| 1 | //===- SparseTensorDialect.cpp - Sparse tensor dialect implementation -----===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include <utility> |
| 10 | |
| 11 | #include "Detail/DimLvlMapParser.h" |
| 12 | |
| 13 | #include "mlir/Dialect/SparseTensor/IR/Enums.h" |
| 14 | #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h" |
| 15 | #include "mlir/Dialect/SparseTensor/IR/SparseTensorStorageLayout.h" |
| 16 | #include "mlir/Dialect/SparseTensor/IR/SparseTensorType.h" |
| 17 | |
| 18 | #include "mlir/Dialect/Arith/IR/Arith.h" |
| 19 | #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h" |
| 20 | #include "mlir/Dialect/Complex/IR/Complex.h" |
| 21 | #include "mlir/Dialect/Utils/StaticValueUtils.h" |
| 22 | #include "mlir/IR/Builders.h" |
| 23 | #include "mlir/IR/DialectImplementation.h" |
| 24 | #include "mlir/IR/Matchers.h" |
| 25 | #include "mlir/IR/OpImplementation.h" |
| 26 | #include "mlir/IR/PatternMatch.h" |
| 27 | #include "llvm/ADT/Bitset.h" |
| 28 | #include "llvm/ADT/TypeSwitch.h" |
| 29 | #include "llvm/Support/FormatVariadic.h" |
| 30 | |
| 31 | #define GET_ATTRDEF_CLASSES |
| 32 | #include "mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.cpp.inc" |
| 33 | #include "mlir/Dialect/SparseTensor/IR/SparseTensorAttrEnums.cpp.inc" |
| 34 | |
| 35 | // Forward declarations, following custom print/parsing methods are referenced |
| 36 | // by the generated code for SparseTensorTypes.td. |
| 37 | static mlir::ParseResult parseLevelRange(mlir::AsmParser &, |
| 38 | mlir::sparse_tensor::Level &, |
| 39 | mlir::sparse_tensor::Level &); |
| 40 | static void printLevelRange(mlir::AsmPrinter &, mlir::sparse_tensor::Level, |
| 41 | mlir::sparse_tensor::Level); |
| 42 | |
| 43 | #define GET_TYPEDEF_CLASSES |
| 44 | #include "mlir/Dialect/SparseTensor/IR/SparseTensorTypes.cpp.inc" |
| 45 | |
| 46 | using namespace mlir; |
| 47 | using namespace mlir::sparse_tensor; |
| 48 | |
| 49 | // Support hashing LevelType such that SparseTensorEncodingAttr can be hashed as |
| 50 | // well. |
| 51 | namespace mlir::sparse_tensor { |
| 52 | llvm::hash_code hash_value(LevelType lt) { |
| 53 | return llvm::hash_value(static_cast<uint64_t>(lt)); |
| 54 | } |
| 55 | } // namespace mlir::sparse_tensor |
| 56 | |
| 57 | //===----------------------------------------------------------------------===// |
| 58 | // Local Convenience Methods. |
| 59 | //===----------------------------------------------------------------------===// |
| 60 | |
| 61 | static constexpr bool acceptBitWidth(unsigned bitWidth) { |
| 62 | switch (bitWidth) { |
| 63 | case 0: |
| 64 | case 8: |
| 65 | case 16: |
| 66 | case 32: |
| 67 | case 64: |
| 68 | return true; |
| 69 | default: |
| 70 | return false; |
| 71 | } |
| 72 | } |
| 73 | |
| 74 | static SmallVector<Size> |
| 75 | getSparseFieldShape(const SparseTensorEncodingAttr enc, |
| 76 | std::optional<ArrayRef<int64_t>> dimShape) { |
| 77 | assert(enc); |
| 78 | // With only encoding, we can not determine the static shape for leading |
| 79 | // batch levels, we therefore return a dynamic shape memref instead. |
| 80 | SmallVector<int64_t> memrefShape(enc.getBatchLvlRank(), ShapedType::kDynamic); |
| 81 | if (dimShape.has_value()) { |
| 82 | // If the actual tensor shape is provided, we can then refine the leading |
| 83 | // batch dimension. |
| 84 | SmallVector<int64_t> lvlShape = |
| 85 | enc.translateShape(*dimShape, CrdTransDirectionKind::dim2lvl); |
| 86 | memrefShape.assign(lvlShape.begin(), |
| 87 | lvlShape.begin() + enc.getBatchLvlRank()); |
| 88 | } |
| 89 | // Another dynamic dimension to store the sparse level. |
| 90 | memrefShape.push_back(ShapedType::kDynamic); |
| 91 | return memrefShape; |
| 92 | } |
| 93 | |
| 94 | //===----------------------------------------------------------------------===// |
| 95 | // SparseTensorDialect StorageLayout. |
| 96 | //===----------------------------------------------------------------------===// |
| 97 | |
| 98 | static constexpr Level kInvalidLevel = -1u; |
| 99 | static constexpr Level kInvalidFieldIndex = -1u; |
| 100 | static constexpr FieldIndex kDataFieldStartingIdx = 0; |
| 101 | |
| 102 | void StorageLayout::foreachField( |
| 103 | llvm::function_ref<bool(FieldIndex, SparseTensorFieldKind, Level, |
| 104 | LevelType)> |
| 105 | callback) const { |
| 106 | const auto lvlTypes = enc.getLvlTypes(); |
| 107 | const Level lvlRank = enc.getLvlRank(); |
| 108 | SmallVector<COOSegment> cooSegs = enc.getCOOSegments(); |
| 109 | FieldIndex fieldIdx = kDataFieldStartingIdx; |
| 110 | |
| 111 | ArrayRef cooSegsRef = cooSegs; |
| 112 | // Per-level storage. |
| 113 | for (Level l = 0; l < lvlRank; /*l += 1 or l += AoSCooLen*/) { |
| 114 | const auto lt = lvlTypes[l]; |
| 115 | if (isWithPosLT(lt)) { |
| 116 | if (!(callback(fieldIdx++, SparseTensorFieldKind::PosMemRef, l, lt))) |
| 117 | return; |
| 118 | } |
| 119 | if (isWithCrdLT(lt)) { |
| 120 | if (!(callback(fieldIdx++, SparseTensorFieldKind::CrdMemRef, l, lt))) |
| 121 | return; |
| 122 | } |
| 123 | if (!cooSegsRef.empty() && cooSegsRef.front().isSegmentStart(l)) { |
| 124 | if (!cooSegsRef.front().isSoA) { |
| 125 | // AoS COO, all singletons are fused into one memrefs. Skips the entire |
| 126 | // COO segement. |
| 127 | l = cooSegsRef.front().lvlRange.second; |
| 128 | } else { |
| 129 | // SoA COO, each singleton level has one memref. |
| 130 | l++; |
| 131 | } |
| 132 | // Expire handled COO segment. |
| 133 | cooSegsRef = cooSegsRef.drop_front(); |
| 134 | } else { |
| 135 | // Non COO levels. |
| 136 | l++; |
| 137 | } |
| 138 | } |
| 139 | // The values array. |
| 140 | if (!(callback(fieldIdx++, SparseTensorFieldKind::ValMemRef, kInvalidLevel, |
| 141 | LevelFormat::Undef))) |
| 142 | return; |
| 143 | // Put metadata at the end. |
| 144 | if (!(callback(fieldIdx++, SparseTensorFieldKind::StorageSpec, kInvalidLevel, |
| 145 | LevelFormat::Undef))) |
| 146 | return; |
| 147 | } |
| 148 | |
| 149 | void sparse_tensor::foreachFieldAndTypeInSparseTensor( |
| 150 | SparseTensorType stt, |
| 151 | llvm::function_ref<bool(Type, FieldIndex, SparseTensorFieldKind, Level, |
| 152 | LevelType)> |
| 153 | callback) { |
| 154 | assert(stt.hasEncoding()); |
| 155 | |
| 156 | SmallVector<int64_t> memrefShape = |
| 157 | getSparseFieldShape(stt.getEncoding(), stt.getDimShape()); |
| 158 | |
| 159 | const Type specType = StorageSpecifierType::get(stt.getEncoding()); |
| 160 | // memref<[batch] x ? x pos> positions |
| 161 | const Type posMemType = MemRefType::get(memrefShape, stt.getPosType()); |
| 162 | // memref<[batch] x ? x crd> coordinates |
| 163 | const Type crdMemType = MemRefType::get(memrefShape, stt.getCrdType()); |
| 164 | // memref<[batch] x ? x eltType> values |
| 165 | const Type valMemType = MemRefType::get(memrefShape, stt.getElementType()); |
| 166 | |
| 167 | StorageLayout(stt).foreachField(callback: [specType, posMemType, crdMemType, valMemType, |
| 168 | callback](FieldIndex fieldIdx, |
| 169 | SparseTensorFieldKind fieldKind, |
| 170 | Level lvl, LevelType lt) -> bool { |
| 171 | switch (fieldKind) { |
| 172 | case SparseTensorFieldKind::StorageSpec: |
| 173 | return callback(specType, fieldIdx, fieldKind, lvl, lt); |
| 174 | case SparseTensorFieldKind::PosMemRef: |
| 175 | return callback(posMemType, fieldIdx, fieldKind, lvl, lt); |
| 176 | case SparseTensorFieldKind::CrdMemRef: |
| 177 | return callback(crdMemType, fieldIdx, fieldKind, lvl, lt); |
| 178 | case SparseTensorFieldKind::ValMemRef: |
| 179 | return callback(valMemType, fieldIdx, fieldKind, lvl, lt); |
| 180 | }; |
| 181 | llvm_unreachable("unrecognized field kind" ); |
| 182 | }); |
| 183 | } |
| 184 | |
| 185 | unsigned StorageLayout::getNumFields() const { |
| 186 | unsigned numFields = 0; |
| 187 | foreachField(callback: [&numFields](FieldIndex, SparseTensorFieldKind, Level, |
| 188 | LevelType) -> bool { |
| 189 | numFields++; |
| 190 | return true; |
| 191 | }); |
| 192 | return numFields; |
| 193 | } |
| 194 | |
| 195 | unsigned StorageLayout::getNumDataFields() const { |
| 196 | unsigned numFields = 0; // one value memref |
| 197 | foreachField(callback: [&numFields](FieldIndex fidx, SparseTensorFieldKind, Level, |
| 198 | LevelType) -> bool { |
| 199 | if (fidx >= kDataFieldStartingIdx) |
| 200 | numFields++; |
| 201 | return true; |
| 202 | }); |
| 203 | numFields -= 1; // the last field is StorageSpecifier |
| 204 | assert(numFields == getNumFields() - kDataFieldStartingIdx - 1); |
| 205 | return numFields; |
| 206 | } |
| 207 | |
| 208 | std::pair<FieldIndex, unsigned> |
| 209 | StorageLayout::getFieldIndexAndStride(SparseTensorFieldKind kind, |
| 210 | std::optional<Level> lvl) const { |
| 211 | FieldIndex fieldIdx = kInvalidFieldIndex; |
| 212 | unsigned stride = 1; |
| 213 | if (kind == SparseTensorFieldKind::CrdMemRef) { |
| 214 | assert(lvl.has_value()); |
| 215 | const Level cooStart = enc.getAoSCOOStart(); |
| 216 | const Level lvlRank = enc.getLvlRank(); |
| 217 | if (lvl.value() >= cooStart && lvl.value() < lvlRank) { |
| 218 | lvl = cooStart; |
| 219 | stride = lvlRank - cooStart; |
| 220 | } |
| 221 | } |
| 222 | foreachField(callback: [lvl, kind, &fieldIdx](FieldIndex fIdx, |
| 223 | SparseTensorFieldKind fKind, Level fLvl, |
| 224 | LevelType lt) -> bool { |
| 225 | if ((lvl && fLvl == lvl.value() && kind == fKind) || |
| 226 | (kind == fKind && fKind == SparseTensorFieldKind::ValMemRef)) { |
| 227 | fieldIdx = fIdx; |
| 228 | // Returns false to break the iteration. |
| 229 | return false; |
| 230 | } |
| 231 | return true; |
| 232 | }); |
| 233 | assert(fieldIdx != kInvalidFieldIndex); |
| 234 | return std::pair<FieldIndex, unsigned>(fieldIdx, stride); |
| 235 | } |
| 236 | |
| 237 | //===----------------------------------------------------------------------===// |
| 238 | // SparseTensorDialect Attribute Methods. |
| 239 | //===----------------------------------------------------------------------===// |
| 240 | |
| 241 | std::optional<uint64_t> SparseTensorDimSliceAttr::getStatic(int64_t v) { |
| 242 | return isDynamic(v) ? std::nullopt |
| 243 | : std::make_optional(static_cast<uint64_t>(v)); |
| 244 | } |
| 245 | |
| 246 | std::optional<uint64_t> SparseTensorDimSliceAttr::getStaticOffset() const { |
| 247 | return getStatic(getOffset()); |
| 248 | } |
| 249 | |
| 250 | std::optional<uint64_t> SparseTensorDimSliceAttr::getStaticStride() const { |
| 251 | return getStatic(getStride()); |
| 252 | } |
| 253 | |
| 254 | std::optional<uint64_t> SparseTensorDimSliceAttr::getStaticSize() const { |
| 255 | return getStatic(getSize()); |
| 256 | } |
| 257 | |
| 258 | bool SparseTensorDimSliceAttr::isCompletelyDynamic() const { |
| 259 | return isDynamic(getOffset()) && isDynamic(getStride()) && |
| 260 | isDynamic(getSize()); |
| 261 | } |
| 262 | |
| 263 | std::string SparseTensorDimSliceAttr::getStaticString(int64_t v) { |
| 264 | return isDynamic(v) ? "?" : std::to_string(v); |
| 265 | } |
| 266 | |
| 267 | void SparseTensorDimSliceAttr::print(llvm::raw_ostream &os) const { |
| 268 | assert(getImpl() && "Uninitialized SparseTensorDimSliceAttr" ); |
| 269 | os << '('; |
| 270 | os << getStaticString(getOffset()); |
| 271 | os << ", " ; |
| 272 | os << getStaticString(getSize()); |
| 273 | os << ", " ; |
| 274 | os << getStaticString(getStride()); |
| 275 | os << ')'; |
| 276 | } |
| 277 | |
| 278 | void SparseTensorDimSliceAttr::print(AsmPrinter &printer) const { |
| 279 | print(printer.getStream()); |
| 280 | } |
| 281 | |
| 282 | static ParseResult parseOptionalStaticSlice(int64_t &result, |
| 283 | AsmParser &parser) { |
| 284 | auto parseResult = parser.parseOptionalInteger(result); |
| 285 | if (parseResult.has_value()) { |
| 286 | if (parseResult.value().succeeded() && result < 0) { |
| 287 | parser.emitError( |
| 288 | loc: parser.getCurrentLocation(), |
| 289 | message: "expect positive value or ? for slice offset/size/stride" ); |
| 290 | return failure(); |
| 291 | } |
| 292 | return parseResult.value(); |
| 293 | } |
| 294 | |
| 295 | // Else, and '?' which represented dynamic slice |
| 296 | result = SparseTensorDimSliceAttr::kDynamic; |
| 297 | return parser.parseQuestion(); |
| 298 | } |
| 299 | |
| 300 | Attribute SparseTensorDimSliceAttr::parse(AsmParser &parser, Type type) { |
| 301 | int64_t offset = kDynamic, size = kDynamic, stride = kDynamic; |
| 302 | |
| 303 | if (failed(parser.parseLParen()) || |
| 304 | failed(parseOptionalStaticSlice(offset, parser)) || |
| 305 | failed(parser.parseComma()) || |
| 306 | failed(parseOptionalStaticSlice(size, parser)) || |
| 307 | failed(parser.parseComma()) || |
| 308 | failed(parseOptionalStaticSlice(stride, parser)) || |
| 309 | failed(parser.parseRParen())) |
| 310 | return {}; |
| 311 | |
| 312 | return parser.getChecked<SparseTensorDimSliceAttr>(parser.getContext(), |
| 313 | offset, size, stride); |
| 314 | } |
| 315 | |
| 316 | LogicalResult |
| 317 | SparseTensorDimSliceAttr::verify(function_ref<InFlightDiagnostic()> emitError, |
| 318 | int64_t offset, int64_t size, int64_t stride) { |
| 319 | if (!isDynamic(offset) && offset < 0) |
| 320 | return emitError() << "expect non-negative value or ? for slice offset" ; |
| 321 | if (!isDynamic(size) && size <= 0) |
| 322 | return emitError() << "expect positive value or ? for slice size" ; |
| 323 | if (!isDynamic(stride) && stride <= 0) |
| 324 | return emitError() << "expect positive value or ? for slice stride" ; |
| 325 | return success(); |
| 326 | } |
| 327 | |
| 328 | SparseTensorEncodingAttr |
| 329 | SparseTensorEncodingAttr::withDimToLvl(AffineMap dimToLvl) const { |
| 330 | assert(getImpl() && "Uninitialized SparseTensorEncodingAttr" ); |
| 331 | return SparseTensorEncodingAttr::get( |
| 332 | getContext(), getLvlTypes(), dimToLvl, AffineMap(), getPosWidth(), |
| 333 | getCrdWidth(), getExplicitVal(), getImplicitVal()); |
| 334 | } |
| 335 | |
| 336 | SparseTensorEncodingAttr |
| 337 | SparseTensorEncodingAttr::withDimToLvl(SparseTensorEncodingAttr enc) const { |
| 338 | return withDimToLvl(enc ? enc.getDimToLvl() : AffineMap()); |
| 339 | } |
| 340 | |
| 341 | SparseTensorEncodingAttr SparseTensorEncodingAttr::withoutDimToLvl() const { |
| 342 | return withDimToLvl(AffineMap()); |
| 343 | } |
| 344 | |
| 345 | SparseTensorEncodingAttr |
| 346 | SparseTensorEncodingAttr::withBitWidths(unsigned posWidth, |
| 347 | unsigned crdWidth) const { |
| 348 | assert(getImpl() && "Uninitialized SparseTensorEncodingAttr" ); |
| 349 | return SparseTensorEncodingAttr::get( |
| 350 | getContext(), getLvlTypes(), getDimToLvl(), getLvlToDim(), posWidth, |
| 351 | crdWidth, getExplicitVal(), getImplicitVal()); |
| 352 | } |
| 353 | |
| 354 | SparseTensorEncodingAttr SparseTensorEncodingAttr::withoutBitWidths() const { |
| 355 | return withBitWidths(0, 0); |
| 356 | } |
| 357 | |
| 358 | SparseTensorEncodingAttr |
| 359 | SparseTensorEncodingAttr::withExplicitVal(Attribute explicitVal) const { |
| 360 | assert(getImpl() && "Uninitialized SparseTensorEncodingAttr" ); |
| 361 | return SparseTensorEncodingAttr::get( |
| 362 | getContext(), getLvlTypes(), getDimToLvl(), getLvlToDim(), getPosWidth(), |
| 363 | getCrdWidth(), explicitVal, getImplicitVal()); |
| 364 | } |
| 365 | |
| 366 | SparseTensorEncodingAttr SparseTensorEncodingAttr::withoutExplicitVal() const { |
| 367 | return withExplicitVal(Attribute()); |
| 368 | } |
| 369 | |
| 370 | SparseTensorEncodingAttr |
| 371 | SparseTensorEncodingAttr::withImplicitVal(Attribute implicitVal) const { |
| 372 | assert(getImpl() && "Uninitialized SparseTensorEncodingAttr" ); |
| 373 | return SparseTensorEncodingAttr::get( |
| 374 | getContext(), getLvlTypes(), getDimToLvl(), getLvlToDim(), getPosWidth(), |
| 375 | getCrdWidth(), getExplicitVal(), implicitVal); |
| 376 | } |
| 377 | |
| 378 | SparseTensorEncodingAttr SparseTensorEncodingAttr::withoutImplicitVal() const { |
| 379 | return withImplicitVal(Attribute()); |
| 380 | } |
| 381 | |
| 382 | SparseTensorEncodingAttr SparseTensorEncodingAttr::withDimSlices( |
| 383 | ArrayRef<SparseTensorDimSliceAttr> dimSlices) const { |
| 384 | return SparseTensorEncodingAttr::get( |
| 385 | getContext(), getLvlTypes(), getDimToLvl(), getLvlToDim(), getPosWidth(), |
| 386 | getCrdWidth(), getExplicitVal(), getImplicitVal(), dimSlices); |
| 387 | } |
| 388 | |
| 389 | SparseTensorEncodingAttr SparseTensorEncodingAttr::withoutDimSlices() const { |
| 390 | return withDimSlices(ArrayRef<SparseTensorDimSliceAttr>{}); |
| 391 | } |
| 392 | |
| 393 | uint64_t SparseTensorEncodingAttr::getBatchLvlRank() const { |
| 394 | ArrayRef<LevelType> lvlTypes = getLvlTypes(); |
| 395 | auto lastBatch = std::find_if(lvlTypes.rbegin(), lvlTypes.rend(), isBatchLT); |
| 396 | return std::distance(lastBatch, lvlTypes.rend()); |
| 397 | } |
| 398 | |
| 399 | bool SparseTensorEncodingAttr::isAllDense() const { |
| 400 | return !getImpl() || llvm::all_of(getLvlTypes(), isDenseLT); |
| 401 | } |
| 402 | |
| 403 | bool SparseTensorEncodingAttr::isAllOrdered() const { |
| 404 | return !getImpl() || llvm::all_of(getLvlTypes(), isOrderedLT); |
| 405 | } |
| 406 | |
| 407 | Type SparseTensorEncodingAttr::getCrdElemType() const { |
| 408 | if (!getImpl()) |
| 409 | return nullptr; |
| 410 | if (getCrdWidth()) |
| 411 | return IntegerType::get(getContext(), getCrdWidth()); |
| 412 | return IndexType::get(getContext()); |
| 413 | } |
| 414 | |
| 415 | Type SparseTensorEncodingAttr::getPosElemType() const { |
| 416 | if (!getImpl()) |
| 417 | return nullptr; |
| 418 | if (getPosWidth()) |
| 419 | return IntegerType::get(getContext(), getPosWidth()); |
| 420 | return IndexType::get(getContext()); |
| 421 | } |
| 422 | |
| 423 | MemRefType SparseTensorEncodingAttr::getCrdMemRefType( |
| 424 | std::optional<ArrayRef<int64_t>> dimShape) const { |
| 425 | SmallVector<Size> shape = getSparseFieldShape(*this, dimShape); |
| 426 | return MemRefType::get(shape, getCrdElemType()); |
| 427 | } |
| 428 | |
| 429 | MemRefType SparseTensorEncodingAttr::getPosMemRefType( |
| 430 | std::optional<ArrayRef<int64_t>> dimShape) const { |
| 431 | SmallVector<Size> shape = getSparseFieldShape(*this, dimShape); |
| 432 | return MemRefType::get(shape, getPosElemType()); |
| 433 | } |
| 434 | |
| 435 | bool SparseTensorEncodingAttr::isIdentity() const { |
| 436 | return !getImpl() || !getDimToLvl() || getDimToLvl().isIdentity(); |
| 437 | } |
| 438 | |
| 439 | bool SparseTensorEncodingAttr::isPermutation() const { |
| 440 | return !getImpl() || !getDimToLvl() || getDimToLvl().isPermutation(); |
| 441 | } |
| 442 | |
| 443 | Dimension SparseTensorEncodingAttr::getDimRank() const { |
| 444 | assert(getImpl() && "Uninitialized SparseTensorEncodingAttr" ); |
| 445 | const auto dimToLvl = getDimToLvl(); |
| 446 | return dimToLvl ? dimToLvl.getNumDims() : getLvlRank(); |
| 447 | } |
| 448 | |
| 449 | Level SparseTensorEncodingAttr::getLvlRank() const { |
| 450 | assert(getImpl() && "Uninitialized SparseTensorEncodingAttr" ); |
| 451 | return getLvlTypes().size(); |
| 452 | } |
| 453 | |
| 454 | LevelType SparseTensorEncodingAttr::getLvlType(Level l) const { |
| 455 | if (!getImpl()) |
| 456 | return LevelFormat::Batch; |
| 457 | assert(l < getLvlRank() && "Level is out of bounds" ); |
| 458 | return getLvlTypes()[l]; |
| 459 | } |
| 460 | |
| 461 | bool SparseTensorEncodingAttr::isSlice() const { |
| 462 | assert(getImpl() && "Uninitialized SparseTensorEncodingAttr" ); |
| 463 | return !getDimSlices().empty(); |
| 464 | } |
| 465 | |
| 466 | SparseTensorDimSliceAttr |
| 467 | SparseTensorEncodingAttr::getDimSlice(Dimension dim) const { |
| 468 | assert(isSlice() && "Is not a slice" ); |
| 469 | const auto dimSlices = getDimSlices(); |
| 470 | assert(dim < dimSlices.size() && "Dimension is out of bounds" ); |
| 471 | return dimSlices[dim]; |
| 472 | } |
| 473 | |
| 474 | std::optional<uint64_t> |
| 475 | SparseTensorEncodingAttr::getStaticDimSliceOffset(Dimension dim) const { |
| 476 | return getDimSlice(dim).getStaticOffset(); |
| 477 | } |
| 478 | |
| 479 | std::optional<uint64_t> |
| 480 | SparseTensorEncodingAttr::getStaticDimSliceStride(Dimension dim) const { |
| 481 | return getDimSlice(dim).getStaticStride(); |
| 482 | } |
| 483 | |
| 484 | std::optional<uint64_t> |
| 485 | SparseTensorEncodingAttr::getStaticLvlSliceOffset(Level lvl) const { |
| 486 | return getStaticDimSliceOffset(toDim(*this, lvl)); |
| 487 | } |
| 488 | |
| 489 | std::optional<uint64_t> |
| 490 | SparseTensorEncodingAttr::getStaticLvlSliceStride(Level lvl) const { |
| 491 | return getStaticDimSliceStride(toDim(*this, lvl)); |
| 492 | } |
| 493 | |
| 494 | SmallVector<int64_t> |
| 495 | SparseTensorEncodingAttr::translateShape(ArrayRef<int64_t> srcShape, |
| 496 | CrdTransDirectionKind dir) const { |
| 497 | if (isIdentity()) |
| 498 | return SmallVector<int64_t>(srcShape); |
| 499 | |
| 500 | SmallVector<int64_t> ret; |
| 501 | unsigned rank = |
| 502 | dir == CrdTransDirectionKind::dim2lvl ? getLvlRank() : getDimRank(); |
| 503 | ret.reserve(rank); |
| 504 | |
| 505 | if (isPermutation()) { |
| 506 | for (unsigned r = 0; r < rank; r++) { |
| 507 | unsigned trans = dir == CrdTransDirectionKind::dim2lvl ? toDim(*this, r) |
| 508 | : toLvl(*this, r); |
| 509 | ret.push_back(srcShape[trans]); |
| 510 | } |
| 511 | return ret; |
| 512 | } |
| 513 | |
| 514 | // Handle non-permutation maps. |
| 515 | AffineMap transMap = |
| 516 | dir == CrdTransDirectionKind::dim2lvl ? getDimToLvl() : getLvlToDim(); |
| 517 | |
| 518 | SmallVector<AffineExpr> dimRep; |
| 519 | dimRep.reserve(srcShape.size()); |
| 520 | for (int64_t sz : srcShape) { |
| 521 | if (!ShapedType::isDynamic(sz)) { |
| 522 | // Push back the max coordinate for the given dimension/level size. |
| 523 | dimRep.push_back(getAffineConstantExpr(sz - 1, getContext())); |
| 524 | } else { |
| 525 | // A dynamic size, use a AffineDimExpr to symbolize the value. |
| 526 | dimRep.push_back(getAffineDimExpr(dimRep.size(), getContext())); |
| 527 | } |
| 528 | }; |
| 529 | |
| 530 | for (AffineExpr exp : transMap.getResults()) { |
| 531 | // Do constant propagation on the affine map. |
| 532 | AffineExpr evalExp = |
| 533 | simplifyAffineExpr(exp.replaceDims(dimRep), srcShape.size(), 0); |
| 534 | // use llvm namespace here to avoid ambiguity |
| 535 | if (auto c = llvm::dyn_cast<AffineConstantExpr>(evalExp)) { |
| 536 | ret.push_back(c.getValue() + 1); |
| 537 | } else { |
| 538 | if (auto mod = llvm::dyn_cast<AffineBinaryOpExpr>(evalExp); |
| 539 | mod && mod.getKind() == AffineExprKind::Mod) { |
| 540 | // We can still infer a static bound for expressions in form |
| 541 | // "d % constant" since d % constant \in [0, constant). |
| 542 | if (auto bound = llvm::dyn_cast<AffineConstantExpr>(mod.getRHS())) { |
| 543 | ret.push_back(bound.getValue()); |
| 544 | continue; |
| 545 | } |
| 546 | } |
| 547 | ret.push_back(ShapedType::kDynamic); |
| 548 | } |
| 549 | } |
| 550 | assert(ret.size() == rank); |
| 551 | return ret; |
| 552 | } |
| 553 | |
| 554 | ValueRange |
| 555 | SparseTensorEncodingAttr::translateCrds(OpBuilder &builder, Location loc, |
| 556 | ValueRange crds, |
| 557 | CrdTransDirectionKind dir) const { |
| 558 | if (!getImpl()) |
| 559 | return crds; |
| 560 | |
| 561 | SmallVector<Type> retType( |
| 562 | dir == CrdTransDirectionKind::lvl2dim ? getDimRank() : getLvlRank(), |
| 563 | builder.getIndexType()); |
| 564 | auto transOp = builder.create<CrdTranslateOp>(loc, retType, crds, dir, *this); |
| 565 | return transOp.getOutCrds(); |
| 566 | } |
| 567 | |
| 568 | Attribute SparseTensorEncodingAttr::parse(AsmParser &parser, Type type) { |
| 569 | // Open "<{" part. |
| 570 | if (failed(parser.parseLess())) |
| 571 | return {}; |
| 572 | if (failed(parser.parseLBrace())) |
| 573 | return {}; |
| 574 | |
| 575 | // Process the data from the parsed dictionary value into struct-like data. |
| 576 | SmallVector<LevelType> lvlTypes; |
| 577 | SmallVector<SparseTensorDimSliceAttr> dimSlices; |
| 578 | AffineMap dimToLvl = {}; |
| 579 | AffineMap lvlToDim = {}; |
| 580 | unsigned posWidth = 0; |
| 581 | unsigned crdWidth = 0; |
| 582 | Attribute explicitVal; |
| 583 | Attribute implicitVal; |
| 584 | StringRef attrName; |
| 585 | SmallVector<StringRef, 5> keys = {"map" , "posWidth" , "crdWidth" , |
| 586 | "explicitVal" , "implicitVal" }; |
| 587 | while (succeeded(parser.parseOptionalKeyword(&attrName))) { |
| 588 | // Detect admissible keyword. |
| 589 | auto *it = find(keys, attrName); |
| 590 | if (it == keys.end()) { |
| 591 | parser.emitError(parser.getNameLoc(), "unexpected key: " ) << attrName; |
| 592 | return {}; |
| 593 | } |
| 594 | unsigned keyWordIndex = it - keys.begin(); |
| 595 | // Consume the `=` after keys |
| 596 | if (failed(parser.parseEqual())) |
| 597 | return {}; |
| 598 | // Dispatch on keyword. |
| 599 | switch (keyWordIndex) { |
| 600 | case 0: { // map |
| 601 | ir_detail::DimLvlMapParser cParser(parser); |
| 602 | auto res = cParser.parseDimLvlMap(); |
| 603 | if (failed(res)) |
| 604 | return {}; |
| 605 | const auto &dlm = *res; |
| 606 | |
| 607 | const Level lvlRank = dlm.getLvlRank(); |
| 608 | for (Level lvl = 0; lvl < lvlRank; lvl++) |
| 609 | lvlTypes.push_back(dlm.getLvlType(lvl)); |
| 610 | |
| 611 | const Dimension dimRank = dlm.getDimRank(); |
| 612 | for (Dimension dim = 0; dim < dimRank; dim++) |
| 613 | dimSlices.push_back(dlm.getDimSlice(dim)); |
| 614 | // NOTE: the old syntax requires an all-or-nothing approach to |
| 615 | // `dimSlices`; therefore, if any slice actually exists then we need |
| 616 | // to convert null-DSA into default/nop DSA. |
| 617 | const auto isDefined = [](SparseTensorDimSliceAttr slice) { |
| 618 | return static_cast<bool>(slice.getImpl()); |
| 619 | }; |
| 620 | if (llvm::any_of(dimSlices, isDefined)) { |
| 621 | const auto defaultSlice = |
| 622 | SparseTensorDimSliceAttr::get(parser.getContext()); |
| 623 | for (Dimension dim = 0; dim < dimRank; dim++) |
| 624 | if (!isDefined(dimSlices[dim])) |
| 625 | dimSlices[dim] = defaultSlice; |
| 626 | } else { |
| 627 | dimSlices.clear(); |
| 628 | } |
| 629 | |
| 630 | dimToLvl = dlm.getDimToLvlMap(parser.getContext()); |
| 631 | lvlToDim = dlm.getLvlToDimMap(parser.getContext()); |
| 632 | break; |
| 633 | } |
| 634 | case 1: { // posWidth |
| 635 | Attribute attr; |
| 636 | if (failed(parser.parseAttribute(attr))) |
| 637 | return {}; |
| 638 | auto intAttr = llvm::dyn_cast<IntegerAttr>(attr); |
| 639 | if (!intAttr) { |
| 640 | parser.emitError(parser.getNameLoc(), |
| 641 | "expected an integral position bitwidth" ); |
| 642 | return {}; |
| 643 | } |
| 644 | posWidth = intAttr.getInt(); |
| 645 | break; |
| 646 | } |
| 647 | case 2: { // crdWidth |
| 648 | Attribute attr; |
| 649 | if (failed(parser.parseAttribute(attr))) |
| 650 | return {}; |
| 651 | auto intAttr = llvm::dyn_cast<IntegerAttr>(attr); |
| 652 | if (!intAttr) { |
| 653 | parser.emitError(parser.getNameLoc(), |
| 654 | "expected an integral index bitwidth" ); |
| 655 | return {}; |
| 656 | } |
| 657 | crdWidth = intAttr.getInt(); |
| 658 | break; |
| 659 | } |
| 660 | case 3: { // explicitVal |
| 661 | Attribute attr; |
| 662 | if (failed(parser.parseAttribute(attr))) |
| 663 | return {}; |
| 664 | if (auto result = llvm::dyn_cast<FloatAttr>(attr)) { |
| 665 | explicitVal = result; |
| 666 | } else if (auto result = llvm::dyn_cast<IntegerAttr>(attr)) { |
| 667 | explicitVal = result; |
| 668 | } else if (auto result = llvm::dyn_cast<complex::NumberAttr>(attr)) { |
| 669 | explicitVal = result; |
| 670 | } else { |
| 671 | parser.emitError(parser.getNameLoc(), |
| 672 | "expected a numeric value for explicitVal" ); |
| 673 | return {}; |
| 674 | } |
| 675 | break; |
| 676 | } |
| 677 | case 4: { // implicitVal |
| 678 | Attribute attr; |
| 679 | if (failed(parser.parseAttribute(attr))) |
| 680 | return {}; |
| 681 | if (auto result = llvm::dyn_cast<FloatAttr>(attr)) { |
| 682 | implicitVal = result; |
| 683 | } else if (auto result = llvm::dyn_cast<IntegerAttr>(attr)) { |
| 684 | implicitVal = result; |
| 685 | } else if (auto result = llvm::dyn_cast<complex::NumberAttr>(attr)) { |
| 686 | implicitVal = result; |
| 687 | } else { |
| 688 | parser.emitError(parser.getNameLoc(), |
| 689 | "expected a numeric value for implicitVal" ); |
| 690 | return {}; |
| 691 | } |
| 692 | break; |
| 693 | } |
| 694 | } // switch |
| 695 | // Only last item can omit the comma. |
| 696 | if (parser.parseOptionalComma().failed()) |
| 697 | break; |
| 698 | } |
| 699 | |
| 700 | // Close "}>" part. |
| 701 | if (failed(parser.parseRBrace())) |
| 702 | return {}; |
| 703 | if (failed(parser.parseGreater())) |
| 704 | return {}; |
| 705 | |
| 706 | // Construct struct-like storage for attribute. |
| 707 | if (!lvlToDim || lvlToDim.isEmpty()) { |
| 708 | lvlToDim = inferLvlToDim(dimToLvl, parser.getContext()); |
| 709 | } |
| 710 | return parser.getChecked<SparseTensorEncodingAttr>( |
| 711 | parser.getContext(), lvlTypes, dimToLvl, lvlToDim, posWidth, crdWidth, |
| 712 | explicitVal, implicitVal, dimSlices); |
| 713 | } |
| 714 | |
| 715 | void SparseTensorEncodingAttr::print(AsmPrinter &printer) const { |
| 716 | auto map = static_cast<AffineMap>(getDimToLvl()); |
| 717 | // Empty affine map indicates identity map |
| 718 | if (!map) |
| 719 | map = AffineMap::getMultiDimIdentityMap(getLvlTypes().size(), getContext()); |
| 720 | printer << "<{ map = " ; |
| 721 | printSymbols(map, printer); |
| 722 | printer << '('; |
| 723 | printDimensions(map, printer, getDimSlices()); |
| 724 | printer << ") -> (" ; |
| 725 | printLevels(map, printer, getLvlTypes()); |
| 726 | printer << ')'; |
| 727 | // Print remaining members only for non-default values. |
| 728 | if (getPosWidth()) |
| 729 | printer << ", posWidth = " << getPosWidth(); |
| 730 | if (getCrdWidth()) |
| 731 | printer << ", crdWidth = " << getCrdWidth(); |
| 732 | if (getExplicitVal()) { |
| 733 | printer << ", explicitVal = " << getExplicitVal(); |
| 734 | } |
| 735 | if (getImplicitVal()) |
| 736 | printer << ", implicitVal = " << getImplicitVal(); |
| 737 | printer << " }>" ; |
| 738 | } |
| 739 | |
| 740 | void SparseTensorEncodingAttr::printSymbols(AffineMap &map, |
| 741 | AsmPrinter &printer) const { |
| 742 | if (map.getNumSymbols() == 0) |
| 743 | return; |
| 744 | printer << '['; |
| 745 | for (unsigned i = 0, n = map.getNumSymbols() - 1; i < n; i++) |
| 746 | printer << 's' << i << ", " ; |
| 747 | if (map.getNumSymbols() >= 1) |
| 748 | printer << 's' << map.getNumSymbols() - 1; |
| 749 | printer << ']'; |
| 750 | } |
| 751 | |
| 752 | void SparseTensorEncodingAttr::printDimensions( |
| 753 | AffineMap &map, AsmPrinter &printer, |
| 754 | ArrayRef<SparseTensorDimSliceAttr> dimSlices) const { |
| 755 | if (!dimSlices.empty()) { |
| 756 | for (unsigned i = 0, n = map.getNumDims() - 1; i < n; i++) |
| 757 | printer << 'd' << i << " : " << dimSlices[i] << ", " ; |
| 758 | if (map.getNumDims() >= 1) { |
| 759 | printer << 'd' << map.getNumDims() - 1 << " : " |
| 760 | << dimSlices[map.getNumDims() - 1]; |
| 761 | } |
| 762 | } else { |
| 763 | for (unsigned i = 0, n = map.getNumDims() - 1; i < n; i++) |
| 764 | printer << 'd' << i << ", " ; |
| 765 | if (map.getNumDims() >= 1) |
| 766 | printer << 'd' << map.getNumDims() - 1; |
| 767 | } |
| 768 | } |
| 769 | |
| 770 | void SparseTensorEncodingAttr::printLevels(AffineMap &map, AsmPrinter &printer, |
| 771 | ArrayRef<LevelType> lvlTypes) const { |
| 772 | for (unsigned i = 0, n = map.getNumResults() - 1; i < n; i++) { |
| 773 | map.getResult(i).print(printer.getStream()); |
| 774 | printer << " : " << toMLIRString(lvlTypes[i]) << ", " ; |
| 775 | } |
| 776 | if (map.getNumResults() >= 1) { |
| 777 | auto lastIndex = map.getNumResults() - 1; |
| 778 | map.getResult(lastIndex).print(printer.getStream()); |
| 779 | printer << " : " << toMLIRString(lvlTypes[lastIndex]); |
| 780 | } |
| 781 | } |
| 782 | |
| 783 | LogicalResult SparseTensorEncodingAttr::verify( |
| 784 | function_ref<InFlightDiagnostic()> emitError, ArrayRef<LevelType> lvlTypes, |
| 785 | AffineMap dimToLvl, AffineMap lvlToDim, unsigned posWidth, |
| 786 | unsigned crdWidth, Attribute explicitVal, Attribute implicitVal, |
| 787 | ArrayRef<SparseTensorDimSliceAttr> dimSlices) { |
| 788 | if (!acceptBitWidth(posWidth)) |
| 789 | return emitError() << "unexpected position bitwidth: " << posWidth; |
| 790 | if (!acceptBitWidth(crdWidth)) |
| 791 | return emitError() << "unexpected coordinate bitwidth: " << crdWidth; |
| 792 | |
| 793 | // Verify every COO segment. |
| 794 | auto *it = llvm::find_if(lvlTypes, isSingletonLT); |
| 795 | while (it != lvlTypes.end()) { |
| 796 | if (it == lvlTypes.begin() || |
| 797 | !(it - 1)->isa<LevelFormat::Compressed, LevelFormat::LooseCompressed>()) |
| 798 | return emitError() << "expected compressed or loose_compressed level " |
| 799 | "before singleton level" ; |
| 800 | |
| 801 | auto *curCOOEnd = std::find_if_not(it, lvlTypes.end(), isSingletonLT); |
| 802 | if (!std::all_of(it, curCOOEnd, isSingletonLT)) |
| 803 | return emitError() << "expected all singleton lvlTypes " |
| 804 | "following a singleton level" ; |
| 805 | // We can potentially support mixed SoA/AoS singleton levels. |
| 806 | if (!std::all_of(it, curCOOEnd, [it](LevelType i) { |
| 807 | return it->isa<LevelPropNonDefault::SoA>() == |
| 808 | i.isa<LevelPropNonDefault::SoA>(); |
| 809 | })) { |
| 810 | return emitError() << "expected all singleton lvlTypes stored in the " |
| 811 | "same memory layout (SoA vs AoS)." ; |
| 812 | } |
| 813 | it = std::find_if(curCOOEnd, lvlTypes.end(), isSingletonLT); |
| 814 | } |
| 815 | |
| 816 | auto lastBatch = std::find_if(lvlTypes.rbegin(), lvlTypes.rend(), isBatchLT); |
| 817 | if (!std::all_of(lastBatch, lvlTypes.rend(), isBatchLT)) |
| 818 | return emitError() << "Batch lvlType can only be leading levels." ; |
| 819 | |
| 820 | // SoA property can only be applied on singleton level. |
| 821 | auto soaLvls = llvm::make_filter_range(lvlTypes, [](LevelType lt) { |
| 822 | return lt.isa<LevelPropNonDefault::SoA>(); |
| 823 | }); |
| 824 | if (llvm::any_of(soaLvls, [](LevelType lt) { |
| 825 | return !lt.isa<LevelFormat::Singleton>(); |
| 826 | })) { |
| 827 | return emitError() << "SoA is only applicable to singleton lvlTypes." ; |
| 828 | } |
| 829 | |
| 830 | // TODO: audit formats that actually are supported by backend. |
| 831 | if (auto it = llvm::find_if(lvlTypes, isNOutOfMLT); |
| 832 | it != std::end(lvlTypes)) { |
| 833 | if (it != lvlTypes.end() - 1) |
| 834 | return emitError() << "expected n_out_of_m to be the last level type" ; |
| 835 | if (!std::all_of(lvlTypes.begin(), it, isDenseLT)) |
| 836 | return emitError() << "expected all dense lvlTypes " |
| 837 | "before a n_out_of_m level" ; |
| 838 | if (dimToLvl && (dimToLvl.getNumDims() != dimToLvl.getNumResults())) { |
| 839 | if (!isBlockSparsity(dimToLvl)) { |
| 840 | return emitError() |
| 841 | << "expected 1xm block structure for n_out_of_m level" ; |
| 842 | } |
| 843 | auto sizes = getBlockSize(dimToLvl); |
| 844 | unsigned coefficient = 0; |
| 845 | for (const auto &elem : sizes) { |
| 846 | if (elem != 0) { |
| 847 | if (elem != coefficient && coefficient != 0) { |
| 848 | return emitError() << "expected only one blocked level " |
| 849 | "with the same coefficients" ; |
| 850 | } |
| 851 | coefficient = elem; |
| 852 | } |
| 853 | } |
| 854 | if (coefficient != getM(*it)) { |
| 855 | return emitError() << "expected coeffiencts of Affine expressions " |
| 856 | "to be equal to m of n_out_of_m level" ; |
| 857 | } |
| 858 | } |
| 859 | } |
| 860 | // Before we can check that the level-rank is consistent/coherent |
| 861 | // across all fields, we need to define it. The source-of-truth for |
| 862 | // the `getLvlRank` method is the length of the level-types array, |
| 863 | // since it must always be provided and have full rank; therefore we |
| 864 | // use that same source-of-truth here. |
| 865 | const Level lvlRank = lvlTypes.size(); |
| 866 | if (lvlRank == 0) |
| 867 | return emitError() << "expected a non-empty array for lvlTypes" ; |
| 868 | // We save `dimRank` here because we'll also need it to verify `dimSlices`. |
| 869 | const Dimension dimRank = dimToLvl ? dimToLvl.getNumDims() : lvlRank; |
| 870 | if (dimToLvl) { |
| 871 | if (dimToLvl.getNumResults() != lvlRank) |
| 872 | return emitError() |
| 873 | << "level-rank mismatch between dimToLvl and lvlTypes: " |
| 874 | << dimToLvl.getNumResults() << " != " << lvlRank; |
| 875 | auto inferRes = inferLvlToDim(dimToLvl, dimToLvl.getContext()); |
| 876 | // Symbols can't be inferred but are acceptable. |
| 877 | if (!inferRes && dimToLvl.getNumSymbols() == 0) |
| 878 | return emitError() << "failed to infer lvlToDim from dimToLvl" ; |
| 879 | if (lvlToDim && (inferRes != lvlToDim)) |
| 880 | return emitError() << "expected lvlToDim to be an inverse of dimToLvl" ; |
| 881 | if (dimRank > lvlRank) |
| 882 | return emitError() << "unexpected dimToLvl mapping from " << dimRank |
| 883 | << " to " << lvlRank; |
| 884 | } |
| 885 | if (!dimSlices.empty()) { |
| 886 | if (dimSlices.size() != dimRank) |
| 887 | return emitError() |
| 888 | << "dimension-rank mismatch between dimSlices and dimToLvl: " |
| 889 | << dimSlices.size() << " != " << dimRank; |
| 890 | // Compiler support for `dimSlices` currently requires that the two |
| 891 | // ranks agree. (However, it does allow `dimToLvl` to be a permutation.) |
| 892 | if (dimRank != lvlRank) |
| 893 | return emitError() |
| 894 | << "dimSlices expected dimension-rank to match level-rank: " |
| 895 | << dimRank << " != " << lvlRank; |
| 896 | } |
| 897 | return success(); |
| 898 | } |
| 899 | |
| 900 | LogicalResult SparseTensorEncodingAttr::verifyEncoding( |
| 901 | ArrayRef<Size> dimShape, Type elementType, |
| 902 | function_ref<InFlightDiagnostic()> emitError) const { |
| 903 | // Check structural integrity. In particular, this ensures that the |
| 904 | // level-rank is coherent across all the fields. |
| 905 | if (failed(verify(emitError, getLvlTypes(), getDimToLvl(), getLvlToDim(), |
| 906 | getPosWidth(), getCrdWidth(), getExplicitVal(), |
| 907 | getImplicitVal(), getDimSlices()))) |
| 908 | return failure(); |
| 909 | // Check integrity with tensor type specifics. In particular, we |
| 910 | // need only check that the dimension-rank of the tensor agrees with |
| 911 | // the dimension-rank of the encoding. |
| 912 | const Dimension dimRank = dimShape.size(); |
| 913 | if (dimRank == 0) |
| 914 | return emitError() << "expected non-scalar sparse tensor" ; |
| 915 | if (getDimRank() != dimRank) |
| 916 | return emitError() |
| 917 | << "dimension-rank mismatch between encoding and tensor shape: " |
| 918 | << getDimRank() << " != " << dimRank; |
| 919 | if (auto expVal = getExplicitVal()) { |
| 920 | Type attrType = llvm::dyn_cast<TypedAttr>(expVal).getType(); |
| 921 | if (attrType != elementType) { |
| 922 | return emitError() << "explicit value type mismatch between encoding and " |
| 923 | << "tensor element type: " << attrType |
| 924 | << " != " << elementType; |
| 925 | } |
| 926 | } |
| 927 | if (auto impVal = getImplicitVal()) { |
| 928 | Type attrType = llvm::dyn_cast<TypedAttr>(impVal).getType(); |
| 929 | if (attrType != elementType) { |
| 930 | return emitError() << "implicit value type mismatch between encoding and " |
| 931 | << "tensor element type: " << attrType |
| 932 | << " != " << elementType; |
| 933 | } |
| 934 | // Currently, we only support zero as the implicit value. |
| 935 | auto impFVal = llvm::dyn_cast<FloatAttr>(impVal); |
| 936 | auto impIntVal = llvm::dyn_cast<IntegerAttr>(impVal); |
| 937 | auto impComplexVal = llvm::dyn_cast<complex::NumberAttr>(impVal); |
| 938 | if ((impFVal && impFVal.getValue().isNonZero()) || |
| 939 | (impIntVal && !impIntVal.getValue().isZero()) || |
| 940 | (impComplexVal && (impComplexVal.getImag().isNonZero() || |
| 941 | impComplexVal.getReal().isNonZero()))) { |
| 942 | return emitError() << "implicit value must be zero" ; |
| 943 | } |
| 944 | } |
| 945 | return success(); |
| 946 | } |
| 947 | |
| 948 | Level mlir::sparse_tensor::SparseTensorEncodingAttr::getAoSCOOStart() const { |
| 949 | SmallVector<COOSegment> coo = getCOOSegments(); |
| 950 | assert(coo.size() == 1 || coo.empty()); |
| 951 | if (!coo.empty() && coo.front().isAoS()) { |
| 952 | return coo.front().lvlRange.first; |
| 953 | } |
| 954 | return getLvlRank(); |
| 955 | } |
| 956 | |
| 957 | SmallVector<COOSegment> |
| 958 | mlir::sparse_tensor::SparseTensorEncodingAttr::getCOOSegments() const { |
| 959 | SmallVector<COOSegment> ret; |
| 960 | if (getLvlRank() <= 1) |
| 961 | return ret; |
| 962 | |
| 963 | ArrayRef<LevelType> lts = getLvlTypes(); |
| 964 | Level l = 0; |
| 965 | while (l < getLvlRank()) { |
| 966 | auto lt = lts[l]; |
| 967 | if (lt.isa<LevelFormat::Compressed, LevelFormat::LooseCompressed>()) { |
| 968 | auto cur = lts.begin() + l; |
| 969 | auto end = std::find_if(cur + 1, lts.end(), [](LevelType lt) { |
| 970 | return !lt.isa<LevelFormat::Singleton>(); |
| 971 | }); |
| 972 | unsigned cooLen = std::distance(cur, end); |
| 973 | if (cooLen > 1) { |
| 974 | // To support mixed SoA/AoS COO, we should break the segment when the |
| 975 | // storage scheme changes, for now we faithfully assume that all |
| 976 | // consecutive singleton levels have the same storage format as verified |
| 977 | // STEA. |
| 978 | ret.push_back(COOSegment{std::make_pair(l, l + cooLen), |
| 979 | lts[l + 1].isa<LevelPropNonDefault::SoA>()}); |
| 980 | } |
| 981 | l += cooLen; |
| 982 | } else { |
| 983 | l++; |
| 984 | } |
| 985 | } |
| 986 | return ret; |
| 987 | } |
| 988 | |
| 989 | //===----------------------------------------------------------------------===// |
| 990 | // SparseTensorType Methods. |
| 991 | //===----------------------------------------------------------------------===// |
| 992 | |
| 993 | bool mlir::sparse_tensor::SparseTensorType::isCOOType(Level startLvl, |
| 994 | bool isUnique) const { |
| 995 | if (!hasEncoding()) |
| 996 | return false; |
| 997 | if (!isCompressedLvl(l: startLvl) && !isLooseCompressedLvl(l: startLvl)) |
| 998 | return false; |
| 999 | for (Level l = startLvl + 1; l < lvlRank; ++l) |
| 1000 | if (!isSingletonLvl(l)) |
| 1001 | return false; |
| 1002 | // If isUnique is true, then make sure that the last level is unique, |
| 1003 | // that is, when lvlRank == 1, the only compressed level is unique, |
| 1004 | // and when lvlRank > 1, the last singleton is unique. |
| 1005 | return !isUnique || isUniqueLvl(l: lvlRank - 1); |
| 1006 | } |
| 1007 | |
| 1008 | RankedTensorType |
| 1009 | mlir::sparse_tensor::SparseTensorType::getCOOType(bool ordered) const { |
| 1010 | SmallVector<LevelType> lvlTypes; |
| 1011 | lvlTypes.reserve(N: lvlRank); |
| 1012 | // A non-unique compressed level at beginning (unless this is |
| 1013 | // also the last level, then it is unique). |
| 1014 | lvlTypes.push_back( |
| 1015 | Elt: *buildLevelType(lf: LevelFormat::Compressed, ordered, unique: lvlRank == 1)); |
| 1016 | if (lvlRank > 1) { |
| 1017 | // Followed by n-2 non-unique singleton levels. |
| 1018 | std::fill_n(std::back_inserter(x&: lvlTypes), lvlRank - 2, |
| 1019 | *buildLevelType(lf: LevelFormat::Singleton, ordered, unique: false)); |
| 1020 | // Ends by a unique singleton level. |
| 1021 | lvlTypes.push_back(Elt: *buildLevelType(lf: LevelFormat::Singleton, ordered, unique: true)); |
| 1022 | } |
| 1023 | auto enc = SparseTensorEncodingAttr::get( |
| 1024 | getContext(), lvlTypes, getDimToLvl(), getLvlToDim(), getPosWidth(), |
| 1025 | getCrdWidth(), getExplicitVal(), getImplicitVal()); |
| 1026 | return RankedTensorType::get(getDimShape(), getElementType(), enc); |
| 1027 | } |
| 1028 | |
| 1029 | //===----------------------------------------------------------------------===// |
| 1030 | // Convenience Methods. |
| 1031 | //===----------------------------------------------------------------------===// |
| 1032 | |
| 1033 | SparseTensorEncodingAttr |
| 1034 | mlir::sparse_tensor::getSparseTensorEncoding(Type type) { |
| 1035 | if (auto ttp = llvm::dyn_cast<RankedTensorType>(type)) |
| 1036 | return llvm::dyn_cast_or_null<SparseTensorEncodingAttr>(ttp.getEncoding()); |
| 1037 | if (auto mdtp = llvm::dyn_cast<StorageSpecifierType>(type)) |
| 1038 | return mdtp.getEncoding(); |
| 1039 | return nullptr; |
| 1040 | } |
| 1041 | |
| 1042 | AffineMap mlir::sparse_tensor::inferLvlToDim(AffineMap dimToLvl, |
| 1043 | MLIRContext *context) { |
| 1044 | auto map = static_cast<AffineMap>(dimToLvl); |
| 1045 | AffineMap lvlToDim; |
| 1046 | // Return an empty lvlToDim when inference is not successful. |
| 1047 | if (!map || map.getNumSymbols() != 0) { |
| 1048 | lvlToDim = AffineMap(); |
| 1049 | } else if (map.isPermutation()) { |
| 1050 | lvlToDim = inversePermutation(map); |
| 1051 | } else if (isBlockSparsity(dimToLvl: map)) { |
| 1052 | lvlToDim = inverseBlockSparsity(dimToLvl: map, context); |
| 1053 | } |
| 1054 | return lvlToDim; |
| 1055 | } |
| 1056 | |
| 1057 | AffineMap mlir::sparse_tensor::inverseBlockSparsity(AffineMap dimToLvl, |
| 1058 | MLIRContext *context) { |
| 1059 | SmallVector<AffineExpr> lvlExprs; |
| 1060 | auto numLvls = dimToLvl.getNumResults(); |
| 1061 | lvlExprs.reserve(N: numLvls); |
| 1062 | // lvlExprComponents stores information of the floordiv and mod operations |
| 1063 | // applied to the same dimension, so as to build the lvlToDim map. |
| 1064 | std::map<unsigned, SmallVector<AffineExpr, 3>> lvlExprComponents; |
| 1065 | for (unsigned i = 0, n = numLvls; i < n; i++) { |
| 1066 | auto result = dimToLvl.getResult(idx: i); |
| 1067 | if (auto binOp = dyn_cast<AffineBinaryOpExpr>(Val&: result)) { |
| 1068 | if (result.getKind() == AffineExprKind::FloorDiv) { |
| 1069 | // Position of the dimension in dimToLvl. |
| 1070 | auto pos = dyn_cast<AffineDimExpr>(Val: binOp.getLHS()).getPosition(); |
| 1071 | assert(lvlExprComponents.find(pos) == lvlExprComponents.end() && |
| 1072 | "expected only one floordiv for each dimension" ); |
| 1073 | SmallVector<AffineExpr, 3> components; |
| 1074 | // Level variable for floordiv. |
| 1075 | components.push_back(Elt: getAffineDimExpr(position: i, context)); |
| 1076 | // Multiplier. |
| 1077 | components.push_back(Elt: binOp.getRHS()); |
| 1078 | // Map key is the position of the dimension. |
| 1079 | lvlExprComponents[pos] = components; |
| 1080 | } else if (result.getKind() == AffineExprKind::Mod) { |
| 1081 | auto pos = dyn_cast<AffineDimExpr>(Val: binOp.getLHS()).getPosition(); |
| 1082 | assert(lvlExprComponents.find(pos) != lvlExprComponents.end() && |
| 1083 | "expected floordiv before mod" ); |
| 1084 | // Add level variable for mod to the same vector |
| 1085 | // of the corresponding floordiv. |
| 1086 | lvlExprComponents[pos].push_back(Elt: getAffineDimExpr(position: i, context)); |
| 1087 | } else { |
| 1088 | assert(false && "expected floordiv or mod" ); |
| 1089 | } |
| 1090 | } else { |
| 1091 | lvlExprs.push_back(Elt: getAffineDimExpr(position: i, context)); |
| 1092 | } |
| 1093 | } |
| 1094 | // Build lvlExprs from lvlExprComponents. |
| 1095 | // For example, for il = i floordiv 2 and ii = i mod 2, the components |
| 1096 | // would be [il, 2, ii]. It could be used to build the AffineExpr |
| 1097 | // i = il * 2 + ii in lvlToDim. |
| 1098 | for (auto &components : lvlExprComponents) { |
| 1099 | assert(components.second.size() == 3 && |
| 1100 | "expected 3 components to build lvlExprs" ); |
| 1101 | auto mulOp = getAffineBinaryOpExpr( |
| 1102 | kind: AffineExprKind::Mul, lhs: components.second[0], rhs: components.second[1]); |
| 1103 | auto addOp = |
| 1104 | getAffineBinaryOpExpr(kind: AffineExprKind::Add, lhs: mulOp, rhs: components.second[2]); |
| 1105 | lvlExprs.push_back(Elt: addOp); |
| 1106 | } |
| 1107 | return dimToLvl.get(dimCount: dimToLvl.getNumResults(), symbolCount: 0, results: lvlExprs, context); |
| 1108 | } |
| 1109 | |
| 1110 | SmallVector<unsigned> mlir::sparse_tensor::getBlockSize(AffineMap dimToLvl) { |
| 1111 | assert(isBlockSparsity(dimToLvl) && |
| 1112 | "expected dimToLvl to be block sparsity for calling getBlockSize" ); |
| 1113 | SmallVector<unsigned> blockSize; |
| 1114 | for (auto result : dimToLvl.getResults()) { |
| 1115 | if (auto binOp = dyn_cast<AffineBinaryOpExpr>(Val&: result)) { |
| 1116 | if (result.getKind() == AffineExprKind::Mod) { |
| 1117 | blockSize.push_back( |
| 1118 | Elt: dyn_cast<AffineConstantExpr>(Val: binOp.getRHS()).getValue()); |
| 1119 | } |
| 1120 | } else { |
| 1121 | blockSize.push_back(Elt: 0); |
| 1122 | } |
| 1123 | } |
| 1124 | return blockSize; |
| 1125 | } |
| 1126 | |
| 1127 | bool mlir::sparse_tensor::isBlockSparsity(AffineMap dimToLvl) { |
| 1128 | if (!dimToLvl) |
| 1129 | return false; |
| 1130 | std::map<unsigned, int64_t> coeffientMap; |
| 1131 | bool hasBlock = false; |
| 1132 | for (auto result : dimToLvl.getResults()) { |
| 1133 | if (auto binOp = dyn_cast<AffineBinaryOpExpr>(Val&: result)) { |
| 1134 | // Check for "dim op const". |
| 1135 | auto dimOp = dyn_cast<AffineDimExpr>(Val: binOp.getLHS()); |
| 1136 | auto conOp = dyn_cast<AffineConstantExpr>(Val: binOp.getRHS()); |
| 1137 | if (!dimOp || !conOp || conOp.getValue() <= 0) |
| 1138 | return false; |
| 1139 | // Inspect "dim / const" or "dim % const". |
| 1140 | auto pos = dimOp.getPosition(); |
| 1141 | if (binOp.getKind() == AffineExprKind::FloorDiv) { |
| 1142 | // Expect only one floordiv for each dimension. |
| 1143 | auto [it, inserted] = coeffientMap.try_emplace(k: pos); |
| 1144 | if (!inserted) |
| 1145 | return false; |
| 1146 | // Record coefficient of the floordiv. |
| 1147 | it->second = conOp.getValue(); |
| 1148 | } else if (binOp.getKind() == AffineExprKind::Mod) { |
| 1149 | // Expect floordiv before mod. |
| 1150 | auto it = coeffientMap.find(x: pos); |
| 1151 | if (it == coeffientMap.end()) |
| 1152 | return false; |
| 1153 | // Expect mod to have the same coefficient as floordiv. |
| 1154 | if (conOp.getValue() != it->second) |
| 1155 | return false; |
| 1156 | hasBlock = true; |
| 1157 | } else { |
| 1158 | return false; |
| 1159 | } |
| 1160 | } else if (auto dimOp = dyn_cast<AffineDimExpr>(Val&: result)) { |
| 1161 | auto pos = dimOp.getPosition(); |
| 1162 | // Expect dim to be unset. |
| 1163 | if (!coeffientMap.try_emplace(k: pos, args: 0).second) |
| 1164 | return false; |
| 1165 | } else { |
| 1166 | return false; |
| 1167 | } |
| 1168 | } |
| 1169 | return hasBlock; |
| 1170 | } |
| 1171 | |
| 1172 | bool mlir::sparse_tensor::hasAnyNonIdentityOperandsOrResults(Operation *op) { |
| 1173 | auto hasNonIdentityMap = [](Value v) { |
| 1174 | auto stt = tryGetSparseTensorType(v); |
| 1175 | return stt && !stt->isIdentity(); |
| 1176 | }; |
| 1177 | |
| 1178 | return llvm::any_of(Range: op->getOperands(), P: hasNonIdentityMap) || |
| 1179 | llvm::any_of(Range: op->getResults(), P: hasNonIdentityMap); |
| 1180 | } |
| 1181 | |
| 1182 | Dimension mlir::sparse_tensor::toDim(SparseTensorEncodingAttr enc, Level l) { |
| 1183 | if (enc) { |
| 1184 | assert(enc.isPermutation() && "Non permutation map not supported" ); |
| 1185 | if (const auto dimToLvl = enc.getDimToLvl()) |
| 1186 | return dimToLvl.getDimPosition(l); |
| 1187 | } |
| 1188 | return l; |
| 1189 | } |
| 1190 | |
| 1191 | Level mlir::sparse_tensor::toLvl(SparseTensorEncodingAttr enc, Dimension d) { |
| 1192 | if (enc) { |
| 1193 | assert(enc.isPermutation() && "Non permutation map not supported" ); |
| 1194 | if (const auto lvlToDim = enc.getLvlToDim()) |
| 1195 | return lvlToDim.getDimPosition(d); |
| 1196 | } |
| 1197 | return d; |
| 1198 | } |
| 1199 | |
| 1200 | /// We normalized sparse tensor encoding attribute by always using |
| 1201 | /// ordered/unique LT such that "compressed_nu_no" and "compressed_nu" (as well |
| 1202 | /// as other variants) lead to the same storage specifier type, and stripping |
| 1203 | /// irrelevant fields that do not alter the sparse tensor memory layout. |
| 1204 | static SparseTensorEncodingAttr |
| 1205 | getNormalizedEncodingForSpecifier(SparseTensorEncodingAttr enc) { |
| 1206 | SmallVector<LevelType> lts; |
| 1207 | for (auto lt : enc.getLvlTypes()) |
| 1208 | lts.push_back(lt.stripStorageIrrelevantProperties()); |
| 1209 | |
| 1210 | return SparseTensorEncodingAttr::get( |
| 1211 | enc.getContext(), lts, |
| 1212 | AffineMap(), // dimToLvl (irrelevant to storage specifier) |
| 1213 | AffineMap(), // lvlToDim (irrelevant to storage specifier) |
| 1214 | // Always use `index` for memSize and lvlSize instead of reusing |
| 1215 | // `getPosWidth` and `getCrdWidth`. It allows us to reuse the same SSA |
| 1216 | // value for different bitwidth, it also avoids casting between index and |
| 1217 | // integer (returned by DimOp) |
| 1218 | 0, 0, |
| 1219 | Attribute(), // explicitVal (irrelevant to storage specifier) |
| 1220 | Attribute(), // implicitVal (irrelevant to storage specifier) |
| 1221 | enc.getDimSlices()); |
| 1222 | } |
| 1223 | |
| 1224 | StorageSpecifierType |
| 1225 | StorageSpecifierType::get(MLIRContext *ctx, SparseTensorEncodingAttr encoding) { |
| 1226 | return Base::get(ctx, getNormalizedEncodingForSpecifier(encoding)); |
| 1227 | } |
| 1228 | |
| 1229 | StorageSpecifierType |
| 1230 | StorageSpecifierType::getChecked(function_ref<InFlightDiagnostic()> emitError, |
| 1231 | MLIRContext *ctx, |
| 1232 | SparseTensorEncodingAttr encoding) { |
| 1233 | return Base::getChecked(emitError, ctx, |
| 1234 | getNormalizedEncodingForSpecifier(encoding)); |
| 1235 | } |
| 1236 | |
| 1237 | //===----------------------------------------------------------------------===// |
| 1238 | // SparseTensorDialect Operations. |
| 1239 | //===----------------------------------------------------------------------===// |
| 1240 | |
| 1241 | static LogicalResult lvlIsInBounds(Level lvl, Value tensor) { |
| 1242 | return success(IsSuccess: lvl < getSparseTensorType(val: tensor).getLvlRank()); |
| 1243 | } |
| 1244 | |
| 1245 | static LogicalResult isMatchingWidth(Value mem, unsigned width) { |
| 1246 | const Type etp = getMemRefType(mem).getElementType(); |
| 1247 | return success(IsSuccess: width == 0 ? etp.isIndex() : etp.isInteger(width)); |
| 1248 | } |
| 1249 | |
| 1250 | static LogicalResult verifySparsifierGetterSetter( |
| 1251 | StorageSpecifierKind mdKind, std::optional<Level> lvl, |
| 1252 | TypedValue<StorageSpecifierType> md, Operation *op) { |
| 1253 | if (mdKind == StorageSpecifierKind::ValMemSize && lvl) { |
| 1254 | return op->emitError( |
| 1255 | message: "redundant level argument for querying value memory size" ); |
| 1256 | } |
| 1257 | |
| 1258 | const auto enc = md.getType().getEncoding(); |
| 1259 | const Level lvlRank = enc.getLvlRank(); |
| 1260 | |
| 1261 | if (mdKind == StorageSpecifierKind::DimOffset || |
| 1262 | mdKind == StorageSpecifierKind::DimStride) |
| 1263 | if (!enc.isSlice()) |
| 1264 | return op->emitError(message: "requested slice data on non-slice tensor" ); |
| 1265 | |
| 1266 | if (mdKind != StorageSpecifierKind::ValMemSize) { |
| 1267 | if (!lvl) |
| 1268 | return op->emitError(message: "missing level argument" ); |
| 1269 | |
| 1270 | const Level l = lvl.value(); |
| 1271 | if (l >= lvlRank) |
| 1272 | return op->emitError(message: "requested level is out of bounds" ); |
| 1273 | |
| 1274 | if (mdKind == StorageSpecifierKind::PosMemSize && enc.isSingletonLvl(l)) |
| 1275 | return op->emitError( |
| 1276 | message: "requested position memory size on a singleton level" ); |
| 1277 | } |
| 1278 | return success(); |
| 1279 | } |
| 1280 | |
| 1281 | static Type getFieldElemType(SparseTensorType stt, SparseTensorFieldKind kind) { |
| 1282 | switch (kind) { |
| 1283 | case SparseTensorFieldKind::CrdMemRef: |
| 1284 | return stt.getCrdType(); |
| 1285 | case SparseTensorFieldKind::PosMemRef: |
| 1286 | return stt.getPosType(); |
| 1287 | case SparseTensorFieldKind::ValMemRef: |
| 1288 | return stt.getElementType(); |
| 1289 | case SparseTensorFieldKind::StorageSpec: |
| 1290 | return nullptr; |
| 1291 | } |
| 1292 | llvm_unreachable("Unrecognizable FieldKind" ); |
| 1293 | } |
| 1294 | |
| 1295 | static LogicalResult verifyPackUnPack(Operation *op, bool requiresStaticShape, |
| 1296 | SparseTensorType stt, |
| 1297 | RankedTensorType valTp, |
| 1298 | TypeRange lvlTps) { |
| 1299 | if (requiresStaticShape && !stt.hasStaticDimShape()) |
| 1300 | return op->emitError(message: "the sparse-tensor must have static shape" ); |
| 1301 | if (!stt.hasEncoding()) |
| 1302 | return op->emitError(message: "the sparse-tensor must have an encoding attribute" ); |
| 1303 | |
| 1304 | // Verifies the trailing COO. |
| 1305 | Level cooStartLvl = stt.getAoSCOOStart(); |
| 1306 | if (cooStartLvl < stt.getLvlRank()) { |
| 1307 | // We only supports trailing COO for now, must be the last input. |
| 1308 | auto cooTp = llvm::cast<ShapedType>(lvlTps.back()); |
| 1309 | // The coordinates should be in shape of <? x rank> |
| 1310 | unsigned expCOORank = stt.getLvlRank() - cooStartLvl; |
| 1311 | if (cooTp.getRank() != 2 || expCOORank != cooTp.getShape().back()) { |
| 1312 | return op->emitError(message: "input/output trailing COO level-ranks don't match" ); |
| 1313 | } |
| 1314 | } |
| 1315 | |
| 1316 | // Verifies that all types match. |
| 1317 | StorageLayout layout(stt.getEncoding()); |
| 1318 | if (layout.getNumDataFields() != lvlTps.size() + 1) // plus one value memref |
| 1319 | return op->emitError(message: "inconsistent number of fields between input/output" ); |
| 1320 | |
| 1321 | unsigned idx = 0; |
| 1322 | bool misMatch = false; |
| 1323 | layout.foreachField(callback: [&idx, &misMatch, stt, valTp, |
| 1324 | lvlTps](FieldIndex fid, SparseTensorFieldKind fKind, |
| 1325 | Level lvl, LevelType lt) -> bool { |
| 1326 | if (fKind == SparseTensorFieldKind::StorageSpec) |
| 1327 | return true; |
| 1328 | |
| 1329 | Type inputTp = nullptr; |
| 1330 | if (fKind == SparseTensorFieldKind::ValMemRef) { |
| 1331 | inputTp = valTp; |
| 1332 | } else { |
| 1333 | assert(fid == idx && stt.getLvlType(lvl) == lt); |
| 1334 | inputTp = lvlTps[idx++]; |
| 1335 | } |
| 1336 | // The input element type and expected element type should match. |
| 1337 | Type inpElemTp = llvm::cast<TensorType>(Val&: inputTp).getElementType(); |
| 1338 | Type expElemTp = getFieldElemType(stt, kind: fKind); |
| 1339 | if (inpElemTp != expElemTp) { |
| 1340 | misMatch = true; |
| 1341 | return false; // to terminate the iteration |
| 1342 | } |
| 1343 | return true; |
| 1344 | }); |
| 1345 | |
| 1346 | if (misMatch) |
| 1347 | return op->emitError(message: "input/output element-types don't match" ); |
| 1348 | return success(); |
| 1349 | } |
| 1350 | |
| 1351 | LogicalResult AssembleOp::verify() { |
| 1352 | RankedTensorType valuesTp = getValues().getType(); |
| 1353 | const auto lvlsTp = getLevels().getTypes(); |
| 1354 | const auto resTp = getSparseTensorType(getResult()); |
| 1355 | return verifyPackUnPack(*this, true, resTp, valuesTp, lvlsTp); |
| 1356 | } |
| 1357 | |
| 1358 | LogicalResult DisassembleOp::verify() { |
| 1359 | if (getOutValues().getType() != getRetValues().getType()) |
| 1360 | return emitError("output values and return value type mismatch" ); |
| 1361 | |
| 1362 | for (auto [ot, rt] : llvm::zip_equal(getOutLevels(), getRetLevels())) |
| 1363 | if (ot.getType() != rt.getType()) |
| 1364 | return emitError("output levels and return levels type mismatch" ); |
| 1365 | |
| 1366 | RankedTensorType valuesTp = getRetValues().getType(); |
| 1367 | const auto lvlsTp = getRetLevels().getTypes(); |
| 1368 | const auto srcTp = getSparseTensorType(getTensor()); |
| 1369 | return verifyPackUnPack(*this, false, srcTp, valuesTp, lvlsTp); |
| 1370 | } |
| 1371 | |
| 1372 | LogicalResult ConvertOp::verify() { |
| 1373 | RankedTensorType tp1 = getSource().getType(); |
| 1374 | RankedTensorType tp2 = getDest().getType(); |
| 1375 | if (tp1.getRank() != tp2.getRank()) |
| 1376 | return emitError("unexpected conversion mismatch in rank" ); |
| 1377 | auto dstEnc = |
| 1378 | llvm::dyn_cast_or_null<SparseTensorEncodingAttr>(tp2.getEncoding()); |
| 1379 | if (dstEnc && dstEnc.isSlice()) |
| 1380 | return emitError("cannot convert to a sparse tensor slice" ); |
| 1381 | |
| 1382 | auto shape1 = tp1.getShape(); |
| 1383 | auto shape2 = tp2.getShape(); |
| 1384 | // Accept size matches between the source and the destination type |
| 1385 | // (e.g. 10 vs. 10, 10 vs. ?, or ? vs. ?), but reject direct mismatches or |
| 1386 | // matches that would need a runtime assert (e.g. 10 vs. 20 or ? vs. 10). |
| 1387 | for (Dimension d = 0, dimRank = tp1.getRank(); d < dimRank; d++) |
| 1388 | if (shape1[d] != shape2[d] && shape2[d] != ShapedType::kDynamic) |
| 1389 | return emitError("unexpected conversion mismatch in dimension " ) << d; |
| 1390 | return success(); |
| 1391 | } |
| 1392 | |
| 1393 | OpFoldResult ConvertOp::fold(FoldAdaptor adaptor) { |
| 1394 | if (getType() == getSource().getType()) |
| 1395 | return getSource(); |
| 1396 | return {}; |
| 1397 | } |
| 1398 | |
| 1399 | bool ConvertOp::needsExtraSort() { |
| 1400 | SparseTensorType srcStt = getSparseTensorType(getSource()); |
| 1401 | SparseTensorType dstStt = getSparseTensorType(getDest()); |
| 1402 | |
| 1403 | // We do not need an extra sort when returning unordered sparse tensors or |
| 1404 | // dense tensor since dense tensor support random access. |
| 1405 | if (dstStt.isAllDense() || !dstStt.isAllOrdered()) |
| 1406 | return false; |
| 1407 | |
| 1408 | if (srcStt.isAllOrdered() && dstStt.isAllOrdered() && |
| 1409 | srcStt.hasSameDimToLvl(dstStt)) { |
| 1410 | return false; |
| 1411 | } |
| 1412 | |
| 1413 | // Source and dest tensors are ordered in different ways. We only do direct |
| 1414 | // dense to sparse conversion when the dense input is defined by a sparse |
| 1415 | // constant. Note that we can theoretically always directly convert from dense |
| 1416 | // inputs by rotating dense loops but it leads to bad cache locality and hurt |
| 1417 | // performance. |
| 1418 | if (auto constOp = getSource().getDefiningOp<arith::ConstantOp>()) |
| 1419 | if (isa<SparseElementsAttr>(constOp.getValue())) |
| 1420 | return false; |
| 1421 | |
| 1422 | return true; |
| 1423 | } |
| 1424 | |
| 1425 | LogicalResult CrdTranslateOp::verify() { |
| 1426 | uint64_t inRank = getEncoder().getLvlRank(); |
| 1427 | uint64_t outRank = getEncoder().getDimRank(); |
| 1428 | |
| 1429 | if (getDirection() == CrdTransDirectionKind::dim2lvl) |
| 1430 | std::swap(inRank, outRank); |
| 1431 | |
| 1432 | if (inRank != getInCrds().size() || outRank != getOutCrds().size()) |
| 1433 | return emitError("Coordinate rank mismatch with encoding" ); |
| 1434 | |
| 1435 | return success(); |
| 1436 | } |
| 1437 | |
| 1438 | LogicalResult CrdTranslateOp::fold(FoldAdaptor adaptor, |
| 1439 | SmallVectorImpl<OpFoldResult> &results) { |
| 1440 | if (getEncoder().isIdentity()) { |
| 1441 | results.assign(getInCrds().begin(), getInCrds().end()); |
| 1442 | return success(); |
| 1443 | } |
| 1444 | if (getEncoder().isPermutation()) { |
| 1445 | AffineMap perm = getDirection() == CrdTransDirectionKind::dim2lvl |
| 1446 | ? getEncoder().getDimToLvl() |
| 1447 | : getEncoder().getLvlToDim(); |
| 1448 | for (AffineExpr exp : perm.getResults()) |
| 1449 | results.push_back(getInCrds()[cast<AffineDimExpr>(exp).getPosition()]); |
| 1450 | return success(); |
| 1451 | } |
| 1452 | |
| 1453 | // Fuse dim2lvl/lvl2dim pairs. |
| 1454 | auto def = getInCrds()[0].getDefiningOp<CrdTranslateOp>(); |
| 1455 | bool sameDef = def && llvm::all_of(getInCrds(), [def](Value v) { |
| 1456 | return v.getDefiningOp() == def; |
| 1457 | }); |
| 1458 | if (!sameDef) |
| 1459 | return failure(); |
| 1460 | |
| 1461 | bool oppositeDir = def.getDirection() != getDirection(); |
| 1462 | bool sameOracle = |
| 1463 | def.getEncoder().getDimToLvl() == getEncoder().getDimToLvl(); |
| 1464 | bool sameCount = def.getNumResults() == getInCrds().size(); |
| 1465 | if (!oppositeDir || !sameOracle || !sameCount) |
| 1466 | return failure(); |
| 1467 | |
| 1468 | // The definition produces the coordinates in the same order as the input |
| 1469 | // coordinates. |
| 1470 | bool sameOrder = llvm::all_of(llvm::zip_equal(def.getOutCrds(), getInCrds()), |
| 1471 | [](auto valuePair) { |
| 1472 | auto [lhs, rhs] = valuePair; |
| 1473 | return lhs == rhs; |
| 1474 | }); |
| 1475 | |
| 1476 | if (!sameOrder) |
| 1477 | return failure(); |
| 1478 | // l1 = dim2lvl (lvl2dim l0) |
| 1479 | // ==> l0 |
| 1480 | results.append(def.getInCrds().begin(), def.getInCrds().end()); |
| 1481 | return success(); |
| 1482 | } |
| 1483 | |
| 1484 | void LvlOp::build(OpBuilder &builder, OperationState &state, Value source, |
| 1485 | int64_t index) { |
| 1486 | Value val = builder.create<arith::ConstantIndexOp>(state.location, index); |
| 1487 | return build(builder, state, source, val); |
| 1488 | } |
| 1489 | |
| 1490 | LogicalResult LvlOp::verify() { |
| 1491 | if (std::optional<uint64_t> lvl = getConstantLvlIndex()) { |
| 1492 | auto stt = getSparseTensorType(getSource()); |
| 1493 | if (static_cast<uint64_t>(lvl.value()) >= stt.getLvlRank()) |
| 1494 | return emitError( |
| 1495 | "Level index exceeds the rank of the input sparse tensor" ); |
| 1496 | } |
| 1497 | return success(); |
| 1498 | } |
| 1499 | |
| 1500 | std::optional<uint64_t> LvlOp::getConstantLvlIndex() { |
| 1501 | return getConstantIntValue(getIndex()); |
| 1502 | } |
| 1503 | |
| 1504 | Speculation::Speculatability LvlOp::getSpeculatability() { |
| 1505 | auto constantIndex = getConstantLvlIndex(); |
| 1506 | if (!constantIndex) |
| 1507 | return Speculation::NotSpeculatable; |
| 1508 | |
| 1509 | assert(constantIndex < |
| 1510 | cast<RankedTensorType>(getSource().getType()).getRank()); |
| 1511 | return Speculation::Speculatable; |
| 1512 | } |
| 1513 | |
| 1514 | OpFoldResult LvlOp::fold(FoldAdaptor adaptor) { |
| 1515 | auto lvlIndex = llvm::dyn_cast_if_present<IntegerAttr>(adaptor.getIndex()); |
| 1516 | if (!lvlIndex) |
| 1517 | return {}; |
| 1518 | |
| 1519 | Level lvl = lvlIndex.getAPSInt().getZExtValue(); |
| 1520 | auto stt = getSparseTensorType(getSource()); |
| 1521 | if (lvl >= stt.getLvlRank()) { |
| 1522 | // Follows the same convention used by tensor.dim operation. Out of bound |
| 1523 | // indices produce undefined behavior but are still valid IR. Don't choke on |
| 1524 | // them. |
| 1525 | return {}; |
| 1526 | } |
| 1527 | |
| 1528 | // Helper lambda to build an IndexAttr. |
| 1529 | auto getIndexAttr = [this](int64_t lvlSz) { |
| 1530 | return IntegerAttr::get(IndexType::get(getContext()), APInt(64, lvlSz)); |
| 1531 | }; |
| 1532 | |
| 1533 | SmallVector<Size> lvlShape = stt.getLvlShape(); |
| 1534 | if (!ShapedType::isDynamic(lvlShape[lvl])) |
| 1535 | return getIndexAttr(lvlShape[lvl]); |
| 1536 | |
| 1537 | return {}; |
| 1538 | } |
| 1539 | |
| 1540 | void ReinterpretMapOp::build(OpBuilder &odsBuilder, OperationState &odsState, |
| 1541 | SparseTensorEncodingAttr dstEnc, Value source) { |
| 1542 | auto srcStt = getSparseTensorType(source); |
| 1543 | SmallVector<int64_t> srcLvlShape = srcStt.getLvlShape(); |
| 1544 | SmallVector<int64_t> dstDimShape = |
| 1545 | dstEnc.translateShape(srcLvlShape, CrdTransDirectionKind::lvl2dim); |
| 1546 | auto dstTp = |
| 1547 | RankedTensorType::get(dstDimShape, srcStt.getElementType(), dstEnc); |
| 1548 | return build(odsBuilder, odsState, dstTp, source); |
| 1549 | } |
| 1550 | |
| 1551 | LogicalResult ReinterpretMapOp::verify() { |
| 1552 | auto srcStt = getSparseTensorType(getSource()); |
| 1553 | auto dstStt = getSparseTensorType(getDest()); |
| 1554 | ArrayRef<LevelType> srcLvlTps = srcStt.getLvlTypes(); |
| 1555 | ArrayRef<LevelType> dstLvlTps = dstStt.getLvlTypes(); |
| 1556 | |
| 1557 | if (srcLvlTps.size() != dstLvlTps.size()) |
| 1558 | return emitError("Level rank mismatch between source/dest tensors" ); |
| 1559 | |
| 1560 | for (auto [srcLvlTp, dstLvlTp] : llvm::zip(srcLvlTps, dstLvlTps)) |
| 1561 | if (srcLvlTp != dstLvlTp) |
| 1562 | return emitError("Level type mismatch between source/dest tensors" ); |
| 1563 | |
| 1564 | if (srcStt.getPosWidth() != dstStt.getPosWidth() || |
| 1565 | srcStt.getCrdWidth() != dstStt.getCrdWidth()) { |
| 1566 | return emitError("Crd/Pos width mismatch between source/dest tensors" ); |
| 1567 | } |
| 1568 | |
| 1569 | if (srcStt.getElementType() != dstStt.getElementType()) |
| 1570 | return emitError("Element type mismatch between source/dest tensors" ); |
| 1571 | |
| 1572 | SmallVector<Size> srcLvlShape = srcStt.getLvlShape(); |
| 1573 | SmallVector<Size> dstLvlShape = dstStt.getLvlShape(); |
| 1574 | for (auto [srcLvlSz, dstLvlSz] : llvm::zip(srcLvlShape, dstLvlShape)) { |
| 1575 | if (srcLvlSz != dstLvlSz) { |
| 1576 | // Should we allow one side to be dynamic size, e.g., <?x?> should be |
| 1577 | // compatible to <3x4>? For now, we require all the level sizes to be |
| 1578 | // *exactly* matched for simplicity. |
| 1579 | return emitError("Level size mismatch between source/dest tensors" ); |
| 1580 | } |
| 1581 | } |
| 1582 | |
| 1583 | return success(); |
| 1584 | } |
| 1585 | |
| 1586 | OpFoldResult ReinterpretMapOp::fold(FoldAdaptor adaptor) { |
| 1587 | if (getSource().getType() == getDest().getType()) |
| 1588 | return getSource(); |
| 1589 | |
| 1590 | if (auto def = getSource().getDefiningOp<ReinterpretMapOp>()) { |
| 1591 | // A -> B, B -> A ==> A |
| 1592 | if (def.getSource().getType() == getDest().getType()) |
| 1593 | return def.getSource(); |
| 1594 | } |
| 1595 | return {}; |
| 1596 | } |
| 1597 | |
| 1598 | template <typename ToBufferOp> |
| 1599 | static LogicalResult inferSparseBufferType(ValueRange ops, DictionaryAttr attr, |
| 1600 | OpaqueProperties prop, |
| 1601 | RegionRange region, |
| 1602 | SmallVectorImpl<mlir::Type> &ret) { |
| 1603 | typename ToBufferOp::Adaptor adaptor(ops, attr, prop, region); |
| 1604 | SparseTensorType stt = getSparseTensorType(adaptor.getTensor()); |
| 1605 | Type elemTp = nullptr; |
| 1606 | bool withStride = false; |
| 1607 | if constexpr (std::is_same_v<ToBufferOp, ToPositionsOp>) { |
| 1608 | elemTp = stt.getPosType(); |
| 1609 | } else if constexpr (std::is_same_v<ToBufferOp, ToCoordinatesOp> || |
| 1610 | std::is_same_v<ToBufferOp, ToCoordinatesBufferOp>) { |
| 1611 | elemTp = stt.getCrdType(); |
| 1612 | if constexpr (std::is_same_v<ToBufferOp, ToCoordinatesOp>) |
| 1613 | withStride = stt.getAoSCOOStart() <= adaptor.getLevel(); |
| 1614 | } else if constexpr (std::is_same_v<ToBufferOp, ToValuesOp>) { |
| 1615 | elemTp = stt.getElementType(); |
| 1616 | } |
| 1617 | |
| 1618 | assert(elemTp && "unhandled operation." ); |
| 1619 | SmallVector<int64_t> bufShape = stt.getBatchLvlShape(); |
| 1620 | bufShape.push_back(ShapedType::kDynamic); |
| 1621 | |
| 1622 | auto layout = withStride ? StridedLayoutAttr::StridedLayoutAttr::get( |
| 1623 | stt.getContext(), ShapedType::kDynamic, |
| 1624 | {ShapedType::kDynamic}) |
| 1625 | : StridedLayoutAttr(); |
| 1626 | ret.emplace_back(MemRefType::get(bufShape, elemTp, layout)); |
| 1627 | return success(); |
| 1628 | } |
| 1629 | |
| 1630 | LogicalResult ToPositionsOp::verify() { |
| 1631 | auto stt = getSparseTensorType(getTensor()); |
| 1632 | if (failed(lvlIsInBounds(getLevel(), getTensor()))) |
| 1633 | return emitError("requested level is out of bounds" ); |
| 1634 | if (failed(isMatchingWidth(getResult(), stt.getPosWidth()))) |
| 1635 | return emitError("unexpected type for positions" ); |
| 1636 | return success(); |
| 1637 | } |
| 1638 | |
| 1639 | LogicalResult |
| 1640 | ToPositionsOp::inferReturnTypes(MLIRContext *ctx, std::optional<Location> loc, |
| 1641 | ValueRange ops, DictionaryAttr attr, |
| 1642 | OpaqueProperties prop, RegionRange region, |
| 1643 | SmallVectorImpl<mlir::Type> &ret) { |
| 1644 | return inferSparseBufferType<ToPositionsOp>(ops, attr, prop, region, ret); |
| 1645 | } |
| 1646 | |
| 1647 | LogicalResult ToCoordinatesOp::verify() { |
| 1648 | auto stt = getSparseTensorType(getTensor()); |
| 1649 | if (failed(lvlIsInBounds(getLevel(), getTensor()))) |
| 1650 | return emitError("requested level is out of bounds" ); |
| 1651 | if (failed(isMatchingWidth(getResult(), stt.getCrdWidth()))) |
| 1652 | return emitError("unexpected type for coordinates" ); |
| 1653 | return success(); |
| 1654 | } |
| 1655 | |
| 1656 | LogicalResult |
| 1657 | ToCoordinatesOp::inferReturnTypes(MLIRContext *ctx, std::optional<Location> loc, |
| 1658 | ValueRange ops, DictionaryAttr attr, |
| 1659 | OpaqueProperties prop, RegionRange region, |
| 1660 | SmallVectorImpl<mlir::Type> &ret) { |
| 1661 | return inferSparseBufferType<ToCoordinatesOp>(ops, attr, prop, region, ret); |
| 1662 | } |
| 1663 | |
| 1664 | LogicalResult ToCoordinatesBufferOp::verify() { |
| 1665 | auto stt = getSparseTensorType(getTensor()); |
| 1666 | if (stt.getAoSCOOStart() >= stt.getLvlRank()) |
| 1667 | return emitError("expected sparse tensor with a COO region" ); |
| 1668 | return success(); |
| 1669 | } |
| 1670 | |
| 1671 | LogicalResult ToCoordinatesBufferOp::inferReturnTypes( |
| 1672 | MLIRContext *ctx, std::optional<Location> loc, ValueRange ops, |
| 1673 | DictionaryAttr attr, OpaqueProperties prop, RegionRange region, |
| 1674 | SmallVectorImpl<mlir::Type> &ret) { |
| 1675 | return inferSparseBufferType<ToCoordinatesBufferOp>(ops, attr, prop, region, |
| 1676 | ret); |
| 1677 | } |
| 1678 | |
| 1679 | LogicalResult ToValuesOp::verify() { |
| 1680 | auto stt = getSparseTensorType(getTensor()); |
| 1681 | auto mtp = getMemRefType(getResult()); |
| 1682 | if (stt.getElementType() != mtp.getElementType()) |
| 1683 | return emitError("unexpected mismatch in element types" ); |
| 1684 | return success(); |
| 1685 | } |
| 1686 | |
| 1687 | LogicalResult ToValuesOp::inferReturnTypes(MLIRContext *ctx, |
| 1688 | std::optional<Location> loc, |
| 1689 | ValueRange ops, DictionaryAttr attr, |
| 1690 | OpaqueProperties prop, |
| 1691 | RegionRange region, |
| 1692 | SmallVectorImpl<mlir::Type> &ret) { |
| 1693 | return inferSparseBufferType<ToValuesOp>(ops, attr, prop, region, ret); |
| 1694 | } |
| 1695 | |
| 1696 | LogicalResult ToSliceOffsetOp::verify() { |
| 1697 | auto rank = getSlice().getType().getRank(); |
| 1698 | if (rank <= getDim().getSExtValue() || getDim().getSExtValue() < 0) |
| 1699 | return emitError("requested dimension out of bound" ); |
| 1700 | return success(); |
| 1701 | } |
| 1702 | |
| 1703 | LogicalResult ToSliceStrideOp::verify() { |
| 1704 | auto rank = getSlice().getType().getRank(); |
| 1705 | if (rank <= getDim().getSExtValue() || getDim().getSExtValue() < 0) |
| 1706 | return emitError("requested dimension out of bound" ); |
| 1707 | return success(); |
| 1708 | } |
| 1709 | |
| 1710 | LogicalResult GetStorageSpecifierOp::verify() { |
| 1711 | return verifySparsifierGetterSetter(getSpecifierKind(), getLevel(), |
| 1712 | getSpecifier(), getOperation()); |
| 1713 | } |
| 1714 | |
| 1715 | template <typename SpecifierOp> |
| 1716 | static SetStorageSpecifierOp getSpecifierSetDef(SpecifierOp op) { |
| 1717 | return op.getSpecifier().template getDefiningOp<SetStorageSpecifierOp>(); |
| 1718 | } |
| 1719 | |
| 1720 | OpFoldResult GetStorageSpecifierOp::fold(FoldAdaptor adaptor) { |
| 1721 | const StorageSpecifierKind kind = getSpecifierKind(); |
| 1722 | const auto lvl = getLevel(); |
| 1723 | for (auto op = getSpecifierSetDef(*this); op; op = getSpecifierSetDef(op)) |
| 1724 | if (kind == op.getSpecifierKind() && lvl == op.getLevel()) |
| 1725 | return op.getValue(); |
| 1726 | return {}; |
| 1727 | } |
| 1728 | |
| 1729 | LogicalResult SetStorageSpecifierOp::verify() { |
| 1730 | return verifySparsifierGetterSetter(getSpecifierKind(), getLevel(), |
| 1731 | getSpecifier(), getOperation()); |
| 1732 | } |
| 1733 | |
| 1734 | template <class T> |
| 1735 | static LogicalResult verifyNumBlockArgs(T *op, Region ®ion, |
| 1736 | const char *regionName, |
| 1737 | TypeRange inputTypes, Type outputType) { |
| 1738 | unsigned numArgs = region.getNumArguments(); |
| 1739 | unsigned expectedNum = inputTypes.size(); |
| 1740 | if (numArgs != expectedNum) |
| 1741 | return op->emitError() << regionName << " region must have exactly " |
| 1742 | << expectedNum << " arguments" ; |
| 1743 | |
| 1744 | for (unsigned i = 0; i < numArgs; i++) { |
| 1745 | Type typ = region.getArgument(i).getType(); |
| 1746 | if (typ != inputTypes[i]) |
| 1747 | return op->emitError() << regionName << " region argument " << (i + 1) |
| 1748 | << " type mismatch" ; |
| 1749 | } |
| 1750 | Operation *term = region.front().getTerminator(); |
| 1751 | YieldOp yield = dyn_cast<YieldOp>(term); |
| 1752 | if (!yield) |
| 1753 | return op->emitError() << regionName |
| 1754 | << " region must end with sparse_tensor.yield" ; |
| 1755 | if (!yield.hasSingleResult() || |
| 1756 | yield.getSingleResult().getType() != outputType) |
| 1757 | return op->emitError() << regionName << " region yield type mismatch" ; |
| 1758 | |
| 1759 | return success(); |
| 1760 | } |
| 1761 | |
| 1762 | LogicalResult BinaryOp::verify() { |
| 1763 | NamedAttrList attrs = (*this)->getAttrs(); |
| 1764 | Type leftType = getX().getType(); |
| 1765 | Type rightType = getY().getType(); |
| 1766 | Type outputType = getOutput().getType(); |
| 1767 | Region &overlap = getOverlapRegion(); |
| 1768 | Region &left = getLeftRegion(); |
| 1769 | Region &right = getRightRegion(); |
| 1770 | |
| 1771 | // Check correct number of block arguments and return type for each |
| 1772 | // non-empty region. |
| 1773 | if (!overlap.empty()) { |
| 1774 | if (failed(verifyNumBlockArgs(this, overlap, "overlap" , |
| 1775 | TypeRange{leftType, rightType}, outputType))) |
| 1776 | return failure(); |
| 1777 | } |
| 1778 | if (!left.empty()) { |
| 1779 | if (failed(verifyNumBlockArgs(this, left, "left" , TypeRange{leftType}, |
| 1780 | outputType))) |
| 1781 | return failure(); |
| 1782 | } else if (getLeftIdentity()) { |
| 1783 | if (leftType != outputType) |
| 1784 | return emitError("left=identity requires first argument to have the same " |
| 1785 | "type as the output" ); |
| 1786 | } |
| 1787 | if (!right.empty()) { |
| 1788 | if (failed(verifyNumBlockArgs(this, right, "right" , TypeRange{rightType}, |
| 1789 | outputType))) |
| 1790 | return failure(); |
| 1791 | } else if (getRightIdentity()) { |
| 1792 | if (rightType != outputType) |
| 1793 | return emitError("right=identity requires second argument to have the " |
| 1794 | "same type as the output" ); |
| 1795 | } |
| 1796 | return success(); |
| 1797 | } |
| 1798 | |
| 1799 | LogicalResult UnaryOp::verify() { |
| 1800 | Type inputType = getX().getType(); |
| 1801 | Type outputType = getOutput().getType(); |
| 1802 | |
| 1803 | // Check correct number of block arguments and return type for each |
| 1804 | // non-empty region. |
| 1805 | Region &present = getPresentRegion(); |
| 1806 | if (!present.empty()) { |
| 1807 | if (failed(verifyNumBlockArgs(this, present, "present" , |
| 1808 | TypeRange{inputType}, outputType))) |
| 1809 | return failure(); |
| 1810 | } |
| 1811 | Region &absent = getAbsentRegion(); |
| 1812 | if (!absent.empty()) { |
| 1813 | if (failed(verifyNumBlockArgs(this, absent, "absent" , TypeRange{}, |
| 1814 | outputType))) |
| 1815 | return failure(); |
| 1816 | // Absent branch can only yield invariant values. |
| 1817 | Block *absentBlock = &absent.front(); |
| 1818 | Block *parent = getOperation()->getBlock(); |
| 1819 | Value absentVal = |
| 1820 | cast<YieldOp>(absentBlock->getTerminator()).getSingleResult(); |
| 1821 | if (auto arg = dyn_cast<BlockArgument>(absentVal)) { |
| 1822 | if (arg.getOwner() == parent) |
| 1823 | return emitError("absent region cannot yield linalg argument" ); |
| 1824 | } else if (Operation *def = absentVal.getDefiningOp()) { |
| 1825 | if (!isa<arith::ConstantOp>(def) && |
| 1826 | (def->getBlock() == absentBlock || def->getBlock() == parent)) |
| 1827 | return emitError("absent region cannot yield locally computed value" ); |
| 1828 | } |
| 1829 | } |
| 1830 | return success(); |
| 1831 | } |
| 1832 | |
| 1833 | bool ConcatenateOp::needsExtraSort() { |
| 1834 | SparseTensorType dstStt = getSparseTensorType(*this); |
| 1835 | if (dstStt.isAllDense() || !dstStt.isAllOrdered()) |
| 1836 | return false; |
| 1837 | |
| 1838 | bool allSameOrdered = llvm::all_of(getInputs(), [dstStt](Value op) { |
| 1839 | return getSparseTensorType(op).hasSameDimToLvl(dstStt); |
| 1840 | }); |
| 1841 | // TODO: When conDim != 0, as long as conDim corresponding to the first level |
| 1842 | // in all input/output buffers, and all input/output buffers have the same |
| 1843 | // dimToLvl, the tmp COO buffer is still unnecessary (e.g, concatenate |
| 1844 | // CSC matrices along column). |
| 1845 | bool directLowerable = |
| 1846 | allSameOrdered && getDimension() == 0 && dstStt.isIdentity(); |
| 1847 | return !directLowerable; |
| 1848 | } |
| 1849 | |
| 1850 | LogicalResult ConcatenateOp::verify() { |
| 1851 | const auto dstTp = getSparseTensorType(*this); |
| 1852 | const Dimension concatDim = getDimension(); |
| 1853 | const Dimension dimRank = dstTp.getDimRank(); |
| 1854 | |
| 1855 | if (getInputs().size() <= 1) |
| 1856 | return emitError("Need at least two tensors to concatenate." ); |
| 1857 | |
| 1858 | if (concatDim >= dimRank) |
| 1859 | return emitError(llvm::formatv( |
| 1860 | "Concat-dimension is out of bounds for dimension-rank ({0} >= {1})" , |
| 1861 | concatDim, dimRank)); |
| 1862 | |
| 1863 | for (const auto &it : llvm::enumerate(getInputs())) { |
| 1864 | const auto i = it.index(); |
| 1865 | const auto srcTp = getSparseTensorType(it.value()); |
| 1866 | if (srcTp.hasDynamicDimShape()) |
| 1867 | return emitError(llvm::formatv("Input tensor ${0} has dynamic shape" , i)); |
| 1868 | const Dimension srcDimRank = srcTp.getDimRank(); |
| 1869 | if (srcDimRank != dimRank) |
| 1870 | return emitError( |
| 1871 | llvm::formatv("Input tensor ${0} has a different rank (rank={1}) " |
| 1872 | "from the output tensor (rank={2})." , |
| 1873 | i, srcDimRank, dimRank)); |
| 1874 | } |
| 1875 | |
| 1876 | for (Dimension d = 0; d < dimRank; d++) { |
| 1877 | const Size dstSh = dstTp.getDimShape()[d]; |
| 1878 | if (d == concatDim) { |
| 1879 | if (!ShapedType::isDynamic(dstSh)) { |
| 1880 | // If we reach here, then all inputs have static shapes. So we |
| 1881 | // can use `getDimShape()[d]` instead of `*getDynamicDimSize(d)` |
| 1882 | // to avoid redundant assertions in the loop. |
| 1883 | Size sumSz = 0; |
| 1884 | for (const auto src : getInputs()) |
| 1885 | sumSz += getSparseTensorType(src).getDimShape()[d]; |
| 1886 | // If all dimension are statically known, the sum of all the input |
| 1887 | // dimensions should be equal to the output dimension. |
| 1888 | if (sumSz != dstSh) |
| 1889 | return emitError( |
| 1890 | "The concatenation dimension of the output tensor should be the " |
| 1891 | "sum of all the concatenation dimensions of the input tensors." ); |
| 1892 | } |
| 1893 | } else { |
| 1894 | Size prev = dstSh; |
| 1895 | for (const auto src : getInputs()) { |
| 1896 | const auto sh = getSparseTensorType(src).getDimShape()[d]; |
| 1897 | if (!ShapedType::isDynamic(prev) && sh != prev) |
| 1898 | return emitError("All dimensions (expect for the concatenating one) " |
| 1899 | "should be equal." ); |
| 1900 | prev = sh; |
| 1901 | } |
| 1902 | } |
| 1903 | } |
| 1904 | |
| 1905 | return success(); |
| 1906 | } |
| 1907 | |
| 1908 | void PushBackOp::build(OpBuilder &builder, OperationState &result, |
| 1909 | Value curSize, Value inBuffer, Value value) { |
| 1910 | build(builder, result, curSize, inBuffer, value, Value()); |
| 1911 | } |
| 1912 | |
| 1913 | LogicalResult PushBackOp::verify() { |
| 1914 | if (Value n = getN()) { |
| 1915 | std::optional<int64_t> nValue = getConstantIntValue(n); |
| 1916 | if (nValue && nValue.value() < 1) |
| 1917 | return emitOpError("n must be not less than 1" ); |
| 1918 | } |
| 1919 | return success(); |
| 1920 | } |
| 1921 | |
| 1922 | LogicalResult CompressOp::verify() { |
| 1923 | const auto stt = getSparseTensorType(getTensor()); |
| 1924 | if (stt.getLvlRank() != 1 + static_cast<Level>(getLvlCoords().size())) |
| 1925 | return emitOpError("incorrect number of coordinates" ); |
| 1926 | return success(); |
| 1927 | } |
| 1928 | |
| 1929 | void ForeachOp::build( |
| 1930 | OpBuilder &builder, OperationState &result, Value tensor, |
| 1931 | ValueRange initArgs, AffineMapAttr order, |
| 1932 | function_ref<void(OpBuilder &, Location, ValueRange, Value, ValueRange)> |
| 1933 | bodyBuilder) { |
| 1934 | build(builder, result, initArgs.getTypes(), tensor, initArgs, order); |
| 1935 | // Builds foreach body. |
| 1936 | if (!bodyBuilder) |
| 1937 | return; |
| 1938 | const auto stt = getSparseTensorType(tensor); |
| 1939 | const Dimension dimRank = stt.getDimRank(); |
| 1940 | |
| 1941 | // Starts with `dimRank`-many coordinates. |
| 1942 | SmallVector<Type> blockArgTypes(dimRank, builder.getIndexType()); |
| 1943 | // Followed by one value. |
| 1944 | blockArgTypes.push_back(stt.getElementType()); |
| 1945 | // Followed by the reduction variables. |
| 1946 | blockArgTypes.append(initArgs.getTypes().begin(), initArgs.getTypes().end()); |
| 1947 | |
| 1948 | SmallVector<Location> blockArgLocs(blockArgTypes.size(), tensor.getLoc()); |
| 1949 | |
| 1950 | OpBuilder::InsertionGuard guard(builder); |
| 1951 | auto ®ion = *result.regions.front(); |
| 1952 | Block *bodyBlock = |
| 1953 | builder.createBlock(®ion, region.end(), blockArgTypes, blockArgLocs); |
| 1954 | bodyBuilder(builder, result.location, |
| 1955 | bodyBlock->getArguments().slice(0, dimRank), |
| 1956 | bodyBlock->getArguments()[dimRank], |
| 1957 | bodyBlock->getArguments().drop_front(dimRank + 1)); |
| 1958 | } |
| 1959 | |
| 1960 | LogicalResult ForeachOp::verify() { |
| 1961 | const auto t = getSparseTensorType(getTensor()); |
| 1962 | const Dimension dimRank = t.getDimRank(); |
| 1963 | const auto args = getBody()->getArguments(); |
| 1964 | |
| 1965 | if (getOrder().has_value() && getOrder()->getNumDims() != t.getLvlRank()) |
| 1966 | return emitError("Level traverse order does not match tensor's level rank" ); |
| 1967 | |
| 1968 | if (dimRank + 1 + getInitArgs().size() != args.size()) |
| 1969 | return emitError("Unmatched number of arguments in the block" ); |
| 1970 | |
| 1971 | if (getNumResults() != getInitArgs().size()) |
| 1972 | return emitError("Mismatch in number of init arguments and results" ); |
| 1973 | |
| 1974 | if (getResultTypes() != getInitArgs().getTypes()) |
| 1975 | return emitError("Mismatch in types of init arguments and results" ); |
| 1976 | |
| 1977 | // Cannot mark this const, because the getters aren't. |
| 1978 | auto yield = cast<YieldOp>(getBody()->getTerminator()); |
| 1979 | if (yield.getNumOperands() != getNumResults() || |
| 1980 | yield.getOperands().getTypes() != getResultTypes()) |
| 1981 | return emitError("Mismatch in types of yield values and results" ); |
| 1982 | |
| 1983 | const auto iTp = IndexType::get(getContext()); |
| 1984 | for (Dimension d = 0; d < dimRank; d++) |
| 1985 | if (args[d].getType() != iTp) |
| 1986 | return emitError( |
| 1987 | llvm::formatv("Expecting Index type for argument at index {0}" , d)); |
| 1988 | |
| 1989 | const auto elemTp = t.getElementType(); |
| 1990 | const auto valueTp = args[dimRank].getType(); |
| 1991 | if (elemTp != valueTp) |
| 1992 | return emitError( |
| 1993 | llvm::formatv("Unmatched element type between input tensor and " |
| 1994 | "block argument, expected:{0}, got: {1}" , |
| 1995 | elemTp, valueTp)); |
| 1996 | return success(); |
| 1997 | } |
| 1998 | |
| 1999 | OpFoldResult ReorderCOOOp::fold(FoldAdaptor adaptor) { |
| 2000 | if (getSparseTensorEncoding(getInputCoo().getType()) == |
| 2001 | getSparseTensorEncoding(getResultCoo().getType())) |
| 2002 | return getInputCoo(); |
| 2003 | |
| 2004 | return {}; |
| 2005 | } |
| 2006 | |
| 2007 | LogicalResult ReorderCOOOp::verify() { |
| 2008 | SparseTensorType srcStt = getSparseTensorType(getInputCoo()); |
| 2009 | SparseTensorType dstStt = getSparseTensorType(getResultCoo()); |
| 2010 | |
| 2011 | if (!srcStt.isCOOType() || !dstStt.isCOOType()) |
| 2012 | return emitError("Expected COO sparse tensors only" ); |
| 2013 | |
| 2014 | if (!srcStt.hasSameDimToLvl(dstStt)) |
| 2015 | return emitError("Unmatched dim2lvl map between input and result COO" ); |
| 2016 | |
| 2017 | if (srcStt.getPosType() != dstStt.getPosType() || |
| 2018 | srcStt.getCrdType() != dstStt.getCrdType() || |
| 2019 | srcStt.getElementType() != dstStt.getElementType()) |
| 2020 | return emitError("Unmatched storage format between input and result COO" ); |
| 2021 | |
| 2022 | return success(); |
| 2023 | } |
| 2024 | |
| 2025 | LogicalResult ReduceOp::verify() { |
| 2026 | Type inputType = getX().getType(); |
| 2027 | Region &formula = getRegion(); |
| 2028 | return verifyNumBlockArgs(this, formula, "reduce" , |
| 2029 | TypeRange{inputType, inputType}, inputType); |
| 2030 | } |
| 2031 | |
| 2032 | LogicalResult SelectOp::verify() { |
| 2033 | Builder b(getContext()); |
| 2034 | Type inputType = getX().getType(); |
| 2035 | Type boolType = b.getI1Type(); |
| 2036 | Region &formula = getRegion(); |
| 2037 | return verifyNumBlockArgs(this, formula, "select" , TypeRange{inputType}, |
| 2038 | boolType); |
| 2039 | } |
| 2040 | |
| 2041 | LogicalResult SortOp::verify() { |
| 2042 | AffineMap xPerm = getPermMap(); |
| 2043 | uint64_t nx = xPerm.getNumDims(); |
| 2044 | if (nx < 1) |
| 2045 | return emitError(llvm::formatv("Expected rank(perm_map) > 1, got {0}" , nx)); |
| 2046 | |
| 2047 | if (!xPerm.isPermutation()) |
| 2048 | return emitError( |
| 2049 | llvm::formatv("Expected a permutation map, got {0}" , xPerm)); |
| 2050 | |
| 2051 | // We can't check the size of the buffers when n or buffer dimensions aren't |
| 2052 | // compile-time constants. |
| 2053 | std::optional<int64_t> cn = getConstantIntValue(getN()); |
| 2054 | if (!cn) |
| 2055 | return success(); |
| 2056 | |
| 2057 | // Verify dimensions. |
| 2058 | const auto checkDim = [&](Value v, Size minSize, |
| 2059 | const char *message) -> LogicalResult { |
| 2060 | const Size sh = getMemRefType(v).getShape()[0]; |
| 2061 | if (!ShapedType::isDynamic(sh) && sh < minSize) |
| 2062 | return emitError( |
| 2063 | llvm::formatv("{0} got {1} < {2}" , message, sh, minSize)); |
| 2064 | return success(); |
| 2065 | }; |
| 2066 | uint64_t n = cn.value(); |
| 2067 | uint64_t ny = 0; |
| 2068 | if (auto nyAttr = getNyAttr()) |
| 2069 | ny = nyAttr.getInt(); |
| 2070 | if (failed(checkDim(getXy(), n * (nx + ny), |
| 2071 | "Expected dimension(xy) >= n * (rank(perm_map) + ny)" ))) |
| 2072 | return failure(); |
| 2073 | for (Value opnd : getYs()) |
| 2074 | if (failed(checkDim(opnd, n, "Expected dimension(y) >= n" ))) |
| 2075 | return failure(); |
| 2076 | |
| 2077 | return success(); |
| 2078 | } |
| 2079 | |
| 2080 | //===----------------------------------------------------------------------===// |
| 2081 | // Sparse Tensor Iteration Operations. |
| 2082 | //===----------------------------------------------------------------------===// |
| 2083 | |
| 2084 | IterSpaceType IteratorType::getIterSpaceType() const { |
| 2085 | return IterSpaceType::get(getContext(), getEncoding(), getLoLvl(), |
| 2086 | getHiLvl()); |
| 2087 | } |
| 2088 | |
| 2089 | IteratorType IterSpaceType::getIteratorType() const { |
| 2090 | return IteratorType::get(getContext(), getEncoding(), getLoLvl(), getHiLvl()); |
| 2091 | } |
| 2092 | |
| 2093 | /// Parses a level range in the form "$lo `to` $hi" |
| 2094 | /// or simply "$lo" if $hi - $lo = 1 |
| 2095 | static ParseResult parseLevelRange(AsmParser &parser, Level &lvlLo, |
| 2096 | Level &lvlHi) { |
| 2097 | if (parser.parseInteger(result&: lvlLo)) |
| 2098 | return failure(); |
| 2099 | |
| 2100 | if (succeeded(Result: parser.parseOptionalKeyword(keyword: "to" ))) { |
| 2101 | if (parser.parseInteger(result&: lvlHi)) |
| 2102 | return failure(); |
| 2103 | } else { |
| 2104 | lvlHi = lvlLo + 1; |
| 2105 | } |
| 2106 | |
| 2107 | if (lvlHi <= lvlLo) |
| 2108 | return parser.emitError(loc: parser.getNameLoc(), |
| 2109 | message: "expect larger level upper bound than lower bound" ); |
| 2110 | |
| 2111 | return success(); |
| 2112 | } |
| 2113 | |
| 2114 | /// Parses a level range in the form "$lo `to` $hi" |
| 2115 | /// or simply "$lo" if $hi - $lo = 1 |
| 2116 | static ParseResult parseLevelRange(OpAsmParser &parser, IntegerAttr &lvlLoAttr, |
| 2117 | IntegerAttr &lvlHiAttr) { |
| 2118 | Level lvlLo, lvlHi; |
| 2119 | if (parseLevelRange(parser, lvlLo, lvlHi)) |
| 2120 | return failure(); |
| 2121 | |
| 2122 | lvlLoAttr = IntegerAttr::get(parser.getBuilder().getIndexType(), lvlLo); |
| 2123 | lvlHiAttr = IntegerAttr::get(parser.getBuilder().getIndexType(), lvlHi); |
| 2124 | return success(); |
| 2125 | } |
| 2126 | |
| 2127 | /// Prints a level range in the form "$lo `to` $hi" |
| 2128 | /// or simply "$lo" if $hi - $lo = 1 |
| 2129 | static void printLevelRange(AsmPrinter &p, Level lo, Level hi) { |
| 2130 | |
| 2131 | if (lo + 1 == hi) |
| 2132 | p << lo; |
| 2133 | else |
| 2134 | p << lo << " to " << hi; |
| 2135 | } |
| 2136 | |
| 2137 | /// Prints a level range in the form "$lo `to` $hi" |
| 2138 | /// or simply "$lo" if $hi - $lo = 1 |
| 2139 | static void printLevelRange(OpAsmPrinter &p, Operation *, IntegerAttr lvlLo, |
| 2140 | IntegerAttr lvlHi) { |
| 2141 | unsigned lo = lvlLo.getValue().getZExtValue(); |
| 2142 | unsigned hi = lvlHi.getValue().getZExtValue(); |
| 2143 | printLevelRange(p, lo, hi); |
| 2144 | } |
| 2145 | |
| 2146 | /// Parses a list of `optional` defined list in the form of |
| 2147 | /// "(%val0, _, %val1, ...)", where `_` is used to annotate that the |
| 2148 | /// corresponding value is not defined (e.g., to represent an undefined |
| 2149 | /// coordinate in the sparse iteration space). |
| 2150 | static ParseResult parseOptionalDefinedList( |
| 2151 | OpAsmParser &parser, OperationState &state, I64BitSet &definedSet, |
| 2152 | SmallVectorImpl<OpAsmParser::Argument> &definedArgs, |
| 2153 | unsigned maxCnt = std::numeric_limits<unsigned>::max(), |
| 2154 | OpAsmParser::Delimiter delimiter = OpAsmParser::Delimiter::Paren) { |
| 2155 | unsigned cnt = 0; |
| 2156 | ParseResult crdList = |
| 2157 | parser.parseCommaSeparatedList(delimiter, parseElementFn: [&]() -> ParseResult { |
| 2158 | if (parser.parseOptionalKeyword(keyword: "_" )) { |
| 2159 | if (parser.parseArgument(result&: definedArgs.emplace_back())) |
| 2160 | return failure(); |
| 2161 | definedSet.set(cnt); |
| 2162 | } |
| 2163 | cnt += 1; |
| 2164 | return success(); |
| 2165 | }); |
| 2166 | |
| 2167 | if (cnt > maxCnt) |
| 2168 | return parser.emitError(loc: parser.getNameLoc(), |
| 2169 | message: "parsed more value than expected." ); |
| 2170 | |
| 2171 | if (failed(Result: crdList)) { |
| 2172 | return parser.emitError( |
| 2173 | loc: parser.getNameLoc(), |
| 2174 | message: "expecting SSA value or \"_\" for level coordinates" ); |
| 2175 | } |
| 2176 | assert(definedArgs.size() == definedSet.count()); |
| 2177 | return success(); |
| 2178 | } |
| 2179 | |
| 2180 | static void printOptionalDefinedList(OpAsmPrinter &p, unsigned size, |
| 2181 | Block::BlockArgListType blocksArgs, |
| 2182 | I64BitSet definedSet) { |
| 2183 | if (definedSet.empty()) |
| 2184 | return; |
| 2185 | |
| 2186 | for (unsigned i = 0; i < size; i++) { |
| 2187 | if (definedSet[i]) { |
| 2188 | p << blocksArgs.front(); |
| 2189 | blocksArgs = blocksArgs.drop_front(); |
| 2190 | } else { |
| 2191 | p << "_" ; |
| 2192 | } |
| 2193 | if (i != size - 1) |
| 2194 | p << ", " ; |
| 2195 | } |
| 2196 | assert(blocksArgs.empty()); |
| 2197 | } |
| 2198 | |
| 2199 | static ParseResult |
| 2200 | parseUsedCoordList(OpAsmParser &parser, OperationState &state, |
| 2201 | SmallVectorImpl<OpAsmParser::Argument> &coords) { |
| 2202 | // Parse "at(%crd0, _, ...)" |
| 2203 | I64BitSet crdUsedLvlSet; |
| 2204 | if (succeeded(Result: parser.parseOptionalKeyword(keyword: "at" )) && |
| 2205 | failed(Result: parseOptionalDefinedList(parser, state, definedSet&: crdUsedLvlSet, definedArgs&: coords))) |
| 2206 | return failure(); |
| 2207 | |
| 2208 | // Always use IndexType for the coordinate. |
| 2209 | for (auto &coord : coords) |
| 2210 | coord.type = parser.getBuilder().getIndexType(); |
| 2211 | |
| 2212 | // Set the CrdUsedLvl bitset. |
| 2213 | state.addAttribute("crdUsedLvls" , |
| 2214 | parser.getBuilder().getI64IntegerAttr(crdUsedLvlSet)); |
| 2215 | return success(); |
| 2216 | } |
| 2217 | |
| 2218 | static ParseResult |
| 2219 | parseSparseIterateLoop(OpAsmParser &parser, OperationState &state, |
| 2220 | SmallVectorImpl<OpAsmParser::Argument> &iterators, |
| 2221 | SmallVectorImpl<OpAsmParser::Argument> &blockArgs) { |
| 2222 | SmallVector<OpAsmParser::UnresolvedOperand> spaces; |
| 2223 | SmallVector<OpAsmParser::UnresolvedOperand> initArgs; |
| 2224 | |
| 2225 | // Parse "%iters, ... in %spaces, ..." |
| 2226 | if (parser.parseArgumentList(result&: iterators) || parser.parseKeyword(keyword: "in" ) || |
| 2227 | parser.parseOperandList(result&: spaces)) |
| 2228 | return failure(); |
| 2229 | |
| 2230 | if (iterators.size() != spaces.size()) |
| 2231 | return parser.emitError( |
| 2232 | loc: parser.getNameLoc(), |
| 2233 | message: "mismatch in number of sparse iterators and sparse spaces" ); |
| 2234 | |
| 2235 | SmallVector<OpAsmParser::Argument> coords; |
| 2236 | if (failed(Result: parseUsedCoordList(parser, state, coords))) |
| 2237 | return failure(); |
| 2238 | size_t numCrds = coords.size(); |
| 2239 | |
| 2240 | // Parse "iter_args(%arg = %init, ...)" |
| 2241 | bool hasIterArgs = succeeded(Result: parser.parseOptionalKeyword(keyword: "iter_args" )); |
| 2242 | if (hasIterArgs) |
| 2243 | if (parser.parseAssignmentList(lhs&: blockArgs, rhs&: initArgs)) |
| 2244 | return failure(); |
| 2245 | |
| 2246 | blockArgs.append(RHS: coords); |
| 2247 | |
| 2248 | SmallVector<Type> iterSpaceTps; |
| 2249 | // parse ": sparse_tensor.iter_space -> ret" |
| 2250 | if (parser.parseColon() || parser.parseTypeList(result&: iterSpaceTps)) |
| 2251 | return failure(); |
| 2252 | if (iterSpaceTps.size() != spaces.size()) |
| 2253 | return parser.emitError(loc: parser.getNameLoc(), |
| 2254 | message: "mismatch in number of iteration space operands " |
| 2255 | "and iteration space types" ); |
| 2256 | |
| 2257 | for (auto [it, tp] : llvm::zip_equal(t&: iterators, u&: iterSpaceTps)) { |
| 2258 | IterSpaceType spaceTp = llvm::dyn_cast<IterSpaceType>(tp); |
| 2259 | if (!spaceTp) |
| 2260 | return parser.emitError(loc: parser.getNameLoc(), |
| 2261 | message: "expected sparse_tensor.iter_space type for " |
| 2262 | "iteration space operands" ); |
| 2263 | it.type = spaceTp.getIteratorType(); |
| 2264 | } |
| 2265 | |
| 2266 | if (hasIterArgs) |
| 2267 | if (parser.parseArrowTypeList(result&: state.types)) |
| 2268 | return failure(); |
| 2269 | |
| 2270 | // Resolves input operands. |
| 2271 | if (parser.resolveOperands(operands&: spaces, types&: iterSpaceTps, loc: parser.getNameLoc(), |
| 2272 | result&: state.operands)) |
| 2273 | return failure(); |
| 2274 | |
| 2275 | if (hasIterArgs) { |
| 2276 | // Strip off leading args that used for coordinates. |
| 2277 | MutableArrayRef args = MutableArrayRef(blockArgs).drop_back(N: numCrds); |
| 2278 | if (args.size() != initArgs.size() || args.size() != state.types.size()) { |
| 2279 | return parser.emitError( |
| 2280 | loc: parser.getNameLoc(), |
| 2281 | message: "mismatch in number of iteration arguments and return values" ); |
| 2282 | } |
| 2283 | |
| 2284 | for (auto [it, init, tp] : llvm::zip_equal(t&: args, u&: initArgs, args&: state.types)) { |
| 2285 | it.type = tp; |
| 2286 | if (parser.resolveOperand(operand: init, type: tp, result&: state.operands)) |
| 2287 | return failure(); |
| 2288 | } |
| 2289 | } |
| 2290 | return success(); |
| 2291 | } |
| 2292 | |
| 2293 | static ParseResult |
| 2294 | parseSparseCoIterateLoop(OpAsmParser &parser, OperationState &state, |
| 2295 | SmallVectorImpl<Value> &spacesVals, |
| 2296 | SmallVectorImpl<OpAsmParser::Argument> &blockArgs) { |
| 2297 | |
| 2298 | // Parse "(%spaces, ...)" |
| 2299 | SmallVector<OpAsmParser::UnresolvedOperand> spaces; |
| 2300 | if (parser.parseOperandList(result&: spaces, delimiter: OpAsmParser::Delimiter::Paren)) |
| 2301 | return failure(); |
| 2302 | |
| 2303 | SmallVector<OpAsmParser::Argument> coords; |
| 2304 | if (failed(Result: parseUsedCoordList(parser, state, coords))) |
| 2305 | return failure(); |
| 2306 | size_t numCrds = coords.size(); |
| 2307 | |
| 2308 | // Parse "iter_args(%arg = %init, ...)" |
| 2309 | SmallVector<OpAsmParser::UnresolvedOperand> initArgs; |
| 2310 | bool hasIterArgs = succeeded(Result: parser.parseOptionalKeyword(keyword: "iter_args" )); |
| 2311 | if (hasIterArgs) |
| 2312 | if (parser.parseAssignmentList(lhs&: blockArgs, rhs&: initArgs)) |
| 2313 | return failure(); |
| 2314 | blockArgs.append(RHS: coords); |
| 2315 | |
| 2316 | SmallVector<Type> iterSpaceTps; |
| 2317 | // parse ": (sparse_tensor.iter_space, ...) -> ret" |
| 2318 | if (parser.parseColon() || parser.parseLParen() || |
| 2319 | parser.parseTypeList(result&: iterSpaceTps) || parser.parseRParen()) |
| 2320 | return failure(); |
| 2321 | |
| 2322 | if (iterSpaceTps.size() != spaces.size()) |
| 2323 | return parser.emitError(loc: parser.getNameLoc(), |
| 2324 | message: "mismatch in number of iteration space operands " |
| 2325 | "and iteration space types" ); |
| 2326 | |
| 2327 | if (hasIterArgs) |
| 2328 | if (parser.parseArrowTypeList(result&: state.types)) |
| 2329 | return failure(); |
| 2330 | |
| 2331 | // Resolves input sparse iteration spaces. |
| 2332 | if (parser.resolveOperands(operands&: spaces, types&: iterSpaceTps, loc: parser.getNameLoc(), |
| 2333 | result&: spacesVals)) |
| 2334 | return failure(); |
| 2335 | state.operands.append(RHS: spacesVals); |
| 2336 | |
| 2337 | if (hasIterArgs) { |
| 2338 | // Strip off trailing args that used for coordinates. |
| 2339 | MutableArrayRef args = MutableArrayRef(blockArgs).drop_back(N: numCrds); |
| 2340 | if (args.size() != initArgs.size() || args.size() != state.types.size()) { |
| 2341 | return parser.emitError( |
| 2342 | loc: parser.getNameLoc(), |
| 2343 | message: "mismatch in number of iteration arguments and return values" ); |
| 2344 | } |
| 2345 | |
| 2346 | for (auto [it, init, tp] : llvm::zip_equal(t&: args, u&: initArgs, args&: state.types)) { |
| 2347 | it.type = tp; |
| 2348 | if (parser.resolveOperand(operand: init, type: tp, result&: state.operands)) |
| 2349 | return failure(); |
| 2350 | } |
| 2351 | } |
| 2352 | return success(); |
| 2353 | } |
| 2354 | |
| 2355 | LogicalResult ExtractIterSpaceOp::inferReturnTypes( |
| 2356 | MLIRContext *ctx, std::optional<Location> loc, ValueRange ops, |
| 2357 | DictionaryAttr attr, OpaqueProperties prop, RegionRange region, |
| 2358 | SmallVectorImpl<mlir::Type> &ret) { |
| 2359 | |
| 2360 | ExtractIterSpaceOp::Adaptor adaptor(ops, attr, prop, region); |
| 2361 | SparseTensorType stt = getSparseTensorType(adaptor.getTensor()); |
| 2362 | ret.push_back(IterSpaceType::get(ctx, stt.getEncoding(), adaptor.getLoLvl(), |
| 2363 | adaptor.getHiLvl())); |
| 2364 | return success(); |
| 2365 | } |
| 2366 | |
| 2367 | LogicalResult ExtractIterSpaceOp::verify() { |
| 2368 | if (getLoLvl() >= getHiLvl()) |
| 2369 | return emitOpError("expected smaller level low than level high" ); |
| 2370 | |
| 2371 | TypedValue<IteratorType> pIter = getParentIter(); |
| 2372 | if ((pIter && getLoLvl() == 0) || (!pIter && getLoLvl() != 0)) { |
| 2373 | return emitOpError( |
| 2374 | "parent iterator should be specified iff level lower bound equals 0" ); |
| 2375 | } |
| 2376 | |
| 2377 | if (pIter) { |
| 2378 | IterSpaceType spaceTp = getExtractedSpace().getType(); |
| 2379 | if (pIter.getType().getEncoding() != spaceTp.getEncoding()) |
| 2380 | return emitOpError( |
| 2381 | "mismatch in parent iterator encoding and iteration space encoding." ); |
| 2382 | |
| 2383 | if (spaceTp.getLoLvl() != pIter.getType().getHiLvl()) |
| 2384 | return emitOpError("parent iterator should be used to extract an " |
| 2385 | "iteration space from a consecutive level." ); |
| 2386 | } |
| 2387 | |
| 2388 | return success(); |
| 2389 | } |
| 2390 | |
| 2391 | LogicalResult ExtractValOp::verify() { |
| 2392 | auto stt = getSparseTensorType(getTensor()); |
| 2393 | auto itTp = getIterator().getType(); |
| 2394 | |
| 2395 | if (stt.getEncoding() != itTp.getEncoding()) |
| 2396 | return emitOpError("mismatch in tensor encoding and iterator encoding." ); |
| 2397 | |
| 2398 | if (stt.getLvlRank() != itTp.getHiLvl()) |
| 2399 | return emitOpError("must use last-level iterator to extract values. " ); |
| 2400 | |
| 2401 | return success(); |
| 2402 | } |
| 2403 | |
| 2404 | struct RemoveUnusedLvlCrds : public OpRewritePattern<IterateOp> { |
| 2405 | using OpRewritePattern::OpRewritePattern; |
| 2406 | |
| 2407 | LogicalResult matchAndRewrite(IterateOp iterateOp, |
| 2408 | PatternRewriter &rewriter) const override { |
| 2409 | I64BitSet newUsedLvls(0); |
| 2410 | llvm::BitVector toRemove(iterateOp.getBody()->getNumArguments()); |
| 2411 | for (unsigned i = 0, e = iterateOp.getSpaceDim(); i < e; i++) { |
| 2412 | if (auto crd = iterateOp.getLvlCrd(i)) { |
| 2413 | if (crd->getUsers().empty()) |
| 2414 | toRemove.set(crd->getArgNumber()); |
| 2415 | else |
| 2416 | newUsedLvls.set(i); |
| 2417 | } |
| 2418 | } |
| 2419 | |
| 2420 | // All coordinates are used. |
| 2421 | if (toRemove.none()) |
| 2422 | return failure(); |
| 2423 | |
| 2424 | rewriter.startOpModification(op: iterateOp); |
| 2425 | iterateOp.setCrdUsedLvls(newUsedLvls); |
| 2426 | iterateOp.getBody()->eraseArguments(toRemove); |
| 2427 | rewriter.finalizeOpModification(op: iterateOp); |
| 2428 | return success(); |
| 2429 | } |
| 2430 | }; |
| 2431 | |
| 2432 | void IterateOp::getCanonicalizationPatterns(mlir::RewritePatternSet &results, |
| 2433 | mlir::MLIRContext *context) { |
| 2434 | results.add<RemoveUnusedLvlCrds>(context); |
| 2435 | } |
| 2436 | |
| 2437 | void IterateOp::build(OpBuilder &builder, OperationState &odsState, |
| 2438 | Value iterSpace, ValueRange initArgs) { |
| 2439 | unsigned rank = llvm::cast<IterSpaceType>(iterSpace.getType()).getSpaceDim(); |
| 2440 | // All ones. |
| 2441 | I64BitSet set((1 << rank) - 1); |
| 2442 | return build(builder, odsState, iterSpace, initArgs, set); |
| 2443 | } |
| 2444 | |
| 2445 | void IterateOp::build(OpBuilder &builder, OperationState &odsState, |
| 2446 | Value iterSpace, ValueRange initArgs, |
| 2447 | I64BitSet crdUsedLvls) { |
| 2448 | OpBuilder::InsertionGuard guard(builder); |
| 2449 | |
| 2450 | odsState.addOperands(iterSpace); |
| 2451 | odsState.addOperands(initArgs); |
| 2452 | odsState.getOrAddProperties<Properties>().crdUsedLvls = |
| 2453 | builder.getIntegerAttr(builder.getIntegerType(64), crdUsedLvls); |
| 2454 | Region *bodyRegion = odsState.addRegion(); |
| 2455 | odsState.addTypes(initArgs.getTypes()); |
| 2456 | Block *bodyBlock = builder.createBlock(bodyRegion); |
| 2457 | |
| 2458 | // Starts with a list of user-provided loop arguments. |
| 2459 | for (Value v : initArgs) |
| 2460 | bodyBlock->addArgument(v.getType(), v.getLoc()); |
| 2461 | |
| 2462 | // Follows by a list of used coordinates. |
| 2463 | for (unsigned i = 0, e = crdUsedLvls.count(); i < e; i++) |
| 2464 | bodyBlock->addArgument(builder.getIndexType(), odsState.location); |
| 2465 | |
| 2466 | // Ends with sparse iterator |
| 2467 | bodyBlock->addArgument( |
| 2468 | llvm::cast<IterSpaceType>(iterSpace.getType()).getIteratorType(), |
| 2469 | odsState.location); |
| 2470 | } |
| 2471 | |
| 2472 | ParseResult IterateOp::parse(OpAsmParser &parser, OperationState &result) { |
| 2473 | OpAsmParser::Argument iterator; |
| 2474 | OpAsmParser::UnresolvedOperand iterSpace; |
| 2475 | |
| 2476 | SmallVector<OpAsmParser::Argument> iters, iterArgs; |
| 2477 | if (parseSparseIterateLoop(parser, result, iters, iterArgs)) |
| 2478 | return failure(); |
| 2479 | if (iters.size() != 1) |
| 2480 | return parser.emitError(parser.getNameLoc(), |
| 2481 | "expected only one iterator/iteration space" ); |
| 2482 | |
| 2483 | iterArgs.append(iters); |
| 2484 | Region *body = result.addRegion(); |
| 2485 | if (parser.parseRegion(*body, iterArgs)) |
| 2486 | return failure(); |
| 2487 | |
| 2488 | IterateOp::ensureTerminator(*body, parser.getBuilder(), result.location); |
| 2489 | |
| 2490 | // Parse the optional attribute list. |
| 2491 | if (parser.parseOptionalAttrDict(result.attributes)) |
| 2492 | return failure(); |
| 2493 | |
| 2494 | return success(); |
| 2495 | } |
| 2496 | |
| 2497 | /// Prints the initialization list in the form of |
| 2498 | /// <prefix>(%inner = %outer, %inner2 = %outer2, <...>) |
| 2499 | /// where 'inner' values are assumed to be region arguments and 'outer' values |
| 2500 | /// are regular SSA values. |
| 2501 | static void printInitializationList(OpAsmPrinter &p, |
| 2502 | Block::BlockArgListType blocksArgs, |
| 2503 | ValueRange initializers, |
| 2504 | StringRef prefix = "" ) { |
| 2505 | assert(blocksArgs.size() == initializers.size() && |
| 2506 | "expected same length of arguments and initializers" ); |
| 2507 | if (initializers.empty()) |
| 2508 | return; |
| 2509 | |
| 2510 | p << prefix << '('; |
| 2511 | llvm::interleaveComma(c: llvm::zip(t&: blocksArgs, u&: initializers), os&: p, each_fn: [&](auto it) { |
| 2512 | p << std::get<0>(it) << " = " << std::get<1>(it); |
| 2513 | }); |
| 2514 | p << ")" ; |
| 2515 | } |
| 2516 | |
| 2517 | template <typename SparseLoopOp> |
| 2518 | static LogicalResult verifySparseLoopOp(SparseLoopOp op) { |
| 2519 | if (op.getInitArgs().size() != op.getNumResults()) { |
| 2520 | return op.emitOpError( |
| 2521 | "mismatch in number of loop-carried values and defined values" ); |
| 2522 | } |
| 2523 | if (op.getCrdUsedLvls().max() > op.getSpaceDim()) |
| 2524 | return op.emitOpError("required out-of-bound coordinates" ); |
| 2525 | |
| 2526 | return success(); |
| 2527 | } |
| 2528 | |
| 2529 | LogicalResult IterateOp::verify() { return verifySparseLoopOp(*this); } |
| 2530 | LogicalResult CoIterateOp::verify() { return verifySparseLoopOp(*this); } |
| 2531 | |
| 2532 | void IterateOp::print(OpAsmPrinter &p) { |
| 2533 | p << " " << getIterator() << " in " << getIterSpace(); |
| 2534 | if (!getCrdUsedLvls().empty()) { |
| 2535 | p << " at(" ; |
| 2536 | printOptionalDefinedList(p, getSpaceDim(), getCrds(), getCrdUsedLvls()); |
| 2537 | p << ")" ; |
| 2538 | } |
| 2539 | printInitializationList(p, getRegionIterArgs(), getInitArgs(), " iter_args" ); |
| 2540 | |
| 2541 | p << " : " << getIterSpace().getType() << " " ; |
| 2542 | if (!getInitArgs().empty()) |
| 2543 | p.printArrowTypeList(getInitArgs().getTypes()); |
| 2544 | |
| 2545 | p << " " ; |
| 2546 | p.printRegion(getRegion(), /*printEntryBlockArgs=*/false, |
| 2547 | /*printBlockTerminators=*/!getInitArgs().empty()); |
| 2548 | } |
| 2549 | |
| 2550 | LogicalResult IterateOp::verifyRegions() { |
| 2551 | if (getIterator().getType() != getIterSpace().getType().getIteratorType()) |
| 2552 | return emitOpError("mismatch in iterator and iteration space type" ); |
| 2553 | if (getNumRegionIterArgs() != getNumResults()) |
| 2554 | return emitOpError( |
| 2555 | "mismatch in number of basic block args and defined values" ); |
| 2556 | |
| 2557 | auto initArgs = getInitArgs(); |
| 2558 | auto iterArgs = getRegionIterArgs(); |
| 2559 | auto yieldVals = getYieldedValues(); |
| 2560 | auto opResults = getResults(); |
| 2561 | if (!llvm::all_equal({initArgs.size(), iterArgs.size(), yieldVals.size(), |
| 2562 | opResults.size()})) { |
| 2563 | return emitOpError() << "number mismatch between iter args and results." ; |
| 2564 | } |
| 2565 | |
| 2566 | for (auto [i, init, iter, yield, ret] : |
| 2567 | llvm::enumerate(initArgs, iterArgs, yieldVals, opResults)) { |
| 2568 | if (init.getType() != ret.getType()) |
| 2569 | return emitOpError() << "types mismatch between " << i |
| 2570 | << "th iter operand and defined value" ; |
| 2571 | if (iter.getType() != ret.getType()) |
| 2572 | return emitOpError() << "types mismatch between " << i |
| 2573 | << "th iter region arg and defined value" ; |
| 2574 | if (yield.getType() != ret.getType()) |
| 2575 | return emitOpError() << "types mismatch between " << i |
| 2576 | << "th yield value and defined value" ; |
| 2577 | } |
| 2578 | |
| 2579 | return success(); |
| 2580 | } |
| 2581 | |
| 2582 | /// OpInterfaces' methods implemented by IterateOp. |
| 2583 | SmallVector<Region *> IterateOp::getLoopRegions() { return {&getRegion()}; } |
| 2584 | |
| 2585 | MutableArrayRef<OpOperand> IterateOp::getInitsMutable() { |
| 2586 | return getInitArgsMutable(); |
| 2587 | } |
| 2588 | |
| 2589 | Block::BlockArgListType IterateOp::getRegionIterArgs() { |
| 2590 | return getRegion().getArguments().take_front(getNumRegionIterArgs()); |
| 2591 | } |
| 2592 | |
| 2593 | std::optional<MutableArrayRef<OpOperand>> IterateOp::getYieldedValuesMutable() { |
| 2594 | return cast<sparse_tensor::YieldOp>( |
| 2595 | getRegion().getBlocks().front().getTerminator()) |
| 2596 | .getResultsMutable(); |
| 2597 | } |
| 2598 | |
| 2599 | std::optional<ResultRange> IterateOp::getLoopResults() { return getResults(); } |
| 2600 | |
| 2601 | OperandRange IterateOp::getEntrySuccessorOperands(RegionBranchPoint point) { |
| 2602 | return getInitArgs(); |
| 2603 | } |
| 2604 | |
| 2605 | void IterateOp::getSuccessorRegions(RegionBranchPoint point, |
| 2606 | SmallVectorImpl<RegionSuccessor> ®ions) { |
| 2607 | // Both the operation itself and the region may be branching into the body |
| 2608 | // or back into the operation itself. |
| 2609 | regions.push_back(RegionSuccessor(&getRegion(), getRegionIterArgs())); |
| 2610 | // It is possible for loop not to enter the body. |
| 2611 | regions.push_back(RegionSuccessor(getResults())); |
| 2612 | } |
| 2613 | |
| 2614 | void CoIterateOp::build(OpBuilder &builder, OperationState &odsState, |
| 2615 | ValueRange iterSpaces, ValueRange initArgs, |
| 2616 | unsigned numCases) { |
| 2617 | unsigned rank = |
| 2618 | cast<IterSpaceType>(iterSpaces.front().getType()).getSpaceDim(); |
| 2619 | // All ones. |
| 2620 | I64BitSet set((1 << rank) - 1); |
| 2621 | // Generates all-zero case bits (they only serve as placeholders), which are |
| 2622 | // supposed to be overriden later. We need to preallocate all the regions as |
| 2623 | // mlir::Region cannot be dynamically added later after the operation is |
| 2624 | // created. |
| 2625 | SmallVector<int64_t> caseBits(numCases, 0); |
| 2626 | ArrayAttr cases = builder.getI64ArrayAttr(caseBits); |
| 2627 | return CoIterateOp::build(builder, odsState, initArgs.getTypes(), iterSpaces, |
| 2628 | initArgs, set, cases, |
| 2629 | /*caseRegionsCount=*/numCases); |
| 2630 | } |
| 2631 | |
| 2632 | ParseResult CoIterateOp::parse(OpAsmParser &parser, OperationState &result) { |
| 2633 | |
| 2634 | SmallVector<Value> spaces; |
| 2635 | // The block argument list of each regions, it is arranged in the order of |
| 2636 | // ([used coordinate list], [loop iterations args], [sparse iterator list]). |
| 2637 | SmallVector<OpAsmParser::Argument> blockArgs; |
| 2638 | if (parseSparseCoIterateLoop(parser, result, spaces, blockArgs)) |
| 2639 | return failure(); |
| 2640 | |
| 2641 | result.addAttribute("operandSegmentSizes" , |
| 2642 | parser.getBuilder().getDenseI32ArrayAttr( |
| 2643 | {static_cast<int32_t>(spaces.size()), |
| 2644 | static_cast<int32_t>(result.types.size())})); |
| 2645 | |
| 2646 | SmallVector<Attribute> cases; |
| 2647 | while (succeeded(parser.parseOptionalKeyword("case" ))) { |
| 2648 | // Parse one region per case. |
| 2649 | I64BitSet definedItSet; |
| 2650 | SmallVector<OpAsmParser::Argument> definedIts; |
| 2651 | if (parseOptionalDefinedList(parser, result, definedItSet, definedIts, |
| 2652 | spaces.size(), OpAsmParser::Delimiter::None)) |
| 2653 | return failure(); |
| 2654 | |
| 2655 | cases.push_back(parser.getBuilder().getI64IntegerAttr(definedItSet)); |
| 2656 | |
| 2657 | for (auto [i, definedIdx] : llvm::enumerate(definedItSet.bits())) { |
| 2658 | // Resolve the iterator type based on the iteration space type. |
| 2659 | auto spaceTp = llvm::cast<IterSpaceType>(spaces[definedIdx].getType()); |
| 2660 | definedIts[i].type = spaceTp.getIteratorType(); |
| 2661 | } |
| 2662 | definedIts.insert(definedIts.begin(), blockArgs.begin(), blockArgs.end()); |
| 2663 | Region *body = result.addRegion(); |
| 2664 | if (parser.parseRegion(*body, definedIts)) |
| 2665 | return failure(); |
| 2666 | |
| 2667 | CoIterateOp::ensureTerminator(*body, parser.getBuilder(), result.location); |
| 2668 | } |
| 2669 | |
| 2670 | result.addAttribute("cases" , ArrayAttr::get(parser.getContext(), cases)); |
| 2671 | |
| 2672 | // Parse the optional attribute list. |
| 2673 | if (parser.parseOptionalAttrDict(result.attributes)) |
| 2674 | return failure(); |
| 2675 | |
| 2676 | return success(); |
| 2677 | } |
| 2678 | |
| 2679 | void CoIterateOp::print(OpAsmPrinter &p) { |
| 2680 | p << " (" ; |
| 2681 | llvm::interleaveComma(getIterSpaces(), p, [&](auto s) { p << s; }); |
| 2682 | p << ")" ; |
| 2683 | |
| 2684 | if (!getCrdUsedLvls().empty()) { |
| 2685 | p << " at(" ; |
| 2686 | printOptionalDefinedList(p, getSpaceDim(), getCrds(0), getCrdUsedLvls()); |
| 2687 | p << ")" ; |
| 2688 | } |
| 2689 | |
| 2690 | printInitializationList(p, getRegionIterArgs(0), getInitArgs(), " iter_args" ); |
| 2691 | |
| 2692 | p << " : (" << getIterSpaces().getTypes() << ")" ; |
| 2693 | if (!getInitArgs().empty()) |
| 2694 | p.printArrowTypeList(getInitArgs().getTypes()); |
| 2695 | |
| 2696 | for (unsigned idx = 0, e = getRegions().size(); idx < e; idx++) { |
| 2697 | p.printNewline(); |
| 2698 | p << "case " ; |
| 2699 | printOptionalDefinedList(p, getIterSpaces().size(), getRegionIterators(idx), |
| 2700 | getRegionDefinedSpace(idx)); |
| 2701 | p << " " ; |
| 2702 | p.printRegion(getRegion(idx), /*printEntryBlockArgs=*/false, |
| 2703 | /*printBlockTerminators=*/!getInitArgs().empty()); |
| 2704 | } |
| 2705 | } |
| 2706 | |
| 2707 | ValueRange CoIterateOp::getYieldedValues(unsigned regionIdx) { |
| 2708 | return cast<sparse_tensor::YieldOp>( |
| 2709 | getRegion(regionIdx).getBlocks().front().getTerminator()) |
| 2710 | .getResults(); |
| 2711 | } |
| 2712 | |
| 2713 | LogicalResult CoIterateOp::verifyRegions() { |
| 2714 | for (unsigned r = 0, e = getNumRegions(); r < e; r++) { |
| 2715 | if (getNumRegionIterArgs() != getNumResults()) |
| 2716 | return emitOpError( |
| 2717 | "mismatch in number of basic block args and defined values" ); |
| 2718 | |
| 2719 | auto initArgs = getInitArgs(); |
| 2720 | auto iterArgs = getRegionIterArgs(r); |
| 2721 | auto yieldVals = getYieldedValues(r); |
| 2722 | auto opResults = getResults(); |
| 2723 | if (!llvm::all_equal({initArgs.size(), iterArgs.size(), yieldVals.size(), |
| 2724 | opResults.size()})) { |
| 2725 | return emitOpError() |
| 2726 | << "number mismatch between iter args and results on " << r |
| 2727 | << "th region" ; |
| 2728 | } |
| 2729 | |
| 2730 | for (auto [i, init, iter, yield, ret] : |
| 2731 | llvm::enumerate(initArgs, iterArgs, yieldVals, opResults)) { |
| 2732 | if (init.getType() != ret.getType()) |
| 2733 | return emitOpError() |
| 2734 | << "types mismatch between " << i |
| 2735 | << "th iter operand and defined value on " << r << "th region" ; |
| 2736 | if (iter.getType() != ret.getType()) |
| 2737 | return emitOpError() << "types mismatch between " << i |
| 2738 | << "th iter region arg and defined value on " << r |
| 2739 | << "th region" ; |
| 2740 | if (yield.getType() != ret.getType()) |
| 2741 | return emitOpError() |
| 2742 | << "types mismatch between " << i |
| 2743 | << "th yield value and defined value on " << r << "th region" ; |
| 2744 | } |
| 2745 | } |
| 2746 | |
| 2747 | auto cases = getRegionDefinedSpaces(); |
| 2748 | llvm::SmallSetVector<uint64_t, 8> set(cases.begin(), cases.end()); |
| 2749 | if (set.size() != getNumRegions()) |
| 2750 | return emitOpError("contains duplicated cases." ); |
| 2751 | |
| 2752 | return success(); |
| 2753 | } |
| 2754 | |
| 2755 | SmallVector<Region *> CoIterateOp::getSubCasesOf(unsigned regionIdx) { |
| 2756 | SmallVector<Region *> ret; |
| 2757 | I64BitSet caseBit = getRegionDefinedSpace(regionIdx); |
| 2758 | for (Region &r : getCaseRegions()) |
| 2759 | if (getRegionDefinedSpace(r.getRegionNumber()).isSubSetOf(caseBit)) |
| 2760 | ret.push_back(&r); |
| 2761 | |
| 2762 | return ret; |
| 2763 | } |
| 2764 | |
| 2765 | //===----------------------------------------------------------------------===// |
| 2766 | // Sparse Tensor Dialect Setups. |
| 2767 | //===----------------------------------------------------------------------===// |
| 2768 | |
| 2769 | /// Materialize a single constant operation from a given attribute value with |
| 2770 | /// the desired resultant type. |
| 2771 | Operation *SparseTensorDialect::materializeConstant(OpBuilder &builder, |
| 2772 | Attribute value, Type type, |
| 2773 | Location loc) { |
| 2774 | if (auto op = arith::ConstantOp::materialize(builder, value, type, loc)) |
| 2775 | return op; |
| 2776 | return nullptr; |
| 2777 | } |
| 2778 | |
| 2779 | void SparseTensorDialect::initialize() { |
| 2780 | addAttributes< |
| 2781 | #define GET_ATTRDEF_LIST |
| 2782 | #include "mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.cpp.inc" |
| 2783 | >(); |
| 2784 | addTypes< |
| 2785 | #define GET_TYPEDEF_LIST |
| 2786 | #include "mlir/Dialect/SparseTensor/IR/SparseTensorTypes.cpp.inc" |
| 2787 | >(); |
| 2788 | addOperations< |
| 2789 | #define GET_OP_LIST |
| 2790 | #include "mlir/Dialect/SparseTensor/IR/SparseTensorOps.cpp.inc" |
| 2791 | >(); |
| 2792 | declarePromisedInterfaces< |
| 2793 | bufferization::BufferizableOpInterface, ConcatenateOp, ConvertOp, LoadOp, |
| 2794 | NewOp, NumberOfEntriesOp, AssembleOp, DisassembleOp, |
| 2795 | ToCoordinatesBufferOp, ToCoordinatesOp, ToPositionsOp, ToValuesOp>(); |
| 2796 | } |
| 2797 | |
| 2798 | #define GET_OP_CLASSES |
| 2799 | #include "mlir/Dialect/SparseTensor/IR/SparseTensorOps.cpp.inc" |
| 2800 | |
| 2801 | #include "mlir/Dialect/SparseTensor/IR/SparseTensorOpsDialect.cpp.inc" |
| 2802 | |