| 1 | //===- ElementwiseOpFusion.cpp - Implementation of linalg Fusion ---------===/// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the linalg dialect Fusion on tensors operations pass. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "mlir/Dialect/Linalg/Passes.h" |
| 14 | |
| 15 | #include "mlir/Dialect/Affine/IR/AffineOps.h" |
| 16 | #include "mlir/Dialect/Arith/IR/Arith.h" |
| 17 | #include "mlir/Dialect/Arith/Utils/Utils.h" |
| 18 | #include "mlir/Dialect/Linalg/IR/Linalg.h" |
| 19 | #include "mlir/Dialect/Linalg/Transforms/Transforms.h" |
| 20 | #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h" |
| 21 | #include "mlir/Dialect/Tensor/Transforms/Transforms.h" |
| 22 | #include "mlir/IR/AffineExpr.h" |
| 23 | #include "mlir/IR/AffineMap.h" |
| 24 | #include "mlir/IR/Matchers.h" |
| 25 | #include "mlir/IR/PatternMatch.h" |
| 26 | #include "mlir/Support/LLVM.h" |
| 27 | #include "mlir/Transforms/GreedyPatternRewriteDriver.h" |
| 28 | #include "mlir/Transforms/RegionUtils.h" |
| 29 | #include <optional> |
| 30 | #include <utility> |
| 31 | |
| 32 | namespace mlir { |
| 33 | #define GEN_PASS_DEF_LINALGELEMENTWISEOPFUSIONPASS |
| 34 | #include "mlir/Dialect/Linalg/Passes.h.inc" |
| 35 | } // namespace mlir |
| 36 | |
| 37 | using namespace mlir; |
| 38 | using namespace mlir::linalg; |
| 39 | |
| 40 | //===---------------------------------------------------------------------===// |
| 41 | // Methods and patterns that fuse elementwise `linalg.generic` operations. |
| 42 | //===---------------------------------------------------------------------===// |
| 43 | |
| 44 | /// Append to `fusedOpIndexingMapAttrs` the indexing maps for the operands of |
| 45 | /// the `producer` to use in the fused operation given the indexing map of the |
| 46 | /// result of the producer in the consumer. |
| 47 | static AffineMap getIndexingMapOfProducerOperandsInCoordinatesOfFusedOp( |
| 48 | OpOperand *producerOpOperand, AffineMap producerResultIndexMap, |
| 49 | AffineMap fusedConsumerArgIndexMap) { |
| 50 | // The indexing map in the consumer op (fusedConsumerArgIndexMap) is a map |
| 51 | // from consumer loop -> consumer arg tensor index/producer result tensor |
| 52 | // index. The fused loop is same as the consumer loop. For each producer arg |
| 53 | // the indexing map to be computed is a map from consumer loop -> producer |
| 54 | // arg tensor index. |
| 55 | // producerResultIndexMap is a map from producer loop -> tensor index. |
| 56 | // Compute the inverse to get map from tensor index -> producer loop. |
| 57 | // The inverse is a map from producer result tensor index -> producer loop. |
| 58 | AffineMap invProducerResultIndexMap = |
| 59 | inversePermutation(map: producerResultIndexMap); |
| 60 | assert(invProducerResultIndexMap && |
| 61 | "expected producer result indexing map to be invertible" ); |
| 62 | |
| 63 | LinalgOp producer = cast<LinalgOp>(producerOpOperand->getOwner()); |
| 64 | // argMap is a map from producer loop -> producer arg tensor index. |
| 65 | AffineMap argMap = producer.getMatchingIndexingMap(producerOpOperand); |
| 66 | |
| 67 | // Compose argMap with invProducerResultIndexMap to get a map from |
| 68 | // producer result tensor index -> producer arg tensor index. |
| 69 | AffineMap t1 = argMap.compose(map: invProducerResultIndexMap); |
| 70 | |
| 71 | // Compose t1 with fusedConsumerArgIndexMap gives an indexing map from |
| 72 | // consumer loop/ fused loop -> producer arg tensor index. |
| 73 | return t1.compose(map: fusedConsumerArgIndexMap); |
| 74 | } |
| 75 | |
| 76 | // Checks if the given operand can be dropped, and the remaining operands |
| 77 | // of the fused producer & consumer after the fusion can still compute the |
| 78 | // bounds of the op. |
| 79 | static bool isOpOperandCanBeDroppedAfterFusedLinalgs( |
| 80 | GenericOp producer, GenericOp consumer, |
| 81 | ArrayRef<OpOperand *> opOperandsToIgnore) { |
| 82 | SmallVector<AffineMap> indexingMaps; |
| 83 | |
| 84 | SmallVector<GenericOp> ops = {producer, consumer}; |
| 85 | for (auto &op : ops) { |
| 86 | for (auto &opOperand : op->getOpOperands()) { |
| 87 | if (llvm::is_contained(opOperandsToIgnore, &opOperand)) { |
| 88 | continue; |
| 89 | } |
| 90 | indexingMaps.push_back(op.getMatchingIndexingMap(&opOperand)); |
| 91 | } |
| 92 | } |
| 93 | if (indexingMaps.empty()) { |
| 94 | // If there are no indexing maps, the operand can only be dropped |
| 95 | // if neither op has loops. |
| 96 | return producer.getNumLoops() == 0 && consumer.getNumLoops() == 0; |
| 97 | } |
| 98 | |
| 99 | // The concatanation of the remained indexing maps must be invertible, so |
| 100 | // the bounds of the op can be still computed after dropping the selected |
| 101 | // operand. inversePermutation returns an empty AffineMap in case the |
| 102 | // concatanated indexing maps are not invertible. |
| 103 | return inversePermutation(concatAffineMaps( |
| 104 | indexingMaps, producer.getContext())) != AffineMap(); |
| 105 | } |
| 106 | |
| 107 | /// Returns a set of indices of the producer's results which would |
| 108 | /// be preserved after the fusion. |
| 109 | /// * There is a chance that the implementation of the transformation does not |
| 110 | /// agree with the result of this method. This function gives a prediction based |
| 111 | /// on an optimized fusion. |
| 112 | llvm::SmallDenseSet<int> mlir::linalg::getPreservedProducerResults( |
| 113 | GenericOp producer, GenericOp consumer, OpOperand *fusedOperand) { |
| 114 | llvm::SmallDenseSet<int> preservedProducerResults; |
| 115 | llvm::SmallVector<OpOperand *> opOperandsToIgnore; |
| 116 | |
| 117 | // The fusedOperand will be removed during the fusion |
| 118 | opOperandsToIgnore.emplace_back(Args&: fusedOperand); |
| 119 | |
| 120 | for (const auto &producerResult : llvm::enumerate(producer->getResults())) { |
| 121 | auto *outputOperand = producer.getDpsInitOperand(producerResult.index()); |
| 122 | opOperandsToIgnore.emplace_back(outputOperand); |
| 123 | if (producer.payloadUsesValueFromOperand(outputOperand) || |
| 124 | !isOpOperandCanBeDroppedAfterFusedLinalgs(producer, consumer, |
| 125 | opOperandsToIgnore) || |
| 126 | llvm::any_of(producerResult.value().getUsers(), [&](Operation *user) { |
| 127 | return user != consumer.getOperation(); |
| 128 | })) { |
| 129 | preservedProducerResults.insert(producerResult.index()); |
| 130 | |
| 131 | // In case the operand can't be dropped |
| 132 | (void)opOperandsToIgnore.pop_back_val(); |
| 133 | } |
| 134 | } |
| 135 | return preservedProducerResults; |
| 136 | } |
| 137 | |
| 138 | /// Conditions for elementwise fusion of generic operations. |
| 139 | bool mlir::linalg::areElementwiseOpsFusable(OpOperand *fusedOperand) { |
| 140 | if (!fusedOperand) |
| 141 | return false; |
| 142 | |
| 143 | auto producer = fusedOperand->get().getDefiningOp<GenericOp>(); |
| 144 | auto consumer = dyn_cast<GenericOp>(fusedOperand->getOwner()); |
| 145 | |
| 146 | // Check producer and consumer are generic ops. |
| 147 | if (!producer || !consumer) |
| 148 | return false; |
| 149 | |
| 150 | // Consumer can have mixed semantics, just check operand itself has tensor |
| 151 | // type. Producer must have full tensor semantics to avoid potential |
| 152 | // aliasing between producer and consumer memrefs. |
| 153 | if (!producer.hasPureTensorSemantics() || |
| 154 | !isa<RankedTensorType>(Val: fusedOperand->get().getType())) |
| 155 | return false; |
| 156 | |
| 157 | // Verify that |
| 158 | // - the producer has all "parallel" iterator type. |
| 159 | if (producer.getNumParallelLoops() != producer.getNumLoops()) |
| 160 | return false; |
| 161 | |
| 162 | // Only allow fusing the producer of an input operand for now. |
| 163 | // TODO: allow fusing the producer of an output operand. |
| 164 | if (!consumer.isDpsInput(fusedOperand)) |
| 165 | return false; |
| 166 | |
| 167 | // Get the consumer index map. The number of results of the consumer index |
| 168 | // map must match the number of loops of the producer. |
| 169 | AffineMap consumerIndexMap = consumer.getMatchingIndexingMap(fusedOperand); |
| 170 | if (consumerIndexMap.getNumResults() != producer.getNumLoops()) |
| 171 | return false; |
| 172 | |
| 173 | // Finally the index_map for the result must be invertible. For now just |
| 174 | // verify it is a permutation. |
| 175 | AffineMap producerResultIndexMap = |
| 176 | producer.getMatchingIndexingMap(producer.getDpsInitOperand(0)); |
| 177 | if (!producerResultIndexMap.isPermutation()) |
| 178 | return false; |
| 179 | |
| 180 | // Ensure that the fusion does not remove size information required to |
| 181 | // get the loop bounds. For non-reduction generics, this is trivially the |
| 182 | // case due to the output operand. For reductions, we need to check that after |
| 183 | // the fusion, each loop dimension has at least one input that defines it. |
| 184 | if ((consumer.getNumReductionLoops())) { |
| 185 | BitVector coveredDims(consumer.getNumLoops(), false); |
| 186 | |
| 187 | auto addToCoveredDims = [&](AffineMap map) { |
| 188 | for (auto result : map.getResults()) |
| 189 | if (auto dimExpr = dyn_cast<AffineDimExpr>(Val&: result)) |
| 190 | coveredDims[dimExpr.getPosition()] = true; |
| 191 | }; |
| 192 | |
| 193 | for (auto pair : |
| 194 | llvm::zip(consumer->getOperands(), consumer.getIndexingMapsArray())) { |
| 195 | Value operand = std::get<0>(pair); |
| 196 | if (operand == fusedOperand->get()) |
| 197 | continue; |
| 198 | AffineMap operandMap = std::get<1>(pair); |
| 199 | addToCoveredDims(operandMap); |
| 200 | } |
| 201 | |
| 202 | for (OpOperand *operand : producer.getDpsInputOperands()) { |
| 203 | AffineMap newIndexingMap = |
| 204 | getIndexingMapOfProducerOperandsInCoordinatesOfFusedOp( |
| 205 | operand, producerResultIndexMap, consumerIndexMap); |
| 206 | addToCoveredDims(newIndexingMap); |
| 207 | } |
| 208 | if (!coveredDims.all()) |
| 209 | return false; |
| 210 | } |
| 211 | |
| 212 | return true; |
| 213 | } |
| 214 | |
| 215 | /// Generate the region of the fused tensor operation. The region of the fused |
| 216 | /// op must be empty. |
| 217 | static void generateFusedElementwiseOpRegion( |
| 218 | RewriterBase &rewriter, GenericOp fusedOp, |
| 219 | AffineMap consumerToProducerLoopsMap, OpOperand *fusedOperand, |
| 220 | unsigned nloops, llvm::SmallDenseSet<int> &preservedProducerResults) { |
| 221 | auto producer = cast<GenericOp>(fusedOperand->get().getDefiningOp()); |
| 222 | auto consumer = cast<GenericOp>(fusedOperand->getOwner()); |
| 223 | // Build the region of the fused op. |
| 224 | Block &producerBlock = producer->getRegion(0).front(); |
| 225 | Block &consumerBlock = consumer->getRegion(0).front(); |
| 226 | OpBuilder::InsertionGuard guard(rewriter); |
| 227 | Block *fusedBlock = rewriter.createBlock(&fusedOp.getRegion()); |
| 228 | IRMapping mapper; |
| 229 | |
| 230 | // 2. Add an index operation for every fused loop dimension and use the |
| 231 | // `consumerToProducerLoopsMap` to map the producer indices. |
| 232 | if (producer.hasIndexSemantics()) { |
| 233 | // Add an index operation for every fused loop dimension. |
| 234 | unsigned numFusedOpLoops = |
| 235 | std::max(producer.getNumLoops(), consumer.getNumLoops()); |
| 236 | SmallVector<Value> fusedIndices; |
| 237 | fusedIndices.reserve(N: numFusedOpLoops); |
| 238 | llvm::transform(Range: llvm::seq<uint64_t>(Begin: 0, End: numFusedOpLoops), |
| 239 | d_first: std::back_inserter(x&: fusedIndices), F: [&](uint64_t dim) { |
| 240 | return rewriter.create<IndexOp>(producer.getLoc(), dim); |
| 241 | }); |
| 242 | for (IndexOp indexOp : |
| 243 | llvm::make_early_inc_range(producerBlock.getOps<IndexOp>())) { |
| 244 | Value newIndex = rewriter.create<affine::AffineApplyOp>( |
| 245 | producer.getLoc(), |
| 246 | consumerToProducerLoopsMap.getSubMap(indexOp.getDim()), fusedIndices); |
| 247 | mapper.map(indexOp.getResult(), newIndex); |
| 248 | } |
| 249 | } |
| 250 | // TODO: allow fusing the producer of an output operand. |
| 251 | assert(consumer.isDpsInput(fusedOperand) && |
| 252 | "expected producer of input operand" ); |
| 253 | // 3. Consumer input operands up to consumerIdx (exclusive). |
| 254 | for (BlockArgument bbArg : consumerBlock.getArguments().take_front( |
| 255 | fusedOperand->getOperandNumber())) // input assumption. |
| 256 | mapper.map(bbArg, fusedBlock->addArgument(bbArg.getType(), bbArg.getLoc())); |
| 257 | |
| 258 | // Replacing consumerIdx requires getting the cloned, yielded, value from |
| 259 | // the (cloned) producer block. This happens in step 9. |
| 260 | |
| 261 | // 4. Splice in producer's input operands. |
| 262 | for (BlockArgument bbArg : |
| 263 | producerBlock.getArguments().take_front(producer.getNumDpsInputs())) |
| 264 | mapper.map(bbArg, fusedBlock->addArgument(bbArg.getType(), bbArg.getLoc())); |
| 265 | |
| 266 | // 5. Remaining consumer's input operands (drop past index `consumerIdx`). |
| 267 | for (BlockArgument bbArg : |
| 268 | consumerBlock.getArguments() |
| 269 | .take_front(consumer.getNumDpsInputs()) |
| 270 | .drop_front(fusedOperand->getOperandNumber() + 1)) |
| 271 | mapper.map(bbArg, fusedBlock->addArgument(bbArg.getType(), bbArg.getLoc())); |
| 272 | |
| 273 | // 6. All of the producer's output operands |
| 274 | for (const auto &bbArg : llvm::enumerate( |
| 275 | producerBlock.getArguments().take_back(producer.getNumDpsInits()))) { |
| 276 | if (!preservedProducerResults.count(bbArg.index())) |
| 277 | continue; |
| 278 | mapper.map(bbArg.value(), fusedBlock->addArgument(bbArg.value().getType(), |
| 279 | bbArg.value().getLoc())); |
| 280 | } |
| 281 | |
| 282 | // 7. All of consumer's output operands. |
| 283 | for (BlockArgument bbArg : |
| 284 | consumerBlock.getArguments().take_back(consumer.getNumDpsInits())) |
| 285 | mapper.map(bbArg, fusedBlock->addArgument(bbArg.getType(), bbArg.getLoc())); |
| 286 | |
| 287 | // 8. Clone all producer operations except for the yield and index operations |
| 288 | // to the fused operation. |
| 289 | for (auto &op : producerBlock.without_terminator()) { |
| 290 | if (!isa<IndexOp>(op)) |
| 291 | rewriter.clone(op, mapper); |
| 292 | } |
| 293 | // 9. Now we can map the consumerBlock's `consumerIdx` block argument. Just |
| 294 | // forward the yield operand. |
| 295 | auto producerYieldOp = cast<linalg::YieldOp>(producerBlock.getTerminator()); |
| 296 | unsigned producerResultNumber = |
| 297 | cast<OpResult>(Val: fusedOperand->get()).getResultNumber(); |
| 298 | Value replacement = |
| 299 | mapper.lookupOrDefault(producerYieldOp.getOperand(producerResultNumber)); |
| 300 | |
| 301 | // Sanity checks, if replacement is not already in the mapper then it must be |
| 302 | // produced outside. |
| 303 | if (replacement == producerYieldOp.getOperand(producerResultNumber)) { |
| 304 | if (auto bb = dyn_cast<BlockArgument>(replacement)) |
| 305 | assert(bb.getOwner() != &producerBlock && |
| 306 | "yielded block argument must have been mapped" ); |
| 307 | else |
| 308 | assert(!producer->isAncestor(replacement.getDefiningOp()) && |
| 309 | "yielded value must have been mapped" ); |
| 310 | } |
| 311 | mapper.map(from: consumerBlock.getArgument(i: fusedOperand->getOperandNumber()), |
| 312 | to: replacement); |
| 313 | // 10. Clone operations from the consumer to the fused op. |
| 314 | for (auto &op : consumerBlock.without_terminator()) |
| 315 | rewriter.clone(op, mapper); |
| 316 | |
| 317 | // 11. Include the final yield (which is the remapped values for all the |
| 318 | // yield) |
| 319 | auto consumerYieldOp = cast<linalg::YieldOp>(consumerBlock.getTerminator()); |
| 320 | SmallVector<Value> fusedYieldValues; |
| 321 | fusedYieldValues.reserve(N: producerYieldOp.getNumOperands() + |
| 322 | consumerYieldOp.getNumOperands()); |
| 323 | for (const auto &producerYieldVal : |
| 324 | llvm::enumerate(producerYieldOp.getOperands())) { |
| 325 | if (preservedProducerResults.count(producerYieldVal.index())) |
| 326 | fusedYieldValues.push_back( |
| 327 | mapper.lookupOrDefault(producerYieldVal.value())); |
| 328 | } |
| 329 | for (auto consumerYieldVal : consumerYieldOp.getOperands()) |
| 330 | fusedYieldValues.push_back(mapper.lookupOrDefault(consumerYieldVal)); |
| 331 | rewriter.create<YieldOp>(fusedOp.getLoc(), fusedYieldValues); |
| 332 | |
| 333 | // Sanity checks. |
| 334 | assert(fusedBlock->getNumArguments() == fusedOp.getNumOperands() && |
| 335 | "Ill-formed GenericOp region" ); |
| 336 | } |
| 337 | |
| 338 | FailureOr<mlir::linalg::ElementwiseOpFusionResult> |
| 339 | mlir::linalg::fuseElementwiseOps(RewriterBase &rewriter, |
| 340 | OpOperand *fusedOperand) { |
| 341 | assert(areElementwiseOpsFusable(fusedOperand) && |
| 342 | "expected elementwise operation pre-conditions to pass" ); |
| 343 | auto producerResult = cast<OpResult>(Val: fusedOperand->get()); |
| 344 | auto producer = cast<GenericOp>(producerResult.getOwner()); |
| 345 | auto consumer = cast<GenericOp>(fusedOperand->getOwner()); |
| 346 | // TODO: allow fusing the producer of an output operand. |
| 347 | assert(consumer.isDpsInput(fusedOperand) && |
| 348 | "expected producer of input operand" ); |
| 349 | /// Find the results of the producer that have uses outside of the consumer, |
| 350 | /// after the fusion. |
| 351 | llvm::SmallDenseSet<int> preservedProducerResults = |
| 352 | mlir::linalg::getPreservedProducerResults(producer: producer, consumer: consumer, |
| 353 | fusedOperand); |
| 354 | |
| 355 | // Compute the fused operands list and indexing maps. |
| 356 | SmallVector<Value> fusedInputOperands, fusedOutputOperands; |
| 357 | SmallVector<Type> fusedResultTypes; |
| 358 | SmallVector<AffineMap> fusedIndexMaps; |
| 359 | fusedInputOperands.reserve(N: producer.getNumDpsInputs() + |
| 360 | consumer.getNumDpsInputs()); |
| 361 | fusedOutputOperands.reserve(N: preservedProducerResults.size() + |
| 362 | consumer.getNumDpsInits()); |
| 363 | fusedResultTypes.reserve(N: preservedProducerResults.size() + |
| 364 | consumer.getNumDpsInits()); |
| 365 | fusedIndexMaps.reserve(N: producer->getNumOperands() + |
| 366 | consumer->getNumOperands()); |
| 367 | // In the following, numbering matches that of `generateFusedTensorOpRegion`. |
| 368 | // 3. Consumer input operands/maps up to consumerIdx (exclusive). |
| 369 | auto consumerInputs = consumer.getDpsInputOperands(); |
| 370 | auto *it = llvm::find_if(consumerInputs, [&](OpOperand *operand) { |
| 371 | return operand == fusedOperand; |
| 372 | }); |
| 373 | assert(it != consumerInputs.end() && "expected to find the consumer operand" ); |
| 374 | for (OpOperand *opOperand : llvm::make_range(consumerInputs.begin(), it)) { |
| 375 | fusedInputOperands.push_back(opOperand->get()); |
| 376 | fusedIndexMaps.push_back(consumer.getMatchingIndexingMap(opOperand)); |
| 377 | } |
| 378 | // 4. Splice in producer's input operands/maps. |
| 379 | AffineMap producerResultIndexMap = |
| 380 | producer.getIndexingMapMatchingResult(producerResult); |
| 381 | for (OpOperand *opOperand : producer.getDpsInputOperands()) { |
| 382 | fusedInputOperands.push_back(opOperand->get()); |
| 383 | // Compute indexing maps for the producer args in the fused operation. |
| 384 | AffineMap map = getIndexingMapOfProducerOperandsInCoordinatesOfFusedOp( |
| 385 | opOperand, producerResultIndexMap, |
| 386 | consumer.getMatchingIndexingMap(fusedOperand)); |
| 387 | fusedIndexMaps.push_back(map); |
| 388 | } |
| 389 | // 5. Remaining consumer's input operands/maps (drop past index |
| 390 | // `consumerIdx`). |
| 391 | for (OpOperand *opOperand : |
| 392 | llvm::make_range(std::next(it), consumerInputs.end())) { |
| 393 | fusedInputOperands.push_back(opOperand->get()); |
| 394 | fusedIndexMaps.push_back(consumer.getMatchingIndexingMap(opOperand)); |
| 395 | } |
| 396 | |
| 397 | // 6. Collect all of the producer outputs. |
| 398 | for (const auto &opOperand : llvm::enumerate(producer.getDpsInitsMutable())) { |
| 399 | if (!preservedProducerResults.count(opOperand.index())) |
| 400 | continue; |
| 401 | |
| 402 | fusedOutputOperands.push_back(opOperand.value().get()); |
| 403 | AffineMap map = getIndexingMapOfProducerOperandsInCoordinatesOfFusedOp( |
| 404 | &opOperand.value(), producerResultIndexMap, |
| 405 | consumer.getMatchingIndexingMap(fusedOperand)); |
| 406 | fusedIndexMaps.push_back(map); |
| 407 | fusedResultTypes.push_back(opOperand.value().get().getType()); |
| 408 | } |
| 409 | |
| 410 | // 7. All of consumer's output operands (skip operands: added by the builder). |
| 411 | for (OpOperand &opOperand : consumer.getDpsInitsMutable()) { |
| 412 | fusedOutputOperands.push_back(opOperand.get()); |
| 413 | fusedIndexMaps.push_back(consumer.getMatchingIndexingMap(&opOperand)); |
| 414 | Type resultType = opOperand.get().getType(); |
| 415 | if (!isa<MemRefType>(resultType)) |
| 416 | fusedResultTypes.push_back(resultType); |
| 417 | } |
| 418 | |
| 419 | // Generate the fused op. |
| 420 | auto fusedOp = rewriter.create<GenericOp>( |
| 421 | consumer.getLoc(), fusedResultTypes, fusedInputOperands, |
| 422 | fusedOutputOperands, rewriter.getAffineMapArrayAttr(fusedIndexMaps), |
| 423 | consumer.getIteratorTypes(), |
| 424 | /*doc=*/nullptr, |
| 425 | /*library_call=*/nullptr); |
| 426 | if (!fusedOp.getShapesToLoopsMap()) { |
| 427 | // Fused op has invalid indexing maps. Typically this means something is off |
| 428 | // in the input, but going ahead here would result in verification errors. |
| 429 | // So cleanup and abort. |
| 430 | rewriter.eraseOp(op: fusedOp); |
| 431 | return rewriter.notifyMatchFailure( |
| 432 | fusedOp, "fused op failed loop bound computation check" ); |
| 433 | } |
| 434 | |
| 435 | // Construct an AffineMap from consumer loops to producer loops. |
| 436 | // consumer loop -> tensor index |
| 437 | AffineMap consumerResultIndexMap = |
| 438 | consumer.getMatchingIndexingMap(fusedOperand); |
| 439 | // tensor index -> producer loop |
| 440 | AffineMap invProducerResultIndexMap = |
| 441 | inversePermutation(map: producerResultIndexMap); |
| 442 | assert(invProducerResultIndexMap && |
| 443 | "expected producer result indexig map to be invertible" ); |
| 444 | // consumer loop -> producer loop |
| 445 | AffineMap consumerToProducerLoopsMap = |
| 446 | invProducerResultIndexMap.compose(map: consumerResultIndexMap); |
| 447 | |
| 448 | generateFusedElementwiseOpRegion( |
| 449 | rewriter, fusedOp, consumerToProducerLoopsMap, fusedOperand, |
| 450 | consumer.getNumLoops(), preservedProducerResults); |
| 451 | ElementwiseOpFusionResult result; |
| 452 | result.fusedOp = fusedOp; |
| 453 | int resultNum = 0; |
| 454 | for (auto [index, producerResult] : llvm::enumerate(producer->getResults())) |
| 455 | if (preservedProducerResults.count(index)) |
| 456 | result.replacements[producerResult] = fusedOp->getResult(resultNum++); |
| 457 | for (auto consumerResult : consumer->getResults()) |
| 458 | result.replacements[consumerResult] = fusedOp->getResult(resultNum++); |
| 459 | return result; |
| 460 | } |
| 461 | |
| 462 | namespace { |
| 463 | /// Patterns to fuse a generic op, with the producer of its operands. |
| 464 | class FuseElementwiseOps : public OpRewritePattern<GenericOp> { |
| 465 | public: |
| 466 | FuseElementwiseOps(MLIRContext *context, ControlFusionFn fun, |
| 467 | PatternBenefit benefit = 1) |
| 468 | : OpRewritePattern<GenericOp>(context, benefit), |
| 469 | controlFn(std::move(fun)) {} |
| 470 | |
| 471 | LogicalResult matchAndRewrite(GenericOp genericOp, |
| 472 | PatternRewriter &rewriter) const override { |
| 473 | // Find the first operand that is defined by another generic op on tensors. |
| 474 | for (OpOperand &opOperand : genericOp->getOpOperands()) { |
| 475 | if (!areElementwiseOpsFusable(&opOperand)) |
| 476 | continue; |
| 477 | if (!controlFn(&opOperand)) |
| 478 | continue; |
| 479 | |
| 480 | Operation *producer = opOperand.get().getDefiningOp(); |
| 481 | |
| 482 | // Find the producer of the operand. |
| 483 | FailureOr<ElementwiseOpFusionResult> fusionResult = |
| 484 | fuseElementwiseOps(rewriter, &opOperand); |
| 485 | if (failed(fusionResult)) |
| 486 | return rewriter.notifyMatchFailure(genericOp, "fusion failed" ); |
| 487 | |
| 488 | // Perform the fusion. |
| 489 | for (auto [origVal, replacement] : fusionResult->replacements) { |
| 490 | rewriter.replaceUsesWithIf(origVal, replacement, [&](OpOperand &use) { |
| 491 | // Only replace consumer uses. |
| 492 | return use.get().getDefiningOp() != producer; |
| 493 | }); |
| 494 | } |
| 495 | rewriter.eraseOp(genericOp); |
| 496 | return success(); |
| 497 | } |
| 498 | return failure(); |
| 499 | } |
| 500 | |
| 501 | private: |
| 502 | ControlFusionFn controlFn; |
| 503 | }; |
| 504 | } // namespace |
| 505 | |
| 506 | //===---------------------------------------------------------------------===// |
| 507 | // Methods and patterns that fuse reshape ops with elementwise operations by |
| 508 | // expanding the dimensionality of the elementwise operations. |
| 509 | //===---------------------------------------------------------------------===// |
| 510 | |
| 511 | /// Conditions for folding a structured linalg operation with a reshape op by |
| 512 | /// expanding the iteration space dimensionality for tensor operations. These |
| 513 | /// are preconditions assumed by `foldReshapeByDimExpansion` which implements |
| 514 | /// the following fusion pattern. |
| 515 | /// |
| 516 | /// Consider |
| 517 | /// |
| 518 | /// %c = linalg.generic ins(%a, %b : memref<?x?x?xf32>, memref<?x?xf32>) |
| 519 | /// indexing_maps = [affine_map<(d0, d1, d2) -> (d1, d0, d2)>, |
| 520 | /// affine_map<(d0, d1, d2) -> (d1, d2)>, |
| 521 | /// affine_map<(d0, d1, d2) -> (d0, d2, d1)>] |
| 522 | /// %d = tensor.expand_shape %c [[0, 1], [2], [3, 4, 5]] |
| 523 | /// : tensor<?x?x?xf32> into tensor<?x?x?x?x?x?xf32> |
| 524 | /// |
| 525 | /// The reshape can be folded into the `linalgOp` if its loop dimensionality |
| 526 | /// is increased to match the result (operand) of the tensor.expand_shape. |
| 527 | /// The indexing_map of the fused tensor in the `linalgOp` and the |
| 528 | /// reassociation map helps compute the indexing maps of the modified op. |
| 529 | /// For the above example, based on the reassociation map it |
| 530 | /// can be concluded that |
| 531 | /// |
| 532 | /// - The loop used to access the first dimension of the fused tensor is split |
| 533 | /// into two. |
| 534 | /// - The loop used to access the second dimension of the fused tensor is kept |
| 535 | /// as is. |
| 536 | /// - The loop used to access the third dimension of the fused tensor is split |
| 537 | /// into three. |
| 538 | /// |
| 539 | /// i.e. (e0, e1, e2, e3, e4) is the domain of the indexing map of the modified |
| 540 | /// op, then |
| 541 | /// |
| 542 | /// d0 -> e0, e1 |
| 543 | /// d1 -> e2, e3, e4 |
| 544 | /// d2 -> e5 |
| 545 | /// |
| 546 | /// substituting this, the structured op can be rewritten as |
| 547 | /// |
| 548 | /// %d = linalg.generic ins(%0, %1 : ) |
| 549 | /// indexing_maps = |
| 550 | /// [affine_map<(e0, e1, e2, e3, e4, e5) -> (e2, e3, e4, e0, e1, e5)>, |
| 551 | /// affine_map<(e0, e1, e2, e3, e4, e5) -> (e2, e3, e4, e5)>, |
| 552 | /// affine_map<(e0, e1, e2, e3, e4, e5) -> (e0, e1, e5, e2, e3, e4)>] |
| 553 | /// |
| 554 | /// Since operands to the linalg generic are now 5D, reshapes can be introduced |
| 555 | /// to make it consistent |
| 556 | /// |
| 557 | /// %0 = tensor.expand_shape %a [[0, 1, 2], [3, 4], [5]] |
| 558 | /// : tensor<?x?x?xf32> into tensor<?x?x?x?x?x?xf32> |
| 559 | /// %1 = tensor.expand_shape %b [[0, 1, 2], [3]] |
| 560 | /// : tensor<?x?x?xf32> into tensor<?x?x?x?xf32> |
| 561 | /// |
| 562 | /// The added reshapes are again expanding patterns, so they will get fused |
| 563 | /// with its producers if possible. |
| 564 | static bool isFusableWithReshapeByDimExpansion(LinalgOp linalgOp, |
| 565 | OpOperand *fusableOpOperand) { |
| 566 | // Is fusable only if: |
| 567 | // - All the indexing maps for operands and results are projected |
| 568 | // permutations. |
| 569 | // - The fused tensor is not a scalar. |
| 570 | SmallVector<utils::IteratorType> iteratorTypes = |
| 571 | linalgOp.getIteratorTypesArray(); |
| 572 | AffineMap operandMap = linalgOp.getMatchingIndexingMap(fusableOpOperand); |
| 573 | return linalgOp.hasPureTensorSemantics() && |
| 574 | llvm::all_of(linalgOp.getIndexingMaps().getValue(), |
| 575 | [](Attribute attr) { |
| 576 | return cast<AffineMapAttr>(attr) |
| 577 | .getValue() |
| 578 | .isProjectedPermutation(); |
| 579 | }) && |
| 580 | operandMap.getNumResults() > 0; |
| 581 | } |
| 582 | |
| 583 | namespace { |
| 584 | /// Information needed to expand a generic operation to fold the reshape with |
| 585 | /// it. |
| 586 | class ExpansionInfo { |
| 587 | public: |
| 588 | // Computes the mapping from original dimensions of the op to the dimensions |
| 589 | // of the expanded op given the `indexingMap` of the fused operand/result of |
| 590 | // the generic op, the `reassocationMaps` of the reshape op and the shape of |
| 591 | // the expanded op. |
| 592 | LogicalResult compute(LinalgOp linalgOp, OpOperand *fusableOpOperand, |
| 593 | ArrayRef<AffineMap> reassociationMaps, |
| 594 | ArrayRef<OpFoldResult> expandedShape, |
| 595 | PatternRewriter &rewriter); |
| 596 | unsigned getOrigOpNumDims() const { return reassociation.size(); } |
| 597 | unsigned getExpandedOpNumDims() const { return expandedOpNumDims; } |
| 598 | ReassociationIndicesRef getExpandedDims(unsigned i) const { |
| 599 | return reassociation[i]; |
| 600 | } |
| 601 | ArrayRef<OpFoldResult> getExpandedShapeOfDim(unsigned i) const { |
| 602 | return expandedShapeMap[i]; |
| 603 | } |
| 604 | ArrayRef<OpFoldResult> getOriginalShape() const { return originalLoopExtent; } |
| 605 | |
| 606 | private: |
| 607 | /// Reassociation from the dimensions in the original operation to the |
| 608 | /// dimension of the expanded operation. |
| 609 | SmallVector<ReassociationIndices> reassociation; |
| 610 | /// Mapping from extent of loops in the original operation, to the extent of |
| 611 | /// loops in the expanded operation. |
| 612 | SmallVector<SmallVector<OpFoldResult>> expandedShapeMap; |
| 613 | /// Extent of the loop in the original operation. |
| 614 | SmallVector<OpFoldResult> originalLoopExtent; |
| 615 | unsigned expandedOpNumDims; |
| 616 | }; |
| 617 | } // namespace |
| 618 | |
| 619 | LogicalResult ExpansionInfo::compute(LinalgOp linalgOp, |
| 620 | OpOperand *fusableOpOperand, |
| 621 | ArrayRef<AffineMap> reassociationMaps, |
| 622 | ArrayRef<OpFoldResult> expandedShape, |
| 623 | PatternRewriter &rewriter) { |
| 624 | if (reassociationMaps.empty()) |
| 625 | return failure(); |
| 626 | AffineMap fusedIndexMap = linalgOp.getMatchingIndexingMap(fusableOpOperand); |
| 627 | |
| 628 | OpBuilder::InsertionGuard g(rewriter); |
| 629 | rewriter.setInsertionPoint(linalgOp); |
| 630 | originalLoopExtent = llvm::map_to_vector( |
| 631 | linalgOp.createLoopRanges(rewriter, linalgOp->getLoc()), |
| 632 | [](Range r) { return r.size; }); |
| 633 | |
| 634 | reassociation.clear(); |
| 635 | expandedShapeMap.clear(); |
| 636 | // Compute the number of dimension in the expanded op that correspond to each |
| 637 | // dimension of the original op. |
| 638 | SmallVector<unsigned> numExpandedDims(fusedIndexMap.getNumDims(), 1); |
| 639 | expandedShapeMap.resize(N: fusedIndexMap.getNumDims()); |
| 640 | for (const auto &resultExpr : llvm::enumerate(fusedIndexMap.getResults())) { |
| 641 | unsigned pos = cast<AffineDimExpr>(resultExpr.value()).getPosition(); |
| 642 | AffineMap foldedDims = reassociationMaps[resultExpr.index()]; |
| 643 | numExpandedDims[pos] = foldedDims.getNumResults(); |
| 644 | ArrayRef<OpFoldResult> shape = |
| 645 | expandedShape.slice(foldedDims.getDimPosition(0), numExpandedDims[pos]); |
| 646 | expandedShapeMap[pos].assign(shape.begin(), shape.end()); |
| 647 | } |
| 648 | // The remaining dimensions remain the same. |
| 649 | for (unsigned i : llvm::seq<unsigned>(0, fusedIndexMap.getNumDims())) |
| 650 | if (expandedShapeMap[i].empty()) |
| 651 | expandedShapeMap[i] = {originalLoopExtent[i]}; |
| 652 | |
| 653 | // Compute reassociation map from the original op to the expanded op. |
| 654 | unsigned sum = 0; |
| 655 | reassociation.reserve(N: fusedIndexMap.getNumDims()); |
| 656 | for (const auto &numFoldedDim : llvm::enumerate(numExpandedDims)) { |
| 657 | auto seq = llvm::seq<int64_t>(sum, sum + numFoldedDim.value()); |
| 658 | reassociation.emplace_back(seq.begin(), seq.end()); |
| 659 | sum += numFoldedDim.value(); |
| 660 | } |
| 661 | expandedOpNumDims = sum; |
| 662 | return success(); |
| 663 | } |
| 664 | |
| 665 | /// Return the indexing map to use in the expanded op for a given the |
| 666 | /// `indexingMap` of the original operation. |
| 667 | static AffineMap |
| 668 | getIndexingMapInExpandedOp(OpBuilder &builder, AffineMap indexingMap, |
| 669 | const ExpansionInfo &expansionInfo) { |
| 670 | SmallVector<AffineExpr> newExprs; |
| 671 | for (AffineExpr expr : indexingMap.getResults()) { |
| 672 | unsigned pos = cast<AffineDimExpr>(Val&: expr).getPosition(); |
| 673 | SmallVector<AffineExpr, 4> expandedExprs = llvm::to_vector<4>( |
| 674 | Range: llvm::map_range(C: expansionInfo.getExpandedDims(i: pos), F: [&](int64_t v) { |
| 675 | return builder.getAffineDimExpr(position: static_cast<unsigned>(v)); |
| 676 | })); |
| 677 | newExprs.append(in_start: expandedExprs.begin(), in_end: expandedExprs.end()); |
| 678 | } |
| 679 | return AffineMap::get(dimCount: expansionInfo.getExpandedOpNumDims(), |
| 680 | symbolCount: indexingMap.getNumSymbols(), results: newExprs, |
| 681 | context: builder.getContext()); |
| 682 | } |
| 683 | |
| 684 | /// Return the shape and type of the operand/result to use in the expanded op |
| 685 | /// given the type in the original op. |
| 686 | static std::tuple<SmallVector<OpFoldResult>, RankedTensorType> |
| 687 | getExpandedShapeAndType(RankedTensorType originalType, AffineMap indexingMap, |
| 688 | const ExpansionInfo &expansionInfo) { |
| 689 | SmallVector<OpFoldResult> expandedShape; |
| 690 | for (AffineExpr expr : indexingMap.getResults()) { |
| 691 | unsigned dim = cast<AffineDimExpr>(Val&: expr).getPosition(); |
| 692 | ArrayRef<OpFoldResult> dimExpansion = |
| 693 | expansionInfo.getExpandedShapeOfDim(i: dim); |
| 694 | expandedShape.append(in_start: dimExpansion.begin(), in_end: dimExpansion.end()); |
| 695 | } |
| 696 | SmallVector<int64_t> expandedStaticShape; |
| 697 | std::tie(args&: expandedStaticShape, args: std::ignore) = |
| 698 | decomposeMixedValues(mixedValues: expandedShape); |
| 699 | return {expandedShape, RankedTensorType::get(expandedStaticShape, |
| 700 | originalType.getElementType())}; |
| 701 | } |
| 702 | |
| 703 | /// Returns the reassociation maps to use in the `tensor.expand_shape` |
| 704 | /// operation to convert the operands of the original operation to operands of |
| 705 | /// the expanded operation. The same method is used to compute the |
| 706 | /// `tensor.collapse_shape` used to collapse the result of the expanded |
| 707 | /// op to get the value that can replace all uses of the results of the original |
| 708 | /// op. |
| 709 | static SmallVector<ReassociationIndices> |
| 710 | getReassociationForExpansion(AffineMap indexingMap, |
| 711 | const ExpansionInfo &expansionInfo) { |
| 712 | SmallVector<ReassociationIndices> reassociation; |
| 713 | unsigned numReshapeDims = 0; |
| 714 | for (AffineExpr expr : indexingMap.getResults()) { |
| 715 | unsigned dim = cast<AffineDimExpr>(Val&: expr).getPosition(); |
| 716 | auto numExpandedDims = expansionInfo.getExpandedDims(i: dim).size(); |
| 717 | SmallVector<int64_t, 2> indices = llvm::to_vector<2>( |
| 718 | Range: llvm::seq<int64_t>(Begin: numReshapeDims, End: numReshapeDims + numExpandedDims)); |
| 719 | reassociation.emplace_back(Args: std::move(indices)); |
| 720 | numReshapeDims += numExpandedDims; |
| 721 | } |
| 722 | return reassociation; |
| 723 | } |
| 724 | |
| 725 | /// Update the body of an expanded linalg operation having index semantics. The |
| 726 | /// indices of the original operation need to be recovered by linearizing the |
| 727 | /// indices of the correspoding dimensions of the expanded operation. For now it |
| 728 | /// is assumed that the shapes of the expanded operation needed for |
| 729 | /// linearization are static. |
| 730 | static void updateExpandedGenericOpRegion(PatternRewriter &rewriter, |
| 731 | Location loc, Region &fusedRegion, |
| 732 | const ExpansionInfo &expansionInfo) { |
| 733 | // Replace the original indices by the linearization of the expanded indices. |
| 734 | for (IndexOp indexOp : |
| 735 | llvm::make_early_inc_range(fusedRegion.front().getOps<IndexOp>())) { |
| 736 | ArrayRef<int64_t> expandedDims = |
| 737 | expansionInfo.getExpandedDims(indexOp.getDim()); |
| 738 | assert(!expandedDims.empty() && "expected valid expansion info" ); |
| 739 | |
| 740 | // Skip index operations that are not affected by the expansion. |
| 741 | if (expandedDims.size() == 1 && |
| 742 | expandedDims.front() == (int64_t)indexOp.getDim()) |
| 743 | continue; |
| 744 | |
| 745 | // Linearize the expanded indices of the original index dimension. |
| 746 | OpBuilder::InsertionGuard guard(rewriter); |
| 747 | rewriter.setInsertionPointAfter(indexOp); |
| 748 | ArrayRef<OpFoldResult> expandedDimsShape = |
| 749 | expansionInfo.getExpandedShapeOfDim(indexOp.getDim()).drop_front(); |
| 750 | SmallVector<Value> expandedIndices; |
| 751 | expandedIndices.reserve(expandedDims.size() - 1); |
| 752 | llvm::transform( |
| 753 | expandedDims.drop_front(), std::back_inserter(expandedIndices), |
| 754 | [&](int64_t dim) { return rewriter.create<IndexOp>(loc, dim); }); |
| 755 | OpFoldResult newIndex = |
| 756 | rewriter.create<IndexOp>(loc, expandedDims.front()).getResult(); |
| 757 | for (auto [expandedShape, expandedIndex] : |
| 758 | llvm::zip(expandedDimsShape, expandedIndices)) { |
| 759 | AffineExpr idx, acc, shape; |
| 760 | bindDims(rewriter.getContext(), idx, acc); |
| 761 | bindSymbols(rewriter.getContext(), shape); |
| 762 | newIndex = affine::makeComposedFoldedAffineApply( |
| 763 | rewriter, indexOp.getLoc(), idx + acc * shape, |
| 764 | ArrayRef<OpFoldResult>{expandedIndex, newIndex, expandedShape}); |
| 765 | } |
| 766 | Value newIndexVal = |
| 767 | getValueOrCreateConstantIndexOp(rewriter, indexOp.getLoc(), newIndex); |
| 768 | rewriter.replaceOp(indexOp, newIndexVal); |
| 769 | } |
| 770 | } |
| 771 | |
| 772 | // Create an expanded transpose op. |
| 773 | // the reassociation map is already permuted hence we inverse permute and then |
| 774 | // flatten it. Then we inverse permute it again to get the final expanded |
| 775 | // transpose permutation. For example, |
| 776 | // |
| 777 | // permutation = [2, 0, 1] |
| 778 | // reassociation_map for expansion = [[0, 1], [2], [3, 4, 5]] |
| 779 | // |
| 780 | // inverse permutation = [1, 2, 0] |
| 781 | // applied to reassocation_map and then flattened becomes |
| 782 | // flatened permutation = [2, 3, 4, 5, 0, 1] |
| 783 | // final permuation is the inverse of the flattened permutation. |
| 784 | // |
| 785 | // Becomes |
| 786 | // |
| 787 | // permutation=[4, 5, 0, 1, 2, 3] |
| 788 | |
| 789 | static Operation *createExpandedTransposeOp(PatternRewriter &rewriter, |
| 790 | TransposeOp transposeOp, |
| 791 | Value expandedInput, Value output, |
| 792 | ExpansionInfo &expansionInfo) { |
| 793 | SmallVector<int64_t> newPerm; |
| 794 | for (int64_t perm : invertPermutationVector(transposeOp.getPermutation())) { |
| 795 | auto reassoc = expansionInfo.getExpandedDims(perm); |
| 796 | for (int64_t dim : reassoc) { |
| 797 | newPerm.push_back(dim); |
| 798 | } |
| 799 | } |
| 800 | return rewriter.create<TransposeOp>(transposeOp.getLoc(), expandedInput, |
| 801 | output, invertPermutationVector(newPerm)); |
| 802 | } |
| 803 | |
| 804 | // Create an expanded generic op. |
| 805 | static Operation *createExpandedGenericOp( |
| 806 | PatternRewriter &rewriter, LinalgOp linalgOp, TypeRange resultTypes, |
| 807 | ArrayRef<Value> &expandedOpOperands, ArrayRef<Value> outputs, |
| 808 | ExpansionInfo &expansionInfo, ArrayRef<AffineMap> expandedOpIndexingMaps) { |
| 809 | // The iterator types of the expanded op are all parallel. |
| 810 | SmallVector<utils::IteratorType> iteratorTypes( |
| 811 | expansionInfo.getExpandedOpNumDims(), utils::IteratorType::parallel); |
| 812 | |
| 813 | for (auto [i, type] : llvm::enumerate(linalgOp.getIteratorTypesArray())) |
| 814 | for (auto j : expansionInfo.getExpandedDims(i)) |
| 815 | iteratorTypes[j] = type; |
| 816 | |
| 817 | Operation *fused = rewriter.create<GenericOp>( |
| 818 | linalgOp.getLoc(), resultTypes, expandedOpOperands, outputs, |
| 819 | expandedOpIndexingMaps, iteratorTypes); |
| 820 | |
| 821 | Region &fusedRegion = fused->getRegion(index: 0); |
| 822 | Region &originalRegion = linalgOp->getRegion(0); |
| 823 | rewriter.cloneRegionBefore(region&: originalRegion, parent&: fusedRegion, before: fusedRegion.begin()); |
| 824 | |
| 825 | // Update the index accesses after the expansion. |
| 826 | updateExpandedGenericOpRegion(rewriter, linalgOp.getLoc(), fusedRegion, |
| 827 | expansionInfo); |
| 828 | |
| 829 | return fused; |
| 830 | } |
| 831 | |
| 832 | // Create an expanded fused op that retains the name for certain ops |
| 833 | // such as fill, copy and transpose and produce a generic op for |
| 834 | // rest of linalg ops. |
| 835 | static Operation *createExpandedOp(PatternRewriter &rewriter, LinalgOp linalgOp, |
| 836 | TypeRange resultTypes, |
| 837 | ArrayRef<Value> expandedOpOperands, |
| 838 | ArrayRef<Value> outputs, |
| 839 | ArrayRef<AffineMap> expandedOpIndexingMaps, |
| 840 | ExpansionInfo &expansionInfo) { |
| 841 | |
| 842 | return TypeSwitch<Operation *, Operation *>(linalgOp.getOperation()) |
| 843 | .Case<TransposeOp>([&](TransposeOp transposeOp) { |
| 844 | return createExpandedTransposeOp(rewriter, transposeOp, |
| 845 | expandedOpOperands[0], outputs[0], |
| 846 | expansionInfo); |
| 847 | }) |
| 848 | .Case<FillOp, CopyOp>([&](Operation *op) { |
| 849 | return clone(rewriter, linalgOp, resultTypes, |
| 850 | llvm::to_vector(llvm::concat<Value>( |
| 851 | llvm::to_vector(expandedOpOperands), |
| 852 | llvm::to_vector(outputs)))); |
| 853 | }) |
| 854 | .Default([&](Operation *op) { |
| 855 | return createExpandedGenericOp(rewriter, linalgOp, resultTypes, |
| 856 | expandedOpOperands, outputs, |
| 857 | expansionInfo, expandedOpIndexingMaps); |
| 858 | }); |
| 859 | } |
| 860 | |
| 861 | /// Implements the fusion of a tensor.collapse_shape or a tensor.expand_shape op |
| 862 | /// and a generic op as explained in `isFusableWithReshapeByExpansion`. Assumes |
| 863 | /// that those conditions have been satisfied. |
| 864 | static std::optional<SmallVector<Value>> |
| 865 | fuseWithReshapeByExpansion(LinalgOp linalgOp, Operation *reshapeOp, |
| 866 | OpOperand *fusableOpOperand, |
| 867 | PatternRewriter &rewriter) { |
| 868 | assert(isFusableWithReshapeByDimExpansion(linalgOp, fusableOpOperand) && |
| 869 | "preconditions for fuse operation failed" ); |
| 870 | |
| 871 | Location loc = linalgOp.getLoc(); |
| 872 | SmallVector<OpFoldResult> expandedShape; |
| 873 | SmallVector<AffineMap, 4> reassociationIndices; |
| 874 | Value src; |
| 875 | if (auto expandingReshapeOp = dyn_cast<tensor::ExpandShapeOp>(reshapeOp)) { |
| 876 | // Try to move the dynamic dimensions in output shape before the `linalgOp` |
| 877 | // to maintain SSA validity |
| 878 | if (failed(moveValueDefinitions( |
| 879 | rewriter, expandingReshapeOp.getOutputShape(), linalgOp))) |
| 880 | return std::nullopt; |
| 881 | |
| 882 | expandedShape = expandingReshapeOp.getMixedOutputShape(); |
| 883 | reassociationIndices = expandingReshapeOp.getReassociationMaps(); |
| 884 | src = expandingReshapeOp.getSrc(); |
| 885 | } else { |
| 886 | auto collapsingReshapeOp = dyn_cast<tensor::CollapseShapeOp>(reshapeOp); |
| 887 | if (!collapsingReshapeOp) |
| 888 | return std::nullopt; |
| 889 | |
| 890 | expandedShape = tensor::getMixedSizes( |
| 891 | builder&: rewriter, loc: collapsingReshapeOp->getLoc(), value: collapsingReshapeOp.getSrc()); |
| 892 | reassociationIndices = collapsingReshapeOp.getReassociationMaps(); |
| 893 | src = collapsingReshapeOp.getSrc(); |
| 894 | } |
| 895 | |
| 896 | ExpansionInfo expansionInfo; |
| 897 | if (failed(expansionInfo.compute(linalgOp: linalgOp, fusableOpOperand, |
| 898 | reassociationMaps: reassociationIndices, expandedShape, |
| 899 | rewriter))) |
| 900 | return std::nullopt; |
| 901 | |
| 902 | SmallVector<AffineMap, 4> expandedOpIndexingMaps = llvm::to_vector<4>( |
| 903 | llvm::map_range(linalgOp.getIndexingMapsArray(), [&](AffineMap m) { |
| 904 | return getIndexingMapInExpandedOp(builder&: rewriter, indexingMap: m, expansionInfo); |
| 905 | })); |
| 906 | |
| 907 | // Set insertion point to the generic op. |
| 908 | OpBuilder::InsertionGuard g(rewriter); |
| 909 | rewriter.setInsertionPoint(linalgOp); |
| 910 | |
| 911 | SmallVector<Value> expandedOpOperands; |
| 912 | expandedOpOperands.reserve(N: linalgOp.getNumDpsInputs()); |
| 913 | for (OpOperand *opOperand : linalgOp.getDpsInputOperands()) { |
| 914 | if (opOperand == fusableOpOperand) { |
| 915 | expandedOpOperands.push_back(src); |
| 916 | continue; |
| 917 | } |
| 918 | if (auto opOperandType = |
| 919 | dyn_cast<RankedTensorType>(opOperand->get().getType())) { |
| 920 | AffineMap indexingMap = linalgOp.getMatchingIndexingMap(opOperand); |
| 921 | SmallVector<OpFoldResult> expandedOperandShape; |
| 922 | RankedTensorType expandedOperandType; |
| 923 | std::tie(expandedOperandShape, expandedOperandType) = |
| 924 | getExpandedShapeAndType(opOperandType, indexingMap, expansionInfo); |
| 925 | if (expandedOperandType != opOperand->get().getType()) { |
| 926 | // Reshape the operand to get the right type. |
| 927 | SmallVector<ReassociationIndices> reassociation = |
| 928 | getReassociationForExpansion(indexingMap, expansionInfo); |
| 929 | if (failed(reshapeLikeShapesAreCompatible( |
| 930 | [&](const Twine &msg) { |
| 931 | return rewriter.notifyMatchFailure(linalgOp, msg); |
| 932 | }, |
| 933 | opOperandType.getShape(), expandedOperandType.getShape(), |
| 934 | reassociation, |
| 935 | /*isExpandingReshape=*/true))) |
| 936 | return std::nullopt; |
| 937 | expandedOpOperands.push_back(rewriter.create<tensor::ExpandShapeOp>( |
| 938 | loc, expandedOperandType, opOperand->get(), reassociation, |
| 939 | expandedOperandShape)); |
| 940 | continue; |
| 941 | } |
| 942 | } |
| 943 | expandedOpOperands.push_back(opOperand->get()); |
| 944 | } |
| 945 | |
| 946 | SmallVector<Value> outputs; |
| 947 | for (OpOperand &opOperand : linalgOp.getDpsInitsMutable()) { |
| 948 | AffineMap indexingMap = linalgOp.getMatchingIndexingMap(&opOperand); |
| 949 | auto opOperandType = cast<RankedTensorType>(opOperand.get().getType()); |
| 950 | SmallVector<OpFoldResult> expandedOutputShape; |
| 951 | RankedTensorType expandedOutputType; |
| 952 | std::tie(expandedOutputShape, expandedOutputType) = |
| 953 | getExpandedShapeAndType(opOperandType, indexingMap, expansionInfo); |
| 954 | if (expandedOutputType != opOperand.get().getType()) { |
| 955 | SmallVector<ReassociationIndices> reassociation = |
| 956 | getReassociationForExpansion(indexingMap, expansionInfo); |
| 957 | if (failed(reshapeLikeShapesAreCompatible( |
| 958 | [&](const Twine &msg) { |
| 959 | return rewriter.notifyMatchFailure(linalgOp, msg); |
| 960 | }, |
| 961 | opOperandType.getShape(), expandedOutputType.getShape(), |
| 962 | reassociation, |
| 963 | /*isExpandingReshape=*/true))) |
| 964 | return std::nullopt; |
| 965 | outputs.push_back(rewriter.create<tensor::ExpandShapeOp>( |
| 966 | loc, expandedOutputType, opOperand.get(), reassociation, |
| 967 | expandedOutputShape)); |
| 968 | } else { |
| 969 | outputs.push_back(opOperand.get()); |
| 970 | } |
| 971 | } |
| 972 | |
| 973 | TypeRange resultTypes = ValueRange(outputs).getTypes(); |
| 974 | Operation *fusedOp = |
| 975 | createExpandedOp(rewriter, linalgOp, resultTypes, expandedOpOperands, |
| 976 | outputs, expandedOpIndexingMaps, expansionInfo); |
| 977 | // Reshape the result values to their original shape if this is a collapsing |
| 978 | // reshape folded into its consumer. |
| 979 | SmallVector<Value> resultVals; |
| 980 | for (OpResult opResult : linalgOp->getOpResults()) { |
| 981 | int64_t resultNumber = opResult.getResultNumber(); |
| 982 | if (resultTypes[resultNumber] != opResult.getType()) { |
| 983 | SmallVector<ReassociationIndices> reassociation = |
| 984 | getReassociationForExpansion( |
| 985 | linalgOp.getMatchingIndexingMap( |
| 986 | linalgOp.getDpsInitOperand(resultNumber)), |
| 987 | expansionInfo); |
| 988 | resultVals.push_back(rewriter.create<tensor::CollapseShapeOp>( |
| 989 | linalgOp.getLoc(), opResult.getType(), |
| 990 | fusedOp->getResult(resultNumber), reassociation)); |
| 991 | } else { |
| 992 | resultVals.push_back(fusedOp->getResult(resultNumber)); |
| 993 | } |
| 994 | } |
| 995 | // Assuming a single result. |
| 996 | return resultVals; |
| 997 | } |
| 998 | |
| 999 | namespace { |
| 1000 | |
| 1001 | /// Pattern to fuse a tensor.collapse_shape op with its consumer structured op, |
| 1002 | /// when the reshape op is collapsing dimensions. The dimensionality of the loop |
| 1003 | /// in the consumer is expanded. |
| 1004 | class FoldWithProducerReshapeOpByExpansion |
| 1005 | : public OpInterfaceRewritePattern<LinalgOp> { |
| 1006 | public: |
| 1007 | FoldWithProducerReshapeOpByExpansion(MLIRContext *context, |
| 1008 | ControlFusionFn foldReshapes, |
| 1009 | PatternBenefit benefit = 1) |
| 1010 | : OpInterfaceRewritePattern<LinalgOp>(context, benefit), |
| 1011 | controlFoldingReshapes(std::move(foldReshapes)) {} |
| 1012 | |
| 1013 | LogicalResult matchAndRewrite(LinalgOp linalgOp, |
| 1014 | PatternRewriter &rewriter) const override { |
| 1015 | for (OpOperand *opOperand : linalgOp.getDpsInputOperands()) { |
| 1016 | tensor::CollapseShapeOp reshapeOp = |
| 1017 | opOperand->get().getDefiningOp<tensor::CollapseShapeOp>(); |
| 1018 | if (!reshapeOp) |
| 1019 | continue; |
| 1020 | // Fold only if |
| 1021 | // - The tensor reshape op is folding. |
| 1022 | // - All constraints of fusing with reshape by expansion are met. |
| 1023 | if (!isFusableWithReshapeByDimExpansion(linalgOp, opOperand) || |
| 1024 | (!controlFoldingReshapes(opOperand))) |
| 1025 | continue; |
| 1026 | |
| 1027 | std::optional<SmallVector<Value>> replacementValues = |
| 1028 | fuseWithReshapeByExpansion(linalgOp, reshapeOp, opOperand, rewriter); |
| 1029 | if (!replacementValues) |
| 1030 | return failure(); |
| 1031 | rewriter.replaceOp(linalgOp, *replacementValues); |
| 1032 | return success(); |
| 1033 | } |
| 1034 | return failure(); |
| 1035 | } |
| 1036 | |
| 1037 | private: |
| 1038 | ControlFusionFn controlFoldingReshapes; |
| 1039 | }; |
| 1040 | |
| 1041 | class FoldPadWithProducerReshapeOpByExpansion |
| 1042 | : public OpRewritePattern<tensor::PadOp> { |
| 1043 | public: |
| 1044 | FoldPadWithProducerReshapeOpByExpansion(MLIRContext *context, |
| 1045 | ControlFusionFn foldReshapes, |
| 1046 | PatternBenefit benefit = 1) |
| 1047 | : OpRewritePattern<tensor::PadOp>(context, benefit), |
| 1048 | controlFoldingReshapes(std::move(foldReshapes)) {} |
| 1049 | |
| 1050 | LogicalResult matchAndRewrite(tensor::PadOp padOp, |
| 1051 | PatternRewriter &rewriter) const override { |
| 1052 | tensor::CollapseShapeOp reshapeOp = |
| 1053 | padOp.getSource().getDefiningOp<tensor::CollapseShapeOp>(); |
| 1054 | if (!reshapeOp) |
| 1055 | return failure(); |
| 1056 | if (!reshapeOp->hasOneUse()) |
| 1057 | return failure(); |
| 1058 | |
| 1059 | if (!controlFoldingReshapes(&padOp.getSourceMutable())) { |
| 1060 | return rewriter.notifyMatchFailure(padOp, |
| 1061 | "fusion blocked by control function" ); |
| 1062 | } |
| 1063 | |
| 1064 | ArrayRef<int64_t> low = padOp.getStaticLow(); |
| 1065 | ArrayRef<int64_t> high = padOp.getStaticHigh(); |
| 1066 | SmallVector<ReassociationIndices> reassociations = |
| 1067 | reshapeOp.getReassociationIndices(); |
| 1068 | |
| 1069 | for (auto [reInd, l, h] : llvm::zip_equal(reassociations, low, high)) { |
| 1070 | if (reInd.size() != 1 && (l != 0 || h != 0)) |
| 1071 | return failure(); |
| 1072 | } |
| 1073 | |
| 1074 | SmallVector<OpFoldResult> newLow, newHigh; |
| 1075 | RankedTensorType expandedType = reshapeOp.getSrcType(); |
| 1076 | RankedTensorType paddedType = padOp.getResultType(); |
| 1077 | SmallVector<int64_t> expandedPaddedShape(expandedType.getShape()); |
| 1078 | for (auto [idx, reInd] : llvm::enumerate(reassociations)) { |
| 1079 | if (reInd.size() == 1) { |
| 1080 | expandedPaddedShape[reInd[0]] = paddedType.getShape()[idx]; |
| 1081 | } |
| 1082 | for (size_t i = 0; i < reInd.size(); ++i) { |
| 1083 | newLow.push_back(padOp.getMixedLowPad()[idx]); |
| 1084 | newHigh.push_back(padOp.getMixedHighPad()[idx]); |
| 1085 | } |
| 1086 | } |
| 1087 | |
| 1088 | Location loc = padOp->getLoc(); |
| 1089 | RankedTensorType expandedPaddedType = paddedType.clone(expandedPaddedShape); |
| 1090 | auto newPadOp = rewriter.create<tensor::PadOp>( |
| 1091 | loc, expandedPaddedType, reshapeOp.getSrc(), newLow, newHigh, |
| 1092 | padOp.getConstantPaddingValue(), padOp.getNofold()); |
| 1093 | |
| 1094 | rewriter.replaceOpWithNewOp<tensor::CollapseShapeOp>( |
| 1095 | padOp, padOp.getResultType(), newPadOp.getResult(), reassociations); |
| 1096 | |
| 1097 | return success(); |
| 1098 | } |
| 1099 | |
| 1100 | private: |
| 1101 | ControlFusionFn controlFoldingReshapes; |
| 1102 | }; |
| 1103 | |
| 1104 | /// Pattern to fold a tensor.expand_shape op with its producer generic op |
| 1105 | /// by expanding the dimensionality of the loop in the producer op. |
| 1106 | struct FoldReshapeWithGenericOpByExpansion |
| 1107 | : public OpRewritePattern<tensor::ExpandShapeOp> { |
| 1108 | |
| 1109 | FoldReshapeWithGenericOpByExpansion(MLIRContext *context, |
| 1110 | ControlFusionFn foldReshapes, |
| 1111 | PatternBenefit benefit = 1) |
| 1112 | : OpRewritePattern<tensor::ExpandShapeOp>(context, benefit), |
| 1113 | controlFoldingReshapes(std::move(foldReshapes)) {} |
| 1114 | |
| 1115 | LogicalResult matchAndRewrite(tensor::ExpandShapeOp reshapeOp, |
| 1116 | PatternRewriter &rewriter) const override { |
| 1117 | // Fold only if all constraints of fusing with reshape by expansion are met. |
| 1118 | auto producerResult = dyn_cast<OpResult>(reshapeOp.getSrc()); |
| 1119 | if (!producerResult) { |
| 1120 | return rewriter.notifyMatchFailure(reshapeOp, |
| 1121 | "source not produced by an operation" ); |
| 1122 | } |
| 1123 | |
| 1124 | auto producer = dyn_cast<LinalgOp>(producerResult.getOwner()); |
| 1125 | if (!producer) { |
| 1126 | return rewriter.notifyMatchFailure(reshapeOp, |
| 1127 | "producer not a generic op" ); |
| 1128 | } |
| 1129 | |
| 1130 | if (!isFusableWithReshapeByDimExpansion( |
| 1131 | producer, |
| 1132 | producer.getDpsInitOperand(producerResult.getResultNumber()))) { |
| 1133 | return rewriter.notifyMatchFailure( |
| 1134 | reshapeOp, "failed preconditions of fusion with producer generic op" ); |
| 1135 | } |
| 1136 | |
| 1137 | if (!controlFoldingReshapes(&reshapeOp.getSrcMutable())) { |
| 1138 | return rewriter.notifyMatchFailure(reshapeOp, |
| 1139 | "fusion blocked by control function" ); |
| 1140 | } |
| 1141 | |
| 1142 | std::optional<SmallVector<Value>> replacementValues = |
| 1143 | fuseWithReshapeByExpansion( |
| 1144 | producer, reshapeOp, |
| 1145 | producer.getDpsInitOperand(producerResult.getResultNumber()), |
| 1146 | rewriter); |
| 1147 | if (!replacementValues) { |
| 1148 | return rewriter.notifyMatchFailure(reshapeOp, |
| 1149 | "fusion by expansion failed" ); |
| 1150 | } |
| 1151 | |
| 1152 | // Find the replacement for the reshape op. Since the replacements have the |
| 1153 | // same type as the returns of the original generic op, the consumer reshape |
| 1154 | // op can be replaced by the source of the collapse_shape op that defines |
| 1155 | // the replacement. |
| 1156 | Value reshapeReplacement = |
| 1157 | (*replacementValues)[cast<OpResult>(reshapeOp.getSrc()) |
| 1158 | .getResultNumber()]; |
| 1159 | if (auto collapseOp = |
| 1160 | reshapeReplacement.getDefiningOp<tensor::CollapseShapeOp>()) { |
| 1161 | reshapeReplacement = collapseOp.getSrc(); |
| 1162 | } |
| 1163 | rewriter.replaceOp(reshapeOp, reshapeReplacement); |
| 1164 | rewriter.replaceOp(producer, *replacementValues); |
| 1165 | return success(); |
| 1166 | } |
| 1167 | |
| 1168 | private: |
| 1169 | ControlFusionFn controlFoldingReshapes; |
| 1170 | }; |
| 1171 | } // namespace |
| 1172 | |
| 1173 | //===---------------------------------------------------------------------===// |
| 1174 | // Methods and patterns to fuse reshape with linalg.generic operations by |
| 1175 | // contraction of dimensions. |
| 1176 | //===---------------------------------------------------------------------===// |
| 1177 | |
| 1178 | /// For a given list of indices in the range of the `indexingMap` that are |
| 1179 | /// folded, return the indices of the corresponding domain. Return |
| 1180 | /// `std::nullopt` on failure. Ensures that all the elements of the returned |
| 1181 | /// reassociation are distinct. |
| 1182 | static ReassociationIndices |
| 1183 | getDomainReassociation(AffineMap indexingMap, |
| 1184 | ReassociationIndicesRef rangeReassociation) { |
| 1185 | assert(indexingMap.isProjectedPermutation() && |
| 1186 | "expected projected permutation" ); |
| 1187 | |
| 1188 | ReassociationIndices domainReassociation = llvm::to_vector<4>( |
| 1189 | Range: llvm::map_range(C&: rangeReassociation, F: [&](int64_t pos) -> int64_t { |
| 1190 | return cast<AffineDimExpr>(Val: indexingMap.getResults()[pos]).getPosition(); |
| 1191 | })); |
| 1192 | // The projected permutation semantics ensures that there is no repetition of |
| 1193 | // the domain indices. |
| 1194 | return domainReassociation; |
| 1195 | } |
| 1196 | |
| 1197 | /// For a given `dimSequence`, check if the sequence is conserved in the |
| 1198 | /// `indexingMap`. `indexingMap` is expected to be a projected permutation. |
| 1199 | /// Non-existence of the sequence returns true as well. |
| 1200 | bool mlir::linalg::isDimSequencePreserved(AffineMap indexingMap, |
| 1201 | ReassociationIndicesRef dimSequence) { |
| 1202 | assert(!dimSequence.empty() && |
| 1203 | "expected non-empty list for dimension sequence" ); |
| 1204 | assert(indexingMap.isProjectedPermutation() && |
| 1205 | "expected indexing map to be projected permutation" ); |
| 1206 | |
| 1207 | llvm::SmallDenseSet<unsigned, 4> sequenceElements; |
| 1208 | sequenceElements.insert_range(R&: dimSequence); |
| 1209 | |
| 1210 | unsigned dimSequenceStart = dimSequence[0]; |
| 1211 | for (const auto &expr : enumerate(First: indexingMap.getResults())) { |
| 1212 | unsigned dimInMapStart = cast<AffineDimExpr>(Val: expr.value()).getPosition(); |
| 1213 | // 1. Check if this start of the sequence. |
| 1214 | if (dimInMapStart == dimSequenceStart) { |
| 1215 | if (expr.index() + dimSequence.size() > indexingMap.getNumResults()) |
| 1216 | return false; |
| 1217 | // 1a. Check if sequence is preserved. |
| 1218 | for (const auto &dimInSequence : enumerate(First&: dimSequence)) { |
| 1219 | unsigned dimInMap = |
| 1220 | cast<AffineDimExpr>( |
| 1221 | Val: indexingMap.getResult(idx: expr.index() + dimInSequence.index())) |
| 1222 | .getPosition(); |
| 1223 | if (dimInMap != dimInSequence.value()) |
| 1224 | return false; |
| 1225 | } |
| 1226 | // Found the sequence. Projected permutation |
| 1227 | // enforces that all AffineDimExprs in the result are unique, so no |
| 1228 | // further checks are needed. |
| 1229 | return true; |
| 1230 | } |
| 1231 | // 2. If position in the expr (which is of type AffineDimExpr) is part |
| 1232 | // of sequence, return false here. This implies the entire sequence does not |
| 1233 | // exist in the indexing map. |
| 1234 | if (sequenceElements.count(V: dimInMapStart)) |
| 1235 | return false; |
| 1236 | } |
| 1237 | // 3. No element of sequence found. Return true. |
| 1238 | return true; |
| 1239 | } |
| 1240 | |
| 1241 | bool mlir::linalg::areDimSequencesPreserved( |
| 1242 | ArrayRef<AffineMap> maps, ArrayRef<ReassociationIndices> dimSequences) { |
| 1243 | return llvm::all_of(Range&: maps, P: [&](AffineMap map) { |
| 1244 | return llvm::all_of(Range&: dimSequences, P: [&](ReassociationIndicesRef dimSequence) { |
| 1245 | return isDimSequencePreserved(indexingMap: map, dimSequence); |
| 1246 | }); |
| 1247 | }); |
| 1248 | } |
| 1249 | |
| 1250 | // Return the list of dimensions of the iteration domain that can be |
| 1251 | // collapsed to allow for fusion with the a producer that is an expand_shape |
| 1252 | // operation. If all dimensions created by expansion can be collapsed in the |
| 1253 | // iteration space then the reshape is defunct. |
| 1254 | // |
| 1255 | // Example: |
| 1256 | // |
| 1257 | // ```mlir |
| 1258 | // #map = affine_map<(d0, d1) -> (d0, d1)> |
| 1259 | // %1 = tensor.expand_shape %0 [[0, 1]] : tensor<?xf32> into tensor<?x4xf32> |
| 1260 | // %2 = tensor.empty [..] : tensor<?x4xf32> |
| 1261 | // %3 = linalg.generic { |
| 1262 | // indexing_maps = [#map, #map], |
| 1263 | // iterator_types = ["parallel" ,"parallel"]} |
| 1264 | // ins(%1 : tensor<?x4xf32>) outs(%2 : tensor<?x4xf32>) {.. } |
| 1265 | // ``` |
| 1266 | // |
| 1267 | // can be fused by collapsing the dimensions of the iteration space. |
| 1268 | // |
| 1269 | // ```mlir |
| 1270 | // #map = affine_map<(d0) -> (d0)> |
| 1271 | // %2 = tensor.empty [..] : tensor<?xf32> |
| 1272 | // %3 = linalg.generic { |
| 1273 | // indexing_maps = [#map, #map], |
| 1274 | // iterator_types = ["parallel"]} |
| 1275 | // ins(%1 : tensor<?xf32>) outs(%2 : tensor<?xf32>) {.. } |
| 1276 | // %4 = tensor.expand_shape %3 [[0, 1]] : tensor<?xf32> into tensor<?x4xf32> |
| 1277 | // ``` |
| 1278 | // |
| 1279 | // In the following example, |
| 1280 | // |
| 1281 | // ```mlir |
| 1282 | // #map0 = affine_map<(d0, d1) -> (d0, d1)> |
| 1283 | // #map1 = affine_map<(d0, d1) -> (d1, d0)> |
| 1284 | // %1 = tensor.expand_shape %0 [[0, 1]] : tensor<?xf32> into tensor<?x4xf32> |
| 1285 | // %2 = tensor.empty [..] : tensor<4x?xf32> |
| 1286 | // %2 = linalg.generic { |
| 1287 | // indexing_maps = [#map0, #map1], |
| 1288 | // iterator_types = ["parallel" ,"parallel"]} |
| 1289 | // ins(%1 : tensor<?x4xf32>) outs(%2 : tensor<4x?xf32>) {.. } |
| 1290 | // ``` |
| 1291 | // |
| 1292 | // the reshape cannot be fused with the generic op by collapsing the op |
| 1293 | // dimensions since the indexing maps will have to contain mods and divs |
| 1294 | // to preserve the accesses pattern. When no dimensions of the iteration |
| 1295 | // space are collapsable and empty vector is returned. |
| 1296 | static SmallVector<ReassociationIndices> |
| 1297 | getCollapsableIterationSpaceDims(GenericOp genericOp, OpOperand *fusableOperand, |
| 1298 | ArrayRef<ReassociationIndices> reassociation) { |
| 1299 | // Some basic checks for this fusion to be valid. |
| 1300 | if (!genericOp.hasPureTensorSemantics()) |
| 1301 | return {}; |
| 1302 | |
| 1303 | if (!llvm::all_of(genericOp.getIndexingMapsArray(), [](AffineMap map) { |
| 1304 | return map.isProjectedPermutation(); |
| 1305 | })) { |
| 1306 | return {}; |
| 1307 | } |
| 1308 | |
| 1309 | // Compute all the loops with the reduction iterator types. |
| 1310 | SmallVector<unsigned> reductionDims; |
| 1311 | genericOp.getReductionDims(reductionDims); |
| 1312 | |
| 1313 | llvm::SmallDenseSet<unsigned, 4> processedIterationDims; |
| 1314 | AffineMap indexingMap = genericOp.getMatchingIndexingMap(fusableOperand); |
| 1315 | auto iteratorTypes = genericOp.getIteratorTypesArray(); |
| 1316 | SmallVector<ReassociationIndices> iterationSpaceReassociation; |
| 1317 | for (ReassociationIndicesRef foldedRangeDims : reassociation) { |
| 1318 | assert(!foldedRangeDims.empty() && "unexpected empty reassociation" ); |
| 1319 | |
| 1320 | // Ignore dims that are not folded. |
| 1321 | if (foldedRangeDims.size() == 1) |
| 1322 | continue; |
| 1323 | |
| 1324 | ReassociationIndices foldedIterationSpaceDims = |
| 1325 | getDomainReassociation(indexingMap, rangeReassociation: foldedRangeDims); |
| 1326 | |
| 1327 | // Check that the folded iteration dims do not contain already processed |
| 1328 | // dims. |
| 1329 | if (llvm::any_of(Range&: foldedIterationSpaceDims, P: [&](int64_t dim) { |
| 1330 | return processedIterationDims.count(V: dim); |
| 1331 | })) |
| 1332 | continue; |
| 1333 | |
| 1334 | // Check that all folded iterator types are all parallel or all reductions. |
| 1335 | utils::IteratorType startIteratorType = |
| 1336 | iteratorTypes[foldedIterationSpaceDims[0]]; |
| 1337 | if (!isParallelIterator(startIteratorType) && |
| 1338 | !isReductionIterator(startIteratorType)) |
| 1339 | continue; |
| 1340 | if (llvm::any_of(Range&: foldedIterationSpaceDims, P: [&](int64_t dim) { |
| 1341 | return iteratorTypes[dim] != startIteratorType; |
| 1342 | })) |
| 1343 | continue; |
| 1344 | |
| 1345 | // If the folded dimensions correspond to a "reduction" iterator type, |
| 1346 | // the folded dimensions need to be "in-order". Strictly speaking this is |
| 1347 | // not necessary, for reductions that are associative and commutative, but |
| 1348 | // using a more strict definition of reduction for now. |
| 1349 | if (isReductionIterator(startIteratorType)) { |
| 1350 | bool isContiguous = false; |
| 1351 | for (const auto &startDim : llvm::enumerate(First&: reductionDims)) { |
| 1352 | // Move window in `reductionDims` to start of the folded iteration dims. |
| 1353 | if (startDim.value() != foldedIterationSpaceDims[0]) |
| 1354 | continue; |
| 1355 | // If sizes doesnt match, trivial not contiguous. This condition should |
| 1356 | // not be hit. |
| 1357 | if (startDim.index() + foldedIterationSpaceDims.size() > |
| 1358 | reductionDims.size()) |
| 1359 | break; |
| 1360 | // Check that the contiguity is maintained. |
| 1361 | isContiguous = true; |
| 1362 | for (const auto &foldedDim : |
| 1363 | llvm::enumerate(foldedIterationSpaceDims)) { |
| 1364 | if (reductionDims[foldedDim.index() + startDim.index()] != |
| 1365 | foldedDim.value()) { |
| 1366 | isContiguous = false; |
| 1367 | break; |
| 1368 | } |
| 1369 | } |
| 1370 | break; |
| 1371 | } |
| 1372 | if (!isContiguous) |
| 1373 | continue; |
| 1374 | } |
| 1375 | |
| 1376 | // Check that the sequence is preserved in all indexing maps. |
| 1377 | if (llvm::any_of(genericOp.getIndexingMapsArray(), |
| 1378 | [&](AffineMap indexingMap) { |
| 1379 | return !isDimSequencePreserved(indexingMap, |
| 1380 | foldedIterationSpaceDims); |
| 1381 | })) |
| 1382 | continue; |
| 1383 | |
| 1384 | processedIterationDims.insert_range(R&: foldedIterationSpaceDims); |
| 1385 | iterationSpaceReassociation.emplace_back( |
| 1386 | Args: std::move(foldedIterationSpaceDims)); |
| 1387 | } |
| 1388 | |
| 1389 | return iterationSpaceReassociation; |
| 1390 | } |
| 1391 | |
| 1392 | /// Helper class to carry state while collapsing the `linalg.generic` op. |
| 1393 | namespace { |
| 1394 | class CollapsingInfo { |
| 1395 | public: |
| 1396 | LogicalResult initialize(unsigned origNumLoops, |
| 1397 | ArrayRef<ReassociationIndices> foldedIterationDims) { |
| 1398 | llvm::SmallDenseSet<int64_t, 4> processedDims; |
| 1399 | // Find all the dims that are folded. |
| 1400 | for (ReassociationIndicesRef foldedIterationDim : foldedIterationDims) { |
| 1401 | if (foldedIterationDim.empty()) |
| 1402 | continue; |
| 1403 | // If the folded dims contain dims already folded, that's illegal |
| 1404 | // specification. Repetition within a list is also illegal. |
| 1405 | for (auto dim : foldedIterationDim) { |
| 1406 | if (dim >= origNumLoops) |
| 1407 | return failure(); |
| 1408 | if (processedDims.count(V: dim)) |
| 1409 | return failure(); |
| 1410 | processedDims.insert(V: dim); |
| 1411 | } |
| 1412 | collapsedOpToOrigOpIterationDim.emplace_back(Args: foldedIterationDim.begin(), |
| 1413 | Args: foldedIterationDim.end()); |
| 1414 | } |
| 1415 | if (processedDims.size() > origNumLoops) |
| 1416 | return failure(); |
| 1417 | |
| 1418 | // Add all the preserved dims of the original op as single |
| 1419 | // elements to `collapsedOpToOrigOpIterationDim`. |
| 1420 | for (auto dim : llvm::seq<int64_t>(Begin: 0, End: origNumLoops)) { |
| 1421 | if (processedDims.count(V: dim)) |
| 1422 | continue; |
| 1423 | collapsedOpToOrigOpIterationDim.emplace_back(Args: ReassociationIndices{dim}); |
| 1424 | } |
| 1425 | |
| 1426 | llvm::sort(C&: collapsedOpToOrigOpIterationDim, |
| 1427 | Comp: [&](ReassociationIndicesRef lhs, ReassociationIndicesRef rhs) { |
| 1428 | return lhs[0] < rhs[0]; |
| 1429 | }); |
| 1430 | origOpToCollapsedOpIterationDim.resize(N: origNumLoops); |
| 1431 | for (const auto &foldedDims : |
| 1432 | llvm::enumerate(First&: collapsedOpToOrigOpIterationDim)) { |
| 1433 | for (const auto &dim : enumerate(First&: foldedDims.value())) |
| 1434 | origOpToCollapsedOpIterationDim[dim.value()] = |
| 1435 | std::make_pair<int64_t, unsigned>(x: foldedDims.index(), y: dim.index()); |
| 1436 | } |
| 1437 | return success(); |
| 1438 | } |
| 1439 | |
| 1440 | /// Return mapping from collapsed loop domain to original loop domain. |
| 1441 | ArrayRef<ReassociationIndices> getCollapsedOpToOrigOpMapping() const { |
| 1442 | return collapsedOpToOrigOpIterationDim; |
| 1443 | } |
| 1444 | |
| 1445 | /// Return mapping from original loop domain to collapsed loop domain. The |
| 1446 | /// mapping is a pair. First value is the dimension in the collapsed loop that |
| 1447 | /// the original loop is mapped to. Second is the relative position in folded |
| 1448 | /// list of this domain. For example if the original loop domain is 3D, and |
| 1449 | /// the collapsed loop domain is folding all of it, i.e. |
| 1450 | /// |
| 1451 | /// ``` |
| 1452 | /// collapsedOpToOrigOpMapping = [[0, 1, 2] [3, 4]]` |
| 1453 | /// ``` |
| 1454 | /// |
| 1455 | /// then |
| 1456 | /// |
| 1457 | /// ``` |
| 1458 | /// origOpToCollapsedOpMapping[0] = {0, 0}; |
| 1459 | /// origOpToCollapsedOpMapping[1] = {0, 1}; |
| 1460 | /// origOpToCollapsedOpMapping[2] = {0, 2}; |
| 1461 | /// origOpToCollapsedOpMapping[3] = {1, 0}; |
| 1462 | /// origOpToCollapsedOpMapping[4] = {1, 1}; |
| 1463 | /// ``` |
| 1464 | /// |
| 1465 | ArrayRef<std::pair<int64_t, unsigned>> getOrigOpToCollapsedOpMapping() const { |
| 1466 | return origOpToCollapsedOpIterationDim; |
| 1467 | } |
| 1468 | |
| 1469 | /// Return the collapsed op iteration domain rank. |
| 1470 | unsigned getCollapsedOpIterationRank() const { |
| 1471 | return collapsedOpToOrigOpIterationDim.size(); |
| 1472 | } |
| 1473 | |
| 1474 | private: |
| 1475 | /// Map from the iteration domain index in collapsed op to the iteration |
| 1476 | /// domain indices in the original op. |
| 1477 | SmallVector<ReassociationIndices> collapsedOpToOrigOpIterationDim; |
| 1478 | |
| 1479 | /// Map from iteration domain index in the original op to the iteration domain |
| 1480 | /// index in the collapsed op. |
| 1481 | SmallVector<std::pair<int64_t, unsigned>> origOpToCollapsedOpIterationDim; |
| 1482 | }; |
| 1483 | } // namespace |
| 1484 | |
| 1485 | /// Get the iterator types for the collapsed operation given the original |
| 1486 | /// iterator types and collapsed dimensions. |
| 1487 | static SmallVector<utils::IteratorType> |
| 1488 | getCollapsedOpIteratorTypes(ArrayRef<utils::IteratorType> iteratorTypes, |
| 1489 | const CollapsingInfo &collapsingInfo) { |
| 1490 | SmallVector<utils::IteratorType> collapsedIteratorTypes; |
| 1491 | for (ReassociationIndicesRef foldedIterDims : |
| 1492 | collapsingInfo.getCollapsedOpToOrigOpMapping()) { |
| 1493 | assert(!foldedIterDims.empty() && |
| 1494 | "reassociation indices expected to have non-empty sets" ); |
| 1495 | // Just pick the iterator type of the first folded dim. Pre-condition checks |
| 1496 | // expected to have checked that iterator types of all folded dimensions are |
| 1497 | // the same. |
| 1498 | collapsedIteratorTypes.push_back(iteratorTypes[foldedIterDims[0]]); |
| 1499 | } |
| 1500 | return collapsedIteratorTypes; |
| 1501 | } |
| 1502 | |
| 1503 | /// Compute the indexing map in the collapsed op that corresponds to the given |
| 1504 | /// `indexingMap` of the original operation. |
| 1505 | static AffineMap |
| 1506 | getCollapsedOpIndexingMap(AffineMap indexingMap, |
| 1507 | const CollapsingInfo &collapsingInfo) { |
| 1508 | MLIRContext *context = indexingMap.getContext(); |
| 1509 | assert(indexingMap.isProjectedPermutation() && |
| 1510 | "expected indexing map to be projected permutation" ); |
| 1511 | SmallVector<AffineExpr> resultExprs; |
| 1512 | auto origOpToCollapsedOpMapping = |
| 1513 | collapsingInfo.getOrigOpToCollapsedOpMapping(); |
| 1514 | for (auto expr : indexingMap.getResults()) { |
| 1515 | unsigned dim = cast<AffineDimExpr>(Val&: expr).getPosition(); |
| 1516 | // If the dim is not the first of the collapsed dim, do nothing. |
| 1517 | if (origOpToCollapsedOpMapping[dim].second != 0) |
| 1518 | continue; |
| 1519 | // The next n-dims are guaranteed to be collapsed. So just use the |
| 1520 | // iteration dimension of the collapsed op. |
| 1521 | resultExprs.push_back( |
| 1522 | Elt: getAffineDimExpr(position: origOpToCollapsedOpMapping[dim].first, context)); |
| 1523 | } |
| 1524 | return AffineMap::get(dimCount: collapsingInfo.getCollapsedOpIterationRank(), symbolCount: 0, |
| 1525 | results: resultExprs, context); |
| 1526 | } |
| 1527 | |
| 1528 | /// Return the `reassociation` indices to use to collapse the operand when the |
| 1529 | /// iteration space of a generic op is collapsed. |
| 1530 | static SmallVector<ReassociationIndices> |
| 1531 | getOperandReassociation(AffineMap indexingMap, |
| 1532 | const CollapsingInfo &collapsingInfo) { |
| 1533 | unsigned counter = 0; |
| 1534 | SmallVector<ReassociationIndices> operandReassociation; |
| 1535 | auto origOpToCollapsedOpMapping = |
| 1536 | collapsingInfo.getOrigOpToCollapsedOpMapping(); |
| 1537 | auto collapsedOpToOrigOpMapping = |
| 1538 | collapsingInfo.getCollapsedOpToOrigOpMapping(); |
| 1539 | while (counter < indexingMap.getNumResults()) { |
| 1540 | unsigned dim = |
| 1541 | cast<AffineDimExpr>(Val: indexingMap.getResult(idx: counter)).getPosition(); |
| 1542 | // This is the start of a collapsed dimensions of the iteration that |
| 1543 | // is gauranteed to be preserved in the indexing map. The number of folded |
| 1544 | // dims is obtained from the collapsed op to original op mapping. |
| 1545 | unsigned numFoldedDims = |
| 1546 | collapsedOpToOrigOpMapping[origOpToCollapsedOpMapping[dim].first] |
| 1547 | .size(); |
| 1548 | if (origOpToCollapsedOpMapping[dim].second == 0) { |
| 1549 | auto range = llvm::seq<unsigned>(Begin: counter, End: counter + numFoldedDims); |
| 1550 | operandReassociation.emplace_back(Args: range.begin(), Args: range.end()); |
| 1551 | } |
| 1552 | counter += numFoldedDims; |
| 1553 | } |
| 1554 | return operandReassociation; |
| 1555 | } |
| 1556 | |
| 1557 | /// Get the new value to use for a given `OpOperand` in the collapsed operation. |
| 1558 | static Value getCollapsedOpOperand(Location loc, LinalgOp op, |
| 1559 | OpOperand *opOperand, |
| 1560 | const CollapsingInfo &collapsingInfo, |
| 1561 | OpBuilder &builder) { |
| 1562 | AffineMap indexingMap = op.getMatchingIndexingMap(opOperand); |
| 1563 | SmallVector<ReassociationIndices> operandReassociation = |
| 1564 | getOperandReassociation(indexingMap, collapsingInfo); |
| 1565 | |
| 1566 | // If the number of entries in the reassociation for the operand is same as |
| 1567 | // the number of results of the indexing map, then nothing to do for this |
| 1568 | // operand. |
| 1569 | Value operand = opOperand->get(); |
| 1570 | if (operandReassociation.size() == indexingMap.getNumResults()) |
| 1571 | return operand; |
| 1572 | |
| 1573 | // Insert a reshape to collapse the dimensions. |
| 1574 | if (isa<MemRefType>(Val: operand.getType())) { |
| 1575 | return builder |
| 1576 | .create<memref::CollapseShapeOp>(loc, operand, operandReassociation) |
| 1577 | .getResult(); |
| 1578 | } |
| 1579 | return builder |
| 1580 | .create<tensor::CollapseShapeOp>(loc, operand, operandReassociation) |
| 1581 | .getResult(); |
| 1582 | } |
| 1583 | |
| 1584 | /// Modify the `linalg.index` operations in the original generic op, to its |
| 1585 | /// value in the collapsed operation. |
| 1586 | static void generateCollapsedIndexingRegion( |
| 1587 | Location loc, Block *block, const CollapsingInfo &collapsingInfo, |
| 1588 | ArrayRef<OpFoldResult> loopRange, RewriterBase &rewriter) { |
| 1589 | OpBuilder::InsertionGuard g(rewriter); |
| 1590 | rewriter.setInsertionPointToStart(block); |
| 1591 | |
| 1592 | // Collect all the original index ops. |
| 1593 | auto indexOps = llvm::to_vector(block->getOps<linalg::IndexOp>()); |
| 1594 | |
| 1595 | // For each folded dimension list resolve the original induction variable |
| 1596 | // values in terms of the folded dimension induction variable. |
| 1597 | // i_{folded} = (i_0 * d1 + i1) * d2 + i2. |
| 1598 | // can be inverted to |
| 1599 | // i2 = i_{folded} % d2 |
| 1600 | // i1 = (i_{folded} / d2) % d1 |
| 1601 | // i0 = i_{folded} / (d1 * d2) |
| 1602 | llvm::DenseMap<unsigned, Value> indexReplacementVals; |
| 1603 | for (auto foldedDims : |
| 1604 | enumerate(First: collapsingInfo.getCollapsedOpToOrigOpMapping())) { |
| 1605 | ReassociationIndicesRef foldedDimsRef(foldedDims.value()); |
| 1606 | Value newIndexVal = |
| 1607 | rewriter.create<linalg::IndexOp>(loc, foldedDims.index()); |
| 1608 | for (auto dim : llvm::reverse(C: foldedDimsRef.drop_front())) { |
| 1609 | Value loopDim = |
| 1610 | getValueOrCreateConstantIndexOp(b&: rewriter, loc, ofr: loopRange[dim]); |
| 1611 | indexReplacementVals[dim] = |
| 1612 | rewriter.createOrFold<arith::RemSIOp>(loc, newIndexVal, loopDim); |
| 1613 | newIndexVal = |
| 1614 | rewriter.createOrFold<arith::DivSIOp>(loc, newIndexVal, loopDim); |
| 1615 | } |
| 1616 | indexReplacementVals[foldedDims.value().front()] = newIndexVal; |
| 1617 | } |
| 1618 | |
| 1619 | for (auto indexOp : indexOps) { |
| 1620 | auto dim = indexOp.getDim(); |
| 1621 | rewriter.replaceOp(indexOp, indexReplacementVals[dim]); |
| 1622 | } |
| 1623 | } |
| 1624 | |
| 1625 | void collapseOperandsAndResults(LinalgOp op, |
| 1626 | const CollapsingInfo &collapsingInfo, |
| 1627 | RewriterBase &rewriter, |
| 1628 | SmallVectorImpl<Value> &inputOperands, |
| 1629 | SmallVectorImpl<Value> &outputOperands, |
| 1630 | SmallVectorImpl<Type> &resultTypes) { |
| 1631 | Location loc = op->getLoc(); |
| 1632 | inputOperands = |
| 1633 | llvm::map_to_vector(op.getDpsInputOperands(), [&](OpOperand *opOperand) { |
| 1634 | return getCollapsedOpOperand(loc, op, opOperand, collapsingInfo, |
| 1635 | rewriter); |
| 1636 | }); |
| 1637 | |
| 1638 | // Get the output operands and result types. |
| 1639 | resultTypes.reserve(N: op.getNumDpsInits()); |
| 1640 | outputOperands.reserve(N: op.getNumDpsInits()); |
| 1641 | for (OpOperand &output : op.getDpsInitsMutable()) { |
| 1642 | Value newOutput = |
| 1643 | getCollapsedOpOperand(loc, op, &output, collapsingInfo, rewriter); |
| 1644 | outputOperands.push_back(newOutput); |
| 1645 | // If the op has "buffer semantics", then the init operands are ranked |
| 1646 | // memrefs and the op has no results. |
| 1647 | if (!op.hasPureBufferSemantics()) |
| 1648 | resultTypes.push_back(newOutput.getType()); |
| 1649 | } |
| 1650 | } |
| 1651 | |
| 1652 | /// Clone a `LinalgOp` to a collapsed version of same name |
| 1653 | template <typename OpTy> |
| 1654 | OpTy cloneToCollapsedOp(RewriterBase &rewriter, OpTy origOp, |
| 1655 | const CollapsingInfo &collapsingInfo) { |
| 1656 | return nullptr; |
| 1657 | } |
| 1658 | |
| 1659 | /// Collapse any `LinalgOp` that does not require any specialization such as |
| 1660 | /// indexing_maps, iterator_types, etc. |
| 1661 | template <> |
| 1662 | LinalgOp cloneToCollapsedOp<LinalgOp>(RewriterBase &rewriter, LinalgOp origOp, |
| 1663 | const CollapsingInfo &collapsingInfo) { |
| 1664 | SmallVector<Value> inputOperands, outputOperands; |
| 1665 | SmallVector<Type> resultTypes; |
| 1666 | collapseOperandsAndResults(origOp, collapsingInfo, rewriter, inputOperands, |
| 1667 | outputOperands, resultTypes); |
| 1668 | |
| 1669 | return clone( |
| 1670 | rewriter, origOp, resultTypes, |
| 1671 | llvm::to_vector(Range: llvm::concat<Value>(Ranges&: inputOperands, Ranges&: outputOperands))); |
| 1672 | } |
| 1673 | |
| 1674 | /// Collapse a `GenericOp` |
| 1675 | template <> |
| 1676 | GenericOp cloneToCollapsedOp<GenericOp>(RewriterBase &rewriter, |
| 1677 | GenericOp origOp, |
| 1678 | const CollapsingInfo &collapsingInfo) { |
| 1679 | SmallVector<Value> inputOperands, outputOperands; |
| 1680 | SmallVector<Type> resultTypes; |
| 1681 | collapseOperandsAndResults(origOp, collapsingInfo, rewriter, inputOperands, |
| 1682 | outputOperands, resultTypes); |
| 1683 | SmallVector<AffineMap> indexingMaps( |
| 1684 | llvm::map_range(origOp.getIndexingMapsArray(), [&](AffineMap map) { |
| 1685 | return getCollapsedOpIndexingMap(indexingMap: map, collapsingInfo); |
| 1686 | })); |
| 1687 | |
| 1688 | SmallVector<utils::IteratorType> iteratorTypes(getCollapsedOpIteratorTypes( |
| 1689 | origOp.getIteratorTypesArray(), collapsingInfo)); |
| 1690 | |
| 1691 | GenericOp collapsedOp = rewriter.create<linalg::GenericOp>( |
| 1692 | origOp.getLoc(), resultTypes, inputOperands, outputOperands, indexingMaps, |
| 1693 | iteratorTypes, [](OpBuilder &builder, Location loc, ValueRange args) {}); |
| 1694 | Block *origOpBlock = &origOp->getRegion(0).front(); |
| 1695 | Block *collapsedOpBlock = &collapsedOp->getRegion(0).front(); |
| 1696 | rewriter.mergeBlocks(source: origOpBlock, dest: collapsedOpBlock, |
| 1697 | argValues: collapsedOpBlock->getArguments()); |
| 1698 | return collapsedOp; |
| 1699 | } |
| 1700 | |
| 1701 | LinalgOp createCollapsedOp(LinalgOp op, const CollapsingInfo &collapsingInfo, |
| 1702 | RewriterBase &rewriter) { |
| 1703 | if (GenericOp genericOp = dyn_cast<GenericOp>(op.getOperation())) { |
| 1704 | return cloneToCollapsedOp(rewriter, genericOp, collapsingInfo); |
| 1705 | } else { |
| 1706 | return cloneToCollapsedOp(rewriter, op, collapsingInfo); |
| 1707 | } |
| 1708 | } |
| 1709 | |
| 1710 | /// Implementation of fusion with reshape operation by collapsing dimensions. |
| 1711 | FailureOr<CollapseResult> mlir::linalg::collapseOpIterationDims( |
| 1712 | LinalgOp op, ArrayRef<ReassociationIndices> foldedIterationDims, |
| 1713 | RewriterBase &rewriter) { |
| 1714 | // Bail on trivial no-op cases. |
| 1715 | if (op.getNumLoops() <= 1 || foldedIterationDims.empty() || |
| 1716 | llvm::all_of(Range&: foldedIterationDims, P: [](ReassociationIndicesRef foldedDims) { |
| 1717 | return foldedDims.size() <= 1; |
| 1718 | })) |
| 1719 | return failure(); |
| 1720 | |
| 1721 | bool hasPureBufferSemantics = op.hasPureBufferSemantics(); |
| 1722 | if (hasPureBufferSemantics && |
| 1723 | !llvm::all_of(op->getOperands(), [&](Value operand) -> bool { |
| 1724 | MemRefType memRefToCollapse = dyn_cast<MemRefType>(operand.getType()); |
| 1725 | if (!memRefToCollapse) |
| 1726 | return true; |
| 1727 | |
| 1728 | return memref::CollapseShapeOp::isGuaranteedCollapsible( |
| 1729 | memRefToCollapse, foldedIterationDims); |
| 1730 | })) |
| 1731 | return rewriter.notifyMatchFailure(op, |
| 1732 | "memref is not guaranteed collapsible" ); |
| 1733 | |
| 1734 | CollapsingInfo collapsingInfo; |
| 1735 | if (failed( |
| 1736 | collapsingInfo.initialize(origNumLoops: op.getNumLoops(), foldedIterationDims))) { |
| 1737 | return rewriter.notifyMatchFailure( |
| 1738 | op, "illegal to collapse specified dimensions" ); |
| 1739 | } |
| 1740 | |
| 1741 | // Bail on non-canonical ranges. |
| 1742 | SmallVector<Range> loopRanges = op.createLoopRanges(rewriter, op.getLoc()); |
| 1743 | auto opFoldIsConstantValue = [](OpFoldResult ofr, int64_t value) { |
| 1744 | if (auto attr = llvm::dyn_cast_if_present<Attribute>(ofr)) |
| 1745 | return cast<IntegerAttr>(attr).getInt() == value; |
| 1746 | llvm::APInt actual; |
| 1747 | return matchPattern(cast<Value>(ofr), m_ConstantInt(&actual)) && |
| 1748 | actual.getSExtValue() == value; |
| 1749 | }; |
| 1750 | if (!llvm::all_of(Range&: loopRanges, P: [&](Range range) { |
| 1751 | return opFoldIsConstantValue(range.offset, 0) && |
| 1752 | opFoldIsConstantValue(range.stride, 1); |
| 1753 | })) { |
| 1754 | return rewriter.notifyMatchFailure( |
| 1755 | op, "expected all loop ranges to have zero start and unit stride" ); |
| 1756 | } |
| 1757 | |
| 1758 | LinalgOp collapsedOp = createCollapsedOp(op, collapsingInfo, rewriter); |
| 1759 | |
| 1760 | Location loc = op->getLoc(); |
| 1761 | SmallVector<OpFoldResult> loopBound = |
| 1762 | llvm::map_to_vector(C&: loopRanges, F: [](Range range) { return range.size; }); |
| 1763 | |
| 1764 | if (collapsedOp.hasIndexSemantics()) { |
| 1765 | // Collect the loop range of the generic op. |
| 1766 | OpBuilder::InsertionGuard g(rewriter); |
| 1767 | rewriter.setInsertionPoint(collapsedOp); |
| 1768 | generateCollapsedIndexingRegion(loc, &collapsedOp->getRegion(0).front(), |
| 1769 | collapsingInfo, loopBound, rewriter); |
| 1770 | } |
| 1771 | |
| 1772 | // Insert expanding reshape for the result to get back the original result |
| 1773 | // type. |
| 1774 | SmallVector<Value> results; |
| 1775 | for (const auto &originalResult : llvm::enumerate(op->getResults())) { |
| 1776 | Value collapsedOpResult = collapsedOp->getResult(originalResult.index()); |
| 1777 | auto originalResultType = |
| 1778 | cast<ShapedType>(originalResult.value().getType()); |
| 1779 | auto collapsedOpResultType = cast<ShapedType>(collapsedOpResult.getType()); |
| 1780 | if (collapsedOpResultType.getRank() != originalResultType.getRank()) { |
| 1781 | AffineMap indexingMap = |
| 1782 | op.getIndexingMapMatchingResult(originalResult.value()); |
| 1783 | SmallVector<ReassociationIndices> reassociation = |
| 1784 | getOperandReassociation(indexingMap, collapsingInfo); |
| 1785 | assert( |
| 1786 | indexingMap.isProjectedPermutation() && |
| 1787 | "Expected indexing map to be a projected permutation for collapsing" ); |
| 1788 | SmallVector<OpFoldResult> resultShape = |
| 1789 | applyPermutationMap(indexingMap, ArrayRef(loopBound)); |
| 1790 | Value result; |
| 1791 | if (isa<MemRefType>(collapsedOpResult.getType())) { |
| 1792 | MemRefType expandShapeResultType = MemRefType::get( |
| 1793 | originalResultType.getShape(), originalResultType.getElementType()); |
| 1794 | result = rewriter.create<memref::ExpandShapeOp>( |
| 1795 | loc, expandShapeResultType, collapsedOpResult, reassociation, |
| 1796 | resultShape); |
| 1797 | } else { |
| 1798 | result = rewriter.create<tensor::ExpandShapeOp>( |
| 1799 | loc, originalResultType, collapsedOpResult, reassociation, |
| 1800 | resultShape); |
| 1801 | } |
| 1802 | results.push_back(result); |
| 1803 | } else { |
| 1804 | results.push_back(collapsedOpResult); |
| 1805 | } |
| 1806 | } |
| 1807 | return CollapseResult{results, collapsedOp}; |
| 1808 | } |
| 1809 | |
| 1810 | namespace { |
| 1811 | |
| 1812 | /// Pattern to fuse a tensor.expand_shape op with its consumer generic op by |
| 1813 | /// contracting dimensions of the loop. |
| 1814 | class FoldWithProducerReshapeOpByCollapsing |
| 1815 | : public OpRewritePattern<GenericOp> { |
| 1816 | public: |
| 1817 | // TODO : support fusion with all linalg ops, not just generic. |
| 1818 | FoldWithProducerReshapeOpByCollapsing(MLIRContext *context, |
| 1819 | ControlFusionFn foldReshapes, |
| 1820 | PatternBenefit benefit = 1) |
| 1821 | : OpRewritePattern<GenericOp>(context, benefit), |
| 1822 | controlFoldingReshapes(std::move(foldReshapes)) {} |
| 1823 | |
| 1824 | LogicalResult matchAndRewrite(GenericOp genericOp, |
| 1825 | PatternRewriter &rewriter) const override { |
| 1826 | for (OpOperand &opOperand : genericOp->getOpOperands()) { |
| 1827 | tensor::ExpandShapeOp reshapeOp = |
| 1828 | opOperand.get().getDefiningOp<tensor::ExpandShapeOp>(); |
| 1829 | if (!reshapeOp) |
| 1830 | continue; |
| 1831 | |
| 1832 | SmallVector<ReassociationIndices> collapsableIterationDims = |
| 1833 | getCollapsableIterationSpaceDims(genericOp, &opOperand, |
| 1834 | reshapeOp.getReassociationIndices()); |
| 1835 | if (collapsableIterationDims.empty() || |
| 1836 | !controlFoldingReshapes(&opOperand)) { |
| 1837 | continue; |
| 1838 | } |
| 1839 | |
| 1840 | std::optional<CollapseResult> collapseResult = collapseOpIterationDims( |
| 1841 | genericOp, collapsableIterationDims, rewriter); |
| 1842 | if (!collapseResult) { |
| 1843 | return rewriter.notifyMatchFailure( |
| 1844 | genericOp, "failed to do the fusion by collapsing transformation" ); |
| 1845 | } |
| 1846 | |
| 1847 | rewriter.replaceOp(genericOp, collapseResult->results); |
| 1848 | return success(); |
| 1849 | } |
| 1850 | return failure(); |
| 1851 | } |
| 1852 | |
| 1853 | private: |
| 1854 | ControlFusionFn controlFoldingReshapes; |
| 1855 | }; |
| 1856 | |
| 1857 | /// Pattern to fold a tensor.collapse_shape op with its producer generic op |
| 1858 | /// by expanding the dimensionality of the loop in the producer op. |
| 1859 | struct FoldReshapeWithGenericOpByCollapsing |
| 1860 | : public OpRewritePattern<tensor::CollapseShapeOp> { |
| 1861 | |
| 1862 | FoldReshapeWithGenericOpByCollapsing(MLIRContext *context, |
| 1863 | ControlFusionFn foldReshapes, |
| 1864 | PatternBenefit benefit = 1) |
| 1865 | : OpRewritePattern<tensor::CollapseShapeOp>(context, benefit), |
| 1866 | controlFoldingReshapes(std::move(foldReshapes)) {} |
| 1867 | |
| 1868 | LogicalResult matchAndRewrite(tensor::CollapseShapeOp reshapeOp, |
| 1869 | PatternRewriter &rewriter) const override { |
| 1870 | // Fold only if all constraints of fusing with reshape by collapsing are |
| 1871 | // met. |
| 1872 | auto producerResult = dyn_cast<OpResult>(reshapeOp.getSrc()); |
| 1873 | if (!producerResult) { |
| 1874 | return rewriter.notifyMatchFailure(reshapeOp, |
| 1875 | "source not produced by an operation" ); |
| 1876 | } |
| 1877 | |
| 1878 | // TODO : support fusion with all linalg producers, not just generic. |
| 1879 | auto producer = dyn_cast<GenericOp>(producerResult.getOwner()); |
| 1880 | if (!producer) { |
| 1881 | return rewriter.notifyMatchFailure(reshapeOp, |
| 1882 | "producer not a generic op" ); |
| 1883 | } |
| 1884 | |
| 1885 | SmallVector<ReassociationIndices> collapsableIterationDims = |
| 1886 | getCollapsableIterationSpaceDims( |
| 1887 | producer, |
| 1888 | producer.getDpsInitOperand(producerResult.getResultNumber()), |
| 1889 | reshapeOp.getReassociationIndices()); |
| 1890 | if (collapsableIterationDims.empty()) { |
| 1891 | return rewriter.notifyMatchFailure( |
| 1892 | reshapeOp, "failed preconditions of fusion with producer generic op" ); |
| 1893 | } |
| 1894 | |
| 1895 | if (!controlFoldingReshapes(&reshapeOp.getSrcMutable())) { |
| 1896 | return rewriter.notifyMatchFailure(reshapeOp, |
| 1897 | "fusion blocked by control function" ); |
| 1898 | } |
| 1899 | |
| 1900 | // Set the insertion point after `producer` because there could be uses |
| 1901 | // of `producer` between it and the `tensor.collapse_shape` op. |
| 1902 | rewriter.setInsertionPointAfter(producer); |
| 1903 | std::optional<CollapseResult> collapseResult = |
| 1904 | collapseOpIterationDims(producer, collapsableIterationDims, rewriter); |
| 1905 | if (!collapseResult) { |
| 1906 | return rewriter.notifyMatchFailure( |
| 1907 | producer, "failed to do the fusion by collapsing transformation" ); |
| 1908 | } |
| 1909 | |
| 1910 | rewriter.replaceOp(producer, collapseResult->results); |
| 1911 | return success(); |
| 1912 | } |
| 1913 | |
| 1914 | private: |
| 1915 | ControlFusionFn controlFoldingReshapes; |
| 1916 | }; |
| 1917 | |
| 1918 | class FoldPadWithProducerReshapeOpByCollapsing |
| 1919 | : public OpRewritePattern<tensor::PadOp> { |
| 1920 | public: |
| 1921 | FoldPadWithProducerReshapeOpByCollapsing(MLIRContext *context, |
| 1922 | ControlFusionFn foldReshapes, |
| 1923 | PatternBenefit benefit = 1) |
| 1924 | : OpRewritePattern<tensor::PadOp>(context, benefit), |
| 1925 | controlFoldingReshapes(std::move(foldReshapes)) {} |
| 1926 | |
| 1927 | LogicalResult matchAndRewrite(tensor::PadOp padOp, |
| 1928 | PatternRewriter &rewriter) const override { |
| 1929 | tensor::ExpandShapeOp reshapeOp = |
| 1930 | padOp.getSource().getDefiningOp<tensor::ExpandShapeOp>(); |
| 1931 | if (!reshapeOp) |
| 1932 | return failure(); |
| 1933 | if (!reshapeOp->hasOneUse()) |
| 1934 | return failure(); |
| 1935 | |
| 1936 | if (!controlFoldingReshapes(&padOp.getSourceMutable())) { |
| 1937 | return rewriter.notifyMatchFailure(padOp, |
| 1938 | "fusion blocked by control function" ); |
| 1939 | } |
| 1940 | |
| 1941 | ArrayRef<int64_t> low = padOp.getStaticLow(); |
| 1942 | ArrayRef<int64_t> high = padOp.getStaticHigh(); |
| 1943 | SmallVector<ReassociationIndices> reassociations = |
| 1944 | reshapeOp.getReassociationIndices(); |
| 1945 | |
| 1946 | for (auto reInd : reassociations) { |
| 1947 | if (reInd.size() == 1) |
| 1948 | continue; |
| 1949 | if (llvm::any_of(reInd, [&](int64_t ind) { |
| 1950 | return low[ind] != 0 || high[ind] != 0; |
| 1951 | })) { |
| 1952 | return failure(); |
| 1953 | } |
| 1954 | } |
| 1955 | |
| 1956 | SmallVector<OpFoldResult> newLow, newHigh; |
| 1957 | RankedTensorType collapsedType = reshapeOp.getSrcType(); |
| 1958 | RankedTensorType paddedType = padOp.getResultType(); |
| 1959 | SmallVector<int64_t> collapsedPaddedShape(collapsedType.getShape()); |
| 1960 | SmallVector<OpFoldResult> expandedPaddedSizes( |
| 1961 | getMixedValues(reshapeOp.getStaticOutputShape(), |
| 1962 | reshapeOp.getOutputShape(), rewriter)); |
| 1963 | AffineExpr d0, d1, d2; |
| 1964 | bindDims(ctx: rewriter.getContext(), exprs&: d0, exprs&: d1, exprs&: d2); |
| 1965 | auto addMap = AffineMap::get(dimCount: 3, symbolCount: 0, result: {d0 + d1 + d2}); |
| 1966 | Location loc = reshapeOp->getLoc(); |
| 1967 | for (auto [idx, reInd] : llvm::enumerate(reassociations)) { |
| 1968 | OpFoldResult l = padOp.getMixedLowPad()[reInd[0]]; |
| 1969 | OpFoldResult h = padOp.getMixedHighPad()[reInd[0]]; |
| 1970 | if (reInd.size() == 1) { |
| 1971 | collapsedPaddedShape[idx] = paddedType.getShape()[reInd[0]]; |
| 1972 | OpFoldResult paddedSize = affine::makeComposedFoldedAffineApply( |
| 1973 | rewriter, loc, addMap, {l, h, expandedPaddedSizes[reInd[0]]}); |
| 1974 | expandedPaddedSizes[reInd[0]] = paddedSize; |
| 1975 | } |
| 1976 | newLow.push_back(l); |
| 1977 | newHigh.push_back(h); |
| 1978 | } |
| 1979 | |
| 1980 | RankedTensorType collapsedPaddedType = |
| 1981 | paddedType.clone(collapsedPaddedShape); |
| 1982 | auto newPadOp = rewriter.create<tensor::PadOp>( |
| 1983 | loc, collapsedPaddedType, reshapeOp.getSrc(), newLow, newHigh, |
| 1984 | padOp.getConstantPaddingValue(), padOp.getNofold()); |
| 1985 | |
| 1986 | rewriter.replaceOpWithNewOp<tensor::ExpandShapeOp>( |
| 1987 | padOp, padOp.getResultType(), newPadOp.getResult(), reassociations, |
| 1988 | expandedPaddedSizes); |
| 1989 | |
| 1990 | return success(); |
| 1991 | } |
| 1992 | |
| 1993 | private: |
| 1994 | ControlFusionFn controlFoldingReshapes; |
| 1995 | }; |
| 1996 | |
| 1997 | /// Pattern to collapse dimensions. |
| 1998 | template <typename LinalgType> |
| 1999 | class CollapseLinalgDimensions : public OpRewritePattern<LinalgType> { |
| 2000 | public: |
| 2001 | CollapseLinalgDimensions(MLIRContext *context, |
| 2002 | GetCollapsableDimensionsFn collapseDimensions, |
| 2003 | PatternBenefit benefit = 1) |
| 2004 | : OpRewritePattern<LinalgType>(context, benefit), |
| 2005 | controlCollapseDimension(std::move(collapseDimensions)) {} |
| 2006 | |
| 2007 | LogicalResult matchAndRewrite(LinalgType op, |
| 2008 | PatternRewriter &rewriter) const override { |
| 2009 | SmallVector<ReassociationIndices> collapsableIterationDims = |
| 2010 | controlCollapseDimension(op); |
| 2011 | if (collapsableIterationDims.empty()) |
| 2012 | return failure(); |
| 2013 | |
| 2014 | // Check if the specified list of dimensions to collapse is a valid list. |
| 2015 | if (!areDimSequencesPreserved(op.getIndexingMapsArray(), |
| 2016 | collapsableIterationDims)) { |
| 2017 | return rewriter.notifyMatchFailure( |
| 2018 | op, "specified dimensions cannot be collapsed" ); |
| 2019 | } |
| 2020 | |
| 2021 | std::optional<CollapseResult> collapseResult = |
| 2022 | collapseOpIterationDims(op, collapsableIterationDims, rewriter); |
| 2023 | if (!collapseResult) { |
| 2024 | return rewriter.notifyMatchFailure(op, "failed to collapse dimensions" ); |
| 2025 | } |
| 2026 | rewriter.replaceOp(op, collapseResult->results); |
| 2027 | return success(); |
| 2028 | } |
| 2029 | |
| 2030 | private: |
| 2031 | GetCollapsableDimensionsFn controlCollapseDimension; |
| 2032 | }; |
| 2033 | |
| 2034 | } // namespace |
| 2035 | |
| 2036 | //===---------------------------------------------------------------------===// |
| 2037 | // Methods and patterns that fuse constants with linalg.generic operations. |
| 2038 | //===---------------------------------------------------------------------===// |
| 2039 | |
| 2040 | namespace { |
| 2041 | /// Pattern to fold a generic op with a splat constant/scalar constant. Does not |
| 2042 | /// handle cases where the constant is not single-valued. |
| 2043 | class FoldScalarOrSplatConstant : public OpRewritePattern<GenericOp> { |
| 2044 | public: |
| 2045 | FoldScalarOrSplatConstant(MLIRContext *context, PatternBenefit benefit = 1) |
| 2046 | : OpRewritePattern<GenericOp>(context, benefit) {} |
| 2047 | |
| 2048 | LogicalResult matchAndRewrite(GenericOp genericOp, |
| 2049 | PatternRewriter &rewriter) const override { |
| 2050 | if (!genericOp.hasPureTensorSemantics()) |
| 2051 | return failure(); |
| 2052 | for (OpOperand *opOperand : genericOp.getDpsInputOperands()) { |
| 2053 | Operation *def = opOperand->get().getDefiningOp(); |
| 2054 | TypedAttr constantAttr; |
| 2055 | auto isScalarOrSplatConstantOp = [&constantAttr](Operation *def) -> bool { |
| 2056 | { |
| 2057 | DenseElementsAttr splatAttr; |
| 2058 | if (matchPattern(def, m_Constant<DenseElementsAttr>(&splatAttr)) && |
| 2059 | splatAttr.isSplat() && |
| 2060 | splatAttr.getType().getElementType().isIntOrFloat()) { |
| 2061 | constantAttr = splatAttr.getSplatValue<TypedAttr>(); |
| 2062 | return true; |
| 2063 | } |
| 2064 | } |
| 2065 | { |
| 2066 | IntegerAttr intAttr; |
| 2067 | if (matchPattern(def, m_Constant<IntegerAttr>(&intAttr))) { |
| 2068 | constantAttr = intAttr; |
| 2069 | return true; |
| 2070 | } |
| 2071 | } |
| 2072 | { |
| 2073 | FloatAttr floatAttr; |
| 2074 | if (matchPattern(def, m_Constant<FloatAttr>(&floatAttr))) { |
| 2075 | constantAttr = floatAttr; |
| 2076 | return true; |
| 2077 | } |
| 2078 | } |
| 2079 | return false; |
| 2080 | }; |
| 2081 | |
| 2082 | auto resultValue = dyn_cast<OpResult>(opOperand->get()); |
| 2083 | if (!def || !resultValue || !isScalarOrSplatConstantOp(def)) |
| 2084 | continue; |
| 2085 | |
| 2086 | // The operands and the indexing_maps of the fused operation the same as |
| 2087 | // the operands and indexing_maps of the generic operations with the |
| 2088 | // values at the constant index dropped. |
| 2089 | SmallVector<AffineMap> fusedIndexMaps; |
| 2090 | SmallVector<Value> fusedOperands; |
| 2091 | SmallVector<Location> fusedLocs{genericOp.getLoc()}; |
| 2092 | fusedIndexMaps.reserve(genericOp->getNumOperands()); |
| 2093 | fusedOperands.reserve(genericOp.getNumDpsInputs()); |
| 2094 | fusedLocs.reserve(fusedLocs.size() + genericOp.getNumDpsInputs()); |
| 2095 | for (OpOperand *inputOperand : genericOp.getDpsInputOperands()) { |
| 2096 | if (inputOperand == opOperand) |
| 2097 | continue; |
| 2098 | Value inputValue = inputOperand->get(); |
| 2099 | fusedIndexMaps.push_back( |
| 2100 | genericOp.getMatchingIndexingMap(inputOperand)); |
| 2101 | fusedOperands.push_back(inputValue); |
| 2102 | fusedLocs.push_back(inputValue.getLoc()); |
| 2103 | } |
| 2104 | for (OpOperand &outputOperand : genericOp.getDpsInitsMutable()) |
| 2105 | fusedIndexMaps.push_back( |
| 2106 | genericOp.getMatchingIndexingMap(&outputOperand)); |
| 2107 | |
| 2108 | // Check if the operation shapes to loops map is computable. |
| 2109 | if (!inversePermutation( |
| 2110 | concatAffineMaps(fusedIndexMaps, rewriter.getContext()))) { |
| 2111 | return rewriter.notifyMatchFailure( |
| 2112 | genericOp, "fused op loop bound computation failed" ); |
| 2113 | } |
| 2114 | |
| 2115 | // Create a constant scalar value from the splat constant. |
| 2116 | Value scalarConstant = |
| 2117 | rewriter.create<arith::ConstantOp>(def->getLoc(), constantAttr); |
| 2118 | |
| 2119 | SmallVector<Value> outputOperands = genericOp.getOutputs(); |
| 2120 | auto fusedOp = rewriter.create<GenericOp>( |
| 2121 | rewriter.getFusedLoc(fusedLocs), genericOp->getResultTypes(), |
| 2122 | /*inputs=*/fusedOperands, |
| 2123 | /*outputs=*/outputOperands, |
| 2124 | rewriter.getAffineMapArrayAttr(fusedIndexMaps), |
| 2125 | genericOp.getIteratorTypes(), |
| 2126 | /*doc=*/nullptr, |
| 2127 | /*library_call=*/nullptr); |
| 2128 | |
| 2129 | // Map the block argument corresponding to the replaced argument with the |
| 2130 | // scalar constant. |
| 2131 | Region ®ion = genericOp->getRegion(0); |
| 2132 | Block &entryBlock = *region.begin(); |
| 2133 | IRMapping mapping; |
| 2134 | mapping.map(entryBlock.getArgument(opOperand->getOperandNumber()), |
| 2135 | scalarConstant); |
| 2136 | Region &fusedRegion = fusedOp->getRegion(0); |
| 2137 | rewriter.cloneRegionBefore(region, fusedRegion, fusedRegion.begin(), |
| 2138 | mapping); |
| 2139 | rewriter.replaceOp(genericOp, fusedOp->getResults()); |
| 2140 | return success(); |
| 2141 | } |
| 2142 | return failure(); |
| 2143 | } |
| 2144 | }; |
| 2145 | |
| 2146 | } // namespace |
| 2147 | |
| 2148 | //===---------------------------------------------------------------------===// |
| 2149 | // Miscellaneous patterns that help fusion. |
| 2150 | //===---------------------------------------------------------------------===// |
| 2151 | |
| 2152 | namespace { |
| 2153 | /// Forces `outs` operands of linalg operations to use `tensor.empty` if the |
| 2154 | /// value of the `outs` operand is not used within the op. This is only |
| 2155 | /// implemented for `linalg.generic` operations for now, but should hold for all |
| 2156 | /// linalg structured ops. |
| 2157 | struct RemoveOutsDependency : public OpRewritePattern<GenericOp> { |
| 2158 | using OpRewritePattern<GenericOp>::OpRewritePattern; |
| 2159 | |
| 2160 | LogicalResult matchAndRewrite(GenericOp op, |
| 2161 | PatternRewriter &rewriter) const override { |
| 2162 | rewriter.startOpModification(op: op); |
| 2163 | bool modifiedOutput = false; |
| 2164 | Location loc = op.getLoc(); |
| 2165 | for (OpOperand &opOperand : op.getDpsInitsMutable()) { |
| 2166 | if (!op.payloadUsesValueFromOperand(&opOperand)) { |
| 2167 | Value operandVal = opOperand.get(); |
| 2168 | auto operandType = dyn_cast<RankedTensorType>(operandVal.getType()); |
| 2169 | if (!operandType) |
| 2170 | continue; |
| 2171 | |
| 2172 | // If outs is sparse, leave it to the sparsifier. |
| 2173 | if (sparse_tensor::getSparseTensorEncoding(operandVal.getType())) |
| 2174 | continue; |
| 2175 | |
| 2176 | // If outs is already an `empty` operation, nothing to do. |
| 2177 | auto definingOp = operandVal.getDefiningOp<tensor::EmptyOp>(); |
| 2178 | if (definingOp) |
| 2179 | continue; |
| 2180 | modifiedOutput = true; |
| 2181 | SmallVector<OpFoldResult> mixedSizes = |
| 2182 | tensor::getMixedSizes(rewriter, loc, operandVal); |
| 2183 | Value emptyTensor = rewriter.create<tensor::EmptyOp>( |
| 2184 | loc, mixedSizes, operandType.getElementType()); |
| 2185 | op->setOperand(opOperand.getOperandNumber(), emptyTensor); |
| 2186 | } |
| 2187 | } |
| 2188 | if (!modifiedOutput) { |
| 2189 | rewriter.cancelOpModification(op: op); |
| 2190 | return failure(); |
| 2191 | } |
| 2192 | rewriter.finalizeOpModification(op: op); |
| 2193 | return success(); |
| 2194 | } |
| 2195 | }; |
| 2196 | |
| 2197 | /// Fold linalg.fill into linalg.generic |
| 2198 | struct FoldFillWithGenericOp : public OpRewritePattern<GenericOp> { |
| 2199 | using OpRewritePattern<GenericOp>::OpRewritePattern; |
| 2200 | |
| 2201 | LogicalResult matchAndRewrite(GenericOp genericOp, |
| 2202 | PatternRewriter &rewriter) const override { |
| 2203 | if (!genericOp.hasPureTensorSemantics()) |
| 2204 | return failure(); |
| 2205 | bool fillFound = false; |
| 2206 | Block &payload = genericOp.getRegion().front(); |
| 2207 | for (OpOperand *opOperand : genericOp.getDpsInputOperands()) { |
| 2208 | if (!genericOp.payloadUsesValueFromOperand(opOperand)) |
| 2209 | continue; |
| 2210 | FillOp fillOp = opOperand->get().getDefiningOp<FillOp>(); |
| 2211 | if (!fillOp) |
| 2212 | continue; |
| 2213 | fillFound = true; |
| 2214 | Value fillVal = fillOp.value(); |
| 2215 | auto resultType = |
| 2216 | cast<RankedTensorType>(fillOp.result().getType()).getElementType(); |
| 2217 | Value convertedVal = |
| 2218 | convertScalarToDtype(rewriter, fillOp.getLoc(), fillVal, resultType, |
| 2219 | /*isUnsignedCast =*/false); |
| 2220 | rewriter.replaceAllUsesWith( |
| 2221 | payload.getArgument(opOperand->getOperandNumber()), convertedVal); |
| 2222 | } |
| 2223 | return success(IsSuccess: fillFound); |
| 2224 | } |
| 2225 | }; |
| 2226 | } // namespace |
| 2227 | |
| 2228 | void mlir::linalg::populateFoldReshapeOpsByExpansionPatterns( |
| 2229 | RewritePatternSet &patterns, |
| 2230 | const ControlFusionFn &controlFoldingReshapes) { |
| 2231 | patterns.add<FoldReshapeWithGenericOpByExpansion>(arg: patterns.getContext(), |
| 2232 | args: controlFoldingReshapes); |
| 2233 | patterns.add<FoldPadWithProducerReshapeOpByExpansion>(arg: patterns.getContext(), |
| 2234 | args: controlFoldingReshapes); |
| 2235 | patterns.add<FoldWithProducerReshapeOpByExpansion>(arg: patterns.getContext(), |
| 2236 | args: controlFoldingReshapes); |
| 2237 | } |
| 2238 | |
| 2239 | void mlir::linalg::populateFoldReshapeOpsByCollapsingPatterns( |
| 2240 | RewritePatternSet &patterns, |
| 2241 | const ControlFusionFn &controlFoldingReshapes) { |
| 2242 | patterns.add<FoldWithProducerReshapeOpByCollapsing>(arg: patterns.getContext(), |
| 2243 | args: controlFoldingReshapes); |
| 2244 | patterns.add<FoldPadWithProducerReshapeOpByCollapsing>( |
| 2245 | arg: patterns.getContext(), args: controlFoldingReshapes); |
| 2246 | patterns.add<FoldReshapeWithGenericOpByCollapsing>(arg: patterns.getContext(), |
| 2247 | args: controlFoldingReshapes); |
| 2248 | } |
| 2249 | |
| 2250 | void mlir::linalg::populateElementwiseOpsFusionPatterns( |
| 2251 | RewritePatternSet &patterns, |
| 2252 | const ControlFusionFn &controlElementwiseOpsFusion) { |
| 2253 | auto *context = patterns.getContext(); |
| 2254 | patterns.add<FuseElementwiseOps>(arg&: context, args: controlElementwiseOpsFusion); |
| 2255 | patterns.add<FoldFillWithGenericOp, FoldScalarOrSplatConstant, |
| 2256 | RemoveOutsDependency>(arg&: context); |
| 2257 | // Add the patterns that clean up dead operands and results. |
| 2258 | populateEraseUnusedOperandsAndResultsPatterns(patterns); |
| 2259 | } |
| 2260 | |
| 2261 | void mlir::linalg::populateCollapseDimensions( |
| 2262 | RewritePatternSet &patterns, |
| 2263 | const GetCollapsableDimensionsFn &controlCollapseDimensions) { |
| 2264 | patterns.add<CollapseLinalgDimensions<linalg::GenericOp>, |
| 2265 | CollapseLinalgDimensions<linalg::CopyOp>>( |
| 2266 | patterns.getContext(), controlCollapseDimensions); |
| 2267 | } |
| 2268 | |
| 2269 | //===---------------------------------------------------------------------===// |
| 2270 | // Passes |
| 2271 | //===---------------------------------------------------------------------===// |
| 2272 | |
| 2273 | namespace { |
| 2274 | |
| 2275 | /// Pass that fuses generic ops on tensors. Used only for testing. |
| 2276 | // TODO(ravishankarm): This pass is to be deprecated. The efficacy of the |
| 2277 | // patterns added here heavily depends on the cost function used. Having an |
| 2278 | // opinionated pass of this form is not recommended. Deprecate this pass in |
| 2279 | // favor of test passes that check the functionality of each of the patterns |
| 2280 | // added here individually. |
| 2281 | struct LinalgElementwiseOpFusionPass |
| 2282 | : public impl::LinalgElementwiseOpFusionPassBase< |
| 2283 | LinalgElementwiseOpFusionPass> { |
| 2284 | using impl::LinalgElementwiseOpFusionPassBase< |
| 2285 | LinalgElementwiseOpFusionPass>::LinalgElementwiseOpFusionPassBase; |
| 2286 | void runOnOperation() override { |
| 2287 | Operation *op = getOperation(); |
| 2288 | MLIRContext *context = op->getContext(); |
| 2289 | RewritePatternSet patterns(context); |
| 2290 | |
| 2291 | // Add folding with reshape by expansion patterns. |
| 2292 | ControlFusionFn defaultControlFn = [](OpOperand *fusedOperand) { |
| 2293 | Operation *producer = fusedOperand->get().getDefiningOp(); |
| 2294 | return producer && producer->hasOneUse(); |
| 2295 | }; |
| 2296 | |
| 2297 | // Add elementwise op fusion patterns. |
| 2298 | populateElementwiseOpsFusionPatterns(patterns, controlElementwiseOpsFusion: defaultControlFn); |
| 2299 | populateFoldReshapeOpsByExpansionPatterns(patterns, controlFoldingReshapes: defaultControlFn); |
| 2300 | tensor::populateBubbleUpExpandShapePatterns(patterns); |
| 2301 | |
| 2302 | // General canonicalization patterns. |
| 2303 | affine::AffineApplyOp::getCanonicalizationPatterns(patterns, context); |
| 2304 | GenericOp::getCanonicalizationPatterns(patterns, context); |
| 2305 | tensor::ExpandShapeOp::getCanonicalizationPatterns(patterns, context); |
| 2306 | tensor::CollapseShapeOp::getCanonicalizationPatterns(patterns, context); |
| 2307 | context->getLoadedDialect<LinalgDialect>()->getCanonicalizationPatterns( |
| 2308 | patterns); |
| 2309 | |
| 2310 | // Add constant folding patterns. |
| 2311 | populateConstantFoldLinalgOperations(patterns, controlFn: defaultControlFn); |
| 2312 | |
| 2313 | // Use TopDownTraversal for compile time reasons. |
| 2314 | (void)applyPatternsGreedily(op, std::move(patterns), |
| 2315 | GreedyRewriteConfig().setUseTopDownTraversal()); |
| 2316 | } |
| 2317 | }; |
| 2318 | |
| 2319 | } // namespace |
| 2320 | |