| 1 | //===- SparseTensorConversion.cpp - Sparse tensor primitives conversion ---===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // A pass that converts sparse tensor primitives into calls into a runtime |
| 10 | // support library. Sparse tensor types are converted into opaque pointers |
| 11 | // to the underlying sparse storage schemes. The use of opaque pointers |
| 12 | // together with runtime support library keeps the conversion relatively |
| 13 | // simple, but at the expense of IR opacity, which obscures opportunities |
| 14 | // for subsequent optimization of the IR. An alternative is provided by |
| 15 | // the SparseTensorCodegen pass. |
| 16 | // |
| 17 | //===----------------------------------------------------------------------===// |
| 18 | |
| 19 | #include "Utils/CodegenUtils.h" |
| 20 | |
| 21 | #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h" |
| 22 | #include "mlir/Dialect/Bufferization/IR/Bufferization.h" |
| 23 | #include "mlir/Dialect/Linalg/Utils/Utils.h" |
| 24 | #include "mlir/Dialect/MemRef/IR/MemRef.h" |
| 25 | #include "mlir/Dialect/SCF/IR/SCF.h" |
| 26 | #include "mlir/Dialect/SparseTensor/IR/Enums.h" |
| 27 | #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h" |
| 28 | #include "mlir/Dialect/SparseTensor/IR/SparseTensorType.h" |
| 29 | #include "mlir/Dialect/SparseTensor/Transforms/Passes.h" |
| 30 | #include "mlir/Dialect/Tensor/IR/Tensor.h" |
| 31 | #include "mlir/Transforms/DialectConversion.h" |
| 32 | |
| 33 | using namespace mlir; |
| 34 | using namespace mlir::sparse_tensor; |
| 35 | |
| 36 | namespace { |
| 37 | |
| 38 | //===----------------------------------------------------------------------===// |
| 39 | // Helper methods. |
| 40 | //===----------------------------------------------------------------------===// |
| 41 | |
| 42 | /// Maps each sparse tensor type to an opaque pointer. |
| 43 | static std::optional<Type> convertSparseTensorTypes(Type type) { |
| 44 | if (getSparseTensorEncoding(type) != nullptr) |
| 45 | return LLVM::LLVMPointerType::get(type.getContext()); |
| 46 | return std::nullopt; |
| 47 | } |
| 48 | |
| 49 | /// Generates call to lookup a level-size. N.B., this only generates |
| 50 | /// the raw function call, and therefore (intentionally) does not perform |
| 51 | /// any dim<->lvl conversion or other logic. |
| 52 | static Value genLvlSizeCall(OpBuilder &builder, Location loc, Value tensor, |
| 53 | uint64_t lvl) { |
| 54 | StringRef name = "sparseLvlSize" ; |
| 55 | SmallVector<Value, 2> params{tensor, constantIndex(builder, loc, i: lvl)}; |
| 56 | Type iTp = builder.getIndexType(); |
| 57 | return createFuncCall(builder, loc, name, iTp, params, EmitCInterface::Off) |
| 58 | .getResult(0); |
| 59 | } |
| 60 | |
| 61 | /// Generates call to lookup a dimension-size. N.B., this only generates |
| 62 | /// the raw function call, and therefore (intentionally) does not perform |
| 63 | /// any dim<->lvl conversion or other logic. |
| 64 | static Value genDimSizeCall(OpBuilder &builder, Location loc, Value tensor, |
| 65 | uint64_t dim) { |
| 66 | StringRef name = "sparseDimSize" ; |
| 67 | SmallVector<Value, 2> params{tensor, constantIndex(builder, loc, i: dim)}; |
| 68 | Type iTp = builder.getIndexType(); |
| 69 | return createFuncCall(builder, loc, name, iTp, params, EmitCInterface::Off) |
| 70 | .getResult(0); |
| 71 | } |
| 72 | |
| 73 | /// Looks up a level-size by returning a statically-computed constant |
| 74 | /// (when possible), or by calling `genLvlSizeCall` (when dynamic). |
| 75 | static Value createOrFoldLvlCall(OpBuilder &builder, Location loc, |
| 76 | SparseTensorType stt, Value tensor, |
| 77 | Level lvl) { |
| 78 | // Only sparse tensors have "levels" to query. |
| 79 | assert(stt.hasEncoding()); |
| 80 | // TODO: The following implementation only handles permutations; |
| 81 | // we'll need to generalize this to handle arbitrary AffineExpr. |
| 82 | // |
| 83 | // There's no need to assert `isPermutation` here: because |
| 84 | // `getDimPosition` checks that the expr isa `AffineDimExpr`, |
| 85 | // which is all we care about (for supporting permutations). |
| 86 | const Dimension dim = |
| 87 | stt.isIdentity() ? lvl : stt.getDimToLvl().getDimPosition(idx: lvl); |
| 88 | const Size sz = stt.getDynamicDimSize(d: dim); |
| 89 | if (!ShapedType::isDynamic(sz)) |
| 90 | return constantIndex(builder, loc, i: sz); |
| 91 | // If we cannot statically compute the size from the shape, then we |
| 92 | // must dynamically query it. (In principle we could also dynamically |
| 93 | // compute it, but since we already did so to construct the `tensor` |
| 94 | // in the first place, we might as well query rather than recompute.) |
| 95 | return genLvlSizeCall(builder, loc, tensor, lvl); |
| 96 | } |
| 97 | |
| 98 | /// Looks up a dimension-size by returning a constant from the shape |
| 99 | /// (for static sizes), or by calling `genDimSizeCall` (for dynamic sizes |
| 100 | /// of sparse tensors) or `linalg::createOrFoldDimOp` (for dynamic sizes |
| 101 | /// of dense tensors). |
| 102 | static Value createOrFoldDimCall(OpBuilder &builder, Location loc, |
| 103 | SparseTensorType stt, Value tensor, |
| 104 | Dimension dim) { |
| 105 | const Size sz = stt.getDynamicDimSize(d: dim); |
| 106 | if (!ShapedType::isDynamic(sz)) |
| 107 | return constantIndex(builder, loc, i: sz); |
| 108 | if (stt.hasEncoding()) |
| 109 | return genDimSizeCall(builder, loc, tensor, dim); |
| 110 | return linalg::createOrFoldDimOp(b&: builder, loc, val: tensor, dim); |
| 111 | } |
| 112 | |
| 113 | /// Populates the array with the dimension-sizes of the given tensor. |
| 114 | static void fillDimSizes(OpBuilder &builder, Location loc, SparseTensorType stt, |
| 115 | Value tensor, SmallVectorImpl<Value> &out) { |
| 116 | const Dimension dimRank = stt.getDimRank(); |
| 117 | out.clear(); |
| 118 | out.reserve(N: dimRank); |
| 119 | for (Dimension d = 0; d < dimRank; d++) |
| 120 | out.push_back(Elt: createOrFoldDimCall(builder, loc, stt, tensor, dim: d)); |
| 121 | } |
| 122 | |
| 123 | /// Returns an array with the dimension-sizes of the given tensor. |
| 124 | /// If the *tensor* parameters is null, the tensor type is assumed to have a |
| 125 | /// static shape. |
| 126 | static SmallVector<Value> getDimSizes(OpBuilder &builder, Location loc, |
| 127 | SparseTensorType stt, |
| 128 | Value tensor = Value()) { |
| 129 | SmallVector<Value> out; |
| 130 | fillDimSizes(builder, loc, stt, tensor, out); |
| 131 | return out; |
| 132 | } |
| 133 | |
| 134 | /// Generates an uninitialized buffer of the given size and type, |
| 135 | /// but returns it as type `memref<? x $tp>` (rather than as type |
| 136 | /// `memref<$sz x $tp>`). Unlike temporary buffers on the stack, |
| 137 | /// this buffer must be explicitly deallocated by client. |
| 138 | static Value genAlloc(RewriterBase &rewriter, Location loc, Value sz, Type tp) { |
| 139 | auto memTp = MemRefType::get({ShapedType::kDynamic}, tp); |
| 140 | return rewriter.create<memref::AllocOp>(loc, memTp, ValueRange{sz}); |
| 141 | } |
| 142 | |
| 143 | /// Generates a temporary buffer for the level-types of the given encoding. |
| 144 | static Value genLvlTypesBuffer(OpBuilder &builder, Location loc, |
| 145 | SparseTensorType stt) { |
| 146 | SmallVector<Value> lvlTypes; |
| 147 | lvlTypes.reserve(N: stt.getLvlRank()); |
| 148 | for (const auto lt : stt.getEncoding().getLvlTypes()) |
| 149 | lvlTypes.push_back(constantLevelTypeEncoding(builder, loc, lt)); |
| 150 | return allocaBuffer(builder, loc, values: lvlTypes); |
| 151 | } |
| 152 | |
| 153 | /// Extracts the bare (aligned) pointers that point to the tensor. |
| 154 | static Value (OpBuilder &builder, Location loc, |
| 155 | Value tensor) { |
| 156 | auto buf = genToMemref(builder, loc, tensor); |
| 157 | return builder.create<memref::ExtractAlignedPointerAsIndexOp>(loc, buf); |
| 158 | } |
| 159 | |
| 160 | /// Generates a temporary buffer for the level-types of the given encoding. |
| 161 | static Value genLvlPtrsBuffers(OpBuilder &builder, Location loc, |
| 162 | ValueRange lvlTensors, Value valTensor) { |
| 163 | SmallVector<Value> lvlBarePtrs; |
| 164 | lvlBarePtrs.reserve(N: lvlTensors.size() + 1); |
| 165 | // Passing in lvl buffer pointers. |
| 166 | for (const auto lvl : lvlTensors) |
| 167 | lvlBarePtrs.push_back(Elt: extractBarePtrFromTensor(builder, loc, tensor: lvl)); |
| 168 | |
| 169 | // Passing in value buffer pointers. |
| 170 | lvlBarePtrs.push_back(Elt: extractBarePtrFromTensor(builder, loc, tensor: valTensor)); |
| 171 | Value idxPtr = builder.create<memref::ExtractAlignedPointerAsIndexOp>( |
| 172 | loc, allocaBuffer(builder, loc, lvlBarePtrs)); |
| 173 | Value idxCast = |
| 174 | builder.create<arith::IndexCastOp>(loc, builder.getI64Type(), idxPtr); |
| 175 | return builder.create<LLVM::IntToPtrOp>(loc, getOpaquePointerType(builder), |
| 176 | idxCast); |
| 177 | } |
| 178 | |
| 179 | /// This class abstracts over the API of `_mlir_ciface_newSparseTensor`: |
| 180 | /// the "swiss army knife" method of the sparse runtime support library |
| 181 | /// for materializing sparse tensors into the computation. This abstraction |
| 182 | /// reduces the need for modifications when the API changes. |
| 183 | class NewCallParams final { |
| 184 | public: |
| 185 | /// Allocates the `ValueRange` for the `func::CallOp` parameters. |
| 186 | NewCallParams(OpBuilder &builder, Location loc) |
| 187 | : builder(builder), loc(loc), pTp(getOpaquePointerType(builder)) {} |
| 188 | |
| 189 | /// Initializes all static parameters (i.e., those which indicate |
| 190 | /// type-level information such as the encoding and sizes), generating |
| 191 | /// MLIR buffers as needed, and returning `this` for method chaining. |
| 192 | NewCallParams &genBuffers(SparseTensorType stt, |
| 193 | ArrayRef<Value> dimSizesValues, |
| 194 | Value dimSizesBuffer = Value()) { |
| 195 | assert(dimSizesValues.size() == static_cast<size_t>(stt.getDimRank())); |
| 196 | // Sparsity annotations. |
| 197 | params[kParamLvlTypes] = genLvlTypesBuffer(builder, loc, stt); |
| 198 | // Construct dimSizes, lvlSizes, dim2lvl, and lvl2dim buffers. |
| 199 | params[kParamDimSizes] = dimSizesBuffer |
| 200 | ? dimSizesBuffer |
| 201 | : allocaBuffer(builder, loc, values: dimSizesValues); |
| 202 | SmallVector<Value> lvlSizesValues; // unused |
| 203 | params[kParamLvlSizes] = genMapBuffers( |
| 204 | builder, loc, stt, dimSizesValues, dimSizesBuffer: params[kParamDimSizes], |
| 205 | lvlSizesValues, dim2lvlBuffer&: params[kParamDim2Lvl], lvl2dimBuffer&: params[kParamLvl2Dim]); |
| 206 | // Secondary and primary types encoding. |
| 207 | const auto enc = stt.getEncoding(); |
| 208 | params[kParamPosTp] = constantPosTypeEncoding(builder, loc, enc); |
| 209 | params[kParamCrdTp] = constantCrdTypeEncoding(builder, loc, enc); |
| 210 | params[kParamValTp] = |
| 211 | constantPrimaryTypeEncoding(builder, loc, elemTp: stt.getElementType()); |
| 212 | // Return `this` for method chaining. |
| 213 | return *this; |
| 214 | } |
| 215 | |
| 216 | /// Checks whether all the static parameters have been initialized. |
| 217 | bool isInitialized() const { |
| 218 | for (unsigned i = 0; i < kNumStaticParams; ++i) |
| 219 | if (!params[i]) |
| 220 | return false; |
| 221 | return true; |
| 222 | } |
| 223 | |
| 224 | /// Generates a function call, with the current static parameters |
| 225 | /// and the given dynamic arguments. |
| 226 | Value genNewCall(Action action, Value ptr = Value()) { |
| 227 | assert(isInitialized() && "Must initialize before genNewCall" ); |
| 228 | StringRef name = "newSparseTensor" ; |
| 229 | params[kParamAction] = constantAction(builder, loc, action); |
| 230 | params[kParamPtr] = ptr ? ptr : builder.create<LLVM::ZeroOp>(loc, pTp); |
| 231 | return createFuncCall(builder, loc, name, pTp, params, EmitCInterface::On) |
| 232 | .getResult(0); |
| 233 | } |
| 234 | |
| 235 | private: |
| 236 | static constexpr unsigned kNumStaticParams = 8; |
| 237 | static constexpr unsigned kNumDynamicParams = 2; |
| 238 | static constexpr unsigned kNumParams = kNumStaticParams + kNumDynamicParams; |
| 239 | static constexpr unsigned kParamDimSizes = 0; |
| 240 | static constexpr unsigned kParamLvlSizes = 1; |
| 241 | static constexpr unsigned kParamLvlTypes = 2; |
| 242 | static constexpr unsigned kParamDim2Lvl = 3; |
| 243 | static constexpr unsigned kParamLvl2Dim = 4; |
| 244 | static constexpr unsigned kParamPosTp = 5; |
| 245 | static constexpr unsigned kParamCrdTp = 6; |
| 246 | static constexpr unsigned kParamValTp = 7; |
| 247 | static constexpr unsigned kParamAction = 8; |
| 248 | static constexpr unsigned kParamPtr = 9; |
| 249 | |
| 250 | OpBuilder &builder; |
| 251 | Location loc; |
| 252 | Type pTp; |
| 253 | Value params[kNumParams]; |
| 254 | }; |
| 255 | |
| 256 | /// Generates a call to obtain the values array. |
| 257 | static Value genValuesCall(OpBuilder &builder, Location loc, |
| 258 | SparseTensorType stt, Value ptr) { |
| 259 | auto eltTp = stt.getElementType(); |
| 260 | auto resTp = MemRefType::get({ShapedType::kDynamic}, eltTp); |
| 261 | SmallString<15> name{"sparseValues" , primaryTypeFunctionSuffix(elemTp: eltTp)}; |
| 262 | return createFuncCall(builder, loc, name, resTp, {ptr}, EmitCInterface::On) |
| 263 | .getResult(0); |
| 264 | } |
| 265 | |
| 266 | /// Generates a call to obtain the positions array. |
| 267 | static Value genPositionsCall(OpBuilder &builder, Location loc, |
| 268 | SparseTensorType stt, Value ptr, Level l) { |
| 269 | Type posTp = stt.getPosType(); |
| 270 | auto resTp = MemRefType::get({ShapedType::kDynamic}, posTp); |
| 271 | Value lvl = constantIndex(builder, loc, i: l); |
| 272 | SmallString<17> name{"sparsePositions" , overheadTypeFunctionSuffix(overheadTp: posTp)}; |
| 273 | return createFuncCall(builder, loc, name, resTp, {ptr, lvl}, |
| 274 | EmitCInterface::On) |
| 275 | .getResult(0); |
| 276 | } |
| 277 | |
| 278 | /// Generates a call to obtain the coordinates array. |
| 279 | static Value genCoordinatesCall(OpBuilder &builder, Location loc, |
| 280 | SparseTensorType stt, Value ptr, Level l) { |
| 281 | Type crdTp = stt.getCrdType(); |
| 282 | auto resTp = MemRefType::get({ShapedType::kDynamic}, crdTp); |
| 283 | Value lvl = constantIndex(builder, loc, i: l); |
| 284 | SmallString<19> name{"sparseCoordinates" , overheadTypeFunctionSuffix(overheadTp: crdTp)}; |
| 285 | return createFuncCall(builder, loc, name, resTp, {ptr, lvl}, |
| 286 | EmitCInterface::On) |
| 287 | .getResult(0); |
| 288 | } |
| 289 | |
| 290 | /// Generates a call to obtain the coordinates array (AoS view). |
| 291 | static Value genCoordinatesBufferCall(OpBuilder &builder, Location loc, |
| 292 | SparseTensorType stt, Value ptr, |
| 293 | Level l) { |
| 294 | Type crdTp = stt.getCrdType(); |
| 295 | auto resTp = MemRefType::get({ShapedType::kDynamic}, crdTp); |
| 296 | Value lvl = constantIndex(builder, loc, i: l); |
| 297 | SmallString<25> name{"sparseCoordinatesBuffer" , |
| 298 | overheadTypeFunctionSuffix(overheadTp: crdTp)}; |
| 299 | return createFuncCall(builder, loc, name, resTp, {ptr, lvl}, |
| 300 | EmitCInterface::On) |
| 301 | .getResult(0); |
| 302 | } |
| 303 | |
| 304 | //===----------------------------------------------------------------------===// |
| 305 | // Conversion rules. |
| 306 | //===----------------------------------------------------------------------===// |
| 307 | |
| 308 | /// Sparse conversion rule for returns. |
| 309 | class SparseReturnConverter : public OpConversionPattern<func::ReturnOp> { |
| 310 | public: |
| 311 | using OpConversionPattern::OpConversionPattern; |
| 312 | LogicalResult |
| 313 | matchAndRewrite(func::ReturnOp op, OpAdaptor adaptor, |
| 314 | ConversionPatternRewriter &rewriter) const override { |
| 315 | rewriter.replaceOpWithNewOp<func::ReturnOp>(op, adaptor.getOperands()); |
| 316 | return success(); |
| 317 | } |
| 318 | }; |
| 319 | |
| 320 | /// Sparse conversion rule for accessing level-sizes. |
| 321 | class SparseTensorLvlOpConverter : public OpConversionPattern<LvlOp> { |
| 322 | public: |
| 323 | using OpConversionPattern::OpConversionPattern; |
| 324 | LogicalResult |
| 325 | matchAndRewrite(LvlOp op, OpAdaptor adaptor, |
| 326 | ConversionPatternRewriter &rewriter) const override { |
| 327 | const auto stt = getSparseTensorType(op.getSource()); |
| 328 | // Only rewrite sparse DimOp. |
| 329 | if (!stt.hasEncoding()) |
| 330 | return failure(); |
| 331 | |
| 332 | // Only rewrite DimOp with constant index. |
| 333 | std::optional<int64_t> lvl = op.getConstantLvlIndex(); |
| 334 | |
| 335 | if (!lvl) |
| 336 | return failure(); |
| 337 | |
| 338 | // By now, if the level size is constant, the operation should have already |
| 339 | // been folded by LvlOp's folder, so we generate the call unconditionally. |
| 340 | Value src = adaptor.getOperands()[0]; |
| 341 | rewriter.replaceOp(op, genLvlSizeCall(rewriter, op.getLoc(), src, *lvl)); |
| 342 | return success(); |
| 343 | } |
| 344 | }; |
| 345 | |
| 346 | /// Sparse conversion rule for trivial tensor casts. |
| 347 | class SparseCastConverter : public OpConversionPattern<tensor::CastOp> { |
| 348 | public: |
| 349 | using OpConversionPattern::OpConversionPattern; |
| 350 | LogicalResult |
| 351 | matchAndRewrite(tensor::CastOp op, OpAdaptor adaptor, |
| 352 | ConversionPatternRewriter &rewriter) const override { |
| 353 | // Only rewrite identically annotated source/dest. |
| 354 | auto encDst = getSparseTensorEncoding(op.getType()); |
| 355 | auto encSrc = getSparseTensorEncoding(op.getSource().getType()); |
| 356 | if (!encDst || encDst != encSrc) |
| 357 | return failure(); |
| 358 | rewriter.replaceOp(op, adaptor.getOperands()); |
| 359 | return success(); |
| 360 | } |
| 361 | }; |
| 362 | |
| 363 | class SparseReMapConverter : public OpConversionPattern<ReinterpretMapOp> { |
| 364 | public: |
| 365 | using OpConversionPattern::OpConversionPattern; |
| 366 | LogicalResult |
| 367 | matchAndRewrite(ReinterpretMapOp op, OpAdaptor adaptor, |
| 368 | ConversionPatternRewriter &rewriter) const override { |
| 369 | // Simply fold the operation. |
| 370 | rewriter.replaceOp(op, adaptor.getSource()); |
| 371 | return success(); |
| 372 | } |
| 373 | }; |
| 374 | |
| 375 | /// Sparse conversion rule for the new operator. |
| 376 | class SparseTensorNewConverter : public OpConversionPattern<NewOp> { |
| 377 | public: |
| 378 | using OpConversionPattern::OpConversionPattern; |
| 379 | LogicalResult |
| 380 | matchAndRewrite(NewOp op, OpAdaptor adaptor, |
| 381 | ConversionPatternRewriter &rewriter) const override { |
| 382 | Location loc = op.getLoc(); |
| 383 | const auto stt = getSparseTensorType(op); |
| 384 | if (!stt.hasEncoding()) |
| 385 | return failure(); |
| 386 | // Construct the `reader` opening method calls. |
| 387 | SmallVector<Value> dimSizesValues; |
| 388 | Value dimSizesBuffer; |
| 389 | Value reader = genReader(rewriter, loc, stt, adaptor.getOperands()[0], |
| 390 | dimSizesValues, dimSizesBuffer); |
| 391 | // Use the `reader` to parse the file. |
| 392 | Value tensor = NewCallParams(rewriter, loc) |
| 393 | .genBuffers(stt: stt, dimSizesValues, dimSizesBuffer) |
| 394 | .genNewCall(Action::kFromReader, reader); |
| 395 | // Free the memory for `reader`. |
| 396 | createFuncCall(builder&: rewriter, loc, name: "delSparseTensorReader" , resultType: {}, operands: {reader}, |
| 397 | emitCInterface: EmitCInterface::Off); |
| 398 | rewriter.replaceOp(op, tensor); |
| 399 | return success(); |
| 400 | } |
| 401 | }; |
| 402 | |
| 403 | /// Sparse conversion rule for the alloc operator. |
| 404 | /// TODO(springerm): remove when bufferization.alloc_tensor is gone |
| 405 | class SparseTensorAllocConverter |
| 406 | : public OpConversionPattern<bufferization::AllocTensorOp> { |
| 407 | public: |
| 408 | using OpConversionPattern::OpConversionPattern; |
| 409 | LogicalResult |
| 410 | matchAndRewrite(bufferization::AllocTensorOp op, OpAdaptor adaptor, |
| 411 | ConversionPatternRewriter &rewriter) const override { |
| 412 | const auto stt = getSparseTensorType(op); |
| 413 | if (!stt.hasEncoding()) |
| 414 | return failure(); |
| 415 | if (op.getCopy()) |
| 416 | return rewriter.notifyMatchFailure(op, "alloc copy not implemented" ); |
| 417 | // Gather all dimension sizes as SSA values. |
| 418 | Location loc = op.getLoc(); |
| 419 | const Dimension dimRank = stt.getDimRank(); |
| 420 | SmallVector<Value> dimSizesValues; |
| 421 | dimSizesValues.reserve(N: dimRank); |
| 422 | unsigned operandCtr = 0; |
| 423 | for (Dimension d = 0; d < dimRank; d++) { |
| 424 | dimSizesValues.push_back( |
| 425 | Elt: stt.isDynamicDim(d) |
| 426 | ? adaptor.getOperands()[operandCtr++] |
| 427 | : constantIndex(rewriter, loc, op.getStaticSize(d))); |
| 428 | } |
| 429 | // Generate the call to construct empty tensor. The sizes are |
| 430 | // explicitly defined by the arguments to the alloc operator. |
| 431 | rewriter.replaceOp(op, NewCallParams(rewriter, loc) |
| 432 | .genBuffers(stt: stt, dimSizesValues) |
| 433 | .genNewCall(Action::kEmpty)); |
| 434 | return success(); |
| 435 | } |
| 436 | }; |
| 437 | |
| 438 | /// Sparse conversion rule for the empty tensor. |
| 439 | class SparseTensorEmptyConverter : public OpConversionPattern<tensor::EmptyOp> { |
| 440 | public: |
| 441 | using OpConversionPattern::OpConversionPattern; |
| 442 | LogicalResult |
| 443 | matchAndRewrite(tensor::EmptyOp op, OpAdaptor adaptor, |
| 444 | ConversionPatternRewriter &rewriter) const override { |
| 445 | Location loc = op.getLoc(); |
| 446 | const auto stt = getSparseTensorType(op); |
| 447 | if (!stt.hasEncoding()) |
| 448 | return failure(); |
| 449 | // Gather all dimension sizes as SSA values. |
| 450 | const Dimension dimRank = stt.getDimRank(); |
| 451 | SmallVector<Value> dimSizesValues; |
| 452 | dimSizesValues.reserve(N: dimRank); |
| 453 | auto shape = op.getType().getShape(); |
| 454 | unsigned operandCtr = 0; |
| 455 | for (Dimension d = 0; d < dimRank; d++) { |
| 456 | dimSizesValues.push_back(Elt: stt.isDynamicDim(d) |
| 457 | ? adaptor.getOperands()[operandCtr++] |
| 458 | : constantIndex(rewriter, loc, shape[d])); |
| 459 | } |
| 460 | // Generate the call to construct empty tensor. The sizes are |
| 461 | // explicitly defined by the arguments to the alloc operator. |
| 462 | rewriter.replaceOp(op, NewCallParams(rewriter, loc) |
| 463 | .genBuffers(stt: stt, dimSizesValues) |
| 464 | .genNewCall(Action::kEmpty)); |
| 465 | return success(); |
| 466 | } |
| 467 | }; |
| 468 | |
| 469 | /// Sparse conversion rule for the convert operator. |
| 470 | class SparseTensorReorderCOOConverter |
| 471 | : public OpConversionPattern<ReorderCOOOp> { |
| 472 | public: |
| 473 | using OpConversionPattern::OpConversionPattern; |
| 474 | |
| 475 | LogicalResult |
| 476 | matchAndRewrite(ReorderCOOOp op, OpAdaptor adaptor, |
| 477 | ConversionPatternRewriter &rewriter) const override { |
| 478 | const Location loc = op->getLoc(); |
| 479 | const auto srcTp = getSparseTensorType(op.getInputCoo()); |
| 480 | const auto dstTp = getSparseTensorType(op); |
| 481 | |
| 482 | const Value src = adaptor.getInputCoo(); |
| 483 | |
| 484 | NewCallParams params(rewriter, loc); |
| 485 | SmallVector<Value> dimSizesValues = getDimSizes(rewriter, loc, srcTp, src); |
| 486 | rewriter.replaceOp(op, params.genBuffers(stt: dstTp, dimSizesValues) |
| 487 | .genNewCall(Action::kSortCOOInPlace, src)); |
| 488 | |
| 489 | return success(); |
| 490 | } |
| 491 | }; |
| 492 | |
| 493 | /// Sparse conversion rule for the dealloc operator. |
| 494 | class SparseTensorDeallocConverter |
| 495 | : public OpConversionPattern<bufferization::DeallocTensorOp> { |
| 496 | public: |
| 497 | using OpConversionPattern::OpConversionPattern; |
| 498 | LogicalResult |
| 499 | matchAndRewrite(bufferization::DeallocTensorOp op, OpAdaptor adaptor, |
| 500 | ConversionPatternRewriter &rewriter) const override { |
| 501 | if (!getSparseTensorType(op.getTensor()).hasEncoding()) |
| 502 | return failure(); |
| 503 | StringRef name = "delSparseTensor" ; |
| 504 | createFuncCall(rewriter, op->getLoc(), name, {}, adaptor.getOperands(), |
| 505 | EmitCInterface::Off); |
| 506 | rewriter.eraseOp(op: op); |
| 507 | return success(); |
| 508 | } |
| 509 | }; |
| 510 | |
| 511 | /// Sparse conversion rule for position accesses. |
| 512 | class SparseTensorToPositionsConverter |
| 513 | : public OpConversionPattern<ToPositionsOp> { |
| 514 | public: |
| 515 | using OpConversionPattern::OpConversionPattern; |
| 516 | LogicalResult |
| 517 | matchAndRewrite(ToPositionsOp op, OpAdaptor adaptor, |
| 518 | ConversionPatternRewriter &rewriter) const override { |
| 519 | auto stt = getSparseTensorType(op.getTensor()); |
| 520 | auto poss = genPositionsCall(rewriter, op.getLoc(), stt, |
| 521 | adaptor.getTensor(), op.getLevel()); |
| 522 | rewriter.replaceOp(op, poss); |
| 523 | return success(); |
| 524 | } |
| 525 | }; |
| 526 | |
| 527 | /// Sparse conversion rule for coordinate accesses. |
| 528 | class SparseTensorToCoordinatesConverter |
| 529 | : public OpConversionPattern<ToCoordinatesOp> { |
| 530 | public: |
| 531 | using OpConversionPattern::OpConversionPattern; |
| 532 | LogicalResult |
| 533 | matchAndRewrite(ToCoordinatesOp op, OpAdaptor adaptor, |
| 534 | ConversionPatternRewriter &rewriter) const override { |
| 535 | const Location loc = op.getLoc(); |
| 536 | auto stt = getSparseTensorType(op.getTensor()); |
| 537 | auto crds = genCoordinatesCall(rewriter, loc, stt, adaptor.getTensor(), |
| 538 | op.getLevel()); |
| 539 | // Cast the MemRef type to the type expected by the users, though these |
| 540 | // two types should be compatible at runtime. |
| 541 | if (op.getType() != crds.getType()) |
| 542 | crds = rewriter.create<memref::CastOp>(loc, op.getType(), crds); |
| 543 | rewriter.replaceOp(op, crds); |
| 544 | return success(); |
| 545 | } |
| 546 | }; |
| 547 | |
| 548 | /// Sparse conversion rule for coordinate accesses (AoS style). |
| 549 | class SparseToCoordinatesBufferConverter |
| 550 | : public OpConversionPattern<ToCoordinatesBufferOp> { |
| 551 | public: |
| 552 | using OpConversionPattern::OpConversionPattern; |
| 553 | LogicalResult |
| 554 | matchAndRewrite(ToCoordinatesBufferOp op, OpAdaptor adaptor, |
| 555 | ConversionPatternRewriter &rewriter) const override { |
| 556 | const Location loc = op.getLoc(); |
| 557 | auto stt = getSparseTensorType(op.getTensor()); |
| 558 | auto crds = genCoordinatesBufferCall( |
| 559 | rewriter, loc, stt, adaptor.getTensor(), stt.getAoSCOOStart()); |
| 560 | // Cast the MemRef type to the type expected by the users, though these |
| 561 | // two types should be compatible at runtime. |
| 562 | if (op.getType() != crds.getType()) |
| 563 | crds = rewriter.create<memref::CastOp>(loc, op.getType(), crds); |
| 564 | rewriter.replaceOp(op, crds); |
| 565 | return success(); |
| 566 | } |
| 567 | }; |
| 568 | |
| 569 | /// Sparse conversion rule for value accesses. |
| 570 | class SparseTensorToValuesConverter : public OpConversionPattern<ToValuesOp> { |
| 571 | public: |
| 572 | using OpConversionPattern::OpConversionPattern; |
| 573 | LogicalResult |
| 574 | matchAndRewrite(ToValuesOp op, OpAdaptor adaptor, |
| 575 | ConversionPatternRewriter &rewriter) const override { |
| 576 | auto stt = getSparseTensorType(op.getTensor()); |
| 577 | auto vals = genValuesCall(rewriter, op.getLoc(), stt, adaptor.getTensor()); |
| 578 | rewriter.replaceOp(op, vals); |
| 579 | return success(); |
| 580 | } |
| 581 | }; |
| 582 | |
| 583 | /// Sparse conversion rule for number of entries operator. |
| 584 | class SparseNumberOfEntriesConverter |
| 585 | : public OpConversionPattern<NumberOfEntriesOp> { |
| 586 | public: |
| 587 | using OpConversionPattern::OpConversionPattern; |
| 588 | LogicalResult |
| 589 | matchAndRewrite(NumberOfEntriesOp op, OpAdaptor adaptor, |
| 590 | ConversionPatternRewriter &rewriter) const override { |
| 591 | // Query values array size for the actually stored values size. |
| 592 | auto stt = getSparseTensorType(op.getTensor()); |
| 593 | auto vals = genValuesCall(rewriter, op.getLoc(), stt, adaptor.getTensor()); |
| 594 | auto zero = constantIndex(rewriter, op.getLoc(), 0); |
| 595 | rewriter.replaceOpWithNewOp<memref::DimOp>(op, vals, zero); |
| 596 | return success(); |
| 597 | } |
| 598 | }; |
| 599 | |
| 600 | /// Sparse conversion rule for tensor rematerialization. |
| 601 | class SparseTensorLoadConverter : public OpConversionPattern<LoadOp> { |
| 602 | public: |
| 603 | using OpConversionPattern::OpConversionPattern; |
| 604 | LogicalResult |
| 605 | matchAndRewrite(LoadOp op, OpAdaptor adaptor, |
| 606 | ConversionPatternRewriter &rewriter) const override { |
| 607 | if (op.getHasInserts()) { |
| 608 | // Finalize any pending insertions. |
| 609 | StringRef name = "endLexInsert" ; |
| 610 | createFuncCall(rewriter, op->getLoc(), name, {}, adaptor.getOperands(), |
| 611 | EmitCInterface::Off); |
| 612 | } |
| 613 | rewriter.replaceOp(op, adaptor.getOperands()); |
| 614 | return success(); |
| 615 | } |
| 616 | }; |
| 617 | |
| 618 | /// Sparse conversion rule for the insertion operator. |
| 619 | class SparseTensorInsertConverter |
| 620 | : public OpConversionPattern<tensor::InsertOp> { |
| 621 | public: |
| 622 | using OpConversionPattern::OpConversionPattern; |
| 623 | LogicalResult |
| 624 | matchAndRewrite(tensor::InsertOp op, OpAdaptor adaptor, |
| 625 | ConversionPatternRewriter &rewriter) const override { |
| 626 | // Note that the current regime only allows for strict lexicographic |
| 627 | // coordinate order. All values are passed by reference through stack |
| 628 | // allocated memrefs. |
| 629 | Location loc = op->getLoc(); |
| 630 | const auto stt = getSparseTensorType(op.getDest()); |
| 631 | |
| 632 | // Dense tensor insertion. |
| 633 | if (!stt.hasEncoding()) |
| 634 | return failure(); |
| 635 | |
| 636 | assert(stt.isIdentity() && "Run reinterpret-map before conversion." ); |
| 637 | const auto elemTp = stt.getElementType(); |
| 638 | const Level lvlRank = stt.getLvlRank(); |
| 639 | Value lvlCoords, vref; |
| 640 | { |
| 641 | OpBuilder::InsertionGuard guard(rewriter); |
| 642 | Operation *loop = op; |
| 643 | // Finds the outermost loop. |
| 644 | while (auto l = loop->getParentOfType<LoopLikeOpInterface>()) |
| 645 | loop = l; |
| 646 | |
| 647 | if (llvm::isa<LoopLikeOpInterface>(loop)) { |
| 648 | // Hoists alloca outside the loop to avoid stack overflow. |
| 649 | rewriter.setInsertionPoint(loop); |
| 650 | } |
| 651 | lvlCoords = genAlloca(rewriter, loc, lvlRank, rewriter.getIndexType()); |
| 652 | vref = genAllocaScalar(rewriter, loc, elemTp); |
| 653 | } |
| 654 | storeAll(rewriter, loc, lvlCoords, adaptor.getIndices()); |
| 655 | rewriter.create<memref::StoreOp>(loc, adaptor.getScalar(), vref); |
| 656 | SmallString<12> name{"lexInsert" , primaryTypeFunctionSuffix(elemTp)}; |
| 657 | createFuncCall(rewriter, loc, name, {}, |
| 658 | {adaptor.getDest(), lvlCoords, vref}, EmitCInterface::On); |
| 659 | rewriter.replaceOp(op, adaptor.getDest()); |
| 660 | return success(); |
| 661 | } |
| 662 | }; |
| 663 | |
| 664 | /// Sparse conversion rule for the expand operator. |
| 665 | class SparseTensorExpandConverter : public OpConversionPattern<ExpandOp> { |
| 666 | public: |
| 667 | using OpConversionPattern::OpConversionPattern; |
| 668 | LogicalResult |
| 669 | matchAndRewrite(ExpandOp op, OpAdaptor adaptor, |
| 670 | ConversionPatternRewriter &rewriter) const override { |
| 671 | Location loc = op->getLoc(); |
| 672 | const auto srcTp = getSparseTensorType(op.getTensor()); |
| 673 | Type eltType = srcTp.getElementType(); |
| 674 | Type boolType = rewriter.getIntegerType(1); |
| 675 | Type idxType = rewriter.getIndexType(); |
| 676 | // All initialization should be done on entry of the loop nest. |
| 677 | rewriter.setInsertionPointAfter(op.getTensor().getDefiningOp()); |
| 678 | // Get the cardinality of valid coordinates for the innermost level. |
| 679 | Value sz = createOrFoldLvlCall(rewriter, loc, srcTp, adaptor.getTensor(), |
| 680 | srcTp.getLvlRank() - 1); |
| 681 | // Allocate temporary buffers for values, filled-switch, and coordinates. |
| 682 | // We do not use stack buffers for this, since the expanded size may |
| 683 | // be rather large (as it envelops a single expanded dense dimension). |
| 684 | Value values = genAlloc(rewriter, loc, sz, tp: eltType); |
| 685 | Value filled = genAlloc(rewriter, loc, sz, tp: boolType); |
| 686 | Value lastLvlCoordinates = genAlloc(rewriter, loc, sz, tp: idxType); |
| 687 | Value zero = constantZero(builder&: rewriter, loc, tp: idxType); |
| 688 | // Reset the values/filled-switch to all-zero/false. Note that this |
| 689 | // introduces an O(N) operation into the computation, but this reset |
| 690 | // operation is amortized over the innermost loops for the access |
| 691 | // pattern expansion. As noted in the operation doc, we would like |
| 692 | // to amortize this setup cost even between kernels. |
| 693 | rewriter.create<linalg::FillOp>( |
| 694 | loc, ValueRange{constantZero(rewriter, loc, eltType)}, |
| 695 | ValueRange{values}); |
| 696 | rewriter.create<linalg::FillOp>( |
| 697 | loc, ValueRange{constantZero(rewriter, loc, boolType)}, |
| 698 | ValueRange{filled}); |
| 699 | // Replace expansion op with these buffers and initial coordinate. |
| 700 | assert(op.getNumResults() == 4); |
| 701 | rewriter.replaceOp(op, {values, filled, lastLvlCoordinates, zero}); |
| 702 | return success(); |
| 703 | } |
| 704 | }; |
| 705 | |
| 706 | /// Sparse conversion rule for the compress operator. |
| 707 | class SparseTensorCompressConverter : public OpConversionPattern<CompressOp> { |
| 708 | public: |
| 709 | using OpConversionPattern::OpConversionPattern; |
| 710 | LogicalResult |
| 711 | matchAndRewrite(CompressOp op, OpAdaptor adaptor, |
| 712 | ConversionPatternRewriter &rewriter) const override { |
| 713 | Location loc = op->getLoc(); |
| 714 | // Note that this method call resets the values/filled-switch back to |
| 715 | // all-zero/false by only iterating over the set elements, so the |
| 716 | // complexity remains proportional to the sparsity of the expanded |
| 717 | // access pattern. |
| 718 | Value values = adaptor.getValues(); |
| 719 | Value filled = adaptor.getFilled(); |
| 720 | Value added = adaptor.getAdded(); |
| 721 | Value count = adaptor.getCount(); |
| 722 | Value tensor = adaptor.getTensor(); |
| 723 | const auto stt = getSparseTensorType(op.getTensor()); |
| 724 | const Type elemTp = stt.getElementType(); |
| 725 | const Level lvlRank = stt.getLvlRank(); |
| 726 | auto lvlCoords = genAlloca(rewriter, loc, lvlRank, rewriter.getIndexType()); |
| 727 | storeAll(rewriter, loc, lvlCoords, adaptor.getLvlCoords()); |
| 728 | SmallString<12> name{"expInsert" , primaryTypeFunctionSuffix(elemTp)}; |
| 729 | createFuncCall(rewriter, loc, name, {}, |
| 730 | {tensor, lvlCoords, values, filled, added, count}, |
| 731 | EmitCInterface::On); |
| 732 | rewriter.replaceOp(op, adaptor.getTensor()); |
| 733 | // Deallocate the buffers on exit of the loop nest. |
| 734 | Operation *parent = getTop(op); |
| 735 | rewriter.setInsertionPointAfter(parent); |
| 736 | rewriter.create<memref::DeallocOp>(loc, values); |
| 737 | rewriter.create<memref::DeallocOp>(loc, filled); |
| 738 | rewriter.create<memref::DeallocOp>(loc, added); |
| 739 | return success(); |
| 740 | } |
| 741 | }; |
| 742 | |
| 743 | /// Sparse conversion rule for the sparse_tensor.assemble operator. |
| 744 | class SparseTensorAssembleConverter : public OpConversionPattern<AssembleOp> { |
| 745 | public: |
| 746 | using OpConversionPattern::OpConversionPattern; |
| 747 | LogicalResult |
| 748 | matchAndRewrite(AssembleOp op, OpAdaptor adaptor, |
| 749 | ConversionPatternRewriter &rewriter) const override { |
| 750 | const Location loc = op->getLoc(); |
| 751 | const auto dstTp = getSparseTensorType(op.getResult()); |
| 752 | assert(dstTp.hasStaticDimShape()); |
| 753 | SmallVector<Value> dimSizesValues = getDimSizes(rewriter, loc, dstTp); |
| 754 | // Use a library method to transfer the external buffers from |
| 755 | // clients to the internal SparseTensorStorage. Since we cannot |
| 756 | // assume clients transfer ownership of the buffers, this method |
| 757 | // will copy all data over into a new SparseTensorStorage. |
| 758 | Value dst = |
| 759 | NewCallParams(rewriter, loc) |
| 760 | .genBuffers(stt: dstTp.withoutDimToLvl(), dimSizesValues) |
| 761 | .genNewCall(Action::kPack, |
| 762 | genLvlPtrsBuffers(rewriter, loc, adaptor.getLevels(), |
| 763 | adaptor.getValues())); |
| 764 | rewriter.replaceOp(op, dst); |
| 765 | return success(); |
| 766 | } |
| 767 | }; |
| 768 | |
| 769 | /// Sparse conversion rule for the sparse_tensor.disassemble operator. |
| 770 | /// Note that the current implementation simply exposes the buffers to |
| 771 | /// the external client. This assumes the client only reads the buffers |
| 772 | /// (usually copying it to the external data structures, such as numpy |
| 773 | /// arrays). The semantics of the disassemble operation technically |
| 774 | /// require that the copying is done here already using the out-levels |
| 775 | /// and out-values clause. |
| 776 | class SparseTensorDisassembleConverter |
| 777 | : public OpConversionPattern<DisassembleOp> { |
| 778 | public: |
| 779 | using OpConversionPattern::OpConversionPattern; |
| 780 | LogicalResult |
| 781 | matchAndRewrite(DisassembleOp op, OpAdaptor adaptor, |
| 782 | ConversionPatternRewriter &rewriter) const override { |
| 783 | Location loc = op->getLoc(); |
| 784 | auto stt = getSparseTensorType(op.getTensor()); |
| 785 | SmallVector<Value> retVal; |
| 786 | SmallVector<Value> retLen; |
| 787 | // Get the positions and coordinates buffers. |
| 788 | const Level lvlRank = stt.getLvlRank(); |
| 789 | Level trailCOOLen = 0; |
| 790 | for (Level l = 0; l < lvlRank; l++) { |
| 791 | if (!stt.isUniqueLvl(l) && |
| 792 | (stt.isCompressedLvl(l) || stt.isLooseCompressedLvl(l))) { |
| 793 | // A `(loose)compressed_nu` level marks the start of trailing COO |
| 794 | // start level. Since the target coordinate buffer used for trailing |
| 795 | // COO is passed in as AoS scheme and SparseTensorStorage uses a SoA |
| 796 | // scheme, we cannot simply use the internal buffers. |
| 797 | trailCOOLen = lvlRank - l; |
| 798 | break; |
| 799 | } |
| 800 | if (stt.isWithPos(l)) { |
| 801 | auto poss = |
| 802 | genPositionsCall(rewriter, loc, stt, adaptor.getTensor(), l); |
| 803 | auto posLen = linalg::createOrFoldDimOp(b&: rewriter, loc, val: poss, dim: 0); |
| 804 | auto posLenTp = op.getLvlLens().getTypes()[retLen.size()]; |
| 805 | retVal.push_back(Elt: poss); |
| 806 | retLen.push_back(Elt: genScalarToTensor(rewriter, loc, posLen, posLenTp)); |
| 807 | } |
| 808 | if (stt.isWithCrd(l)) { |
| 809 | auto crds = |
| 810 | genCoordinatesCall(rewriter, loc, stt, adaptor.getTensor(), l); |
| 811 | auto crdLen = linalg::createOrFoldDimOp(b&: rewriter, loc, val: crds, dim: 0); |
| 812 | auto crdLenTp = op.getLvlLens().getTypes()[retLen.size()]; |
| 813 | retVal.push_back(Elt: crds); |
| 814 | retLen.push_back(Elt: genScalarToTensor(rewriter, loc, crdLen, crdLenTp)); |
| 815 | } |
| 816 | } |
| 817 | // Handle AoS vs. SoA mismatch for COO. |
| 818 | if (trailCOOLen != 0) { |
| 819 | uint64_t cooStartLvl = lvlRank - trailCOOLen; |
| 820 | assert(!stt.isUniqueLvl(cooStartLvl) && |
| 821 | (stt.isCompressedLvl(cooStartLvl) || |
| 822 | stt.isLooseCompressedLvl(cooStartLvl))); |
| 823 | // Positions. |
| 824 | auto poss = genPositionsCall(rewriter, loc, stt, adaptor.getTensor(), |
| 825 | cooStartLvl); |
| 826 | auto posLen = linalg::createOrFoldDimOp(b&: rewriter, loc, val: poss, dim: 0); |
| 827 | auto posLenTp = op.getLvlLens().getTypes()[retLen.size()]; |
| 828 | retVal.push_back(Elt: poss); |
| 829 | retLen.push_back(Elt: genScalarToTensor(rewriter, loc, posLen, posLenTp)); |
| 830 | // Coordinates, copied over with: |
| 831 | // for (i = 0; i < crdLen; i++) |
| 832 | // buf[i][0] = crd0[i]; buf[i][1] = crd1[i]; |
| 833 | auto buf = genToMemref(rewriter, loc, op.getOutLevels()[retLen.size()]); |
| 834 | auto crds0 = genCoordinatesCall(rewriter, loc, stt, adaptor.getTensor(), |
| 835 | cooStartLvl); |
| 836 | auto crds1 = genCoordinatesCall(rewriter, loc, stt, adaptor.getTensor(), |
| 837 | cooStartLvl + 1); |
| 838 | auto crdLen = linalg::createOrFoldDimOp(b&: rewriter, loc, val: crds0, dim: 0); |
| 839 | auto two = constantIndex(builder&: rewriter, loc, i: 2); |
| 840 | auto bufLen = rewriter.create<arith::MulIOp>(loc, crdLen, two); |
| 841 | Type indexType = rewriter.getIndexType(); |
| 842 | auto zero = constantZero(builder&: rewriter, loc, tp: indexType); |
| 843 | auto one = constantOne(builder&: rewriter, loc, tp: indexType); |
| 844 | scf::ForOp forOp = rewriter.create<scf::ForOp>(loc, zero, crdLen, one); |
| 845 | auto idx = forOp.getInductionVar(); |
| 846 | rewriter.setInsertionPointToStart(forOp.getBody()); |
| 847 | auto c0 = rewriter.create<memref::LoadOp>(loc, crds0, idx); |
| 848 | auto c1 = rewriter.create<memref::LoadOp>(loc, crds1, idx); |
| 849 | SmallVector<Value> args; |
| 850 | args.push_back(Elt: idx); |
| 851 | args.push_back(Elt: zero); |
| 852 | rewriter.create<memref::StoreOp>(loc, c0, buf, args); |
| 853 | args[1] = one; |
| 854 | rewriter.create<memref::StoreOp>(loc, c1, buf, args); |
| 855 | rewriter.setInsertionPointAfter(forOp); |
| 856 | auto bufLenTp = op.getLvlLens().getTypes()[retLen.size()]; |
| 857 | retVal.push_back(Elt: buf); |
| 858 | retLen.push_back(Elt: genScalarToTensor(rewriter, loc, bufLen, bufLenTp)); |
| 859 | } |
| 860 | // Get the values buffer last. |
| 861 | auto vals = genValuesCall(rewriter, loc, stt, adaptor.getTensor()); |
| 862 | auto valLenTp = op.getValLen().getType(); |
| 863 | auto valLen = linalg::createOrFoldDimOp(b&: rewriter, loc, val: vals, dim: 0); |
| 864 | retVal.push_back(Elt: vals); |
| 865 | retLen.push_back(Elt: genScalarToTensor(rewriter, loc, valLen, valLenTp)); |
| 866 | |
| 867 | // Converts MemRefs back to Tensors. |
| 868 | assert(retVal.size() + retLen.size() == op.getNumResults()); |
| 869 | for (unsigned i = 0, sz = retVal.size(); i < sz; i++) { |
| 870 | auto tensor = rewriter.create<bufferization::ToTensorOp>(loc, retVal[i]); |
| 871 | retVal[i] = |
| 872 | rewriter.create<tensor::CastOp>(loc, op.getResultTypes()[i], tensor); |
| 873 | } |
| 874 | |
| 875 | // Appends the actual memory length used in each buffer returned. |
| 876 | retVal.append(in_start: retLen.begin(), in_end: retLen.end()); |
| 877 | rewriter.replaceOp(op, retVal); |
| 878 | return success(); |
| 879 | } |
| 880 | }; |
| 881 | |
| 882 | struct SparseHasRuntimeLibraryConverter |
| 883 | : public OpConversionPattern<HasRuntimeLibraryOp> { |
| 884 | using OpConversionPattern::OpConversionPattern; |
| 885 | LogicalResult |
| 886 | matchAndRewrite(HasRuntimeLibraryOp op, OpAdaptor adaptor, |
| 887 | ConversionPatternRewriter &rewriter) const override { |
| 888 | auto i1Type = rewriter.getI1Type(); |
| 889 | rewriter.replaceOpWithNewOp<arith::ConstantOp>( |
| 890 | op, i1Type, rewriter.getIntegerAttr(i1Type, 1)); |
| 891 | return success(); |
| 892 | } |
| 893 | }; |
| 894 | |
| 895 | } // namespace |
| 896 | |
| 897 | //===----------------------------------------------------------------------===// |
| 898 | // Sparse tensor type conversion into opaque pointer. |
| 899 | //===----------------------------------------------------------------------===// |
| 900 | |
| 901 | mlir::SparseTensorTypeToPtrConverter::SparseTensorTypeToPtrConverter() { |
| 902 | addConversion(callback: [](Type type) { return type; }); |
| 903 | addConversion(callback&: convertSparseTensorTypes); |
| 904 | } |
| 905 | |
| 906 | //===----------------------------------------------------------------------===// |
| 907 | // Public method for populating conversion rules. |
| 908 | //===----------------------------------------------------------------------===// |
| 909 | |
| 910 | /// Populates the given patterns list with conversion rules required for |
| 911 | /// the sparsification of linear algebra operations. |
| 912 | void mlir::populateSparseTensorConversionPatterns( |
| 913 | const TypeConverter &typeConverter, RewritePatternSet &patterns) { |
| 914 | patterns |
| 915 | .add<SparseReturnConverter, SparseTensorLvlOpConverter, |
| 916 | SparseCastConverter, SparseReMapConverter, SparseTensorNewConverter, |
| 917 | SparseTensorAllocConverter, SparseTensorEmptyConverter, |
| 918 | SparseTensorDeallocConverter, SparseTensorReorderCOOConverter, |
| 919 | SparseTensorToPositionsConverter, SparseTensorToCoordinatesConverter, |
| 920 | SparseToCoordinatesBufferConverter, SparseTensorToValuesConverter, |
| 921 | SparseNumberOfEntriesConverter, SparseTensorLoadConverter, |
| 922 | SparseTensorInsertConverter, SparseTensorExpandConverter, |
| 923 | SparseTensorCompressConverter, SparseTensorAssembleConverter, |
| 924 | SparseTensorDisassembleConverter, SparseHasRuntimeLibraryConverter>( |
| 925 | arg: typeConverter, args: patterns.getContext()); |
| 926 | } |
| 927 | |