| 1 | //===- LoopEmitter.h --------------------------------------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #ifndef MLIR_DIALECT_SPARSETENSOR_TRANSFORMS_UTILS_LOOPEMITTER_H_ |
| 10 | #define MLIR_DIALECT_SPARSETENSOR_TRANSFORMS_UTILS_LOOPEMITTER_H_ |
| 11 | |
| 12 | #include <vector> |
| 13 | |
| 14 | #include "SparseTensorIterator.h" |
| 15 | |
| 16 | #include "mlir/Dialect/SparseTensor/IR/Enums.h" |
| 17 | #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h" |
| 18 | #include "mlir/Dialect/SparseTensor/Transforms/Passes.h" |
| 19 | #include "mlir/Dialect/SparseTensor/Utils/Merger.h" |
| 20 | #include "mlir/IR/PatternMatch.h" |
| 21 | |
| 22 | namespace mlir { |
| 23 | namespace sparse_tensor { |
| 24 | |
| 25 | // A compressed <tensor id, level> pair. |
| 26 | using TensorLevel = unsigned; |
| 27 | |
| 28 | // |
| 29 | // SparseTensorLoopEmiter class, manages sparse tensors and helps to |
| 30 | // generate loop structure to (co)-iterate sparse tensors. |
| 31 | // |
| 32 | // An example usage: |
| 33 | // To generate the following loops over T1<?x?> and T2<?x?> |
| 34 | // |
| 35 | // for i in TENSOR_1_0 { |
| 36 | // for j : TENSOR_2_0 { |
| 37 | // for k : TENSOR_1_1 {} |
| 38 | // for k : TENSOR_2_1 {} |
| 39 | // } |
| 40 | // } |
| 41 | // |
| 42 | // One can use |
| 43 | // |
| 44 | // LoopEmiter loopEmiter({T1, T1}); |
| 45 | // loopEmiter.initializeLoopEmit(); |
| 46 | // loopEmiter.enterLoopOverTensorAtLvl(T1, 0); |
| 47 | // loopEmiter.enterLoopOverTensorAtLvl(T2, 0); |
| 48 | // loopEmiter.enterLoopOverTensorAtLvl(T1, 1); |
| 49 | // loopEmiter.exitCurrentLoop(); |
| 50 | // loopEmiter.enterLoopOverTensorAtLvl(T2, 1); |
| 51 | // loopEmiter.exitCurrentLoop(); // exit k |
| 52 | // loopEmiter.exitCurrentLoop(); // exit j |
| 53 | // loopEmiter.exitCurrentLoop(); // exit i |
| 54 | // |
| 55 | class LoopEmitter { |
| 56 | public: |
| 57 | /// Optional callback function to setup dense output tensors when |
| 58 | /// initializing the loop emitter (e.g., to fill a dense output with zeros). |
| 59 | using OutputUpdater = function_ref<Value(OpBuilder &builder, Location loc, |
| 60 | Value memref, Value tensor)>; |
| 61 | |
| 62 | /// Optional callback function to set the bound for the synthetic tensor, |
| 63 | /// which essentially is the dense loop bound. |
| 64 | using SynTensorBoundSetter = |
| 65 | function_ref<Value(OpBuilder &builder, Location loc, Level lvl)>; |
| 66 | |
| 67 | // Map from [tid, lvl] to a list of dependent [LoopId, coeffecient] for |
| 68 | // subscript expressions on sparse tensors. |
| 69 | // |
| 70 | // E.g., for affine index (2 * d0 + d1), it depends on loop d0 and d1 (for |
| 71 | // affine expression reduction) and uses 2 and 1 for coefficients on d0, d1 |
| 72 | // respectively. If the list is empty, it means that there is no affine |
| 73 | // expression on the input [tid, lvl]. |
| 74 | // |
| 75 | // NOTE: LoopEmitter assumes that the loop id is consistent with the loop |
| 76 | // order, i.e., loop `d0` will be generated before loop `d1`. |
| 77 | using DependentLvlGetter = |
| 78 | function_ref<std::vector<std::pair<LoopId, unsigned>>(TensorId, Level)>; |
| 79 | |
| 80 | LoopEmitter() = default; |
| 81 | |
| 82 | /// Takes an array of input tensors, which the generated loops will |
| 83 | /// iterate over. Each tensor is given a `TensorId` (numerically equal |
| 84 | /// to the position of that tensor `Value` in the array). Setting |
| 85 | /// `isSparseOut` indicates that the sparse output tensor is empty, |
| 86 | /// so the loop emitter will generate loops over it according to the |
| 87 | /// level-sizes. |
| 88 | void |
| 89 | initialize(ValueRange tensors, StringAttr loopTag = nullptr, |
| 90 | bool hasOutput = false, bool isSparseOut = false, |
| 91 | unsigned numLoops = 0, DependentLvlGetter getter = nullptr, |
| 92 | SparseEmitStrategy emitStrategy = SparseEmitStrategy::kFunctional); |
| 93 | |
| 94 | explicit LoopEmitter( |
| 95 | ValueRange tensors, StringAttr loopTag = nullptr, bool hasOutput = false, |
| 96 | bool isSparseOut = false, unsigned numLoops = 0, |
| 97 | DependentLvlGetter getter = nullptr, |
| 98 | SparseEmitStrategy emitStrategy = SparseEmitStrategy::kFunctional); |
| 99 | |
| 100 | /// Starts a loop emitting session by generating all the buffers needed |
| 101 | /// for iterating over the tensors. |
| 102 | void initializeLoopEmit(OpBuilder &builder, Location loc, |
| 103 | OutputUpdater updater = nullptr, |
| 104 | SynTensorBoundSetter synSetter = nullptr); |
| 105 | |
| 106 | /// Generates code to compute an affine expression whose variables are |
| 107 | /// `LoopId`s (i.e., `cast<AffineDimExpr>(a).getPosition()` is a valid |
| 108 | /// `LoopId`). |
| 109 | Value genAffine(OpBuilder &builder, Location loc, AffineExpr a); |
| 110 | |
| 111 | /// Enters a new loop sequence, the loops within the same sequence starts |
| 112 | /// from the break points of previous loop instead of starting over from 0. |
| 113 | /// e.g., |
| 114 | /// { |
| 115 | /// // loop sequence start. |
| 116 | /// p0 = while(xxx) |
| 117 | /// ... |
| 118 | /// break p0 |
| 119 | /// |
| 120 | /// // Starts loop from p0 |
| 121 | /// for (i = p0; i < end; i++) |
| 122 | /// ... |
| 123 | /// // loop sequence end. |
| 124 | /// } |
| 125 | void enterNewLoopSeq(OpBuilder &builder, Location loc, |
| 126 | ArrayRef<TensorLevel> tidLvls); |
| 127 | |
| 128 | /// Exits the current loop sequence, this will reset universal index to 0. |
| 129 | void exitCurrentLoopSeq(OpBuilder &builder, Location loc); |
| 130 | |
| 131 | /// Emits the address for a dense level based on the value evaluated by the |
| 132 | /// provided affine expression. |
| 133 | void locateLvlAtAffineAddress(OpBuilder &builder, Location loc, |
| 134 | TensorLevel tidLvl, AffineExpr lvlExpr); |
| 135 | |
| 136 | // TODO: Get rid of `lvls` in the argument list? Track the level we |
| 137 | // are currently at internally. Then it would be enterNextLvlForTensor. |
| 138 | // Still need a way to specify the lvl for non-annotated tensors though, |
| 139 | // as those can be accessed out of order. |
| 140 | // |
| 141 | /// Emits a co-iteration loop over a set of tensors. |
| 142 | /// Emits loop over tensor_tid_lvl, it assumes that loops between |
| 143 | /// tensor_tid_[0, lvl - 1] have already been generated. |
| 144 | /// The function will also perform in-place update on the `reduc` vector to |
| 145 | /// return the reduction variable used inside the generated loop. |
| 146 | Operation *enterCoIterationOverTensorsAtLvls( |
| 147 | OpBuilder &builder, Location loc, ArrayRef<TensorLevel> tidLvls, |
| 148 | unsigned numCases, MutableArrayRef<Value> reduc = {}, |
| 149 | bool isParallel = false, bool needsUniv = false); |
| 150 | |
| 151 | Region *enterCurrentCoIterationCase(OpBuilder &builder, Location loc, |
| 152 | I64BitSet caseBit, unsigned caseIdx, |
| 153 | MutableArrayRef<Value> reduc); |
| 154 | |
| 155 | /// Generates code to exit the current loop (e.g., generates yields, forwards |
| 156 | /// loop induction variables, etc). |
| 157 | void exitCurrentLoop(RewriterBase &rewriter, Location loc, |
| 158 | MutableArrayRef<Value> reduc = {}); |
| 159 | |
| 160 | /// Get the range of values for all induction variables. |
| 161 | auto getLoopIVsRange() const { |
| 162 | return llvm::map_range(C: loopStack, F: [](const LoopInfo &li) { return li.iv; }); |
| 163 | } |
| 164 | |
| 165 | /// Fills the out-parameter with the loop induction variables for all |
| 166 | /// loops in the current loop-stack. |
| 167 | SmallVector<Value> getLoopIVs() const { |
| 168 | return llvm::to_vector(Range: getLoopIVsRange()); |
| 169 | } |
| 170 | |
| 171 | /// Gets the current depth of the loop-stack. |
| 172 | LoopId getCurrentDepth() const { return llvm::range_size(Range: getLoopIVsRange()); } |
| 173 | |
| 174 | /// Gets loop induction variable for the given loop |
| 175 | Value getLoopIV(LoopId n) const { |
| 176 | if (n >= getCurrentDepth()) |
| 177 | return Value(); |
| 178 | auto it = getLoopIVsRange().begin(); |
| 179 | std::advance(i&: it, n: n); |
| 180 | return *it; |
| 181 | } |
| 182 | |
| 183 | /// Gets the total number of manifest tensors (excluding the synthetic |
| 184 | /// tensor). |
| 185 | unsigned getNumManifestTensors() const { return tensors.size(); } |
| 186 | |
| 187 | /// Gets the total number of tensors that loopEmitter is operating on. |
| 188 | unsigned getNumTensors() const { |
| 189 | // Manifest tensors with one synthetic tensor at the end. |
| 190 | return getNumManifestTensors() + 1; |
| 191 | } |
| 192 | |
| 193 | /// Gets the TensorId for synthetic tensor. |
| 194 | TensorId getSynTensorId() const { return tensors.size(); } |
| 195 | |
| 196 | /// Gets the TensorId for output tensor. |
| 197 | TensorId getOutTensorId() const { |
| 198 | assert(hasOutput); |
| 199 | return getNumManifestTensors() - 1; |
| 200 | } |
| 201 | |
| 202 | /// Compresses a TensorId and Level into a TensorLevel. |
| 203 | TensorLevel makeTensorLevel(TensorId t, Level l) const { |
| 204 | return l * getNumTensors() + t; |
| 205 | } |
| 206 | |
| 207 | /// De-compresses a TensorLevel back to a pair of TensorId and Level. |
| 208 | std::pair<TensorId, Level> unpackTensorLevel(TensorLevel tidLvl) const { |
| 209 | unsigned nt = getNumTensors(); |
| 210 | return std::make_pair(x: tidLvl % nt, y: tidLvl / nt); |
| 211 | } |
| 212 | |
| 213 | /// Converts a range of TensorLevel to a range of std::pair<TensorId, Level> |
| 214 | template <class ContainerTy> |
| 215 | auto unpackTensorLevelRange(ContainerTy &&c) const { |
| 216 | using EltTy = decltype(*c.begin()); |
| 217 | static_assert(std::is_same_v<llvm::remove_cvref_t<EltTy>, TensorLevel>, |
| 218 | "Must be unpacking a TensorLevel range" ); |
| 219 | return llvm::map_range(std::forward<ContainerTy>(c), [this](EltTy tl) { |
| 220 | return this->unpackTensorLevel(tidLvl: tl); |
| 221 | }); |
| 222 | } |
| 223 | |
| 224 | /// |
| 225 | /// Getters. |
| 226 | /// |
| 227 | SmallVector<Value> getValPosits(TensorId tid) const { |
| 228 | // Returns the iterator if we are generating sparse (co)iterate-based loops. |
| 229 | if (emitStrategy == SparseEmitStrategy::kSparseIterator) |
| 230 | return {spIterVals[tid].back()}; |
| 231 | |
| 232 | // Returns {[batch coords], last-level position}. |
| 233 | SmallVector<Value> batchCrds = iters[tid].back().back()->getBatchCrds(); |
| 234 | Value lastLvlPos = iters[tid].back().back()->getCurPosition().front(); |
| 235 | batchCrds.push_back(Elt: lastLvlPos); |
| 236 | return batchCrds; |
| 237 | }; |
| 238 | Value getCoord(TensorId tid, Level lvl) const { |
| 239 | return getCurIterator(tid, lvl).getCrd(); |
| 240 | }; |
| 241 | const std::vector<Value> &getValBuffer() const { return valBuffer; }; |
| 242 | |
| 243 | constexpr static llvm::StringLiteral getLoopEmitterLoopAttrName() { |
| 244 | return llvm::StringLiteral("Emitted from" ); |
| 245 | } |
| 246 | |
| 247 | private: |
| 248 | /// |
| 249 | /// Structure definitions that hold different kinds of loops information. |
| 250 | /// |
| 251 | |
| 252 | // LoopInfo stores information of a loop generated by LoopEmitter. E.g., |
| 253 | // the set of tensors levels that the loop is iterating over. |
| 254 | struct LoopInfo final { |
| 255 | LoopInfo(ArrayRef<TensorLevel> tidLvls, Operation *loop, Block *userBlock, |
| 256 | Value iv, StringAttr loopTag) |
| 257 | : tidLvls(tidLvls), loop(loop), userCodeBlock(userBlock), iv(iv) { |
| 258 | // Attached a special tag to loop emitter generated loop. |
| 259 | if (loopTag) |
| 260 | loop->setAttr(LoopEmitter::getLoopEmitterLoopAttrName(), loopTag); |
| 261 | } |
| 262 | // The set of <tensor, lvl>, with *only* trivial index expressions, that are |
| 263 | // used as the condition for the generated loop. Extra information is |
| 264 | // required for levels with non-tivial index expressions, which is |
| 265 | // maintained by the sliceDrivenInfo array below. |
| 266 | const llvm::SmallVector<TensorLevel> tidLvls; |
| 267 | Operation *loop; // the loop operation |
| 268 | Block *const userCodeBlock; // the block holding users' generated code. |
| 269 | Value iv; // the induction variable for the loop |
| 270 | }; |
| 271 | |
| 272 | void categorizeIterators(ArrayRef<TensorLevel> tidLvls, |
| 273 | SmallVectorImpl<SparseIterator *> &raIters, |
| 274 | SmallVectorImpl<SparseIterator *> &spIters); |
| 275 | /// |
| 276 | /// LoopEmitter internal helper functions. |
| 277 | /// |
| 278 | |
| 279 | using LoopBodyBuilder = llvm::function_ref<void(OpBuilder &, Location, Value, |
| 280 | MutableArrayRef<Value>)>; |
| 281 | |
| 282 | /// Whether the list of the sparse condition should be iterated by for loop. |
| 283 | bool shouldIteratedByForLoop(ArrayRef<SparseIterator *> spIters); |
| 284 | |
| 285 | /// Generates instructions to compute the coordinate of tensors[tid][lvl] |
| 286 | /// under the current loop context. The final argument is the |
| 287 | /// collapsed-output level, whereas this function handles converting |
| 288 | /// that to the uncollapsed-input level |
| 289 | Value genSparseCrd(OpBuilder &builder, Location loc, TensorId tid, |
| 290 | Level dstLvl); |
| 291 | |
| 292 | bool isSynTensor(TensorId tid) const { return tid == getSynTensorId(); } |
| 293 | |
| 294 | bool isOutputTensor(TensorId tid) const { |
| 295 | return hasOutput && tid == getOutTensorId(); |
| 296 | } |
| 297 | |
| 298 | bool isSparseOutput(TensorId tid) const { |
| 299 | return isOutputTensor(tid) && isSparseOut; |
| 300 | } |
| 301 | |
| 302 | bool isValidLevel(TensorId tid, Level lvl) const { |
| 303 | return tid < lvls.size() && lvl < lvls[tid].size(); |
| 304 | } |
| 305 | |
| 306 | /// Prepares loop for iterating over `tensor[lvl]`, under the assumption |
| 307 | /// that `tensor[0...lvl-1]` loops have already been set up. |
| 308 | void prepareLoopOverTensorAtLvl(OpBuilder &builder, Location loc, |
| 309 | TensorId tid, Level lvl); |
| 310 | |
| 311 | /// Emits a for loop to iterate over a tensor level with the provided |
| 312 | /// lower bound `lo` and upper bound `hi`. Apart from iterating just |
| 313 | /// single tensor level, for loops can be used for slice-driven loop on |
| 314 | /// dense level too. |
| 315 | /// Returns a pair: the loop generated and the value for the induction |
| 316 | /// variable. |
| 317 | std::pair<Operation *, Value> |
| 318 | emitForLoopOverTensorAtLvl(OpBuilder &builder, Location loc, |
| 319 | SparseIterator &iter, MutableArrayRef<Value> reduc, |
| 320 | bool isParallel); |
| 321 | |
| 322 | /// Emits a while loop to co-iterate over a list of sparse condition, or |
| 323 | /// (complex) single sparse condition that can not be handled by for loop |
| 324 | /// (e.g., index reduction loop). |
| 325 | /// Returns a pair: the loop generated and the value for the induction |
| 326 | /// variable (which is the minimum coordinate of all the tensor that being |
| 327 | /// iterated). |
| 328 | std::pair<Operation *, Value> |
| 329 | emitWhileLoopOverTensorsAtLvls(OpBuilder &builder, Location loc, |
| 330 | ArrayRef<SparseIterator *> iters, |
| 331 | MutableArrayRef<Value> reduc, bool needsUniv); |
| 332 | |
| 333 | /// Exits a for loop, returns the reduction results, e.g., |
| 334 | /// For sequential for loops: |
| 335 | /// %ret = for () { |
| 336 | /// ... |
| 337 | /// %val = addi %args, %c |
| 338 | /// yield %val |
| 339 | /// } |
| 340 | /// For parallel loops, the following generated code by users: |
| 341 | /// %ret = parallel () init(%args) { |
| 342 | /// ... |
| 343 | /// %val = op %args, %c |
| 344 | /// } |
| 345 | /// will be transformed into |
| 346 | /// %ret = parallel () init(%args) { |
| 347 | /// ... |
| 348 | /// scf.reduce(%c) bb0(%0, %1){ |
| 349 | /// %val = op %0, %1 |
| 350 | /// scf.reduce.return %val |
| 351 | /// } |
| 352 | /// } |
| 353 | /// NOTE: only one instruction will be moved into reduce block, |
| 354 | /// transformation will fail if multiple instructions are used to compute |
| 355 | /// the reduction value. Return %ret to user, while %val is provided by |
| 356 | /// users (`reduc`). |
| 357 | void exitForLoop(RewriterBase &rewriter, Location loc, |
| 358 | MutableArrayRef<Value> reduc); |
| 359 | |
| 360 | /// Exits a while loop, returns the reduction results. |
| 361 | void exitWhileLoop(OpBuilder &builder, Location loc, |
| 362 | MutableArrayRef<Value> reduc); |
| 363 | |
| 364 | // |
| 365 | // Slice-driven loop related methods. |
| 366 | // |
| 367 | |
| 368 | void initSubSectIterator(OpBuilder &builder, Location loc); |
| 369 | |
| 370 | /// Get the reduced number of contraints on tensor[tid][lvl]. |
| 371 | unsigned redDepOnLevel(TensorId tid, Level lvl) const { |
| 372 | return levelReducedDep[tid][lvl]; |
| 373 | }; |
| 374 | |
| 375 | SparseIterator &getCurIterator(TensorId tid, Level lvl) const { |
| 376 | if (dependentLvlMap[tid][lvl].empty()) |
| 377 | return *iters[tid][lvl].back(); |
| 378 | |
| 379 | assert(redDepOnLevel(tid, lvl) >= 1); |
| 380 | return *iters[tid][lvl][redDepOnLevel(tid, lvl) - 1]; |
| 381 | } |
| 382 | |
| 383 | std::unique_ptr<SparseIterator> |
| 384 | makeLevelIterator(OpBuilder &builder, Location loc, TensorId tid, Level l); |
| 385 | |
| 386 | /// A optional string attribute that should be attached to the loop |
| 387 | /// generated by loop emitter, it might help following passes to identify |
| 388 | /// loops that operates on sparse tensors more easily. |
| 389 | StringAttr loopTag; |
| 390 | /// Whether the loop emitter needs to treat the last tensor as the output |
| 391 | /// tensor. |
| 392 | bool hasOutput; |
| 393 | bool isSparseOut; |
| 394 | SparseEmitStrategy emitStrategy; |
| 395 | |
| 396 | // |
| 397 | // Fields which have `numTensor` many entries. |
| 398 | // |
| 399 | |
| 400 | /// Input and (optional) output tensors. |
| 401 | std::vector<Value> tensors; |
| 402 | std::vector<Value> loopHighs; |
| 403 | std::vector<std::vector<std::unique_ptr<SparseTensorLevel>>> lvls; |
| 404 | std::vector<std::vector<std::vector<std::unique_ptr<SparseIterator>>>> iters; |
| 405 | std::vector<Value> valBuffer; // to_value |
| 406 | |
| 407 | // Map from [tid, level] to a list of dependent [tidlevel, coefficient]. |
| 408 | // See comments for `DependentLvlGetter`. |
| 409 | std::vector<std::vector<std::vector<std::pair<LoopId, unsigned>>>> |
| 410 | dependentLvlMap; |
| 411 | |
| 412 | // The (size, stride) for each conceptual slice used for index reduction |
| 413 | // loops. |
| 414 | std::vector<std::vector<std::vector<std::pair<Value, unsigned>>>> sliceMeta; |
| 415 | |
| 416 | // The number of reduced dependencies on a tensor level so far. |
| 417 | std::vector<std::vector<unsigned>> levelReducedDep; |
| 418 | |
| 419 | // |
| 420 | // Fields which have at most `numLoops` many entries. |
| 421 | // |
| 422 | |
| 423 | /// Loop Stack, stores the information of all the nested loops that are |
| 424 | /// alive. |
| 425 | std::vector<LoopInfo> loopStack; |
| 426 | |
| 427 | // Loop Sequence Stack, stores the universal index for the current loop |
| 428 | // sequence. and a list of tid level that the loop sequence traverse. |
| 429 | std::vector<std::pair<Value, std::vector<TensorLevel>>> loopSeqStack; |
| 430 | |
| 431 | // |
| 432 | // EXPERIMENTAL: |
| 433 | // Fields for generating sparse-iterator-based loop. |
| 434 | // |
| 435 | |
| 436 | std::vector<std::vector<Value>> spIterVals; |
| 437 | }; |
| 438 | |
| 439 | // |
| 440 | // Utils functions to generate sparse loops. |
| 441 | // |
| 442 | |
| 443 | // Generate a while loop that co-iterates over a set of iterators. |
| 444 | std::pair<Operation *, Value> genCoIteration(OpBuilder &builder, Location loc, |
| 445 | ArrayRef<SparseIterator *> iters, |
| 446 | MutableArrayRef<Value> reduc, |
| 447 | Value uniIdx, |
| 448 | bool userReducFirst = false); |
| 449 | |
| 450 | } // namespace sparse_tensor |
| 451 | } // namespace mlir |
| 452 | |
| 453 | #endif // MLIR_DIALECT_SPARSETENSOR_TRANSFORMS_UTILS_LOOPEMITTER_H_ |
| 454 | |