_contained(unsupportedOrderings, memOp.getOrdering())) |
850 | return memOp.emitOpError("unsupported ordering '") |
851 | << stringifyAtomicOrdering(memOp.getOrdering()) << "'"; |
852 | if (!memOp.getAlignment()) |
853 | return memOp.emitOpError("expected alignment for atomic access"); |
854 | return success(); |
855 | } |
856 | if (memOp.getSyncscope()) |
857 | return memOp.emitOpError( |
858 | "expected syncscope to be null for non-atomic access"); |
859 | return success(); |
860 | } |
861 | |
862 | LogicalResult LoadOp::verify() { |
863 | Type valueType = getResult().getType(); |
864 | return verifyAtomicMemOp(*this, valueType, |
865 | {AtomicOrdering::release, AtomicOrdering::acq_rel}); |
866 | } |
867 | |
868 | void LoadOp::build(OpBuilder &builder, OperationState &state, Type type, |
869 | Value addr, unsigned alignment, bool isVolatile, |
870 | bool isNonTemporal, bool isInvariant, bool isInvariantGroup, |
871 | AtomicOrdering ordering, StringRef syncscope) { |
872 | build(builder, state, type, addr, |
873 | alignment ? builder.getI64IntegerAttr(alignment) : nullptr, isVolatile, |
874 | isNonTemporal, isInvariant, isInvariantGroup, ordering, |
875 | syncscope.empty() ? nullptr : builder.getStringAttr(syncscope), |
876 | /*dereferenceable=*/nullptr, |
877 | /*access_groups=*/nullptr, |
878 | /*alias_scopes=*/nullptr, /*noalias_scopes=*/nullptr, |
879 | /*tbaa=*/nullptr); |
880 | } |
881 | |
882 | //===----------------------------------------------------------------------===// |
883 | // StoreOp |
884 | //===----------------------------------------------------------------------===// |
885 | |
886 | void StoreOp::getEffects( |
887 | SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> |
888 | &effects) { |
889 | effects.emplace_back(MemoryEffects::Write::get(), &getAddrMutable()); |
890 | // Volatile operations can have target-specific read-write effects on |
891 | // memory besides the one referred to by the pointer operand. |
892 | // Similarly, atomic operations that are monotonic or stricter cause |
893 | // synchronization that from a language point-of-view, are arbitrary |
894 | // read-writes into memory. |
895 | if (getVolatile_() || (getOrdering() != AtomicOrdering::not_atomic && |
896 | getOrdering() != AtomicOrdering::unordered)) { |
897 | effects.emplace_back(MemoryEffects::Write::get()); |
898 | effects.emplace_back(MemoryEffects::Read::get()); |
899 | } |
900 | } |
901 | |
902 | LogicalResult StoreOp::verify() { |
903 | Type valueType = getValue().getType(); |
904 | return verifyAtomicMemOp(*this, valueType, |
905 | {AtomicOrdering::acquire, AtomicOrdering::acq_rel}); |
906 | } |
907 | |
908 | void StoreOp::build(OpBuilder &builder, OperationState &state, Value value, |
909 | Value addr, unsigned alignment, bool isVolatile, |
910 | bool isNonTemporal, bool isInvariantGroup, |
911 | AtomicOrdering ordering, StringRef syncscope) { |
912 | build(builder, state, value, addr, |
913 | alignment ? builder.getI64IntegerAttr(alignment) : nullptr, isVolatile, |
914 | isNonTemporal, isInvariantGroup, ordering, |
915 | syncscope.empty() ? nullptr : builder.getStringAttr(syncscope), |
916 | /*access_groups=*/nullptr, |
917 | /*alias_scopes=*/nullptr, /*noalias_scopes=*/nullptr, /*tbaa=*/nullptr); |
918 | } |
919 | |
920 | //===----------------------------------------------------------------------===// |
921 | // CallOp |
922 | //===----------------------------------------------------------------------===// |
923 | |
924 | /// Gets the MLIR Op-like result types of a LLVMFunctionType. |
925 | static SmallVector<Type, 1> getCallOpResultTypes(LLVMFunctionType calleeType) { |
926 | SmallVector<Type, 1> results; |
927 | Type resultType = calleeType.getReturnType(); |
928 | if (!isa<LLVM::LLVMVoidType>(Val: resultType)) |
929 | results.push_back(Elt: resultType); |
930 | return results; |
931 | } |
932 | |
933 | /// Gets the variadic callee type for a LLVMFunctionType. |
934 | static TypeAttr getCallOpVarCalleeType(LLVMFunctionType calleeType) { |
935 | return calleeType.isVarArg() ? TypeAttr::get(calleeType) : nullptr; |
936 | } |
937 | |
938 | /// Constructs a LLVMFunctionType from MLIR `results` and `args`. |
939 | static LLVMFunctionType getLLVMFuncType(MLIRContext *context, TypeRange results, |
940 | ValueRange args) { |
941 | Type resultType; |
942 | if (results.empty()) |
943 | resultType = LLVMVoidType::get(ctx: context); |
944 | else |
945 | resultType = results.front(); |
946 | return LLVMFunctionType::get(resultType, llvm::to_vector(args.getTypes()), |
947 | /*isVarArg=*/false); |
948 | } |
949 | |
950 | void CallOp::build(OpBuilder &builder, OperationState &state, TypeRange results, |
951 | StringRef callee, ValueRange args) { |
952 | build(builder, state, results, builder.getStringAttr(callee), args); |
953 | } |
954 | |
955 | void CallOp::build(OpBuilder &builder, OperationState &state, TypeRange results, |
956 | StringAttr callee, ValueRange args) { |
957 | build(builder, state, results, SymbolRefAttr::get(callee), args); |
958 | } |
959 | |
960 | void CallOp::build(OpBuilder &builder, OperationState &state, TypeRange results, |
961 | FlatSymbolRefAttr callee, ValueRange args) { |
962 | assert(callee && "expected non-null callee in direct call builder"); |
963 | build(builder, state, results, |
964 | /*var_callee_type=*/nullptr, callee, args, /*fastmathFlags=*/nullptr, |
965 | /*branch_weights=*/nullptr, |
966 | /*CConv=*/nullptr, /*TailCallKind=*/nullptr, |
967 | /*memory_effects=*/nullptr, |
968 | /*convergent=*/nullptr, /*no_unwind=*/nullptr, /*will_return=*/nullptr, |
969 | /*op_bundle_operands=*/{}, /*op_bundle_tags=*/{}, |
970 | /*arg_attrs=*/nullptr, /*res_attrs=*/nullptr, |
971 | /*access_groups=*/nullptr, /*alias_scopes=*/nullptr, |
972 | /*noalias_scopes=*/nullptr, /*tbaa=*/nullptr, |
973 | /*no_inline=*/nullptr, /*always_inline=*/nullptr, |
974 | /*inline_hint=*/nullptr); |
975 | } |
976 | |
977 | void CallOp::build(OpBuilder &builder, OperationState &state, |
978 | LLVMFunctionType calleeType, StringRef callee, |
979 | ValueRange args) { |
980 | build(builder, state, calleeType, builder.getStringAttr(callee), args); |
981 | } |
982 | |
983 | void CallOp::build(OpBuilder &builder, OperationState &state, |
984 | LLVMFunctionType calleeType, StringAttr callee, |
985 | ValueRange args) { |
986 | build(builder, state, calleeType, SymbolRefAttr::get(callee), args); |
987 | } |
988 | |
989 | void CallOp::build(OpBuilder &builder, OperationState &state, |
990 | LLVMFunctionType calleeType, FlatSymbolRefAttr callee, |
991 | ValueRange args) { |
992 | build(builder, state, getCallOpResultTypes(calleeType), |
993 | getCallOpVarCalleeType(calleeType), callee, args, |
994 | /*fastmathFlags=*/nullptr, |
995 | /*branch_weights=*/nullptr, /*CConv=*/nullptr, |
996 | /*TailCallKind=*/nullptr, /*memory_effects=*/nullptr, |
997 | /*convergent=*/nullptr, |
998 | /*no_unwind=*/nullptr, /*will_return=*/nullptr, |
999 | /*op_bundle_operands=*/{}, /*op_bundle_tags=*/{}, |
1000 | /*arg_attrs=*/nullptr, /*res_attrs=*/nullptr, |
1001 | /*access_groups=*/nullptr, |
1002 | /*alias_scopes=*/nullptr, /*noalias_scopes=*/nullptr, /*tbaa=*/nullptr, |
1003 | /*no_inline=*/nullptr, /*always_inline=*/nullptr, |
1004 | /*inline_hint=*/nullptr); |
1005 | } |
1006 | |
1007 | void CallOp::build(OpBuilder &builder, OperationState &state, |
1008 | LLVMFunctionType calleeType, ValueRange args) { |
1009 | build(builder, state, getCallOpResultTypes(calleeType), |
1010 | getCallOpVarCalleeType(calleeType), |
1011 | /*callee=*/nullptr, args, |
1012 | /*fastmathFlags=*/nullptr, /*branch_weights=*/nullptr, |
1013 | /*CConv=*/nullptr, /*TailCallKind=*/nullptr, /*memory_effects=*/nullptr, |
1014 | /*convergent=*/nullptr, /*no_unwind=*/nullptr, /*will_return=*/nullptr, |
1015 | /*op_bundle_operands=*/{}, /*op_bundle_tags=*/{}, |
1016 | /*arg_attrs=*/nullptr, /*res_attrs=*/nullptr, |
1017 | /*access_groups=*/nullptr, /*alias_scopes=*/nullptr, |
1018 | /*noalias_scopes=*/nullptr, /*tbaa=*/nullptr, |
1019 | /*no_inline=*/nullptr, /*always_inline=*/nullptr, |
1020 | /*inline_hint=*/nullptr); |
1021 | } |
1022 | |
1023 | void CallOp::build(OpBuilder &builder, OperationState &state, LLVMFuncOp func, |
1024 | ValueRange args) { |
1025 | auto calleeType = func.getFunctionType(); |
1026 | build(builder, state, getCallOpResultTypes(calleeType), |
1027 | getCallOpVarCalleeType(calleeType), SymbolRefAttr::get(func), args, |
1028 | /*fastmathFlags=*/nullptr, /*branch_weights=*/nullptr, |
1029 | /*CConv=*/nullptr, /*TailCallKind=*/nullptr, /*memory_effects=*/nullptr, |
1030 | /*convergent=*/nullptr, /*no_unwind=*/nullptr, /*will_return=*/nullptr, |
1031 | /*op_bundle_operands=*/{}, /*op_bundle_tags=*/{}, |
1032 | /*access_groups=*/nullptr, /*alias_scopes=*/nullptr, |
1033 | /*arg_attrs=*/nullptr, /*res_attrs=*/nullptr, |
1034 | /*noalias_scopes=*/nullptr, /*tbaa=*/nullptr, |
1035 | /*no_inline=*/nullptr, /*always_inline=*/nullptr, |
1036 | /*inline_hint=*/nullptr); |
1037 | } |
1038 | |
1039 | CallInterfaceCallable CallOp::getCallableForCallee() { |
1040 | // Direct call. |
1041 | if (FlatSymbolRefAttr calleeAttr = getCalleeAttr()) |
1042 | return calleeAttr; |
1043 | // Indirect call, callee Value is the first operand. |
1044 | return getOperand(0); |
1045 | } |
1046 | |
1047 | void CallOp::setCalleeFromCallable(CallInterfaceCallable callee) { |
1048 | // Direct call. |
1049 | if (FlatSymbolRefAttr calleeAttr = getCalleeAttr()) { |
1050 | auto symRef = cast<SymbolRefAttr>(callee); |
1051 | return setCalleeAttr(cast<FlatSymbolRefAttr>(symRef)); |
1052 | } |
1053 | // Indirect call, callee Value is the first operand. |
1054 | return setOperand(0, cast<Value>(callee)); |
1055 | } |
1056 | |
1057 | Operation::operand_range CallOp::getArgOperands() { |
1058 | return getCalleeOperands().drop_front(getCallee().has_value() ? 0 : 1); |
1059 | } |
1060 | |
1061 | MutableOperandRange CallOp::getArgOperandsMutable() { |
1062 | return MutableOperandRange(*this, getCallee().has_value() ? 0 : 1, |
1063 | getCalleeOperands().size()); |
1064 | } |
1065 | |
1066 | /// Verify that an inlinable callsite of a debug-info-bearing function in a |
1067 | /// debug-info-bearing function has a debug location attached to it. This |
1068 | /// mirrors an LLVM IR verifier. |
1069 | static LogicalResult verifyCallOpDebugInfo(CallOp callOp, LLVMFuncOp callee) { |
1070 | if (callee.isExternal()) |
1071 | return success(); |
1072 | auto parentFunc = callOp->getParentOfType<FunctionOpInterface>(); |
1073 | if (!parentFunc) |
1074 | return success(); |
1075 | |
1076 | auto hasSubprogram = [](Operation *op) { |
1077 | return op->getLoc() |
1078 | ->findInstanceOf<FusedLocWith<LLVM::DISubprogramAttr>>() != |
1079 | nullptr; |
1080 | }; |
1081 | if (!hasSubprogram(parentFunc) || !hasSubprogram(callee)) |
1082 | return success(); |
1083 | bool containsLoc = !isa<UnknownLoc>(callOp->getLoc()); |
1084 | if (!containsLoc) |
1085 | return callOp.emitError() |
1086 | << "inlinable function call in a function with a DISubprogram " |
1087 | "location must have a debug location"; |
1088 | return success(); |
1089 | } |
1090 | |
1091 | /// Verify that the parameter and return types of the variadic callee type match |
1092 | /// the `callOp` argument and result types. |
1093 | template <typename OpTy> |
1094 | LogicalResult verifyCallOpVarCalleeType(OpTy callOp) { |
1095 | std::optional<LLVMFunctionType> varCalleeType = callOp.getVarCalleeType(); |
1096 | if (!varCalleeType) |
1097 | return success(); |
1098 | |
1099 | // Verify the variadic callee type is a variadic function type. |
1100 | if (!varCalleeType->isVarArg()) |
1101 | return callOp.emitOpError( |
1102 | "expected var_callee_type to be a variadic function type"); |
1103 | |
1104 | // Verify the variadic callee type has at most as many parameters as the call |
1105 | // has argument operands. |
1106 | if (varCalleeType->getNumParams() > callOp.getArgOperands().size()) |
1107 | return callOp.emitOpError("expected var_callee_type to have at most ") |
1108 | << callOp.getArgOperands().size() << " parameters"; |
1109 | |
1110 | // Verify the variadic callee type matches the call argument types. |
1111 | for (auto [paramType, operand] : |
1112 | llvm::zip(varCalleeType->getParams(), callOp.getArgOperands())) |
1113 | if (paramType != operand.getType()) |
1114 | return callOp.emitOpError() |
1115 | << "var_callee_type parameter type mismatch: "<< paramType |
1116 | << " != "<< operand.getType(); |
1117 | |
1118 | // Verify the variadic callee type matches the call result type. |
1119 | if (!callOp.getNumResults()) { |
1120 | if (!isa<LLVMVoidType>(varCalleeType->getReturnType())) |
1121 | return callOp.emitOpError("expected var_callee_type to return void"); |
1122 | } else { |
1123 | if (callOp.getResult().getType() != varCalleeType->getReturnType()) |
1124 | return callOp.emitOpError("var_callee_type return type mismatch: ") |
1125 | << varCalleeType->getReturnType() |
1126 | << " != "<< callOp.getResult().getType(); |
1127 | } |
1128 | return success(); |
1129 | } |
1130 | |
1131 | template <typename OpType> |
1132 | static LogicalResult verifyOperandBundles(OpType &op) { |
1133 | OperandRangeRange opBundleOperands = op.getOpBundleOperands(); |
1134 | std::optional<ArrayAttr> opBundleTags = op.getOpBundleTags(); |
1135 | |
1136 | auto isStringAttr = [](Attribute tagAttr) { |
1137 | return isa<StringAttr>(Val: tagAttr); |
1138 | }; |
1139 | if (opBundleTags && !llvm::all_of(*opBundleTags, isStringAttr)) |
1140 | return op.emitError("operand bundle tag must be a StringAttr"); |
1141 | |
1142 | size_t numOpBundles = opBundleOperands.size(); |
1143 | size_t numOpBundleTags = opBundleTags ? opBundleTags->size() : 0; |
1144 | if (numOpBundles != numOpBundleTags) |
1145 | return op.emitError("expected ") |
1146 | << numOpBundles << " operand bundle tags, but actually got " |
1147 | << numOpBundleTags; |
1148 | |
1149 | return success(); |
1150 | } |
1151 | |
1152 | LogicalResult CallOp::verify() { return verifyOperandBundles(*this); } |
1153 | |
1154 | LogicalResult CallOp::verifySymbolUses(SymbolTableCollection &symbolTable) { |
1155 | if (failed(verifyCallOpVarCalleeType(*this))) |
1156 | return failure(); |
1157 | |
1158 | // Type for the callee, we'll get it differently depending if it is a direct |
1159 | // or indirect call. |
1160 | Type fnType; |
1161 | |
1162 | bool isIndirect = false; |
1163 | |
1164 | // If this is an indirect call, the callee attribute is missing. |
1165 | FlatSymbolRefAttr calleeName = getCalleeAttr(); |
1166 | if (!calleeName) { |
1167 | isIndirect = true; |
1168 | if (!getNumOperands()) |
1169 | return emitOpError( |
1170 | "must have either a `callee` attribute or at least an operand"); |
1171 | auto ptrType = llvm::dyn_cast<LLVMPointerType>(getOperand(0).getType()); |
1172 | if (!ptrType) |
1173 | return emitOpError("indirect call expects a pointer as callee: ") |
1174 | << getOperand(0).getType(); |
1175 | |
1176 | return success(); |
1177 | } else { |
1178 | Operation *callee = |
1179 | symbolTable.lookupNearestSymbolFrom(*this, calleeName.getAttr()); |
1180 | if (!callee) |
1181 | return emitOpError() |
1182 | << "'"<< calleeName.getValue() |
1183 | << "' does not reference a symbol in the current scope"; |
1184 | auto fn = dyn_cast<LLVMFuncOp>(callee); |
1185 | if (!fn) |
1186 | return emitOpError() << "'"<< calleeName.getValue() |
1187 | << "' does not reference a valid LLVM function"; |
1188 | |
1189 | if (failed(verifyCallOpDebugInfo(*this, fn))) |
1190 | return failure(); |
1191 | fnType = fn.getFunctionType(); |
1192 | } |
1193 | |
1194 | LLVMFunctionType funcType = llvm::dyn_cast<LLVMFunctionType>(fnType); |
1195 | if (!funcType) |
1196 | return emitOpError("callee does not have a functional type: ") << fnType; |
1197 | |
1198 | if (funcType.isVarArg() && !getVarCalleeType()) |
1199 | return emitOpError() << "missing var_callee_type attribute for vararg call"; |
1200 | |
1201 | // Verify that the operand and result types match the callee. |
1202 | |
1203 | if (!funcType.isVarArg() && |
1204 | funcType.getNumParams() != (getCalleeOperands().size() - isIndirect)) |
1205 | return emitOpError() << "incorrect number of operands (" |
1206 | << (getCalleeOperands().size() - isIndirect) |
1207 | << ") for callee (expecting: " |
1208 | << funcType.getNumParams() << ")"; |
1209 | |
1210 | if (funcType.getNumParams() > (getCalleeOperands().size() - isIndirect)) |
1211 | return emitOpError() << "incorrect number of operands (" |
1212 | << (getCalleeOperands().size() - isIndirect) |
1213 | << ") for varargs callee (expecting at least: " |
1214 | << funcType.getNumParams() << ")"; |
1215 | |
1216 | for (unsigned i = 0, e = funcType.getNumParams(); i != e; ++i) |
1217 | if (getOperand(i + isIndirect).getType() != funcType.getParamType(i)) |
1218 | return emitOpError() << "operand type mismatch for operand "<< i << ": " |
1219 | << getOperand(i + isIndirect).getType() |
1220 | << " != "<< funcType.getParamType(i); |
1221 | |
1222 | if (getNumResults() == 0 && |
1223 | !llvm::isa<LLVM::LLVMVoidType>(funcType.getReturnType())) |
1224 | return emitOpError() << "expected function call to produce a value"; |
1225 | |
1226 | if (getNumResults() != 0 && |
1227 | llvm::isa<LLVM::LLVMVoidType>(funcType.getReturnType())) |
1228 | return emitOpError() |
1229 | << "calling function with void result must not produce values"; |
1230 | |
1231 | if (getNumResults() > 1) |
1232 | return emitOpError() |
1233 | << "expected LLVM function call to produce 0 or 1 result"; |
1234 | |
1235 | if (getNumResults() && getResult().getType() != funcType.getReturnType()) |
1236 | return emitOpError() << "result type mismatch: "<< getResult().getType() |
1237 | << " != "<< funcType.getReturnType(); |
1238 | |
1239 | return success(); |
1240 | } |
1241 | |
1242 | void CallOp::print(OpAsmPrinter &p) { |
1243 | auto callee = getCallee(); |
1244 | bool isDirect = callee.has_value(); |
1245 | |
1246 | p << ' '; |
1247 | |
1248 | // Print calling convention. |
1249 | if (getCConv() != LLVM::CConv::C) |
1250 | p << stringifyCConv(getCConv()) << ' '; |
1251 | |
1252 | if (getTailCallKind() != LLVM::TailCallKind::None) |
1253 | p << tailcallkind::stringifyTailCallKind(getTailCallKind()) << ' '; |
1254 | |
1255 | // Print the direct callee if present as a function attribute, or an indirect |
1256 | // callee (first operand) otherwise. |
1257 | if (isDirect) |
1258 | p.printSymbolName(callee.value()); |
1259 | else |
1260 | p << getOperand(0); |
1261 | |
1262 | auto args = getCalleeOperands().drop_front(isDirect ? 0 : 1); |
1263 | p << '(' << args << ')'; |
1264 | |
1265 | // Print the variadic callee type if the call is variadic. |
1266 | if (std::optional<LLVMFunctionType> varCalleeType = getVarCalleeType()) |
1267 | p << " vararg("<< *varCalleeType << ")"; |
1268 | |
1269 | if (!getOpBundleOperands().empty()) { |
1270 | p << " "; |
1271 | printOpBundles(p, *this, getOpBundleOperands(), |
1272 | getOpBundleOperands().getTypes(), getOpBundleTags()); |
1273 | } |
1274 | |
1275 | p.printOptionalAttrDict(processFMFAttr((*this)->getAttrs()), |
1276 | {getCalleeAttrName(), getTailCallKindAttrName(), |
1277 | getVarCalleeTypeAttrName(), getCConvAttrName(), |
1278 | getOperandSegmentSizesAttrName(), |
1279 | getOpBundleSizesAttrName(), |
1280 | getOpBundleTagsAttrName(), getArgAttrsAttrName(), |
1281 | getResAttrsAttrName()}); |
1282 | |
1283 | p << " : "; |
1284 | if (!isDirect) |
1285 | p << getOperand(0).getType() << ", "; |
1286 | |
1287 | // Reconstruct the MLIR function type from operand and result types. |
1288 | call_interface_impl::printFunctionSignature( |
1289 | p, args.getTypes(), getArgAttrsAttr(), |
1290 | /*isVariadic=*/false, getResultTypes(), getResAttrsAttr()); |
1291 | } |
1292 | |
1293 | /// Parses the type of a call operation and resolves the operands if the parsing |
1294 | /// succeeds. Returns failure otherwise. |
1295 | static ParseResult parseCallTypeAndResolveOperands( |
1296 | OpAsmParser &parser, OperationState &result, bool isDirect, |
1297 | ArrayRef<OpAsmParser::UnresolvedOperand> operands, |
1298 | SmallVectorImpl<DictionaryAttr> &argAttrs, |
1299 | SmallVectorImpl<DictionaryAttr> &resultAttrs) { |
1300 | SMLoc trailingTypesLoc = parser.getCurrentLocation(); |
1301 | SmallVector<Type> types; |
1302 | if (parser.parseColon()) |
1303 | return failure(); |
1304 | if (!isDirect) { |
1305 | types.emplace_back(); |
1306 | if (parser.parseType(result&: types.back())) |
1307 | return failure(); |
1308 | if (parser.parseOptionalComma()) |
1309 | return parser.emitError( |
1310 | loc: trailingTypesLoc, message: "expected indirect call to have 2 trailing types"); |
1311 | } |
1312 | SmallVector<Type> argTypes; |
1313 | SmallVector<Type> resTypes; |
1314 | if (call_interface_impl::parseFunctionSignature(parser, argTypes, argAttrs, |
1315 | resultTypes&: resTypes, resultAttrs)) { |
1316 | if (isDirect) |
1317 | return parser.emitError(loc: trailingTypesLoc, |
1318 | message: "expected direct call to have 1 trailing types"); |
1319 | return parser.emitError(loc: trailingTypesLoc, |
1320 | message: "expected trailing function type"); |
1321 | } |
1322 | |
1323 | if (resTypes.size() > 1) |
1324 | return parser.emitError(loc: trailingTypesLoc, |
1325 | message: "expected function with 0 or 1 result"); |
1326 | if (resTypes.size() == 1 && llvm::isa<LLVM::LLVMVoidType>(Val: resTypes[0])) |
1327 | return parser.emitError(loc: trailingTypesLoc, |
1328 | message: "expected a non-void result type"); |
1329 | |
1330 | // The head element of the types list matches the callee type for |
1331 | // indirect calls, while the types list is emtpy for direct calls. |
1332 | // Append the function input types to resolve the call operation |
1333 | // operands. |
1334 | llvm::append_range(C&: types, R&: argTypes); |
1335 | if (parser.resolveOperands(operands, types, loc: parser.getNameLoc(), |
1336 | result&: result.operands)) |
1337 | return failure(); |
1338 | if (resTypes.size() != 0) |
1339 | result.addTypes(newTypes: resTypes); |
1340 | |
1341 | return success(); |
1342 | } |
1343 | |
1344 | /// Parses an optional function pointer operand before the call argument list |
1345 | /// for indirect calls, or stops parsing at the function identifier otherwise. |
1346 | static ParseResult parseOptionalCallFuncPtr( |
1347 | OpAsmParser &parser, |
1348 | SmallVectorImpl<OpAsmParser::UnresolvedOperand> &operands) { |
1349 | OpAsmParser::UnresolvedOperand funcPtrOperand; |
1350 | OptionalParseResult parseResult = parser.parseOptionalOperand(result&: funcPtrOperand); |
1351 | if (parseResult.has_value()) { |
1352 | if (failed(Result: *parseResult)) |
1353 | return *parseResult; |
1354 | operands.push_back(Elt: funcPtrOperand); |
1355 | } |
1356 | return success(); |
1357 | } |
1358 | |
1359 | static ParseResult resolveOpBundleOperands( |
1360 | OpAsmParser &parser, SMLoc loc, OperationState &state, |
1361 | ArrayRef<SmallVector<OpAsmParser::UnresolvedOperand>> opBundleOperands, |
1362 | ArrayRef<SmallVector<Type>> opBundleOperandTypes, |
1363 | StringAttr opBundleSizesAttrName) { |
1364 | unsigned opBundleIndex = 0; |
1365 | for (const auto &[operands, types] : |
1366 | llvm::zip_equal(t&: opBundleOperands, u&: opBundleOperandTypes)) { |
1367 | if (operands.size() != types.size()) |
1368 | return parser.emitError(loc, message: "expected ") |
1369 | << operands.size() |
1370 | << " types for operand bundle operands for operand bundle #" |
1371 | << opBundleIndex << ", but actually got "<< types.size(); |
1372 | if (parser.resolveOperands(operands, types, loc, result&: state.operands)) |
1373 | return failure(); |
1374 | } |
1375 | |
1376 | SmallVector<int32_t> opBundleSizes; |
1377 | opBundleSizes.reserve(N: opBundleOperands.size()); |
1378 | for (const auto &operands : opBundleOperands) |
1379 | opBundleSizes.push_back(Elt: operands.size()); |
1380 | |
1381 | state.addAttribute( |
1382 | opBundleSizesAttrName, |
1383 | DenseI32ArrayAttr::get(parser.getContext(), opBundleSizes)); |
1384 | |
1385 | return success(); |
1386 | } |
1387 | |
1388 | // <operation> ::= `llvm.call` (cconv)? (tailcallkind)? (function-id | ssa-use) |
1389 | // `(` ssa-use-list `)` |
1390 | // ( `vararg(` var-callee-type `)` )? |
1391 | // ( `[` op-bundles-list `]` )? |
1392 | // attribute-dict? `:` (type `,`)? function-type |
1393 | ParseResult CallOp::parse(OpAsmParser &parser, OperationState &result) { |
1394 | SymbolRefAttr funcAttr; |
1395 | TypeAttr varCalleeType; |
1396 | SmallVector<OpAsmParser::UnresolvedOperand> operands; |
1397 | SmallVector<SmallVector<OpAsmParser::UnresolvedOperand>> opBundleOperands; |
1398 | SmallVector<SmallVector<Type>> opBundleOperandTypes; |
1399 | ArrayAttr opBundleTags; |
1400 | |
1401 | // Default to C Calling Convention if no keyword is provided. |
1402 | result.addAttribute( |
1403 | getCConvAttrName(result.name), |
1404 | CConvAttr::get(parser.getContext(), parseOptionalLLVMKeyword<CConv>( |
1405 | parser, result, LLVM::CConv::C))); |
1406 | |
1407 | result.addAttribute( |
1408 | getTailCallKindAttrName(result.name), |
1409 | TailCallKindAttr::get(parser.getContext(), |
1410 | parseOptionalLLVMKeyword<TailCallKind>( |
1411 | parser, result, LLVM::TailCallKind::None))); |
1412 | |
1413 | // Parse a function pointer for indirect calls. |
1414 | if (parseOptionalCallFuncPtr(parser, operands)) |
1415 | return failure(); |
1416 | bool isDirect = operands.empty(); |
1417 | |
1418 | // Parse a function identifier for direct calls. |
1419 | if (isDirect) |
1420 | if (parser.parseAttribute(funcAttr, "callee", result.attributes)) |
1421 | return failure(); |
1422 | |
1423 | // Parse the function arguments. |
1424 | if (parser.parseOperandList(operands, OpAsmParser::Delimiter::Paren)) |
1425 | return failure(); |
1426 | |
1427 | bool isVarArg = parser.parseOptionalKeyword("vararg").succeeded(); |
1428 | if (isVarArg) { |
1429 | StringAttr varCalleeTypeAttrName = |
1430 | CallOp::getVarCalleeTypeAttrName(result.name); |
1431 | if (parser.parseLParen().failed() || |
1432 | parser |
1433 | .parseAttribute(varCalleeType, varCalleeTypeAttrName, |
1434 | result.attributes) |
1435 | .failed() || |
1436 | parser.parseRParen().failed()) |
1437 | return failure(); |
1438 | } |
1439 | |
1440 | SMLoc opBundlesLoc = parser.getCurrentLocation(); |
1441 | if (std::optional<ParseResult> result = parseOpBundles( |
1442 | parser, opBundleOperands, opBundleOperandTypes, opBundleTags); |
1443 | result && failed(*result)) |
1444 | return failure(); |
1445 | if (opBundleTags && !opBundleTags.empty()) |
1446 | result.addAttribute(CallOp::getOpBundleTagsAttrName(result.name).getValue(), |
1447 | opBundleTags); |
1448 | |
1449 | if (parser.parseOptionalAttrDict(result.attributes)) |
1450 | return failure(); |
1451 | |
1452 | // Parse the trailing type list and resolve the operands. |
1453 | SmallVector<DictionaryAttr> argAttrs; |
1454 | SmallVector<DictionaryAttr> resultAttrs; |
1455 | if (parseCallTypeAndResolveOperands(parser, result, isDirect, operands, |
1456 | argAttrs, resultAttrs)) |
1457 | return failure(); |
1458 | call_interface_impl::addArgAndResultAttrs( |
1459 | parser.getBuilder(), result, argAttrs, resultAttrs, |
1460 | getArgAttrsAttrName(result.name), getResAttrsAttrName(result.name)); |
1461 | if (resolveOpBundleOperands(parser, opBundlesLoc, result, opBundleOperands, |
1462 | opBundleOperandTypes, |
1463 | getOpBundleSizesAttrName(result.name))) |
1464 | return failure(); |
1465 | |
1466 | int32_t numOpBundleOperands = 0; |
1467 | for (const auto &operands : opBundleOperands) |
1468 | numOpBundleOperands += operands.size(); |
1469 | |
1470 | result.addAttribute( |
1471 | CallOp::getOperandSegmentSizeAttr(), |
1472 | parser.getBuilder().getDenseI32ArrayAttr( |
1473 | {static_cast<int32_t>(operands.size()), numOpBundleOperands})); |
1474 | return success(); |
1475 | } |
1476 | |
1477 | LLVMFunctionType CallOp::getCalleeFunctionType() { |
1478 | if (std::optional<LLVMFunctionType> varCalleeType = getVarCalleeType()) |
1479 | return *varCalleeType; |
1480 | return getLLVMFuncType(getContext(), getResultTypes(), getArgOperands()); |
1481 | } |
1482 | |
1483 | ///===---------------------------------------------------------------------===// |
1484 | /// LLVM::InvokeOp |
1485 | ///===---------------------------------------------------------------------===// |
1486 | |
1487 | void InvokeOp::build(OpBuilder &builder, OperationState &state, LLVMFuncOp func, |
1488 | ValueRange ops, Block *normal, ValueRange normalOps, |
1489 | Block *unwind, ValueRange unwindOps) { |
1490 | auto calleeType = func.getFunctionType(); |
1491 | build(builder, state, getCallOpResultTypes(calleeType), |
1492 | getCallOpVarCalleeType(calleeType), SymbolRefAttr::get(func), ops, |
1493 | /*arg_attrs=*/nullptr, /*res_attrs=*/nullptr, normalOps, unwindOps, |
1494 | nullptr, nullptr, {}, {}, normal, unwind); |
1495 | } |
1496 | |
1497 | void InvokeOp::build(OpBuilder &builder, OperationState &state, TypeRange tys, |
1498 | FlatSymbolRefAttr callee, ValueRange ops, Block *normal, |
1499 | ValueRange normalOps, Block *unwind, |
1500 | ValueRange unwindOps) { |
1501 | build(builder, state, tys, |
1502 | /*var_callee_type=*/nullptr, callee, ops, /*arg_attrs=*/nullptr, |
1503 | /*res_attrs=*/nullptr, normalOps, unwindOps, nullptr, nullptr, {}, {}, |
1504 | normal, unwind); |
1505 | } |
1506 | |
1507 | void InvokeOp::build(OpBuilder &builder, OperationState &state, |
1508 | LLVMFunctionType calleeType, FlatSymbolRefAttr callee, |
1509 | ValueRange ops, Block *normal, ValueRange normalOps, |
1510 | Block *unwind, ValueRange unwindOps) { |
1511 | build(builder, state, getCallOpResultTypes(calleeType), |
1512 | getCallOpVarCalleeType(calleeType), callee, ops, |
1513 | /*arg_attrs=*/nullptr, /*res_attrs=*/nullptr, normalOps, unwindOps, |
1514 | nullptr, nullptr, {}, {}, normal, unwind); |
1515 | } |
1516 | |
1517 | SuccessorOperands InvokeOp::getSuccessorOperands(unsigned index) { |
1518 | assert(index < getNumSuccessors() && "invalid successor index"); |
1519 | return SuccessorOperands(index == 0 ? getNormalDestOperandsMutable() |
1520 | : getUnwindDestOperandsMutable()); |
1521 | } |
1522 | |
1523 | CallInterfaceCallable InvokeOp::getCallableForCallee() { |
1524 | // Direct call. |
1525 | if (FlatSymbolRefAttr calleeAttr = getCalleeAttr()) |
1526 | return calleeAttr; |
1527 | // Indirect call, callee Value is the first operand. |
1528 | return getOperand(0); |
1529 | } |
1530 | |
1531 | void InvokeOp::setCalleeFromCallable(CallInterfaceCallable callee) { |
1532 | // Direct call. |
1533 | if (FlatSymbolRefAttr calleeAttr = getCalleeAttr()) { |
1534 | auto symRef = cast<SymbolRefAttr>(callee); |
1535 | return setCalleeAttr(cast<FlatSymbolRefAttr>(symRef)); |
1536 | } |
1537 | // Indirect call, callee Value is the first operand. |
1538 | return setOperand(0, cast<Value>(callee)); |
1539 | } |
1540 | |
1541 | Operation::operand_range InvokeOp::getArgOperands() { |
1542 | return getCalleeOperands().drop_front(getCallee().has_value() ? 0 : 1); |
1543 | } |
1544 | |
1545 | MutableOperandRange InvokeOp::getArgOperandsMutable() { |
1546 | return MutableOperandRange(*this, getCallee().has_value() ? 0 : 1, |
1547 | getCalleeOperands().size()); |
1548 | } |
1549 | |
1550 | LogicalResult InvokeOp::verify() { |
1551 | if (failed(verifyCallOpVarCalleeType(*this))) |
1552 | return failure(); |
1553 | |
1554 | Block *unwindDest = getUnwindDest(); |
1555 | if (unwindDest->empty()) |
1556 | return emitError("must have at least one operation in unwind destination"); |
1557 | |
1558 | // In unwind destination, first operation must be LandingpadOp |
1559 | if (!isa<LandingpadOp>(unwindDest->front())) |
1560 | return emitError("first operation in unwind destination should be a " |
1561 | "llvm.landingpad operation"); |
1562 | |
1563 | if (failed(verifyOperandBundles(*this))) |
1564 | return failure(); |
1565 | |
1566 | return success(); |
1567 | } |
1568 | |
1569 | void InvokeOp::print(OpAsmPrinter &p) { |
1570 | auto callee = getCallee(); |
1571 | bool isDirect = callee.has_value(); |
1572 | |
1573 | p << ' '; |
1574 | |
1575 | // Print calling convention. |
1576 | if (getCConv() != LLVM::CConv::C) |
1577 | p << stringifyCConv(getCConv()) << ' '; |
1578 | |
1579 | // Either function name or pointer |
1580 | if (isDirect) |
1581 | p.printSymbolName(callee.value()); |
1582 | else |
1583 | p << getOperand(0); |
1584 | |
1585 | p << '(' << getCalleeOperands().drop_front(isDirect ? 0 : 1) << ')'; |
1586 | p << " to "; |
1587 | p.printSuccessorAndUseList(getNormalDest(), getNormalDestOperands()); |
1588 | p << " unwind "; |
1589 | p.printSuccessorAndUseList(getUnwindDest(), getUnwindDestOperands()); |
1590 | |
1591 | // Print the variadic callee type if the invoke is variadic. |
1592 | if (std::optional<LLVMFunctionType> varCalleeType = getVarCalleeType()) |
1593 | p << " vararg("<< *varCalleeType << ")"; |
1594 | |
1595 | if (!getOpBundleOperands().empty()) { |
1596 | p << " "; |
1597 | printOpBundles(p, *this, getOpBundleOperands(), |
1598 | getOpBundleOperands().getTypes(), getOpBundleTags()); |
1599 | } |
1600 | |
1601 | p.printOptionalAttrDict((*this)->getAttrs(), |
1602 | {getCalleeAttrName(), getOperandSegmentSizeAttr(), |
1603 | getCConvAttrName(), getVarCalleeTypeAttrName(), |
1604 | getOpBundleSizesAttrName(), |
1605 | getOpBundleTagsAttrName(), getArgAttrsAttrName(), |
1606 | getResAttrsAttrName()}); |
1607 | |
1608 | p << " : "; |
1609 | if (!isDirect) |
1610 | p << getOperand(0).getType() << ", "; |
1611 | call_interface_impl::printFunctionSignature( |
1612 | p, getCalleeOperands().drop_front(isDirect ? 0 : 1).getTypes(), |
1613 | getArgAttrsAttr(), |
1614 | /*isVariadic=*/false, getResultTypes(), getResAttrsAttr()); |
1615 | } |
1616 | |
1617 | // <operation> ::= `llvm.invoke` (cconv)? (function-id | ssa-use) |
1618 | // `(` ssa-use-list `)` |
1619 | // `to` bb-id (`[` ssa-use-and-type-list `]`)? |
1620 | // `unwind` bb-id (`[` ssa-use-and-type-list `]`)? |
1621 | // ( `vararg(` var-callee-type `)` )? |
1622 | // ( `[` op-bundles-list `]` )? |
1623 | // attribute-dict? `:` (type `,`)? |
1624 | // function-type-with-argument-attributes |
1625 | ParseResult InvokeOp::parse(OpAsmParser &parser, OperationState &result) { |
1626 | SmallVector<OpAsmParser::UnresolvedOperand, 8> operands; |
1627 | SymbolRefAttr funcAttr; |
1628 | TypeAttr varCalleeType; |
1629 | SmallVector<SmallVector<OpAsmParser::UnresolvedOperand>> opBundleOperands; |
1630 | SmallVector<SmallVector<Type>> opBundleOperandTypes; |
1631 | ArrayAttr opBundleTags; |
1632 | Block *normalDest, *unwindDest; |
1633 | SmallVector<Value, 4> normalOperands, unwindOperands; |
1634 | Builder &builder = parser.getBuilder(); |
1635 | |
1636 | // Default to C Calling Convention if no keyword is provided. |
1637 | result.addAttribute( |
1638 | getCConvAttrName(result.name), |
1639 | CConvAttr::get(parser.getContext(), parseOptionalLLVMKeyword<CConv>( |
1640 | parser, result, LLVM::CConv::C))); |
1641 | |
1642 | // Parse a function pointer for indirect calls. |
1643 | if (parseOptionalCallFuncPtr(parser, operands)) |
1644 | return failure(); |
1645 | bool isDirect = operands.empty(); |
1646 | |
1647 | // Parse a function identifier for direct calls. |
1648 | if (isDirect && parser.parseAttribute(funcAttr, "callee", result.attributes)) |
1649 | return failure(); |
1650 | |
1651 | // Parse the function arguments. |
1652 | if (parser.parseOperandList(operands, OpAsmParser::Delimiter::Paren) || |
1653 | parser.parseKeyword("to") || |
1654 | parser.parseSuccessorAndUseList(normalDest, normalOperands) || |
1655 | parser.parseKeyword("unwind") || |
1656 | parser.parseSuccessorAndUseList(unwindDest, unwindOperands)) |
1657 | return failure(); |
1658 | |
1659 | bool isVarArg = parser.parseOptionalKeyword("vararg").succeeded(); |
1660 | if (isVarArg) { |
1661 | StringAttr varCalleeTypeAttrName = |
1662 | InvokeOp::getVarCalleeTypeAttrName(result.name); |
1663 | if (parser.parseLParen().failed() || |
1664 | parser |
1665 | .parseAttribute(varCalleeType, varCalleeTypeAttrName, |
1666 | result.attributes) |
1667 | .failed() || |
1668 | parser.parseRParen().failed()) |
1669 | return failure(); |
1670 | } |
1671 | |
1672 | SMLoc opBundlesLoc = parser.getCurrentLocation(); |
1673 | if (std::optional<ParseResult> result = parseOpBundles( |
1674 | parser, opBundleOperands, opBundleOperandTypes, opBundleTags); |
1675 | result && failed(*result)) |
1676 | return failure(); |
1677 | if (opBundleTags && !opBundleTags.empty()) |
1678 | result.addAttribute( |
1679 | InvokeOp::getOpBundleTagsAttrName(result.name).getValue(), |
1680 | opBundleTags); |
1681 | |
1682 | if (parser.parseOptionalAttrDict(result.attributes)) |
1683 | return failure(); |
1684 | |
1685 | // Parse the trailing type list and resolve the function operands. |
1686 | SmallVector<DictionaryAttr> argAttrs; |
1687 | SmallVector<DictionaryAttr> resultAttrs; |
1688 | if (parseCallTypeAndResolveOperands(parser, result, isDirect, operands, |
1689 | argAttrs, resultAttrs)) |
1690 | return failure(); |
1691 | call_interface_impl::addArgAndResultAttrs( |
1692 | parser.getBuilder(), result, argAttrs, resultAttrs, |
1693 | getArgAttrsAttrName(result.name), getResAttrsAttrName(result.name)); |
1694 | |
1695 | if (resolveOpBundleOperands(parser, opBundlesLoc, result, opBundleOperands, |
1696 | opBundleOperandTypes, |
1697 | getOpBundleSizesAttrName(result.name))) |
1698 | return failure(); |
1699 | |
1700 | result.addSuccessors({normalDest, unwindDest}); |
1701 | result.addOperands(normalOperands); |
1702 | result.addOperands(unwindOperands); |
1703 | |
1704 | int32_t numOpBundleOperands = 0; |
1705 | for (const auto &operands : opBundleOperands) |
1706 | numOpBundleOperands += operands.size(); |
1707 | |
1708 | result.addAttribute( |
1709 | InvokeOp::getOperandSegmentSizeAttr(), |
1710 | builder.getDenseI32ArrayAttr({static_cast<int32_t>(operands.size()), |
1711 | static_cast<int32_t>(normalOperands.size()), |
1712 | static_cast<int32_t>(unwindOperands.size()), |
1713 | numOpBundleOperands})); |
1714 | return success(); |
1715 | } |
1716 | |
1717 | LLVMFunctionType InvokeOp::getCalleeFunctionType() { |
1718 | if (std::optional<LLVMFunctionType> varCalleeType = getVarCalleeType()) |
1719 | return *varCalleeType; |
1720 | return getLLVMFuncType(getContext(), getResultTypes(), getArgOperands()); |
1721 | } |
1722 | |
1723 | ///===----------------------------------------------------------------------===// |
1724 | /// Verifying/Printing/Parsing for LLVM::LandingpadOp. |
1725 | ///===----------------------------------------------------------------------===// |
1726 | |
1727 | LogicalResult LandingpadOp::verify() { |
1728 | Value value; |
1729 | if (LLVMFuncOp func = (*this)->getParentOfType<LLVMFuncOp>()) { |
1730 | if (!func.getPersonality()) |
1731 | return emitError( |
1732 | "llvm.landingpad needs to be in a function with a personality"); |
1733 | } |
1734 | |
1735 | // Consistency of llvm.landingpad result types is checked in |
1736 | // LLVMFuncOp::verify(). |
1737 | |
1738 | if (!getCleanup() && getOperands().empty()) |
1739 | return emitError("landingpad instruction expects at least one clause or " |
1740 | "cleanup attribute"); |
1741 | |
1742 | for (unsigned idx = 0, ie = getNumOperands(); idx < ie; idx++) { |
1743 | value = getOperand(idx); |
1744 | bool isFilter = llvm::isa<LLVMArrayType>(value.getType()); |
1745 | if (isFilter) { |
1746 | // FIXME: Verify filter clauses when arrays are appropriately handled |
1747 | } else { |
1748 | // catch - global addresses only. |
1749 | // Bitcast ops should have global addresses as their args. |
1750 | if (auto bcOp = value.getDefiningOp<BitcastOp>()) { |
1751 | if (auto addrOp = bcOp.getArg().getDefiningOp<AddressOfOp>()) |
1752 | continue; |
1753 | return emitError("constant clauses expected").attachNote(bcOp.getLoc()) |
1754 | << "global addresses expected as operand to " |
1755 | "bitcast used in clauses for landingpad"; |
1756 | } |
1757 | // ZeroOp and AddressOfOp allowed |
1758 | if (value.getDefiningOp<ZeroOp>()) |
1759 | continue; |
1760 | if (value.getDefiningOp<AddressOfOp>()) |
1761 | continue; |
1762 | return emitError("clause #") |
1763 | << idx << " is not a known constant - null, addressof, bitcast"; |
1764 | } |
1765 | } |
1766 | return success(); |
1767 | } |
1768 | |
1769 | void LandingpadOp::print(OpAsmPrinter &p) { |
1770 | p << (getCleanup() ? " cleanup ": " "); |
1771 | |
1772 | // Clauses |
1773 | for (auto value : getOperands()) { |
1774 | // Similar to llvm - if clause is an array type then it is filter |
1775 | // clause else catch clause |
1776 | bool isArrayTy = llvm::isa<LLVMArrayType>(value.getType()); |
1777 | p << '(' << (isArrayTy ? "filter ": "catch ") << value << " : " |
1778 | << value.getType() << ") "; |
1779 | } |
1780 | |
1781 | p.printOptionalAttrDict((*this)->getAttrs(), {"cleanup"}); |
1782 | |
1783 | p << ": "<< getType(); |
1784 | } |
1785 | |
1786 | // <operation> ::= `llvm.landingpad` `cleanup`? |
1787 | // ((`catch` | `filter`) operand-type ssa-use)* attribute-dict? |
1788 | ParseResult LandingpadOp::parse(OpAsmParser &parser, OperationState &result) { |
1789 | // Check for cleanup |
1790 | if (succeeded(parser.parseOptionalKeyword("cleanup"))) |
1791 | result.addAttribute("cleanup", parser.getBuilder().getUnitAttr()); |
1792 | |
1793 | // Parse clauses with types |
1794 | while (succeeded(parser.parseOptionalLParen()) && |
1795 | (succeeded(parser.parseOptionalKeyword("filter")) || |
1796 | succeeded(parser.parseOptionalKeyword("catch")))) { |
1797 | OpAsmParser::UnresolvedOperand operand; |
1798 | Type ty; |
1799 | if (parser.parseOperand(operand) || parser.parseColon() || |
1800 | parser.parseType(ty) || |
1801 | parser.resolveOperand(operand, ty, result.operands) || |
1802 | parser.parseRParen()) |
1803 | return failure(); |
1804 | } |
1805 | |
1806 | Type type; |
1807 | if (parser.parseColon() || parser.parseType(type)) |
1808 | return failure(); |
1809 | |
1810 | result.addTypes(type); |
1811 | return success(); |
1812 | } |
1813 | |
1814 | //===----------------------------------------------------------------------===// |
1815 | // ExtractValueOp |
1816 | //===----------------------------------------------------------------------===// |
1817 | |
1818 | /// Extract the type at `position` in the LLVM IR aggregate type |
1819 | /// `containerType`. Each element of `position` is an index into a nested |
1820 | /// aggregate type. Return the resulting type or emit an error. |
1821 | static Type getInsertExtractValueElementType( |
1822 | function_ref<InFlightDiagnostic(StringRef)> emitError, Type containerType, |
1823 | ArrayRef<int64_t> position) { |
1824 | Type llvmType = containerType; |
1825 | if (!isCompatibleType(type: containerType)) { |
1826 | emitError("expected LLVM IR Dialect type, got ") << containerType; |
1827 | return {}; |
1828 | } |
1829 | |
1830 | // Infer the element type from the structure type: iteratively step inside the |
1831 | // type by taking the element type, indexed by the position attribute for |
1832 | // structures. Check the position index before accessing, it is supposed to |
1833 | // be in bounds. |
1834 | for (int64_t idx : position) { |
1835 | if (auto arrayType = llvm::dyn_cast<LLVMArrayType>(llvmType)) { |
1836 | if (idx < 0 || static_cast<unsigned>(idx) >= arrayType.getNumElements()) { |
1837 | emitError("position out of bounds: ") << idx; |
1838 | return {}; |
1839 | } |
1840 | llvmType = arrayType.getElementType(); |
1841 | } else if (auto structType = llvm::dyn_cast<LLVMStructType>(llvmType)) { |
1842 | if (idx < 0 || |
1843 | static_cast<unsigned>(idx) >= structType.getBody().size()) { |
1844 | emitError("position out of bounds: ") << idx; |
1845 | return {}; |
1846 | } |
1847 | llvmType = structType.getBody()[idx]; |
1848 | } else { |
1849 | emitError("expected LLVM IR structure/array type, got: ") << llvmType; |
1850 | return {}; |
1851 | } |
1852 | } |
1853 | return llvmType; |
1854 | } |
1855 | |
1856 | /// Extract the type at `position` in the wrapped LLVM IR aggregate type |
1857 | /// `containerType`. |
1858 | static Type getInsertExtractValueElementType(Type llvmType, |
1859 | ArrayRef<int64_t> position) { |
1860 | for (int64_t idx : position) { |
1861 | if (auto structType = llvm::dyn_cast<LLVMStructType>(llvmType)) |
1862 | llvmType = structType.getBody()[idx]; |
1863 | else |
1864 | llvmType = llvm::cast<LLVMArrayType>(llvmType).getElementType(); |
1865 | } |
1866 | return llvmType; |
1867 | } |
1868 | |
1869 | OpFoldResult LLVM::ExtractValueOp::fold(FoldAdaptor adaptor) { |
1870 | if (auto extractValueOp = getContainer().getDefiningOp<ExtractValueOp>()) { |
1871 | SmallVector<int64_t, 4> newPos(extractValueOp.getPosition()); |
1872 | newPos.append(getPosition().begin(), getPosition().end()); |
1873 | setPosition(newPos); |
1874 | getContainerMutable().set(extractValueOp.getContainer()); |
1875 | return getResult(); |
1876 | } |
1877 | |
1878 | { |
1879 | DenseElementsAttr constval; |
1880 | matchPattern(getContainer(), m_Constant(&constval)); |
1881 | if (constval && constval.getElementType() == getType()) { |
1882 | if (isa<SplatElementsAttr>(constval)) |
1883 | return constval.getSplatValue<Attribute>(); |
1884 | if (getPosition().size() == 1) |
1885 | return constval.getValues<Attribute>()[getPosition()[0]]; |
1886 | } |
1887 | } |
1888 | |
1889 | auto insertValueOp = getContainer().getDefiningOp<InsertValueOp>(); |
1890 | OpFoldResult result = {}; |
1891 | ArrayRef<int64_t> extractPos = getPosition(); |
1892 | bool switchedToInsertedValue = false; |
1893 | while (insertValueOp) { |
1894 | ArrayRef<int64_t> insertPos = insertValueOp.getPosition(); |
1895 | auto extractPosSize = extractPos.size(); |
1896 | auto insertPosSize = insertPos.size(); |
1897 | |
1898 | // Case 1: Exact match of positions. |
1899 | if (extractPos == insertPos) |
1900 | return insertValueOp.getValue(); |
1901 | |
1902 | // Case 2: Insert position is a prefix of extract position. Continue |
1903 | // traversal with the inserted value. Example: |
1904 | // ``` |
1905 | // %0 = llvm.insertvalue %arg1, %undef[0] : !llvm.struct<(i32, i32, i32)> |
1906 | // %1 = llvm.insertvalue %arg2, %0[1] : !llvm.struct<(i32, i32, i32)> |
1907 | // %2 = llvm.insertvalue %arg3, %1[2] : !llvm.struct<(i32, i32, i32)> |
1908 | // %3 = llvm.insertvalue %2, %foo[0] |
1909 | // : !llvm.struct<(struct<(i32, i32, i32)>, i64)> |
1910 | // %4 = llvm.extractvalue %3[0, 0] |
1911 | // : !llvm.struct<(struct<(i32, i32, i32)>, i64)> |
1912 | // ``` |
1913 | // In the above example, %4 is folded to %arg1. |
1914 | if (extractPosSize > insertPosSize && |
1915 | extractPos.take_front(insertPosSize) == insertPos) { |
1916 | insertValueOp = insertValueOp.getValue().getDefiningOp<InsertValueOp>(); |
1917 | extractPos = extractPos.drop_front(insertPosSize); |
1918 | switchedToInsertedValue = true; |
1919 | continue; |
1920 | } |
1921 | |
1922 | // Case 3: Try to continue the traversal with the container value. |
1923 | unsigned min = std::min(extractPosSize, insertPosSize); |
1924 | |
1925 | // If one is fully prefix of the other, stop propagating back as it will |
1926 | // miss dependencies. For instance, %3 should not fold to %f0 in the |
1927 | // following example: |
1928 | // ``` |
1929 | // %1 = llvm.insertvalue %f0, %0[0, 0] : |
1930 | // !llvm.array<4 x !llvm.array<4 x f32>> |
1931 | // %2 = llvm.insertvalue %arr, %1[0] : |
1932 | // !llvm.array<4 x !llvm.array<4 x f32>> |
1933 | // %3 = llvm.extractvalue %2[0, 0] : !llvm.array<4 x !llvm.array<4 x f32>> |
1934 | // ``` |
1935 | if (extractPos.take_front(min) == insertPos.take_front(min)) |
1936 | return result; |
1937 | // If neither a prefix, nor the exact position, we can extract out of the |
1938 | // value being inserted into. Moreover, we can try again if that operand |
1939 | // is itself an insertvalue expression. |
1940 | if (!switchedToInsertedValue) { |
1941 | // Do not swap out the container operand if we decided earlier to |
1942 | // continue the traversal with the inserted value (Case 2). |
1943 | getContainerMutable().assign(insertValueOp.getContainer()); |
1944 | result = getResult(); |
1945 | } |
1946 | insertValueOp = insertValueOp.getContainer().getDefiningOp<InsertValueOp>(); |
1947 | } |
1948 | return result; |
1949 | } |
1950 | |
1951 | LogicalResult ExtractValueOp::verify() { |
1952 | auto emitError = [this](StringRef msg) { return emitOpError(msg); }; |
1953 | Type valueType = getInsertExtractValueElementType( |
1954 | emitError, getContainer().getType(), getPosition()); |
1955 | if (!valueType) |
1956 | return failure(); |
1957 | |
1958 | if (getRes().getType() != valueType) |
1959 | return emitOpError() << "Type mismatch: extracting from " |
1960 | << getContainer().getType() << " should produce " |
1961 | << valueType << " but this op returns " |
1962 | << getRes().getType(); |
1963 | return success(); |
1964 | } |
1965 | |
1966 | void ExtractValueOp::build(OpBuilder &builder, OperationState &state, |
1967 | Value container, ArrayRef<int64_t> position) { |
1968 | build(builder, state, |
1969 | getInsertExtractValueElementType(container.getType(), position), |
1970 | container, builder.getAttr<DenseI64ArrayAttr>(position)); |
1971 | } |
1972 | |
1973 | //===----------------------------------------------------------------------===// |
1974 | // InsertValueOp |
1975 | //===----------------------------------------------------------------------===// |
1976 | |
1977 | /// Infer the value type from the container type and position. |
1978 | static ParseResult |
1979 | parseInsertExtractValueElementType(AsmParser &parser, Type &valueType, |
1980 | Type containerType, |
1981 | DenseI64ArrayAttr position) { |
1982 | valueType = getInsertExtractValueElementType( |
1983 | [&](StringRef msg) { |
1984 | return parser.emitError(loc: parser.getCurrentLocation(), message: msg); |
1985 | }, |
1986 | containerType, position.asArrayRef()); |
1987 | return success(IsSuccess: !!valueType); |
1988 | } |
1989 | |
1990 | /// Nothing to print for an inferred type. |
1991 | static void printInsertExtractValueElementType(AsmPrinter &printer, |
1992 | Operation *op, Type valueType, |
1993 | Type containerType, |
1994 | DenseI64ArrayAttr position) {} |
1995 | |
1996 | LogicalResult InsertValueOp::verify() { |
1997 | auto emitError = [this](StringRef msg) { return emitOpError(msg); }; |
1998 | Type valueType = getInsertExtractValueElementType( |
1999 | emitError, getContainer().getType(), getPosition()); |
2000 | if (!valueType) |
2001 | return failure(); |
2002 | |
2003 | if (getValue().getType() != valueType) |
2004 | return emitOpError() << "Type mismatch: cannot insert " |
2005 | << getValue().getType() << " into " |
2006 | << getContainer().getType(); |
2007 | |
2008 | return success(); |
2009 | } |
2010 | |
2011 | //===----------------------------------------------------------------------===// |
2012 | // ReturnOp |
2013 | //===----------------------------------------------------------------------===// |
2014 | |
2015 | LogicalResult ReturnOp::verify() { |
2016 | auto parent = (*this)->getParentOfType<LLVMFuncOp>(); |
2017 | if (!parent) |
2018 | return success(); |
2019 | |
2020 | Type expectedType = parent.getFunctionType().getReturnType(); |
2021 | if (llvm::isa<LLVMVoidType>(expectedType)) { |
2022 | if (!getArg()) |
2023 | return success(); |
2024 | InFlightDiagnostic diag = emitOpError("expected no operands"); |
2025 | diag.attachNote(parent->getLoc()) << "when returning from function"; |
2026 | return diag; |
2027 | } |
2028 | if (!getArg()) { |
2029 | if (llvm::isa<LLVMVoidType>(expectedType)) |
2030 | return success(); |
2031 | InFlightDiagnostic diag = emitOpError("expected 1 operand"); |
2032 | diag.attachNote(parent->getLoc()) << "when returning from function"; |
2033 | return diag; |
2034 | } |
2035 | if (expectedType != getArg().getType()) { |
2036 | InFlightDiagnostic diag = emitOpError("mismatching result types"); |
2037 | diag.attachNote(parent->getLoc()) << "when returning from function"; |
2038 | return diag; |
2039 | } |
2040 | return success(); |
2041 | } |
2042 | |
2043 | //===----------------------------------------------------------------------===// |
2044 | // LLVM::AddressOfOp. |
2045 | //===----------------------------------------------------------------------===// |
2046 | |
2047 | static Operation *parentLLVMModule(Operation *op) { |
2048 | Operation *module = op->getParentOp(); |
2049 | while (module && !satisfiesLLVMModule(op: module)) |
2050 | module = module->getParentOp(); |
2051 | assert(module && "unexpected operation outside of a module"); |
2052 | return module; |
2053 | } |
2054 | |
2055 | GlobalOp AddressOfOp::getGlobal(SymbolTableCollection &symbolTable) { |
2056 | return dyn_cast_or_null<GlobalOp>( |
2057 | symbolTable.lookupSymbolIn(parentLLVMModule(*this), getGlobalNameAttr())); |
2058 | } |
2059 | |
2060 | LLVMFuncOp AddressOfOp::getFunction(SymbolTableCollection &symbolTable) { |
2061 | return dyn_cast_or_null<LLVMFuncOp>( |
2062 | symbolTable.lookupSymbolIn(parentLLVMModule(*this), getGlobalNameAttr())); |
2063 | } |
2064 | |
2065 | AliasOp AddressOfOp::getAlias(SymbolTableCollection &symbolTable) { |
2066 | return dyn_cast_or_null<AliasOp>( |
2067 | symbolTable.lookupSymbolIn(parentLLVMModule(*this), getGlobalNameAttr())); |
2068 | } |
2069 | |
2070 | LogicalResult |
2071 | AddressOfOp::verifySymbolUses(SymbolTableCollection &symbolTable) { |
2072 | Operation *symbol = |
2073 | symbolTable.lookupSymbolIn(parentLLVMModule(*this), getGlobalNameAttr()); |
2074 | |
2075 | auto global = dyn_cast_or_null<GlobalOp>(symbol); |
2076 | auto function = dyn_cast_or_null<LLVMFuncOp>(symbol); |
2077 | auto alias = dyn_cast_or_null<AliasOp>(symbol); |
2078 | |
2079 | if (!global && !function && !alias) |
2080 | return emitOpError("must reference a global defined by 'llvm.mlir.global', " |
2081 | "'llvm.mlir.alias' or 'llvm.func'"); |
2082 | |
2083 | LLVMPointerType type = getType(); |
2084 | if ((global && global.getAddrSpace() != type.getAddressSpace()) || |
2085 | (alias && alias.getAddrSpace() != type.getAddressSpace())) |
2086 | return emitOpError("pointer address space must match address space of the " |
2087 | "referenced global or alias"); |
2088 | |
2089 | return success(); |
2090 | } |
2091 | |
2092 | // AddressOfOp constant-folds to the global symbol name. |
2093 | OpFoldResult LLVM::AddressOfOp::fold(FoldAdaptor) { |
2094 | return getGlobalNameAttr(); |
2095 | } |
2096 | |
2097 | //===----------------------------------------------------------------------===// |
2098 | // LLVM::DSOLocalEquivalentOp |
2099 | //===----------------------------------------------------------------------===// |
2100 | |
2101 | LLVMFuncOp |
2102 | DSOLocalEquivalentOp::getFunction(SymbolTableCollection &symbolTable) { |
2103 | return dyn_cast_or_null<LLVMFuncOp>(symbolTable.lookupSymbolIn( |
2104 | parentLLVMModule(*this), getFunctionNameAttr())); |
2105 | } |
2106 | |
2107 | AliasOp DSOLocalEquivalentOp::getAlias(SymbolTableCollection &symbolTable) { |
2108 | return dyn_cast_or_null<AliasOp>(symbolTable.lookupSymbolIn( |
2109 | parentLLVMModule(*this), getFunctionNameAttr())); |
2110 | } |
2111 | |
2112 | LogicalResult |
2113 | DSOLocalEquivalentOp::verifySymbolUses(SymbolTableCollection &symbolTable) { |
2114 | Operation *symbol = symbolTable.lookupSymbolIn(parentLLVMModule(*this), |
2115 | getFunctionNameAttr()); |
2116 | auto function = dyn_cast_or_null<LLVMFuncOp>(symbol); |
2117 | auto alias = dyn_cast_or_null<AliasOp>(symbol); |
2118 | |
2119 | if (!function && !alias) |
2120 | return emitOpError( |
2121 | "must reference a global defined by 'llvm.func' or 'llvm.mlir.alias'"); |
2122 | |
2123 | if (alias) { |
2124 | if (alias.getInitializer() |
2125 | .walk([&](AddressOfOp addrOp) { |
2126 | if (addrOp.getGlobal(symbolTable)) |
2127 | return WalkResult::interrupt(); |
2128 | return WalkResult::advance(); |
2129 | }) |
2130 | .wasInterrupted()) |
2131 | return emitOpError("must reference an alias to a function"); |
2132 | } |
2133 | |
2134 | if ((function && function.getLinkage() == LLVM::Linkage::ExternWeak) || |
2135 | (alias && alias.getLinkage() == LLVM::Linkage::ExternWeak)) |
2136 | return emitOpError( |
2137 | "target function with 'extern_weak' linkage not allowed"); |
2138 | |
2139 | return success(); |
2140 | } |
2141 | |
2142 | /// Fold a dso_local_equivalent operation to a dedicated dso_local_equivalent |
2143 | /// attribute. |
2144 | OpFoldResult DSOLocalEquivalentOp::fold(FoldAdaptor) { |
2145 | return DSOLocalEquivalentAttr::get(getContext(), getFunctionNameAttr()); |
2146 | } |
2147 | |
2148 | //===----------------------------------------------------------------------===// |
2149 | // Verifier for LLVM::ComdatOp. |
2150 | //===----------------------------------------------------------------------===// |
2151 | |
2152 | void ComdatOp::build(OpBuilder &builder, OperationState &result, |
2153 | StringRef symName) { |
2154 | result.addAttribute(getSymNameAttrName(result.name), |
2155 | builder.getStringAttr(symName)); |
2156 | Region *body = result.addRegion(); |
2157 | body->emplaceBlock(); |
2158 | } |
2159 | |
2160 | LogicalResult ComdatOp::verifyRegions() { |
2161 | Region &body = getBody(); |
2162 | for (Operation &op : body.getOps()) |
2163 | if (!isa<ComdatSelectorOp>(op)) |
2164 | return op.emitError( |
2165 | "only comdat selector symbols can appear in a comdat region"); |
2166 | |
2167 | return success(); |
2168 | } |
2169 | |
2170 | //===----------------------------------------------------------------------===// |
2171 | // Builder, printer and verifier for LLVM::GlobalOp. |
2172 | //===----------------------------------------------------------------------===// |
2173 | |
2174 | void GlobalOp::build(OpBuilder &builder, OperationState &result, Type type, |
2175 | bool isConstant, Linkage linkage, StringRef name, |
2176 | Attribute value, uint64_t alignment, unsigned addrSpace, |
2177 | bool dsoLocal, bool threadLocal, SymbolRefAttr comdat, |
2178 | ArrayRef<NamedAttribute> attrs, |
2179 | ArrayRef<Attribute> dbgExprs) { |
2180 | result.addAttribute(getSymNameAttrName(result.name), |
2181 | builder.getStringAttr(name)); |
2182 | result.addAttribute(getGlobalTypeAttrName(result.name), TypeAttr::get(type)); |
2183 | if (isConstant) |
2184 | result.addAttribute(getConstantAttrName(result.name), |
2185 | builder.getUnitAttr()); |
2186 | if (value) |
2187 | result.addAttribute(getValueAttrName(result.name), value); |
2188 | if (dsoLocal) |
2189 | result.addAttribute(getDsoLocalAttrName(result.name), |
2190 | builder.getUnitAttr()); |
2191 | if (threadLocal) |
2192 | result.addAttribute(getThreadLocal_AttrName(result.name), |
2193 | builder.getUnitAttr()); |
2194 | if (comdat) |
2195 | result.addAttribute(getComdatAttrName(result.name), comdat); |
2196 | |
2197 | // Only add an alignment attribute if the "alignment" input |
2198 | // is different from 0. The value must also be a power of two, but |
2199 | // this is tested in GlobalOp::verify, not here. |
2200 | if (alignment != 0) |
2201 | result.addAttribute(getAlignmentAttrName(result.name), |
2202 | builder.getI64IntegerAttr(alignment)); |
2203 | |
2204 | result.addAttribute(getLinkageAttrName(result.name), |
2205 | LinkageAttr::get(builder.getContext(), linkage)); |
2206 | if (addrSpace != 0) |
2207 | result.addAttribute(getAddrSpaceAttrName(result.name), |
2208 | builder.getI32IntegerAttr(addrSpace)); |
2209 | result.attributes.append(attrs.begin(), attrs.end()); |
2210 | |
2211 | if (!dbgExprs.empty()) |
2212 | result.addAttribute(getDbgExprsAttrName(result.name), |
2213 | ArrayAttr::get(builder.getContext(), dbgExprs)); |
2214 | |
2215 | result.addRegion(); |
2216 | } |
2217 | |
2218 | template <typename OpType> |
2219 | static void printCommonGlobalAndAlias(OpAsmPrinter &p, OpType op) { |
2220 | p << ' ' << stringifyLinkage(op.getLinkage()) << ' '; |
2221 | StringRef visibility = stringifyVisibility(op.getVisibility_()); |
2222 | if (!visibility.empty()) |
2223 | p << visibility << ' '; |
2224 | if (op.getThreadLocal_()) |
2225 | p << "thread_local "; |
2226 | if (auto unnamedAddr = op.getUnnamedAddr()) { |
2227 | StringRef str = stringifyUnnamedAddr(*unnamedAddr); |
2228 | if (!str.empty()) |
2229 | p << str << ' '; |
2230 | } |
2231 | } |
2232 | |
2233 | void GlobalOp::print(OpAsmPrinter &p) { |
2234 | printCommonGlobalAndAlias<GlobalOp>(p, *this); |
2235 | if (getConstant()) |
2236 | p << "constant "; |
2237 | p.printSymbolName(getSymName()); |
2238 | p << '('; |
2239 | if (auto value = getValueOrNull()) |
2240 | p.printAttribute(value); |
2241 | p << ')'; |
2242 | if (auto comdat = getComdat()) |
2243 | p << " comdat("<< *comdat << ')'; |
2244 | |
2245 | // Note that the alignment attribute is printed using the |
2246 | // default syntax here, even though it is an inherent attribute |
2247 | // (as defined in https://mlir.llvm.org/docs/LangRef/#attributes) |
2248 | p.printOptionalAttrDict((*this)->getAttrs(), |
2249 | {SymbolTable::getSymbolAttrName(), |
2250 | getGlobalTypeAttrName(), getConstantAttrName(), |
2251 | getValueAttrName(), getLinkageAttrName(), |
2252 | getUnnamedAddrAttrName(), getThreadLocal_AttrName(), |
2253 | getVisibility_AttrName(), getComdatAttrName(), |
2254 | getUnnamedAddrAttrName()}); |
2255 | |
2256 | // Print the trailing type unless it's a string global. |
2257 | if (llvm::dyn_cast_or_null<StringAttr>(getValueOrNull())) |
2258 | return; |
2259 | p << " : "<< getType(); |
2260 | |
2261 | Region &initializer = getInitializerRegion(); |
2262 | if (!initializer.empty()) { |
2263 | p << ' '; |
2264 | p.printRegion(initializer, /*printEntryBlockArgs=*/false); |
2265 | } |
2266 | } |
2267 | |
2268 | static LogicalResult verifyComdat(Operation *op, |
2269 | std::optional<SymbolRefAttr> attr) { |
2270 | if (!attr) |
2271 | return success(); |
2272 | |
2273 | auto *comdatSelector = SymbolTable::lookupNearestSymbolFrom(op, *attr); |
2274 | if (!isa_and_nonnull<ComdatSelectorOp>(comdatSelector)) |
2275 | return op->emitError() << "expected comdat symbol"; |
2276 | |
2277 | return success(); |
2278 | } |
2279 | |
2280 | static LogicalResult verifyBlockTags(LLVMFuncOp funcOp) { |
2281 | llvm::DenseSet<BlockTagAttr> blockTags; |
2282 | // Note that presence of `BlockTagOp`s currently can't prevent an unrecheable |
2283 | // block to be removed by canonicalizer's region simplify pass, which needs to |
2284 | // be dialect aware to allow extra constraints to be described. |
2285 | WalkResult res = funcOp.walk([&](BlockTagOp blockTagOp) { |
2286 | if (blockTags.contains(blockTagOp.getTag())) { |
2287 | blockTagOp.emitError() |
2288 | << "duplicate block tag '"<< blockTagOp.getTag().getId() |
2289 | << "' in the same function: "; |
2290 | return WalkResult::interrupt(); |
2291 | } |
2292 | blockTags.insert(blockTagOp.getTag()); |
2293 | return WalkResult::advance(); |
2294 | }); |
2295 | |
2296 | return failure(IsFailure: res.wasInterrupted()); |
2297 | } |
2298 | |
2299 | /// Parse common attributes that might show up in the same order in both |
2300 | /// GlobalOp and AliasOp. |
2301 | template <typename OpType> |
2302 | static ParseResult parseCommonGlobalAndAlias(OpAsmParser &parser, |
2303 | OperationState &result) { |
2304 | MLIRContext *ctx = parser.getContext(); |
2305 | // Parse optional linkage, default to External. |
2306 | result.addAttribute(OpType::getLinkageAttrName(result.name), |
2307 | LLVM::LinkageAttr::get( |
2308 | ctx, parseOptionalLLVMKeyword<Linkage>( |
2309 | parser, result, LLVM::Linkage::External))); |
2310 | |
2311 | // Parse optional visibility, default to Default. |
2312 | result.addAttribute(OpType::getVisibility_AttrName(result.name), |
2313 | parser.getBuilder().getI64IntegerAttr( |
2314 | parseOptionalLLVMKeyword<LLVM::Visibility, int64_t>( |
2315 | parser, result, LLVM::Visibility::Default))); |
2316 | |
2317 | if (succeeded(Result: parser.parseOptionalKeyword(keyword: "thread_local"))) |
2318 | result.addAttribute(OpType::getThreadLocal_AttrName(result.name), |
2319 | parser.getBuilder().getUnitAttr()); |
2320 | |
2321 | // Parse optional UnnamedAddr, default to None. |
2322 | result.addAttribute(OpType::getUnnamedAddrAttrName(result.name), |
2323 | parser.getBuilder().getI64IntegerAttr( |
2324 | parseOptionalLLVMKeyword<UnnamedAddr, int64_t>( |
2325 | parser, result, LLVM::UnnamedAddr::None))); |
2326 | |
2327 | return success(); |
2328 | } |
2329 | |
2330 | // operation ::= `llvm.mlir.global` linkage? visibility? |
2331 | // (`unnamed_addr` | `local_unnamed_addr`)? |
2332 | // `thread_local`? `constant`? `@` identifier |
2333 | // `(` attribute? `)` (`comdat(` symbol-ref-id `)`)? |
2334 | // attribute-list? (`:` type)? region? |
2335 | // |
2336 | // The type can be omitted for string attributes, in which case it will be |
2337 | // inferred from the value of the string as [strlen(value) x i8]. |
2338 | ParseResult GlobalOp::parse(OpAsmParser &parser, OperationState &result) { |
2339 | // Call into common parsing between GlobalOp and AliasOp. |
2340 | if (parseCommonGlobalAndAlias<GlobalOp>(parser, result).failed()) |
2341 | return failure(); |
2342 | |
2343 | if (succeeded(parser.parseOptionalKeyword("constant"))) |
2344 | result.addAttribute(getConstantAttrName(result.name), |
2345 | parser.getBuilder().getUnitAttr()); |
2346 | |
2347 | StringAttr name; |
2348 | if (parser.parseSymbolName(name, getSymNameAttrName(result.name), |
2349 | result.attributes) || |
2350 | parser.parseLParen()) |
2351 | return failure(); |
2352 | |
2353 | Attribute value; |
2354 | if (parser.parseOptionalRParen()) { |
2355 | if (parser.parseAttribute(value, getValueAttrName(result.name), |
2356 | result.attributes) || |
2357 | parser.parseRParen()) |
2358 | return failure(); |
2359 | } |
2360 | |
2361 | if (succeeded(parser.parseOptionalKeyword("comdat"))) { |
2362 | SymbolRefAttr comdat; |
2363 | if (parser.parseLParen() || parser.parseAttribute(comdat) || |
2364 | parser.parseRParen()) |
2365 | return failure(); |
2366 | |
2367 | result.addAttribute(getComdatAttrName(result.name), comdat); |
2368 | } |
2369 | |
2370 | SmallVector<Type, 1> types; |
2371 | if (parser.parseOptionalAttrDict(result.attributes) || |
2372 | parser.parseOptionalColonTypeList(types)) |
2373 | return failure(); |
2374 | |
2375 | if (types.size() > 1) |
2376 | return parser.emitError(parser.getNameLoc(), "expected zero or one type"); |
2377 | |
2378 | Region &initRegion = *result.addRegion(); |
2379 | if (types.empty()) { |
2380 | if (auto strAttr = llvm::dyn_cast_or_null<StringAttr>(value)) { |
2381 | MLIRContext *context = parser.getContext(); |
2382 | auto arrayType = LLVM::LLVMArrayType::get(IntegerType::get(context, 8), |
2383 | strAttr.getValue().size()); |
2384 | types.push_back(arrayType); |
2385 | } else { |
2386 | return parser.emitError(parser.getNameLoc(), |
2387 | "type can only be omitted for string globals"); |
2388 | } |
2389 | } else { |
2390 | OptionalParseResult parseResult = |
2391 | parser.parseOptionalRegion(initRegion, /*arguments=*/{}, |
2392 | /*argTypes=*/{}); |
2393 | if (parseResult.has_value() && failed(*parseResult)) |
2394 | return failure(); |
2395 | } |
2396 | |
2397 | result.addAttribute(getGlobalTypeAttrName(result.name), |
2398 | TypeAttr::get(types[0])); |
2399 | return success(); |
2400 | } |
2401 | |
2402 | static bool isZeroAttribute(Attribute value) { |
2403 | if (auto intValue = llvm::dyn_cast<IntegerAttr>(value)) |
2404 | return intValue.getValue().isZero(); |
2405 | if (auto fpValue = llvm::dyn_cast<FloatAttr>(value)) |
2406 | return fpValue.getValue().isZero(); |
2407 | if (auto splatValue = llvm::dyn_cast<SplatElementsAttr>(Val&: value)) |
2408 | return isZeroAttribute(value: splatValue.getSplatValue<Attribute>()); |
2409 | if (auto elementsValue = llvm::dyn_cast<ElementsAttr>(value)) |
2410 | return llvm::all_of(elementsValue.getValues<Attribute>(), isZeroAttribute); |
2411 | if (auto arrayValue = llvm::dyn_cast<ArrayAttr>(value)) |
2412 | return llvm::all_of(arrayValue.getValue(), isZeroAttribute); |
2413 | return false; |
2414 | } |
2415 | |
2416 | LogicalResult GlobalOp::verify() { |
2417 | bool validType = isCompatibleOuterType(getType()) |
2418 | ? !llvm::isa<LLVMVoidType, LLVMTokenType, |
2419 | LLVMMetadataType, LLVMLabelType>(getType()) |
2420 | : llvm::isa<PointerElementTypeInterface>(getType()); |
2421 | if (!validType) |
2422 | return emitOpError( |
2423 | "expects type to be a valid element type for an LLVM global"); |
2424 | if ((*this)->getParentOp() && !satisfiesLLVMModule((*this)->getParentOp())) |
2425 | return emitOpError("must appear at the module level"); |
2426 | |
2427 | if (auto strAttr = llvm::dyn_cast_or_null<StringAttr>(getValueOrNull())) { |
2428 | auto type = llvm::dyn_cast<LLVMArrayType>(getType()); |
2429 | IntegerType elementType = |
2430 | type ? llvm::dyn_cast<IntegerType>(type.getElementType()) : nullptr; |
2431 | if (!elementType || elementType.getWidth() != 8 || |
2432 | type.getNumElements() != strAttr.getValue().size()) |
2433 | return emitOpError( |
2434 | "requires an i8 array type of the length equal to that of the string " |
2435 | "attribute"); |
2436 | } |
2437 | |
2438 | if (auto targetExtType = dyn_cast<LLVMTargetExtType>(getType())) { |
2439 | if (!targetExtType.hasProperty(LLVMTargetExtType::CanBeGlobal)) |
2440 | return emitOpError() |
2441 | << "this target extension type cannot be used in a global"; |
2442 | |
2443 | if (Attribute value = getValueOrNull()) |
2444 | return emitOpError() << "global with target extension type can only be " |
2445 | "initialized with zero-initializer"; |
2446 | } |
2447 | |
2448 | if (getLinkage() == Linkage::Common) { |
2449 | if (Attribute value = getValueOrNull()) { |
2450 | if (!isZeroAttribute(value)) { |
2451 | return emitOpError() |
2452 | << "expected zero value for '" |
2453 | << stringifyLinkage(Linkage::Common) << "' linkage"; |
2454 | } |
2455 | } |
2456 | } |
2457 | |
2458 | if (getLinkage() == Linkage::Appending) { |
2459 | if (!llvm::isa<LLVMArrayType>(getType())) { |
2460 | return emitOpError() << "expected array type for '" |
2461 | << stringifyLinkage(Linkage::Appending) |
2462 | << "' linkage"; |
2463 | } |
2464 | } |
2465 | |
2466 | if (failed(verifyComdat(*this, getComdat()))) |
2467 | return failure(); |
2468 | |
2469 | std::optional<uint64_t> alignAttr = getAlignment(); |
2470 | if (alignAttr.has_value()) { |
2471 | uint64_t value = alignAttr.value(); |
2472 | if (!llvm::isPowerOf2_64(value)) |
2473 | return emitError() << "alignment attribute is not a power of 2"; |
2474 | } |
2475 | |
2476 | return success(); |
2477 | } |
2478 | |
2479 | LogicalResult GlobalOp::verifyRegions() { |
2480 | if (Block *b = getInitializerBlock()) { |
2481 | ReturnOp ret = cast<ReturnOp>(b->getTerminator()); |
2482 | if (ret.operand_type_begin() == ret.operand_type_end()) |
2483 | return emitOpError("initializer region cannot return void"); |
2484 | if (*ret.operand_type_begin() != getType()) |
2485 | return emitOpError("initializer region type ") |
2486 | << *ret.operand_type_begin() << " does not match global type " |
2487 | << getType(); |
2488 | |
2489 | for (Operation &op : *b) { |
2490 | auto iface = dyn_cast<MemoryEffectOpInterface>(op); |
2491 | if (!iface || !iface.hasNoEffect()) |
2492 | return op.emitError() |
2493 | << "ops with side effects not allowed in global initializers"; |
2494 | } |
2495 | |
2496 | if (getValueOrNull()) |
2497 | return emitOpError("cannot have both initializer value and region"); |
2498 | } |
2499 | |
2500 | return success(); |
2501 | } |
2502 | |
2503 | //===----------------------------------------------------------------------===// |
2504 | // LLVM::GlobalCtorsOp |
2505 | //===----------------------------------------------------------------------===// |
2506 | |
2507 | LogicalResult checkGlobalXtorData(Operation *op, ArrayAttr data) { |
2508 | if (data.empty()) |
2509 | return success(); |
2510 | |
2511 | if (llvm::all_of(data.getAsRange<Attribute>(), [](Attribute v) { |
2512 | return isa<FlatSymbolRefAttr, ZeroAttr>(v); |
2513 | })) |
2514 | return success(); |
2515 | return op->emitError(message: "data element must be symbol or #llvm.zero"); |
2516 | } |
2517 | |
2518 | LogicalResult |
2519 | GlobalCtorsOp::verifySymbolUses(SymbolTableCollection &symbolTable) { |
2520 | for (Attribute ctor : getCtors()) { |
2521 | if (failed(verifySymbolAttrUse(llvm::cast<FlatSymbolRefAttr>(ctor), *this, |
2522 | symbolTable))) |
2523 | return failure(); |
2524 | } |
2525 | return success(); |
2526 | } |
2527 | |
2528 | LogicalResult GlobalCtorsOp::verify() { |
2529 | if (checkGlobalXtorData(*this, getData()).failed()) |
2530 | return failure(); |
2531 | |
2532 | if (getCtors().size() == getPriorities().size() && |
2533 | getCtors().size() == getData().size()) |
2534 | return success(); |
2535 | return emitError( |
2536 | "ctors, priorities, and data must have the same number of elements"); |
2537 | } |
2538 | |
2539 | //===----------------------------------------------------------------------===// |
2540 | // LLVM::GlobalDtorsOp |
2541 | //===----------------------------------------------------------------------===// |
2542 | |
2543 | LogicalResult |
2544 | GlobalDtorsOp::verifySymbolUses(SymbolTableCollection &symbolTable) { |
2545 | for (Attribute dtor : getDtors()) { |
2546 | if (failed(verifySymbolAttrUse(llvm::cast<FlatSymbolRefAttr>(dtor), *this, |
2547 | symbolTable))) |
2548 | return failure(); |
2549 | } |
2550 | return success(); |
2551 | } |
2552 | |
2553 | LogicalResult GlobalDtorsOp::verify() { |
2554 | if (checkGlobalXtorData(*this, getData()).failed()) |
2555 | return failure(); |
2556 | |
2557 | if (getDtors().size() == getPriorities().size() && |
2558 | getDtors().size() == getData().size()) |
2559 | return success(); |
2560 | return emitError( |
2561 | "dtors, priorities, and data must have the same number of elements"); |
2562 | } |
2563 | |
2564 | //===----------------------------------------------------------------------===// |
2565 | // Builder, printer and verifier for LLVM::AliasOp. |
2566 | //===----------------------------------------------------------------------===// |
2567 | |
2568 | void AliasOp::build(OpBuilder &builder, OperationState &result, Type type, |
2569 | Linkage linkage, StringRef name, bool dsoLocal, |
2570 | bool threadLocal, ArrayRef<NamedAttribute> attrs) { |
2571 | result.addAttribute(getSymNameAttrName(result.name), |
2572 | builder.getStringAttr(name)); |
2573 | result.addAttribute(getAliasTypeAttrName(result.name), TypeAttr::get(type)); |
2574 | if (dsoLocal) |
2575 | result.addAttribute(getDsoLocalAttrName(result.name), |
2576 | builder.getUnitAttr()); |
2577 | if (threadLocal) |
2578 | result.addAttribute(getThreadLocal_AttrName(result.name), |
2579 | builder.getUnitAttr()); |
2580 | |
2581 | result.addAttribute(getLinkageAttrName(result.name), |
2582 | LinkageAttr::get(builder.getContext(), linkage)); |
2583 | result.attributes.append(attrs.begin(), attrs.end()); |
2584 | |
2585 | result.addRegion(); |
2586 | } |
2587 | |
2588 | void AliasOp::print(OpAsmPrinter &p) { |
2589 | printCommonGlobalAndAlias<AliasOp>(p, *this); |
2590 | |
2591 | p.printSymbolName(getSymName()); |
2592 | p.printOptionalAttrDict((*this)->getAttrs(), |
2593 | {SymbolTable::getSymbolAttrName(), |
2594 | getAliasTypeAttrName(), getLinkageAttrName(), |
2595 | getUnnamedAddrAttrName(), getThreadLocal_AttrName(), |
2596 | getVisibility_AttrName(), getUnnamedAddrAttrName()}); |
2597 | |
2598 | // Print the trailing type. |
2599 | p << " : "<< getType() << ' '; |
2600 | // Print the initializer region. |
2601 | p.printRegion(getInitializerRegion(), /*printEntryBlockArgs=*/false); |
2602 | } |
2603 | |
2604 | // operation ::= `llvm.mlir.alias` linkage? visibility? |
2605 | // (`unnamed_addr` | `local_unnamed_addr`)? |
2606 | // `thread_local`? `@` identifier |
2607 | // `(` attribute? `)` |
2608 | // attribute-list? `:` type region |
2609 | // |
2610 | ParseResult AliasOp::parse(OpAsmParser &parser, OperationState &result) { |
2611 | // Call into common parsing between GlobalOp and AliasOp. |
2612 | if (parseCommonGlobalAndAlias<AliasOp>(parser, result).failed()) |
2613 | return failure(); |
2614 | |
2615 | StringAttr name; |
2616 | if (parser.parseSymbolName(name, getSymNameAttrName(result.name), |
2617 | result.attributes)) |
2618 | return failure(); |
2619 | |
2620 | SmallVector<Type, 1> types; |
2621 | if (parser.parseOptionalAttrDict(result.attributes) || |
2622 | parser.parseOptionalColonTypeList(types)) |
2623 | return failure(); |
2624 | |
2625 | if (types.size() > 1) |
2626 | return parser.emitError(parser.getNameLoc(), "expected zero or one type"); |
2627 | |
2628 | Region &initRegion = *result.addRegion(); |
2629 | if (parser.parseRegion(initRegion).failed()) |
2630 | return failure(); |
2631 | |
2632 | result.addAttribute(getAliasTypeAttrName(result.name), |
2633 | TypeAttr::get(types[0])); |
2634 | return success(); |
2635 | } |
2636 | |
2637 | LogicalResult AliasOp::verify() { |
2638 | bool validType = isCompatibleOuterType(getType()) |
2639 | ? !llvm::isa<LLVMVoidType, LLVMTokenType, |
2640 | LLVMMetadataType, LLVMLabelType>(getType()) |
2641 | : llvm::isa<PointerElementTypeInterface>(getType()); |
2642 | if (!validType) |
2643 | return emitOpError( |
2644 | "expects type to be a valid element type for an LLVM global alias"); |
2645 | |
2646 | // This matches LLVM IR verification logic, see llvm/lib/IR/Verifier.cpp |
2647 | switch (getLinkage()) { |
2648 | case Linkage::External: |
2649 | case Linkage::Internal: |
2650 | case Linkage::Private: |
2651 | case Linkage::Weak: |
2652 | case Linkage::WeakODR: |
2653 | case Linkage::Linkonce: |
2654 | case Linkage::LinkonceODR: |
2655 | case Linkage::AvailableExternally: |
2656 | break; |
2657 | default: |
2658 | return emitOpError() |
2659 | << "'"<< stringifyLinkage(getLinkage()) |
2660 | << "' linkage not supported in aliases, available options: private, " |
2661 | "internal, linkonce, weak, linkonce_odr, weak_odr, external or " |
2662 | "available_externally"; |
2663 | } |
2664 | |
2665 | return success(); |
2666 | } |
2667 | |
2668 | LogicalResult AliasOp::verifyRegions() { |
2669 | Block &b = getInitializerBlock(); |
2670 | auto ret = cast<ReturnOp>(b.getTerminator()); |
2671 | if (ret.getNumOperands() == 0 || |
2672 | !isa<LLVM::LLVMPointerType>(ret.getOperand(0).getType())) |
2673 | return emitOpError("initializer region must always return a pointer"); |
2674 | |
2675 | for (Operation &op : b) { |
2676 | auto iface = dyn_cast<MemoryEffectOpInterface>(op); |
2677 | if (!iface || !iface.hasNoEffect()) |
2678 | return op.emitError() |
2679 | << "ops with side effects are not allowed in alias initializers"; |
2680 | } |
2681 | |
2682 | return success(); |
2683 | } |
2684 | |
2685 | unsigned AliasOp::getAddrSpace() { |
2686 | Block &initializer = getInitializerBlock(); |
2687 | auto ret = cast<ReturnOp>(initializer.getTerminator()); |
2688 | auto ptrTy = cast<LLVMPointerType>(ret.getOperand(0).getType()); |
2689 | return ptrTy.getAddressSpace(); |
2690 | } |
2691 | |
2692 | //===----------------------------------------------------------------------===// |
2693 | // ShuffleVectorOp |
2694 | //===----------------------------------------------------------------------===// |
2695 | |
2696 | void ShuffleVectorOp::build(OpBuilder &builder, OperationState &state, Value v1, |
2697 | Value v2, DenseI32ArrayAttr mask, |
2698 | ArrayRef<NamedAttribute> attrs) { |
2699 | auto containerType = v1.getType(); |
2700 | auto vType = LLVM::getVectorType( |
2701 | cast<VectorType>(containerType).getElementType(), mask.size(), |
2702 | LLVM::isScalableVectorType(containerType)); |
2703 | build(builder, state, vType, v1, v2, mask); |
2704 | state.addAttributes(attrs); |
2705 | } |
2706 | |
2707 | void ShuffleVectorOp::build(OpBuilder &builder, OperationState &state, Value v1, |
2708 | Value v2, ArrayRef<int32_t> mask) { |
2709 | build(builder, state, v1, v2, builder.getDenseI32ArrayAttr(mask)); |
2710 | } |
2711 | |
2712 | /// Build the result type of a shuffle vector operation. |
2713 | static ParseResult parseShuffleType(AsmParser &parser, Type v1Type, |
2714 | Type &resType, DenseI32ArrayAttr mask) { |
2715 | if (!LLVM::isCompatibleVectorType(type: v1Type)) |
2716 | return parser.emitError(loc: parser.getCurrentLocation(), |
2717 | message: "expected an LLVM compatible vector type"); |
2718 | resType = |
2719 | LLVM::getVectorType(cast<VectorType>(v1Type).getElementType(), |
2720 | mask.size(), LLVM::isScalableVectorType(vectorType: v1Type)); |
2721 | return success(); |
2722 | } |
2723 | |
2724 | /// Nothing to do when the result type is inferred. |
2725 | static void printShuffleType(AsmPrinter &printer, Operation *op, Type v1Type, |
2726 | Type resType, DenseI32ArrayAttr mask) {} |
2727 | |
2728 | LogicalResult ShuffleVectorOp::verify() { |
2729 | if (LLVM::isScalableVectorType(getV1().getType()) && |
2730 | llvm::any_of(getMask(), [](int32_t v) { return v != 0; })) |
2731 | return emitOpError("expected a splat operation for scalable vectors"); |
2732 | return success(); |
2733 | } |
2734 | |
2735 | //===----------------------------------------------------------------------===// |
2736 | // Implementations for LLVM::LLVMFuncOp. |
2737 | //===----------------------------------------------------------------------===// |
2738 | |
2739 | // Add the entry block to the function. |
2740 | Block *LLVMFuncOp::addEntryBlock(OpBuilder &builder) { |
2741 | assert(empty() && "function already has an entry block"); |
2742 | OpBuilder::InsertionGuard g(builder); |
2743 | Block *entry = builder.createBlock(&getBody()); |
2744 | |
2745 | // FIXME: Allow passing in proper locations for the entry arguments. |
2746 | LLVMFunctionType type = getFunctionType(); |
2747 | for (unsigned i = 0, e = type.getNumParams(); i < e; ++i) |
2748 | entry->addArgument(type.getParamType(i), getLoc()); |
2749 | return entry; |
2750 | } |
2751 | |
2752 | void LLVMFuncOp::build(OpBuilder &builder, OperationState &result, |
2753 | StringRef name, Type type, LLVM::Linkage linkage, |
2754 | bool dsoLocal, CConv cconv, SymbolRefAttr comdat, |
2755 | ArrayRef<NamedAttribute> attrs, |
2756 | ArrayRef<DictionaryAttr> argAttrs, |
2757 | std::optional<uint64_t> functionEntryCount) { |
2758 | result.addRegion(); |
2759 | result.addAttribute(SymbolTable::getSymbolAttrName(), |
2760 | builder.getStringAttr(name)); |
2761 | result.addAttribute(getFunctionTypeAttrName(result.name), |
2762 | TypeAttr::get(type)); |
2763 | result.addAttribute(getLinkageAttrName(result.name), |
2764 | LinkageAttr::get(builder.getContext(), linkage)); |
2765 | result.addAttribute(getCConvAttrName(result.name), |
2766 | CConvAttr::get(builder.getContext(), cconv)); |
2767 | result.attributes.append(attrs.begin(), attrs.end()); |
2768 | if (dsoLocal) |
2769 | result.addAttribute(getDsoLocalAttrName(result.name), |
2770 | builder.getUnitAttr()); |
2771 | if (comdat) |
2772 | result.addAttribute(getComdatAttrName(result.name), comdat); |
2773 | if (functionEntryCount) |
2774 | result.addAttribute(getFunctionEntryCountAttrName(result.name), |
2775 | builder.getI64IntegerAttr(functionEntryCount.value())); |
2776 | if (argAttrs.empty()) |
2777 | return; |
2778 | |
2779 | assert(llvm::cast<LLVMFunctionType>(type).getNumParams() == argAttrs.size() && |
2780 | "expected as many argument attribute lists as arguments"); |
2781 | call_interface_impl::addArgAndResultAttrs( |
2782 | builder, result, argAttrs, /*resultAttrs=*/std::nullopt, |
2783 | getArgAttrsAttrName(result.name), getResAttrsAttrName(result.name)); |
2784 | } |
2785 | |
2786 | // Builds an LLVM function type from the given lists of input and output types. |
2787 | // Returns a null type if any of the types provided are non-LLVM types, or if |
2788 | // there is more than one output type. |
2789 | static Type |
2790 | buildLLVMFunctionType(OpAsmParser &parser, SMLoc loc, ArrayRef<Type> inputs, |
2791 | ArrayRef<Type> outputs, |
2792 | function_interface_impl::VariadicFlag variadicFlag) { |
2793 | Builder &b = parser.getBuilder(); |
2794 | if (outputs.size() > 1) { |
2795 | parser.emitError(loc, message: "failed to construct function type: expected zero or " |
2796 | "one function result"); |
2797 | return {}; |
2798 | } |
2799 | |
2800 | // Convert inputs to LLVM types, exit early on error. |
2801 | SmallVector<Type, 4> llvmInputs; |
2802 | for (auto t : inputs) { |
2803 | if (!isCompatibleType(type: t)) { |
2804 | parser.emitError(loc, message: "failed to construct function type: expected LLVM " |
2805 | "type for function arguments"); |
2806 | return {}; |
2807 | } |
2808 | llvmInputs.push_back(Elt: t); |
2809 | } |
2810 | |
2811 | // No output is denoted as "void" in LLVM type system. |
2812 | Type llvmOutput = |
2813 | outputs.empty() ? LLVMVoidType::get(ctx: b.getContext()) : outputs.front(); |
2814 | if (!isCompatibleType(type: llvmOutput)) { |
2815 | parser.emitError(loc, message: "failed to construct function type: expected LLVM " |
2816 | "type for function results") |
2817 | << llvmOutput; |
2818 | return {}; |
2819 | } |
2820 | return LLVMFunctionType::get(llvmOutput, llvmInputs, |
2821 | variadicFlag.isVariadic()); |
2822 | } |
2823 | |
2824 | // Parses an LLVM function. |
2825 | // |
2826 | // operation ::= `llvm.func` linkage? cconv? function-signature |
2827 | // (`comdat(` symbol-ref-id `)`)? |
2828 | // function-attributes? |
2829 | // function-body |
2830 | // |
2831 | ParseResult LLVMFuncOp::parse(OpAsmParser &parser, OperationState &result) { |
2832 | // Default to external linkage if no keyword is provided. |
2833 | result.addAttribute( |
2834 | getLinkageAttrName(result.name), |
2835 | LinkageAttr::get(parser.getContext(), |
2836 | parseOptionalLLVMKeyword<Linkage>( |
2837 | parser, result, LLVM::Linkage::External))); |
2838 | |
2839 | // Parse optional visibility, default to Default. |
2840 | result.addAttribute(getVisibility_AttrName(result.name), |
2841 | parser.getBuilder().getI64IntegerAttr( |
2842 | parseOptionalLLVMKeyword<LLVM::Visibility, int64_t>( |
2843 | parser, result, LLVM::Visibility::Default))); |
2844 | |
2845 | // Parse optional UnnamedAddr, default to None. |
2846 | result.addAttribute(getUnnamedAddrAttrName(result.name), |
2847 | parser.getBuilder().getI64IntegerAttr( |
2848 | parseOptionalLLVMKeyword<UnnamedAddr, int64_t>( |
2849 | parser, result, LLVM::UnnamedAddr::None))); |
2850 | |
2851 | // Default to C Calling Convention if no keyword is provided. |
2852 | result.addAttribute( |
2853 | getCConvAttrName(result.name), |
2854 | CConvAttr::get(parser.getContext(), parseOptionalLLVMKeyword<CConv>( |
2855 | parser, result, LLVM::CConv::C))); |
2856 | |
2857 | StringAttr nameAttr; |
2858 | SmallVector<OpAsmParser::Argument> entryArgs; |
2859 | SmallVector<DictionaryAttr> resultAttrs; |
2860 | SmallVector<Type> resultTypes; |
2861 | bool isVariadic; |
2862 | |
2863 | auto signatureLocation = parser.getCurrentLocation(); |
2864 | if (parser.parseSymbolName(nameAttr, SymbolTable::getSymbolAttrName(), |
2865 | result.attributes) || |
2866 | function_interface_impl::parseFunctionSignatureWithArguments( |
2867 | parser, /*allowVariadic=*/true, entryArgs, isVariadic, resultTypes, |
2868 | resultAttrs)) |
2869 | return failure(); |
2870 | |
2871 | SmallVector<Type> argTypes; |
2872 | for (auto &arg : entryArgs) |
2873 | argTypes.push_back(arg.type); |
2874 | auto type = |
2875 | buildLLVMFunctionType(parser, signatureLocation, argTypes, resultTypes, |
2876 | function_interface_impl::VariadicFlag(isVariadic)); |
2877 | if (!type) |
2878 | return failure(); |
2879 | result.addAttribute(getFunctionTypeAttrName(result.name), |
2880 | TypeAttr::get(type)); |
2881 | |
2882 | if (succeeded(parser.parseOptionalKeyword("vscale_range"))) { |
2883 | int64_t minRange, maxRange; |
2884 | if (parser.parseLParen() || parser.parseInteger(minRange) || |
2885 | parser.parseComma() || parser.parseInteger(maxRange) || |
2886 | parser.parseRParen()) |
2887 | return failure(); |
2888 | auto intTy = IntegerType::get(parser.getContext(), 32); |
2889 | result.addAttribute( |
2890 | getVscaleRangeAttrName(result.name), |
2891 | LLVM::VScaleRangeAttr::get(parser.getContext(), |
2892 | IntegerAttr::get(intTy, minRange), |
2893 | IntegerAttr::get(intTy, maxRange))); |
2894 | } |
2895 | // Parse the optional comdat selector. |
2896 | if (succeeded(parser.parseOptionalKeyword("comdat"))) { |
2897 | SymbolRefAttr comdat; |
2898 | if (parser.parseLParen() || parser.parseAttribute(comdat) || |
2899 | parser.parseRParen()) |
2900 | return failure(); |
2901 | |
2902 | result.addAttribute(getComdatAttrName(result.name), comdat); |
2903 | } |
2904 | |
2905 | if (failed(parser.parseOptionalAttrDictWithKeyword(result.attributes))) |
2906 | return failure(); |
2907 | call_interface_impl::addArgAndResultAttrs( |
2908 | parser.getBuilder(), result, entryArgs, resultAttrs, |
2909 | getArgAttrsAttrName(result.name), getResAttrsAttrName(result.name)); |
2910 | |
2911 | auto *body = result.addRegion(); |
2912 | OptionalParseResult parseResult = |
2913 | parser.parseOptionalRegion(*body, entryArgs); |
2914 | return failure(parseResult.has_value() && failed(*parseResult)); |
2915 | } |
2916 | |
2917 | // Print the LLVMFuncOp. Collects argument and result types and passes them to |
2918 | // helper functions. Drops "void" result since it cannot be parsed back. Skips |
2919 | // the external linkage since it is the default value. |
2920 | void LLVMFuncOp::print(OpAsmPrinter &p) { |
2921 | p << ' '; |
2922 | if (getLinkage() != LLVM::Linkage::External) |
2923 | p << stringifyLinkage(getLinkage()) << ' '; |
2924 | StringRef visibility = stringifyVisibility(getVisibility_()); |
2925 | if (!visibility.empty()) |
2926 | p << visibility << ' '; |
2927 | if (auto unnamedAddr = getUnnamedAddr()) { |
2928 | StringRef str = stringifyUnnamedAddr(*unnamedAddr); |
2929 | if (!str.empty()) |
2930 | p << str << ' '; |
2931 | } |
2932 | if (getCConv() != LLVM::CConv::C) |
2933 | p << stringifyCConv(getCConv()) << ' '; |
2934 | |
2935 | p.printSymbolName(getName()); |
2936 | |
2937 | LLVMFunctionType fnType = getFunctionType(); |
2938 | SmallVector<Type, 8> argTypes; |
2939 | SmallVector<Type, 1> resTypes; |
2940 | argTypes.reserve(fnType.getNumParams()); |
2941 | for (unsigned i = 0, e = fnType.getNumParams(); i < e; ++i) |
2942 | argTypes.push_back(fnType.getParamType(i)); |
2943 | |
2944 | Type returnType = fnType.getReturnType(); |
2945 | if (!llvm::isa<LLVMVoidType>(returnType)) |
2946 | resTypes.push_back(returnType); |
2947 | |
2948 | function_interface_impl::printFunctionSignature(p, *this, argTypes, |
2949 | isVarArg(), resTypes); |
2950 | |
2951 | // Print vscale range if present |
2952 | if (std::optional<VScaleRangeAttr> vscale = getVscaleRange()) |
2953 | p << " vscale_range("<< vscale->getMinRange().getInt() << ", " |
2954 | << vscale->getMaxRange().getInt() << ')'; |
2955 | |
2956 | // Print the optional comdat selector. |
2957 | if (auto comdat = getComdat()) |
2958 | p << " comdat("<< *comdat << ')'; |
2959 | |
2960 | function_interface_impl::printFunctionAttributes( |
2961 | p, *this, |
2962 | {getFunctionTypeAttrName(), getArgAttrsAttrName(), getResAttrsAttrName(), |
2963 | getLinkageAttrName(), getCConvAttrName(), getVisibility_AttrName(), |
2964 | getComdatAttrName(), getUnnamedAddrAttrName(), |
2965 | getVscaleRangeAttrName()}); |
2966 | |
2967 | // Print the body if this is not an external function. |
2968 | Region &body = getBody(); |
2969 | if (!body.empty()) { |
2970 | p << ' '; |
2971 | p.printRegion(body, /*printEntryBlockArgs=*/false, |
2972 | /*printBlockTerminators=*/true); |
2973 | } |
2974 | } |
2975 | |
2976 | // Verifies LLVM- and implementation-specific properties of the LLVM func Op: |
2977 | // - functions don't have 'common' linkage |
2978 | // - external functions have 'external' or 'extern_weak' linkage; |
2979 | // - vararg is (currently) only supported for external functions; |
2980 | LogicalResult LLVMFuncOp::verify() { |
2981 | if (getLinkage() == LLVM::Linkage::Common) |
2982 | return emitOpError() << "functions cannot have '" |
2983 | << stringifyLinkage(LLVM::Linkage::Common) |
2984 | << "' linkage"; |
2985 | |
2986 | if (failed(verifyComdat(*this, getComdat()))) |
2987 | return failure(); |
2988 | |
2989 | if (isExternal()) { |
2990 | if (getLinkage() != LLVM::Linkage::External && |
2991 | getLinkage() != LLVM::Linkage::ExternWeak) |
2992 | return emitOpError() << "external functions must have '" |
2993 | << stringifyLinkage(LLVM::Linkage::External) |
2994 | << "' or '" |
2995 | << stringifyLinkage(LLVM::Linkage::ExternWeak) |
2996 | << "' linkage"; |
2997 | return success(); |
2998 | } |
2999 | |
3000 | // In LLVM IR, these attributes are composed by convention, not by design. |
3001 | if (isNoInline() && isAlwaysInline()) |
3002 | return emitError("no_inline and always_inline attributes are incompatible"); |
3003 | |
3004 | if (isOptimizeNone() && !isNoInline()) |
3005 | return emitOpError("with optimize_none must also be no_inline"); |
3006 | |
3007 | Type landingpadResultTy; |
3008 | StringRef diagnosticMessage; |
3009 | bool isLandingpadTypeConsistent = |
3010 | !walk([&](Operation *op) { |
3011 | const auto checkType = [&](Type type, StringRef errorMessage) { |
3012 | if (!landingpadResultTy) { |
3013 | landingpadResultTy = type; |
3014 | return WalkResult::advance(); |
3015 | } |
3016 | if (landingpadResultTy != type) { |
3017 | diagnosticMessage = errorMessage; |
3018 | return WalkResult::interrupt(); |
3019 | } |
3020 | return WalkResult::advance(); |
3021 | }; |
3022 | return TypeSwitch<Operation *, WalkResult>(op) |
3023 | .Case<LandingpadOp>([&](auto landingpad) { |
3024 | constexpr StringLiteral errorMessage = |
3025 | "'llvm.landingpad' should have a consistent result type " |
3026 | "inside a function"; |
3027 | return checkType(landingpad.getType(), errorMessage); |
3028 | }) |
3029 | .Case<ResumeOp>([&](auto resume) { |
3030 | constexpr StringLiteral errorMessage = |
3031 | "'llvm.resume' should have a consistent input type inside a " |
3032 | "function"; |
3033 | return checkType(resume.getValue().getType(), errorMessage); |
3034 | }) |
3035 | .Default([](auto) { return WalkResult::skip(); }); |
3036 | }).wasInterrupted(); |
3037 | if (!isLandingpadTypeConsistent) { |
3038 | assert(!diagnosticMessage.empty() && |
3039 | "Expecting a non-empty diagnostic message"); |
3040 | return emitError(diagnosticMessage); |
3041 | } |
3042 | |
3043 | if (failed(verifyBlockTags(*this))) |
3044 | return failure(); |
3045 | |
3046 | return success(); |
3047 | } |
3048 | |
3049 | /// Verifies LLVM- and implementation-specific properties of the LLVM func Op: |
3050 | /// - entry block arguments are of LLVM types. |
3051 | LogicalResult LLVMFuncOp::verifyRegions() { |
3052 | if (isExternal()) |
3053 | return success(); |
3054 | |
3055 | unsigned numArguments = getFunctionType().getNumParams(); |
3056 | Block &entryBlock = front(); |
3057 | for (unsigned i = 0; i < numArguments; ++i) { |
3058 | Type argType = entryBlock.getArgument(i).getType(); |
3059 | if (!isCompatibleType(argType)) |
3060 | return emitOpError("entry block argument #") |
3061 | << i << " is not of LLVM type"; |
3062 | } |
3063 | |
3064 | return success(); |
3065 | } |
3066 | |
3067 | Region *LLVMFuncOp::getCallableRegion() { |
3068 | if (isExternal()) |
3069 | return nullptr; |
3070 | return &getBody(); |
3071 | } |
3072 | |
3073 | //===----------------------------------------------------------------------===// |
3074 | // UndefOp. |
3075 | //===----------------------------------------------------------------------===// |
3076 | |
3077 | /// Fold an undef operation to a dedicated undef attribute. |
3078 | OpFoldResult LLVM::UndefOp::fold(FoldAdaptor) { |
3079 | return LLVM::UndefAttr::get(getContext()); |
3080 | } |
3081 | |
3082 | //===----------------------------------------------------------------------===// |
3083 | // PoisonOp. |
3084 | //===----------------------------------------------------------------------===// |
3085 | |
3086 | /// Fold a poison operation to a dedicated poison attribute. |
3087 | OpFoldResult LLVM::PoisonOp::fold(FoldAdaptor) { |
3088 | return LLVM::PoisonAttr::get(getContext()); |
3089 | } |
3090 | |
3091 | //===----------------------------------------------------------------------===// |
3092 | // ZeroOp. |
3093 | //===----------------------------------------------------------------------===// |
3094 | |
3095 | LogicalResult LLVM::ZeroOp::verify() { |
3096 | if (auto targetExtType = dyn_cast<LLVMTargetExtType>(getType())) |
3097 | if (!targetExtType.hasProperty(LLVM::LLVMTargetExtType::HasZeroInit)) |
3098 | return emitOpError() |
3099 | << "target extension type does not support zero-initializer"; |
3100 | |
3101 | return success(); |
3102 | } |
3103 | |
3104 | /// Fold a zero operation to a builtin zero attribute when possible and fall |
3105 | /// back to a dedicated zero attribute. |
3106 | OpFoldResult LLVM::ZeroOp::fold(FoldAdaptor) { |
3107 | OpFoldResult result = Builder(getContext()).getZeroAttr(getType()); |
3108 | if (result) |
3109 | return result; |
3110 | return LLVM::ZeroAttr::get(getContext()); |
3111 | } |
3112 | |
3113 | //===----------------------------------------------------------------------===// |
3114 | // ConstantOp. |
3115 | //===----------------------------------------------------------------------===// |
3116 | |
3117 | /// Compute the total number of elements in the given type, also taking into |
3118 | /// account nested types. Supported types are `VectorType` and `LLVMArrayType`. |
3119 | /// Everything else is treated as a scalar. |
3120 | static int64_t getNumElements(Type t) { |
3121 | if (auto vecType = dyn_cast<VectorType>(t)) { |
3122 | assert(!vecType.isScalable() && |
3123 | "number of elements of a scalable vector type is unknown"); |
3124 | return vecType.getNumElements() * getNumElements(vecType.getElementType()); |
3125 | } |
3126 | if (auto arrayType = dyn_cast<LLVM::LLVMArrayType>(t)) |
3127 | return arrayType.getNumElements() * |
3128 | getNumElements(arrayType.getElementType()); |
3129 | return 1; |
3130 | } |
3131 | |
3132 | /// Check if the given type is a scalable vector type or a vector/array type |
3133 | /// that contains a nested scalable vector type. |
3134 | static bool hasScalableVectorType(Type t) { |
3135 | if (auto vecType = dyn_cast<VectorType>(t)) { |
3136 | if (vecType.isScalable()) |
3137 | return true; |
3138 | return hasScalableVectorType(vecType.getElementType()); |
3139 | } |
3140 | if (auto arrayType = dyn_cast<LLVM::LLVMArrayType>(t)) |
3141 | return hasScalableVectorType(arrayType.getElementType()); |
3142 | return false; |
3143 | } |
3144 | |
3145 | /// Verifies the constant array represented by `arrayAttr` matches the provided |
3146 | /// `arrayType`. |
3147 | static LogicalResult verifyStructArrayConstant(LLVM::ConstantOp op, |
3148 | LLVM::LLVMArrayType arrayType, |
3149 | ArrayAttr arrayAttr, int dim) { |
3150 | if (arrayType.getNumElements() != arrayAttr.size()) |
3151 | return op.emitOpError() |
3152 | << "array attribute size does not match array type size in " |
3153 | "dimension " |
3154 | << dim << ": "<< arrayAttr.size() << " vs. " |
3155 | << arrayType.getNumElements(); |
3156 | |
3157 | llvm::DenseSet<Attribute> elementsVerified; |
3158 | |
3159 | // Recursively verify sub-dimensions for multidimensional arrays. |
3160 | if (auto subArrayType = |
3161 | dyn_cast<LLVM::LLVMArrayType>(arrayType.getElementType())) { |
3162 | for (auto [idx, elementAttr] : llvm::enumerate(arrayAttr)) |
3163 | if (elementsVerified.insert(elementAttr).second) { |
3164 | if (isa<LLVM::ZeroAttr, LLVM::UndefAttr>(elementAttr)) |
3165 | continue; |
3166 | auto subArrayAttr = dyn_cast<ArrayAttr>(elementAttr); |
3167 | if (!subArrayAttr) |
3168 | return op.emitOpError() |
3169 | << "nested attribute for sub-array in dimension "<< dim |
3170 | << " at index "<< idx |
3171 | << " must be a zero, or undef, or array attribute"; |
3172 | if (failed(verifyStructArrayConstant(op, subArrayType, subArrayAttr, |
3173 | dim + 1))) |
3174 | return failure(); |
3175 | } |
3176 | return success(); |
3177 | } |
3178 | |
3179 | // Forbid usages of ArrayAttr for simple array types that should use |
3180 | // DenseElementsAttr instead. Note that there would be a use case for such |
3181 | // array types when one element value is obtained via a ptr-to-int conversion |
3182 | // from a symbol and cannot be represented in a DenseElementsAttr, but no MLIR |
3183 | // user needs this so far, and it seems better to avoid people misusing the |
3184 | // ArrayAttr for simple types. |
3185 | auto structType = dyn_cast<LLVM::LLVMStructType>(arrayType.getElementType()); |
3186 | if (!structType) |
3187 | return op.emitOpError() << "for array with an array attribute must have a " |
3188 | "struct element type"; |
3189 | |
3190 | // Shallow verification that leaf attributes are appropriate as struct initial |
3191 | // value. |
3192 | size_t numStructElements = structType.getBody().size(); |
3193 | for (auto [idx, elementAttr] : llvm::enumerate(arrayAttr)) { |
3194 | if (elementsVerified.insert(elementAttr).second) { |
3195 | if (isa<LLVM::ZeroAttr, LLVM::UndefAttr>(elementAttr)) |
3196 | continue; |
3197 | auto subArrayAttr = dyn_cast<ArrayAttr>(elementAttr); |
3198 | if (!subArrayAttr) |
3199 | return op.emitOpError() |
3200 | << "nested attribute for struct element at index "<< idx |
3201 | << " must be a zero, or undef, or array attribute"; |
3202 | if (subArrayAttr.size() != numStructElements) |
3203 | return op.emitOpError() |
3204 | << "nested array attribute size for struct element at index " |
3205 | << idx << " must match struct size: "<< subArrayAttr.size() |
3206 | << " vs. "<< numStructElements; |
3207 | } |
3208 | } |
3209 | |
3210 | return success(); |
3211 | } |
3212 | |
3213 | LogicalResult LLVM::ConstantOp::verify() { |
3214 | if (StringAttr sAttr = llvm::dyn_cast<StringAttr>(getValue())) { |
3215 | auto arrayType = llvm::dyn_cast<LLVMArrayType>(getType()); |
3216 | if (!arrayType || arrayType.getNumElements() != sAttr.getValue().size() || |
3217 | !arrayType.getElementType().isInteger(8)) { |
3218 | return emitOpError() << "expected array type of " |
3219 | << sAttr.getValue().size() |
3220 | << " i8 elements for the string constant"; |
3221 | } |
3222 | return success(); |
3223 | } |
3224 | if (auto structType = dyn_cast<LLVMStructType>(getType())) { |
3225 | auto arrayAttr = dyn_cast<ArrayAttr>(getValue()); |
3226 | if (!arrayAttr) { |
3227 | return emitOpError() << "expected array attribute for a struct constant"; |
3228 | } |
3229 | |
3230 | ArrayRef<Type> elementTypes = structType.getBody(); |
3231 | if (arrayAttr.size() != elementTypes.size()) { |
3232 | return emitOpError() << "expected array attribute of size " |
3233 | << elementTypes.size(); |
3234 | } |
3235 | for (auto elementTy : elementTypes) { |
3236 | if (!isa<IntegerType, FloatType, LLVMPPCFP128Type>(elementTy)) { |
3237 | return emitOpError() << "expected struct element types to be floating " |
3238 | "point type or integer type"; |
3239 | } |
3240 | } |
3241 | |
3242 | for (size_t i = 0; i < elementTypes.size(); ++i) { |
3243 | Attribute element = arrayAttr[i]; |
3244 | if (!isa<IntegerAttr, FloatAttr>(element)) { |
3245 | return emitOpError() |
3246 | << "expected struct element attribute types to be floating " |
3247 | "point type or integer type"; |
3248 | } |
3249 | auto elementType = cast<TypedAttr>(element).getType(); |
3250 | if (elementType != elementTypes[i]) { |
3251 | return emitOpError() |
3252 | << "struct element at index "<< i << " is of wrong type"; |
3253 | } |
3254 | } |
3255 | |
3256 | return success(); |
3257 | } |
3258 | if (auto targetExtType = dyn_cast<LLVMTargetExtType>(getType())) { |
3259 | return emitOpError() << "does not support target extension type."; |
3260 | } |
3261 | |
3262 | // Verification of IntegerAttr, FloatAttr, ElementsAttr, ArrayAttr. |
3263 | if (auto intAttr = dyn_cast<IntegerAttr>(getValue())) { |
3264 | if (!llvm::isa<IntegerType>(getType())) |
3265 | return emitOpError() << "expected integer type"; |
3266 | } else if (auto floatAttr = dyn_cast<FloatAttr>(getValue())) { |
3267 | const llvm::fltSemantics &sem = floatAttr.getValue().getSemantics(); |
3268 | unsigned floatWidth = APFloat::getSizeInBits(sem); |
3269 | if (auto floatTy = dyn_cast<FloatType>(getType())) { |
3270 | if (floatTy.getWidth() != floatWidth) { |
3271 | return emitOpError() << "expected float type of width "<< floatWidth; |
3272 | } |
3273 | } |
3274 | // See the comment for getLLVMConstant for more details about why 8-bit |
3275 | // floats can be represented by integers. |
3276 | if (isa<IntegerType>(getType()) && !getType().isInteger(floatWidth)) { |
3277 | return emitOpError() << "expected integer type of width "<< floatWidth; |
3278 | } |
3279 | } else if (isa<ElementsAttr>(getValue())) { |
3280 | if (hasScalableVectorType(getType())) { |
3281 | // The exact number of elements of a scalable vector is unknown, so we |
3282 | // allow only splat attributes. |
3283 | auto splatElementsAttr = dyn_cast<SplatElementsAttr>(getValue()); |
3284 | if (!splatElementsAttr) |
3285 | return emitOpError() |
3286 | << "scalable vector type requires a splat attribute"; |
3287 | return success(); |
3288 | } |
3289 | if (!isa<VectorType, LLVM::LLVMArrayType>(getType())) |
3290 | return emitOpError() << "expected vector or array type"; |
3291 | // The number of elements of the attribute and the type must match. |
3292 | if (auto elementsAttr = dyn_cast<ElementsAttr>(getValue())) { |
3293 | int64_t attrNumElements = elementsAttr.getNumElements(); |
3294 | if (getNumElements(getType()) != attrNumElements) |
3295 | return emitOpError() |
3296 | << "type and attribute have a different number of elements: " |
3297 | << getNumElements(getType()) << " vs. "<< attrNumElements; |
3298 | } |
3299 | } else if (auto arrayAttr = dyn_cast<ArrayAttr>(getValue())) { |
3300 | auto arrayType = dyn_cast<LLVM::LLVMArrayType>(getType()); |
3301 | if (!arrayType) |
3302 | return emitOpError() << "expected array type"; |
3303 | // When the attribute is an ArrayAttr, check that its nesting matches the |
3304 | // corresponding ArrayType or VectorType nesting. |
3305 | return verifyStructArrayConstant(*this, arrayType, arrayAttr, /*dim=*/0); |
3306 | } else { |
3307 | return emitOpError() |
3308 | << "only supports integer, float, string or elements attributes"; |
3309 | } |
3310 | |
3311 | return success(); |
3312 | } |
3313 | |
3314 | bool LLVM::ConstantOp::isBuildableWith(Attribute value, Type type) { |
3315 | // The value's type must be the same as the provided type. |
3316 | auto typedAttr = dyn_cast<TypedAttr>(value); |
3317 | if (!typedAttr || typedAttr.getType() != type || !isCompatibleType(type)) |
3318 | return false; |
3319 | // The value's type must be an LLVM compatible type. |
3320 | if (!isCompatibleType(type)) |
3321 | return false; |
3322 | // TODO: Add support for additional attributes kinds once needed. |
3323 | return isa<IntegerAttr, FloatAttr, ElementsAttr>(value); |
3324 | } |
3325 | |
3326 | ConstantOp LLVM::ConstantOp::materialize(OpBuilder &builder, Attribute value, |
3327 | Type type, Location loc) { |
3328 | if (isBuildableWith(value, type)) |
3329 | return builder.create<LLVM::ConstantOp>(loc, cast<TypedAttr>(value)); |
3330 | return nullptr; |
3331 | } |
3332 | |
3333 | // Constant op constant-folds to its value. |
3334 | OpFoldResult LLVM::ConstantOp::fold(FoldAdaptor) { return getValue(); } |
3335 | |
3336 | //===----------------------------------------------------------------------===// |
3337 | // AtomicRMWOp |
3338 | //===----------------------------------------------------------------------===// |
3339 | |
3340 | void AtomicRMWOp::build(OpBuilder &builder, OperationState &state, |
3341 | AtomicBinOp binOp, Value ptr, Value val, |
3342 | AtomicOrdering ordering, StringRef syncscope, |
3343 | unsigned alignment, bool isVolatile) { |
3344 | build(builder, state, val.getType(), binOp, ptr, val, ordering, |
3345 | !syncscope.empty() ? builder.getStringAttr(syncscope) : nullptr, |
3346 | alignment ? builder.getI64IntegerAttr(alignment) : nullptr, isVolatile, |
3347 | /*access_groups=*/nullptr, |
3348 | /*alias_scopes=*/nullptr, /*noalias_scopes=*/nullptr, /*tbaa=*/nullptr); |
3349 | } |
3350 | |
3351 | LogicalResult AtomicRMWOp::verify() { |
3352 | auto valType = getVal().getType(); |
3353 | if (getBinOp() == AtomicBinOp::fadd || getBinOp() == AtomicBinOp::fsub || |
3354 | getBinOp() == AtomicBinOp::fmin || getBinOp() == AtomicBinOp::fmax || |
3355 | getBinOp() == AtomicBinOp::fminimum || |
3356 | getBinOp() == AtomicBinOp::fmaximum) { |
3357 | if (isCompatibleVectorType(valType)) { |
3358 | if (isScalableVectorType(valType)) |
3359 | return emitOpError("expected LLVM IR fixed vector type"); |
3360 | Type elemType = llvm::cast<VectorType>(valType).getElementType(); |
3361 | if (!isCompatibleFloatingPointType(elemType)) |
3362 | return emitOpError( |
3363 | "expected LLVM IR floating point type for vector element"); |
3364 | } else if (!isCompatibleFloatingPointType(valType)) { |
3365 | return emitOpError("expected LLVM IR floating point type"); |
3366 | } |
3367 | } else if (getBinOp() == AtomicBinOp::xchg) { |
3368 | DataLayout dataLayout = DataLayout::closest(*this); |
3369 | if (!isTypeCompatibleWithAtomicOp(valType, dataLayout)) |
3370 | return emitOpError("unexpected LLVM IR type for 'xchg' bin_op"); |
3371 | } else { |
3372 | auto intType = llvm::dyn_cast<IntegerType>(valType); |
3373 | unsigned intBitWidth = intType ? intType.getWidth() : 0; |
3374 | if (intBitWidth != 8 && intBitWidth != 16 && intBitWidth != 32 && |
3375 | intBitWidth != 64) |
3376 | return emitOpError("expected LLVM IR integer type"); |
3377 | } |
3378 | |
3379 | if (static_cast<unsigned>(getOrdering()) < |
3380 | static_cast<unsigned>(AtomicOrdering::monotonic)) |
3381 | return emitOpError() << "expected at least '" |
3382 | << stringifyAtomicOrdering(AtomicOrdering::monotonic) |
3383 | << "' ordering"; |
3384 | |
3385 | return success(); |
3386 | } |
3387 | |
3388 | //===----------------------------------------------------------------------===// |
3389 | // AtomicCmpXchgOp |
3390 | //===----------------------------------------------------------------------===// |
3391 | |
3392 | /// Returns an LLVM struct type that contains a value type and a boolean type. |
3393 | static LLVMStructType getValAndBoolStructType(Type valType) { |
3394 | auto boolType = IntegerType::get(valType.getContext(), 1); |
3395 | return LLVMStructType::getLiteral(valType.getContext(), {valType, boolType}); |
3396 | } |
3397 | |
3398 | void AtomicCmpXchgOp::build(OpBuilder &builder, OperationState &state, |
3399 | Value ptr, Value cmp, Value val, |
3400 | AtomicOrdering successOrdering, |
3401 | AtomicOrdering failureOrdering, StringRef syncscope, |
3402 | unsigned alignment, bool isWeak, bool isVolatile) { |
3403 | build(builder, state, getValAndBoolStructType(val.getType()), ptr, cmp, val, |
3404 | successOrdering, failureOrdering, |
3405 | !syncscope.empty() ? builder.getStringAttr(syncscope) : nullptr, |
3406 | alignment ? builder.getI64IntegerAttr(alignment) : nullptr, isWeak, |
3407 | isVolatile, /*access_groups=*/nullptr, |
3408 | /*alias_scopes=*/nullptr, /*noalias_scopes=*/nullptr, /*tbaa=*/nullptr); |
3409 | } |
3410 | |
3411 | LogicalResult AtomicCmpXchgOp::verify() { |
3412 | auto ptrType = llvm::cast<LLVM::LLVMPointerType>(getPtr().getType()); |
3413 | if (!ptrType) |
3414 | return emitOpError("expected LLVM IR pointer type for operand #0"); |
3415 | auto valType = getVal().getType(); |
3416 | DataLayout dataLayout = DataLayout::closest(*this); |
3417 | if (!isTypeCompatibleWithAtomicOp(valType, dataLayout)) |
3418 | return emitOpError("unexpected LLVM IR type"); |
3419 | if (getSuccessOrdering() < AtomicOrdering::monotonic || |
3420 | getFailureOrdering() < AtomicOrdering::monotonic) |
3421 | return emitOpError("ordering must be at least 'monotonic'"); |
3422 | if (getFailureOrdering() == AtomicOrdering::release || |
3423 | getFailureOrdering() == AtomicOrdering::acq_rel) |
3424 | return emitOpError("failure ordering cannot be 'release' or 'acq_rel'"); |
3425 | return success(); |
3426 | } |
3427 | |
3428 | //===----------------------------------------------------------------------===// |
3429 | // FenceOp |
3430 | //===----------------------------------------------------------------------===// |
3431 | |
3432 | void FenceOp::build(OpBuilder &builder, OperationState &state, |
3433 | AtomicOrdering ordering, StringRef syncscope) { |
3434 | build(builder, state, ordering, |
3435 | syncscope.empty() ? nullptr : builder.getStringAttr(syncscope)); |
3436 | } |
3437 | |
3438 | LogicalResult FenceOp::verify() { |
3439 | if (getOrdering() == AtomicOrdering::not_atomic || |
3440 | getOrdering() == AtomicOrdering::unordered || |
3441 | getOrdering() == AtomicOrdering::monotonic) |
3442 | return emitOpError("can be given only acquire, release, acq_rel, " |
3443 | "and seq_cst orderings"); |
3444 | return success(); |
3445 | } |
3446 | |
3447 | //===----------------------------------------------------------------------===// |
3448 | // Verifier for extension ops |
3449 | //===----------------------------------------------------------------------===// |
3450 | |
3451 | /// Verifies that the given extension operation operates on consistent scalars |
3452 | /// or vectors, and that the target width is larger than the input width. |
3453 | template <class ExtOp> |
3454 | static LogicalResult verifyExtOp(ExtOp op) { |
3455 | IntegerType inputType, outputType; |
3456 | if (isCompatibleVectorType(op.getArg().getType())) { |
3457 | if (!isCompatibleVectorType(op.getResult().getType())) |
3458 | return op.emitError( |
3459 | "input type is a vector but output type is an integer"); |
3460 | if (getVectorNumElements(op.getArg().getType()) != |
3461 | getVectorNumElements(op.getResult().getType())) |
3462 | return op.emitError("input and output vectors are of incompatible shape"); |
3463 | // Because this is a CastOp, the element of vectors is guaranteed to be an |
3464 | // integer. |
3465 | inputType = cast<IntegerType>( |
3466 | cast<VectorType>(op.getArg().getType()).getElementType()); |
3467 | outputType = cast<IntegerType>( |
3468 | cast<VectorType>(op.getResult().getType()).getElementType()); |
3469 | } else { |
3470 | // Because this is a CastOp and arg is not a vector, arg is guaranteed to be |
3471 | // an integer. |
3472 | inputType = cast<IntegerType>(op.getArg().getType()); |
3473 | outputType = dyn_cast<IntegerType>(op.getResult().getType()); |
3474 | if (!outputType) |
3475 | return op.emitError( |
3476 | "input type is an integer but output type is a vector"); |
3477 | } |
3478 | |
3479 | if (outputType.getWidth() <= inputType.getWidth()) |
3480 | return op.emitError("integer width of the output type is smaller or " |
3481 | "equal to the integer width of the input type"); |
3482 | return success(); |
3483 | } |
3484 | |
3485 | //===----------------------------------------------------------------------===// |
3486 | // ZExtOp |
3487 | //===----------------------------------------------------------------------===// |
3488 | |
3489 | LogicalResult ZExtOp::verify() { return verifyExtOp<ZExtOp>(*this); } |
3490 | |
3491 | OpFoldResult LLVM::ZExtOp::fold(FoldAdaptor adaptor) { |
3492 | auto arg = dyn_cast_or_null<IntegerAttr>(adaptor.getArg()); |
3493 | if (!arg) |
3494 | return {}; |
3495 | |
3496 | size_t targetSize = cast<IntegerType>(getType()).getWidth(); |
3497 | return IntegerAttr::get(getType(), arg.getValue().zext(targetSize)); |
3498 | } |
3499 | |
3500 | //===----------------------------------------------------------------------===// |
3501 | // SExtOp |
3502 | //===----------------------------------------------------------------------===// |
3503 | |
3504 | LogicalResult SExtOp::verify() { return verifyExtOp<SExtOp>(*this); } |
3505 | |
3506 | //===----------------------------------------------------------------------===// |
3507 | // Folder and verifier for LLVM::BitcastOp |
3508 | //===----------------------------------------------------------------------===// |
3509 | |
3510 | /// Folds a cast op that can be chained. |
3511 | template <typename T> |
3512 | static OpFoldResult foldChainableCast(T castOp, |
3513 | typename T::FoldAdaptor adaptor) { |
3514 | // cast(x : T0, T0) -> x |
3515 | if (castOp.getArg().getType() == castOp.getType()) |
3516 | return castOp.getArg(); |
3517 | if (auto prev = castOp.getArg().template getDefiningOp<T>()) { |
3518 | // cast(cast(x : T0, T1), T0) -> x |
3519 | if (prev.getArg().getType() == castOp.getType()) |
3520 | return prev.getArg(); |
3521 | // cast(cast(x : T0, T1), T2) -> cast(x: T0, T2) |
3522 | castOp.getArgMutable().set(prev.getArg()); |
3523 | return Value{castOp}; |
3524 | } |
3525 | return {}; |
3526 | } |
3527 | |
3528 | OpFoldResult LLVM::BitcastOp::fold(FoldAdaptor adaptor) { |
3529 | return foldChainableCast(*this, adaptor); |
3530 | } |
3531 | |
3532 | LogicalResult LLVM::BitcastOp::verify() { |
3533 | auto resultType = llvm::dyn_cast<LLVMPointerType>( |
3534 | extractVectorElementType(getResult().getType())); |
3535 | auto sourceType = llvm::dyn_cast<LLVMPointerType>( |
3536 | extractVectorElementType(getArg().getType())); |
3537 | |
3538 | // If one of the types is a pointer (or vector of pointers), then |
3539 | // both source and result type have to be pointers. |
3540 | if (static_cast<bool>(resultType) != static_cast<bool>(sourceType)) |
3541 | return emitOpError("can only cast pointers from and to pointers"); |
3542 | |
3543 | if (!resultType) |
3544 | return success(); |
3545 | |
3546 | auto isVector = llvm::IsaPred<VectorType>; |
3547 | |
3548 | // Due to bitcast requiring both operands to be of the same size, it is not |
3549 | // possible for only one of the two to be a pointer of vectors. |
3550 | if (isVector(getResult().getType()) && !isVector(getArg().getType())) |
3551 | return emitOpError("cannot cast pointer to vector of pointers"); |
3552 | |
3553 | if (!isVector(getResult().getType()) && isVector(getArg().getType())) |
3554 | return emitOpError("cannot cast vector of pointers to pointer"); |
3555 | |
3556 | // Bitcast cannot cast between pointers of different address spaces. |
3557 | // 'llvm.addrspacecast' must be used for this purpose instead. |
3558 | if (resultType.getAddressSpace() != sourceType.getAddressSpace()) |
3559 | return emitOpError("cannot cast pointers of different address spaces, " |
3560 | "use 'llvm.addrspacecast' instead"); |
3561 | |
3562 | return success(); |
3563 | } |
3564 | |
3565 | //===----------------------------------------------------------------------===// |
3566 | // Folder for LLVM::AddrSpaceCastOp |
3567 | //===----------------------------------------------------------------------===// |
3568 | |
3569 | OpFoldResult LLVM::AddrSpaceCastOp::fold(FoldAdaptor adaptor) { |
3570 | return foldChainableCast(*this, adaptor); |
3571 | } |
3572 | |
3573 | Value LLVM::AddrSpaceCastOp::getViewSource() { return getArg(); } |
3574 | |
3575 | //===----------------------------------------------------------------------===// |
3576 | // Folder for LLVM::GEPOp |
3577 | //===----------------------------------------------------------------------===// |
3578 | |
3579 | OpFoldResult LLVM::GEPOp::fold(FoldAdaptor adaptor) { |
3580 | GEPIndicesAdaptor<ArrayRef<Attribute>> indices(getRawConstantIndicesAttr(), |
3581 | adaptor.getDynamicIndices()); |
3582 | |
3583 | // gep %x:T, 0 -> %x |
3584 | if (getBase().getType() == getType() && indices.size() == 1) |
3585 | if (auto integer = llvm::dyn_cast_or_null<IntegerAttr>(indices[0])) |
3586 | if (integer.getValue().isZero()) |
3587 | return getBase(); |
3588 | |
3589 | // Canonicalize any dynamic indices of constant value to constant indices. |
3590 | bool changed = false; |
3591 | SmallVector<GEPArg> gepArgs; |
3592 | for (auto iter : llvm::enumerate(indices)) { |
3593 | auto integer = llvm::dyn_cast_or_null<IntegerAttr>(iter.value()); |
3594 | // Constant indices can only be int32_t, so if integer does not fit we |
3595 | // are forced to keep it dynamic, despite being a constant. |
3596 | if (!indices.isDynamicIndex(iter.index()) || !integer || |
3597 | !integer.getValue().isSignedIntN(kGEPConstantBitWidth)) { |
3598 | |
3599 | PointerUnion<IntegerAttr, Value> existing = getIndices()[iter.index()]; |
3600 | if (Value val = llvm::dyn_cast_if_present<Value>(existing)) |
3601 | gepArgs.emplace_back(val); |
3602 | else |
3603 | gepArgs.emplace_back(cast<IntegerAttr>(existing).getInt()); |
3604 | |
3605 | continue; |
3606 | } |
3607 | |
3608 | changed = true; |
3609 | gepArgs.emplace_back(integer.getInt()); |
3610 | } |
3611 | if (changed) { |
3612 | SmallVector<int32_t> rawConstantIndices; |
3613 | SmallVector<Value> dynamicIndices; |
3614 | destructureIndices(getElemType(), gepArgs, rawConstantIndices, |
3615 | dynamicIndices); |
3616 | |
3617 | getDynamicIndicesMutable().assign(dynamicIndices); |
3618 | setRawConstantIndices(rawConstantIndices); |
3619 | return Value{*this}; |
3620 | } |
3621 | |
3622 | return {}; |
3623 | } |
3624 | |
3625 | Value LLVM::GEPOp::getViewSource() { return getBase(); } |
3626 | |
3627 | //===----------------------------------------------------------------------===// |
3628 | // ShlOp |
3629 | //===----------------------------------------------------------------------===// |
3630 | |
3631 | OpFoldResult LLVM::ShlOp::fold(FoldAdaptor adaptor) { |
3632 | auto rhs = dyn_cast_or_null<IntegerAttr>(adaptor.getRhs()); |
3633 | if (!rhs) |
3634 | return {}; |
3635 | |
3636 | if (rhs.getValue().getZExtValue() >= |
3637 | getLhs().getType().getIntOrFloatBitWidth()) |
3638 | return {}; // TODO: Fold into poison. |
3639 | |
3640 | auto lhs = dyn_cast_or_null<IntegerAttr>(adaptor.getLhs()); |
3641 | if (!lhs) |
3642 | return {}; |
3643 | |
3644 | return IntegerAttr::get(getType(), lhs.getValue().shl(rhs.getValue())); |
3645 | } |
3646 | |
3647 | //===----------------------------------------------------------------------===// |
3648 | // OrOp |
3649 | //===----------------------------------------------------------------------===// |
3650 | |
3651 | OpFoldResult LLVM::OrOp::fold(FoldAdaptor adaptor) { |
3652 | auto lhs = dyn_cast_or_null<IntegerAttr>(adaptor.getLhs()); |
3653 | if (!lhs) |
3654 | return {}; |
3655 | |
3656 | auto rhs = dyn_cast_or_null<IntegerAttr>(adaptor.getRhs()); |
3657 | if (!rhs) |
3658 | return {}; |
3659 | |
3660 | return IntegerAttr::get(getType(), lhs.getValue() | rhs.getValue()); |
3661 | } |
3662 | |
3663 | //===----------------------------------------------------------------------===// |
3664 | // CallIntrinsicOp |
3665 | //===----------------------------------------------------------------------===// |
3666 | |
3667 | LogicalResult CallIntrinsicOp::verify() { |
3668 | if (!getIntrin().starts_with("llvm.")) |
3669 | return emitOpError() << "intrinsic name must start with 'llvm.'"; |
3670 | if (failed(verifyOperandBundles(*this))) |
3671 | return failure(); |
3672 | return success(); |
3673 | } |
3674 | |
3675 | void CallIntrinsicOp::build(OpBuilder &builder, OperationState &state, |
3676 | mlir::StringAttr intrin, mlir::ValueRange args) { |
3677 | build(builder, state, /*resultTypes=*/TypeRange{}, intrin, args, |
3678 | FastmathFlagsAttr{}, |
3679 | /*op_bundle_operands=*/{}, /*op_bundle_tags=*/{}, /*arg_attrs=*/{}, |
3680 | /*res_attrs=*/{}); |
3681 | } |
3682 | |
3683 | void CallIntrinsicOp::build(OpBuilder &builder, OperationState &state, |
3684 | mlir::StringAttr intrin, mlir::ValueRange args, |
3685 | mlir::LLVM::FastmathFlagsAttr fastMathFlags) { |
3686 | build(builder, state, /*resultTypes=*/TypeRange{}, intrin, args, |
3687 | fastMathFlags, |
3688 | /*op_bundle_operands=*/{}, /*op_bundle_tags=*/{}, /*arg_attrs=*/{}, |
3689 | /*res_attrs=*/{}); |
3690 | } |
3691 | |
3692 | void CallIntrinsicOp::build(OpBuilder &builder, OperationState &state, |
3693 | mlir::Type resultType, mlir::StringAttr intrin, |
3694 | mlir::ValueRange args) { |
3695 | build(builder, state, {resultType}, intrin, args, FastmathFlagsAttr{}, |
3696 | /*op_bundle_operands=*/{}, /*op_bundle_tags=*/{}, /*arg_attrs=*/{}, |
3697 | /*res_attrs=*/{}); |
3698 | } |
3699 | |
3700 | void CallIntrinsicOp::build(OpBuilder &builder, OperationState &state, |
3701 | mlir::TypeRange resultTypes, |
3702 | mlir::StringAttr intrin, mlir::ValueRange args, |
3703 | mlir::LLVM::FastmathFlagsAttr fastMathFlags) { |
3704 | build(builder, state, resultTypes, intrin, args, fastMathFlags, |
3705 | /*op_bundle_operands=*/{}, /*op_bundle_tags=*/{}, /*arg_attrs=*/{}, |
3706 | /*res_attrs=*/{}); |
3707 | } |
3708 | |
3709 | ParseResult CallIntrinsicOp::parse(OpAsmParser &parser, |
3710 | OperationState &result) { |
3711 | StringAttr intrinAttr; |
3712 | SmallVector<OpAsmParser::UnresolvedOperand, 4> operands; |
3713 | SmallVector<SmallVector<OpAsmParser::UnresolvedOperand>> opBundleOperands; |
3714 | SmallVector<SmallVector<Type>> opBundleOperandTypes; |
3715 | ArrayAttr opBundleTags; |
3716 | |
3717 | // Parse intrinsic name. |
3718 | if (parser.parseCustomAttributeWithFallback( |
3719 | intrinAttr, parser.getBuilder().getType<NoneType>())) |
3720 | return failure(); |
3721 | result.addAttribute(CallIntrinsicOp::getIntrinAttrName(result.name), |
3722 | intrinAttr); |
3723 | |
3724 | if (parser.parseLParen()) |
3725 | return failure(); |
3726 | |
3727 | // Parse the function arguments. |
3728 | if (parser.parseOperandList(operands)) |
3729 | return mlir::failure(); |
3730 | |
3731 | if (parser.parseRParen()) |
3732 | return mlir::failure(); |
3733 | |
3734 | // Handle bundles. |
3735 | SMLoc opBundlesLoc = parser.getCurrentLocation(); |
3736 | if (std::optional<ParseResult> result = parseOpBundles( |
3737 | parser, opBundleOperands, opBundleOperandTypes, opBundleTags); |
3738 | result && failed(*result)) |
3739 | return failure(); |
3740 | if (opBundleTags && !opBundleTags.empty()) |
3741 | result.addAttribute( |
3742 | CallIntrinsicOp::getOpBundleTagsAttrName(result.name).getValue(), |
3743 | opBundleTags); |
3744 | |
3745 | if (parser.parseOptionalAttrDict(result.attributes)) |
3746 | return mlir::failure(); |
3747 | |
3748 | SmallVector<DictionaryAttr> argAttrs; |
3749 | SmallVector<DictionaryAttr> resultAttrs; |
3750 | if (parseCallTypeAndResolveOperands(parser, result, /*isDirect=*/true, |
3751 | operands, argAttrs, resultAttrs)) |
3752 | return failure(); |
3753 | call_interface_impl::addArgAndResultAttrs( |
3754 | parser.getBuilder(), result, argAttrs, resultAttrs, |
3755 | getArgAttrsAttrName(result.name), getResAttrsAttrName(result.name)); |
3756 | |
3757 | if (resolveOpBundleOperands(parser, opBundlesLoc, result, opBundleOperands, |
3758 | opBundleOperandTypes, |
3759 | getOpBundleSizesAttrName(result.name))) |
3760 | return failure(); |
3761 | |
3762 | int32_t numOpBundleOperands = 0; |
3763 | for (const auto &operands : opBundleOperands) |
3764 | numOpBundleOperands += operands.size(); |
3765 | |
3766 | result.addAttribute( |
3767 | CallIntrinsicOp::getOperandSegmentSizeAttr(), |
3768 | parser.getBuilder().getDenseI32ArrayAttr( |
3769 | {static_cast<int32_t>(operands.size()), numOpBundleOperands})); |
3770 | |
3771 | return mlir::success(); |
3772 | } |
3773 | |
3774 | void CallIntrinsicOp::print(OpAsmPrinter &p) { |
3775 | p << ' '; |
3776 | p.printAttributeWithoutType(getIntrinAttr()); |
3777 | |
3778 | OperandRange args = getArgs(); |
3779 | p << "("<< args << ")"; |
3780 | |
3781 | // Operand bundles. |
3782 | if (!getOpBundleOperands().empty()) { |
3783 | p << ' '; |
3784 | printOpBundles(p, *this, getOpBundleOperands(), |
3785 | getOpBundleOperands().getTypes(), getOpBundleTagsAttr()); |
3786 | } |
3787 | |
3788 | p.printOptionalAttrDict(processFMFAttr((*this)->getAttrs()), |
3789 | {getOperandSegmentSizesAttrName(), |
3790 | getOpBundleSizesAttrName(), getIntrinAttrName(), |
3791 | getOpBundleTagsAttrName(), getArgAttrsAttrName(), |
3792 | getResAttrsAttrName()}); |
3793 | |
3794 | p << " : "; |
3795 | |
3796 | // Reconstruct the MLIR function type from operand and result types. |
3797 | call_interface_impl::printFunctionSignature( |
3798 | p, args.getTypes(), getArgAttrsAttr(), |
3799 | /*isVariadic=*/false, getResultTypes(), getResAttrsAttr()); |
3800 | } |
3801 | |
3802 | //===----------------------------------------------------------------------===// |
3803 | // LinkerOptionsOp |
3804 | //===----------------------------------------------------------------------===// |
3805 | |
3806 | LogicalResult LinkerOptionsOp::verify() { |
3807 | if (mlir::Operation *parentOp = (*this)->getParentOp(); |
3808 | parentOp && !satisfiesLLVMModule(parentOp)) |
3809 | return emitOpError("must appear at the module level"); |
3810 | return success(); |
3811 | } |
3812 | |
3813 | //===----------------------------------------------------------------------===// |
3814 | // ModuleFlagsOp |
3815 | //===----------------------------------------------------------------------===// |
3816 | |
3817 | LogicalResult ModuleFlagsOp::verify() { |
3818 | if (Operation *parentOp = (*this)->getParentOp(); |
3819 | parentOp && !satisfiesLLVMModule(parentOp)) |
3820 | return emitOpError("must appear at the module level"); |
3821 | for (Attribute flag : getFlags()) |
3822 | if (!isa<ModuleFlagAttr>(flag)) |
3823 | return emitOpError("expected a module flag attribute"); |
3824 | return success(); |
3825 | } |
3826 | |
3827 | //===----------------------------------------------------------------------===// |
3828 | // InlineAsmOp |
3829 | //===----------------------------------------------------------------------===// |
3830 | |
3831 | void InlineAsmOp::getEffects( |
3832 | SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> |
3833 | &effects) { |
3834 | if (getHasSideEffects()) { |
3835 | effects.emplace_back(MemoryEffects::Write::get()); |
3836 | effects.emplace_back(MemoryEffects::Read::get()); |
3837 | } |
3838 | } |
3839 | |
3840 | //===----------------------------------------------------------------------===// |
3841 | // BlockAddressOp |
3842 | //===----------------------------------------------------------------------===// |
3843 | |
3844 | LogicalResult |
3845 | BlockAddressOp::verifySymbolUses(SymbolTableCollection &symbolTable) { |
3846 | Operation *symbol = symbolTable.lookupSymbolIn(parentLLVMModule(*this), |
3847 | getBlockAddr().getFunction()); |
3848 | auto function = dyn_cast_or_null<LLVMFuncOp>(symbol); |
3849 | |
3850 | if (!function) |
3851 | return emitOpError("must reference a function defined by 'llvm.func'"); |
3852 | |
3853 | return success(); |
3854 | } |
3855 | |
3856 | LLVMFuncOp BlockAddressOp::getFunction(SymbolTableCollection &symbolTable) { |
3857 | return dyn_cast_or_null<LLVMFuncOp>(symbolTable.lookupSymbolIn( |
3858 | parentLLVMModule(*this), getBlockAddr().getFunction())); |
3859 | } |
3860 | |
3861 | BlockTagOp BlockAddressOp::getBlockTagOp() { |
3862 | auto funcOp = dyn_cast<LLVMFuncOp>(mlir::SymbolTable::lookupNearestSymbolFrom( |
3863 | parentLLVMModule(*this), getBlockAddr().getFunction())); |
3864 | if (!funcOp) |
3865 | return nullptr; |
3866 | |
3867 | BlockTagOp blockTagOp = nullptr; |
3868 | funcOp.walk([&](LLVM::BlockTagOp labelOp) { |
3869 | if (labelOp.getTag() == getBlockAddr().getTag()) { |
3870 | blockTagOp = labelOp; |
3871 | return WalkResult::interrupt(); |
3872 | } |
3873 | return WalkResult::advance(); |
3874 | }); |
3875 | return blockTagOp; |
3876 | } |
3877 | |
3878 | LogicalResult BlockAddressOp::verify() { |
3879 | if (!getBlockTagOp()) |
3880 | return emitOpError( |
3881 | "expects an existing block label target in the referenced function"); |
3882 | |
3883 | return success(); |
3884 | } |
3885 | |
3886 | /// Fold a blockaddress operation to a dedicated blockaddress |
3887 | /// attribute. |
3888 | OpFoldResult BlockAddressOp::fold(FoldAdaptor) { return getBlockAddr(); } |
3889 | |
3890 | //===----------------------------------------------------------------------===// |
3891 | // LLVM::IndirectBrOp |
3892 | //===----------------------------------------------------------------------===// |
3893 | |
3894 | SuccessorOperands IndirectBrOp::getSuccessorOperands(unsigned index) { |
3895 | assert(index < getNumSuccessors() && "invalid successor index"); |
3896 | return SuccessorOperands(getSuccOperandsMutable()[index]); |
3897 | } |
3898 | |
3899 | void IndirectBrOp::build(OpBuilder &odsBuilder, OperationState &odsState, |
3900 | Value addr, ArrayRef<ValueRange> succOperands, |
3901 | BlockRange successors) { |
3902 | odsState.addOperands(addr); |
3903 | for (ValueRange range : succOperands) |
3904 | odsState.addOperands(range); |
3905 | SmallVector<int32_t> rangeSegments; |
3906 | for (ValueRange range : succOperands) |
3907 | rangeSegments.push_back(range.size()); |
3908 | odsState.getOrAddProperties<Properties>().indbr_operand_segments = |
3909 | odsBuilder.getDenseI32ArrayAttr(rangeSegments); |
3910 | odsState.addSuccessors(successors); |
3911 | } |
3912 | |
3913 | static ParseResult parseIndirectBrOpSucessors( |
3914 | OpAsmParser &parser, Type &flagType, |
3915 | SmallVectorImpl<Block *> &succOperandBlocks, |
3916 | SmallVectorImpl<SmallVector<OpAsmParser::UnresolvedOperand>> &succOperands, |
3917 | SmallVectorImpl<SmallVector<Type>> &succOperandsTypes) { |
3918 | if (failed(Result: parser.parseCommaSeparatedList( |
3919 | delimiter: OpAsmParser::Delimiter::Square, |
3920 | parseElementFn: [&]() { |
3921 | Block *destination = nullptr; |
3922 | SmallVector<OpAsmParser::UnresolvedOperand> operands; |
3923 | SmallVector<Type> operandTypes; |
3924 | |
3925 | if (parser.parseSuccessor(dest&: destination).failed()) |
3926 | return failure(); |
3927 | |
3928 | if (succeeded(Result: parser.parseOptionalLParen())) { |
3929 | if (failed(Result: parser.parseOperandList( |
3930 | result&: operands, delimiter: OpAsmParser::Delimiter::None)) || |
3931 | failed(Result: parser.parseColonTypeList(result&: operandTypes)) || |
3932 | failed(Result: parser.parseRParen())) |
3933 | return failure(); |
3934 | } |
3935 | succOperandBlocks.push_back(Elt: destination); |
3936 | succOperands.emplace_back(Args&: operands); |
3937 | succOperandsTypes.emplace_back(Args&: operandTypes); |
3938 | return success(); |
3939 | }, |
3940 | contextMessage: "successor blocks"))) |
3941 | return failure(); |
3942 | return success(); |
3943 | } |
3944 | |
3945 | static void |
3946 | printIndirectBrOpSucessors(OpAsmPrinter &p, IndirectBrOp op, Type flagType, |
3947 | SuccessorRange succs, OperandRangeRange succOperands, |
3948 | const TypeRangeRange &succOperandsTypes) { |
3949 | p << "["; |
3950 | llvm::interleave( |
3951 | c: llvm::zip(t&: succs, u&: succOperands), |
3952 | each_fn: [&](auto i) { |
3953 | p.printNewline(); |
3954 | p.printSuccessorAndUseList(successor: std::get<0>(i), succOperands: std::get<1>(i)); |
3955 | }, |
3956 | between_fn: [&] { p << ','; }); |
3957 | if (!succOperands.empty()) |
3958 | p.printNewline(); |
3959 | p << "]"; |
3960 | } |
3961 | |
3962 | //===----------------------------------------------------------------------===// |
3963 | // AssumeOp (intrinsic) |
3964 | //===----------------------------------------------------------------------===// |
3965 | |
3966 | void LLVM::AssumeOp::build(OpBuilder &builder, OperationState &state, |
3967 | mlir::Value cond) { |
3968 | return build(builder, state, cond, /*op_bundle_operands=*/{}, |
3969 | /*op_bundle_tags=*/ArrayAttr{}); |
3970 | } |
3971 | |
3972 | void LLVM::AssumeOp::build(OpBuilder &builder, OperationState &state, |
3973 | Value cond, |
3974 | ArrayRef<llvm::OperandBundleDefT<Value>> opBundles) { |
3975 | SmallVector<ValueRange> opBundleOperands; |
3976 | SmallVector<Attribute> opBundleTags; |
3977 | opBundleOperands.reserve(opBundles.size()); |
3978 | opBundleTags.reserve(opBundles.size()); |
3979 | |
3980 | for (const llvm::OperandBundleDefT<Value> &bundle : opBundles) { |
3981 | opBundleOperands.emplace_back(bundle.inputs()); |
3982 | opBundleTags.push_back( |
3983 | StringAttr::get(builder.getContext(), bundle.getTag())); |
3984 | } |
3985 | |
3986 | auto opBundleTagsAttr = ArrayAttr::get(builder.getContext(), opBundleTags); |
3987 | return build(builder, state, cond, opBundleOperands, opBundleTagsAttr); |
3988 | } |
3989 | |
3990 | void LLVM::AssumeOp::build(OpBuilder &builder, OperationState &state, |
3991 | Value cond, llvm::StringRef tag, ValueRange args) { |
3992 | llvm::OperandBundleDefT<Value> opBundle( |
3993 | tag.str(), SmallVector<Value>(args.begin(), args.end())); |
3994 | return build(builder, state, cond, opBundle); |
3995 | } |
3996 | |
3997 | void LLVM::AssumeOp::build(OpBuilder &builder, OperationState &state, |
3998 | Value cond, AssumeAlignTag, Value ptr, Value align) { |
3999 | return build(builder, state, cond, "align", ValueRange{ptr, align}); |
4000 | } |
4001 | |
4002 | void LLVM::AssumeOp::build(OpBuilder &builder, OperationState &state, |
4003 | Value cond, AssumeSeparateStorageTag, Value ptr1, |
4004 | Value ptr2) { |
4005 | return build(builder, state, cond, "separate_storage", |
4006 | ValueRange{ptr1, ptr2}); |
4007 | } |
4008 | |
4009 | LogicalResult LLVM::AssumeOp::verify() { return verifyOperandBundles(*this); } |
4010 | |
4011 | //===----------------------------------------------------------------------===// |
4012 | // masked_gather (intrinsic) |
4013 | //===----------------------------------------------------------------------===// |
4014 | |
4015 | LogicalResult LLVM::masked_gather::verify() { |
4016 | auto ptrsVectorType = getPtrs().getType(); |
4017 | Type expectedPtrsVectorType = |
4018 | LLVM::getVectorType(extractVectorElementType(ptrsVectorType), |
4019 | LLVM::getVectorNumElements(getRes().getType())); |
4020 | // Vector of pointers type should match result vector type, other than the |
4021 | // element type. |
4022 | if (ptrsVectorType != expectedPtrsVectorType) |
4023 | return emitOpError("expected operand #1 type to be ") |
4024 | << expectedPtrsVectorType; |
4025 | return success(); |
4026 | } |
4027 | |
4028 | //===----------------------------------------------------------------------===// |
4029 | // masked_scatter (intrinsic) |
4030 | //===----------------------------------------------------------------------===// |
4031 | |
4032 | LogicalResult LLVM::masked_scatter::verify() { |
4033 | auto ptrsVectorType = getPtrs().getType(); |
4034 | Type expectedPtrsVectorType = |
4035 | LLVM::getVectorType(extractVectorElementType(ptrsVectorType), |
4036 | LLVM::getVectorNumElements(getValue().getType())); |
4037 | // Vector of pointers type should match value vector type, other than the |
4038 | // element type. |
4039 | if (ptrsVectorType != expectedPtrsVectorType) |
4040 | return emitOpError("expected operand #2 type to be ") |
4041 | << expectedPtrsVectorType; |
4042 | return success(); |
4043 | } |
4044 | |
4045 | //===----------------------------------------------------------------------===// |
4046 | // InlineAsmOp |
4047 | //===----------------------------------------------------------------------===// |
4048 | |
4049 | LogicalResult InlineAsmOp::verify() { |
4050 | if (!getTailCallKindAttr()) |
4051 | return success(); |
4052 | |
4053 | if (getTailCallKindAttr().getTailCallKind() == TailCallKind::MustTail) |
4054 | return emitOpError( |
4055 | "tail call kind 'musttail' is not supported by this operation"); |
4056 | |
4057 | return success(); |
4058 | } |
4059 | |
4060 | //===----------------------------------------------------------------------===// |
4061 | // LLVMDialect initialization, type parsing, and registration. |
4062 | //===----------------------------------------------------------------------===// |
4063 | |
4064 | void LLVMDialect::initialize() { |
4065 | registerAttributes(); |
4066 | |
4067 | // clang-format off |
4068 | addTypes<LLVMVoidType, |
4069 | LLVMTokenType, |
4070 | LLVMLabelType, |
4071 | LLVMMetadataType>(); |
4072 | // clang-format on |
4073 | registerTypes(); |
4074 | |
4075 | addOperations< |
4076 | #define GET_OP_LIST |
4077 | #include "mlir/Dialect/LLVMIR/LLVMOps.cpp.inc" |
4078 | , |
4079 | #define GET_OP_LIST |
4080 | #include "mlir/Dialect/LLVMIR/LLVMIntrinsicOps.cpp.inc" |
4081 | >(); |
4082 | |
4083 | // Support unknown operations because not all LLVM operations are registered. |
4084 | allowUnknownOperations(); |
4085 | declarePromisedInterface<DialectInlinerInterface, LLVMDialect>(); |
4086 | } |
4087 | |
4088 | #define GET_OP_CLASSES |
4089 | #include "mlir/Dialect/LLVMIR/LLVMOps.cpp.inc" |
4090 | |
4091 | #define GET_OP_CLASSES |
4092 | #include "mlir/Dialect/LLVMIR/LLVMIntrinsicOps.cpp.inc" |
4093 | |
4094 | LogicalResult LLVMDialect::verifyDataLayoutString( |
4095 | StringRef descr, llvm::function_ref<void(const Twine &)> reportError) { |
4096 | llvm::Expected<llvm::DataLayout> maybeDataLayout = |
4097 | llvm::DataLayout::parse(descr); |
4098 | if (maybeDataLayout) |
4099 | return success(); |
4100 | |
4101 | std::string message; |
4102 | llvm::raw_string_ostream messageStream(message); |
4103 | llvm::logAllUnhandledErrors(maybeDataLayout.takeError(), messageStream); |
4104 | reportError("invalid data layout descriptor: "+ message); |
4105 | return failure(); |
4106 | } |
4107 | |
4108 | /// Verify LLVM dialect attributes. |
4109 | LogicalResult LLVMDialect::verifyOperationAttribute(Operation *op, |
4110 | NamedAttribute attr) { |
4111 | // If the data layout attribute is present, it must use the LLVM data layout |
4112 | // syntax. Try parsing it and report errors in case of failure. Users of this |
4113 | // attribute may assume it is well-formed and can pass it to the (asserting) |
4114 | // llvm::DataLayout constructor. |
4115 | if (attr.getName() != LLVM::LLVMDialect::getDataLayoutAttrName()) |
4116 | return success(); |
4117 | if (auto stringAttr = llvm::dyn_cast<StringAttr>(attr.getValue())) |
4118 | return verifyDataLayoutString( |
4119 | stringAttr.getValue(), |
4120 | [op](const Twine &message) { op->emitOpError() << message.str(); }); |
4121 | |
4122 | return op->emitOpError() << "expected '" |
4123 | << LLVM::LLVMDialect::getDataLayoutAttrName() |
4124 | << "' to be a string attributes"; |
4125 | } |
4126 | |
4127 | LogicalResult LLVMDialect::verifyParameterAttribute(Operation *op, |
4128 | Type paramType, |
4129 | NamedAttribute paramAttr) { |
4130 | // LLVM attribute may be attached to a result of operation that has not been |
4131 | // converted to LLVM dialect yet, so the result may have a type with unknown |
4132 | // representation in LLVM dialect type space. In this case we cannot verify |
4133 | // whether the attribute may be |
4134 | bool verifyValueType = isCompatibleType(paramType); |
4135 | StringAttr name = paramAttr.getName(); |
4136 | |
4137 | auto checkUnitAttrType = [&]() -> LogicalResult { |
4138 | if (!llvm::isa<UnitAttr>(paramAttr.getValue())) |
4139 | return op->emitError() << name << " should be a unit attribute"; |
4140 | return success(); |
4141 | }; |
4142 | auto checkTypeAttrType = [&]() -> LogicalResult { |
4143 | if (!llvm::isa<TypeAttr>(paramAttr.getValue())) |
4144 | return op->emitError() << name << " should be a type attribute"; |
4145 | return success(); |
4146 | }; |
4147 | auto checkIntegerAttrType = [&]() -> LogicalResult { |
4148 | if (!llvm::isa<IntegerAttr>(paramAttr.getValue())) |
4149 | return op->emitError() << name << " should be an integer attribute"; |
4150 | return success(); |
4151 | }; |
4152 | auto checkPointerType = [&]() -> LogicalResult { |
4153 | if (!llvm::isa<LLVMPointerType>(paramType)) |
4154 | return op->emitError() |
4155 | << name << " attribute attached to non-pointer LLVM type"; |
4156 | return success(); |
4157 | }; |
4158 | auto checkIntegerType = [&]() -> LogicalResult { |
4159 | if (!llvm::isa<IntegerType>(paramType)) |
4160 | return op->emitError() |
4161 | << name << " attribute attached to non-integer LLVM type"; |
4162 | return success(); |
4163 | }; |
4164 | auto checkPointerTypeMatches = [&]() -> LogicalResult { |
4165 | if (failed(checkPointerType())) |
4166 | return failure(); |
4167 | |
4168 | return success(); |
4169 | }; |
4170 | |
4171 | // Check a unit attribute that is attached to a pointer value. |
4172 | if (name == LLVMDialect::getNoAliasAttrName() || |
4173 | name == LLVMDialect::getReadonlyAttrName() || |
4174 | name == LLVMDialect::getReadnoneAttrName() || |
4175 | name == LLVMDialect::getWriteOnlyAttrName() || |
4176 | name == LLVMDialect::getNestAttrName() || |
4177 | name == LLVMDialect::getNoCaptureAttrName() || |
4178 | name == LLVMDialect::getNoFreeAttrName() || |
4179 | name == LLVMDialect::getNonNullAttrName()) { |
4180 | if (failed(checkUnitAttrType())) |
4181 | return failure(); |
4182 | if (verifyValueType && failed(checkPointerType())) |
4183 | return failure(); |
4184 | return success(); |
4185 | } |
4186 | |
4187 | // Check a type attribute that is attached to a pointer value. |
4188 | if (name == LLVMDialect::getStructRetAttrName() || |
4189 | name == LLVMDialect::getByValAttrName() || |
4190 | name == LLVMDialect::getByRefAttrName() || |
4191 | name == LLVMDialect::getElementTypeAttrName() || |
4192 | name == LLVMDialect::getInAllocaAttrName() || |
4193 | name == LLVMDialect::getPreallocatedAttrName()) { |
4194 | if (failed(checkTypeAttrType())) |
4195 | return failure(); |
4196 | if (verifyValueType && failed(checkPointerTypeMatches())) |
4197 | return failure(); |
4198 | return success(); |
4199 | } |
4200 | |
4201 | // Check a unit attribute that is attached to an integer value. |
4202 | if (name == LLVMDialect::getSExtAttrName() || |
4203 | name == LLVMDialect::getZExtAttrName()) { |
4204 | if (failed(checkUnitAttrType())) |
4205 | return failure(); |
4206 | if (verifyValueType && failed(checkIntegerType())) |
4207 | return failure(); |
4208 | return success(); |
4209 | } |
4210 | |
4211 | // Check an integer attribute that is attached to a pointer value. |
4212 | if (name == LLVMDialect::getAlignAttrName() || |
4213 | name == LLVMDialect::getDereferenceableAttrName() || |
4214 | name == LLVMDialect::getDereferenceableOrNullAttrName()) { |
4215 | if (failed(checkIntegerAttrType())) |
4216 | return failure(); |
4217 | if (verifyValueType && failed(checkPointerType())) |
4218 | return failure(); |
4219 | return success(); |
4220 | } |
4221 | |
4222 | // Check an integer attribute that is attached to a pointer value. |
4223 | if (name == LLVMDialect::getStackAlignmentAttrName()) { |
4224 | if (failed(checkIntegerAttrType())) |
4225 | return failure(); |
4226 | return success(); |
4227 | } |
4228 | |
4229 | // Check a unit attribute that can be attached to arbitrary types. |
4230 | if (name == LLVMDialect::getNoUndefAttrName() || |
4231 | name == LLVMDialect::getInRegAttrName() || |
4232 | name == LLVMDialect::getReturnedAttrName()) |
4233 | return checkUnitAttrType(); |
4234 | |
4235 | return success(); |
4236 | } |
4237 | |
4238 | /// Verify LLVMIR function argument attributes. |
4239 | LogicalResult LLVMDialect::verifyRegionArgAttribute(Operation *op, |
4240 | unsigned regionIdx, |
4241 | unsigned argIdx, |
4242 | NamedAttribute argAttr) { |
4243 | auto funcOp = dyn_cast<FunctionOpInterface>(op); |
4244 | if (!funcOp) |
4245 | return success(); |
4246 | Type argType = funcOp.getArgumentTypes()[argIdx]; |
4247 | |
4248 | return verifyParameterAttribute(op, argType, argAttr); |
4249 | } |
4250 | |
4251 | LogicalResult LLVMDialect::verifyRegionResultAttribute(Operation *op, |
4252 | unsigned regionIdx, |
4253 | unsigned resIdx, |
4254 | NamedAttribute resAttr) { |
4255 | auto funcOp = dyn_cast<FunctionOpInterface>(op); |
4256 | if (!funcOp) |
4257 | return success(); |
4258 | Type resType = funcOp.getResultTypes()[resIdx]; |
4259 | |
4260 | // Check to see if this function has a void return with a result attribute |
4261 | // to it. It isn't clear what semantics we would assign to that. |
4262 | if (llvm::isa<LLVMVoidType>(resType)) |
4263 | return op->emitError() << "cannot attach result attributes to functions " |
4264 | "with a void return"; |
4265 | |
4266 | // Check to see if this attribute is allowed as a result attribute. Only |
4267 | // explicitly forbidden LLVM attributes will cause an error. |
4268 | auto name = resAttr.getName(); |
4269 | if (name == LLVMDialect::getAllocAlignAttrName() || |
4270 | name == LLVMDialect::getAllocatedPointerAttrName() || |
4271 | name == LLVMDialect::getByValAttrName() || |
4272 | name == LLVMDialect::getByRefAttrName() || |
4273 | name == LLVMDialect::getInAllocaAttrName() || |
4274 | name == LLVMDialect::getNestAttrName() || |
4275 | name == LLVMDialect::getNoCaptureAttrName() || |
4276 | name == LLVMDialect::getNoFreeAttrName() || |
4277 | name == LLVMDialect::getPreallocatedAttrName() || |
4278 | name == LLVMDialect::getReadnoneAttrName() || |
4279 | name == LLVMDialect::getReadonlyAttrName() || |
4280 | name == LLVMDialect::getReturnedAttrName() || |
4281 | name == LLVMDialect::getStackAlignmentAttrName() || |
4282 | name == LLVMDialect::getStructRetAttrName() || |
4283 | name == LLVMDialect::getWriteOnlyAttrName()) |
4284 | return op->emitError() << name << " is not a valid result attribute"; |
4285 | return verifyParameterAttribute(op, resType, resAttr); |
4286 | } |
4287 | |
4288 | Operation *LLVMDialect::materializeConstant(OpBuilder &builder, Attribute value, |
4289 | Type type, Location loc) { |
4290 | // If this was folded from an operation other than llvm.mlir.constant, it |
4291 | // should be materialized as such. Note that an llvm.mlir.zero may fold into |
4292 | // a builtin zero attribute and thus will materialize as a llvm.mlir.constant. |
4293 | if (auto symbol = dyn_cast<FlatSymbolRefAttr>(value)) |
4294 | if (isa<LLVM::LLVMPointerType>(type)) |
4295 | return builder.create<LLVM::AddressOfOp>(loc, type, symbol); |
4296 | if (isa<LLVM::UndefAttr>(value)) |
4297 | return builder.create<LLVM::UndefOp>(loc, type); |
4298 | if (isa<LLVM::PoisonAttr>(value)) |
4299 | return builder.create<LLVM::PoisonOp>(loc, type); |
4300 | if (isa<LLVM::ZeroAttr>(value)) |
4301 | return builder.create<LLVM::ZeroOp>(loc, type); |
4302 | // Otherwise try materializing it as a regular llvm.mlir.constant op. |
4303 | return LLVM::ConstantOp::materialize(builder, value, type, loc); |
4304 | } |
4305 | |
4306 | //===----------------------------------------------------------------------===// |
4307 | // Utility functions. |
4308 | //===----------------------------------------------------------------------===// |
4309 | |
4310 | Value mlir::LLVM::createGlobalString(Location loc, OpBuilder &builder, |
4311 | StringRef name, StringRef value, |
4312 | LLVM::Linkage linkage) { |
4313 | assert(builder.getInsertionBlock() && |
4314 | builder.getInsertionBlock()->getParentOp() && |
4315 | "expected builder to point to a block constrained in an op"); |
4316 | auto module = |
4317 | builder.getInsertionBlock()->getParentOp()->getParentOfType<ModuleOp>(); |
4318 | assert(module && "builder points to an op outside of a module"); |
4319 | |
4320 | // Create the global at the entry of the module. |
4321 | OpBuilder moduleBuilder(module.getBodyRegion(), builder.getListener()); |
4322 | MLIRContext *ctx = builder.getContext(); |
4323 | auto type = LLVM::LLVMArrayType::get(IntegerType::get(ctx, 8), value.size()); |
4324 | auto global = moduleBuilder.create<LLVM::GlobalOp>( |
4325 | loc, type, /*isConstant=*/true, linkage, name, |
4326 | builder.getStringAttr(value), /*alignment=*/0); |
4327 | |
4328 | LLVMPointerType ptrType = LLVMPointerType::get(ctx); |
4329 | // Get the pointer to the first character in the global string. |
4330 | Value globalPtr = |
4331 | builder.create<LLVM::AddressOfOp>(loc, ptrType, global.getSymNameAttr()); |
4332 | return builder.create<LLVM::GEPOp>(loc, ptrType, type, globalPtr, |
4333 | ArrayRef<GEPArg>{0, 0}); |
4334 | } |
4335 | |
4336 | bool mlir::LLVM::satisfiesLLVMModule(Operation *op) { |
4337 | return op->hasTrait<OpTrait::SymbolTable>() && |
4338 | op->hasTrait<OpTrait::IsIsolatedFromAbove>(); |
4339 | } |
4340 |
Definitions
- kElemTypeAttrName
- processFMFAttr
- verifySymbolAttrUse
- getI1SameShape
- parseOptionalKeywordAlternative
- EnumTraits
- parseOptionalLLVMKeyword
- printOneOpBundle
- printOpBundles
- parseOneOpBundle
- parseOpBundles
- parseCmpOp
- getBoolAttribute
- parseSwitchOpCases
- printSwitchOpCases
- extractVectorElementType
- destructureIndices
- parseGEPIndices
- printGEPIndices
- verifyStructIndices
- verifyStructIndices
- isTypeCompatibleWithAtomicOp
- verifyAtomicMemOp
- getCallOpResultTypes
- getCallOpVarCalleeType
- getLLVMFuncType
- verifyCallOpDebugInfo
- verifyCallOpVarCalleeType
- verifyOperandBundles
- parseCallTypeAndResolveOperands
- parseOptionalCallFuncPtr
- resolveOpBundleOperands
- getInsertExtractValueElementType
- getInsertExtractValueElementType
- parseInsertExtractValueElementType
- printInsertExtractValueElementType
- parentLLVMModule
- printCommonGlobalAndAlias
- verifyComdat
- verifyBlockTags
- parseCommonGlobalAndAlias
- isZeroAttribute
- checkGlobalXtorData
- parseShuffleType
- printShuffleType
- buildLLVMFunctionType
- getNumElements
- hasScalableVectorType
- verifyStructArrayConstant
- getValAndBoolStructType
- verifyExtOp
- foldChainableCast
- parseIndirectBrOpSucessors
- printIndirectBrOpSucessors
- createGlobalString
Improve your Profiling and Debugging skills
Find out more