1 | //===- SparseTensorRewriting.cpp - Sparse tensor rewriting rules ----------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements rewriting rules that are specific to sparse tensors. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "Utils/CodegenUtils.h" |
14 | #include "Utils/LoopEmitter.h" |
15 | |
16 | #include "mlir/Dialect/Affine/IR/AffineOps.h" |
17 | #include "mlir/Dialect/Arith/IR/Arith.h" |
18 | #include "mlir/Dialect/Bufferization/IR/Bufferization.h" |
19 | #include "mlir/Dialect/Linalg/IR/Linalg.h" |
20 | #include "mlir/Dialect/Linalg/Utils/Utils.h" |
21 | #include "mlir/Dialect/MemRef/IR/MemRef.h" |
22 | #include "mlir/Dialect/SCF/IR/SCF.h" |
23 | #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h" |
24 | #include "mlir/Dialect/SparseTensor/IR/SparseTensorStorageLayout.h" |
25 | #include "mlir/Dialect/SparseTensor/IR/SparseTensorType.h" |
26 | #include "mlir/Dialect/SparseTensor/Transforms/Passes.h" |
27 | #include "mlir/Dialect/Tensor/IR/Tensor.h" |
28 | #include "mlir/Dialect/Vector/IR/VectorOps.h" |
29 | #include "mlir/IR/AffineMap.h" |
30 | #include "mlir/IR/Matchers.h" |
31 | #include "mlir/Support/LLVM.h" |
32 | |
33 | using namespace mlir; |
34 | using namespace mlir::bufferization; |
35 | using namespace mlir::linalg; |
36 | using namespace mlir::sparse_tensor; |
37 | |
38 | //===---------------------------------------------------------------------===// |
39 | // Helper methods for the actual rewriting rules. |
40 | //===---------------------------------------------------------------------===// |
41 | |
42 | // Helper method to match any typed zero. |
43 | static bool isZeroValue(Value val) { |
44 | return matchPattern(value: val, pattern: m_Zero()) || matchPattern(value: val, pattern: m_AnyZeroFloat()); |
45 | } |
46 | |
47 | // Helper to detect a sparse tensor type operand. |
48 | static bool isSparseTensor(Value v) { |
49 | auto enc = getSparseTensorEncoding(v.getType()); |
50 | return enc && !llvm::all_of(enc.getLvlTypes(), |
51 | [](auto lt) { return lt == LevelFormat::Dense; }); |
52 | } |
53 | static bool isSparseTensor(OpOperand *op) { return isSparseTensor(v: op->get()); } |
54 | |
55 | // Helper method to find zero/uninitialized tensor materialization. |
56 | static bool isMaterializing(OpOperand *op, bool isZero) { |
57 | Value val = op->get(); |
58 | // Check allocation, with zero alloc when required. |
59 | if (auto alloc = val.getDefiningOp<AllocTensorOp>()) { |
60 | Value copy = alloc.getCopy(); |
61 | if (isZero) |
62 | return copy && isZeroValue(val: copy); |
63 | return !copy; |
64 | } |
65 | // Check for empty tensor materialization. |
66 | if (auto empty = val.getDefiningOp<tensor::EmptyOp>()) |
67 | return !isZero; |
68 | // Last resort for zero alloc: the whole value is zero. |
69 | return isZero && isZeroValue(val); |
70 | } |
71 | |
72 | // Helper to detect sampling operation. |
73 | static bool isSampling(GenericOp op) { |
74 | auto yieldOp = cast<linalg::YieldOp>(op.getRegion().front().getTerminator()); |
75 | if (auto *def = yieldOp.getOperand(0).getDefiningOp()) { |
76 | if (isa<arith::MulFOp>(def) || isa<arith::MulIOp>(def)) { |
77 | // Both scalar input arguments used exactly once. |
78 | Value s1 = op.getBlock()->getArgument(0); |
79 | Value s2 = op.getBlock()->getArgument(1); |
80 | return (def->getOperand(0) == s1 && def->getOperand(1) == s2) || |
81 | (def->getOperand(1) == s1 && def->getOperand(0) == s2); |
82 | } |
83 | } |
84 | return false; |
85 | } |
86 | |
87 | // Helper to detect chain of multiplications that do not involve x. |
88 | static bool isMulChain(Value val, Value x) { |
89 | if (auto arg = dyn_cast<BlockArgument>(Val&: val)) |
90 | return arg != x; |
91 | if (auto *def = val.getDefiningOp()) { |
92 | if (isa<arith::MulFOp>(def) || isa<arith::MulIOp>(def)) |
93 | return isMulChain(val: def->getOperand(idx: 0), x) && |
94 | isMulChain(val: def->getOperand(idx: 1), x); |
95 | } |
96 | return false; |
97 | } |
98 | |
99 | // Helper to detect x = x + <multiplications>. |
100 | static bool isSumOfMul(GenericOp op) { |
101 | auto yieldOp = cast<linalg::YieldOp>(op.getRegion().front().getTerminator()); |
102 | if (auto *def = yieldOp.getOperand(0).getDefiningOp()) { |
103 | if (isa<arith::AddFOp>(def) || isa<arith::AddIOp>(def)) { |
104 | Value x = op.getBlock()->getArguments().back(); |
105 | return (def->getOperand(0) == x && isMulChain(def->getOperand(1), x)) || |
106 | (def->getOperand(1) == x && isMulChain(def->getOperand(0), x)); |
107 | } |
108 | } |
109 | return false; |
110 | } |
111 | |
112 | // Helper to detect direct yield of a zero value. |
113 | static bool isZeroYield(GenericOp op) { |
114 | auto yieldOp = cast<linalg::YieldOp>(op.getRegion().front().getTerminator()); |
115 | if (auto arg = dyn_cast<BlockArgument>(yieldOp.getOperand(0))) { |
116 | if (arg.getOwner()->getParentOp() == op) { |
117 | return isZeroValue(op->getOperand(arg.getArgNumber())); |
118 | } |
119 | } |
120 | return isZeroValue(yieldOp.getOperand(0)); |
121 | } |
122 | |
123 | /// Populates given sizes array from type (for static sizes) and from |
124 | /// the tensor (for dynamic sizes). |
125 | static void sizesForTensor(OpBuilder &builder, SmallVectorImpl<Value> &sizes, |
126 | Location loc, ShapedType stp, Value tensor) { |
127 | for (const auto &d : enumerate(stp.getShape())) { |
128 | Value dim; |
129 | if (d.value() == ShapedType::kDynamic) |
130 | dim = builder.create<tensor::DimOp>(loc, tensor, d.index()); |
131 | else |
132 | dim = constantIndex(builder, loc, d.value()); |
133 | sizes.push_back(dim); |
134 | } |
135 | } |
136 | |
137 | static RankedTensorType getBufferType(const SparseTensorType &stt, |
138 | bool needTmpCOO) { |
139 | return needTmpCOO ? stt.getCOOType(/*ordered=*/false) |
140 | : stt.getRankedTensorType(); |
141 | } |
142 | |
143 | /// Collects the dynamic dimension sizes for `tp` with the assumption that |
144 | /// `sizes` are the dimension sizes for the type. Stores the dynamic dimension |
145 | /// sizes to dynSizes. |
146 | static void getDynamicSizes(RankedTensorType tp, ValueRange sizes, |
147 | SmallVectorImpl<Value> &dynSizes) { |
148 | for (const auto &d : enumerate(tp.getShape())) { |
149 | if (d.value() == ShapedType::kDynamic) |
150 | dynSizes.push_back(sizes[d.index()]); |
151 | } |
152 | } |
153 | |
154 | static LogicalResult genForeachOnSparseConstant(ForeachOp op, |
155 | RewriterBase &rewriter, |
156 | SparseElementsAttr attr) { |
157 | auto loc = op.getLoc(); |
158 | SmallVector<Value> reduc = op.getInitArgs(); |
159 | |
160 | // Foreach on constant. |
161 | foreachInSparseConstant( |
162 | rewriter, loc, attr, op.getOrder().value_or(AffineMap()), |
163 | [&reduc, &rewriter, op](ArrayRef<Value> cvs, Value v) mutable { |
164 | SmallVector<Value> args; |
165 | args.append(in_start: cvs.begin(), in_end: cvs.end()); |
166 | args.push_back(Elt: v); |
167 | args.append(RHS: reduc); |
168 | // Clones the foreach op to get a copy of the loop body. |
169 | auto cloned = cast<ForeachOp>(rewriter.clone(*op.getOperation())); |
170 | assert(args.size() == cloned.getBody()->getNumArguments()); |
171 | Operation *yield = cloned.getBody()->getTerminator(); |
172 | rewriter.inlineBlockBefore(cloned.getBody(), op, args); |
173 | // clean up |
174 | rewriter.eraseOp(op: cloned); |
175 | reduc = yield->getOperands(); |
176 | rewriter.eraseOp(op: yield); |
177 | }); |
178 | |
179 | rewriter.replaceOp(op, reduc); |
180 | return success(); |
181 | } |
182 | |
183 | /// Populates the given sizes array for concatenation from types (for static |
184 | /// sizes) and from the source tensors (for dynamic sizes). |
185 | static void concatSizesFromInputs(OpBuilder &builder, |
186 | SmallVectorImpl<Value> &sizes, Location loc, |
187 | ShapedType dstTp, ValueRange srcs, |
188 | unsigned dim) { |
189 | auto dstShape = dstTp.getShape(); |
190 | sizesFromSrc(builder, sizes, loc, src: srcs[0]); |
191 | |
192 | // Sum up on the `dim` if the dimension is dynamic. |
193 | if (dstShape[dim] != ShapedType::kDynamic) { |
194 | // Faithfully take the static size. |
195 | sizes[dim] = constantIndex(builder, loc, dstShape[dim]); |
196 | } else { |
197 | // Else, compute the shape dynamically. |
198 | for (const auto &src : srcs.drop_front()) { |
199 | Value srcSz = linalg::createOrFoldDimOp(b&: builder, loc, val: src, dim); |
200 | // Sum up all the sizes. |
201 | sizes[dim] = builder.create<arith::AddIOp>(loc, sizes[dim], srcSz); |
202 | } |
203 | } |
204 | } |
205 | |
206 | //===---------------------------------------------------------------------===// |
207 | // The actual sparse tensor rewriting rules. |
208 | //===---------------------------------------------------------------------===// |
209 | |
210 | namespace { |
211 | |
212 | /// TODO: move it to tensor dialect instead. |
213 | /// |
214 | /// Fold `tensor.concat` and `tensor.extract_slice` |
215 | /// |
216 | /// %concat = tensor.concat dim(2) %t0, %t1 |
217 | /// : (tensor<1x64x1xf32>, tensor<1x64x1xf32>) -> tensor<1x64x2xf32> |
218 | /// %extracted0 = tensor.extract_slice %concat[0, 0, 0][1, 64, 1][1, 1, 1] |
219 | /// : tensor<1x64x2xf32> to tensor<1x64x1xf32> |
220 | /// %extracted1 = tensor.extract_slice %concat[0, 0, 1][1, 64, 1][1, 1, 1] |
221 | /// : tensor<1x64x2xf32> to tensor<1x64x1xf32> |
222 | /// |
223 | /// Becomes |
224 | /// |
225 | /// %extract0, %extract1 = %t0, %t1 |
226 | struct |
227 | : public OpRewritePattern<tensor::ExtractSliceOp> { |
228 | using OpRewritePattern<tensor::ExtractSliceOp>::OpRewritePattern; |
229 | |
230 | LogicalResult matchAndRewrite(tensor::ExtractSliceOp , |
231 | PatternRewriter &rewriter) const override { |
232 | auto concatOp = extractOp.getSource().getDefiningOp<tensor::ConcatOp>(); |
233 | if (!concatOp) |
234 | return failure(); |
235 | |
236 | Location loc = extractOp.getLoc(); |
237 | int64_t dim = concatOp.getDim(); |
238 | int64_t rank = extractOp.getResultType().getRank(); |
239 | |
240 | SmallVector<OpFoldResult> srcStrides(rank, rewriter.getIndexAttr(1)); |
241 | SmallVector<OpFoldResult> srcOffsets(rank, rewriter.getIndexAttr(0)); |
242 | |
243 | // Compute the partial sums for the slice offsets. |
244 | AffineExpr sum = rewriter.getAffineDimExpr(position: 0); |
245 | SmallVector<AffineExpr> partialSums = {sum}; |
246 | SmallVector<OpFoldResult> offsetStrides = {rewriter.getIndexAttr(0)}; |
247 | for (auto [idx, input] : |
248 | llvm::enumerate(concatOp.getInputs().drop_back())) { |
249 | sum = sum + rewriter.getAffineDimExpr(idx + 1); |
250 | partialSums.push_back(sum); |
251 | offsetStrides.push_back( |
252 | rewriter.createOrFold<tensor::DimOp>(loc, input, dim)); |
253 | } |
254 | auto partialSumMap = AffineMap::get(concatOp.getInputs().size(), 0, |
255 | partialSums, rewriter.getContext()); |
256 | SmallVector<OpFoldResult> dimOffsets = |
257 | affine::makeComposedFoldedMultiResultAffineApply( |
258 | b&: rewriter, loc, map: partialSumMap, operands: offsetStrides); |
259 | |
260 | auto allEqual = [](ArrayRef<OpFoldResult> lhs, ArrayRef<OpFoldResult> rhs) { |
261 | for (auto [l, r] : llvm::zip(t&: lhs, u&: rhs)) { |
262 | std::optional<int64_t> staticVal = getConstantIntValue(ofr: l); |
263 | if (!staticVal.has_value() || staticVal != getConstantIntValue(ofr: r)) |
264 | return false; |
265 | } |
266 | return lhs.size() == rhs.size(); |
267 | }; |
268 | |
269 | for (auto [i, input, offset] : |
270 | llvm::enumerate(concatOp.getInputs(), dimOffsets)) { |
271 | SmallVector<OpFoldResult> srcSizes = |
272 | tensor::getMixedSizes(rewriter, loc, input); |
273 | srcOffsets[dim] = offset; |
274 | |
275 | SmallVector<OpFoldResult> dstSizes = extractOp.getMixedSizes(); |
276 | SmallVector<OpFoldResult> dstOffsets = extractOp.getMixedOffsets(); |
277 | SmallVector<OpFoldResult> dstStrides = extractOp.getMixedStrides(); |
278 | |
279 | if (allEqual(srcSizes, dstSizes) && allEqual(srcOffsets, dstOffsets) && |
280 | allEqual(srcStrides, dstStrides)) { |
281 | Value operand = concatOp.getOperand(i); |
282 | if (operand.getType() == extractOp.getResultType()) |
283 | rewriter.replaceOp(extractOp, operand); |
284 | break; |
285 | } |
286 | } |
287 | |
288 | return success(); |
289 | } |
290 | }; |
291 | |
292 | /// Rewriting rule that fuses sparse_tensor.convert into producer. |
293 | struct FoldConvertIntoProducer : public OpRewritePattern<ConvertOp> { |
294 | public: |
295 | using OpRewritePattern::OpRewritePattern; |
296 | |
297 | LogicalResult matchAndRewrite(ConvertOp op, |
298 | PatternRewriter &rewriter) const override { |
299 | auto producer = op.getSource().getDefiningOp<GenericOp>(); |
300 | if (!producer || producer.getDpsInits().size() != 1 || |
301 | !isMaterializing(producer.getDpsInitOperand(0), false) || |
302 | !producer.getResult(0).hasOneUse()) { |
303 | return failure(); |
304 | } |
305 | // Clone the materialization operation, but update the result to sparse. |
306 | rewriter.setInsertionPoint(producer); |
307 | Operation *init = producer.getDpsInitOperand(0)->get().getDefiningOp(); |
308 | Operation *cloned = rewriter.clone(op&: *init); |
309 | cloned->getResult(idx: 0).setType(op.getResult().getType()); |
310 | |
311 | rewriter.modifyOpInPlace(producer, [&]() { |
312 | producer.getDpsInitsMutable().assign(cloned->getResults()); |
313 | producer.getResult(0).setType(op.getResult().getType()); |
314 | }); |
315 | |
316 | rewriter.replaceAllOpUsesWith(op, producer); |
317 | op->erase(); |
318 | |
319 | return success(); |
320 | } |
321 | }; |
322 | |
323 | /// Rewriting rule that converts direct yield of zero with initial allocation. |
324 | struct FoldInvariantYield : public OpRewritePattern<GenericOp> { |
325 | public: |
326 | using OpRewritePattern<GenericOp>::OpRewritePattern; |
327 | |
328 | LogicalResult matchAndRewrite(GenericOp op, |
329 | PatternRewriter &rewriter) const override { |
330 | if (!op.hasPureTensorSemantics() || op.getNumResults() != 1 || |
331 | !isMaterializing(op.getDpsInitOperand(0), /*isZero=*/false) || |
332 | !isZeroYield(op) || !op.getDpsInitOperand(0)->get().hasOneUse()) |
333 | return failure(); |
334 | auto outputType = getRankedTensorType(op.getResult(0)); |
335 | // Yielding zero on newly materialized sparse tensor can be |
336 | // optimized directly (regardless of dynamic or static size). |
337 | if (getSparseTensorEncoding(outputType)) { |
338 | rewriter.replaceOp(op, op.getDpsInitOperand(0)->get()); |
339 | return success(); |
340 | } |
341 | // Use static zero value directly instead of materialization. |
342 | if (!outputType.hasStaticShape()) |
343 | return failure(); |
344 | Operation *def = op.getDpsInitOperand(0)->get().getDefiningOp(); |
345 | rewriter.replaceOp(op, constantZero(rewriter, op.getLoc(), outputType)); |
346 | rewriter.eraseOp(op: def); |
347 | return success(); |
348 | } |
349 | }; |
350 | |
351 | /// Rewriting rule that converts two kernels: |
352 | /// |
353 | /// T(i,j) = SUM(k, A(i,j,k) * B(i,j,k) * ... ) |
354 | /// X(i,j) = S(i,j) * T(i,j) |
355 | /// |
356 | /// into a single kernel, using distributive law: |
357 | /// |
358 | /// X(i,j) = SUM(k, S(i,j) * A(i,j,k) * B(i,j,k) * ... ) |
359 | /// |
360 | /// This kind of fusion (merging two ops into one but using arithmetic |
361 | /// equalities that may not hold for floating-point computations) would |
362 | /// be undesirable in the dense case, since we distribute the multiplication |
363 | /// into the reduction loop. However, for sparse sampling tensor S, such |
364 | /// a fusion may actually reduce the asymptotic complexity of the kernel, |
365 | /// since intermediate results may be nullified. |
366 | struct FuseSparseMultiplyOverAdd : public OpRewritePattern<GenericOp> { |
367 | public: |
368 | using OpRewritePattern<GenericOp>::OpRewritePattern; |
369 | |
370 | LogicalResult matchAndRewrite(GenericOp op, |
371 | PatternRewriter &rewriter) const override { |
372 | // Check consumer. |
373 | if (!op.hasPureTensorSemantics() || op.getNumDpsInputs() != 2 || |
374 | op.getNumResults() != 1 || |
375 | op.getNumParallelLoops() != op.getNumLoops() || |
376 | !op.getMatchingIndexingMap(op.getDpsInitOperand(0)).isIdentity() || |
377 | !op.getMatchingIndexingMap(op.getDpsInputOperand(0)).isIdentity() || |
378 | !op.getMatchingIndexingMap(op.getDpsInputOperand(1)).isIdentity()) |
379 | return failure(); |
380 | // Find consuming OP2(sparse, other) or OP2(other, sparse). The other |
381 | // operand can be sparse or dense, since the point of this rewriting rule |
382 | // is detecting a situation in which *more* sparsity is introduced into |
383 | // a computation, be it already sparse or still dense. |
384 | unsigned other = 0; |
385 | if (isSparseTensor(op.getDpsInputOperand(0))) |
386 | other = 1; |
387 | else if (!isSparseTensor(op.getDpsInputOperand(1))) |
388 | return failure(); |
389 | // Check producer. |
390 | auto prod = dyn_cast_or_null<GenericOp>( |
391 | op.getDpsInputOperand(other)->get().getDefiningOp()); |
392 | if (!prod || !prod.hasPureTensorSemantics() || prod.getNumResults() != 1 || |
393 | !prod.getResult(0).hasOneUse()) |
394 | return failure(); |
395 | // Sampling consumer and sum of multiplication chain producer. |
396 | if (!isMaterializing(op.getDpsInitOperand(0), /*isZero=*/false) || |
397 | !isMaterializing(prod.getDpsInitOperand(0), /*isZero=*/true) || |
398 | !isSampling(op) || !isSumOfMul(prod)) |
399 | return failure(); |
400 | // Modify operand structure of producer and consumer. |
401 | Location loc = prod.getLoc(); |
402 | SmallVector<Value> inputOps = prod.getInputs(); |
403 | SmallVector<Value> outputOps = op.getOutputs(); |
404 | SmallVector<AffineMap> fusedIndexMaps = prod.getIndexingMapsArray(); |
405 | inputOps.push_back(Elt: op.getDpsInputOperand(1 - other)->get()); |
406 | fusedIndexMaps.push_back(Elt: fusedIndexMaps.back()); // mimic other |
407 | // Fuse producer and consumer into a new generic op. |
408 | auto fusedOp = rewriter.create<GenericOp>( |
409 | loc, op.getResult(0).getType(), inputOps, outputOps, |
410 | rewriter.getAffineMapArrayAttr(fusedIndexMaps), prod.getIteratorTypes(), |
411 | /*doc=*/nullptr, /*library_call=*/nullptr); |
412 | Block &prodBlock = prod.getRegion().front(); |
413 | Block &consBlock = op.getRegion().front(); |
414 | IRMapping mapper; |
415 | Block *fusedBlock = rewriter.createBlock(&fusedOp.getRegion()); |
416 | unsigned num = prodBlock.getNumArguments(); |
417 | for (unsigned i = 0; i < num - 1; i++) |
418 | addArg(mapper, b: fusedBlock, a: prodBlock.getArgument(i)); |
419 | addArg(mapper, b: fusedBlock, a: consBlock.getArgument(i: 1 - other)); |
420 | addArg(mapper, b: fusedBlock, a: prodBlock.getArgument(i: num - 1)); |
421 | // Clone bodies of the producer and consumer in new evaluation order. |
422 | auto *acc = prodBlock.getTerminator()->getOperand(idx: 0).getDefiningOp(); |
423 | auto *sampler = consBlock.getTerminator()->getOperand(idx: 0).getDefiningOp(); |
424 | Value last; |
425 | for (auto &op : prodBlock.without_terminator()) |
426 | if (&op != acc) { |
427 | last = op.getResult(0); |
428 | rewriter.clone(op, mapper); |
429 | } |
430 | mapper.map(from: consBlock.getArgument(i: other), to: fusedBlock->back().getResult(idx: 0)); |
431 | mapper.map(last, rewriter.clone(*sampler, mapper)->getResult(0)); |
432 | last = rewriter.clone(*acc, mapper)->getResult(0); |
433 | rewriter.create<linalg::YieldOp>(loc, last); |
434 | // Force initial value on merged allocation for dense outputs. |
435 | // TODO: deal with non alloc tensor here one day |
436 | if (!getSparseTensorEncoding(op.getResult(0).getType())) { |
437 | Value init = prod.getDpsInitOperand(0) |
438 | ->get() |
439 | .getDefiningOp<AllocTensorOp>() |
440 | .getCopy(); |
441 | AllocTensorOp a = |
442 | op.getDpsInitOperand(0)->get().getDefiningOp<AllocTensorOp>(); |
443 | rewriter.modifyOpInPlace(a, [&]() { a.getCopyMutable().assign(init); }); |
444 | } |
445 | // Replace consumer with fused operation. Old producer |
446 | // and consumer ops will be removed by DCE. |
447 | rewriter.replaceOp(op, fusedOp->getResults()); |
448 | return success(); |
449 | } |
450 | |
451 | private: |
452 | // Helper to add argument and record the mapping. |
453 | static void addArg(IRMapping &mapper, Block *b, BlockArgument a) { |
454 | mapper.map(from: a, to: b->addArgument(type: a.getType(), loc: a.getLoc())); |
455 | } |
456 | }; |
457 | |
458 | // Fuse a tensor cast into producing operation. Note that a tensor.cast |
459 | // should really not be used to convert between sparse encodings. Since |
460 | // the pattern currently appears as a result of some prior rewriting |
461 | // we make an attempt to repair very obvious cases. |
462 | // TODO: audit the pure tensor dialect rewriting rules |
463 | struct FuseTensorCast : public OpRewritePattern<tensor::CastOp> { |
464 | public: |
465 | using OpRewritePattern<tensor::CastOp>::OpRewritePattern; |
466 | |
467 | LogicalResult matchAndRewrite(tensor::CastOp op, |
468 | PatternRewriter &rewriter) const override { |
469 | Type srcType = op.getSource().getType(); |
470 | Type dstType = op.getDest().getType(); |
471 | // A nop cast simply folds away. |
472 | if (srcType == dstType) { |
473 | rewriter.replaceOp(op, op->getResults()); |
474 | return success(); |
475 | } |
476 | // See if a sparsity changing cast can be fused into producer. |
477 | if (tensor::isSameTypeWithoutEncoding(tp1: srcType, tp2: dstType)) { |
478 | if (Operation *def = op.getSource().getDefiningOp()) { |
479 | if (def->hasOneUse() && isa<tensor::ExtractSliceOp>(Val: def)) { |
480 | rewriter.modifyOpInPlace(root: def, callable: [&]() { |
481 | def->getResult(idx: 0).setType(op->getResultTypes()[0]); |
482 | }); |
483 | rewriter.replaceOp(op, def->getResult(idx: 0)); |
484 | return success(); |
485 | } |
486 | } |
487 | } |
488 | // Repair tensor casts with at least one sparse operand into the |
489 | // the properly supported sparse_tensor.convert. |
490 | if (getSparseTensorEncoding(srcType) || getSparseTensorEncoding(dstType)) { |
491 | rewriter.replaceOpWithNewOp<ConvertOp>(op, dstType, op.getSource()); |
492 | return success(); |
493 | } |
494 | // Fail otherwise. |
495 | return failure(); |
496 | } |
497 | }; |
498 | |
499 | /// Rewrites a sequence of operations for sparse tensor selections in to |
500 | /// semi-ring operations such that they can be compiled correctly by the |
501 | /// sparsifier. E.g., transforming the following sequence |
502 | /// |
503 | /// %sel = arith.select %cond, %sp1, %sp2 |
504 | /// |
505 | /// to |
506 | /// |
507 | /// %sel = binary %sp1, %sp2: |
508 | /// both (%l, %r) {yield select %cond, %l, %r} |
509 | /// left (%l) {yield select %cond, %l, 0} |
510 | /// right (%r) {yield select %cond, 0, %r} |
511 | /// |
512 | /// TODO: We require that the tensor used for extracting conditions to be dense |
513 | /// to sparsify the code. To support a sparse condition tensor, we need a |
514 | /// tri-nary operation. |
515 | struct GenSemiRingSelect : public OpRewritePattern<GenericOp> { |
516 | public: |
517 | using OpRewritePattern<GenericOp>::OpRewritePattern; |
518 | LogicalResult matchAndRewrite(GenericOp op, |
519 | PatternRewriter &rewriter) const override { |
520 | // Rejects non sparse kernels. |
521 | if (!op.hasPureTensorSemantics() || !hasAnySparseOperand(op)) |
522 | return failure(); |
523 | |
524 | Location loc = op.getLoc(); |
525 | SmallVector<std::pair<Operation *, sparse_tensor::BinaryOp>> semiRings; |
526 | for (Operation &inst : *op.getBody()) { |
527 | // Matches pattern. |
528 | auto matched = isRewritablePattern(op, &inst); |
529 | if (!matched.has_value()) |
530 | continue; |
531 | |
532 | rewriter.setInsertionPoint(&inst); |
533 | auto [c, t, f] = matched.value(); |
534 | assert(t.getType() == f.getType()); |
535 | auto selTp = t.getType(); |
536 | auto c0 = constantZero(rewriter, loc, selTp); |
537 | auto binOp = rewriter.create<sparse_tensor::BinaryOp>(loc, selTp, t, f); |
538 | // Initializes all the blocks. |
539 | rewriter.createBlock(&binOp.getOverlapRegion(), {}, {selTp, selTp}, |
540 | {t.getLoc(), f.getLoc()}); |
541 | rewriter.createBlock(&binOp.getRightRegion(), {}, selTp, f.getLoc()); |
542 | rewriter.createBlock(&binOp.getLeftRegion(), {}, selTp, t.getLoc()); |
543 | |
544 | for (auto *r : binOp.getRegions()) { |
545 | Block *b = &r->front(); |
546 | rewriter.setInsertionPointToStart(b); |
547 | |
548 | IRMapping irMap; |
549 | // Clones the cmp operations into the region to make the binary op |
550 | // admissible. |
551 | Value newC = c; |
552 | if (auto *def = c.getDefiningOp()) |
553 | newC = rewriter.clone(*def, irMap)->getResult(0); |
554 | |
555 | irMap.map(c, newC); |
556 | if (r == &binOp.getLeftRegion()) { |
557 | irMap.map(t, b->getArgument(0)); |
558 | irMap.map(f, c0); |
559 | } else if (r == &binOp.getRightRegion()) { |
560 | irMap.map(t, c0); |
561 | irMap.map(f, b->getArgument(0)); |
562 | } else { |
563 | irMap.map(t, b->getArgument(0)); |
564 | irMap.map(f, b->getArgument(1)); |
565 | } |
566 | auto y = rewriter.clone(inst, irMap)->getResult(0); |
567 | rewriter.create<sparse_tensor::YieldOp>(loc, y); |
568 | } |
569 | |
570 | // We successfully rewrited a operation. We can not do replacement here |
571 | // becuase it invalidate the iterator for the current loop to traverse |
572 | // the instructions. |
573 | semiRings.emplace_back(&inst, binOp); |
574 | } |
575 | |
576 | // Finalizes the replacement. |
577 | for (auto [sel, semi] : semiRings) |
578 | rewriter.replaceOp(sel, semi->getResults()); |
579 | |
580 | return success(!semiRings.empty()); |
581 | } |
582 | |
583 | private: |
584 | static std::optional<std::tuple<Value, BlockArgument, BlockArgument>> |
585 | isRewritablePattern(GenericOp op, Operation *v) { |
586 | auto sel = dyn_cast<arith::SelectOp>(v); |
587 | if (!sel) |
588 | return std::nullopt; |
589 | |
590 | auto tVal = dyn_cast<BlockArgument>(sel.getTrueValue()); |
591 | auto fVal = dyn_cast<BlockArgument>(sel.getFalseValue()); |
592 | // TODO: For simplicity, we only handle cases where both true/false value |
593 | // are directly loaded the input tensor. We can probably admit more cases |
594 | // in theory. |
595 | if (!tVal || !fVal) |
596 | return std::nullopt; |
597 | |
598 | // Helper lambda to determine whether the value is loaded from a dense input |
599 | // or is a loop invariant. |
600 | auto isValFromDenseInputOrInvariant = [&op](Value v) -> bool { |
601 | if (auto bArg = dyn_cast<BlockArgument>(Val&: v); |
602 | bArg && !isSparseTensor(op.getDpsInputOperand(bArg.getArgNumber()))) |
603 | return true; |
604 | // If the value is defined outside the loop, it is a loop invariant. |
605 | return v.getDefiningOp() && v.getDefiningOp()->getBlock() != op.getBody(); |
606 | }; |
607 | |
608 | // If the condition value is load directly from a dense tensor or |
609 | // loop-invariants, we can sparsify the kernel. |
610 | auto cond = sel.getCondition(); |
611 | if (isValFromDenseInputOrInvariant(cond)) |
612 | return std::make_tuple(cond, tVal, fVal); |
613 | |
614 | Value cmpL, cmpR; |
615 | if (matchPattern(cond, m_Op<arith::CmpIOp>(matchers::m_Any(&cmpL), |
616 | matchers::m_Any(&cmpR))) || |
617 | matchPattern(cond, m_Op<arith::CmpFOp>(matchers::m_Any(&cmpL), |
618 | matchers::m_Any(&cmpR)))) { |
619 | // TODO: we can do it recursively to check whether all the leaf values are |
620 | // loaded from dense tensors or are loop invariants. |
621 | if (isValFromDenseInputOrInvariant(cmpL) || |
622 | isValFromDenseInputOrInvariant(cmpR)) |
623 | return std::make_tuple(cond, tVal, fVal); |
624 | } |
625 | |
626 | return std::nullopt; |
627 | }; |
628 | }; |
629 | |
630 | /// Rewrites a sparse reduction that would not sparsify directly since |
631 | /// doing so would only iterate over the stored elements, ignoring the |
632 | /// implicit zeros, into a semi-ring. Applies to all prod/and/min/max |
633 | /// (note that reductions like add/sub/or/xor can directly be sparsified |
634 | /// since the implicit zeros do not contribute to the final result). |
635 | /// Note that prod/and are still included since, even though they often |
636 | /// are nullified in sparse data, they may still occur for special |
637 | /// situations in which e.g. some rows in a sparse matrix are fully |
638 | /// dense. For min/max, including the implicit zeros is a much more |
639 | /// common situation. |
640 | /// |
641 | /// TODO: this essentially "densifies" the operation; we want to implement |
642 | /// this much more efficiently by performing the reduction over the |
643 | /// stored values, and feed in the zero once if there were *any* |
644 | /// implicit zeros as well; but for now, at least we provide |
645 | /// the functionality |
646 | /// |
647 | struct GenSemiRingReduction : public OpRewritePattern<GenericOp> { |
648 | public: |
649 | using OpRewritePattern<GenericOp>::OpRewritePattern; |
650 | |
651 | LogicalResult matchAndRewrite(GenericOp op, |
652 | PatternRewriter &rewriter) const override { |
653 | // Reject non-reductions. |
654 | if (!op.hasPureTensorSemantics() || op.getNumDpsInputs() != 1 || |
655 | op.getNumReductionLoops() == 0 || op.getNumResults() != 1) |
656 | return failure(); |
657 | auto *inp = op.getDpsInputOperand(0); |
658 | auto *init = op.getDpsInitOperand(0); |
659 | if (!isSparseTensor(inp)) |
660 | return failure(); |
661 | // Look for direct x = x OP y for semi-ring ready reductions. |
662 | auto *red = cast<linalg::YieldOp>(op.getRegion().front().getTerminator()) |
663 | .getOperand(0) |
664 | .getDefiningOp(); |
665 | if (!isa<arith::AndIOp, arith::MulIOp, arith::MulFOp, arith::MinimumFOp, |
666 | arith::MinSIOp, arith::MinUIOp, arith::MaximumFOp, arith::MaxSIOp, |
667 | arith::MaxUIOp>(red)) |
668 | return failure(); |
669 | Value s0 = op.getBlock()->getArgument(0); |
670 | Value s1 = op.getBlock()->getArgument(1); |
671 | if ((red->getOperand(0) != s0 || red->getOperand(1) != s1) && |
672 | (red->getOperand(0) != s1 || red->getOperand(1) != s0)) |
673 | return failure(); |
674 | // Identity. |
675 | Location loc = op.getLoc(); |
676 | Value identity = |
677 | rewriter.create<tensor::ExtractOp>(loc, init->get(), ValueRange()); |
678 | // Unary { |
679 | // present -> value |
680 | // absent -> zero. |
681 | // } |
682 | Type rtp = s0.getType(); |
683 | rewriter.setInsertionPointToStart(&op.getRegion().front()); |
684 | auto semiring = rewriter.create<sparse_tensor::UnaryOp>(loc, rtp, s0); |
685 | Block *present = |
686 | rewriter.createBlock(&semiring.getPresentRegion(), {}, rtp, loc); |
687 | rewriter.setInsertionPointToStart(&semiring.getPresentRegion().front()); |
688 | rewriter.create<sparse_tensor::YieldOp>(loc, present->getArgument(0)); |
689 | rewriter.createBlock(&semiring.getAbsentRegion(), {}, {}, {}); |
690 | rewriter.setInsertionPointToStart(&semiring.getAbsentRegion().front()); |
691 | auto zero = |
692 | rewriter.create<arith::ConstantOp>(loc, rewriter.getZeroAttr(rtp)); |
693 | rewriter.create<sparse_tensor::YieldOp>(loc, zero); |
694 | rewriter.setInsertionPointAfter(semiring); |
695 | // CustomReduce { |
696 | // x = x REDUC y, identity |
697 | // } |
698 | auto custom = rewriter.create<sparse_tensor::ReduceOp>( |
699 | loc, rtp, semiring.getResult(), s1, identity); |
700 | Block *region = |
701 | rewriter.createBlock(&custom.getRegion(), {}, {rtp, rtp}, {loc, loc}); |
702 | rewriter.setInsertionPointToStart(&custom.getRegion().front()); |
703 | IRMapping irMap; |
704 | irMap.map(red->getOperand(0), region->getArgument(i: 0)); |
705 | irMap.map(red->getOperand(1), region->getArgument(i: 1)); |
706 | auto *cloned = rewriter.clone(*red, irMap); |
707 | rewriter.create<sparse_tensor::YieldOp>(loc, cloned->getResult(0)); |
708 | rewriter.setInsertionPointAfter(custom); |
709 | rewriter.replaceOp(red, custom.getResult()); |
710 | return success(); |
711 | } |
712 | }; |
713 | |
714 | /// Sparse rewriting rule for the print operator. This operation is mainly used |
715 | /// for debugging and testing. As such, it lowers to the vector.print operation |
716 | /// which only require very light-weight runtime support. |
717 | struct PrintRewriter : public OpRewritePattern<PrintOp> { |
718 | public: |
719 | using OpRewritePattern::OpRewritePattern; |
720 | LogicalResult matchAndRewrite(PrintOp op, |
721 | PatternRewriter &rewriter) const override { |
722 | Location loc = op.getLoc(); |
723 | auto tensor = op.getTensor(); |
724 | auto stt = getSparseTensorType(tensor); |
725 | // Header with NSE. |
726 | auto nse = rewriter.create<NumberOfEntriesOp>(loc, tensor); |
727 | rewriter.create<vector::PrintOp>( |
728 | loc, rewriter.getStringAttr("---- Sparse Tensor ----\nnse = " )); |
729 | rewriter.create<vector::PrintOp>(loc, nse); |
730 | // Print run-time contents for dim/lvl sizes. |
731 | rewriter.create<vector::PrintOp>(loc, rewriter.getStringAttr("dim = " )); |
732 | printSizes(rewriter, loc, tensor: tensor, size: stt.getDimRank(), /*isDim=*/true); |
733 | rewriter.create<vector::PrintOp>(loc, rewriter.getStringAttr("lvl = " )); |
734 | printSizes(rewriter, loc, tensor: tensor, size: stt.getLvlRank(), /*isDim=*/false); |
735 | // Use the "codegen" foreach loop construct to iterate over |
736 | // all typical sparse tensor components for printing. |
737 | foreachFieldAndTypeInSparseTensor(stt, [&rewriter, &loc, &tensor, |
738 | &stt](Type, FieldIndex, |
739 | SparseTensorFieldKind kind, |
740 | Level l, LevelType) { |
741 | switch (kind) { |
742 | case SparseTensorFieldKind::StorageSpec: { |
743 | break; |
744 | } |
745 | case SparseTensorFieldKind::PosMemRef: { |
746 | auto lvl = constantIndex(builder&: rewriter, loc, i: l); |
747 | rewriter.create<vector::PrintOp>(loc, rewriter.getStringAttr("pos[" )); |
748 | rewriter.create<vector::PrintOp>( |
749 | loc, lvl, vector::PrintPunctuation::NoPunctuation); |
750 | rewriter.create<vector::PrintOp>(loc, rewriter.getStringAttr("] : " )); |
751 | auto pos = rewriter.create<ToPositionsOp>(loc, tensor, l); |
752 | printContents(rewriter, loc, vec: pos); |
753 | break; |
754 | } |
755 | case SparseTensorFieldKind::CrdMemRef: { |
756 | auto lvl = constantIndex(builder&: rewriter, loc, i: l); |
757 | rewriter.create<vector::PrintOp>(loc, rewriter.getStringAttr("crd[" )); |
758 | rewriter.create<vector::PrintOp>( |
759 | loc, lvl, vector::PrintPunctuation::NoPunctuation); |
760 | rewriter.create<vector::PrintOp>(loc, rewriter.getStringAttr("] : " )); |
761 | Value crd = nullptr; |
762 | // For COO AoS storage, we want to print a single, linear view of |
763 | // the full coordinate storage at this level. For any other storage, |
764 | // we show the coordinate storage for every indivual level. |
765 | if (stt.getAoSCOOStart() == l) |
766 | crd = rewriter.create<ToCoordinatesBufferOp>(loc, tensor); |
767 | else |
768 | crd = rewriter.create<ToCoordinatesOp>(loc, tensor, l); |
769 | printContents(rewriter, loc, vec: crd); |
770 | break; |
771 | } |
772 | case SparseTensorFieldKind::ValMemRef: { |
773 | rewriter.create<vector::PrintOp>(loc, |
774 | rewriter.getStringAttr("values : " )); |
775 | auto val = rewriter.create<ToValuesOp>(loc, tensor); |
776 | printContents(rewriter, loc, vec: val); |
777 | break; |
778 | } |
779 | } |
780 | return true; |
781 | }); |
782 | rewriter.create<vector::PrintOp>(loc, rewriter.getStringAttr("----\n" )); |
783 | rewriter.eraseOp(op: op); |
784 | return success(); |
785 | } |
786 | |
787 | private: |
788 | // Helper to print contents of a single memref. For "push_back" vectors, |
789 | // we assume that the previous getters for pos/crd/val have added a |
790 | // slice-to-size view to make sure we just print the size and not the |
791 | // full capacity. |
792 | // |
793 | // Generates code to print (1-dim or higher): |
794 | // ( a0, a1, ... ) |
795 | static void printContents(PatternRewriter &rewriter, Location loc, |
796 | Value vec) { |
797 | auto shape = cast<ShapedType>(vec.getType()).getShape(); |
798 | SmallVector<Value> idxs; |
799 | printContentsLevel(rewriter, loc, vec, i: 0, shape: shape, idxs); |
800 | rewriter.create<vector::PrintOp>(loc, vector::PrintPunctuation::NewLine); |
801 | } |
802 | |
803 | // Helper to the helper. |
804 | static void printContentsLevel(PatternRewriter &rewriter, Location loc, |
805 | Value vec, unsigned i, ArrayRef<int64_t> shape, |
806 | SmallVectorImpl<Value> &idxs) { |
807 | // Open bracket. |
808 | rewriter.create<vector::PrintOp>(loc, vector::PrintPunctuation::Open); |
809 | // Generate for loop. |
810 | auto zero = constantIndex(builder&: rewriter, loc, i: 0); |
811 | auto index = constantIndex(builder&: rewriter, loc, i); |
812 | auto size = rewriter.create<memref::DimOp>(loc, vec, index); |
813 | auto step = constantIndex(builder&: rewriter, loc, i: 1); |
814 | auto forOp = rewriter.create<scf::ForOp>(loc, zero, size, step); |
815 | idxs.push_back(Elt: forOp.getInductionVar()); |
816 | rewriter.setInsertionPointToStart(forOp.getBody()); |
817 | if (i < shape.size() - 1) { |
818 | // Enter deeper loop nest. |
819 | printContentsLevel(rewriter, loc, vec, i: i + 1, shape, idxs); |
820 | } else { |
821 | // Actual contents printing. |
822 | auto val = rewriter.create<memref::LoadOp>(loc, vec, idxs); |
823 | if (llvm::isa<ComplexType>(val.getType())) { |
824 | // Since the vector dialect does not support complex types in any op, |
825 | // we split those into (real, imag) pairs here. |
826 | Value real = rewriter.create<complex::ReOp>(loc, val); |
827 | Value imag = rewriter.create<complex::ImOp>(loc, val); |
828 | rewriter.create<vector::PrintOp>(loc, vector::PrintPunctuation::Open); |
829 | rewriter.create<vector::PrintOp>(loc, real, |
830 | vector::PrintPunctuation::Comma); |
831 | rewriter.create<vector::PrintOp>(loc, imag, |
832 | vector::PrintPunctuation::Close); |
833 | } else { |
834 | rewriter.create<vector::PrintOp>( |
835 | loc, val, vector::PrintPunctuation::NoPunctuation); |
836 | } |
837 | // Terminating comma (except at end). |
838 | auto bound = rewriter.create<arith::AddIOp>(loc, idxs.back(), step); |
839 | Value cond = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ne, |
840 | bound, size); |
841 | scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, cond, /*else*/ false); |
842 | rewriter.setInsertionPointToStart(&ifOp.getThenRegion().front()); |
843 | rewriter.create<vector::PrintOp>(loc, vector::PrintPunctuation::Comma); |
844 | } |
845 | idxs.pop_back(); |
846 | rewriter.setInsertionPointAfter(forOp); |
847 | // Close bracket. |
848 | rewriter.create<vector::PrintOp>(loc, vector::PrintPunctuation::Close); |
849 | } |
850 | |
851 | // Helper method to print run-time lvl/dim sizes. |
852 | static void printSizes(PatternRewriter &rewriter, Location loc, Value tensor, |
853 | unsigned size, bool isDim) { |
854 | // Open bracket. |
855 | rewriter.create<vector::PrintOp>(loc, vector::PrintPunctuation::Open); |
856 | // Print unrolled contents (dimop requires constant value). |
857 | for (unsigned i = 0; i < size; i++) { |
858 | auto idx = constantIndex(builder&: rewriter, loc, i); |
859 | Value val; |
860 | if (isDim) |
861 | val = rewriter.create<tensor::DimOp>(loc, tensor, idx); |
862 | else |
863 | val = rewriter.create<LvlOp>(loc, tensor, idx); |
864 | rewriter.create<vector::PrintOp>( |
865 | loc, val, |
866 | i != size - 1 ? vector::PrintPunctuation::Comma |
867 | : vector::PrintPunctuation::NoPunctuation); |
868 | } |
869 | // Close bracket and end of line. |
870 | rewriter.create<vector::PrintOp>(loc, vector::PrintPunctuation::Close); |
871 | rewriter.create<vector::PrintOp>(loc, vector::PrintPunctuation::NewLine); |
872 | } |
873 | }; |
874 | |
875 | /// Sparse rewriting rule for sparse-to-sparse reshape operator. |
876 | struct TensorReshapeRewriter : public OpRewritePattern<tensor::ReshapeOp> { |
877 | public: |
878 | using OpRewritePattern<tensor::ReshapeOp>::OpRewritePattern; |
879 | |
880 | LogicalResult matchAndRewrite(tensor::ReshapeOp op, |
881 | PatternRewriter &rewriter) const override { |
882 | Location loc = op.getLoc(); |
883 | Value srcTensor = op.getSource(); |
884 | const auto srcTp = tryGetSparseTensorType(srcTensor); |
885 | const auto dstTp = tryGetSparseTensorType(op.getResult()); |
886 | if (!srcTp || !dstTp) |
887 | return failure(); |
888 | |
889 | if (!srcTp->hasEncoding() || !dstTp->hasEncoding() || |
890 | !dstTp->hasStaticDimShape()) |
891 | return failure(); |
892 | |
893 | SmallVector<Value> srcSizes; |
894 | sizesForTensor(rewriter, srcSizes, loc, *srcTp, srcTensor); |
895 | SmallVector<Value> dstSizes; |
896 | for (Dimension d : dstTp->getDimShape()) |
897 | dstSizes.push_back(constantIndex(rewriter, loc, d)); |
898 | |
899 | Value nnz = rewriter.create<NumberOfEntriesOp>(loc, srcTensor); |
900 | // Only need an unordered COO buffer if input and output are not sorted |
901 | // in the same way. |
902 | Type bufferTp = getBufferType( |
903 | dstTp->withoutDimToLvl(), |
904 | !srcTp->isAllOrdered() || !srcTp->isIdentity() || !dstTp->isIdentity()); |
905 | SmallVector<Value> dynSizes; |
906 | Value buffer = rewriter |
907 | .create<AllocTensorOp>(loc, bufferTp, dynSizes, Value(), |
908 | nnz, Attribute()) |
909 | .getResult(); |
910 | |
911 | // Convert src coordinates to dst coordinates by first collapsing it to 1D |
912 | // and then expand it to the match the rank of the destination tensor. |
913 | // Implemented as follows: |
914 | // foreach srcCoords %srcTensor |
915 | // collapsedCoords = reshapeCvs(srcCoords, [1, ..., srcRank]) |
916 | // expandedCoords = reshapeCvs(collapsedCoords, [1, ..., dstRank]) |
917 | // insert expandedCoords, %buffer |
918 | // |
919 | // followed by an optional |
920 | // %t = sparse_tensor.cast %tmp |
921 | // depending on whether the input/output are sorted in the same way. |
922 | const auto encSrc = srcTp->getEncoding(); |
923 | ForeachOp foreachOp = rewriter.create<ForeachOp>( |
924 | loc, srcTensor, buffer, |
925 | [&](OpBuilder &builder, Location loc, ValueRange srcLcvs, Value v, |
926 | ValueRange reduc) { |
927 | const Dimension srcRank = srcTp->getDimRank(); |
928 | SmallVector<Value> srcDcvs; |
929 | srcDcvs.reserve(srcRank); |
930 | for (Dimension d = 0; d < srcRank; d++) { |
931 | Level lvl = toLvl(encSrc, d); |
932 | srcDcvs.push_back(srcLcvs[lvl]); |
933 | } |
934 | |
935 | Value collapseSize = constantIndex(builder, loc, 1); |
936 | for (Dimension d = 0; d < srcRank; d++) |
937 | collapseSize = |
938 | builder.create<arith::MulIOp>(loc, collapseSize, srcSizes[d]); |
939 | SmallVector<Value, 1> collapsedSizes = {collapseSize}; |
940 | |
941 | ReassociationIndices collapseIdx; |
942 | for (Dimension i = 0; i < srcRank; i++) |
943 | collapseIdx.push_back(i); |
944 | SmallVector<ReassociationIndices, 1> collapseReass = {collapseIdx}; |
945 | SmallVector<Value, 1> collapsedDcvs; |
946 | reshapeCvs(builder, loc, collapseReass, srcSizes, srcDcvs, |
947 | collapsedSizes, collapsedDcvs); |
948 | |
949 | ReassociationIndices expandIdx; |
950 | for (Dimension i = 0; i < dstTp->getDimRank(); i++) |
951 | expandIdx.push_back(i); |
952 | SmallVector<ReassociationIndices, 1> expandReass = {expandIdx}; |
953 | SmallVector<Value> dstDcvs; |
954 | reshapeCvs(builder, loc, expandReass, collapsedSizes, collapsedDcvs, |
955 | dstSizes, dstDcvs); |
956 | |
957 | auto t = |
958 | builder.create<tensor::InsertOp>(loc, v, reduc.front(), dstDcvs); |
959 | builder.create<sparse_tensor::YieldOp>(loc, t); |
960 | }); |
961 | |
962 | Value t = rewriter.create<LoadOp>(loc, foreachOp.getResult(0), true); |
963 | if (bufferTp != *dstTp) { |
964 | auto dstRTT = dstTp->getRankedTensorType(); |
965 | Value converted = rewriter.create<ConvertOp>(loc, dstRTT, t).getResult(); |
966 | rewriter.create<DeallocTensorOp>(loc, t); |
967 | t = converted; |
968 | } |
969 | rewriter.replaceOp(op, t); |
970 | return success(); |
971 | } |
972 | }; |
973 | |
974 | /// Sparse rewriting rule for sparse-to-sparse reshape operator. |
975 | template <typename ReshapeOp> |
976 | struct Sparse2SparseReshapeRewriter : public OpRewritePattern<ReshapeOp> { |
977 | public: |
978 | using OpRewritePattern<ReshapeOp>::OpRewritePattern; |
979 | |
980 | LogicalResult matchAndRewrite(ReshapeOp op, |
981 | PatternRewriter &rewriter) const override { |
982 | Location loc = op.getLoc(); |
983 | Value srcTensor = op.getSrc(); |
984 | const auto srcTp = getSparseTensorType(val: srcTensor); |
985 | const auto dstTp = getSparseTensorType(op.getResult()); |
986 | if (!srcTp.hasEncoding() || !dstTp.hasEncoding()) |
987 | return failure(); |
988 | |
989 | // Generate code to represent the static dimension constants or compute |
990 | // the dynamic dimension values. |
991 | SmallVector<Value> srcSizes; |
992 | sizesForTensor(rewriter, srcSizes, loc, srcTp, srcTensor); |
993 | SmallVector<Value> dstSizes; |
994 | SmallVector<Value> dstDynSizes; |
995 | if (dstTp.hasStaticDimShape()) { |
996 | for (Dimension d : dstTp.getDimShape()) |
997 | dstSizes.push_back(Elt: constantIndex(builder&: rewriter, loc, i: d)); |
998 | } else { |
999 | ArrayRef<Size> dstShape = dstTp.getDimShape(); |
1000 | genReshapeDstShape(rewriter, loc, dstSizes, srcSizes, dstShape, |
1001 | op.getReassociationIndices()); |
1002 | for (auto [idx, shape] : llvm::enumerate(First&: dstShape)) { |
1003 | if (shape == ShapedType::kDynamic) |
1004 | dstDynSizes.push_back(Elt: dstSizes[idx]); |
1005 | } |
1006 | } |
1007 | Value nnz = rewriter.create<NumberOfEntriesOp>(loc, srcTensor); |
1008 | // Only need a unordered COO buffer if input and output are not sorted |
1009 | // in the same way. |
1010 | Type bufferTp = getBufferType( |
1011 | dstTp.withoutDimToLvl(), |
1012 | !srcTp.isAllOrdered() || !srcTp.isIdentity() || !dstTp.isIdentity()); |
1013 | |
1014 | Value buffer = |
1015 | rewriter |
1016 | .create<AllocTensorOp>(loc, bufferTp, dstDynSizes, Value(), |
1017 | /*sizeHint=*/nnz, Attribute()) |
1018 | .getResult(); |
1019 | |
1020 | // Implement the sparse2sparse reshape as follows: |
1021 | // foreach srcCoords %srcTensor |
1022 | // insert reshapeCvs(srcCoords), %buffer |
1023 | // |
1024 | // followed by an optional |
1025 | // %t = sparse_tensor.cast %tmp |
1026 | // depending on whether the input/output are sorted in the same way. |
1027 | const auto encSrc = srcTp.getEncoding(); |
1028 | ForeachOp foreachOp = rewriter.create<ForeachOp>( |
1029 | loc, srcTensor, buffer, |
1030 | [&](OpBuilder &builder, Location loc, ValueRange srcLcvs, Value v, |
1031 | ValueRange reduc) { |
1032 | const Dimension dimRank = srcTp.getDimRank(); |
1033 | SmallVector<Value> srcDcvs; |
1034 | srcDcvs.reserve(dimRank); |
1035 | for (Dimension d = 0; d < dimRank; d++) { |
1036 | Level lvl = toLvl(encSrc, d); |
1037 | srcDcvs.push_back(srcLcvs[lvl]); |
1038 | } |
1039 | SmallVector<Value> dstDcvs; |
1040 | reshapeCvs(builder, loc, op.getReassociationIndices(), srcSizes, |
1041 | srcDcvs, dstSizes, dstDcvs); |
1042 | auto t = |
1043 | builder.create<tensor::InsertOp>(loc, v, reduc.front(), dstDcvs); |
1044 | builder.create<sparse_tensor::YieldOp>(loc, t); |
1045 | }); |
1046 | |
1047 | Value t = rewriter.create<LoadOp>(loc, foreachOp.getResult(0), true); |
1048 | if (bufferTp != dstTp) { |
1049 | auto dstRTT = dstTp.getRankedTensorType(); |
1050 | Value converted = rewriter.create<ConvertOp>(loc, dstRTT, t).getResult(); |
1051 | rewriter.create<DeallocTensorOp>(loc, t); |
1052 | t = converted; |
1053 | } |
1054 | rewriter.replaceOp(op, t); |
1055 | return success(); |
1056 | } |
1057 | }; |
1058 | |
1059 | /// Sparse rewriting rule for sparse-to-dense and dense-to-sparse reshape |
1060 | /// operator. |
1061 | template <typename ReshapeOp> |
1062 | struct ReshapeRewriter : public OpRewritePattern<ReshapeOp> { |
1063 | public: |
1064 | using OpRewritePattern<ReshapeOp>::OpRewritePattern; |
1065 | |
1066 | LogicalResult matchAndRewrite(ReshapeOp op, |
1067 | PatternRewriter &rewriter) const override { |
1068 | Location loc = op->getLoc(); |
1069 | auto encDst = getSparseTensorEncoding(op.getResult().getType()); |
1070 | auto encSrc = getSparseTensorEncoding(op.getSrc().getType()); |
1071 | // Since a pure dense expansion is very cheap (change of view), for |
1072 | // a sparse2dense or dense2sparse, we can simply unfuse a sparse |
1073 | // conversion from the reshape operation itself. |
1074 | // All other cases are handled elsewhere. |
1075 | if (encDst && encSrc) { |
1076 | return failure(); |
1077 | } |
1078 | if (encSrc) { |
1079 | auto rtp = getRankedTensorType(op.getSrc()); |
1080 | auto denseTp = |
1081 | RankedTensorType::get(rtp.getShape(), rtp.getElementType()); |
1082 | auto convert = rewriter.create<ConvertOp>(loc, denseTp, op.getSrc()); |
1083 | rewriter.modifyOpInPlace(op, [&]() { op->setOperand(0, convert); }); |
1084 | return success(); |
1085 | } |
1086 | if (encDst) { |
1087 | auto rtp = getRankedTensorType(op.getResult()); |
1088 | auto denseTp = |
1089 | RankedTensorType::get(rtp.getShape(), rtp.getElementType()); |
1090 | ReshapeOp reshape; |
1091 | if constexpr (std::is_same<ReshapeOp, tensor::ExpandShapeOp>::value) { |
1092 | reshape = rewriter.create<ReshapeOp>( |
1093 | loc, denseTp, op.getSrc(), op.getReassociation(), |
1094 | op.getOutputShape(), op.getStaticOutputShape()); |
1095 | } else { |
1096 | reshape = rewriter.create<ReshapeOp>(loc, denseTp, op.getSrc(), |
1097 | op.getReassociation()); |
1098 | } |
1099 | Value convert = rewriter.create<ConvertOp>(loc, rtp, reshape); |
1100 | rewriter.replaceOp(op, convert); |
1101 | return success(); |
1102 | } |
1103 | return failure(); |
1104 | } |
1105 | }; |
1106 | |
1107 | // A trivial wrapper to help generate different operations for dense/sparse |
1108 | // tensors. |
1109 | struct TensorLike { |
1110 | TensorLike(OpBuilder &builder, Location loc, RankedTensorType rtt, |
1111 | ValueRange sizes) { |
1112 | SmallVector<Value> dynSzs; |
1113 | getDynamicSizes(rtt, sizes, dynSzs); |
1114 | |
1115 | val = builder.create<AllocTensorOp>(loc, rtt, dynSzs); |
1116 | if (!isSparse()) { |
1117 | Value c0 = constantZero(builder, loc, rtt.getElementType()); |
1118 | val = builder.create<linalg::FillOp>(loc, c0, val).getResult(0); |
1119 | } |
1120 | } |
1121 | |
1122 | void insert(OpBuilder &builder, Location loc, Value v, ValueRange crds) { |
1123 | val = builder.create<tensor::InsertOp>(loc, v, val, crds); |
1124 | } |
1125 | |
1126 | Value finalize(OpBuilder &builder, Location loc, RankedTensorType rtp) const { |
1127 | if (isSparse()) |
1128 | return builder.create<LoadOp>(loc, val, true); |
1129 | return val; |
1130 | } |
1131 | |
1132 | bool isSparse() const { |
1133 | return getSparseTensorEncoding(val.getType()) != nullptr; |
1134 | } |
1135 | |
1136 | Value val; |
1137 | }; |
1138 | |
1139 | struct SparseTensorDimOpRewriter : public OpRewritePattern<tensor::DimOp> { |
1140 | using OpRewritePattern::OpRewritePattern; |
1141 | LogicalResult matchAndRewrite(tensor::DimOp op, |
1142 | PatternRewriter &rewriter) const override { |
1143 | std::optional<int64_t> dim = op.getConstantIndex(); |
1144 | auto stt = tryGetSparseTensorType(op.getSource()); |
1145 | if (!dim || !stt || !stt->hasEncoding()) |
1146 | return failure(); |
1147 | |
1148 | if (stt->isPermutation()) { |
1149 | rewriter.replaceOpWithNewOp<LvlOp>(op, op.getSource(), |
1150 | toLvl(stt->getEncoding(), *dim)); |
1151 | return success(); |
1152 | } |
1153 | |
1154 | // Non-permutation dim2lvl/lvl2dim maps. |
1155 | // Compute as follows: |
1156 | // affine.apply #map (l0 - 1, l1 - 1, ...) + 1 |
1157 | // Note that it is not the most efficient way (but a more general one) for |
1158 | // the lvl to dim translation, e.g., for BSR, the dimension size for can be |
1159 | // computed simply by lvl_size * block_size. |
1160 | Location loc = op.getLoc(); |
1161 | SmallVector<Value> maxLvlCrds; |
1162 | for (Level l = 0; l < stt->getLvlRank(); l++) { |
1163 | Value lvlSz = rewriter.create<LvlOp>(loc, op.getSource(), l); |
1164 | Value maxLvlCrd = rewriter.create<arith::SubIOp>( |
1165 | loc, lvlSz, constantOne(rewriter, loc, rewriter.getIndexType())); |
1166 | maxLvlCrds.push_back(Elt: maxLvlCrd); |
1167 | } |
1168 | |
1169 | AffineExpr lvl2DimExp = stt->getLvlToDim().getResult(*dim); |
1170 | Value maxDimCrd = rewriter.create<affine::AffineApplyOp>( |
1171 | op.getLoc(), AffineMap::get(stt->getLvlRank(), 0, lvl2DimExp), |
1172 | maxLvlCrds); |
1173 | |
1174 | Value dimSz = rewriter.create<arith::AddIOp>( |
1175 | loc, maxDimCrd, constantOne(rewriter, loc, rewriter.getIndexType())); |
1176 | rewriter.replaceOp(op, dimSz); |
1177 | return success(); |
1178 | } |
1179 | }; |
1180 | |
1181 | struct ConcatenateRewriter : public OpRewritePattern<ConcatenateOp> { |
1182 | using OpRewritePattern::OpRewritePattern; |
1183 | LogicalResult matchAndRewrite(ConcatenateOp op, |
1184 | PatternRewriter &rewriter) const override { |
1185 | if (op.needsExtraSort()) |
1186 | op.emitError("ConcatenateOp not staged" ); |
1187 | |
1188 | const Location loc = op.getLoc(); |
1189 | const auto dstTp = getSparseTensorType(op); |
1190 | const Dimension conDim = op.getDimension(); |
1191 | SmallVector<Value> sizes; |
1192 | concatSizesFromInputs(rewriter, sizes, loc, dstTp, op.getInputs(), conDim); |
1193 | |
1194 | // %t = concatenate %s1, %s2, %s3 {dim = 1} |
1195 | // ==> |
1196 | // if (isSparseDst) |
1197 | // if (allDense) |
1198 | // %tmp = bufferization.alloc_tensor dstTp |
1199 | // else |
1200 | // %tmp = bufferization.alloc_tensor : unordered COO |
1201 | // else |
1202 | // %tmp = memref.alloc : dense tensor |
1203 | // foreach in %s1 : insert d0, d1, %tmp |
1204 | // foreach in %s2 : insert d0, d1 + size(s1), %tmp |
1205 | // foreach in %s3 : insert d0, d1 + size(s1) + size(s2), %tmp |
1206 | |
1207 | TensorLike dstBuf(rewriter, loc, dstTp.getRankedTensorType(), sizes); |
1208 | Value offset = constantIndex(builder&: rewriter, loc, i: 0); |
1209 | Value iterArg = dstBuf.val; |
1210 | |
1211 | ForeachOp foreachOp; |
1212 | for (Value input : op.getInputs()) { |
1213 | // Builds a for op for each input tensor to append new values into the |
1214 | // output tensor. |
1215 | foreachOp = rewriter.create<ForeachOp>( |
1216 | loc, input, iterArg, |
1217 | [&](OpBuilder &builder, Location loc, ValueRange dcvs, Value v, |
1218 | ValueRange reduc) { |
1219 | SmallVector<Value> offDimCrd(dcvs); |
1220 | offDimCrd[conDim] = |
1221 | builder.create<arith::AddIOp>(loc, offDimCrd[conDim], offset); |
1222 | |
1223 | // Enters foreach, updates the SSA chain. |
1224 | dstBuf.val = reduc.front(); |
1225 | if (!dstTp.isAllDense()) { |
1226 | Value cond = genIsNonzero(builder, loc, v); |
1227 | auto ifOp = builder.create<scf::IfOp>(loc, reduc.getTypes(), cond, |
1228 | /*else*/ true); |
1229 | builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); |
1230 | builder.create<scf::YieldOp>(loc, dstBuf.val); |
1231 | |
1232 | builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); |
1233 | dstBuf.insert(builder, loc, v, offDimCrd); |
1234 | builder.create<scf::YieldOp>(loc, dstBuf.val); |
1235 | |
1236 | // Exits the ifOp, update the sparse tensor SSA value. |
1237 | builder.setInsertionPointAfter(ifOp); |
1238 | dstBuf.val = ifOp.getResult(0); |
1239 | } else { |
1240 | dstBuf.insert(builder, loc, v, offDimCrd); |
1241 | } |
1242 | builder.create<sparse_tensor::YieldOp>(loc, dstBuf.val); |
1243 | }); |
1244 | // Accumulates the offset. Note that only static-shaped inputs are allowed |
1245 | // by concatenate op verifier, which saves us from computing the offset |
1246 | // dynamically. |
1247 | const Size sz = getSparseTensorType(input).getDynamicDimSize(conDim); |
1248 | assert(!ShapedType::isDynamic(sz)); |
1249 | offset = rewriter.create<arith::AddIOp>(loc, offset, |
1250 | constantIndex(rewriter, loc, sz)); |
1251 | iterArg = foreachOp.getResult(0); |
1252 | dstBuf.val = iterArg; |
1253 | } |
1254 | |
1255 | dstBuf.val = iterArg; |
1256 | Value ret = dstBuf.finalize(builder&: rewriter, loc, rtp: dstTp.getRankedTensorType()); |
1257 | rewriter.replaceOp(op, ret); |
1258 | return success(); |
1259 | } |
1260 | }; |
1261 | |
1262 | struct DirectConvertRewriter : public OpRewritePattern<ConvertOp> { |
1263 | using OpRewritePattern::OpRewritePattern; |
1264 | LogicalResult matchAndRewrite(ConvertOp op, |
1265 | PatternRewriter &rewriter) const override { |
1266 | if (op.needsExtraSort()) |
1267 | return op.emitError("ConvertOp not staged." ); |
1268 | |
1269 | // TODO: Maybe we want a different operation for this too. |
1270 | auto encDst = getSparseTensorEncoding(op.getType()); |
1271 | auto encSrc = getSparseTensorEncoding(op.getSource().getType()); |
1272 | if (encDst && encSrc && !encSrc.isSlice() && |
1273 | encSrc.withoutBitWidths() == encDst.withoutBitWidths()) { |
1274 | // Trivial tensor conversion and simple element type conversion is handled |
1275 | // in codegen. |
1276 | return failure(); |
1277 | } |
1278 | |
1279 | Location loc = op.getLoc(); |
1280 | Value src = op.getSource(); |
1281 | |
1282 | SparseTensorType srcStt = getSparseTensorType(op.getSource()); |
1283 | SparseTensorType dstStt = getSparseTensorType(op.getDest()); |
1284 | |
1285 | bool fromSparseConst = false; |
1286 | if (auto constOp = op.getSource().getDefiningOp<arith::ConstantOp>()) |
1287 | if (isa<SparseElementsAttr>(constOp.getValue())) |
1288 | fromSparseConst = true; |
1289 | |
1290 | const AffineMapAttr foreachOrder = |
1291 | (!dstStt.isIdentity() && fromSparseConst) |
1292 | ? AffineMapAttr::get(dstStt.getExpandedDimToLvl()) |
1293 | : nullptr; |
1294 | |
1295 | bool skipZeroCheck = srcStt.hasEncoding() || fromSparseConst; |
1296 | |
1297 | SmallVector<Value> sizes; |
1298 | sizesFromSrc(builder&: rewriter, sizes, loc, src); |
1299 | ValueRange vs; |
1300 | TensorLike dstBuf(rewriter, loc, dstStt.getRankedTensorType(), sizes); |
1301 | |
1302 | auto foreachOp = rewriter.create<ForeachOp>( |
1303 | loc, src, dstBuf.val, foreachOrder, |
1304 | [&](OpBuilder &builder, Location loc, ValueRange dcvs, Value v, |
1305 | ValueRange reduc) { |
1306 | // Enters the loop, update the SSA value for insertion chain. |
1307 | dstBuf.val = reduc.front(); |
1308 | if (!skipZeroCheck) { |
1309 | Value cond = genIsNonzero(builder, loc, v); |
1310 | auto ifOp = builder.create<scf::IfOp>(loc, reduc.getTypes(), cond, |
1311 | /*else*/ true); |
1312 | builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); |
1313 | builder.create<scf::YieldOp>(loc, dstBuf.val); |
1314 | |
1315 | builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); |
1316 | dstBuf.insert(builder, loc, v, dcvs); |
1317 | builder.create<scf::YieldOp>(loc, dstBuf.val); |
1318 | |
1319 | // Exits the ifOp, update the sparse tensor SSA value. |
1320 | builder.setInsertionPointAfter(ifOp); |
1321 | dstBuf.val = ifOp.getResult(0); |
1322 | } else { |
1323 | dstBuf.insert(builder, loc, v, dcvs); |
1324 | } |
1325 | builder.create<sparse_tensor::YieldOp>(loc, dstBuf.val); |
1326 | }); |
1327 | |
1328 | rewriter.setInsertionPointAfter(foreachOp); |
1329 | |
1330 | // Exits the for loop, links the SSA chain. |
1331 | dstBuf.val = foreachOp.getResult(0); |
1332 | |
1333 | Value ret = dstBuf.finalize(builder&: rewriter, loc, rtp: dstStt.getRankedTensorType()); |
1334 | rewriter.replaceOp(op, ret); |
1335 | return success(); |
1336 | } |
1337 | }; |
1338 | |
1339 | struct CrdTranslateRewriter : public OpRewritePattern<CrdTranslateOp> { |
1340 | using OpRewritePattern::OpRewritePattern; |
1341 | LogicalResult matchAndRewrite(CrdTranslateOp op, |
1342 | PatternRewriter &rewriter) const override { |
1343 | AffineMap map = op.getDirection() == CrdTransDirectionKind::dim2lvl |
1344 | ? op.getEncoder().getDimToLvl() |
1345 | : op.getEncoder().getLvlToDim(); |
1346 | |
1347 | SmallVector<Value> outCrds; |
1348 | for (AffineExpr result : map.getResults()) { |
1349 | // TODO: we should probably expand the affine map to IR using our own |
1350 | // rules, since affine.apply assume signed value, while the cooridinates |
1351 | // we provided must always be signless. |
1352 | Value trans = rewriter.create<affine::AffineApplyOp>( |
1353 | op.getLoc(), AffineMap::get(dimCount: map.getNumDims(), symbolCount: 0, result), |
1354 | op.getInCrds()); |
1355 | outCrds.push_back(Elt: trans); |
1356 | } |
1357 | rewriter.replaceOp(op, outCrds); |
1358 | return success(); |
1359 | } |
1360 | }; |
1361 | |
1362 | /// Sparse rewriting rule for the foreach operator. |
1363 | struct ForeachRewriter : public OpRewritePattern<ForeachOp> { |
1364 | public: |
1365 | using OpRewritePattern::OpRewritePattern; |
1366 | |
1367 | LogicalResult matchAndRewrite(ForeachOp op, |
1368 | PatternRewriter &rewriter) const override { |
1369 | |
1370 | auto loc = op.getLoc(); |
1371 | Value input = op.getTensor(); |
1372 | SmallVector<Value> reduc = op.getInitArgs(); |
1373 | const auto stt = getSparseTensorType(val: input); |
1374 | const Level lvlRank = stt.getLvlRank(); |
1375 | |
1376 | // Special-case: for each over a sparse constant uses its own rewriting |
1377 | // rule. |
1378 | if (auto constOp = input.getDefiningOp<arith::ConstantOp>()) { |
1379 | if (auto attr = dyn_cast<SparseElementsAttr>(constOp.getValue())) { |
1380 | return genForeachOnSparseConstant(op, rewriter, attr); |
1381 | } |
1382 | } |
1383 | |
1384 | // Otherwise, use loop emitter to generate loops. |
1385 | const auto enc = stt.getEncoding(); |
1386 | |
1387 | // 1. Generates loop for the sparse input. |
1388 | LoopEmitter loopEmitter( |
1389 | ValueRange{input}, |
1390 | StringAttr::get(getContext(), ForeachOp::getOperationName())); |
1391 | loopEmitter.initializeLoopEmit(builder&: rewriter, loc: loc); |
1392 | for (Level l = 0; l < lvlRank; l++) { |
1393 | // TODO: provide utility function for loop sequences that only contains |
1394 | // one for loop? |
1395 | const SmallVector<TensorLevel, 1> tidLvls{ |
1396 | loopEmitter.makeTensorLevel(t: 0, l)}; |
1397 | loopEmitter.enterNewLoopSeq(builder&: rewriter, loc: loc, tidLvls); |
1398 | // Note that reduc will be taken care of by loop emitter and get updated |
1399 | // in place. |
1400 | loopEmitter.enterCoIterationOverTensorsAtLvls(builder&: rewriter, loc: loc, tidLvls, numCases: 1, |
1401 | reduc); |
1402 | } |
1403 | |
1404 | SmallVector<Value> lcvs = loopEmitter.getLoopIVs(); |
1405 | if (op.getOrder()) { |
1406 | // TODO: Support it so that we can do direct conversion from CSR->BSR. |
1407 | llvm_unreachable( |
1408 | "Level order not yet implemented on non-constant input tensors." ); |
1409 | } |
1410 | |
1411 | Value vals = loopEmitter.getValBuffer()[0]; |
1412 | SmallVector<Value> pos = loopEmitter.getValPosits(tid: 0); |
1413 | // Loads the value from sparse tensor using position-index; |
1414 | // loads the value from dense tensor using coords. |
1415 | Value val = enc ? rewriter.create<memref::LoadOp>(loc, vals, pos) |
1416 | : rewriter.create<memref::LoadOp>(loc, vals, lcvs); |
1417 | |
1418 | // 2. Inline the block in the foreach operator. |
1419 | Block *srcBlock = op.getBody(); |
1420 | |
1421 | // Remap coordinates. |
1422 | SmallVector<Value> args = |
1423 | enc.translateCrds(rewriter, loc, lcvs, CrdTransDirectionKind::lvl2dim); |
1424 | |
1425 | // Remap value. |
1426 | args.push_back(Elt: val); |
1427 | // Remap reduction variables. |
1428 | args.append(RHS: reduc); |
1429 | |
1430 | // Remove sparse_tensor.yield. |
1431 | SmallVector<Value> reducValue = srcBlock->getTerminator()->getOperands(); |
1432 | rewriter.eraseOp(op: srcBlock->getTerminator()); |
1433 | |
1434 | Operation &last = rewriter.getBlock()->back(); |
1435 | if (llvm::isa<scf::YieldOp>(last)) { |
1436 | // Because `scf.for` inserts an implicit yield op when there is no |
1437 | // reduction variable upon creation, we reset the insertion point such |
1438 | // that the block is inlined before *before* the yield op. |
1439 | rewriter.setInsertionPoint(&last); |
1440 | } |
1441 | |
1442 | rewriter.inlineBlockBefore(source: srcBlock, dest: rewriter.getBlock(), |
1443 | before: rewriter.getInsertionPoint(), argValues: args); |
1444 | rewriter.setInsertionPointToEnd(rewriter.getBlock()); |
1445 | for (Level l = 0; l < lvlRank; l++) { |
1446 | // Link the reduction chain. Note that loop emitter update the reducValue |
1447 | // in place. |
1448 | loopEmitter.exitCurrentLoop(rewriter, loc: loc, reduc: reducValue); |
1449 | loopEmitter.exitCurrentLoopSeq(builder&: rewriter, loc: loc); |
1450 | } |
1451 | |
1452 | // Replace the foreach operator with the value returned by the outtermost |
1453 | // for loop. |
1454 | rewriter.replaceOp(op, reducValue); |
1455 | return success(); |
1456 | } |
1457 | }; |
1458 | |
1459 | /// Sparse rewriting rule for the new operator. |
1460 | struct NewRewriter : public OpRewritePattern<NewOp> { |
1461 | using OpRewritePattern::OpRewritePattern; |
1462 | LogicalResult matchAndRewrite(NewOp op, |
1463 | PatternRewriter &rewriter) const override { |
1464 | Location loc = op.getLoc(); |
1465 | auto stt = getSparseTensorType(op.getResult()); |
1466 | if (!stt.hasEncoding() || stt.getAoSCOOStart() == 0) |
1467 | return failure(); |
1468 | |
1469 | // Implement the NewOp as follows: |
1470 | // %orderedCoo = sparse_tensor.new %filename |
1471 | // %t = sparse_tensor.convert %orderedCoo |
1472 | // with enveloping reinterpreted_map ops for non-permutations. |
1473 | RankedTensorType dstTp = stt.getRankedTensorType(); |
1474 | RankedTensorType cooTp = stt.getCOOType(/*ordered=*/true); |
1475 | Value cooTensor = rewriter.create<NewOp>(loc, cooTp, op.getSource()); |
1476 | Value convert = cooTensor; |
1477 | auto enc = stt.getEncoding(); |
1478 | if (!stt.isPermutation()) { // demap coo, demap dstTp |
1479 | auto coo = getSparseTensorType(val: cooTensor).getEncoding().withoutDimToLvl(); |
1480 | convert = rewriter.create<ReinterpretMapOp>(loc, coo, convert); |
1481 | dstTp = getSparseTensorType(val: convert).withEncoding(enc.withoutDimToLvl()); |
1482 | } |
1483 | convert = rewriter.create<ConvertOp>(loc, dstTp, convert); |
1484 | if (!stt.isPermutation()) // remap to original enc |
1485 | convert = rewriter.create<ReinterpretMapOp>(loc, enc, convert); |
1486 | rewriter.replaceOp(op, convert); |
1487 | |
1488 | // Release the temporary ordered COO tensor. |
1489 | rewriter.setInsertionPointAfterValue(convert); |
1490 | rewriter.create<DeallocTensorOp>(loc, cooTensor); |
1491 | |
1492 | return success(); |
1493 | } |
1494 | }; |
1495 | |
1496 | /// Sparse rewriting rule for the out operator. |
1497 | struct OutRewriter : public OpRewritePattern<OutOp> { |
1498 | using OpRewritePattern::OpRewritePattern; |
1499 | LogicalResult matchAndRewrite(OutOp op, |
1500 | PatternRewriter &rewriter) const override { |
1501 | Location loc = op.getLoc(); |
1502 | // Calculate NNZ. |
1503 | Value src = op.getTensor(); |
1504 | Value nnz = rewriter.create<NumberOfEntriesOp>(loc, src); |
1505 | |
1506 | // Allocate a temporary buffer for storing dimension-sizes/coordinates. |
1507 | const auto srcTp = getSparseTensorType(val: src); |
1508 | const Dimension dimRank = srcTp.getDimRank(); |
1509 | Type indexTp = rewriter.getIndexType(); |
1510 | Value dimSizes = genAlloca(builder&: rewriter, loc, sz: dimRank, tp: indexTp); |
1511 | |
1512 | // Generate code to calculate dimension size values and store the values to |
1513 | // the buffer. |
1514 | SmallVector<Value> dims; |
1515 | sizesForTensor(rewriter, dims, loc, srcTp, src); |
1516 | for (Dimension d = 0; d < dimRank; d++) { |
1517 | rewriter.create<memref::StoreOp>(loc, dims[d], dimSizes, |
1518 | constantIndex(rewriter, loc, d)); |
1519 | } |
1520 | |
1521 | // Create a sparse tensor writer and output meta data. |
1522 | Type opaqueTp = getOpaquePointerType(builder&: rewriter); |
1523 | Value writer = |
1524 | createFuncCall(rewriter, loc, "createSparseTensorWriter" , {opaqueTp}, |
1525 | {op.getDest()}, EmitCInterface::Off) |
1526 | .getResult(0); |
1527 | Value rankValue = constantIndex(builder&: rewriter, loc, i: dimRank); |
1528 | createFuncCall(builder&: rewriter, loc, name: "outSparseTensorWriterMetaData" , resultType: {}, |
1529 | operands: {writer, rankValue, nnz, dimSizes}, emitCInterface: EmitCInterface::On); |
1530 | |
1531 | Value dimCoords = dimSizes; // Reuse the dimSizes buffer for dimCoords. |
1532 | Type eltTp = srcTp.getElementType(); |
1533 | SmallString<29> outNextFuncName{"outSparseTensorWriterNext" , |
1534 | primaryTypeFunctionSuffix(elemTp: eltTp)}; |
1535 | Value value = genAllocaScalar(builder&: rewriter, loc, tp: eltTp); |
1536 | ModuleOp module = op->getParentOfType<ModuleOp>(); |
1537 | |
1538 | // For each element in the source tensor, output the element. |
1539 | rewriter.create<ForeachOp>( |
1540 | loc, src, std::nullopt, |
1541 | [&](OpBuilder &builder, Location loc, ValueRange dcvs, Value v, |
1542 | ValueRange reduc) { |
1543 | for (Dimension d = 0; d < dimRank; d++) { |
1544 | rewriter.create<memref::StoreOp>(loc, dcvs[d], dimCoords, |
1545 | constantIndex(builder, loc, d)); |
1546 | } |
1547 | rewriter.create<memref::StoreOp>(loc, v, value); |
1548 | SmallVector<Value> operands{writer, rankValue, dimCoords, value}; |
1549 | FlatSymbolRefAttr fn = getFunc(module, outNextFuncName, {}, operands, |
1550 | EmitCInterface::On); |
1551 | builder.create<func::CallOp>(loc, TypeRange(), fn, operands); |
1552 | builder.create<sparse_tensor::YieldOp>(loc); |
1553 | }); |
1554 | |
1555 | // Release the writer. |
1556 | createFuncCall(builder&: rewriter, loc, name: "delSparseTensorWriter" , resultType: {}, operands: {writer}, |
1557 | emitCInterface: EmitCInterface::Off); |
1558 | |
1559 | rewriter.eraseOp(op: op); |
1560 | return success(); |
1561 | } |
1562 | }; |
1563 | |
1564 | } // namespace |
1565 | |
1566 | //===---------------------------------------------------------------------===// |
1567 | // Methods that add patterns described in this file to a pattern list. |
1568 | //===---------------------------------------------------------------------===// |
1569 | |
1570 | void mlir::populatePreSparsificationRewriting(RewritePatternSet &patterns) { |
1571 | patterns.add<FuseExtractSliceWithConcat, FoldConvertIntoProducer, |
1572 | FoldInvariantYield, FuseSparseMultiplyOverAdd, FuseTensorCast, |
1573 | GenSemiRingReduction, GenSemiRingSelect, PrintRewriter>( |
1574 | arg: patterns.getContext()); |
1575 | } |
1576 | |
1577 | void mlir::populateLowerSparseOpsToForeachPatterns(RewritePatternSet &patterns, |
1578 | bool enableRT, |
1579 | bool enableConvert) { |
1580 | patterns.add<ConcatenateRewriter, ReshapeRewriter<tensor::ExpandShapeOp>, |
1581 | ReshapeRewriter<tensor::CollapseShapeOp>, |
1582 | Sparse2SparseReshapeRewriter<tensor::ExpandShapeOp>, |
1583 | Sparse2SparseReshapeRewriter<tensor::CollapseShapeOp>, |
1584 | SparseTensorDimOpRewriter, TensorReshapeRewriter, OutRewriter>( |
1585 | patterns.getContext()); |
1586 | |
1587 | if (enableConvert) |
1588 | patterns.add<DirectConvertRewriter>(arg: patterns.getContext()); |
1589 | if (!enableRT) |
1590 | patterns.add<NewRewriter>(arg: patterns.getContext()); |
1591 | } |
1592 | |
1593 | void mlir::populateLowerForeachToSCFPatterns(RewritePatternSet &patterns) { |
1594 | // Run CrdTranslateRewriter later in the pipeline so that operation can be |
1595 | // folded before lowering to affine.apply |
1596 | patterns.add<CrdTranslateRewriter, ForeachRewriter>(arg: patterns.getContext()); |
1597 | } |
1598 | |