| 1 | //===----------------------------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "mlir/Dialect/Arith/IR/Arith.h" |
| 10 | #include "mlir/Dialect/Arith/Utils/Utils.h" |
| 11 | #include "mlir/Dialect/MemRef/IR/MemRef.h" |
| 12 | #include "mlir/Dialect/Utils/StaticValueUtils.h" |
| 13 | #include "mlir/IR/AffineMap.h" |
| 14 | #include "mlir/IR/Builders.h" |
| 15 | #include "mlir/IR/BuiltinTypes.h" |
| 16 | #include "mlir/IR/Matchers.h" |
| 17 | #include "mlir/IR/OpDefinition.h" |
| 18 | #include "mlir/IR/PatternMatch.h" |
| 19 | #include "mlir/IR/TypeUtilities.h" |
| 20 | #include "mlir/Interfaces/InferTypeOpInterface.h" |
| 21 | #include "mlir/Interfaces/SideEffectInterfaces.h" |
| 22 | #include "mlir/Interfaces/Utils/InferIntRangeCommon.h" |
| 23 | #include "mlir/Interfaces/ViewLikeInterface.h" |
| 24 | #include "llvm/ADT/STLExtras.h" |
| 25 | #include "llvm/ADT/SmallBitVector.h" |
| 26 | |
| 27 | using namespace mlir; |
| 28 | using namespace mlir::memref; |
| 29 | |
| 30 | /// Materialize a single constant operation from a given attribute value with |
| 31 | /// the desired resultant type. |
| 32 | Operation *MemRefDialect::materializeConstant(OpBuilder &builder, |
| 33 | Attribute value, Type type, |
| 34 | Location loc) { |
| 35 | return arith::ConstantOp::materialize(builder, value, type, loc); |
| 36 | } |
| 37 | |
| 38 | //===----------------------------------------------------------------------===// |
| 39 | // Common canonicalization pattern support logic |
| 40 | //===----------------------------------------------------------------------===// |
| 41 | |
| 42 | /// This is a common class used for patterns of the form |
| 43 | /// "someop(memrefcast) -> someop". It folds the source of any memref.cast |
| 44 | /// into the root operation directly. |
| 45 | LogicalResult mlir::memref::foldMemRefCast(Operation *op, Value inner) { |
| 46 | bool folded = false; |
| 47 | for (OpOperand &operand : op->getOpOperands()) { |
| 48 | auto cast = operand.get().getDefiningOp<CastOp>(); |
| 49 | if (cast && operand.get() != inner && |
| 50 | !llvm::isa<UnrankedMemRefType>(cast.getOperand().getType())) { |
| 51 | operand.set(cast.getOperand()); |
| 52 | folded = true; |
| 53 | } |
| 54 | } |
| 55 | return success(IsSuccess: folded); |
| 56 | } |
| 57 | |
| 58 | /// Return an unranked/ranked tensor type for the given unranked/ranked memref |
| 59 | /// type. |
| 60 | Type mlir::memref::getTensorTypeFromMemRefType(Type type) { |
| 61 | if (auto memref = llvm::dyn_cast<MemRefType>(type)) |
| 62 | return RankedTensorType::get(memref.getShape(), memref.getElementType()); |
| 63 | if (auto memref = llvm::dyn_cast<UnrankedMemRefType>(type)) |
| 64 | return UnrankedTensorType::get(memref.getElementType()); |
| 65 | return NoneType::get(type.getContext()); |
| 66 | } |
| 67 | |
| 68 | OpFoldResult memref::getMixedSize(OpBuilder &builder, Location loc, Value value, |
| 69 | int64_t dim) { |
| 70 | auto memrefType = llvm::cast<MemRefType>(value.getType()); |
| 71 | if (memrefType.isDynamicDim(dim)) |
| 72 | return builder.createOrFold<memref::DimOp>(loc, value, dim); |
| 73 | |
| 74 | return builder.getIndexAttr(value: memrefType.getDimSize(dim)); |
| 75 | } |
| 76 | |
| 77 | SmallVector<OpFoldResult> memref::getMixedSizes(OpBuilder &builder, |
| 78 | Location loc, Value value) { |
| 79 | auto memrefType = llvm::cast<MemRefType>(value.getType()); |
| 80 | SmallVector<OpFoldResult> result; |
| 81 | for (int64_t i = 0; i < memrefType.getRank(); ++i) |
| 82 | result.push_back(Elt: getMixedSize(builder, loc, value, dim: i)); |
| 83 | return result; |
| 84 | } |
| 85 | |
| 86 | //===----------------------------------------------------------------------===// |
| 87 | // Utility functions for propagating static information |
| 88 | //===----------------------------------------------------------------------===// |
| 89 | |
| 90 | /// Helper function that sets values[i] to constValues[i] if the latter is a |
| 91 | /// static value, as indicated by ShapedType::kDynamic. |
| 92 | /// |
| 93 | /// If constValues[i] is dynamic, tries to extract a constant value from |
| 94 | /// value[i] to allow for additional folding opportunities. Also convertes all |
| 95 | /// existing attributes to index attributes. (They may be i64 attributes.) |
| 96 | static void constifyIndexValues(SmallVectorImpl<OpFoldResult> &values, |
| 97 | ArrayRef<int64_t> constValues) { |
| 98 | assert(constValues.size() == values.size() && |
| 99 | "incorrect number of const values" ); |
| 100 | for (auto [i, cstVal] : llvm::enumerate(First&: constValues)) { |
| 101 | Builder builder(values[i].getContext()); |
| 102 | if (!ShapedType::isDynamic(cstVal)) { |
| 103 | // Constant value is known, use it directly. |
| 104 | values[i] = builder.getIndexAttr(cstVal); |
| 105 | continue; |
| 106 | } |
| 107 | if (std::optional<int64_t> cst = getConstantIntValue(ofr: values[i])) { |
| 108 | // Try to extract a constant or convert an existing to index. |
| 109 | values[i] = builder.getIndexAttr(*cst); |
| 110 | } |
| 111 | } |
| 112 | } |
| 113 | |
| 114 | //===----------------------------------------------------------------------===// |
| 115 | // AllocOp / AllocaOp |
| 116 | //===----------------------------------------------------------------------===// |
| 117 | |
| 118 | void AllocOp::getAsmResultNames( |
| 119 | function_ref<void(Value, StringRef)> setNameFn) { |
| 120 | setNameFn(getResult(), "alloc" ); |
| 121 | } |
| 122 | |
| 123 | void AllocaOp::getAsmResultNames( |
| 124 | function_ref<void(Value, StringRef)> setNameFn) { |
| 125 | setNameFn(getResult(), "alloca" ); |
| 126 | } |
| 127 | |
| 128 | template <typename AllocLikeOp> |
| 129 | static LogicalResult verifyAllocLikeOp(AllocLikeOp op) { |
| 130 | static_assert(llvm::is_one_of<AllocLikeOp, AllocOp, AllocaOp>::value, |
| 131 | "applies to only alloc or alloca" ); |
| 132 | auto memRefType = llvm::dyn_cast<MemRefType>(op.getResult().getType()); |
| 133 | if (!memRefType) |
| 134 | return op.emitOpError("result must be a memref" ); |
| 135 | |
| 136 | if (op.getDynamicSizes().size() != memRefType.getNumDynamicDims()) |
| 137 | return op.emitOpError("dimension operand count does not equal memref " |
| 138 | "dynamic dimension count" ); |
| 139 | |
| 140 | unsigned numSymbols = 0; |
| 141 | if (!memRefType.getLayout().isIdentity()) |
| 142 | numSymbols = memRefType.getLayout().getAffineMap().getNumSymbols(); |
| 143 | if (op.getSymbolOperands().size() != numSymbols) |
| 144 | return op.emitOpError("symbol operand count does not equal memref symbol " |
| 145 | "count: expected " ) |
| 146 | << numSymbols << ", got " << op.getSymbolOperands().size(); |
| 147 | |
| 148 | return success(); |
| 149 | } |
| 150 | |
| 151 | LogicalResult AllocOp::verify() { return verifyAllocLikeOp(*this); } |
| 152 | |
| 153 | LogicalResult AllocaOp::verify() { |
| 154 | // An alloca op needs to have an ancestor with an allocation scope trait. |
| 155 | if (!(*this)->getParentWithTrait<OpTrait::AutomaticAllocationScope>()) |
| 156 | return emitOpError( |
| 157 | "requires an ancestor op with AutomaticAllocationScope trait" ); |
| 158 | |
| 159 | return verifyAllocLikeOp(*this); |
| 160 | } |
| 161 | |
| 162 | namespace { |
| 163 | /// Fold constant dimensions into an alloc like operation. |
| 164 | template <typename AllocLikeOp> |
| 165 | struct SimplifyAllocConst : public OpRewritePattern<AllocLikeOp> { |
| 166 | using OpRewritePattern<AllocLikeOp>::OpRewritePattern; |
| 167 | |
| 168 | LogicalResult matchAndRewrite(AllocLikeOp alloc, |
| 169 | PatternRewriter &rewriter) const override { |
| 170 | // Check to see if any dimensions operands are constants. If so, we can |
| 171 | // substitute and drop them. |
| 172 | if (llvm::none_of(alloc.getDynamicSizes(), [](Value operand) { |
| 173 | APInt constSizeArg; |
| 174 | if (!matchPattern(operand, m_ConstantInt(&constSizeArg))) |
| 175 | return false; |
| 176 | return constSizeArg.isNonNegative(); |
| 177 | })) |
| 178 | return failure(); |
| 179 | |
| 180 | auto memrefType = alloc.getType(); |
| 181 | |
| 182 | // Ok, we have one or more constant operands. Collect the non-constant ones |
| 183 | // and keep track of the resultant memref type to build. |
| 184 | SmallVector<int64_t, 4> newShapeConstants; |
| 185 | newShapeConstants.reserve(N: memrefType.getRank()); |
| 186 | SmallVector<Value, 4> dynamicSizes; |
| 187 | |
| 188 | unsigned dynamicDimPos = 0; |
| 189 | for (unsigned dim = 0, e = memrefType.getRank(); dim < e; ++dim) { |
| 190 | int64_t dimSize = memrefType.getDimSize(dim); |
| 191 | // If this is already static dimension, keep it. |
| 192 | if (!ShapedType::isDynamic(dimSize)) { |
| 193 | newShapeConstants.push_back(Elt: dimSize); |
| 194 | continue; |
| 195 | } |
| 196 | auto dynamicSize = alloc.getDynamicSizes()[dynamicDimPos]; |
| 197 | APInt constSizeArg; |
| 198 | if (matchPattern(dynamicSize, m_ConstantInt(&constSizeArg)) && |
| 199 | constSizeArg.isNonNegative()) { |
| 200 | // Dynamic shape dimension will be folded. |
| 201 | newShapeConstants.push_back(Elt: constSizeArg.getZExtValue()); |
| 202 | } else { |
| 203 | // Dynamic shape dimension not folded; copy dynamicSize from old memref. |
| 204 | newShapeConstants.push_back(ShapedType::kDynamic); |
| 205 | dynamicSizes.push_back(Elt: dynamicSize); |
| 206 | } |
| 207 | dynamicDimPos++; |
| 208 | } |
| 209 | |
| 210 | // Create new memref type (which will have fewer dynamic dimensions). |
| 211 | MemRefType newMemRefType = |
| 212 | MemRefType::Builder(memrefType).setShape(newShapeConstants); |
| 213 | assert(dynamicSizes.size() == newMemRefType.getNumDynamicDims()); |
| 214 | |
| 215 | // Create and insert the alloc op for the new memref. |
| 216 | auto newAlloc = rewriter.create<AllocLikeOp>( |
| 217 | alloc.getLoc(), newMemRefType, dynamicSizes, alloc.getSymbolOperands(), |
| 218 | alloc.getAlignmentAttr()); |
| 219 | // Insert a cast so we have the same type as the old alloc. |
| 220 | rewriter.replaceOpWithNewOp<CastOp>(alloc, alloc.getType(), newAlloc); |
| 221 | return success(); |
| 222 | } |
| 223 | }; |
| 224 | |
| 225 | /// Fold alloc operations with no users or only store and dealloc uses. |
| 226 | template <typename T> |
| 227 | struct SimplifyDeadAlloc : public OpRewritePattern<T> { |
| 228 | using OpRewritePattern<T>::OpRewritePattern; |
| 229 | |
| 230 | LogicalResult matchAndRewrite(T alloc, |
| 231 | PatternRewriter &rewriter) const override { |
| 232 | if (llvm::any_of(alloc->getUsers(), [&](Operation *op) { |
| 233 | if (auto storeOp = dyn_cast<StoreOp>(op)) |
| 234 | return storeOp.getValue() == alloc; |
| 235 | return !isa<DeallocOp>(op); |
| 236 | })) |
| 237 | return failure(); |
| 238 | |
| 239 | for (Operation *user : llvm::make_early_inc_range(alloc->getUsers())) |
| 240 | rewriter.eraseOp(op: user); |
| 241 | |
| 242 | rewriter.eraseOp(op: alloc); |
| 243 | return success(); |
| 244 | } |
| 245 | }; |
| 246 | } // namespace |
| 247 | |
| 248 | void AllocOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 249 | MLIRContext *context) { |
| 250 | results.add<SimplifyAllocConst<AllocOp>, SimplifyDeadAlloc<AllocOp>>(context); |
| 251 | } |
| 252 | |
| 253 | void AllocaOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 254 | MLIRContext *context) { |
| 255 | results.add<SimplifyAllocConst<AllocaOp>, SimplifyDeadAlloc<AllocaOp>>( |
| 256 | context); |
| 257 | } |
| 258 | |
| 259 | //===----------------------------------------------------------------------===// |
| 260 | // ReallocOp |
| 261 | //===----------------------------------------------------------------------===// |
| 262 | |
| 263 | LogicalResult ReallocOp::verify() { |
| 264 | auto sourceType = llvm::cast<MemRefType>(getOperand(0).getType()); |
| 265 | MemRefType resultType = getType(); |
| 266 | |
| 267 | // The source memref should have identity layout (or none). |
| 268 | if (!sourceType.getLayout().isIdentity()) |
| 269 | return emitError("unsupported layout for source memref type " ) |
| 270 | << sourceType; |
| 271 | |
| 272 | // The result memref should have identity layout (or none). |
| 273 | if (!resultType.getLayout().isIdentity()) |
| 274 | return emitError("unsupported layout for result memref type " ) |
| 275 | << resultType; |
| 276 | |
| 277 | // The source memref and the result memref should be in the same memory space. |
| 278 | if (sourceType.getMemorySpace() != resultType.getMemorySpace()) |
| 279 | return emitError("different memory spaces specified for source memref " |
| 280 | "type " ) |
| 281 | << sourceType << " and result memref type " << resultType; |
| 282 | |
| 283 | // The source memref and the result memref should have the same element type. |
| 284 | if (sourceType.getElementType() != resultType.getElementType()) |
| 285 | return emitError("different element types specified for source memref " |
| 286 | "type " ) |
| 287 | << sourceType << " and result memref type " << resultType; |
| 288 | |
| 289 | // Verify that we have the dynamic dimension operand when it is needed. |
| 290 | if (resultType.getNumDynamicDims() && !getDynamicResultSize()) |
| 291 | return emitError("missing dimension operand for result type " ) |
| 292 | << resultType; |
| 293 | if (!resultType.getNumDynamicDims() && getDynamicResultSize()) |
| 294 | return emitError("unnecessary dimension operand for result type " ) |
| 295 | << resultType; |
| 296 | |
| 297 | return success(); |
| 298 | } |
| 299 | |
| 300 | void ReallocOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 301 | MLIRContext *context) { |
| 302 | results.add<SimplifyDeadAlloc<ReallocOp>>(context); |
| 303 | } |
| 304 | |
| 305 | //===----------------------------------------------------------------------===// |
| 306 | // AllocaScopeOp |
| 307 | //===----------------------------------------------------------------------===// |
| 308 | |
| 309 | void AllocaScopeOp::print(OpAsmPrinter &p) { |
| 310 | bool printBlockTerminators = false; |
| 311 | |
| 312 | p << ' '; |
| 313 | if (!getResults().empty()) { |
| 314 | p << " -> (" << getResultTypes() << ")" ; |
| 315 | printBlockTerminators = true; |
| 316 | } |
| 317 | p << ' '; |
| 318 | p.printRegion(getBodyRegion(), |
| 319 | /*printEntryBlockArgs=*/false, |
| 320 | /*printBlockTerminators=*/printBlockTerminators); |
| 321 | p.printOptionalAttrDict((*this)->getAttrs()); |
| 322 | } |
| 323 | |
| 324 | ParseResult AllocaScopeOp::parse(OpAsmParser &parser, OperationState &result) { |
| 325 | // Create a region for the body. |
| 326 | result.regions.reserve(1); |
| 327 | Region *bodyRegion = result.addRegion(); |
| 328 | |
| 329 | // Parse optional results type list. |
| 330 | if (parser.parseOptionalArrowTypeList(result.types)) |
| 331 | return failure(); |
| 332 | |
| 333 | // Parse the body region. |
| 334 | if (parser.parseRegion(*bodyRegion, /*arguments=*/{})) |
| 335 | return failure(); |
| 336 | AllocaScopeOp::ensureTerminator(*bodyRegion, parser.getBuilder(), |
| 337 | result.location); |
| 338 | |
| 339 | // Parse the optional attribute list. |
| 340 | if (parser.parseOptionalAttrDict(result.attributes)) |
| 341 | return failure(); |
| 342 | |
| 343 | return success(); |
| 344 | } |
| 345 | |
| 346 | void AllocaScopeOp::getSuccessorRegions( |
| 347 | RegionBranchPoint point, SmallVectorImpl<RegionSuccessor> ®ions) { |
| 348 | if (!point.isParent()) { |
| 349 | regions.push_back(RegionSuccessor(getResults())); |
| 350 | return; |
| 351 | } |
| 352 | |
| 353 | regions.push_back(RegionSuccessor(&getBodyRegion())); |
| 354 | } |
| 355 | |
| 356 | /// Given an operation, return whether this op is guaranteed to |
| 357 | /// allocate an AutomaticAllocationScopeResource |
| 358 | static bool isGuaranteedAutomaticAllocation(Operation *op) { |
| 359 | MemoryEffectOpInterface interface = dyn_cast<MemoryEffectOpInterface>(op); |
| 360 | if (!interface) |
| 361 | return false; |
| 362 | for (auto res : op->getResults()) { |
| 363 | if (auto effect = |
| 364 | interface.getEffectOnValue<MemoryEffects::Allocate>(res)) { |
| 365 | if (isa<SideEffects::AutomaticAllocationScopeResource>( |
| 366 | effect->getResource())) |
| 367 | return true; |
| 368 | } |
| 369 | } |
| 370 | return false; |
| 371 | } |
| 372 | |
| 373 | /// Given an operation, return whether this op itself could |
| 374 | /// allocate an AutomaticAllocationScopeResource. Note that |
| 375 | /// this will not check whether an operation contained within |
| 376 | /// the op can allocate. |
| 377 | static bool isOpItselfPotentialAutomaticAllocation(Operation *op) { |
| 378 | // This op itself doesn't create a stack allocation, |
| 379 | // the inner allocation should be handled separately. |
| 380 | if (op->hasTrait<OpTrait::HasRecursiveMemoryEffects>()) |
| 381 | return false; |
| 382 | MemoryEffectOpInterface interface = dyn_cast<MemoryEffectOpInterface>(op); |
| 383 | if (!interface) |
| 384 | return true; |
| 385 | for (auto res : op->getResults()) { |
| 386 | if (auto effect = |
| 387 | interface.getEffectOnValue<MemoryEffects::Allocate>(res)) { |
| 388 | if (isa<SideEffects::AutomaticAllocationScopeResource>( |
| 389 | effect->getResource())) |
| 390 | return true; |
| 391 | } |
| 392 | } |
| 393 | return false; |
| 394 | } |
| 395 | |
| 396 | /// Return whether this op is the last non terminating op |
| 397 | /// in a region. That is to say, it is in a one-block region |
| 398 | /// and is only followed by a terminator. This prevents |
| 399 | /// extending the lifetime of allocations. |
| 400 | static bool lastNonTerminatorInRegion(Operation *op) { |
| 401 | return op->getBlock()->mightHaveTerminator() && |
| 402 | op->getNextNode() == op->getBlock()->getTerminator() && |
| 403 | op->getParentRegion()->hasOneBlock(); |
| 404 | } |
| 405 | |
| 406 | /// Inline an AllocaScopeOp if either the direct parent is an allocation scope |
| 407 | /// or it contains no allocation. |
| 408 | struct AllocaScopeInliner : public OpRewritePattern<AllocaScopeOp> { |
| 409 | using OpRewritePattern<AllocaScopeOp>::OpRewritePattern; |
| 410 | |
| 411 | LogicalResult matchAndRewrite(AllocaScopeOp op, |
| 412 | PatternRewriter &rewriter) const override { |
| 413 | bool hasPotentialAlloca = |
| 414 | op->walk<WalkOrder::PreOrder>([&](Operation *alloc) { |
| 415 | if (alloc == op) |
| 416 | return WalkResult::advance(); |
| 417 | if (isOpItselfPotentialAutomaticAllocation(op: alloc)) |
| 418 | return WalkResult::interrupt(); |
| 419 | if (alloc->hasTrait<OpTrait::AutomaticAllocationScope>()) |
| 420 | return WalkResult::skip(); |
| 421 | return WalkResult::advance(); |
| 422 | }).wasInterrupted(); |
| 423 | |
| 424 | // If this contains no potential allocation, it is always legal to |
| 425 | // inline. Otherwise, consider two conditions: |
| 426 | if (hasPotentialAlloca) { |
| 427 | // If the parent isn't an allocation scope, or we are not the last |
| 428 | // non-terminator op in the parent, we will extend the lifetime. |
| 429 | if (!op->getParentOp()->hasTrait<OpTrait::AutomaticAllocationScope>()) |
| 430 | return failure(); |
| 431 | if (!lastNonTerminatorInRegion(op)) |
| 432 | return failure(); |
| 433 | } |
| 434 | |
| 435 | Block *block = &op.getRegion().front(); |
| 436 | Operation *terminator = block->getTerminator(); |
| 437 | ValueRange results = terminator->getOperands(); |
| 438 | rewriter.inlineBlockBefore(block, op); |
| 439 | rewriter.replaceOp(op, results); |
| 440 | rewriter.eraseOp(op: terminator); |
| 441 | return success(); |
| 442 | } |
| 443 | }; |
| 444 | |
| 445 | /// Move allocations into an allocation scope, if it is legal to |
| 446 | /// move them (e.g. their operands are available at the location |
| 447 | /// the op would be moved to). |
| 448 | struct AllocaScopeHoister : public OpRewritePattern<AllocaScopeOp> { |
| 449 | using OpRewritePattern<AllocaScopeOp>::OpRewritePattern; |
| 450 | |
| 451 | LogicalResult matchAndRewrite(AllocaScopeOp op, |
| 452 | PatternRewriter &rewriter) const override { |
| 453 | |
| 454 | if (!op->getParentWithTrait<OpTrait::AutomaticAllocationScope>()) |
| 455 | return failure(); |
| 456 | |
| 457 | Operation *lastParentWithoutScope = op->getParentOp(); |
| 458 | |
| 459 | if (!lastParentWithoutScope || |
| 460 | lastParentWithoutScope->hasTrait<OpTrait::AutomaticAllocationScope>()) |
| 461 | return failure(); |
| 462 | |
| 463 | // Only apply to if this is this last non-terminator |
| 464 | // op in the block (lest lifetime be extended) of a one |
| 465 | // block region |
| 466 | if (!lastNonTerminatorInRegion(op) || |
| 467 | !lastNonTerminatorInRegion(op: lastParentWithoutScope)) |
| 468 | return failure(); |
| 469 | |
| 470 | while (!lastParentWithoutScope->getParentOp() |
| 471 | ->hasTrait<OpTrait::AutomaticAllocationScope>()) { |
| 472 | lastParentWithoutScope = lastParentWithoutScope->getParentOp(); |
| 473 | if (!lastParentWithoutScope || |
| 474 | !lastNonTerminatorInRegion(op: lastParentWithoutScope)) |
| 475 | return failure(); |
| 476 | } |
| 477 | assert(lastParentWithoutScope->getParentOp() |
| 478 | ->hasTrait<OpTrait::AutomaticAllocationScope>()); |
| 479 | |
| 480 | Region *containingRegion = nullptr; |
| 481 | for (auto &r : lastParentWithoutScope->getRegions()) { |
| 482 | if (r.isAncestor(op->getParentRegion())) { |
| 483 | assert(containingRegion == nullptr && |
| 484 | "only one region can contain the op" ); |
| 485 | containingRegion = &r; |
| 486 | } |
| 487 | } |
| 488 | assert(containingRegion && "op must be contained in a region" ); |
| 489 | |
| 490 | SmallVector<Operation *> toHoist; |
| 491 | op->walk([&](Operation *alloc) { |
| 492 | if (!isGuaranteedAutomaticAllocation(op: alloc)) |
| 493 | return WalkResult::skip(); |
| 494 | |
| 495 | // If any operand is not defined before the location of |
| 496 | // lastParentWithoutScope (i.e. where we would hoist to), skip. |
| 497 | if (llvm::any_of(Range: alloc->getOperands(), P: [&](Value v) { |
| 498 | return containingRegion->isAncestor(other: v.getParentRegion()); |
| 499 | })) |
| 500 | return WalkResult::skip(); |
| 501 | toHoist.push_back(Elt: alloc); |
| 502 | return WalkResult::advance(); |
| 503 | }); |
| 504 | |
| 505 | if (toHoist.empty()) |
| 506 | return failure(); |
| 507 | rewriter.setInsertionPoint(lastParentWithoutScope); |
| 508 | for (auto *op : toHoist) { |
| 509 | auto *cloned = rewriter.clone(op&: *op); |
| 510 | rewriter.replaceOp(op, newValues: cloned->getResults()); |
| 511 | } |
| 512 | return success(); |
| 513 | } |
| 514 | }; |
| 515 | |
| 516 | void AllocaScopeOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 517 | MLIRContext *context) { |
| 518 | results.add<AllocaScopeInliner, AllocaScopeHoister>(context); |
| 519 | } |
| 520 | |
| 521 | //===----------------------------------------------------------------------===// |
| 522 | // AssumeAlignmentOp |
| 523 | //===----------------------------------------------------------------------===// |
| 524 | |
| 525 | LogicalResult AssumeAlignmentOp::verify() { |
| 526 | if (!llvm::isPowerOf2_32(getAlignment())) |
| 527 | return emitOpError("alignment must be power of 2" ); |
| 528 | return success(); |
| 529 | } |
| 530 | |
| 531 | void AssumeAlignmentOp::getAsmResultNames( |
| 532 | function_ref<void(Value, StringRef)> setNameFn) { |
| 533 | setNameFn(getResult(), "assume_align" ); |
| 534 | } |
| 535 | |
| 536 | OpFoldResult AssumeAlignmentOp::fold(FoldAdaptor adaptor) { |
| 537 | auto source = getMemref().getDefiningOp<AssumeAlignmentOp>(); |
| 538 | if (!source) |
| 539 | return {}; |
| 540 | if (source.getAlignment() != getAlignment()) |
| 541 | return {}; |
| 542 | return getMemref(); |
| 543 | } |
| 544 | |
| 545 | //===----------------------------------------------------------------------===// |
| 546 | // CastOp |
| 547 | //===----------------------------------------------------------------------===// |
| 548 | |
| 549 | void CastOp::getAsmResultNames(function_ref<void(Value, StringRef)> setNameFn) { |
| 550 | setNameFn(getResult(), "cast" ); |
| 551 | } |
| 552 | |
| 553 | /// Determines whether MemRef_CastOp casts to a more dynamic version of the |
| 554 | /// source memref. This is useful to fold a memref.cast into a consuming op |
| 555 | /// and implement canonicalization patterns for ops in different dialects that |
| 556 | /// may consume the results of memref.cast operations. Such foldable memref.cast |
| 557 | /// operations are typically inserted as `view` and `subview` ops are |
| 558 | /// canonicalized, to preserve the type compatibility of their uses. |
| 559 | /// |
| 560 | /// Returns true when all conditions are met: |
| 561 | /// 1. source and result are ranked memrefs with strided semantics and same |
| 562 | /// element type and rank. |
| 563 | /// 2. each of the source's size, offset or stride has more static information |
| 564 | /// than the corresponding result's size, offset or stride. |
| 565 | /// |
| 566 | /// Example 1: |
| 567 | /// ```mlir |
| 568 | /// %1 = memref.cast %0 : memref<8x16xf32> to memref<?x?xf32> |
| 569 | /// %2 = consumer %1 ... : memref<?x?xf32> ... |
| 570 | /// ``` |
| 571 | /// |
| 572 | /// may fold into: |
| 573 | /// |
| 574 | /// ```mlir |
| 575 | /// %2 = consumer %0 ... : memref<8x16xf32> ... |
| 576 | /// ``` |
| 577 | /// |
| 578 | /// Example 2: |
| 579 | /// ``` |
| 580 | /// %1 = memref.cast %0 : memref<?x16xf32, affine_map<(i, j)->(16 * i + j)>> |
| 581 | /// to memref<?x?xf32> |
| 582 | /// consumer %1 : memref<?x?xf32> ... |
| 583 | /// ``` |
| 584 | /// |
| 585 | /// may fold into: |
| 586 | /// |
| 587 | /// ``` |
| 588 | /// consumer %0 ... : memref<?x16xf32, affine_map<(i, j)->(16 * i + j)>> |
| 589 | /// ``` |
| 590 | bool CastOp::canFoldIntoConsumerOp(CastOp castOp) { |
| 591 | MemRefType sourceType = |
| 592 | llvm::dyn_cast<MemRefType>(castOp.getSource().getType()); |
| 593 | MemRefType resultType = llvm::dyn_cast<MemRefType>(castOp.getType()); |
| 594 | |
| 595 | // Requires ranked MemRefType. |
| 596 | if (!sourceType || !resultType) |
| 597 | return false; |
| 598 | |
| 599 | // Requires same elemental type. |
| 600 | if (sourceType.getElementType() != resultType.getElementType()) |
| 601 | return false; |
| 602 | |
| 603 | // Requires same rank. |
| 604 | if (sourceType.getRank() != resultType.getRank()) |
| 605 | return false; |
| 606 | |
| 607 | // Only fold casts between strided memref forms. |
| 608 | int64_t sourceOffset, resultOffset; |
| 609 | SmallVector<int64_t, 4> sourceStrides, resultStrides; |
| 610 | if (failed(sourceType.getStridesAndOffset(sourceStrides, sourceOffset)) || |
| 611 | failed(resultType.getStridesAndOffset(resultStrides, resultOffset))) |
| 612 | return false; |
| 613 | |
| 614 | // If cast is towards more static sizes along any dimension, don't fold. |
| 615 | for (auto it : llvm::zip(sourceType.getShape(), resultType.getShape())) { |
| 616 | auto ss = std::get<0>(it), st = std::get<1>(it); |
| 617 | if (ss != st) |
| 618 | if (ShapedType::isDynamic(ss) && !ShapedType::isDynamic(st)) |
| 619 | return false; |
| 620 | } |
| 621 | |
| 622 | // If cast is towards more static offset along any dimension, don't fold. |
| 623 | if (sourceOffset != resultOffset) |
| 624 | if (ShapedType::isDynamic(sourceOffset) && |
| 625 | !ShapedType::isDynamic(resultOffset)) |
| 626 | return false; |
| 627 | |
| 628 | // If cast is towards more static strides along any dimension, don't fold. |
| 629 | for (auto it : llvm::zip(sourceStrides, resultStrides)) { |
| 630 | auto ss = std::get<0>(it), st = std::get<1>(it); |
| 631 | if (ss != st) |
| 632 | if (ShapedType::isDynamic(ss) && !ShapedType::isDynamic(st)) |
| 633 | return false; |
| 634 | } |
| 635 | |
| 636 | return true; |
| 637 | } |
| 638 | |
| 639 | bool CastOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { |
| 640 | if (inputs.size() != 1 || outputs.size() != 1) |
| 641 | return false; |
| 642 | Type a = inputs.front(), b = outputs.front(); |
| 643 | auto aT = llvm::dyn_cast<MemRefType>(a); |
| 644 | auto bT = llvm::dyn_cast<MemRefType>(b); |
| 645 | |
| 646 | auto uaT = llvm::dyn_cast<UnrankedMemRefType>(a); |
| 647 | auto ubT = llvm::dyn_cast<UnrankedMemRefType>(b); |
| 648 | |
| 649 | if (aT && bT) { |
| 650 | if (aT.getElementType() != bT.getElementType()) |
| 651 | return false; |
| 652 | if (aT.getLayout() != bT.getLayout()) { |
| 653 | int64_t aOffset, bOffset; |
| 654 | SmallVector<int64_t, 4> aStrides, bStrides; |
| 655 | if (failed(aT.getStridesAndOffset(aStrides, aOffset)) || |
| 656 | failed(bT.getStridesAndOffset(bStrides, bOffset)) || |
| 657 | aStrides.size() != bStrides.size()) |
| 658 | return false; |
| 659 | |
| 660 | // Strides along a dimension/offset are compatible if the value in the |
| 661 | // source memref is static and the value in the target memref is the |
| 662 | // same. They are also compatible if either one is dynamic (see |
| 663 | // description of MemRefCastOp for details). |
| 664 | auto checkCompatible = [](int64_t a, int64_t b) { |
| 665 | return (ShapedType::isDynamic(a) || ShapedType::isDynamic(b) || a == b); |
| 666 | }; |
| 667 | if (!checkCompatible(aOffset, bOffset)) |
| 668 | return false; |
| 669 | for (const auto &aStride : enumerate(aStrides)) |
| 670 | if (!checkCompatible(aStride.value(), bStrides[aStride.index()])) |
| 671 | return false; |
| 672 | } |
| 673 | if (aT.getMemorySpace() != bT.getMemorySpace()) |
| 674 | return false; |
| 675 | |
| 676 | // They must have the same rank, and any specified dimensions must match. |
| 677 | if (aT.getRank() != bT.getRank()) |
| 678 | return false; |
| 679 | |
| 680 | for (unsigned i = 0, e = aT.getRank(); i != e; ++i) { |
| 681 | int64_t aDim = aT.getDimSize(i), bDim = bT.getDimSize(i); |
| 682 | if (!ShapedType::isDynamic(aDim) && !ShapedType::isDynamic(bDim) && |
| 683 | aDim != bDim) |
| 684 | return false; |
| 685 | } |
| 686 | return true; |
| 687 | } else { |
| 688 | if (!aT && !uaT) |
| 689 | return false; |
| 690 | if (!bT && !ubT) |
| 691 | return false; |
| 692 | // Unranked to unranked casting is unsupported |
| 693 | if (uaT && ubT) |
| 694 | return false; |
| 695 | |
| 696 | auto aEltType = (aT) ? aT.getElementType() : uaT.getElementType(); |
| 697 | auto bEltType = (bT) ? bT.getElementType() : ubT.getElementType(); |
| 698 | if (aEltType != bEltType) |
| 699 | return false; |
| 700 | |
| 701 | auto aMemSpace = (aT) ? aT.getMemorySpace() : uaT.getMemorySpace(); |
| 702 | auto bMemSpace = (bT) ? bT.getMemorySpace() : ubT.getMemorySpace(); |
| 703 | return aMemSpace == bMemSpace; |
| 704 | } |
| 705 | |
| 706 | return false; |
| 707 | } |
| 708 | |
| 709 | OpFoldResult CastOp::fold(FoldAdaptor adaptor) { |
| 710 | return succeeded(foldMemRefCast(*this)) ? getResult() : Value(); |
| 711 | } |
| 712 | |
| 713 | //===----------------------------------------------------------------------===// |
| 714 | // CopyOp |
| 715 | //===----------------------------------------------------------------------===// |
| 716 | |
| 717 | namespace { |
| 718 | /// If the source/target of a CopyOp is a CastOp that does not modify the shape |
| 719 | /// and element type, the cast can be skipped. Such CastOps only cast the layout |
| 720 | /// of the type. |
| 721 | struct FoldCopyOfCast : public OpRewritePattern<CopyOp> { |
| 722 | using OpRewritePattern<CopyOp>::OpRewritePattern; |
| 723 | |
| 724 | LogicalResult matchAndRewrite(CopyOp copyOp, |
| 725 | PatternRewriter &rewriter) const override { |
| 726 | bool modified = false; |
| 727 | |
| 728 | // Check source. |
| 729 | if (auto castOp = copyOp.getSource().getDefiningOp<CastOp>()) { |
| 730 | auto fromType = llvm::dyn_cast<MemRefType>(castOp.getSource().getType()); |
| 731 | auto toType = llvm::dyn_cast<MemRefType>(castOp.getSource().getType()); |
| 732 | |
| 733 | if (fromType && toType) { |
| 734 | if (fromType.getShape() == toType.getShape() && |
| 735 | fromType.getElementType() == toType.getElementType()) { |
| 736 | rewriter.modifyOpInPlace(copyOp, [&] { |
| 737 | copyOp.getSourceMutable().assign(castOp.getSource()); |
| 738 | }); |
| 739 | modified = true; |
| 740 | } |
| 741 | } |
| 742 | } |
| 743 | |
| 744 | // Check target. |
| 745 | if (auto castOp = copyOp.getTarget().getDefiningOp<CastOp>()) { |
| 746 | auto fromType = llvm::dyn_cast<MemRefType>(castOp.getSource().getType()); |
| 747 | auto toType = llvm::dyn_cast<MemRefType>(castOp.getSource().getType()); |
| 748 | |
| 749 | if (fromType && toType) { |
| 750 | if (fromType.getShape() == toType.getShape() && |
| 751 | fromType.getElementType() == toType.getElementType()) { |
| 752 | rewriter.modifyOpInPlace(copyOp, [&] { |
| 753 | copyOp.getTargetMutable().assign(castOp.getSource()); |
| 754 | }); |
| 755 | modified = true; |
| 756 | } |
| 757 | } |
| 758 | } |
| 759 | |
| 760 | return success(IsSuccess: modified); |
| 761 | } |
| 762 | }; |
| 763 | |
| 764 | /// Fold memref.copy(%x, %x). |
| 765 | struct FoldSelfCopy : public OpRewritePattern<CopyOp> { |
| 766 | using OpRewritePattern<CopyOp>::OpRewritePattern; |
| 767 | |
| 768 | LogicalResult matchAndRewrite(CopyOp copyOp, |
| 769 | PatternRewriter &rewriter) const override { |
| 770 | if (copyOp.getSource() != copyOp.getTarget()) |
| 771 | return failure(); |
| 772 | |
| 773 | rewriter.eraseOp(op: copyOp); |
| 774 | return success(); |
| 775 | } |
| 776 | }; |
| 777 | |
| 778 | struct FoldEmptyCopy final : public OpRewritePattern<CopyOp> { |
| 779 | using OpRewritePattern<CopyOp>::OpRewritePattern; |
| 780 | |
| 781 | static bool isEmptyMemRef(BaseMemRefType type) { |
| 782 | return type.hasRank() && llvm::is_contained(Range: type.getShape(), Element: 0); |
| 783 | } |
| 784 | |
| 785 | LogicalResult matchAndRewrite(CopyOp copyOp, |
| 786 | PatternRewriter &rewriter) const override { |
| 787 | if (isEmptyMemRef(type: copyOp.getSource().getType()) || |
| 788 | isEmptyMemRef(type: copyOp.getTarget().getType())) { |
| 789 | rewriter.eraseOp(op: copyOp); |
| 790 | return success(); |
| 791 | } |
| 792 | |
| 793 | return failure(); |
| 794 | } |
| 795 | }; |
| 796 | } // namespace |
| 797 | |
| 798 | void CopyOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 799 | MLIRContext *context) { |
| 800 | results.add<FoldCopyOfCast, FoldEmptyCopy, FoldSelfCopy>(context); |
| 801 | } |
| 802 | |
| 803 | LogicalResult CopyOp::fold(FoldAdaptor adaptor, |
| 804 | SmallVectorImpl<OpFoldResult> &results) { |
| 805 | /// copy(memrefcast) -> copy |
| 806 | bool folded = false; |
| 807 | Operation *op = *this; |
| 808 | for (OpOperand &operand : op->getOpOperands()) { |
| 809 | auto castOp = operand.get().getDefiningOp<memref::CastOp>(); |
| 810 | if (castOp && memref::CastOp::canFoldIntoConsumerOp(castOp)) { |
| 811 | operand.set(castOp.getOperand()); |
| 812 | folded = true; |
| 813 | } |
| 814 | } |
| 815 | return success(folded); |
| 816 | } |
| 817 | |
| 818 | //===----------------------------------------------------------------------===// |
| 819 | // DeallocOp |
| 820 | //===----------------------------------------------------------------------===// |
| 821 | |
| 822 | LogicalResult DeallocOp::fold(FoldAdaptor adaptor, |
| 823 | SmallVectorImpl<OpFoldResult> &results) { |
| 824 | /// dealloc(memrefcast) -> dealloc |
| 825 | return foldMemRefCast(*this); |
| 826 | } |
| 827 | |
| 828 | //===----------------------------------------------------------------------===// |
| 829 | // DimOp |
| 830 | //===----------------------------------------------------------------------===// |
| 831 | |
| 832 | void DimOp::getAsmResultNames(function_ref<void(Value, StringRef)> setNameFn) { |
| 833 | setNameFn(getResult(), "dim" ); |
| 834 | } |
| 835 | |
| 836 | void DimOp::build(OpBuilder &builder, OperationState &result, Value source, |
| 837 | int64_t index) { |
| 838 | auto loc = result.location; |
| 839 | Value indexValue = builder.create<arith::ConstantIndexOp>(loc, index); |
| 840 | build(builder, result, source, indexValue); |
| 841 | } |
| 842 | |
| 843 | std::optional<int64_t> DimOp::getConstantIndex() { |
| 844 | return getConstantIntValue(getIndex()); |
| 845 | } |
| 846 | |
| 847 | Speculation::Speculatability DimOp::getSpeculatability() { |
| 848 | auto constantIndex = getConstantIndex(); |
| 849 | if (!constantIndex) |
| 850 | return Speculation::NotSpeculatable; |
| 851 | |
| 852 | auto rankedSourceType = dyn_cast<MemRefType>(getSource().getType()); |
| 853 | if (!rankedSourceType) |
| 854 | return Speculation::NotSpeculatable; |
| 855 | |
| 856 | if (rankedSourceType.getRank() <= constantIndex) |
| 857 | return Speculation::NotSpeculatable; |
| 858 | |
| 859 | return Speculation::Speculatable; |
| 860 | } |
| 861 | |
| 862 | void DimOp::inferResultRangesFromOptional(ArrayRef<IntegerValueRange> argRanges, |
| 863 | SetIntLatticeFn setResultRange) { |
| 864 | setResultRange(getResult(), |
| 865 | intrange::inferShapedDimOpInterface(*this, argRanges[1])); |
| 866 | } |
| 867 | |
| 868 | /// Return a map with key being elements in `vals` and data being number of |
| 869 | /// occurences of it. Use std::map, since the `vals` here are strides and the |
| 870 | /// dynamic stride value is the same as the tombstone value for |
| 871 | /// `DenseMap<int64_t>`. |
| 872 | static std::map<int64_t, unsigned> getNumOccurences(ArrayRef<int64_t> vals) { |
| 873 | std::map<int64_t, unsigned> numOccurences; |
| 874 | for (auto val : vals) |
| 875 | numOccurences[val]++; |
| 876 | return numOccurences; |
| 877 | } |
| 878 | |
| 879 | /// Given the `originalType` and a `candidateReducedType` whose shape is assumed |
| 880 | /// to be a subset of `originalType` with some `1` entries erased, return the |
| 881 | /// set of indices that specifies which of the entries of `originalShape` are |
| 882 | /// dropped to obtain `reducedShape`. |
| 883 | /// This accounts for cases where there are multiple unit-dims, but only a |
| 884 | /// subset of those are dropped. For MemRefTypes these can be disambiguated |
| 885 | /// using the strides. If a dimension is dropped the stride must be dropped too. |
| 886 | static FailureOr<llvm::SmallBitVector> |
| 887 | computeMemRefRankReductionMask(MemRefType originalType, MemRefType reducedType, |
| 888 | ArrayRef<OpFoldResult> sizes) { |
| 889 | llvm::SmallBitVector unusedDims(originalType.getRank()); |
| 890 | if (originalType.getRank() == reducedType.getRank()) |
| 891 | return unusedDims; |
| 892 | |
| 893 | for (const auto &dim : llvm::enumerate(First&: sizes)) |
| 894 | if (auto attr = llvm::dyn_cast_if_present<Attribute>(Val: dim.value())) |
| 895 | if (llvm::cast<IntegerAttr>(attr).getInt() == 1) |
| 896 | unusedDims.set(dim.index()); |
| 897 | |
| 898 | // Early exit for the case where the number of unused dims matches the number |
| 899 | // of ranks reduced. |
| 900 | if (static_cast<int64_t>(unusedDims.count()) + reducedType.getRank() == |
| 901 | originalType.getRank()) |
| 902 | return unusedDims; |
| 903 | |
| 904 | SmallVector<int64_t> originalStrides, candidateStrides; |
| 905 | int64_t originalOffset, candidateOffset; |
| 906 | if (failed( |
| 907 | originalType.getStridesAndOffset(originalStrides, originalOffset)) || |
| 908 | failed( |
| 909 | reducedType.getStridesAndOffset(candidateStrides, candidateOffset))) |
| 910 | return failure(); |
| 911 | |
| 912 | // For memrefs, a dimension is truly dropped if its corresponding stride is |
| 913 | // also dropped. This is particularly important when more than one of the dims |
| 914 | // is 1. Track the number of occurences of the strides in the original type |
| 915 | // and the candidate type. For each unused dim that stride should not be |
| 916 | // present in the candidate type. Note that there could be multiple dimensions |
| 917 | // that have the same size. We dont need to exactly figure out which dim |
| 918 | // corresponds to which stride, we just need to verify that the number of |
| 919 | // reptitions of a stride in the original + number of unused dims with that |
| 920 | // stride == number of repititions of a stride in the candidate. |
| 921 | std::map<int64_t, unsigned> currUnaccountedStrides = |
| 922 | getNumOccurences(vals: originalStrides); |
| 923 | std::map<int64_t, unsigned> candidateStridesNumOccurences = |
| 924 | getNumOccurences(vals: candidateStrides); |
| 925 | for (size_t dim = 0, e = unusedDims.size(); dim != e; ++dim) { |
| 926 | if (!unusedDims.test(Idx: dim)) |
| 927 | continue; |
| 928 | int64_t originalStride = originalStrides[dim]; |
| 929 | if (currUnaccountedStrides[originalStride] > |
| 930 | candidateStridesNumOccurences[originalStride]) { |
| 931 | // This dim can be treated as dropped. |
| 932 | currUnaccountedStrides[originalStride]--; |
| 933 | continue; |
| 934 | } |
| 935 | if (currUnaccountedStrides[originalStride] == |
| 936 | candidateStridesNumOccurences[originalStride]) { |
| 937 | // The stride for this is not dropped. Keep as is. |
| 938 | unusedDims.reset(Idx: dim); |
| 939 | continue; |
| 940 | } |
| 941 | if (currUnaccountedStrides[originalStride] < |
| 942 | candidateStridesNumOccurences[originalStride]) { |
| 943 | // This should never happen. Cant have a stride in the reduced rank type |
| 944 | // that wasnt in the original one. |
| 945 | return failure(); |
| 946 | } |
| 947 | } |
| 948 | |
| 949 | if ((int64_t)unusedDims.count() + reducedType.getRank() != |
| 950 | originalType.getRank()) |
| 951 | return failure(); |
| 952 | return unusedDims; |
| 953 | } |
| 954 | |
| 955 | llvm::SmallBitVector SubViewOp::getDroppedDims() { |
| 956 | MemRefType sourceType = getSourceType(); |
| 957 | MemRefType resultType = getType(); |
| 958 | FailureOr<llvm::SmallBitVector> unusedDims = |
| 959 | computeMemRefRankReductionMask(sourceType, resultType, getMixedSizes()); |
| 960 | assert(succeeded(unusedDims) && "unable to find unused dims of subview" ); |
| 961 | return *unusedDims; |
| 962 | } |
| 963 | |
| 964 | OpFoldResult DimOp::fold(FoldAdaptor adaptor) { |
| 965 | // All forms of folding require a known index. |
| 966 | auto index = llvm::dyn_cast_if_present<IntegerAttr>(adaptor.getIndex()); |
| 967 | if (!index) |
| 968 | return {}; |
| 969 | |
| 970 | // Folding for unranked types (UnrankedMemRefType) is not supported. |
| 971 | auto memrefType = llvm::dyn_cast<MemRefType>(getSource().getType()); |
| 972 | if (!memrefType) |
| 973 | return {}; |
| 974 | |
| 975 | // Out of bound indices produce undefined behavior but are still valid IR. |
| 976 | // Don't choke on them. |
| 977 | int64_t indexVal = index.getInt(); |
| 978 | if (indexVal < 0 || indexVal >= memrefType.getRank()) |
| 979 | return {}; |
| 980 | |
| 981 | // Fold if the shape extent along the given index is known. |
| 982 | if (!memrefType.isDynamicDim(index.getInt())) { |
| 983 | Builder builder(getContext()); |
| 984 | return builder.getIndexAttr(memrefType.getShape()[index.getInt()]); |
| 985 | } |
| 986 | |
| 987 | // The size at the given index is now known to be a dynamic size. |
| 988 | unsigned unsignedIndex = index.getValue().getZExtValue(); |
| 989 | |
| 990 | // Fold dim to the size argument for an `AllocOp`, `ViewOp`, or `SubViewOp`. |
| 991 | Operation *definingOp = getSource().getDefiningOp(); |
| 992 | |
| 993 | if (auto alloc = dyn_cast_or_null<AllocOp>(definingOp)) |
| 994 | return *(alloc.getDynamicSizes().begin() + |
| 995 | memrefType.getDynamicDimIndex(unsignedIndex)); |
| 996 | |
| 997 | if (auto alloca = dyn_cast_or_null<AllocaOp>(definingOp)) |
| 998 | return *(alloca.getDynamicSizes().begin() + |
| 999 | memrefType.getDynamicDimIndex(unsignedIndex)); |
| 1000 | |
| 1001 | if (auto view = dyn_cast_or_null<ViewOp>(definingOp)) |
| 1002 | return *(view.getDynamicSizes().begin() + |
| 1003 | memrefType.getDynamicDimIndex(unsignedIndex)); |
| 1004 | |
| 1005 | if (auto subview = dyn_cast_or_null<SubViewOp>(definingOp)) { |
| 1006 | llvm::SmallBitVector unusedDims = subview.getDroppedDims(); |
| 1007 | unsigned resultIndex = 0; |
| 1008 | unsigned sourceRank = subview.getSourceType().getRank(); |
| 1009 | unsigned sourceIndex = 0; |
| 1010 | for (auto i : llvm::seq<unsigned>(0, sourceRank)) { |
| 1011 | if (unusedDims.test(i)) |
| 1012 | continue; |
| 1013 | if (resultIndex == unsignedIndex) { |
| 1014 | sourceIndex = i; |
| 1015 | break; |
| 1016 | } |
| 1017 | resultIndex++; |
| 1018 | } |
| 1019 | assert(subview.isDynamicSize(sourceIndex) && |
| 1020 | "expected dynamic subview size" ); |
| 1021 | return subview.getDynamicSize(sourceIndex); |
| 1022 | } |
| 1023 | |
| 1024 | if (auto sizeInterface = |
| 1025 | dyn_cast_or_null<OffsetSizeAndStrideOpInterface>(definingOp)) { |
| 1026 | assert(sizeInterface.isDynamicSize(unsignedIndex) && |
| 1027 | "Expected dynamic subview size" ); |
| 1028 | return sizeInterface.getDynamicSize(unsignedIndex); |
| 1029 | } |
| 1030 | |
| 1031 | // dim(memrefcast) -> dim |
| 1032 | if (succeeded(foldMemRefCast(*this))) |
| 1033 | return getResult(); |
| 1034 | |
| 1035 | return {}; |
| 1036 | } |
| 1037 | |
| 1038 | namespace { |
| 1039 | /// Fold dim of a memref reshape operation to a load into the reshape's shape |
| 1040 | /// operand. |
| 1041 | struct DimOfMemRefReshape : public OpRewritePattern<DimOp> { |
| 1042 | using OpRewritePattern<DimOp>::OpRewritePattern; |
| 1043 | |
| 1044 | LogicalResult matchAndRewrite(DimOp dim, |
| 1045 | PatternRewriter &rewriter) const override { |
| 1046 | auto reshape = dim.getSource().getDefiningOp<ReshapeOp>(); |
| 1047 | |
| 1048 | if (!reshape) |
| 1049 | return rewriter.notifyMatchFailure( |
| 1050 | dim, "Dim op is not defined by a reshape op." ); |
| 1051 | |
| 1052 | // dim of a memref reshape can be folded if dim.getIndex() dominates the |
| 1053 | // reshape. Instead of using `DominanceInfo` (which is usually costly) we |
| 1054 | // cheaply check that either of the following conditions hold: |
| 1055 | // 1. dim.getIndex() is defined in the same block as reshape but before |
| 1056 | // reshape. |
| 1057 | // 2. dim.getIndex() is defined in a parent block of |
| 1058 | // reshape. |
| 1059 | |
| 1060 | // Check condition 1 |
| 1061 | if (dim.getIndex().getParentBlock() == reshape->getBlock()) { |
| 1062 | if (auto *definingOp = dim.getIndex().getDefiningOp()) { |
| 1063 | if (reshape->isBeforeInBlock(definingOp)) { |
| 1064 | return rewriter.notifyMatchFailure( |
| 1065 | dim, |
| 1066 | "dim.getIndex is not defined before reshape in the same block." ); |
| 1067 | } |
| 1068 | } // else dim.getIndex is a block argument to reshape->getBlock and |
| 1069 | // dominates reshape |
| 1070 | } // Check condition 2 |
| 1071 | else if (dim->getBlock() != reshape->getBlock() && |
| 1072 | !dim.getIndex().getParentRegion()->isProperAncestor( |
| 1073 | reshape->getParentRegion())) { |
| 1074 | // If dim and reshape are in the same block but dim.getIndex() isn't, we |
| 1075 | // already know dim.getIndex() dominates reshape without calling |
| 1076 | // `isProperAncestor` |
| 1077 | return rewriter.notifyMatchFailure( |
| 1078 | dim, "dim.getIndex does not dominate reshape." ); |
| 1079 | } |
| 1080 | |
| 1081 | // Place the load directly after the reshape to ensure that the shape memref |
| 1082 | // was not mutated. |
| 1083 | rewriter.setInsertionPointAfter(reshape); |
| 1084 | Location loc = dim.getLoc(); |
| 1085 | Value load = |
| 1086 | rewriter.create<LoadOp>(loc, reshape.getShape(), dim.getIndex()); |
| 1087 | if (load.getType() != dim.getType()) |
| 1088 | load = rewriter.create<arith::IndexCastOp>(loc, dim.getType(), load); |
| 1089 | rewriter.replaceOp(dim, load); |
| 1090 | return success(); |
| 1091 | } |
| 1092 | }; |
| 1093 | |
| 1094 | } // namespace |
| 1095 | |
| 1096 | void DimOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 1097 | MLIRContext *context) { |
| 1098 | results.add<DimOfMemRefReshape>(context); |
| 1099 | } |
| 1100 | |
| 1101 | // --------------------------------------------------------------------------- |
| 1102 | // DmaStartOp |
| 1103 | // --------------------------------------------------------------------------- |
| 1104 | |
| 1105 | void DmaStartOp::build(OpBuilder &builder, OperationState &result, |
| 1106 | Value srcMemRef, ValueRange srcIndices, Value destMemRef, |
| 1107 | ValueRange destIndices, Value numElements, |
| 1108 | Value tagMemRef, ValueRange tagIndices, Value stride, |
| 1109 | Value elementsPerStride) { |
| 1110 | result.addOperands(srcMemRef); |
| 1111 | result.addOperands(srcIndices); |
| 1112 | result.addOperands(destMemRef); |
| 1113 | result.addOperands(destIndices); |
| 1114 | result.addOperands({numElements, tagMemRef}); |
| 1115 | result.addOperands(tagIndices); |
| 1116 | if (stride) |
| 1117 | result.addOperands({stride, elementsPerStride}); |
| 1118 | } |
| 1119 | |
| 1120 | void DmaStartOp::print(OpAsmPrinter &p) { |
| 1121 | p << " " << getSrcMemRef() << '[' << getSrcIndices() << "], " |
| 1122 | << getDstMemRef() << '[' << getDstIndices() << "], " << getNumElements() |
| 1123 | << ", " << getTagMemRef() << '[' << getTagIndices() << ']'; |
| 1124 | if (isStrided()) |
| 1125 | p << ", " << getStride() << ", " << getNumElementsPerStride(); |
| 1126 | |
| 1127 | p.printOptionalAttrDict((*this)->getAttrs()); |
| 1128 | p << " : " << getSrcMemRef().getType() << ", " << getDstMemRef().getType() |
| 1129 | << ", " << getTagMemRef().getType(); |
| 1130 | } |
| 1131 | |
| 1132 | // Parse DmaStartOp. |
| 1133 | // Ex: |
| 1134 | // %dma_id = dma_start %src[%i, %j], %dst[%k, %l], %size, |
| 1135 | // %tag[%index], %stride, %num_elt_per_stride : |
| 1136 | // : memref<3076 x f32, 0>, |
| 1137 | // memref<1024 x f32, 2>, |
| 1138 | // memref<1 x i32> |
| 1139 | // |
| 1140 | ParseResult DmaStartOp::parse(OpAsmParser &parser, OperationState &result) { |
| 1141 | OpAsmParser::UnresolvedOperand srcMemRefInfo; |
| 1142 | SmallVector<OpAsmParser::UnresolvedOperand, 4> srcIndexInfos; |
| 1143 | OpAsmParser::UnresolvedOperand dstMemRefInfo; |
| 1144 | SmallVector<OpAsmParser::UnresolvedOperand, 4> dstIndexInfos; |
| 1145 | OpAsmParser::UnresolvedOperand numElementsInfo; |
| 1146 | OpAsmParser::UnresolvedOperand tagMemrefInfo; |
| 1147 | SmallVector<OpAsmParser::UnresolvedOperand, 4> tagIndexInfos; |
| 1148 | SmallVector<OpAsmParser::UnresolvedOperand, 2> strideInfo; |
| 1149 | |
| 1150 | SmallVector<Type, 3> types; |
| 1151 | auto indexType = parser.getBuilder().getIndexType(); |
| 1152 | |
| 1153 | // Parse and resolve the following list of operands: |
| 1154 | // *) source memref followed by its indices (in square brackets). |
| 1155 | // *) destination memref followed by its indices (in square brackets). |
| 1156 | // *) dma size in KiB. |
| 1157 | if (parser.parseOperand(srcMemRefInfo) || |
| 1158 | parser.parseOperandList(srcIndexInfos, OpAsmParser::Delimiter::Square) || |
| 1159 | parser.parseComma() || parser.parseOperand(dstMemRefInfo) || |
| 1160 | parser.parseOperandList(dstIndexInfos, OpAsmParser::Delimiter::Square) || |
| 1161 | parser.parseComma() || parser.parseOperand(numElementsInfo) || |
| 1162 | parser.parseComma() || parser.parseOperand(tagMemrefInfo) || |
| 1163 | parser.parseOperandList(tagIndexInfos, OpAsmParser::Delimiter::Square)) |
| 1164 | return failure(); |
| 1165 | |
| 1166 | // Parse optional stride and elements per stride. |
| 1167 | if (parser.parseTrailingOperandList(strideInfo)) |
| 1168 | return failure(); |
| 1169 | |
| 1170 | bool isStrided = strideInfo.size() == 2; |
| 1171 | if (!strideInfo.empty() && !isStrided) { |
| 1172 | return parser.emitError(parser.getNameLoc(), |
| 1173 | "expected two stride related operands" ); |
| 1174 | } |
| 1175 | |
| 1176 | if (parser.parseColonTypeList(types)) |
| 1177 | return failure(); |
| 1178 | if (types.size() != 3) |
| 1179 | return parser.emitError(parser.getNameLoc(), "fewer/more types expected" ); |
| 1180 | |
| 1181 | if (parser.resolveOperand(srcMemRefInfo, types[0], result.operands) || |
| 1182 | parser.resolveOperands(srcIndexInfos, indexType, result.operands) || |
| 1183 | parser.resolveOperand(dstMemRefInfo, types[1], result.operands) || |
| 1184 | parser.resolveOperands(dstIndexInfos, indexType, result.operands) || |
| 1185 | // size should be an index. |
| 1186 | parser.resolveOperand(numElementsInfo, indexType, result.operands) || |
| 1187 | parser.resolveOperand(tagMemrefInfo, types[2], result.operands) || |
| 1188 | // tag indices should be index. |
| 1189 | parser.resolveOperands(tagIndexInfos, indexType, result.operands)) |
| 1190 | return failure(); |
| 1191 | |
| 1192 | if (isStrided) { |
| 1193 | if (parser.resolveOperands(strideInfo, indexType, result.operands)) |
| 1194 | return failure(); |
| 1195 | } |
| 1196 | |
| 1197 | return success(); |
| 1198 | } |
| 1199 | |
| 1200 | LogicalResult DmaStartOp::verify() { |
| 1201 | unsigned numOperands = getNumOperands(); |
| 1202 | |
| 1203 | // Mandatory non-variadic operands are: src memref, dst memref, tag memref and |
| 1204 | // the number of elements. |
| 1205 | if (numOperands < 4) |
| 1206 | return emitOpError("expected at least 4 operands" ); |
| 1207 | |
| 1208 | // Check types of operands. The order of these calls is important: the later |
| 1209 | // calls rely on some type properties to compute the operand position. |
| 1210 | // 1. Source memref. |
| 1211 | if (!llvm::isa<MemRefType>(getSrcMemRef().getType())) |
| 1212 | return emitOpError("expected source to be of memref type" ); |
| 1213 | if (numOperands < getSrcMemRefRank() + 4) |
| 1214 | return emitOpError() << "expected at least " << getSrcMemRefRank() + 4 |
| 1215 | << " operands" ; |
| 1216 | if (!getSrcIndices().empty() && |
| 1217 | !llvm::all_of(getSrcIndices().getTypes(), |
| 1218 | [](Type t) { return t.isIndex(); })) |
| 1219 | return emitOpError("expected source indices to be of index type" ); |
| 1220 | |
| 1221 | // 2. Destination memref. |
| 1222 | if (!llvm::isa<MemRefType>(getDstMemRef().getType())) |
| 1223 | return emitOpError("expected destination to be of memref type" ); |
| 1224 | unsigned numExpectedOperands = getSrcMemRefRank() + getDstMemRefRank() + 4; |
| 1225 | if (numOperands < numExpectedOperands) |
| 1226 | return emitOpError() << "expected at least " << numExpectedOperands |
| 1227 | << " operands" ; |
| 1228 | if (!getDstIndices().empty() && |
| 1229 | !llvm::all_of(getDstIndices().getTypes(), |
| 1230 | [](Type t) { return t.isIndex(); })) |
| 1231 | return emitOpError("expected destination indices to be of index type" ); |
| 1232 | |
| 1233 | // 3. Number of elements. |
| 1234 | if (!getNumElements().getType().isIndex()) |
| 1235 | return emitOpError("expected num elements to be of index type" ); |
| 1236 | |
| 1237 | // 4. Tag memref. |
| 1238 | if (!llvm::isa<MemRefType>(getTagMemRef().getType())) |
| 1239 | return emitOpError("expected tag to be of memref type" ); |
| 1240 | numExpectedOperands += getTagMemRefRank(); |
| 1241 | if (numOperands < numExpectedOperands) |
| 1242 | return emitOpError() << "expected at least " << numExpectedOperands |
| 1243 | << " operands" ; |
| 1244 | if (!getTagIndices().empty() && |
| 1245 | !llvm::all_of(getTagIndices().getTypes(), |
| 1246 | [](Type t) { return t.isIndex(); })) |
| 1247 | return emitOpError("expected tag indices to be of index type" ); |
| 1248 | |
| 1249 | // Optional stride-related operands must be either both present or both |
| 1250 | // absent. |
| 1251 | if (numOperands != numExpectedOperands && |
| 1252 | numOperands != numExpectedOperands + 2) |
| 1253 | return emitOpError("incorrect number of operands" ); |
| 1254 | |
| 1255 | // 5. Strides. |
| 1256 | if (isStrided()) { |
| 1257 | if (!getStride().getType().isIndex() || |
| 1258 | !getNumElementsPerStride().getType().isIndex()) |
| 1259 | return emitOpError( |
| 1260 | "expected stride and num elements per stride to be of type index" ); |
| 1261 | } |
| 1262 | |
| 1263 | return success(); |
| 1264 | } |
| 1265 | |
| 1266 | LogicalResult DmaStartOp::fold(FoldAdaptor adaptor, |
| 1267 | SmallVectorImpl<OpFoldResult> &results) { |
| 1268 | /// dma_start(memrefcast) -> dma_start |
| 1269 | return foldMemRefCast(*this); |
| 1270 | } |
| 1271 | |
| 1272 | // --------------------------------------------------------------------------- |
| 1273 | // DmaWaitOp |
| 1274 | // --------------------------------------------------------------------------- |
| 1275 | |
| 1276 | LogicalResult DmaWaitOp::fold(FoldAdaptor adaptor, |
| 1277 | SmallVectorImpl<OpFoldResult> &results) { |
| 1278 | /// dma_wait(memrefcast) -> dma_wait |
| 1279 | return foldMemRefCast(*this); |
| 1280 | } |
| 1281 | |
| 1282 | LogicalResult DmaWaitOp::verify() { |
| 1283 | // Check that the number of tag indices matches the tagMemRef rank. |
| 1284 | unsigned numTagIndices = getTagIndices().size(); |
| 1285 | unsigned tagMemRefRank = getTagMemRefRank(); |
| 1286 | if (numTagIndices != tagMemRefRank) |
| 1287 | return emitOpError() << "expected tagIndices to have the same number of " |
| 1288 | "elements as the tagMemRef rank, expected " |
| 1289 | << tagMemRefRank << ", but got " << numTagIndices; |
| 1290 | return success(); |
| 1291 | } |
| 1292 | |
| 1293 | //===----------------------------------------------------------------------===// |
| 1294 | // ExtractAlignedPointerAsIndexOp |
| 1295 | //===----------------------------------------------------------------------===// |
| 1296 | |
| 1297 | void ExtractAlignedPointerAsIndexOp::getAsmResultNames( |
| 1298 | function_ref<void(Value, StringRef)> setNameFn) { |
| 1299 | setNameFn(getResult(), "intptr" ); |
| 1300 | } |
| 1301 | |
| 1302 | //===----------------------------------------------------------------------===// |
| 1303 | // ExtractStridedMetadataOp |
| 1304 | //===----------------------------------------------------------------------===// |
| 1305 | |
| 1306 | /// The number and type of the results are inferred from the |
| 1307 | /// shape of the source. |
| 1308 | LogicalResult ExtractStridedMetadataOp::inferReturnTypes( |
| 1309 | MLIRContext *context, std::optional<Location> location, |
| 1310 | ExtractStridedMetadataOp::Adaptor adaptor, |
| 1311 | SmallVectorImpl<Type> &inferredReturnTypes) { |
| 1312 | auto sourceType = llvm::dyn_cast<MemRefType>(adaptor.getSource().getType()); |
| 1313 | if (!sourceType) |
| 1314 | return failure(); |
| 1315 | |
| 1316 | unsigned sourceRank = sourceType.getRank(); |
| 1317 | IndexType indexType = IndexType::get(context); |
| 1318 | auto memrefType = |
| 1319 | MemRefType::get({}, sourceType.getElementType(), |
| 1320 | MemRefLayoutAttrInterface{}, sourceType.getMemorySpace()); |
| 1321 | // Base. |
| 1322 | inferredReturnTypes.push_back(memrefType); |
| 1323 | // Offset. |
| 1324 | inferredReturnTypes.push_back(indexType); |
| 1325 | // Sizes and strides. |
| 1326 | for (unsigned i = 0; i < sourceRank * 2; ++i) |
| 1327 | inferredReturnTypes.push_back(indexType); |
| 1328 | return success(); |
| 1329 | } |
| 1330 | |
| 1331 | void ExtractStridedMetadataOp::getAsmResultNames( |
| 1332 | function_ref<void(Value, StringRef)> setNameFn) { |
| 1333 | setNameFn(getBaseBuffer(), "base_buffer" ); |
| 1334 | setNameFn(getOffset(), "offset" ); |
| 1335 | // For multi-result to work properly with pretty names and packed syntax `x:3` |
| 1336 | // we can only give a pretty name to the first value in the pack. |
| 1337 | if (!getSizes().empty()) { |
| 1338 | setNameFn(getSizes().front(), "sizes" ); |
| 1339 | setNameFn(getStrides().front(), "strides" ); |
| 1340 | } |
| 1341 | } |
| 1342 | |
| 1343 | /// Helper function to perform the replacement of all constant uses of `values` |
| 1344 | /// by a materialized constant extracted from `maybeConstants`. |
| 1345 | /// `values` and `maybeConstants` are expected to have the same size. |
| 1346 | template <typename Container> |
| 1347 | static bool replaceConstantUsesOf(OpBuilder &rewriter, Location loc, |
| 1348 | Container values, |
| 1349 | ArrayRef<OpFoldResult> maybeConstants) { |
| 1350 | assert(values.size() == maybeConstants.size() && |
| 1351 | " expected values and maybeConstants of the same size" ); |
| 1352 | bool atLeastOneReplacement = false; |
| 1353 | for (auto [maybeConstant, result] : llvm::zip(maybeConstants, values)) { |
| 1354 | // Don't materialize a constant if there are no uses: this would indice |
| 1355 | // infinite loops in the driver. |
| 1356 | if (result.use_empty() || maybeConstant == getAsOpFoldResult(result)) |
| 1357 | continue; |
| 1358 | assert(isa<Attribute>(maybeConstant) && |
| 1359 | "The constified value should be either unchanged (i.e., == result) " |
| 1360 | "or a constant" ); |
| 1361 | Value constantVal = rewriter.create<arith::ConstantIndexOp>( |
| 1362 | loc, llvm::cast<IntegerAttr>(cast<Attribute>(maybeConstant)).getInt()); |
| 1363 | for (Operation *op : llvm::make_early_inc_range(result.getUsers())) { |
| 1364 | // modifyOpInPlace: lambda cannot capture structured bindings in C++17 |
| 1365 | // yet. |
| 1366 | op->replaceUsesOfWith(from: result, to: constantVal); |
| 1367 | atLeastOneReplacement = true; |
| 1368 | } |
| 1369 | } |
| 1370 | return atLeastOneReplacement; |
| 1371 | } |
| 1372 | |
| 1373 | LogicalResult |
| 1374 | ExtractStridedMetadataOp::fold(FoldAdaptor adaptor, |
| 1375 | SmallVectorImpl<OpFoldResult> &results) { |
| 1376 | OpBuilder builder(*this); |
| 1377 | |
| 1378 | bool atLeastOneReplacement = replaceConstantUsesOf( |
| 1379 | builder, getLoc(), ArrayRef<TypedValue<IndexType>>(getOffset()), |
| 1380 | getConstifiedMixedOffset()); |
| 1381 | atLeastOneReplacement |= replaceConstantUsesOf(builder, getLoc(), getSizes(), |
| 1382 | getConstifiedMixedSizes()); |
| 1383 | atLeastOneReplacement |= replaceConstantUsesOf( |
| 1384 | builder, getLoc(), getStrides(), getConstifiedMixedStrides()); |
| 1385 | |
| 1386 | return success(atLeastOneReplacement); |
| 1387 | } |
| 1388 | |
| 1389 | SmallVector<OpFoldResult> ExtractStridedMetadataOp::getConstifiedMixedSizes() { |
| 1390 | SmallVector<OpFoldResult> values = getAsOpFoldResult(getSizes()); |
| 1391 | constifyIndexValues(values, getSource().getType().getShape()); |
| 1392 | return values; |
| 1393 | } |
| 1394 | |
| 1395 | SmallVector<OpFoldResult> |
| 1396 | ExtractStridedMetadataOp::getConstifiedMixedStrides() { |
| 1397 | SmallVector<OpFoldResult> values = getAsOpFoldResult(getStrides()); |
| 1398 | SmallVector<int64_t> staticValues; |
| 1399 | int64_t unused; |
| 1400 | LogicalResult status = |
| 1401 | getSource().getType().getStridesAndOffset(staticValues, unused); |
| 1402 | (void)status; |
| 1403 | assert(succeeded(status) && "could not get strides from type" ); |
| 1404 | constifyIndexValues(values, staticValues); |
| 1405 | return values; |
| 1406 | } |
| 1407 | |
| 1408 | OpFoldResult ExtractStridedMetadataOp::getConstifiedMixedOffset() { |
| 1409 | OpFoldResult offsetOfr = getAsOpFoldResult(getOffset()); |
| 1410 | SmallVector<OpFoldResult> values(1, offsetOfr); |
| 1411 | SmallVector<int64_t> staticValues, unused; |
| 1412 | int64_t offset; |
| 1413 | LogicalResult status = |
| 1414 | getSource().getType().getStridesAndOffset(unused, offset); |
| 1415 | (void)status; |
| 1416 | assert(succeeded(status) && "could not get offset from type" ); |
| 1417 | staticValues.push_back(offset); |
| 1418 | constifyIndexValues(values, staticValues); |
| 1419 | return values[0]; |
| 1420 | } |
| 1421 | |
| 1422 | //===----------------------------------------------------------------------===// |
| 1423 | // GenericAtomicRMWOp |
| 1424 | //===----------------------------------------------------------------------===// |
| 1425 | |
| 1426 | void GenericAtomicRMWOp::build(OpBuilder &builder, OperationState &result, |
| 1427 | Value memref, ValueRange ivs) { |
| 1428 | OpBuilder::InsertionGuard g(builder); |
| 1429 | result.addOperands(memref); |
| 1430 | result.addOperands(ivs); |
| 1431 | |
| 1432 | if (auto memrefType = llvm::dyn_cast<MemRefType>(memref.getType())) { |
| 1433 | Type elementType = memrefType.getElementType(); |
| 1434 | result.addTypes(elementType); |
| 1435 | |
| 1436 | Region *bodyRegion = result.addRegion(); |
| 1437 | builder.createBlock(bodyRegion); |
| 1438 | bodyRegion->addArgument(elementType, memref.getLoc()); |
| 1439 | } |
| 1440 | } |
| 1441 | |
| 1442 | LogicalResult GenericAtomicRMWOp::verify() { |
| 1443 | auto &body = getRegion(); |
| 1444 | if (body.getNumArguments() != 1) |
| 1445 | return emitOpError("expected single number of entry block arguments" ); |
| 1446 | |
| 1447 | if (getResult().getType() != body.getArgument(0).getType()) |
| 1448 | return emitOpError("expected block argument of the same type result type" ); |
| 1449 | |
| 1450 | bool hasSideEffects = |
| 1451 | body.walk([&](Operation *nestedOp) { |
| 1452 | if (isMemoryEffectFree(nestedOp)) |
| 1453 | return WalkResult::advance(); |
| 1454 | nestedOp->emitError( |
| 1455 | "body of 'memref.generic_atomic_rmw' should contain " |
| 1456 | "only operations with no side effects" ); |
| 1457 | return WalkResult::interrupt(); |
| 1458 | }) |
| 1459 | .wasInterrupted(); |
| 1460 | return hasSideEffects ? failure() : success(); |
| 1461 | } |
| 1462 | |
| 1463 | ParseResult GenericAtomicRMWOp::parse(OpAsmParser &parser, |
| 1464 | OperationState &result) { |
| 1465 | OpAsmParser::UnresolvedOperand memref; |
| 1466 | Type memrefType; |
| 1467 | SmallVector<OpAsmParser::UnresolvedOperand, 4> ivs; |
| 1468 | |
| 1469 | Type indexType = parser.getBuilder().getIndexType(); |
| 1470 | if (parser.parseOperand(memref) || |
| 1471 | parser.parseOperandList(ivs, OpAsmParser::Delimiter::Square) || |
| 1472 | parser.parseColonType(memrefType) || |
| 1473 | parser.resolveOperand(memref, memrefType, result.operands) || |
| 1474 | parser.resolveOperands(ivs, indexType, result.operands)) |
| 1475 | return failure(); |
| 1476 | |
| 1477 | Region *body = result.addRegion(); |
| 1478 | if (parser.parseRegion(*body, {}) || |
| 1479 | parser.parseOptionalAttrDict(result.attributes)) |
| 1480 | return failure(); |
| 1481 | result.types.push_back(llvm::cast<MemRefType>(memrefType).getElementType()); |
| 1482 | return success(); |
| 1483 | } |
| 1484 | |
| 1485 | void GenericAtomicRMWOp::print(OpAsmPrinter &p) { |
| 1486 | p << ' ' << getMemref() << "[" << getIndices() |
| 1487 | << "] : " << getMemref().getType() << ' '; |
| 1488 | p.printRegion(getRegion()); |
| 1489 | p.printOptionalAttrDict((*this)->getAttrs()); |
| 1490 | } |
| 1491 | |
| 1492 | //===----------------------------------------------------------------------===// |
| 1493 | // AtomicYieldOp |
| 1494 | //===----------------------------------------------------------------------===// |
| 1495 | |
| 1496 | LogicalResult AtomicYieldOp::verify() { |
| 1497 | Type parentType = (*this)->getParentOp()->getResultTypes().front(); |
| 1498 | Type resultType = getResult().getType(); |
| 1499 | if (parentType != resultType) |
| 1500 | return emitOpError() << "types mismatch between yield op: " << resultType |
| 1501 | << " and its parent: " << parentType; |
| 1502 | return success(); |
| 1503 | } |
| 1504 | |
| 1505 | //===----------------------------------------------------------------------===// |
| 1506 | // GlobalOp |
| 1507 | //===----------------------------------------------------------------------===// |
| 1508 | |
| 1509 | static void printGlobalMemrefOpTypeAndInitialValue(OpAsmPrinter &p, GlobalOp op, |
| 1510 | TypeAttr type, |
| 1511 | Attribute initialValue) { |
| 1512 | p << type; |
| 1513 | if (!op.isExternal()) { |
| 1514 | p << " = " ; |
| 1515 | if (op.isUninitialized()) |
| 1516 | p << "uninitialized" ; |
| 1517 | else |
| 1518 | p.printAttributeWithoutType(attr: initialValue); |
| 1519 | } |
| 1520 | } |
| 1521 | |
| 1522 | static ParseResult |
| 1523 | parseGlobalMemrefOpTypeAndInitialValue(OpAsmParser &parser, TypeAttr &typeAttr, |
| 1524 | Attribute &initialValue) { |
| 1525 | Type type; |
| 1526 | if (parser.parseType(result&: type)) |
| 1527 | return failure(); |
| 1528 | |
| 1529 | auto memrefType = llvm::dyn_cast<MemRefType>(type); |
| 1530 | if (!memrefType || !memrefType.hasStaticShape()) |
| 1531 | return parser.emitError(loc: parser.getNameLoc()) |
| 1532 | << "type should be static shaped memref, but got " << type; |
| 1533 | typeAttr = TypeAttr::get(type); |
| 1534 | |
| 1535 | if (parser.parseOptionalEqual()) |
| 1536 | return success(); |
| 1537 | |
| 1538 | if (succeeded(Result: parser.parseOptionalKeyword(keyword: "uninitialized" ))) { |
| 1539 | initialValue = UnitAttr::get(parser.getContext()); |
| 1540 | return success(); |
| 1541 | } |
| 1542 | |
| 1543 | Type tensorType = getTensorTypeFromMemRefType(memrefType); |
| 1544 | if (parser.parseAttribute(result&: initialValue, type: tensorType)) |
| 1545 | return failure(); |
| 1546 | if (!llvm::isa<ElementsAttr>(Val: initialValue)) |
| 1547 | return parser.emitError(loc: parser.getNameLoc()) |
| 1548 | << "initial value should be a unit or elements attribute" ; |
| 1549 | return success(); |
| 1550 | } |
| 1551 | |
| 1552 | LogicalResult GlobalOp::verify() { |
| 1553 | auto memrefType = llvm::dyn_cast<MemRefType>(getType()); |
| 1554 | if (!memrefType || !memrefType.hasStaticShape()) |
| 1555 | return emitOpError("type should be static shaped memref, but got " ) |
| 1556 | << getType(); |
| 1557 | |
| 1558 | // Verify that the initial value, if present, is either a unit attribute or |
| 1559 | // an elements attribute. |
| 1560 | if (getInitialValue().has_value()) { |
| 1561 | Attribute initValue = getInitialValue().value(); |
| 1562 | if (!llvm::isa<UnitAttr>(initValue) && !llvm::isa<ElementsAttr>(initValue)) |
| 1563 | return emitOpError("initial value should be a unit or elements " |
| 1564 | "attribute, but got " ) |
| 1565 | << initValue; |
| 1566 | |
| 1567 | // Check that the type of the initial value is compatible with the type of |
| 1568 | // the global variable. |
| 1569 | if (auto elementsAttr = llvm::dyn_cast<ElementsAttr>(initValue)) { |
| 1570 | Type initType = elementsAttr.getType(); |
| 1571 | Type tensorType = getTensorTypeFromMemRefType(memrefType); |
| 1572 | if (initType != tensorType) |
| 1573 | return emitOpError("initial value expected to be of type " ) |
| 1574 | << tensorType << ", but was of type " << initType; |
| 1575 | } |
| 1576 | } |
| 1577 | |
| 1578 | if (std::optional<uint64_t> alignAttr = getAlignment()) { |
| 1579 | uint64_t alignment = *alignAttr; |
| 1580 | |
| 1581 | if (!llvm::isPowerOf2_64(alignment)) |
| 1582 | return emitError() << "alignment attribute value " << alignment |
| 1583 | << " is not a power of 2" ; |
| 1584 | } |
| 1585 | |
| 1586 | // TODO: verify visibility for declarations. |
| 1587 | return success(); |
| 1588 | } |
| 1589 | |
| 1590 | ElementsAttr GlobalOp::getConstantInitValue() { |
| 1591 | auto initVal = getInitialValue(); |
| 1592 | if (getConstant() && initVal.has_value()) |
| 1593 | return llvm::cast<ElementsAttr>(initVal.value()); |
| 1594 | return {}; |
| 1595 | } |
| 1596 | |
| 1597 | //===----------------------------------------------------------------------===// |
| 1598 | // GetGlobalOp |
| 1599 | //===----------------------------------------------------------------------===// |
| 1600 | |
| 1601 | LogicalResult |
| 1602 | GetGlobalOp::verifySymbolUses(SymbolTableCollection &symbolTable) { |
| 1603 | // Verify that the result type is same as the type of the referenced |
| 1604 | // memref.global op. |
| 1605 | auto global = |
| 1606 | symbolTable.lookupNearestSymbolFrom<GlobalOp>(*this, getNameAttr()); |
| 1607 | if (!global) |
| 1608 | return emitOpError("'" ) |
| 1609 | << getName() << "' does not reference a valid global memref" ; |
| 1610 | |
| 1611 | Type resultType = getResult().getType(); |
| 1612 | if (global.getType() != resultType) |
| 1613 | return emitOpError("result type " ) |
| 1614 | << resultType << " does not match type " << global.getType() |
| 1615 | << " of the global memref @" << getName(); |
| 1616 | return success(); |
| 1617 | } |
| 1618 | |
| 1619 | //===----------------------------------------------------------------------===// |
| 1620 | // LoadOp |
| 1621 | //===----------------------------------------------------------------------===// |
| 1622 | |
| 1623 | LogicalResult LoadOp::verify() { |
| 1624 | if (static_cast<int64_t>(getIndices().size()) != getMemRefType().getRank()) { |
| 1625 | return emitOpError("incorrect number of indices for load, expected " ) |
| 1626 | << getMemRefType().getRank() << " but got " << getIndices().size(); |
| 1627 | } |
| 1628 | return success(); |
| 1629 | } |
| 1630 | |
| 1631 | OpFoldResult LoadOp::fold(FoldAdaptor adaptor) { |
| 1632 | /// load(memrefcast) -> load |
| 1633 | if (succeeded(foldMemRefCast(*this))) |
| 1634 | return getResult(); |
| 1635 | return OpFoldResult(); |
| 1636 | } |
| 1637 | |
| 1638 | //===----------------------------------------------------------------------===// |
| 1639 | // MemorySpaceCastOp |
| 1640 | //===----------------------------------------------------------------------===// |
| 1641 | |
| 1642 | void MemorySpaceCastOp::getAsmResultNames( |
| 1643 | function_ref<void(Value, StringRef)> setNameFn) { |
| 1644 | setNameFn(getResult(), "memspacecast" ); |
| 1645 | } |
| 1646 | |
| 1647 | bool MemorySpaceCastOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { |
| 1648 | if (inputs.size() != 1 || outputs.size() != 1) |
| 1649 | return false; |
| 1650 | Type a = inputs.front(), b = outputs.front(); |
| 1651 | auto aT = llvm::dyn_cast<MemRefType>(a); |
| 1652 | auto bT = llvm::dyn_cast<MemRefType>(b); |
| 1653 | |
| 1654 | auto uaT = llvm::dyn_cast<UnrankedMemRefType>(a); |
| 1655 | auto ubT = llvm::dyn_cast<UnrankedMemRefType>(b); |
| 1656 | |
| 1657 | if (aT && bT) { |
| 1658 | if (aT.getElementType() != bT.getElementType()) |
| 1659 | return false; |
| 1660 | if (aT.getLayout() != bT.getLayout()) |
| 1661 | return false; |
| 1662 | if (aT.getShape() != bT.getShape()) |
| 1663 | return false; |
| 1664 | return true; |
| 1665 | } |
| 1666 | if (uaT && ubT) { |
| 1667 | return uaT.getElementType() == ubT.getElementType(); |
| 1668 | } |
| 1669 | return false; |
| 1670 | } |
| 1671 | |
| 1672 | OpFoldResult MemorySpaceCastOp::fold(FoldAdaptor adaptor) { |
| 1673 | // memory_space_cast(memory_space_cast(v, t1), t2) -> memory_space_cast(v, |
| 1674 | // t2) |
| 1675 | if (auto parentCast = getSource().getDefiningOp<MemorySpaceCastOp>()) { |
| 1676 | getSourceMutable().assign(parentCast.getSource()); |
| 1677 | return getResult(); |
| 1678 | } |
| 1679 | return Value{}; |
| 1680 | } |
| 1681 | |
| 1682 | //===----------------------------------------------------------------------===// |
| 1683 | // PrefetchOp |
| 1684 | //===----------------------------------------------------------------------===// |
| 1685 | |
| 1686 | void PrefetchOp::print(OpAsmPrinter &p) { |
| 1687 | p << " " << getMemref() << '['; |
| 1688 | p.printOperands(getIndices()); |
| 1689 | p << ']' << ", " << (getIsWrite() ? "write" : "read" ); |
| 1690 | p << ", locality<" << getLocalityHint(); |
| 1691 | p << ">, " << (getIsDataCache() ? "data" : "instr" ); |
| 1692 | p.printOptionalAttrDict( |
| 1693 | (*this)->getAttrs(), |
| 1694 | /*elidedAttrs=*/{"localityHint" , "isWrite" , "isDataCache" }); |
| 1695 | p << " : " << getMemRefType(); |
| 1696 | } |
| 1697 | |
| 1698 | ParseResult PrefetchOp::parse(OpAsmParser &parser, OperationState &result) { |
| 1699 | OpAsmParser::UnresolvedOperand memrefInfo; |
| 1700 | SmallVector<OpAsmParser::UnresolvedOperand, 4> indexInfo; |
| 1701 | IntegerAttr localityHint; |
| 1702 | MemRefType type; |
| 1703 | StringRef readOrWrite, cacheType; |
| 1704 | |
| 1705 | auto indexTy = parser.getBuilder().getIndexType(); |
| 1706 | auto i32Type = parser.getBuilder().getIntegerType(32); |
| 1707 | if (parser.parseOperand(memrefInfo) || |
| 1708 | parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) || |
| 1709 | parser.parseComma() || parser.parseKeyword(&readOrWrite) || |
| 1710 | parser.parseComma() || parser.parseKeyword("locality" ) || |
| 1711 | parser.parseLess() || |
| 1712 | parser.parseAttribute(localityHint, i32Type, "localityHint" , |
| 1713 | result.attributes) || |
| 1714 | parser.parseGreater() || parser.parseComma() || |
| 1715 | parser.parseKeyword(&cacheType) || parser.parseColonType(type) || |
| 1716 | parser.resolveOperand(memrefInfo, type, result.operands) || |
| 1717 | parser.resolveOperands(indexInfo, indexTy, result.operands)) |
| 1718 | return failure(); |
| 1719 | |
| 1720 | if (readOrWrite != "read" && readOrWrite != "write" ) |
| 1721 | return parser.emitError(parser.getNameLoc(), |
| 1722 | "rw specifier has to be 'read' or 'write'" ); |
| 1723 | result.addAttribute(PrefetchOp::getIsWriteAttrStrName(), |
| 1724 | parser.getBuilder().getBoolAttr(readOrWrite == "write" )); |
| 1725 | |
| 1726 | if (cacheType != "data" && cacheType != "instr" ) |
| 1727 | return parser.emitError(parser.getNameLoc(), |
| 1728 | "cache type has to be 'data' or 'instr'" ); |
| 1729 | |
| 1730 | result.addAttribute(PrefetchOp::getIsDataCacheAttrStrName(), |
| 1731 | parser.getBuilder().getBoolAttr(cacheType == "data" )); |
| 1732 | |
| 1733 | return success(); |
| 1734 | } |
| 1735 | |
| 1736 | LogicalResult PrefetchOp::verify() { |
| 1737 | if (getNumOperands() != 1 + getMemRefType().getRank()) |
| 1738 | return emitOpError("too few indices" ); |
| 1739 | |
| 1740 | return success(); |
| 1741 | } |
| 1742 | |
| 1743 | LogicalResult PrefetchOp::fold(FoldAdaptor adaptor, |
| 1744 | SmallVectorImpl<OpFoldResult> &results) { |
| 1745 | // prefetch(memrefcast) -> prefetch |
| 1746 | return foldMemRefCast(*this); |
| 1747 | } |
| 1748 | |
| 1749 | //===----------------------------------------------------------------------===// |
| 1750 | // RankOp |
| 1751 | //===----------------------------------------------------------------------===// |
| 1752 | |
| 1753 | OpFoldResult RankOp::fold(FoldAdaptor adaptor) { |
| 1754 | // Constant fold rank when the rank of the operand is known. |
| 1755 | auto type = getOperand().getType(); |
| 1756 | auto shapedType = llvm::dyn_cast<ShapedType>(type); |
| 1757 | if (shapedType && shapedType.hasRank()) |
| 1758 | return IntegerAttr::get(IndexType::get(getContext()), shapedType.getRank()); |
| 1759 | return IntegerAttr(); |
| 1760 | } |
| 1761 | |
| 1762 | //===----------------------------------------------------------------------===// |
| 1763 | // ReinterpretCastOp |
| 1764 | //===----------------------------------------------------------------------===// |
| 1765 | |
| 1766 | void ReinterpretCastOp::getAsmResultNames( |
| 1767 | function_ref<void(Value, StringRef)> setNameFn) { |
| 1768 | setNameFn(getResult(), "reinterpret_cast" ); |
| 1769 | } |
| 1770 | |
| 1771 | /// Build a ReinterpretCastOp with all dynamic entries: `staticOffsets`, |
| 1772 | /// `staticSizes` and `staticStrides` are automatically filled with |
| 1773 | /// source-memref-rank sentinel values that encode dynamic entries. |
| 1774 | void ReinterpretCastOp::build(OpBuilder &b, OperationState &result, |
| 1775 | MemRefType resultType, Value source, |
| 1776 | OpFoldResult offset, ArrayRef<OpFoldResult> sizes, |
| 1777 | ArrayRef<OpFoldResult> strides, |
| 1778 | ArrayRef<NamedAttribute> attrs) { |
| 1779 | SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; |
| 1780 | SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; |
| 1781 | dispatchIndexOpFoldResults(offset, dynamicOffsets, staticOffsets); |
| 1782 | dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes); |
| 1783 | dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides); |
| 1784 | result.addAttributes(attrs); |
| 1785 | build(b, result, resultType, source, dynamicOffsets, dynamicSizes, |
| 1786 | dynamicStrides, b.getDenseI64ArrayAttr(staticOffsets), |
| 1787 | b.getDenseI64ArrayAttr(staticSizes), |
| 1788 | b.getDenseI64ArrayAttr(staticStrides)); |
| 1789 | } |
| 1790 | |
| 1791 | void ReinterpretCastOp::build(OpBuilder &b, OperationState &result, |
| 1792 | Value source, OpFoldResult offset, |
| 1793 | ArrayRef<OpFoldResult> sizes, |
| 1794 | ArrayRef<OpFoldResult> strides, |
| 1795 | ArrayRef<NamedAttribute> attrs) { |
| 1796 | auto sourceType = cast<BaseMemRefType>(source.getType()); |
| 1797 | SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; |
| 1798 | SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; |
| 1799 | dispatchIndexOpFoldResults(offset, dynamicOffsets, staticOffsets); |
| 1800 | dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes); |
| 1801 | dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides); |
| 1802 | auto stridedLayout = StridedLayoutAttr::get( |
| 1803 | b.getContext(), staticOffsets.front(), staticStrides); |
| 1804 | auto resultType = MemRefType::get(staticSizes, sourceType.getElementType(), |
| 1805 | stridedLayout, sourceType.getMemorySpace()); |
| 1806 | build(b, result, resultType, source, offset, sizes, strides, attrs); |
| 1807 | } |
| 1808 | |
| 1809 | void ReinterpretCastOp::build(OpBuilder &b, OperationState &result, |
| 1810 | MemRefType resultType, Value source, |
| 1811 | int64_t offset, ArrayRef<int64_t> sizes, |
| 1812 | ArrayRef<int64_t> strides, |
| 1813 | ArrayRef<NamedAttribute> attrs) { |
| 1814 | SmallVector<OpFoldResult> sizeValues = |
| 1815 | llvm::to_vector<4>(llvm::map_range(sizes, [&](int64_t v) -> OpFoldResult { |
| 1816 | return b.getI64IntegerAttr(v); |
| 1817 | })); |
| 1818 | SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>( |
| 1819 | llvm::map_range(strides, [&](int64_t v) -> OpFoldResult { |
| 1820 | return b.getI64IntegerAttr(v); |
| 1821 | })); |
| 1822 | build(b, result, resultType, source, b.getI64IntegerAttr(offset), sizeValues, |
| 1823 | strideValues, attrs); |
| 1824 | } |
| 1825 | |
| 1826 | void ReinterpretCastOp::build(OpBuilder &b, OperationState &result, |
| 1827 | MemRefType resultType, Value source, Value offset, |
| 1828 | ValueRange sizes, ValueRange strides, |
| 1829 | ArrayRef<NamedAttribute> attrs) { |
| 1830 | SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>( |
| 1831 | llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; })); |
| 1832 | SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>( |
| 1833 | llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; })); |
| 1834 | build(b, result, resultType, source, offset, sizeValues, strideValues, attrs); |
| 1835 | } |
| 1836 | |
| 1837 | // TODO: ponder whether we want to allow missing trailing sizes/strides that are |
| 1838 | // completed automatically, like we have for subview and extract_slice. |
| 1839 | LogicalResult ReinterpretCastOp::verify() { |
| 1840 | // The source and result memrefs should be in the same memory space. |
| 1841 | auto srcType = llvm::cast<BaseMemRefType>(getSource().getType()); |
| 1842 | auto resultType = llvm::cast<MemRefType>(getType()); |
| 1843 | if (srcType.getMemorySpace() != resultType.getMemorySpace()) |
| 1844 | return emitError("different memory spaces specified for source type " ) |
| 1845 | << srcType << " and result memref type " << resultType; |
| 1846 | if (srcType.getElementType() != resultType.getElementType()) |
| 1847 | return emitError("different element types specified for source type " ) |
| 1848 | << srcType << " and result memref type " << resultType; |
| 1849 | |
| 1850 | // Match sizes in result memref type and in static_sizes attribute. |
| 1851 | for (auto [idx, resultSize, expectedSize] : |
| 1852 | llvm::enumerate(resultType.getShape(), getStaticSizes())) { |
| 1853 | if (!ShapedType::isDynamic(resultSize) && resultSize != expectedSize) |
| 1854 | return emitError("expected result type with size = " ) |
| 1855 | << (ShapedType::isDynamic(expectedSize) |
| 1856 | ? std::string("dynamic" ) |
| 1857 | : std::to_string(expectedSize)) |
| 1858 | << " instead of " << resultSize << " in dim = " << idx; |
| 1859 | } |
| 1860 | |
| 1861 | // Match offset and strides in static_offset and static_strides attributes. If |
| 1862 | // result memref type has no affine map specified, this will assume an |
| 1863 | // identity layout. |
| 1864 | int64_t resultOffset; |
| 1865 | SmallVector<int64_t, 4> resultStrides; |
| 1866 | if (failed(resultType.getStridesAndOffset(resultStrides, resultOffset))) |
| 1867 | return emitError("expected result type to have strided layout but found " ) |
| 1868 | << resultType; |
| 1869 | |
| 1870 | // Match offset in result memref type and in static_offsets attribute. |
| 1871 | int64_t expectedOffset = getStaticOffsets().front(); |
| 1872 | if (!ShapedType::isDynamic(resultOffset) && resultOffset != expectedOffset) |
| 1873 | return emitError("expected result type with offset = " ) |
| 1874 | << (ShapedType::isDynamic(expectedOffset) |
| 1875 | ? std::string("dynamic" ) |
| 1876 | : std::to_string(expectedOffset)) |
| 1877 | << " instead of " << resultOffset; |
| 1878 | |
| 1879 | // Match strides in result memref type and in static_strides attribute. |
| 1880 | for (auto [idx, resultStride, expectedStride] : |
| 1881 | llvm::enumerate(resultStrides, getStaticStrides())) { |
| 1882 | if (!ShapedType::isDynamic(resultStride) && resultStride != expectedStride) |
| 1883 | return emitError("expected result type with stride = " ) |
| 1884 | << (ShapedType::isDynamic(expectedStride) |
| 1885 | ? std::string("dynamic" ) |
| 1886 | : std::to_string(expectedStride)) |
| 1887 | << " instead of " << resultStride << " in dim = " << idx; |
| 1888 | } |
| 1889 | |
| 1890 | return success(); |
| 1891 | } |
| 1892 | |
| 1893 | OpFoldResult ReinterpretCastOp::fold(FoldAdaptor /*operands*/) { |
| 1894 | Value src = getSource(); |
| 1895 | auto getPrevSrc = [&]() -> Value { |
| 1896 | // reinterpret_cast(reinterpret_cast(x)) -> reinterpret_cast(x). |
| 1897 | if (auto prev = src.getDefiningOp<ReinterpretCastOp>()) |
| 1898 | return prev.getSource(); |
| 1899 | |
| 1900 | // reinterpret_cast(cast(x)) -> reinterpret_cast(x). |
| 1901 | if (auto prev = src.getDefiningOp<CastOp>()) |
| 1902 | return prev.getSource(); |
| 1903 | |
| 1904 | // reinterpret_cast(subview(x)) -> reinterpret_cast(x) if subview offsets |
| 1905 | // are 0. |
| 1906 | if (auto prev = src.getDefiningOp<SubViewOp>()) |
| 1907 | if (llvm::all_of(prev.getMixedOffsets(), isZeroInteger)) |
| 1908 | return prev.getSource(); |
| 1909 | |
| 1910 | return nullptr; |
| 1911 | }; |
| 1912 | |
| 1913 | if (auto prevSrc = getPrevSrc()) { |
| 1914 | getSourceMutable().assign(prevSrc); |
| 1915 | return getResult(); |
| 1916 | } |
| 1917 | |
| 1918 | // reinterpret_cast(x) w/o offset/shape/stride changes -> x |
| 1919 | if (!ShapedType::isDynamicShape(getType().getShape()) && |
| 1920 | src.getType() == getType() && getStaticOffsets().front() == 0) { |
| 1921 | return src; |
| 1922 | } |
| 1923 | |
| 1924 | return nullptr; |
| 1925 | } |
| 1926 | |
| 1927 | SmallVector<OpFoldResult> ReinterpretCastOp::getConstifiedMixedSizes() { |
| 1928 | SmallVector<OpFoldResult> values = getMixedSizes(); |
| 1929 | constifyIndexValues(values, getType().getShape()); |
| 1930 | return values; |
| 1931 | } |
| 1932 | |
| 1933 | SmallVector<OpFoldResult> ReinterpretCastOp::getConstifiedMixedStrides() { |
| 1934 | SmallVector<OpFoldResult> values = getMixedStrides(); |
| 1935 | SmallVector<int64_t> staticValues; |
| 1936 | int64_t unused; |
| 1937 | LogicalResult status = getType().getStridesAndOffset(staticValues, unused); |
| 1938 | (void)status; |
| 1939 | assert(succeeded(status) && "could not get strides from type" ); |
| 1940 | constifyIndexValues(values, staticValues); |
| 1941 | return values; |
| 1942 | } |
| 1943 | |
| 1944 | OpFoldResult ReinterpretCastOp::getConstifiedMixedOffset() { |
| 1945 | SmallVector<OpFoldResult> values = getMixedOffsets(); |
| 1946 | assert(values.size() == 1 && |
| 1947 | "reinterpret_cast must have one and only one offset" ); |
| 1948 | SmallVector<int64_t> staticValues, unused; |
| 1949 | int64_t offset; |
| 1950 | LogicalResult status = getType().getStridesAndOffset(unused, offset); |
| 1951 | (void)status; |
| 1952 | assert(succeeded(status) && "could not get offset from type" ); |
| 1953 | staticValues.push_back(offset); |
| 1954 | constifyIndexValues(values, staticValues); |
| 1955 | return values[0]; |
| 1956 | } |
| 1957 | |
| 1958 | namespace { |
| 1959 | /// Replace the sequence: |
| 1960 | /// ``` |
| 1961 | /// base, offset, sizes, strides = extract_strided_metadata src |
| 1962 | /// dst = reinterpret_cast base to offset, sizes, strides |
| 1963 | /// ``` |
| 1964 | /// With |
| 1965 | /// |
| 1966 | /// ``` |
| 1967 | /// dst = memref.cast src |
| 1968 | /// ``` |
| 1969 | /// |
| 1970 | /// Note: The cast operation is only inserted when the type of dst and src |
| 1971 | /// are not the same. E.g., when going from <4xf32> to <?xf32>. |
| 1972 | /// |
| 1973 | /// This pattern also matches when the offset, sizes, and strides don't come |
| 1974 | /// directly from the `extract_strided_metadata`'s results but it can be |
| 1975 | /// statically proven that they would hold the same values. |
| 1976 | /// |
| 1977 | /// For instance, the following sequence would be replaced: |
| 1978 | /// ``` |
| 1979 | /// base, offset, sizes, strides = |
| 1980 | /// extract_strided_metadata memref : memref<3x4xty> |
| 1981 | /// dst = reinterpret_cast base to 0, [3, 4], strides |
| 1982 | /// ``` |
| 1983 | /// Because we know (thanks to the type of the input memref) that variable |
| 1984 | /// `offset` and `sizes` will respectively hold 0 and [3, 4]. |
| 1985 | /// |
| 1986 | /// Similarly, the following sequence would be replaced: |
| 1987 | /// ``` |
| 1988 | /// c0 = arith.constant 0 |
| 1989 | /// c4 = arith.constant 4 |
| 1990 | /// base, offset, sizes, strides = |
| 1991 | /// extract_strided_metadata memref : memref<3x4xty> |
| 1992 | /// dst = reinterpret_cast base to c0, [3, c4], strides |
| 1993 | /// ``` |
| 1994 | /// Because we know that `offset`and `c0` will hold 0 |
| 1995 | /// and `c4` will hold 4. |
| 1996 | /// |
| 1997 | /// If the pattern above does not match, the input of the |
| 1998 | /// extract_strided_metadata is always folded into the input of the |
| 1999 | /// reinterpret_cast operator. This allows for dead code elimination to get rid |
| 2000 | /// of the extract_strided_metadata in some cases. |
| 2001 | struct |
| 2002 | : public OpRewritePattern<ReinterpretCastOp> { |
| 2003 | public: |
| 2004 | using OpRewritePattern<ReinterpretCastOp>::OpRewritePattern; |
| 2005 | |
| 2006 | LogicalResult matchAndRewrite(ReinterpretCastOp op, |
| 2007 | PatternRewriter &rewriter) const override { |
| 2008 | auto = |
| 2009 | op.getSource().getDefiningOp<ExtractStridedMetadataOp>(); |
| 2010 | if (!extractStridedMetadata) |
| 2011 | return failure(); |
| 2012 | |
| 2013 | // Check if the reinterpret cast reconstructs a memref with the exact same |
| 2014 | // properties as the extract strided metadata. |
| 2015 | auto isReinterpretCastNoop = [&]() -> bool { |
| 2016 | // First, check that the strides are the same. |
| 2017 | if (!llvm::equal(extractStridedMetadata.getConstifiedMixedStrides(), |
| 2018 | op.getConstifiedMixedStrides())) |
| 2019 | return false; |
| 2020 | |
| 2021 | // Second, check the sizes. |
| 2022 | if (!llvm::equal(extractStridedMetadata.getConstifiedMixedSizes(), |
| 2023 | op.getConstifiedMixedSizes())) |
| 2024 | return false; |
| 2025 | |
| 2026 | // Finally, check the offset. |
| 2027 | assert(op.getMixedOffsets().size() == 1 && |
| 2028 | "reinterpret_cast with more than one offset should have been " |
| 2029 | "rejected by the verifier" ); |
| 2030 | return extractStridedMetadata.getConstifiedMixedOffset() == |
| 2031 | op.getConstifiedMixedOffset(); |
| 2032 | }; |
| 2033 | |
| 2034 | if (!isReinterpretCastNoop()) { |
| 2035 | // If the extract_strided_metadata / reinterpret_cast pair can't be |
| 2036 | // completely folded, then we could fold the input of the |
| 2037 | // extract_strided_metadata into the input of the reinterpret_cast |
| 2038 | // input. For some cases (e.g., static dimensions) the |
| 2039 | // the extract_strided_metadata is eliminated by dead code elimination. |
| 2040 | // |
| 2041 | // reinterpret_cast(extract_strided_metadata(x)) -> reinterpret_cast(x). |
| 2042 | // |
| 2043 | // We can always fold the input of a extract_strided_metadata operator |
| 2044 | // to the input of a reinterpret_cast operator, because they point to |
| 2045 | // the same memory. Note that the reinterpret_cast does not use the |
| 2046 | // layout of its input memref, only its base memory pointer which is |
| 2047 | // the same as the base pointer returned by the extract_strided_metadata |
| 2048 | // operator and the base pointer of the extract_strided_metadata memref |
| 2049 | // input. |
| 2050 | rewriter.modifyOpInPlace(op, [&]() { |
| 2051 | op.getSourceMutable().assign(extractStridedMetadata.getSource()); |
| 2052 | }); |
| 2053 | return success(); |
| 2054 | } |
| 2055 | |
| 2056 | // At this point, we know that the back and forth between extract strided |
| 2057 | // metadata and reinterpret cast is a noop. However, the final type of the |
| 2058 | // reinterpret cast may not be exactly the same as the original memref. |
| 2059 | // E.g., it could be changing a dimension from static to dynamic. Check that |
| 2060 | // here and add a cast if necessary. |
| 2061 | Type srcTy = extractStridedMetadata.getSource().getType(); |
| 2062 | if (srcTy == op.getResult().getType()) |
| 2063 | rewriter.replaceOp(op, extractStridedMetadata.getSource()); |
| 2064 | else |
| 2065 | rewriter.replaceOpWithNewOp<CastOp>(op, op.getType(), |
| 2066 | extractStridedMetadata.getSource()); |
| 2067 | |
| 2068 | return success(); |
| 2069 | } |
| 2070 | }; |
| 2071 | } // namespace |
| 2072 | |
| 2073 | void ReinterpretCastOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 2074 | MLIRContext *context) { |
| 2075 | results.add<ReinterpretCastOpExtractStridedMetadataFolder>(context); |
| 2076 | } |
| 2077 | |
| 2078 | //===----------------------------------------------------------------------===// |
| 2079 | // Reassociative reshape ops |
| 2080 | //===----------------------------------------------------------------------===// |
| 2081 | |
| 2082 | void CollapseShapeOp::getAsmResultNames( |
| 2083 | function_ref<void(Value, StringRef)> setNameFn) { |
| 2084 | setNameFn(getResult(), "collapse_shape" ); |
| 2085 | } |
| 2086 | |
| 2087 | void ExpandShapeOp::getAsmResultNames( |
| 2088 | function_ref<void(Value, StringRef)> setNameFn) { |
| 2089 | setNameFn(getResult(), "expand_shape" ); |
| 2090 | } |
| 2091 | |
| 2092 | LogicalResult ExpandShapeOp::reifyResultShapes( |
| 2093 | OpBuilder &builder, ReifiedRankedShapedTypeDims &reifiedResultShapes) { |
| 2094 | reifiedResultShapes = { |
| 2095 | getMixedValues(getStaticOutputShape(), getOutputShape(), builder)}; |
| 2096 | return success(); |
| 2097 | } |
| 2098 | |
| 2099 | /// Helper function for verifying the shape of ExpandShapeOp and ResultShapeOp |
| 2100 | /// result and operand. Layout maps are verified separately. |
| 2101 | /// |
| 2102 | /// If `allowMultipleDynamicDimsPerGroup`, multiple dynamic dimensions are |
| 2103 | /// allowed in a reassocation group. |
| 2104 | static LogicalResult |
| 2105 | verifyCollapsedShape(Operation *op, ArrayRef<int64_t> collapsedShape, |
| 2106 | ArrayRef<int64_t> expandedShape, |
| 2107 | ArrayRef<ReassociationIndices> reassociation, |
| 2108 | bool allowMultipleDynamicDimsPerGroup) { |
| 2109 | // There must be one reassociation group per collapsed dimension. |
| 2110 | if (collapsedShape.size() != reassociation.size()) |
| 2111 | return op->emitOpError(message: "invalid number of reassociation groups: found " ) |
| 2112 | << reassociation.size() << ", expected " << collapsedShape.size(); |
| 2113 | |
| 2114 | // The next expected expanded dimension index (while iterating over |
| 2115 | // reassociation indices). |
| 2116 | int64_t nextDim = 0; |
| 2117 | for (const auto &it : llvm::enumerate(First&: reassociation)) { |
| 2118 | ReassociationIndices group = it.value(); |
| 2119 | int64_t collapsedDim = it.index(); |
| 2120 | |
| 2121 | bool foundDynamic = false; |
| 2122 | for (int64_t expandedDim : group) { |
| 2123 | if (expandedDim != nextDim++) |
| 2124 | return op->emitOpError(message: "reassociation indices must be contiguous" ); |
| 2125 | |
| 2126 | if (expandedDim >= static_cast<int64_t>(expandedShape.size())) |
| 2127 | return op->emitOpError(message: "reassociation index " ) |
| 2128 | << expandedDim << " is out of bounds" ; |
| 2129 | |
| 2130 | // Check if there are multiple dynamic dims in a reassociation group. |
| 2131 | if (ShapedType::isDynamic(expandedShape[expandedDim])) { |
| 2132 | if (foundDynamic && !allowMultipleDynamicDimsPerGroup) |
| 2133 | return op->emitOpError( |
| 2134 | message: "at most one dimension in a reassociation group may be dynamic" ); |
| 2135 | foundDynamic = true; |
| 2136 | } |
| 2137 | } |
| 2138 | |
| 2139 | // ExpandShapeOp/CollapseShapeOp may not be used to cast dynamicity. |
| 2140 | if (ShapedType::isDynamic(collapsedShape[collapsedDim]) != foundDynamic) |
| 2141 | return op->emitOpError(message: "collapsed dim (" ) |
| 2142 | << collapsedDim |
| 2143 | << ") must be dynamic if and only if reassociation group is " |
| 2144 | "dynamic" ; |
| 2145 | |
| 2146 | // If all dims in the reassociation group are static, the size of the |
| 2147 | // collapsed dim can be verified. |
| 2148 | if (!foundDynamic) { |
| 2149 | int64_t groupSize = 1; |
| 2150 | for (int64_t expandedDim : group) |
| 2151 | groupSize *= expandedShape[expandedDim]; |
| 2152 | if (groupSize != collapsedShape[collapsedDim]) |
| 2153 | return op->emitOpError(message: "collapsed dim size (" ) |
| 2154 | << collapsedShape[collapsedDim] |
| 2155 | << ") must equal reassociation group size (" << groupSize << ")" ; |
| 2156 | } |
| 2157 | } |
| 2158 | |
| 2159 | if (collapsedShape.empty()) { |
| 2160 | // Rank 0: All expanded dimensions must be 1. |
| 2161 | for (int64_t d : expandedShape) |
| 2162 | if (d != 1) |
| 2163 | return op->emitOpError( |
| 2164 | message: "rank 0 memrefs can only be extended/collapsed with/from ones" ); |
| 2165 | } else if (nextDim != static_cast<int64_t>(expandedShape.size())) { |
| 2166 | // Rank >= 1: Number of dimensions among all reassociation groups must match |
| 2167 | // the result memref rank. |
| 2168 | return op->emitOpError(message: "expanded rank (" ) |
| 2169 | << expandedShape.size() |
| 2170 | << ") inconsistent with number of reassociation indices (" << nextDim |
| 2171 | << ")" ; |
| 2172 | } |
| 2173 | |
| 2174 | return success(); |
| 2175 | } |
| 2176 | |
| 2177 | SmallVector<AffineMap, 4> CollapseShapeOp::getReassociationMaps() { |
| 2178 | return getSymbolLessAffineMaps(getReassociationExprs()); |
| 2179 | } |
| 2180 | |
| 2181 | SmallVector<ReassociationExprs, 4> CollapseShapeOp::getReassociationExprs() { |
| 2182 | return convertReassociationIndicesToExprs(getContext(), |
| 2183 | getReassociationIndices()); |
| 2184 | } |
| 2185 | |
| 2186 | SmallVector<AffineMap, 4> ExpandShapeOp::getReassociationMaps() { |
| 2187 | return getSymbolLessAffineMaps(getReassociationExprs()); |
| 2188 | } |
| 2189 | |
| 2190 | SmallVector<ReassociationExprs, 4> ExpandShapeOp::getReassociationExprs() { |
| 2191 | return convertReassociationIndicesToExprs(getContext(), |
| 2192 | getReassociationIndices()); |
| 2193 | } |
| 2194 | |
| 2195 | /// Compute the layout map after expanding a given source MemRef type with the |
| 2196 | /// specified reassociation indices. |
| 2197 | static FailureOr<StridedLayoutAttr> |
| 2198 | computeExpandedLayoutMap(MemRefType srcType, ArrayRef<int64_t> resultShape, |
| 2199 | ArrayRef<ReassociationIndices> reassociation) { |
| 2200 | int64_t srcOffset; |
| 2201 | SmallVector<int64_t> srcStrides; |
| 2202 | if (failed(srcType.getStridesAndOffset(srcStrides, srcOffset))) |
| 2203 | return failure(); |
| 2204 | assert(srcStrides.size() == reassociation.size() && "invalid reassociation" ); |
| 2205 | |
| 2206 | // 1-1 mapping between srcStrides and reassociation packs. |
| 2207 | // Each srcStride starts with the given value and gets expanded according to |
| 2208 | // the proper entries in resultShape. |
| 2209 | // Example: |
| 2210 | // srcStrides = [10000, 1 , 100 ], |
| 2211 | // reassociations = [ [0], [1], [2, 3, 4]], |
| 2212 | // resultSizes = [2, 5, 4, 3, 2] = [ [2], [5], [4, 3, 2]] |
| 2213 | // -> For the purpose of stride calculation, the useful sizes are: |
| 2214 | // [x, x, x, 3, 2] = [ [x], [x], [x, 3, 2]]. |
| 2215 | // resultStrides = [10000, 1, 600, 200, 100] |
| 2216 | // Note that a stride does not get expanded along the first entry of each |
| 2217 | // shape pack. |
| 2218 | SmallVector<int64_t> reverseResultStrides; |
| 2219 | reverseResultStrides.reserve(N: resultShape.size()); |
| 2220 | unsigned shapeIndex = resultShape.size() - 1; |
| 2221 | for (auto it : llvm::reverse(C: llvm::zip(t&: reassociation, u&: srcStrides))) { |
| 2222 | ReassociationIndices reassoc = std::get<0>(t&: it); |
| 2223 | int64_t currentStrideToExpand = std::get<1>(t&: it); |
| 2224 | for (unsigned idx = 0, e = reassoc.size(); idx < e; ++idx) { |
| 2225 | reverseResultStrides.push_back(Elt: currentStrideToExpand); |
| 2226 | currentStrideToExpand = |
| 2227 | (SaturatedInteger::wrap(v: currentStrideToExpand) * |
| 2228 | SaturatedInteger::wrap(v: resultShape[shapeIndex--])) |
| 2229 | .asInteger(); |
| 2230 | } |
| 2231 | } |
| 2232 | auto resultStrides = llvm::to_vector<8>(Range: llvm::reverse(C&: reverseResultStrides)); |
| 2233 | resultStrides.resize(N: resultShape.size(), NV: 1); |
| 2234 | return StridedLayoutAttr::get(srcType.getContext(), srcOffset, resultStrides); |
| 2235 | } |
| 2236 | |
| 2237 | FailureOr<MemRefType> ExpandShapeOp::computeExpandedType( |
| 2238 | MemRefType srcType, ArrayRef<int64_t> resultShape, |
| 2239 | ArrayRef<ReassociationIndices> reassociation) { |
| 2240 | if (srcType.getLayout().isIdentity()) { |
| 2241 | // If the source is contiguous (i.e., no layout map specified), so is the |
| 2242 | // result. |
| 2243 | MemRefLayoutAttrInterface layout; |
| 2244 | return MemRefType::get(resultShape, srcType.getElementType(), layout, |
| 2245 | srcType.getMemorySpace()); |
| 2246 | } |
| 2247 | |
| 2248 | // Source may not be contiguous. Compute the layout map. |
| 2249 | FailureOr<StridedLayoutAttr> computedLayout = |
| 2250 | computeExpandedLayoutMap(srcType, resultShape, reassociation); |
| 2251 | if (failed(computedLayout)) |
| 2252 | return failure(); |
| 2253 | return MemRefType::get(resultShape, srcType.getElementType(), *computedLayout, |
| 2254 | srcType.getMemorySpace()); |
| 2255 | } |
| 2256 | |
| 2257 | FailureOr<SmallVector<OpFoldResult>> |
| 2258 | ExpandShapeOp::inferOutputShape(OpBuilder &b, Location loc, |
| 2259 | MemRefType expandedType, |
| 2260 | ArrayRef<ReassociationIndices> reassociation, |
| 2261 | ArrayRef<OpFoldResult> inputShape) { |
| 2262 | std::optional<SmallVector<OpFoldResult>> outputShape = |
| 2263 | inferExpandShapeOutputShape(b, loc, expandedType, reassociation, |
| 2264 | inputShape); |
| 2265 | if (!outputShape) |
| 2266 | return failure(); |
| 2267 | return *outputShape; |
| 2268 | } |
| 2269 | |
| 2270 | void ExpandShapeOp::build(OpBuilder &builder, OperationState &result, |
| 2271 | Type resultType, Value src, |
| 2272 | ArrayRef<ReassociationIndices> reassociation, |
| 2273 | ArrayRef<OpFoldResult> outputShape) { |
| 2274 | auto [staticOutputShape, dynamicOutputShape] = |
| 2275 | decomposeMixedValues(SmallVector<OpFoldResult>(outputShape)); |
| 2276 | build(builder, result, llvm::cast<MemRefType>(resultType), src, |
| 2277 | getReassociationIndicesAttribute(builder, reassociation), |
| 2278 | dynamicOutputShape, staticOutputShape); |
| 2279 | } |
| 2280 | |
| 2281 | void ExpandShapeOp::build(OpBuilder &builder, OperationState &result, |
| 2282 | Type resultType, Value src, |
| 2283 | ArrayRef<ReassociationIndices> reassociation) { |
| 2284 | SmallVector<OpFoldResult> inputShape = |
| 2285 | getMixedSizes(builder, result.location, src); |
| 2286 | MemRefType memrefResultTy = llvm::cast<MemRefType>(resultType); |
| 2287 | FailureOr<SmallVector<OpFoldResult>> outputShape = inferOutputShape( |
| 2288 | builder, result.location, memrefResultTy, reassociation, inputShape); |
| 2289 | // Failure of this assertion usually indicates presence of multiple |
| 2290 | // dynamic dimensions in the same reassociation group. |
| 2291 | assert(succeeded(outputShape) && "unable to infer output shape" ); |
| 2292 | build(builder, result, memrefResultTy, src, reassociation, *outputShape); |
| 2293 | } |
| 2294 | |
| 2295 | void ExpandShapeOp::build(OpBuilder &builder, OperationState &result, |
| 2296 | ArrayRef<int64_t> resultShape, Value src, |
| 2297 | ArrayRef<ReassociationIndices> reassociation) { |
| 2298 | // Only ranked memref source values are supported. |
| 2299 | auto srcType = llvm::cast<MemRefType>(src.getType()); |
| 2300 | FailureOr<MemRefType> resultType = |
| 2301 | ExpandShapeOp::computeExpandedType(srcType, resultShape, reassociation); |
| 2302 | // Failure of this assertion usually indicates a problem with the source |
| 2303 | // type, e.g., could not get strides/offset. |
| 2304 | assert(succeeded(resultType) && "could not compute layout" ); |
| 2305 | build(builder, result, *resultType, src, reassociation); |
| 2306 | } |
| 2307 | |
| 2308 | void ExpandShapeOp::build(OpBuilder &builder, OperationState &result, |
| 2309 | ArrayRef<int64_t> resultShape, Value src, |
| 2310 | ArrayRef<ReassociationIndices> reassociation, |
| 2311 | ArrayRef<OpFoldResult> outputShape) { |
| 2312 | // Only ranked memref source values are supported. |
| 2313 | auto srcType = llvm::cast<MemRefType>(src.getType()); |
| 2314 | FailureOr<MemRefType> resultType = |
| 2315 | ExpandShapeOp::computeExpandedType(srcType, resultShape, reassociation); |
| 2316 | // Failure of this assertion usually indicates a problem with the source |
| 2317 | // type, e.g., could not get strides/offset. |
| 2318 | assert(succeeded(resultType) && "could not compute layout" ); |
| 2319 | build(builder, result, *resultType, src, reassociation, outputShape); |
| 2320 | } |
| 2321 | |
| 2322 | LogicalResult ExpandShapeOp::verify() { |
| 2323 | MemRefType srcType = getSrcType(); |
| 2324 | MemRefType resultType = getResultType(); |
| 2325 | |
| 2326 | if (srcType.getRank() > resultType.getRank()) { |
| 2327 | auto r0 = srcType.getRank(); |
| 2328 | auto r1 = resultType.getRank(); |
| 2329 | return emitOpError("has source rank " ) |
| 2330 | << r0 << " and result rank " << r1 << ". This is not an expansion (" |
| 2331 | << r0 << " > " << r1 << ")." ; |
| 2332 | } |
| 2333 | |
| 2334 | // Verify result shape. |
| 2335 | if (failed(verifyCollapsedShape(getOperation(), srcType.getShape(), |
| 2336 | resultType.getShape(), |
| 2337 | getReassociationIndices(), |
| 2338 | /*allowMultipleDynamicDimsPerGroup=*/true))) |
| 2339 | return failure(); |
| 2340 | |
| 2341 | // Compute expected result type (including layout map). |
| 2342 | FailureOr<MemRefType> expectedResultType = ExpandShapeOp::computeExpandedType( |
| 2343 | srcType, resultType.getShape(), getReassociationIndices()); |
| 2344 | if (failed(expectedResultType)) |
| 2345 | return emitOpError("invalid source layout map" ); |
| 2346 | |
| 2347 | // Check actual result type. |
| 2348 | if (*expectedResultType != resultType) |
| 2349 | return emitOpError("expected expanded type to be " ) |
| 2350 | << *expectedResultType << " but found " << resultType; |
| 2351 | |
| 2352 | if ((int64_t)getStaticOutputShape().size() != resultType.getRank()) |
| 2353 | return emitOpError("expected number of static shape bounds to be equal to " |
| 2354 | "the output rank (" ) |
| 2355 | << resultType.getRank() << ") but found " |
| 2356 | << getStaticOutputShape().size() << " inputs instead" ; |
| 2357 | |
| 2358 | if ((int64_t)getOutputShape().size() != |
| 2359 | llvm::count(getStaticOutputShape(), ShapedType::kDynamic)) |
| 2360 | return emitOpError("mismatch in dynamic dims in output_shape and " |
| 2361 | "static_output_shape: static_output_shape has " ) |
| 2362 | << llvm::count(getStaticOutputShape(), ShapedType::kDynamic) |
| 2363 | << " dynamic dims while output_shape has " << getOutputShape().size() |
| 2364 | << " values" ; |
| 2365 | |
| 2366 | // Verify if provided output shapes are in agreement with output type. |
| 2367 | DenseI64ArrayAttr staticOutputShapes = getStaticOutputShapeAttr(); |
| 2368 | ArrayRef<int64_t> resShape = getResult().getType().getShape(); |
| 2369 | for (auto [pos, shape] : llvm::enumerate(resShape)) { |
| 2370 | if (!ShapedType::isDynamic(shape) && shape != staticOutputShapes[pos]) { |
| 2371 | return emitOpError("invalid output shape provided at pos " ) << pos; |
| 2372 | } |
| 2373 | } |
| 2374 | |
| 2375 | return success(); |
| 2376 | } |
| 2377 | |
| 2378 | void ExpandShapeOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 2379 | MLIRContext *context) { |
| 2380 | results.add< |
| 2381 | ComposeReassociativeReshapeOps<ExpandShapeOp, ReshapeOpKind::kExpand>, |
| 2382 | ComposeExpandOfCollapseOp<ExpandShapeOp, CollapseShapeOp>>(context); |
| 2383 | } |
| 2384 | |
| 2385 | /// Compute the layout map after collapsing a given source MemRef type with the |
| 2386 | /// specified reassociation indices. |
| 2387 | /// |
| 2388 | /// Note: All collapsed dims in a reassociation group must be contiguous. It is |
| 2389 | /// not possible to check this by inspecting a MemRefType in the general case. |
| 2390 | /// If non-contiguity cannot be checked statically, the collapse is assumed to |
| 2391 | /// be valid (and thus accepted by this function) unless `strict = true`. |
| 2392 | static FailureOr<StridedLayoutAttr> |
| 2393 | computeCollapsedLayoutMap(MemRefType srcType, |
| 2394 | ArrayRef<ReassociationIndices> reassociation, |
| 2395 | bool strict = false) { |
| 2396 | int64_t srcOffset; |
| 2397 | SmallVector<int64_t> srcStrides; |
| 2398 | auto srcShape = srcType.getShape(); |
| 2399 | if (failed(srcType.getStridesAndOffset(srcStrides, srcOffset))) |
| 2400 | return failure(); |
| 2401 | |
| 2402 | // The result stride of a reassociation group is the stride of the last entry |
| 2403 | // of the reassociation. (TODO: Should be the minimum stride in the |
| 2404 | // reassociation because strides are not necessarily sorted. E.g., when using |
| 2405 | // memref.transpose.) Dimensions of size 1 should be skipped, because their |
| 2406 | // strides are meaningless and could have any arbitrary value. |
| 2407 | SmallVector<int64_t> resultStrides; |
| 2408 | resultStrides.reserve(N: reassociation.size()); |
| 2409 | for (const ReassociationIndices &reassoc : reassociation) { |
| 2410 | ArrayRef<int64_t> ref = llvm::ArrayRef(reassoc); |
| 2411 | while (srcShape[ref.back()] == 1 && ref.size() > 1) |
| 2412 | ref = ref.drop_back(); |
| 2413 | if (!ShapedType::isDynamic(srcShape[ref.back()]) || ref.size() == 1) { |
| 2414 | resultStrides.push_back(Elt: srcStrides[ref.back()]); |
| 2415 | } else { |
| 2416 | // Dynamically-sized dims may turn out to be dims of size 1 at runtime, so |
| 2417 | // the corresponding stride may have to be skipped. (See above comment.) |
| 2418 | // Therefore, the result stride cannot be statically determined and must |
| 2419 | // be dynamic. |
| 2420 | resultStrides.push_back(ShapedType::kDynamic); |
| 2421 | } |
| 2422 | } |
| 2423 | |
| 2424 | // Validate that each reassociation group is contiguous. |
| 2425 | unsigned resultStrideIndex = resultStrides.size() - 1; |
| 2426 | for (const ReassociationIndices &reassoc : llvm::reverse(C&: reassociation)) { |
| 2427 | auto trailingReassocs = ArrayRef<int64_t>(reassoc).drop_front(); |
| 2428 | auto stride = SaturatedInteger::wrap(v: resultStrides[resultStrideIndex--]); |
| 2429 | for (int64_t idx : llvm::reverse(C&: trailingReassocs)) { |
| 2430 | stride = stride * SaturatedInteger::wrap(v: srcShape[idx]); |
| 2431 | |
| 2432 | // Both source and result stride must have the same static value. In that |
| 2433 | // case, we can be sure, that the dimensions are collapsible (because they |
| 2434 | // are contiguous). |
| 2435 | // If `strict = false` (default during op verification), we accept cases |
| 2436 | // where one or both strides are dynamic. This is best effort: We reject |
| 2437 | // ops where obviously non-contiguous dims are collapsed, but accept ops |
| 2438 | // where we cannot be sure statically. Such ops may fail at runtime. See |
| 2439 | // the op documentation for details. |
| 2440 | auto srcStride = SaturatedInteger::wrap(v: srcStrides[idx - 1]); |
| 2441 | if (strict && (stride.saturated || srcStride.saturated)) |
| 2442 | return failure(); |
| 2443 | |
| 2444 | // Dimensions of size 1 should be skipped, because their strides are |
| 2445 | // meaningless and could have any arbitrary value. |
| 2446 | if (srcShape[idx - 1] == 1) |
| 2447 | continue; |
| 2448 | |
| 2449 | if (!stride.saturated && !srcStride.saturated && stride != srcStride) |
| 2450 | return failure(); |
| 2451 | } |
| 2452 | } |
| 2453 | return StridedLayoutAttr::get(srcType.getContext(), srcOffset, resultStrides); |
| 2454 | } |
| 2455 | |
| 2456 | bool CollapseShapeOp::isGuaranteedCollapsible( |
| 2457 | MemRefType srcType, ArrayRef<ReassociationIndices> reassociation) { |
| 2458 | // MemRefs with identity layout are always collapsible. |
| 2459 | if (srcType.getLayout().isIdentity()) |
| 2460 | return true; |
| 2461 | |
| 2462 | return succeeded(computeCollapsedLayoutMap(srcType, reassociation, |
| 2463 | /*strict=*/true)); |
| 2464 | } |
| 2465 | |
| 2466 | MemRefType CollapseShapeOp::computeCollapsedType( |
| 2467 | MemRefType srcType, ArrayRef<ReassociationIndices> reassociation) { |
| 2468 | SmallVector<int64_t> resultShape; |
| 2469 | resultShape.reserve(reassociation.size()); |
| 2470 | for (const ReassociationIndices &group : reassociation) { |
| 2471 | auto groupSize = SaturatedInteger::wrap(1); |
| 2472 | for (int64_t srcDim : group) |
| 2473 | groupSize = |
| 2474 | groupSize * SaturatedInteger::wrap(srcType.getDimSize(srcDim)); |
| 2475 | resultShape.push_back(groupSize.asInteger()); |
| 2476 | } |
| 2477 | |
| 2478 | if (srcType.getLayout().isIdentity()) { |
| 2479 | // If the source is contiguous (i.e., no layout map specified), so is the |
| 2480 | // result. |
| 2481 | MemRefLayoutAttrInterface layout; |
| 2482 | return MemRefType::get(resultShape, srcType.getElementType(), layout, |
| 2483 | srcType.getMemorySpace()); |
| 2484 | } |
| 2485 | |
| 2486 | // Source may not be fully contiguous. Compute the layout map. |
| 2487 | // Note: Dimensions that are collapsed into a single dim are assumed to be |
| 2488 | // contiguous. |
| 2489 | FailureOr<StridedLayoutAttr> computedLayout = |
| 2490 | computeCollapsedLayoutMap(srcType, reassociation); |
| 2491 | assert(succeeded(computedLayout) && |
| 2492 | "invalid source layout map or collapsing non-contiguous dims" ); |
| 2493 | return MemRefType::get(resultShape, srcType.getElementType(), *computedLayout, |
| 2494 | srcType.getMemorySpace()); |
| 2495 | } |
| 2496 | |
| 2497 | void CollapseShapeOp::build(OpBuilder &b, OperationState &result, Value src, |
| 2498 | ArrayRef<ReassociationIndices> reassociation, |
| 2499 | ArrayRef<NamedAttribute> attrs) { |
| 2500 | auto srcType = llvm::cast<MemRefType>(src.getType()); |
| 2501 | MemRefType resultType = |
| 2502 | CollapseShapeOp::computeCollapsedType(srcType, reassociation); |
| 2503 | result.addAttribute(::mlir::getReassociationAttrName(), |
| 2504 | getReassociationIndicesAttribute(b, reassociation)); |
| 2505 | build(b, result, resultType, src, attrs); |
| 2506 | } |
| 2507 | |
| 2508 | LogicalResult CollapseShapeOp::verify() { |
| 2509 | MemRefType srcType = getSrcType(); |
| 2510 | MemRefType resultType = getResultType(); |
| 2511 | |
| 2512 | if (srcType.getRank() < resultType.getRank()) { |
| 2513 | auto r0 = srcType.getRank(); |
| 2514 | auto r1 = resultType.getRank(); |
| 2515 | return emitOpError("has source rank " ) |
| 2516 | << r0 << " and result rank " << r1 << ". This is not a collapse (" |
| 2517 | << r0 << " < " << r1 << ")." ; |
| 2518 | } |
| 2519 | |
| 2520 | // Verify result shape. |
| 2521 | if (failed(verifyCollapsedShape(getOperation(), resultType.getShape(), |
| 2522 | srcType.getShape(), getReassociationIndices(), |
| 2523 | /*allowMultipleDynamicDimsPerGroup=*/true))) |
| 2524 | return failure(); |
| 2525 | |
| 2526 | // Compute expected result type (including layout map). |
| 2527 | MemRefType expectedResultType; |
| 2528 | if (srcType.getLayout().isIdentity()) { |
| 2529 | // If the source is contiguous (i.e., no layout map specified), so is the |
| 2530 | // result. |
| 2531 | MemRefLayoutAttrInterface layout; |
| 2532 | expectedResultType = |
| 2533 | MemRefType::get(resultType.getShape(), srcType.getElementType(), layout, |
| 2534 | srcType.getMemorySpace()); |
| 2535 | } else { |
| 2536 | // Source may not be fully contiguous. Compute the layout map. |
| 2537 | // Note: Dimensions that are collapsed into a single dim are assumed to be |
| 2538 | // contiguous. |
| 2539 | FailureOr<StridedLayoutAttr> computedLayout = |
| 2540 | computeCollapsedLayoutMap(srcType, getReassociationIndices()); |
| 2541 | if (failed(computedLayout)) |
| 2542 | return emitOpError( |
| 2543 | "invalid source layout map or collapsing non-contiguous dims" ); |
| 2544 | expectedResultType = |
| 2545 | MemRefType::get(resultType.getShape(), srcType.getElementType(), |
| 2546 | *computedLayout, srcType.getMemorySpace()); |
| 2547 | } |
| 2548 | |
| 2549 | if (expectedResultType != resultType) |
| 2550 | return emitOpError("expected collapsed type to be " ) |
| 2551 | << expectedResultType << " but found " << resultType; |
| 2552 | |
| 2553 | return success(); |
| 2554 | } |
| 2555 | |
| 2556 | struct CollapseShapeOpMemRefCastFolder |
| 2557 | : public OpRewritePattern<CollapseShapeOp> { |
| 2558 | public: |
| 2559 | using OpRewritePattern<CollapseShapeOp>::OpRewritePattern; |
| 2560 | |
| 2561 | LogicalResult matchAndRewrite(CollapseShapeOp op, |
| 2562 | PatternRewriter &rewriter) const override { |
| 2563 | auto cast = op.getOperand().getDefiningOp<CastOp>(); |
| 2564 | if (!cast) |
| 2565 | return failure(); |
| 2566 | |
| 2567 | if (!CastOp::canFoldIntoConsumerOp(cast)) |
| 2568 | return failure(); |
| 2569 | |
| 2570 | Type newResultType = CollapseShapeOp::computeCollapsedType( |
| 2571 | llvm::cast<MemRefType>(cast.getOperand().getType()), |
| 2572 | op.getReassociationIndices()); |
| 2573 | |
| 2574 | if (newResultType == op.getResultType()) { |
| 2575 | rewriter.modifyOpInPlace( |
| 2576 | op, [&]() { op.getSrcMutable().assign(cast.getSource()); }); |
| 2577 | } else { |
| 2578 | Value newOp = rewriter.create<CollapseShapeOp>( |
| 2579 | op->getLoc(), cast.getSource(), op.getReassociationIndices()); |
| 2580 | rewriter.replaceOpWithNewOp<CastOp>(op, op.getType(), newOp); |
| 2581 | } |
| 2582 | return success(); |
| 2583 | } |
| 2584 | }; |
| 2585 | |
| 2586 | void CollapseShapeOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 2587 | MLIRContext *context) { |
| 2588 | results.add< |
| 2589 | ComposeReassociativeReshapeOps<CollapseShapeOp, ReshapeOpKind::kCollapse>, |
| 2590 | ComposeCollapseOfExpandOp<CollapseShapeOp, ExpandShapeOp, CastOp, |
| 2591 | memref::DimOp, MemRefType>, |
| 2592 | CollapseShapeOpMemRefCastFolder>(context); |
| 2593 | } |
| 2594 | |
| 2595 | OpFoldResult ExpandShapeOp::fold(FoldAdaptor adaptor) { |
| 2596 | return foldReshapeOp<ExpandShapeOp, CollapseShapeOp>(*this, |
| 2597 | adaptor.getOperands()); |
| 2598 | } |
| 2599 | |
| 2600 | OpFoldResult CollapseShapeOp::fold(FoldAdaptor adaptor) { |
| 2601 | return foldReshapeOp<CollapseShapeOp, ExpandShapeOp>(*this, |
| 2602 | adaptor.getOperands()); |
| 2603 | } |
| 2604 | |
| 2605 | //===----------------------------------------------------------------------===// |
| 2606 | // ReshapeOp |
| 2607 | //===----------------------------------------------------------------------===// |
| 2608 | |
| 2609 | void ReshapeOp::getAsmResultNames( |
| 2610 | function_ref<void(Value, StringRef)> setNameFn) { |
| 2611 | setNameFn(getResult(), "reshape" ); |
| 2612 | } |
| 2613 | |
| 2614 | LogicalResult ReshapeOp::verify() { |
| 2615 | Type operandType = getSource().getType(); |
| 2616 | Type resultType = getResult().getType(); |
| 2617 | |
| 2618 | Type operandElementType = |
| 2619 | llvm::cast<ShapedType>(operandType).getElementType(); |
| 2620 | Type resultElementType = llvm::cast<ShapedType>(resultType).getElementType(); |
| 2621 | if (operandElementType != resultElementType) |
| 2622 | return emitOpError("element types of source and destination memref " |
| 2623 | "types should be the same" ); |
| 2624 | |
| 2625 | if (auto operandMemRefType = llvm::dyn_cast<MemRefType>(operandType)) |
| 2626 | if (!operandMemRefType.getLayout().isIdentity()) |
| 2627 | return emitOpError("source memref type should have identity affine map" ); |
| 2628 | |
| 2629 | int64_t shapeSize = |
| 2630 | llvm::cast<MemRefType>(getShape().getType()).getDimSize(0); |
| 2631 | auto resultMemRefType = llvm::dyn_cast<MemRefType>(resultType); |
| 2632 | if (resultMemRefType) { |
| 2633 | if (!resultMemRefType.getLayout().isIdentity()) |
| 2634 | return emitOpError("result memref type should have identity affine map" ); |
| 2635 | if (shapeSize == ShapedType::kDynamic) |
| 2636 | return emitOpError("cannot use shape operand with dynamic length to " |
| 2637 | "reshape to statically-ranked memref type" ); |
| 2638 | if (shapeSize != resultMemRefType.getRank()) |
| 2639 | return emitOpError( |
| 2640 | "length of shape operand differs from the result's memref rank" ); |
| 2641 | } |
| 2642 | return success(); |
| 2643 | } |
| 2644 | |
| 2645 | //===----------------------------------------------------------------------===// |
| 2646 | // StoreOp |
| 2647 | //===----------------------------------------------------------------------===// |
| 2648 | |
| 2649 | LogicalResult StoreOp::verify() { |
| 2650 | if (getNumOperands() != 2 + getMemRefType().getRank()) |
| 2651 | return emitOpError("store index operand count not equal to memref rank" ); |
| 2652 | |
| 2653 | return success(); |
| 2654 | } |
| 2655 | |
| 2656 | LogicalResult StoreOp::fold(FoldAdaptor adaptor, |
| 2657 | SmallVectorImpl<OpFoldResult> &results) { |
| 2658 | /// store(memrefcast) -> store |
| 2659 | return foldMemRefCast(*this, getValueToStore()); |
| 2660 | } |
| 2661 | |
| 2662 | //===----------------------------------------------------------------------===// |
| 2663 | // SubViewOp |
| 2664 | //===----------------------------------------------------------------------===// |
| 2665 | |
| 2666 | void SubViewOp::getAsmResultNames( |
| 2667 | function_ref<void(Value, StringRef)> setNameFn) { |
| 2668 | setNameFn(getResult(), "subview" ); |
| 2669 | } |
| 2670 | |
| 2671 | /// A subview result type can be fully inferred from the source type and the |
| 2672 | /// static representation of offsets, sizes and strides. Special sentinels |
| 2673 | /// encode the dynamic case. |
| 2674 | MemRefType SubViewOp::inferResultType(MemRefType sourceMemRefType, |
| 2675 | ArrayRef<int64_t> staticOffsets, |
| 2676 | ArrayRef<int64_t> staticSizes, |
| 2677 | ArrayRef<int64_t> staticStrides) { |
| 2678 | unsigned rank = sourceMemRefType.getRank(); |
| 2679 | (void)rank; |
| 2680 | assert(staticOffsets.size() == rank && "staticOffsets length mismatch" ); |
| 2681 | assert(staticSizes.size() == rank && "staticSizes length mismatch" ); |
| 2682 | assert(staticStrides.size() == rank && "staticStrides length mismatch" ); |
| 2683 | |
| 2684 | // Extract source offset and strides. |
| 2685 | auto [sourceStrides, sourceOffset] = sourceMemRefType.getStridesAndOffset(); |
| 2686 | |
| 2687 | // Compute target offset whose value is: |
| 2688 | // `sourceOffset + sum_i(staticOffset_i * sourceStrides_i)`. |
| 2689 | int64_t targetOffset = sourceOffset; |
| 2690 | for (auto it : llvm::zip(staticOffsets, sourceStrides)) { |
| 2691 | auto staticOffset = std::get<0>(it), sourceStride = std::get<1>(it); |
| 2692 | targetOffset = (SaturatedInteger::wrap(targetOffset) + |
| 2693 | SaturatedInteger::wrap(staticOffset) * |
| 2694 | SaturatedInteger::wrap(sourceStride)) |
| 2695 | .asInteger(); |
| 2696 | } |
| 2697 | |
| 2698 | // Compute target stride whose value is: |
| 2699 | // `sourceStrides_i * staticStrides_i`. |
| 2700 | SmallVector<int64_t, 4> targetStrides; |
| 2701 | targetStrides.reserve(staticOffsets.size()); |
| 2702 | for (auto it : llvm::zip(sourceStrides, staticStrides)) { |
| 2703 | auto sourceStride = std::get<0>(it), staticStride = std::get<1>(it); |
| 2704 | targetStrides.push_back((SaturatedInteger::wrap(sourceStride) * |
| 2705 | SaturatedInteger::wrap(staticStride)) |
| 2706 | .asInteger()); |
| 2707 | } |
| 2708 | |
| 2709 | // The type is now known. |
| 2710 | return MemRefType::get(staticSizes, sourceMemRefType.getElementType(), |
| 2711 | StridedLayoutAttr::get(sourceMemRefType.getContext(), |
| 2712 | targetOffset, targetStrides), |
| 2713 | sourceMemRefType.getMemorySpace()); |
| 2714 | } |
| 2715 | |
| 2716 | MemRefType SubViewOp::inferResultType(MemRefType sourceMemRefType, |
| 2717 | ArrayRef<OpFoldResult> offsets, |
| 2718 | ArrayRef<OpFoldResult> sizes, |
| 2719 | ArrayRef<OpFoldResult> strides) { |
| 2720 | SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; |
| 2721 | SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; |
| 2722 | dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets); |
| 2723 | dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes); |
| 2724 | dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides); |
| 2725 | if (!hasValidSizesOffsets(staticOffsets)) |
| 2726 | return {}; |
| 2727 | if (!hasValidSizesOffsets(staticSizes)) |
| 2728 | return {}; |
| 2729 | if (!hasValidStrides(staticStrides)) |
| 2730 | return {}; |
| 2731 | return SubViewOp::inferResultType(sourceMemRefType, staticOffsets, |
| 2732 | staticSizes, staticStrides); |
| 2733 | } |
| 2734 | |
| 2735 | MemRefType SubViewOp::inferRankReducedResultType( |
| 2736 | ArrayRef<int64_t> resultShape, MemRefType sourceRankedTensorType, |
| 2737 | ArrayRef<int64_t> offsets, ArrayRef<int64_t> sizes, |
| 2738 | ArrayRef<int64_t> strides) { |
| 2739 | MemRefType inferredType = |
| 2740 | inferResultType(sourceRankedTensorType, offsets, sizes, strides); |
| 2741 | assert(inferredType.getRank() >= static_cast<int64_t>(resultShape.size()) && |
| 2742 | "expected " ); |
| 2743 | if (inferredType.getRank() == static_cast<int64_t>(resultShape.size())) |
| 2744 | return inferredType; |
| 2745 | |
| 2746 | // Compute which dimensions are dropped. |
| 2747 | std::optional<llvm::SmallDenseSet<unsigned>> dimsToProject = |
| 2748 | computeRankReductionMask(inferredType.getShape(), resultShape); |
| 2749 | assert(dimsToProject.has_value() && "invalid rank reduction" ); |
| 2750 | |
| 2751 | // Compute the layout and result type. |
| 2752 | auto inferredLayout = llvm::cast<StridedLayoutAttr>(inferredType.getLayout()); |
| 2753 | SmallVector<int64_t> rankReducedStrides; |
| 2754 | rankReducedStrides.reserve(resultShape.size()); |
| 2755 | for (auto [idx, value] : llvm::enumerate(inferredLayout.getStrides())) { |
| 2756 | if (!dimsToProject->contains(idx)) |
| 2757 | rankReducedStrides.push_back(value); |
| 2758 | } |
| 2759 | return MemRefType::get(resultShape, inferredType.getElementType(), |
| 2760 | StridedLayoutAttr::get(inferredLayout.getContext(), |
| 2761 | inferredLayout.getOffset(), |
| 2762 | rankReducedStrides), |
| 2763 | inferredType.getMemorySpace()); |
| 2764 | } |
| 2765 | |
| 2766 | MemRefType SubViewOp::inferRankReducedResultType( |
| 2767 | ArrayRef<int64_t> resultShape, MemRefType sourceRankedTensorType, |
| 2768 | ArrayRef<OpFoldResult> offsets, ArrayRef<OpFoldResult> sizes, |
| 2769 | ArrayRef<OpFoldResult> strides) { |
| 2770 | SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; |
| 2771 | SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; |
| 2772 | dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets); |
| 2773 | dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes); |
| 2774 | dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides); |
| 2775 | return SubViewOp::inferRankReducedResultType( |
| 2776 | resultShape, sourceRankedTensorType, staticOffsets, staticSizes, |
| 2777 | staticStrides); |
| 2778 | } |
| 2779 | |
| 2780 | // Build a SubViewOp with mixed static and dynamic entries and custom result |
| 2781 | // type. If the type passed is nullptr, it is inferred. |
| 2782 | void SubViewOp::build(OpBuilder &b, OperationState &result, |
| 2783 | MemRefType resultType, Value source, |
| 2784 | ArrayRef<OpFoldResult> offsets, |
| 2785 | ArrayRef<OpFoldResult> sizes, |
| 2786 | ArrayRef<OpFoldResult> strides, |
| 2787 | ArrayRef<NamedAttribute> attrs) { |
| 2788 | SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; |
| 2789 | SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; |
| 2790 | dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets); |
| 2791 | dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes); |
| 2792 | dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides); |
| 2793 | auto sourceMemRefType = llvm::cast<MemRefType>(source.getType()); |
| 2794 | // Structuring implementation this way avoids duplication between builders. |
| 2795 | if (!resultType) { |
| 2796 | resultType = SubViewOp::inferResultType(sourceMemRefType, staticOffsets, |
| 2797 | staticSizes, staticStrides); |
| 2798 | } |
| 2799 | result.addAttributes(attrs); |
| 2800 | build(b, result, resultType, source, dynamicOffsets, dynamicSizes, |
| 2801 | dynamicStrides, b.getDenseI64ArrayAttr(staticOffsets), |
| 2802 | b.getDenseI64ArrayAttr(staticSizes), |
| 2803 | b.getDenseI64ArrayAttr(staticStrides)); |
| 2804 | } |
| 2805 | |
| 2806 | // Build a SubViewOp with mixed static and dynamic entries and inferred result |
| 2807 | // type. |
| 2808 | void SubViewOp::build(OpBuilder &b, OperationState &result, Value source, |
| 2809 | ArrayRef<OpFoldResult> offsets, |
| 2810 | ArrayRef<OpFoldResult> sizes, |
| 2811 | ArrayRef<OpFoldResult> strides, |
| 2812 | ArrayRef<NamedAttribute> attrs) { |
| 2813 | build(b, result, MemRefType(), source, offsets, sizes, strides, attrs); |
| 2814 | } |
| 2815 | |
| 2816 | // Build a SubViewOp with static entries and inferred result type. |
| 2817 | void SubViewOp::build(OpBuilder &b, OperationState &result, Value source, |
| 2818 | ArrayRef<int64_t> offsets, ArrayRef<int64_t> sizes, |
| 2819 | ArrayRef<int64_t> strides, |
| 2820 | ArrayRef<NamedAttribute> attrs) { |
| 2821 | SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>( |
| 2822 | llvm::map_range(offsets, [&](int64_t v) -> OpFoldResult { |
| 2823 | return b.getI64IntegerAttr(v); |
| 2824 | })); |
| 2825 | SmallVector<OpFoldResult> sizeValues = |
| 2826 | llvm::to_vector<4>(llvm::map_range(sizes, [&](int64_t v) -> OpFoldResult { |
| 2827 | return b.getI64IntegerAttr(v); |
| 2828 | })); |
| 2829 | SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>( |
| 2830 | llvm::map_range(strides, [&](int64_t v) -> OpFoldResult { |
| 2831 | return b.getI64IntegerAttr(v); |
| 2832 | })); |
| 2833 | build(b, result, source, offsetValues, sizeValues, strideValues, attrs); |
| 2834 | } |
| 2835 | |
| 2836 | // Build a SubViewOp with dynamic entries and custom result type. If the |
| 2837 | // type passed is nullptr, it is inferred. |
| 2838 | void SubViewOp::build(OpBuilder &b, OperationState &result, |
| 2839 | MemRefType resultType, Value source, |
| 2840 | ArrayRef<int64_t> offsets, ArrayRef<int64_t> sizes, |
| 2841 | ArrayRef<int64_t> strides, |
| 2842 | ArrayRef<NamedAttribute> attrs) { |
| 2843 | SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>( |
| 2844 | llvm::map_range(offsets, [&](int64_t v) -> OpFoldResult { |
| 2845 | return b.getI64IntegerAttr(v); |
| 2846 | })); |
| 2847 | SmallVector<OpFoldResult> sizeValues = |
| 2848 | llvm::to_vector<4>(llvm::map_range(sizes, [&](int64_t v) -> OpFoldResult { |
| 2849 | return b.getI64IntegerAttr(v); |
| 2850 | })); |
| 2851 | SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>( |
| 2852 | llvm::map_range(strides, [&](int64_t v) -> OpFoldResult { |
| 2853 | return b.getI64IntegerAttr(v); |
| 2854 | })); |
| 2855 | build(b, result, resultType, source, offsetValues, sizeValues, strideValues, |
| 2856 | attrs); |
| 2857 | } |
| 2858 | |
| 2859 | // Build a SubViewOp with dynamic entries and custom result type. If the type |
| 2860 | // passed is nullptr, it is inferred. |
| 2861 | void SubViewOp::build(OpBuilder &b, OperationState &result, |
| 2862 | MemRefType resultType, Value source, ValueRange offsets, |
| 2863 | ValueRange sizes, ValueRange strides, |
| 2864 | ArrayRef<NamedAttribute> attrs) { |
| 2865 | SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>( |
| 2866 | llvm::map_range(offsets, [](Value v) -> OpFoldResult { return v; })); |
| 2867 | SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>( |
| 2868 | llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; })); |
| 2869 | SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>( |
| 2870 | llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; })); |
| 2871 | build(b, result, resultType, source, offsetValues, sizeValues, strideValues); |
| 2872 | } |
| 2873 | |
| 2874 | // Build a SubViewOp with dynamic entries and inferred result type. |
| 2875 | void SubViewOp::build(OpBuilder &b, OperationState &result, Value source, |
| 2876 | ValueRange offsets, ValueRange sizes, ValueRange strides, |
| 2877 | ArrayRef<NamedAttribute> attrs) { |
| 2878 | build(b, result, MemRefType(), source, offsets, sizes, strides, attrs); |
| 2879 | } |
| 2880 | |
| 2881 | /// For ViewLikeOpInterface. |
| 2882 | Value SubViewOp::getViewSource() { return getSource(); } |
| 2883 | |
| 2884 | /// Return true if `t1` and `t2` have equal offsets (both dynamic or of same |
| 2885 | /// static value). |
| 2886 | static bool haveCompatibleOffsets(MemRefType t1, MemRefType t2) { |
| 2887 | int64_t t1Offset, t2Offset; |
| 2888 | SmallVector<int64_t> t1Strides, t2Strides; |
| 2889 | auto res1 = t1.getStridesAndOffset(t1Strides, t1Offset); |
| 2890 | auto res2 = t2.getStridesAndOffset(t2Strides, t2Offset); |
| 2891 | return succeeded(res1) && succeeded(res2) && t1Offset == t2Offset; |
| 2892 | } |
| 2893 | |
| 2894 | /// Return true if `t1` and `t2` have equal strides (both dynamic or of same |
| 2895 | /// static value). Dimensions of `t1` may be dropped in `t2`; these must be |
| 2896 | /// marked as dropped in `droppedDims`. |
| 2897 | static bool haveCompatibleStrides(MemRefType t1, MemRefType t2, |
| 2898 | const llvm::SmallBitVector &droppedDims) { |
| 2899 | assert(size_t(t1.getRank()) == droppedDims.size() && |
| 2900 | "incorrect number of bits" ); |
| 2901 | assert(size_t(t1.getRank() - t2.getRank()) == droppedDims.count() && |
| 2902 | "incorrect number of dropped dims" ); |
| 2903 | int64_t t1Offset, t2Offset; |
| 2904 | SmallVector<int64_t> t1Strides, t2Strides; |
| 2905 | auto res1 = t1.getStridesAndOffset(t1Strides, t1Offset); |
| 2906 | auto res2 = t2.getStridesAndOffset(t2Strides, t2Offset); |
| 2907 | if (failed(res1) || failed(res2)) |
| 2908 | return false; |
| 2909 | for (int64_t i = 0, j = 0, e = t1.getRank(); i < e; ++i) { |
| 2910 | if (droppedDims[i]) |
| 2911 | continue; |
| 2912 | if (t1Strides[i] != t2Strides[j]) |
| 2913 | return false; |
| 2914 | ++j; |
| 2915 | } |
| 2916 | return true; |
| 2917 | } |
| 2918 | |
| 2919 | static LogicalResult produceSubViewErrorMsg(SliceVerificationResult result, |
| 2920 | Operation *op, Type expectedType) { |
| 2921 | auto memrefType = llvm::cast<ShapedType>(expectedType); |
| 2922 | switch (result) { |
| 2923 | case SliceVerificationResult::Success: |
| 2924 | return success(); |
| 2925 | case SliceVerificationResult::RankTooLarge: |
| 2926 | return op->emitError(message: "expected result rank to be smaller or equal to " ) |
| 2927 | << "the source rank. " ; |
| 2928 | case SliceVerificationResult::SizeMismatch: |
| 2929 | return op->emitError(message: "expected result type to be " ) |
| 2930 | << expectedType |
| 2931 | << " or a rank-reduced version. (mismatch of result sizes) " ; |
| 2932 | case SliceVerificationResult::ElemTypeMismatch: |
| 2933 | return op->emitError(message: "expected result element type to be " ) |
| 2934 | << memrefType.getElementType(); |
| 2935 | case SliceVerificationResult::MemSpaceMismatch: |
| 2936 | return op->emitError(message: "expected result and source memory spaces to match." ); |
| 2937 | case SliceVerificationResult::LayoutMismatch: |
| 2938 | return op->emitError(message: "expected result type to be " ) |
| 2939 | << expectedType |
| 2940 | << " or a rank-reduced version. (mismatch of result layout) " ; |
| 2941 | } |
| 2942 | llvm_unreachable("unexpected subview verification result" ); |
| 2943 | } |
| 2944 | |
| 2945 | /// Verifier for SubViewOp. |
| 2946 | LogicalResult SubViewOp::verify() { |
| 2947 | MemRefType baseType = getSourceType(); |
| 2948 | MemRefType subViewType = getType(); |
| 2949 | ArrayRef<int64_t> staticOffsets = getStaticOffsets(); |
| 2950 | ArrayRef<int64_t> staticSizes = getStaticSizes(); |
| 2951 | ArrayRef<int64_t> staticStrides = getStaticStrides(); |
| 2952 | |
| 2953 | // The base memref and the view memref should be in the same memory space. |
| 2954 | if (baseType.getMemorySpace() != subViewType.getMemorySpace()) |
| 2955 | return emitError("different memory spaces specified for base memref " |
| 2956 | "type " ) |
| 2957 | << baseType << " and subview memref type " << subViewType; |
| 2958 | |
| 2959 | // Verify that the base memref type has a strided layout map. |
| 2960 | if (!baseType.isStrided()) |
| 2961 | return emitError("base type " ) << baseType << " is not strided" ; |
| 2962 | |
| 2963 | // Compute the expected result type, assuming that there are no rank |
| 2964 | // reductions. |
| 2965 | MemRefType expectedType = SubViewOp::inferResultType( |
| 2966 | baseType, staticOffsets, staticSizes, staticStrides); |
| 2967 | |
| 2968 | // Verify all properties of a shaped type: rank, element type and dimension |
| 2969 | // sizes. This takes into account potential rank reductions. |
| 2970 | auto shapedTypeVerification = isRankReducedType( |
| 2971 | /*originalType=*/expectedType, /*candidateReducedType=*/subViewType); |
| 2972 | if (shapedTypeVerification != SliceVerificationResult::Success) |
| 2973 | return produceSubViewErrorMsg(shapedTypeVerification, *this, expectedType); |
| 2974 | |
| 2975 | // Make sure that the memory space did not change. |
| 2976 | if (expectedType.getMemorySpace() != subViewType.getMemorySpace()) |
| 2977 | return produceSubViewErrorMsg(SliceVerificationResult::MemSpaceMismatch, |
| 2978 | *this, expectedType); |
| 2979 | |
| 2980 | // Verify the offset of the layout map. |
| 2981 | if (!haveCompatibleOffsets(expectedType, subViewType)) |
| 2982 | return produceSubViewErrorMsg(SliceVerificationResult::LayoutMismatch, |
| 2983 | *this, expectedType); |
| 2984 | |
| 2985 | // The only thing that's left to verify now are the strides. First, compute |
| 2986 | // the unused dimensions due to rank reductions. We have to look at sizes and |
| 2987 | // strides to decide which dimensions were dropped. This function also |
| 2988 | // partially verifies strides in case of rank reductions. |
| 2989 | auto unusedDims = computeMemRefRankReductionMask(expectedType, subViewType, |
| 2990 | getMixedSizes()); |
| 2991 | if (failed(unusedDims)) |
| 2992 | return produceSubViewErrorMsg(SliceVerificationResult::LayoutMismatch, |
| 2993 | *this, expectedType); |
| 2994 | |
| 2995 | // Strides must match. |
| 2996 | if (!haveCompatibleStrides(expectedType, subViewType, *unusedDims)) |
| 2997 | return produceSubViewErrorMsg(SliceVerificationResult::LayoutMismatch, |
| 2998 | *this, expectedType); |
| 2999 | |
| 3000 | // Verify that offsets, sizes, strides do not run out-of-bounds with respect |
| 3001 | // to the base memref. |
| 3002 | SliceBoundsVerificationResult boundsResult = |
| 3003 | verifyInBoundsSlice(baseType.getShape(), staticOffsets, staticSizes, |
| 3004 | staticStrides, /*generateErrorMessage=*/true); |
| 3005 | if (!boundsResult.isValid) |
| 3006 | return getOperation()->emitError(boundsResult.errorMessage); |
| 3007 | |
| 3008 | return success(); |
| 3009 | } |
| 3010 | |
| 3011 | raw_ostream &mlir::operator<<(raw_ostream &os, const Range &range) { |
| 3012 | return os << "range " << range.offset << ":" << range.size << ":" |
| 3013 | << range.stride; |
| 3014 | } |
| 3015 | |
| 3016 | /// Return the list of Range (i.e. offset, size, stride). Each Range |
| 3017 | /// entry contains either the dynamic value or a ConstantIndexOp constructed |
| 3018 | /// with `b` at location `loc`. |
| 3019 | SmallVector<Range, 8> mlir::getOrCreateRanges(OffsetSizeAndStrideOpInterface op, |
| 3020 | OpBuilder &b, Location loc) { |
| 3021 | std::array<unsigned, 3> ranks = op.getArrayAttrMaxRanks(); |
| 3022 | assert(ranks[0] == ranks[1] && "expected offset and sizes of equal ranks" ); |
| 3023 | assert(ranks[1] == ranks[2] && "expected sizes and strides of equal ranks" ); |
| 3024 | SmallVector<Range, 8> res; |
| 3025 | unsigned rank = ranks[0]; |
| 3026 | res.reserve(N: rank); |
| 3027 | for (unsigned idx = 0; idx < rank; ++idx) { |
| 3028 | Value offset = |
| 3029 | op.isDynamicOffset(idx) |
| 3030 | ? op.getDynamicOffset(idx) |
| 3031 | : b.create<arith::ConstantIndexOp>(loc, op.getStaticOffset(idx)); |
| 3032 | Value size = |
| 3033 | op.isDynamicSize(idx) |
| 3034 | ? op.getDynamicSize(idx) |
| 3035 | : b.create<arith::ConstantIndexOp>(loc, op.getStaticSize(idx)); |
| 3036 | Value stride = |
| 3037 | op.isDynamicStride(idx) |
| 3038 | ? op.getDynamicStride(idx) |
| 3039 | : b.create<arith::ConstantIndexOp>(loc, op.getStaticStride(idx)); |
| 3040 | res.emplace_back(Args: Range{.offset: offset, .size: size, .stride: stride}); |
| 3041 | } |
| 3042 | return res; |
| 3043 | } |
| 3044 | |
| 3045 | /// Compute the canonical result type of a SubViewOp. Call `inferResultType` |
| 3046 | /// to deduce the result type for the given `sourceType`. Additionally, reduce |
| 3047 | /// the rank of the inferred result type if `currentResultType` is lower rank |
| 3048 | /// than `currentSourceType`. Use this signature if `sourceType` is updated |
| 3049 | /// together with the result type. In this case, it is important to compute |
| 3050 | /// the dropped dimensions using `currentSourceType` whose strides align with |
| 3051 | /// `currentResultType`. |
| 3052 | static MemRefType getCanonicalSubViewResultType( |
| 3053 | MemRefType currentResultType, MemRefType currentSourceType, |
| 3054 | MemRefType sourceType, ArrayRef<OpFoldResult> mixedOffsets, |
| 3055 | ArrayRef<OpFoldResult> mixedSizes, ArrayRef<OpFoldResult> mixedStrides) { |
| 3056 | MemRefType nonRankReducedType = SubViewOp::inferResultType( |
| 3057 | sourceType, mixedOffsets, mixedSizes, mixedStrides); |
| 3058 | FailureOr<llvm::SmallBitVector> unusedDims = computeMemRefRankReductionMask( |
| 3059 | currentSourceType, currentResultType, mixedSizes); |
| 3060 | if (failed(Result: unusedDims)) |
| 3061 | return nullptr; |
| 3062 | |
| 3063 | auto layout = llvm::cast<StridedLayoutAttr>(nonRankReducedType.getLayout()); |
| 3064 | SmallVector<int64_t> shape, strides; |
| 3065 | unsigned numDimsAfterReduction = |
| 3066 | nonRankReducedType.getRank() - unusedDims->count(); |
| 3067 | shape.reserve(N: numDimsAfterReduction); |
| 3068 | strides.reserve(N: numDimsAfterReduction); |
| 3069 | for (const auto &[idx, size, stride] : |
| 3070 | llvm::zip(llvm::seq<unsigned>(0, nonRankReducedType.getRank()), |
| 3071 | nonRankReducedType.getShape(), layout.getStrides())) { |
| 3072 | if (unusedDims->test(idx)) |
| 3073 | continue; |
| 3074 | shape.push_back(size); |
| 3075 | strides.push_back(stride); |
| 3076 | } |
| 3077 | |
| 3078 | return MemRefType::get(shape, nonRankReducedType.getElementType(), |
| 3079 | StridedLayoutAttr::get(sourceType.getContext(), |
| 3080 | layout.getOffset(), strides), |
| 3081 | nonRankReducedType.getMemorySpace()); |
| 3082 | } |
| 3083 | |
| 3084 | Value mlir::memref::createCanonicalRankReducingSubViewOp( |
| 3085 | OpBuilder &b, Location loc, Value memref, ArrayRef<int64_t> targetShape) { |
| 3086 | auto memrefType = llvm::cast<MemRefType>(memref.getType()); |
| 3087 | unsigned rank = memrefType.getRank(); |
| 3088 | SmallVector<OpFoldResult> offsets(rank, b.getIndexAttr(0)); |
| 3089 | SmallVector<OpFoldResult> sizes = getMixedSizes(builder&: b, loc, value: memref); |
| 3090 | SmallVector<OpFoldResult> strides(rank, b.getIndexAttr(1)); |
| 3091 | MemRefType targetType = SubViewOp::inferRankReducedResultType( |
| 3092 | targetShape, memrefType, offsets, sizes, strides); |
| 3093 | return b.createOrFold<memref::SubViewOp>(loc, targetType, memref, offsets, |
| 3094 | sizes, strides); |
| 3095 | } |
| 3096 | |
| 3097 | FailureOr<Value> SubViewOp::rankReduceIfNeeded(OpBuilder &b, Location loc, |
| 3098 | Value value, |
| 3099 | ArrayRef<int64_t> desiredShape) { |
| 3100 | auto sourceMemrefType = llvm::dyn_cast<MemRefType>(value.getType()); |
| 3101 | assert(sourceMemrefType && "not a ranked memref type" ); |
| 3102 | auto sourceShape = sourceMemrefType.getShape(); |
| 3103 | if (sourceShape.equals(desiredShape)) |
| 3104 | return value; |
| 3105 | auto maybeRankReductionMask = |
| 3106 | mlir::computeRankReductionMask(sourceShape, desiredShape); |
| 3107 | if (!maybeRankReductionMask) |
| 3108 | return failure(); |
| 3109 | return createCanonicalRankReducingSubViewOp(b, loc, value, desiredShape); |
| 3110 | } |
| 3111 | |
| 3112 | /// Helper method to check if a `subview` operation is trivially a no-op. This |
| 3113 | /// is the case if the all offsets are zero, all strides are 1, and the source |
| 3114 | /// shape is same as the size of the subview. In such cases, the subview can |
| 3115 | /// be folded into its source. |
| 3116 | static bool isTrivialSubViewOp(SubViewOp subViewOp) { |
| 3117 | if (subViewOp.getSourceType().getRank() != subViewOp.getType().getRank()) |
| 3118 | return false; |
| 3119 | |
| 3120 | auto mixedOffsets = subViewOp.getMixedOffsets(); |
| 3121 | auto mixedSizes = subViewOp.getMixedSizes(); |
| 3122 | auto mixedStrides = subViewOp.getMixedStrides(); |
| 3123 | |
| 3124 | // Check offsets are zero. |
| 3125 | if (llvm::any_of(mixedOffsets, [](OpFoldResult ofr) { |
| 3126 | std::optional<int64_t> intValue = getConstantIntValue(ofr); |
| 3127 | return !intValue || intValue.value() != 0; |
| 3128 | })) |
| 3129 | return false; |
| 3130 | |
| 3131 | // Check strides are one. |
| 3132 | if (llvm::any_of(mixedStrides, [](OpFoldResult ofr) { |
| 3133 | std::optional<int64_t> intValue = getConstantIntValue(ofr); |
| 3134 | return !intValue || intValue.value() != 1; |
| 3135 | })) |
| 3136 | return false; |
| 3137 | |
| 3138 | // Check all size values are static and matches the (static) source shape. |
| 3139 | ArrayRef<int64_t> sourceShape = subViewOp.getSourceType().getShape(); |
| 3140 | for (const auto &size : llvm::enumerate(mixedSizes)) { |
| 3141 | std::optional<int64_t> intValue = getConstantIntValue(size.value()); |
| 3142 | if (!intValue || *intValue != sourceShape[size.index()]) |
| 3143 | return false; |
| 3144 | } |
| 3145 | // All conditions met. The `SubViewOp` is foldable as a no-op. |
| 3146 | return true; |
| 3147 | } |
| 3148 | |
| 3149 | namespace { |
| 3150 | /// Pattern to rewrite a subview op with MemRefCast arguments. |
| 3151 | /// This essentially pushes memref.cast past its consuming subview when |
| 3152 | /// `canFoldIntoConsumerOp` is true. |
| 3153 | /// |
| 3154 | /// Example: |
| 3155 | /// ``` |
| 3156 | /// %0 = memref.cast %V : memref<16x16xf32> to memref<?x?xf32> |
| 3157 | /// %1 = memref.subview %0[0, 0][3, 4][1, 1] : |
| 3158 | /// memref<?x?xf32> to memref<3x4xf32, strided<[?, 1], offset: ?>> |
| 3159 | /// ``` |
| 3160 | /// is rewritten into: |
| 3161 | /// ``` |
| 3162 | /// %0 = memref.subview %V: memref<16x16xf32> to memref<3x4xf32, #[[map0]]> |
| 3163 | /// %1 = memref.cast %0: memref<3x4xf32, strided<[16, 1], offset: 0>> to |
| 3164 | /// memref<3x4xf32, strided<[?, 1], offset: ?>> |
| 3165 | /// ``` |
| 3166 | class SubViewOpMemRefCastFolder final : public OpRewritePattern<SubViewOp> { |
| 3167 | public: |
| 3168 | using OpRewritePattern<SubViewOp>::OpRewritePattern; |
| 3169 | |
| 3170 | LogicalResult matchAndRewrite(SubViewOp subViewOp, |
| 3171 | PatternRewriter &rewriter) const override { |
| 3172 | // Any constant operand, just return to let SubViewOpConstantFolder kick |
| 3173 | // in. |
| 3174 | if (llvm::any_of(subViewOp.getOperands(), [](Value operand) { |
| 3175 | return matchPattern(value: operand, pattern: matchConstantIndex()); |
| 3176 | })) |
| 3177 | return failure(); |
| 3178 | |
| 3179 | auto castOp = subViewOp.getSource().getDefiningOp<CastOp>(); |
| 3180 | if (!castOp) |
| 3181 | return failure(); |
| 3182 | |
| 3183 | if (!CastOp::canFoldIntoConsumerOp(castOp)) |
| 3184 | return failure(); |
| 3185 | |
| 3186 | // Compute the SubViewOp result type after folding the MemRefCastOp. Use |
| 3187 | // the MemRefCastOp source operand type to infer the result type and the |
| 3188 | // current SubViewOp source operand type to compute the dropped dimensions |
| 3189 | // if the operation is rank-reducing. |
| 3190 | auto resultType = getCanonicalSubViewResultType( |
| 3191 | subViewOp.getType(), subViewOp.getSourceType(), |
| 3192 | llvm::cast<MemRefType>(castOp.getSource().getType()), |
| 3193 | subViewOp.getMixedOffsets(), subViewOp.getMixedSizes(), |
| 3194 | subViewOp.getMixedStrides()); |
| 3195 | if (!resultType) |
| 3196 | return failure(); |
| 3197 | |
| 3198 | Value newSubView = rewriter.create<SubViewOp>( |
| 3199 | subViewOp.getLoc(), resultType, castOp.getSource(), |
| 3200 | subViewOp.getOffsets(), subViewOp.getSizes(), subViewOp.getStrides(), |
| 3201 | subViewOp.getStaticOffsets(), subViewOp.getStaticSizes(), |
| 3202 | subViewOp.getStaticStrides()); |
| 3203 | rewriter.replaceOpWithNewOp<CastOp>(subViewOp, subViewOp.getType(), |
| 3204 | newSubView); |
| 3205 | return success(); |
| 3206 | } |
| 3207 | }; |
| 3208 | |
| 3209 | /// Canonicalize subview ops that are no-ops. When the source shape is not |
| 3210 | /// same as a result shape due to use of `affine_map`. |
| 3211 | class TrivialSubViewOpFolder final : public OpRewritePattern<SubViewOp> { |
| 3212 | public: |
| 3213 | using OpRewritePattern<SubViewOp>::OpRewritePattern; |
| 3214 | |
| 3215 | LogicalResult matchAndRewrite(SubViewOp subViewOp, |
| 3216 | PatternRewriter &rewriter) const override { |
| 3217 | if (!isTrivialSubViewOp(subViewOp)) |
| 3218 | return failure(); |
| 3219 | if (subViewOp.getSourceType() == subViewOp.getType()) { |
| 3220 | rewriter.replaceOp(subViewOp, subViewOp.getSource()); |
| 3221 | return success(); |
| 3222 | } |
| 3223 | rewriter.replaceOpWithNewOp<CastOp>(subViewOp, subViewOp.getType(), |
| 3224 | subViewOp.getSource()); |
| 3225 | return success(); |
| 3226 | } |
| 3227 | }; |
| 3228 | } // namespace |
| 3229 | |
| 3230 | /// Return the canonical type of the result of a subview. |
| 3231 | struct SubViewReturnTypeCanonicalizer { |
| 3232 | MemRefType operator()(SubViewOp op, ArrayRef<OpFoldResult> mixedOffsets, |
| 3233 | ArrayRef<OpFoldResult> mixedSizes, |
| 3234 | ArrayRef<OpFoldResult> mixedStrides) { |
| 3235 | // Infer a memref type without taking into account any rank reductions. |
| 3236 | MemRefType resTy = SubViewOp::inferResultType( |
| 3237 | op.getSourceType(), mixedOffsets, mixedSizes, mixedStrides); |
| 3238 | if (!resTy) |
| 3239 | return {}; |
| 3240 | MemRefType nonReducedType = resTy; |
| 3241 | |
| 3242 | // Directly return the non-rank reduced type if there are no dropped dims. |
| 3243 | llvm::SmallBitVector droppedDims = op.getDroppedDims(); |
| 3244 | if (droppedDims.none()) |
| 3245 | return nonReducedType; |
| 3246 | |
| 3247 | // Take the strides and offset from the non-rank reduced type. |
| 3248 | auto [nonReducedStrides, offset] = nonReducedType.getStridesAndOffset(); |
| 3249 | |
| 3250 | // Drop dims from shape and strides. |
| 3251 | SmallVector<int64_t> targetShape; |
| 3252 | SmallVector<int64_t> targetStrides; |
| 3253 | for (int64_t i = 0; i < static_cast<int64_t>(mixedSizes.size()); ++i) { |
| 3254 | if (droppedDims.test(Idx: i)) |
| 3255 | continue; |
| 3256 | targetStrides.push_back(Elt: nonReducedStrides[i]); |
| 3257 | targetShape.push_back(Elt: nonReducedType.getDimSize(i)); |
| 3258 | } |
| 3259 | |
| 3260 | return MemRefType::get(targetShape, nonReducedType.getElementType(), |
| 3261 | StridedLayoutAttr::get(nonReducedType.getContext(), |
| 3262 | offset, targetStrides), |
| 3263 | nonReducedType.getMemorySpace()); |
| 3264 | } |
| 3265 | }; |
| 3266 | |
| 3267 | /// A canonicalizer wrapper to replace SubViewOps. |
| 3268 | struct SubViewCanonicalizer { |
| 3269 | void operator()(PatternRewriter &rewriter, SubViewOp op, SubViewOp newOp) { |
| 3270 | rewriter.replaceOpWithNewOp<CastOp>(op, op.getType(), newOp); |
| 3271 | } |
| 3272 | }; |
| 3273 | |
| 3274 | void SubViewOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 3275 | MLIRContext *context) { |
| 3276 | results |
| 3277 | .add<OpWithOffsetSizesAndStridesConstantArgumentFolder< |
| 3278 | SubViewOp, SubViewReturnTypeCanonicalizer, SubViewCanonicalizer>, |
| 3279 | SubViewOpMemRefCastFolder, TrivialSubViewOpFolder>(context); |
| 3280 | } |
| 3281 | |
| 3282 | OpFoldResult SubViewOp::fold(FoldAdaptor adaptor) { |
| 3283 | MemRefType sourceMemrefType = getSource().getType(); |
| 3284 | MemRefType resultMemrefType = getResult().getType(); |
| 3285 | auto resultLayout = |
| 3286 | dyn_cast_if_present<StridedLayoutAttr>(resultMemrefType.getLayout()); |
| 3287 | |
| 3288 | if (resultMemrefType == sourceMemrefType && |
| 3289 | resultMemrefType.hasStaticShape() && |
| 3290 | (!resultLayout || resultLayout.hasStaticLayout())) { |
| 3291 | return getViewSource(); |
| 3292 | } |
| 3293 | |
| 3294 | // Fold subview(subview(x)), where both subviews have the same size and the |
| 3295 | // second subview's offsets are all zero. (I.e., the second subview is a |
| 3296 | // no-op.) |
| 3297 | if (auto srcSubview = getViewSource().getDefiningOp<SubViewOp>()) { |
| 3298 | auto srcSizes = srcSubview.getMixedSizes(); |
| 3299 | auto sizes = getMixedSizes(); |
| 3300 | auto offsets = getMixedOffsets(); |
| 3301 | bool allOffsetsZero = llvm::all_of(offsets, isZeroInteger); |
| 3302 | auto strides = getMixedStrides(); |
| 3303 | bool allStridesOne = llvm::all_of(strides, isOneInteger); |
| 3304 | bool allSizesSame = llvm::equal(sizes, srcSizes); |
| 3305 | if (allOffsetsZero && allStridesOne && allSizesSame && |
| 3306 | resultMemrefType == sourceMemrefType) |
| 3307 | return getViewSource(); |
| 3308 | } |
| 3309 | |
| 3310 | return {}; |
| 3311 | } |
| 3312 | |
| 3313 | //===----------------------------------------------------------------------===// |
| 3314 | // TransposeOp |
| 3315 | //===----------------------------------------------------------------------===// |
| 3316 | |
| 3317 | void TransposeOp::getAsmResultNames( |
| 3318 | function_ref<void(Value, StringRef)> setNameFn) { |
| 3319 | setNameFn(getResult(), "transpose" ); |
| 3320 | } |
| 3321 | |
| 3322 | /// Build a strided memref type by applying `permutationMap` to `memRefType`. |
| 3323 | static MemRefType inferTransposeResultType(MemRefType memRefType, |
| 3324 | AffineMap permutationMap) { |
| 3325 | auto originalSizes = memRefType.getShape(); |
| 3326 | auto [originalStrides, offset] = memRefType.getStridesAndOffset(); |
| 3327 | assert(originalStrides.size() == static_cast<unsigned>(memRefType.getRank())); |
| 3328 | |
| 3329 | // Compute permuted sizes and strides. |
| 3330 | auto sizes = applyPermutationMap<int64_t>(permutationMap, originalSizes); |
| 3331 | auto strides = applyPermutationMap<int64_t>(permutationMap, originalStrides); |
| 3332 | |
| 3333 | return MemRefType::Builder(memRefType) |
| 3334 | .setShape(sizes) |
| 3335 | .setLayout( |
| 3336 | StridedLayoutAttr::get(memRefType.getContext(), offset, strides)); |
| 3337 | } |
| 3338 | |
| 3339 | void TransposeOp::build(OpBuilder &b, OperationState &result, Value in, |
| 3340 | AffineMapAttr permutation, |
| 3341 | ArrayRef<NamedAttribute> attrs) { |
| 3342 | auto permutationMap = permutation.getValue(); |
| 3343 | assert(permutationMap); |
| 3344 | |
| 3345 | auto memRefType = llvm::cast<MemRefType>(in.getType()); |
| 3346 | // Compute result type. |
| 3347 | MemRefType resultType = inferTransposeResultType(memRefType, permutationMap); |
| 3348 | |
| 3349 | result.addAttribute(TransposeOp::getPermutationAttrStrName(), permutation); |
| 3350 | build(b, result, resultType, in, attrs); |
| 3351 | } |
| 3352 | |
| 3353 | // transpose $in $permutation attr-dict : type($in) `to` type(results) |
| 3354 | void TransposeOp::print(OpAsmPrinter &p) { |
| 3355 | p << " " << getIn() << " " << getPermutation(); |
| 3356 | p.printOptionalAttrDict((*this)->getAttrs(), {getPermutationAttrStrName()}); |
| 3357 | p << " : " << getIn().getType() << " to " << getType(); |
| 3358 | } |
| 3359 | |
| 3360 | ParseResult TransposeOp::parse(OpAsmParser &parser, OperationState &result) { |
| 3361 | OpAsmParser::UnresolvedOperand in; |
| 3362 | AffineMap permutation; |
| 3363 | MemRefType srcType, dstType; |
| 3364 | if (parser.parseOperand(in) || parser.parseAffineMap(permutation) || |
| 3365 | parser.parseOptionalAttrDict(result.attributes) || |
| 3366 | parser.parseColonType(srcType) || |
| 3367 | parser.resolveOperand(in, srcType, result.operands) || |
| 3368 | parser.parseKeywordType("to" , dstType) || |
| 3369 | parser.addTypeToList(dstType, result.types)) |
| 3370 | return failure(); |
| 3371 | |
| 3372 | result.addAttribute(TransposeOp::getPermutationAttrStrName(), |
| 3373 | AffineMapAttr::get(permutation)); |
| 3374 | return success(); |
| 3375 | } |
| 3376 | |
| 3377 | LogicalResult TransposeOp::verify() { |
| 3378 | if (!getPermutation().isPermutation()) |
| 3379 | return emitOpError("expected a permutation map" ); |
| 3380 | if (getPermutation().getNumDims() != getIn().getType().getRank()) |
| 3381 | return emitOpError("expected a permutation map of same rank as the input" ); |
| 3382 | |
| 3383 | auto srcType = llvm::cast<MemRefType>(getIn().getType()); |
| 3384 | auto resultType = llvm::cast<MemRefType>(getType()); |
| 3385 | auto canonicalResultType = inferTransposeResultType(srcType, getPermutation()) |
| 3386 | .canonicalizeStridedLayout(); |
| 3387 | |
| 3388 | if (resultType.canonicalizeStridedLayout() != canonicalResultType) |
| 3389 | return emitOpError("result type " ) |
| 3390 | << resultType |
| 3391 | << " is not equivalent to the canonical transposed input type " |
| 3392 | << canonicalResultType; |
| 3393 | return success(); |
| 3394 | } |
| 3395 | |
| 3396 | OpFoldResult TransposeOp::fold(FoldAdaptor) { |
| 3397 | // First check for identity permutation, we can fold it away if input and |
| 3398 | // result types are identical already. |
| 3399 | if (getPermutation().isIdentity() && getType() == getIn().getType()) |
| 3400 | return getIn(); |
| 3401 | // Fold two consecutive memref.transpose Ops into one by composing their |
| 3402 | // permutation maps. |
| 3403 | if (auto otherTransposeOp = getIn().getDefiningOp<memref::TransposeOp>()) { |
| 3404 | AffineMap composedPermutation = |
| 3405 | getPermutation().compose(otherTransposeOp.getPermutation()); |
| 3406 | getInMutable().assign(otherTransposeOp.getIn()); |
| 3407 | setPermutation(composedPermutation); |
| 3408 | return getResult(); |
| 3409 | } |
| 3410 | return {}; |
| 3411 | } |
| 3412 | |
| 3413 | //===----------------------------------------------------------------------===// |
| 3414 | // ViewOp |
| 3415 | //===----------------------------------------------------------------------===// |
| 3416 | |
| 3417 | void ViewOp::getAsmResultNames(function_ref<void(Value, StringRef)> setNameFn) { |
| 3418 | setNameFn(getResult(), "view" ); |
| 3419 | } |
| 3420 | |
| 3421 | LogicalResult ViewOp::verify() { |
| 3422 | auto baseType = llvm::cast<MemRefType>(getOperand(0).getType()); |
| 3423 | auto viewType = getType(); |
| 3424 | |
| 3425 | // The base memref should have identity layout map (or none). |
| 3426 | if (!baseType.getLayout().isIdentity()) |
| 3427 | return emitError("unsupported map for base memref type " ) << baseType; |
| 3428 | |
| 3429 | // The result memref should have identity layout map (or none). |
| 3430 | if (!viewType.getLayout().isIdentity()) |
| 3431 | return emitError("unsupported map for result memref type " ) << viewType; |
| 3432 | |
| 3433 | // The base memref and the view memref should be in the same memory space. |
| 3434 | if (baseType.getMemorySpace() != viewType.getMemorySpace()) |
| 3435 | return emitError("different memory spaces specified for base memref " |
| 3436 | "type " ) |
| 3437 | << baseType << " and view memref type " << viewType; |
| 3438 | |
| 3439 | // Verify that we have the correct number of sizes for the result type. |
| 3440 | unsigned numDynamicDims = viewType.getNumDynamicDims(); |
| 3441 | if (getSizes().size() != numDynamicDims) |
| 3442 | return emitError("incorrect number of size operands for type " ) << viewType; |
| 3443 | |
| 3444 | return success(); |
| 3445 | } |
| 3446 | |
| 3447 | Value ViewOp::getViewSource() { return getSource(); } |
| 3448 | |
| 3449 | namespace { |
| 3450 | |
| 3451 | struct ViewOpShapeFolder : public OpRewritePattern<ViewOp> { |
| 3452 | using OpRewritePattern<ViewOp>::OpRewritePattern; |
| 3453 | |
| 3454 | LogicalResult matchAndRewrite(ViewOp viewOp, |
| 3455 | PatternRewriter &rewriter) const override { |
| 3456 | // Return if none of the operands are constants. |
| 3457 | if (llvm::none_of(viewOp.getOperands(), [](Value operand) { |
| 3458 | return matchPattern(value: operand, pattern: matchConstantIndex()); |
| 3459 | })) |
| 3460 | return failure(); |
| 3461 | |
| 3462 | // Get result memref type. |
| 3463 | auto memrefType = viewOp.getType(); |
| 3464 | |
| 3465 | // Get offset from old memref view type 'memRefType'. |
| 3466 | int64_t oldOffset; |
| 3467 | SmallVector<int64_t, 4> oldStrides; |
| 3468 | if (failed(memrefType.getStridesAndOffset(oldStrides, oldOffset))) |
| 3469 | return failure(); |
| 3470 | assert(oldOffset == 0 && "Expected 0 offset" ); |
| 3471 | |
| 3472 | SmallVector<Value, 4> newOperands; |
| 3473 | |
| 3474 | // Offset cannot be folded into result type. |
| 3475 | |
| 3476 | // Fold any dynamic dim operands which are produced by a constant. |
| 3477 | SmallVector<int64_t, 4> newShapeConstants; |
| 3478 | newShapeConstants.reserve(N: memrefType.getRank()); |
| 3479 | |
| 3480 | unsigned dynamicDimPos = 0; |
| 3481 | unsigned rank = memrefType.getRank(); |
| 3482 | for (unsigned dim = 0, e = rank; dim < e; ++dim) { |
| 3483 | int64_t dimSize = memrefType.getDimSize(dim); |
| 3484 | // If this is already static dimension, keep it. |
| 3485 | if (!ShapedType::isDynamic(dimSize)) { |
| 3486 | newShapeConstants.push_back(Elt: dimSize); |
| 3487 | continue; |
| 3488 | } |
| 3489 | auto *defOp = viewOp.getSizes()[dynamicDimPos].getDefiningOp(); |
| 3490 | if (auto constantIndexOp = |
| 3491 | dyn_cast_or_null<arith::ConstantIndexOp>(defOp)) { |
| 3492 | // Dynamic shape dimension will be folded. |
| 3493 | newShapeConstants.push_back(Elt: constantIndexOp.value()); |
| 3494 | } else { |
| 3495 | // Dynamic shape dimension not folded; copy operand from old memref. |
| 3496 | newShapeConstants.push_back(Elt: dimSize); |
| 3497 | newOperands.push_back(Elt: viewOp.getSizes()[dynamicDimPos]); |
| 3498 | } |
| 3499 | dynamicDimPos++; |
| 3500 | } |
| 3501 | |
| 3502 | // Create new memref type with constant folded dims. |
| 3503 | MemRefType newMemRefType = |
| 3504 | MemRefType::Builder(memrefType).setShape(newShapeConstants); |
| 3505 | // Nothing new, don't fold. |
| 3506 | if (newMemRefType == memrefType) |
| 3507 | return failure(); |
| 3508 | |
| 3509 | // Create new ViewOp. |
| 3510 | auto newViewOp = rewriter.create<ViewOp>( |
| 3511 | viewOp.getLoc(), newMemRefType, viewOp.getOperand(0), |
| 3512 | viewOp.getByteShift(), newOperands); |
| 3513 | // Insert a cast so we have the same type as the old memref type. |
| 3514 | rewriter.replaceOpWithNewOp<CastOp>(viewOp, viewOp.getType(), newViewOp); |
| 3515 | return success(); |
| 3516 | } |
| 3517 | }; |
| 3518 | |
| 3519 | struct ViewOpMemrefCastFolder : public OpRewritePattern<ViewOp> { |
| 3520 | using OpRewritePattern<ViewOp>::OpRewritePattern; |
| 3521 | |
| 3522 | LogicalResult matchAndRewrite(ViewOp viewOp, |
| 3523 | PatternRewriter &rewriter) const override { |
| 3524 | Value memrefOperand = viewOp.getOperand(0); |
| 3525 | CastOp memrefCastOp = memrefOperand.getDefiningOp<CastOp>(); |
| 3526 | if (!memrefCastOp) |
| 3527 | return failure(); |
| 3528 | Value allocOperand = memrefCastOp.getOperand(); |
| 3529 | AllocOp allocOp = allocOperand.getDefiningOp<AllocOp>(); |
| 3530 | if (!allocOp) |
| 3531 | return failure(); |
| 3532 | rewriter.replaceOpWithNewOp<ViewOp>(viewOp, viewOp.getType(), allocOperand, |
| 3533 | viewOp.getByteShift(), |
| 3534 | viewOp.getSizes()); |
| 3535 | return success(); |
| 3536 | } |
| 3537 | }; |
| 3538 | |
| 3539 | } // namespace |
| 3540 | |
| 3541 | void ViewOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 3542 | MLIRContext *context) { |
| 3543 | results.add<ViewOpShapeFolder, ViewOpMemrefCastFolder>(context); |
| 3544 | } |
| 3545 | |
| 3546 | //===----------------------------------------------------------------------===// |
| 3547 | // AtomicRMWOp |
| 3548 | //===----------------------------------------------------------------------===// |
| 3549 | |
| 3550 | LogicalResult AtomicRMWOp::verify() { |
| 3551 | if (getMemRefType().getRank() != getNumOperands() - 2) |
| 3552 | return emitOpError( |
| 3553 | "expects the number of subscripts to be equal to memref rank" ); |
| 3554 | switch (getKind()) { |
| 3555 | case arith::AtomicRMWKind::addf: |
| 3556 | case arith::AtomicRMWKind::maximumf: |
| 3557 | case arith::AtomicRMWKind::minimumf: |
| 3558 | case arith::AtomicRMWKind::mulf: |
| 3559 | if (!llvm::isa<FloatType>(getValue().getType())) |
| 3560 | return emitOpError() << "with kind '" |
| 3561 | << arith::stringifyAtomicRMWKind(getKind()) |
| 3562 | << "' expects a floating-point type" ; |
| 3563 | break; |
| 3564 | case arith::AtomicRMWKind::addi: |
| 3565 | case arith::AtomicRMWKind::maxs: |
| 3566 | case arith::AtomicRMWKind::maxu: |
| 3567 | case arith::AtomicRMWKind::mins: |
| 3568 | case arith::AtomicRMWKind::minu: |
| 3569 | case arith::AtomicRMWKind::muli: |
| 3570 | case arith::AtomicRMWKind::ori: |
| 3571 | case arith::AtomicRMWKind::andi: |
| 3572 | if (!llvm::isa<IntegerType>(getValue().getType())) |
| 3573 | return emitOpError() << "with kind '" |
| 3574 | << arith::stringifyAtomicRMWKind(getKind()) |
| 3575 | << "' expects an integer type" ; |
| 3576 | break; |
| 3577 | default: |
| 3578 | break; |
| 3579 | } |
| 3580 | return success(); |
| 3581 | } |
| 3582 | |
| 3583 | OpFoldResult AtomicRMWOp::fold(FoldAdaptor adaptor) { |
| 3584 | /// atomicrmw(memrefcast) -> atomicrmw |
| 3585 | if (succeeded(foldMemRefCast(*this, getValue()))) |
| 3586 | return getResult(); |
| 3587 | return OpFoldResult(); |
| 3588 | } |
| 3589 | |
| 3590 | //===----------------------------------------------------------------------===// |
| 3591 | // TableGen'd op method definitions |
| 3592 | //===----------------------------------------------------------------------===// |
| 3593 | |
| 3594 | #define GET_OP_CLASSES |
| 3595 | #include "mlir/Dialect/MemRef/IR/MemRefOps.cpp.inc" |
| 3596 | |