1 | //===- LinalgOps.cpp - Implementation of the linalg operations ------------===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements the Linalg operations. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "mlir/Dialect/Linalg/IR/Linalg.h" |
14 | |
15 | #include "mlir/AsmParser/AsmParser.h" |
16 | #include "mlir/Dialect/Affine/IR/AffineOps.h" |
17 | #include "mlir/Dialect/Arith/IR/Arith.h" |
18 | #include "mlir/Dialect/Arith/Utils/Utils.h" |
19 | #include "mlir/Dialect/Complex/IR/Complex.h" |
20 | #include "mlir/Dialect/Math/IR/Math.h" |
21 | #include "mlir/Dialect/MemRef/IR/MemRef.h" |
22 | #include "mlir/Dialect/SCF/IR/SCF.h" |
23 | #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h" |
24 | #include "mlir/Dialect/Tensor/IR/Tensor.h" |
25 | #include "mlir/Dialect/Tensor/Utils/Utils.h" |
26 | #include "mlir/Dialect/Utils/IndexingUtils.h" |
27 | #include "mlir/Dialect/Utils/ReshapeOpsUtils.h" |
28 | #include "mlir/Dialect/Utils/StaticValueUtils.h" |
29 | #include "mlir/IR/AffineExprVisitor.h" |
30 | #include "mlir/IR/AffineMap.h" |
31 | #include "mlir/IR/Attributes.h" |
32 | #include "mlir/IR/Builders.h" |
33 | #include "mlir/IR/BuiltinAttributes.h" |
34 | #include "mlir/IR/BuiltinTypeInterfaces.h" |
35 | #include "mlir/IR/Matchers.h" |
36 | #include "mlir/IR/OpImplementation.h" |
37 | #include "mlir/IR/OperationSupport.h" |
38 | #include "mlir/IR/PatternMatch.h" |
39 | #include "mlir/Interfaces/InferTypeOpInterface.h" |
40 | #include "mlir/Interfaces/SideEffectInterfaces.h" |
41 | |
42 | #include "llvm/ADT/DenseMap.h" |
43 | #include "llvm/ADT/STLExtras.h" |
44 | #include "llvm/ADT/SetOperations.h" |
45 | #include "llvm/ADT/SmallSet.h" |
46 | #include "llvm/ADT/SmallVector.h" |
47 | #include "llvm/ADT/StringSet.h" |
48 | #include "llvm/ADT/TypeSwitch.h" |
49 | #include "llvm/Support/FormatVariadic.h" |
50 | #include "llvm/Support/InterleavedRange.h" |
51 | #include "llvm/Support/LogicalResult.h" |
52 | #include "llvm/Support/MathExtras.h" |
53 | #include "llvm/Support/raw_ostream.h" |
54 | #include <cassert> |
55 | #include <optional> |
56 | |
57 | using namespace mlir; |
58 | using namespace mlir::linalg; |
59 | |
60 | /// Return a `memref.dim` or `tensor.dim` for the shape of `v` at `dim`. |
61 | static OpFoldResult getDimValue(OpBuilder &builder, Location loc, Value v, |
62 | int64_t dim) { |
63 | auto type = cast<ShapedType>(v.getType()); |
64 | if (!type.isDynamicDim(dim)) |
65 | return builder.getIndexAttr(value: type.getDimSize(dim)); |
66 | |
67 | return getAsOpFoldResult( |
68 | val: TypeSwitch<Type, Value>(v.getType()) |
69 | .Case<RankedTensorType>(caseFn: [&](RankedTensorType t) -> Value { |
70 | return builder.create<tensor::DimOp>(loc, v, dim); |
71 | }) |
72 | .Case<MemRefType>(caseFn: [&](MemRefType t) -> Value { |
73 | return builder.create<memref::DimOp>(loc, v, dim); |
74 | })); |
75 | } |
76 | |
77 | /// Returns a memref.subview or a tensor.extract_slice based on the type of the |
78 | /// `source`. |
79 | static Operation *getSlice(OpBuilder &b, Location loc, Value source, |
80 | ArrayRef<OpFoldResult> offsets, |
81 | ArrayRef<OpFoldResult> sizes, |
82 | ArrayRef<OpFoldResult> strides) { |
83 | return TypeSwitch<Type, Operation *>(source.getType()) |
84 | .Case<RankedTensorType>(caseFn: [&](RankedTensorType t) -> Operation * { |
85 | return b.create<tensor::ExtractSliceOp>(loc, source, offsets, sizes, |
86 | strides); |
87 | }) |
88 | .Case<MemRefType>(caseFn: [&](MemRefType type) -> Operation * { |
89 | return b.create<memref::SubViewOp>(loc, source, offsets, sizes, |
90 | strides); |
91 | }) |
92 | .Default(defaultFn: [&](Type t) -> Operation * { return nullptr; }); |
93 | } |
94 | |
95 | //===----------------------------------------------------------------------===// |
96 | // Helper functions |
97 | //===----------------------------------------------------------------------===// |
98 | |
99 | Value linalg::createOrFoldDimOp(OpBuilder &b, Location loc, Value source, |
100 | int64_t dim) { |
101 | if (llvm::isa<UnrankedMemRefType, MemRefType>(source.getType())) |
102 | return b.createOrFold<memref::DimOp>(loc, source, dim); |
103 | if (llvm::isa<UnrankedTensorType, RankedTensorType>(source.getType())) |
104 | return b.createOrFold<tensor::DimOp>(loc, source, dim); |
105 | llvm_unreachable("Expected MemRefType or TensorType"); |
106 | } |
107 | |
108 | OpFoldResult linalg::createFoldedDimOp(OpBuilder &b, Location loc, Value source, |
109 | int64_t dim) { |
110 | auto shapedType = llvm::cast<ShapedType>(source.getType()); |
111 | if (!shapedType.hasRank() || shapedType.isDynamicDim(dim)) |
112 | return createOrFoldDimOp(b, loc, source, dim); |
113 | return b.getIndexAttr(value: shapedType.getDimSize(dim)); |
114 | } |
115 | |
116 | //===----------------------------------------------------------------------===// |
117 | // Support for named Linalg ops defined in ods-gen. |
118 | //===----------------------------------------------------------------------===// |
119 | |
120 | using RegionBuilderFn = llvm::function_ref<void(ImplicitLocOpBuilder &, Block &, |
121 | ArrayRef<NamedAttribute>)>; |
122 | |
123 | /// Fills the region of a structured operation using the provided |
124 | /// `regionBuilder`. The method is used by both named structured ops created by |
125 | /// ods-gen and by manually defined C++ ops. It is called by both builders and |
126 | /// parsers and creates a block with arguments corresponding to the elemental |
127 | /// types of `inputTypes` and `outputTypes`. |
128 | static void fillStructuredOpRegion(OpBuilder &opBuilder, Region ®ion, |
129 | TypeRange inputTypes, TypeRange outputTypes, |
130 | ArrayRef<NamedAttribute> attrs, |
131 | RegionBuilderFn regionBuilder) { |
132 | SmallVector<Type, 8> argTypes; |
133 | SmallVector<Location, 8> argLocs; |
134 | for (auto containers : {inputTypes, outputTypes}) { |
135 | for (auto t : containers) { |
136 | argTypes.push_back( |
137 | Elt: isa<MemRefType, RankedTensorType>(Val: t) ? getElementTypeOrSelf(type: t) : t); |
138 | |
139 | // TODO: Pass in a proper location here. |
140 | argLocs.push_back(Elt: opBuilder.getUnknownLoc()); |
141 | } |
142 | } |
143 | |
144 | // RAII. |
145 | OpBuilder::InsertionGuard guard(opBuilder); |
146 | Block *body = |
147 | opBuilder.createBlock(parent: ®ion, /*insertPt=*/{}, argTypes, locs: argLocs); |
148 | |
149 | opBuilder.setInsertionPointToStart(body); |
150 | ImplicitLocOpBuilder b(opBuilder.getUnknownLoc(), opBuilder); |
151 | regionBuilder(b, *body, attrs); |
152 | |
153 | // indexing_maps is an auto-generated method. |
154 | |
155 | // iterator_types is an auto-generated method. |
156 | } |
157 | |
158 | /// Creates a structured operation given `inputs`, `outputs`, and `attributes`. |
159 | /// The result types are derived automatically if `resultTensorTypes` is none. |
160 | /// The body of the operation is filled using `regionBuilder`. All ods-gen |
161 | /// created structured operations use the method to implement their builders. |
162 | static void buildStructuredOp(OpBuilder &b, OperationState &state, |
163 | std::optional<TypeRange> resultTensorTypes, |
164 | ValueRange inputs, ValueRange outputs, |
165 | ArrayRef<NamedAttribute> attributes, |
166 | RegionBuilderFn regionBuilder) { |
167 | // Derive the result types if needed. |
168 | SmallVector<Type> derivedResultTypes = |
169 | resultTensorTypes.value_or(u: TypeRange()); |
170 | if (!resultTensorTypes) |
171 | copy_if(Range: outputs.getTypes(), Out: std::back_inserter(x&: derivedResultTypes), |
172 | P: llvm::IsaPred<RankedTensorType>); |
173 | |
174 | state.addOperands(newOperands: inputs); |
175 | state.addOperands(newOperands: outputs); |
176 | state.addTypes(newTypes: derivedResultTypes); |
177 | |
178 | state.addAttributes(newAttributes: attributes); |
179 | state.addAttribute( |
180 | "operandSegmentSizes", |
181 | b.getDenseI32ArrayAttr({static_cast<int32_t>(inputs.size()), |
182 | static_cast<int32_t>(outputs.size())})); |
183 | |
184 | // Create and fill the region of the structured operation. |
185 | Region ®ion = *state.addRegion(); |
186 | fillStructuredOpRegion(opBuilder&: b, region, inputTypes: TypeRange(inputs), outputTypes: TypeRange(outputs), |
187 | attrs: state.attributes.getAttrs(), regionBuilder); |
188 | } |
189 | |
190 | static void buildMatmulOp(OpBuilder &b, OperationState &state, |
191 | std::optional<TypeRange> resultTensorTypes, |
192 | ValueRange inputs, ValueRange outputs, |
193 | ArrayRef<NamedAttribute> attributes, |
194 | RegionBuilderFn regionBuilder, |
195 | ArrayRef<AffineMap> indexingMaps) { |
196 | // Initialize indexingMaps attribute, for MatmulOp. |
197 | SmallVector<Attribute, 3> indexingMapsAttrVal; |
198 | indexingMapsAttrVal = llvm::map_to_vector( |
199 | MatmulOp::getDefaultIndexingMaps(b.getContext()), |
200 | [](AffineMap map) -> Attribute { return AffineMapAttr::get(map); }); |
201 | state.addAttribute("indexing_maps", b.getArrayAttr(indexingMapsAttrVal)); |
202 | return buildStructuredOp(b, state, resultTensorTypes, inputs, outputs, |
203 | attributes, regionBuilder); |
204 | } |
205 | |
206 | static void buildBatchMatmulOp(OpBuilder &b, OperationState &state, |
207 | std::optional<TypeRange> resultTensorTypes, |
208 | ValueRange inputs, ValueRange outputs, |
209 | ArrayRef<NamedAttribute> attributes, |
210 | RegionBuilderFn regionBuilder, |
211 | ArrayRef<AffineMap> indexingMaps) { |
212 | // Initialize indexingMaps attribute, for BatchMatmulOp. |
213 | SmallVector<Attribute, 4> indexingMapsAttrVal; |
214 | indexingMapsAttrVal = |
215 | llvm::map_to_vector(C&: indexingMaps, F: [](AffineMap map) -> Attribute { |
216 | return AffineMapAttr::get(map); |
217 | }); |
218 | state.addAttribute("indexing_maps", b.getArrayAttr(indexingMapsAttrVal)); |
219 | return buildStructuredOp(b, state, resultTensorTypes, inputs, outputs, |
220 | attributes, regionBuilder); |
221 | } |
222 | |
223 | static void buildBatchReduceMatmulOp(OpBuilder &b, OperationState &state, |
224 | std::optional<TypeRange> resultTensorTypes, |
225 | ValueRange inputs, ValueRange outputs, |
226 | ArrayRef<NamedAttribute> attributes, |
227 | RegionBuilderFn regionBuilder, |
228 | ArrayRef<AffineMap> indexingMaps) { |
229 | // Initialize indexingMaps attribute, for BatchReduceMatmulOp. |
230 | SmallVector<Attribute, 4> indexingMapsAttrVal; |
231 | indexingMapsAttrVal = |
232 | llvm::map_to_vector(C&: indexingMaps, F: [](AffineMap map) -> Attribute { |
233 | return AffineMapAttr::get(map); |
234 | }); |
235 | state.addAttribute("indexing_maps", b.getArrayAttr(indexingMapsAttrVal)); |
236 | return buildStructuredOp(b, state, resultTensorTypes, inputs, outputs, |
237 | attributes, regionBuilder); |
238 | } |
239 | |
240 | /// Common parsing used for both named structured ops created by ods-gen and by |
241 | /// manually defined C++ ops. Does not handle regions. |
242 | static ParseResult |
243 | parseCommonStructuredOpParts(OpAsmParser &parser, OperationState &result, |
244 | SmallVectorImpl<Type> &inputTypes, |
245 | SmallVectorImpl<Type> &outputTypes, |
246 | bool addOperandSegmentSizes = true) { |
247 | SMLoc attrsLoc, inputsOperandsLoc, outputsOperandsLoc; |
248 | SmallVector<OpAsmParser::UnresolvedOperand, 4> inputsOperands, |
249 | outputsOperands; |
250 | |
251 | if (succeeded(Result: parser.parseOptionalLess())) { |
252 | if (parser.parseAttribute(result&: result.propertiesAttr) || parser.parseGreater()) |
253 | return failure(); |
254 | } |
255 | attrsLoc = parser.getCurrentLocation(); |
256 | if (parser.parseOptionalAttrDict(result&: result.attributes)) |
257 | return failure(); |
258 | |
259 | if (succeeded(Result: parser.parseOptionalKeyword(keyword: "ins"))) { |
260 | if (parser.parseLParen()) |
261 | return failure(); |
262 | |
263 | inputsOperandsLoc = parser.getCurrentLocation(); |
264 | if (parser.parseOperandList(result&: inputsOperands) || |
265 | parser.parseColonTypeList(result&: inputTypes) || parser.parseRParen()) |
266 | return failure(); |
267 | } |
268 | |
269 | if (succeeded(Result: parser.parseOptionalKeyword(keyword: "outs"))) { |
270 | outputsOperandsLoc = parser.getCurrentLocation(); |
271 | if (parser.parseLParen() || parser.parseOperandList(result&: outputsOperands) || |
272 | parser.parseColonTypeList(result&: outputTypes) || parser.parseRParen()) |
273 | return failure(); |
274 | } |
275 | |
276 | if (parser.resolveOperands(operands&: inputsOperands, types&: inputTypes, loc: inputsOperandsLoc, |
277 | result&: result.operands) || |
278 | parser.resolveOperands(operands&: outputsOperands, types&: outputTypes, loc: outputsOperandsLoc, |
279 | result&: result.operands)) |
280 | return failure(); |
281 | |
282 | if (addOperandSegmentSizes) { |
283 | // This is a bit complex because we're trying to be backward compatible with |
284 | // operation syntax that mix the inherent attributes and the discardable |
285 | // ones in the same dictionary. If the properties are used, we append the |
286 | // operandSegmentSizes there directly. Otherwise we append it to the |
287 | // discardable attributes dictionary where it is handled by the generic |
288 | // Operation::create(...) method. |
289 | if (result.propertiesAttr) { |
290 | NamedAttrList attrs = llvm::cast<DictionaryAttr>(result.propertiesAttr); |
291 | attrs.append("operandSegmentSizes", |
292 | parser.getBuilder().getDenseI32ArrayAttr( |
293 | {static_cast<int32_t>(inputsOperands.size()), |
294 | static_cast<int32_t>(outputsOperands.size())})); |
295 | result.propertiesAttr = attrs.getDictionary(parser.getContext()); |
296 | } else { |
297 | result.addAttribute("operandSegmentSizes", |
298 | parser.getBuilder().getDenseI32ArrayAttr( |
299 | {static_cast<int32_t>(inputsOperands.size()), |
300 | static_cast<int32_t>(outputsOperands.size())})); |
301 | } |
302 | } |
303 | if (!result.propertiesAttr) { |
304 | std::optional<RegisteredOperationName> info = |
305 | result.name.getRegisteredInfo(); |
306 | if (info) { |
307 | if (failed(Result: info->verifyInherentAttrs(attributes&: result.attributes, emitError: [&]() { |
308 | return parser.emitError(loc: attrsLoc) |
309 | << "'"<< result.name.getStringRef() << "' op "; |
310 | }))) |
311 | return failure(); |
312 | } |
313 | } |
314 | return success(); |
315 | } |
316 | |
317 | static void printCommonStructuredOpParts(OpAsmPrinter &p, ValueRange inputs, |
318 | ValueRange outputs) { |
319 | if (!inputs.empty()) |
320 | p << " ins("<< inputs << " : "<< inputs.getTypes() << ")"; |
321 | if (!outputs.empty()) |
322 | p << " outs("<< outputs << " : "<< outputs.getTypes() << ")"; |
323 | } |
324 | |
325 | //===----------------------------------------------------------------------===// |
326 | // Specific parsing and printing for named structured ops created by ods-gen. |
327 | //===----------------------------------------------------------------------===// |
328 | |
329 | static ParseResult parseNamedStructuredOpRegion( |
330 | OpAsmParser &parser, Region ®ion, unsigned numRegionArgs, |
331 | TypeRange inputTypes, TypeRange outputTypes, ArrayRef<NamedAttribute> attrs, |
332 | RegionBuilderFn regionBuilder) { |
333 | if (numRegionArgs != inputTypes.size() + outputTypes.size()) { |
334 | return parser.emitError( |
335 | loc: parser.getCurrentLocation(), |
336 | message: llvm::formatv(Fmt: "[parseNamedStructuredOpRegion] ods-gen generated " |
337 | "region expects {0} args, got {1}", |
338 | Vals&: numRegionArgs, Vals: inputTypes.size() + outputTypes.size())); |
339 | } |
340 | |
341 | OpBuilder opBuilder(parser.getContext()); |
342 | fillStructuredOpRegion(opBuilder, region, inputTypes, outputTypes, attrs, |
343 | regionBuilder); |
344 | return success(); |
345 | } |
346 | |
347 | static ParseResult |
348 | parseNamedStructuredOpResults(OpAsmParser &parser, |
349 | SmallVectorImpl<Type> &resultTypes) { |
350 | if (parser.parseOptionalArrowTypeList(result&: resultTypes)) |
351 | return failure(); |
352 | return success(); |
353 | } |
354 | |
355 | static ParseResult parseNamedStructuredOp(OpAsmParser &parser, |
356 | OperationState &result, |
357 | unsigned numRegionArgs, |
358 | RegionBuilderFn regionBuilder) { |
359 | // TODO: Enable when ods-gen supports captures. |
360 | SmallVector<Type, 1> inputTypes, outputTypes; |
361 | if (parseCommonStructuredOpParts(parser, result, inputTypes, outputTypes)) |
362 | return failure(); |
363 | |
364 | // Parse optional attributes. |
365 | if (parser.parseOptionalAttrDict(result&: result.attributes)) |
366 | return failure(); |
367 | |
368 | // TODO: consider merging results parsing into region parsing. |
369 | // Need to wait for declarative assembly resolution to decide. |
370 | SmallVector<Type, 1> outputTensorsTypes; |
371 | if (parseNamedStructuredOpResults(parser, resultTypes&: outputTensorsTypes)) |
372 | return failure(); |
373 | result.addTypes(newTypes: outputTensorsTypes); |
374 | |
375 | std::unique_ptr<Region> region = std::make_unique<Region>(); |
376 | if (parseNamedStructuredOpRegion(parser, region&: *region, numRegionArgs, inputTypes, |
377 | outputTypes, attrs: result.attributes.getAttrs(), |
378 | regionBuilder)) |
379 | return failure(); |
380 | result.addRegion(region: std::move(region)); |
381 | |
382 | return success(); |
383 | } |
384 | |
385 | static void printNamedStructuredOpResults(OpAsmPrinter &p, |
386 | TypeRange resultTypes) { |
387 | if (resultTypes.empty()) |
388 | return; |
389 | p.printOptionalArrowTypeList(types&: resultTypes); |
390 | } |
391 | |
392 | static void printNamedStructuredOp(OpAsmPrinter &p, Operation *op, |
393 | ValueRange inputs, ValueRange outputs, |
394 | ArrayRef<StringRef> elidedAttrs = {}) { |
395 | p.printOptionalAttrDict(attrs: op->getAttrs(), elidedAttrs); |
396 | |
397 | // Printing is shared with generic ops, except for the region and |
398 | // attributes. |
399 | printCommonStructuredOpParts(p, inputs, outputs); |
400 | |
401 | // Results printing. |
402 | printNamedStructuredOpResults(p, resultTypes: op->getResultTypes()); |
403 | |
404 | // Region is elided. |
405 | } |
406 | |
407 | //===----------------------------------------------------------------------===// |
408 | // Region builder helper. |
409 | // TODO: Move this to a utility library. |
410 | // The public methods on this class are referenced directly from generated code. |
411 | // Helper build the unary, binary, and type conversion functions defined by the |
412 | // DSL. See LinalgNamedStructuredOps.yamlgen.cpp.inc for the code that uses this |
413 | // class. |
414 | // |
415 | // Implementations of the math functions must be polymorphic over numeric types, |
416 | // internally performing necessary casts. If the function application makes no |
417 | // sense, then the only recourse is to assert and return nullptr. This can be |
418 | // extended later if it becomes possible to fail construction of the region. The |
419 | // invariant should be enforced at a higher level. |
420 | // |
421 | // TODO: These helpers are currently type polymorphic over the class of integer |
422 | // and floating point types, but they will not internally cast within bit |
423 | // widths of a class (mixed precision such as i8->i32) or across classes |
424 | // (i.e. mixed float and integer). Many such combinations are ambiguous or need |
425 | // to be handled with care and work is being considered to extend the op |
426 | // language to make such cases explicit. In the mean-time, violating this will |
427 | // fail verification, which is deemed acceptable. |
428 | //===----------------------------------------------------------------------===// |
429 | |
430 | namespace { |
431 | |
432 | class RegionBuilderHelper { |
433 | public: |
434 | RegionBuilderHelper(OpBuilder &builder, Block &block) |
435 | : builder(builder), block(block) {} |
436 | |
437 | // Build the unary functions defined by OpDSL. |
438 | Value buildUnaryFn(UnaryFn unaryFn, Value arg) { |
439 | if (!isFloatingPoint(value: arg)) |
440 | llvm_unreachable("unsupported non numeric type"); |
441 | OpBuilder::InsertionGuard g(builder); |
442 | builder.setInsertionPointToEnd(&block); |
443 | switch (unaryFn) { |
444 | case UnaryFn::exp: |
445 | return builder.create<math::ExpOp>(arg.getLoc(), arg); |
446 | case UnaryFn::log: |
447 | return builder.create<math::LogOp>(arg.getLoc(), arg); |
448 | case UnaryFn::abs: |
449 | return builder.create<math::AbsFOp>(arg.getLoc(), arg); |
450 | case UnaryFn::ceil: |
451 | return builder.create<math::CeilOp>(arg.getLoc(), arg); |
452 | case UnaryFn::floor: |
453 | return builder.create<math::FloorOp>(arg.getLoc(), arg); |
454 | case UnaryFn::negf: |
455 | return builder.create<arith::NegFOp>(arg.getLoc(), arg); |
456 | case UnaryFn::reciprocal: { |
457 | Attribute oneAttr = builder.getOneAttr(arg.getType()); |
458 | auto one = builder.create<arith::ConstantOp>(arg.getLoc(), |
459 | ::cast<TypedAttr>(oneAttr)); |
460 | return builder.create<arith::DivFOp>(arg.getLoc(), one, arg); |
461 | } |
462 | case UnaryFn::round: |
463 | return builder.create<math::RoundOp>(arg.getLoc(), arg); |
464 | case UnaryFn::sqrt: |
465 | return builder.create<math::SqrtOp>(arg.getLoc(), arg); |
466 | case UnaryFn::rsqrt: |
467 | return builder.create<math::RsqrtOp>(arg.getLoc(), arg); |
468 | case UnaryFn::square: |
469 | return builder.create<arith::MulFOp>(arg.getLoc(), arg, arg); |
470 | case UnaryFn::tanh: |
471 | return builder.create<math::TanhOp>(arg.getLoc(), arg); |
472 | case UnaryFn::erf: |
473 | return builder.create<math::ErfOp>(arg.getLoc(), arg); |
474 | } |
475 | llvm_unreachable("unsupported unary function"); |
476 | } |
477 | |
478 | // Build the binary functions defined by OpDSL. |
479 | Value buildBinaryFn(BinaryFn binaryFn, Value arg0, Value arg1) { |
480 | bool allComplex = isComplex(value: arg0) && isComplex(value: arg1); |
481 | bool allFloatingPoint = isFloatingPoint(value: arg0) && isFloatingPoint(value: arg1); |
482 | bool allInteger = isInteger(value: arg0) && isInteger(value: arg1); |
483 | bool allBool = allInteger && arg0.getType().getIntOrFloatBitWidth() == 1 && |
484 | arg1.getType().getIntOrFloatBitWidth() == 1; |
485 | if (!allComplex && !allFloatingPoint && !allInteger) |
486 | llvm_unreachable("unsupported non numeric type"); |
487 | OpBuilder::InsertionGuard g(builder); |
488 | builder.setInsertionPointToEnd(&block); |
489 | switch (binaryFn) { |
490 | case BinaryFn::add: |
491 | if (allComplex) |
492 | return builder.create<complex::AddOp>(arg0.getLoc(), arg0, arg1); |
493 | if (allFloatingPoint) |
494 | return builder.create<arith::AddFOp>(arg0.getLoc(), arg0, arg1); |
495 | if (allBool) |
496 | return builder.create<arith::OrIOp>(arg0.getLoc(), arg0, arg1); |
497 | return builder.create<arith::AddIOp>(arg0.getLoc(), arg0, arg1); |
498 | case BinaryFn::sub: |
499 | if (allComplex) |
500 | return builder.create<complex::SubOp>(arg0.getLoc(), arg0, arg1); |
501 | if (allFloatingPoint) |
502 | return builder.create<arith::SubFOp>(arg0.getLoc(), arg0, arg1); |
503 | if (allBool) |
504 | llvm_unreachable("unsupported operation: sub with bools"); |
505 | return builder.create<arith::SubIOp>(arg0.getLoc(), arg0, arg1); |
506 | case BinaryFn::mul: |
507 | if (allComplex) |
508 | return builder.create<complex::MulOp>(arg0.getLoc(), arg0, arg1); |
509 | if (allFloatingPoint) |
510 | return builder.create<arith::MulFOp>(arg0.getLoc(), arg0, arg1); |
511 | if (allBool) |
512 | return builder.create<arith::AndIOp>(arg0.getLoc(), arg0, arg1); |
513 | return builder.create<arith::MulIOp>(arg0.getLoc(), arg0, arg1); |
514 | case BinaryFn::div: |
515 | if (allComplex) |
516 | return builder.create<complex::DivOp>(arg0.getLoc(), arg0, arg1); |
517 | if (allFloatingPoint) |
518 | return builder.create<arith::DivFOp>(arg0.getLoc(), arg0, arg1); |
519 | if (allBool) |
520 | llvm_unreachable("unsupported operation: div with bools"); |
521 | return builder.create<arith::DivSIOp>(arg0.getLoc(), arg0, arg1); |
522 | case BinaryFn::div_unsigned: |
523 | if (!allInteger || allBool) |
524 | llvm_unreachable("unsupported operation: unsigned div not on uint"); |
525 | return builder.create<arith::DivUIOp>(arg0.getLoc(), arg0, arg1); |
526 | case BinaryFn::max_signed: |
527 | assert(!allComplex); |
528 | if (allFloatingPoint) |
529 | return builder.create<arith::MaximumFOp>(arg0.getLoc(), arg0, arg1); |
530 | return builder.create<arith::MaxSIOp>(arg0.getLoc(), arg0, arg1); |
531 | case BinaryFn::min_signed: |
532 | assert(!allComplex); |
533 | if (allFloatingPoint) |
534 | return builder.create<arith::MinimumFOp>(arg0.getLoc(), arg0, arg1); |
535 | return builder.create<arith::MinSIOp>(arg0.getLoc(), arg0, arg1); |
536 | case BinaryFn::max_unsigned: |
537 | assert(!allComplex); |
538 | if (allFloatingPoint) |
539 | return builder.create<arith::MaximumFOp>(arg0.getLoc(), arg0, arg1); |
540 | return builder.create<arith::MaxUIOp>(arg0.getLoc(), arg0, arg1); |
541 | case BinaryFn::min_unsigned: |
542 | assert(!allComplex); |
543 | if (allFloatingPoint) |
544 | return builder.create<arith::MinimumFOp>(arg0.getLoc(), arg0, arg1); |
545 | return builder.create<arith::MinUIOp>(arg0.getLoc(), arg0, arg1); |
546 | case BinaryFn::powf: |
547 | assert(allFloatingPoint); |
548 | return builder.create<math::PowFOp>(arg0.getLoc(), arg0, arg1); |
549 | } |
550 | llvm_unreachable("unsupported binary function"); |
551 | } |
552 | |
553 | // Build the ternary functions defined by OpDSL. |
554 | Value buildTernaryFn(TernaryFn ternaryFn, Value arg0, Value arg1, |
555 | Value arg2) { |
556 | bool headBool = |
557 | isInteger(value: arg0) && arg0.getType().getIntOrFloatBitWidth() == 1; |
558 | bool tailFloatingPoint = |
559 | isFloatingPoint(value: arg0) && isFloatingPoint(value: arg1) && isFloatingPoint(value: arg2); |
560 | bool tailInteger = isInteger(value: arg0) && isInteger(value: arg1) && isInteger(value: arg2); |
561 | OpBuilder::InsertionGuard g(builder); |
562 | builder.setInsertionPointToEnd(&block); |
563 | switch (ternaryFn) { |
564 | case TernaryFn::select: |
565 | if (!headBool && !(tailFloatingPoint || tailInteger)) |
566 | llvm_unreachable("unsupported non numeric type"); |
567 | return builder.create<arith::SelectOp>(arg0.getLoc(), arg0, arg1, arg2); |
568 | } |
569 | llvm_unreachable("unsupported ternary function"); |
570 | } |
571 | |
572 | // Build the type functions defined by OpDSL. |
573 | Value buildTypeFn(TypeFn typeFn, Type toType, Value operand) { |
574 | switch (typeFn) { |
575 | case TypeFn::cast_signed: |
576 | return cast(toType, operand, isUnsignedCast: false); |
577 | case TypeFn::cast_unsigned: |
578 | return cast(toType, operand, isUnsignedCast: true); |
579 | } |
580 | llvm_unreachable("unsupported type conversion function"); |
581 | } |
582 | |
583 | void yieldOutputs(ValueRange values) { |
584 | OpBuilder::InsertionGuard g(builder); |
585 | builder.setInsertionPointToEnd(&block); |
586 | Location loc = builder.getUnknownLoc(); |
587 | builder.create<YieldOp>(loc, values); |
588 | } |
589 | |
590 | Value constant(const std::string &value) { |
591 | OpBuilder::InsertionGuard g(builder); |
592 | builder.setInsertionPointToEnd(&block); |
593 | Location loc = builder.getUnknownLoc(); |
594 | Attribute valueAttr = parseAttribute(attrStr: value, context: builder.getContext()); |
595 | return builder.create<arith::ConstantOp>(loc, ::cast<TypedAttr>(valueAttr)); |
596 | } |
597 | |
598 | Value index(int64_t dim) { |
599 | OpBuilder::InsertionGuard g(builder); |
600 | builder.setInsertionPointToEnd(&block); |
601 | return builder.create<IndexOp>(builder.getUnknownLoc(), dim); |
602 | } |
603 | |
604 | Type getIntegerType(unsigned width) { |
605 | return IntegerType::get(builder.getContext(), width); |
606 | } |
607 | |
608 | Type getFloat32Type() { return Float32Type::get(builder.getContext()); } |
609 | Type getFloat64Type() { return Float64Type::get(builder.getContext()); } |
610 | |
611 | private: |
612 | // Generates operations to cast the given operand to a specified type. |
613 | // If the cast cannot be performed, a warning will be issued and the |
614 | // operand returned as-is (which will presumably yield a verification |
615 | // issue downstream). |
616 | Value cast(Type toType, Value operand, bool isUnsignedCast) { |
617 | OpBuilder::InsertionGuard g(builder); |
618 | builder.setInsertionPointToEnd(&block); |
619 | auto loc = operand.getLoc(); |
620 | return convertScalarToDtype(b&: builder, loc, operand, toType, isUnsignedCast); |
621 | } |
622 | |
623 | bool isComplex(Value value) { |
624 | return llvm::isa<ComplexType>(value.getType()); |
625 | } |
626 | bool isFloatingPoint(Value value) { |
627 | return llvm::isa<FloatType>(Val: value.getType()); |
628 | } |
629 | bool isInteger(Value value) { |
630 | return llvm::isa<IntegerType>(Val: value.getType()); |
631 | } |
632 | |
633 | OpBuilder &builder; |
634 | Block █ |
635 | }; |
636 | |
637 | } // namespace |
638 | |
639 | //===----------------------------------------------------------------------===// |
640 | // CopyOp |
641 | //===----------------------------------------------------------------------===// |
642 | |
643 | namespace { |
644 | |
645 | struct EraseSelfCopy : OpRewritePattern<CopyOp> { |
646 | using OpRewritePattern<CopyOp>::OpRewritePattern; |
647 | LogicalResult matchAndRewrite(CopyOp copyOp, |
648 | PatternRewriter &rewriter) const override { |
649 | if (copyOp.getInputs() != copyOp.getOutputs()) |
650 | return rewriter.notifyMatchFailure(copyOp, "not a self copy"); |
651 | if (copyOp.hasPureBufferSemantics()) |
652 | rewriter.eraseOp(op: copyOp); |
653 | else |
654 | rewriter.replaceOp(copyOp, copyOp.getInputs()); |
655 | |
656 | return success(); |
657 | } |
658 | }; |
659 | |
660 | } // namespace |
661 | |
662 | void CopyOp::getCanonicalizationPatterns(RewritePatternSet &results, |
663 | MLIRContext *context) { |
664 | results.add<EraseSelfCopy>(context); |
665 | } |
666 | |
667 | //===----------------------------------------------------------------------===// |
668 | // FillOp |
669 | //===----------------------------------------------------------------------===// |
670 | |
671 | namespace { |
672 | |
673 | /// Fold linalg.fill -> tensor.expand/collapse_shape chain. |
674 | /// |
675 | /// For such op chains, we can create new linalg.fill ops with the result |
676 | /// type of the tensor.expand/collapse_shape op. |
677 | template <typename TensorReshapeOp> |
678 | struct FoldFillWithTensorReshape : OpRewritePattern<TensorReshapeOp> { |
679 | using OpRewritePattern<TensorReshapeOp>::OpRewritePattern; |
680 | LogicalResult matchAndRewrite(TensorReshapeOp reshapeOp, |
681 | PatternRewriter &rewriter) const override { |
682 | auto oldFill = reshapeOp.getSrc().template getDefiningOp<FillOp>(); |
683 | if (!oldFill) |
684 | return failure(); |
685 | |
686 | Location loc = oldFill.getLoc(); |
687 | TensorReshapeOp newInit; |
688 | if constexpr (std::is_same<TensorReshapeOp, tensor::ExpandShapeOp>::value) { |
689 | |
690 | newInit = rewriter.create<TensorReshapeOp>( |
691 | loc, reshapeOp.getResultType(), oldFill.output(), |
692 | reshapeOp.getReassociation(), reshapeOp.getOutputShape(), |
693 | reshapeOp.getStaticOutputShape()); |
694 | } else { |
695 | newInit = rewriter.create<TensorReshapeOp>(loc, reshapeOp.getResultType(), |
696 | oldFill.output(), |
697 | reshapeOp.getReassociation()); |
698 | } |
699 | rewriter.replaceOpWithNewOp<FillOp>(reshapeOp, ValueRange{oldFill.value()}, |
700 | ValueRange{newInit}); |
701 | return success(); |
702 | } |
703 | }; |
704 | |
705 | /// Fold tensor.pad(linalg.fill) into linalg.fill if the padding value and the |
706 | /// filling value are the same. |
707 | struct FoldFillWithPad final : public OpRewritePattern<tensor::PadOp> { |
708 | using OpRewritePattern::OpRewritePattern; |
709 | |
710 | LogicalResult matchAndRewrite(tensor::PadOp padOp, |
711 | PatternRewriter &rewriter) const override { |
712 | auto fillOp = padOp.getSource().getDefiningOp<linalg::FillOp>(); |
713 | if (!fillOp) |
714 | return failure(); |
715 | |
716 | // We can only fold if the padding value is the same as the original |
717 | // filling value. |
718 | Value padValue = padOp.getConstantPaddingValue(); |
719 | if (!padValue || fillOp.value() != padValue) |
720 | return failure(); |
721 | |
722 | ReifiedRankedShapedTypeDims reifiedShape; |
723 | if (failed(reifyResultShapes(rewriter, padOp, reifiedShape))) |
724 | return rewriter.notifyMatchFailure( |
725 | padOp, "failed to reify tensor.pad op result shape"); |
726 | |
727 | auto emptyTensor = rewriter.create<tensor::EmptyOp>( |
728 | padOp.getLoc(), reifiedShape.front(), |
729 | padOp.getResultType().getElementType()); |
730 | Value replacement = |
731 | rewriter |
732 | .create<FillOp>(fillOp.getLoc(), ValueRange{padValue}, |
733 | ValueRange{emptyTensor}) |
734 | .getResult(0); |
735 | if (replacement.getType() != padOp.getResultType()) { |
736 | replacement = rewriter.create<tensor::CastOp>( |
737 | fillOp.getLoc(), padOp.getResultType(), replacement); |
738 | } |
739 | rewriter.replaceOp(padOp, replacement); |
740 | return success(); |
741 | } |
742 | }; |
743 | |
744 | /// Fold tensor.insert_slice(tensor.pad(<input>), linalg.fill) into |
745 | /// tensor.insert_slice(<input>, linalg.fill) if the padding value and the |
746 | /// filling value are the same. |
747 | struct FoldInsertPadIntoFill : public OpRewritePattern<tensor::InsertSliceOp> { |
748 | using OpRewritePattern::OpRewritePattern; |
749 | |
750 | LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp, |
751 | PatternRewriter &rewriter) const override { |
752 | auto srcPadOp = insertOp.getSource().getDefiningOp<tensor::PadOp>(); |
753 | if (!srcPadOp) |
754 | return failure(); |
755 | |
756 | if (insertOp.getType().getRank() != insertOp.getSourceType().getRank()) |
757 | return failure(); |
758 | |
759 | // Walk back the tensor.insert_slice chain and find the first destination |
760 | // value at the start of the chain. |
761 | Value firstDest = insertOp.getDest(); |
762 | while (auto prevOp = firstDest.getDefiningOp<tensor::InsertSliceOp>()) { |
763 | if (prevOp.getType().getRank() != prevOp.getSourceType().getRank()) |
764 | return failure(); |
765 | |
766 | // Make sure the range of values accessed are disjoint. Without this, we |
767 | // cannot fold tensor.pad away. |
768 | bool disjoint = false; |
769 | for (int i = 0, e = prevOp.getType().getRank(); i < e; ++i) { |
770 | // If the dimension has dynamic offset/size, we cannot guarantee |
771 | // disjoint. So just skip it. |
772 | if (insertOp.isDynamicOffset(i) || insertOp.isDynamicSize(i) || |
773 | insertOp.isDynamicStride(i) || prevOp.isDynamicOffset(i) || |
774 | prevOp.isDynamicSize(i) || prevOp.isDynamicStride(i)) |
775 | continue; |
776 | |
777 | // Get the range start and end, inclusively for both. |
778 | int64_t prevStart = prevOp.getStaticOffset(i); |
779 | int64_t prevEnd = prevStart + (prevOp.getStaticSize(i) - 1) * |
780 | prevOp.getStaticStride(i); |
781 | int64_t nextStart = insertOp.getStaticOffset(i); |
782 | int64_t nextEnd = nextStart + (insertOp.getStaticSize(i) - 1) * |
783 | insertOp.getStaticStride(i); |
784 | if (prevEnd < nextStart || nextEnd < prevStart) { |
785 | disjoint = true; |
786 | break; |
787 | } |
788 | } |
789 | |
790 | if (!disjoint) |
791 | break; |
792 | firstDest = prevOp.getDest(); |
793 | } |
794 | |
795 | // Check whether the first destination is a fill op. For overlapped cases, |
796 | // this also cannot be true. |
797 | auto dstFillOp = firstDest.getDefiningOp<linalg::FillOp>(); |
798 | if (!dstFillOp) |
799 | return failure(); |
800 | |
801 | // We can only fold if the padding value is the same as the original |
802 | // filling value. |
803 | Value padValue = srcPadOp.getConstantPaddingValue(); |
804 | if (!padValue || dstFillOp.value() != padValue) |
805 | return failure(); |
806 | |
807 | SmallVector<OpFoldResult> lowPads = srcPadOp.getMixedLowPad(); |
808 | SmallVector<OpFoldResult> oldOffsets = insertOp.getMixedOffsets(); |
809 | |
810 | Location loc = insertOp.getLoc(); |
811 | MLIRContext *context = getContext(); |
812 | |
813 | AffineExpr sym0, sym1; |
814 | bindSymbols(ctx: context, exprs&: sym0, exprs&: sym1); |
815 | auto addMap = AffineMap::get(dimCount: 0, symbolCount: 2, results: {sym0 + sym1}, context); |
816 | |
817 | // Calculate the new offsets for the insert. It should be the old offsets |
818 | // plus low padding sizes. |
819 | SmallVector<OpFoldResult, 4> newOffsets; |
820 | for (const auto &p : llvm::zip(lowPads, oldOffsets)) { |
821 | newOffsets.push_back(affine::makeComposedFoldedAffineApply( |
822 | rewriter, loc, addMap, {std::get<0>(p), std::get<1>(p)})); |
823 | } |
824 | |
825 | RankedTensorType srcPadType = srcPadOp.getSourceType(); |
826 | SmallVector<OpFoldResult, 4> newSizes; |
827 | for (int i = 0, e = srcPadType.getRank(); i < e; ++i) { |
828 | if (srcPadType.isDynamicDim(i)) { |
829 | newSizes.push_back( |
830 | rewriter.create<tensor::DimOp>(loc, srcPadOp.getSource(), i) |
831 | .getResult()); |
832 | } else { |
833 | newSizes.push_back(Elt: rewriter.getIndexAttr(value: srcPadType.getDimSize(i))); |
834 | } |
835 | } |
836 | |
837 | rewriter.replaceOpWithNewOp<tensor::InsertSliceOp>( |
838 | insertOp, srcPadOp.getSource(), insertOp.getDest(), newOffsets, |
839 | newSizes, insertOp.getMixedStrides()); |
840 | return success(); |
841 | } |
842 | }; |
843 | |
844 | /// Fold tensor.extract(linalg.fill(<input>)) into <input> |
845 | struct FoldFillWithTensorExtract : public OpRewritePattern<tensor::ExtractOp> { |
846 | public: |
847 | using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern; |
848 | |
849 | LogicalResult matchAndRewrite(tensor::ExtractOp extractOp, |
850 | PatternRewriter &rewriter) const override { |
851 | // See if tensor input of tensor.extract op is the result of a linalg.fill |
852 | // op. |
853 | auto fillOp = extractOp.getTensor().getDefiningOp<linalg::FillOp>(); |
854 | if (!fillOp) |
855 | return failure(); |
856 | |
857 | // Get scalar input operand of linalg.fill op. |
858 | Value extractedScalar = fillOp.getInputs()[0]; |
859 | |
860 | // Replace tensor.extract op with scalar value used to fill the tensor. |
861 | rewriter.replaceOp(extractOp, extractedScalar); |
862 | return success(); |
863 | } |
864 | }; |
865 | |
866 | /// Folds pack(fill) into a single fill op if |
867 | /// 1. The pack op does not have padding value, or |
868 | /// 2. The filled value and padding value are the same. |
869 | static FailureOr<FillOp> foldFillPackIntoFillOp(RewriterBase &rewriter, |
870 | linalg::PackOp packOp) { |
871 | auto fillOp = packOp.getSource().getDefiningOp<FillOp>(); |
872 | if (!fillOp) |
873 | return failure(); |
874 | |
875 | if (auto paddingValue = packOp.getPaddingValue()) |
876 | if (!isEqualConstantIntOrValue(paddingValue, fillOp.value())) |
877 | return failure(); |
878 | |
879 | Value packOpDest = packOp.getDest(); |
880 | if (!packOpDest.hasOneUse()) |
881 | return failure(); |
882 | |
883 | return rewriter.create<linalg::FillOp>(packOp.getLoc(), fillOp.getInputs(), |
884 | packOp.getDest()); |
885 | } |
886 | |
887 | /// Wrapper pattern that applies foldFillPackIntoFillOp method. |
888 | struct FoldFillWithPack : public OpRewritePattern<linalg::PackOp> { |
889 | public: |
890 | FoldFillWithPack(MLIRContext *context) |
891 | : OpRewritePattern<linalg::PackOp>(context) {} |
892 | |
893 | LogicalResult matchAndRewrite(linalg::PackOp packOp, |
894 | PatternRewriter &rewriter) const override { |
895 | auto fillOp = foldFillPackIntoFillOp(rewriter, packOp); |
896 | if (failed(fillOp)) |
897 | return failure(); |
898 | rewriter.replaceOp(packOp, fillOp.value().result()); |
899 | return success(); |
900 | } |
901 | }; |
902 | |
903 | /// Fold fill with copy. |
904 | struct FoldFillWithCopy : OpRewritePattern<linalg::CopyOp> { |
905 | using OpRewritePattern<linalg::CopyOp>::OpRewritePattern; |
906 | |
907 | LogicalResult matchAndRewrite(linalg::CopyOp copyOp, |
908 | PatternRewriter &rewriter) const override { |
909 | if (auto fillOp = copyOp.getInputs().front().getDefiningOp<FillOp>()) { |
910 | rewriter.replaceOpWithNewOp<FillOp>(copyOp, copyOp.getResultTypes(), |
911 | fillOp.getInputs(), |
912 | copyOp.getOutputs()); |
913 | return success(); |
914 | } |
915 | if (auto fillOp = copyOp.getOutputs().front().getDefiningOp<FillOp>()) { |
916 | rewriter.replaceOpWithNewOp<linalg::CopyOp>(copyOp, copyOp.getInputs(), |
917 | fillOp.getOutputs()); |
918 | return success(); |
919 | } |
920 | return failure(); |
921 | } |
922 | }; |
923 | |
924 | /// Fold fill with transpose. |
925 | struct FoldFillWithTranspose : OpRewritePattern<linalg::TransposeOp> { |
926 | using OpRewritePattern<linalg::TransposeOp>::OpRewritePattern; |
927 | |
928 | LogicalResult matchAndRewrite(linalg::TransposeOp transposeOp, |
929 | PatternRewriter &rewriter) const override { |
930 | if (auto fillOp = transposeOp.getInput().getDefiningOp<FillOp>()) { |
931 | rewriter.replaceOpWithNewOp<FillOp>( |
932 | transposeOp, transposeOp.getResultTypes(), fillOp.getInputs(), |
933 | transposeOp.getDpsInitOperand(0)->get()); |
934 | return success(); |
935 | } |
936 | return failure(); |
937 | } |
938 | }; |
939 | |
940 | /// Fold a concat with all elements being fills of the same value |
941 | /// into a fill of the concat result shape. |
942 | struct FoldConcatsOfFill : public OpRewritePattern<tensor::ConcatOp> { |
943 | using OpRewritePattern::OpRewritePattern; |
944 | |
945 | LogicalResult matchAndRewrite(tensor::ConcatOp concatOp, |
946 | PatternRewriter &rewriter) const override { |
947 | auto concatOperands = concatOp.getInputs(); |
948 | if (concatOperands.empty()) { |
949 | return failure(); |
950 | } |
951 | |
952 | auto firstFillOp = concatOperands.front().getDefiningOp<linalg::FillOp>(); |
953 | if (!firstFillOp) { |
954 | return failure(); |
955 | } |
956 | // Prefetch the fill value. |
957 | OpFoldResult firstFillVal = |
958 | getAsOpFoldResult(firstFillOp.getDpsInputOperand(0)->get()); |
959 | // Collect all the outs values for the fill operations. |
960 | SmallVector<Value> allOuts; |
961 | allOuts.push_back(Elt: firstFillOp.getDpsInitOperand(0)->get()); |
962 | |
963 | auto isDefinedByCompatibleFillOp = [&](Value v) -> bool { |
964 | auto fillOp = v.getDefiningOp<linalg::FillOp>(); |
965 | if (!fillOp) { |
966 | return false; |
967 | } |
968 | |
969 | OpFoldResult fillVal = |
970 | getAsOpFoldResult(fillOp.getDpsInputOperand(0)->get()); |
971 | if (fillVal != firstFillVal) |
972 | return false; |
973 | |
974 | allOuts.push_back(Elt: fillOp.getDpsInitOperand(0)->get()); |
975 | return true; |
976 | }; |
977 | if (!llvm::all_of(concatOperands.drop_front(), |
978 | isDefinedByCompatibleFillOp)) { |
979 | return rewriter.notifyMatchFailure( |
980 | concatOp, "not all operands are defined by a compatible fill op"); |
981 | } |
982 | |
983 | Value outsConcat = rewriter.create<tensor::ConcatOp>( |
984 | concatOp.getLoc(), concatOp.getDim(), allOuts); |
985 | rewriter.replaceOpWithNewOp<linalg::FillOp>( |
986 | concatOp, firstFillOp.getDpsInputOperand(0)->get(), outsConcat); |
987 | return success(); |
988 | } |
989 | }; |
990 | |
991 | } // namespace |
992 | |
993 | void FillOp::getCanonicalizationPatterns(RewritePatternSet &results, |
994 | MLIRContext *context) { |
995 | results.add<FoldConcatsOfFill, FoldFillWithCopy, FoldFillWithTensorExtract, |
996 | FoldFillWithPack, FoldFillWithPad, |
997 | FoldFillWithTensorReshape<tensor::CollapseShapeOp>, |
998 | FoldFillWithTensorReshape<tensor::ExpandShapeOp>, |
999 | FoldInsertPadIntoFill, FoldFillWithTranspose>(context); |
1000 | } |
1001 | |
1002 | //===----------------------------------------------------------------------===// |
1003 | // GenericOp |
1004 | //===----------------------------------------------------------------------===// |
1005 | |
1006 | static void buildGenericRegion( |
1007 | OpBuilder &builder, Location loc, Region ®ion, ValueRange inputs, |
1008 | ValueRange outputs, |
1009 | function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild) { |
1010 | SmallVector<Type, 4> blockArgTypes; |
1011 | SmallVector<Location, 4> blockArgLocs; |
1012 | for (ValueRange container : {inputs, outputs}) { |
1013 | for (Value v : container) { |
1014 | Type t = v.getType(); |
1015 | blockArgTypes.push_back( |
1016 | Elt: isa<MemRefType, RankedTensorType>(Val: t) ? getElementTypeOrSelf(type: t) : t); |
1017 | blockArgLocs.push_back(Elt: v.getLoc()); |
1018 | } |
1019 | } |
1020 | |
1021 | OpBuilder::InsertionGuard guard(builder); |
1022 | Block *bodyBlock = |
1023 | builder.createBlock(parent: ®ion, insertPt: region.end(), argTypes: blockArgTypes, locs: blockArgLocs); |
1024 | bodyBuild(builder, loc, bodyBlock->getArguments()); |
1025 | } |
1026 | |
1027 | void GenericOp::getAsmBlockArgumentNames(Region ®ion, |
1028 | OpAsmSetValueNameFn setNameFn) { |
1029 | for (Value v : getRegionInputArgs()) |
1030 | setNameFn(v, "in"); |
1031 | for (Value v : getRegionOutputArgs()) |
1032 | setNameFn(v, "out"); |
1033 | } |
1034 | |
1035 | void GenericOp::build( |
1036 | OpBuilder &builder, OperationState &result, TypeRange resultTensorTypes, |
1037 | ValueRange inputs, ValueRange outputs, ArrayAttr indexingMaps, |
1038 | ArrayAttr iteratorTypes, StringAttr doc, StringAttr libraryCall, |
1039 | function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild, |
1040 | ArrayRef<NamedAttribute> attributes) { |
1041 | build(builder, result, resultTensorTypes, inputs, outputs, indexingMaps, |
1042 | iteratorTypes, doc, libraryCall); |
1043 | result.addAttributes(attributes); |
1044 | if (bodyBuild) |
1045 | buildGenericRegion(builder, result.location, *result.regions.front(), |
1046 | inputs, outputs, bodyBuild); |
1047 | } |
1048 | |
1049 | void GenericOp::build( |
1050 | OpBuilder &builder, OperationState &result, TypeRange resultTensorTypes, |
1051 | ValueRange inputs, ValueRange outputs, ArrayRef<AffineMap> indexingMaps, |
1052 | ArrayRef<utils::IteratorType> iteratorTypes, StringRef doc, |
1053 | StringRef libraryCall, |
1054 | function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild, |
1055 | ArrayRef<NamedAttribute> attributes) { |
1056 | build(builder, result, resultTensorTypes, inputs, outputs, |
1057 | builder.getAffineMapArrayAttr(indexingMaps), |
1058 | builder.getArrayAttr(llvm::to_vector(llvm::map_range( |
1059 | iteratorTypes, |
1060 | [&](utils::IteratorType iter) -> mlir::Attribute { |
1061 | return IteratorTypeAttr::get(builder.getContext(), iter); |
1062 | }))), |
1063 | doc.empty() ? StringAttr() : builder.getStringAttr(doc), |
1064 | libraryCall.empty() ? StringAttr() : builder.getStringAttr(libraryCall), |
1065 | bodyBuild, attributes); |
1066 | } |
1067 | |
1068 | void GenericOp::build( |
1069 | OpBuilder &builder, OperationState &result, ValueRange inputs, |
1070 | ValueRange outputs, ArrayRef<AffineMap> indexingMaps, |
1071 | ArrayRef<utils::IteratorType> iteratorTypes, StringRef doc, |
1072 | StringRef libraryCall, |
1073 | function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild, |
1074 | ArrayRef<NamedAttribute> attributes) { |
1075 | build(builder, result, TypeRange{}, inputs, outputs, indexingMaps, |
1076 | iteratorTypes, doc, libraryCall, bodyBuild, attributes); |
1077 | } |
1078 | |
1079 | void GenericOp::build( |
1080 | OpBuilder &builder, OperationState &result, ValueRange inputs, |
1081 | ValueRange outputs, ArrayRef<AffineMap> indexingMaps, |
1082 | ArrayRef<utils::IteratorType> iteratorTypes, |
1083 | function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild, |
1084 | ArrayRef<NamedAttribute> attributes) { |
1085 | build(builder, result, inputs, outputs, indexingMaps, iteratorTypes, |
1086 | /*doc=*/"", |
1087 | /*libraryCall=*/"", bodyBuild, attributes); |
1088 | } |
1089 | |
1090 | void GenericOp::build( |
1091 | OpBuilder &builder, OperationState &result, TypeRange resultTensorTypes, |
1092 | ValueRange inputs, ValueRange outputs, ArrayRef<AffineMap> indexingMaps, |
1093 | ArrayRef<utils::IteratorType> iteratorTypes, |
1094 | function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild, |
1095 | ArrayRef<NamedAttribute> attributes) { |
1096 | build(builder, result, resultTensorTypes, inputs, outputs, indexingMaps, |
1097 | iteratorTypes, |
1098 | /*doc=*/"", |
1099 | /*libraryCall=*/"", bodyBuild, attributes); |
1100 | } |
1101 | |
1102 | void GenericOp::print(OpAsmPrinter &p) { |
1103 | p << " "; |
1104 | |
1105 | // Print extra attributes. |
1106 | auto genericAttrNames = linalgTraitAttrNames(); |
1107 | |
1108 | llvm::StringSet<> genericAttrNamesSet; |
1109 | genericAttrNamesSet.insert_range(genericAttrNames); |
1110 | SmallVector<NamedAttribute, 8> genericAttrs; |
1111 | for (auto attr : (*this)->getAttrs()) { |
1112 | if (attr.getName() == getIteratorTypesAttrName()) { |
1113 | auto iteratorTypes = |
1114 | llvm::cast<ArrayAttr>(attr.getValue()) |
1115 | .getAsValueRange<IteratorTypeAttr, utils::IteratorType>(); |
1116 | // Convert IteratorType enums into the string representation. This is |
1117 | // needed, because tests still use the old format when 'iterator_types' |
1118 | // attribute is represented as an array of strings. |
1119 | // TODO: Remove this conversion once tests are fixed. |
1120 | SmallVector<Attribute> iteratorTypeNames = |
1121 | llvm::to_vector(llvm::map_range( |
1122 | iteratorTypes, [&](utils::IteratorType t) -> Attribute { |
1123 | return StringAttr::get(getContext(), stringifyIteratorType(t)); |
1124 | })); |
1125 | |
1126 | genericAttrs.emplace_back( |
1127 | getIteratorTypesAttrName(), |
1128 | ArrayAttr::get(getContext(), iteratorTypeNames)); |
1129 | } else if (genericAttrNamesSet.count(attr.getName().strref()) > 0) { |
1130 | genericAttrs.push_back(attr); |
1131 | } |
1132 | } |
1133 | if (!genericAttrs.empty()) { |
1134 | auto genericDictAttr = DictionaryAttr::get(getContext(), genericAttrs); |
1135 | p << genericDictAttr; |
1136 | } |
1137 | |
1138 | // Printing is shared with named ops, except for the region and attributes |
1139 | printCommonStructuredOpParts(p, getDpsInputs(), getDpsInits()); |
1140 | |
1141 | genericAttrNames.push_back("operandSegmentSizes"); |
1142 | genericAttrNamesSet.insert(genericAttrNames.back()); |
1143 | |
1144 | bool hasExtraAttrs = false; |
1145 | for (NamedAttribute n : (*this)->getAttrs()) { |
1146 | if ((hasExtraAttrs = !genericAttrNamesSet.contains(n.getName().strref()))) |
1147 | break; |
1148 | } |
1149 | if (hasExtraAttrs) { |
1150 | p << " attrs = "; |
1151 | p.printOptionalAttrDict((*this)->getAttrs(), |
1152 | /*elidedAttrs=*/genericAttrNames); |
1153 | } |
1154 | |
1155 | // Print region. |
1156 | if (!getRegion().empty()) { |
1157 | p << ' '; |
1158 | p.printRegion(getRegion()); |
1159 | } |
1160 | |
1161 | // Print results. |
1162 | printNamedStructuredOpResults(p, getResultTensors().getTypes()); |
1163 | } |
1164 | |
1165 | ParseResult GenericOp::parse(OpAsmParser &parser, OperationState &result) { |
1166 | DictionaryAttr dictAttr; |
1167 | // Parse the core linalg traits that must check into a dictAttr. |
1168 | // The name is unimportant as we will overwrite result.attributes. |
1169 | // The core linalg traits must contain the information necessary to pass the |
1170 | // verifier. |
1171 | llvm::SMLoc attributeLocation = parser.getCurrentLocation(); |
1172 | if (parser.parseAttribute(dictAttr, "_", result.attributes)) |
1173 | return failure(); |
1174 | result.attributes.assign(dictAttr.getValue().begin(), |
1175 | dictAttr.getValue().end()); |
1176 | |
1177 | // Convert array of string into an array of IteratorType enums. This is |
1178 | // needed, because tests still use the old format when 'iterator_types' |
1179 | // attribute is represented as an array of strings. |
1180 | // TODO: Remove this conversion once tests are fixed. |
1181 | auto iteratorTypes = dyn_cast_or_null<ArrayAttr>( |
1182 | result.attributes.get(getIteratorTypesAttrName(result.name))); |
1183 | if (!iteratorTypes) { |
1184 | return parser.emitError(attributeLocation) |
1185 | << "expected "<< getIteratorTypesAttrName(result.name) |
1186 | << " array attribute"; |
1187 | } |
1188 | |
1189 | SmallVector<Attribute> iteratorTypeAttrs; |
1190 | |
1191 | for (StringRef s : iteratorTypes.getAsValueRange<StringAttr>()) { |
1192 | auto maybeIteratorType = utils::symbolizeIteratorType(s); |
1193 | if (!maybeIteratorType.has_value()) |
1194 | return parser.emitError(parser.getCurrentLocation()) |
1195 | << "unexpected iterator_type ("<< s << ")"; |
1196 | |
1197 | iteratorTypeAttrs.push_back( |
1198 | IteratorTypeAttr::get(parser.getContext(), maybeIteratorType.value())); |
1199 | } |
1200 | result.attributes.set(getIteratorTypesAttrName(result.name), |
1201 | parser.getBuilder().getArrayAttr(iteratorTypeAttrs)); |
1202 | |
1203 | // Parsing is shared with named ops, except for the region. |
1204 | SmallVector<Type, 1> inputTypes, outputTypes; |
1205 | if (parseCommonStructuredOpParts(parser, result, inputTypes, outputTypes)) |
1206 | return failure(); |
1207 | |
1208 | // Optional attributes may be added. |
1209 | if (succeeded(parser.parseOptionalKeyword("attrs"))) |
1210 | if (failed(parser.parseEqual()) || |
1211 | failed(parser.parseOptionalAttrDict(result.attributes))) |
1212 | return failure(); |
1213 | |
1214 | std::unique_ptr<Region> region = std::make_unique<Region>(); |
1215 | if (parser.parseRegion(*region, {})) |
1216 | return failure(); |
1217 | result.addRegion(std::move(region)); |
1218 | |
1219 | // Generic ops may specify that a subset of its outputs are tensors. Such |
1220 | // outputs are specified in the result type. |
1221 | // TODO: may need to move output parsing before region parsing. |
1222 | // Need to wait for declarative assembly resolution to decide. |
1223 | SmallVector<Type, 1> outputTensorsTypes; |
1224 | if (parseNamedStructuredOpResults(parser, outputTensorsTypes)) |
1225 | return failure(); |
1226 | result.addTypes(outputTensorsTypes); |
1227 | |
1228 | return success(); |
1229 | } |
1230 | |
1231 | static void getGenericEffectsImpl( |
1232 | SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> |
1233 | &effects, |
1234 | LinalgOp linalgOp) { |
1235 | for (auto [index, operand] : llvm::enumerate(linalgOp.getDpsInputs())) { |
1236 | if (!llvm::isa<MemRefType>(operand.getType())) |
1237 | continue; |
1238 | effects.emplace_back( |
1239 | MemoryEffects::Read::get(), &linalgOp->getOpOperand(index), /*stage=*/0, |
1240 | /*effectOnFullRegion=*/true, SideEffects::DefaultResource::get()); |
1241 | } |
1242 | |
1243 | for (OpOperand &operand : linalgOp.getDpsInitsMutable()) { |
1244 | if (!llvm::isa<MemRefType>(operand.get().getType())) |
1245 | continue; |
1246 | if (linalgOp.payloadUsesValueFromOperand(&operand)) { |
1247 | effects.emplace_back(MemoryEffects::Read::get(), &operand, /*stage=*/0, |
1248 | /*effectOnFullRegion=*/true, |
1249 | SideEffects::DefaultResource::get()); |
1250 | } |
1251 | effects.emplace_back(MemoryEffects::Write::get(), &operand, /*stage=*/0, |
1252 | /*effectOnFullRegion=*/true, |
1253 | SideEffects::DefaultResource::get()); |
1254 | } |
1255 | } |
1256 | |
1257 | void GenericOp::getEffects( |
1258 | SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> |
1259 | &effects) { |
1260 | getGenericEffectsImpl(effects, cast<LinalgOp>(getOperation())); |
1261 | } |
1262 | |
1263 | static Speculation::Speculatability |
1264 | getGenericSpeculatabilityImpl(LinalgOp linalgOp) { |
1265 | // Operands with value semantics are speculatable, while operands with memory |
1266 | // semantics are not. |
1267 | if (!linalgOp.hasPureTensorSemantics()) |
1268 | return Speculation::NotSpeculatable; |
1269 | // The body of the op can still have speculation in its region. |
1270 | return Speculation::RecursivelySpeculatable; |
1271 | } |
1272 | |
1273 | Speculation::Speculatability GenericOp::getSpeculatability() { |
1274 | return getGenericSpeculatabilityImpl(cast<LinalgOp>(getOperation())); |
1275 | } |
1276 | |
1277 | LogicalResult GenericOp::verify() { return success(); } |
1278 | |
1279 | namespace { |
1280 | |
1281 | /// Remove linalg operations that are just copying the values from inputs to |
1282 | /// results. In the memref case, the operation must be copying to and from the |
1283 | /// same value. Requirements are: |
1284 | /// 1) All iterator types are parallel |
1285 | /// 2) The body contains just a yield operation with the yielded values being |
1286 | /// the arguments corresponding to the operands. |
1287 | template <typename OpTy> |
1288 | struct EraseIdentityLinalgOp : public OpRewritePattern<OpTy> { |
1289 | using OpRewritePattern<OpTy>::OpRewritePattern; |
1290 | |
1291 | LogicalResult matchAndRewrite(OpTy linalgOp, |
1292 | PatternRewriter &rewriter) const override { |
1293 | // All indexing maps must be equal. It follows that they are permutations. |
1294 | if (!llvm::all_equal(linalgOp.getIndexingMapsArray())) |
1295 | return failure(); |
1296 | |
1297 | // Check that the body of the linalg operation is just a linalg.yield |
1298 | // operation. |
1299 | Block &body = linalgOp->getRegion(0).front(); |
1300 | if (!llvm::hasSingleElement(C&: body)) |
1301 | return failure(); |
1302 | auto yieldOp = dyn_cast<linalg::YieldOp>(body.getTerminator()); |
1303 | if (!yieldOp) |
1304 | return failure(); |
1305 | |
1306 | // In the buffer case, we need to check exact buffer equality. |
1307 | if (linalgOp.hasPureBufferSemantics()) { |
1308 | if (linalgOp.getNumDpsInputs() != 1 || linalgOp.getNumDpsInits() != 1 || |
1309 | linalgOp.getDpsInputOperand(0)->get() != |
1310 | linalgOp.getDpsInitOperand(0)->get()) { |
1311 | return rewriter.notifyMatchFailure( |
1312 | linalgOp, "expected single input and output to be the same value"); |
1313 | } |
1314 | |
1315 | auto yieldArg = dyn_cast<BlockArgument>(yieldOp.getOperand(0)); |
1316 | if (!yieldArg || yieldArg.getOwner() != &body) { |
1317 | return rewriter.notifyMatchFailure(linalgOp, |
1318 | "cannot fold fill-like op"); |
1319 | } |
1320 | |
1321 | rewriter.eraseOp(op: linalgOp); |
1322 | return success(); |
1323 | } |
1324 | |
1325 | if (!linalgOp.hasPureTensorSemantics()) { |
1326 | return rewriter.notifyMatchFailure( |
1327 | linalgOp, "mixed semantics is not supported yet"); |
1328 | } |
1329 | |
1330 | // Get the argument number of the returned values. That is the operand |
1331 | // number to use for replacing uses of this operation. |
1332 | SmallVector<Value> returnedArgs; |
1333 | for (const auto &yieldVal : llvm::enumerate(yieldOp.getValues())) { |
1334 | auto yieldArg = llvm::dyn_cast<BlockArgument>(yieldVal.value()); |
1335 | if (!yieldArg || yieldArg.getOwner() != &body) |
1336 | return failure(); |
1337 | unsigned argumentNumber = yieldArg.getArgNumber(); |
1338 | Value returnedArg = linalgOp->getOperand(argumentNumber); |
1339 | Type resultType = linalgOp->getResult(yieldVal.index()).getType(); |
1340 | // The input can have a different type than the result, e.g. a dynamic |
1341 | // input dimension can be turned into a static output dimension. |
1342 | Type returnType = returnedArg.getType(); |
1343 | if (returnType != resultType) { |
1344 | // Distinguish between sparse conversion or dense tensor casting. |
1345 | // TODO: unify the two ops? |
1346 | if (sparse_tensor::getSparseTensorEncoding(returnType) || |
1347 | sparse_tensor::getSparseTensorEncoding(resultType)) |
1348 | returnedArg = rewriter.create<sparse_tensor::ConvertOp>( |
1349 | linalgOp.getLoc(), resultType, returnedArg); |
1350 | else { |
1351 | if (!tensor::CastOp::areCastCompatible(returnedArg.getType(), |
1352 | resultType)) |
1353 | return failure(); |
1354 | returnedArg = rewriter.create<tensor::CastOp>( |
1355 | linalgOp.getLoc(), resultType, returnedArg); |
1356 | } |
1357 | } |
1358 | returnedArgs.push_back(returnedArg); |
1359 | } |
1360 | |
1361 | if (returnedArgs.size() != linalgOp->getNumResults()) |
1362 | return failure(); |
1363 | rewriter.replaceOp(linalgOp, returnedArgs); |
1364 | return success(); |
1365 | } |
1366 | }; |
1367 | |
1368 | } // namespace |
1369 | |
1370 | void GenericOp::getCanonicalizationPatterns(RewritePatternSet &results, |
1371 | MLIRContext *context) { |
1372 | results.add<EraseIdentityLinalgOp<GenericOp>>(context); |
1373 | } |
1374 | |
1375 | LogicalResult GenericOp::fold(FoldAdaptor, SmallVectorImpl<OpFoldResult> &) { |
1376 | return memref::foldMemRefCast(*this); |
1377 | } |
1378 | |
1379 | //===----------------------------------------------------------------------===// |
1380 | // MapOp |
1381 | //===----------------------------------------------------------------------===// |
1382 | |
1383 | static ParseResult parseDstStyleOp( |
1384 | OpAsmParser &parser, OperationState &result, |
1385 | function_ref<ParseResult(OpAsmParser &, NamedAttrList &)> parseAttrsFn = |
1386 | nullptr) { |
1387 | // Parse `ins` and `outs`. |
1388 | SmallVector<Type, 4> inputTypes, outputTypes; |
1389 | if (parseCommonStructuredOpParts(parser, result, inputTypes, outputTypes, |
1390 | /*addOperandSegmentSizes=*/false)) |
1391 | return failure(); |
1392 | |
1393 | // Add result types. |
1394 | for (Type outputType : outputTypes) { |
1395 | if (llvm::isa<RankedTensorType>(Val: outputType)) |
1396 | result.addTypes(newTypes: outputType); |
1397 | } |
1398 | |
1399 | // Parse required attributes. |
1400 | if (parseAttrsFn && failed(Result: parseAttrsFn(parser, result.attributes))) |
1401 | return failure(); |
1402 | |
1403 | // Parse optional attributes. |
1404 | if (parser.parseOptionalAttrDict(result&: result.attributes)) |
1405 | return failure(); |
1406 | return success(); |
1407 | } |
1408 | |
1409 | void MapOp::getAsmBlockArgumentNames(Region ®ion, |
1410 | OpAsmSetValueNameFn setNameFn) { |
1411 | for (Value v : getRegionInputArgs()) |
1412 | setNameFn(v, "in"); |
1413 | } |
1414 | |
1415 | void MapOp::getAsmResultNames(function_ref<void(Value, StringRef)> setNameFn) { |
1416 | if (!getResults().empty()) |
1417 | setNameFn(getResults().front(), "mapped"); |
1418 | } |
1419 | |
1420 | void MapOp::build( |
1421 | OpBuilder &builder, OperationState &result, ValueRange inputs, Value init, |
1422 | function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild, |
1423 | ArrayRef<NamedAttribute> attributes) { |
1424 | build(builder, result, TypeRange{}, inputs, init); |
1425 | result.addAttributes(attributes); |
1426 | |
1427 | // Add output types for `RankedTensorType` output arguments. |
1428 | Type initType = init.getType(); |
1429 | if (llvm::isa<RankedTensorType>(initType)) |
1430 | result.addTypes(initType); |
1431 | |
1432 | if (bodyBuild) |
1433 | buildGenericRegion(builder, result.location, *result.regions.front(), |
1434 | inputs, /*outputs=*/{}, bodyBuild); |
1435 | } |
1436 | |
1437 | static void addBodyWithPayloadOp(OpAsmParser &parser, OperationState &result, |
1438 | const OperationName &payloadOpName, |
1439 | const NamedAttrList &payloadOpAttrs, |
1440 | ArrayRef<Value> operands, |
1441 | bool initFirst = false) { |
1442 | OpBuilder b(parser.getContext()); |
1443 | Region *body = result.addRegion(); |
1444 | Block &block = body->emplaceBlock(); |
1445 | b.setInsertionPointToStart(&block); |
1446 | for (auto &operand : operands) { |
1447 | block.addArgument( |
1448 | llvm::cast<ShapedType>(operand.getType()).getElementType(), |
1449 | b.getUnknownLoc()); |
1450 | } |
1451 | SmallVector<Value> payloadOpOperands; |
1452 | // If initFirst flag is enabled, we consider init as the first position of |
1453 | // payload operands. |
1454 | if (initFirst) { |
1455 | payloadOpOperands.push_back(Elt: block.getArguments().back()); |
1456 | for (const auto &arg : block.getArguments().drop_back()) |
1457 | payloadOpOperands.push_back(Elt: arg); |
1458 | } else { |
1459 | payloadOpOperands = {block.getArguments().begin(), |
1460 | block.getArguments().end()}; |
1461 | } |
1462 | |
1463 | Operation *payloadOp = b.create( |
1464 | result.location, b.getStringAttr(payloadOpName.getStringRef()), |
1465 | payloadOpOperands, |
1466 | TypeRange{llvm::cast<ShapedType>(result.operands.back().getType()) |
1467 | .getElementType()}, |
1468 | payloadOpAttrs); |
1469 | b.create<YieldOp>(result.location, payloadOp->getResults()); |
1470 | } |
1471 | |
1472 | ParseResult MapOp::parse(OpAsmParser &parser, OperationState &result) { |
1473 | std::optional<OperationName> payloadOpName; |
1474 | NamedAttrList payloadOpAttrs; |
1475 | if (succeeded(parser.parseOptionalLBrace())) { |
1476 | FailureOr<OperationName> operationName = parser.parseCustomOperationName(); |
1477 | if (failed(operationName)) |
1478 | return failure(); |
1479 | if (parser.parseOptionalAttrDict(payloadOpAttrs)) |
1480 | return failure(); |
1481 | payloadOpName = operationName.value(); |
1482 | if (parser.parseRBrace()) |
1483 | return failure(); |
1484 | } |
1485 | |
1486 | if (parseDstStyleOp(parser, result)) |
1487 | return failure(); |
1488 | |
1489 | if (payloadOpName.has_value()) { |
1490 | if (!result.operands.empty()) |
1491 | addBodyWithPayloadOp(parser, result, payloadOpName.value(), |
1492 | payloadOpAttrs, |
1493 | ArrayRef(result.operands).drop_back()); |
1494 | else |
1495 | result.addRegion(); |
1496 | } else { |
1497 | SmallVector<OpAsmParser::Argument> regionArgs; |
1498 | if (parser.parseArgumentList(regionArgs, OpAsmParser::Delimiter::Paren, |
1499 | /*allowType=*/true, /*allowAttrs=*/true)) { |
1500 | return failure(); |
1501 | } |
1502 | Region *body = result.addRegion(); |
1503 | if (parser.parseRegion(*body, regionArgs)) |
1504 | return failure(); |
1505 | } |
1506 | return success(); |
1507 | } |
1508 | |
1509 | // Retrieve the operation from the body, if it is the only one (except |
1510 | // yield) and if it gets the same amount of arguments as the body does. |
1511 | // If initFirst flag is enabled, we check that init takes the first position in |
1512 | // operands of payload. |
1513 | static Operation *findPayloadOp(Block *body, bool initFirst = false) { |
1514 | if (body->getOperations().size() != 2) |
1515 | return nullptr; |
1516 | Operation &payload = body->getOperations().front(); |
1517 | assert(isa<YieldOp>(body->getOperations().back())); |
1518 | |
1519 | if (payload.getNumOperands() == 0 || |
1520 | payload.getNumOperands() != body->getNumArguments()) |
1521 | return nullptr; |
1522 | if (initFirst) { |
1523 | // check init |
1524 | if (payload.getOperands().back() != body->getArgument(i: 0)) |
1525 | return nullptr; |
1526 | // check rest |
1527 | for (const auto &[operand, bbArg] : |
1528 | llvm::zip(t: payload.getOperands(), u: body->getArguments().drop_front())) { |
1529 | if (bbArg != operand) |
1530 | return nullptr; |
1531 | } |
1532 | } else { |
1533 | for (const auto &[operand, bbArg] : |
1534 | llvm::zip(t: payload.getOperands(), u: body->getArguments())) { |
1535 | if (bbArg != operand) |
1536 | return nullptr; |
1537 | } |
1538 | } |
1539 | return &payload; |
1540 | } |
1541 | |
1542 | void printShortForm(OpAsmPrinter &p, Operation *payloadOp) { |
1543 | SmallVector<StringRef> elidedAttrs; |
1544 | std::string attrToElide; |
1545 | p << " { "<< payloadOp->getName().getStringRef(); |
1546 | for (const auto &attr : payloadOp->getAttrs()) { |
1547 | auto fastAttr = |
1548 | llvm::dyn_cast<mlir::arith::FastMathFlagsAttr>(attr.getValue()); |
1549 | if (fastAttr && fastAttr.getValue() == mlir::arith::FastMathFlags::none) { |
1550 | attrToElide = attr.getName().str(); |
1551 | elidedAttrs.push_back(Elt: attrToElide); |
1552 | break; |
1553 | } |
1554 | } |
1555 | p.printOptionalAttrDict(attrs: payloadOp->getAttrs(), elidedAttrs); |
1556 | p << " }"; |
1557 | } |
1558 | |
1559 | void MapOp::print(OpAsmPrinter &p) { |
1560 | Block *mapper = getBody(); |
1561 | Operation *payloadOp = findPayloadOp(mapper); |
1562 | if (payloadOp) { |
1563 | printShortForm(p, payloadOp); |
1564 | } |
1565 | |
1566 | printCommonStructuredOpParts(p, getDpsInputs(), getDpsInits()); |
1567 | p.printOptionalAttrDict((*this)->getAttrs()); |
1568 | |
1569 | if (!payloadOp) { |
1570 | // Print region if the payload op was not detected. |
1571 | p.increaseIndent(); |
1572 | p.printNewline(); |
1573 | p << "("; |
1574 | llvm::interleaveComma(mapper->getArguments(), p, |
1575 | [&](auto arg) { p.printRegionArgument(arg); }); |
1576 | p << ") "; |
1577 | |
1578 | p.printRegion(getMapper(), /*printEntryBlockArgs=*/false); |
1579 | p.decreaseIndent(); |
1580 | } |
1581 | } |
1582 | |
1583 | LogicalResult MapOp::verify() { |
1584 | auto *bodyBlock = getBody(); |
1585 | auto blockArgs = bodyBlock->getArguments(); |
1586 | |
1587 | // Checks if the number of `inputs` match the arity of the `mapper` region. |
1588 | if (getInputs().size() != blockArgs.size()) |
1589 | return emitOpError() << "expects number of operands to match the arity of " |
1590 | "mapper, but got: " |
1591 | << getInputs().size() << " and "<< blockArgs.size(); |
1592 | |
1593 | // The parameters of mapper should all match the element type of inputs. |
1594 | for (const auto &[bbArgType, inputArg] : |
1595 | llvm::zip(bodyBlock->getArgumentTypes(), getInputs())) { |
1596 | auto inputElemType = |
1597 | llvm::cast<ShapedType>(inputArg.getType()).getElementType(); |
1598 | if (bbArgType != inputElemType) { |
1599 | return emitOpError() << "expected element type of input "<< inputElemType |
1600 | << " to match bbArg type "<< bbArgType; |
1601 | } |
1602 | } |
1603 | |
1604 | // The shape of each input must match the shape of the output. |
1605 | auto outputShape = getInit().getType().getShape(); |
1606 | for (Type inputArgType : TypeRange{getInputs()}) { |
1607 | auto inputElemShape = llvm::cast<ShapedType>(inputArgType).getShape(); |
1608 | if (inputElemShape != outputShape) { |
1609 | return emitOpError() << "expected shape of input ("<< inputElemShape |
1610 | << ") to match shape of output ("<< outputShape |
1611 | << ")"; |
1612 | } |
1613 | } |
1614 | |
1615 | return success(); |
1616 | } |
1617 | |
1618 | SmallVector<utils::IteratorType> MapOp::getIteratorTypesArray() { |
1619 | int64_t rank = getInit().getType().getRank(); |
1620 | return SmallVector<utils::IteratorType>(rank, utils::IteratorType::parallel); |
1621 | } |
1622 | |
1623 | ArrayAttr MapOp::getIndexingMaps() { |
1624 | Builder builder(getContext()); |
1625 | int64_t rank = getInit().getType().getRank(); |
1626 | int64_t numIndexingMaps = getOperands().size(); |
1627 | return builder.getAffineMapArrayAttr(SmallVector<AffineMap>( |
1628 | numIndexingMaps, builder.getMultiDimIdentityMap(rank))); |
1629 | } |
1630 | |
1631 | void MapOp::getEffects( |
1632 | SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> |
1633 | &effects) { |
1634 | getGenericEffectsImpl(effects, cast<LinalgOp>(getOperation())); |
1635 | } |
1636 | |
1637 | Speculation::Speculatability MapOp::getSpeculatability() { |
1638 | return getGenericSpeculatabilityImpl(cast<LinalgOp>(getOperation())); |
1639 | } |
1640 | |
1641 | //===----------------------------------------------------------------------===// |
1642 | // ReduceOp |
1643 | //===----------------------------------------------------------------------===// |
1644 | |
1645 | void ReduceOp::getAsmBlockArgumentNames(Region ®ion, |
1646 | OpAsmSetValueNameFn setNameFn) { |
1647 | for (Value v : getRegionInputArgs()) |
1648 | setNameFn(v, "in"); |
1649 | for (Value v : getRegionOutputArgs()) |
1650 | setNameFn(v, "init"); |
1651 | } |
1652 | |
1653 | void ReduceOp::getAsmResultNames( |
1654 | function_ref<void(Value, StringRef)> setNameFn) { |
1655 | if (!getResults().empty()) |
1656 | setNameFn(getResults().front(), "reduced"); |
1657 | } |
1658 | |
1659 | void ReduceOp::build( |
1660 | OpBuilder &builder, OperationState &result, ValueRange inputs, |
1661 | ValueRange inits, ArrayRef<int64_t> dimensions, |
1662 | function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild, |
1663 | ArrayRef<NamedAttribute> attributes) { |
1664 | build(builder, result, TypeRange{}, inputs, inits, dimensions); |
1665 | result.addAttributes(attributes); |
1666 | |
1667 | // Add output types for `RankedTensorType` output arguments. |
1668 | for (Value init : inits) { |
1669 | Type initType = init.getType(); |
1670 | if (llvm::isa<RankedTensorType>(initType)) |
1671 | result.addTypes(initType); |
1672 | } |
1673 | |
1674 | if (bodyBuild) |
1675 | buildGenericRegion(builder, result.location, *result.regions.front(), |
1676 | inputs, inits, bodyBuild); |
1677 | } |
1678 | |
1679 | SmallVector<utils::IteratorType> ReduceOp::getIteratorTypesArray() { |
1680 | int64_t inputRank = |
1681 | llvm::cast<ShapedType>(getInputs()[0].getType()).getRank(); |
1682 | SmallVector<utils::IteratorType> iteratorTypes(inputRank, |
1683 | utils::IteratorType::parallel); |
1684 | for (int64_t reductionDim : getDimensions()) |
1685 | iteratorTypes[reductionDim] = utils::IteratorType::reduction; |
1686 | return iteratorTypes; |
1687 | } |
1688 | |
1689 | ArrayAttr ReduceOp::getIndexingMaps() { |
1690 | int64_t inputRank = |
1691 | llvm::cast<ShapedType>(getInputs()[0].getType()).getRank(); |
1692 | SmallVector<AffineMap> affineMaps( |
1693 | getNumDpsInputs(), |
1694 | AffineMap::getMultiDimIdentityMap(inputRank, getContext())); |
1695 | AffineMap resultMap = |
1696 | AffineMap::getMultiDimIdentityMap(inputRank, getContext()) |
1697 | .dropResults(getDimensions()); |
1698 | for (int64_t i = 0, e = getNumDpsInits(); i < e; ++i) |
1699 | affineMaps.push_back(resultMap); |
1700 | return Builder(getContext()).getAffineMapArrayAttr(affineMaps); |
1701 | } |
1702 | |
1703 | void ReduceOp::getEffects( |
1704 | SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> |
1705 | &effects) { |
1706 | getGenericEffectsImpl(effects, cast<LinalgOp>(getOperation())); |
1707 | } |
1708 | |
1709 | Speculation::Speculatability ReduceOp::getSpeculatability() { |
1710 | return getGenericSpeculatabilityImpl(cast<LinalgOp>(getOperation())); |
1711 | } |
1712 | |
1713 | static ParseResult parseDenseI64ArrayAttr(OpAsmParser &parser, |
1714 | NamedAttrList &attributes, |
1715 | StringRef attributeName) { |
1716 | if (parser.parseKeyword(keyword: attributeName) || parser.parseEqual()) |
1717 | return failure(); |
1718 | |
1719 | attributes.set(attributeName, DenseI64ArrayAttr::parse(parser, Type{})); |
1720 | return success(); |
1721 | } |
1722 | |
1723 | ParseResult ReduceOp::parse(OpAsmParser &parser, OperationState &result) { |
1724 | std::optional<OperationName> payloadOpName; |
1725 | NamedAttrList payloadOpAttrs; |
1726 | if (succeeded(parser.parseOptionalLBrace())) { |
1727 | FailureOr<OperationName> operationName = parser.parseCustomOperationName(); |
1728 | if (failed(operationName)) |
1729 | return failure(); |
1730 | if (parser.parseOptionalAttrDict(payloadOpAttrs)) |
1731 | return failure(); |
1732 | payloadOpName = operationName.value(); |
1733 | if (parser.parseRBrace()) |
1734 | return failure(); |
1735 | } |
1736 | |
1737 | if (parseDstStyleOp( |
1738 | parser, result, [&](OpAsmParser &parser, NamedAttrList &attributes) { |
1739 | return parseDenseI64ArrayAttr(parser, attributes, "dimensions"); |
1740 | })) |
1741 | return failure(); |
1742 | |
1743 | if (payloadOpName.has_value()) { |
1744 | addBodyWithPayloadOp(parser, result, payloadOpName.value(), payloadOpAttrs, |
1745 | ArrayRef(result.operands), /*initFirst=*/true); |
1746 | } else { |
1747 | SmallVector<OpAsmParser::Argument> regionArgs; |
1748 | if (parser.parseArgumentList(regionArgs, OpAsmParser::Delimiter::Paren, |
1749 | /*allowType=*/true, /*allowAttrs=*/true)) { |
1750 | return failure(); |
1751 | } |
1752 | |
1753 | Region *body = result.addRegion(); |
1754 | if (parser.parseRegion(*body, regionArgs)) |
1755 | return failure(); |
1756 | } |
1757 | |
1758 | return success(); |
1759 | } |
1760 | |
1761 | static void printDenseI64ArrayAttr(OpAsmPrinter &p, StringRef attributeName, |
1762 | ArrayRef<int64_t> attributeValue) { |
1763 | p << ' ' << attributeName << " = ["<< attributeValue << "] "; |
1764 | } |
1765 | |
1766 | void ReduceOp::print(OpAsmPrinter &p) { |
1767 | Block *mapper = getBody(); |
1768 | Operation *payloadOp = findPayloadOp(mapper, /*initFirst=*/true); |
1769 | if (payloadOp) { |
1770 | printShortForm(p, payloadOp); |
1771 | } |
1772 | |
1773 | printCommonStructuredOpParts(p, getDpsInputs(), getDpsInits()); |
1774 | printDenseI64ArrayAttr(p, getDimensionsAttrName(), getDimensions()); |
1775 | p.printOptionalAttrDict((*this)->getAttrs(), {getDimensionsAttrName()}); |
1776 | if (!payloadOp) { |
1777 | // Print region if the payload op was not detected. |
1778 | p.increaseIndent(); |
1779 | p.printNewline(); |
1780 | p << "("; |
1781 | llvm::interleaveComma(mapper->getArguments(), p, |
1782 | [&](auto arg) { p.printRegionArgument(arg); }); |
1783 | p << ") "; |
1784 | |
1785 | p.printRegion(getCombiner(), /*printEntryBlockArgs=*/false); |
1786 | p.decreaseIndent(); |
1787 | } |
1788 | } |
1789 | |
1790 | LogicalResult ReduceOp::verify() { |
1791 | ArrayRef<int64_t> dimensionsRef = getDimensions(); |
1792 | |
1793 | for (int64_t i = 1; i < getNumDpsInputs(); ++i) { |
1794 | if (llvm::cast<ShapedType>(getInputs()[i].getType()).getShape() != |
1795 | llvm::cast<ShapedType>(getInputs()[0].getType()).getShape()) { |
1796 | return emitOpError() << "expects all inputs to have the same shapes. " |
1797 | "Shape at input-index " |
1798 | << i |
1799 | << " is not equal to the shape at input-index 0."; |
1800 | } |
1801 | } |
1802 | for (int64_t i = 1; i < getNumDpsInits(); ++i) { |
1803 | if (llvm::cast<ShapedType>(getInits()[i].getType()).getShape() != |
1804 | llvm::cast<ShapedType>(getInits()[0].getType()).getShape()) { |
1805 | return emitOpError() << "expects all outputs to have the same shapes. " |
1806 | "Shape at output-index " |
1807 | << i |
1808 | << " is not equal to the shape at output-index 0."; |
1809 | } |
1810 | } |
1811 | auto inputType = llvm::cast<ShapedType>(getInputs()[0].getType()); |
1812 | auto initType = llvm::cast<ShapedType>(getInits()[0].getType()); |
1813 | |
1814 | DenseSet<int64_t> dimensionsToReduce; |
1815 | for (int64_t dimension : dimensionsRef) { |
1816 | if (dimension < 0 || dimension >= inputType.getRank()) { |
1817 | return emitOpError() |
1818 | << "dimensions for reduction should be in the range [0, " |
1819 | << inputType.getRank() - 1 << "]."; |
1820 | } |
1821 | dimensionsToReduce.insert(dimension); |
1822 | } |
1823 | |
1824 | auto inputDims = inputType.getShape(); |
1825 | auto initDims = initType.getShape(); |
1826 | |
1827 | // Input dimensions that will be left after the reduction. |
1828 | SmallVector<int64_t> reducedInputDims; |
1829 | for (const auto &en : llvm::enumerate(inputDims)) { |
1830 | if (!dimensionsToReduce.count(en.index())) |
1831 | reducedInputDims.push_back(en.value()); |
1832 | } |
1833 | |
1834 | if (reducedInputDims.size() != static_cast<size_t>(initType.getRank())) { |
1835 | return emitOpError() << "number of dimensions after reduction " |
1836 | << reducedInputDims.size() |
1837 | << " doesn't match the init rank " |
1838 | << initType.getRank(); |
1839 | } |
1840 | |
1841 | if (reducedInputDims != initDims) |
1842 | return emitOpError() << "init dimensions ["<< initDims |
1843 | << "] doesn't match input dimensions after reduction [" |
1844 | << reducedInputDims << "]"; |
1845 | |
1846 | Block *block = getBody(); |
1847 | if (block->getNumArguments() != this->getNumOperands()) |
1848 | return emitOpError() |
1849 | << "mismatching number of operands and block arguments"; |
1850 | |
1851 | // Check that the first block arguments match the element type of the inputs. |
1852 | for (auto [input, bbArg] : llvm::zip(getInputs(), block->getArguments())) { |
1853 | Type inputElementType = |
1854 | llvm::cast<ShapedType>(input.getType()).getElementType(); |
1855 | if (inputElementType != bbArg.getType()) |
1856 | return emitOpError() |
1857 | << "input element type "<< inputElementType |
1858 | << " does not match corresponding block argument type " |
1859 | << bbArg.getType(); |
1860 | } |
1861 | |
1862 | // Check that the last block arguments match the element type of the outputs. |
1863 | for (auto [output, bbArg] : llvm::zip( |
1864 | getDpsInits(), block->getArguments().take_back(getNumDpsInits()))) { |
1865 | auto outputElementType = |
1866 | llvm::cast<ShapedType>(output.getType()).getElementType(); |
1867 | if (outputElementType != bbArg.getType()) |
1868 | return emitOpError() |
1869 | << "output element type "<< outputElementType |
1870 | << " does not match corresponding block argument type " |
1871 | << bbArg.getType(); |
1872 | } |
1873 | return success(); |
1874 | } |
1875 | |
1876 | //===----------------------------------------------------------------------===// |
1877 | // TransposeOp |
1878 | //===----------------------------------------------------------------------===// |
1879 | |
1880 | static void buildIdentityRegion(OpBuilder &builder, Location loc, |
1881 | Region ®ion, ValueRange inputs, |
1882 | ValueRange outputs) { |
1883 | buildGenericRegion(builder, loc, region, inputs, outputs, |
1884 | bodyBuild: [](OpBuilder &b, Location loc, ValueRange args) { |
1885 | if (!args.empty()) |
1886 | b.create<linalg::YieldOp>(loc, args[0]); |
1887 | }); |
1888 | } |
1889 | |
1890 | void TransposeOp::build(::mlir::OpBuilder &builder, |
1891 | ::mlir::OperationState &result, Value input, Value init, |
1892 | DenseI64ArrayAttr permutation, |
1893 | ArrayRef<NamedAttribute> attributes) { |
1894 | result.addOperands(input); |
1895 | result.addOperands(init); |
1896 | result.addAttribute(getPermutationAttrName(result.name), permutation); |
1897 | result.addAttributes(attributes); |
1898 | |
1899 | // Add output types for `RankedTensorType` output arguments. |
1900 | Type initType = init.getType(); |
1901 | if (llvm::isa<RankedTensorType>(initType)) |
1902 | result.addTypes(initType); |
1903 | |
1904 | buildIdentityRegion(builder, result.location, *result.addRegion(), input, |
1905 | init); |
1906 | } |
1907 | |
1908 | void TransposeOp::build(::mlir::OpBuilder &builder, |
1909 | ::mlir::OperationState &result, Value input, Value init, |
1910 | ArrayRef<int64_t> permutation, |
1911 | ArrayRef<NamedAttribute> attributes) { |
1912 | build(builder, result, input, init, builder.getDenseI64ArrayAttr(permutation), |
1913 | attributes); |
1914 | } |
1915 | |
1916 | ParseResult TransposeOp::parse(OpAsmParser &parser, OperationState &result) { |
1917 | if (failed(parseDstStyleOp( |
1918 | parser, result, [&](OpAsmParser &parser, NamedAttrList &attributes) { |
1919 | return parseDenseI64ArrayAttr(parser, attributes, "permutation"); |
1920 | }))) |
1921 | return failure(); |
1922 | |
1923 | OpBuilder builder(parser.getContext()); |
1924 | buildIdentityRegion(builder, result.location, *result.addRegion(), |
1925 | /*inputs=*/result.operands, |
1926 | /*outputs=*/{}); |
1927 | return success(); |
1928 | } |
1929 | |
1930 | void TransposeOp::getAsmResultNames( |
1931 | function_ref<void(Value, StringRef)> setNameFn) { |
1932 | if (!getResults().empty()) |
1933 | setNameFn(getResults().front(), "transposed"); |
1934 | } |
1935 | |
1936 | void TransposeOp::print(OpAsmPrinter &p) { |
1937 | printCommonStructuredOpParts(p, getDpsInputs(), getDpsInits()); |
1938 | printDenseI64ArrayAttr(p, getPermutationAttrName(), getPermutation()); |
1939 | p.printOptionalAttrDict((*this)->getAttrs(), {getPermutationAttrName()}); |
1940 | } |
1941 | |
1942 | LogicalResult TransposeOp::verify() { |
1943 | ArrayRef<int64_t> permutationRef = getPermutation(); |
1944 | |
1945 | if (!isPermutationVector(permutationRef)) |
1946 | return emitOpError("permutation is not valid"); |
1947 | |
1948 | auto inputType = getInput().getType(); |
1949 | auto initType = getInit().getType(); |
1950 | |
1951 | int64_t rank = inputType.getRank(); |
1952 | |
1953 | if (rank != initType.getRank()) |
1954 | return emitOpError() << "input rank "<< rank |
1955 | << " does not match init rank "<< initType.getRank(); |
1956 | |
1957 | if (rank != static_cast<int64_t>(permutationRef.size())) |
1958 | return emitOpError() << "size of permutation "<< permutationRef.size() |
1959 | << " does not match the argument rank "<< rank; |
1960 | |
1961 | auto inputDims = inputType.getShape(); |
1962 | auto initDims = initType.getShape(); |
1963 | |
1964 | for (int64_t i = 0; i < rank; ++i) { |
1965 | int64_t inputDim = inputDims[permutationRef[i]]; |
1966 | int64_t initDim = initDims[i]; |
1967 | |
1968 | if (inputDim != initDim) { |
1969 | return emitOpError() << "dim(result, "<< i << ") = "<< initDim |
1970 | << " doesn't match dim(input, permutation["<< i |
1971 | << "]) = "<< inputDim; |
1972 | } |
1973 | } |
1974 | |
1975 | return success(); |
1976 | } |
1977 | |
1978 | SmallVector<utils::IteratorType> TransposeOp::getIteratorTypesArray() { |
1979 | int64_t rank = getInit().getType().getRank(); |
1980 | return SmallVector<utils::IteratorType>(rank, utils::IteratorType::parallel); |
1981 | } |
1982 | |
1983 | ArrayAttr TransposeOp::getIndexingMaps() { |
1984 | Builder builder(getContext()); |
1985 | int64_t rank = getInit().getType().getRank(); |
1986 | return builder.getAffineMapArrayAttr( |
1987 | {inversePermutation(AffineMap::getPermutationMap( |
1988 | llvm::to_vector_of<unsigned>(getPermutation()), getContext())), |
1989 | builder.getMultiDimIdentityMap(rank)}); |
1990 | } |
1991 | |
1992 | void TransposeOp::getEffects( |
1993 | SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> |
1994 | &effects) { |
1995 | getGenericEffectsImpl(effects, cast<LinalgOp>(getOperation())); |
1996 | } |
1997 | |
1998 | Speculation::Speculatability TransposeOp::getSpeculatability() { |
1999 | return getGenericSpeculatabilityImpl(cast<LinalgOp>(getOperation())); |
2000 | } |
2001 | |
2002 | LogicalResult TransposeOp::fold(FoldAdaptor adaptor, |
2003 | SmallVectorImpl<OpFoldResult> &result) { |
2004 | // Only the tensor type is supported. |
2005 | if (!isa<TensorType>(getInput().getType())) |
2006 | return failure(); |
2007 | |
2008 | // Single dimension transpose. |
2009 | if (getPermutation().size() == 0) { |
2010 | result.push_back(getInput()); |
2011 | return success(); |
2012 | } |
2013 | // Identity permutation. |
2014 | if (isIdentityPermutation(getPermutation())) { |
2015 | result.push_back(getInput()); |
2016 | return success(); |
2017 | } |
2018 | |
2019 | return failure(); |
2020 | } |
2021 | |
2022 | /// Fold transpose with transpose. |
2023 | struct FoldTransposeWithTranspose : OpRewritePattern<linalg::TransposeOp> { |
2024 | using OpRewritePattern<linalg::TransposeOp>::OpRewritePattern; |
2025 | |
2026 | LogicalResult matchAndRewrite(linalg::TransposeOp transposeOp, |
2027 | PatternRewriter &rewriter) const override { |
2028 | auto defTransposeOp = transposeOp.getInput().getDefiningOp<TransposeOp>(); |
2029 | if (!defTransposeOp) |
2030 | return failure(); |
2031 | ArrayRef<int64_t> defPerms = defTransposeOp.getPermutation(); |
2032 | ArrayRef<int64_t> perms = transposeOp.getPermutation(); |
2033 | SmallVector<int64_t> foldedPerms; |
2034 | foldedPerms.reserve(N: perms.size()); |
2035 | for (int64_t perm : perms) |
2036 | foldedPerms.push_back(defPerms[perm]); |
2037 | |
2038 | rewriter.replaceOpWithNewOp<TransposeOp>( |
2039 | transposeOp, defTransposeOp.getInput(), transposeOp.getInit(), |
2040 | foldedPerms); |
2041 | return success(); |
2042 | } |
2043 | }; |
2044 | |
2045 | /// This pattern canonicalize transpose by swapping the order of |
2046 | /// broadcast and transpose: |
2047 | /// transpose(broadcast(input)) -> broadcast(transpose(input)) |
2048 | struct SwapTransposeWithBroadcast : OpRewritePattern<linalg::TransposeOp> { |
2049 | using OpRewritePattern<linalg::TransposeOp>::OpRewritePattern; |
2050 | |
2051 | LogicalResult matchAndRewrite(linalg::TransposeOp transposeOp, |
2052 | PatternRewriter &rewriter) const override { |
2053 | Value input = transposeOp.getInput(); |
2054 | BroadcastOp broadcastOp = input.getDefiningOp<BroadcastOp>(); |
2055 | if (!input.hasOneUse() || !broadcastOp) |
2056 | return failure(); |
2057 | |
2058 | ArrayRef<int64_t> dimensions = broadcastOp.getDimensions(); |
2059 | ArrayRef<int64_t> perms = transposeOp.getPermutation(); |
2060 | |
2061 | // Get new perms and new dimensions. |
2062 | SmallVector<int64_t> resultPerms = dropDims(inputPerm: perms, dropPositions: dimensions); |
2063 | SmallVector<int64_t> invertPerm = invertPermutationVector(permutation: perms); |
2064 | SmallVector<int64_t> resultDimensions; |
2065 | unsigned dimensionSize = dimensions.size(); |
2066 | for (unsigned i = 0; i < dimensionSize; ++i) |
2067 | resultDimensions.push_back(Elt: invertPerm[dimensions[i]]); |
2068 | |
2069 | // Create transpose result. |
2070 | Value broadcastInput = broadcastOp.getInput(); |
2071 | Location loc = transposeOp.getLoc(); |
2072 | MLIRContext *ctx = transposeOp.getContext(); |
2073 | SmallVector<OpFoldResult> dims; |
2074 | auto broadcastInputTy = |
2075 | mlir::cast<RankedTensorType>(broadcastInput.getType()); |
2076 | unsigned inputRank = broadcastInputTy.getRank(); |
2077 | for (unsigned i = 0; i < inputRank; ++i) { |
2078 | if (broadcastInputTy.isDynamicDim(i)) { |
2079 | dims.push_back(rewriter.create<tensor::DimOp>(loc, broadcastInput, i) |
2080 | ->getResult(0)); |
2081 | } else { |
2082 | dims.push_back(IntegerAttr::get(IndexType::get(ctx), |
2083 | broadcastInputTy.getDimSize(i))); |
2084 | } |
2085 | } |
2086 | SmallVector<OpFoldResult> transposeResultShapes = |
2087 | applyPermutation(input: dims, permutation: resultPerms); |
2088 | Value transposeInit = rewriter.create<tensor::EmptyOp>( |
2089 | transposeOp.getLoc(), transposeResultShapes, |
2090 | broadcastInputTy.getElementType()); |
2091 | |
2092 | // Create broadcast(transpose(input)). |
2093 | Value transposeResult = |
2094 | rewriter |
2095 | .create<TransposeOp>(loc, broadcastOp.getInput(), transposeInit, |
2096 | resultPerms) |
2097 | ->getResult(0); |
2098 | rewriter.replaceOpWithNewOp<BroadcastOp>( |
2099 | transposeOp, transposeResult, transposeOp.getInit(), resultDimensions); |
2100 | return success(); |
2101 | } |
2102 | }; |
2103 | |
2104 | void TransposeOp::getCanonicalizationPatterns(RewritePatternSet &results, |
2105 | MLIRContext *context) { |
2106 | results.add<FoldTransposeWithTranspose, SwapTransposeWithBroadcast>(context); |
2107 | } |
2108 | |
2109 | //===----------------------------------------------------------------------===// |
2110 | // BroadcastOp |
2111 | //===----------------------------------------------------------------------===// |
2112 | |
2113 | void BroadcastOp::build(::mlir::OpBuilder &builder, |
2114 | ::mlir::OperationState &result, Value input, Value init, |
2115 | DenseI64ArrayAttr dimensions, |
2116 | ArrayRef<NamedAttribute> attributes) { |
2117 | result.addOperands(input); |
2118 | result.addOperands(init); |
2119 | result.addAttribute(getDimensionsAttrName(result.name), dimensions); |
2120 | result.addAttributes(attributes); |
2121 | |
2122 | // Add output types for `RankedTensorType` output arguments. |
2123 | Type initType = init.getType(); |
2124 | if (llvm::isa<RankedTensorType>(initType)) |
2125 | result.addTypes(initType); |
2126 | |
2127 | buildIdentityRegion(builder, result.location, *result.addRegion(), input, |
2128 | init); |
2129 | } |
2130 | |
2131 | void BroadcastOp::build(::mlir::OpBuilder &builder, |
2132 | ::mlir::OperationState &result, Value input, Value init, |
2133 | ArrayRef<int64_t> dimensions, |
2134 | ArrayRef<NamedAttribute> attributes) { |
2135 | build(builder, result, input, init, builder.getDenseI64ArrayAttr(dimensions), |
2136 | attributes); |
2137 | } |
2138 | |
2139 | ParseResult BroadcastOp::parse(OpAsmParser &parser, OperationState &result) { |
2140 | if (failed(parseDstStyleOp( |
2141 | parser, result, [&](OpAsmParser &parser, NamedAttrList &attributes) { |
2142 | return parseDenseI64ArrayAttr(parser, attributes, "dimensions"); |
2143 | }))) |
2144 | return failure(); |
2145 | |
2146 | OpBuilder builder(parser.getContext()); |
2147 | buildIdentityRegion(builder, result.location, *result.addRegion(), |
2148 | /*inputs=*/result.operands, |
2149 | /*outputs=*/{}); |
2150 | return success(); |
2151 | } |
2152 | |
2153 | void BroadcastOp::getAsmResultNames( |
2154 | function_ref<void(Value, StringRef)> setNameFn) { |
2155 | if (!getResults().empty()) |
2156 | setNameFn(getResults().front(), "broadcasted"); |
2157 | } |
2158 | |
2159 | void BroadcastOp::print(OpAsmPrinter &p) { |
2160 | printCommonStructuredOpParts(p, getDpsInputs(), getDpsInits()); |
2161 | printDenseI64ArrayAttr(p, getDimensionsAttrName(), getDimensions()); |
2162 | p.printOptionalAttrDict((*this)->getAttrs(), {getDimensionsAttrName()}); |
2163 | } |
2164 | |
2165 | LogicalResult BroadcastOp::verify() { |
2166 | ArrayRef<int64_t> dimensionsRef = getDimensions(); |
2167 | |
2168 | auto inputType = getInput().getType(); |
2169 | auto initType = getInit().getType(); |
2170 | |
2171 | int64_t inputRank = inputType.getRank(); |
2172 | int64_t initRank = initType.getRank(); |
2173 | |
2174 | auto inputShape = inputType.getShape(); |
2175 | auto initShape = initType.getShape(); |
2176 | |
2177 | if ((size_t)inputRank + dimensionsRef.size() != (size_t)initRank) |
2178 | return emitOpError() << "input rank plus added dimensions does not " |
2179 | "match init rank. input rank: " |
2180 | << inputRank |
2181 | << ", dimensions size: "<< dimensionsRef.size() |
2182 | << ", init rank: "<< initRank; |
2183 | |
2184 | for (const auto &[idx, dim] : llvm::enumerate(dimensionsRef)) { |
2185 | if (dim < 0 || dim >= initRank) |
2186 | return emitOpError() << "dimension "<< idx |
2187 | << " is out of range. expected range: [0, " |
2188 | << initRank - 1 << "], got: "<< dim; |
2189 | } |
2190 | |
2191 | // Mapping from input dims to init dims. |
2192 | SmallVector<int64_t> dimMap; |
2193 | for (auto dim : llvm::seq<int64_t>(0, initRank)) { |
2194 | if (!llvm::is_contained(dimensionsRef, dim)) |
2195 | dimMap.push_back(dim); |
2196 | } |
2197 | |
2198 | for (const auto &[inputDimIdx, initDimIdx] : llvm::enumerate(dimMap)) { |
2199 | // This dimensions is mapped from the input. Init and input dims should |
2200 | // match. |
2201 | if (inputShape[inputDimIdx] != initShape[initDimIdx]) |
2202 | return emitOpError() << "input dim "<< inputDimIdx |
2203 | << " should match init dim "<< initDimIdx |
2204 | << ". input: "<< inputShape[inputDimIdx] |
2205 | << ", init: "<< initShape[initDimIdx]; |
2206 | } |
2207 | |
2208 | return success(); |
2209 | } |
2210 | |
2211 | SmallVector<utils::IteratorType> BroadcastOp::getIteratorTypesArray() { |
2212 | int64_t rank = getInit().getType().getRank(); |
2213 | return SmallVector<utils::IteratorType>(rank, utils::IteratorType::parallel); |
2214 | } |
2215 | |
2216 | ArrayAttr BroadcastOp::getIndexingMaps() { |
2217 | Builder builder(getContext()); |
2218 | int64_t rank = getInit().getType().getRank(); |
2219 | return builder.getAffineMapArrayAttr( |
2220 | {builder.getMultiDimIdentityMap(rank).dropResults(getDimensions()), |
2221 | builder.getMultiDimIdentityMap(rank)}); |
2222 | } |
2223 | |
2224 | void BroadcastOp::getEffects( |
2225 | SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> |
2226 | &effects) { |
2227 | getGenericEffectsImpl(effects, cast<LinalgOp>(getOperation())); |
2228 | } |
2229 | |
2230 | Speculation::Speculatability BroadcastOp::getSpeculatability() { |
2231 | return getGenericSpeculatabilityImpl(cast<LinalgOp>(getOperation())); |
2232 | } |
2233 | |
2234 | void BroadcastOp::getCanonicalizationPatterns(RewritePatternSet &results, |
2235 | MLIRContext *context) { |
2236 | results.add<EraseIdentityLinalgOp<BroadcastOp>>(context); |
2237 | } |
2238 | |
2239 | //===----------------------------------------------------------------------===// |
2240 | // YieldOp |
2241 | //===----------------------------------------------------------------------===// |
2242 | |
2243 | void linalg::YieldOp::print(OpAsmPrinter &p) { |
2244 | if (getNumOperands() > 0) |
2245 | p << ' ' << getOperands(); |
2246 | p.printOptionalAttrDict((*this)->getAttrs()); |
2247 | if (getNumOperands() > 0) |
2248 | p << " : "<< getOperandTypes(); |
2249 | } |
2250 | |
2251 | ParseResult YieldOp::parse(OpAsmParser &parser, OperationState &result) { |
2252 | SmallVector<OpAsmParser::UnresolvedOperand, 2> opInfo; |
2253 | SmallVector<Type, 2> types; |
2254 | SMLoc loc = parser.getCurrentLocation(); |
2255 | return failure(parser.parseOperandList(opInfo) || |
2256 | parser.parseOptionalAttrDict(result.attributes) || |
2257 | (!opInfo.empty() && parser.parseColonTypeList(types)) || |
2258 | parser.resolveOperands(opInfo, types, loc, result.operands)); |
2259 | } |
2260 | |
2261 | // Check the operand number and types must match the element types of the |
2262 | // LinalgOp interface's shaped operands. |
2263 | static LogicalResult verifyYield(linalg::YieldOp op, LinalgOp linalgOp) { |
2264 | if (op.getNumOperands() != linalgOp.getNumDpsInits()) |
2265 | return op.emitOpError("expected number of yield values (") |
2266 | << op.getNumOperands() |
2267 | << ") to match the number of inits / outs operands of the enclosing " |
2268 | << "LinalgOp ("<< linalgOp.getNumDpsInits() << ")"; |
2269 | |
2270 | for (OpOperand &opOperand : op->getOpOperands()) { |
2271 | OpOperand *outputOperand = |
2272 | linalgOp.getDpsInitOperand(opOperand.getOperandNumber()); |
2273 | Type elementType = outputOperand->get().getType(); |
2274 | if (isa<MemRefType, RankedTensorType>(elementType)) |
2275 | elementType = getElementTypeOrSelf(outputOperand->get().getType()); |
2276 | if (opOperand.get().getType() != elementType) |
2277 | return op.emitOpError("type of yield operand ") |
2278 | << (opOperand.getOperandNumber() + 1) << " (" |
2279 | << opOperand.get().getType() << ") doesn't match " |
2280 | << "the element type of the enclosing linalg.generic op (" |
2281 | << elementType << ")"; |
2282 | } |
2283 | return success(); |
2284 | } |
2285 | |
2286 | LogicalResult linalg::YieldOp::verify() { |
2287 | auto *parentOp = (*this)->getParentOp(); |
2288 | if (parentOp->getNumRegions() != 1 || parentOp->getRegion(0).empty()) |
2289 | return emitOpError("expected single non-empty parent region"); |
2290 | |
2291 | if (auto linalgOp = dyn_cast<LinalgOp>(parentOp)) |
2292 | return verifyYield(*this, linalgOp); |
2293 | |
2294 | return emitOpError("expected parent op with LinalgOp interface"); |
2295 | } |
2296 | |
2297 | //===----------------------------------------------------------------------===// |
2298 | // IndexOp |
2299 | //===----------------------------------------------------------------------===// |
2300 | |
2301 | LogicalResult IndexOp::verify() { |
2302 | auto linalgOp = dyn_cast<LinalgOp>((*this)->getParentOp()); |
2303 | if (!linalgOp) |
2304 | return emitOpError("expected parent op with LinalgOp interface"); |
2305 | if (linalgOp.getNumLoops() <= getDim()) |
2306 | return emitOpError("expected dim (") |
2307 | << getDim() << ") to be lower than the number of loops (" |
2308 | << linalgOp.getNumLoops() << ") of the enclosing LinalgOp"; |
2309 | return success(); |
2310 | } |
2311 | |
2312 | OpFoldResult IndexOp::fold(FoldAdaptor adaptor) { |
2313 | auto linalgOp = dyn_cast_or_null<LinalgOp>((*this)->getParentOp()); |
2314 | // Bail out if `linalg.index` does not have a proper parent yet at this |
2315 | // point, e.g., when calling `createOrFold` during IR construction in |
2316 | // `genericOp::build`. |
2317 | if (!linalgOp) |
2318 | return OpFoldResult{}; |
2319 | |
2320 | // Index of unit dims is always 0. |
2321 | SmallVector<int64_t, 4> loopBounds = linalgOp.getStaticLoopRanges(); |
2322 | uint64_t dim = getDim(); |
2323 | assert(dim < loopBounds.size() && "Dim is out of bounds"); |
2324 | if (loopBounds[dim] == 1) |
2325 | return IntegerAttr::get(IndexType::get(getContext()), 0); |
2326 | |
2327 | return OpFoldResult{}; |
2328 | } |
2329 | |
2330 | /////// Operations corresponding to library calls defined with Tablegen //////// |
2331 | |
2332 | #include "mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yamlgen.cpp.inc" |
2333 | |
2334 | #define GET_OP_CLASSES |
2335 | #include "mlir/Dialect/Linalg/IR/LinalgOps.cpp.inc" |
2336 | |
2337 | #define GET_OP_CLASSES |
2338 | #include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc" |
2339 | #define GET_OP_CLASSES |
2340 | #include "mlir/Dialect/Linalg/IR/LinalgRelayoutOps.cpp.inc" |
2341 | |
2342 | AffineMap mlir::linalg::extractOrIdentityMap(std::optional<AffineMap> maybeMap, |
2343 | unsigned rank, |
2344 | MLIRContext *context) { |
2345 | if (maybeMap) |
2346 | return *maybeMap; |
2347 | if (rank == 0) |
2348 | return AffineMap::get(context); |
2349 | return AffineMap::getMultiDimIdentityMap(numDims: rank, context); |
2350 | } |
2351 | |
2352 | SmallVector<AffineExpr, 4> |
2353 | mlir::linalg::makeAffineDimExprs(unsigned num, unsigned &startIdx, |
2354 | MLIRContext *context) { |
2355 | SmallVector<AffineExpr, 4> res; |
2356 | res.reserve(N: num); |
2357 | for (unsigned i = 0; i < num; ++i) |
2358 | res.push_back(Elt: getAffineDimExpr(position: startIdx++, context)); |
2359 | return res; |
2360 | } |
2361 | |
2362 | SmallVector<AffineExpr, 4> mlir::linalg::concat(ArrayRef<AffineExpr> a, |
2363 | ArrayRef<AffineExpr> b) { |
2364 | auto rangeA = llvm::make_range(x: a.begin(), y: a.end()); |
2365 | auto rangeB = llvm::make_range(x: b.begin(), y: b.end()); |
2366 | auto concatRanges = llvm::concat<const AffineExpr>(Ranges&: rangeA, Ranges&: rangeB); |
2367 | return llvm::to_vector<4>(Range&: concatRanges); |
2368 | } |
2369 | |
2370 | static LogicalResult appendMangledType(llvm::raw_string_ostream &ss, Type t) { |
2371 | if (auto memref = llvm::dyn_cast<MemRefType>(t)) { |
2372 | ss << "view"; |
2373 | for (auto size : memref.getShape()) |
2374 | if (size < 0) |
2375 | ss << "sx"; |
2376 | else |
2377 | ss << size << "x"; |
2378 | if (failed(appendMangledType(ss, memref.getElementType()))) |
2379 | return failure(); |
2380 | if (auto as = memref.getMemorySpace()) { |
2381 | if (auto attr = llvm::dyn_cast<IntegerAttr>(as)) |
2382 | ss << "as"<< attr.getInt(); |
2383 | else |
2384 | return failure(); |
2385 | } |
2386 | return success(); |
2387 | } |
2388 | if (auto vec = llvm::dyn_cast<VectorType>(t)) { |
2389 | ss << "vector"; |
2390 | llvm::interleave( |
2391 | vec.getShape(), [&](int64_t i) { ss << i; }, [&]() { ss << "x"; }); |
2392 | if (failed(appendMangledType(ss, vec.getElementType()))) |
2393 | return failure(); |
2394 | return success(); |
2395 | } |
2396 | if (t.isSignlessIntOrIndexOrFloat()) { |
2397 | ss << t; |
2398 | return success(); |
2399 | } |
2400 | return failure(); |
2401 | } |
2402 | |
2403 | std::string mlir::linalg::generateLibraryCallName(Operation *op) { |
2404 | assert(isa<LinalgOp>(op)); |
2405 | std::string name(op->getName().getStringRef().str()); |
2406 | std::string fun = ""; |
2407 | for (NamedAttribute kv : op->getAttrs()) { |
2408 | if (UnaryFnAttr ufa = llvm::dyn_cast<UnaryFnAttr>(kv.getValue())) { |
2409 | fun = stringifyEnum(ufa.getValue()).str() + "_"; |
2410 | } else if (BinaryFnAttr bfa = llvm::dyn_cast<BinaryFnAttr>(kv.getValue())) { |
2411 | fun = stringifyEnum(bfa.getValue()).str() + "_"; |
2412 | } |
2413 | } |
2414 | name.reserve(res: 128); |
2415 | llvm::replace(Range&: name, OldValue: '.', NewValue: '_'); |
2416 | llvm::raw_string_ostream ss(name); |
2417 | ss << "_"<< fun; |
2418 | for (Type t : op->getOperandTypes()) { |
2419 | if (failed(Result: appendMangledType(ss, t))) |
2420 | return std::string(); |
2421 | ss << "_"; |
2422 | } |
2423 | name.pop_back(); |
2424 | return name; |
2425 | } |
2426 | |
2427 | //===----------------------------------------------------------------------===// |
2428 | // Canonicalizers and Folders. |
2429 | //===----------------------------------------------------------------------===// |
2430 | |
2431 | namespace { |
2432 | struct EraseDeadLinalgOp : public OpInterfaceRewritePattern<LinalgOp> { |
2433 | using OpInterfaceRewritePattern<LinalgOp>::OpInterfaceRewritePattern; |
2434 | |
2435 | LogicalResult matchAndRewrite(LinalgOp op, |
2436 | PatternRewriter &rewriter) const override { |
2437 | for (OpOperand &opOperand : op->getOpOperands()) { |
2438 | // Linalg "inputs" may be either tensor or memref type. |
2439 | // tensor<0xelt_type> is a convention that may not always mean |
2440 | // "0 iterations". Only erase in cases we see memref<...x0x...>. |
2441 | auto mt = llvm::dyn_cast<MemRefType>(opOperand.get().getType()); |
2442 | if (!mt) |
2443 | continue; |
2444 | if (llvm::is_contained(op.getShape(&opOperand), 0)) { |
2445 | rewriter.eraseOp(op); |
2446 | return success(); |
2447 | } |
2448 | } |
2449 | return failure(); |
2450 | } |
2451 | }; |
2452 | |
2453 | /// Fold LinalgOps with `tensor.cast` consumer if the `tensor.cast` has |
2454 | /// result that is more static than the linalg op. |
2455 | struct FoldTensorCastConsumerOp : public OpRewritePattern<tensor::CastOp> { |
2456 | using OpRewritePattern<tensor::CastOp>::OpRewritePattern; |
2457 | |
2458 | LogicalResult matchAndRewrite(tensor::CastOp castOp, |
2459 | PatternRewriter &rewriter) const override { |
2460 | if (!tensor::canFoldIntoProducerOp(castOp)) |
2461 | return failure(); |
2462 | |
2463 | auto linalgOp = castOp.getSource().getDefiningOp<LinalgOp>(); |
2464 | if (!linalgOp) |
2465 | return failure(); |
2466 | |
2467 | // Cast can be in conditionally reachable region, if which case folding will |
2468 | // generate invalid code. Only conservatively fold ops in same block for |
2469 | // now. |
2470 | if (castOp->getBlock() != linalgOp->getBlock()) |
2471 | return failure(); |
2472 | |
2473 | OpBuilder::InsertionGuard guard(rewriter); |
2474 | rewriter.setInsertionPoint(linalgOp); |
2475 | |
2476 | Location loc = linalgOp.getLoc(); |
2477 | OpResult resultValue = llvm::cast<OpResult>(castOp.getSource()); |
2478 | unsigned resultNumber = resultValue.getResultNumber(); |
2479 | auto resultType = |
2480 | llvm::cast<RankedTensorType>(castOp->getResult(0).getType()); |
2481 | // Replace the `outs` for the result with a `tensor.cast`. This cast is now |
2482 | // going from a more dynamic shape to a less dynamic shape. If the producer |
2483 | // for this cast, i.e. producer of the out operand, is also an operation |
2484 | // that folds with tensor.cast consumer (like this pattern), the cast will |
2485 | // continue to propagate as far up the stack as it can go. |
2486 | OpOperand *outOperand = linalgOp.getDpsInitOperand(resultNumber); |
2487 | Value newOperand = |
2488 | rewriter.create<tensor::CastOp>(loc, resultType, outOperand->get()); |
2489 | SmallVector<Value> newOperands = linalgOp.getDpsInputs(); |
2490 | SmallVector<Value> outputOperands(linalgOp.getDpsInits().begin(), |
2491 | linalgOp.getDpsInits().end()); |
2492 | outputOperands[resultNumber] = newOperand; |
2493 | newOperands.append(in_start: outputOperands.begin(), in_end: outputOperands.end()); |
2494 | |
2495 | SmallVector<Type> resultTypes(linalgOp->result_type_begin(), |
2496 | linalgOp->result_type_end()); |
2497 | resultTypes[resultNumber] = resultType; |
2498 | Operation *newOp = clone(rewriter, linalgOp, resultTypes, newOperands); |
2499 | |
2500 | // Create a tensor.cast operation back to the original type. |
2501 | Value castBack = rewriter.create<tensor::CastOp>( |
2502 | loc, resultValue.getType(), newOp->getResult(resultNumber)); |
2503 | |
2504 | SmallVector<Value> results(newOp->result_begin(), newOp->result_end()); |
2505 | results[resultNumber] = castBack; |
2506 | rewriter.replaceOp(linalgOp, results); |
2507 | rewriter.replaceOp(castOp, newOp->getResult(idx: resultNumber)); |
2508 | return success(); |
2509 | } |
2510 | }; |
2511 | |
2512 | /// For each of the operand in `operands` this function maps the static sizes of |
2513 | /// dimensions to their affine dim expressions. |
2514 | static void populateMap(LinalgOp linalgOp, MutableArrayRef<OpOperand> operands, |
2515 | llvm::DenseMap<AffineExpr, int64_t> &affineExprToSize) { |
2516 | for (OpOperand &opOperand : operands) { |
2517 | if (linalgOp.isScalar(&opOperand)) |
2518 | continue; |
2519 | Value src = opOperand.get(); |
2520 | auto sourceType = llvm::cast<RankedTensorType>(src.getType()); |
2521 | auto sourceMap = linalgOp.getMatchingIndexingMap(&opOperand); |
2522 | |
2523 | // Get the `sourceShape` of the `sourceType`. If the operand is a result of |
2524 | // `tensor.cast` operation and source of the cast operation has a static |
2525 | // shape, then assign it to the `sourceShape`. |
2526 | auto *parentOp = src.getDefiningOp(); |
2527 | ArrayRef<int64_t> sourceShape = sourceType.getShape(); |
2528 | if (parentOp) { |
2529 | if (auto castOp = dyn_cast<tensor::CastOp>(parentOp)) { |
2530 | Value castSource = castOp.getSource(); |
2531 | auto castSourceType = |
2532 | llvm::dyn_cast<RankedTensorType>(castSource.getType()); |
2533 | if (castSourceType && castSourceType.hasStaticShape()) |
2534 | sourceShape = castSourceType.getShape(); |
2535 | } |
2536 | } |
2537 | |
2538 | // If the source shape's dimension has a static shape, map the affine dim |
2539 | // expression to the known static size. |
2540 | for (unsigned i = 0; i < sourceShape.size(); i++) { |
2541 | if (sourceType.isDynamicDim(i)) |
2542 | continue; |
2543 | if (auto affineDimExpr = dyn_cast<AffineDimExpr>(sourceMap.getResult(i))) |
2544 | affineExprToSize.try_emplace(affineDimExpr, sourceShape[i]); |
2545 | } |
2546 | } |
2547 | } |
2548 | |
2549 | /// Creates new operand w.r.t 'opOperand' of `linalgOp` with static sizes |
2550 | /// mapped in `affineExprToSize`. New operands are created in `newOperands` and |
2551 | /// their result types is stored in `resultTypes`. If `opOperand` requires no |
2552 | /// change then `changeNeeded` is false and same operand is added in the |
2553 | /// `newOperands` list. |
2554 | static void createNewOperandWithStaticSizes( |
2555 | Location loc, PatternRewriter &rewriter, OpOperand *opOperand, |
2556 | llvm::DenseMap<AffineExpr, int64_t> &affineExprToSize, LinalgOp linalgOp, |
2557 | SmallVector<Value> &newOperands, SmallVector<Type> &resultTypes, |
2558 | bool &changeNeeded) { |
2559 | Value src = opOperand->get(); |
2560 | newOperands.push_back(Elt: src); |
2561 | if (linalgOp.isScalar(opOperand)) |
2562 | return; |
2563 | auto sourceType = llvm::cast<RankedTensorType>(src.getType()); |
2564 | Type resultType = sourceType; |
2565 | if (sourceType.hasStaticShape() && linalgOp.isDpsInit(opOperand)) { |
2566 | resultTypes.push_back(Elt: resultType); |
2567 | return; |
2568 | } |
2569 | ArrayRef<int64_t> sourceShape = sourceType.getShape(); |
2570 | AffineMap sourceMap = linalgOp.getMatchingIndexingMap(opOperand); |
2571 | SmallVector<int64_t> newShape; |
2572 | // If operand is updated with new shape, `newOperandNeeded` will be |
2573 | // true. |
2574 | bool newOperandNeeded = false; |
2575 | for (unsigned i = 0; i < sourceShape.size(); i++) { |
2576 | int64_t dimShape = sourceShape[i]; |
2577 | AffineExpr dimExpr = sourceMap.getResult(idx: i); |
2578 | if (!affineExprToSize.contains(Val: dimExpr) || !sourceType.isDynamicDim(i)) { |
2579 | newShape.push_back(Elt: dimShape); |
2580 | continue; |
2581 | } |
2582 | // Dimension has a dynamic shape and corresponding affine dim |
2583 | // expression is present in the map. So assign the size for the |
2584 | // given affine dim expression to the dimension. |
2585 | newShape.push_back(Elt: affineExprToSize[dimExpr]); |
2586 | newOperandNeeded = true; |
2587 | } |
2588 | resultType = RankedTensorType::get(newShape, sourceType.getElementType(), |
2589 | sourceType.getEncoding()); |
2590 | if (newOperandNeeded) { |
2591 | changeNeeded = true; |
2592 | // Get the new operand value given its size and element type by |
2593 | // casting it. |
2594 | Value newOperand = rewriter.create<tensor::CastOp>(loc, resultType, src); |
2595 | unsigned index = opOperand->getOperandNumber(); |
2596 | newOperands[index] = newOperand; |
2597 | } |
2598 | if (linalgOp.isDpsInit(opOperand)) |
2599 | resultTypes.push_back(Elt: resultType); |
2600 | } |
2601 | |
2602 | /// Static shapes for the operands can be inferred if any one of the operands |
2603 | /// have a static shape. This can be done by referring to the affine dim |
2604 | /// expressions for the operand. |
2605 | struct InferStaticShapeOfOperands : public OpInterfaceRewritePattern<LinalgOp> { |
2606 | using OpInterfaceRewritePattern<LinalgOp>::OpInterfaceRewritePattern; |
2607 | |
2608 | LogicalResult matchAndRewrite(LinalgOp linalgOp, |
2609 | PatternRewriter &rewriter) const override { |
2610 | if (!linalgOp.hasPureTensorSemantics()) |
2611 | return failure(); |
2612 | |
2613 | // Maps must be projected permutations. |
2614 | if (llvm::any_of(linalgOp.getIndexingMapsArray(), [](AffineMap map) { |
2615 | return !map.isProjectedPermutation(); |
2616 | })) |
2617 | return failure(); |
2618 | |
2619 | // Maps affine dim expressions to the static size of that dimension. |
2620 | llvm::DenseMap<AffineExpr, int64_t> affineExprToSize; |
2621 | Location loc = linalgOp.getLoc(); |
2622 | |
2623 | // For each of the affine dim expression, check if the size is known. If |
2624 | // known add that in the map. |
2625 | populateMap(linalgOp, linalgOp->getOpOperands(), affineExprToSize); |
2626 | |
2627 | SmallVector<Value> newOperands; |
2628 | SmallVector<Type> resultTypes; |
2629 | |
2630 | // `changeNeeded` is `false` if the operands of `linalgOp` require no |
2631 | // change in their types. |
2632 | bool changeNeeded = false; |
2633 | newOperands.reserve(N: linalgOp->getNumOperands()); |
2634 | resultTypes.reserve(N: linalgOp.getNumDpsInits()); |
2635 | |
2636 | // Iterate over all the operands and update the static sizes. |
2637 | for (OpOperand &opOperand : linalgOp->getOpOperands()) { |
2638 | createNewOperandWithStaticSizes(loc, rewriter, &opOperand, |
2639 | affineExprToSize, linalgOp, newOperands, |
2640 | resultTypes, changeNeeded); |
2641 | } |
2642 | |
2643 | // If the generic op has all the required static information, no |
2644 | // canonicalization needed. |
2645 | if (!changeNeeded) |
2646 | return failure(); |
2647 | |
2648 | // Clone op. |
2649 | Operation *newOp = clone(rewriter, linalgOp, resultTypes, newOperands); |
2650 | SmallVector<Value> replacements; |
2651 | replacements.reserve(N: newOp->getNumResults()); |
2652 | for (auto it : llvm::zip(linalgOp->getResults(), newOp->getResults())) { |
2653 | Value newResult = std::get<1>(it); |
2654 | Value oldResult = std::get<0>(it); |
2655 | Type newType = newResult.getType(); |
2656 | Type oldType = oldResult.getType(); |
2657 | replacements.push_back( |
2658 | (newType != oldType) |
2659 | ? rewriter.create<tensor::CastOp>(loc, oldType, newResult) |
2660 | : newResult); |
2661 | } |
2662 | rewriter.replaceOp(linalgOp, replacements); |
2663 | return success(); |
2664 | } |
2665 | }; |
2666 | |
2667 | } // namespace |
2668 | |
2669 | // All named ops canonicalizers and folders are auto-generated in the |
2670 | // .cpp.inc. |
2671 | |
2672 | //===----------------------------------------------------------------------===// |
2673 | // SoftmaxOp |
2674 | //===----------------------------------------------------------------------===// |
2675 | |
2676 | LogicalResult SoftmaxOp::verify() { |
2677 | ShapedType inputType = getInputOperandType(); |
2678 | ShapedType outputType = getOutputOperandType(); |
2679 | |
2680 | ArrayRef<int64_t> inputShape = inputType.getShape(); |
2681 | ArrayRef<int64_t> outputShape = outputType.getShape(); |
2682 | if (failed(verifyCompatibleShape(inputShape, outputShape))) |
2683 | return emitOpError("incompatible output shape"); |
2684 | |
2685 | int64_t inputRank = getInputOperandRank(); |
2686 | int64_t dimension = getDimension(); |
2687 | if ((dimension < 0) || (dimension >= inputRank)) |
2688 | return emitOpError("incorrect dimension specified"); |
2689 | |
2690 | return success(); |
2691 | } |
2692 | |
2693 | SmallVector<Range> SoftmaxOp::getIterationDomain(OpBuilder &builder) { |
2694 | int64_t operandRank = getInputOperandRank(); |
2695 | SmallVector<Range> loopBounds(operandRank); |
2696 | Location loc = getLoc(); |
2697 | Value zero = builder.create<arith::ConstantIndexOp>(loc, 0); |
2698 | Value one = builder.create<arith::ConstantIndexOp>(loc, 1); |
2699 | Value source = getInput(); |
2700 | for (auto dim : llvm::seq<int64_t>(0, operandRank)) { |
2701 | loopBounds[dim].offset = zero; |
2702 | loopBounds[dim].size = getDimValue(builder, loc, source, dim); |
2703 | loopBounds[dim].stride = one; |
2704 | } |
2705 | return loopBounds; |
2706 | } |
2707 | |
2708 | SmallVector<utils::IteratorType> SoftmaxOp::getLoopIteratorTypes() { |
2709 | SmallVector<utils::IteratorType> iteratorTypes(getInputOperandRank(), |
2710 | utils::IteratorType::parallel); |
2711 | iteratorTypes[getDimension()] = utils::IteratorType::reduction; |
2712 | return iteratorTypes; |
2713 | } |
2714 | |
2715 | FailureOr<TilingResult> |
2716 | SoftmaxOp::getTiledImplementation(OpBuilder &builder, |
2717 | ArrayRef<OpFoldResult> offsets, |
2718 | ArrayRef<OpFoldResult> sizes) { |
2719 | int64_t rank = getInputOperandRank(); |
2720 | auto oneAttr = builder.getI64IntegerAttr(1); |
2721 | SmallVector<OpFoldResult> strides(rank, oneAttr); |
2722 | SmallVector<Value> tiledOperands; |
2723 | Operation *inputSlice = |
2724 | getSlice(builder, getLoc(), getInput(), offsets, sizes, strides); |
2725 | if (!inputSlice) { |
2726 | return emitOpError("failed to compute input slice"); |
2727 | } |
2728 | tiledOperands.emplace_back(inputSlice->getResult(0)); |
2729 | Operation *outputSlice = |
2730 | getSlice(builder, getLoc(), getOutput(), offsets, sizes, strides); |
2731 | if (!outputSlice) { |
2732 | return emitOpError("failed to compute output slice"); |
2733 | } |
2734 | tiledOperands.emplace_back(outputSlice->getResult(0)); |
2735 | |
2736 | SmallVector<Type, 4> resultTypes; |
2737 | if (hasPureTensorSemantics()) |
2738 | resultTypes.push_back(tiledOperands[1].getType()); |
2739 | Operation *tiledOp = |
2740 | mlir::clone(builder, getOperation(), resultTypes, tiledOperands); |
2741 | |
2742 | return TilingResult{ |
2743 | {tiledOp}, |
2744 | SmallVector<Value>(tiledOp->getResults()), |
2745 | llvm::to_vector(ArrayRef<Operation *>{inputSlice, outputSlice})}; |
2746 | } |
2747 | |
2748 | LogicalResult SoftmaxOp::getResultTilePosition( |
2749 | OpBuilder &builder, unsigned resultNumber, ArrayRef<OpFoldResult> offsets, |
2750 | ArrayRef<OpFoldResult> sizes, SmallVector<OpFoldResult> &resultOffsets, |
2751 | SmallVector<OpFoldResult> &resultSizes) { |
2752 | if (resultNumber == 0) { |
2753 | resultOffsets.assign(offsets.begin(), offsets.end()); |
2754 | resultSizes.assign(sizes.begin(), sizes.end()); |
2755 | return success(); |
2756 | } |
2757 | return failure(); |
2758 | } |
2759 | |
2760 | // cast(dynamic) -> static. |
2761 | LogicalResult SoftmaxOp::fold(FoldAdaptor, SmallVectorImpl<OpFoldResult> &) { |
2762 | return memref::foldMemRefCast(*this); |
2763 | } |
2764 | |
2765 | LogicalResult |
2766 | SoftmaxOp::reifyResultShapes(OpBuilder &b, |
2767 | ReifiedRankedShapedTypeDims &reifiedReturnShapes) { |
2768 | SmallVector<OpFoldResult> shapes; |
2769 | Location loc = getOperation()->getLoc(); |
2770 | IRRewriter rewriter(b); |
2771 | auto inputShapedType = llvm::cast<ShapedType>(getInputOperandType()); |
2772 | auto outputShapedType = llvm::cast<ShapedType>(getOutputOperandType()); |
2773 | for (int64_t dim : llvm::seq<int64_t>(0, getOutputOperandRank())) { |
2774 | if (!outputShapedType.isDynamicDim(dim)) { |
2775 | // Static dim: Return IntegerAttr. |
2776 | shapes.push_back(b.getIndexAttr(inputShapedType.getDimSize(dim))); |
2777 | } else { |
2778 | // Dynamic dim: Return Value. |
2779 | OpFoldResult ofr = createOrFoldDimOp(b, loc, getInput(), dim); |
2780 | shapes.push_back(getValueOrCreateConstantIndexOp(b, loc, ofr)); |
2781 | } |
2782 | } |
2783 | reifiedReturnShapes.emplace_back(std::move(shapes)); |
2784 | return success(); |
2785 | } |
2786 | |
2787 | void SoftmaxOp::getEffects( |
2788 | SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> |
2789 | &effects) { |
2790 | for (auto [index, operand] : llvm::enumerate(getDpsInputs())) { |
2791 | if (!llvm::isa<MemRefType>(operand.getType())) |
2792 | continue; |
2793 | effects.emplace_back(MemoryEffects::Read::get(), |
2794 | &getOperation()->getOpOperand(index), /*stage=*/0, |
2795 | /*effectOnFullRegion=*/true, |
2796 | SideEffects::DefaultResource::get()); |
2797 | } |
2798 | |
2799 | for (OpOperand &operand : getDpsInitsMutable()) { |
2800 | if (!llvm::isa<MemRefType>(operand.get().getType())) |
2801 | continue; |
2802 | effects.emplace_back(MemoryEffects::Read::get(), &operand, /*stage=*/0, |
2803 | /*effectOnFullRegion=*/true, |
2804 | SideEffects::DefaultResource::get()); |
2805 | effects.emplace_back(MemoryEffects::Write::get(), &operand, /*stage=*/0, |
2806 | /*effectOnFullRegion=*/true, |
2807 | SideEffects::DefaultResource::get()); |
2808 | } |
2809 | } |
2810 | |
2811 | // Helper functions for softmax decomposition. |
2812 | // @{ |
2813 | |
2814 | // Helper function to produce the iterator types (reduction or parallel) and |
2815 | // affine maps for the iterators used in the decomposition of softmax. |
2816 | // This method creates: |
2817 | // If allParallel == true: |
2818 | // - iterator type: {parallel, ..., parallel} |
2819 | // - affine maps: |
2820 | // -- identity with inputRank dimensions. |
2821 | // -- (d0, ..., dN) -> (d0, ..., d_dim-1, d_dim+1, ..., dN), |
2822 | // where N == inputRank. |
2823 | // |
2824 | // If allParallel == false: |
2825 | // - iterator type at dim(i) == parallel for i != \p dim and |
2826 | // dim(dim) == reduction. |
2827 | // - affine map: |
2828 | // -- identity with inputRank dimensions. |
2829 | // -- (d0, ..., dN) -> (d0, ..., d_dim-1, d_dim+1, ..., dN), |
2830 | // where N == inputRank. |
2831 | static std::tuple<SmallVector<utils::IteratorType>, SmallVector<AffineMap>> |
2832 | computeIteratorTypesAndIndexingMaps(OpBuilder &builder, int64_t inputRank, |
2833 | int64_t dim, bool allParallel = false) { |
2834 | SmallVector<utils::IteratorType> iteratorTypes(inputRank, |
2835 | utils::IteratorType::parallel); |
2836 | if (!allParallel) |
2837 | iteratorTypes[dim] = utils::IteratorType::reduction; |
2838 | MLIRContext *ctxt = builder.getContext(); |
2839 | auto identityMap = AffineMap::getMultiDimIdentityMap(inputRank, ctxt); |
2840 | SmallVector<AffineExpr, 2> affineExprs; |
2841 | for (int i = 0; i < inputRank; i++) { |
2842 | if (i != dim) |
2843 | affineExprs.push_back(mlir::getAffineDimExpr(i, ctxt)); |
2844 | } |
2845 | auto reductionMap = |
2846 | AffineMap::get(inputRank, /*symbols=*/0, affineExprs, ctxt); |
2847 | SmallVector<AffineMap> indexingMaps{identityMap, reductionMap}; |
2848 | return std::make_tuple(iteratorTypes, indexingMaps); |
2849 | } |
2850 | |
2851 | // Helper function to produce a linalg.generic that computes a reduction on |
2852 | // dimension \p dim with the operation type \p T. |
2853 | template <typename T> |
2854 | static Value reduce(OpBuilder &builder, Location loc, Value input, Value output, |
2855 | int64_t dim) { |
2856 | auto inputType = cast<ShapedType>(input.getType()); |
2857 | ArrayRef<int64_t> inputShape = inputType.getShape(); |
2858 | int64_t inputRank = inputShape.size(); |
2859 | auto [iteratorTypes, indexingMaps] = |
2860 | computeIteratorTypesAndIndexingMaps(builder, inputRank, dim); |
2861 | assert(indexingMaps.size() == 2 && |
2862 | "We should have two maps: 1 for the input, 1 for the output"); |
2863 | assert(indexingMaps[0].isIdentity() && "input map should be identity"); |
2864 | |
2865 | auto genericOp = builder.create<linalg::GenericOp>( |
2866 | loc, output.getType(), input, output, indexingMaps, iteratorTypes, |
2867 | [&](OpBuilder &b, Location loc, ValueRange args) { |
2868 | Value result = b.create<T>(loc, args[0], args[1]); |
2869 | b.create<linalg::YieldOp>(loc, result); |
2870 | }); |
2871 | return genericOp.getResult(0); |
2872 | } |
2873 | |
2874 | /// Produce a linalg generic that computes the second step of the softmax |
2875 | /// decomposition: res = exp(input - max), where \p max is the max of \p input |
2876 | /// on dimension \p dim. |
2877 | static Value buildSubAndExpOp(OpBuilder &builder, Location loc, Value input, |
2878 | Value max, Value output, int64_t dim) { |
2879 | auto inputType = cast<ShapedType>(input.getType()); |
2880 | ArrayRef<int64_t> inputShape = inputType.getShape(); |
2881 | int64_t inputRank = inputShape.size(); |
2882 | auto [iteratorTypes, indexingMaps] = computeIteratorTypesAndIndexingMaps( |
2883 | builder, inputRank, dim, /*allParallel=*/true); |
2884 | assert(indexingMaps.size() == 2 && "We should have one map for each input"); |
2885 | assert(indexingMaps[0].isIdentity() && "input map should be identity"); |
2886 | // Add the affine map for the output argument. |
2887 | indexingMaps.push_back(indexingMaps[0]); |
2888 | auto genericOp = builder.create<linalg::GenericOp>( |
2889 | loc, input.getType(), ValueRange{input, max}, output, indexingMaps, |
2890 | iteratorTypes, [&](OpBuilder &b, Location loc, ValueRange args) { |
2891 | Value diff = b.create<arith::SubFOp>(loc, args[0], args[1]); |
2892 | Value result = b.create<math::ExpOp>(loc, diff); |
2893 | b.create<linalg::YieldOp>(loc, result); |
2894 | }); |
2895 | return genericOp.getResult(0); |
2896 | } |
2897 | |
2898 | /// Produce a linalg generic that computes the final step of the softmax |
2899 | /// decomposition. |
2900 | /// \returns linalg.generic ins(\p numerator, \p denominator) outs(\p output) { |
2901 | /// yield n / d |
2902 | /// } |
2903 | static Value buildDivOp(OpBuilder &builder, Location loc, Value numerator, |
2904 | Value denominator, Value output, int64_t dim) { |
2905 | auto inputType = cast<ShapedType>(numerator.getType()); |
2906 | ArrayRef<int64_t> inputShape = inputType.getShape(); |
2907 | int64_t inputRank = inputShape.size(); |
2908 | auto [iteratorTypes, indexingMaps] = computeIteratorTypesAndIndexingMaps( |
2909 | builder, inputRank, dim, /*allParallel=*/true); |
2910 | assert(indexingMaps.size() == 2 && |
2911 | "We should have one map for each input (2)"); |
2912 | assert(indexingMaps[0].isIdentity() && "Numerator map should be identity"); |
2913 | // Add the affine map for the output tensor. |
2914 | indexingMaps.push_back(indexingMaps[0]); |
2915 | auto genericOp = builder.create<linalg::GenericOp>( |
2916 | loc, numerator.getType(), ValueRange{numerator, denominator}, output, |
2917 | indexingMaps, iteratorTypes, |
2918 | [&](OpBuilder &b, Location loc, ValueRange args) { |
2919 | Value result = b.create<arith::DivFOp>(loc, args[0], args[1]); |
2920 | b.create<linalg::YieldOp>(loc, result); |
2921 | }); |
2922 | return genericOp.getResult(0); |
2923 | } |
2924 | // @} End helper functions for softmax decomposition. |
2925 | |
2926 | /// Given an N-dimensional tensor x, this method converts |
2927 | /// softmax(x) to the following sequence of operations: |
2928 | /// |
2929 | /// 1. Compute the max of x along dimension d. This results |
2930 | /// in a N-1 dimensional tensor m. |
2931 | /// m = max(x, dim = d) |
2932 | /// |
2933 | /// 2. Subtract a broadcasted m from x and exponentiate. This results in |
2934 | /// a N dimensional tensor z. |
2935 | /// z = exp(x - m) |
2936 | /// |
2937 | /// 3. Compute the sum of z along dimension d. This results in |
2938 | /// a N-1 dimensional tensor l. |
2939 | /// l = sum(z, dim = d) |
2940 | /// |
2941 | /// 4. Divide z and l. This gives the N-dimensional softmax. |
2942 | /// softmax = z / l |
2943 | /// |
2944 | FailureOr<SmallVector<Value>> SoftmaxOp::decomposeOperation(OpBuilder &b) { |
2945 | OpBuilder::InsertionGuard guard(b); |
2946 | b.setInsertionPoint(*this); |
2947 | Location loc = getLoc(); |
2948 | Value input = getInput(); |
2949 | ShapedType inputType = getInputOperandType(); |
2950 | Type elementType = inputType.getElementType(); |
2951 | int64_t reductionDim = getDimension(); |
2952 | SmallVector<OpFoldResult> dims = tensor::getMixedSizes(b, loc, input); |
2953 | Value output = getOutput(); |
2954 | dims.erase(dims.begin() + reductionDim); |
2955 | // Step 1: Compute max along dim. |
2956 | Value outputReduce = b.create<tensor::EmptyOp>(loc, dims, elementType); |
2957 | Value neutralForMaxF = arith::getIdentityValue(arith::AtomicRMWKind::maxnumf, |
2958 | elementType, b, loc, |
2959 | /*useOnlyFiniteValue=*/true); |
2960 | Value neutralForMaxFInit = |
2961 | b.create<linalg::FillOp>(loc, Value{neutralForMaxF}, outputReduce) |
2962 | .result(); |
2963 | Value max = |
2964 | reduce<arith::MaxNumFOp>(b, loc, input, neutralForMaxFInit, reductionDim); |
2965 | |
2966 | // Step 2: Subtract max from input and exponentiate. |
2967 | Value numerator = buildSubAndExpOp(b, loc, input, max, output, reductionDim); |
2968 | |
2969 | // Step 3: Compute sum along dim. |
2970 | Value zero = arith::getIdentityValue(arith::AtomicRMWKind::addf, elementType, |
2971 | b, loc, /*useOnlyFiniteValue=*/true); |
2972 | Value zeroInit = |
2973 | b.create<linalg::FillOp>(loc, Value{zero}, outputReduce).result(); |
2974 | Value denominator = |
2975 | reduce<arith::AddFOp>(b, loc, numerator, zeroInit, reductionDim); |
2976 | |
2977 | // Step 4: Compute softmax. |
2978 | Value result = |
2979 | buildDivOp(b, loc, numerator, denominator, output, reductionDim); |
2980 | return SmallVector<Value>{result}; |
2981 | } |
2982 | |
2983 | //===----------------------------------------------------------------------===// |
2984 | // WinogradFilterTransformOp |
2985 | //===----------------------------------------------------------------------===// |
2986 | |
2987 | LogicalResult WinogradFilterTransformOp::verify() { |
2988 | auto filterType = cast<ShapedType>(getFilter().getType()); |
2989 | ArrayRef<int64_t> filterShape = filterType.getShape(); |
2990 | int64_t filterH = filterShape[getFilterHDim()]; |
2991 | int64_t filterW = filterShape[getFilterWDim()]; |
2992 | int64_t r = getR(); |
2993 | int64_t m = getM(); |
2994 | |
2995 | if (filterH != r && filterH != 1) |
2996 | return emitOpError("expect filter height either equals to r or 1"); |
2997 | if (filterW != r && filterW != 1) |
2998 | return emitOpError("expect filter width either equals to r or 1"); |
2999 | if (filterH == 1 && filterW == 1) |
3000 | return emitOpError("expect either filter height or width equals to r"); |
3001 | |
3002 | SmallVector<int64_t> expectedOutputShape; |
3003 | expectedOutputShape.push_back(filterH == r ? m + r - 1 : 1); |
3004 | expectedOutputShape.push_back(filterW == r ? m + r - 1 : 1); |
3005 | expectedOutputShape.push_back(filterShape[getFilterCDim()]); |
3006 | expectedOutputShape.push_back(filterShape[getFilterFDim()]); |
3007 | |
3008 | auto outputType = cast<ShapedType>(getOutput().getType()); |
3009 | ArrayRef<int64_t> outputShape = outputType.getShape(); |
3010 | if (failed(verifyCompatibleShape(expectedOutputShape, outputShape))) { |
3011 | return emitOpError("the output shape is not expected"); |
3012 | } |
3013 | return success(); |
3014 | } |
3015 | |
3016 | SmallVector<Range> |
3017 | WinogradFilterTransformOp::getIterationDomain(OpBuilder &builder) { |
3018 | Location loc = getLoc(); |
3019 | IntegerAttr zeroAttr = builder.getIndexAttr(0); |
3020 | IntegerAttr oneAttr = builder.getIndexAttr(1); |
3021 | Value filter = getFilter(); |
3022 | int64_t filterRank = getFilterOperandRank(); |
3023 | SmallVector<Range> loopBounds(filterRank); |
3024 | for (unsigned dim = 0; dim < filterRank; ++dim) { |
3025 | loopBounds[dim].offset = zeroAttr; |
3026 | loopBounds[dim].size = getDimValue(builder, loc, filter, dim); |
3027 | loopBounds[dim].stride = oneAttr; |
3028 | } |
3029 | return loopBounds; |
3030 | } |
3031 | |
3032 | SmallVector<utils::IteratorType> |
3033 | WinogradFilterTransformOp::getLoopIteratorTypes() { |
3034 | int64_t filterRank = getFilterOperandRank(); |
3035 | SmallVector<utils::IteratorType> iteratorTypes(filterRank, |
3036 | utils::IteratorType::parallel); |
3037 | return iteratorTypes; |
3038 | } |
3039 | |
3040 | LogicalResult WinogradFilterTransformOp::getResultTilePosition( |
3041 | OpBuilder &builder, unsigned resultNumber, ArrayRef<OpFoldResult> offsets, |
3042 | ArrayRef<OpFoldResult> sizes, SmallVector<OpFoldResult> &resultOffsets, |
3043 | SmallVector<OpFoldResult> &resultSizes) { |
3044 | IntegerAttr zeroAttr = builder.getI64IntegerAttr(0); |
3045 | ShapedType filterType = getFilterOperandType(); |
3046 | ArrayRef<int64_t> filterShape = filterType.getShape(); |
3047 | int64_t filterH = filterShape[getFilterHDim()]; |
3048 | int64_t filterW = filterShape[getFilterWDim()]; |
3049 | int64_t m = getM(); |
3050 | int64_t r = getR(); |
3051 | int64_t alpha = m + r - 1; |
3052 | int64_t alphaH = filterH != 1 ? alpha : 1; |
3053 | int64_t alphaW = filterW != 1 ? alpha : 1; |
3054 | IntegerAttr alphaHAttr = builder.getI64IntegerAttr(alphaH); |
3055 | IntegerAttr alphaWAttr = builder.getI64IntegerAttr(alphaW); |
3056 | |
3057 | resultOffsets.append( |
3058 | {zeroAttr, zeroAttr, offsets[getFilterCDim()], offsets[getFilterFDim()]}); |
3059 | resultSizes.append( |
3060 | {alphaHAttr, alphaWAttr, sizes[getFilterCDim()], sizes[getFilterFDim()]}); |
3061 | |
3062 | return success(); |
3063 | } |
3064 | |
3065 | /// Implement tiling for winograd_filter_transform |
3066 | /// The input of winograd_filter_transform is (F, KH, KW, C). |
3067 | /// The output of winograd_filter_transform is (alphaH, alphaW, C, F) |
3068 | /// Users can specify the tile sizes of F and C. |
3069 | /// `offsets` are the values for the offsets of F, KH, KW, C for one tile. |
3070 | /// `sizes` are the values for the sizes of F, KH, KW, C for one tile. |
3071 | FailureOr<TilingResult> WinogradFilterTransformOp::getTiledImplementation( |
3072 | OpBuilder &builder, ArrayRef<OpFoldResult> offsets, |
3073 | ArrayRef<OpFoldResult> sizes) { |
3074 | IntegerAttr oneAttr = builder.getI64IntegerAttr(1); |
3075 | IntegerAttr zeroAttr = builder.getI64IntegerAttr(0); |
3076 | ShapedType filterType = getFilterOperandType(); |
3077 | ArrayRef<int64_t> filterShape = filterType.getShape(); |
3078 | int64_t filterH = filterShape[getFilterHDim()]; |
3079 | int64_t filterW = filterShape[getFilterWDim()]; |
3080 | IntegerAttr filterHAttr = builder.getI64IntegerAttr(filterH); |
3081 | IntegerAttr filterWAttr = builder.getI64IntegerAttr(filterW); |
3082 | SmallVector<Value> tiledOperands; |
3083 | SmallVector<OpFoldResult> sliceOffsets, sliceSizes; |
3084 | |
3085 | sliceOffsets.append( |
3086 | {offsets[getFilterFDim()], zeroAttr, zeroAttr, offsets[getFilterCDim()]}); |
3087 | sliceSizes.append({sizes[getFilterFDim()], filterHAttr, filterWAttr, |
3088 | sizes[getFilterCDim()]}); |
3089 | int64_t filterRank = getFilterOperandRank(); |
3090 | SmallVector<OpFoldResult> filterStrides(filterRank, oneAttr); |
3091 | Location loc = getLoc(); |
3092 | auto filterSlice = builder.create<tensor::ExtractSliceOp>( |
3093 | loc, getFilter(), sliceOffsets, sliceSizes, filterStrides); |
3094 | tiledOperands.emplace_back(filterSlice); |
3095 | |
3096 | SmallVector<OpFoldResult> resultOffsets, resultSizes; |
3097 | if (failed(getResultTilePosition(builder, 1, offsets, sizes, resultOffsets, |
3098 | resultSizes))) |
3099 | return failure(); |
3100 | |
3101 | int64_t outputRank = getOutputOperandRank(); |
3102 | SmallVector<OpFoldResult> outputStrides(outputRank, oneAttr); |
3103 | auto outputSlice = builder.create<tensor::ExtractSliceOp>( |
3104 | loc, getOutput(), resultOffsets, resultSizes, outputStrides); |
3105 | tiledOperands.emplace_back(outputSlice); |
3106 | |
3107 | SmallVector<Type> resultTypes; |
3108 | resultTypes.push_back(tiledOperands[1].getType()); |
3109 | Operation *tiledOp = |
3110 | mlir::clone(builder, getOperation(), resultTypes, tiledOperands); |
3111 | |
3112 | return TilingResult{ |
3113 | {tiledOp}, |
3114 | SmallVector<Value>(tiledOp->getResults()), |
3115 | llvm::to_vector(ArrayRef<Operation *>{filterSlice, outputSlice})}; |
3116 | } |
3117 | |
3118 | //===----------------------------------------------------------------------===// |
3119 | // WinogradInputTransformOp |
3120 | //===----------------------------------------------------------------------===// |
3121 | |
3122 | LogicalResult WinogradInputTransformOp::verify() { |
3123 | auto inputType = cast<ShapedType>(getInput().getType()); |
3124 | ArrayRef<int64_t> inputShape = inputType.getShape(); |
3125 | int64_t inputH = inputShape[getInputHDim()]; |
3126 | int64_t inputW = inputShape[getInputWDim()]; |
3127 | int m = getM(); |
3128 | int r = getR(); |
3129 | int64_t tileSize = m + r - 1; |
3130 | |
3131 | auto outputType = cast<ShapedType>(getOutput().getType()); |
3132 | ArrayRef<int64_t> outputShape = outputType.getShape(); |
3133 | bool leftTransform = outputShape[getOutputAlphaHDim()] != 1; |
3134 | bool rightTransform = outputShape[getOutputAlphaWDim()] != 1; |
3135 | |
3136 | SmallVector<int64_t> expectedOutputShape(6, inputH); |
3137 | if (ShapedType::isDynamic(inputH)) { |
3138 | expectedOutputShape[getOutputAlphaHDim()] = tileSize; |
3139 | expectedOutputShape[getOutputTileHDim()] = ShapedType::kDynamic; |
3140 | } else { |
3141 | expectedOutputShape[getOutputAlphaHDim()] = leftTransform ? tileSize : 1; |
3142 | expectedOutputShape[getOutputTileHDim()] = |
3143 | leftTransform ? (inputH - (r - 1)) / m : inputH; |
3144 | } |
3145 | if (ShapedType::isDynamic(inputW)) { |
3146 | expectedOutputShape[getOutputAlphaWDim()] = tileSize; |
3147 | expectedOutputShape[getOutputTileWDim()] = ShapedType::kDynamic; |
3148 | } else { |
3149 | expectedOutputShape[getOutputAlphaWDim()] = rightTransform ? tileSize : 1; |
3150 | expectedOutputShape[getOutputTileWDim()] = |
3151 | rightTransform ? (inputW - (r - 1)) / m : inputW; |
3152 | } |
3153 | expectedOutputShape[getOutputNDim()] = inputShape[getInputNDim()]; |
3154 | expectedOutputShape[getOutputCDim()] = inputShape[getInputCDim()]; |
3155 | |
3156 | if (failed(verifyCompatibleShape(expectedOutputShape, outputShape))) { |
3157 | return emitOpError("the output shape is not expected"); |
3158 | } |
3159 | return success(); |
3160 | } |
3161 | |
3162 | SmallVector<Range> |
3163 | WinogradInputTransformOp::getIterationDomain(OpBuilder &builder) { |
3164 | Location loc = getLoc(); |
3165 | IntegerAttr zeroAttr = builder.getIndexAttr(0); |
3166 | IntegerAttr oneAttr = builder.getIndexAttr(1); |
3167 | Value output = getOutput(); |
3168 | int64_t outputRank = getOutputOperandRank(); |
3169 | SmallVector<Range> loopBounds(outputRank); |
3170 | for (unsigned dim = 0; dim < outputRank; ++dim) { |
3171 | loopBounds[dim].offset = zeroAttr; |
3172 | // alphaH, alphaW, tileH, tileW, N, C |
3173 | loopBounds[dim].size = getDimValue(builder, loc, output, dim); |
3174 | loopBounds[dim].stride = oneAttr; |
3175 | } |
3176 | return loopBounds; |
3177 | } |
3178 | |
3179 | SmallVector<utils::IteratorType> |
3180 | WinogradInputTransformOp::getLoopIteratorTypes() { |
3181 | int64_t outputRank = getOutputOperandRank(); |
3182 | SmallVector<utils::IteratorType> iteratorTypes(outputRank, |
3183 | utils::IteratorType::parallel); |
3184 | return iteratorTypes; |
3185 | } |
3186 | |
3187 | LogicalResult WinogradInputTransformOp::getResultTilePosition( |
3188 | OpBuilder &builder, unsigned resultNumber, ArrayRef<OpFoldResult> offsets, |
3189 | ArrayRef<OpFoldResult> sizes, SmallVector<OpFoldResult> &resultOffsets, |
3190 | SmallVector<OpFoldResult> &resultSizes) { |
3191 | IntegerAttr zeroAttr = builder.getI64IntegerAttr(0); |
3192 | ShapedType outputType = getOutputOperandType(); |
3193 | ArrayRef<int64_t> outputShape = outputType.getShape(); |
3194 | int64_t outputAlphaH = outputShape[getOutputAlphaHDim()]; |
3195 | int64_t outputAlphaW = outputShape[getOutputAlphaWDim()]; |
3196 | |
3197 | int64_t m = getM(); |
3198 | int64_t r = getR(); |
3199 | int64_t alpha = m + r - 1; |
3200 | int64_t alphaH = outputAlphaH != 1 ? alpha : 1; |
3201 | int64_t alphaW = outputAlphaW != 1 ? alpha : 1; |
3202 | |
3203 | IntegerAttr alphaHAttr = builder.getI64IntegerAttr(alphaH); |
3204 | IntegerAttr alphaWAttr = builder.getI64IntegerAttr(alphaW); |
3205 | |
3206 | resultOffsets.append({zeroAttr, zeroAttr, offsets[getOutputTileHDim()], |
3207 | offsets[getOutputTileWDim()], offsets[getOutputNDim()], |
3208 | offsets[getOutputCDim()]}); |
3209 | resultSizes.append({alphaHAttr, alphaWAttr, sizes[getOutputTileHDim()], |
3210 | sizes[getOutputTileWDim()], sizes[getOutputNDim()], |
3211 | sizes[getOutputCDim()]}); |
3212 | |
3213 | return success(); |
3214 | } |
3215 | |
3216 | /// Implement tiling for winograd_input_transform |
3217 | /// The input of winograd_input_transform is (N, H, W, C). |
3218 | /// The output of winograd_input_transform is (alphaH, alphaW, tileH, tileW, N, |
3219 | /// C) Users can specify the tile sizes of tileH, tileW, N, and C. `offsets` are |
3220 | /// the values for the offsets of tileH, tileW, N, C for one tile. `sizes` are |
3221 | /// the values for the sizes of tileH, tileW, N, C for one tile. |
3222 | FailureOr<TilingResult> |
3223 | WinogradInputTransformOp::getTiledImplementation(OpBuilder &builder, |
3224 | ArrayRef<OpFoldResult> offsets, |
3225 | ArrayRef<OpFoldResult> sizes) { |
3226 | IntegerAttr oneAttr = builder.getI64IntegerAttr(1); |
3227 | int64_t m = getM(); |
3228 | int64_t r = getR(); |
3229 | |
3230 | ShapedType outputType = getOutputOperandType(); |
3231 | ArrayRef<int64_t> outputShape = outputType.getShape(); |
3232 | int64_t alphaH = outputShape[getOutputAlphaHDim()]; |
3233 | int64_t alphaW = outputShape[getOutputAlphaWDim()]; |
3234 | |
3235 | Location loc = getLoc(); |
3236 | MLIRContext *context = builder.getContext(); |
3237 | auto identityAffineMap = |
3238 | AffineMap::get(1, 0, {builder.getAffineDimExpr(0)}, context); |
3239 | auto offsetAffineMap = |
3240 | AffineMap::get(1, 0, {builder.getAffineDimExpr(0) * m}, context); |
3241 | Value mappedOffsetH = affine::makeComposedAffineApply( |
3242 | builder, loc, (alphaH != 1 ? offsetAffineMap : identityAffineMap), |
3243 | offsets[getOutputTileHDim()]); |
3244 | Value mappedOffsetW = affine::makeComposedAffineApply( |
3245 | builder, loc, (alphaW != 1 ? offsetAffineMap : identityAffineMap), |
3246 | offsets[getOutputTileWDim()]); |
3247 | auto sizeAffineMap = AffineMap::get( |
3248 | 1, 0, {builder.getAffineDimExpr(0) * m + (r - 1)}, context); |
3249 | Value mappedSizeH = affine::makeComposedAffineApply( |
3250 | builder, loc, sizeAffineMap, sizes[getOutputTileHDim()]); |
3251 | Value mappedSizeW = affine::makeComposedAffineApply( |
3252 | builder, loc, sizeAffineMap, sizes[getOutputTileWDim()]); |
3253 | |
3254 | SmallVector<Value> tiledOperands; |
3255 | SmallVector<OpFoldResult> sliceOffsets, sliceSizes; |
3256 | |
3257 | OpFoldResult offsetH = OpFoldResult(mappedOffsetH); |
3258 | OpFoldResult offsetW = OpFoldResult(mappedOffsetW); |
3259 | sliceOffsets.append( |
3260 | {offsets[getOutputNDim()], offsetH, offsetW, offsets[getOutputCDim()]}); |
3261 | OpFoldResult sizeH = |
3262 | alphaH != 1 ? OpFoldResult(mappedSizeH) : OpFoldResult(oneAttr); |
3263 | OpFoldResult sizeW = |
3264 | alphaW != 1 ? OpFoldResult(mappedSizeW) : OpFoldResult(oneAttr); |
3265 | sliceSizes.append( |
3266 | {sizes[getOutputNDim()], sizeH, sizeW, sizes[getOutputCDim()]}); |
3267 | int64_t inputRank = getInputOperandRank(); |
3268 | SmallVector<OpFoldResult> inputStrides(inputRank, oneAttr); |
3269 | auto inputSlice = builder.create<tensor::ExtractSliceOp>( |
3270 | loc, getInput(), sliceOffsets, sliceSizes, inputStrides); |
3271 | tiledOperands.emplace_back(inputSlice); |
3272 | |
3273 | SmallVector<OpFoldResult> resultOffsets, resultSizes; |
3274 | if (failed(getResultTilePosition(builder, 1, offsets, sizes, resultOffsets, |
3275 | resultSizes))) |
3276 | return failure(); |
3277 | |
3278 | int64_t outputRank = getOutputOperandRank(); |
3279 | SmallVector<OpFoldResult> outputStrides(outputRank, oneAttr); |
3280 | auto outputSlice = builder.create<tensor::ExtractSliceOp>( |
3281 | loc, getOutput(), resultOffsets, resultSizes, outputStrides); |
3282 | tiledOperands.emplace_back(outputSlice); |
3283 | |
3284 | SmallVector<Type> resultTypes; |
3285 | resultTypes.push_back(tiledOperands[1].getType()); |
3286 | Operation *tiledOp = |
3287 | mlir::clone(builder, getOperation(), resultTypes, tiledOperands); |
3288 | |
3289 | return TilingResult{ |
3290 | {tiledOp}, |
3291 | SmallVector<Value>(tiledOp->getResults()), |
3292 | llvm::to_vector(ArrayRef<Operation *>{inputSlice, outputSlice})}; |
3293 | } |
3294 | |
3295 | //===----------------------------------------------------------------------===// |
3296 | // WinogradOutputTransformOp |
3297 | //===----------------------------------------------------------------------===// |
3298 | |
3299 | LogicalResult WinogradOutputTransformOp::verify() { |
3300 | auto valueType = cast<ShapedType>(getValue().getType()); |
3301 | ArrayRef<int64_t> valueShape = valueType.getShape(); |
3302 | int64_t valueH = valueShape[getValueAlphaHDim()]; |
3303 | int64_t valueW = valueShape[getValueAlphaWDim()]; |
3304 | int64_t valueTileH = valueShape[getValueTileHDim()]; |
3305 | int64_t valueTileW = valueShape[getValueTileWDim()]; |
3306 | int m = getM(); |
3307 | int r = getR(); |
3308 | bool leftTransform = valueH != 1; |
3309 | bool rightTransform = valueW != 1; |
3310 | |
3311 | int64_t outputRank = getOutputOperandRank(); |
3312 | SmallVector<int64_t> expectedOutputShape(outputRank, valueH); |
3313 | if (ShapedType::isDynamic(valueH) || ShapedType::isDynamic(valueTileH)) { |
3314 | expectedOutputShape[getOutputHDim()] = ShapedType::kDynamic; |
3315 | } else { |
3316 | if (valueH != (leftTransform ? m + r - 1 : 1)) |
3317 | return emitOpError("expect input height equals to input tile size"); |
3318 | expectedOutputShape[getOutputHDim()] = (leftTransform ? m : 1) * valueTileH; |
3319 | } |
3320 | if (ShapedType::isDynamic(valueW) || ShapedType::isDynamic(valueTileW)) { |
3321 | expectedOutputShape[getOutputWDim()] = ShapedType::kDynamic; |
3322 | } else { |
3323 | if (valueW != (rightTransform ? m + r - 1 : 1)) |
3324 | return emitOpError("expect input width equals to input tile size"); |
3325 | expectedOutputShape[getOutputWDim()] = |
3326 | (rightTransform ? m : 1) * valueTileW; |
3327 | } |
3328 | expectedOutputShape[getOutputNDim()] = valueShape[getValueNDim()]; |
3329 | expectedOutputShape[getOutputFDim()] = valueShape[getValueFDim()]; |
3330 | |
3331 | auto outputType = cast<ShapedType>(getOutput().getType()); |
3332 | ArrayRef<int64_t> outputShape = outputType.getShape(); |
3333 | if (failed(verifyCompatibleShape(expectedOutputShape, outputShape))) { |
3334 | return emitOpError("the output shape is not expected"); |
3335 | } |
3336 | return success(); |
3337 | } |
3338 | |
3339 | SmallVector<Range> |
3340 | WinogradOutputTransformOp::getIterationDomain(OpBuilder &builder) { |
3341 | Location loc = getLoc(); |
3342 | IntegerAttr zeroAttr = builder.getIndexAttr(0); |
3343 | IntegerAttr oneAttr = builder.getIndexAttr(1); |
3344 | Value value = getValue(); |
3345 | int64_t valueRank = getValueOperandRank(); |
3346 | SmallVector<Range> loopBounds(valueRank); |
3347 | for (unsigned dim = 0; dim < valueRank; ++dim) { |
3348 | loopBounds[dim].offset = zeroAttr; |
3349 | // alphaH, alphaW, tileH, tileW, N, F |
3350 | loopBounds[dim].size = getDimValue(builder, loc, value, dim); |
3351 | loopBounds[dim].stride = oneAttr; |
3352 | } |
3353 | return loopBounds; |
3354 | } |
3355 | |
3356 | SmallVector<utils::IteratorType> |
3357 | WinogradOutputTransformOp::getLoopIteratorTypes() { |
3358 | int64_t valueRank = getValueOperandRank(); |
3359 | SmallVector<utils::IteratorType> iteratorTypes(valueRank, |
3360 | utils::IteratorType::parallel); |
3361 | return iteratorTypes; |
3362 | } |
3363 | |
3364 | LogicalResult WinogradOutputTransformOp::getResultTilePosition( |
3365 | OpBuilder &builder, unsigned resultNumber, ArrayRef<OpFoldResult> offsets, |
3366 | ArrayRef<OpFoldResult> sizes, SmallVector<OpFoldResult> &resultOffsets, |
3367 | SmallVector<OpFoldResult> &resultSizes) { |
3368 | int64_t m = getM(); |
3369 | |
3370 | Location loc = getLoc(); |
3371 | MLIRContext *context = builder.getContext(); |
3372 | auto identityAffineMap = |
3373 | AffineMap::get(1, 0, {builder.getAffineDimExpr(0)}, context); |
3374 | auto affineMap = |
3375 | AffineMap::get(1, 0, {builder.getAffineDimExpr(0) * m}, context); |
3376 | |
3377 | ShapedType valueType = getValueOperandType(); |
3378 | ArrayRef<int64_t> valueShape = valueType.getShape(); |
3379 | int64_t valueH = valueShape[0]; |
3380 | int64_t valueW = valueShape[1]; |
3381 | Value mappedOffsetH = affine::makeComposedAffineApply( |
3382 | builder, loc, (valueH != 1 ? affineMap : identityAffineMap), |
3383 | offsets[getValueTileHDim()]); |
3384 | Value mappedOffsetW = affine::makeComposedAffineApply( |
3385 | builder, loc, (valueW != 1 ? affineMap : identityAffineMap), |
3386 | offsets[getValueTileWDim()]); |
3387 | Value mappedSizeH = affine::makeComposedAffineApply( |
3388 | builder, loc, affineMap, sizes[getValueTileHDim()]); |
3389 | Value mappedSizeW = affine::makeComposedAffineApply( |
3390 | builder, loc, affineMap, sizes[getValueTileWDim()]); |
3391 | |
3392 | IntegerAttr oneAttr = builder.getI64IntegerAttr(1); |
3393 | OpFoldResult offsetH = OpFoldResult(mappedOffsetH); |
3394 | OpFoldResult offsetW = OpFoldResult(mappedOffsetW); |
3395 | OpFoldResult sizeH = |
3396 | valueH != 1 ? OpFoldResult(mappedSizeH) : OpFoldResult(oneAttr); |
3397 | OpFoldResult sizeW = |
3398 | valueW != 1 ? OpFoldResult(mappedSizeW) : OpFoldResult(oneAttr); |
3399 | |
3400 | resultOffsets.append( |
3401 | {offsets[getValueNDim()], offsetH, offsetW, offsets[getValueFDim()]}); |
3402 | resultSizes.append( |
3403 | {sizes[getValueNDim()], sizeH, sizeW, sizes[getValueFDim()]}); |
3404 | return success(); |
3405 | } |
3406 | |
3407 | /// Implement tiling for winograd_output_transform |
3408 | /// The input of winograd_output_transform is (alphaH, alphaW, tileH, tileW, N, |
3409 | /// F). The output of winograd_output_transform is (N, H, W, F) Users can |
3410 | /// specify the tile sizes of tileH, tileW, N, and F. `offsets` are the values |
3411 | /// for the offsets of tileH, tileW, N, F for one tile. `sizes` are the values |
3412 | /// for the sizes of tileH, tileW, N, F for one tile. |
3413 | FailureOr<TilingResult> WinogradOutputTransformOp::getTiledImplementation( |
3414 | OpBuilder &builder, ArrayRef<OpFoldResult> offsets, |
3415 | ArrayRef<OpFoldResult> sizes) { |
3416 | IntegerAttr oneAttr = builder.getI64IntegerAttr(1); |
3417 | IntegerAttr zeroAttr = builder.getI64IntegerAttr(0); |
3418 | Location loc = getLoc(); |
3419 | SmallVector<Value> tiledOperands; |
3420 | SmallVector<OpFoldResult> sliceOffsets, sliceSizes; |
3421 | |
3422 | ShapedType valueType = getValueOperandType(); |
3423 | ArrayRef<int64_t> valueShape = valueType.getShape(); |
3424 | int64_t alphaH = valueShape[getValueAlphaHDim()]; |
3425 | int64_t alphaW = valueShape[getValueAlphaWDim()]; |
3426 | IntegerAttr alphaHAttr = builder.getI64IntegerAttr(alphaH); |
3427 | IntegerAttr alphaWAttr = builder.getI64IntegerAttr(alphaW); |
3428 | |
3429 | sliceOffsets.append({zeroAttr, zeroAttr, offsets[getValueTileHDim()], |
3430 | offsets[getValueTileWDim()], offsets[getValueNDim()], |
3431 | offsets[getValueFDim()]}); |
3432 | sliceSizes.append({alphaHAttr, alphaWAttr, sizes[getValueTileHDim()], |
3433 | sizes[getValueTileWDim()], sizes[getValueNDim()], |
3434 | sizes[getValueFDim()]}); |
3435 | int64_t valueRank = getValueOperandRank(); |
3436 | SmallVector<OpFoldResult> sliceStrides(valueRank, oneAttr); |
3437 | auto valueSlice = builder.create<tensor::ExtractSliceOp>( |
3438 | loc, getValue(), sliceOffsets, sliceSizes, sliceStrides); |
3439 | tiledOperands.emplace_back(valueSlice); |
3440 | |
3441 | SmallVector<OpFoldResult> resultOffsets, resultSizes; |
3442 | if (failed(getResultTilePosition(builder, 1, offsets, sizes, resultOffsets, |
3443 | resultSizes))) |
3444 | return failure(); |
3445 | |
3446 | int64_t outputRank = getOutputOperandRank(); |
3447 | SmallVector<OpFoldResult> strides(outputRank, oneAttr); |
3448 | auto outputSlice = builder.create<tensor::ExtractSliceOp>( |
3449 | loc, getOutput(), resultOffsets, resultSizes, strides); |
3450 | tiledOperands.emplace_back(outputSlice); |
3451 | |
3452 | SmallVector<Type> resultTypes; |
3453 | resultTypes.push_back(tiledOperands[1].getType()); |
3454 | Operation *tiledOp = |
3455 | mlir::clone(builder, getOperation(), resultTypes, tiledOperands); |
3456 | |
3457 | return TilingResult{ |
3458 | {tiledOp}, |
3459 | SmallVector<Value>(tiledOp->getResults()), |
3460 | llvm::to_vector(ArrayRef<Operation *>{valueSlice, outputSlice})}; |
3461 | } |
3462 | |
3463 | //===----------------------------------------------------------------------===// |
3464 | // LinalgDialect |
3465 | // TODO: Merge with the LinalgDialect block at the bottom |
3466 | //===----------------------------------------------------------------------===// |
3467 | |
3468 | // Returns true if the result expression of `subMap` are a subset of `fullMap`. |
3469 | static bool areResultExprsSubsetOf(AffineMap subMap, AffineMap fullMap) { |
3470 | auto explicitRange = subMap.getResults(); |
3471 | auto defaultRange = fullMap.getResults(); |
3472 | DenseSet<AffineExpr> explicitSet(explicitRange.begin(), explicitRange.end()); |
3473 | DenseSet<AffineExpr> defaultSet(defaultRange.begin(), defaultRange.end()); |
3474 | llvm::set_union(S1&: explicitSet, S2: defaultSet); |
3475 | return explicitSet == defaultSet; |
3476 | } |
3477 | |
3478 | /// Check if the user defined map is valid broadcast map. Here broadcast |
3479 | /// indexing maps are defined in context of corresponding default indexing maps |
3480 | /// for the given Op. This way the check becomes very simple i.e just check the |
3481 | /// number of result dims. |
3482 | /// Returns true if the explictMap is broadcasted with respect to the |
3483 | /// defaultMap. |
3484 | static bool isBroadcasted(AffineMap explictMap, AffineMap defaultMap) { |
3485 | return explictMap.getNumResults() < defaultMap.getNumResults(); |
3486 | } |
3487 | |
3488 | /// Verifies the broadcast and transpose semantic sepecified by the explicit |
3489 | /// indexing map for the MatmulOp \p op for each operand specified by \p |
3490 | /// opIndex. |
3491 | static LogicalResult verifyExtendedMatmulSemantic(MatmulOp matmulOp, |
3492 | unsigned opIndex) { |
3493 | SmallVector<AffineMap, 3> opIndexingMaps = matmulOp.getIndexingMapsArray(); |
3494 | SmallVector<AffineMap, 3> defaultIndexingMaps = |
3495 | matmulOp.getDefaultIndexingMaps(matmulOp->getContext()); |
3496 | |
3497 | auto opIndexingMap = opIndexingMaps[opIndex]; |
3498 | auto defaultIndexingMap = defaultIndexingMaps[opIndex]; |
3499 | // Check general validity of indexing map results. |
3500 | if (!areResultExprsSubsetOf(opIndexingMap, defaultIndexingMap)) |
3501 | return matmulOp->emitOpError() |
3502 | << "Unexpected dim expression in map result."; |
3503 | |
3504 | if (isBroadcasted(opIndexingMap, defaultIndexingMap)) { |
3505 | if (!matmulOp.isValidLhsRhsBroadcastMap(opIndexingMap)) { |
3506 | return matmulOp->emitOpError() |
3507 | << "Invalid broadcast requested, should be (d2)."; |
3508 | } |
3509 | return success(); |
3510 | } |
3511 | return success(); |
3512 | } |
3513 | |
3514 | // Check general validity of input indexing map of |
3515 | // BatchMatmulOp/BatchReduceMatmulOp. |
3516 | template <typename OpTy> |
3517 | static LogicalResult verifyInputMaps(OpTy batchVariantMatmulOp, |
3518 | AffineMap opIndexingMap, |
3519 | AffineMap defaultIndexingMap, bool isLHS) { |
3520 | assert((isa<BatchMatmulOp>(batchVariantMatmulOp) || |
3521 | isa<BatchReduceMatmulOp>(batchVariantMatmulOp)) && |
3522 | "Expected BatchMatmulOp or BatchReduceMatmulOp"); |
3523 | // Check the result dims are valid. |
3524 | if (!areResultExprsSubsetOf(subMap: opIndexingMap, fullMap: defaultIndexingMap)) |
3525 | return batchVariantMatmulOp->emitOpError() |
3526 | << "Unexpected result dim expression (outside the set of default " |
3527 | "result dims)."; |
3528 | |
3529 | // Check for valid number of result dims of input maps. |
3530 | if (opIndexingMap.getNumResults() > 3) |
3531 | return batchVariantMatmulOp->emitOpError() |
3532 | << "no. of result dim expressions exceeds 3."; |
3533 | |
3534 | auto hasValidBatchDim = [](AffineMap map) { |
3535 | AffineExpr batchDim = map.getResult(idx: 0); |
3536 | return batchDim.isFunctionOfDim(position: 0); |
3537 | }; |
3538 | |
3539 | // Check if the requested broadcast is valid. |
3540 | if (isBroadcasted(explictMap: opIndexingMap, defaultMap: defaultIndexingMap)) { |
3541 | if (!batchVariantMatmulOp.isValidLhsRhsBroadcastMap(opIndexingMap, isLHS)) |
3542 | return batchVariantMatmulOp->emitOpError() |
3543 | << "Invalid broadcast requested."; |
3544 | } else if (!hasValidBatchDim(opIndexingMap)) { |
3545 | return batchVariantMatmulOp->emitOpError() |
3546 | << "Invalid batch dimension expression."; |
3547 | } |
3548 | return success(); |
3549 | } |
3550 | |
3551 | /// This function checks if the given AffineMap for the output of a |
3552 | /// BatchMatmulOp/BatchReduceMatmulOp has exactly the desired number of result |
3553 | /// dimensions and if the output map result dimensions are valid. |
3554 | template <typename OpTy> |
3555 | static LogicalResult verifyOutputMap(OpTy batchVariantMatmulOp, |
3556 | AffineMap opIndexingMap) { |
3557 | assert((isa<BatchMatmulOp>(batchVariantMatmulOp) || |
3558 | isa<BatchReduceMatmulOp>(batchVariantMatmulOp)) && |
3559 | "Expected BatchMatmulOp or BatchReduceMatmulOp"); |
3560 | if (isa<BatchMatmulOp>(batchVariantMatmulOp) && |
3561 | opIndexingMap.getNumResults() != 3) { |
3562 | |
3563 | return batchVariantMatmulOp->emitOpError() |
3564 | << "expects 3 dims, but got ("<< opIndexingMap.getNumResults() |
3565 | << ")."; |
3566 | } |
3567 | if (isa<BatchReduceMatmulOp>(batchVariantMatmulOp) && |
3568 | opIndexingMap.getNumResults() != 2) { |
3569 | return batchVariantMatmulOp->emitOpError() |
3570 | << "expects 2 dims, but got ("<< opIndexingMap.getNumResults() |
3571 | << ")."; |
3572 | } |
3573 | |
3574 | auto areValidOutputResultDim = [&](AffineMap outputMap) { |
3575 | return isa<BatchMatmulOp>(batchVariantMatmulOp) |
3576 | ? outputMap.getResult(0).isFunctionOfDim(0) && |
3577 | outputMap.getResult(1).isFunctionOfDim(1) && |
3578 | outputMap.getResult(2).isFunctionOfDim(2) |
3579 | : outputMap.getResult(0).isFunctionOfDim(1) && |
3580 | outputMap.getResult(1).isFunctionOfDim(2); |
3581 | }; |
3582 | |
3583 | if (!areValidOutputResultDim(opIndexingMap)) { |
3584 | return batchVariantMatmulOp->emitOpError() |
3585 | << "Invalid output map result dimension."; |
3586 | } |
3587 | |
3588 | return success(); |
3589 | } |
3590 | |
3591 | /// Verifies the broadcast and transpose semantic specified by the explicit |
3592 | /// indexing map for the BatchMatmulOp/BatchReduceMatmulOp op for each operand |
3593 | /// specified by opIndex. |
3594 | template <typename OpTy> |
3595 | static LogicalResult |
3596 | verifyExtendedBatchVariantMatmulSemantic(OpTy batchVariantMatmulOp, |
3597 | unsigned opIndex) { |
3598 | SmallVector<AffineMap, 3> opIndexingMaps = |
3599 | batchVariantMatmulOp.getIndexingMapsArray(); |
3600 | SmallVector<AffineMap, 3> defaultIndexingMaps = |
3601 | batchVariantMatmulOp.getDefaultIndexingMaps( |
3602 | batchVariantMatmulOp->getContext()); |
3603 | |
3604 | if (opIndexingMaps.size() != 3) |
3605 | return batchVariantMatmulOp->emitOpError() |
3606 | << "Indexing_map attribute must have 3 affine maps."; |
3607 | |
3608 | auto opIndexingMap = opIndexingMaps[opIndex]; |
3609 | auto defaultIndexingMap = defaultIndexingMaps[opIndex]; |
3610 | |
3611 | if (opIndex == 2 && |
3612 | failed(verifyOutputMap(batchVariantMatmulOp, opIndexingMap))) |
3613 | return failure(); |
3614 | |
3615 | if (opIndex != 2 && |
3616 | failed(verifyInputMaps(batchVariantMatmulOp, opIndexingMap, |
3617 | defaultIndexingMap, opIndex == 0))) |
3618 | return failure(); |
3619 | |
3620 | return success(); |
3621 | } |
3622 | |
3623 | namespace mlir { |
3624 | namespace linalg { |
3625 | |
3626 | //===----------------------------------------------------------------------===// |
3627 | // MatMulOp |
3628 | //===----------------------------------------------------------------------===// |
3629 | |
3630 | /// Returns a list of AffineMap with the typical matmul indexing charactristic. |
3631 | SmallVector<AffineMap> MatmulOp::getDefaultIndexingMaps(MLIRContext *context) { |
3632 | AffineExpr d0, d1, d2; |
3633 | SmallVector<AffineMap> indexingMaps; |
3634 | bindDims(context, d0, d1, d2); |
3635 | indexingMaps.push_back(AffineMap::get(3, 0, {d0, d2}, context)); |
3636 | indexingMaps.push_back(AffineMap::get(3, 0, {d2, d1}, context)); |
3637 | indexingMaps.push_back(AffineMap::get(3, 0, {d0, d1}, context)); |
3638 | return indexingMaps; |
3639 | } |
3640 | |
3641 | SmallVector<utils::IteratorType> MatmulOp::getIteratorTypesArray() { |
3642 | return SmallVector<utils::IteratorType>{utils::IteratorType::parallel, |
3643 | utils::IteratorType::parallel, |
3644 | utils::IteratorType::reduction}; |
3645 | } |
3646 | |
3647 | unsigned MatmulOp::getNumRegionArgs() { return 3; } |
3648 | |
3649 | std::string MatmulOp::getLibraryCallName() { |
3650 | return generateLibraryCallName(getOperation()); |
3651 | } |
3652 | |
3653 | bool MatmulOp::hasDynamicIndexingMaps() { return true; } |
3654 | |
3655 | /// Check if the op has broadcast and/or transpose semantic. Returns true if |
3656 | /// the user defined indexing maps are not equal to default map. |
3657 | bool MatmulOp::hasUserDefinedMaps() { |
3658 | SmallVector<AffineMap, 3> defaultMaps = |
3659 | getDefaultIndexingMaps(this->getContext()); |
3660 | SmallVector<AffineMap, 3> explicitMaps = getIndexingMapsArray(); |
3661 | return defaultMaps != explicitMaps; |
3662 | } |
3663 | |
3664 | /// Implements the block region builder for the MatmulOp. This is called by |
3665 | /// 'fillStructuredOpRegion'. |
3666 | void MatmulOp::regionBuilder(ImplicitLocOpBuilder &b, Block &block, |
3667 | ArrayRef<NamedAttribute> attrs) { |
3668 | assert(3 > 0 && block.getNumArguments() == 3 && |
3669 | "MatmulOp regionBuilder expects 3 (>=0) args"); |
3670 | RegionBuilderHelper helper(b, block); |
3671 | SmallVector<Value> yields; |
3672 | |
3673 | TypeFn castVal = TypeFn::cast_signed; |
3674 | const auto *castIter = llvm::find_if(attrs, [&](const NamedAttribute &attr) { |
3675 | return attr.getName() == "cast"; |
3676 | }); |
3677 | if (castIter != attrs.end()) { |
3678 | if (auto attr = llvm::dyn_cast<TypeFnAttr>(castIter->getValue())) |
3679 | castVal = attr.getValue(); |
3680 | } |
3681 | |
3682 | Value value1 = helper.buildTypeFn(castVal, block.getArgument(2).getType(), |
3683 | block.getArgument(0)); |
3684 | Value value2 = helper.buildTypeFn(castVal, block.getArgument(2).getType(), |
3685 | block.getArgument(1)); |
3686 | Value value3 = helper.buildBinaryFn(BinaryFn::mul, value1, value2); |
3687 | Value value4 = |
3688 | helper.buildBinaryFn(BinaryFn::add, block.getArgument(2), value3); |
3689 | yields.push_back(value4); |
3690 | helper.yieldOutputs(yields); |
3691 | } |
3692 | |
3693 | /// Returns true if the given bcastMap map is a valid broadcast map. A valid |
3694 | /// broadcast map must include K dimension. |
3695 | /// TODO: Strict inclusion of K dimension in the broadcast map is not |
3696 | /// necessary for both input matrices simultaneously. We can relax this |
3697 | /// condition to have K dimension for one input matrix map and infer the K |
3698 | /// dimension for other input matrix map from the one already having K |
3699 | /// dimension. |
3700 | bool MatmulOp::isValidLhsRhsBroadcastMap(AffineMap bcastMap) { |
3701 | assert(bcastMap.getNumResults() == 1 && "Expected single result dim expr."); |
3702 | AffineExpr expr = bcastMap.getResult(0); |
3703 | // Invalid map if the common dimension of matmul not found. |
3704 | return expr.isFunctionOfDim(bcastMap.getNumDims() - 1); |
3705 | } |
3706 | |
3707 | FailureOr<ArrayAttr> parseIndexingMapsAttr(OpAsmParser &parser) { |
3708 | if (parser.parseOptionalKeyword(keyword: "indexing_maps")) |
3709 | return ArrayAttr{ |
3710 | nullptr}; // Success in case indexing_maps was not provided. |
3711 | |
3712 | ArrayAttr arrayAttr; |
3713 | if (parser.parseEqual() || parser.parseAttribute(arrayAttr)) |
3714 | return failure(); |
3715 | |
3716 | if (llvm::any_of(arrayAttr, |
3717 | [](auto elt) { return !dyn_cast<AffineMapAttr>(elt); })) |
3718 | return parser.emitError(loc: parser.getCurrentLocation()) |
3719 | << "element of indexing_maps array is not an affine_map"; |
3720 | |
3721 | return arrayAttr; |
3722 | } |
3723 | |
3724 | ParseResult MatmulOp::parse(OpAsmParser &parser, OperationState &result) { |
3725 | FailureOr<ArrayAttr> indexingMapsAttr = parseIndexingMapsAttr(parser); |
3726 | if (failed(indexingMapsAttr)) |
3727 | return failure(); |
3728 | |
3729 | if (*indexingMapsAttr == nullptr) { |
3730 | auto indexingMapAttrs = llvm::map_to_vector( |
3731 | MatmulOp::getDefaultIndexingMaps(parser.getContext()), |
3732 | [](AffineMap map) -> Attribute { return AffineMapAttr::get(map); }); |
3733 | indexingMapsAttr = parser.getBuilder().getArrayAttr(indexingMapAttrs); |
3734 | } |
3735 | |
3736 | result.addAttribute("indexing_maps", *indexingMapsAttr); |
3737 | return parseNamedStructuredOp(parser, result, MatmulOp::getNumRegionArgs(), |
3738 | MatmulOp::getRegionBuilder()); |
3739 | } |
3740 | |
3741 | void MatmulOp::print(OpAsmPrinter &p) { |
3742 | SmallVector<Attribute, 3> indexingMaps = llvm::map_to_vector<3>( |
3743 | MatmulOp::getDefaultIndexingMaps(getContext()), |
3744 | [](AffineMap map) -> Attribute { return AffineMapAttr::get(map); }); |
3745 | if (!llvm::equal(getIndexingMaps(), indexingMaps)) |
3746 | p << " indexing_maps = "<< llvm::interleaved_array(getIndexingMaps()); |
3747 | |
3748 | std::array<StringRef, 3> elidedAttrs = { |
3749 | "operandSegmentSizes", "linalg.memoized_indexing_maps", "indexing_maps"}; |
3750 | printNamedStructuredOp(p, getOperation(), getInputs(), getOutputs(), |
3751 | elidedAttrs); |
3752 | } |
3753 | |
3754 | /// Verify the user defined indexing maps. |
3755 | LogicalResult MatmulOp::verify() { |
3756 | // Verification of pure matmul is handled by verifyStructuredOpInterface(). |
3757 | if (!hasUserDefinedMaps()) |
3758 | return success(); |
3759 | |
3760 | for (unsigned opIndex = 0; opIndex < 2; opIndex++) { |
3761 | if (failed(verifyExtendedMatmulSemantic(*this, opIndex))) |
3762 | return failure(); |
3763 | } |
3764 | return success(); |
3765 | } |
3766 | |
3767 | LogicalResult MatmulOp::fold(FoldAdaptor, SmallVectorImpl<OpFoldResult> &) { |
3768 | return memref::foldMemRefCast(*this); |
3769 | } |
3770 | |
3771 | void MatmulOp::getEffects( |
3772 | SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> |
3773 | &effects) { |
3774 | if (hasPureTensorSemantics()) |
3775 | return; |
3776 | getGenericEffectsImpl(effects, cast<LinalgOp>(getOperation())); |
3777 | } |
3778 | |
3779 | Speculation::Speculatability MatmulOp::getSpeculatability() { |
3780 | return getGenericSpeculatabilityImpl(cast<LinalgOp>(getOperation())); |
3781 | } |
3782 | |
3783 | //===----------------------------------------------------------------------===// |
3784 | // ContractOp |
3785 | //===----------------------------------------------------------------------===// |
3786 | |
3787 | SmallVector<utils::IteratorType> ContractOp::getIteratorTypesArray() { |
3788 | AffineMap outAffineMap = getIndexingMapsArray().pop_back_val(); |
3789 | // On well-formed IR, indexing_maps is non-empty, contained affine_maps' |
3790 | // domains are all the same, and each implements a projected permutation. |
3791 | // Each iteration space dim must occur for at least one operand and either |
3792 | // takes part in a contraction/reduction or else has parallel iteration type. |
3793 | // We have that a dim is a contraction/reduction dim if and only if the dim |
3794 | // occurs for the output operand. We use this fact for fast inference: |
3795 | // NB: In case we allow dims to occur solely for one input, the above still |
3796 | // holds: per the einsum semantics, these are reduction dims as well. |
3797 | SmallVector<bool> dimsInOutput(outAffineMap.getNumDims(), false); |
3798 | for (auto result : outAffineMap.getResults()) { |
3799 | auto dimExpr = dyn_cast<AffineDimExpr>(result); |
3800 | assert(dimExpr && "affine_map is a projected permutation"); |
3801 | dimsInOutput[dimExpr.getPosition()] = true; |
3802 | } |
3803 | |
3804 | SmallVector<utils::IteratorType> iteratorTypes; |
3805 | for (auto dimOccursInOutput : dimsInOutput) |
3806 | iteratorTypes.push_back(dimOccursInOutput ? utils::IteratorType::parallel |
3807 | : utils::IteratorType::reduction); |
3808 | |
3809 | return iteratorTypes; |
3810 | } |
3811 | |
3812 | unsigned ContractOp::getNumRegionArgs() { return 3; } |
3813 | |
3814 | /// Implement block region builder, which is called by 'fillStructuredOpRegion'. |
3815 | void ContractOp::regionBuilder(ImplicitLocOpBuilder &b, Block &block, |
3816 | ArrayRef<NamedAttribute> attrs) { |
3817 | assert(block.getNumArguments() == 3 && |
3818 | "ContractOp regionBuilder expects 3 args"); |
3819 | RegionBuilderHelper helper(b, block); |
3820 | |
3821 | TypeFn castSignedness = TypeFn::cast_signed; |
3822 | auto castIter = llvm::find_if(attrs, [&](const NamedAttribute &attr) { |
3823 | return attr.getName() == "cast"; |
3824 | }); |
3825 | if (castIter != attrs.end()) { |
3826 | if (auto attr = llvm::dyn_cast<TypeFnAttr>(castIter->getValue())) |
3827 | castSignedness = attr.getValue(); |
3828 | } |
3829 | |
3830 | // TODO: Support fields with operators besides mult & add. |
3831 | Type outType = block.getArgument(2).getType(); |
3832 | Value lhsAtOutType = |
3833 | helper.buildTypeFn(castSignedness, outType, block.getArgument(0)); |
3834 | Value rhsAtOutType = |
3835 | helper.buildTypeFn(castSignedness, outType, block.getArgument(1)); |
3836 | Value productAtOutType = |
3837 | helper.buildBinaryFn(BinaryFn::mul, lhsAtOutType, rhsAtOutType); |
3838 | Value result = helper.buildBinaryFn(BinaryFn::add, block.getArgument(2), |
3839 | productAtOutType); |
3840 | helper.yieldOutputs({result}); |
3841 | } |
3842 | |
3843 | ParseResult ContractOp::parse(OpAsmParser &parser, OperationState &result) { |
3844 | FailureOr<ArrayAttr> indexingMapsAttr = parseIndexingMapsAttr(parser); |
3845 | if (failed(indexingMapsAttr) || *indexingMapsAttr == nullptr) |
3846 | return parser.emitError(parser.getCurrentLocation(), |
3847 | "expected 'indexing_maps' attribute"); |
3848 | result.addAttribute("indexing_maps", *indexingMapsAttr); |
3849 | |
3850 | return parseNamedStructuredOp(parser, result, getNumRegionArgs(), |
3851 | regionBuilder); |
3852 | } |
3853 | |
3854 | void ContractOp::print(OpAsmPrinter &p) { |
3855 | p << " indexing_maps = "<< llvm::interleaved_array(getIndexingMaps()); |
3856 | printNamedStructuredOp( |
3857 | p, getOperation(), getInputs(), getOutputs(), |
3858 | /*elidedAttrs=*/{"indexing_maps", "operandSegmentSizes"}); |
3859 | } |
3860 | |
3861 | LogicalResult ContractOp::verify() { |
3862 | int iterationSpaceDims = -1; |
3863 | // Map iter space dims to #occurrences in inputs' and output's affine_maps: |
3864 | // e.g., inOccurrences[0] will hold #times that dim (with index) 0 is used to |
3865 | // access an input operand (so occurrence count can be at most 2) and |
3866 | // outOccurrences[1] will indicate whether dim 1 occurred in the output, etc. |
3867 | SmallVector<size_t> inOccurrences; |
3868 | SmallVector<size_t> outOccurrences; |
3869 | |
3870 | // A helper so that for each operand's affine_map and type we check that ... |
3871 | auto checkAffineMapAndType = [&](AffineMap affineMap, Type operandType, |
3872 | bool isInput) -> LogicalResult { |
3873 | // ... the affine_map is a projected permutation; |
3874 | if (!affineMap.isProjectedPermutation()) |
3875 | return emitError("provided affine_map is not a projected permutation"); |
3876 | |
3877 | // ... the rank of the affine_map's results and corresponding type match; |
3878 | if (auto shapedType = dyn_cast<ShapedType>(operandType)) { |
3879 | if (affineMap.getNumResults() != shapedType.getRank()) |
3880 | return emitError("ranks of shaped operand and results of corresponding " |
3881 | "affine_map differ"); |
3882 | } else if (affineMap.getNumResults() != 0) { |
3883 | return emitError("affine_map specifies shaped access while operand has " |
3884 | "non-shaped type"); |
3885 | } |
3886 | |
3887 | // ... the rank of the affine_map's domain is the same as those seen prior; |
3888 | if (iterationSpaceDims == -1) { |
3889 | iterationSpaceDims = affineMap.getNumDims(); |
3890 | inOccurrences = SmallVector<size_t>(iterationSpaceDims, 0); |
3891 | outOccurrences = SmallVector<size_t>(iterationSpaceDims, 0); |
3892 | } else if (iterationSpaceDims != (int)affineMap.getNumDims()) { |
3893 | return emitError("iteration spaces of provided affine_maps differ"); |
3894 | } |
3895 | |
3896 | // ... update counts of dims used to access either an input or the output. |
3897 | for (AffineExpr affineExpr : affineMap.getResults()) { |
3898 | auto affineDimExpr = dyn_cast<AffineDimExpr>(affineExpr); |
3899 | if (!affineDimExpr) |
3900 | llvm_unreachable("affine_map is a projected permutation"); |
3901 | |
3902 | if (isInput) |
3903 | inOccurrences[affineDimExpr.getPosition()] += 1; |
3904 | else |
3905 | outOccurrences[affineDimExpr.getPosition()] += 1; |
3906 | } |
3907 | |
3908 | return success(); |
3909 | }; |
3910 | |
3911 | for (auto &&[affineMap, operandType, isInput] : |
3912 | llvm::zip(getIndexingMapsArray(), getOperandTypes(), |
3913 | SmallVector<bool>{true, true, false})) { |
3914 | if (failed(checkAffineMapAndType(affineMap, operandType, isInput))) |
3915 | return failure(); // NB: checkAffineMapAndType will emit relevant error. |
3916 | } |
3917 | |
3918 | bool hasContractingDim = false; |
3919 | for (size_t dimIndex = 0; dimIndex < (size_t)iterationSpaceDims; dimIndex++) { |
3920 | size_t inOccCount = inOccurrences[dimIndex]; |
3921 | size_t outOccCount = outOccurrences[dimIndex]; |
3922 | |
3923 | // We have a contracting dim if and only if ... |
3924 | hasContractingDim |= inOccCount == 2 && outOccCount == 0; |
3925 | |
3926 | if (inOccCount == 0 && outOccCount == 0) |
3927 | return emitError() << "iteration space dim at index "<< dimIndex |
3928 | << " not used to access any operand"; |
3929 | |
3930 | // NB: We disallow a dim which occurs for only one input operand and not |
3931 | // for the output. In terms of einsum semantics such dims have a |
3932 | // sensible meaning - namely an additional reduction per each such dim. |
3933 | // By contrast, the ContractionOpInterface does not know about this |
3934 | // iter type - cf. inferContractionDims' supported dim kinds. Similarly, |
3935 | // while vector.contract's verifier accepts dims of this kind many of |
3936 | // its lowerings give up on encountering these dims. |
3937 | // TODO: Remove following once we have comprehensive support for input-only |
3938 | // reduction dims, at both the linalg- and vector-dialect levels. |
3939 | if (inOccCount == 1 && outOccCount != 1) |
3940 | return emitError() |
3941 | << "iteration space dim at index "<< dimIndex |
3942 | << " is neither a contracting dim nor of parallel iteration type"; |
3943 | } |
3944 | |
3945 | if (!hasContractingDim) |
3946 | return emitError("'indexing_maps' do not specify a contracting dimension"); |
3947 | |
3948 | return success(); |
3949 | } |
3950 | |
3951 | LogicalResult ContractOp::fold(FoldAdaptor, SmallVectorImpl<OpFoldResult> &) { |
3952 | return memref::foldMemRefCast(*this); |
3953 | } |
3954 | |
3955 | void ContractOp::getEffects( |
3956 | SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> |
3957 | &effects) { |
3958 | if (hasPureTensorSemantics()) |
3959 | return; |
3960 | getGenericEffectsImpl(effects, cast<LinalgOp>(getOperation())); |
3961 | } |
3962 | |
3963 | Speculation::Speculatability ContractOp::getSpeculatability() { |
3964 | return getGenericSpeculatabilityImpl(cast<LinalgOp>(getOperation())); |
3965 | } |
3966 | |
3967 | //===----------------------------------------------------------------------===// |
3968 | // Implementation of BatchMatmulOp |
3969 | //===----------------------------------------------------------------------===// |
3970 | SmallVector<AffineMap> |
3971 | BatchMatmulOp::getDefaultIndexingMaps(MLIRContext *context) { |
3972 | AffineExpr d0, d1, d2, d3; |
3973 | SmallVector<AffineMap> indexingMaps; |
3974 | bindDims(context, d0, d1, d2, d3); |
3975 | indexingMaps.push_back(AffineMap::get(4, 0, {d0, d1, d3}, context)); |
3976 | indexingMaps.push_back(AffineMap::get(4, 0, {d0, d3, d2}, context)); |
3977 | indexingMaps.push_back(AffineMap::get(4, 0, {d0, d1, d2}, context)); |
3978 | return indexingMaps; |
3979 | } |
3980 | |
3981 | SmallVector<utils::IteratorType> BatchMatmulOp::getIteratorTypesArray() { |
3982 | return SmallVector<utils::IteratorType>{ |
3983 | utils::IteratorType::parallel, utils::IteratorType::parallel, |
3984 | utils::IteratorType::parallel, utils::IteratorType::reduction}; |
3985 | } |
3986 | |
3987 | unsigned BatchMatmulOp::getNumRegionArgs() { return 3; } |
3988 | |
3989 | std::string BatchMatmulOp::getLibraryCallName() { |
3990 | return generateLibraryCallName(getOperation()); |
3991 | } |
3992 | |
3993 | /// Check if the op has broadcast and/or transpose semantic. Returns true if |
3994 | /// the user defined indexing maps are not equal to default map. |
3995 | bool BatchMatmulOp::hasUserDefinedMaps() { |
3996 | SmallVector<AffineMap, 3> defaultMaps = |
3997 | getDefaultIndexingMaps(this->getContext()); |
3998 | SmallVector<AffineMap, 3> explicitMaps = getIndexingMapsArray(); |
3999 | return defaultMaps != explicitMaps; |
4000 | } |
4001 | |
4002 | /// Returns true if the given bcastMap map is a valid broadcast map. A valid |
4003 | /// broadcast map must include K dimension. |
4004 | /// TODO: Strict inclusion of K dimension in the broadcast map is not |
4005 | /// necessary for both input matrices simultaneously. We can relax this |
4006 | /// condition to have K dimension for one input matrix map and infer the K |
4007 | /// dimension for other input matrix map from the one already having K |
4008 | /// dimension. |
4009 | bool BatchMatmulOp::isValidLhsRhsBroadcastMap(AffineMap bcastMap, bool isLHS) { |
4010 | assert(bcastMap.getNumResults() < 3 && |
4011 | "Expected less than 3 result dim expr."); |
4012 | bool isValid = false; |
4013 | enum Indices { batchPos, mPos, nPos, kPos }; |
4014 | if (bcastMap.getNumResults() == 1) { |
4015 | AffineExpr expr = bcastMap.getResult(0); |
4016 | isValid = expr.isFunctionOfDim(kPos); |
4017 | } else if (bcastMap.getNumResults() == 2) { |
4018 | AffineExpr expr0 = bcastMap.getResult(0); |
4019 | AffineExpr expr1 = bcastMap.getResult(1); |
4020 | isValid = |
4021 | isLHS ? ((expr0.isFunctionOfDim(batchPos) || |
4022 | expr0.isFunctionOfDim(mPos)) && |
4023 | expr1.isFunctionOfDim(kPos)) |
4024 | : ((expr0.isFunctionOfDim(batchPos) && |
4025 | expr1.isFunctionOfDim(kPos)) || |
4026 | (expr0.isFunctionOfDim(kPos) && expr1.isFunctionOfDim(nPos))); |
4027 | } |
4028 | return isValid; |
4029 | } |
4030 | |
4031 | void BatchMatmulOp::regionBuilder(ImplicitLocOpBuilder &b, Block &block, |
4032 | ArrayRef<NamedAttribute> attrs) { |
4033 | assert(block.getNumArguments() == 3 && |
4034 | "BatchMatmulOp regionBuilder expects 3 (>=0) args"); |
4035 | RegionBuilderHelper helper(b, block); |
4036 | SmallVector<Value> yields; |
4037 | |
4038 | TypeFn castVal = TypeFn::cast_signed; |
4039 | auto castIter = llvm::find_if(attrs, [&](const NamedAttribute &attr) { |
4040 | return attr.getName() == "cast"; |
4041 | }); |
4042 | if (castIter != attrs.end()) { |
4043 | if (auto attr = llvm::dyn_cast<TypeFnAttr>(castIter->getValue())) |
4044 | castVal = attr.getValue(); |
4045 | } |
4046 | |
4047 | auto toType = block.getArgument(2).getType(); |
4048 | Value castValA = helper.buildTypeFn(castVal, toType, block.getArgument(0)); |
4049 | Value castValB = helper.buildTypeFn(castVal, toType, block.getArgument(1)); |
4050 | Value mulVal = helper.buildBinaryFn(BinaryFn::mul, castValA, castValB); |
4051 | Value addVal = |
4052 | helper.buildBinaryFn(BinaryFn::add, block.getArgument(2), mulVal); |
4053 | yields.push_back(addVal); |
4054 | helper.yieldOutputs(yields); |
4055 | } |
4056 | |
4057 | ParseResult BatchMatmulOp::parse(OpAsmParser &parser, OperationState &result) { |
4058 | SmallVector<Attribute, 3> indexingMapsAttr; |
4059 | Attribute mapAttr; |
4060 | if (succeeded(parser.parseOptionalKeyword("indexing_maps"))) { |
4061 | if (parser.parseEqual()) |
4062 | return failure(); |
4063 | |
4064 | if (parser.parseLSquare()) |
4065 | return failure(); |
4066 | |
4067 | do { |
4068 | if (parser.parseAttribute(mapAttr)) |
4069 | return failure(); |
4070 | if (!isa<AffineMapAttr>(mapAttr)) { |
4071 | return parser.emitError(parser.getCurrentLocation(), |
4072 | "expected affine map attribute"); |
4073 | } |
4074 | indexingMapsAttr.push_back(mapAttr); |
4075 | |
4076 | if (parser.parseOptionalComma()) |
4077 | break; |
4078 | } while (true); |
4079 | |
4080 | if (parser.parseRSquare()) |
4081 | return failure(); |
4082 | } |
4083 | // Initialize indexingMaps, if not supplied explicitly. |
4084 | if (indexingMapsAttr.empty()) { |
4085 | indexingMapsAttr = llvm::map_to_vector( |
4086 | BatchMatmulOp::getDefaultIndexingMaps(parser.getContext()), |
4087 | [](AffineMap map) -> Attribute { return AffineMapAttr::get(map); }); |
4088 | } |
4089 | result.addAttribute("indexing_maps", |
4090 | parser.getBuilder().getArrayAttr(indexingMapsAttr)); |
4091 | |
4092 | return ::parseNamedStructuredOp(parser, result, |
4093 | BatchMatmulOp::getNumRegionArgs(), |
4094 | BatchMatmulOp::getRegionBuilder()); |
4095 | } |
4096 | |
4097 | void BatchMatmulOp::print(OpAsmPrinter &p) { |
4098 | SmallVector<Attribute, 3> indexingMaps = llvm::map_to_vector<3>( |
4099 | BatchMatmulOp::getDefaultIndexingMaps(getContext()), |
4100 | [](AffineMap map) -> Attribute { return AffineMapAttr::get(map); }); |
4101 | if (!llvm::equal(getIndexingMaps(), indexingMaps)) |
4102 | p << " indexing_maps = "<< llvm::interleaved_array(getIndexingMaps()); |
4103 | |
4104 | std::array<StringRef, 3> elidedAttrs = { |
4105 | "operandSegmentSizes", "linalg.memoized_indexing_maps", "indexing_maps"}; |
4106 | ::printNamedStructuredOp(p, getOperation(), getInputs(), getOutputs(), |
4107 | elidedAttrs); |
4108 | } |
4109 | |
4110 | /// Verify the user defined indexing maps. |
4111 | LogicalResult BatchMatmulOp::verify() { |
4112 | // Verification of pure batch_matmul is handled by |
4113 | // verifyStructuredOpInterface(). |
4114 | if (!hasUserDefinedMaps()) |
4115 | return success(); |
4116 | |
4117 | for (unsigned opIndex = 0; opIndex < 3; opIndex++) { |
4118 | if (failed(verifyExtendedBatchVariantMatmulSemantic(*this, opIndex))) |
4119 | return failure(); |
4120 | } |
4121 | return success(); |
4122 | } |
4123 | |
4124 | LogicalResult BatchMatmulOp::fold(FoldAdaptor, |
4125 | SmallVectorImpl<OpFoldResult> &) { |
4126 | return memref::foldMemRefCast(*this); |
4127 | } |
4128 | |
4129 | void BatchMatmulOp::getEffects( |
4130 | SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> |
4131 | &effects) { |
4132 | if (hasPureTensorSemantics()) |
4133 | return; |
4134 | getGenericEffectsImpl(effects, cast<LinalgOp>(getOperation())); |
4135 | } |
4136 | |
4137 | Speculation::Speculatability BatchMatmulOp::getSpeculatability() { |
4138 | return getGenericSpeculatabilityImpl(cast<LinalgOp>(getOperation())); |
4139 | } |
4140 | |
4141 | //===----------------------------------------------------------------------===// |
4142 | // ElementwiseOp |
4143 | //===----------------------------------------------------------------------===// |
4144 | // |
4145 | namespace { |
4146 | struct ArityGroupAndKind { |
4147 | // The enum class {Unary, Binary, Ternary, ..} |
4148 | ElementwiseArityGroup arityGroup; |
4149 | |
4150 | // The kind (e.g. `exp` or `add`) belonging to the arity group. |
4151 | union Kind { |
4152 | UnaryFn unaryFn; |
4153 | BinaryFn binaryFn; |
4154 | TernaryFn ternaryFn; |
4155 | } kind; |
4156 | }; |
4157 | |
4158 | unsigned getArityGroupAsUInt(ElementwiseArityGroup arityGroup) { |
4159 | return static_cast<unsigned>(arityGroup); |
4160 | } |
4161 | } // namespace |
4162 | |
4163 | static ArityGroupAndKind getArityGroupAndKind(ElementwiseKind kind) { |
4164 | constexpr int lastUnary = static_cast<int>(ElementwiseCaseLimits::LastUnary); |
4165 | constexpr int lastBinary = |
4166 | static_cast<int>(ElementwiseCaseLimits::LastBinary); |
4167 | constexpr int lastTernary = |
4168 | static_cast<int>(ElementwiseCaseLimits::LastTernary); |
4169 | |
4170 | int val = static_cast<int>(kind); |
4171 | ArityGroupAndKind result; |
4172 | |
4173 | if (val < lastUnary) { |
4174 | result.arityGroup = ElementwiseArityGroup::Unary; |
4175 | result.kind.unaryFn = static_cast<UnaryFn>(val); |
4176 | return result; |
4177 | } |
4178 | if (val < lastBinary) { |
4179 | result.arityGroup = ElementwiseArityGroup::Binary; |
4180 | result.kind.binaryFn = static_cast<BinaryFn>(val - lastUnary); |
4181 | return result; |
4182 | } |
4183 | if (val >= lastTernary) { |
4184 | llvm_unreachable("unhandled ElementwiseFn"); |
4185 | } |
4186 | result.arityGroup = ElementwiseArityGroup::Ternary; |
4187 | result.kind.ternaryFn = static_cast<TernaryFn>(val - lastBinary); |
4188 | return result; |
4189 | } |
4190 | |
4191 | SmallVector<utils::IteratorType> ElementwiseOp::getIteratorTypesArray() { |
4192 | auto rank = getResultRank(); |
4193 | return SmallVector<utils::IteratorType>(rank, utils::IteratorType::parallel); |
4194 | } |
4195 | |
4196 | SmallVector<AffineMap> |
4197 | ElementwiseOp::getDefaultIndexingMaps(unsigned numMaps, unsigned numDims, |
4198 | MLIRContext *context) { |
4199 | auto map = AffineMap::getMultiDimIdentityMap(numDims, context); |
4200 | return SmallVector<AffineMap>(numMaps, map); |
4201 | } |
4202 | |
4203 | ParseResult ElementwiseOp::parse(OpAsmParser &parser, OperationState &result) { |
4204 | // Expect e.g. `kind = #linalg.elemwise_kind<add>` |
4205 | Attribute attr; |
4206 | mlir::linalg::ElementwiseKind elemwiseKindVal; |
4207 | if (parser.parseKeyword("kind") || parser.parseEqual()) |
4208 | return failure(); |
4209 | |
4210 | if (succeeded(parser.parseAttribute(attr))) { |
4211 | auto elemwiseKindAttr = dyn_cast<ElementwiseKindAttr>(attr); |
4212 | if (!elemwiseKindAttr) |
4213 | return parser.emitError(parser.getCurrentLocation(), |
4214 | "expected ElementwiseKind attribute"); |
4215 | elemwiseKindVal = elemwiseKindAttr.getValue(); |
4216 | } else { |
4217 | return parser.emitError(parser.getCurrentLocation(), |
4218 | "expected operation 'kind' attribute"); |
4219 | } |
4220 | result.addAttribute( |
4221 | "kind", ElementwiseKindAttr::get(parser.getContext(), elemwiseKindVal)); |
4222 | |
4223 | // Parse optional `indexing_maps` |
4224 | SmallVector<Attribute, 3> indexingMapsAttr; |
4225 | Attribute mapAttr; |
4226 | if (succeeded(parser.parseOptionalKeyword("indexing_maps"))) { |
4227 | if (parser.parseEqual()) |
4228 | return failure(); |
4229 | if (parser.parseLSquare()) |
4230 | return failure(); |
4231 | do { |
4232 | if (parser.parseAttribute(mapAttr)) |
4233 | return failure(); |
4234 | if (!isa<AffineMapAttr>(mapAttr)) |
4235 | return parser.emitError(parser.getCurrentLocation(), |
4236 | "expected affine map attribute"); |
4237 | indexingMapsAttr.push_back(mapAttr); |
4238 | if (parser.parseOptionalComma()) |
4239 | break; |
4240 | } while (true); |
4241 | if (parser.parseRSquare()) |
4242 | return failure(); |
4243 | } |
4244 | // At this stage of parsing the only way to infer number of region |
4245 | // args is through op kind, as input output tensors are not parsed yet. |
4246 | auto arityGroupAndKind = getArityGroupAndKind(elemwiseKindVal); |
4247 | int numRegionArgs = |
4248 | getArityGroupAsUInt(arityGroupAndKind.arityGroup) + 1 /*output*/; |
4249 | if (parseNamedStructuredOp(parser, result, numRegionArgs, |
4250 | ElementwiseOp::getRegionBuilder())) { |
4251 | return parser.emitError(parser.getCurrentLocation(), |
4252 | "unable to parse elemwise op"); |
4253 | } |
4254 | |
4255 | // Initialize indexingMaps, if not supplied explicitly. |
4256 | if (indexingMapsAttr.empty()) { |
4257 | // We need to infer the numDims of the indexing maps from the output |
4258 | // type which is already parsed by now. |
4259 | auto resultType = result.operands[result.operands.size() - 1].getType(); |
4260 | auto shapedType = llvm::dyn_cast<ShapedType>(resultType); |
4261 | if (!shapedType) |
4262 | return parser.emitError(parser.getCurrentLocation(), |
4263 | "return type needs to be shaped type"); |
4264 | auto numDims = shapedType.getRank(); |
4265 | indexingMapsAttr = llvm::map_to_vector( |
4266 | ElementwiseOp::getDefaultIndexingMaps(numRegionArgs, numDims, |
4267 | parser.getContext()), |
4268 | [](AffineMap map) -> Attribute { return AffineMapAttr::get(map); }); |
4269 | } |
4270 | |
4271 | result.addAttribute("indexing_maps", |
4272 | parser.getBuilder().getArrayAttr(indexingMapsAttr)); |
4273 | return success(); |
4274 | } |
4275 | |
4276 | void ElementwiseOp::print(OpAsmPrinter &p) { |
4277 | p << " kind="; |
4278 | p.printAttribute(getKindAttr()); |
4279 | SmallVector<StringRef, 3> elidedAttrs = {"operandSegmentSizes", "kind", |
4280 | "indexing_maps"}; |
4281 | unsigned arity = |
4282 | getArityGroupAsUInt(getArityGroupAndKind(getKind()).arityGroup); |
4283 | unsigned numDims = getResultRank(); |
4284 | |
4285 | SmallVector<Attribute, 3> indexingMaps = llvm::map_to_vector<3>( |
4286 | ElementwiseOp::getDefaultIndexingMaps(arity + 1 /*output*/, numDims, |
4287 | getContext()), |
4288 | [](AffineMap map) -> Attribute { return AffineMapAttr::get(map); }); |
4289 | |
4290 | if (!llvm::equal(getIndexingMaps(), indexingMaps)) |
4291 | p << " indexing_maps = "<< llvm::interleaved_array(getIndexingMaps()); |
4292 | |
4293 | printNamedStructuredOp(p, getOperation(), getInputs(), getOutputs(), |
4294 | elidedAttrs); |
4295 | } |
4296 | |
4297 | LogicalResult ElementwiseOp::verify() { |
4298 | // All necessary checks are done either by |
4299 | // - EnumAttr (e.g. unknown operation kind) |
4300 | // - verifyStructuredOpInterface (incorrect map, sizes). |
4301 | return success(); |
4302 | } |
4303 | |
4304 | /// Implements the block region builder for the ElementwiseOp. This is called by |
4305 | /// 'fillStructuredOpRegion'. |
4306 | void ElementwiseOp::regionBuilder(ImplicitLocOpBuilder &b, Block &block, |
4307 | ArrayRef<NamedAttribute> attrs) { |
4308 | ElementwiseKind elemwiseKind; |
4309 | for (auto attr : attrs) { |
4310 | if (attr.getName() == b.getStringAttr("kind")) { |
4311 | auto kindAttr = dyn_cast<ElementwiseKindAttr>(attr.getValue()); |
4312 | assert(kindAttr && "op kind attribute incorrectly set"); |
4313 | elemwiseKind = kindAttr.getValue(); |
4314 | break; |
4315 | } |
4316 | } |
4317 | |
4318 | ArityGroupAndKind groupAndKind = getArityGroupAndKind(elemwiseKind); |
4319 | auto arityGroup = groupAndKind.arityGroup; |
4320 | auto kind = groupAndKind.kind; |
4321 | assert(block.getNumArguments() == |
4322 | getArityGroupAsUInt(arityGroup) + 1 /*output*/ |
4323 | && "Elementwise regionBuilder number of block args mismatch"); |
4324 | |
4325 | RegionBuilderHelper helper(b, block); |
4326 | SmallVector<Value> yields; |
4327 | Value result; |
4328 | |
4329 | if (arityGroup == ElementwiseArityGroup::Unary) { |
4330 | result = helper.buildUnaryFn(kind.unaryFn, block.getArgument(0)); |
4331 | |
4332 | } else if (arityGroup == ElementwiseArityGroup::Binary) { |
4333 | result = helper.buildBinaryFn(kind.binaryFn, block.getArgument(0), |
4334 | block.getArgument(1)); |
4335 | |
4336 | } else if (arityGroup == ElementwiseArityGroup::Ternary) { |
4337 | result = helper.buildTernaryFn(kind.ternaryFn, block.getArgument(0), |
4338 | block.getArgument(1), block.getArgument(2)); |
4339 | |
4340 | } else { |
4341 | assert(false && "found unhandled category in elemwise"); |
4342 | } |
4343 | |
4344 | yields.push_back(result); |
4345 | helper.yieldOutputs(yields); |
4346 | } |
4347 | |
4348 | LogicalResult ElementwiseOp::fold(FoldAdaptor, |
4349 | SmallVectorImpl<OpFoldResult> &) { |
4350 | return memref::foldMemRefCast(*this); |
4351 | } |
4352 | |
4353 | void ElementwiseOp::getEffects( |
4354 | SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> |
4355 | &effects) { |
4356 | if (hasPureTensorSemantics()) |
4357 | return; |
4358 | getGenericEffectsImpl(effects, cast<LinalgOp>(getOperation())); |
4359 | } |
4360 | |
4361 | Speculation::Speculatability ElementwiseOp::getSpeculatability() { |
4362 | return getGenericSpeculatabilityImpl(cast<LinalgOp>(getOperation())); |
4363 | } |
4364 | |
4365 | //===----------------------------------------------------------------------===// |
4366 | // PackOp/UnPackOp Common |
4367 | //===----------------------------------------------------------------------===// |
4368 | // Given the (potentially) updated packed type, `newPackedTy`, generates an |
4369 | // updated mixed-tile-sizes attribute. A tile size is updated only |
4370 | // when: |
4371 | // * a dim from newPackedTy is static, and |
4372 | // * the corresponding size from mixedTiles is still dynamic. |
4373 | // Otherwise, the original tile size is preserved. |
4374 | // Note - packed-type-dim and mixed-tile-size should always match! |
4375 | static SmallVector<OpFoldResult> |
4376 | getNewMixedTileSizes(PatternRewriter &rewriter, Type newPackedTy, |
4377 | SmallVector<OpFoldResult> mixedTiles) { |
4378 | SmallVector<OpFoldResult> newMixedTileSizes; |
4379 | for (auto it : llvm::zip(cast<ShapedType>(newPackedTy) |
4380 | .getShape() |
4381 | .take_back(mixedTiles.size()), |
4382 | mixedTiles)) { |
4383 | int64_t shape = std::get<0>(it); |
4384 | if (shape == ShapedType::kDynamic) { |
4385 | newMixedTileSizes.push_back(std::get<1>(it)); |
4386 | continue; |
4387 | } |
4388 | |
4389 | // If the current result dim is static, update the dynamic mixed-size |
4390 | // (provided the original value is dynamic). |
4391 | OpFoldResult tile = std::get<1>(it); |
4392 | if (Attribute attr = llvm::dyn_cast_if_present<Attribute>(tile)) { |
4393 | // Already a constant |
4394 | newMixedTileSizes.push_back(tile); |
4395 | } else { |
4396 | assert(getConstantIntValue(tile).value() == shape && |
4397 | "tile size and dim size don't match!"); |
4398 | newMixedTileSizes.push_back( |
4399 | (rewriter.getIntegerAttr(rewriter.getIndexType(), shape))); |
4400 | } |
4401 | } |
4402 | |
4403 | return newMixedTileSizes; |
4404 | } |
4405 | |
4406 | template <typename OpTy> |
4407 | static LogicalResult |
4408 | reifyResultShapesImpl(OpTy op, OpBuilder &builder, |
4409 | ReifiedRankedShapedTypeDims &reifiedReturnShapes) { |
4410 | static_assert(llvm::is_one_of<OpTy, PackOp, UnPackOp>::value, |
4411 | "applies to only pack or unpack operations"); |
4412 | int64_t destRank = op.getDestRank(); |
4413 | reifiedReturnShapes.resize(N: 1, NV: SmallVector<OpFoldResult>(destRank)); |
4414 | reifiedReturnShapes[0] = |
4415 | tensor::getMixedSizes(builder, loc: op.getLoc(), value: op.getDest()); |
4416 | return success(); |
4417 | } |
4418 | |
4419 | template <typename OpTy> |
4420 | static DenseMap<int64_t, OpFoldResult> getDimAndTileMappingImpl(OpTy op) { |
4421 | static_assert(llvm::is_one_of<OpTy, PackOp, UnPackOp>::value, |
4422 | "applies to only pack or unpack operations"); |
4423 | DenseMap<int64_t, OpFoldResult> dimAndTileMapping; |
4424 | ArrayRef<int64_t> dimsToTile = op.getInnerDimsPos(); |
4425 | SmallVector<OpFoldResult> tiles = op.getMixedTiles(); |
4426 | assert(tiles.size() == dimsToTile.size() && |
4427 | "tiles must match indices of dimension to block"); |
4428 | // bind the dimension `i` with the tile factor. |
4429 | for (auto i : llvm::seq<int64_t>(Begin: 0, End: dimsToTile.size())) |
4430 | dimAndTileMapping[dimsToTile[i]] = tiles[i]; |
4431 | return dimAndTileMapping; |
4432 | } |
4433 | |
4434 | template <typename OpTy> |
4435 | static SmallVector<OpFoldResult> getMixedTilesImpl(OpTy op) { |
4436 | static_assert(llvm::is_one_of<OpTy, PackOp, UnPackOp>::value, |
4437 | "applies to only pack or unpack operations"); |
4438 | Builder builder(op); |
4439 | SmallVector<OpFoldResult> mixedInnerTiles; |
4440 | unsigned dynamicValIndex = 0; |
4441 | for (int64_t staticTile : op.getStaticInnerTiles()) { |
4442 | if (!ShapedType::isDynamic(staticTile)) |
4443 | mixedInnerTiles.push_back(builder.getI64IntegerAttr(staticTile)); |
4444 | else |
4445 | mixedInnerTiles.push_back(Elt: op.getInnerTiles()[dynamicValIndex++]); |
4446 | } |
4447 | return mixedInnerTiles; |
4448 | } |
4449 | |
4450 | template <typename OpTy> |
4451 | static SmallVector<int64_t> getStaticTilesImpl(OpTy op) { |
4452 | static_assert(llvm::is_one_of<OpTy, PackOp, UnPackOp>::value, |
4453 | "applies to only pack or unpack operations"); |
4454 | SmallVector<Value> dynamicTiles; |
4455 | SmallVector<int64_t> staticTiles; |
4456 | dispatchIndexOpFoldResults(op.getMixedTiles(), dynamicTiles, staticTiles); |
4457 | return staticTiles; |
4458 | } |
4459 | |
4460 | /// Returns true if `dimsPos` is invalid. It is invalid when: |
4461 | /// a) It contains duplicate. |
4462 | /// b) At least one dimension is out of bound (`dimPos` is >= 0 and < rank). |
4463 | /// c) The number of elements in `dimsPos` is > than `rank`. |
4464 | static bool isInvalidPackingPosSpecification(ArrayRef<int64_t> dimsPos, |
4465 | size_t rank) { |
4466 | size_t dimsPosSize = dimsPos.size(); |
4467 | if (dimsPosSize > rank) |
4468 | return true; |
4469 | DenseSet<int64_t> uniqued(llvm::from_range, dimsPos); |
4470 | if (dimsPosSize != uniqued.size()) |
4471 | return true; |
4472 | return llvm::any_of(Range&: dimsPos, P: [rank](int64_t dimPos) { |
4473 | return dimPos < 0 || dimPos >= static_cast<int64_t>(rank); |
4474 | }); |
4475 | } |
4476 | |
4477 | /// Returns true if the dimension of `sourceShape` is smaller than the dimension |
4478 | /// of the `limitShape`. |
4479 | static bool areAllInBound(ArrayRef<int64_t> sourceShape, |
4480 | ArrayRef<int64_t> limitShape) { |
4481 | assert( |
4482 | sourceShape.size() == limitShape.size() && |
4483 | "expected source shape rank, and limit of the shape to have same rank"); |
4484 | return llvm::all_of( |
4485 | Range: llvm::zip(t&: sourceShape, u&: limitShape), P: [](std::tuple<int64_t, int64_t> it) { |
4486 | int64_t sourceExtent = std::get<0>(t&: it); |
4487 | int64_t limit = std::get<1>(t&: it); |
4488 | return ShapedType::isDynamic(sourceExtent) || |
4489 | ShapedType::isDynamic(limit) || sourceExtent <= limit; |
4490 | }); |
4491 | } |
4492 | |
4493 | template <typename OpTy> |
4494 | static LogicalResult commonVerifierPackAndUnPackOp(OpTy packOrUnPack) { |
4495 | static_assert(llvm::is_one_of<OpTy, PackOp, UnPackOp>::value, |
4496 | "applies to only pack or unpack operations"); |
4497 | Operation *op = packOrUnPack.getOperation(); |
4498 | |
4499 | // Return true if we have a zero-value tile. |
4500 | auto hasZeros = [&](ArrayRef<OpFoldResult> tiles) { |
4501 | return llvm::any_of(Range&: tiles, P: isZeroInteger); |
4502 | }; |
4503 | |
4504 | // Verify tiles. Do not allow zero tiles. |
4505 | SmallVector<OpFoldResult> mixedTiles = packOrUnPack.getMixedTiles(); |
4506 | if (hasZeros(mixedTiles)) |
4507 | return op->emitError(message: "invalid zero tile factor"); |
4508 | |
4509 | // Verify inner_dims_pos and outer_dims_perm. |
4510 | RankedTensorType unpackedType = (std::is_same<OpTy, PackOp>::value) |
4511 | ? packOrUnPack.getSourceType() |
4512 | : packOrUnPack.getDestType(); |
4513 | size_t unpackedRank = unpackedType.getRank(); |
4514 | ArrayRef<int64_t> innerDimsPos = packOrUnPack.getInnerDimsPos(); |
4515 | ArrayRef<int64_t> outerDimPerm = packOrUnPack.getOuterDimsPerm(); |
4516 | if (isInvalidPackingPosSpecification(dimsPos: innerDimsPos, rank: unpackedRank)) |
4517 | return op->emitError(message: "invalid inner_dims_pos vector"); |
4518 | if (isInvalidPackingPosSpecification(dimsPos: outerDimPerm, rank: unpackedRank)) |
4519 | return op->emitError(message: "invalid outer_dims_perm vector"); |
4520 | if (!outerDimPerm.empty() && outerDimPerm.size() != unpackedRank) |
4521 | return op->emitError(message: "outer_dims_perm must be a permutation or empty"); |
4522 | |
4523 | // Tiling factors must be less than or equal to the input rank for pack (or |
4524 | // output rank for unpack), and must match the number of `inner_dims_pos`. |
4525 | if (mixedTiles.size() > unpackedRank) { |
4526 | return op->emitError(message: "tiling factors must be less than or equal to the " |
4527 | "input rank for pack or output rank for unpack"); |
4528 | } |
4529 | if (mixedTiles.size() != innerDimsPos.size()) { |
4530 | return op->emitError( |
4531 | message: "tiling factors must equal the number of dimensions to tile"); |
4532 | } |
4533 | |
4534 | ShapedType packedType = (std::is_same<OpTy, PackOp>::value) |
4535 | ? packOrUnPack.getDestType() |
4536 | : packOrUnPack.getSourceType(); |
4537 | size_t packedRank = packedType.getRank(); |
4538 | // Require output rank to match input rank + number of blocking factors. |
4539 | size_t expectedPackedRank = unpackedRank + mixedTiles.size(); |
4540 | if (expectedPackedRank != packedRank) { |
4541 | return op->emitError( |
4542 | message: "packed rank != (unpacked rank + num tiling factors), got ") |
4543 | << packedRank << " != "<< expectedPackedRank; |
4544 | } |
4545 | |
4546 | // Verify result shape is greater than the minimum expected |
4547 | // by the pack operation, and that the output shape |
4548 | // represents full tiles. |
4549 | RankedTensorType expectedPackedType = PackOp::inferPackedType( |
4550 | unpackedType, packOrUnPack.getStaticTiles(), innerDimsPos, outerDimPerm); |
4551 | if (!areAllInBound(expectedPackedType.getShape(), packedType.getShape())) { |
4552 | return op->emitError(message: "the shape of output is not large enough to hold the " |
4553 | "packed data. Expected at least ") |
4554 | << expectedPackedType << ", got "<< packedType; |
4555 | } |
4556 | if (!llvm::all_of( |
4557 | llvm::zip(packedType.getShape().take_back(mixedTiles.size()), |
4558 | mixedTiles), |
4559 | [](std::tuple<int64_t, OpFoldResult> it) { |
4560 | int64_t shape = std::get<0>(t&: it); |
4561 | if (Attribute attr = |
4562 | llvm::dyn_cast_if_present<Attribute>(Val&: std::get<1>(t&: it))) { |
4563 | IntegerAttr intAttr = dyn_cast_or_null<IntegerAttr>(attr); |
4564 | int64_t staticTileSize = intAttr.getValue().getSExtValue(); |
4565 | return shape == staticTileSize; |
4566 | } |
4567 | return ShapedType::isDynamic(shape); |
4568 | })) { |
4569 | return op->emitError(message: "mismatch in inner tile sizes specified and shaped of " |
4570 | "tiled dimension in the packed type"); |
4571 | } |
4572 | return success(); |
4573 | } |
4574 | |
4575 | namespace { |
4576 | /// Subset of PackOp/UnPackOp fields used to compute the result of applying |
4577 | /// various permutations to the op. |
4578 | // TODO: Add linalg.transpose + pack/unpack folding patterns that just reuse |
4579 | // these. These may or may not become true foldings / canonicalizations |
4580 | // depending on how aggressive we want to be in automatically folding |
4581 | // transposes. |
4582 | struct PackOrUnPackTransposeResult { |
4583 | SmallVector<int64_t> innerDimsPos; |
4584 | SmallVector<OpFoldResult> innerTiles; |
4585 | SmallVector<int64_t> outerDimsPerm; |
4586 | }; |
4587 | } // namespace |
4588 | |
4589 | template <typename OpTy> |
4590 | static PackOrUnPackTransposeResult |
4591 | commonPermutationOfPackAndUnPackOp(OpTy packOrUnPackOp, |
4592 | ArrayRef<int64_t> innerPermutation, |
4593 | ArrayRef<int64_t> outerPermutation) { |
4594 | static_assert(llvm::is_one_of<OpTy, PackOp, UnPackOp>::value, |
4595 | "applies to only pack or unpack operations"); |
4596 | assert((!innerPermutation.empty() || !outerPermutation.empty()) && |
4597 | "some permutation must be non-empty"); |
4598 | PackOrUnPackTransposeResult metadata; |
4599 | metadata.innerDimsPos = |
4600 | SmallVector<int64_t>(packOrUnPackOp.getInnerDimsPos()); |
4601 | metadata.innerTiles = |
4602 | SmallVector<OpFoldResult>(packOrUnPackOp.getMixedTiles()); |
4603 | int64_t numOuterDims = std::is_same<OpTy, PackOp>::value |
4604 | ? packOrUnPackOp.getSourceRank() |
4605 | : packOrUnPackOp.getDestRank(); |
4606 | metadata.outerDimsPerm = |
4607 | packOrUnPackOp.getOuterDimsPerm().empty() |
4608 | ? llvm::to_vector(Range: llvm::seq<int64_t>(Begin: 0, End: numOuterDims)) |
4609 | : SmallVector<int64_t>(packOrUnPackOp.getOuterDimsPerm()); |
4610 | if (!innerPermutation.empty()) { |
4611 | assert(innerPermutation.size() == metadata.innerDimsPos.size() && |
4612 | isPermutationVector(innerPermutation) && |
4613 | "invalid inner permutation"); |
4614 | applyPermutationToVector(inVec&: metadata.innerDimsPos, permutation: innerPermutation); |
4615 | applyPermutationToVector(inVec&: metadata.innerTiles, permutation: innerPermutation); |
4616 | } |
4617 | if (!outerPermutation.empty()) { |
4618 | assert(outerPermutation.size() == metadata.outerDimsPerm.size() && |
4619 | isPermutationVector(outerPermutation) && |
4620 | "invalid outer permutation"); |
4621 | applyPermutationToVector(inVec&: metadata.outerDimsPerm, permutation: outerPermutation); |
4622 | } |
4623 | return metadata; |
4624 | } |
4625 | |
4626 | //===----------------------------------------------------------------------===// |
4627 | // PackOp |
4628 | //===----------------------------------------------------------------------===// |
4629 | |
4630 | void PackOp::getAsmResultNames(function_ref<void(Value, StringRef)> setNameFn) { |
4631 | setNameFn(getResult(), "pack"); |
4632 | } |
4633 | |
4634 | void PackOp::build(OpBuilder &builder, OperationState &state, Value source, |
4635 | Value dest, ArrayRef<int64_t> innerDimsPos, |
4636 | ArrayRef<OpFoldResult> innerTiles, |
4637 | std::optional<Value> paddingValue, |
4638 | ArrayRef<int64_t> outerDimsPerm) { |
4639 | assert(innerDimsPos.size() == innerTiles.size() && |
4640 | "number of tile sizes specified must match the specified number of " |
4641 | "original dimensions to be tiled"); |
4642 | SmallVector<int64_t> staticTileSizes; |
4643 | SmallVector<Value> dynamicTileSizes; |
4644 | dispatchIndexOpFoldResults(innerTiles, dynamicTileSizes, staticTileSizes); |
4645 | build(builder, state, dest.getType(), source, dest, |
4646 | paddingValue ? *paddingValue : nullptr, |
4647 | outerDimsPerm.empty() ? nullptr |
4648 | : builder.getDenseI64ArrayAttr(outerDimsPerm), |
4649 | builder.getDenseI64ArrayAttr(innerDimsPos), dynamicTileSizes, |
4650 | builder.getDenseI64ArrayAttr(staticTileSizes)); |
4651 | } |
4652 | |
4653 | LogicalResult |
4654 | PackOp::reifyResultShapes(OpBuilder &builder, |
4655 | ReifiedRankedShapedTypeDims &reifiedReturnShapes) { |
4656 | return reifyResultShapesImpl(*this, builder, reifiedReturnShapes); |
4657 | } |
4658 | |
4659 | DenseMap<int64_t, OpFoldResult> PackOp::getDimAndTileMapping() { |
4660 | return getDimAndTileMappingImpl(*this); |
4661 | } |
4662 | |
4663 | SmallVector<OpFoldResult> PackOp::getMixedTiles() { |
4664 | return getMixedTilesImpl(*this); |
4665 | } |
4666 | |
4667 | SmallVector<int64_t> PackOp::getStaticTiles() { |
4668 | return getStaticTilesImpl(*this); |
4669 | } |
4670 | |
4671 | ArrayRef<int64_t> PackOp::getAllOuterDims() { |
4672 | ShapedType inputType = getSourceType(); |
4673 | int64_t inputRank = inputType.getRank(); |
4674 | return getDestType().getShape().take_front(inputRank); |
4675 | } |
4676 | |
4677 | SmallVector<int64_t> PackOp::getTiledOuterDims() { |
4678 | auto innerDimsPos = getInnerDimsPos(); |
4679 | auto packedShape = getDestType().getShape(); |
4680 | SmallVector<int64_t> res; |
4681 | |
4682 | for (auto index : innerDimsPos) |
4683 | res.push_back(packedShape[index]); |
4684 | |
4685 | return res; |
4686 | } |
4687 | |
4688 | bool PackOp::requirePaddingValue(ArrayRef<int64_t> inputShape, |
4689 | ArrayRef<int64_t> innerDimsPos, |
4690 | ArrayRef<int64_t> outputShape, |
4691 | ArrayRef<int64_t> outerDimsPerm, |
4692 | ArrayRef<OpFoldResult> innerTiles) { |
4693 | SmallVector<int64_t> outputTileSizes( |
4694 | outputShape.take_front(inputShape.size())); |
4695 | if (!outerDimsPerm.empty()) { |
4696 | assert(outerDimsPerm.size() == outputTileSizes.size() && |
4697 | "expected output and outer_dims_perm to have same size"); |
4698 | applyPermutationToVector(outputTileSizes, |
4699 | invertPermutationVector(outerDimsPerm)); |
4700 | } |
4701 | for (auto [pos, tileSize] : llvm::zip_equal(innerDimsPos, innerTiles)) { |
4702 | if (ShapedType::isDynamic(inputShape[pos])) |
4703 | continue; |
4704 | std::optional<int64_t> constantTile = getConstantIntValue(tileSize); |
4705 | |
4706 | if (!constantTile) { |
4707 | if (!ShapedType::isDynamic(outputTileSizes[pos]) && |
4708 | (inputShape[pos] % outputTileSizes[pos] != 0)) |
4709 | return true; |
4710 | } else if (inputShape[pos] % (*constantTile) != 0) { |
4711 | return true; |
4712 | } |
4713 | } |
4714 | return false; |
4715 | } |
4716 | |
4717 | LogicalResult PackOp::verify() { |
4718 | if (failed(commonVerifierPackAndUnPackOp(*this))) |
4719 | return failure(); |
4720 | |
4721 | // Verify padding value, and bail out if the tile does not divide the |
4722 | // dimension fully. In the case of dynamic tile factors or dimensions, having |
4723 | // a partial tile is undefined behavior. |
4724 | auto paddingValue = getPaddingValue(); |
4725 | if (paddingValue && |
4726 | paddingValue.getType() != getSourceType().getElementType()) { |
4727 | return emitOpError("expected padding_value has ") |
4728 | << getSourceType().getElementType() |
4729 | << " but got: "<< paddingValue.getType(); |
4730 | } |
4731 | |
4732 | if (!paddingValue && |
4733 | requirePaddingValue(getSourceType().getShape(), getInnerDimsPos(), |
4734 | getDestType().getShape(), getOuterDimsPerm(), |
4735 | getMixedTiles())) { |
4736 | return emitOpError( |
4737 | "invalid tile factor or output size provided. Only full tiles are " |
4738 | "supported when padding_value is not set"); |
4739 | } |
4740 | return success(); |
4741 | } |
4742 | |
4743 | /// Converts OpFoldResults to int64_t shape entries, unconditionally mapping all |
4744 | /// Value's to kDynamic, even if they are arith.constant values. |
4745 | static SmallVector<int64_t> |
4746 | asShapeWithAnyValueAsDynamic(ArrayRef<OpFoldResult> ofrs) { |
4747 | SmallVector<int64_t> result; |
4748 | for (auto o : ofrs) { |
4749 | // Have to do this first, as getConstantIntValue special-cases constants. |
4750 | if (llvm::dyn_cast_if_present<Value>(o)) |
4751 | result.push_back(ShapedType::kDynamic); |
4752 | else |
4753 | result.push_back(getConstantIntValue(o).value_or(ShapedType::kDynamic)); |
4754 | } |
4755 | return result; |
4756 | } |
4757 | |
4758 | /// Helper for PackOp::{getResultShape,inferPackedType}. Returns the shape of |
4759 | /// the packed type. Having a shared helper helps implement these two methods in |
4760 | /// a way that ensures that they agree on which dimensions are dynamic. |
4761 | static SmallVector<int64_t> getPackOpResultTypeShape( |
4762 | ArrayRef<int64_t> sourceShape, ArrayRef<int64_t> innerTileSizes, |
4763 | ArrayRef<int64_t> innerDimsPos, ArrayRef<int64_t> outerDimsPerm) { |
4764 | SmallVector<int64_t> resultShape = llvm::to_vector(Range&: sourceShape); |
4765 | for (auto tiledDim : llvm::enumerate(First: llvm::to_vector(Range&: innerDimsPos))) { |
4766 | if (ShapedType::isDynamic(resultShape[tiledDim.value()])) |
4767 | continue; |
4768 | if (ShapedType::isDynamic(innerTileSizes[tiledDim.index()])) { |
4769 | resultShape[tiledDim.value()] = ShapedType::kDynamic; |
4770 | continue; |
4771 | } |
4772 | resultShape[tiledDim.value()] = llvm::divideCeilSigned( |
4773 | Numerator: resultShape[tiledDim.value()], Denominator: innerTileSizes[tiledDim.index()]); |
4774 | } |
4775 | |
4776 | // Swap tile loops if outer_dims_perm is available. |
4777 | if (!outerDimsPerm.empty()) |
4778 | applyPermutationToVector(inVec&: resultShape, permutation: outerDimsPerm); |
4779 | |
4780 | // Append the inner tile dimensions. |
4781 | resultShape.append(in_start: innerTileSizes.begin(), in_end: innerTileSizes.end()); |
4782 | return resultShape; |
4783 | } |
4784 | |
4785 | SmallVector<OpFoldResult> PackOp::getResultShape( |
4786 | OpBuilder &builder, Location loc, ArrayRef<OpFoldResult> sourceDims, |
4787 | ArrayRef<OpFoldResult> innerTileSizes, ArrayRef<int64_t> innerDimsPos, |
4788 | ArrayRef<int64_t> outerDimsPerm) { |
4789 | SmallVector<OpFoldResult> resultDims = llvm::to_vector(sourceDims); |
4790 | |
4791 | AffineExpr s0, s1; |
4792 | bindSymbols(builder.getContext(), s0, s1); |
4793 | AffineExpr ceilDivExpr = s0.ceilDiv(s1); |
4794 | for (auto tiledDim : llvm::enumerate(llvm::to_vector(innerDimsPos))) { |
4795 | resultDims[tiledDim.value()] = affine::makeComposedFoldedAffineApply( |
4796 | builder, loc, ceilDivExpr, |
4797 | {resultDims[tiledDim.value()], innerTileSizes[tiledDim.index()]}); |
4798 | } |
4799 | if (!outerDimsPerm.empty()) |
4800 | applyPermutationToVector(resultDims, outerDimsPerm); |
4801 | resultDims.append(innerTileSizes.begin(), innerTileSizes.end()); |
4802 | |
4803 | SmallVector<int64_t> resultTypeShape = |
4804 | getPackOpResultTypeShape(asShapeWithAnyValueAsDynamic(sourceDims), |
4805 | asShapeWithAnyValueAsDynamic(innerTileSizes), |
4806 | innerDimsPos, outerDimsPerm); |
4807 | |
4808 | // Fix-up `resultDims` to ensure that they are Value's if and only if the |
4809 | // result type shape says it's a dynamic dim. This is needed as callers may |
4810 | // use dispatchIndexOpFoldResults on the result, and rely on exact number of |
4811 | // dynamic dims returned by that. |
4812 | for (unsigned i = 0; i < resultDims.size(); ++i) { |
4813 | if (!ShapedType::isDynamic(resultTypeShape[i])) |
4814 | continue; |
4815 | resultDims[i] = |
4816 | getValueOrCreateConstantIndexOp(builder, loc, resultDims[i]); |
4817 | } |
4818 | |
4819 | return resultDims; |
4820 | } |
4821 | |
4822 | /// Get the expected packed type based on source type, tile factors, position of |
4823 | /// the inner tiles and permutation of the outer tiled loop. |
4824 | RankedTensorType PackOp::inferPackedType(RankedTensorType sourceType, |
4825 | ArrayRef<int64_t> innerTileSizes, |
4826 | ArrayRef<int64_t> innerDimsPos, |
4827 | ArrayRef<int64_t> outerDimsPerm) { |
4828 | SmallVector<int64_t> resultShape = getPackOpResultTypeShape( |
4829 | sourceType.getShape(), innerTileSizes, innerDimsPos, outerDimsPerm); |
4830 | return RankedTensorType::get(resultShape, sourceType.getElementType()); |
4831 | } |
4832 | |
4833 | Value PackOp::createDestinationTensor(OpBuilder &b, Location loc, Value source, |
4834 | ArrayRef<OpFoldResult> innerTileSizes, |
4835 | ArrayRef<int64_t> innerDimsPos, |
4836 | ArrayRef<int64_t> outerDimsPerm) { |
4837 | AffineExpr dim0, dim1; |
4838 | bindDims(b.getContext(), dim0, dim1); |
4839 | auto ceilDiv = [&](OpFoldResult v1, OpFoldResult v2) -> OpFoldResult { |
4840 | return affine::makeComposedFoldedAffineApply(b, loc, dim0.ceilDiv(dim1), |
4841 | {v1, v2}); |
4842 | }; |
4843 | |
4844 | SmallVector<OpFoldResult> mixedSizes; |
4845 | for (auto [index, value] : llvm::enumerate( |
4846 | llvm::cast<RankedTensorType>(source.getType()).getShape())) { |
4847 | if (ShapedType::isDynamic(value)) |
4848 | mixedSizes.push_back( |
4849 | b.create<tensor::DimOp>(loc, source, index).getResult()); |
4850 | else |
4851 | mixedSizes.push_back(b.getIndexAttr(value)); |
4852 | } |
4853 | for (auto it : llvm::zip(innerDimsPos, innerTileSizes)) { |
4854 | int64_t dimPos = std::get<0>(it); |
4855 | OpFoldResult tileSize = std::get<1>(it); |
4856 | mixedSizes[dimPos] = ceilDiv(mixedSizes[dimPos], tileSize); |
4857 | } |
4858 | if (!outerDimsPerm.empty()) |
4859 | applyPermutationToVector<OpFoldResult>(mixedSizes, outerDimsPerm); |
4860 | |
4861 | mixedSizes.append(innerTileSizes.begin(), innerTileSizes.end()); |
4862 | auto elemType = llvm::cast<ShapedType>(source.getType()).getElementType(); |
4863 | return b.create<tensor::EmptyOp>(loc, mixedSizes, elemType); |
4864 | } |
4865 | |
4866 | PackOp PackOp::createTransposedClone(OpBuilder &b, Location loc, |
4867 | ArrayRef<int64_t> innerPermutation, |
4868 | ArrayRef<int64_t> outerPermutation) { |
4869 | PackOrUnPackTransposeResult metadata = commonPermutationOfPackAndUnPackOp( |
4870 | *this, innerPermutation, outerPermutation); |
4871 | Value transposedDest = |
4872 | createDestinationTensor(b, loc, getSource(), metadata.innerTiles, |
4873 | metadata.innerDimsPos, metadata.outerDimsPerm); |
4874 | return b.create<PackOp>(loc, getSource(), transposedDest, |
4875 | metadata.innerDimsPos, metadata.innerTiles, |
4876 | getPaddingValue(), metadata.outerDimsPerm); |
4877 | } |
4878 | |
4879 | /// Returns true if the tiles and the tiled dims are constant. |
4880 | template <typename OpTy> |
4881 | bool areTilesAndTiledDimsAllConstant(OpTy op) { |
4882 | static_assert(llvm::is_one_of<OpTy, PackOp, UnPackOp>::value, |
4883 | "applies to only pack or unpack operations"); |
4884 | ShapedType packedType = (std::is_same<OpTy, PackOp>::value) |
4885 | ? op.getDestType() |
4886 | : op.getSourceType(); |
4887 | SmallVector<OpFoldResult> mixedTiles = op.getMixedTiles(); |
4888 | for (auto [dimDest, tile] : llvm::zip( |
4889 | packedType.getShape().take_back(mixedTiles.size()), mixedTiles)) { |
4890 | std::optional<int64_t> constTileSize = getConstantIntValue(tile); |
4891 | if (!constTileSize || ShapedType::isDynamic(dimDest)) |
4892 | return false; |
4893 | } |
4894 | return true; |
4895 | } |
4896 | |
4897 | Speculation::Speculatability PackOp::getSpeculatability() { |
4898 | if (getPaddingValue()) |
4899 | return Speculation::Speculatable; |
4900 | |
4901 | // The verifier rejects already operations if we can statically prove that the |
4902 | // sizes of the tiles do not divide perfectly the dimension; thus, check only |
4903 | // to have constant tiles and tiled inner dimensions. |
4904 | if (!areTilesAndTiledDimsAllConstant(*this)) |
4905 | return Speculation::NotSpeculatable; |
4906 | |
4907 | return Speculation::Speculatable; |
4908 | } |
4909 | |
4910 | // Return true if `inner_dims_pos` and `outer_dims_perm` target the same |
4911 | // dimensions for pack and unpack. |
4912 | static bool hasSameInnerOuterAttribute(PackOp packOp, UnPackOp unPackOp) { |
4913 | if (packOp.getInnerDimsPos() != unPackOp.getInnerDimsPos()) |
4914 | return false; |
4915 | if (packOp.getOuterDimsPerm() == unPackOp.getOuterDimsPerm()) |
4916 | return true; |
4917 | // Outer dims permutation is optional. |
4918 | // To compare unbalanced pack-unpack pair, treat no permutation as equal to |
4919 | // identity permutation. |
4920 | return isIdentityPermutation(packOp.getOuterDimsPerm()) && |
4921 | isIdentityPermutation(unPackOp.getOuterDimsPerm()); |
4922 | } |
4923 | |
4924 | // Return true if pack and unpack have the same tiles. |
4925 | // Same SSA values or same integer constants. |
4926 | static bool haveSameTiles(PackOp packOp, UnPackOp unPackOp) { |
4927 | auto packTiles = packOp.getMixedTiles(); |
4928 | auto unPackTiles = unPackOp.getMixedTiles(); |
4929 | if (packTiles.size() != unPackTiles.size()) |
4930 | return false; |
4931 | for (size_t i = 0, e = packTiles.size(); i < e; i++) { |
4932 | if (!isEqualConstantIntOrValue(packTiles[i], unPackTiles[i])) |
4933 | return false; |
4934 | } |
4935 | return true; |
4936 | } |
4937 | |
4938 | /// Returns true if the pack op does not need a padding value. |
4939 | static bool paddingIsNotNeeded(PackOp op) { |
4940 | auto srcType = op.getSourceType(); |
4941 | if (llvm::any_of(op.getInnerDimsPos(), |
4942 | [&](int64_t pos) { return srcType.isDynamicDim(pos); })) |
4943 | return false; |
4944 | if (ShapedType::isDynamicShape(op.getStaticInnerTiles())) |
4945 | return false; |
4946 | return !PackOp::requirePaddingValue( |
4947 | srcType.getShape(), op.getInnerDimsPos(), op.getDestType().getShape(), |
4948 | op.getOuterDimsPerm(), op.getMixedTiles()); |
4949 | } |
4950 | |
4951 | /// Returns true if the `srcShape` or `destShape` is different from the one in |
4952 | /// `packOp` and populates each with the inferred static shape. |
4953 | static bool inferStaticShape(PackOp packOp, SmallVectorImpl<int64_t> &srcShape, |
4954 | SmallVectorImpl<int64_t> &destShape) { |
4955 | bool changeNeeded = false; |
4956 | srcShape.assign(packOp.getSourceType().getShape().begin(), |
4957 | packOp.getSourceType().getShape().end()); |
4958 | destShape.assign(packOp.getDestType().getShape().begin(), |
4959 | packOp.getDestType().getShape().end()); |
4960 | llvm::SmallSetVector<int64_t, 4> innerDims; |
4961 | innerDims.insert_range(packOp.getInnerDimsPos()); |
4962 | SmallVector<int64_t> inverseOuterDimsPerm; |
4963 | if (!packOp.getOuterDimsPerm().empty()) |
4964 | inverseOuterDimsPerm = invertPermutationVector(packOp.getOuterDimsPerm()); |
4965 | int srcRank = packOp.getSourceRank(); |
4966 | for (auto i : llvm::seq<int64_t>(0, srcRank)) { |
4967 | if (innerDims.contains(i)) |
4968 | continue; |
4969 | int64_t srcPos = i; |
4970 | int64_t destPos = i; |
4971 | if (!inverseOuterDimsPerm.empty()) |
4972 | destPos = inverseOuterDimsPerm[srcPos]; |
4973 | if (ShapedType::isDynamic(srcShape[srcPos]) == |
4974 | ShapedType::isDynamic(destShape[destPos])) { |
4975 | continue; |
4976 | } |
4977 | int64_t size = srcShape[srcPos]; |
4978 | if (ShapedType::isDynamic(size)) |
4979 | size = destShape[destPos]; |
4980 | srcShape[srcPos] = size; |
4981 | destShape[destPos] = size; |
4982 | changeNeeded = true; |
4983 | } |
4984 | return changeNeeded; |
4985 | } |
4986 | |
4987 | LogicalResult PackOp::canonicalize(PackOp packOp, PatternRewriter &rewriter) { |
4988 | // Fold an pack(unpack(x)) to x. |
4989 | if (auto unPackOp = packOp.getSource().getDefiningOp<UnPackOp>()) { |
4990 | if (unPackOp.getSourceType() != packOp.getDestType()) |
4991 | return failure(); |
4992 | if (packOp.getPaddingValue() || |
4993 | !hasSameInnerOuterAttribute(packOp, unPackOp) || |
4994 | !haveSameTiles(packOp, unPackOp)) |
4995 | return failure(); |
4996 | rewriter.replaceOp(packOp, unPackOp.getSource()); |
4997 | return success(); |
4998 | } |
4999 | |
5000 | // Fold optional PaddingValue operand away if padding is not needed. |
5001 | if (packOp.getPaddingValue() && paddingIsNotNeeded(packOp)) { |
5002 | rewriter.startOpModification(packOp); |
5003 | packOp.getPaddingValueMutable().clear(); |
5004 | rewriter.finalizeOpModification(packOp); |
5005 | return success(); |
5006 | } |
5007 | |
5008 | // Insert tensor.cast ops if static shape inference is available.. |
5009 | SmallVector<int64_t> srcShape, destShape; |
5010 | if (inferStaticShape(packOp, srcShape, destShape)) { |
5011 | Location loc = packOp.getLoc(); |
5012 | Value source = packOp.getSource(); |
5013 | if (srcShape != packOp.getSourceType().getShape()) { |
5014 | auto newSrcType = packOp.getSourceType().clone(srcShape); |
5015 | source = |
5016 | rewriter.create<tensor::CastOp>(loc, newSrcType, packOp.getSource()); |
5017 | } |
5018 | Value dest = packOp.getDest(); |
5019 | RankedTensorType originalResultType = packOp.getDestType(); |
5020 | bool needUpdateDestType = (destShape != originalResultType.getShape()); |
5021 | if (needUpdateDestType) { |
5022 | auto newDestType = packOp.getDestType().clone(destShape); |
5023 | dest = |
5024 | rewriter.create<tensor::CastOp>(loc, newDestType, packOp.getDest()); |
5025 | } |
5026 | rewriter.modifyOpInPlace(packOp, [&] { |
5027 | packOp.getSourceMutable().assign(source); |
5028 | packOp.getDestMutable().assign(dest); |
5029 | packOp.getResult().setType(cast<RankedTensorType>(dest.getType())); |
5030 | }); |
5031 | // Insert a cast if needed |
5032 | if (needUpdateDestType) { |
5033 | rewriter.setInsertionPointAfter(packOp); |
5034 | auto castOp = |
5035 | rewriter.create<tensor::CastOp>(loc, originalResultType, packOp); |
5036 | rewriter.replaceAllUsesExcept(packOp, castOp, castOp); |
5037 | } |
5038 | return success(); |
5039 | } |
5040 | |
5041 | return failure(); |
5042 | } |
5043 | |
5044 | template <typename PackOrUnpackOp> |
5045 | static bool isLikePadUnPad(PackOrUnpackOp packOp, |
5046 | RankedTensorType packedTensorType) { |
5047 | static_assert(std::is_same<PackOrUnpackOp, PackOp>::value || |
5048 | std::is_same<PackOrUnpackOp, UnPackOp>::value, |
5049 | "Function meant for pack/unpack"); |
5050 | // This is a pad if packing only adds ones and we don't transpose dimensions. |
5051 | |
5052 | // Check that we are not transposing any dimensions. |
5053 | ArrayRef<int64_t> innerDimsPos = packOp.getInnerDimsPos(); |
5054 | int64_t numPackedDims = innerDimsPos.size(); |
5055 | auto orderedDims = llvm::to_vector<4>(Range: llvm::seq<int64_t>(Begin: 0, End: numPackedDims)); |
5056 | if (orderedDims != innerDimsPos) { |
5057 | // Dimensions don't happen in order. |
5058 | return false; |
5059 | } |
5060 | |
5061 | ArrayRef<int64_t> packedShape = packedTensorType.getShape(); |
5062 | int64_t packedRank = packedTensorType.getRank(); |
5063 | // At this point we know that we are taking numPackedDims outer |
5064 | // dimensions and pushing them all the way as the inner most dimensions. |
5065 | // What's left on the outer most dimensions is, in this order: |
5066 | // - the factor of the packed dimensions, then |
5067 | // - the untouched dimensions |
5068 | // This shifting inward of dimensions is a no-op (as opposed to a transpose) |
5069 | // if all the dimensions that bubble outerward are ones. |
5070 | // Therefore check that all the dimensions but the numPackedDims inner most |
5071 | // ones are ones. |
5072 | return llvm::all_of( |
5073 | llvm::seq<int64_t>(Begin: 0, End: packedRank - numPackedDims), |
5074 | [&packedShape](int64_t i) { return packedShape[i] == 1; }); |
5075 | } |
5076 | |
5077 | bool PackOp::isLikePad() { |
5078 | auto packedTensorType = |
5079 | llvm::cast<RankedTensorType>((*this)->getResultTypes().front()); |
5080 | return isLikePadUnPad(*this, packedTensorType); |
5081 | } |
5082 | |
5083 | OpFoldResult PackOp::fold(FoldAdaptor adaptor) { |
5084 | std::optional<Attribute> paddingValue; |
5085 | if (auto pad = adaptor.getPaddingValue()) |
5086 | paddingValue = pad; |
5087 | if (OpFoldResult reshapedSource = reshapeConstantSource( |
5088 | llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getSource()), |
5089 | getDestType(), paddingValue)) |
5090 | return reshapedSource; |
5091 | return {}; |
5092 | } |
5093 | |
5094 | /// Folds a tensor.cast op into a consuming PackOp op if the |
5095 | /// `tensor.cast` has source that is more static than the consuming op. |
5096 | /// |
5097 | /// Example: |
5098 | /// ```mlir |
5099 | /// %1 = tensor.cast %0 : tensor<8x16xf32> to tensor<?x?xf32> |
5100 | /// %2 = tensor.pack %1 ... : tensor<?x?xf32> ... |
5101 | /// ``` |
5102 | /// |
5103 | /// folds into: |
5104 | /// |
5105 | /// ```mlir |
5106 | /// %2 = tensor.pack %0 ... : tensor<8x16xf32> ... |
5107 | /// ``` |
5108 | struct FoldTensorCastPackOp : public OpRewritePattern<PackOp> { |
5109 | using OpRewritePattern<PackOp>::OpRewritePattern; |
5110 | |
5111 | LogicalResult matchAndRewrite(PackOp op, |
5112 | PatternRewriter &rewriter) const override { |
5113 | if (!tensor::hasFoldableTensorCastOperand(op: op)) |
5114 | return failure(); |
5115 | |
5116 | SmallVector<Type> newResultTypes(op->getResultTypes()); |
5117 | SmallVector<Value> newOperands = |
5118 | tensor::getUpdatedOperandsAfterCastOpFolding(op, newResultTypes); |
5119 | |
5120 | // Get the updated mixed-tile-sizes attribute. |
5121 | SmallVector<OpFoldResult> newMixedTileSizes = |
5122 | getNewMixedTileSizes(rewriter, newResultTypes[0], op.getMixedTiles()); |
5123 | |
5124 | // Clone op. |
5125 | // TODO: Strictly speaking, discardable attributes should be _discarded_ at |
5126 | // this point. However, in practice, we use them for things that we'd like |
5127 | // to preserve. Implement a better abstraction. |
5128 | PackOp newOp = rewriter.create<PackOp>( |
5129 | op.getLoc(), newOperands[0], newOperands[1], op.getInnerDimsPos(), |
5130 | newMixedTileSizes, op.getPaddingValue(), op.getOuterDimsPerm()); |
5131 | newOp->setDiscardableAttrs(op->getDiscardableAttrDictionary()); |
5132 | |
5133 | // Replace op. |
5134 | Value oldResult = op.getResult(); |
5135 | Value newResult = newOp.getResult(); |
5136 | Value replacement = (newResult.getType() != oldResult.getType()) |
5137 | ? rewriter.create<tensor::CastOp>( |
5138 | op->getLoc(), oldResult.getType(), newResult) |
5139 | : newResult; |
5140 | |
5141 | rewriter.replaceOp(op, {replacement}); |
5142 | |
5143 | return success(); |
5144 | } |
5145 | }; |
5146 | |
5147 | //===----------------------------------------------------------------------===// |
5148 | // UnPackOp |
5149 | //===----------------------------------------------------------------------===// |
5150 | |
5151 | void UnPackOp::getAsmResultNames( |
5152 | function_ref<void(Value, StringRef)> setNameFn) { |
5153 | setNameFn(getResult(), "unpack"); |
5154 | } |
5155 | |
5156 | LogicalResult |
5157 | UnPackOp::reifyResultShapes(OpBuilder &builder, |
5158 | ReifiedRankedShapedTypeDims &reifiedReturnShapes) { |
5159 | return reifyResultShapesImpl(*this, builder, reifiedReturnShapes); |
5160 | } |
5161 | |
5162 | DenseMap<int64_t, OpFoldResult> UnPackOp::getDimAndTileMapping() { |
5163 | return getDimAndTileMappingImpl(*this); |
5164 | } |
5165 | |
5166 | SmallVector<OpFoldResult> UnPackOp::getMixedTiles() { |
5167 | return getMixedTilesImpl(*this); |
5168 | } |
5169 | |
5170 | SmallVector<int64_t> UnPackOp::getStaticTiles() { |
5171 | return getStaticTilesImpl(*this); |
5172 | } |
5173 | |
5174 | ArrayRef<int64_t> UnPackOp::getAllOuterDims() { |
5175 | ShapedType destType = getDestType(); |
5176 | int64_t destRank = destType.getRank(); |
5177 | return getSourceType().getShape().take_front(destRank); |
5178 | } |
5179 | |
5180 | SmallVector<int64_t> UnPackOp::getTiledOuterDims() { |
5181 | auto innerDimsPos = getInnerDimsPos(); |
5182 | auto packedShape = getSourceType().getShape(); |
5183 | SmallVector<int64_t> res; |
5184 | |
5185 | for (auto index : innerDimsPos) |
5186 | res.push_back(packedShape[index]); |
5187 | |
5188 | return res; |
5189 | } |
5190 | |
5191 | LogicalResult UnPackOp::verify() { |
5192 | return commonVerifierPackAndUnPackOp(*this); |
5193 | } |
5194 | |
5195 | Speculation::Speculatability UnPackOp::getSpeculatability() { |
5196 | // See PackOp::getSpeculatability. |
5197 | if (!areTilesAndTiledDimsAllConstant(*this)) |
5198 | return Speculation::NotSpeculatable; |
5199 | |
5200 | return Speculation::Speculatable; |
5201 | } |
5202 | |
5203 | void UnPackOp::build(OpBuilder &builder, OperationState &state, Value source, |
5204 | Value dest, ArrayRef<int64_t> innerDimsPos, |
5205 | ArrayRef<OpFoldResult> innerTiles, |
5206 | ArrayRef<int64_t> outerDimsPerm) { |
5207 | assert(innerDimsPos.size() == innerTiles.size() && |
5208 | "number of tile sizes specified must match the specified number of " |
5209 | "original dimensions to be tiled"); |
5210 | SmallVector<int64_t> staticTileSizes; |
5211 | SmallVector<Value> dynamicTileSizes; |
5212 | dispatchIndexOpFoldResults(innerTiles, dynamicTileSizes, staticTileSizes); |
5213 | build(builder, state, dest.getType(), source, dest, |
5214 | outerDimsPerm.empty() ? nullptr |
5215 | : builder.getDenseI64ArrayAttr(outerDimsPerm), |
5216 | builder.getDenseI64ArrayAttr(innerDimsPos), dynamicTileSizes, |
5217 | builder.getDenseI64ArrayAttr(staticTileSizes)); |
5218 | } |
5219 | |
5220 | Value UnPackOp::createDestinationTensor(OpBuilder &b, Location loc, |
5221 | Value source, |
5222 | ArrayRef<OpFoldResult> innerTileSizes, |
5223 | ArrayRef<int64_t> innerDimsPos, |
5224 | ArrayRef<int64_t> outerDimsPerm) { |
5225 | AffineExpr sym0, sym1; |
5226 | bindSymbols(b.getContext(), sym0, sym1); |
5227 | auto dimMul = [&](OpFoldResult v1, OpFoldResult v2) -> OpFoldResult { |
5228 | return affine::makeComposedFoldedAffineApply(b, loc, sym0 * sym1, {v1, v2}); |
5229 | }; |
5230 | |
5231 | SmallVector<OpFoldResult> mixedSizes; |
5232 | auto srcType = llvm::cast<RankedTensorType>(source.getType()); |
5233 | for (auto i : |
5234 | llvm::seq<unsigned>(0, srcType.getRank() - innerTileSizes.size())) { |
5235 | if (srcType.isDynamicDim(i)) |
5236 | mixedSizes.push_back(b.create<tensor::DimOp>(loc, source, i).getResult()); |
5237 | else |
5238 | mixedSizes.push_back(b.getIndexAttr(srcType.getDimSize(i))); |
5239 | } |
5240 | if (!outerDimsPerm.empty()) { |
5241 | applyPermutationToVector<OpFoldResult>( |
5242 | mixedSizes, invertPermutationVector(outerDimsPerm)); |
5243 | } |
5244 | |
5245 | for (auto [dimPos, tileSize] : llvm::zip_equal(innerDimsPos, innerTileSizes)) |
5246 | mixedSizes[dimPos] = dimMul(mixedSizes[dimPos], tileSize); |
5247 | |
5248 | auto elemType = srcType.getElementType(); |
5249 | return b.create<tensor::EmptyOp>(loc, mixedSizes, elemType); |
5250 | } |
5251 | |
5252 | UnPackOp UnPackOp::createTransposedClone(OpBuilder &b, Location loc, |
5253 | Value transposedSource, |
5254 | ArrayRef<int64_t> innerPermutation, |
5255 | ArrayRef<int64_t> outerPermutation) { |
5256 | PackOrUnPackTransposeResult metadata = commonPermutationOfPackAndUnPackOp( |
5257 | *this, innerPermutation, outerPermutation); |
5258 | return b.create<UnPackOp>(loc, transposedSource, getDest(), |
5259 | metadata.innerDimsPos, metadata.innerTiles, |
5260 | metadata.outerDimsPerm); |
5261 | } |
5262 | |
5263 | /// Returns true if the `srcShape` or `destShape` is different from the one in |
5264 | /// `op` and populates each with the inferred static shape. |
5265 | static bool inferStaticShape(UnPackOp op, SmallVectorImpl<int64_t> &srcShape, |
5266 | SmallVectorImpl<int64_t> &destShape) { |
5267 | bool changeNeeded = false; |
5268 | srcShape.assign(op.getSourceType().getShape().begin(), |
5269 | op.getSourceType().getShape().end()); |
5270 | destShape.assign(op.getDestType().getShape().begin(), |
5271 | op.getDestType().getShape().end()); |
5272 | llvm::SmallSetVector<int64_t, 4> innerDims; |
5273 | innerDims.insert_range(op.getInnerDimsPos()); |
5274 | SmallVector<int64_t> inverseOuterDimsPerm; |
5275 | if (!op.getOuterDimsPerm().empty()) |
5276 | inverseOuterDimsPerm = invertPermutationVector(op.getOuterDimsPerm()); |
5277 | int destRank = op.getDestRank(); |
5278 | for (auto i : llvm::seq<int64_t>(0, destRank)) { |
5279 | if (innerDims.contains(i)) |
5280 | continue; |
5281 | int64_t srcPos = i; |
5282 | int64_t destPos = i; |
5283 | if (!inverseOuterDimsPerm.empty()) |
5284 | srcPos = inverseOuterDimsPerm[destPos]; |
5285 | if (ShapedType::isDynamic(srcShape[srcPos]) == |
5286 | ShapedType::isDynamic(destShape[destPos])) { |
5287 | continue; |
5288 | } |
5289 | int64_t size = srcShape[srcPos]; |
5290 | if (ShapedType::isDynamic(size)) |
5291 | size = destShape[destPos]; |
5292 | srcShape[srcPos] = size; |
5293 | destShape[destPos] = size; |
5294 | changeNeeded = true; |
5295 | } |
5296 | return changeNeeded; |
5297 | } |
5298 | |
5299 | LogicalResult UnPackOp::canonicalize(UnPackOp unPackOp, |
5300 | PatternRewriter &rewriter) { |
5301 | /// unpack(pack(x)) -> x |
5302 | if (PackOp packOp = unPackOp.getSource().getDefiningOp<PackOp>()) { |
5303 | if (packOp.getSourceType() != unPackOp.getDestType()) |
5304 | return failure(); |
5305 | if (packOp.getPaddingValue() || |
5306 | !hasSameInnerOuterAttribute(packOp, unPackOp) || |
5307 | !haveSameTiles(packOp, unPackOp)) |
5308 | return failure(); |
5309 | rewriter.replaceOp(unPackOp, packOp.getSource()); |
5310 | return success(); |
5311 | } |
5312 | /// unpack(destinationStyleOp(x)) -> unpack(x) |
5313 | if (auto dstStyleOp = |
5314 | unPackOp.getDest().getDefiningOp<DestinationStyleOpInterface>()) { |
5315 | auto destValue = cast<OpResult>(unPackOp.getDest()); |
5316 | Value newDest = dstStyleOp.getDpsInits()[destValue.getResultNumber()]; |
5317 | rewriter.modifyOpInPlace(unPackOp, |
5318 | [&]() { unPackOp.setDpsInitOperand(0, newDest); }); |
5319 | return success(); |
5320 | } |
5321 | /// extract_slice(unpack(x into y)) -> unpack(x into extract_slice(y)) |
5322 | if (unPackOp->hasOneUse()) { |
5323 | auto extractSliceUser = |
5324 | dyn_cast<tensor::ExtractSliceOp>(*unPackOp->getUsers().begin()); |
5325 | if (extractSliceUser && |
5326 | areAllConstantIntValue(extractSliceUser.getMixedOffsets(), 0) && |
5327 | areAllConstantIntValue(extractSliceUser.getMixedStrides(), 1) && |
5328 | extractSliceUser.getSourceType().getRank() == |
5329 | extractSliceUser.getResultType().getRank()) { |
5330 | OpBuilder::InsertionGuard g(rewriter); |
5331 | rewriter.setInsertionPoint(unPackOp); |
5332 | auto newDest = rewriter.create<tensor::ExtractSliceOp>( |
5333 | unPackOp->getLoc(), unPackOp.getDest(), |
5334 | extractSliceUser.getMixedOffsets(), extractSliceUser.getMixedSizes(), |
5335 | extractSliceUser.getMixedStrides()); |
5336 | rewriter.modifyOpInPlace(unPackOp, [&]() { |
5337 | unPackOp.setDpsInitOperand(0, newDest); |
5338 | unPackOp.getResult().setType(newDest.getType()); |
5339 | }); |
5340 | rewriter.replaceOp(extractSliceUser, unPackOp); |
5341 | return success(); |
5342 | } |
5343 | } |
5344 | |
5345 | // Insert tensor.cast ops if static shape inference is available.. |
5346 | SmallVector<int64_t> srcShape, destShape; |
5347 | if (inferStaticShape(unPackOp, srcShape, destShape)) { |
5348 | Location loc = unPackOp.getLoc(); |
5349 | Value source = unPackOp.getSource(); |
5350 | if (srcShape != unPackOp.getSourceType().getShape()) { |
5351 | auto newSrcType = unPackOp.getSourceType().clone(srcShape); |
5352 | source = rewriter.create<tensor::CastOp>(loc, newSrcType, |
5353 | unPackOp.getSource()); |
5354 | } |
5355 | Value dest = unPackOp.getDest(); |
5356 | if (destShape != unPackOp.getDestType().getShape()) { |
5357 | auto newDestType = unPackOp.getDestType().clone(destShape); |
5358 | dest = |
5359 | rewriter.create<tensor::CastOp>(loc, newDestType, unPackOp.getDest()); |
5360 | } |
5361 | Value newOp = rewriter.create<UnPackOp>( |
5362 | loc, source, dest, unPackOp.getInnerDimsPos(), unPackOp.getMixedTiles(), |
5363 | unPackOp.getOuterDimsPerm()); |
5364 | rewriter.replaceOpWithNewOp<tensor::CastOp>( |
5365 | unPackOp, unPackOp.getResult().getType(), newOp); |
5366 | return success(); |
5367 | } |
5368 | |
5369 | return failure(); |
5370 | } |
5371 | |
5372 | bool UnPackOp::isLikeUnPad() { |
5373 | RankedTensorType packedTensorType = getSourceType(); |
5374 | return isLikePadUnPad(*this, packedTensorType); |
5375 | } |
5376 | |
5377 | OpFoldResult UnPackOp::fold(FoldAdaptor adaptor) { |
5378 | if (OpFoldResult reshapedSource = reshapeConstantSource( |
5379 | llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getSource()), |
5380 | getResult().getType())) |
5381 | return reshapedSource; |
5382 | return {}; |
5383 | } |
5384 | |
5385 | /// Folds a tensor.cast op into a consuming UnPackOp op if the |
5386 | /// `tensor.cast` has source that is more static than the consuming op. |
5387 | /// |
5388 | /// Example: |
5389 | /// ```mlir |
5390 | /// %1 = tensor.cast %0 : tensor<1x1x8x1xi32> to tensor<1x1x?x1xi32> |
5391 | /// %2 = tensor.unpack %1 ... : tensor<1x1x?x1xi32> -> tensor<7x?xi32> |
5392 | /// ``` |
5393 | /// |
5394 | /// folds into: |
5395 | /// |
5396 | /// ```mlir |
5397 | /// %2 = tensor.unpack %0 ... tensor<1x1x8x1xi32> -> tensor<7x?xi32> |
5398 | /// ``` |
5399 | struct FoldTensorCastUnPackOp : public OpRewritePattern<UnPackOp> { |
5400 | using OpRewritePattern<UnPackOp>::OpRewritePattern; |
5401 | |
5402 | LogicalResult matchAndRewrite(UnPackOp op, |
5403 | PatternRewriter &rewriter) const override { |
5404 | if (!tensor::hasFoldableTensorCastOperand(op: op)) |
5405 | return failure(); |
5406 | |
5407 | SmallVector<Type> newResultTypes(op->getResultTypes()); |
5408 | SmallVector<Value> newOperands = |
5409 | tensor::getUpdatedOperandsAfterCastOpFolding(op, newResultTypes); |
5410 | Value sourceTensor = newOperands[0]; |
5411 | |
5412 | // Get the updated mixed-tile-sizes attribute. |
5413 | SmallVector<OpFoldResult> newMixedTileSizes = getNewMixedTileSizes( |
5414 | rewriter, sourceTensor.getType(), op.getMixedTiles()); |
5415 | |
5416 | // Clone op. |
5417 | // TODO: Strictly speaking, discardable attributes should be _discarded_ at |
5418 | // this point. However, in practice, we use them for things that we'd like |
5419 | // to preserve. Implement a better abstraction. |
5420 | UnPackOp newOp = rewriter.create<UnPackOp>( |
5421 | op.getLoc(), sourceTensor, newOperands[1], op.getInnerDimsPos(), |
5422 | newMixedTileSizes, op.getOuterDimsPerm()); |
5423 | newOp->setDiscardableAttrs(op->getDiscardableAttrDictionary()); |
5424 | |
5425 | // Replace op. |
5426 | Value oldResult = op.getResult(); |
5427 | Value newResult = newOp.getResult(); |
5428 | Value replacement = (newResult.getType() != oldResult.getType()) |
5429 | ? rewriter.create<tensor::CastOp>( |
5430 | op->getLoc(), oldResult.getType(), newResult) |
5431 | : newResult; |
5432 | |
5433 | rewriter.replaceOp(op, {replacement}); |
5434 | |
5435 | return success(); |
5436 | } |
5437 | }; |
5438 | |
5439 | //===----------------------------------------------------------------------===// |
5440 | // BatchReduceMatmulOp |
5441 | //===----------------------------------------------------------------------===// |
5442 | SmallVector<utils::IteratorType> BatchReduceMatmulOp::getIteratorTypesArray() { |
5443 | return SmallVector<utils::IteratorType>{ |
5444 | utils::IteratorType::reduction, utils::IteratorType::parallel, |
5445 | utils::IteratorType::parallel, utils::IteratorType::reduction}; |
5446 | } |
5447 | |
5448 | SmallVector<AffineMap> |
5449 | BatchReduceMatmulOp::getDefaultIndexingMaps(MLIRContext *context) { |
5450 | AffineExpr d0, d1, d2, d3; |
5451 | SmallVector<AffineMap> indexingMaps; |
5452 | bindDims(context, d0, d1, d2, d3); |
5453 | indexingMaps.push_back(AffineMap::get(4, 0, {d0, d1, d3}, context)); |
5454 | indexingMaps.push_back(AffineMap::get(4, 0, {d0, d3, d2}, context)); |
5455 | indexingMaps.push_back(AffineMap::get(4, 0, {d1, d2}, context)); |
5456 | return indexingMaps; |
5457 | } |
5458 | |
5459 | unsigned BatchReduceMatmulOp::getNumRegionArgs() { return 3; } |
5460 | |
5461 | std::string BatchReduceMatmulOp::getLibraryCallName() { |
5462 | return generateLibraryCallName(getOperation()); |
5463 | } |
5464 | |
5465 | /// Check if the op has broadcast and/or transpose semantic. Returns true if |
5466 | /// the user defined indexing maps are not equal to default map. |
5467 | bool BatchReduceMatmulOp::hasUserDefinedMaps() { |
5468 | SmallVector<AffineMap, 3> defaultMaps = |
5469 | getDefaultIndexingMaps(this->getContext()); |
5470 | SmallVector<AffineMap, 3> explicitMaps = getIndexingMapsArray(); |
5471 | return defaultMaps != explicitMaps; |
5472 | } |
5473 | |
5474 | /// Returns true if the given bcastMap map is a valid broadcast map. A valid |
5475 | /// broadcast map must include K dimension. |
5476 | /// TODO: Strict inclusion of K dimension in the broadcast map is not |
5477 | /// necessary for both input matrices simultaneously. We can relax this |
5478 | /// condition to have K dimension for one input matrix map and infer the K |
5479 | /// dimension for other input matrix map from the one already having K |
5480 | /// dimension. |
5481 | bool BatchReduceMatmulOp::isValidLhsRhsBroadcastMap(AffineMap bcastMap, |
5482 | bool isLHS) { |
5483 | assert(bcastMap.getNumResults() < 3 && |
5484 | "Expected less than 3 result dim expr."); |
5485 | bool isValid = false; |
5486 | enum Indices { batchPos, mPos, nPos, kPos }; |
5487 | if (bcastMap.getNumResults() == 1) { |
5488 | AffineExpr expr = bcastMap.getResult(0); |
5489 | isValid = expr.isFunctionOfDim(kPos); |
5490 | } else if (bcastMap.getNumResults() == 2) { |
5491 | AffineExpr expr0 = bcastMap.getResult(0); |
5492 | AffineExpr expr1 = bcastMap.getResult(1); |
5493 | isValid = |
5494 | isLHS ? ((expr0.isFunctionOfDim(batchPos) || |
5495 | expr0.isFunctionOfDim(mPos)) && |
5496 | expr1.isFunctionOfDim(kPos)) |
5497 | : ((expr0.isFunctionOfDim(batchPos) && |
5498 | expr1.isFunctionOfDim(kPos)) || |
5499 | (expr0.isFunctionOfDim(kPos) && expr1.isFunctionOfDim(nPos))); |
5500 | } |
5501 | return isValid; |
5502 | } |
5503 | |
5504 | void BatchReduceMatmulOp::regionBuilder(ImplicitLocOpBuilder &b, Block &block, |
5505 | ArrayRef<NamedAttribute> attrs) { |
5506 | assert(block.getNumArguments() == 3 && |
5507 | "BatchReduceMatmulOp regionBuilder expects 3 (>=0) args"); |
5508 | RegionBuilderHelper helper(b, block); |
5509 | SmallVector<Value> yields; |
5510 | |
5511 | auto toType = block.getArgument(2).getType(); |
5512 | Value castValA = |
5513 | helper.buildTypeFn(TypeFn::cast_signed, toType, block.getArgument(0)); |
5514 | Value castValB = |
5515 | helper.buildTypeFn(TypeFn::cast_signed, toType, block.getArgument(1)); |
5516 | Value mulVal = helper.buildBinaryFn(BinaryFn::mul, castValA, castValB); |
5517 | Value addVal = |
5518 | helper.buildBinaryFn(BinaryFn::add, block.getArgument(2), mulVal); |
5519 | yields.push_back(addVal); |
5520 | helper.yieldOutputs(yields); |
5521 | } |
5522 | |
5523 | ParseResult BatchReduceMatmulOp::parse(OpAsmParser &parser, |
5524 | OperationState &result) { |
5525 | SmallVector<Attribute, 3> indexingMapsAttr; |
5526 | Attribute mapAttr; |
5527 | if (succeeded(parser.parseOptionalKeyword("indexing_maps"))) { |
5528 | if (parser.parseEqual()) |
5529 | return failure(); |
5530 | if (parser.parseLSquare()) |
5531 | return failure(); |
5532 | |
5533 | do { |
5534 | if (parser.parseAttribute(mapAttr)) |
5535 | return failure(); |
5536 | if (!isa<AffineMapAttr>(mapAttr)) { |
5537 | return parser.emitError(parser.getCurrentLocation(), |
5538 | "expected affine map attribute"); |
5539 | } |
5540 | indexingMapsAttr.push_back(mapAttr); |
5541 | |
5542 | if (parser.parseOptionalComma()) |
5543 | break; |
5544 | } while (true); |
5545 | |
5546 | if (parser.parseRSquare()) |
5547 | return failure(); |
5548 | } |
5549 | // Initialize indexingMaps, if not supplied explicitly. |
5550 | if (indexingMapsAttr.empty()) { |
5551 | indexingMapsAttr = llvm::map_to_vector( |
5552 | BatchReduceMatmulOp::getDefaultIndexingMaps(parser.getContext()), |
5553 | [](AffineMap map) -> Attribute { return AffineMapAttr::get(map); }); |
5554 | } |
5555 | result.addAttribute("indexing_maps", |
5556 | parser.getBuilder().getArrayAttr(indexingMapsAttr)); |
5557 | return ::parseNamedStructuredOp(parser, result, |
5558 | BatchReduceMatmulOp::getNumRegionArgs(), |
5559 | BatchReduceMatmulOp::getRegionBuilder()); |
5560 | } |
5561 | |
5562 | void BatchReduceMatmulOp::print(OpAsmPrinter &p) { |
5563 | SmallVector<Attribute, 3> indexingMaps = llvm::map_to_vector( |
5564 | BatchReduceMatmulOp::getDefaultIndexingMaps(getContext()), |
5565 | [](AffineMap map) -> Attribute { return AffineMapAttr::get(map); }); |
5566 | |
5567 | if (!llvm::equal(getIndexingMaps(), indexingMaps)) { |
5568 | p << " indexing_maps = ["; |
5569 | llvm::interleaveComma(getIndexingMaps(), p, |
5570 | [&](Attribute attr) { p.printAttribute(attr); }); |
5571 | p << "]"; |
5572 | } |
5573 | |
5574 | SmallVector<StringRef, 3> elidedAttrs = { |
5575 | "operandSegmentSizes", "linalg.memoized_indexing_maps", "indexing_maps"}; |
5576 | ::printNamedStructuredOp(p, getOperation(), getInputs(), getOutputs(), |
5577 | elidedAttrs); |
5578 | } |
5579 | |
5580 | /// Verify the user defined indexing maps. |
5581 | LogicalResult BatchReduceMatmulOp::verify() { |
5582 | // Verification of pure batch_reduce_matmul is handled by |
5583 | // verifyStructuredOpInterface(). |
5584 | if (!hasUserDefinedMaps()) |
5585 | return success(); |
5586 | |
5587 | for (unsigned opIndex = 0; opIndex < 3; opIndex++) { |
5588 | if (failed(verifyExtendedBatchVariantMatmulSemantic(*this, opIndex))) |
5589 | return failure(); |
5590 | } |
5591 | return success(); |
5592 | } |
5593 | LogicalResult BatchReduceMatmulOp::fold(FoldAdaptor, |
5594 | SmallVectorImpl<OpFoldResult> &) { |
5595 | return memref::foldMemRefCast(*this); |
5596 | } |
5597 | void BatchReduceMatmulOp::getEffects( |
5598 | SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> |
5599 | &effects) { |
5600 | if (hasPureTensorSemantics()) |
5601 | return; |
5602 | getGenericEffectsImpl(effects, cast<LinalgOp>(getOperation())); |
5603 | } |
5604 | |
5605 | Speculation::Speculatability BatchReduceMatmulOp::getSpeculatability() { |
5606 | return getGenericSpeculatabilityImpl(cast<LinalgOp>(getOperation())); |
5607 | } |
5608 | |
5609 | } // namespace linalg |
5610 | } // namespace mlir |
5611 | |
5612 | //===----------------------------------------------------------------------===// |
5613 | // LinalgDialect |
5614 | //===----------------------------------------------------------------------===// |
5615 | |
5616 | void LinalgDialect::getCanonicalizationPatterns( |
5617 | RewritePatternSet &results) const { |
5618 | results.add<EraseDeadLinalgOp, FoldTensorCastConsumerOp, FoldTensorCastPackOp, |
5619 | FoldTensorCastUnPackOp, InferStaticShapeOfOperands>(getContext()); |
5620 | } |
5621 | |
5622 | Operation *LinalgDialect::materializeConstant(OpBuilder &builder, |
5623 | Attribute value, Type type, |
5624 | Location loc) { |
5625 | return arith::ConstantOp::materialize(builder, value, type, loc); |
5626 | } |
5627 |
Definitions
- getDimValue
- getSlice
- createOrFoldDimOp
- createFoldedDimOp
- fillStructuredOpRegion
- buildStructuredOp
- buildMatmulOp
- buildBatchMatmulOp
- buildBatchReduceMatmulOp
- parseCommonStructuredOpParts
- printCommonStructuredOpParts
- parseNamedStructuredOpRegion
- parseNamedStructuredOpResults
- parseNamedStructuredOp
- printNamedStructuredOpResults
- printNamedStructuredOp
- RegionBuilderHelper
- RegionBuilderHelper
- buildUnaryFn
- buildBinaryFn
- buildTernaryFn
- buildTypeFn
- yieldOutputs
- constant
- index
- getIntegerType
- getFloat32Type
- getFloat64Type
- cast
- isComplex
- isFloatingPoint
- isInteger
- EraseSelfCopy
- matchAndRewrite
- FoldFillWithTensorReshape
- matchAndRewrite
- FoldFillWithPad
- matchAndRewrite
- FoldInsertPadIntoFill
- matchAndRewrite
- FoldFillWithTensorExtract
- matchAndRewrite
- foldFillPackIntoFillOp
- FoldFillWithPack
- FoldFillWithPack
- matchAndRewrite
- FoldFillWithCopy
- matchAndRewrite
- FoldFillWithTranspose
- matchAndRewrite
- FoldConcatsOfFill
- matchAndRewrite
- buildGenericRegion
- getGenericEffectsImpl
- getGenericSpeculatabilityImpl
- EraseIdentityLinalgOp
- matchAndRewrite
- parseDstStyleOp
- addBodyWithPayloadOp
- findPayloadOp
- printShortForm
- parseDenseI64ArrayAttr
- printDenseI64ArrayAttr
- buildIdentityRegion
- FoldTransposeWithTranspose
- matchAndRewrite
- SwapTransposeWithBroadcast
- matchAndRewrite
- verifyYield
- extractOrIdentityMap
- makeAffineDimExprs
- concat
- appendMangledType
- generateLibraryCallName
- EraseDeadLinalgOp
- matchAndRewrite
- FoldTensorCastConsumerOp
- matchAndRewrite
- populateMap
- createNewOperandWithStaticSizes
- InferStaticShapeOfOperands
- matchAndRewrite
- reduce
- buildSubAndExpOp
- buildDivOp
- areResultExprsSubsetOf
- isBroadcasted
- verifyExtendedMatmulSemantic
- verifyInputMaps
- verifyOutputMap
- verifyExtendedBatchVariantMatmulSemantic
- parseIndexingMapsAttr
- ArityGroupAndKind
- Kind
- getArityGroupAsUInt
- getArityGroupAndKind
- getNewMixedTileSizes
- reifyResultShapesImpl
- getDimAndTileMappingImpl
- getMixedTilesImpl
- getStaticTilesImpl
- isInvalidPackingPosSpecification
- areAllInBound
- commonVerifierPackAndUnPackOp
- PackOrUnPackTransposeResult
- commonPermutationOfPackAndUnPackOp
- asShapeWithAnyValueAsDynamic
- getPackOpResultTypeShape
- areTilesAndTiledDimsAllConstant
- hasSameInnerOuterAttribute
- haveSameTiles
- paddingIsNotNeeded
- inferStaticShape
- isLikePadUnPad
- FoldTensorCastPackOp
- matchAndRewrite
- inferStaticShape
- FoldTensorCastUnPackOp
Update your C++ knowledge – Modern C++11/14/17 Training
Find out more