| 1 | //===- LinalgOps.cpp - Implementation of the linalg operations ------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the Linalg operations. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "mlir/Dialect/Linalg/IR/Linalg.h" |
| 14 | |
| 15 | #include "mlir/AsmParser/AsmParser.h" |
| 16 | #include "mlir/Dialect/Affine/IR/AffineOps.h" |
| 17 | #include "mlir/Dialect/Arith/IR/Arith.h" |
| 18 | #include "mlir/Dialect/Arith/Utils/Utils.h" |
| 19 | #include "mlir/Dialect/Complex/IR/Complex.h" |
| 20 | #include "mlir/Dialect/Math/IR/Math.h" |
| 21 | #include "mlir/Dialect/MemRef/IR/MemRef.h" |
| 22 | #include "mlir/Dialect/SCF/IR/SCF.h" |
| 23 | #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h" |
| 24 | #include "mlir/Dialect/Tensor/IR/Tensor.h" |
| 25 | #include "mlir/Dialect/Tensor/Utils/Utils.h" |
| 26 | #include "mlir/Dialect/Utils/IndexingUtils.h" |
| 27 | #include "mlir/Dialect/Utils/ReshapeOpsUtils.h" |
| 28 | #include "mlir/Dialect/Utils/StaticValueUtils.h" |
| 29 | #include "mlir/IR/AffineExprVisitor.h" |
| 30 | #include "mlir/IR/AffineMap.h" |
| 31 | #include "mlir/IR/Attributes.h" |
| 32 | #include "mlir/IR/Builders.h" |
| 33 | #include "mlir/IR/BuiltinAttributes.h" |
| 34 | #include "mlir/IR/BuiltinTypeInterfaces.h" |
| 35 | #include "mlir/IR/Matchers.h" |
| 36 | #include "mlir/IR/OpImplementation.h" |
| 37 | #include "mlir/IR/OperationSupport.h" |
| 38 | #include "mlir/IR/PatternMatch.h" |
| 39 | #include "mlir/Interfaces/InferTypeOpInterface.h" |
| 40 | #include "mlir/Interfaces/SideEffectInterfaces.h" |
| 41 | |
| 42 | #include "llvm/ADT/DenseMap.h" |
| 43 | #include "llvm/ADT/STLExtras.h" |
| 44 | #include "llvm/ADT/SetOperations.h" |
| 45 | #include "llvm/ADT/SmallSet.h" |
| 46 | #include "llvm/ADT/SmallVector.h" |
| 47 | #include "llvm/ADT/StringSet.h" |
| 48 | #include "llvm/ADT/TypeSwitch.h" |
| 49 | #include "llvm/Support/FormatVariadic.h" |
| 50 | #include "llvm/Support/InterleavedRange.h" |
| 51 | #include "llvm/Support/LogicalResult.h" |
| 52 | #include "llvm/Support/MathExtras.h" |
| 53 | #include "llvm/Support/raw_ostream.h" |
| 54 | #include <cassert> |
| 55 | #include <optional> |
| 56 | |
| 57 | using namespace mlir; |
| 58 | using namespace mlir::linalg; |
| 59 | |
| 60 | /// Return a `memref.dim` or `tensor.dim` for the shape of `v` at `dim`. |
| 61 | static OpFoldResult getDimValue(OpBuilder &builder, Location loc, Value v, |
| 62 | int64_t dim) { |
| 63 | auto type = cast<ShapedType>(v.getType()); |
| 64 | if (!type.isDynamicDim(dim)) |
| 65 | return builder.getIndexAttr(value: type.getDimSize(dim)); |
| 66 | |
| 67 | return getAsOpFoldResult( |
| 68 | val: TypeSwitch<Type, Value>(v.getType()) |
| 69 | .Case<RankedTensorType>(caseFn: [&](RankedTensorType t) -> Value { |
| 70 | return builder.create<tensor::DimOp>(loc, v, dim); |
| 71 | }) |
| 72 | .Case<MemRefType>(caseFn: [&](MemRefType t) -> Value { |
| 73 | return builder.create<memref::DimOp>(loc, v, dim); |
| 74 | })); |
| 75 | } |
| 76 | |
| 77 | /// Returns a memref.subview or a tensor.extract_slice based on the type of the |
| 78 | /// `source`. |
| 79 | static Operation *getSlice(OpBuilder &b, Location loc, Value source, |
| 80 | ArrayRef<OpFoldResult> offsets, |
| 81 | ArrayRef<OpFoldResult> sizes, |
| 82 | ArrayRef<OpFoldResult> strides) { |
| 83 | return TypeSwitch<Type, Operation *>(source.getType()) |
| 84 | .Case<RankedTensorType>(caseFn: [&](RankedTensorType t) -> Operation * { |
| 85 | return b.create<tensor::ExtractSliceOp>(loc, source, offsets, sizes, |
| 86 | strides); |
| 87 | }) |
| 88 | .Case<MemRefType>(caseFn: [&](MemRefType type) -> Operation * { |
| 89 | return b.create<memref::SubViewOp>(loc, source, offsets, sizes, |
| 90 | strides); |
| 91 | }) |
| 92 | .Default(defaultFn: [&](Type t) -> Operation * { return nullptr; }); |
| 93 | } |
| 94 | |
| 95 | //===----------------------------------------------------------------------===// |
| 96 | // Helper functions |
| 97 | //===----------------------------------------------------------------------===// |
| 98 | |
| 99 | Value linalg::createOrFoldDimOp(OpBuilder &b, Location loc, Value source, |
| 100 | int64_t dim) { |
| 101 | if (llvm::isa<UnrankedMemRefType, MemRefType>(source.getType())) |
| 102 | return b.createOrFold<memref::DimOp>(loc, source, dim); |
| 103 | if (llvm::isa<UnrankedTensorType, RankedTensorType>(source.getType())) |
| 104 | return b.createOrFold<tensor::DimOp>(loc, source, dim); |
| 105 | llvm_unreachable("Expected MemRefType or TensorType" ); |
| 106 | } |
| 107 | |
| 108 | OpFoldResult linalg::createFoldedDimOp(OpBuilder &b, Location loc, Value source, |
| 109 | int64_t dim) { |
| 110 | auto shapedType = llvm::cast<ShapedType>(source.getType()); |
| 111 | if (!shapedType.hasRank() || shapedType.isDynamicDim(dim)) |
| 112 | return createOrFoldDimOp(b, loc, source, dim); |
| 113 | return b.getIndexAttr(value: shapedType.getDimSize(dim)); |
| 114 | } |
| 115 | |
| 116 | //===----------------------------------------------------------------------===// |
| 117 | // Support for named Linalg ops defined in ods-gen. |
| 118 | //===----------------------------------------------------------------------===// |
| 119 | |
| 120 | using RegionBuilderFn = llvm::function_ref<void(ImplicitLocOpBuilder &, Block &, |
| 121 | ArrayRef<NamedAttribute>)>; |
| 122 | |
| 123 | /// Fills the region of a structured operation using the provided |
| 124 | /// `regionBuilder`. The method is used by both named structured ops created by |
| 125 | /// ods-gen and by manually defined C++ ops. It is called by both builders and |
| 126 | /// parsers and creates a block with arguments corresponding to the elemental |
| 127 | /// types of `inputTypes` and `outputTypes`. |
| 128 | static void fillStructuredOpRegion(OpBuilder &opBuilder, Region ®ion, |
| 129 | TypeRange inputTypes, TypeRange outputTypes, |
| 130 | ArrayRef<NamedAttribute> attrs, |
| 131 | RegionBuilderFn regionBuilder) { |
| 132 | SmallVector<Type, 8> argTypes; |
| 133 | SmallVector<Location, 8> argLocs; |
| 134 | for (auto containers : {inputTypes, outputTypes}) { |
| 135 | for (auto t : containers) { |
| 136 | argTypes.push_back( |
| 137 | Elt: isa<MemRefType, RankedTensorType>(Val: t) ? getElementTypeOrSelf(type: t) : t); |
| 138 | |
| 139 | // TODO: Pass in a proper location here. |
| 140 | argLocs.push_back(Elt: opBuilder.getUnknownLoc()); |
| 141 | } |
| 142 | } |
| 143 | |
| 144 | // RAII. |
| 145 | OpBuilder::InsertionGuard guard(opBuilder); |
| 146 | Block *body = |
| 147 | opBuilder.createBlock(parent: ®ion, /*insertPt=*/{}, argTypes, locs: argLocs); |
| 148 | |
| 149 | opBuilder.setInsertionPointToStart(body); |
| 150 | ImplicitLocOpBuilder b(opBuilder.getUnknownLoc(), opBuilder); |
| 151 | regionBuilder(b, *body, attrs); |
| 152 | |
| 153 | // indexing_maps is an auto-generated method. |
| 154 | |
| 155 | // iterator_types is an auto-generated method. |
| 156 | } |
| 157 | |
| 158 | /// Creates a structured operation given `inputs`, `outputs`, and `attributes`. |
| 159 | /// The result types are derived automatically if `resultTensorTypes` is none. |
| 160 | /// The body of the operation is filled using `regionBuilder`. All ods-gen |
| 161 | /// created structured operations use the method to implement their builders. |
| 162 | static void buildStructuredOp(OpBuilder &b, OperationState &state, |
| 163 | std::optional<TypeRange> resultTensorTypes, |
| 164 | ValueRange inputs, ValueRange outputs, |
| 165 | ArrayRef<NamedAttribute> attributes, |
| 166 | RegionBuilderFn regionBuilder) { |
| 167 | // Derive the result types if needed. |
| 168 | SmallVector<Type> derivedResultTypes = |
| 169 | resultTensorTypes.value_or(u: TypeRange()); |
| 170 | if (!resultTensorTypes) |
| 171 | copy_if(Range: outputs.getTypes(), Out: std::back_inserter(x&: derivedResultTypes), |
| 172 | P: llvm::IsaPred<RankedTensorType>); |
| 173 | |
| 174 | state.addOperands(newOperands: inputs); |
| 175 | state.addOperands(newOperands: outputs); |
| 176 | state.addTypes(newTypes: derivedResultTypes); |
| 177 | |
| 178 | state.addAttributes(newAttributes: attributes); |
| 179 | state.addAttribute( |
| 180 | "operandSegmentSizes" , |
| 181 | b.getDenseI32ArrayAttr({static_cast<int32_t>(inputs.size()), |
| 182 | static_cast<int32_t>(outputs.size())})); |
| 183 | |
| 184 | // Create and fill the region of the structured operation. |
| 185 | Region ®ion = *state.addRegion(); |
| 186 | fillStructuredOpRegion(opBuilder&: b, region, inputTypes: TypeRange(inputs), outputTypes: TypeRange(outputs), |
| 187 | attrs: state.attributes.getAttrs(), regionBuilder); |
| 188 | } |
| 189 | |
| 190 | static void buildMatmulOp(OpBuilder &b, OperationState &state, |
| 191 | std::optional<TypeRange> resultTensorTypes, |
| 192 | ValueRange inputs, ValueRange outputs, |
| 193 | ArrayRef<NamedAttribute> attributes, |
| 194 | RegionBuilderFn regionBuilder, |
| 195 | ArrayRef<AffineMap> indexingMaps) { |
| 196 | // Initialize indexingMaps attribute, for MatmulOp. |
| 197 | SmallVector<Attribute, 3> indexingMapsAttrVal; |
| 198 | indexingMapsAttrVal = llvm::map_to_vector( |
| 199 | MatmulOp::getDefaultIndexingMaps(b.getContext()), |
| 200 | [](AffineMap map) -> Attribute { return AffineMapAttr::get(map); }); |
| 201 | state.addAttribute("indexing_maps" , b.getArrayAttr(indexingMapsAttrVal)); |
| 202 | return buildStructuredOp(b, state, resultTensorTypes, inputs, outputs, |
| 203 | attributes, regionBuilder); |
| 204 | } |
| 205 | |
| 206 | static void buildBatchMatmulOp(OpBuilder &b, OperationState &state, |
| 207 | std::optional<TypeRange> resultTensorTypes, |
| 208 | ValueRange inputs, ValueRange outputs, |
| 209 | ArrayRef<NamedAttribute> attributes, |
| 210 | RegionBuilderFn regionBuilder, |
| 211 | ArrayRef<AffineMap> indexingMaps) { |
| 212 | // Initialize indexingMaps attribute, for BatchMatmulOp. |
| 213 | SmallVector<Attribute, 4> indexingMapsAttrVal; |
| 214 | indexingMapsAttrVal = |
| 215 | llvm::map_to_vector(C&: indexingMaps, F: [](AffineMap map) -> Attribute { |
| 216 | return AffineMapAttr::get(map); |
| 217 | }); |
| 218 | state.addAttribute("indexing_maps" , b.getArrayAttr(indexingMapsAttrVal)); |
| 219 | return buildStructuredOp(b, state, resultTensorTypes, inputs, outputs, |
| 220 | attributes, regionBuilder); |
| 221 | } |
| 222 | |
| 223 | static void buildBatchReduceMatmulOp(OpBuilder &b, OperationState &state, |
| 224 | std::optional<TypeRange> resultTensorTypes, |
| 225 | ValueRange inputs, ValueRange outputs, |
| 226 | ArrayRef<NamedAttribute> attributes, |
| 227 | RegionBuilderFn regionBuilder, |
| 228 | ArrayRef<AffineMap> indexingMaps) { |
| 229 | // Initialize indexingMaps attribute, for BatchReduceMatmulOp. |
| 230 | SmallVector<Attribute, 4> indexingMapsAttrVal; |
| 231 | indexingMapsAttrVal = |
| 232 | llvm::map_to_vector(C&: indexingMaps, F: [](AffineMap map) -> Attribute { |
| 233 | return AffineMapAttr::get(map); |
| 234 | }); |
| 235 | state.addAttribute("indexing_maps" , b.getArrayAttr(indexingMapsAttrVal)); |
| 236 | return buildStructuredOp(b, state, resultTensorTypes, inputs, outputs, |
| 237 | attributes, regionBuilder); |
| 238 | } |
| 239 | |
| 240 | /// Common parsing used for both named structured ops created by ods-gen and by |
| 241 | /// manually defined C++ ops. Does not handle regions. |
| 242 | static ParseResult |
| 243 | parseCommonStructuredOpParts(OpAsmParser &parser, OperationState &result, |
| 244 | SmallVectorImpl<Type> &inputTypes, |
| 245 | SmallVectorImpl<Type> &outputTypes, |
| 246 | bool addOperandSegmentSizes = true) { |
| 247 | SMLoc attrsLoc, inputsOperandsLoc, outputsOperandsLoc; |
| 248 | SmallVector<OpAsmParser::UnresolvedOperand, 4> inputsOperands, |
| 249 | outputsOperands; |
| 250 | |
| 251 | if (succeeded(Result: parser.parseOptionalLess())) { |
| 252 | if (parser.parseAttribute(result&: result.propertiesAttr) || parser.parseGreater()) |
| 253 | return failure(); |
| 254 | } |
| 255 | attrsLoc = parser.getCurrentLocation(); |
| 256 | if (parser.parseOptionalAttrDict(result&: result.attributes)) |
| 257 | return failure(); |
| 258 | |
| 259 | if (succeeded(Result: parser.parseOptionalKeyword(keyword: "ins" ))) { |
| 260 | if (parser.parseLParen()) |
| 261 | return failure(); |
| 262 | |
| 263 | inputsOperandsLoc = parser.getCurrentLocation(); |
| 264 | if (parser.parseOperandList(result&: inputsOperands) || |
| 265 | parser.parseColonTypeList(result&: inputTypes) || parser.parseRParen()) |
| 266 | return failure(); |
| 267 | } |
| 268 | |
| 269 | if (succeeded(Result: parser.parseOptionalKeyword(keyword: "outs" ))) { |
| 270 | outputsOperandsLoc = parser.getCurrentLocation(); |
| 271 | if (parser.parseLParen() || parser.parseOperandList(result&: outputsOperands) || |
| 272 | parser.parseColonTypeList(result&: outputTypes) || parser.parseRParen()) |
| 273 | return failure(); |
| 274 | } |
| 275 | |
| 276 | if (parser.resolveOperands(operands&: inputsOperands, types&: inputTypes, loc: inputsOperandsLoc, |
| 277 | result&: result.operands) || |
| 278 | parser.resolveOperands(operands&: outputsOperands, types&: outputTypes, loc: outputsOperandsLoc, |
| 279 | result&: result.operands)) |
| 280 | return failure(); |
| 281 | |
| 282 | if (addOperandSegmentSizes) { |
| 283 | // This is a bit complex because we're trying to be backward compatible with |
| 284 | // operation syntax that mix the inherent attributes and the discardable |
| 285 | // ones in the same dictionary. If the properties are used, we append the |
| 286 | // operandSegmentSizes there directly. Otherwise we append it to the |
| 287 | // discardable attributes dictionary where it is handled by the generic |
| 288 | // Operation::create(...) method. |
| 289 | if (result.propertiesAttr) { |
| 290 | NamedAttrList attrs = llvm::cast<DictionaryAttr>(result.propertiesAttr); |
| 291 | attrs.append("operandSegmentSizes" , |
| 292 | parser.getBuilder().getDenseI32ArrayAttr( |
| 293 | {static_cast<int32_t>(inputsOperands.size()), |
| 294 | static_cast<int32_t>(outputsOperands.size())})); |
| 295 | result.propertiesAttr = attrs.getDictionary(parser.getContext()); |
| 296 | } else { |
| 297 | result.addAttribute("operandSegmentSizes" , |
| 298 | parser.getBuilder().getDenseI32ArrayAttr( |
| 299 | {static_cast<int32_t>(inputsOperands.size()), |
| 300 | static_cast<int32_t>(outputsOperands.size())})); |
| 301 | } |
| 302 | } |
| 303 | if (!result.propertiesAttr) { |
| 304 | std::optional<RegisteredOperationName> info = |
| 305 | result.name.getRegisteredInfo(); |
| 306 | if (info) { |
| 307 | if (failed(Result: info->verifyInherentAttrs(attributes&: result.attributes, emitError: [&]() { |
| 308 | return parser.emitError(loc: attrsLoc) |
| 309 | << "'" << result.name.getStringRef() << "' op " ; |
| 310 | }))) |
| 311 | return failure(); |
| 312 | } |
| 313 | } |
| 314 | return success(); |
| 315 | } |
| 316 | |
| 317 | static void printCommonStructuredOpParts(OpAsmPrinter &p, ValueRange inputs, |
| 318 | ValueRange outputs) { |
| 319 | if (!inputs.empty()) |
| 320 | p << " ins(" << inputs << " : " << inputs.getTypes() << ")" ; |
| 321 | if (!outputs.empty()) |
| 322 | p << " outs(" << outputs << " : " << outputs.getTypes() << ")" ; |
| 323 | } |
| 324 | |
| 325 | //===----------------------------------------------------------------------===// |
| 326 | // Specific parsing and printing for named structured ops created by ods-gen. |
| 327 | //===----------------------------------------------------------------------===// |
| 328 | |
| 329 | static ParseResult parseNamedStructuredOpRegion( |
| 330 | OpAsmParser &parser, Region ®ion, unsigned numRegionArgs, |
| 331 | TypeRange inputTypes, TypeRange outputTypes, ArrayRef<NamedAttribute> attrs, |
| 332 | RegionBuilderFn regionBuilder) { |
| 333 | if (numRegionArgs != inputTypes.size() + outputTypes.size()) { |
| 334 | return parser.emitError( |
| 335 | loc: parser.getCurrentLocation(), |
| 336 | message: llvm::formatv(Fmt: "[parseNamedStructuredOpRegion] ods-gen generated " |
| 337 | "region expects {0} args, got {1}" , |
| 338 | Vals&: numRegionArgs, Vals: inputTypes.size() + outputTypes.size())); |
| 339 | } |
| 340 | |
| 341 | OpBuilder opBuilder(parser.getContext()); |
| 342 | fillStructuredOpRegion(opBuilder, region, inputTypes, outputTypes, attrs, |
| 343 | regionBuilder); |
| 344 | return success(); |
| 345 | } |
| 346 | |
| 347 | static ParseResult |
| 348 | parseNamedStructuredOpResults(OpAsmParser &parser, |
| 349 | SmallVectorImpl<Type> &resultTypes) { |
| 350 | if (parser.parseOptionalArrowTypeList(result&: resultTypes)) |
| 351 | return failure(); |
| 352 | return success(); |
| 353 | } |
| 354 | |
| 355 | static ParseResult parseNamedStructuredOp(OpAsmParser &parser, |
| 356 | OperationState &result, |
| 357 | unsigned numRegionArgs, |
| 358 | RegionBuilderFn regionBuilder) { |
| 359 | // TODO: Enable when ods-gen supports captures. |
| 360 | SmallVector<Type, 1> inputTypes, outputTypes; |
| 361 | if (parseCommonStructuredOpParts(parser, result, inputTypes, outputTypes)) |
| 362 | return failure(); |
| 363 | |
| 364 | // Parse optional attributes. |
| 365 | if (parser.parseOptionalAttrDict(result&: result.attributes)) |
| 366 | return failure(); |
| 367 | |
| 368 | // TODO: consider merging results parsing into region parsing. |
| 369 | // Need to wait for declarative assembly resolution to decide. |
| 370 | SmallVector<Type, 1> outputTensorsTypes; |
| 371 | if (parseNamedStructuredOpResults(parser, resultTypes&: outputTensorsTypes)) |
| 372 | return failure(); |
| 373 | result.addTypes(newTypes: outputTensorsTypes); |
| 374 | |
| 375 | std::unique_ptr<Region> region = std::make_unique<Region>(); |
| 376 | if (parseNamedStructuredOpRegion(parser, region&: *region, numRegionArgs, inputTypes, |
| 377 | outputTypes, attrs: result.attributes.getAttrs(), |
| 378 | regionBuilder)) |
| 379 | return failure(); |
| 380 | result.addRegion(region: std::move(region)); |
| 381 | |
| 382 | return success(); |
| 383 | } |
| 384 | |
| 385 | static void printNamedStructuredOpResults(OpAsmPrinter &p, |
| 386 | TypeRange resultTypes) { |
| 387 | if (resultTypes.empty()) |
| 388 | return; |
| 389 | p.printOptionalArrowTypeList(types&: resultTypes); |
| 390 | } |
| 391 | |
| 392 | static void printNamedStructuredOp(OpAsmPrinter &p, Operation *op, |
| 393 | ValueRange inputs, ValueRange outputs, |
| 394 | ArrayRef<StringRef> elidedAttrs = {}) { |
| 395 | p.printOptionalAttrDict(attrs: op->getAttrs(), elidedAttrs); |
| 396 | |
| 397 | // Printing is shared with generic ops, except for the region and |
| 398 | // attributes. |
| 399 | printCommonStructuredOpParts(p, inputs, outputs); |
| 400 | |
| 401 | // Results printing. |
| 402 | printNamedStructuredOpResults(p, resultTypes: op->getResultTypes()); |
| 403 | |
| 404 | // Region is elided. |
| 405 | } |
| 406 | |
| 407 | //===----------------------------------------------------------------------===// |
| 408 | // Region builder helper. |
| 409 | // TODO: Move this to a utility library. |
| 410 | // The public methods on this class are referenced directly from generated code. |
| 411 | // Helper build the unary, binary, and type conversion functions defined by the |
| 412 | // DSL. See LinalgNamedStructuredOps.yamlgen.cpp.inc for the code that uses this |
| 413 | // class. |
| 414 | // |
| 415 | // Implementations of the math functions must be polymorphic over numeric types, |
| 416 | // internally performing necessary casts. If the function application makes no |
| 417 | // sense, then the only recourse is to assert and return nullptr. This can be |
| 418 | // extended later if it becomes possible to fail construction of the region. The |
| 419 | // invariant should be enforced at a higher level. |
| 420 | // |
| 421 | // TODO: These helpers are currently type polymorphic over the class of integer |
| 422 | // and floating point types, but they will not internally cast within bit |
| 423 | // widths of a class (mixed precision such as i8->i32) or across classes |
| 424 | // (i.e. mixed float and integer). Many such combinations are ambiguous or need |
| 425 | // to be handled with care and work is being considered to extend the op |
| 426 | // language to make such cases explicit. In the mean-time, violating this will |
| 427 | // fail verification, which is deemed acceptable. |
| 428 | //===----------------------------------------------------------------------===// |
| 429 | |
| 430 | namespace { |
| 431 | |
| 432 | class RegionBuilderHelper { |
| 433 | public: |
| 434 | RegionBuilderHelper(OpBuilder &builder, Block &block) |
| 435 | : builder(builder), block(block) {} |
| 436 | |
| 437 | // Build the unary functions defined by OpDSL. |
| 438 | Value buildUnaryFn(UnaryFn unaryFn, Value arg) { |
| 439 | if (!isFloatingPoint(value: arg)) |
| 440 | llvm_unreachable("unsupported non numeric type" ); |
| 441 | OpBuilder::InsertionGuard g(builder); |
| 442 | builder.setInsertionPointToEnd(&block); |
| 443 | switch (unaryFn) { |
| 444 | case UnaryFn::exp: |
| 445 | return builder.create<math::ExpOp>(arg.getLoc(), arg); |
| 446 | case UnaryFn::log: |
| 447 | return builder.create<math::LogOp>(arg.getLoc(), arg); |
| 448 | case UnaryFn::abs: |
| 449 | return builder.create<math::AbsFOp>(arg.getLoc(), arg); |
| 450 | case UnaryFn::ceil: |
| 451 | return builder.create<math::CeilOp>(arg.getLoc(), arg); |
| 452 | case UnaryFn::floor: |
| 453 | return builder.create<math::FloorOp>(arg.getLoc(), arg); |
| 454 | case UnaryFn::negf: |
| 455 | return builder.create<arith::NegFOp>(arg.getLoc(), arg); |
| 456 | case UnaryFn::reciprocal: { |
| 457 | Attribute oneAttr = builder.getOneAttr(arg.getType()); |
| 458 | auto one = builder.create<arith::ConstantOp>(arg.getLoc(), |
| 459 | ::cast<TypedAttr>(oneAttr)); |
| 460 | return builder.create<arith::DivFOp>(arg.getLoc(), one, arg); |
| 461 | } |
| 462 | case UnaryFn::round: |
| 463 | return builder.create<math::RoundOp>(arg.getLoc(), arg); |
| 464 | case UnaryFn::sqrt: |
| 465 | return builder.create<math::SqrtOp>(arg.getLoc(), arg); |
| 466 | case UnaryFn::rsqrt: |
| 467 | return builder.create<math::RsqrtOp>(arg.getLoc(), arg); |
| 468 | case UnaryFn::square: |
| 469 | return builder.create<arith::MulFOp>(arg.getLoc(), arg, arg); |
| 470 | case UnaryFn::tanh: |
| 471 | return builder.create<math::TanhOp>(arg.getLoc(), arg); |
| 472 | case UnaryFn::erf: |
| 473 | return builder.create<math::ErfOp>(arg.getLoc(), arg); |
| 474 | } |
| 475 | llvm_unreachable("unsupported unary function" ); |
| 476 | } |
| 477 | |
| 478 | // Build the binary functions defined by OpDSL. |
| 479 | Value buildBinaryFn(BinaryFn binaryFn, Value arg0, Value arg1) { |
| 480 | bool allComplex = isComplex(value: arg0) && isComplex(value: arg1); |
| 481 | bool allFloatingPoint = isFloatingPoint(value: arg0) && isFloatingPoint(value: arg1); |
| 482 | bool allInteger = isInteger(value: arg0) && isInteger(value: arg1); |
| 483 | bool allBool = allInteger && arg0.getType().getIntOrFloatBitWidth() == 1 && |
| 484 | arg1.getType().getIntOrFloatBitWidth() == 1; |
| 485 | if (!allComplex && !allFloatingPoint && !allInteger) |
| 486 | llvm_unreachable("unsupported non numeric type" ); |
| 487 | OpBuilder::InsertionGuard g(builder); |
| 488 | builder.setInsertionPointToEnd(&block); |
| 489 | switch (binaryFn) { |
| 490 | case BinaryFn::add: |
| 491 | if (allComplex) |
| 492 | return builder.create<complex::AddOp>(arg0.getLoc(), arg0, arg1); |
| 493 | if (allFloatingPoint) |
| 494 | return builder.create<arith::AddFOp>(arg0.getLoc(), arg0, arg1); |
| 495 | if (allBool) |
| 496 | return builder.create<arith::OrIOp>(arg0.getLoc(), arg0, arg1); |
| 497 | return builder.create<arith::AddIOp>(arg0.getLoc(), arg0, arg1); |
| 498 | case BinaryFn::sub: |
| 499 | if (allComplex) |
| 500 | return builder.create<complex::SubOp>(arg0.getLoc(), arg0, arg1); |
| 501 | if (allFloatingPoint) |
| 502 | return builder.create<arith::SubFOp>(arg0.getLoc(), arg0, arg1); |
| 503 | if (allBool) |
| 504 | llvm_unreachable("unsupported operation: sub with bools" ); |
| 505 | return builder.create<arith::SubIOp>(arg0.getLoc(), arg0, arg1); |
| 506 | case BinaryFn::mul: |
| 507 | if (allComplex) |
| 508 | return builder.create<complex::MulOp>(arg0.getLoc(), arg0, arg1); |
| 509 | if (allFloatingPoint) |
| 510 | return builder.create<arith::MulFOp>(arg0.getLoc(), arg0, arg1); |
| 511 | if (allBool) |
| 512 | return builder.create<arith::AndIOp>(arg0.getLoc(), arg0, arg1); |
| 513 | return builder.create<arith::MulIOp>(arg0.getLoc(), arg0, arg1); |
| 514 | case BinaryFn::div: |
| 515 | if (allComplex) |
| 516 | return builder.create<complex::DivOp>(arg0.getLoc(), arg0, arg1); |
| 517 | if (allFloatingPoint) |
| 518 | return builder.create<arith::DivFOp>(arg0.getLoc(), arg0, arg1); |
| 519 | if (allBool) |
| 520 | llvm_unreachable("unsupported operation: div with bools" ); |
| 521 | return builder.create<arith::DivSIOp>(arg0.getLoc(), arg0, arg1); |
| 522 | case BinaryFn::div_unsigned: |
| 523 | if (!allInteger || allBool) |
| 524 | llvm_unreachable("unsupported operation: unsigned div not on uint" ); |
| 525 | return builder.create<arith::DivUIOp>(arg0.getLoc(), arg0, arg1); |
| 526 | case BinaryFn::max_signed: |
| 527 | assert(!allComplex); |
| 528 | if (allFloatingPoint) |
| 529 | return builder.create<arith::MaximumFOp>(arg0.getLoc(), arg0, arg1); |
| 530 | return builder.create<arith::MaxSIOp>(arg0.getLoc(), arg0, arg1); |
| 531 | case BinaryFn::min_signed: |
| 532 | assert(!allComplex); |
| 533 | if (allFloatingPoint) |
| 534 | return builder.create<arith::MinimumFOp>(arg0.getLoc(), arg0, arg1); |
| 535 | return builder.create<arith::MinSIOp>(arg0.getLoc(), arg0, arg1); |
| 536 | case BinaryFn::max_unsigned: |
| 537 | assert(!allComplex); |
| 538 | if (allFloatingPoint) |
| 539 | return builder.create<arith::MaximumFOp>(arg0.getLoc(), arg0, arg1); |
| 540 | return builder.create<arith::MaxUIOp>(arg0.getLoc(), arg0, arg1); |
| 541 | case BinaryFn::min_unsigned: |
| 542 | assert(!allComplex); |
| 543 | if (allFloatingPoint) |
| 544 | return builder.create<arith::MinimumFOp>(arg0.getLoc(), arg0, arg1); |
| 545 | return builder.create<arith::MinUIOp>(arg0.getLoc(), arg0, arg1); |
| 546 | case BinaryFn::powf: |
| 547 | assert(allFloatingPoint); |
| 548 | return builder.create<math::PowFOp>(arg0.getLoc(), arg0, arg1); |
| 549 | } |
| 550 | llvm_unreachable("unsupported binary function" ); |
| 551 | } |
| 552 | |
| 553 | // Build the ternary functions defined by OpDSL. |
| 554 | Value buildTernaryFn(TernaryFn ternaryFn, Value arg0, Value arg1, |
| 555 | Value arg2) { |
| 556 | bool headBool = |
| 557 | isInteger(value: arg0) && arg0.getType().getIntOrFloatBitWidth() == 1; |
| 558 | bool tailFloatingPoint = |
| 559 | isFloatingPoint(value: arg0) && isFloatingPoint(value: arg1) && isFloatingPoint(value: arg2); |
| 560 | bool tailInteger = isInteger(value: arg0) && isInteger(value: arg1) && isInteger(value: arg2); |
| 561 | OpBuilder::InsertionGuard g(builder); |
| 562 | builder.setInsertionPointToEnd(&block); |
| 563 | switch (ternaryFn) { |
| 564 | case TernaryFn::select: |
| 565 | if (!headBool && !(tailFloatingPoint || tailInteger)) |
| 566 | llvm_unreachable("unsupported non numeric type" ); |
| 567 | return builder.create<arith::SelectOp>(arg0.getLoc(), arg0, arg1, arg2); |
| 568 | } |
| 569 | llvm_unreachable("unsupported ternary function" ); |
| 570 | } |
| 571 | |
| 572 | // Build the type functions defined by OpDSL. |
| 573 | Value buildTypeFn(TypeFn typeFn, Type toType, Value operand) { |
| 574 | switch (typeFn) { |
| 575 | case TypeFn::cast_signed: |
| 576 | return cast(toType, operand, isUnsignedCast: false); |
| 577 | case TypeFn::cast_unsigned: |
| 578 | return cast(toType, operand, isUnsignedCast: true); |
| 579 | } |
| 580 | llvm_unreachable("unsupported type conversion function" ); |
| 581 | } |
| 582 | |
| 583 | void yieldOutputs(ValueRange values) { |
| 584 | OpBuilder::InsertionGuard g(builder); |
| 585 | builder.setInsertionPointToEnd(&block); |
| 586 | Location loc = builder.getUnknownLoc(); |
| 587 | builder.create<YieldOp>(loc, values); |
| 588 | } |
| 589 | |
| 590 | Value constant(const std::string &value) { |
| 591 | OpBuilder::InsertionGuard g(builder); |
| 592 | builder.setInsertionPointToEnd(&block); |
| 593 | Location loc = builder.getUnknownLoc(); |
| 594 | Attribute valueAttr = parseAttribute(attrStr: value, context: builder.getContext()); |
| 595 | return builder.create<arith::ConstantOp>(loc, ::cast<TypedAttr>(valueAttr)); |
| 596 | } |
| 597 | |
| 598 | Value index(int64_t dim) { |
| 599 | OpBuilder::InsertionGuard g(builder); |
| 600 | builder.setInsertionPointToEnd(&block); |
| 601 | return builder.create<IndexOp>(builder.getUnknownLoc(), dim); |
| 602 | } |
| 603 | |
| 604 | Type getIntegerType(unsigned width) { |
| 605 | return IntegerType::get(builder.getContext(), width); |
| 606 | } |
| 607 | |
| 608 | Type getFloat32Type() { return Float32Type::get(builder.getContext()); } |
| 609 | Type getFloat64Type() { return Float64Type::get(builder.getContext()); } |
| 610 | |
| 611 | private: |
| 612 | // Generates operations to cast the given operand to a specified type. |
| 613 | // If the cast cannot be performed, a warning will be issued and the |
| 614 | // operand returned as-is (which will presumably yield a verification |
| 615 | // issue downstream). |
| 616 | Value cast(Type toType, Value operand, bool isUnsignedCast) { |
| 617 | OpBuilder::InsertionGuard g(builder); |
| 618 | builder.setInsertionPointToEnd(&block); |
| 619 | auto loc = operand.getLoc(); |
| 620 | return convertScalarToDtype(b&: builder, loc, operand, toType, isUnsignedCast); |
| 621 | } |
| 622 | |
| 623 | bool isComplex(Value value) { |
| 624 | return llvm::isa<ComplexType>(value.getType()); |
| 625 | } |
| 626 | bool isFloatingPoint(Value value) { |
| 627 | return llvm::isa<FloatType>(Val: value.getType()); |
| 628 | } |
| 629 | bool isInteger(Value value) { |
| 630 | return llvm::isa<IntegerType>(Val: value.getType()); |
| 631 | } |
| 632 | |
| 633 | OpBuilder &builder; |
| 634 | Block █ |
| 635 | }; |
| 636 | |
| 637 | } // namespace |
| 638 | |
| 639 | //===----------------------------------------------------------------------===// |
| 640 | // CopyOp |
| 641 | //===----------------------------------------------------------------------===// |
| 642 | |
| 643 | namespace { |
| 644 | |
| 645 | struct EraseSelfCopy : OpRewritePattern<CopyOp> { |
| 646 | using OpRewritePattern<CopyOp>::OpRewritePattern; |
| 647 | LogicalResult matchAndRewrite(CopyOp copyOp, |
| 648 | PatternRewriter &rewriter) const override { |
| 649 | if (copyOp.getInputs() != copyOp.getOutputs()) |
| 650 | return rewriter.notifyMatchFailure(copyOp, "not a self copy" ); |
| 651 | if (copyOp.hasPureBufferSemantics()) |
| 652 | rewriter.eraseOp(op: copyOp); |
| 653 | else |
| 654 | rewriter.replaceOp(copyOp, copyOp.getInputs()); |
| 655 | |
| 656 | return success(); |
| 657 | } |
| 658 | }; |
| 659 | |
| 660 | } // namespace |
| 661 | |
| 662 | void CopyOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 663 | MLIRContext *context) { |
| 664 | results.add<EraseSelfCopy>(context); |
| 665 | } |
| 666 | |
| 667 | //===----------------------------------------------------------------------===// |
| 668 | // FillOp |
| 669 | //===----------------------------------------------------------------------===// |
| 670 | |
| 671 | namespace { |
| 672 | |
| 673 | /// Fold linalg.fill -> tensor.expand/collapse_shape chain. |
| 674 | /// |
| 675 | /// For such op chains, we can create new linalg.fill ops with the result |
| 676 | /// type of the tensor.expand/collapse_shape op. |
| 677 | template <typename TensorReshapeOp> |
| 678 | struct FoldFillWithTensorReshape : OpRewritePattern<TensorReshapeOp> { |
| 679 | using OpRewritePattern<TensorReshapeOp>::OpRewritePattern; |
| 680 | LogicalResult matchAndRewrite(TensorReshapeOp reshapeOp, |
| 681 | PatternRewriter &rewriter) const override { |
| 682 | auto oldFill = reshapeOp.getSrc().template getDefiningOp<FillOp>(); |
| 683 | if (!oldFill) |
| 684 | return failure(); |
| 685 | |
| 686 | Location loc = oldFill.getLoc(); |
| 687 | TensorReshapeOp newInit; |
| 688 | if constexpr (std::is_same<TensorReshapeOp, tensor::ExpandShapeOp>::value) { |
| 689 | |
| 690 | newInit = rewriter.create<TensorReshapeOp>( |
| 691 | loc, reshapeOp.getResultType(), oldFill.output(), |
| 692 | reshapeOp.getReassociation(), reshapeOp.getOutputShape(), |
| 693 | reshapeOp.getStaticOutputShape()); |
| 694 | } else { |
| 695 | newInit = rewriter.create<TensorReshapeOp>(loc, reshapeOp.getResultType(), |
| 696 | oldFill.output(), |
| 697 | reshapeOp.getReassociation()); |
| 698 | } |
| 699 | rewriter.replaceOpWithNewOp<FillOp>(reshapeOp, ValueRange{oldFill.value()}, |
| 700 | ValueRange{newInit}); |
| 701 | return success(); |
| 702 | } |
| 703 | }; |
| 704 | |
| 705 | /// Fold tensor.pad(linalg.fill) into linalg.fill if the padding value and the |
| 706 | /// filling value are the same. |
| 707 | struct FoldFillWithPad final : public OpRewritePattern<tensor::PadOp> { |
| 708 | using OpRewritePattern::OpRewritePattern; |
| 709 | |
| 710 | LogicalResult matchAndRewrite(tensor::PadOp padOp, |
| 711 | PatternRewriter &rewriter) const override { |
| 712 | auto fillOp = padOp.getSource().getDefiningOp<linalg::FillOp>(); |
| 713 | if (!fillOp) |
| 714 | return failure(); |
| 715 | |
| 716 | // We can only fold if the padding value is the same as the original |
| 717 | // filling value. |
| 718 | Value padValue = padOp.getConstantPaddingValue(); |
| 719 | if (!padValue || fillOp.value() != padValue) |
| 720 | return failure(); |
| 721 | |
| 722 | ReifiedRankedShapedTypeDims reifiedShape; |
| 723 | if (failed(reifyResultShapes(rewriter, padOp, reifiedShape))) |
| 724 | return rewriter.notifyMatchFailure( |
| 725 | padOp, "failed to reify tensor.pad op result shape" ); |
| 726 | |
| 727 | auto emptyTensor = rewriter.create<tensor::EmptyOp>( |
| 728 | padOp.getLoc(), reifiedShape.front(), |
| 729 | padOp.getResultType().getElementType()); |
| 730 | Value replacement = |
| 731 | rewriter |
| 732 | .create<FillOp>(fillOp.getLoc(), ValueRange{padValue}, |
| 733 | ValueRange{emptyTensor}) |
| 734 | .getResult(0); |
| 735 | if (replacement.getType() != padOp.getResultType()) { |
| 736 | replacement = rewriter.create<tensor::CastOp>( |
| 737 | fillOp.getLoc(), padOp.getResultType(), replacement); |
| 738 | } |
| 739 | rewriter.replaceOp(padOp, replacement); |
| 740 | return success(); |
| 741 | } |
| 742 | }; |
| 743 | |
| 744 | /// Fold tensor.insert_slice(tensor.pad(<input>), linalg.fill) into |
| 745 | /// tensor.insert_slice(<input>, linalg.fill) if the padding value and the |
| 746 | /// filling value are the same. |
| 747 | struct FoldInsertPadIntoFill : public OpRewritePattern<tensor::InsertSliceOp> { |
| 748 | using OpRewritePattern::OpRewritePattern; |
| 749 | |
| 750 | LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp, |
| 751 | PatternRewriter &rewriter) const override { |
| 752 | auto srcPadOp = insertOp.getSource().getDefiningOp<tensor::PadOp>(); |
| 753 | if (!srcPadOp) |
| 754 | return failure(); |
| 755 | |
| 756 | if (insertOp.getType().getRank() != insertOp.getSourceType().getRank()) |
| 757 | return failure(); |
| 758 | |
| 759 | // Walk back the tensor.insert_slice chain and find the first destination |
| 760 | // value at the start of the chain. |
| 761 | Value firstDest = insertOp.getDest(); |
| 762 | while (auto prevOp = firstDest.getDefiningOp<tensor::InsertSliceOp>()) { |
| 763 | if (prevOp.getType().getRank() != prevOp.getSourceType().getRank()) |
| 764 | return failure(); |
| 765 | |
| 766 | // Make sure the range of values accessed are disjoint. Without this, we |
| 767 | // cannot fold tensor.pad away. |
| 768 | bool disjoint = false; |
| 769 | for (int i = 0, e = prevOp.getType().getRank(); i < e; ++i) { |
| 770 | // If the dimension has dynamic offset/size, we cannot guarantee |
| 771 | // disjoint. So just skip it. |
| 772 | if (insertOp.isDynamicOffset(i) || insertOp.isDynamicSize(i) || |
| 773 | insertOp.isDynamicStride(i) || prevOp.isDynamicOffset(i) || |
| 774 | prevOp.isDynamicSize(i) || prevOp.isDynamicStride(i)) |
| 775 | continue; |
| 776 | |
| 777 | // Get the range start and end, inclusively for both. |
| 778 | int64_t prevStart = prevOp.getStaticOffset(i); |
| 779 | int64_t prevEnd = prevStart + (prevOp.getStaticSize(i) - 1) * |
| 780 | prevOp.getStaticStride(i); |
| 781 | int64_t nextStart = insertOp.getStaticOffset(i); |
| 782 | int64_t nextEnd = nextStart + (insertOp.getStaticSize(i) - 1) * |
| 783 | insertOp.getStaticStride(i); |
| 784 | if (prevEnd < nextStart || nextEnd < prevStart) { |
| 785 | disjoint = true; |
| 786 | break; |
| 787 | } |
| 788 | } |
| 789 | |
| 790 | if (!disjoint) |
| 791 | break; |
| 792 | firstDest = prevOp.getDest(); |
| 793 | } |
| 794 | |
| 795 | // Check whether the first destination is a fill op. For overlapped cases, |
| 796 | // this also cannot be true. |
| 797 | auto dstFillOp = firstDest.getDefiningOp<linalg::FillOp>(); |
| 798 | if (!dstFillOp) |
| 799 | return failure(); |
| 800 | |
| 801 | // We can only fold if the padding value is the same as the original |
| 802 | // filling value. |
| 803 | Value padValue = srcPadOp.getConstantPaddingValue(); |
| 804 | if (!padValue || dstFillOp.value() != padValue) |
| 805 | return failure(); |
| 806 | |
| 807 | SmallVector<OpFoldResult> lowPads = srcPadOp.getMixedLowPad(); |
| 808 | SmallVector<OpFoldResult> oldOffsets = insertOp.getMixedOffsets(); |
| 809 | |
| 810 | Location loc = insertOp.getLoc(); |
| 811 | MLIRContext *context = getContext(); |
| 812 | |
| 813 | AffineExpr sym0, sym1; |
| 814 | bindSymbols(ctx: context, exprs&: sym0, exprs&: sym1); |
| 815 | auto addMap = AffineMap::get(dimCount: 0, symbolCount: 2, results: {sym0 + sym1}, context); |
| 816 | |
| 817 | // Calculate the new offsets for the insert. It should be the old offsets |
| 818 | // plus low padding sizes. |
| 819 | SmallVector<OpFoldResult, 4> newOffsets; |
| 820 | for (const auto &p : llvm::zip(lowPads, oldOffsets)) { |
| 821 | newOffsets.push_back(affine::makeComposedFoldedAffineApply( |
| 822 | rewriter, loc, addMap, {std::get<0>(p), std::get<1>(p)})); |
| 823 | } |
| 824 | |
| 825 | RankedTensorType srcPadType = srcPadOp.getSourceType(); |
| 826 | SmallVector<OpFoldResult, 4> newSizes; |
| 827 | for (int i = 0, e = srcPadType.getRank(); i < e; ++i) { |
| 828 | if (srcPadType.isDynamicDim(i)) { |
| 829 | newSizes.push_back( |
| 830 | rewriter.create<tensor::DimOp>(loc, srcPadOp.getSource(), i) |
| 831 | .getResult()); |
| 832 | } else { |
| 833 | newSizes.push_back(Elt: rewriter.getIndexAttr(value: srcPadType.getDimSize(i))); |
| 834 | } |
| 835 | } |
| 836 | |
| 837 | rewriter.replaceOpWithNewOp<tensor::InsertSliceOp>( |
| 838 | insertOp, srcPadOp.getSource(), insertOp.getDest(), newOffsets, |
| 839 | newSizes, insertOp.getMixedStrides()); |
| 840 | return success(); |
| 841 | } |
| 842 | }; |
| 843 | |
| 844 | /// Fold tensor.extract(linalg.fill(<input>)) into <input> |
| 845 | struct : public OpRewritePattern<tensor::ExtractOp> { |
| 846 | public: |
| 847 | using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern; |
| 848 | |
| 849 | LogicalResult matchAndRewrite(tensor::ExtractOp , |
| 850 | PatternRewriter &rewriter) const override { |
| 851 | // See if tensor input of tensor.extract op is the result of a linalg.fill |
| 852 | // op. |
| 853 | auto fillOp = extractOp.getTensor().getDefiningOp<linalg::FillOp>(); |
| 854 | if (!fillOp) |
| 855 | return failure(); |
| 856 | |
| 857 | // Get scalar input operand of linalg.fill op. |
| 858 | Value = fillOp.getInputs()[0]; |
| 859 | |
| 860 | // Replace tensor.extract op with scalar value used to fill the tensor. |
| 861 | rewriter.replaceOp(extractOp, extractedScalar); |
| 862 | return success(); |
| 863 | } |
| 864 | }; |
| 865 | |
| 866 | /// Folds pack(fill) into a single fill op if |
| 867 | /// 1. The pack op does not have padding value, or |
| 868 | /// 2. The filled value and padding value are the same. |
| 869 | static FailureOr<FillOp> foldFillPackIntoFillOp(RewriterBase &rewriter, |
| 870 | linalg::PackOp packOp) { |
| 871 | auto fillOp = packOp.getSource().getDefiningOp<FillOp>(); |
| 872 | if (!fillOp) |
| 873 | return failure(); |
| 874 | |
| 875 | if (auto paddingValue = packOp.getPaddingValue()) |
| 876 | if (!isEqualConstantIntOrValue(paddingValue, fillOp.value())) |
| 877 | return failure(); |
| 878 | |
| 879 | Value packOpDest = packOp.getDest(); |
| 880 | if (!packOpDest.hasOneUse()) |
| 881 | return failure(); |
| 882 | |
| 883 | return rewriter.create<linalg::FillOp>(packOp.getLoc(), fillOp.getInputs(), |
| 884 | packOp.getDest()); |
| 885 | } |
| 886 | |
| 887 | /// Wrapper pattern that applies foldFillPackIntoFillOp method. |
| 888 | struct FoldFillWithPack : public OpRewritePattern<linalg::PackOp> { |
| 889 | public: |
| 890 | FoldFillWithPack(MLIRContext *context) |
| 891 | : OpRewritePattern<linalg::PackOp>(context) {} |
| 892 | |
| 893 | LogicalResult matchAndRewrite(linalg::PackOp packOp, |
| 894 | PatternRewriter &rewriter) const override { |
| 895 | auto fillOp = foldFillPackIntoFillOp(rewriter, packOp); |
| 896 | if (failed(fillOp)) |
| 897 | return failure(); |
| 898 | rewriter.replaceOp(packOp, fillOp.value().result()); |
| 899 | return success(); |
| 900 | } |
| 901 | }; |
| 902 | |
| 903 | /// Fold fill with copy. |
| 904 | struct FoldFillWithCopy : OpRewritePattern<linalg::CopyOp> { |
| 905 | using OpRewritePattern<linalg::CopyOp>::OpRewritePattern; |
| 906 | |
| 907 | LogicalResult matchAndRewrite(linalg::CopyOp copyOp, |
| 908 | PatternRewriter &rewriter) const override { |
| 909 | if (auto fillOp = copyOp.getInputs().front().getDefiningOp<FillOp>()) { |
| 910 | rewriter.replaceOpWithNewOp<FillOp>(copyOp, copyOp.getResultTypes(), |
| 911 | fillOp.getInputs(), |
| 912 | copyOp.getOutputs()); |
| 913 | return success(); |
| 914 | } |
| 915 | if (auto fillOp = copyOp.getOutputs().front().getDefiningOp<FillOp>()) { |
| 916 | rewriter.replaceOpWithNewOp<linalg::CopyOp>(copyOp, copyOp.getInputs(), |
| 917 | fillOp.getOutputs()); |
| 918 | return success(); |
| 919 | } |
| 920 | return failure(); |
| 921 | } |
| 922 | }; |
| 923 | |
| 924 | /// Fold fill with transpose. |
| 925 | struct FoldFillWithTranspose : OpRewritePattern<linalg::TransposeOp> { |
| 926 | using OpRewritePattern<linalg::TransposeOp>::OpRewritePattern; |
| 927 | |
| 928 | LogicalResult matchAndRewrite(linalg::TransposeOp transposeOp, |
| 929 | PatternRewriter &rewriter) const override { |
| 930 | if (auto fillOp = transposeOp.getInput().getDefiningOp<FillOp>()) { |
| 931 | rewriter.replaceOpWithNewOp<FillOp>( |
| 932 | transposeOp, transposeOp.getResultTypes(), fillOp.getInputs(), |
| 933 | transposeOp.getDpsInitOperand(0)->get()); |
| 934 | return success(); |
| 935 | } |
| 936 | return failure(); |
| 937 | } |
| 938 | }; |
| 939 | |
| 940 | /// Fold a concat with all elements being fills of the same value |
| 941 | /// into a fill of the concat result shape. |
| 942 | struct FoldConcatsOfFill : public OpRewritePattern<tensor::ConcatOp> { |
| 943 | using OpRewritePattern::OpRewritePattern; |
| 944 | |
| 945 | LogicalResult matchAndRewrite(tensor::ConcatOp concatOp, |
| 946 | PatternRewriter &rewriter) const override { |
| 947 | auto concatOperands = concatOp.getInputs(); |
| 948 | if (concatOperands.empty()) { |
| 949 | return failure(); |
| 950 | } |
| 951 | |
| 952 | auto firstFillOp = concatOperands.front().getDefiningOp<linalg::FillOp>(); |
| 953 | if (!firstFillOp) { |
| 954 | return failure(); |
| 955 | } |
| 956 | // Prefetch the fill value. |
| 957 | OpFoldResult firstFillVal = |
| 958 | getAsOpFoldResult(firstFillOp.getDpsInputOperand(0)->get()); |
| 959 | // Collect all the outs values for the fill operations. |
| 960 | SmallVector<Value> allOuts; |
| 961 | allOuts.push_back(Elt: firstFillOp.getDpsInitOperand(0)->get()); |
| 962 | |
| 963 | auto isDefinedByCompatibleFillOp = [&](Value v) -> bool { |
| 964 | auto fillOp = v.getDefiningOp<linalg::FillOp>(); |
| 965 | if (!fillOp) { |
| 966 | return false; |
| 967 | } |
| 968 | |
| 969 | OpFoldResult fillVal = |
| 970 | getAsOpFoldResult(fillOp.getDpsInputOperand(0)->get()); |
| 971 | if (fillVal != firstFillVal) |
| 972 | return false; |
| 973 | |
| 974 | allOuts.push_back(Elt: fillOp.getDpsInitOperand(0)->get()); |
| 975 | return true; |
| 976 | }; |
| 977 | if (!llvm::all_of(concatOperands.drop_front(), |
| 978 | isDefinedByCompatibleFillOp)) { |
| 979 | return rewriter.notifyMatchFailure( |
| 980 | concatOp, "not all operands are defined by a compatible fill op" ); |
| 981 | } |
| 982 | |
| 983 | Value outsConcat = rewriter.create<tensor::ConcatOp>( |
| 984 | concatOp.getLoc(), concatOp.getDim(), allOuts); |
| 985 | rewriter.replaceOpWithNewOp<linalg::FillOp>( |
| 986 | concatOp, firstFillOp.getDpsInputOperand(0)->get(), outsConcat); |
| 987 | return success(); |
| 988 | } |
| 989 | }; |
| 990 | |
| 991 | } // namespace |
| 992 | |
| 993 | void FillOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 994 | MLIRContext *context) { |
| 995 | results.add<FoldConcatsOfFill, FoldFillWithCopy, FoldFillWithTensorExtract, |
| 996 | FoldFillWithPack, FoldFillWithPad, |
| 997 | FoldFillWithTensorReshape<tensor::CollapseShapeOp>, |
| 998 | FoldFillWithTensorReshape<tensor::ExpandShapeOp>, |
| 999 | FoldInsertPadIntoFill, FoldFillWithTranspose>(context); |
| 1000 | } |
| 1001 | |
| 1002 | //===----------------------------------------------------------------------===// |
| 1003 | // GenericOp |
| 1004 | //===----------------------------------------------------------------------===// |
| 1005 | |
| 1006 | static void buildGenericRegion( |
| 1007 | OpBuilder &builder, Location loc, Region ®ion, ValueRange inputs, |
| 1008 | ValueRange outputs, |
| 1009 | function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild) { |
| 1010 | SmallVector<Type, 4> blockArgTypes; |
| 1011 | SmallVector<Location, 4> blockArgLocs; |
| 1012 | for (ValueRange container : {inputs, outputs}) { |
| 1013 | for (Value v : container) { |
| 1014 | Type t = v.getType(); |
| 1015 | blockArgTypes.push_back( |
| 1016 | Elt: isa<MemRefType, RankedTensorType>(Val: t) ? getElementTypeOrSelf(type: t) : t); |
| 1017 | blockArgLocs.push_back(Elt: v.getLoc()); |
| 1018 | } |
| 1019 | } |
| 1020 | |
| 1021 | OpBuilder::InsertionGuard guard(builder); |
| 1022 | Block *bodyBlock = |
| 1023 | builder.createBlock(parent: ®ion, insertPt: region.end(), argTypes: blockArgTypes, locs: blockArgLocs); |
| 1024 | bodyBuild(builder, loc, bodyBlock->getArguments()); |
| 1025 | } |
| 1026 | |
| 1027 | void GenericOp::getAsmBlockArgumentNames(Region ®ion, |
| 1028 | OpAsmSetValueNameFn setNameFn) { |
| 1029 | for (Value v : getRegionInputArgs()) |
| 1030 | setNameFn(v, "in" ); |
| 1031 | for (Value v : getRegionOutputArgs()) |
| 1032 | setNameFn(v, "out" ); |
| 1033 | } |
| 1034 | |
| 1035 | void GenericOp::build( |
| 1036 | OpBuilder &builder, OperationState &result, TypeRange resultTensorTypes, |
| 1037 | ValueRange inputs, ValueRange outputs, ArrayAttr indexingMaps, |
| 1038 | ArrayAttr iteratorTypes, StringAttr doc, StringAttr libraryCall, |
| 1039 | function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild, |
| 1040 | ArrayRef<NamedAttribute> attributes) { |
| 1041 | build(builder, result, resultTensorTypes, inputs, outputs, indexingMaps, |
| 1042 | iteratorTypes, doc, libraryCall); |
| 1043 | result.addAttributes(attributes); |
| 1044 | if (bodyBuild) |
| 1045 | buildGenericRegion(builder, result.location, *result.regions.front(), |
| 1046 | inputs, outputs, bodyBuild); |
| 1047 | } |
| 1048 | |
| 1049 | void GenericOp::build( |
| 1050 | OpBuilder &builder, OperationState &result, TypeRange resultTensorTypes, |
| 1051 | ValueRange inputs, ValueRange outputs, ArrayRef<AffineMap> indexingMaps, |
| 1052 | ArrayRef<utils::IteratorType> iteratorTypes, StringRef doc, |
| 1053 | StringRef libraryCall, |
| 1054 | function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild, |
| 1055 | ArrayRef<NamedAttribute> attributes) { |
| 1056 | build(builder, result, resultTensorTypes, inputs, outputs, |
| 1057 | builder.getAffineMapArrayAttr(indexingMaps), |
| 1058 | builder.getArrayAttr(llvm::to_vector(llvm::map_range( |
| 1059 | iteratorTypes, |
| 1060 | [&](utils::IteratorType iter) -> mlir::Attribute { |
| 1061 | return IteratorTypeAttr::get(builder.getContext(), iter); |
| 1062 | }))), |
| 1063 | doc.empty() ? StringAttr() : builder.getStringAttr(doc), |
| 1064 | libraryCall.empty() ? StringAttr() : builder.getStringAttr(libraryCall), |
| 1065 | bodyBuild, attributes); |
| 1066 | } |
| 1067 | |
| 1068 | void GenericOp::build( |
| 1069 | OpBuilder &builder, OperationState &result, ValueRange inputs, |
| 1070 | ValueRange outputs, ArrayRef<AffineMap> indexingMaps, |
| 1071 | ArrayRef<utils::IteratorType> iteratorTypes, StringRef doc, |
| 1072 | StringRef libraryCall, |
| 1073 | function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild, |
| 1074 | ArrayRef<NamedAttribute> attributes) { |
| 1075 | build(builder, result, TypeRange{}, inputs, outputs, indexingMaps, |
| 1076 | iteratorTypes, doc, libraryCall, bodyBuild, attributes); |
| 1077 | } |
| 1078 | |
| 1079 | void GenericOp::build( |
| 1080 | OpBuilder &builder, OperationState &result, ValueRange inputs, |
| 1081 | ValueRange outputs, ArrayRef<AffineMap> indexingMaps, |
| 1082 | ArrayRef<utils::IteratorType> iteratorTypes, |
| 1083 | function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild, |
| 1084 | ArrayRef<NamedAttribute> attributes) { |
| 1085 | build(builder, result, inputs, outputs, indexingMaps, iteratorTypes, |
| 1086 | /*doc=*/"" , |
| 1087 | /*libraryCall=*/"" , bodyBuild, attributes); |
| 1088 | } |
| 1089 | |
| 1090 | void GenericOp::build( |
| 1091 | OpBuilder &builder, OperationState &result, TypeRange resultTensorTypes, |
| 1092 | ValueRange inputs, ValueRange outputs, ArrayRef<AffineMap> indexingMaps, |
| 1093 | ArrayRef<utils::IteratorType> iteratorTypes, |
| 1094 | function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild, |
| 1095 | ArrayRef<NamedAttribute> attributes) { |
| 1096 | build(builder, result, resultTensorTypes, inputs, outputs, indexingMaps, |
| 1097 | iteratorTypes, |
| 1098 | /*doc=*/"" , |
| 1099 | /*libraryCall=*/"" , bodyBuild, attributes); |
| 1100 | } |
| 1101 | |
| 1102 | void GenericOp::print(OpAsmPrinter &p) { |
| 1103 | p << " " ; |
| 1104 | |
| 1105 | // Print extra attributes. |
| 1106 | auto genericAttrNames = linalgTraitAttrNames(); |
| 1107 | |
| 1108 | llvm::StringSet<> genericAttrNamesSet; |
| 1109 | genericAttrNamesSet.insert_range(genericAttrNames); |
| 1110 | SmallVector<NamedAttribute, 8> genericAttrs; |
| 1111 | for (auto attr : (*this)->getAttrs()) { |
| 1112 | if (attr.getName() == getIteratorTypesAttrName()) { |
| 1113 | auto iteratorTypes = |
| 1114 | llvm::cast<ArrayAttr>(attr.getValue()) |
| 1115 | .getAsValueRange<IteratorTypeAttr, utils::IteratorType>(); |
| 1116 | // Convert IteratorType enums into the string representation. This is |
| 1117 | // needed, because tests still use the old format when 'iterator_types' |
| 1118 | // attribute is represented as an array of strings. |
| 1119 | // TODO: Remove this conversion once tests are fixed. |
| 1120 | SmallVector<Attribute> iteratorTypeNames = |
| 1121 | llvm::to_vector(llvm::map_range( |
| 1122 | iteratorTypes, [&](utils::IteratorType t) -> Attribute { |
| 1123 | return StringAttr::get(getContext(), stringifyIteratorType(t)); |
| 1124 | })); |
| 1125 | |
| 1126 | genericAttrs.emplace_back( |
| 1127 | getIteratorTypesAttrName(), |
| 1128 | ArrayAttr::get(getContext(), iteratorTypeNames)); |
| 1129 | } else if (genericAttrNamesSet.count(attr.getName().strref()) > 0) { |
| 1130 | genericAttrs.push_back(attr); |
| 1131 | } |
| 1132 | } |
| 1133 | if (!genericAttrs.empty()) { |
| 1134 | auto genericDictAttr = DictionaryAttr::get(getContext(), genericAttrs); |
| 1135 | p << genericDictAttr; |
| 1136 | } |
| 1137 | |
| 1138 | // Printing is shared with named ops, except for the region and attributes |
| 1139 | printCommonStructuredOpParts(p, getDpsInputs(), getDpsInits()); |
| 1140 | |
| 1141 | genericAttrNames.push_back("operandSegmentSizes" ); |
| 1142 | genericAttrNamesSet.insert(genericAttrNames.back()); |
| 1143 | |
| 1144 | bool hasExtraAttrs = false; |
| 1145 | for (NamedAttribute n : (*this)->getAttrs()) { |
| 1146 | if ((hasExtraAttrs = !genericAttrNamesSet.contains(n.getName().strref()))) |
| 1147 | break; |
| 1148 | } |
| 1149 | if (hasExtraAttrs) { |
| 1150 | p << " attrs = " ; |
| 1151 | p.printOptionalAttrDict((*this)->getAttrs(), |
| 1152 | /*elidedAttrs=*/genericAttrNames); |
| 1153 | } |
| 1154 | |
| 1155 | // Print region. |
| 1156 | if (!getRegion().empty()) { |
| 1157 | p << ' '; |
| 1158 | p.printRegion(getRegion()); |
| 1159 | } |
| 1160 | |
| 1161 | // Print results. |
| 1162 | printNamedStructuredOpResults(p, getResultTensors().getTypes()); |
| 1163 | } |
| 1164 | |
| 1165 | ParseResult GenericOp::parse(OpAsmParser &parser, OperationState &result) { |
| 1166 | DictionaryAttr dictAttr; |
| 1167 | // Parse the core linalg traits that must check into a dictAttr. |
| 1168 | // The name is unimportant as we will overwrite result.attributes. |
| 1169 | // The core linalg traits must contain the information necessary to pass the |
| 1170 | // verifier. |
| 1171 | llvm::SMLoc attributeLocation = parser.getCurrentLocation(); |
| 1172 | if (parser.parseAttribute(dictAttr, "_" , result.attributes)) |
| 1173 | return failure(); |
| 1174 | result.attributes.assign(dictAttr.getValue().begin(), |
| 1175 | dictAttr.getValue().end()); |
| 1176 | |
| 1177 | // Convert array of string into an array of IteratorType enums. This is |
| 1178 | // needed, because tests still use the old format when 'iterator_types' |
| 1179 | // attribute is represented as an array of strings. |
| 1180 | // TODO: Remove this conversion once tests are fixed. |
| 1181 | auto iteratorTypes = dyn_cast_or_null<ArrayAttr>( |
| 1182 | result.attributes.get(getIteratorTypesAttrName(result.name))); |
| 1183 | if (!iteratorTypes) { |
| 1184 | return parser.emitError(attributeLocation) |
| 1185 | << "expected " << getIteratorTypesAttrName(result.name) |
| 1186 | << " array attribute" ; |
| 1187 | } |
| 1188 | |
| 1189 | SmallVector<Attribute> iteratorTypeAttrs; |
| 1190 | |
| 1191 | for (StringRef s : iteratorTypes.getAsValueRange<StringAttr>()) { |
| 1192 | auto maybeIteratorType = utils::symbolizeIteratorType(s); |
| 1193 | if (!maybeIteratorType.has_value()) |
| 1194 | return parser.emitError(parser.getCurrentLocation()) |
| 1195 | << "unexpected iterator_type (" << s << ")" ; |
| 1196 | |
| 1197 | iteratorTypeAttrs.push_back( |
| 1198 | IteratorTypeAttr::get(parser.getContext(), maybeIteratorType.value())); |
| 1199 | } |
| 1200 | result.attributes.set(getIteratorTypesAttrName(result.name), |
| 1201 | parser.getBuilder().getArrayAttr(iteratorTypeAttrs)); |
| 1202 | |
| 1203 | // Parsing is shared with named ops, except for the region. |
| 1204 | SmallVector<Type, 1> inputTypes, outputTypes; |
| 1205 | if (parseCommonStructuredOpParts(parser, result, inputTypes, outputTypes)) |
| 1206 | return failure(); |
| 1207 | |
| 1208 | // Optional attributes may be added. |
| 1209 | if (succeeded(parser.parseOptionalKeyword("attrs" ))) |
| 1210 | if (failed(parser.parseEqual()) || |
| 1211 | failed(parser.parseOptionalAttrDict(result.attributes))) |
| 1212 | return failure(); |
| 1213 | |
| 1214 | std::unique_ptr<Region> region = std::make_unique<Region>(); |
| 1215 | if (parser.parseRegion(*region, {})) |
| 1216 | return failure(); |
| 1217 | result.addRegion(std::move(region)); |
| 1218 | |
| 1219 | // Generic ops may specify that a subset of its outputs are tensors. Such |
| 1220 | // outputs are specified in the result type. |
| 1221 | // TODO: may need to move output parsing before region parsing. |
| 1222 | // Need to wait for declarative assembly resolution to decide. |
| 1223 | SmallVector<Type, 1> outputTensorsTypes; |
| 1224 | if (parseNamedStructuredOpResults(parser, outputTensorsTypes)) |
| 1225 | return failure(); |
| 1226 | result.addTypes(outputTensorsTypes); |
| 1227 | |
| 1228 | return success(); |
| 1229 | } |
| 1230 | |
| 1231 | static void getGenericEffectsImpl( |
| 1232 | SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> |
| 1233 | &effects, |
| 1234 | LinalgOp linalgOp) { |
| 1235 | for (auto [index, operand] : llvm::enumerate(linalgOp.getDpsInputs())) { |
| 1236 | if (!llvm::isa<MemRefType>(operand.getType())) |
| 1237 | continue; |
| 1238 | effects.emplace_back( |
| 1239 | MemoryEffects::Read::get(), &linalgOp->getOpOperand(index), /*stage=*/0, |
| 1240 | /*effectOnFullRegion=*/true, SideEffects::DefaultResource::get()); |
| 1241 | } |
| 1242 | |
| 1243 | for (OpOperand &operand : linalgOp.getDpsInitsMutable()) { |
| 1244 | if (!llvm::isa<MemRefType>(operand.get().getType())) |
| 1245 | continue; |
| 1246 | if (linalgOp.payloadUsesValueFromOperand(&operand)) { |
| 1247 | effects.emplace_back(MemoryEffects::Read::get(), &operand, /*stage=*/0, |
| 1248 | /*effectOnFullRegion=*/true, |
| 1249 | SideEffects::DefaultResource::get()); |
| 1250 | } |
| 1251 | effects.emplace_back(MemoryEffects::Write::get(), &operand, /*stage=*/0, |
| 1252 | /*effectOnFullRegion=*/true, |
| 1253 | SideEffects::DefaultResource::get()); |
| 1254 | } |
| 1255 | } |
| 1256 | |
| 1257 | void GenericOp::getEffects( |
| 1258 | SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> |
| 1259 | &effects) { |
| 1260 | getGenericEffectsImpl(effects, cast<LinalgOp>(getOperation())); |
| 1261 | } |
| 1262 | |
| 1263 | static Speculation::Speculatability |
| 1264 | getGenericSpeculatabilityImpl(LinalgOp linalgOp) { |
| 1265 | // Operands with value semantics are speculatable, while operands with memory |
| 1266 | // semantics are not. |
| 1267 | if (!linalgOp.hasPureTensorSemantics()) |
| 1268 | return Speculation::NotSpeculatable; |
| 1269 | // The body of the op can still have speculation in its region. |
| 1270 | return Speculation::RecursivelySpeculatable; |
| 1271 | } |
| 1272 | |
| 1273 | Speculation::Speculatability GenericOp::getSpeculatability() { |
| 1274 | return getGenericSpeculatabilityImpl(cast<LinalgOp>(getOperation())); |
| 1275 | } |
| 1276 | |
| 1277 | LogicalResult GenericOp::verify() { return success(); } |
| 1278 | |
| 1279 | namespace { |
| 1280 | |
| 1281 | /// Remove linalg operations that are just copying the values from inputs to |
| 1282 | /// results. In the memref case, the operation must be copying to and from the |
| 1283 | /// same value. Requirements are: |
| 1284 | /// 1) All iterator types are parallel |
| 1285 | /// 2) The body contains just a yield operation with the yielded values being |
| 1286 | /// the arguments corresponding to the operands. |
| 1287 | template <typename OpTy> |
| 1288 | struct EraseIdentityLinalgOp : public OpRewritePattern<OpTy> { |
| 1289 | using OpRewritePattern<OpTy>::OpRewritePattern; |
| 1290 | |
| 1291 | LogicalResult matchAndRewrite(OpTy linalgOp, |
| 1292 | PatternRewriter &rewriter) const override { |
| 1293 | // All indexing maps must be equal. It follows that they are permutations. |
| 1294 | if (!llvm::all_equal(linalgOp.getIndexingMapsArray())) |
| 1295 | return failure(); |
| 1296 | |
| 1297 | // Check that the body of the linalg operation is just a linalg.yield |
| 1298 | // operation. |
| 1299 | Block &body = linalgOp->getRegion(0).front(); |
| 1300 | if (!llvm::hasSingleElement(C&: body)) |
| 1301 | return failure(); |
| 1302 | auto yieldOp = dyn_cast<linalg::YieldOp>(body.getTerminator()); |
| 1303 | if (!yieldOp) |
| 1304 | return failure(); |
| 1305 | |
| 1306 | // In the buffer case, we need to check exact buffer equality. |
| 1307 | if (linalgOp.hasPureBufferSemantics()) { |
| 1308 | if (linalgOp.getNumDpsInputs() != 1 || linalgOp.getNumDpsInits() != 1 || |
| 1309 | linalgOp.getDpsInputOperand(0)->get() != |
| 1310 | linalgOp.getDpsInitOperand(0)->get()) { |
| 1311 | return rewriter.notifyMatchFailure( |
| 1312 | linalgOp, "expected single input and output to be the same value" ); |
| 1313 | } |
| 1314 | |
| 1315 | auto yieldArg = dyn_cast<BlockArgument>(yieldOp.getOperand(0)); |
| 1316 | if (!yieldArg || yieldArg.getOwner() != &body) { |
| 1317 | return rewriter.notifyMatchFailure(linalgOp, |
| 1318 | "cannot fold fill-like op" ); |
| 1319 | } |
| 1320 | |
| 1321 | rewriter.eraseOp(op: linalgOp); |
| 1322 | return success(); |
| 1323 | } |
| 1324 | |
| 1325 | if (!linalgOp.hasPureTensorSemantics()) { |
| 1326 | return rewriter.notifyMatchFailure( |
| 1327 | linalgOp, "mixed semantics is not supported yet" ); |
| 1328 | } |
| 1329 | |
| 1330 | // Get the argument number of the returned values. That is the operand |
| 1331 | // number to use for replacing uses of this operation. |
| 1332 | SmallVector<Value> returnedArgs; |
| 1333 | for (const auto &yieldVal : llvm::enumerate(yieldOp.getValues())) { |
| 1334 | auto yieldArg = llvm::dyn_cast<BlockArgument>(yieldVal.value()); |
| 1335 | if (!yieldArg || yieldArg.getOwner() != &body) |
| 1336 | return failure(); |
| 1337 | unsigned argumentNumber = yieldArg.getArgNumber(); |
| 1338 | Value returnedArg = linalgOp->getOperand(argumentNumber); |
| 1339 | Type resultType = linalgOp->getResult(yieldVal.index()).getType(); |
| 1340 | // The input can have a different type than the result, e.g. a dynamic |
| 1341 | // input dimension can be turned into a static output dimension. |
| 1342 | Type returnType = returnedArg.getType(); |
| 1343 | if (returnType != resultType) { |
| 1344 | // Distinguish between sparse conversion or dense tensor casting. |
| 1345 | // TODO: unify the two ops? |
| 1346 | if (sparse_tensor::getSparseTensorEncoding(returnType) || |
| 1347 | sparse_tensor::getSparseTensorEncoding(resultType)) |
| 1348 | returnedArg = rewriter.create<sparse_tensor::ConvertOp>( |
| 1349 | linalgOp.getLoc(), resultType, returnedArg); |
| 1350 | else { |
| 1351 | if (!tensor::CastOp::areCastCompatible(returnedArg.getType(), |
| 1352 | resultType)) |
| 1353 | return failure(); |
| 1354 | returnedArg = rewriter.create<tensor::CastOp>( |
| 1355 | linalgOp.getLoc(), resultType, returnedArg); |
| 1356 | } |
| 1357 | } |
| 1358 | returnedArgs.push_back(returnedArg); |
| 1359 | } |
| 1360 | |
| 1361 | if (returnedArgs.size() != linalgOp->getNumResults()) |
| 1362 | return failure(); |
| 1363 | rewriter.replaceOp(linalgOp, returnedArgs); |
| 1364 | return success(); |
| 1365 | } |
| 1366 | }; |
| 1367 | |
| 1368 | } // namespace |
| 1369 | |
| 1370 | void GenericOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 1371 | MLIRContext *context) { |
| 1372 | results.add<EraseIdentityLinalgOp<GenericOp>>(context); |
| 1373 | } |
| 1374 | |
| 1375 | LogicalResult GenericOp::fold(FoldAdaptor, SmallVectorImpl<OpFoldResult> &) { |
| 1376 | return memref::foldMemRefCast(*this); |
| 1377 | } |
| 1378 | |
| 1379 | //===----------------------------------------------------------------------===// |
| 1380 | // MapOp |
| 1381 | //===----------------------------------------------------------------------===// |
| 1382 | |
| 1383 | static ParseResult parseDstStyleOp( |
| 1384 | OpAsmParser &parser, OperationState &result, |
| 1385 | function_ref<ParseResult(OpAsmParser &, NamedAttrList &)> parseAttrsFn = |
| 1386 | nullptr) { |
| 1387 | // Parse `ins` and `outs`. |
| 1388 | SmallVector<Type, 4> inputTypes, outputTypes; |
| 1389 | if (parseCommonStructuredOpParts(parser, result, inputTypes, outputTypes, |
| 1390 | /*addOperandSegmentSizes=*/false)) |
| 1391 | return failure(); |
| 1392 | |
| 1393 | // Add result types. |
| 1394 | for (Type outputType : outputTypes) { |
| 1395 | if (llvm::isa<RankedTensorType>(Val: outputType)) |
| 1396 | result.addTypes(newTypes: outputType); |
| 1397 | } |
| 1398 | |
| 1399 | // Parse required attributes. |
| 1400 | if (parseAttrsFn && failed(Result: parseAttrsFn(parser, result.attributes))) |
| 1401 | return failure(); |
| 1402 | |
| 1403 | // Parse optional attributes. |
| 1404 | if (parser.parseOptionalAttrDict(result&: result.attributes)) |
| 1405 | return failure(); |
| 1406 | return success(); |
| 1407 | } |
| 1408 | |
| 1409 | void MapOp::getAsmBlockArgumentNames(Region ®ion, |
| 1410 | OpAsmSetValueNameFn setNameFn) { |
| 1411 | for (Value v : getRegionInputArgs()) |
| 1412 | setNameFn(v, "in" ); |
| 1413 | } |
| 1414 | |
| 1415 | void MapOp::getAsmResultNames(function_ref<void(Value, StringRef)> setNameFn) { |
| 1416 | if (!getResults().empty()) |
| 1417 | setNameFn(getResults().front(), "mapped" ); |
| 1418 | } |
| 1419 | |
| 1420 | void MapOp::build( |
| 1421 | OpBuilder &builder, OperationState &result, ValueRange inputs, Value init, |
| 1422 | function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild, |
| 1423 | ArrayRef<NamedAttribute> attributes) { |
| 1424 | build(builder, result, TypeRange{}, inputs, init); |
| 1425 | result.addAttributes(attributes); |
| 1426 | |
| 1427 | // Add output types for `RankedTensorType` output arguments. |
| 1428 | Type initType = init.getType(); |
| 1429 | if (llvm::isa<RankedTensorType>(initType)) |
| 1430 | result.addTypes(initType); |
| 1431 | |
| 1432 | if (bodyBuild) |
| 1433 | buildGenericRegion(builder, result.location, *result.regions.front(), |
| 1434 | inputs, /*outputs=*/{}, bodyBuild); |
| 1435 | } |
| 1436 | |
| 1437 | static void addBodyWithPayloadOp(OpAsmParser &parser, OperationState &result, |
| 1438 | const OperationName &payloadOpName, |
| 1439 | const NamedAttrList &payloadOpAttrs, |
| 1440 | ArrayRef<Value> operands, |
| 1441 | bool initFirst = false) { |
| 1442 | OpBuilder b(parser.getContext()); |
| 1443 | Region *body = result.addRegion(); |
| 1444 | Block &block = body->emplaceBlock(); |
| 1445 | b.setInsertionPointToStart(&block); |
| 1446 | for (auto &operand : operands) { |
| 1447 | block.addArgument( |
| 1448 | llvm::cast<ShapedType>(operand.getType()).getElementType(), |
| 1449 | b.getUnknownLoc()); |
| 1450 | } |
| 1451 | SmallVector<Value> payloadOpOperands; |
| 1452 | // If initFirst flag is enabled, we consider init as the first position of |
| 1453 | // payload operands. |
| 1454 | if (initFirst) { |
| 1455 | payloadOpOperands.push_back(Elt: block.getArguments().back()); |
| 1456 | for (const auto &arg : block.getArguments().drop_back()) |
| 1457 | payloadOpOperands.push_back(Elt: arg); |
| 1458 | } else { |
| 1459 | payloadOpOperands = {block.getArguments().begin(), |
| 1460 | block.getArguments().end()}; |
| 1461 | } |
| 1462 | |
| 1463 | Operation *payloadOp = b.create( |
| 1464 | result.location, b.getStringAttr(payloadOpName.getStringRef()), |
| 1465 | payloadOpOperands, |
| 1466 | TypeRange{llvm::cast<ShapedType>(result.operands.back().getType()) |
| 1467 | .getElementType()}, |
| 1468 | payloadOpAttrs); |
| 1469 | b.create<YieldOp>(result.location, payloadOp->getResults()); |
| 1470 | } |
| 1471 | |
| 1472 | ParseResult MapOp::parse(OpAsmParser &parser, OperationState &result) { |
| 1473 | std::optional<OperationName> payloadOpName; |
| 1474 | NamedAttrList payloadOpAttrs; |
| 1475 | if (succeeded(parser.parseOptionalLBrace())) { |
| 1476 | FailureOr<OperationName> operationName = parser.parseCustomOperationName(); |
| 1477 | if (failed(operationName)) |
| 1478 | return failure(); |
| 1479 | if (parser.parseOptionalAttrDict(payloadOpAttrs)) |
| 1480 | return failure(); |
| 1481 | payloadOpName = operationName.value(); |
| 1482 | if (parser.parseRBrace()) |
| 1483 | return failure(); |
| 1484 | } |
| 1485 | |
| 1486 | if (parseDstStyleOp(parser, result)) |
| 1487 | return failure(); |
| 1488 | |
| 1489 | if (payloadOpName.has_value()) { |
| 1490 | if (!result.operands.empty()) |
| 1491 | addBodyWithPayloadOp(parser, result, payloadOpName.value(), |
| 1492 | payloadOpAttrs, |
| 1493 | ArrayRef(result.operands).drop_back()); |
| 1494 | else |
| 1495 | result.addRegion(); |
| 1496 | } else { |
| 1497 | SmallVector<OpAsmParser::Argument> regionArgs; |
| 1498 | if (parser.parseArgumentList(regionArgs, OpAsmParser::Delimiter::Paren, |
| 1499 | /*allowType=*/true, /*allowAttrs=*/true)) { |
| 1500 | return failure(); |
| 1501 | } |
| 1502 | Region *body = result.addRegion(); |
| 1503 | if (parser.parseRegion(*body, regionArgs)) |
| 1504 | return failure(); |
| 1505 | } |
| 1506 | return success(); |
| 1507 | } |
| 1508 | |
| 1509 | // Retrieve the operation from the body, if it is the only one (except |
| 1510 | // yield) and if it gets the same amount of arguments as the body does. |
| 1511 | // If initFirst flag is enabled, we check that init takes the first position in |
| 1512 | // operands of payload. |
| 1513 | static Operation *findPayloadOp(Block *body, bool initFirst = false) { |
| 1514 | if (body->getOperations().size() != 2) |
| 1515 | return nullptr; |
| 1516 | Operation &payload = body->getOperations().front(); |
| 1517 | assert(isa<YieldOp>(body->getOperations().back())); |
| 1518 | |
| 1519 | if (payload.getNumOperands() == 0 || |
| 1520 | payload.getNumOperands() != body->getNumArguments()) |
| 1521 | return nullptr; |
| 1522 | if (initFirst) { |
| 1523 | // check init |
| 1524 | if (payload.getOperands().back() != body->getArgument(i: 0)) |
| 1525 | return nullptr; |
| 1526 | // check rest |
| 1527 | for (const auto &[operand, bbArg] : |
| 1528 | llvm::zip(t: payload.getOperands(), u: body->getArguments().drop_front())) { |
| 1529 | if (bbArg != operand) |
| 1530 | return nullptr; |
| 1531 | } |
| 1532 | } else { |
| 1533 | for (const auto &[operand, bbArg] : |
| 1534 | llvm::zip(t: payload.getOperands(), u: body->getArguments())) { |
| 1535 | if (bbArg != operand) |
| 1536 | return nullptr; |
| 1537 | } |
| 1538 | } |
| 1539 | return &payload; |
| 1540 | } |
| 1541 | |
| 1542 | void printShortForm(OpAsmPrinter &p, Operation *payloadOp) { |
| 1543 | SmallVector<StringRef> elidedAttrs; |
| 1544 | std::string attrToElide; |
| 1545 | p << " { " << payloadOp->getName().getStringRef(); |
| 1546 | for (const auto &attr : payloadOp->getAttrs()) { |
| 1547 | auto fastAttr = |
| 1548 | llvm::dyn_cast<mlir::arith::FastMathFlagsAttr>(attr.getValue()); |
| 1549 | if (fastAttr && fastAttr.getValue() == mlir::arith::FastMathFlags::none) { |
| 1550 | attrToElide = attr.getName().str(); |
| 1551 | elidedAttrs.push_back(Elt: attrToElide); |
| 1552 | break; |
| 1553 | } |
| 1554 | } |
| 1555 | p.printOptionalAttrDict(attrs: payloadOp->getAttrs(), elidedAttrs); |
| 1556 | p << " }" ; |
| 1557 | } |
| 1558 | |
| 1559 | void MapOp::print(OpAsmPrinter &p) { |
| 1560 | Block *mapper = getBody(); |
| 1561 | Operation *payloadOp = findPayloadOp(mapper); |
| 1562 | if (payloadOp) { |
| 1563 | printShortForm(p, payloadOp); |
| 1564 | } |
| 1565 | |
| 1566 | printCommonStructuredOpParts(p, getDpsInputs(), getDpsInits()); |
| 1567 | p.printOptionalAttrDict((*this)->getAttrs()); |
| 1568 | |
| 1569 | if (!payloadOp) { |
| 1570 | // Print region if the payload op was not detected. |
| 1571 | p.increaseIndent(); |
| 1572 | p.printNewline(); |
| 1573 | p << "(" ; |
| 1574 | llvm::interleaveComma(mapper->getArguments(), p, |
| 1575 | [&](auto arg) { p.printRegionArgument(arg); }); |
| 1576 | p << ") " ; |
| 1577 | |
| 1578 | p.printRegion(getMapper(), /*printEntryBlockArgs=*/false); |
| 1579 | p.decreaseIndent(); |
| 1580 | } |
| 1581 | } |
| 1582 | |
| 1583 | LogicalResult MapOp::verify() { |
| 1584 | auto *bodyBlock = getBody(); |
| 1585 | auto blockArgs = bodyBlock->getArguments(); |
| 1586 | |
| 1587 | // Checks if the number of `inputs` match the arity of the `mapper` region. |
| 1588 | if (getInputs().size() != blockArgs.size()) |
| 1589 | return emitOpError() << "expects number of operands to match the arity of " |
| 1590 | "mapper, but got: " |
| 1591 | << getInputs().size() << " and " << blockArgs.size(); |
| 1592 | |
| 1593 | // The parameters of mapper should all match the element type of inputs. |
| 1594 | for (const auto &[bbArgType, inputArg] : |
| 1595 | llvm::zip(bodyBlock->getArgumentTypes(), getInputs())) { |
| 1596 | auto inputElemType = |
| 1597 | llvm::cast<ShapedType>(inputArg.getType()).getElementType(); |
| 1598 | if (bbArgType != inputElemType) { |
| 1599 | return emitOpError() << "expected element type of input " << inputElemType |
| 1600 | << " to match bbArg type " << bbArgType; |
| 1601 | } |
| 1602 | } |
| 1603 | |
| 1604 | // The shape of each input must match the shape of the output. |
| 1605 | auto outputShape = getInit().getType().getShape(); |
| 1606 | for (Type inputArgType : TypeRange{getInputs()}) { |
| 1607 | auto inputElemShape = llvm::cast<ShapedType>(inputArgType).getShape(); |
| 1608 | if (inputElemShape != outputShape) { |
| 1609 | return emitOpError() << "expected shape of input (" << inputElemShape |
| 1610 | << ") to match shape of output (" << outputShape |
| 1611 | << ")" ; |
| 1612 | } |
| 1613 | } |
| 1614 | |
| 1615 | return success(); |
| 1616 | } |
| 1617 | |
| 1618 | SmallVector<utils::IteratorType> MapOp::getIteratorTypesArray() { |
| 1619 | int64_t rank = getInit().getType().getRank(); |
| 1620 | return SmallVector<utils::IteratorType>(rank, utils::IteratorType::parallel); |
| 1621 | } |
| 1622 | |
| 1623 | ArrayAttr MapOp::getIndexingMaps() { |
| 1624 | Builder builder(getContext()); |
| 1625 | int64_t rank = getInit().getType().getRank(); |
| 1626 | int64_t numIndexingMaps = getOperands().size(); |
| 1627 | return builder.getAffineMapArrayAttr(SmallVector<AffineMap>( |
| 1628 | numIndexingMaps, builder.getMultiDimIdentityMap(rank))); |
| 1629 | } |
| 1630 | |
| 1631 | void MapOp::getEffects( |
| 1632 | SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> |
| 1633 | &effects) { |
| 1634 | getGenericEffectsImpl(effects, cast<LinalgOp>(getOperation())); |
| 1635 | } |
| 1636 | |
| 1637 | Speculation::Speculatability MapOp::getSpeculatability() { |
| 1638 | return getGenericSpeculatabilityImpl(cast<LinalgOp>(getOperation())); |
| 1639 | } |
| 1640 | |
| 1641 | //===----------------------------------------------------------------------===// |
| 1642 | // ReduceOp |
| 1643 | //===----------------------------------------------------------------------===// |
| 1644 | |
| 1645 | void ReduceOp::getAsmBlockArgumentNames(Region ®ion, |
| 1646 | OpAsmSetValueNameFn setNameFn) { |
| 1647 | for (Value v : getRegionInputArgs()) |
| 1648 | setNameFn(v, "in" ); |
| 1649 | for (Value v : getRegionOutputArgs()) |
| 1650 | setNameFn(v, "init" ); |
| 1651 | } |
| 1652 | |
| 1653 | void ReduceOp::getAsmResultNames( |
| 1654 | function_ref<void(Value, StringRef)> setNameFn) { |
| 1655 | if (!getResults().empty()) |
| 1656 | setNameFn(getResults().front(), "reduced" ); |
| 1657 | } |
| 1658 | |
| 1659 | void ReduceOp::build( |
| 1660 | OpBuilder &builder, OperationState &result, ValueRange inputs, |
| 1661 | ValueRange inits, ArrayRef<int64_t> dimensions, |
| 1662 | function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild, |
| 1663 | ArrayRef<NamedAttribute> attributes) { |
| 1664 | build(builder, result, TypeRange{}, inputs, inits, dimensions); |
| 1665 | result.addAttributes(attributes); |
| 1666 | |
| 1667 | // Add output types for `RankedTensorType` output arguments. |
| 1668 | for (Value init : inits) { |
| 1669 | Type initType = init.getType(); |
| 1670 | if (llvm::isa<RankedTensorType>(initType)) |
| 1671 | result.addTypes(initType); |
| 1672 | } |
| 1673 | |
| 1674 | if (bodyBuild) |
| 1675 | buildGenericRegion(builder, result.location, *result.regions.front(), |
| 1676 | inputs, inits, bodyBuild); |
| 1677 | } |
| 1678 | |
| 1679 | SmallVector<utils::IteratorType> ReduceOp::getIteratorTypesArray() { |
| 1680 | int64_t inputRank = |
| 1681 | llvm::cast<ShapedType>(getInputs()[0].getType()).getRank(); |
| 1682 | SmallVector<utils::IteratorType> iteratorTypes(inputRank, |
| 1683 | utils::IteratorType::parallel); |
| 1684 | for (int64_t reductionDim : getDimensions()) |
| 1685 | iteratorTypes[reductionDim] = utils::IteratorType::reduction; |
| 1686 | return iteratorTypes; |
| 1687 | } |
| 1688 | |
| 1689 | ArrayAttr ReduceOp::getIndexingMaps() { |
| 1690 | int64_t inputRank = |
| 1691 | llvm::cast<ShapedType>(getInputs()[0].getType()).getRank(); |
| 1692 | SmallVector<AffineMap> affineMaps( |
| 1693 | getNumDpsInputs(), |
| 1694 | AffineMap::getMultiDimIdentityMap(inputRank, getContext())); |
| 1695 | AffineMap resultMap = |
| 1696 | AffineMap::getMultiDimIdentityMap(inputRank, getContext()) |
| 1697 | .dropResults(getDimensions()); |
| 1698 | for (int64_t i = 0, e = getNumDpsInits(); i < e; ++i) |
| 1699 | affineMaps.push_back(resultMap); |
| 1700 | return Builder(getContext()).getAffineMapArrayAttr(affineMaps); |
| 1701 | } |
| 1702 | |
| 1703 | void ReduceOp::getEffects( |
| 1704 | SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> |
| 1705 | &effects) { |
| 1706 | getGenericEffectsImpl(effects, cast<LinalgOp>(getOperation())); |
| 1707 | } |
| 1708 | |
| 1709 | Speculation::Speculatability ReduceOp::getSpeculatability() { |
| 1710 | return getGenericSpeculatabilityImpl(cast<LinalgOp>(getOperation())); |
| 1711 | } |
| 1712 | |
| 1713 | static ParseResult parseDenseI64ArrayAttr(OpAsmParser &parser, |
| 1714 | NamedAttrList &attributes, |
| 1715 | StringRef attributeName) { |
| 1716 | if (parser.parseKeyword(keyword: attributeName) || parser.parseEqual()) |
| 1717 | return failure(); |
| 1718 | |
| 1719 | attributes.set(attributeName, DenseI64ArrayAttr::parse(parser, Type{})); |
| 1720 | return success(); |
| 1721 | } |
| 1722 | |
| 1723 | ParseResult ReduceOp::parse(OpAsmParser &parser, OperationState &result) { |
| 1724 | std::optional<OperationName> payloadOpName; |
| 1725 | NamedAttrList payloadOpAttrs; |
| 1726 | if (succeeded(parser.parseOptionalLBrace())) { |
| 1727 | FailureOr<OperationName> operationName = parser.parseCustomOperationName(); |
| 1728 | if (failed(operationName)) |
| 1729 | return failure(); |
| 1730 | if (parser.parseOptionalAttrDict(payloadOpAttrs)) |
| 1731 | return failure(); |
| 1732 | payloadOpName = operationName.value(); |
| 1733 | if (parser.parseRBrace()) |
| 1734 | return failure(); |
| 1735 | } |
| 1736 | |
| 1737 | if (parseDstStyleOp( |
| 1738 | parser, result, [&](OpAsmParser &parser, NamedAttrList &attributes) { |
| 1739 | return parseDenseI64ArrayAttr(parser, attributes, "dimensions" ); |
| 1740 | })) |
| 1741 | return failure(); |
| 1742 | |
| 1743 | if (payloadOpName.has_value()) { |
| 1744 | addBodyWithPayloadOp(parser, result, payloadOpName.value(), payloadOpAttrs, |
| 1745 | ArrayRef(result.operands), /*initFirst=*/true); |
| 1746 | } else { |
| 1747 | SmallVector<OpAsmParser::Argument> regionArgs; |
| 1748 | if (parser.parseArgumentList(regionArgs, OpAsmParser::Delimiter::Paren, |
| 1749 | /*allowType=*/true, /*allowAttrs=*/true)) { |
| 1750 | return failure(); |
| 1751 | } |
| 1752 | |
| 1753 | Region *body = result.addRegion(); |
| 1754 | if (parser.parseRegion(*body, regionArgs)) |
| 1755 | return failure(); |
| 1756 | } |
| 1757 | |
| 1758 | return success(); |
| 1759 | } |
| 1760 | |
| 1761 | static void printDenseI64ArrayAttr(OpAsmPrinter &p, StringRef attributeName, |
| 1762 | ArrayRef<int64_t> attributeValue) { |
| 1763 | p << ' ' << attributeName << " = [" << attributeValue << "] " ; |
| 1764 | } |
| 1765 | |
| 1766 | void ReduceOp::print(OpAsmPrinter &p) { |
| 1767 | Block *mapper = getBody(); |
| 1768 | Operation *payloadOp = findPayloadOp(mapper, /*initFirst=*/true); |
| 1769 | if (payloadOp) { |
| 1770 | printShortForm(p, payloadOp); |
| 1771 | } |
| 1772 | |
| 1773 | printCommonStructuredOpParts(p, getDpsInputs(), getDpsInits()); |
| 1774 | printDenseI64ArrayAttr(p, getDimensionsAttrName(), getDimensions()); |
| 1775 | p.printOptionalAttrDict((*this)->getAttrs(), {getDimensionsAttrName()}); |
| 1776 | if (!payloadOp) { |
| 1777 | // Print region if the payload op was not detected. |
| 1778 | p.increaseIndent(); |
| 1779 | p.printNewline(); |
| 1780 | p << "(" ; |
| 1781 | llvm::interleaveComma(mapper->getArguments(), p, |
| 1782 | [&](auto arg) { p.printRegionArgument(arg); }); |
| 1783 | p << ") " ; |
| 1784 | |
| 1785 | p.printRegion(getCombiner(), /*printEntryBlockArgs=*/false); |
| 1786 | p.decreaseIndent(); |
| 1787 | } |
| 1788 | } |
| 1789 | |
| 1790 | LogicalResult ReduceOp::verify() { |
| 1791 | ArrayRef<int64_t> dimensionsRef = getDimensions(); |
| 1792 | |
| 1793 | for (int64_t i = 1; i < getNumDpsInputs(); ++i) { |
| 1794 | if (llvm::cast<ShapedType>(getInputs()[i].getType()).getShape() != |
| 1795 | llvm::cast<ShapedType>(getInputs()[0].getType()).getShape()) { |
| 1796 | return emitOpError() << "expects all inputs to have the same shapes. " |
| 1797 | "Shape at input-index " |
| 1798 | << i |
| 1799 | << " is not equal to the shape at input-index 0." ; |
| 1800 | } |
| 1801 | } |
| 1802 | for (int64_t i = 1; i < getNumDpsInits(); ++i) { |
| 1803 | if (llvm::cast<ShapedType>(getInits()[i].getType()).getShape() != |
| 1804 | llvm::cast<ShapedType>(getInits()[0].getType()).getShape()) { |
| 1805 | return emitOpError() << "expects all outputs to have the same shapes. " |
| 1806 | "Shape at output-index " |
| 1807 | << i |
| 1808 | << " is not equal to the shape at output-index 0." ; |
| 1809 | } |
| 1810 | } |
| 1811 | auto inputType = llvm::cast<ShapedType>(getInputs()[0].getType()); |
| 1812 | auto initType = llvm::cast<ShapedType>(getInits()[0].getType()); |
| 1813 | |
| 1814 | DenseSet<int64_t> dimensionsToReduce; |
| 1815 | for (int64_t dimension : dimensionsRef) { |
| 1816 | if (dimension < 0 || dimension >= inputType.getRank()) { |
| 1817 | return emitOpError() |
| 1818 | << "dimensions for reduction should be in the range [0, " |
| 1819 | << inputType.getRank() - 1 << "]." ; |
| 1820 | } |
| 1821 | dimensionsToReduce.insert(dimension); |
| 1822 | } |
| 1823 | |
| 1824 | auto inputDims = inputType.getShape(); |
| 1825 | auto initDims = initType.getShape(); |
| 1826 | |
| 1827 | // Input dimensions that will be left after the reduction. |
| 1828 | SmallVector<int64_t> reducedInputDims; |
| 1829 | for (const auto &en : llvm::enumerate(inputDims)) { |
| 1830 | if (!dimensionsToReduce.count(en.index())) |
| 1831 | reducedInputDims.push_back(en.value()); |
| 1832 | } |
| 1833 | |
| 1834 | if (reducedInputDims.size() != static_cast<size_t>(initType.getRank())) { |
| 1835 | return emitOpError() << "number of dimensions after reduction " |
| 1836 | << reducedInputDims.size() |
| 1837 | << " doesn't match the init rank " |
| 1838 | << initType.getRank(); |
| 1839 | } |
| 1840 | |
| 1841 | if (reducedInputDims != initDims) |
| 1842 | return emitOpError() << "init dimensions [" << initDims |
| 1843 | << "] doesn't match input dimensions after reduction [" |
| 1844 | << reducedInputDims << "]" ; |
| 1845 | |
| 1846 | Block *block = getBody(); |
| 1847 | if (block->getNumArguments() != this->getNumOperands()) |
| 1848 | return emitOpError() |
| 1849 | << "mismatching number of operands and block arguments" ; |
| 1850 | |
| 1851 | // Check that the first block arguments match the element type of the inputs. |
| 1852 | for (auto [input, bbArg] : llvm::zip(getInputs(), block->getArguments())) { |
| 1853 | Type inputElementType = |
| 1854 | llvm::cast<ShapedType>(input.getType()).getElementType(); |
| 1855 | if (inputElementType != bbArg.getType()) |
| 1856 | return emitOpError() |
| 1857 | << "input element type " << inputElementType |
| 1858 | << " does not match corresponding block argument type " |
| 1859 | << bbArg.getType(); |
| 1860 | } |
| 1861 | |
| 1862 | // Check that the last block arguments match the element type of the outputs. |
| 1863 | for (auto [output, bbArg] : llvm::zip( |
| 1864 | getDpsInits(), block->getArguments().take_back(getNumDpsInits()))) { |
| 1865 | auto outputElementType = |
| 1866 | llvm::cast<ShapedType>(output.getType()).getElementType(); |
| 1867 | if (outputElementType != bbArg.getType()) |
| 1868 | return emitOpError() |
| 1869 | << "output element type " << outputElementType |
| 1870 | << " does not match corresponding block argument type " |
| 1871 | << bbArg.getType(); |
| 1872 | } |
| 1873 | return success(); |
| 1874 | } |
| 1875 | |
| 1876 | //===----------------------------------------------------------------------===// |
| 1877 | // TransposeOp |
| 1878 | //===----------------------------------------------------------------------===// |
| 1879 | |
| 1880 | static void buildIdentityRegion(OpBuilder &builder, Location loc, |
| 1881 | Region ®ion, ValueRange inputs, |
| 1882 | ValueRange outputs) { |
| 1883 | buildGenericRegion(builder, loc, region, inputs, outputs, |
| 1884 | bodyBuild: [](OpBuilder &b, Location loc, ValueRange args) { |
| 1885 | if (!args.empty()) |
| 1886 | b.create<linalg::YieldOp>(loc, args[0]); |
| 1887 | }); |
| 1888 | } |
| 1889 | |
| 1890 | void TransposeOp::build(::mlir::OpBuilder &builder, |
| 1891 | ::mlir::OperationState &result, Value input, Value init, |
| 1892 | DenseI64ArrayAttr permutation, |
| 1893 | ArrayRef<NamedAttribute> attributes) { |
| 1894 | result.addOperands(input); |
| 1895 | result.addOperands(init); |
| 1896 | result.addAttribute(getPermutationAttrName(result.name), permutation); |
| 1897 | result.addAttributes(attributes); |
| 1898 | |
| 1899 | // Add output types for `RankedTensorType` output arguments. |
| 1900 | Type initType = init.getType(); |
| 1901 | if (llvm::isa<RankedTensorType>(initType)) |
| 1902 | result.addTypes(initType); |
| 1903 | |
| 1904 | buildIdentityRegion(builder, result.location, *result.addRegion(), input, |
| 1905 | init); |
| 1906 | } |
| 1907 | |
| 1908 | void TransposeOp::build(::mlir::OpBuilder &builder, |
| 1909 | ::mlir::OperationState &result, Value input, Value init, |
| 1910 | ArrayRef<int64_t> permutation, |
| 1911 | ArrayRef<NamedAttribute> attributes) { |
| 1912 | build(builder, result, input, init, builder.getDenseI64ArrayAttr(permutation), |
| 1913 | attributes); |
| 1914 | } |
| 1915 | |
| 1916 | ParseResult TransposeOp::parse(OpAsmParser &parser, OperationState &result) { |
| 1917 | if (failed(parseDstStyleOp( |
| 1918 | parser, result, [&](OpAsmParser &parser, NamedAttrList &attributes) { |
| 1919 | return parseDenseI64ArrayAttr(parser, attributes, "permutation" ); |
| 1920 | }))) |
| 1921 | return failure(); |
| 1922 | |
| 1923 | OpBuilder builder(parser.getContext()); |
| 1924 | buildIdentityRegion(builder, result.location, *result.addRegion(), |
| 1925 | /*inputs=*/result.operands, |
| 1926 | /*outputs=*/{}); |
| 1927 | return success(); |
| 1928 | } |
| 1929 | |
| 1930 | void TransposeOp::getAsmResultNames( |
| 1931 | function_ref<void(Value, StringRef)> setNameFn) { |
| 1932 | if (!getResults().empty()) |
| 1933 | setNameFn(getResults().front(), "transposed" ); |
| 1934 | } |
| 1935 | |
| 1936 | void TransposeOp::print(OpAsmPrinter &p) { |
| 1937 | printCommonStructuredOpParts(p, getDpsInputs(), getDpsInits()); |
| 1938 | printDenseI64ArrayAttr(p, getPermutationAttrName(), getPermutation()); |
| 1939 | p.printOptionalAttrDict((*this)->getAttrs(), {getPermutationAttrName()}); |
| 1940 | } |
| 1941 | |
| 1942 | LogicalResult TransposeOp::verify() { |
| 1943 | ArrayRef<int64_t> permutationRef = getPermutation(); |
| 1944 | |
| 1945 | if (!isPermutationVector(permutationRef)) |
| 1946 | return emitOpError("permutation is not valid" ); |
| 1947 | |
| 1948 | auto inputType = getInput().getType(); |
| 1949 | auto initType = getInit().getType(); |
| 1950 | |
| 1951 | int64_t rank = inputType.getRank(); |
| 1952 | |
| 1953 | if (rank != initType.getRank()) |
| 1954 | return emitOpError() << "input rank " << rank |
| 1955 | << " does not match init rank " << initType.getRank(); |
| 1956 | |
| 1957 | if (rank != static_cast<int64_t>(permutationRef.size())) |
| 1958 | return emitOpError() << "size of permutation " << permutationRef.size() |
| 1959 | << " does not match the argument rank " << rank; |
| 1960 | |
| 1961 | auto inputDims = inputType.getShape(); |
| 1962 | auto initDims = initType.getShape(); |
| 1963 | |
| 1964 | for (int64_t i = 0; i < rank; ++i) { |
| 1965 | int64_t inputDim = inputDims[permutationRef[i]]; |
| 1966 | int64_t initDim = initDims[i]; |
| 1967 | |
| 1968 | if (inputDim != initDim) { |
| 1969 | return emitOpError() << "dim(result, " << i << ") = " << initDim |
| 1970 | << " doesn't match dim(input, permutation[" << i |
| 1971 | << "]) = " << inputDim; |
| 1972 | } |
| 1973 | } |
| 1974 | |
| 1975 | return success(); |
| 1976 | } |
| 1977 | |
| 1978 | SmallVector<utils::IteratorType> TransposeOp::getIteratorTypesArray() { |
| 1979 | int64_t rank = getInit().getType().getRank(); |
| 1980 | return SmallVector<utils::IteratorType>(rank, utils::IteratorType::parallel); |
| 1981 | } |
| 1982 | |
| 1983 | ArrayAttr TransposeOp::getIndexingMaps() { |
| 1984 | Builder builder(getContext()); |
| 1985 | int64_t rank = getInit().getType().getRank(); |
| 1986 | return builder.getAffineMapArrayAttr( |
| 1987 | {inversePermutation(AffineMap::getPermutationMap( |
| 1988 | llvm::to_vector_of<unsigned>(getPermutation()), getContext())), |
| 1989 | builder.getMultiDimIdentityMap(rank)}); |
| 1990 | } |
| 1991 | |
| 1992 | void TransposeOp::getEffects( |
| 1993 | SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> |
| 1994 | &effects) { |
| 1995 | getGenericEffectsImpl(effects, cast<LinalgOp>(getOperation())); |
| 1996 | } |
| 1997 | |
| 1998 | Speculation::Speculatability TransposeOp::getSpeculatability() { |
| 1999 | return getGenericSpeculatabilityImpl(cast<LinalgOp>(getOperation())); |
| 2000 | } |
| 2001 | |
| 2002 | LogicalResult TransposeOp::fold(FoldAdaptor adaptor, |
| 2003 | SmallVectorImpl<OpFoldResult> &result) { |
| 2004 | // Only the tensor type is supported. |
| 2005 | if (!isa<TensorType>(getInput().getType())) |
| 2006 | return failure(); |
| 2007 | |
| 2008 | // Single dimension transpose. |
| 2009 | if (getPermutation().size() == 0) { |
| 2010 | result.push_back(getInput()); |
| 2011 | return success(); |
| 2012 | } |
| 2013 | // Identity permutation. |
| 2014 | if (isIdentityPermutation(getPermutation())) { |
| 2015 | result.push_back(getInput()); |
| 2016 | return success(); |
| 2017 | } |
| 2018 | |
| 2019 | return failure(); |
| 2020 | } |
| 2021 | |
| 2022 | /// Fold transpose with transpose. |
| 2023 | struct FoldTransposeWithTranspose : OpRewritePattern<linalg::TransposeOp> { |
| 2024 | using OpRewritePattern<linalg::TransposeOp>::OpRewritePattern; |
| 2025 | |
| 2026 | LogicalResult matchAndRewrite(linalg::TransposeOp transposeOp, |
| 2027 | PatternRewriter &rewriter) const override { |
| 2028 | auto defTransposeOp = transposeOp.getInput().getDefiningOp<TransposeOp>(); |
| 2029 | if (!defTransposeOp) |
| 2030 | return failure(); |
| 2031 | ArrayRef<int64_t> defPerms = defTransposeOp.getPermutation(); |
| 2032 | ArrayRef<int64_t> perms = transposeOp.getPermutation(); |
| 2033 | SmallVector<int64_t> foldedPerms; |
| 2034 | foldedPerms.reserve(N: perms.size()); |
| 2035 | for (int64_t perm : perms) |
| 2036 | foldedPerms.push_back(defPerms[perm]); |
| 2037 | |
| 2038 | rewriter.replaceOpWithNewOp<TransposeOp>( |
| 2039 | transposeOp, defTransposeOp.getInput(), transposeOp.getInit(), |
| 2040 | foldedPerms); |
| 2041 | return success(); |
| 2042 | } |
| 2043 | }; |
| 2044 | |
| 2045 | /// This pattern canonicalize transpose by swapping the order of |
| 2046 | /// broadcast and transpose: |
| 2047 | /// transpose(broadcast(input)) -> broadcast(transpose(input)) |
| 2048 | struct SwapTransposeWithBroadcast : OpRewritePattern<linalg::TransposeOp> { |
| 2049 | using OpRewritePattern<linalg::TransposeOp>::OpRewritePattern; |
| 2050 | |
| 2051 | LogicalResult matchAndRewrite(linalg::TransposeOp transposeOp, |
| 2052 | PatternRewriter &rewriter) const override { |
| 2053 | Value input = transposeOp.getInput(); |
| 2054 | BroadcastOp broadcastOp = input.getDefiningOp<BroadcastOp>(); |
| 2055 | if (!input.hasOneUse() || !broadcastOp) |
| 2056 | return failure(); |
| 2057 | |
| 2058 | ArrayRef<int64_t> dimensions = broadcastOp.getDimensions(); |
| 2059 | ArrayRef<int64_t> perms = transposeOp.getPermutation(); |
| 2060 | |
| 2061 | // Get new perms and new dimensions. |
| 2062 | SmallVector<int64_t> resultPerms = dropDims(inputPerm: perms, dropPositions: dimensions); |
| 2063 | SmallVector<int64_t> invertPerm = invertPermutationVector(permutation: perms); |
| 2064 | SmallVector<int64_t> resultDimensions; |
| 2065 | unsigned dimensionSize = dimensions.size(); |
| 2066 | for (unsigned i = 0; i < dimensionSize; ++i) |
| 2067 | resultDimensions.push_back(Elt: invertPerm[dimensions[i]]); |
| 2068 | |
| 2069 | // Create transpose result. |
| 2070 | Value broadcastInput = broadcastOp.getInput(); |
| 2071 | Location loc = transposeOp.getLoc(); |
| 2072 | MLIRContext *ctx = transposeOp.getContext(); |
| 2073 | SmallVector<OpFoldResult> dims; |
| 2074 | auto broadcastInputTy = |
| 2075 | mlir::cast<RankedTensorType>(broadcastInput.getType()); |
| 2076 | unsigned inputRank = broadcastInputTy.getRank(); |
| 2077 | for (unsigned i = 0; i < inputRank; ++i) { |
| 2078 | if (broadcastInputTy.isDynamicDim(i)) { |
| 2079 | dims.push_back(rewriter.create<tensor::DimOp>(loc, broadcastInput, i) |
| 2080 | ->getResult(0)); |
| 2081 | } else { |
| 2082 | dims.push_back(IntegerAttr::get(IndexType::get(ctx), |
| 2083 | broadcastInputTy.getDimSize(i))); |
| 2084 | } |
| 2085 | } |
| 2086 | SmallVector<OpFoldResult> transposeResultShapes = |
| 2087 | applyPermutation(input: dims, permutation: resultPerms); |
| 2088 | Value transposeInit = rewriter.create<tensor::EmptyOp>( |
| 2089 | transposeOp.getLoc(), transposeResultShapes, |
| 2090 | broadcastInputTy.getElementType()); |
| 2091 | |
| 2092 | // Create broadcast(transpose(input)). |
| 2093 | Value transposeResult = |
| 2094 | rewriter |
| 2095 | .create<TransposeOp>(loc, broadcastOp.getInput(), transposeInit, |
| 2096 | resultPerms) |
| 2097 | ->getResult(0); |
| 2098 | rewriter.replaceOpWithNewOp<BroadcastOp>( |
| 2099 | transposeOp, transposeResult, transposeOp.getInit(), resultDimensions); |
| 2100 | return success(); |
| 2101 | } |
| 2102 | }; |
| 2103 | |
| 2104 | void TransposeOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 2105 | MLIRContext *context) { |
| 2106 | results.add<FoldTransposeWithTranspose, SwapTransposeWithBroadcast>(context); |
| 2107 | } |
| 2108 | |
| 2109 | //===----------------------------------------------------------------------===// |
| 2110 | // BroadcastOp |
| 2111 | //===----------------------------------------------------------------------===// |
| 2112 | |
| 2113 | void BroadcastOp::build(::mlir::OpBuilder &builder, |
| 2114 | ::mlir::OperationState &result, Value input, Value init, |
| 2115 | DenseI64ArrayAttr dimensions, |
| 2116 | ArrayRef<NamedAttribute> attributes) { |
| 2117 | result.addOperands(input); |
| 2118 | result.addOperands(init); |
| 2119 | result.addAttribute(getDimensionsAttrName(result.name), dimensions); |
| 2120 | result.addAttributes(attributes); |
| 2121 | |
| 2122 | // Add output types for `RankedTensorType` output arguments. |
| 2123 | Type initType = init.getType(); |
| 2124 | if (llvm::isa<RankedTensorType>(initType)) |
| 2125 | result.addTypes(initType); |
| 2126 | |
| 2127 | buildIdentityRegion(builder, result.location, *result.addRegion(), input, |
| 2128 | init); |
| 2129 | } |
| 2130 | |
| 2131 | void BroadcastOp::build(::mlir::OpBuilder &builder, |
| 2132 | ::mlir::OperationState &result, Value input, Value init, |
| 2133 | ArrayRef<int64_t> dimensions, |
| 2134 | ArrayRef<NamedAttribute> attributes) { |
| 2135 | build(builder, result, input, init, builder.getDenseI64ArrayAttr(dimensions), |
| 2136 | attributes); |
| 2137 | } |
| 2138 | |
| 2139 | ParseResult BroadcastOp::parse(OpAsmParser &parser, OperationState &result) { |
| 2140 | if (failed(parseDstStyleOp( |
| 2141 | parser, result, [&](OpAsmParser &parser, NamedAttrList &attributes) { |
| 2142 | return parseDenseI64ArrayAttr(parser, attributes, "dimensions" ); |
| 2143 | }))) |
| 2144 | return failure(); |
| 2145 | |
| 2146 | OpBuilder builder(parser.getContext()); |
| 2147 | buildIdentityRegion(builder, result.location, *result.addRegion(), |
| 2148 | /*inputs=*/result.operands, |
| 2149 | /*outputs=*/{}); |
| 2150 | return success(); |
| 2151 | } |
| 2152 | |
| 2153 | void BroadcastOp::getAsmResultNames( |
| 2154 | function_ref<void(Value, StringRef)> setNameFn) { |
| 2155 | if (!getResults().empty()) |
| 2156 | setNameFn(getResults().front(), "broadcasted" ); |
| 2157 | } |
| 2158 | |
| 2159 | void BroadcastOp::print(OpAsmPrinter &p) { |
| 2160 | printCommonStructuredOpParts(p, getDpsInputs(), getDpsInits()); |
| 2161 | printDenseI64ArrayAttr(p, getDimensionsAttrName(), getDimensions()); |
| 2162 | p.printOptionalAttrDict((*this)->getAttrs(), {getDimensionsAttrName()}); |
| 2163 | } |
| 2164 | |
| 2165 | LogicalResult BroadcastOp::verify() { |
| 2166 | ArrayRef<int64_t> dimensionsRef = getDimensions(); |
| 2167 | |
| 2168 | auto inputType = getInput().getType(); |
| 2169 | auto initType = getInit().getType(); |
| 2170 | |
| 2171 | int64_t inputRank = inputType.getRank(); |
| 2172 | int64_t initRank = initType.getRank(); |
| 2173 | |
| 2174 | auto inputShape = inputType.getShape(); |
| 2175 | auto initShape = initType.getShape(); |
| 2176 | |
| 2177 | if ((size_t)inputRank + dimensionsRef.size() != (size_t)initRank) |
| 2178 | return emitOpError() << "input rank plus added dimensions does not " |
| 2179 | "match init rank. input rank: " |
| 2180 | << inputRank |
| 2181 | << ", dimensions size: " << dimensionsRef.size() |
| 2182 | << ", init rank: " << initRank; |
| 2183 | |
| 2184 | for (const auto &[idx, dim] : llvm::enumerate(dimensionsRef)) { |
| 2185 | if (dim < 0 || dim >= initRank) |
| 2186 | return emitOpError() << "dimension " << idx |
| 2187 | << " is out of range. expected range: [0, " |
| 2188 | << initRank - 1 << "], got: " << dim; |
| 2189 | } |
| 2190 | |
| 2191 | // Mapping from input dims to init dims. |
| 2192 | SmallVector<int64_t> dimMap; |
| 2193 | for (auto dim : llvm::seq<int64_t>(0, initRank)) { |
| 2194 | if (!llvm::is_contained(dimensionsRef, dim)) |
| 2195 | dimMap.push_back(dim); |
| 2196 | } |
| 2197 | |
| 2198 | for (const auto &[inputDimIdx, initDimIdx] : llvm::enumerate(dimMap)) { |
| 2199 | // This dimensions is mapped from the input. Init and input dims should |
| 2200 | // match. |
| 2201 | if (inputShape[inputDimIdx] != initShape[initDimIdx]) |
| 2202 | return emitOpError() << "input dim " << inputDimIdx |
| 2203 | << " should match init dim " << initDimIdx |
| 2204 | << ". input: " << inputShape[inputDimIdx] |
| 2205 | << ", init: " << initShape[initDimIdx]; |
| 2206 | } |
| 2207 | |
| 2208 | return success(); |
| 2209 | } |
| 2210 | |
| 2211 | SmallVector<utils::IteratorType> BroadcastOp::getIteratorTypesArray() { |
| 2212 | int64_t rank = getInit().getType().getRank(); |
| 2213 | return SmallVector<utils::IteratorType>(rank, utils::IteratorType::parallel); |
| 2214 | } |
| 2215 | |
| 2216 | ArrayAttr BroadcastOp::getIndexingMaps() { |
| 2217 | Builder builder(getContext()); |
| 2218 | int64_t rank = getInit().getType().getRank(); |
| 2219 | return builder.getAffineMapArrayAttr( |
| 2220 | {builder.getMultiDimIdentityMap(rank).dropResults(getDimensions()), |
| 2221 | builder.getMultiDimIdentityMap(rank)}); |
| 2222 | } |
| 2223 | |
| 2224 | void BroadcastOp::getEffects( |
| 2225 | SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> |
| 2226 | &effects) { |
| 2227 | getGenericEffectsImpl(effects, cast<LinalgOp>(getOperation())); |
| 2228 | } |
| 2229 | |
| 2230 | Speculation::Speculatability BroadcastOp::getSpeculatability() { |
| 2231 | return getGenericSpeculatabilityImpl(cast<LinalgOp>(getOperation())); |
| 2232 | } |
| 2233 | |
| 2234 | void BroadcastOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 2235 | MLIRContext *context) { |
| 2236 | results.add<EraseIdentityLinalgOp<BroadcastOp>>(context); |
| 2237 | } |
| 2238 | |
| 2239 | //===----------------------------------------------------------------------===// |
| 2240 | // YieldOp |
| 2241 | //===----------------------------------------------------------------------===// |
| 2242 | |
| 2243 | void linalg::YieldOp::print(OpAsmPrinter &p) { |
| 2244 | if (getNumOperands() > 0) |
| 2245 | p << ' ' << getOperands(); |
| 2246 | p.printOptionalAttrDict((*this)->getAttrs()); |
| 2247 | if (getNumOperands() > 0) |
| 2248 | p << " : " << getOperandTypes(); |
| 2249 | } |
| 2250 | |
| 2251 | ParseResult YieldOp::parse(OpAsmParser &parser, OperationState &result) { |
| 2252 | SmallVector<OpAsmParser::UnresolvedOperand, 2> opInfo; |
| 2253 | SmallVector<Type, 2> types; |
| 2254 | SMLoc loc = parser.getCurrentLocation(); |
| 2255 | return failure(parser.parseOperandList(opInfo) || |
| 2256 | parser.parseOptionalAttrDict(result.attributes) || |
| 2257 | (!opInfo.empty() && parser.parseColonTypeList(types)) || |
| 2258 | parser.resolveOperands(opInfo, types, loc, result.operands)); |
| 2259 | } |
| 2260 | |
| 2261 | // Check the operand number and types must match the element types of the |
| 2262 | // LinalgOp interface's shaped operands. |
| 2263 | static LogicalResult verifyYield(linalg::YieldOp op, LinalgOp linalgOp) { |
| 2264 | if (op.getNumOperands() != linalgOp.getNumDpsInits()) |
| 2265 | return op.emitOpError("expected number of yield values (" ) |
| 2266 | << op.getNumOperands() |
| 2267 | << ") to match the number of inits / outs operands of the enclosing " |
| 2268 | << "LinalgOp (" << linalgOp.getNumDpsInits() << ")" ; |
| 2269 | |
| 2270 | for (OpOperand &opOperand : op->getOpOperands()) { |
| 2271 | OpOperand *outputOperand = |
| 2272 | linalgOp.getDpsInitOperand(opOperand.getOperandNumber()); |
| 2273 | Type elementType = outputOperand->get().getType(); |
| 2274 | if (isa<MemRefType, RankedTensorType>(elementType)) |
| 2275 | elementType = getElementTypeOrSelf(outputOperand->get().getType()); |
| 2276 | if (opOperand.get().getType() != elementType) |
| 2277 | return op.emitOpError("type of yield operand " ) |
| 2278 | << (opOperand.getOperandNumber() + 1) << " (" |
| 2279 | << opOperand.get().getType() << ") doesn't match " |
| 2280 | << "the element type of the enclosing linalg.generic op (" |
| 2281 | << elementType << ")" ; |
| 2282 | } |
| 2283 | return success(); |
| 2284 | } |
| 2285 | |
| 2286 | LogicalResult linalg::YieldOp::verify() { |
| 2287 | auto *parentOp = (*this)->getParentOp(); |
| 2288 | if (parentOp->getNumRegions() != 1 || parentOp->getRegion(0).empty()) |
| 2289 | return emitOpError("expected single non-empty parent region" ); |
| 2290 | |
| 2291 | if (auto linalgOp = dyn_cast<LinalgOp>(parentOp)) |
| 2292 | return verifyYield(*this, linalgOp); |
| 2293 | |
| 2294 | return emitOpError("expected parent op with LinalgOp interface" ); |
| 2295 | } |
| 2296 | |
| 2297 | //===----------------------------------------------------------------------===// |
| 2298 | // IndexOp |
| 2299 | //===----------------------------------------------------------------------===// |
| 2300 | |
| 2301 | LogicalResult IndexOp::verify() { |
| 2302 | auto linalgOp = dyn_cast<LinalgOp>((*this)->getParentOp()); |
| 2303 | if (!linalgOp) |
| 2304 | return emitOpError("expected parent op with LinalgOp interface" ); |
| 2305 | if (linalgOp.getNumLoops() <= getDim()) |
| 2306 | return emitOpError("expected dim (" ) |
| 2307 | << getDim() << ") to be lower than the number of loops (" |
| 2308 | << linalgOp.getNumLoops() << ") of the enclosing LinalgOp" ; |
| 2309 | return success(); |
| 2310 | } |
| 2311 | |
| 2312 | OpFoldResult IndexOp::fold(FoldAdaptor adaptor) { |
| 2313 | auto linalgOp = dyn_cast_or_null<LinalgOp>((*this)->getParentOp()); |
| 2314 | // Bail out if `linalg.index` does not have a proper parent yet at this |
| 2315 | // point, e.g., when calling `createOrFold` during IR construction in |
| 2316 | // `genericOp::build`. |
| 2317 | if (!linalgOp) |
| 2318 | return OpFoldResult{}; |
| 2319 | |
| 2320 | // Index of unit dims is always 0. |
| 2321 | SmallVector<int64_t, 4> loopBounds = linalgOp.getStaticLoopRanges(); |
| 2322 | uint64_t dim = getDim(); |
| 2323 | assert(dim < loopBounds.size() && "Dim is out of bounds" ); |
| 2324 | if (loopBounds[dim] == 1) |
| 2325 | return IntegerAttr::get(IndexType::get(getContext()), 0); |
| 2326 | |
| 2327 | return OpFoldResult{}; |
| 2328 | } |
| 2329 | |
| 2330 | /////// Operations corresponding to library calls defined with Tablegen //////// |
| 2331 | |
| 2332 | #include "mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yamlgen.cpp.inc" |
| 2333 | |
| 2334 | #define GET_OP_CLASSES |
| 2335 | #include "mlir/Dialect/Linalg/IR/LinalgOps.cpp.inc" |
| 2336 | |
| 2337 | #define GET_OP_CLASSES |
| 2338 | #include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc" |
| 2339 | #define GET_OP_CLASSES |
| 2340 | #include "mlir/Dialect/Linalg/IR/LinalgRelayoutOps.cpp.inc" |
| 2341 | |
| 2342 | AffineMap mlir::linalg::(std::optional<AffineMap> maybeMap, |
| 2343 | unsigned rank, |
| 2344 | MLIRContext *context) { |
| 2345 | if (maybeMap) |
| 2346 | return *maybeMap; |
| 2347 | if (rank == 0) |
| 2348 | return AffineMap::get(context); |
| 2349 | return AffineMap::getMultiDimIdentityMap(numDims: rank, context); |
| 2350 | } |
| 2351 | |
| 2352 | SmallVector<AffineExpr, 4> |
| 2353 | mlir::linalg::makeAffineDimExprs(unsigned num, unsigned &startIdx, |
| 2354 | MLIRContext *context) { |
| 2355 | SmallVector<AffineExpr, 4> res; |
| 2356 | res.reserve(N: num); |
| 2357 | for (unsigned i = 0; i < num; ++i) |
| 2358 | res.push_back(Elt: getAffineDimExpr(position: startIdx++, context)); |
| 2359 | return res; |
| 2360 | } |
| 2361 | |
| 2362 | SmallVector<AffineExpr, 4> mlir::linalg::concat(ArrayRef<AffineExpr> a, |
| 2363 | ArrayRef<AffineExpr> b) { |
| 2364 | auto rangeA = llvm::make_range(x: a.begin(), y: a.end()); |
| 2365 | auto rangeB = llvm::make_range(x: b.begin(), y: b.end()); |
| 2366 | auto concatRanges = llvm::concat<const AffineExpr>(Ranges&: rangeA, Ranges&: rangeB); |
| 2367 | return llvm::to_vector<4>(Range&: concatRanges); |
| 2368 | } |
| 2369 | |
| 2370 | static LogicalResult appendMangledType(llvm::raw_string_ostream &ss, Type t) { |
| 2371 | if (auto memref = llvm::dyn_cast<MemRefType>(t)) { |
| 2372 | ss << "view" ; |
| 2373 | for (auto size : memref.getShape()) |
| 2374 | if (size < 0) |
| 2375 | ss << "sx" ; |
| 2376 | else |
| 2377 | ss << size << "x" ; |
| 2378 | if (failed(appendMangledType(ss, memref.getElementType()))) |
| 2379 | return failure(); |
| 2380 | if (auto as = memref.getMemorySpace()) { |
| 2381 | if (auto attr = llvm::dyn_cast<IntegerAttr>(as)) |
| 2382 | ss << "as" << attr.getInt(); |
| 2383 | else |
| 2384 | return failure(); |
| 2385 | } |
| 2386 | return success(); |
| 2387 | } |
| 2388 | if (auto vec = llvm::dyn_cast<VectorType>(t)) { |
| 2389 | ss << "vector" ; |
| 2390 | llvm::interleave( |
| 2391 | vec.getShape(), [&](int64_t i) { ss << i; }, [&]() { ss << "x" ; }); |
| 2392 | if (failed(appendMangledType(ss, vec.getElementType()))) |
| 2393 | return failure(); |
| 2394 | return success(); |
| 2395 | } |
| 2396 | if (t.isSignlessIntOrIndexOrFloat()) { |
| 2397 | ss << t; |
| 2398 | return success(); |
| 2399 | } |
| 2400 | return failure(); |
| 2401 | } |
| 2402 | |
| 2403 | std::string mlir::linalg::generateLibraryCallName(Operation *op) { |
| 2404 | assert(isa<LinalgOp>(op)); |
| 2405 | std::string name(op->getName().getStringRef().str()); |
| 2406 | std::string fun = "" ; |
| 2407 | for (NamedAttribute kv : op->getAttrs()) { |
| 2408 | if (UnaryFnAttr ufa = llvm::dyn_cast<UnaryFnAttr>(kv.getValue())) { |
| 2409 | fun = stringifyEnum(ufa.getValue()).str() + "_" ; |
| 2410 | } else if (BinaryFnAttr bfa = llvm::dyn_cast<BinaryFnAttr>(kv.getValue())) { |
| 2411 | fun = stringifyEnum(bfa.getValue()).str() + "_" ; |
| 2412 | } |
| 2413 | } |
| 2414 | name.reserve(res: 128); |
| 2415 | llvm::replace(Range&: name, OldValue: '.', NewValue: '_'); |
| 2416 | llvm::raw_string_ostream ss(name); |
| 2417 | ss << "_" << fun; |
| 2418 | for (Type t : op->getOperandTypes()) { |
| 2419 | if (failed(Result: appendMangledType(ss, t))) |
| 2420 | return std::string(); |
| 2421 | ss << "_" ; |
| 2422 | } |
| 2423 | name.pop_back(); |
| 2424 | return name; |
| 2425 | } |
| 2426 | |
| 2427 | //===----------------------------------------------------------------------===// |
| 2428 | // Canonicalizers and Folders. |
| 2429 | //===----------------------------------------------------------------------===// |
| 2430 | |
| 2431 | namespace { |
| 2432 | struct EraseDeadLinalgOp : public OpInterfaceRewritePattern<LinalgOp> { |
| 2433 | using OpInterfaceRewritePattern<LinalgOp>::OpInterfaceRewritePattern; |
| 2434 | |
| 2435 | LogicalResult matchAndRewrite(LinalgOp op, |
| 2436 | PatternRewriter &rewriter) const override { |
| 2437 | for (OpOperand &opOperand : op->getOpOperands()) { |
| 2438 | // Linalg "inputs" may be either tensor or memref type. |
| 2439 | // tensor<0xelt_type> is a convention that may not always mean |
| 2440 | // "0 iterations". Only erase in cases we see memref<...x0x...>. |
| 2441 | auto mt = llvm::dyn_cast<MemRefType>(opOperand.get().getType()); |
| 2442 | if (!mt) |
| 2443 | continue; |
| 2444 | if (llvm::is_contained(op.getShape(&opOperand), 0)) { |
| 2445 | rewriter.eraseOp(op); |
| 2446 | return success(); |
| 2447 | } |
| 2448 | } |
| 2449 | return failure(); |
| 2450 | } |
| 2451 | }; |
| 2452 | |
| 2453 | /// Fold LinalgOps with `tensor.cast` consumer if the `tensor.cast` has |
| 2454 | /// result that is more static than the linalg op. |
| 2455 | struct FoldTensorCastConsumerOp : public OpRewritePattern<tensor::CastOp> { |
| 2456 | using OpRewritePattern<tensor::CastOp>::OpRewritePattern; |
| 2457 | |
| 2458 | LogicalResult matchAndRewrite(tensor::CastOp castOp, |
| 2459 | PatternRewriter &rewriter) const override { |
| 2460 | if (!tensor::canFoldIntoProducerOp(castOp)) |
| 2461 | return failure(); |
| 2462 | |
| 2463 | auto linalgOp = castOp.getSource().getDefiningOp<LinalgOp>(); |
| 2464 | if (!linalgOp) |
| 2465 | return failure(); |
| 2466 | |
| 2467 | // Cast can be in conditionally reachable region, if which case folding will |
| 2468 | // generate invalid code. Only conservatively fold ops in same block for |
| 2469 | // now. |
| 2470 | if (castOp->getBlock() != linalgOp->getBlock()) |
| 2471 | return failure(); |
| 2472 | |
| 2473 | OpBuilder::InsertionGuard guard(rewriter); |
| 2474 | rewriter.setInsertionPoint(linalgOp); |
| 2475 | |
| 2476 | Location loc = linalgOp.getLoc(); |
| 2477 | OpResult resultValue = llvm::cast<OpResult>(castOp.getSource()); |
| 2478 | unsigned resultNumber = resultValue.getResultNumber(); |
| 2479 | auto resultType = |
| 2480 | llvm::cast<RankedTensorType>(castOp->getResult(0).getType()); |
| 2481 | // Replace the `outs` for the result with a `tensor.cast`. This cast is now |
| 2482 | // going from a more dynamic shape to a less dynamic shape. If the producer |
| 2483 | // for this cast, i.e. producer of the out operand, is also an operation |
| 2484 | // that folds with tensor.cast consumer (like this pattern), the cast will |
| 2485 | // continue to propagate as far up the stack as it can go. |
| 2486 | OpOperand *outOperand = linalgOp.getDpsInitOperand(resultNumber); |
| 2487 | Value newOperand = |
| 2488 | rewriter.create<tensor::CastOp>(loc, resultType, outOperand->get()); |
| 2489 | SmallVector<Value> newOperands = linalgOp.getDpsInputs(); |
| 2490 | SmallVector<Value> outputOperands(linalgOp.getDpsInits().begin(), |
| 2491 | linalgOp.getDpsInits().end()); |
| 2492 | outputOperands[resultNumber] = newOperand; |
| 2493 | newOperands.append(in_start: outputOperands.begin(), in_end: outputOperands.end()); |
| 2494 | |
| 2495 | SmallVector<Type> resultTypes(linalgOp->result_type_begin(), |
| 2496 | linalgOp->result_type_end()); |
| 2497 | resultTypes[resultNumber] = resultType; |
| 2498 | Operation *newOp = clone(rewriter, linalgOp, resultTypes, newOperands); |
| 2499 | |
| 2500 | // Create a tensor.cast operation back to the original type. |
| 2501 | Value castBack = rewriter.create<tensor::CastOp>( |
| 2502 | loc, resultValue.getType(), newOp->getResult(resultNumber)); |
| 2503 | |
| 2504 | SmallVector<Value> results(newOp->result_begin(), newOp->result_end()); |
| 2505 | results[resultNumber] = castBack; |
| 2506 | rewriter.replaceOp(linalgOp, results); |
| 2507 | rewriter.replaceOp(castOp, newOp->getResult(idx: resultNumber)); |
| 2508 | return success(); |
| 2509 | } |
| 2510 | }; |
| 2511 | |
| 2512 | /// For each of the operand in `operands` this function maps the static sizes of |
| 2513 | /// dimensions to their affine dim expressions. |
| 2514 | static void populateMap(LinalgOp linalgOp, MutableArrayRef<OpOperand> operands, |
| 2515 | llvm::DenseMap<AffineExpr, int64_t> &affineExprToSize) { |
| 2516 | for (OpOperand &opOperand : operands) { |
| 2517 | if (linalgOp.isScalar(&opOperand)) |
| 2518 | continue; |
| 2519 | Value src = opOperand.get(); |
| 2520 | auto sourceType = llvm::cast<RankedTensorType>(src.getType()); |
| 2521 | auto sourceMap = linalgOp.getMatchingIndexingMap(&opOperand); |
| 2522 | |
| 2523 | // Get the `sourceShape` of the `sourceType`. If the operand is a result of |
| 2524 | // `tensor.cast` operation and source of the cast operation has a static |
| 2525 | // shape, then assign it to the `sourceShape`. |
| 2526 | auto *parentOp = src.getDefiningOp(); |
| 2527 | ArrayRef<int64_t> sourceShape = sourceType.getShape(); |
| 2528 | if (parentOp) { |
| 2529 | if (auto castOp = dyn_cast<tensor::CastOp>(parentOp)) { |
| 2530 | Value castSource = castOp.getSource(); |
| 2531 | auto castSourceType = |
| 2532 | llvm::dyn_cast<RankedTensorType>(castSource.getType()); |
| 2533 | if (castSourceType && castSourceType.hasStaticShape()) |
| 2534 | sourceShape = castSourceType.getShape(); |
| 2535 | } |
| 2536 | } |
| 2537 | |
| 2538 | // If the source shape's dimension has a static shape, map the affine dim |
| 2539 | // expression to the known static size. |
| 2540 | for (unsigned i = 0; i < sourceShape.size(); i++) { |
| 2541 | if (sourceType.isDynamicDim(i)) |
| 2542 | continue; |
| 2543 | if (auto affineDimExpr = dyn_cast<AffineDimExpr>(sourceMap.getResult(i))) |
| 2544 | affineExprToSize.try_emplace(affineDimExpr, sourceShape[i]); |
| 2545 | } |
| 2546 | } |
| 2547 | } |
| 2548 | |
| 2549 | /// Creates new operand w.r.t 'opOperand' of `linalgOp` with static sizes |
| 2550 | /// mapped in `affineExprToSize`. New operands are created in `newOperands` and |
| 2551 | /// their result types is stored in `resultTypes`. If `opOperand` requires no |
| 2552 | /// change then `changeNeeded` is false and same operand is added in the |
| 2553 | /// `newOperands` list. |
| 2554 | static void createNewOperandWithStaticSizes( |
| 2555 | Location loc, PatternRewriter &rewriter, OpOperand *opOperand, |
| 2556 | llvm::DenseMap<AffineExpr, int64_t> &affineExprToSize, LinalgOp linalgOp, |
| 2557 | SmallVector<Value> &newOperands, SmallVector<Type> &resultTypes, |
| 2558 | bool &changeNeeded) { |
| 2559 | Value src = opOperand->get(); |
| 2560 | newOperands.push_back(Elt: src); |
| 2561 | if (linalgOp.isScalar(opOperand)) |
| 2562 | return; |
| 2563 | auto sourceType = llvm::cast<RankedTensorType>(src.getType()); |
| 2564 | Type resultType = sourceType; |
| 2565 | if (sourceType.hasStaticShape() && linalgOp.isDpsInit(opOperand)) { |
| 2566 | resultTypes.push_back(Elt: resultType); |
| 2567 | return; |
| 2568 | } |
| 2569 | ArrayRef<int64_t> sourceShape = sourceType.getShape(); |
| 2570 | AffineMap sourceMap = linalgOp.getMatchingIndexingMap(opOperand); |
| 2571 | SmallVector<int64_t> newShape; |
| 2572 | // If operand is updated with new shape, `newOperandNeeded` will be |
| 2573 | // true. |
| 2574 | bool newOperandNeeded = false; |
| 2575 | for (unsigned i = 0; i < sourceShape.size(); i++) { |
| 2576 | int64_t dimShape = sourceShape[i]; |
| 2577 | AffineExpr dimExpr = sourceMap.getResult(idx: i); |
| 2578 | if (!affineExprToSize.contains(Val: dimExpr) || !sourceType.isDynamicDim(i)) { |
| 2579 | newShape.push_back(Elt: dimShape); |
| 2580 | continue; |
| 2581 | } |
| 2582 | // Dimension has a dynamic shape and corresponding affine dim |
| 2583 | // expression is present in the map. So assign the size for the |
| 2584 | // given affine dim expression to the dimension. |
| 2585 | newShape.push_back(Elt: affineExprToSize[dimExpr]); |
| 2586 | newOperandNeeded = true; |
| 2587 | } |
| 2588 | resultType = RankedTensorType::get(newShape, sourceType.getElementType(), |
| 2589 | sourceType.getEncoding()); |
| 2590 | if (newOperandNeeded) { |
| 2591 | changeNeeded = true; |
| 2592 | // Get the new operand value given its size and element type by |
| 2593 | // casting it. |
| 2594 | Value newOperand = rewriter.create<tensor::CastOp>(loc, resultType, src); |
| 2595 | unsigned index = opOperand->getOperandNumber(); |
| 2596 | newOperands[index] = newOperand; |
| 2597 | } |
| 2598 | if (linalgOp.isDpsInit(opOperand)) |
| 2599 | resultTypes.push_back(Elt: resultType); |
| 2600 | } |
| 2601 | |
| 2602 | /// Static shapes for the operands can be inferred if any one of the operands |
| 2603 | /// have a static shape. This can be done by referring to the affine dim |
| 2604 | /// expressions for the operand. |
| 2605 | struct InferStaticShapeOfOperands : public OpInterfaceRewritePattern<LinalgOp> { |
| 2606 | using OpInterfaceRewritePattern<LinalgOp>::OpInterfaceRewritePattern; |
| 2607 | |
| 2608 | LogicalResult matchAndRewrite(LinalgOp linalgOp, |
| 2609 | PatternRewriter &rewriter) const override { |
| 2610 | if (!linalgOp.hasPureTensorSemantics()) |
| 2611 | return failure(); |
| 2612 | |
| 2613 | // Maps must be projected permutations. |
| 2614 | if (llvm::any_of(linalgOp.getIndexingMapsArray(), [](AffineMap map) { |
| 2615 | return !map.isProjectedPermutation(); |
| 2616 | })) |
| 2617 | return failure(); |
| 2618 | |
| 2619 | // Maps affine dim expressions to the static size of that dimension. |
| 2620 | llvm::DenseMap<AffineExpr, int64_t> affineExprToSize; |
| 2621 | Location loc = linalgOp.getLoc(); |
| 2622 | |
| 2623 | // For each of the affine dim expression, check if the size is known. If |
| 2624 | // known add that in the map. |
| 2625 | populateMap(linalgOp, linalgOp->getOpOperands(), affineExprToSize); |
| 2626 | |
| 2627 | SmallVector<Value> newOperands; |
| 2628 | SmallVector<Type> resultTypes; |
| 2629 | |
| 2630 | // `changeNeeded` is `false` if the operands of `linalgOp` require no |
| 2631 | // change in their types. |
| 2632 | bool changeNeeded = false; |
| 2633 | newOperands.reserve(N: linalgOp->getNumOperands()); |
| 2634 | resultTypes.reserve(N: linalgOp.getNumDpsInits()); |
| 2635 | |
| 2636 | // Iterate over all the operands and update the static sizes. |
| 2637 | for (OpOperand &opOperand : linalgOp->getOpOperands()) { |
| 2638 | createNewOperandWithStaticSizes(loc, rewriter, &opOperand, |
| 2639 | affineExprToSize, linalgOp, newOperands, |
| 2640 | resultTypes, changeNeeded); |
| 2641 | } |
| 2642 | |
| 2643 | // If the generic op has all the required static information, no |
| 2644 | // canonicalization needed. |
| 2645 | if (!changeNeeded) |
| 2646 | return failure(); |
| 2647 | |
| 2648 | // Clone op. |
| 2649 | Operation *newOp = clone(rewriter, linalgOp, resultTypes, newOperands); |
| 2650 | SmallVector<Value> replacements; |
| 2651 | replacements.reserve(N: newOp->getNumResults()); |
| 2652 | for (auto it : llvm::zip(linalgOp->getResults(), newOp->getResults())) { |
| 2653 | Value newResult = std::get<1>(it); |
| 2654 | Value oldResult = std::get<0>(it); |
| 2655 | Type newType = newResult.getType(); |
| 2656 | Type oldType = oldResult.getType(); |
| 2657 | replacements.push_back( |
| 2658 | (newType != oldType) |
| 2659 | ? rewriter.create<tensor::CastOp>(loc, oldType, newResult) |
| 2660 | : newResult); |
| 2661 | } |
| 2662 | rewriter.replaceOp(linalgOp, replacements); |
| 2663 | return success(); |
| 2664 | } |
| 2665 | }; |
| 2666 | |
| 2667 | } // namespace |
| 2668 | |
| 2669 | // All named ops canonicalizers and folders are auto-generated in the |
| 2670 | // .cpp.inc. |
| 2671 | |
| 2672 | //===----------------------------------------------------------------------===// |
| 2673 | // SoftmaxOp |
| 2674 | //===----------------------------------------------------------------------===// |
| 2675 | |
| 2676 | LogicalResult SoftmaxOp::verify() { |
| 2677 | ShapedType inputType = getInputOperandType(); |
| 2678 | ShapedType outputType = getOutputOperandType(); |
| 2679 | |
| 2680 | ArrayRef<int64_t> inputShape = inputType.getShape(); |
| 2681 | ArrayRef<int64_t> outputShape = outputType.getShape(); |
| 2682 | if (failed(verifyCompatibleShape(inputShape, outputShape))) |
| 2683 | return emitOpError("incompatible output shape" ); |
| 2684 | |
| 2685 | int64_t inputRank = getInputOperandRank(); |
| 2686 | int64_t dimension = getDimension(); |
| 2687 | if ((dimension < 0) || (dimension >= inputRank)) |
| 2688 | return emitOpError("incorrect dimension specified" ); |
| 2689 | |
| 2690 | return success(); |
| 2691 | } |
| 2692 | |
| 2693 | SmallVector<Range> SoftmaxOp::getIterationDomain(OpBuilder &builder) { |
| 2694 | int64_t operandRank = getInputOperandRank(); |
| 2695 | SmallVector<Range> loopBounds(operandRank); |
| 2696 | Location loc = getLoc(); |
| 2697 | Value zero = builder.create<arith::ConstantIndexOp>(loc, 0); |
| 2698 | Value one = builder.create<arith::ConstantIndexOp>(loc, 1); |
| 2699 | Value source = getInput(); |
| 2700 | for (auto dim : llvm::seq<int64_t>(0, operandRank)) { |
| 2701 | loopBounds[dim].offset = zero; |
| 2702 | loopBounds[dim].size = getDimValue(builder, loc, source, dim); |
| 2703 | loopBounds[dim].stride = one; |
| 2704 | } |
| 2705 | return loopBounds; |
| 2706 | } |
| 2707 | |
| 2708 | SmallVector<utils::IteratorType> SoftmaxOp::getLoopIteratorTypes() { |
| 2709 | SmallVector<utils::IteratorType> iteratorTypes(getInputOperandRank(), |
| 2710 | utils::IteratorType::parallel); |
| 2711 | iteratorTypes[getDimension()] = utils::IteratorType::reduction; |
| 2712 | return iteratorTypes; |
| 2713 | } |
| 2714 | |
| 2715 | FailureOr<TilingResult> |
| 2716 | SoftmaxOp::getTiledImplementation(OpBuilder &builder, |
| 2717 | ArrayRef<OpFoldResult> offsets, |
| 2718 | ArrayRef<OpFoldResult> sizes) { |
| 2719 | int64_t rank = getInputOperandRank(); |
| 2720 | auto oneAttr = builder.getI64IntegerAttr(1); |
| 2721 | SmallVector<OpFoldResult> strides(rank, oneAttr); |
| 2722 | SmallVector<Value> tiledOperands; |
| 2723 | Operation *inputSlice = |
| 2724 | getSlice(builder, getLoc(), getInput(), offsets, sizes, strides); |
| 2725 | if (!inputSlice) { |
| 2726 | return emitOpError("failed to compute input slice" ); |
| 2727 | } |
| 2728 | tiledOperands.emplace_back(inputSlice->getResult(0)); |
| 2729 | Operation *outputSlice = |
| 2730 | getSlice(builder, getLoc(), getOutput(), offsets, sizes, strides); |
| 2731 | if (!outputSlice) { |
| 2732 | return emitOpError("failed to compute output slice" ); |
| 2733 | } |
| 2734 | tiledOperands.emplace_back(outputSlice->getResult(0)); |
| 2735 | |
| 2736 | SmallVector<Type, 4> resultTypes; |
| 2737 | if (hasPureTensorSemantics()) |
| 2738 | resultTypes.push_back(tiledOperands[1].getType()); |
| 2739 | Operation *tiledOp = |
| 2740 | mlir::clone(builder, getOperation(), resultTypes, tiledOperands); |
| 2741 | |
| 2742 | return TilingResult{ |
| 2743 | {tiledOp}, |
| 2744 | SmallVector<Value>(tiledOp->getResults()), |
| 2745 | llvm::to_vector(ArrayRef<Operation *>{inputSlice, outputSlice})}; |
| 2746 | } |
| 2747 | |
| 2748 | LogicalResult SoftmaxOp::getResultTilePosition( |
| 2749 | OpBuilder &builder, unsigned resultNumber, ArrayRef<OpFoldResult> offsets, |
| 2750 | ArrayRef<OpFoldResult> sizes, SmallVector<OpFoldResult> &resultOffsets, |
| 2751 | SmallVector<OpFoldResult> &resultSizes) { |
| 2752 | if (resultNumber == 0) { |
| 2753 | resultOffsets.assign(offsets.begin(), offsets.end()); |
| 2754 | resultSizes.assign(sizes.begin(), sizes.end()); |
| 2755 | return success(); |
| 2756 | } |
| 2757 | return failure(); |
| 2758 | } |
| 2759 | |
| 2760 | // cast(dynamic) -> static. |
| 2761 | LogicalResult SoftmaxOp::fold(FoldAdaptor, SmallVectorImpl<OpFoldResult> &) { |
| 2762 | return memref::foldMemRefCast(*this); |
| 2763 | } |
| 2764 | |
| 2765 | LogicalResult |
| 2766 | SoftmaxOp::reifyResultShapes(OpBuilder &b, |
| 2767 | ReifiedRankedShapedTypeDims &reifiedReturnShapes) { |
| 2768 | SmallVector<OpFoldResult> shapes; |
| 2769 | Location loc = getOperation()->getLoc(); |
| 2770 | IRRewriter rewriter(b); |
| 2771 | auto inputShapedType = llvm::cast<ShapedType>(getInputOperandType()); |
| 2772 | auto outputShapedType = llvm::cast<ShapedType>(getOutputOperandType()); |
| 2773 | for (int64_t dim : llvm::seq<int64_t>(0, getOutputOperandRank())) { |
| 2774 | if (!outputShapedType.isDynamicDim(dim)) { |
| 2775 | // Static dim: Return IntegerAttr. |
| 2776 | shapes.push_back(b.getIndexAttr(inputShapedType.getDimSize(dim))); |
| 2777 | } else { |
| 2778 | // Dynamic dim: Return Value. |
| 2779 | OpFoldResult ofr = createOrFoldDimOp(b, loc, getInput(), dim); |
| 2780 | shapes.push_back(getValueOrCreateConstantIndexOp(b, loc, ofr)); |
| 2781 | } |
| 2782 | } |
| 2783 | reifiedReturnShapes.emplace_back(std::move(shapes)); |
| 2784 | return success(); |
| 2785 | } |
| 2786 | |
| 2787 | void SoftmaxOp::getEffects( |
| 2788 | SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> |
| 2789 | &effects) { |
| 2790 | for (auto [index, operand] : llvm::enumerate(getDpsInputs())) { |
| 2791 | if (!llvm::isa<MemRefType>(operand.getType())) |
| 2792 | continue; |
| 2793 | effects.emplace_back(MemoryEffects::Read::get(), |
| 2794 | &getOperation()->getOpOperand(index), /*stage=*/0, |
| 2795 | /*effectOnFullRegion=*/true, |
| 2796 | SideEffects::DefaultResource::get()); |
| 2797 | } |
| 2798 | |
| 2799 | for (OpOperand &operand : getDpsInitsMutable()) { |
| 2800 | if (!llvm::isa<MemRefType>(operand.get().getType())) |
| 2801 | continue; |
| 2802 | effects.emplace_back(MemoryEffects::Read::get(), &operand, /*stage=*/0, |
| 2803 | /*effectOnFullRegion=*/true, |
| 2804 | SideEffects::DefaultResource::get()); |
| 2805 | effects.emplace_back(MemoryEffects::Write::get(), &operand, /*stage=*/0, |
| 2806 | /*effectOnFullRegion=*/true, |
| 2807 | SideEffects::DefaultResource::get()); |
| 2808 | } |
| 2809 | } |
| 2810 | |
| 2811 | // Helper functions for softmax decomposition. |
| 2812 | // @{ |
| 2813 | |
| 2814 | // Helper function to produce the iterator types (reduction or parallel) and |
| 2815 | // affine maps for the iterators used in the decomposition of softmax. |
| 2816 | // This method creates: |
| 2817 | // If allParallel == true: |
| 2818 | // - iterator type: {parallel, ..., parallel} |
| 2819 | // - affine maps: |
| 2820 | // -- identity with inputRank dimensions. |
| 2821 | // -- (d0, ..., dN) -> (d0, ..., d_dim-1, d_dim+1, ..., dN), |
| 2822 | // where N == inputRank. |
| 2823 | // |
| 2824 | // If allParallel == false: |
| 2825 | // - iterator type at dim(i) == parallel for i != \p dim and |
| 2826 | // dim(dim) == reduction. |
| 2827 | // - affine map: |
| 2828 | // -- identity with inputRank dimensions. |
| 2829 | // -- (d0, ..., dN) -> (d0, ..., d_dim-1, d_dim+1, ..., dN), |
| 2830 | // where N == inputRank. |
| 2831 | static std::tuple<SmallVector<utils::IteratorType>, SmallVector<AffineMap>> |
| 2832 | computeIteratorTypesAndIndexingMaps(OpBuilder &builder, int64_t inputRank, |
| 2833 | int64_t dim, bool allParallel = false) { |
| 2834 | SmallVector<utils::IteratorType> iteratorTypes(inputRank, |
| 2835 | utils::IteratorType::parallel); |
| 2836 | if (!allParallel) |
| 2837 | iteratorTypes[dim] = utils::IteratorType::reduction; |
| 2838 | MLIRContext *ctxt = builder.getContext(); |
| 2839 | auto identityMap = AffineMap::getMultiDimIdentityMap(inputRank, ctxt); |
| 2840 | SmallVector<AffineExpr, 2> affineExprs; |
| 2841 | for (int i = 0; i < inputRank; i++) { |
| 2842 | if (i != dim) |
| 2843 | affineExprs.push_back(mlir::getAffineDimExpr(i, ctxt)); |
| 2844 | } |
| 2845 | auto reductionMap = |
| 2846 | AffineMap::get(inputRank, /*symbols=*/0, affineExprs, ctxt); |
| 2847 | SmallVector<AffineMap> indexingMaps{identityMap, reductionMap}; |
| 2848 | return std::make_tuple(iteratorTypes, indexingMaps); |
| 2849 | } |
| 2850 | |
| 2851 | // Helper function to produce a linalg.generic that computes a reduction on |
| 2852 | // dimension \p dim with the operation type \p T. |
| 2853 | template <typename T> |
| 2854 | static Value reduce(OpBuilder &builder, Location loc, Value input, Value output, |
| 2855 | int64_t dim) { |
| 2856 | auto inputType = cast<ShapedType>(input.getType()); |
| 2857 | ArrayRef<int64_t> inputShape = inputType.getShape(); |
| 2858 | int64_t inputRank = inputShape.size(); |
| 2859 | auto [iteratorTypes, indexingMaps] = |
| 2860 | computeIteratorTypesAndIndexingMaps(builder, inputRank, dim); |
| 2861 | assert(indexingMaps.size() == 2 && |
| 2862 | "We should have two maps: 1 for the input, 1 for the output" ); |
| 2863 | assert(indexingMaps[0].isIdentity() && "input map should be identity" ); |
| 2864 | |
| 2865 | auto genericOp = builder.create<linalg::GenericOp>( |
| 2866 | loc, output.getType(), input, output, indexingMaps, iteratorTypes, |
| 2867 | [&](OpBuilder &b, Location loc, ValueRange args) { |
| 2868 | Value result = b.create<T>(loc, args[0], args[1]); |
| 2869 | b.create<linalg::YieldOp>(loc, result); |
| 2870 | }); |
| 2871 | return genericOp.getResult(0); |
| 2872 | } |
| 2873 | |
| 2874 | /// Produce a linalg generic that computes the second step of the softmax |
| 2875 | /// decomposition: res = exp(input - max), where \p max is the max of \p input |
| 2876 | /// on dimension \p dim. |
| 2877 | static Value buildSubAndExpOp(OpBuilder &builder, Location loc, Value input, |
| 2878 | Value max, Value output, int64_t dim) { |
| 2879 | auto inputType = cast<ShapedType>(input.getType()); |
| 2880 | ArrayRef<int64_t> inputShape = inputType.getShape(); |
| 2881 | int64_t inputRank = inputShape.size(); |
| 2882 | auto [iteratorTypes, indexingMaps] = computeIteratorTypesAndIndexingMaps( |
| 2883 | builder, inputRank, dim, /*allParallel=*/true); |
| 2884 | assert(indexingMaps.size() == 2 && "We should have one map for each input" ); |
| 2885 | assert(indexingMaps[0].isIdentity() && "input map should be identity" ); |
| 2886 | // Add the affine map for the output argument. |
| 2887 | indexingMaps.push_back(indexingMaps[0]); |
| 2888 | auto genericOp = builder.create<linalg::GenericOp>( |
| 2889 | loc, input.getType(), ValueRange{input, max}, output, indexingMaps, |
| 2890 | iteratorTypes, [&](OpBuilder &b, Location loc, ValueRange args) { |
| 2891 | Value diff = b.create<arith::SubFOp>(loc, args[0], args[1]); |
| 2892 | Value result = b.create<math::ExpOp>(loc, diff); |
| 2893 | b.create<linalg::YieldOp>(loc, result); |
| 2894 | }); |
| 2895 | return genericOp.getResult(0); |
| 2896 | } |
| 2897 | |
| 2898 | /// Produce a linalg generic that computes the final step of the softmax |
| 2899 | /// decomposition. |
| 2900 | /// \returns linalg.generic ins(\p numerator, \p denominator) outs(\p output) { |
| 2901 | /// yield n / d |
| 2902 | /// } |
| 2903 | static Value buildDivOp(OpBuilder &builder, Location loc, Value numerator, |
| 2904 | Value denominator, Value output, int64_t dim) { |
| 2905 | auto inputType = cast<ShapedType>(numerator.getType()); |
| 2906 | ArrayRef<int64_t> inputShape = inputType.getShape(); |
| 2907 | int64_t inputRank = inputShape.size(); |
| 2908 | auto [iteratorTypes, indexingMaps] = computeIteratorTypesAndIndexingMaps( |
| 2909 | builder, inputRank, dim, /*allParallel=*/true); |
| 2910 | assert(indexingMaps.size() == 2 && |
| 2911 | "We should have one map for each input (2)" ); |
| 2912 | assert(indexingMaps[0].isIdentity() && "Numerator map should be identity" ); |
| 2913 | // Add the affine map for the output tensor. |
| 2914 | indexingMaps.push_back(indexingMaps[0]); |
| 2915 | auto genericOp = builder.create<linalg::GenericOp>( |
| 2916 | loc, numerator.getType(), ValueRange{numerator, denominator}, output, |
| 2917 | indexingMaps, iteratorTypes, |
| 2918 | [&](OpBuilder &b, Location loc, ValueRange args) { |
| 2919 | Value result = b.create<arith::DivFOp>(loc, args[0], args[1]); |
| 2920 | b.create<linalg::YieldOp>(loc, result); |
| 2921 | }); |
| 2922 | return genericOp.getResult(0); |
| 2923 | } |
| 2924 | // @} End helper functions for softmax decomposition. |
| 2925 | |
| 2926 | /// Given an N-dimensional tensor x, this method converts |
| 2927 | /// softmax(x) to the following sequence of operations: |
| 2928 | /// |
| 2929 | /// 1. Compute the max of x along dimension d. This results |
| 2930 | /// in a N-1 dimensional tensor m. |
| 2931 | /// m = max(x, dim = d) |
| 2932 | /// |
| 2933 | /// 2. Subtract a broadcasted m from x and exponentiate. This results in |
| 2934 | /// a N dimensional tensor z. |
| 2935 | /// z = exp(x - m) |
| 2936 | /// |
| 2937 | /// 3. Compute the sum of z along dimension d. This results in |
| 2938 | /// a N-1 dimensional tensor l. |
| 2939 | /// l = sum(z, dim = d) |
| 2940 | /// |
| 2941 | /// 4. Divide z and l. This gives the N-dimensional softmax. |
| 2942 | /// softmax = z / l |
| 2943 | /// |
| 2944 | FailureOr<SmallVector<Value>> SoftmaxOp::decomposeOperation(OpBuilder &b) { |
| 2945 | OpBuilder::InsertionGuard guard(b); |
| 2946 | b.setInsertionPoint(*this); |
| 2947 | Location loc = getLoc(); |
| 2948 | Value input = getInput(); |
| 2949 | ShapedType inputType = getInputOperandType(); |
| 2950 | Type elementType = inputType.getElementType(); |
| 2951 | int64_t reductionDim = getDimension(); |
| 2952 | SmallVector<OpFoldResult> dims = tensor::getMixedSizes(b, loc, input); |
| 2953 | Value output = getOutput(); |
| 2954 | dims.erase(dims.begin() + reductionDim); |
| 2955 | // Step 1: Compute max along dim. |
| 2956 | Value outputReduce = b.create<tensor::EmptyOp>(loc, dims, elementType); |
| 2957 | Value neutralForMaxF = arith::getIdentityValue(arith::AtomicRMWKind::maxnumf, |
| 2958 | elementType, b, loc, |
| 2959 | /*useOnlyFiniteValue=*/true); |
| 2960 | Value neutralForMaxFInit = |
| 2961 | b.create<linalg::FillOp>(loc, Value{neutralForMaxF}, outputReduce) |
| 2962 | .result(); |
| 2963 | Value max = |
| 2964 | reduce<arith::MaxNumFOp>(b, loc, input, neutralForMaxFInit, reductionDim); |
| 2965 | |
| 2966 | // Step 2: Subtract max from input and exponentiate. |
| 2967 | Value numerator = buildSubAndExpOp(b, loc, input, max, output, reductionDim); |
| 2968 | |
| 2969 | // Step 3: Compute sum along dim. |
| 2970 | Value zero = arith::getIdentityValue(arith::AtomicRMWKind::addf, elementType, |
| 2971 | b, loc, /*useOnlyFiniteValue=*/true); |
| 2972 | Value zeroInit = |
| 2973 | b.create<linalg::FillOp>(loc, Value{zero}, outputReduce).result(); |
| 2974 | Value denominator = |
| 2975 | reduce<arith::AddFOp>(b, loc, numerator, zeroInit, reductionDim); |
| 2976 | |
| 2977 | // Step 4: Compute softmax. |
| 2978 | Value result = |
| 2979 | buildDivOp(b, loc, numerator, denominator, output, reductionDim); |
| 2980 | return SmallVector<Value>{result}; |
| 2981 | } |
| 2982 | |
| 2983 | //===----------------------------------------------------------------------===// |
| 2984 | // WinogradFilterTransformOp |
| 2985 | //===----------------------------------------------------------------------===// |
| 2986 | |
| 2987 | LogicalResult WinogradFilterTransformOp::verify() { |
| 2988 | auto filterType = cast<ShapedType>(getFilter().getType()); |
| 2989 | ArrayRef<int64_t> filterShape = filterType.getShape(); |
| 2990 | int64_t filterH = filterShape[getFilterHDim()]; |
| 2991 | int64_t filterW = filterShape[getFilterWDim()]; |
| 2992 | int64_t r = getR(); |
| 2993 | int64_t m = getM(); |
| 2994 | |
| 2995 | if (filterH != r && filterH != 1) |
| 2996 | return emitOpError("expect filter height either equals to r or 1" ); |
| 2997 | if (filterW != r && filterW != 1) |
| 2998 | return emitOpError("expect filter width either equals to r or 1" ); |
| 2999 | if (filterH == 1 && filterW == 1) |
| 3000 | return emitOpError("expect either filter height or width equals to r" ); |
| 3001 | |
| 3002 | SmallVector<int64_t> expectedOutputShape; |
| 3003 | expectedOutputShape.push_back(filterH == r ? m + r - 1 : 1); |
| 3004 | expectedOutputShape.push_back(filterW == r ? m + r - 1 : 1); |
| 3005 | expectedOutputShape.push_back(filterShape[getFilterCDim()]); |
| 3006 | expectedOutputShape.push_back(filterShape[getFilterFDim()]); |
| 3007 | |
| 3008 | auto outputType = cast<ShapedType>(getOutput().getType()); |
| 3009 | ArrayRef<int64_t> outputShape = outputType.getShape(); |
| 3010 | if (failed(verifyCompatibleShape(expectedOutputShape, outputShape))) { |
| 3011 | return emitOpError("the output shape is not expected" ); |
| 3012 | } |
| 3013 | return success(); |
| 3014 | } |
| 3015 | |
| 3016 | SmallVector<Range> |
| 3017 | WinogradFilterTransformOp::getIterationDomain(OpBuilder &builder) { |
| 3018 | Location loc = getLoc(); |
| 3019 | IntegerAttr zeroAttr = builder.getIndexAttr(0); |
| 3020 | IntegerAttr oneAttr = builder.getIndexAttr(1); |
| 3021 | Value filter = getFilter(); |
| 3022 | int64_t filterRank = getFilterOperandRank(); |
| 3023 | SmallVector<Range> loopBounds(filterRank); |
| 3024 | for (unsigned dim = 0; dim < filterRank; ++dim) { |
| 3025 | loopBounds[dim].offset = zeroAttr; |
| 3026 | loopBounds[dim].size = getDimValue(builder, loc, filter, dim); |
| 3027 | loopBounds[dim].stride = oneAttr; |
| 3028 | } |
| 3029 | return loopBounds; |
| 3030 | } |
| 3031 | |
| 3032 | SmallVector<utils::IteratorType> |
| 3033 | WinogradFilterTransformOp::getLoopIteratorTypes() { |
| 3034 | int64_t filterRank = getFilterOperandRank(); |
| 3035 | SmallVector<utils::IteratorType> iteratorTypes(filterRank, |
| 3036 | utils::IteratorType::parallel); |
| 3037 | return iteratorTypes; |
| 3038 | } |
| 3039 | |
| 3040 | LogicalResult WinogradFilterTransformOp::getResultTilePosition( |
| 3041 | OpBuilder &builder, unsigned resultNumber, ArrayRef<OpFoldResult> offsets, |
| 3042 | ArrayRef<OpFoldResult> sizes, SmallVector<OpFoldResult> &resultOffsets, |
| 3043 | SmallVector<OpFoldResult> &resultSizes) { |
| 3044 | IntegerAttr zeroAttr = builder.getI64IntegerAttr(0); |
| 3045 | ShapedType filterType = getFilterOperandType(); |
| 3046 | ArrayRef<int64_t> filterShape = filterType.getShape(); |
| 3047 | int64_t filterH = filterShape[getFilterHDim()]; |
| 3048 | int64_t filterW = filterShape[getFilterWDim()]; |
| 3049 | int64_t m = getM(); |
| 3050 | int64_t r = getR(); |
| 3051 | int64_t alpha = m + r - 1; |
| 3052 | int64_t alphaH = filterH != 1 ? alpha : 1; |
| 3053 | int64_t alphaW = filterW != 1 ? alpha : 1; |
| 3054 | IntegerAttr alphaHAttr = builder.getI64IntegerAttr(alphaH); |
| 3055 | IntegerAttr alphaWAttr = builder.getI64IntegerAttr(alphaW); |
| 3056 | |
| 3057 | resultOffsets.append( |
| 3058 | {zeroAttr, zeroAttr, offsets[getFilterCDim()], offsets[getFilterFDim()]}); |
| 3059 | resultSizes.append( |
| 3060 | {alphaHAttr, alphaWAttr, sizes[getFilterCDim()], sizes[getFilterFDim()]}); |
| 3061 | |
| 3062 | return success(); |
| 3063 | } |
| 3064 | |
| 3065 | /// Implement tiling for winograd_filter_transform |
| 3066 | /// The input of winograd_filter_transform is (F, KH, KW, C). |
| 3067 | /// The output of winograd_filter_transform is (alphaH, alphaW, C, F) |
| 3068 | /// Users can specify the tile sizes of F and C. |
| 3069 | /// `offsets` are the values for the offsets of F, KH, KW, C for one tile. |
| 3070 | /// `sizes` are the values for the sizes of F, KH, KW, C for one tile. |
| 3071 | FailureOr<TilingResult> WinogradFilterTransformOp::getTiledImplementation( |
| 3072 | OpBuilder &builder, ArrayRef<OpFoldResult> offsets, |
| 3073 | ArrayRef<OpFoldResult> sizes) { |
| 3074 | IntegerAttr oneAttr = builder.getI64IntegerAttr(1); |
| 3075 | IntegerAttr zeroAttr = builder.getI64IntegerAttr(0); |
| 3076 | ShapedType filterType = getFilterOperandType(); |
| 3077 | ArrayRef<int64_t> filterShape = filterType.getShape(); |
| 3078 | int64_t filterH = filterShape[getFilterHDim()]; |
| 3079 | int64_t filterW = filterShape[getFilterWDim()]; |
| 3080 | IntegerAttr filterHAttr = builder.getI64IntegerAttr(filterH); |
| 3081 | IntegerAttr filterWAttr = builder.getI64IntegerAttr(filterW); |
| 3082 | SmallVector<Value> tiledOperands; |
| 3083 | SmallVector<OpFoldResult> sliceOffsets, sliceSizes; |
| 3084 | |
| 3085 | sliceOffsets.append( |
| 3086 | {offsets[getFilterFDim()], zeroAttr, zeroAttr, offsets[getFilterCDim()]}); |
| 3087 | sliceSizes.append({sizes[getFilterFDim()], filterHAttr, filterWAttr, |
| 3088 | sizes[getFilterCDim()]}); |
| 3089 | int64_t filterRank = getFilterOperandRank(); |
| 3090 | SmallVector<OpFoldResult> filterStrides(filterRank, oneAttr); |
| 3091 | Location loc = getLoc(); |
| 3092 | auto filterSlice = builder.create<tensor::ExtractSliceOp>( |
| 3093 | loc, getFilter(), sliceOffsets, sliceSizes, filterStrides); |
| 3094 | tiledOperands.emplace_back(filterSlice); |
| 3095 | |
| 3096 | SmallVector<OpFoldResult> resultOffsets, resultSizes; |
| 3097 | if (failed(getResultTilePosition(builder, 1, offsets, sizes, resultOffsets, |
| 3098 | resultSizes))) |
| 3099 | return failure(); |
| 3100 | |
| 3101 | int64_t outputRank = getOutputOperandRank(); |
| 3102 | SmallVector<OpFoldResult> outputStrides(outputRank, oneAttr); |
| 3103 | auto outputSlice = builder.create<tensor::ExtractSliceOp>( |
| 3104 | loc, getOutput(), resultOffsets, resultSizes, outputStrides); |
| 3105 | tiledOperands.emplace_back(outputSlice); |
| 3106 | |
| 3107 | SmallVector<Type> resultTypes; |
| 3108 | resultTypes.push_back(tiledOperands[1].getType()); |
| 3109 | Operation *tiledOp = |
| 3110 | mlir::clone(builder, getOperation(), resultTypes, tiledOperands); |
| 3111 | |
| 3112 | return TilingResult{ |
| 3113 | {tiledOp}, |
| 3114 | SmallVector<Value>(tiledOp->getResults()), |
| 3115 | llvm::to_vector(ArrayRef<Operation *>{filterSlice, outputSlice})}; |
| 3116 | } |
| 3117 | |
| 3118 | //===----------------------------------------------------------------------===// |
| 3119 | // WinogradInputTransformOp |
| 3120 | //===----------------------------------------------------------------------===// |
| 3121 | |
| 3122 | LogicalResult WinogradInputTransformOp::verify() { |
| 3123 | auto inputType = cast<ShapedType>(getInput().getType()); |
| 3124 | ArrayRef<int64_t> inputShape = inputType.getShape(); |
| 3125 | int64_t inputH = inputShape[getInputHDim()]; |
| 3126 | int64_t inputW = inputShape[getInputWDim()]; |
| 3127 | int m = getM(); |
| 3128 | int r = getR(); |
| 3129 | int64_t tileSize = m + r - 1; |
| 3130 | |
| 3131 | auto outputType = cast<ShapedType>(getOutput().getType()); |
| 3132 | ArrayRef<int64_t> outputShape = outputType.getShape(); |
| 3133 | bool leftTransform = outputShape[getOutputAlphaHDim()] != 1; |
| 3134 | bool rightTransform = outputShape[getOutputAlphaWDim()] != 1; |
| 3135 | |
| 3136 | SmallVector<int64_t> expectedOutputShape(6, inputH); |
| 3137 | if (ShapedType::isDynamic(inputH)) { |
| 3138 | expectedOutputShape[getOutputAlphaHDim()] = tileSize; |
| 3139 | expectedOutputShape[getOutputTileHDim()] = ShapedType::kDynamic; |
| 3140 | } else { |
| 3141 | expectedOutputShape[getOutputAlphaHDim()] = leftTransform ? tileSize : 1; |
| 3142 | expectedOutputShape[getOutputTileHDim()] = |
| 3143 | leftTransform ? (inputH - (r - 1)) / m : inputH; |
| 3144 | } |
| 3145 | if (ShapedType::isDynamic(inputW)) { |
| 3146 | expectedOutputShape[getOutputAlphaWDim()] = tileSize; |
| 3147 | expectedOutputShape[getOutputTileWDim()] = ShapedType::kDynamic; |
| 3148 | } else { |
| 3149 | expectedOutputShape[getOutputAlphaWDim()] = rightTransform ? tileSize : 1; |
| 3150 | expectedOutputShape[getOutputTileWDim()] = |
| 3151 | rightTransform ? (inputW - (r - 1)) / m : inputW; |
| 3152 | } |
| 3153 | expectedOutputShape[getOutputNDim()] = inputShape[getInputNDim()]; |
| 3154 | expectedOutputShape[getOutputCDim()] = inputShape[getInputCDim()]; |
| 3155 | |
| 3156 | if (failed(verifyCompatibleShape(expectedOutputShape, outputShape))) { |
| 3157 | return emitOpError("the output shape is not expected" ); |
| 3158 | } |
| 3159 | return success(); |
| 3160 | } |
| 3161 | |
| 3162 | SmallVector<Range> |
| 3163 | WinogradInputTransformOp::getIterationDomain(OpBuilder &builder) { |
| 3164 | Location loc = getLoc(); |
| 3165 | IntegerAttr zeroAttr = builder.getIndexAttr(0); |
| 3166 | IntegerAttr oneAttr = builder.getIndexAttr(1); |
| 3167 | Value output = getOutput(); |
| 3168 | int64_t outputRank = getOutputOperandRank(); |
| 3169 | SmallVector<Range> loopBounds(outputRank); |
| 3170 | for (unsigned dim = 0; dim < outputRank; ++dim) { |
| 3171 | loopBounds[dim].offset = zeroAttr; |
| 3172 | // alphaH, alphaW, tileH, tileW, N, C |
| 3173 | loopBounds[dim].size = getDimValue(builder, loc, output, dim); |
| 3174 | loopBounds[dim].stride = oneAttr; |
| 3175 | } |
| 3176 | return loopBounds; |
| 3177 | } |
| 3178 | |
| 3179 | SmallVector<utils::IteratorType> |
| 3180 | WinogradInputTransformOp::getLoopIteratorTypes() { |
| 3181 | int64_t outputRank = getOutputOperandRank(); |
| 3182 | SmallVector<utils::IteratorType> iteratorTypes(outputRank, |
| 3183 | utils::IteratorType::parallel); |
| 3184 | return iteratorTypes; |
| 3185 | } |
| 3186 | |
| 3187 | LogicalResult WinogradInputTransformOp::getResultTilePosition( |
| 3188 | OpBuilder &builder, unsigned resultNumber, ArrayRef<OpFoldResult> offsets, |
| 3189 | ArrayRef<OpFoldResult> sizes, SmallVector<OpFoldResult> &resultOffsets, |
| 3190 | SmallVector<OpFoldResult> &resultSizes) { |
| 3191 | IntegerAttr zeroAttr = builder.getI64IntegerAttr(0); |
| 3192 | ShapedType outputType = getOutputOperandType(); |
| 3193 | ArrayRef<int64_t> outputShape = outputType.getShape(); |
| 3194 | int64_t outputAlphaH = outputShape[getOutputAlphaHDim()]; |
| 3195 | int64_t outputAlphaW = outputShape[getOutputAlphaWDim()]; |
| 3196 | |
| 3197 | int64_t m = getM(); |
| 3198 | int64_t r = getR(); |
| 3199 | int64_t alpha = m + r - 1; |
| 3200 | int64_t alphaH = outputAlphaH != 1 ? alpha : 1; |
| 3201 | int64_t alphaW = outputAlphaW != 1 ? alpha : 1; |
| 3202 | |
| 3203 | IntegerAttr alphaHAttr = builder.getI64IntegerAttr(alphaH); |
| 3204 | IntegerAttr alphaWAttr = builder.getI64IntegerAttr(alphaW); |
| 3205 | |
| 3206 | resultOffsets.append({zeroAttr, zeroAttr, offsets[getOutputTileHDim()], |
| 3207 | offsets[getOutputTileWDim()], offsets[getOutputNDim()], |
| 3208 | offsets[getOutputCDim()]}); |
| 3209 | resultSizes.append({alphaHAttr, alphaWAttr, sizes[getOutputTileHDim()], |
| 3210 | sizes[getOutputTileWDim()], sizes[getOutputNDim()], |
| 3211 | sizes[getOutputCDim()]}); |
| 3212 | |
| 3213 | return success(); |
| 3214 | } |
| 3215 | |
| 3216 | /// Implement tiling for winograd_input_transform |
| 3217 | /// The input of winograd_input_transform is (N, H, W, C). |
| 3218 | /// The output of winograd_input_transform is (alphaH, alphaW, tileH, tileW, N, |
| 3219 | /// C) Users can specify the tile sizes of tileH, tileW, N, and C. `offsets` are |
| 3220 | /// the values for the offsets of tileH, tileW, N, C for one tile. `sizes` are |
| 3221 | /// the values for the sizes of tileH, tileW, N, C for one tile. |
| 3222 | FailureOr<TilingResult> |
| 3223 | WinogradInputTransformOp::getTiledImplementation(OpBuilder &builder, |
| 3224 | ArrayRef<OpFoldResult> offsets, |
| 3225 | ArrayRef<OpFoldResult> sizes) { |
| 3226 | IntegerAttr oneAttr = builder.getI64IntegerAttr(1); |
| 3227 | int64_t m = getM(); |
| 3228 | int64_t r = getR(); |
| 3229 | |
| 3230 | ShapedType outputType = getOutputOperandType(); |
| 3231 | ArrayRef<int64_t> outputShape = outputType.getShape(); |
| 3232 | int64_t alphaH = outputShape[getOutputAlphaHDim()]; |
| 3233 | int64_t alphaW = outputShape[getOutputAlphaWDim()]; |
| 3234 | |
| 3235 | Location loc = getLoc(); |
| 3236 | MLIRContext *context = builder.getContext(); |
| 3237 | auto identityAffineMap = |
| 3238 | AffineMap::get(1, 0, {builder.getAffineDimExpr(0)}, context); |
| 3239 | auto offsetAffineMap = |
| 3240 | AffineMap::get(1, 0, {builder.getAffineDimExpr(0) * m}, context); |
| 3241 | Value mappedOffsetH = affine::makeComposedAffineApply( |
| 3242 | builder, loc, (alphaH != 1 ? offsetAffineMap : identityAffineMap), |
| 3243 | offsets[getOutputTileHDim()]); |
| 3244 | Value mappedOffsetW = affine::makeComposedAffineApply( |
| 3245 | builder, loc, (alphaW != 1 ? offsetAffineMap : identityAffineMap), |
| 3246 | offsets[getOutputTileWDim()]); |
| 3247 | auto sizeAffineMap = AffineMap::get( |
| 3248 | 1, 0, {builder.getAffineDimExpr(0) * m + (r - 1)}, context); |
| 3249 | Value mappedSizeH = affine::makeComposedAffineApply( |
| 3250 | builder, loc, sizeAffineMap, sizes[getOutputTileHDim()]); |
| 3251 | Value mappedSizeW = affine::makeComposedAffineApply( |
| 3252 | builder, loc, sizeAffineMap, sizes[getOutputTileWDim()]); |
| 3253 | |
| 3254 | SmallVector<Value> tiledOperands; |
| 3255 | SmallVector<OpFoldResult> sliceOffsets, sliceSizes; |
| 3256 | |
| 3257 | OpFoldResult offsetH = OpFoldResult(mappedOffsetH); |
| 3258 | OpFoldResult offsetW = OpFoldResult(mappedOffsetW); |
| 3259 | sliceOffsets.append( |
| 3260 | {offsets[getOutputNDim()], offsetH, offsetW, offsets[getOutputCDim()]}); |
| 3261 | OpFoldResult sizeH = |
| 3262 | alphaH != 1 ? OpFoldResult(mappedSizeH) : OpFoldResult(oneAttr); |
| 3263 | OpFoldResult sizeW = |
| 3264 | alphaW != 1 ? OpFoldResult(mappedSizeW) : OpFoldResult(oneAttr); |
| 3265 | sliceSizes.append( |
| 3266 | {sizes[getOutputNDim()], sizeH, sizeW, sizes[getOutputCDim()]}); |
| 3267 | int64_t inputRank = getInputOperandRank(); |
| 3268 | SmallVector<OpFoldResult> inputStrides(inputRank, oneAttr); |
| 3269 | auto inputSlice = builder.create<tensor::ExtractSliceOp>( |
| 3270 | loc, getInput(), sliceOffsets, sliceSizes, inputStrides); |
| 3271 | tiledOperands.emplace_back(inputSlice); |
| 3272 | |
| 3273 | SmallVector<OpFoldResult> resultOffsets, resultSizes; |
| 3274 | if (failed(getResultTilePosition(builder, 1, offsets, sizes, resultOffsets, |
| 3275 | resultSizes))) |
| 3276 | return failure(); |
| 3277 | |
| 3278 | int64_t outputRank = getOutputOperandRank(); |
| 3279 | SmallVector<OpFoldResult> outputStrides(outputRank, oneAttr); |
| 3280 | auto outputSlice = builder.create<tensor::ExtractSliceOp>( |
| 3281 | loc, getOutput(), resultOffsets, resultSizes, outputStrides); |
| 3282 | tiledOperands.emplace_back(outputSlice); |
| 3283 | |
| 3284 | SmallVector<Type> resultTypes; |
| 3285 | resultTypes.push_back(tiledOperands[1].getType()); |
| 3286 | Operation *tiledOp = |
| 3287 | mlir::clone(builder, getOperation(), resultTypes, tiledOperands); |
| 3288 | |
| 3289 | return TilingResult{ |
| 3290 | {tiledOp}, |
| 3291 | SmallVector<Value>(tiledOp->getResults()), |
| 3292 | llvm::to_vector(ArrayRef<Operation *>{inputSlice, outputSlice})}; |
| 3293 | } |
| 3294 | |
| 3295 | //===----------------------------------------------------------------------===// |
| 3296 | // WinogradOutputTransformOp |
| 3297 | //===----------------------------------------------------------------------===// |
| 3298 | |
| 3299 | LogicalResult WinogradOutputTransformOp::verify() { |
| 3300 | auto valueType = cast<ShapedType>(getValue().getType()); |
| 3301 | ArrayRef<int64_t> valueShape = valueType.getShape(); |
| 3302 | int64_t valueH = valueShape[getValueAlphaHDim()]; |
| 3303 | int64_t valueW = valueShape[getValueAlphaWDim()]; |
| 3304 | int64_t valueTileH = valueShape[getValueTileHDim()]; |
| 3305 | int64_t valueTileW = valueShape[getValueTileWDim()]; |
| 3306 | int m = getM(); |
| 3307 | int r = getR(); |
| 3308 | bool leftTransform = valueH != 1; |
| 3309 | bool rightTransform = valueW != 1; |
| 3310 | |
| 3311 | int64_t outputRank = getOutputOperandRank(); |
| 3312 | SmallVector<int64_t> expectedOutputShape(outputRank, valueH); |
| 3313 | if (ShapedType::isDynamic(valueH) || ShapedType::isDynamic(valueTileH)) { |
| 3314 | expectedOutputShape[getOutputHDim()] = ShapedType::kDynamic; |
| 3315 | } else { |
| 3316 | if (valueH != (leftTransform ? m + r - 1 : 1)) |
| 3317 | return emitOpError("expect input height equals to input tile size" ); |
| 3318 | expectedOutputShape[getOutputHDim()] = (leftTransform ? m : 1) * valueTileH; |
| 3319 | } |
| 3320 | if (ShapedType::isDynamic(valueW) || ShapedType::isDynamic(valueTileW)) { |
| 3321 | expectedOutputShape[getOutputWDim()] = ShapedType::kDynamic; |
| 3322 | } else { |
| 3323 | if (valueW != (rightTransform ? m + r - 1 : 1)) |
| 3324 | return emitOpError("expect input width equals to input tile size" ); |
| 3325 | expectedOutputShape[getOutputWDim()] = |
| 3326 | (rightTransform ? m : 1) * valueTileW; |
| 3327 | } |
| 3328 | expectedOutputShape[getOutputNDim()] = valueShape[getValueNDim()]; |
| 3329 | expectedOutputShape[getOutputFDim()] = valueShape[getValueFDim()]; |
| 3330 | |
| 3331 | auto outputType = cast<ShapedType>(getOutput().getType()); |
| 3332 | ArrayRef<int64_t> outputShape = outputType.getShape(); |
| 3333 | if (failed(verifyCompatibleShape(expectedOutputShape, outputShape))) { |
| 3334 | return emitOpError("the output shape is not expected" ); |
| 3335 | } |
| 3336 | return success(); |
| 3337 | } |
| 3338 | |
| 3339 | SmallVector<Range> |
| 3340 | WinogradOutputTransformOp::getIterationDomain(OpBuilder &builder) { |
| 3341 | Location loc = getLoc(); |
| 3342 | IntegerAttr zeroAttr = builder.getIndexAttr(0); |
| 3343 | IntegerAttr oneAttr = builder.getIndexAttr(1); |
| 3344 | Value value = getValue(); |
| 3345 | int64_t valueRank = getValueOperandRank(); |
| 3346 | SmallVector<Range> loopBounds(valueRank); |
| 3347 | for (unsigned dim = 0; dim < valueRank; ++dim) { |
| 3348 | loopBounds[dim].offset = zeroAttr; |
| 3349 | // alphaH, alphaW, tileH, tileW, N, F |
| 3350 | loopBounds[dim].size = getDimValue(builder, loc, value, dim); |
| 3351 | loopBounds[dim].stride = oneAttr; |
| 3352 | } |
| 3353 | return loopBounds; |
| 3354 | } |
| 3355 | |
| 3356 | SmallVector<utils::IteratorType> |
| 3357 | WinogradOutputTransformOp::getLoopIteratorTypes() { |
| 3358 | int64_t valueRank = getValueOperandRank(); |
| 3359 | SmallVector<utils::IteratorType> iteratorTypes(valueRank, |
| 3360 | utils::IteratorType::parallel); |
| 3361 | return iteratorTypes; |
| 3362 | } |
| 3363 | |
| 3364 | LogicalResult WinogradOutputTransformOp::getResultTilePosition( |
| 3365 | OpBuilder &builder, unsigned resultNumber, ArrayRef<OpFoldResult> offsets, |
| 3366 | ArrayRef<OpFoldResult> sizes, SmallVector<OpFoldResult> &resultOffsets, |
| 3367 | SmallVector<OpFoldResult> &resultSizes) { |
| 3368 | int64_t m = getM(); |
| 3369 | |
| 3370 | Location loc = getLoc(); |
| 3371 | MLIRContext *context = builder.getContext(); |
| 3372 | auto identityAffineMap = |
| 3373 | AffineMap::get(1, 0, {builder.getAffineDimExpr(0)}, context); |
| 3374 | auto affineMap = |
| 3375 | AffineMap::get(1, 0, {builder.getAffineDimExpr(0) * m}, context); |
| 3376 | |
| 3377 | ShapedType valueType = getValueOperandType(); |
| 3378 | ArrayRef<int64_t> valueShape = valueType.getShape(); |
| 3379 | int64_t valueH = valueShape[0]; |
| 3380 | int64_t valueW = valueShape[1]; |
| 3381 | Value mappedOffsetH = affine::makeComposedAffineApply( |
| 3382 | builder, loc, (valueH != 1 ? affineMap : identityAffineMap), |
| 3383 | offsets[getValueTileHDim()]); |
| 3384 | Value mappedOffsetW = affine::makeComposedAffineApply( |
| 3385 | builder, loc, (valueW != 1 ? affineMap : identityAffineMap), |
| 3386 | offsets[getValueTileWDim()]); |
| 3387 | Value mappedSizeH = affine::makeComposedAffineApply( |
| 3388 | builder, loc, affineMap, sizes[getValueTileHDim()]); |
| 3389 | Value mappedSizeW = affine::makeComposedAffineApply( |
| 3390 | builder, loc, affineMap, sizes[getValueTileWDim()]); |
| 3391 | |
| 3392 | IntegerAttr oneAttr = builder.getI64IntegerAttr(1); |
| 3393 | OpFoldResult offsetH = OpFoldResult(mappedOffsetH); |
| 3394 | OpFoldResult offsetW = OpFoldResult(mappedOffsetW); |
| 3395 | OpFoldResult sizeH = |
| 3396 | valueH != 1 ? OpFoldResult(mappedSizeH) : OpFoldResult(oneAttr); |
| 3397 | OpFoldResult sizeW = |
| 3398 | valueW != 1 ? OpFoldResult(mappedSizeW) : OpFoldResult(oneAttr); |
| 3399 | |
| 3400 | resultOffsets.append( |
| 3401 | {offsets[getValueNDim()], offsetH, offsetW, offsets[getValueFDim()]}); |
| 3402 | resultSizes.append( |
| 3403 | {sizes[getValueNDim()], sizeH, sizeW, sizes[getValueFDim()]}); |
| 3404 | return success(); |
| 3405 | } |
| 3406 | |
| 3407 | /// Implement tiling for winograd_output_transform |
| 3408 | /// The input of winograd_output_transform is (alphaH, alphaW, tileH, tileW, N, |
| 3409 | /// F). The output of winograd_output_transform is (N, H, W, F) Users can |
| 3410 | /// specify the tile sizes of tileH, tileW, N, and F. `offsets` are the values |
| 3411 | /// for the offsets of tileH, tileW, N, F for one tile. `sizes` are the values |
| 3412 | /// for the sizes of tileH, tileW, N, F for one tile. |
| 3413 | FailureOr<TilingResult> WinogradOutputTransformOp::getTiledImplementation( |
| 3414 | OpBuilder &builder, ArrayRef<OpFoldResult> offsets, |
| 3415 | ArrayRef<OpFoldResult> sizes) { |
| 3416 | IntegerAttr oneAttr = builder.getI64IntegerAttr(1); |
| 3417 | IntegerAttr zeroAttr = builder.getI64IntegerAttr(0); |
| 3418 | Location loc = getLoc(); |
| 3419 | SmallVector<Value> tiledOperands; |
| 3420 | SmallVector<OpFoldResult> sliceOffsets, sliceSizes; |
| 3421 | |
| 3422 | ShapedType valueType = getValueOperandType(); |
| 3423 | ArrayRef<int64_t> valueShape = valueType.getShape(); |
| 3424 | int64_t alphaH = valueShape[getValueAlphaHDim()]; |
| 3425 | int64_t alphaW = valueShape[getValueAlphaWDim()]; |
| 3426 | IntegerAttr alphaHAttr = builder.getI64IntegerAttr(alphaH); |
| 3427 | IntegerAttr alphaWAttr = builder.getI64IntegerAttr(alphaW); |
| 3428 | |
| 3429 | sliceOffsets.append({zeroAttr, zeroAttr, offsets[getValueTileHDim()], |
| 3430 | offsets[getValueTileWDim()], offsets[getValueNDim()], |
| 3431 | offsets[getValueFDim()]}); |
| 3432 | sliceSizes.append({alphaHAttr, alphaWAttr, sizes[getValueTileHDim()], |
| 3433 | sizes[getValueTileWDim()], sizes[getValueNDim()], |
| 3434 | sizes[getValueFDim()]}); |
| 3435 | int64_t valueRank = getValueOperandRank(); |
| 3436 | SmallVector<OpFoldResult> sliceStrides(valueRank, oneAttr); |
| 3437 | auto valueSlice = builder.create<tensor::ExtractSliceOp>( |
| 3438 | loc, getValue(), sliceOffsets, sliceSizes, sliceStrides); |
| 3439 | tiledOperands.emplace_back(valueSlice); |
| 3440 | |
| 3441 | SmallVector<OpFoldResult> resultOffsets, resultSizes; |
| 3442 | if (failed(getResultTilePosition(builder, 1, offsets, sizes, resultOffsets, |
| 3443 | resultSizes))) |
| 3444 | return failure(); |
| 3445 | |
| 3446 | int64_t outputRank = getOutputOperandRank(); |
| 3447 | SmallVector<OpFoldResult> strides(outputRank, oneAttr); |
| 3448 | auto outputSlice = builder.create<tensor::ExtractSliceOp>( |
| 3449 | loc, getOutput(), resultOffsets, resultSizes, strides); |
| 3450 | tiledOperands.emplace_back(outputSlice); |
| 3451 | |
| 3452 | SmallVector<Type> resultTypes; |
| 3453 | resultTypes.push_back(tiledOperands[1].getType()); |
| 3454 | Operation *tiledOp = |
| 3455 | mlir::clone(builder, getOperation(), resultTypes, tiledOperands); |
| 3456 | |
| 3457 | return TilingResult{ |
| 3458 | {tiledOp}, |
| 3459 | SmallVector<Value>(tiledOp->getResults()), |
| 3460 | llvm::to_vector(ArrayRef<Operation *>{valueSlice, outputSlice})}; |
| 3461 | } |
| 3462 | |
| 3463 | //===----------------------------------------------------------------------===// |
| 3464 | // LinalgDialect |
| 3465 | // TODO: Merge with the LinalgDialect block at the bottom |
| 3466 | //===----------------------------------------------------------------------===// |
| 3467 | |
| 3468 | // Returns true if the result expression of `subMap` are a subset of `fullMap`. |
| 3469 | static bool (AffineMap subMap, AffineMap fullMap) { |
| 3470 | auto explicitRange = subMap.getResults(); |
| 3471 | auto defaultRange = fullMap.getResults(); |
| 3472 | DenseSet<AffineExpr> explicitSet(explicitRange.begin(), explicitRange.end()); |
| 3473 | DenseSet<AffineExpr> defaultSet(defaultRange.begin(), defaultRange.end()); |
| 3474 | llvm::set_union(S1&: explicitSet, S2: defaultSet); |
| 3475 | return explicitSet == defaultSet; |
| 3476 | } |
| 3477 | |
| 3478 | /// Check if the user defined map is valid broadcast map. Here broadcast |
| 3479 | /// indexing maps are defined in context of corresponding default indexing maps |
| 3480 | /// for the given Op. This way the check becomes very simple i.e just check the |
| 3481 | /// number of result dims. |
| 3482 | /// Returns true if the explictMap is broadcasted with respect to the |
| 3483 | /// defaultMap. |
| 3484 | static bool isBroadcasted(AffineMap explictMap, AffineMap defaultMap) { |
| 3485 | return explictMap.getNumResults() < defaultMap.getNumResults(); |
| 3486 | } |
| 3487 | |
| 3488 | /// Verifies the broadcast and transpose semantic sepecified by the explicit |
| 3489 | /// indexing map for the MatmulOp \p op for each operand specified by \p |
| 3490 | /// opIndex. |
| 3491 | static LogicalResult verifyExtendedMatmulSemantic(MatmulOp matmulOp, |
| 3492 | unsigned opIndex) { |
| 3493 | SmallVector<AffineMap, 3> opIndexingMaps = matmulOp.getIndexingMapsArray(); |
| 3494 | SmallVector<AffineMap, 3> defaultIndexingMaps = |
| 3495 | matmulOp.getDefaultIndexingMaps(matmulOp->getContext()); |
| 3496 | |
| 3497 | auto opIndexingMap = opIndexingMaps[opIndex]; |
| 3498 | auto defaultIndexingMap = defaultIndexingMaps[opIndex]; |
| 3499 | // Check general validity of indexing map results. |
| 3500 | if (!areResultExprsSubsetOf(opIndexingMap, defaultIndexingMap)) |
| 3501 | return matmulOp->emitOpError() |
| 3502 | << "Unexpected dim expression in map result." ; |
| 3503 | |
| 3504 | if (isBroadcasted(opIndexingMap, defaultIndexingMap)) { |
| 3505 | if (!matmulOp.isValidLhsRhsBroadcastMap(opIndexingMap)) { |
| 3506 | return matmulOp->emitOpError() |
| 3507 | << "Invalid broadcast requested, should be (d2)." ; |
| 3508 | } |
| 3509 | return success(); |
| 3510 | } |
| 3511 | return success(); |
| 3512 | } |
| 3513 | |
| 3514 | // Check general validity of input indexing map of |
| 3515 | // BatchMatmulOp/BatchReduceMatmulOp. |
| 3516 | template <typename OpTy> |
| 3517 | static LogicalResult verifyInputMaps(OpTy batchVariantMatmulOp, |
| 3518 | AffineMap opIndexingMap, |
| 3519 | AffineMap defaultIndexingMap, bool isLHS) { |
| 3520 | assert((isa<BatchMatmulOp>(batchVariantMatmulOp) || |
| 3521 | isa<BatchReduceMatmulOp>(batchVariantMatmulOp)) && |
| 3522 | "Expected BatchMatmulOp or BatchReduceMatmulOp" ); |
| 3523 | // Check the result dims are valid. |
| 3524 | if (!areResultExprsSubsetOf(subMap: opIndexingMap, fullMap: defaultIndexingMap)) |
| 3525 | return batchVariantMatmulOp->emitOpError() |
| 3526 | << "Unexpected result dim expression (outside the set of default " |
| 3527 | "result dims)." ; |
| 3528 | |
| 3529 | // Check for valid number of result dims of input maps. |
| 3530 | if (opIndexingMap.getNumResults() > 3) |
| 3531 | return batchVariantMatmulOp->emitOpError() |
| 3532 | << "no. of result dim expressions exceeds 3." ; |
| 3533 | |
| 3534 | auto hasValidBatchDim = [](AffineMap map) { |
| 3535 | AffineExpr batchDim = map.getResult(idx: 0); |
| 3536 | return batchDim.isFunctionOfDim(position: 0); |
| 3537 | }; |
| 3538 | |
| 3539 | // Check if the requested broadcast is valid. |
| 3540 | if (isBroadcasted(explictMap: opIndexingMap, defaultMap: defaultIndexingMap)) { |
| 3541 | if (!batchVariantMatmulOp.isValidLhsRhsBroadcastMap(opIndexingMap, isLHS)) |
| 3542 | return batchVariantMatmulOp->emitOpError() |
| 3543 | << "Invalid broadcast requested." ; |
| 3544 | } else if (!hasValidBatchDim(opIndexingMap)) { |
| 3545 | return batchVariantMatmulOp->emitOpError() |
| 3546 | << "Invalid batch dimension expression." ; |
| 3547 | } |
| 3548 | return success(); |
| 3549 | } |
| 3550 | |
| 3551 | /// This function checks if the given AffineMap for the output of a |
| 3552 | /// BatchMatmulOp/BatchReduceMatmulOp has exactly the desired number of result |
| 3553 | /// dimensions and if the output map result dimensions are valid. |
| 3554 | template <typename OpTy> |
| 3555 | static LogicalResult verifyOutputMap(OpTy batchVariantMatmulOp, |
| 3556 | AffineMap opIndexingMap) { |
| 3557 | assert((isa<BatchMatmulOp>(batchVariantMatmulOp) || |
| 3558 | isa<BatchReduceMatmulOp>(batchVariantMatmulOp)) && |
| 3559 | "Expected BatchMatmulOp or BatchReduceMatmulOp" ); |
| 3560 | if (isa<BatchMatmulOp>(batchVariantMatmulOp) && |
| 3561 | opIndexingMap.getNumResults() != 3) { |
| 3562 | |
| 3563 | return batchVariantMatmulOp->emitOpError() |
| 3564 | << "expects 3 dims, but got (" << opIndexingMap.getNumResults() |
| 3565 | << ")." ; |
| 3566 | } |
| 3567 | if (isa<BatchReduceMatmulOp>(batchVariantMatmulOp) && |
| 3568 | opIndexingMap.getNumResults() != 2) { |
| 3569 | return batchVariantMatmulOp->emitOpError() |
| 3570 | << "expects 2 dims, but got (" << opIndexingMap.getNumResults() |
| 3571 | << ")." ; |
| 3572 | } |
| 3573 | |
| 3574 | auto areValidOutputResultDim = [&](AffineMap outputMap) { |
| 3575 | return isa<BatchMatmulOp>(batchVariantMatmulOp) |
| 3576 | ? outputMap.getResult(0).isFunctionOfDim(0) && |
| 3577 | outputMap.getResult(1).isFunctionOfDim(1) && |
| 3578 | outputMap.getResult(2).isFunctionOfDim(2) |
| 3579 | : outputMap.getResult(0).isFunctionOfDim(1) && |
| 3580 | outputMap.getResult(1).isFunctionOfDim(2); |
| 3581 | }; |
| 3582 | |
| 3583 | if (!areValidOutputResultDim(opIndexingMap)) { |
| 3584 | return batchVariantMatmulOp->emitOpError() |
| 3585 | << "Invalid output map result dimension." ; |
| 3586 | } |
| 3587 | |
| 3588 | return success(); |
| 3589 | } |
| 3590 | |
| 3591 | /// Verifies the broadcast and transpose semantic specified by the explicit |
| 3592 | /// indexing map for the BatchMatmulOp/BatchReduceMatmulOp op for each operand |
| 3593 | /// specified by opIndex. |
| 3594 | template <typename OpTy> |
| 3595 | static LogicalResult |
| 3596 | verifyExtendedBatchVariantMatmulSemantic(OpTy batchVariantMatmulOp, |
| 3597 | unsigned opIndex) { |
| 3598 | SmallVector<AffineMap, 3> opIndexingMaps = |
| 3599 | batchVariantMatmulOp.getIndexingMapsArray(); |
| 3600 | SmallVector<AffineMap, 3> defaultIndexingMaps = |
| 3601 | batchVariantMatmulOp.getDefaultIndexingMaps( |
| 3602 | batchVariantMatmulOp->getContext()); |
| 3603 | |
| 3604 | if (opIndexingMaps.size() != 3) |
| 3605 | return batchVariantMatmulOp->emitOpError() |
| 3606 | << "Indexing_map attribute must have 3 affine maps." ; |
| 3607 | |
| 3608 | auto opIndexingMap = opIndexingMaps[opIndex]; |
| 3609 | auto defaultIndexingMap = defaultIndexingMaps[opIndex]; |
| 3610 | |
| 3611 | if (opIndex == 2 && |
| 3612 | failed(verifyOutputMap(batchVariantMatmulOp, opIndexingMap))) |
| 3613 | return failure(); |
| 3614 | |
| 3615 | if (opIndex != 2 && |
| 3616 | failed(verifyInputMaps(batchVariantMatmulOp, opIndexingMap, |
| 3617 | defaultIndexingMap, opIndex == 0))) |
| 3618 | return failure(); |
| 3619 | |
| 3620 | return success(); |
| 3621 | } |
| 3622 | |
| 3623 | namespace mlir { |
| 3624 | namespace linalg { |
| 3625 | |
| 3626 | //===----------------------------------------------------------------------===// |
| 3627 | // MatMulOp |
| 3628 | //===----------------------------------------------------------------------===// |
| 3629 | |
| 3630 | /// Returns a list of AffineMap with the typical matmul indexing charactristic. |
| 3631 | SmallVector<AffineMap> MatmulOp::getDefaultIndexingMaps(MLIRContext *context) { |
| 3632 | AffineExpr d0, d1, d2; |
| 3633 | SmallVector<AffineMap> indexingMaps; |
| 3634 | bindDims(context, d0, d1, d2); |
| 3635 | indexingMaps.push_back(AffineMap::get(3, 0, {d0, d2}, context)); |
| 3636 | indexingMaps.push_back(AffineMap::get(3, 0, {d2, d1}, context)); |
| 3637 | indexingMaps.push_back(AffineMap::get(3, 0, {d0, d1}, context)); |
| 3638 | return indexingMaps; |
| 3639 | } |
| 3640 | |
| 3641 | SmallVector<utils::IteratorType> MatmulOp::getIteratorTypesArray() { |
| 3642 | return SmallVector<utils::IteratorType>{utils::IteratorType::parallel, |
| 3643 | utils::IteratorType::parallel, |
| 3644 | utils::IteratorType::reduction}; |
| 3645 | } |
| 3646 | |
| 3647 | unsigned MatmulOp::getNumRegionArgs() { return 3; } |
| 3648 | |
| 3649 | std::string MatmulOp::getLibraryCallName() { |
| 3650 | return generateLibraryCallName(getOperation()); |
| 3651 | } |
| 3652 | |
| 3653 | bool MatmulOp::hasDynamicIndexingMaps() { return true; } |
| 3654 | |
| 3655 | /// Check if the op has broadcast and/or transpose semantic. Returns true if |
| 3656 | /// the user defined indexing maps are not equal to default map. |
| 3657 | bool MatmulOp::hasUserDefinedMaps() { |
| 3658 | SmallVector<AffineMap, 3> defaultMaps = |
| 3659 | getDefaultIndexingMaps(this->getContext()); |
| 3660 | SmallVector<AffineMap, 3> explicitMaps = getIndexingMapsArray(); |
| 3661 | return defaultMaps != explicitMaps; |
| 3662 | } |
| 3663 | |
| 3664 | /// Implements the block region builder for the MatmulOp. This is called by |
| 3665 | /// 'fillStructuredOpRegion'. |
| 3666 | void MatmulOp::regionBuilder(ImplicitLocOpBuilder &b, Block &block, |
| 3667 | ArrayRef<NamedAttribute> attrs) { |
| 3668 | assert(3 > 0 && block.getNumArguments() == 3 && |
| 3669 | "MatmulOp regionBuilder expects 3 (>=0) args" ); |
| 3670 | RegionBuilderHelper helper(b, block); |
| 3671 | SmallVector<Value> yields; |
| 3672 | |
| 3673 | TypeFn castVal = TypeFn::cast_signed; |
| 3674 | const auto *castIter = llvm::find_if(attrs, [&](const NamedAttribute &attr) { |
| 3675 | return attr.getName() == "cast" ; |
| 3676 | }); |
| 3677 | if (castIter != attrs.end()) { |
| 3678 | if (auto attr = llvm::dyn_cast<TypeFnAttr>(castIter->getValue())) |
| 3679 | castVal = attr.getValue(); |
| 3680 | } |
| 3681 | |
| 3682 | Value value1 = helper.buildTypeFn(castVal, block.getArgument(2).getType(), |
| 3683 | block.getArgument(0)); |
| 3684 | Value value2 = helper.buildTypeFn(castVal, block.getArgument(2).getType(), |
| 3685 | block.getArgument(1)); |
| 3686 | Value value3 = helper.buildBinaryFn(BinaryFn::mul, value1, value2); |
| 3687 | Value value4 = |
| 3688 | helper.buildBinaryFn(BinaryFn::add, block.getArgument(2), value3); |
| 3689 | yields.push_back(value4); |
| 3690 | helper.yieldOutputs(yields); |
| 3691 | } |
| 3692 | |
| 3693 | /// Returns true if the given bcastMap map is a valid broadcast map. A valid |
| 3694 | /// broadcast map must include K dimension. |
| 3695 | /// TODO: Strict inclusion of K dimension in the broadcast map is not |
| 3696 | /// necessary for both input matrices simultaneously. We can relax this |
| 3697 | /// condition to have K dimension for one input matrix map and infer the K |
| 3698 | /// dimension for other input matrix map from the one already having K |
| 3699 | /// dimension. |
| 3700 | bool MatmulOp::isValidLhsRhsBroadcastMap(AffineMap bcastMap) { |
| 3701 | assert(bcastMap.getNumResults() == 1 && "Expected single result dim expr." ); |
| 3702 | AffineExpr expr = bcastMap.getResult(0); |
| 3703 | // Invalid map if the common dimension of matmul not found. |
| 3704 | return expr.isFunctionOfDim(bcastMap.getNumDims() - 1); |
| 3705 | } |
| 3706 | |
| 3707 | FailureOr<ArrayAttr> parseIndexingMapsAttr(OpAsmParser &parser) { |
| 3708 | if (parser.parseOptionalKeyword(keyword: "indexing_maps" )) |
| 3709 | return ArrayAttr{ |
| 3710 | nullptr}; // Success in case indexing_maps was not provided. |
| 3711 | |
| 3712 | ArrayAttr arrayAttr; |
| 3713 | if (parser.parseEqual() || parser.parseAttribute(arrayAttr)) |
| 3714 | return failure(); |
| 3715 | |
| 3716 | if (llvm::any_of(arrayAttr, |
| 3717 | [](auto elt) { return !dyn_cast<AffineMapAttr>(elt); })) |
| 3718 | return parser.emitError(loc: parser.getCurrentLocation()) |
| 3719 | << "element of indexing_maps array is not an affine_map" ; |
| 3720 | |
| 3721 | return arrayAttr; |
| 3722 | } |
| 3723 | |
| 3724 | ParseResult MatmulOp::parse(OpAsmParser &parser, OperationState &result) { |
| 3725 | FailureOr<ArrayAttr> indexingMapsAttr = parseIndexingMapsAttr(parser); |
| 3726 | if (failed(indexingMapsAttr)) |
| 3727 | return failure(); |
| 3728 | |
| 3729 | if (*indexingMapsAttr == nullptr) { |
| 3730 | auto indexingMapAttrs = llvm::map_to_vector( |
| 3731 | MatmulOp::getDefaultIndexingMaps(parser.getContext()), |
| 3732 | [](AffineMap map) -> Attribute { return AffineMapAttr::get(map); }); |
| 3733 | indexingMapsAttr = parser.getBuilder().getArrayAttr(indexingMapAttrs); |
| 3734 | } |
| 3735 | |
| 3736 | result.addAttribute("indexing_maps" , *indexingMapsAttr); |
| 3737 | return parseNamedStructuredOp(parser, result, MatmulOp::getNumRegionArgs(), |
| 3738 | MatmulOp::getRegionBuilder()); |
| 3739 | } |
| 3740 | |
| 3741 | void MatmulOp::print(OpAsmPrinter &p) { |
| 3742 | SmallVector<Attribute, 3> indexingMaps = llvm::map_to_vector<3>( |
| 3743 | MatmulOp::getDefaultIndexingMaps(getContext()), |
| 3744 | [](AffineMap map) -> Attribute { return AffineMapAttr::get(map); }); |
| 3745 | if (!llvm::equal(getIndexingMaps(), indexingMaps)) |
| 3746 | p << " indexing_maps = " << llvm::interleaved_array(getIndexingMaps()); |
| 3747 | |
| 3748 | std::array<StringRef, 3> elidedAttrs = { |
| 3749 | "operandSegmentSizes" , "linalg.memoized_indexing_maps" , "indexing_maps" }; |
| 3750 | printNamedStructuredOp(p, getOperation(), getInputs(), getOutputs(), |
| 3751 | elidedAttrs); |
| 3752 | } |
| 3753 | |
| 3754 | /// Verify the user defined indexing maps. |
| 3755 | LogicalResult MatmulOp::verify() { |
| 3756 | // Verification of pure matmul is handled by verifyStructuredOpInterface(). |
| 3757 | if (!hasUserDefinedMaps()) |
| 3758 | return success(); |
| 3759 | |
| 3760 | for (unsigned opIndex = 0; opIndex < 2; opIndex++) { |
| 3761 | if (failed(verifyExtendedMatmulSemantic(*this, opIndex))) |
| 3762 | return failure(); |
| 3763 | } |
| 3764 | return success(); |
| 3765 | } |
| 3766 | |
| 3767 | LogicalResult MatmulOp::fold(FoldAdaptor, SmallVectorImpl<OpFoldResult> &) { |
| 3768 | return memref::foldMemRefCast(*this); |
| 3769 | } |
| 3770 | |
| 3771 | void MatmulOp::getEffects( |
| 3772 | SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> |
| 3773 | &effects) { |
| 3774 | if (hasPureTensorSemantics()) |
| 3775 | return; |
| 3776 | getGenericEffectsImpl(effects, cast<LinalgOp>(getOperation())); |
| 3777 | } |
| 3778 | |
| 3779 | Speculation::Speculatability MatmulOp::getSpeculatability() { |
| 3780 | return getGenericSpeculatabilityImpl(cast<LinalgOp>(getOperation())); |
| 3781 | } |
| 3782 | |
| 3783 | //===----------------------------------------------------------------------===// |
| 3784 | // ContractOp |
| 3785 | //===----------------------------------------------------------------------===// |
| 3786 | |
| 3787 | SmallVector<utils::IteratorType> ContractOp::getIteratorTypesArray() { |
| 3788 | AffineMap outAffineMap = getIndexingMapsArray().pop_back_val(); |
| 3789 | // On well-formed IR, indexing_maps is non-empty, contained affine_maps' |
| 3790 | // domains are all the same, and each implements a projected permutation. |
| 3791 | // Each iteration space dim must occur for at least one operand and either |
| 3792 | // takes part in a contraction/reduction or else has parallel iteration type. |
| 3793 | // We have that a dim is a contraction/reduction dim if and only if the dim |
| 3794 | // occurs for the output operand. We use this fact for fast inference: |
| 3795 | // NB: In case we allow dims to occur solely for one input, the above still |
| 3796 | // holds: per the einsum semantics, these are reduction dims as well. |
| 3797 | SmallVector<bool> dimsInOutput(outAffineMap.getNumDims(), false); |
| 3798 | for (auto result : outAffineMap.getResults()) { |
| 3799 | auto dimExpr = dyn_cast<AffineDimExpr>(result); |
| 3800 | assert(dimExpr && "affine_map is a projected permutation" ); |
| 3801 | dimsInOutput[dimExpr.getPosition()] = true; |
| 3802 | } |
| 3803 | |
| 3804 | SmallVector<utils::IteratorType> iteratorTypes; |
| 3805 | for (auto dimOccursInOutput : dimsInOutput) |
| 3806 | iteratorTypes.push_back(dimOccursInOutput ? utils::IteratorType::parallel |
| 3807 | : utils::IteratorType::reduction); |
| 3808 | |
| 3809 | return iteratorTypes; |
| 3810 | } |
| 3811 | |
| 3812 | unsigned ContractOp::getNumRegionArgs() { return 3; } |
| 3813 | |
| 3814 | /// Implement block region builder, which is called by 'fillStructuredOpRegion'. |
| 3815 | void ContractOp::regionBuilder(ImplicitLocOpBuilder &b, Block &block, |
| 3816 | ArrayRef<NamedAttribute> attrs) { |
| 3817 | assert(block.getNumArguments() == 3 && |
| 3818 | "ContractOp regionBuilder expects 3 args" ); |
| 3819 | RegionBuilderHelper helper(b, block); |
| 3820 | |
| 3821 | TypeFn castSignedness = TypeFn::cast_signed; |
| 3822 | auto castIter = llvm::find_if(attrs, [&](const NamedAttribute &attr) { |
| 3823 | return attr.getName() == "cast" ; |
| 3824 | }); |
| 3825 | if (castIter != attrs.end()) { |
| 3826 | if (auto attr = llvm::dyn_cast<TypeFnAttr>(castIter->getValue())) |
| 3827 | castSignedness = attr.getValue(); |
| 3828 | } |
| 3829 | |
| 3830 | // TODO: Support fields with operators besides mult & add. |
| 3831 | Type outType = block.getArgument(2).getType(); |
| 3832 | Value lhsAtOutType = |
| 3833 | helper.buildTypeFn(castSignedness, outType, block.getArgument(0)); |
| 3834 | Value rhsAtOutType = |
| 3835 | helper.buildTypeFn(castSignedness, outType, block.getArgument(1)); |
| 3836 | Value productAtOutType = |
| 3837 | helper.buildBinaryFn(BinaryFn::mul, lhsAtOutType, rhsAtOutType); |
| 3838 | Value result = helper.buildBinaryFn(BinaryFn::add, block.getArgument(2), |
| 3839 | productAtOutType); |
| 3840 | helper.yieldOutputs({result}); |
| 3841 | } |
| 3842 | |
| 3843 | ParseResult ContractOp::parse(OpAsmParser &parser, OperationState &result) { |
| 3844 | FailureOr<ArrayAttr> indexingMapsAttr = parseIndexingMapsAttr(parser); |
| 3845 | if (failed(indexingMapsAttr) || *indexingMapsAttr == nullptr) |
| 3846 | return parser.emitError(parser.getCurrentLocation(), |
| 3847 | "expected 'indexing_maps' attribute" ); |
| 3848 | result.addAttribute("indexing_maps" , *indexingMapsAttr); |
| 3849 | |
| 3850 | return parseNamedStructuredOp(parser, result, getNumRegionArgs(), |
| 3851 | regionBuilder); |
| 3852 | } |
| 3853 | |
| 3854 | void ContractOp::print(OpAsmPrinter &p) { |
| 3855 | p << " indexing_maps = " << llvm::interleaved_array(getIndexingMaps()); |
| 3856 | printNamedStructuredOp( |
| 3857 | p, getOperation(), getInputs(), getOutputs(), |
| 3858 | /*elidedAttrs=*/{"indexing_maps" , "operandSegmentSizes" }); |
| 3859 | } |
| 3860 | |
| 3861 | LogicalResult ContractOp::verify() { |
| 3862 | int iterationSpaceDims = -1; |
| 3863 | // Map iter space dims to #occurrences in inputs' and output's affine_maps: |
| 3864 | // e.g., inOccurrences[0] will hold #times that dim (with index) 0 is used to |
| 3865 | // access an input operand (so occurrence count can be at most 2) and |
| 3866 | // outOccurrences[1] will indicate whether dim 1 occurred in the output, etc. |
| 3867 | SmallVector<size_t> inOccurrences; |
| 3868 | SmallVector<size_t> outOccurrences; |
| 3869 | |
| 3870 | // A helper so that for each operand's affine_map and type we check that ... |
| 3871 | auto checkAffineMapAndType = [&](AffineMap affineMap, Type operandType, |
| 3872 | bool isInput) -> LogicalResult { |
| 3873 | // ... the affine_map is a projected permutation; |
| 3874 | if (!affineMap.isProjectedPermutation()) |
| 3875 | return emitError("provided affine_map is not a projected permutation" ); |
| 3876 | |
| 3877 | // ... the rank of the affine_map's results and corresponding type match; |
| 3878 | if (auto shapedType = dyn_cast<ShapedType>(operandType)) { |
| 3879 | if (affineMap.getNumResults() != shapedType.getRank()) |
| 3880 | return emitError("ranks of shaped operand and results of corresponding " |
| 3881 | "affine_map differ" ); |
| 3882 | } else if (affineMap.getNumResults() != 0) { |
| 3883 | return emitError("affine_map specifies shaped access while operand has " |
| 3884 | "non-shaped type" ); |
| 3885 | } |
| 3886 | |
| 3887 | // ... the rank of the affine_map's domain is the same as those seen prior; |
| 3888 | if (iterationSpaceDims == -1) { |
| 3889 | iterationSpaceDims = affineMap.getNumDims(); |
| 3890 | inOccurrences = SmallVector<size_t>(iterationSpaceDims, 0); |
| 3891 | outOccurrences = SmallVector<size_t>(iterationSpaceDims, 0); |
| 3892 | } else if (iterationSpaceDims != (int)affineMap.getNumDims()) { |
| 3893 | return emitError("iteration spaces of provided affine_maps differ" ); |
| 3894 | } |
| 3895 | |
| 3896 | // ... update counts of dims used to access either an input or the output. |
| 3897 | for (AffineExpr affineExpr : affineMap.getResults()) { |
| 3898 | auto affineDimExpr = dyn_cast<AffineDimExpr>(affineExpr); |
| 3899 | if (!affineDimExpr) |
| 3900 | llvm_unreachable("affine_map is a projected permutation" ); |
| 3901 | |
| 3902 | if (isInput) |
| 3903 | inOccurrences[affineDimExpr.getPosition()] += 1; |
| 3904 | else |
| 3905 | outOccurrences[affineDimExpr.getPosition()] += 1; |
| 3906 | } |
| 3907 | |
| 3908 | return success(); |
| 3909 | }; |
| 3910 | |
| 3911 | for (auto &&[affineMap, operandType, isInput] : |
| 3912 | llvm::zip(getIndexingMapsArray(), getOperandTypes(), |
| 3913 | SmallVector<bool>{true, true, false})) { |
| 3914 | if (failed(checkAffineMapAndType(affineMap, operandType, isInput))) |
| 3915 | return failure(); // NB: checkAffineMapAndType will emit relevant error. |
| 3916 | } |
| 3917 | |
| 3918 | bool hasContractingDim = false; |
| 3919 | for (size_t dimIndex = 0; dimIndex < (size_t)iterationSpaceDims; dimIndex++) { |
| 3920 | size_t inOccCount = inOccurrences[dimIndex]; |
| 3921 | size_t outOccCount = outOccurrences[dimIndex]; |
| 3922 | |
| 3923 | // We have a contracting dim if and only if ... |
| 3924 | hasContractingDim |= inOccCount == 2 && outOccCount == 0; |
| 3925 | |
| 3926 | if (inOccCount == 0 && outOccCount == 0) |
| 3927 | return emitError() << "iteration space dim at index " << dimIndex |
| 3928 | << " not used to access any operand" ; |
| 3929 | |
| 3930 | // NB: We disallow a dim which occurs for only one input operand and not |
| 3931 | // for the output. In terms of einsum semantics such dims have a |
| 3932 | // sensible meaning - namely an additional reduction per each such dim. |
| 3933 | // By contrast, the ContractionOpInterface does not know about this |
| 3934 | // iter type - cf. inferContractionDims' supported dim kinds. Similarly, |
| 3935 | // while vector.contract's verifier accepts dims of this kind many of |
| 3936 | // its lowerings give up on encountering these dims. |
| 3937 | // TODO: Remove following once we have comprehensive support for input-only |
| 3938 | // reduction dims, at both the linalg- and vector-dialect levels. |
| 3939 | if (inOccCount == 1 && outOccCount != 1) |
| 3940 | return emitError() |
| 3941 | << "iteration space dim at index " << dimIndex |
| 3942 | << " is neither a contracting dim nor of parallel iteration type" ; |
| 3943 | } |
| 3944 | |
| 3945 | if (!hasContractingDim) |
| 3946 | return emitError("'indexing_maps' do not specify a contracting dimension" ); |
| 3947 | |
| 3948 | return success(); |
| 3949 | } |
| 3950 | |
| 3951 | LogicalResult ContractOp::fold(FoldAdaptor, SmallVectorImpl<OpFoldResult> &) { |
| 3952 | return memref::foldMemRefCast(*this); |
| 3953 | } |
| 3954 | |
| 3955 | void ContractOp::getEffects( |
| 3956 | SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> |
| 3957 | &effects) { |
| 3958 | if (hasPureTensorSemantics()) |
| 3959 | return; |
| 3960 | getGenericEffectsImpl(effects, cast<LinalgOp>(getOperation())); |
| 3961 | } |
| 3962 | |
| 3963 | Speculation::Speculatability ContractOp::getSpeculatability() { |
| 3964 | return getGenericSpeculatabilityImpl(cast<LinalgOp>(getOperation())); |
| 3965 | } |
| 3966 | |
| 3967 | //===----------------------------------------------------------------------===// |
| 3968 | // Implementation of BatchMatmulOp |
| 3969 | //===----------------------------------------------------------------------===// |
| 3970 | SmallVector<AffineMap> |
| 3971 | BatchMatmulOp::getDefaultIndexingMaps(MLIRContext *context) { |
| 3972 | AffineExpr d0, d1, d2, d3; |
| 3973 | SmallVector<AffineMap> indexingMaps; |
| 3974 | bindDims(context, d0, d1, d2, d3); |
| 3975 | indexingMaps.push_back(AffineMap::get(4, 0, {d0, d1, d3}, context)); |
| 3976 | indexingMaps.push_back(AffineMap::get(4, 0, {d0, d3, d2}, context)); |
| 3977 | indexingMaps.push_back(AffineMap::get(4, 0, {d0, d1, d2}, context)); |
| 3978 | return indexingMaps; |
| 3979 | } |
| 3980 | |
| 3981 | SmallVector<utils::IteratorType> BatchMatmulOp::getIteratorTypesArray() { |
| 3982 | return SmallVector<utils::IteratorType>{ |
| 3983 | utils::IteratorType::parallel, utils::IteratorType::parallel, |
| 3984 | utils::IteratorType::parallel, utils::IteratorType::reduction}; |
| 3985 | } |
| 3986 | |
| 3987 | unsigned BatchMatmulOp::getNumRegionArgs() { return 3; } |
| 3988 | |
| 3989 | std::string BatchMatmulOp::getLibraryCallName() { |
| 3990 | return generateLibraryCallName(getOperation()); |
| 3991 | } |
| 3992 | |
| 3993 | /// Check if the op has broadcast and/or transpose semantic. Returns true if |
| 3994 | /// the user defined indexing maps are not equal to default map. |
| 3995 | bool BatchMatmulOp::hasUserDefinedMaps() { |
| 3996 | SmallVector<AffineMap, 3> defaultMaps = |
| 3997 | getDefaultIndexingMaps(this->getContext()); |
| 3998 | SmallVector<AffineMap, 3> explicitMaps = getIndexingMapsArray(); |
| 3999 | return defaultMaps != explicitMaps; |
| 4000 | } |
| 4001 | |
| 4002 | /// Returns true if the given bcastMap map is a valid broadcast map. A valid |
| 4003 | /// broadcast map must include K dimension. |
| 4004 | /// TODO: Strict inclusion of K dimension in the broadcast map is not |
| 4005 | /// necessary for both input matrices simultaneously. We can relax this |
| 4006 | /// condition to have K dimension for one input matrix map and infer the K |
| 4007 | /// dimension for other input matrix map from the one already having K |
| 4008 | /// dimension. |
| 4009 | bool BatchMatmulOp::isValidLhsRhsBroadcastMap(AffineMap bcastMap, bool isLHS) { |
| 4010 | assert(bcastMap.getNumResults() < 3 && |
| 4011 | "Expected less than 3 result dim expr." ); |
| 4012 | bool isValid = false; |
| 4013 | enum Indices { batchPos, mPos, nPos, kPos }; |
| 4014 | if (bcastMap.getNumResults() == 1) { |
| 4015 | AffineExpr expr = bcastMap.getResult(0); |
| 4016 | isValid = expr.isFunctionOfDim(kPos); |
| 4017 | } else if (bcastMap.getNumResults() == 2) { |
| 4018 | AffineExpr expr0 = bcastMap.getResult(0); |
| 4019 | AffineExpr expr1 = bcastMap.getResult(1); |
| 4020 | isValid = |
| 4021 | isLHS ? ((expr0.isFunctionOfDim(batchPos) || |
| 4022 | expr0.isFunctionOfDim(mPos)) && |
| 4023 | expr1.isFunctionOfDim(kPos)) |
| 4024 | : ((expr0.isFunctionOfDim(batchPos) && |
| 4025 | expr1.isFunctionOfDim(kPos)) || |
| 4026 | (expr0.isFunctionOfDim(kPos) && expr1.isFunctionOfDim(nPos))); |
| 4027 | } |
| 4028 | return isValid; |
| 4029 | } |
| 4030 | |
| 4031 | void BatchMatmulOp::regionBuilder(ImplicitLocOpBuilder &b, Block &block, |
| 4032 | ArrayRef<NamedAttribute> attrs) { |
| 4033 | assert(block.getNumArguments() == 3 && |
| 4034 | "BatchMatmulOp regionBuilder expects 3 (>=0) args" ); |
| 4035 | RegionBuilderHelper helper(b, block); |
| 4036 | SmallVector<Value> yields; |
| 4037 | |
| 4038 | TypeFn castVal = TypeFn::cast_signed; |
| 4039 | auto castIter = llvm::find_if(attrs, [&](const NamedAttribute &attr) { |
| 4040 | return attr.getName() == "cast" ; |
| 4041 | }); |
| 4042 | if (castIter != attrs.end()) { |
| 4043 | if (auto attr = llvm::dyn_cast<TypeFnAttr>(castIter->getValue())) |
| 4044 | castVal = attr.getValue(); |
| 4045 | } |
| 4046 | |
| 4047 | auto toType = block.getArgument(2).getType(); |
| 4048 | Value castValA = helper.buildTypeFn(castVal, toType, block.getArgument(0)); |
| 4049 | Value castValB = helper.buildTypeFn(castVal, toType, block.getArgument(1)); |
| 4050 | Value mulVal = helper.buildBinaryFn(BinaryFn::mul, castValA, castValB); |
| 4051 | Value addVal = |
| 4052 | helper.buildBinaryFn(BinaryFn::add, block.getArgument(2), mulVal); |
| 4053 | yields.push_back(addVal); |
| 4054 | helper.yieldOutputs(yields); |
| 4055 | } |
| 4056 | |
| 4057 | ParseResult BatchMatmulOp::parse(OpAsmParser &parser, OperationState &result) { |
| 4058 | SmallVector<Attribute, 3> indexingMapsAttr; |
| 4059 | Attribute mapAttr; |
| 4060 | if (succeeded(parser.parseOptionalKeyword("indexing_maps" ))) { |
| 4061 | if (parser.parseEqual()) |
| 4062 | return failure(); |
| 4063 | |
| 4064 | if (parser.parseLSquare()) |
| 4065 | return failure(); |
| 4066 | |
| 4067 | do { |
| 4068 | if (parser.parseAttribute(mapAttr)) |
| 4069 | return failure(); |
| 4070 | if (!isa<AffineMapAttr>(mapAttr)) { |
| 4071 | return parser.emitError(parser.getCurrentLocation(), |
| 4072 | "expected affine map attribute" ); |
| 4073 | } |
| 4074 | indexingMapsAttr.push_back(mapAttr); |
| 4075 | |
| 4076 | if (parser.parseOptionalComma()) |
| 4077 | break; |
| 4078 | } while (true); |
| 4079 | |
| 4080 | if (parser.parseRSquare()) |
| 4081 | return failure(); |
| 4082 | } |
| 4083 | // Initialize indexingMaps, if not supplied explicitly. |
| 4084 | if (indexingMapsAttr.empty()) { |
| 4085 | indexingMapsAttr = llvm::map_to_vector( |
| 4086 | BatchMatmulOp::getDefaultIndexingMaps(parser.getContext()), |
| 4087 | [](AffineMap map) -> Attribute { return AffineMapAttr::get(map); }); |
| 4088 | } |
| 4089 | result.addAttribute("indexing_maps" , |
| 4090 | parser.getBuilder().getArrayAttr(indexingMapsAttr)); |
| 4091 | |
| 4092 | return ::parseNamedStructuredOp(parser, result, |
| 4093 | BatchMatmulOp::getNumRegionArgs(), |
| 4094 | BatchMatmulOp::getRegionBuilder()); |
| 4095 | } |
| 4096 | |
| 4097 | void BatchMatmulOp::print(OpAsmPrinter &p) { |
| 4098 | SmallVector<Attribute, 3> indexingMaps = llvm::map_to_vector<3>( |
| 4099 | BatchMatmulOp::getDefaultIndexingMaps(getContext()), |
| 4100 | [](AffineMap map) -> Attribute { return AffineMapAttr::get(map); }); |
| 4101 | if (!llvm::equal(getIndexingMaps(), indexingMaps)) |
| 4102 | p << " indexing_maps = " << llvm::interleaved_array(getIndexingMaps()); |
| 4103 | |
| 4104 | std::array<StringRef, 3> elidedAttrs = { |
| 4105 | "operandSegmentSizes" , "linalg.memoized_indexing_maps" , "indexing_maps" }; |
| 4106 | ::printNamedStructuredOp(p, getOperation(), getInputs(), getOutputs(), |
| 4107 | elidedAttrs); |
| 4108 | } |
| 4109 | |
| 4110 | /// Verify the user defined indexing maps. |
| 4111 | LogicalResult BatchMatmulOp::verify() { |
| 4112 | // Verification of pure batch_matmul is handled by |
| 4113 | // verifyStructuredOpInterface(). |
| 4114 | if (!hasUserDefinedMaps()) |
| 4115 | return success(); |
| 4116 | |
| 4117 | for (unsigned opIndex = 0; opIndex < 3; opIndex++) { |
| 4118 | if (failed(verifyExtendedBatchVariantMatmulSemantic(*this, opIndex))) |
| 4119 | return failure(); |
| 4120 | } |
| 4121 | return success(); |
| 4122 | } |
| 4123 | |
| 4124 | LogicalResult BatchMatmulOp::fold(FoldAdaptor, |
| 4125 | SmallVectorImpl<OpFoldResult> &) { |
| 4126 | return memref::foldMemRefCast(*this); |
| 4127 | } |
| 4128 | |
| 4129 | void BatchMatmulOp::getEffects( |
| 4130 | SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> |
| 4131 | &effects) { |
| 4132 | if (hasPureTensorSemantics()) |
| 4133 | return; |
| 4134 | getGenericEffectsImpl(effects, cast<LinalgOp>(getOperation())); |
| 4135 | } |
| 4136 | |
| 4137 | Speculation::Speculatability BatchMatmulOp::getSpeculatability() { |
| 4138 | return getGenericSpeculatabilityImpl(cast<LinalgOp>(getOperation())); |
| 4139 | } |
| 4140 | |
| 4141 | //===----------------------------------------------------------------------===// |
| 4142 | // ElementwiseOp |
| 4143 | //===----------------------------------------------------------------------===// |
| 4144 | // |
| 4145 | namespace { |
| 4146 | struct ArityGroupAndKind { |
| 4147 | // The enum class {Unary, Binary, Ternary, ..} |
| 4148 | ElementwiseArityGroup arityGroup; |
| 4149 | |
| 4150 | // The kind (e.g. `exp` or `add`) belonging to the arity group. |
| 4151 | union Kind { |
| 4152 | UnaryFn unaryFn; |
| 4153 | BinaryFn binaryFn; |
| 4154 | TernaryFn ternaryFn; |
| 4155 | } kind; |
| 4156 | }; |
| 4157 | |
| 4158 | unsigned getArityGroupAsUInt(ElementwiseArityGroup arityGroup) { |
| 4159 | return static_cast<unsigned>(arityGroup); |
| 4160 | } |
| 4161 | } // namespace |
| 4162 | |
| 4163 | static ArityGroupAndKind getArityGroupAndKind(ElementwiseKind kind) { |
| 4164 | constexpr int lastUnary = static_cast<int>(ElementwiseCaseLimits::LastUnary); |
| 4165 | constexpr int lastBinary = |
| 4166 | static_cast<int>(ElementwiseCaseLimits::LastBinary); |
| 4167 | constexpr int lastTernary = |
| 4168 | static_cast<int>(ElementwiseCaseLimits::LastTernary); |
| 4169 | |
| 4170 | int val = static_cast<int>(kind); |
| 4171 | ArityGroupAndKind result; |
| 4172 | |
| 4173 | if (val < lastUnary) { |
| 4174 | result.arityGroup = ElementwiseArityGroup::Unary; |
| 4175 | result.kind.unaryFn = static_cast<UnaryFn>(val); |
| 4176 | return result; |
| 4177 | } |
| 4178 | if (val < lastBinary) { |
| 4179 | result.arityGroup = ElementwiseArityGroup::Binary; |
| 4180 | result.kind.binaryFn = static_cast<BinaryFn>(val - lastUnary); |
| 4181 | return result; |
| 4182 | } |
| 4183 | if (val >= lastTernary) { |
| 4184 | llvm_unreachable("unhandled ElementwiseFn" ); |
| 4185 | } |
| 4186 | result.arityGroup = ElementwiseArityGroup::Ternary; |
| 4187 | result.kind.ternaryFn = static_cast<TernaryFn>(val - lastBinary); |
| 4188 | return result; |
| 4189 | } |
| 4190 | |
| 4191 | SmallVector<utils::IteratorType> ElementwiseOp::getIteratorTypesArray() { |
| 4192 | auto rank = getResultRank(); |
| 4193 | return SmallVector<utils::IteratorType>(rank, utils::IteratorType::parallel); |
| 4194 | } |
| 4195 | |
| 4196 | SmallVector<AffineMap> |
| 4197 | ElementwiseOp::getDefaultIndexingMaps(unsigned numMaps, unsigned numDims, |
| 4198 | MLIRContext *context) { |
| 4199 | auto map = AffineMap::getMultiDimIdentityMap(numDims, context); |
| 4200 | return SmallVector<AffineMap>(numMaps, map); |
| 4201 | } |
| 4202 | |
| 4203 | ParseResult ElementwiseOp::parse(OpAsmParser &parser, OperationState &result) { |
| 4204 | // Expect e.g. `kind = #linalg.elemwise_kind<add>` |
| 4205 | Attribute attr; |
| 4206 | mlir::linalg::ElementwiseKind elemwiseKindVal; |
| 4207 | if (parser.parseKeyword("kind" ) || parser.parseEqual()) |
| 4208 | return failure(); |
| 4209 | |
| 4210 | if (succeeded(parser.parseAttribute(attr))) { |
| 4211 | auto elemwiseKindAttr = dyn_cast<ElementwiseKindAttr>(attr); |
| 4212 | if (!elemwiseKindAttr) |
| 4213 | return parser.emitError(parser.getCurrentLocation(), |
| 4214 | "expected ElementwiseKind attribute" ); |
| 4215 | elemwiseKindVal = elemwiseKindAttr.getValue(); |
| 4216 | } else { |
| 4217 | return parser.emitError(parser.getCurrentLocation(), |
| 4218 | "expected operation 'kind' attribute" ); |
| 4219 | } |
| 4220 | result.addAttribute( |
| 4221 | "kind" , ElementwiseKindAttr::get(parser.getContext(), elemwiseKindVal)); |
| 4222 | |
| 4223 | // Parse optional `indexing_maps` |
| 4224 | SmallVector<Attribute, 3> indexingMapsAttr; |
| 4225 | Attribute mapAttr; |
| 4226 | if (succeeded(parser.parseOptionalKeyword("indexing_maps" ))) { |
| 4227 | if (parser.parseEqual()) |
| 4228 | return failure(); |
| 4229 | if (parser.parseLSquare()) |
| 4230 | return failure(); |
| 4231 | do { |
| 4232 | if (parser.parseAttribute(mapAttr)) |
| 4233 | return failure(); |
| 4234 | if (!isa<AffineMapAttr>(mapAttr)) |
| 4235 | return parser.emitError(parser.getCurrentLocation(), |
| 4236 | "expected affine map attribute" ); |
| 4237 | indexingMapsAttr.push_back(mapAttr); |
| 4238 | if (parser.parseOptionalComma()) |
| 4239 | break; |
| 4240 | } while (true); |
| 4241 | if (parser.parseRSquare()) |
| 4242 | return failure(); |
| 4243 | } |
| 4244 | // At this stage of parsing the only way to infer number of region |
| 4245 | // args is through op kind, as input output tensors are not parsed yet. |
| 4246 | auto arityGroupAndKind = getArityGroupAndKind(elemwiseKindVal); |
| 4247 | int numRegionArgs = |
| 4248 | getArityGroupAsUInt(arityGroupAndKind.arityGroup) + 1 /*output*/; |
| 4249 | if (parseNamedStructuredOp(parser, result, numRegionArgs, |
| 4250 | ElementwiseOp::getRegionBuilder())) { |
| 4251 | return parser.emitError(parser.getCurrentLocation(), |
| 4252 | "unable to parse elemwise op" ); |
| 4253 | } |
| 4254 | |
| 4255 | // Initialize indexingMaps, if not supplied explicitly. |
| 4256 | if (indexingMapsAttr.empty()) { |
| 4257 | // We need to infer the numDims of the indexing maps from the output |
| 4258 | // type which is already parsed by now. |
| 4259 | auto resultType = result.operands[result.operands.size() - 1].getType(); |
| 4260 | auto shapedType = llvm::dyn_cast<ShapedType>(resultType); |
| 4261 | if (!shapedType) |
| 4262 | return parser.emitError(parser.getCurrentLocation(), |
| 4263 | "return type needs to be shaped type" ); |
| 4264 | auto numDims = shapedType.getRank(); |
| 4265 | indexingMapsAttr = llvm::map_to_vector( |
| 4266 | ElementwiseOp::getDefaultIndexingMaps(numRegionArgs, numDims, |
| 4267 | parser.getContext()), |
| 4268 | [](AffineMap map) -> Attribute { return AffineMapAttr::get(map); }); |
| 4269 | } |
| 4270 | |
| 4271 | result.addAttribute("indexing_maps" , |
| 4272 | parser.getBuilder().getArrayAttr(indexingMapsAttr)); |
| 4273 | return success(); |
| 4274 | } |
| 4275 | |
| 4276 | void ElementwiseOp::print(OpAsmPrinter &p) { |
| 4277 | p << " kind=" ; |
| 4278 | p.printAttribute(getKindAttr()); |
| 4279 | SmallVector<StringRef, 3> elidedAttrs = {"operandSegmentSizes" , "kind" , |
| 4280 | "indexing_maps" }; |
| 4281 | unsigned arity = |
| 4282 | getArityGroupAsUInt(getArityGroupAndKind(getKind()).arityGroup); |
| 4283 | unsigned numDims = getResultRank(); |
| 4284 | |
| 4285 | SmallVector<Attribute, 3> indexingMaps = llvm::map_to_vector<3>( |
| 4286 | ElementwiseOp::getDefaultIndexingMaps(arity + 1 /*output*/, numDims, |
| 4287 | getContext()), |
| 4288 | [](AffineMap map) -> Attribute { return AffineMapAttr::get(map); }); |
| 4289 | |
| 4290 | if (!llvm::equal(getIndexingMaps(), indexingMaps)) |
| 4291 | p << " indexing_maps = " << llvm::interleaved_array(getIndexingMaps()); |
| 4292 | |
| 4293 | printNamedStructuredOp(p, getOperation(), getInputs(), getOutputs(), |
| 4294 | elidedAttrs); |
| 4295 | } |
| 4296 | |
| 4297 | LogicalResult ElementwiseOp::verify() { |
| 4298 | // All necessary checks are done either by |
| 4299 | // - EnumAttr (e.g. unknown operation kind) |
| 4300 | // - verifyStructuredOpInterface (incorrect map, sizes). |
| 4301 | return success(); |
| 4302 | } |
| 4303 | |
| 4304 | /// Implements the block region builder for the ElementwiseOp. This is called by |
| 4305 | /// 'fillStructuredOpRegion'. |
| 4306 | void ElementwiseOp::regionBuilder(ImplicitLocOpBuilder &b, Block &block, |
| 4307 | ArrayRef<NamedAttribute> attrs) { |
| 4308 | ElementwiseKind elemwiseKind; |
| 4309 | for (auto attr : attrs) { |
| 4310 | if (attr.getName() == b.getStringAttr("kind" )) { |
| 4311 | auto kindAttr = dyn_cast<ElementwiseKindAttr>(attr.getValue()); |
| 4312 | assert(kindAttr && "op kind attribute incorrectly set" ); |
| 4313 | elemwiseKind = kindAttr.getValue(); |
| 4314 | break; |
| 4315 | } |
| 4316 | } |
| 4317 | |
| 4318 | ArityGroupAndKind groupAndKind = getArityGroupAndKind(elemwiseKind); |
| 4319 | auto arityGroup = groupAndKind.arityGroup; |
| 4320 | auto kind = groupAndKind.kind; |
| 4321 | assert(block.getNumArguments() == |
| 4322 | getArityGroupAsUInt(arityGroup) + 1 /*output*/ |
| 4323 | && "Elementwise regionBuilder number of block args mismatch" ); |
| 4324 | |
| 4325 | RegionBuilderHelper helper(b, block); |
| 4326 | SmallVector<Value> yields; |
| 4327 | Value result; |
| 4328 | |
| 4329 | if (arityGroup == ElementwiseArityGroup::Unary) { |
| 4330 | result = helper.buildUnaryFn(kind.unaryFn, block.getArgument(0)); |
| 4331 | |
| 4332 | } else if (arityGroup == ElementwiseArityGroup::Binary) { |
| 4333 | result = helper.buildBinaryFn(kind.binaryFn, block.getArgument(0), |
| 4334 | block.getArgument(1)); |
| 4335 | |
| 4336 | } else if (arityGroup == ElementwiseArityGroup::Ternary) { |
| 4337 | result = helper.buildTernaryFn(kind.ternaryFn, block.getArgument(0), |
| 4338 | block.getArgument(1), block.getArgument(2)); |
| 4339 | |
| 4340 | } else { |
| 4341 | assert(false && "found unhandled category in elemwise" ); |
| 4342 | } |
| 4343 | |
| 4344 | yields.push_back(result); |
| 4345 | helper.yieldOutputs(yields); |
| 4346 | } |
| 4347 | |
| 4348 | LogicalResult ElementwiseOp::fold(FoldAdaptor, |
| 4349 | SmallVectorImpl<OpFoldResult> &) { |
| 4350 | return memref::foldMemRefCast(*this); |
| 4351 | } |
| 4352 | |
| 4353 | void ElementwiseOp::getEffects( |
| 4354 | SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> |
| 4355 | &effects) { |
| 4356 | if (hasPureTensorSemantics()) |
| 4357 | return; |
| 4358 | getGenericEffectsImpl(effects, cast<LinalgOp>(getOperation())); |
| 4359 | } |
| 4360 | |
| 4361 | Speculation::Speculatability ElementwiseOp::getSpeculatability() { |
| 4362 | return getGenericSpeculatabilityImpl(cast<LinalgOp>(getOperation())); |
| 4363 | } |
| 4364 | |
| 4365 | //===----------------------------------------------------------------------===// |
| 4366 | // PackOp/UnPackOp Common |
| 4367 | //===----------------------------------------------------------------------===// |
| 4368 | // Given the (potentially) updated packed type, `newPackedTy`, generates an |
| 4369 | // updated mixed-tile-sizes attribute. A tile size is updated only |
| 4370 | // when: |
| 4371 | // * a dim from newPackedTy is static, and |
| 4372 | // * the corresponding size from mixedTiles is still dynamic. |
| 4373 | // Otherwise, the original tile size is preserved. |
| 4374 | // Note - packed-type-dim and mixed-tile-size should always match! |
| 4375 | static SmallVector<OpFoldResult> |
| 4376 | getNewMixedTileSizes(PatternRewriter &rewriter, Type newPackedTy, |
| 4377 | SmallVector<OpFoldResult> mixedTiles) { |
| 4378 | SmallVector<OpFoldResult> newMixedTileSizes; |
| 4379 | for (auto it : llvm::zip(cast<ShapedType>(newPackedTy) |
| 4380 | .getShape() |
| 4381 | .take_back(mixedTiles.size()), |
| 4382 | mixedTiles)) { |
| 4383 | int64_t shape = std::get<0>(it); |
| 4384 | if (shape == ShapedType::kDynamic) { |
| 4385 | newMixedTileSizes.push_back(std::get<1>(it)); |
| 4386 | continue; |
| 4387 | } |
| 4388 | |
| 4389 | // If the current result dim is static, update the dynamic mixed-size |
| 4390 | // (provided the original value is dynamic). |
| 4391 | OpFoldResult tile = std::get<1>(it); |
| 4392 | if (Attribute attr = llvm::dyn_cast_if_present<Attribute>(tile)) { |
| 4393 | // Already a constant |
| 4394 | newMixedTileSizes.push_back(tile); |
| 4395 | } else { |
| 4396 | assert(getConstantIntValue(tile).value() == shape && |
| 4397 | "tile size and dim size don't match!" ); |
| 4398 | newMixedTileSizes.push_back( |
| 4399 | (rewriter.getIntegerAttr(rewriter.getIndexType(), shape))); |
| 4400 | } |
| 4401 | } |
| 4402 | |
| 4403 | return newMixedTileSizes; |
| 4404 | } |
| 4405 | |
| 4406 | template <typename OpTy> |
| 4407 | static LogicalResult |
| 4408 | reifyResultShapesImpl(OpTy op, OpBuilder &builder, |
| 4409 | ReifiedRankedShapedTypeDims &reifiedReturnShapes) { |
| 4410 | static_assert(llvm::is_one_of<OpTy, PackOp, UnPackOp>::value, |
| 4411 | "applies to only pack or unpack operations" ); |
| 4412 | int64_t destRank = op.getDestRank(); |
| 4413 | reifiedReturnShapes.resize(N: 1, NV: SmallVector<OpFoldResult>(destRank)); |
| 4414 | reifiedReturnShapes[0] = |
| 4415 | tensor::getMixedSizes(builder, loc: op.getLoc(), value: op.getDest()); |
| 4416 | return success(); |
| 4417 | } |
| 4418 | |
| 4419 | template <typename OpTy> |
| 4420 | static DenseMap<int64_t, OpFoldResult> getDimAndTileMappingImpl(OpTy op) { |
| 4421 | static_assert(llvm::is_one_of<OpTy, PackOp, UnPackOp>::value, |
| 4422 | "applies to only pack or unpack operations" ); |
| 4423 | DenseMap<int64_t, OpFoldResult> dimAndTileMapping; |
| 4424 | ArrayRef<int64_t> dimsToTile = op.getInnerDimsPos(); |
| 4425 | SmallVector<OpFoldResult> tiles = op.getMixedTiles(); |
| 4426 | assert(tiles.size() == dimsToTile.size() && |
| 4427 | "tiles must match indices of dimension to block" ); |
| 4428 | // bind the dimension `i` with the tile factor. |
| 4429 | for (auto i : llvm::seq<int64_t>(Begin: 0, End: dimsToTile.size())) |
| 4430 | dimAndTileMapping[dimsToTile[i]] = tiles[i]; |
| 4431 | return dimAndTileMapping; |
| 4432 | } |
| 4433 | |
| 4434 | template <typename OpTy> |
| 4435 | static SmallVector<OpFoldResult> getMixedTilesImpl(OpTy op) { |
| 4436 | static_assert(llvm::is_one_of<OpTy, PackOp, UnPackOp>::value, |
| 4437 | "applies to only pack or unpack operations" ); |
| 4438 | Builder builder(op); |
| 4439 | SmallVector<OpFoldResult> mixedInnerTiles; |
| 4440 | unsigned dynamicValIndex = 0; |
| 4441 | for (int64_t staticTile : op.getStaticInnerTiles()) { |
| 4442 | if (!ShapedType::isDynamic(staticTile)) |
| 4443 | mixedInnerTiles.push_back(builder.getI64IntegerAttr(staticTile)); |
| 4444 | else |
| 4445 | mixedInnerTiles.push_back(Elt: op.getInnerTiles()[dynamicValIndex++]); |
| 4446 | } |
| 4447 | return mixedInnerTiles; |
| 4448 | } |
| 4449 | |
| 4450 | template <typename OpTy> |
| 4451 | static SmallVector<int64_t> getStaticTilesImpl(OpTy op) { |
| 4452 | static_assert(llvm::is_one_of<OpTy, PackOp, UnPackOp>::value, |
| 4453 | "applies to only pack or unpack operations" ); |
| 4454 | SmallVector<Value> dynamicTiles; |
| 4455 | SmallVector<int64_t> staticTiles; |
| 4456 | dispatchIndexOpFoldResults(op.getMixedTiles(), dynamicTiles, staticTiles); |
| 4457 | return staticTiles; |
| 4458 | } |
| 4459 | |
| 4460 | /// Returns true if `dimsPos` is invalid. It is invalid when: |
| 4461 | /// a) It contains duplicate. |
| 4462 | /// b) At least one dimension is out of bound (`dimPos` is >= 0 and < rank). |
| 4463 | /// c) The number of elements in `dimsPos` is > than `rank`. |
| 4464 | static bool isInvalidPackingPosSpecification(ArrayRef<int64_t> dimsPos, |
| 4465 | size_t rank) { |
| 4466 | size_t dimsPosSize = dimsPos.size(); |
| 4467 | if (dimsPosSize > rank) |
| 4468 | return true; |
| 4469 | DenseSet<int64_t> uniqued(llvm::from_range, dimsPos); |
| 4470 | if (dimsPosSize != uniqued.size()) |
| 4471 | return true; |
| 4472 | return llvm::any_of(Range&: dimsPos, P: [rank](int64_t dimPos) { |
| 4473 | return dimPos < 0 || dimPos >= static_cast<int64_t>(rank); |
| 4474 | }); |
| 4475 | } |
| 4476 | |
| 4477 | /// Returns true if the dimension of `sourceShape` is smaller than the dimension |
| 4478 | /// of the `limitShape`. |
| 4479 | static bool areAllInBound(ArrayRef<int64_t> sourceShape, |
| 4480 | ArrayRef<int64_t> limitShape) { |
| 4481 | assert( |
| 4482 | sourceShape.size() == limitShape.size() && |
| 4483 | "expected source shape rank, and limit of the shape to have same rank" ); |
| 4484 | return llvm::all_of( |
| 4485 | Range: llvm::zip(t&: sourceShape, u&: limitShape), P: [](std::tuple<int64_t, int64_t> it) { |
| 4486 | int64_t sourceExtent = std::get<0>(t&: it); |
| 4487 | int64_t limit = std::get<1>(t&: it); |
| 4488 | return ShapedType::isDynamic(sourceExtent) || |
| 4489 | ShapedType::isDynamic(limit) || sourceExtent <= limit; |
| 4490 | }); |
| 4491 | } |
| 4492 | |
| 4493 | template <typename OpTy> |
| 4494 | static LogicalResult commonVerifierPackAndUnPackOp(OpTy packOrUnPack) { |
| 4495 | static_assert(llvm::is_one_of<OpTy, PackOp, UnPackOp>::value, |
| 4496 | "applies to only pack or unpack operations" ); |
| 4497 | Operation *op = packOrUnPack.getOperation(); |
| 4498 | |
| 4499 | // Return true if we have a zero-value tile. |
| 4500 | auto hasZeros = [&](ArrayRef<OpFoldResult> tiles) { |
| 4501 | return llvm::any_of(Range&: tiles, P: isZeroInteger); |
| 4502 | }; |
| 4503 | |
| 4504 | // Verify tiles. Do not allow zero tiles. |
| 4505 | SmallVector<OpFoldResult> mixedTiles = packOrUnPack.getMixedTiles(); |
| 4506 | if (hasZeros(mixedTiles)) |
| 4507 | return op->emitError(message: "invalid zero tile factor" ); |
| 4508 | |
| 4509 | // Verify inner_dims_pos and outer_dims_perm. |
| 4510 | RankedTensorType unpackedType = (std::is_same<OpTy, PackOp>::value) |
| 4511 | ? packOrUnPack.getSourceType() |
| 4512 | : packOrUnPack.getDestType(); |
| 4513 | size_t unpackedRank = unpackedType.getRank(); |
| 4514 | ArrayRef<int64_t> innerDimsPos = packOrUnPack.getInnerDimsPos(); |
| 4515 | ArrayRef<int64_t> outerDimPerm = packOrUnPack.getOuterDimsPerm(); |
| 4516 | if (isInvalidPackingPosSpecification(dimsPos: innerDimsPos, rank: unpackedRank)) |
| 4517 | return op->emitError(message: "invalid inner_dims_pos vector" ); |
| 4518 | if (isInvalidPackingPosSpecification(dimsPos: outerDimPerm, rank: unpackedRank)) |
| 4519 | return op->emitError(message: "invalid outer_dims_perm vector" ); |
| 4520 | if (!outerDimPerm.empty() && outerDimPerm.size() != unpackedRank) |
| 4521 | return op->emitError(message: "outer_dims_perm must be a permutation or empty" ); |
| 4522 | |
| 4523 | // Tiling factors must be less than or equal to the input rank for pack (or |
| 4524 | // output rank for unpack), and must match the number of `inner_dims_pos`. |
| 4525 | if (mixedTiles.size() > unpackedRank) { |
| 4526 | return op->emitError(message: "tiling factors must be less than or equal to the " |
| 4527 | "input rank for pack or output rank for unpack" ); |
| 4528 | } |
| 4529 | if (mixedTiles.size() != innerDimsPos.size()) { |
| 4530 | return op->emitError( |
| 4531 | message: "tiling factors must equal the number of dimensions to tile" ); |
| 4532 | } |
| 4533 | |
| 4534 | ShapedType packedType = (std::is_same<OpTy, PackOp>::value) |
| 4535 | ? packOrUnPack.getDestType() |
| 4536 | : packOrUnPack.getSourceType(); |
| 4537 | size_t packedRank = packedType.getRank(); |
| 4538 | // Require output rank to match input rank + number of blocking factors. |
| 4539 | size_t expectedPackedRank = unpackedRank + mixedTiles.size(); |
| 4540 | if (expectedPackedRank != packedRank) { |
| 4541 | return op->emitError( |
| 4542 | message: "packed rank != (unpacked rank + num tiling factors), got " ) |
| 4543 | << packedRank << " != " << expectedPackedRank; |
| 4544 | } |
| 4545 | |
| 4546 | // Verify result shape is greater than the minimum expected |
| 4547 | // by the pack operation, and that the output shape |
| 4548 | // represents full tiles. |
| 4549 | RankedTensorType expectedPackedType = PackOp::inferPackedType( |
| 4550 | unpackedType, packOrUnPack.getStaticTiles(), innerDimsPos, outerDimPerm); |
| 4551 | if (!areAllInBound(expectedPackedType.getShape(), packedType.getShape())) { |
| 4552 | return op->emitError(message: "the shape of output is not large enough to hold the " |
| 4553 | "packed data. Expected at least " ) |
| 4554 | << expectedPackedType << ", got " << packedType; |
| 4555 | } |
| 4556 | if (!llvm::all_of( |
| 4557 | llvm::zip(packedType.getShape().take_back(mixedTiles.size()), |
| 4558 | mixedTiles), |
| 4559 | [](std::tuple<int64_t, OpFoldResult> it) { |
| 4560 | int64_t shape = std::get<0>(t&: it); |
| 4561 | if (Attribute attr = |
| 4562 | llvm::dyn_cast_if_present<Attribute>(Val&: std::get<1>(t&: it))) { |
| 4563 | IntegerAttr intAttr = dyn_cast_or_null<IntegerAttr>(attr); |
| 4564 | int64_t staticTileSize = intAttr.getValue().getSExtValue(); |
| 4565 | return shape == staticTileSize; |
| 4566 | } |
| 4567 | return ShapedType::isDynamic(shape); |
| 4568 | })) { |
| 4569 | return op->emitError(message: "mismatch in inner tile sizes specified and shaped of " |
| 4570 | "tiled dimension in the packed type" ); |
| 4571 | } |
| 4572 | return success(); |
| 4573 | } |
| 4574 | |
| 4575 | namespace { |
| 4576 | /// Subset of PackOp/UnPackOp fields used to compute the result of applying |
| 4577 | /// various permutations to the op. |
| 4578 | // TODO: Add linalg.transpose + pack/unpack folding patterns that just reuse |
| 4579 | // these. These may or may not become true foldings / canonicalizations |
| 4580 | // depending on how aggressive we want to be in automatically folding |
| 4581 | // transposes. |
| 4582 | struct PackOrUnPackTransposeResult { |
| 4583 | SmallVector<int64_t> innerDimsPos; |
| 4584 | SmallVector<OpFoldResult> innerTiles; |
| 4585 | SmallVector<int64_t> outerDimsPerm; |
| 4586 | }; |
| 4587 | } // namespace |
| 4588 | |
| 4589 | template <typename OpTy> |
| 4590 | static PackOrUnPackTransposeResult |
| 4591 | commonPermutationOfPackAndUnPackOp(OpTy packOrUnPackOp, |
| 4592 | ArrayRef<int64_t> innerPermutation, |
| 4593 | ArrayRef<int64_t> outerPermutation) { |
| 4594 | static_assert(llvm::is_one_of<OpTy, PackOp, UnPackOp>::value, |
| 4595 | "applies to only pack or unpack operations" ); |
| 4596 | assert((!innerPermutation.empty() || !outerPermutation.empty()) && |
| 4597 | "some permutation must be non-empty" ); |
| 4598 | PackOrUnPackTransposeResult metadata; |
| 4599 | metadata.innerDimsPos = |
| 4600 | SmallVector<int64_t>(packOrUnPackOp.getInnerDimsPos()); |
| 4601 | metadata.innerTiles = |
| 4602 | SmallVector<OpFoldResult>(packOrUnPackOp.getMixedTiles()); |
| 4603 | int64_t numOuterDims = std::is_same<OpTy, PackOp>::value |
| 4604 | ? packOrUnPackOp.getSourceRank() |
| 4605 | : packOrUnPackOp.getDestRank(); |
| 4606 | metadata.outerDimsPerm = |
| 4607 | packOrUnPackOp.getOuterDimsPerm().empty() |
| 4608 | ? llvm::to_vector(Range: llvm::seq<int64_t>(Begin: 0, End: numOuterDims)) |
| 4609 | : SmallVector<int64_t>(packOrUnPackOp.getOuterDimsPerm()); |
| 4610 | if (!innerPermutation.empty()) { |
| 4611 | assert(innerPermutation.size() == metadata.innerDimsPos.size() && |
| 4612 | isPermutationVector(innerPermutation) && |
| 4613 | "invalid inner permutation" ); |
| 4614 | applyPermutationToVector(inVec&: metadata.innerDimsPos, permutation: innerPermutation); |
| 4615 | applyPermutationToVector(inVec&: metadata.innerTiles, permutation: innerPermutation); |
| 4616 | } |
| 4617 | if (!outerPermutation.empty()) { |
| 4618 | assert(outerPermutation.size() == metadata.outerDimsPerm.size() && |
| 4619 | isPermutationVector(outerPermutation) && |
| 4620 | "invalid outer permutation" ); |
| 4621 | applyPermutationToVector(inVec&: metadata.outerDimsPerm, permutation: outerPermutation); |
| 4622 | } |
| 4623 | return metadata; |
| 4624 | } |
| 4625 | |
| 4626 | //===----------------------------------------------------------------------===// |
| 4627 | // PackOp |
| 4628 | //===----------------------------------------------------------------------===// |
| 4629 | |
| 4630 | void PackOp::getAsmResultNames(function_ref<void(Value, StringRef)> setNameFn) { |
| 4631 | setNameFn(getResult(), "pack" ); |
| 4632 | } |
| 4633 | |
| 4634 | void PackOp::build(OpBuilder &builder, OperationState &state, Value source, |
| 4635 | Value dest, ArrayRef<int64_t> innerDimsPos, |
| 4636 | ArrayRef<OpFoldResult> innerTiles, |
| 4637 | std::optional<Value> paddingValue, |
| 4638 | ArrayRef<int64_t> outerDimsPerm) { |
| 4639 | assert(innerDimsPos.size() == innerTiles.size() && |
| 4640 | "number of tile sizes specified must match the specified number of " |
| 4641 | "original dimensions to be tiled" ); |
| 4642 | SmallVector<int64_t> staticTileSizes; |
| 4643 | SmallVector<Value> dynamicTileSizes; |
| 4644 | dispatchIndexOpFoldResults(innerTiles, dynamicTileSizes, staticTileSizes); |
| 4645 | build(builder, state, dest.getType(), source, dest, |
| 4646 | paddingValue ? *paddingValue : nullptr, |
| 4647 | outerDimsPerm.empty() ? nullptr |
| 4648 | : builder.getDenseI64ArrayAttr(outerDimsPerm), |
| 4649 | builder.getDenseI64ArrayAttr(innerDimsPos), dynamicTileSizes, |
| 4650 | builder.getDenseI64ArrayAttr(staticTileSizes)); |
| 4651 | } |
| 4652 | |
| 4653 | LogicalResult |
| 4654 | PackOp::reifyResultShapes(OpBuilder &builder, |
| 4655 | ReifiedRankedShapedTypeDims &reifiedReturnShapes) { |
| 4656 | return reifyResultShapesImpl(*this, builder, reifiedReturnShapes); |
| 4657 | } |
| 4658 | |
| 4659 | DenseMap<int64_t, OpFoldResult> PackOp::getDimAndTileMapping() { |
| 4660 | return getDimAndTileMappingImpl(*this); |
| 4661 | } |
| 4662 | |
| 4663 | SmallVector<OpFoldResult> PackOp::getMixedTiles() { |
| 4664 | return getMixedTilesImpl(*this); |
| 4665 | } |
| 4666 | |
| 4667 | SmallVector<int64_t> PackOp::getStaticTiles() { |
| 4668 | return getStaticTilesImpl(*this); |
| 4669 | } |
| 4670 | |
| 4671 | ArrayRef<int64_t> PackOp::getAllOuterDims() { |
| 4672 | ShapedType inputType = getSourceType(); |
| 4673 | int64_t inputRank = inputType.getRank(); |
| 4674 | return getDestType().getShape().take_front(inputRank); |
| 4675 | } |
| 4676 | |
| 4677 | SmallVector<int64_t> PackOp::getTiledOuterDims() { |
| 4678 | auto innerDimsPos = getInnerDimsPos(); |
| 4679 | auto packedShape = getDestType().getShape(); |
| 4680 | SmallVector<int64_t> res; |
| 4681 | |
| 4682 | for (auto index : innerDimsPos) |
| 4683 | res.push_back(packedShape[index]); |
| 4684 | |
| 4685 | return res; |
| 4686 | } |
| 4687 | |
| 4688 | bool PackOp::requirePaddingValue(ArrayRef<int64_t> inputShape, |
| 4689 | ArrayRef<int64_t> innerDimsPos, |
| 4690 | ArrayRef<int64_t> outputShape, |
| 4691 | ArrayRef<int64_t> outerDimsPerm, |
| 4692 | ArrayRef<OpFoldResult> innerTiles) { |
| 4693 | SmallVector<int64_t> outputTileSizes( |
| 4694 | outputShape.take_front(inputShape.size())); |
| 4695 | if (!outerDimsPerm.empty()) { |
| 4696 | assert(outerDimsPerm.size() == outputTileSizes.size() && |
| 4697 | "expected output and outer_dims_perm to have same size" ); |
| 4698 | applyPermutationToVector(outputTileSizes, |
| 4699 | invertPermutationVector(outerDimsPerm)); |
| 4700 | } |
| 4701 | for (auto [pos, tileSize] : llvm::zip_equal(innerDimsPos, innerTiles)) { |
| 4702 | if (ShapedType::isDynamic(inputShape[pos])) |
| 4703 | continue; |
| 4704 | std::optional<int64_t> constantTile = getConstantIntValue(tileSize); |
| 4705 | |
| 4706 | if (!constantTile) { |
| 4707 | if (!ShapedType::isDynamic(outputTileSizes[pos]) && |
| 4708 | (inputShape[pos] % outputTileSizes[pos] != 0)) |
| 4709 | return true; |
| 4710 | } else if (inputShape[pos] % (*constantTile) != 0) { |
| 4711 | return true; |
| 4712 | } |
| 4713 | } |
| 4714 | return false; |
| 4715 | } |
| 4716 | |
| 4717 | LogicalResult PackOp::verify() { |
| 4718 | if (failed(commonVerifierPackAndUnPackOp(*this))) |
| 4719 | return failure(); |
| 4720 | |
| 4721 | // Verify padding value, and bail out if the tile does not divide the |
| 4722 | // dimension fully. In the case of dynamic tile factors or dimensions, having |
| 4723 | // a partial tile is undefined behavior. |
| 4724 | auto paddingValue = getPaddingValue(); |
| 4725 | if (paddingValue && |
| 4726 | paddingValue.getType() != getSourceType().getElementType()) { |
| 4727 | return emitOpError("expected padding_value has " ) |
| 4728 | << getSourceType().getElementType() |
| 4729 | << " but got: " << paddingValue.getType(); |
| 4730 | } |
| 4731 | |
| 4732 | if (!paddingValue && |
| 4733 | requirePaddingValue(getSourceType().getShape(), getInnerDimsPos(), |
| 4734 | getDestType().getShape(), getOuterDimsPerm(), |
| 4735 | getMixedTiles())) { |
| 4736 | return emitOpError( |
| 4737 | "invalid tile factor or output size provided. Only full tiles are " |
| 4738 | "supported when padding_value is not set" ); |
| 4739 | } |
| 4740 | return success(); |
| 4741 | } |
| 4742 | |
| 4743 | /// Converts OpFoldResults to int64_t shape entries, unconditionally mapping all |
| 4744 | /// Value's to kDynamic, even if they are arith.constant values. |
| 4745 | static SmallVector<int64_t> |
| 4746 | asShapeWithAnyValueAsDynamic(ArrayRef<OpFoldResult> ofrs) { |
| 4747 | SmallVector<int64_t> result; |
| 4748 | for (auto o : ofrs) { |
| 4749 | // Have to do this first, as getConstantIntValue special-cases constants. |
| 4750 | if (llvm::dyn_cast_if_present<Value>(o)) |
| 4751 | result.push_back(ShapedType::kDynamic); |
| 4752 | else |
| 4753 | result.push_back(getConstantIntValue(o).value_or(ShapedType::kDynamic)); |
| 4754 | } |
| 4755 | return result; |
| 4756 | } |
| 4757 | |
| 4758 | /// Helper for PackOp::{getResultShape,inferPackedType}. Returns the shape of |
| 4759 | /// the packed type. Having a shared helper helps implement these two methods in |
| 4760 | /// a way that ensures that they agree on which dimensions are dynamic. |
| 4761 | static SmallVector<int64_t> getPackOpResultTypeShape( |
| 4762 | ArrayRef<int64_t> sourceShape, ArrayRef<int64_t> innerTileSizes, |
| 4763 | ArrayRef<int64_t> innerDimsPos, ArrayRef<int64_t> outerDimsPerm) { |
| 4764 | SmallVector<int64_t> resultShape = llvm::to_vector(Range&: sourceShape); |
| 4765 | for (auto tiledDim : llvm::enumerate(First: llvm::to_vector(Range&: innerDimsPos))) { |
| 4766 | if (ShapedType::isDynamic(resultShape[tiledDim.value()])) |
| 4767 | continue; |
| 4768 | if (ShapedType::isDynamic(innerTileSizes[tiledDim.index()])) { |
| 4769 | resultShape[tiledDim.value()] = ShapedType::kDynamic; |
| 4770 | continue; |
| 4771 | } |
| 4772 | resultShape[tiledDim.value()] = llvm::divideCeilSigned( |
| 4773 | Numerator: resultShape[tiledDim.value()], Denominator: innerTileSizes[tiledDim.index()]); |
| 4774 | } |
| 4775 | |
| 4776 | // Swap tile loops if outer_dims_perm is available. |
| 4777 | if (!outerDimsPerm.empty()) |
| 4778 | applyPermutationToVector(inVec&: resultShape, permutation: outerDimsPerm); |
| 4779 | |
| 4780 | // Append the inner tile dimensions. |
| 4781 | resultShape.append(in_start: innerTileSizes.begin(), in_end: innerTileSizes.end()); |
| 4782 | return resultShape; |
| 4783 | } |
| 4784 | |
| 4785 | SmallVector<OpFoldResult> PackOp::getResultShape( |
| 4786 | OpBuilder &builder, Location loc, ArrayRef<OpFoldResult> sourceDims, |
| 4787 | ArrayRef<OpFoldResult> innerTileSizes, ArrayRef<int64_t> innerDimsPos, |
| 4788 | ArrayRef<int64_t> outerDimsPerm) { |
| 4789 | SmallVector<OpFoldResult> resultDims = llvm::to_vector(sourceDims); |
| 4790 | |
| 4791 | AffineExpr s0, s1; |
| 4792 | bindSymbols(builder.getContext(), s0, s1); |
| 4793 | AffineExpr ceilDivExpr = s0.ceilDiv(s1); |
| 4794 | for (auto tiledDim : llvm::enumerate(llvm::to_vector(innerDimsPos))) { |
| 4795 | resultDims[tiledDim.value()] = affine::makeComposedFoldedAffineApply( |
| 4796 | builder, loc, ceilDivExpr, |
| 4797 | {resultDims[tiledDim.value()], innerTileSizes[tiledDim.index()]}); |
| 4798 | } |
| 4799 | if (!outerDimsPerm.empty()) |
| 4800 | applyPermutationToVector(resultDims, outerDimsPerm); |
| 4801 | resultDims.append(innerTileSizes.begin(), innerTileSizes.end()); |
| 4802 | |
| 4803 | SmallVector<int64_t> resultTypeShape = |
| 4804 | getPackOpResultTypeShape(asShapeWithAnyValueAsDynamic(sourceDims), |
| 4805 | asShapeWithAnyValueAsDynamic(innerTileSizes), |
| 4806 | innerDimsPos, outerDimsPerm); |
| 4807 | |
| 4808 | // Fix-up `resultDims` to ensure that they are Value's if and only if the |
| 4809 | // result type shape says it's a dynamic dim. This is needed as callers may |
| 4810 | // use dispatchIndexOpFoldResults on the result, and rely on exact number of |
| 4811 | // dynamic dims returned by that. |
| 4812 | for (unsigned i = 0; i < resultDims.size(); ++i) { |
| 4813 | if (!ShapedType::isDynamic(resultTypeShape[i])) |
| 4814 | continue; |
| 4815 | resultDims[i] = |
| 4816 | getValueOrCreateConstantIndexOp(builder, loc, resultDims[i]); |
| 4817 | } |
| 4818 | |
| 4819 | return resultDims; |
| 4820 | } |
| 4821 | |
| 4822 | /// Get the expected packed type based on source type, tile factors, position of |
| 4823 | /// the inner tiles and permutation of the outer tiled loop. |
| 4824 | RankedTensorType PackOp::inferPackedType(RankedTensorType sourceType, |
| 4825 | ArrayRef<int64_t> innerTileSizes, |
| 4826 | ArrayRef<int64_t> innerDimsPos, |
| 4827 | ArrayRef<int64_t> outerDimsPerm) { |
| 4828 | SmallVector<int64_t> resultShape = getPackOpResultTypeShape( |
| 4829 | sourceType.getShape(), innerTileSizes, innerDimsPos, outerDimsPerm); |
| 4830 | return RankedTensorType::get(resultShape, sourceType.getElementType()); |
| 4831 | } |
| 4832 | |
| 4833 | Value PackOp::createDestinationTensor(OpBuilder &b, Location loc, Value source, |
| 4834 | ArrayRef<OpFoldResult> innerTileSizes, |
| 4835 | ArrayRef<int64_t> innerDimsPos, |
| 4836 | ArrayRef<int64_t> outerDimsPerm) { |
| 4837 | AffineExpr dim0, dim1; |
| 4838 | bindDims(b.getContext(), dim0, dim1); |
| 4839 | auto ceilDiv = [&](OpFoldResult v1, OpFoldResult v2) -> OpFoldResult { |
| 4840 | return affine::makeComposedFoldedAffineApply(b, loc, dim0.ceilDiv(dim1), |
| 4841 | {v1, v2}); |
| 4842 | }; |
| 4843 | |
| 4844 | SmallVector<OpFoldResult> mixedSizes; |
| 4845 | for (auto [index, value] : llvm::enumerate( |
| 4846 | llvm::cast<RankedTensorType>(source.getType()).getShape())) { |
| 4847 | if (ShapedType::isDynamic(value)) |
| 4848 | mixedSizes.push_back( |
| 4849 | b.create<tensor::DimOp>(loc, source, index).getResult()); |
| 4850 | else |
| 4851 | mixedSizes.push_back(b.getIndexAttr(value)); |
| 4852 | } |
| 4853 | for (auto it : llvm::zip(innerDimsPos, innerTileSizes)) { |
| 4854 | int64_t dimPos = std::get<0>(it); |
| 4855 | OpFoldResult tileSize = std::get<1>(it); |
| 4856 | mixedSizes[dimPos] = ceilDiv(mixedSizes[dimPos], tileSize); |
| 4857 | } |
| 4858 | if (!outerDimsPerm.empty()) |
| 4859 | applyPermutationToVector<OpFoldResult>(mixedSizes, outerDimsPerm); |
| 4860 | |
| 4861 | mixedSizes.append(innerTileSizes.begin(), innerTileSizes.end()); |
| 4862 | auto elemType = llvm::cast<ShapedType>(source.getType()).getElementType(); |
| 4863 | return b.create<tensor::EmptyOp>(loc, mixedSizes, elemType); |
| 4864 | } |
| 4865 | |
| 4866 | PackOp PackOp::createTransposedClone(OpBuilder &b, Location loc, |
| 4867 | ArrayRef<int64_t> innerPermutation, |
| 4868 | ArrayRef<int64_t> outerPermutation) { |
| 4869 | PackOrUnPackTransposeResult metadata = commonPermutationOfPackAndUnPackOp( |
| 4870 | *this, innerPermutation, outerPermutation); |
| 4871 | Value transposedDest = |
| 4872 | createDestinationTensor(b, loc, getSource(), metadata.innerTiles, |
| 4873 | metadata.innerDimsPos, metadata.outerDimsPerm); |
| 4874 | return b.create<PackOp>(loc, getSource(), transposedDest, |
| 4875 | metadata.innerDimsPos, metadata.innerTiles, |
| 4876 | getPaddingValue(), metadata.outerDimsPerm); |
| 4877 | } |
| 4878 | |
| 4879 | /// Returns true if the tiles and the tiled dims are constant. |
| 4880 | template <typename OpTy> |
| 4881 | bool areTilesAndTiledDimsAllConstant(OpTy op) { |
| 4882 | static_assert(llvm::is_one_of<OpTy, PackOp, UnPackOp>::value, |
| 4883 | "applies to only pack or unpack operations" ); |
| 4884 | ShapedType packedType = (std::is_same<OpTy, PackOp>::value) |
| 4885 | ? op.getDestType() |
| 4886 | : op.getSourceType(); |
| 4887 | SmallVector<OpFoldResult> mixedTiles = op.getMixedTiles(); |
| 4888 | for (auto [dimDest, tile] : llvm::zip( |
| 4889 | packedType.getShape().take_back(mixedTiles.size()), mixedTiles)) { |
| 4890 | std::optional<int64_t> constTileSize = getConstantIntValue(tile); |
| 4891 | if (!constTileSize || ShapedType::isDynamic(dimDest)) |
| 4892 | return false; |
| 4893 | } |
| 4894 | return true; |
| 4895 | } |
| 4896 | |
| 4897 | Speculation::Speculatability PackOp::getSpeculatability() { |
| 4898 | if (getPaddingValue()) |
| 4899 | return Speculation::Speculatable; |
| 4900 | |
| 4901 | // The verifier rejects already operations if we can statically prove that the |
| 4902 | // sizes of the tiles do not divide perfectly the dimension; thus, check only |
| 4903 | // to have constant tiles and tiled inner dimensions. |
| 4904 | if (!areTilesAndTiledDimsAllConstant(*this)) |
| 4905 | return Speculation::NotSpeculatable; |
| 4906 | |
| 4907 | return Speculation::Speculatable; |
| 4908 | } |
| 4909 | |
| 4910 | // Return true if `inner_dims_pos` and `outer_dims_perm` target the same |
| 4911 | // dimensions for pack and unpack. |
| 4912 | static bool hasSameInnerOuterAttribute(PackOp packOp, UnPackOp unPackOp) { |
| 4913 | if (packOp.getInnerDimsPos() != unPackOp.getInnerDimsPos()) |
| 4914 | return false; |
| 4915 | if (packOp.getOuterDimsPerm() == unPackOp.getOuterDimsPerm()) |
| 4916 | return true; |
| 4917 | // Outer dims permutation is optional. |
| 4918 | // To compare unbalanced pack-unpack pair, treat no permutation as equal to |
| 4919 | // identity permutation. |
| 4920 | return isIdentityPermutation(packOp.getOuterDimsPerm()) && |
| 4921 | isIdentityPermutation(unPackOp.getOuterDimsPerm()); |
| 4922 | } |
| 4923 | |
| 4924 | // Return true if pack and unpack have the same tiles. |
| 4925 | // Same SSA values or same integer constants. |
| 4926 | static bool haveSameTiles(PackOp packOp, UnPackOp unPackOp) { |
| 4927 | auto packTiles = packOp.getMixedTiles(); |
| 4928 | auto unPackTiles = unPackOp.getMixedTiles(); |
| 4929 | if (packTiles.size() != unPackTiles.size()) |
| 4930 | return false; |
| 4931 | for (size_t i = 0, e = packTiles.size(); i < e; i++) { |
| 4932 | if (!isEqualConstantIntOrValue(packTiles[i], unPackTiles[i])) |
| 4933 | return false; |
| 4934 | } |
| 4935 | return true; |
| 4936 | } |
| 4937 | |
| 4938 | /// Returns true if the pack op does not need a padding value. |
| 4939 | static bool paddingIsNotNeeded(PackOp op) { |
| 4940 | auto srcType = op.getSourceType(); |
| 4941 | if (llvm::any_of(op.getInnerDimsPos(), |
| 4942 | [&](int64_t pos) { return srcType.isDynamicDim(pos); })) |
| 4943 | return false; |
| 4944 | if (ShapedType::isDynamicShape(op.getStaticInnerTiles())) |
| 4945 | return false; |
| 4946 | return !PackOp::requirePaddingValue( |
| 4947 | srcType.getShape(), op.getInnerDimsPos(), op.getDestType().getShape(), |
| 4948 | op.getOuterDimsPerm(), op.getMixedTiles()); |
| 4949 | } |
| 4950 | |
| 4951 | /// Returns true if the `srcShape` or `destShape` is different from the one in |
| 4952 | /// `packOp` and populates each with the inferred static shape. |
| 4953 | static bool inferStaticShape(PackOp packOp, SmallVectorImpl<int64_t> &srcShape, |
| 4954 | SmallVectorImpl<int64_t> &destShape) { |
| 4955 | bool changeNeeded = false; |
| 4956 | srcShape.assign(packOp.getSourceType().getShape().begin(), |
| 4957 | packOp.getSourceType().getShape().end()); |
| 4958 | destShape.assign(packOp.getDestType().getShape().begin(), |
| 4959 | packOp.getDestType().getShape().end()); |
| 4960 | llvm::SmallSetVector<int64_t, 4> innerDims; |
| 4961 | innerDims.insert_range(packOp.getInnerDimsPos()); |
| 4962 | SmallVector<int64_t> inverseOuterDimsPerm; |
| 4963 | if (!packOp.getOuterDimsPerm().empty()) |
| 4964 | inverseOuterDimsPerm = invertPermutationVector(packOp.getOuterDimsPerm()); |
| 4965 | int srcRank = packOp.getSourceRank(); |
| 4966 | for (auto i : llvm::seq<int64_t>(0, srcRank)) { |
| 4967 | if (innerDims.contains(i)) |
| 4968 | continue; |
| 4969 | int64_t srcPos = i; |
| 4970 | int64_t destPos = i; |
| 4971 | if (!inverseOuterDimsPerm.empty()) |
| 4972 | destPos = inverseOuterDimsPerm[srcPos]; |
| 4973 | if (ShapedType::isDynamic(srcShape[srcPos]) == |
| 4974 | ShapedType::isDynamic(destShape[destPos])) { |
| 4975 | continue; |
| 4976 | } |
| 4977 | int64_t size = srcShape[srcPos]; |
| 4978 | if (ShapedType::isDynamic(size)) |
| 4979 | size = destShape[destPos]; |
| 4980 | srcShape[srcPos] = size; |
| 4981 | destShape[destPos] = size; |
| 4982 | changeNeeded = true; |
| 4983 | } |
| 4984 | return changeNeeded; |
| 4985 | } |
| 4986 | |
| 4987 | LogicalResult PackOp::canonicalize(PackOp packOp, PatternRewriter &rewriter) { |
| 4988 | // Fold an pack(unpack(x)) to x. |
| 4989 | if (auto unPackOp = packOp.getSource().getDefiningOp<UnPackOp>()) { |
| 4990 | if (unPackOp.getSourceType() != packOp.getDestType()) |
| 4991 | return failure(); |
| 4992 | if (packOp.getPaddingValue() || |
| 4993 | !hasSameInnerOuterAttribute(packOp, unPackOp) || |
| 4994 | !haveSameTiles(packOp, unPackOp)) |
| 4995 | return failure(); |
| 4996 | rewriter.replaceOp(packOp, unPackOp.getSource()); |
| 4997 | return success(); |
| 4998 | } |
| 4999 | |
| 5000 | // Fold optional PaddingValue operand away if padding is not needed. |
| 5001 | if (packOp.getPaddingValue() && paddingIsNotNeeded(packOp)) { |
| 5002 | rewriter.startOpModification(packOp); |
| 5003 | packOp.getPaddingValueMutable().clear(); |
| 5004 | rewriter.finalizeOpModification(packOp); |
| 5005 | return success(); |
| 5006 | } |
| 5007 | |
| 5008 | // Insert tensor.cast ops if static shape inference is available.. |
| 5009 | SmallVector<int64_t> srcShape, destShape; |
| 5010 | if (inferStaticShape(packOp, srcShape, destShape)) { |
| 5011 | Location loc = packOp.getLoc(); |
| 5012 | Value source = packOp.getSource(); |
| 5013 | if (srcShape != packOp.getSourceType().getShape()) { |
| 5014 | auto newSrcType = packOp.getSourceType().clone(srcShape); |
| 5015 | source = |
| 5016 | rewriter.create<tensor::CastOp>(loc, newSrcType, packOp.getSource()); |
| 5017 | } |
| 5018 | Value dest = packOp.getDest(); |
| 5019 | RankedTensorType originalResultType = packOp.getDestType(); |
| 5020 | bool needUpdateDestType = (destShape != originalResultType.getShape()); |
| 5021 | if (needUpdateDestType) { |
| 5022 | auto newDestType = packOp.getDestType().clone(destShape); |
| 5023 | dest = |
| 5024 | rewriter.create<tensor::CastOp>(loc, newDestType, packOp.getDest()); |
| 5025 | } |
| 5026 | rewriter.modifyOpInPlace(packOp, [&] { |
| 5027 | packOp.getSourceMutable().assign(source); |
| 5028 | packOp.getDestMutable().assign(dest); |
| 5029 | packOp.getResult().setType(cast<RankedTensorType>(dest.getType())); |
| 5030 | }); |
| 5031 | // Insert a cast if needed |
| 5032 | if (needUpdateDestType) { |
| 5033 | rewriter.setInsertionPointAfter(packOp); |
| 5034 | auto castOp = |
| 5035 | rewriter.create<tensor::CastOp>(loc, originalResultType, packOp); |
| 5036 | rewriter.replaceAllUsesExcept(packOp, castOp, castOp); |
| 5037 | } |
| 5038 | return success(); |
| 5039 | } |
| 5040 | |
| 5041 | return failure(); |
| 5042 | } |
| 5043 | |
| 5044 | template <typename PackOrUnpackOp> |
| 5045 | static bool isLikePadUnPad(PackOrUnpackOp packOp, |
| 5046 | RankedTensorType packedTensorType) { |
| 5047 | static_assert(std::is_same<PackOrUnpackOp, PackOp>::value || |
| 5048 | std::is_same<PackOrUnpackOp, UnPackOp>::value, |
| 5049 | "Function meant for pack/unpack" ); |
| 5050 | // This is a pad if packing only adds ones and we don't transpose dimensions. |
| 5051 | |
| 5052 | // Check that we are not transposing any dimensions. |
| 5053 | ArrayRef<int64_t> innerDimsPos = packOp.getInnerDimsPos(); |
| 5054 | int64_t numPackedDims = innerDimsPos.size(); |
| 5055 | auto orderedDims = llvm::to_vector<4>(Range: llvm::seq<int64_t>(Begin: 0, End: numPackedDims)); |
| 5056 | if (orderedDims != innerDimsPos) { |
| 5057 | // Dimensions don't happen in order. |
| 5058 | return false; |
| 5059 | } |
| 5060 | |
| 5061 | ArrayRef<int64_t> packedShape = packedTensorType.getShape(); |
| 5062 | int64_t packedRank = packedTensorType.getRank(); |
| 5063 | // At this point we know that we are taking numPackedDims outer |
| 5064 | // dimensions and pushing them all the way as the inner most dimensions. |
| 5065 | // What's left on the outer most dimensions is, in this order: |
| 5066 | // - the factor of the packed dimensions, then |
| 5067 | // - the untouched dimensions |
| 5068 | // This shifting inward of dimensions is a no-op (as opposed to a transpose) |
| 5069 | // if all the dimensions that bubble outerward are ones. |
| 5070 | // Therefore check that all the dimensions but the numPackedDims inner most |
| 5071 | // ones are ones. |
| 5072 | return llvm::all_of( |
| 5073 | llvm::seq<int64_t>(Begin: 0, End: packedRank - numPackedDims), |
| 5074 | [&packedShape](int64_t i) { return packedShape[i] == 1; }); |
| 5075 | } |
| 5076 | |
| 5077 | bool PackOp::isLikePad() { |
| 5078 | auto packedTensorType = |
| 5079 | llvm::cast<RankedTensorType>((*this)->getResultTypes().front()); |
| 5080 | return isLikePadUnPad(*this, packedTensorType); |
| 5081 | } |
| 5082 | |
| 5083 | OpFoldResult PackOp::fold(FoldAdaptor adaptor) { |
| 5084 | std::optional<Attribute> paddingValue; |
| 5085 | if (auto pad = adaptor.getPaddingValue()) |
| 5086 | paddingValue = pad; |
| 5087 | if (OpFoldResult reshapedSource = reshapeConstantSource( |
| 5088 | llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getSource()), |
| 5089 | getDestType(), paddingValue)) |
| 5090 | return reshapedSource; |
| 5091 | return {}; |
| 5092 | } |
| 5093 | |
| 5094 | /// Folds a tensor.cast op into a consuming PackOp op if the |
| 5095 | /// `tensor.cast` has source that is more static than the consuming op. |
| 5096 | /// |
| 5097 | /// Example: |
| 5098 | /// ```mlir |
| 5099 | /// %1 = tensor.cast %0 : tensor<8x16xf32> to tensor<?x?xf32> |
| 5100 | /// %2 = tensor.pack %1 ... : tensor<?x?xf32> ... |
| 5101 | /// ``` |
| 5102 | /// |
| 5103 | /// folds into: |
| 5104 | /// |
| 5105 | /// ```mlir |
| 5106 | /// %2 = tensor.pack %0 ... : tensor<8x16xf32> ... |
| 5107 | /// ``` |
| 5108 | struct FoldTensorCastPackOp : public OpRewritePattern<PackOp> { |
| 5109 | using OpRewritePattern<PackOp>::OpRewritePattern; |
| 5110 | |
| 5111 | LogicalResult matchAndRewrite(PackOp op, |
| 5112 | PatternRewriter &rewriter) const override { |
| 5113 | if (!tensor::hasFoldableTensorCastOperand(op: op)) |
| 5114 | return failure(); |
| 5115 | |
| 5116 | SmallVector<Type> newResultTypes(op->getResultTypes()); |
| 5117 | SmallVector<Value> newOperands = |
| 5118 | tensor::getUpdatedOperandsAfterCastOpFolding(op, newResultTypes); |
| 5119 | |
| 5120 | // Get the updated mixed-tile-sizes attribute. |
| 5121 | SmallVector<OpFoldResult> newMixedTileSizes = |
| 5122 | getNewMixedTileSizes(rewriter, newResultTypes[0], op.getMixedTiles()); |
| 5123 | |
| 5124 | // Clone op. |
| 5125 | // TODO: Strictly speaking, discardable attributes should be _discarded_ at |
| 5126 | // this point. However, in practice, we use them for things that we'd like |
| 5127 | // to preserve. Implement a better abstraction. |
| 5128 | PackOp newOp = rewriter.create<PackOp>( |
| 5129 | op.getLoc(), newOperands[0], newOperands[1], op.getInnerDimsPos(), |
| 5130 | newMixedTileSizes, op.getPaddingValue(), op.getOuterDimsPerm()); |
| 5131 | newOp->setDiscardableAttrs(op->getDiscardableAttrDictionary()); |
| 5132 | |
| 5133 | // Replace op. |
| 5134 | Value oldResult = op.getResult(); |
| 5135 | Value newResult = newOp.getResult(); |
| 5136 | Value replacement = (newResult.getType() != oldResult.getType()) |
| 5137 | ? rewriter.create<tensor::CastOp>( |
| 5138 | op->getLoc(), oldResult.getType(), newResult) |
| 5139 | : newResult; |
| 5140 | |
| 5141 | rewriter.replaceOp(op, {replacement}); |
| 5142 | |
| 5143 | return success(); |
| 5144 | } |
| 5145 | }; |
| 5146 | |
| 5147 | //===----------------------------------------------------------------------===// |
| 5148 | // UnPackOp |
| 5149 | //===----------------------------------------------------------------------===// |
| 5150 | |
| 5151 | void UnPackOp::getAsmResultNames( |
| 5152 | function_ref<void(Value, StringRef)> setNameFn) { |
| 5153 | setNameFn(getResult(), "unpack" ); |
| 5154 | } |
| 5155 | |
| 5156 | LogicalResult |
| 5157 | UnPackOp::reifyResultShapes(OpBuilder &builder, |
| 5158 | ReifiedRankedShapedTypeDims &reifiedReturnShapes) { |
| 5159 | return reifyResultShapesImpl(*this, builder, reifiedReturnShapes); |
| 5160 | } |
| 5161 | |
| 5162 | DenseMap<int64_t, OpFoldResult> UnPackOp::getDimAndTileMapping() { |
| 5163 | return getDimAndTileMappingImpl(*this); |
| 5164 | } |
| 5165 | |
| 5166 | SmallVector<OpFoldResult> UnPackOp::getMixedTiles() { |
| 5167 | return getMixedTilesImpl(*this); |
| 5168 | } |
| 5169 | |
| 5170 | SmallVector<int64_t> UnPackOp::getStaticTiles() { |
| 5171 | return getStaticTilesImpl(*this); |
| 5172 | } |
| 5173 | |
| 5174 | ArrayRef<int64_t> UnPackOp::getAllOuterDims() { |
| 5175 | ShapedType destType = getDestType(); |
| 5176 | int64_t destRank = destType.getRank(); |
| 5177 | return getSourceType().getShape().take_front(destRank); |
| 5178 | } |
| 5179 | |
| 5180 | SmallVector<int64_t> UnPackOp::getTiledOuterDims() { |
| 5181 | auto innerDimsPos = getInnerDimsPos(); |
| 5182 | auto packedShape = getSourceType().getShape(); |
| 5183 | SmallVector<int64_t> res; |
| 5184 | |
| 5185 | for (auto index : innerDimsPos) |
| 5186 | res.push_back(packedShape[index]); |
| 5187 | |
| 5188 | return res; |
| 5189 | } |
| 5190 | |
| 5191 | LogicalResult UnPackOp::verify() { |
| 5192 | return commonVerifierPackAndUnPackOp(*this); |
| 5193 | } |
| 5194 | |
| 5195 | Speculation::Speculatability UnPackOp::getSpeculatability() { |
| 5196 | // See PackOp::getSpeculatability. |
| 5197 | if (!areTilesAndTiledDimsAllConstant(*this)) |
| 5198 | return Speculation::NotSpeculatable; |
| 5199 | |
| 5200 | return Speculation::Speculatable; |
| 5201 | } |
| 5202 | |
| 5203 | void UnPackOp::build(OpBuilder &builder, OperationState &state, Value source, |
| 5204 | Value dest, ArrayRef<int64_t> innerDimsPos, |
| 5205 | ArrayRef<OpFoldResult> innerTiles, |
| 5206 | ArrayRef<int64_t> outerDimsPerm) { |
| 5207 | assert(innerDimsPos.size() == innerTiles.size() && |
| 5208 | "number of tile sizes specified must match the specified number of " |
| 5209 | "original dimensions to be tiled" ); |
| 5210 | SmallVector<int64_t> staticTileSizes; |
| 5211 | SmallVector<Value> dynamicTileSizes; |
| 5212 | dispatchIndexOpFoldResults(innerTiles, dynamicTileSizes, staticTileSizes); |
| 5213 | build(builder, state, dest.getType(), source, dest, |
| 5214 | outerDimsPerm.empty() ? nullptr |
| 5215 | : builder.getDenseI64ArrayAttr(outerDimsPerm), |
| 5216 | builder.getDenseI64ArrayAttr(innerDimsPos), dynamicTileSizes, |
| 5217 | builder.getDenseI64ArrayAttr(staticTileSizes)); |
| 5218 | } |
| 5219 | |
| 5220 | Value UnPackOp::createDestinationTensor(OpBuilder &b, Location loc, |
| 5221 | Value source, |
| 5222 | ArrayRef<OpFoldResult> innerTileSizes, |
| 5223 | ArrayRef<int64_t> innerDimsPos, |
| 5224 | ArrayRef<int64_t> outerDimsPerm) { |
| 5225 | AffineExpr sym0, sym1; |
| 5226 | bindSymbols(b.getContext(), sym0, sym1); |
| 5227 | auto dimMul = [&](OpFoldResult v1, OpFoldResult v2) -> OpFoldResult { |
| 5228 | return affine::makeComposedFoldedAffineApply(b, loc, sym0 * sym1, {v1, v2}); |
| 5229 | }; |
| 5230 | |
| 5231 | SmallVector<OpFoldResult> mixedSizes; |
| 5232 | auto srcType = llvm::cast<RankedTensorType>(source.getType()); |
| 5233 | for (auto i : |
| 5234 | llvm::seq<unsigned>(0, srcType.getRank() - innerTileSizes.size())) { |
| 5235 | if (srcType.isDynamicDim(i)) |
| 5236 | mixedSizes.push_back(b.create<tensor::DimOp>(loc, source, i).getResult()); |
| 5237 | else |
| 5238 | mixedSizes.push_back(b.getIndexAttr(srcType.getDimSize(i))); |
| 5239 | } |
| 5240 | if (!outerDimsPerm.empty()) { |
| 5241 | applyPermutationToVector<OpFoldResult>( |
| 5242 | mixedSizes, invertPermutationVector(outerDimsPerm)); |
| 5243 | } |
| 5244 | |
| 5245 | for (auto [dimPos, tileSize] : llvm::zip_equal(innerDimsPos, innerTileSizes)) |
| 5246 | mixedSizes[dimPos] = dimMul(mixedSizes[dimPos], tileSize); |
| 5247 | |
| 5248 | auto elemType = srcType.getElementType(); |
| 5249 | return b.create<tensor::EmptyOp>(loc, mixedSizes, elemType); |
| 5250 | } |
| 5251 | |
| 5252 | UnPackOp UnPackOp::createTransposedClone(OpBuilder &b, Location loc, |
| 5253 | Value transposedSource, |
| 5254 | ArrayRef<int64_t> innerPermutation, |
| 5255 | ArrayRef<int64_t> outerPermutation) { |
| 5256 | PackOrUnPackTransposeResult metadata = commonPermutationOfPackAndUnPackOp( |
| 5257 | *this, innerPermutation, outerPermutation); |
| 5258 | return b.create<UnPackOp>(loc, transposedSource, getDest(), |
| 5259 | metadata.innerDimsPos, metadata.innerTiles, |
| 5260 | metadata.outerDimsPerm); |
| 5261 | } |
| 5262 | |
| 5263 | /// Returns true if the `srcShape` or `destShape` is different from the one in |
| 5264 | /// `op` and populates each with the inferred static shape. |
| 5265 | static bool inferStaticShape(UnPackOp op, SmallVectorImpl<int64_t> &srcShape, |
| 5266 | SmallVectorImpl<int64_t> &destShape) { |
| 5267 | bool changeNeeded = false; |
| 5268 | srcShape.assign(op.getSourceType().getShape().begin(), |
| 5269 | op.getSourceType().getShape().end()); |
| 5270 | destShape.assign(op.getDestType().getShape().begin(), |
| 5271 | op.getDestType().getShape().end()); |
| 5272 | llvm::SmallSetVector<int64_t, 4> innerDims; |
| 5273 | innerDims.insert_range(op.getInnerDimsPos()); |
| 5274 | SmallVector<int64_t> inverseOuterDimsPerm; |
| 5275 | if (!op.getOuterDimsPerm().empty()) |
| 5276 | inverseOuterDimsPerm = invertPermutationVector(op.getOuterDimsPerm()); |
| 5277 | int destRank = op.getDestRank(); |
| 5278 | for (auto i : llvm::seq<int64_t>(0, destRank)) { |
| 5279 | if (innerDims.contains(i)) |
| 5280 | continue; |
| 5281 | int64_t srcPos = i; |
| 5282 | int64_t destPos = i; |
| 5283 | if (!inverseOuterDimsPerm.empty()) |
| 5284 | srcPos = inverseOuterDimsPerm[destPos]; |
| 5285 | if (ShapedType::isDynamic(srcShape[srcPos]) == |
| 5286 | ShapedType::isDynamic(destShape[destPos])) { |
| 5287 | continue; |
| 5288 | } |
| 5289 | int64_t size = srcShape[srcPos]; |
| 5290 | if (ShapedType::isDynamic(size)) |
| 5291 | size = destShape[destPos]; |
| 5292 | srcShape[srcPos] = size; |
| 5293 | destShape[destPos] = size; |
| 5294 | changeNeeded = true; |
| 5295 | } |
| 5296 | return changeNeeded; |
| 5297 | } |
| 5298 | |
| 5299 | LogicalResult UnPackOp::canonicalize(UnPackOp unPackOp, |
| 5300 | PatternRewriter &rewriter) { |
| 5301 | /// unpack(pack(x)) -> x |
| 5302 | if (PackOp packOp = unPackOp.getSource().getDefiningOp<PackOp>()) { |
| 5303 | if (packOp.getSourceType() != unPackOp.getDestType()) |
| 5304 | return failure(); |
| 5305 | if (packOp.getPaddingValue() || |
| 5306 | !hasSameInnerOuterAttribute(packOp, unPackOp) || |
| 5307 | !haveSameTiles(packOp, unPackOp)) |
| 5308 | return failure(); |
| 5309 | rewriter.replaceOp(unPackOp, packOp.getSource()); |
| 5310 | return success(); |
| 5311 | } |
| 5312 | /// unpack(destinationStyleOp(x)) -> unpack(x) |
| 5313 | if (auto dstStyleOp = |
| 5314 | unPackOp.getDest().getDefiningOp<DestinationStyleOpInterface>()) { |
| 5315 | auto destValue = cast<OpResult>(unPackOp.getDest()); |
| 5316 | Value newDest = dstStyleOp.getDpsInits()[destValue.getResultNumber()]; |
| 5317 | rewriter.modifyOpInPlace(unPackOp, |
| 5318 | [&]() { unPackOp.setDpsInitOperand(0, newDest); }); |
| 5319 | return success(); |
| 5320 | } |
| 5321 | /// extract_slice(unpack(x into y)) -> unpack(x into extract_slice(y)) |
| 5322 | if (unPackOp->hasOneUse()) { |
| 5323 | auto extractSliceUser = |
| 5324 | dyn_cast<tensor::ExtractSliceOp>(*unPackOp->getUsers().begin()); |
| 5325 | if (extractSliceUser && |
| 5326 | areAllConstantIntValue(extractSliceUser.getMixedOffsets(), 0) && |
| 5327 | areAllConstantIntValue(extractSliceUser.getMixedStrides(), 1) && |
| 5328 | extractSliceUser.getSourceType().getRank() == |
| 5329 | extractSliceUser.getResultType().getRank()) { |
| 5330 | OpBuilder::InsertionGuard g(rewriter); |
| 5331 | rewriter.setInsertionPoint(unPackOp); |
| 5332 | auto newDest = rewriter.create<tensor::ExtractSliceOp>( |
| 5333 | unPackOp->getLoc(), unPackOp.getDest(), |
| 5334 | extractSliceUser.getMixedOffsets(), extractSliceUser.getMixedSizes(), |
| 5335 | extractSliceUser.getMixedStrides()); |
| 5336 | rewriter.modifyOpInPlace(unPackOp, [&]() { |
| 5337 | unPackOp.setDpsInitOperand(0, newDest); |
| 5338 | unPackOp.getResult().setType(newDest.getType()); |
| 5339 | }); |
| 5340 | rewriter.replaceOp(extractSliceUser, unPackOp); |
| 5341 | return success(); |
| 5342 | } |
| 5343 | } |
| 5344 | |
| 5345 | // Insert tensor.cast ops if static shape inference is available.. |
| 5346 | SmallVector<int64_t> srcShape, destShape; |
| 5347 | if (inferStaticShape(unPackOp, srcShape, destShape)) { |
| 5348 | Location loc = unPackOp.getLoc(); |
| 5349 | Value source = unPackOp.getSource(); |
| 5350 | if (srcShape != unPackOp.getSourceType().getShape()) { |
| 5351 | auto newSrcType = unPackOp.getSourceType().clone(srcShape); |
| 5352 | source = rewriter.create<tensor::CastOp>(loc, newSrcType, |
| 5353 | unPackOp.getSource()); |
| 5354 | } |
| 5355 | Value dest = unPackOp.getDest(); |
| 5356 | if (destShape != unPackOp.getDestType().getShape()) { |
| 5357 | auto newDestType = unPackOp.getDestType().clone(destShape); |
| 5358 | dest = |
| 5359 | rewriter.create<tensor::CastOp>(loc, newDestType, unPackOp.getDest()); |
| 5360 | } |
| 5361 | Value newOp = rewriter.create<UnPackOp>( |
| 5362 | loc, source, dest, unPackOp.getInnerDimsPos(), unPackOp.getMixedTiles(), |
| 5363 | unPackOp.getOuterDimsPerm()); |
| 5364 | rewriter.replaceOpWithNewOp<tensor::CastOp>( |
| 5365 | unPackOp, unPackOp.getResult().getType(), newOp); |
| 5366 | return success(); |
| 5367 | } |
| 5368 | |
| 5369 | return failure(); |
| 5370 | } |
| 5371 | |
| 5372 | bool UnPackOp::isLikeUnPad() { |
| 5373 | RankedTensorType packedTensorType = getSourceType(); |
| 5374 | return isLikePadUnPad(*this, packedTensorType); |
| 5375 | } |
| 5376 | |
| 5377 | OpFoldResult UnPackOp::fold(FoldAdaptor adaptor) { |
| 5378 | if (OpFoldResult reshapedSource = reshapeConstantSource( |
| 5379 | llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getSource()), |
| 5380 | getResult().getType())) |
| 5381 | return reshapedSource; |
| 5382 | return {}; |
| 5383 | } |
| 5384 | |
| 5385 | /// Folds a tensor.cast op into a consuming UnPackOp op if the |
| 5386 | /// `tensor.cast` has source that is more static than the consuming op. |
| 5387 | /// |
| 5388 | /// Example: |
| 5389 | /// ```mlir |
| 5390 | /// %1 = tensor.cast %0 : tensor<1x1x8x1xi32> to tensor<1x1x?x1xi32> |
| 5391 | /// %2 = tensor.unpack %1 ... : tensor<1x1x?x1xi32> -> tensor<7x?xi32> |
| 5392 | /// ``` |
| 5393 | /// |
| 5394 | /// folds into: |
| 5395 | /// |
| 5396 | /// ```mlir |
| 5397 | /// %2 = tensor.unpack %0 ... tensor<1x1x8x1xi32> -> tensor<7x?xi32> |
| 5398 | /// ``` |
| 5399 | struct FoldTensorCastUnPackOp : public OpRewritePattern<UnPackOp> { |
| 5400 | using OpRewritePattern<UnPackOp>::OpRewritePattern; |
| 5401 | |
| 5402 | LogicalResult matchAndRewrite(UnPackOp op, |
| 5403 | PatternRewriter &rewriter) const override { |
| 5404 | if (!tensor::hasFoldableTensorCastOperand(op: op)) |
| 5405 | return failure(); |
| 5406 | |
| 5407 | SmallVector<Type> newResultTypes(op->getResultTypes()); |
| 5408 | SmallVector<Value> newOperands = |
| 5409 | tensor::getUpdatedOperandsAfterCastOpFolding(op, newResultTypes); |
| 5410 | Value sourceTensor = newOperands[0]; |
| 5411 | |
| 5412 | // Get the updated mixed-tile-sizes attribute. |
| 5413 | SmallVector<OpFoldResult> newMixedTileSizes = getNewMixedTileSizes( |
| 5414 | rewriter, sourceTensor.getType(), op.getMixedTiles()); |
| 5415 | |
| 5416 | // Clone op. |
| 5417 | // TODO: Strictly speaking, discardable attributes should be _discarded_ at |
| 5418 | // this point. However, in practice, we use them for things that we'd like |
| 5419 | // to preserve. Implement a better abstraction. |
| 5420 | UnPackOp newOp = rewriter.create<UnPackOp>( |
| 5421 | op.getLoc(), sourceTensor, newOperands[1], op.getInnerDimsPos(), |
| 5422 | newMixedTileSizes, op.getOuterDimsPerm()); |
| 5423 | newOp->setDiscardableAttrs(op->getDiscardableAttrDictionary()); |
| 5424 | |
| 5425 | // Replace op. |
| 5426 | Value oldResult = op.getResult(); |
| 5427 | Value newResult = newOp.getResult(); |
| 5428 | Value replacement = (newResult.getType() != oldResult.getType()) |
| 5429 | ? rewriter.create<tensor::CastOp>( |
| 5430 | op->getLoc(), oldResult.getType(), newResult) |
| 5431 | : newResult; |
| 5432 | |
| 5433 | rewriter.replaceOp(op, {replacement}); |
| 5434 | |
| 5435 | return success(); |
| 5436 | } |
| 5437 | }; |
| 5438 | |
| 5439 | //===----------------------------------------------------------------------===// |
| 5440 | // BatchReduceMatmulOp |
| 5441 | //===----------------------------------------------------------------------===// |
| 5442 | SmallVector<utils::IteratorType> BatchReduceMatmulOp::getIteratorTypesArray() { |
| 5443 | return SmallVector<utils::IteratorType>{ |
| 5444 | utils::IteratorType::reduction, utils::IteratorType::parallel, |
| 5445 | utils::IteratorType::parallel, utils::IteratorType::reduction}; |
| 5446 | } |
| 5447 | |
| 5448 | SmallVector<AffineMap> |
| 5449 | BatchReduceMatmulOp::getDefaultIndexingMaps(MLIRContext *context) { |
| 5450 | AffineExpr d0, d1, d2, d3; |
| 5451 | SmallVector<AffineMap> indexingMaps; |
| 5452 | bindDims(context, d0, d1, d2, d3); |
| 5453 | indexingMaps.push_back(AffineMap::get(4, 0, {d0, d1, d3}, context)); |
| 5454 | indexingMaps.push_back(AffineMap::get(4, 0, {d0, d3, d2}, context)); |
| 5455 | indexingMaps.push_back(AffineMap::get(4, 0, {d1, d2}, context)); |
| 5456 | return indexingMaps; |
| 5457 | } |
| 5458 | |
| 5459 | unsigned BatchReduceMatmulOp::getNumRegionArgs() { return 3; } |
| 5460 | |
| 5461 | std::string BatchReduceMatmulOp::getLibraryCallName() { |
| 5462 | return generateLibraryCallName(getOperation()); |
| 5463 | } |
| 5464 | |
| 5465 | /// Check if the op has broadcast and/or transpose semantic. Returns true if |
| 5466 | /// the user defined indexing maps are not equal to default map. |
| 5467 | bool BatchReduceMatmulOp::hasUserDefinedMaps() { |
| 5468 | SmallVector<AffineMap, 3> defaultMaps = |
| 5469 | getDefaultIndexingMaps(this->getContext()); |
| 5470 | SmallVector<AffineMap, 3> explicitMaps = getIndexingMapsArray(); |
| 5471 | return defaultMaps != explicitMaps; |
| 5472 | } |
| 5473 | |
| 5474 | /// Returns true if the given bcastMap map is a valid broadcast map. A valid |
| 5475 | /// broadcast map must include K dimension. |
| 5476 | /// TODO: Strict inclusion of K dimension in the broadcast map is not |
| 5477 | /// necessary for both input matrices simultaneously. We can relax this |
| 5478 | /// condition to have K dimension for one input matrix map and infer the K |
| 5479 | /// dimension for other input matrix map from the one already having K |
| 5480 | /// dimension. |
| 5481 | bool BatchReduceMatmulOp::isValidLhsRhsBroadcastMap(AffineMap bcastMap, |
| 5482 | bool isLHS) { |
| 5483 | assert(bcastMap.getNumResults() < 3 && |
| 5484 | "Expected less than 3 result dim expr." ); |
| 5485 | bool isValid = false; |
| 5486 | enum Indices { batchPos, mPos, nPos, kPos }; |
| 5487 | if (bcastMap.getNumResults() == 1) { |
| 5488 | AffineExpr expr = bcastMap.getResult(0); |
| 5489 | isValid = expr.isFunctionOfDim(kPos); |
| 5490 | } else if (bcastMap.getNumResults() == 2) { |
| 5491 | AffineExpr expr0 = bcastMap.getResult(0); |
| 5492 | AffineExpr expr1 = bcastMap.getResult(1); |
| 5493 | isValid = |
| 5494 | isLHS ? ((expr0.isFunctionOfDim(batchPos) || |
| 5495 | expr0.isFunctionOfDim(mPos)) && |
| 5496 | expr1.isFunctionOfDim(kPos)) |
| 5497 | : ((expr0.isFunctionOfDim(batchPos) && |
| 5498 | expr1.isFunctionOfDim(kPos)) || |
| 5499 | (expr0.isFunctionOfDim(kPos) && expr1.isFunctionOfDim(nPos))); |
| 5500 | } |
| 5501 | return isValid; |
| 5502 | } |
| 5503 | |
| 5504 | void BatchReduceMatmulOp::regionBuilder(ImplicitLocOpBuilder &b, Block &block, |
| 5505 | ArrayRef<NamedAttribute> attrs) { |
| 5506 | assert(block.getNumArguments() == 3 && |
| 5507 | "BatchReduceMatmulOp regionBuilder expects 3 (>=0) args" ); |
| 5508 | RegionBuilderHelper helper(b, block); |
| 5509 | SmallVector<Value> yields; |
| 5510 | |
| 5511 | auto toType = block.getArgument(2).getType(); |
| 5512 | Value castValA = |
| 5513 | helper.buildTypeFn(TypeFn::cast_signed, toType, block.getArgument(0)); |
| 5514 | Value castValB = |
| 5515 | helper.buildTypeFn(TypeFn::cast_signed, toType, block.getArgument(1)); |
| 5516 | Value mulVal = helper.buildBinaryFn(BinaryFn::mul, castValA, castValB); |
| 5517 | Value addVal = |
| 5518 | helper.buildBinaryFn(BinaryFn::add, block.getArgument(2), mulVal); |
| 5519 | yields.push_back(addVal); |
| 5520 | helper.yieldOutputs(yields); |
| 5521 | } |
| 5522 | |
| 5523 | ParseResult BatchReduceMatmulOp::parse(OpAsmParser &parser, |
| 5524 | OperationState &result) { |
| 5525 | SmallVector<Attribute, 3> indexingMapsAttr; |
| 5526 | Attribute mapAttr; |
| 5527 | if (succeeded(parser.parseOptionalKeyword("indexing_maps" ))) { |
| 5528 | if (parser.parseEqual()) |
| 5529 | return failure(); |
| 5530 | if (parser.parseLSquare()) |
| 5531 | return failure(); |
| 5532 | |
| 5533 | do { |
| 5534 | if (parser.parseAttribute(mapAttr)) |
| 5535 | return failure(); |
| 5536 | if (!isa<AffineMapAttr>(mapAttr)) { |
| 5537 | return parser.emitError(parser.getCurrentLocation(), |
| 5538 | "expected affine map attribute" ); |
| 5539 | } |
| 5540 | indexingMapsAttr.push_back(mapAttr); |
| 5541 | |
| 5542 | if (parser.parseOptionalComma()) |
| 5543 | break; |
| 5544 | } while (true); |
| 5545 | |
| 5546 | if (parser.parseRSquare()) |
| 5547 | return failure(); |
| 5548 | } |
| 5549 | // Initialize indexingMaps, if not supplied explicitly. |
| 5550 | if (indexingMapsAttr.empty()) { |
| 5551 | indexingMapsAttr = llvm::map_to_vector( |
| 5552 | BatchReduceMatmulOp::getDefaultIndexingMaps(parser.getContext()), |
| 5553 | [](AffineMap map) -> Attribute { return AffineMapAttr::get(map); }); |
| 5554 | } |
| 5555 | result.addAttribute("indexing_maps" , |
| 5556 | parser.getBuilder().getArrayAttr(indexingMapsAttr)); |
| 5557 | return ::parseNamedStructuredOp(parser, result, |
| 5558 | BatchReduceMatmulOp::getNumRegionArgs(), |
| 5559 | BatchReduceMatmulOp::getRegionBuilder()); |
| 5560 | } |
| 5561 | |
| 5562 | void BatchReduceMatmulOp::print(OpAsmPrinter &p) { |
| 5563 | SmallVector<Attribute, 3> indexingMaps = llvm::map_to_vector( |
| 5564 | BatchReduceMatmulOp::getDefaultIndexingMaps(getContext()), |
| 5565 | [](AffineMap map) -> Attribute { return AffineMapAttr::get(map); }); |
| 5566 | |
| 5567 | if (!llvm::equal(getIndexingMaps(), indexingMaps)) { |
| 5568 | p << " indexing_maps = [" ; |
| 5569 | llvm::interleaveComma(getIndexingMaps(), p, |
| 5570 | [&](Attribute attr) { p.printAttribute(attr); }); |
| 5571 | p << "]" ; |
| 5572 | } |
| 5573 | |
| 5574 | SmallVector<StringRef, 3> elidedAttrs = { |
| 5575 | "operandSegmentSizes" , "linalg.memoized_indexing_maps" , "indexing_maps" }; |
| 5576 | ::printNamedStructuredOp(p, getOperation(), getInputs(), getOutputs(), |
| 5577 | elidedAttrs); |
| 5578 | } |
| 5579 | |
| 5580 | /// Verify the user defined indexing maps. |
| 5581 | LogicalResult BatchReduceMatmulOp::verify() { |
| 5582 | // Verification of pure batch_reduce_matmul is handled by |
| 5583 | // verifyStructuredOpInterface(). |
| 5584 | if (!hasUserDefinedMaps()) |
| 5585 | return success(); |
| 5586 | |
| 5587 | for (unsigned opIndex = 0; opIndex < 3; opIndex++) { |
| 5588 | if (failed(verifyExtendedBatchVariantMatmulSemantic(*this, opIndex))) |
| 5589 | return failure(); |
| 5590 | } |
| 5591 | return success(); |
| 5592 | } |
| 5593 | LogicalResult BatchReduceMatmulOp::fold(FoldAdaptor, |
| 5594 | SmallVectorImpl<OpFoldResult> &) { |
| 5595 | return memref::foldMemRefCast(*this); |
| 5596 | } |
| 5597 | void BatchReduceMatmulOp::getEffects( |
| 5598 | SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> |
| 5599 | &effects) { |
| 5600 | if (hasPureTensorSemantics()) |
| 5601 | return; |
| 5602 | getGenericEffectsImpl(effects, cast<LinalgOp>(getOperation())); |
| 5603 | } |
| 5604 | |
| 5605 | Speculation::Speculatability BatchReduceMatmulOp::getSpeculatability() { |
| 5606 | return getGenericSpeculatabilityImpl(cast<LinalgOp>(getOperation())); |
| 5607 | } |
| 5608 | |
| 5609 | } // namespace linalg |
| 5610 | } // namespace mlir |
| 5611 | |
| 5612 | //===----------------------------------------------------------------------===// |
| 5613 | // LinalgDialect |
| 5614 | //===----------------------------------------------------------------------===// |
| 5615 | |
| 5616 | void LinalgDialect::getCanonicalizationPatterns( |
| 5617 | RewritePatternSet &results) const { |
| 5618 | results.add<EraseDeadLinalgOp, FoldTensorCastConsumerOp, FoldTensorCastPackOp, |
| 5619 | FoldTensorCastUnPackOp, InferStaticShapeOfOperands>(getContext()); |
| 5620 | } |
| 5621 | |
| 5622 | Operation *LinalgDialect::materializeConstant(OpBuilder &builder, |
| 5623 | Attribute value, Type type, |
| 5624 | Location loc) { |
| 5625 | return arith::ConstantOp::materialize(builder, value, type, loc); |
| 5626 | } |
| 5627 | |