| 1 | //===- VectorTransforms.cpp - Conversion within the Vector dialect --------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements target-independent rewrites as 1->N patterns. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "mlir/Dialect/Vector/Transforms/VectorTransforms.h" |
| 14 | |
| 15 | #include <cassert> |
| 16 | #include <cstdint> |
| 17 | #include <functional> |
| 18 | #include <optional> |
| 19 | |
| 20 | #include "mlir/Dialect/Arith/IR/Arith.h" |
| 21 | #include "mlir/Dialect/Arith/Utils/Utils.h" |
| 22 | #include "mlir/Dialect/MemRef/IR/MemRef.h" |
| 23 | #include "mlir/Dialect/SCF/IR/SCF.h" |
| 24 | #include "mlir/Dialect/Utils/IndexingUtils.h" |
| 25 | #include "mlir/Dialect/Utils/StructuredOpsUtils.h" |
| 26 | #include "mlir/Dialect/Vector/IR/VectorOps.h" |
| 27 | #include "mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h" |
| 28 | #include "mlir/Dialect/Vector/Utils/VectorUtils.h" |
| 29 | #include "mlir/IR/BuiltinTypes.h" |
| 30 | #include "mlir/IR/Location.h" |
| 31 | #include "mlir/IR/Matchers.h" |
| 32 | #include "mlir/IR/PatternMatch.h" |
| 33 | #include "mlir/IR/TypeUtilities.h" |
| 34 | |
| 35 | #include "llvm/ADT/STLExtras.h" |
| 36 | #include "llvm/Support/FormatVariadic.h" |
| 37 | |
| 38 | #define DEBUG_TYPE "vector-to-vector" |
| 39 | |
| 40 | using namespace mlir; |
| 41 | using namespace mlir::vector; |
| 42 | |
| 43 | template <typename IntType> |
| 44 | static SmallVector<IntType> (ArrayAttr arrayAttr) { |
| 45 | return llvm::to_vector<4>(llvm::map_range( |
| 46 | arrayAttr.getAsRange<IntegerAttr>(), |
| 47 | [](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); })); |
| 48 | } |
| 49 | |
| 50 | // Helper to find an index in an affine map. |
| 51 | static std::optional<int64_t> getResultIndex(AffineMap map, int64_t index) { |
| 52 | for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) { |
| 53 | int64_t idx = map.getDimPosition(idx: i); |
| 54 | if (idx == index) |
| 55 | return i; |
| 56 | } |
| 57 | return std::nullopt; |
| 58 | } |
| 59 | |
| 60 | namespace { |
| 61 | |
| 62 | /// Convert MulIOp/MulFOp + MultiDimReductionOp<add> into ContractionOp. |
| 63 | /// Ex: |
| 64 | /// ``` |
| 65 | /// %0 = arith.mulf %arg0, %arg1 : vector<8x32x16xf32> |
| 66 | /// %1 = vector.multi_reduction add, %0 [1] |
| 67 | /// : vector<8x32x16xf32> to vector<8x16xf32> |
| 68 | /// ``` |
| 69 | /// Gets converted to: |
| 70 | /// ``` |
| 71 | /// %1 = vector.contract {indexing_maps = [ |
| 72 | /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, |
| 73 | /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, |
| 74 | /// affine_map<(d0, d1, d2) -> (d0, d1)>], |
| 75 | /// iterator_types = ["parallel", "parallel", "reduction"], |
| 76 | /// kind = add} %0, %arg1, %cst_f0 |
| 77 | /// : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32> |
| 78 | /// ``` |
| 79 | struct MultiReduceToContract |
| 80 | : public OpRewritePattern<vector::MultiDimReductionOp> { |
| 81 | using OpRewritePattern::OpRewritePattern; |
| 82 | |
| 83 | LogicalResult matchAndRewrite(vector::MultiDimReductionOp reduceOp, |
| 84 | PatternRewriter &rewriter) const override { |
| 85 | if (reduceOp.getKind() != vector::CombiningKind::ADD) |
| 86 | return failure(); |
| 87 | Operation *mulOp = reduceOp.getSource().getDefiningOp(); |
| 88 | if (!mulOp || !isa<arith::MulIOp, arith::MulFOp>(mulOp)) |
| 89 | return failure(); |
| 90 | SmallVector<bool> reductionMask = reduceOp.getReductionMask(); |
| 91 | auto srcMap = rewriter.getMultiDimIdentityMap(rank: reductionMask.size()); |
| 92 | SmallVector<AffineExpr> exprs; |
| 93 | SmallVector<vector::IteratorType> iteratorTypes; |
| 94 | for (const auto &isReduceDim : llvm::enumerate(reductionMask)) { |
| 95 | if (!isReduceDim.value()) { |
| 96 | iteratorTypes.push_back(vector::IteratorType::parallel); |
| 97 | exprs.push_back(rewriter.getAffineDimExpr(isReduceDim.index())); |
| 98 | } else { |
| 99 | iteratorTypes.push_back(vector::IteratorType::reduction); |
| 100 | } |
| 101 | } |
| 102 | auto dstMap = |
| 103 | AffineMap::get(/*dimCount=*/reductionMask.size(), |
| 104 | /*symbolCount=*/0, exprs, reduceOp.getContext()); |
| 105 | rewriter.replaceOpWithNewOp<mlir::vector::ContractionOp>( |
| 106 | reduceOp, mulOp->getOperand(idx: 0), mulOp->getOperand(idx: 1), reduceOp.getAcc(), |
| 107 | rewriter.getAffineMapArrayAttr(values: {srcMap, srcMap, dstMap}), |
| 108 | rewriter.getArrayAttr(value: llvm::to_vector(llvm::map_range( |
| 109 | iteratorTypes, [&](IteratorType t) -> mlir::Attribute { |
| 110 | return IteratorTypeAttr::get(rewriter.getContext(), t); |
| 111 | })))); |
| 112 | return success(); |
| 113 | } |
| 114 | }; |
| 115 | |
| 116 | /// Merge LHS/RHS (A/B) TransposeOp into ContractionOp user. |
| 117 | /// Ex: |
| 118 | /// ``` |
| 119 | /// %0 = vector.transpose %arg0, [2, 0, 1] |
| 120 | /// : vector<32x16x8xf32> to vector<8x32x16xf32> |
| 121 | /// %1 = vector.contract {indexing_maps = [ |
| 122 | /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, |
| 123 | /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, |
| 124 | /// affine_map<(d0, d1, d2) -> (d0, d1)>], |
| 125 | /// iterator_types = ["parallel", "parallel", "reduction"], |
| 126 | /// kind = add} %0, %arg1, %cst_f0 |
| 127 | /// : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32> |
| 128 | /// ``` |
| 129 | /// Gets converted to: |
| 130 | /// ``` |
| 131 | /// %1 = vector.contract {indexing_maps = [ |
| 132 | /// affine_map<(d0, d1, d2) -> (d1, d2, d0)>, |
| 133 | /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, |
| 134 | /// affine_map<(d0, d1, d2) -> (d0, d1)>], |
| 135 | /// iterator_types = ["parallel", "parallel", "reduction"], |
| 136 | /// kind = add} %arg0, %arg1, %cst_f0 |
| 137 | /// : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32> |
| 138 | /// ``` |
| 139 | struct CombineContractABTranspose final |
| 140 | : public OpRewritePattern<vector::ContractionOp> { |
| 141 | using OpRewritePattern::OpRewritePattern; |
| 142 | |
| 143 | LogicalResult matchAndRewrite(vector::ContractionOp contractOp, |
| 144 | PatternRewriter &rewriter) const override { |
| 145 | SmallVector<AffineMap> maps = |
| 146 | llvm::to_vector<4>(contractOp.getIndexingMapsArray()); |
| 147 | Value lhs = contractOp.getLhs(); |
| 148 | Value rhs = contractOp.getRhs(); |
| 149 | size_t index = 0; |
| 150 | bool changed = false; |
| 151 | for (Value *operand : {&lhs, &rhs}) { |
| 152 | AffineMap &map = maps[index++]; |
| 153 | auto transposeOp = operand->getDefiningOp<vector::TransposeOp>(); |
| 154 | if (!transposeOp) |
| 155 | continue; |
| 156 | AffineMap permutationMap = AffineMap::getPermutationMap( |
| 157 | transposeOp.getPermutation(), contractOp.getContext()); |
| 158 | map = inversePermutation(permutationMap).compose(map); |
| 159 | *operand = transposeOp.getVector(); |
| 160 | changed = true; |
| 161 | } |
| 162 | if (!changed) |
| 163 | return failure(); |
| 164 | rewriter.replaceOpWithNewOp<vector::ContractionOp>( |
| 165 | contractOp, lhs, rhs, contractOp.getAcc(), |
| 166 | rewriter.getAffineMapArrayAttr(maps), contractOp.getIteratorTypes()); |
| 167 | return success(); |
| 168 | } |
| 169 | }; |
| 170 | |
| 171 | /// Merges accumulator and result transposes into contract. |
| 172 | /// |
| 173 | /// For example: |
| 174 | /// ```mlir |
| 175 | /// %accT = vector.transpose %acc, [0, 2, 1] |
| 176 | /// : vector<2x8x4xf32> to vector<2x4x8xf32> |
| 177 | /// %contract = vector.contract { |
| 178 | /// indexing_maps = [ |
| 179 | /// affine_map<(d0, d1, d2, d3) -> (d0, d3, d1)>, |
| 180 | /// affine_map<(d0, d1, d2, d3) -> (d3, d2)>, |
| 181 | /// affine_map<(d0, d1, d2, d3) -> (d0, d1, d2)> |
| 182 | /// ], |
| 183 | /// iterator_types = ["parallel", "parallel", "parallel", "reduction"], |
| 184 | /// kind = #vector.kind<add> |
| 185 | /// } %lhs, %rhs, %accT |
| 186 | /// : vector<2x4x4xf32>, vector<4x8xf32> into vector<2x4x8xf32> |
| 187 | /// %0 = vector.transpose %contract, [0, 2, 1] |
| 188 | /// : vector<2x4x8xf32> to vector<2x8x4> |
| 189 | /// ``` |
| 190 | /// Becomes: |
| 191 | /// ```mlir |
| 192 | /// %0 = vector.contract { |
| 193 | /// indexing_maps = [ |
| 194 | /// affine_map<(d0, d1, d2, d3) -> (d0, d3, d1)>, |
| 195 | /// affine_map<(d0, d1, d2, d3) -> (d3, d2)>, |
| 196 | /// affine_map<(d0, d1, d2, d3) -> (d0, d2, d1)> |
| 197 | /// ], |
| 198 | /// iterator_types = ["parallel", "parallel", "parallel", "reduction"], |
| 199 | /// kind = #vector.kind<add> |
| 200 | /// } %lhs, %rhs, %acc |
| 201 | /// : vector<2x4x4xf32>, vector<4x8xf32> into vector<2x8x4xf32> |
| 202 | /// ``` |
| 203 | struct CombineContractResultTranspose final |
| 204 | : public OpRewritePattern<vector::TransposeOp> { |
| 205 | using OpRewritePattern::OpRewritePattern; |
| 206 | |
| 207 | LogicalResult matchAndRewrite(vector::TransposeOp resTOp, |
| 208 | PatternRewriter &rewriter) const override { |
| 209 | auto contractOp = resTOp.getVector().getDefiningOp<vector::ContractionOp>(); |
| 210 | if (!contractOp || !contractOp->hasOneUse()) |
| 211 | return failure(); |
| 212 | |
| 213 | auto accTOp = contractOp.getAcc().getDefiningOp<vector::TransposeOp>(); |
| 214 | if (!accTOp) |
| 215 | return failure(); |
| 216 | |
| 217 | MLIRContext *context = contractOp.getContext(); |
| 218 | auto maps = llvm::to_vector<3>(contractOp.getIndexingMapsArray()); |
| 219 | AffineMap contractMap = maps.back(); |
| 220 | |
| 221 | // Accumulator transpose performs f(A) -> B. Contract performs g(C) -> B. |
| 222 | // To index into A in contract, we need revert(f)(g(C)) -> A. |
| 223 | auto accTMap = |
| 224 | AffineMap::getPermutationMap(accTOp.getPermutation(), context); |
| 225 | |
| 226 | // Contract performs g(C) -> D. Result transpose performs h(D) -> E. |
| 227 | // To index into E in contract, we need h(g(C)) -> E. |
| 228 | auto resTMap = |
| 229 | AffineMap::getPermutationMap(resTOp.getPermutation(), context); |
| 230 | auto combinedResMap = resTMap.compose(contractMap); |
| 231 | |
| 232 | // The accumulator and result share the same indexing map. So they should be |
| 233 | // the same to be able to merge. This means combinedResMap is the same as |
| 234 | // inversePermutation(accTMap).compose(contractMap), which means |
| 235 | if (inversePermutation(accTMap) != resTMap) |
| 236 | return failure(); |
| 237 | maps.back() = combinedResMap; |
| 238 | |
| 239 | rewriter.replaceOpWithNewOp<vector::ContractionOp>( |
| 240 | resTOp, contractOp.getLhs(), contractOp.getRhs(), accTOp.getVector(), |
| 241 | rewriter.getAffineMapArrayAttr(values: maps), contractOp.getIteratorTypes()); |
| 242 | return success(); |
| 243 | } |
| 244 | }; |
| 245 | |
| 246 | /// Merge BroadcastOp into ContractionOp user. |
| 247 | /// Ex: |
| 248 | /// ``` |
| 249 | /// %0 = vector.broadcast %arg0 : vector<32x16xf32> to vector<8x32x16xf32> |
| 250 | /// %1 = vector.contract {indexing_maps = [ |
| 251 | /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, |
| 252 | /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, |
| 253 | /// affine_map<(d0, d1, d2) -> (d0, d1)>], |
| 254 | /// iterator_types = ["parallel", "parallel", "reduction"], |
| 255 | /// kind = add} %0, %arg1, %cst_f0 |
| 256 | /// : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32> |
| 257 | /// ``` |
| 258 | /// Gets converted to: |
| 259 | /// ``` |
| 260 | /// %1 = vector.contract {indexing_maps = [ |
| 261 | /// affine_map<(d0, d1, d2) -> (d1, d2)>, |
| 262 | /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, |
| 263 | /// affine_map<(d0, d1, d2) -> (d0, d1)>], |
| 264 | /// iterator_types = ["parallel", "parallel", "reduction"], |
| 265 | /// kind = add} %arg0, %arg1, %cst_f0 |
| 266 | /// : vector<32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32> |
| 267 | /// ``` |
| 268 | /// |
| 269 | /// For masked vector.contract, the mask requires updating when a dimension is |
| 270 | /// dropped. In such cases, the dropped dimensions must correspond to the mask's |
| 271 | /// leading unit dimensions. Supporting more generic cases (e.g. non-unit dims) |
| 272 | /// is not supported. |
| 273 | FailureOr<Value> combineContractAndBroadcast(vector::ContractionOp contractOp, |
| 274 | MaskingOpInterface maskingOp, |
| 275 | PatternRewriter &rewriter) { |
| 276 | SmallVector<AffineMap> maps = |
| 277 | llvm::to_vector<4>(contractOp.getIndexingMapsArray()); |
| 278 | Value lhs = contractOp.getLhs(); |
| 279 | Value rhs = contractOp.getRhs(); |
| 280 | size_t index = 0; |
| 281 | bool changed = false; |
| 282 | for (Value *operand : {&lhs, &rhs}) { |
| 283 | AffineMap &map = maps[index++]; |
| 284 | auto broadcast = operand->getDefiningOp<vector::BroadcastOp>(); |
| 285 | if (!broadcast) |
| 286 | continue; |
| 287 | // contractionOp can only take vector as operands. |
| 288 | auto srcType = dyn_cast<VectorType>(broadcast.getSourceType()); |
| 289 | if (!srcType || |
| 290 | srcType.getRank() == broadcast.getResultVectorType().getRank()) |
| 291 | continue; |
| 292 | int64_t rankDiff = |
| 293 | broadcast.getResultVectorType().getRank() - srcType.getRank(); |
| 294 | bool innerDimBroadcast = false; |
| 295 | SmallVector<AffineExpr> originalDims; |
| 296 | for (const auto &dim : llvm::enumerate(srcType.getShape())) { |
| 297 | if (dim.value() != |
| 298 | broadcast.getResultVectorType().getDimSize(rankDiff + dim.index())) { |
| 299 | innerDimBroadcast = true; |
| 300 | break; |
| 301 | } |
| 302 | originalDims.push_back(rewriter.getAffineDimExpr(dim.index() + rankDiff)); |
| 303 | } |
| 304 | // Contract doesn't support inner dimension broadcast. Once this is |
| 305 | // relaxed we can remove this case. |
| 306 | if (innerDimBroadcast) |
| 307 | continue; |
| 308 | |
| 309 | // It would be incorrect to fold a broadcast onto a reduction dimension |
| 310 | // of non-unit size. |
| 311 | bool nonUnitDimReductionBroadcast = false; |
| 312 | for (int64_t i = 0; i < rankDiff; ++i) { |
| 313 | if (broadcast.getResultVectorType().getDimSize(i) != 1 && |
| 314 | isReductionIterator(contractOp.getIteratorTypes() |
| 315 | .getValue()[map.getDimPosition(i)])) { |
| 316 | nonUnitDimReductionBroadcast = true; |
| 317 | break; |
| 318 | } |
| 319 | } |
| 320 | if (nonUnitDimReductionBroadcast) |
| 321 | continue; |
| 322 | |
| 323 | AffineMap broadcastMap = |
| 324 | AffineMap::get(broadcast.getResultVectorType().getRank(), 0, |
| 325 | originalDims, contractOp.getContext()); |
| 326 | map = broadcastMap.compose(map); |
| 327 | *operand = broadcast.getSource(); |
| 328 | changed = true; |
| 329 | } |
| 330 | |
| 331 | if (!changed) |
| 332 | return failure(); |
| 333 | |
| 334 | // Determine which dims are usused, now that the maps have been composed |
| 335 | // with the broadcast maps. |
| 336 | llvm::SmallBitVector unusedDimsBitVector = getUnusedDimsBitVector(maps); |
| 337 | // Compress unused dims. |
| 338 | for (auto &m : maps) |
| 339 | m = compressDims(m, unusedDimsBitVector); |
| 340 | // Compute the combined iterators. |
| 341 | SmallVector<Attribute> iterators; |
| 342 | for (unsigned i = 0, e = unusedDimsBitVector.size(); i < e; ++i) { |
| 343 | if (!unusedDimsBitVector.test(Idx: i)) |
| 344 | iterators.push_back(Elt: contractOp.getIteratorTypes().getValue()[i]); |
| 345 | } |
| 346 | |
| 347 | // Check whether any of the unused dims is non-unit, e.g.: |
| 348 | // * vector.broadcast %arg0 : vector<8x4xi32> to vector<2x8x4xi32> |
| 349 | // This is only required when collapsing a mask. If there is no mask, skip. |
| 350 | VectorType oldMaskType; |
| 351 | bool isAnyUnusedDimNonUnit = false; |
| 352 | if (maskingOp) { |
| 353 | oldMaskType = cast<VectorType>(maskingOp.getMask().getType()); |
| 354 | for (unsigned i = 0, e = unusedDimsBitVector.size(); i < e; ++i) { |
| 355 | if (unusedDimsBitVector.test(Idx: i) && oldMaskType.getShape()[i] != 1) { |
| 356 | isAnyUnusedDimNonUnit = true; |
| 357 | break; |
| 358 | } |
| 359 | } |
| 360 | } |
| 361 | |
| 362 | // Check that compressing unused dims isn't removing all reduction dimension |
| 363 | // pairs. For example, if the vector.contract had only one reduction |
| 364 | // iterator and that was a unit-dimension created by a broadcast, |
| 365 | // then we should bail here, otherwise we would create a contract without |
| 366 | // a reduction dimension pair. |
| 367 | bool hasReductionIteratorApplyingOnBothSides = false; |
| 368 | for (unsigned i = 0; i < iterators.size(); ++i) { |
| 369 | if (!isReductionIterator(attr: iterators[i])) |
| 370 | continue; |
| 371 | if (getResultIndex(map: maps[0], index: i) && getResultIndex(map: maps[1], index: i)) { |
| 372 | hasReductionIteratorApplyingOnBothSides = true; |
| 373 | break; |
| 374 | } |
| 375 | } |
| 376 | if (!hasReductionIteratorApplyingOnBothSides) |
| 377 | return failure(); |
| 378 | |
| 379 | // If the compressed maps have a dimension that is not used by either LHS or |
| 380 | // RHS then the ContractionOp verifier would fail. |
| 381 | if (getUnusedDimsBitVector(maps: {maps[0], maps[1]}).any()) |
| 382 | return failure(); |
| 383 | |
| 384 | Operation *newOp = rewriter.create<vector::ContractionOp>( |
| 385 | contractOp.getLoc(), lhs, rhs, contractOp.getAcc(), |
| 386 | rewriter.getAffineMapArrayAttr(maps), rewriter.getArrayAttr(iterators)); |
| 387 | |
| 388 | // Handle the mask. |
| 389 | if (maskingOp) { |
| 390 | if (isAnyUnusedDimNonUnit) |
| 391 | return rewriter.notifyMatchFailure(contractOp, |
| 392 | "Cannont drop non-unit mask dim." ); |
| 393 | assert(unusedDimsBitVector.size() == |
| 394 | static_cast<size_t>(oldMaskType.getRank()) && |
| 395 | "The mask rank is incorrect!" ); |
| 396 | |
| 397 | // If a dimension has been dropped, update the mask accordingly. Otherwise, |
| 398 | // keep it as is. |
| 399 | Value mask = maskingOp.getMask(); |
| 400 | if (unusedDimsBitVector.count() != 0) { |
| 401 | // At this point, two assumptions are made: |
| 402 | // * The unused dimensions are the leading mask dimensions |
| 403 | // (vector.contract does not support inner dim broadcasting). |
| 404 | // * The unused dimensions are all unit. |
| 405 | // These conditions are effectively verified in the blocks preceeding this |
| 406 | // one. |
| 407 | auto newShape = |
| 408 | oldMaskType.getShape().drop_front(unusedDimsBitVector.count()); |
| 409 | auto newShapeScalableDims = |
| 410 | oldMaskType.getScalableDims().drop_front(unusedDimsBitVector.count()); |
| 411 | VectorType maskOpType = |
| 412 | VectorType::get(newShape, rewriter.getI1Type(), newShapeScalableDims); |
| 413 | mask = rewriter |
| 414 | .create<vector::ShapeCastOp>(contractOp.getLoc(), maskOpType, |
| 415 | maskingOp.getMask()) |
| 416 | .getResult(); |
| 417 | } |
| 418 | |
| 419 | newOp = mlir::vector::maskOperation(builder&: rewriter, maskableOp: newOp, mask); |
| 420 | } |
| 421 | return newOp->getResult(idx: 0); |
| 422 | } |
| 423 | |
| 424 | struct CombineContractBroadcastMask |
| 425 | : public MaskableOpRewritePattern<vector::ContractionOp> { |
| 426 | using MaskableOpRewritePattern::MaskableOpRewritePattern; |
| 427 | FailureOr<Value> |
| 428 | |
| 429 | matchAndRewriteMaskableOp(vector::ContractionOp contractOp, |
| 430 | MaskingOpInterface maskingOp, |
| 431 | PatternRewriter &rewriter) const override { |
| 432 | return combineContractAndBroadcast(contractOp, maskingOp, rewriter); |
| 433 | } |
| 434 | }; |
| 435 | |
| 436 | /// Reorders cast(broadcast) to broadcast(cast). This makes broadcast ops and |
| 437 | /// contraction ops closer, which kicks in CombineContractBroadcast pattern when |
| 438 | /// casting ops are around these operations. |
| 439 | /// Ex: |
| 440 | /// ``` |
| 441 | /// %0 = vector.broadcast %arg0 : vector<32x16xi8> to vector<8x32x16xi8> |
| 442 | /// %1 = arith.extsi %0 : vector<8x32x16xi8> to vector<8x32x16xi32> |
| 443 | /// ``` |
| 444 | /// Gets converted to: |
| 445 | /// ``` |
| 446 | /// %0 = arith.extsi %0 : vector<32x16xi8> to vector<32x16xi32> |
| 447 | /// %1 = vector.broadcast %arg0 : vector<32x16xi32> to vector<8x32x16xi32> |
| 448 | /// ``` |
| 449 | struct ReorderCastOpsOnBroadcast |
| 450 | : public OpInterfaceRewritePattern<CastOpInterface> { |
| 451 | using OpInterfaceRewritePattern<CastOpInterface>::OpInterfaceRewritePattern; |
| 452 | |
| 453 | LogicalResult matchAndRewrite(CastOpInterface op, |
| 454 | PatternRewriter &rewriter) const override { |
| 455 | if (op->getNumOperands() != 1) |
| 456 | return failure(); |
| 457 | auto bcastOp = op->getOperand(0).getDefiningOp<vector::BroadcastOp>(); |
| 458 | if (!bcastOp) |
| 459 | return failure(); |
| 460 | |
| 461 | Type castResTy = getElementTypeOrSelf(op->getResult(0)); |
| 462 | if (auto vecTy = dyn_cast<VectorType>(bcastOp.getSourceType())) |
| 463 | castResTy = vecTy.clone(castResTy); |
| 464 | auto *castOp = |
| 465 | rewriter.create(op->getLoc(), op->getName().getIdentifier(), |
| 466 | bcastOp.getSource(), castResTy, op->getAttrs()); |
| 467 | rewriter.replaceOpWithNewOp<vector::BroadcastOp>( |
| 468 | op, op->getResult(0).getType(), castOp->getResult(0)); |
| 469 | return success(); |
| 470 | } |
| 471 | }; |
| 472 | |
| 473 | /// Reorders elementwise(transpose) to transpose(elementwise). This makes |
| 474 | /// transpose ops and contraction ops closer, which kicks in |
| 475 | /// CombineContractABTranspose pattern when elementwise ops are between these |
| 476 | /// operations. Ex: |
| 477 | /// ``` |
| 478 | /// %at = vector.transpose %a, [1, 0]: vector<4x2xf32> to vector<2x4xf32> |
| 479 | /// %bt = vector.transpose %b, [1, 0]: vector<4x2xf32> to vector<2x4xf32> |
| 480 | /// %r = arith.addf %at, %bt : vector<2x4xf32> |
| 481 | /// ``` |
| 482 | /// Gets converted to: |
| 483 | /// ``` |
| 484 | /// %0 = arith.addf %a, %b : vector<4x2xf32> |
| 485 | /// %r = vector.transpose %0, [1, 0] : vector<2x4xf32> |
| 486 | /// ``` |
| 487 | struct ReorderElementwiseOpsOnTranspose final |
| 488 | : public OpTraitRewritePattern<OpTrait::Elementwise> { |
| 489 | using OpTraitRewritePattern::OpTraitRewritePattern; |
| 490 | LogicalResult matchAndRewrite(Operation *op, |
| 491 | PatternRewriter &rewriter) const override { |
| 492 | if (op->getNumResults() != 1 || op->getNumRegions() != 0) |
| 493 | return failure(); |
| 494 | |
| 495 | // Make sure all operands are transpose/constant ops and collect their |
| 496 | // transposition maps. |
| 497 | SmallVector<ArrayRef<int64_t>> transposeMaps; |
| 498 | transposeMaps.reserve(N: op->getNumOperands()); |
| 499 | // Record the initial type before transposition. We'll use its shape later. |
| 500 | // Any type will do here as we will check all transpose maps are the same. |
| 501 | VectorType srcType; |
| 502 | for (Value operand : op->getOperands()) { |
| 503 | auto transposeOp = operand.getDefiningOp<vector::TransposeOp>(); |
| 504 | if (transposeOp) { |
| 505 | transposeMaps.push_back(Elt: transposeOp.getPermutation()); |
| 506 | srcType = transposeOp.getSourceVectorType(); |
| 507 | } else if (!matchPattern(value: operand, pattern: m_Constant())) { |
| 508 | return failure(); |
| 509 | } |
| 510 | } |
| 511 | if (transposeMaps.empty()) |
| 512 | return failure(); |
| 513 | // This is an elementwise op, so all transposed operands should have the |
| 514 | // same type. We need to additionally check that all transposes uses the |
| 515 | // same map. |
| 516 | if (!llvm::all_equal(Range&: transposeMaps)) |
| 517 | return rewriter.notifyMatchFailure(arg&: op, msg: "different transpose map" ); |
| 518 | |
| 519 | SmallVector<Value> srcValues; |
| 520 | srcValues.reserve(N: op->getNumOperands()); |
| 521 | |
| 522 | // If there are constant operands, we need to insert inverse transposes for |
| 523 | // them. Calculate the inverse order first. |
| 524 | auto order = transposeMaps.front(); |
| 525 | SmallVector<int64_t> invOrder(order.size()); |
| 526 | for (int i = 0, e = order.size(); i < e; ++i) |
| 527 | invOrder[order[i]] = i; |
| 528 | |
| 529 | for (Value operand : op->getOperands()) { |
| 530 | auto transposeOp = operand.getDefiningOp<vector::TransposeOp>(); |
| 531 | if (transposeOp) { |
| 532 | srcValues.push_back(Elt: transposeOp.getVector()); |
| 533 | } else { |
| 534 | // This is a constant. Create a reverse transpose op for it. |
| 535 | auto vectorType = |
| 536 | srcType.clone(cast<VectorType>(operand.getType()).getElementType()); |
| 537 | srcValues.push_back(rewriter.create<vector::TransposeOp>( |
| 538 | operand.getLoc(), vectorType, operand, invOrder)); |
| 539 | } |
| 540 | } |
| 541 | |
| 542 | auto vectorType = srcType.clone( |
| 543 | cast<VectorType>(op->getResultTypes()[0]).getElementType()); |
| 544 | Operation *elementwiseOp = |
| 545 | rewriter.create(op->getLoc(), op->getName().getIdentifier(), srcValues, |
| 546 | vectorType, op->getAttrs()); |
| 547 | rewriter.replaceOpWithNewOp<vector::TransposeOp>( |
| 548 | op, op->getResultTypes()[0], elementwiseOp->getResult(0), |
| 549 | transposeMaps.front()); |
| 550 | return success(); |
| 551 | } |
| 552 | }; |
| 553 | |
| 554 | // Returns the values in `arrayAttr` as an integer vector. |
| 555 | static SmallVector<int64_t> getIntValueVector(ArrayAttr arrayAttr) { |
| 556 | return llvm::to_vector<4>( |
| 557 | llvm::map_range(arrayAttr.getAsRange<IntegerAttr>(), |
| 558 | [](IntegerAttr attr) { return attr.getInt(); })); |
| 559 | } |
| 560 | |
| 561 | // Shuffles vector.bitcast op after vector.extract op. |
| 562 | // |
| 563 | // This transforms IR like: |
| 564 | // %0 = vector.bitcast %src : vector<4xf32> to vector<8xf16> |
| 565 | // %1 = vector.extract %0[3] : f16 from vector<8xf16> |
| 566 | // Into: |
| 567 | // %0 = vector.extract %src[1] : f32 from vector<4xf32> |
| 568 | // %1 = vector.bitcast %0: vector<1xf32> to vector<2xf16> |
| 569 | // %2 = vector.extract %1[1] : f16 from vector<2xf16> |
| 570 | struct |
| 571 | : public OpRewritePattern<vector::ExtractOp> { |
| 572 | using OpRewritePattern::OpRewritePattern; |
| 573 | |
| 574 | LogicalResult matchAndRewrite(vector::ExtractOp , |
| 575 | PatternRewriter &rewriter) const override { |
| 576 | // Only support extracting scalars for now. |
| 577 | if (extractOp.getSourceVectorType().getRank() != 1) |
| 578 | return failure(); |
| 579 | |
| 580 | auto castOp = extractOp.getVector().getDefiningOp<vector::BitCastOp>(); |
| 581 | if (!castOp) |
| 582 | return failure(); |
| 583 | |
| 584 | VectorType castSrcType = castOp.getSourceVectorType(); |
| 585 | VectorType castDstType = castOp.getResultVectorType(); |
| 586 | assert(castSrcType.getRank() == castDstType.getRank()); |
| 587 | |
| 588 | // Fail to match if we only have one element in the cast op source. |
| 589 | // This is to avoid infinite loop given that this pattern can generate |
| 590 | // such cases. |
| 591 | if (castSrcType.getNumElements() == 1) |
| 592 | return failure(); |
| 593 | |
| 594 | // Only support casting to a larger number of elements or now. |
| 595 | // E.g., vector<4xf32> -> vector<8xf16>. |
| 596 | if (castSrcType.getNumElements() > castDstType.getNumElements()) |
| 597 | return failure(); |
| 598 | |
| 599 | unsigned expandRatio = |
| 600 | castDstType.getNumElements() / castSrcType.getNumElements(); |
| 601 | |
| 602 | // Get the first element of the mixed position as integer. |
| 603 | auto mixedPos = extractOp.getMixedPosition(); |
| 604 | if (mixedPos.size() > 0 && !isa<Attribute>(mixedPos[0])) |
| 605 | return failure(); |
| 606 | uint64_t index = cast<IntegerAttr>(cast<Attribute>(mixedPos[0])).getInt(); |
| 607 | |
| 608 | // Get the single scalar (as a vector) in the source value that packs the |
| 609 | // desired scalar. E.g. extract vector<1xf32> from vector<4xf32> |
| 610 | Location loc = extractOp.getLoc(); |
| 611 | Value packedValue = rewriter.create<vector::ExtractOp>( |
| 612 | loc, castOp.getSource(), index / expandRatio); |
| 613 | Type packedVecType = VectorType::get(/*shape=*/{1}, packedValue.getType()); |
| 614 | Value zero = rewriter.create<arith::ConstantOp>( |
| 615 | loc, packedVecType, rewriter.getZeroAttr(packedVecType)); |
| 616 | packedValue = rewriter.create<vector::InsertOp>(loc, packedValue, zero, |
| 617 | /*position=*/0); |
| 618 | |
| 619 | // Cast it to a vector with the desired scalar's type. |
| 620 | // E.g. f32 -> vector<2xf16> |
| 621 | VectorType packedType = |
| 622 | VectorType::get({expandRatio}, castDstType.getElementType()); |
| 623 | Value castedValue = |
| 624 | rewriter.create<vector::BitCastOp>(loc, packedType, packedValue); |
| 625 | |
| 626 | // Finally extract the desired scalar. |
| 627 | rewriter.replaceOpWithNewOp<vector::ExtractOp>(extractOp, castedValue, |
| 628 | index % expandRatio); |
| 629 | return success(); |
| 630 | } |
| 631 | }; |
| 632 | |
| 633 | // Shuffles vector.bitcast op after vector.extract_strided_slice op. |
| 634 | // |
| 635 | // This transforms IR like: |
| 636 | // %cast = vector.bitcast %arg0: vector<4xf32> to vector<8xf16> |
| 637 | // %0 = vector.extract_strided_slice %cast { |
| 638 | // offsets = [4], sizes = [4], strides = [1] |
| 639 | // } : vector<8xf16> to vector<4xf16> |
| 640 | // Into: |
| 641 | // %0 = vector.extract_strided_slice %src { |
| 642 | // offsets = [2], sizes = [2], strides = [1] |
| 643 | // } : vector<4xf32> to vector<2xf32> |
| 644 | // %1 = vector.bitcast %0 : vector<2xf32> to vector<4xf16> |
| 645 | struct |
| 646 | : public OpRewritePattern<vector::ExtractStridedSliceOp> { |
| 647 | using OpRewritePattern::OpRewritePattern; |
| 648 | |
| 649 | LogicalResult matchAndRewrite(vector::ExtractStridedSliceOp , |
| 650 | PatternRewriter &rewriter) const override { |
| 651 | auto castOp = extractOp.getVector().getDefiningOp<vector::BitCastOp>(); |
| 652 | if (!castOp) |
| 653 | return failure(); |
| 654 | |
| 655 | VectorType castSrcType = castOp.getSourceVectorType(); |
| 656 | VectorType castDstType = castOp.getResultVectorType(); |
| 657 | assert(castSrcType.getRank() == castDstType.getRank()); |
| 658 | |
| 659 | int64_t castSrcLastDim = castSrcType.getShape().back(); |
| 660 | int64_t castDstLastDim = castDstType.getShape().back(); |
| 661 | // Require casting to more elements for now; other cases to be implemented. |
| 662 | if (castSrcLastDim > castDstLastDim) |
| 663 | return failure(); |
| 664 | |
| 665 | // Only accept all one strides for now. |
| 666 | if (llvm::any_of(extractOp.getStrides().getAsValueRange<IntegerAttr>(), |
| 667 | [](const APInt &val) { return !val.isOne(); })) |
| 668 | return failure(); |
| 669 | |
| 670 | unsigned rank = extractOp.getSourceVectorType().getRank(); |
| 671 | assert(castDstLastDim % castSrcLastDim == 0); |
| 672 | int64_t expandRatio = castDstLastDim / castSrcLastDim; |
| 673 | |
| 674 | // If we have a less number of offsets than the rank, then implicitly we |
| 675 | // are selecting the full range for the last bitcasted dimension; other |
| 676 | // dimensions aren't affected. Otherwise, we need to scale down the last |
| 677 | // dimension's offset given we are extracting from less elements now. |
| 678 | ArrayAttr newOffsets = extractOp.getOffsets(); |
| 679 | if (newOffsets.size() == rank) { |
| 680 | SmallVector<int64_t> offsets = getIntValueVector(newOffsets); |
| 681 | if (offsets.back() % expandRatio != 0) |
| 682 | return failure(); |
| 683 | offsets.back() = offsets.back() / expandRatio; |
| 684 | newOffsets = rewriter.getI64ArrayAttr(offsets); |
| 685 | } |
| 686 | |
| 687 | // Similarly for sizes. |
| 688 | ArrayAttr newSizes = extractOp.getSizes(); |
| 689 | if (newSizes.size() == rank) { |
| 690 | SmallVector<int64_t> sizes = getIntValueVector(newSizes); |
| 691 | if (sizes.back() % expandRatio != 0) |
| 692 | return failure(); |
| 693 | sizes.back() = sizes.back() / expandRatio; |
| 694 | newSizes = rewriter.getI64ArrayAttr(sizes); |
| 695 | } |
| 696 | |
| 697 | SmallVector<int64_t> dims = |
| 698 | llvm::to_vector<4>(cast<VectorType>(extractOp.getType()).getShape()); |
| 699 | dims.back() = dims.back() / expandRatio; |
| 700 | VectorType = |
| 701 | VectorType::get(dims, castSrcType.getElementType()); |
| 702 | |
| 703 | auto = rewriter.create<vector::ExtractStridedSliceOp>( |
| 704 | extractOp.getLoc(), newExtractType, castOp.getSource(), newOffsets, |
| 705 | newSizes, extractOp.getStrides()); |
| 706 | |
| 707 | rewriter.replaceOpWithNewOp<vector::BitCastOp>( |
| 708 | extractOp, extractOp.getType(), newExtractOp); |
| 709 | |
| 710 | return success(); |
| 711 | } |
| 712 | }; |
| 713 | |
| 714 | // Shuffles vector.bitcast op before vector.insert_strided_slice op. |
| 715 | // |
| 716 | // This transforms IR like: |
| 717 | // %0 = vector.insert %val, %dst[4] : vector<32xi4> into vector<8x32xi4> |
| 718 | // %1 = vector.bitcast %0 : vector<8x32xi4> to vector<8x16xi8> |
| 719 | // Into: |
| 720 | // %0 = vector.bitcast %val : vector<32xi4> to vector<16xi8> |
| 721 | // %1 = vector.bitcast %dst : vector<8x32xi4> to vector<8x16xi8> |
| 722 | // %2 = vector.insert %0, %1 [4] : vector<16xi8> into vector<8x16xi8> |
| 723 | // |
| 724 | struct BubbleUpBitCastForInsert : public OpRewritePattern<vector::BitCastOp> { |
| 725 | using OpRewritePattern::OpRewritePattern; |
| 726 | |
| 727 | LogicalResult matchAndRewrite(vector::BitCastOp bitcastOp, |
| 728 | PatternRewriter &rewriter) const override { |
| 729 | VectorType castSrcType = bitcastOp.getSourceVectorType(); |
| 730 | VectorType castDstType = bitcastOp.getResultVectorType(); |
| 731 | |
| 732 | // 0-D and scalable vectors are not supported yet. |
| 733 | if (castSrcType.getRank() == 0 || castSrcType.isScalable() || |
| 734 | castDstType.isScalable()) |
| 735 | return failure(); |
| 736 | |
| 737 | int64_t castSrcLastDim = castSrcType.getShape().back(); |
| 738 | int64_t castDstLastDim = castDstType.getShape().back(); |
| 739 | bool isNumElemsShrink = castSrcLastDim >= castDstLastDim; |
| 740 | int64_t ratio; |
| 741 | if (isNumElemsShrink) { |
| 742 | assert(castSrcLastDim % castDstLastDim == 0); |
| 743 | ratio = castSrcLastDim / castDstLastDim; |
| 744 | } else { |
| 745 | assert(castDstLastDim % castSrcLastDim == 0); |
| 746 | ratio = castDstLastDim / castSrcLastDim; |
| 747 | } |
| 748 | |
| 749 | auto insertOp = bitcastOp.getSource().getDefiningOp<vector::InsertOp>(); |
| 750 | if (!insertOp) |
| 751 | return failure(); |
| 752 | |
| 753 | // Only vector sources are supported for now. |
| 754 | auto insertSrcType = dyn_cast<VectorType>(insertOp.getValueToStoreType()); |
| 755 | if (!insertSrcType) |
| 756 | return failure(); |
| 757 | |
| 758 | // Bitcast the source. |
| 759 | SmallVector<int64_t> srcDims(insertSrcType.getShape()); |
| 760 | srcDims.back() = |
| 761 | isNumElemsShrink ? srcDims.back() / ratio : srcDims.back() * ratio; |
| 762 | VectorType newCastSrcType = |
| 763 | VectorType::get(srcDims, castDstType.getElementType()); |
| 764 | auto newCastSrcOp = rewriter.create<vector::BitCastOp>( |
| 765 | bitcastOp.getLoc(), newCastSrcType, insertOp.getValueToStore()); |
| 766 | |
| 767 | SmallVector<int64_t> dstDims(insertOp.getDestVectorType().getShape()); |
| 768 | dstDims.back() = |
| 769 | isNumElemsShrink ? dstDims.back() / ratio : dstDims.back() * ratio; |
| 770 | VectorType newCastDstType = |
| 771 | VectorType::get(dstDims, castDstType.getElementType()); |
| 772 | |
| 773 | // Bitcast the destination. |
| 774 | auto newCastDstOp = rewriter.create<vector::BitCastOp>( |
| 775 | bitcastOp.getLoc(), newCastDstType, insertOp.getDest()); |
| 776 | |
| 777 | // Generate new insert. |
| 778 | rewriter.replaceOpWithNewOp<vector::InsertOp>( |
| 779 | bitcastOp, newCastSrcOp, newCastDstOp, insertOp.getMixedPosition()); |
| 780 | return success(); |
| 781 | } |
| 782 | }; |
| 783 | |
| 784 | // Shuffles vector.bitcast op before vector.insert_strided_slice op. |
| 785 | // |
| 786 | // This transforms IR like: |
| 787 | // %0 = vector.insert_strided_slice %src, %dst { |
| 788 | // offsets = [0], strides = [1]} : vector<4xf16> into vector<8xf16> |
| 789 | // %1 = vector.bitcast %0: vector<8xf16> to vector<4xf32> |
| 790 | // Into: |
| 791 | // %0 = vector.bitcast %src : vector<4xf16> to vector<2xf32> |
| 792 | // %1 = vector.bitcast %dst : vector<8xf16> to vector<4xf32> |
| 793 | // %2 = vector.insert_strided_slice %src, %dst { |
| 794 | // offsets = [0], strides = [1]} : vector<2xf32> into vector<4xf32> |
| 795 | struct BubbleUpBitCastForStridedSliceInsert |
| 796 | : public OpRewritePattern<vector::BitCastOp> { |
| 797 | using OpRewritePattern::OpRewritePattern; |
| 798 | |
| 799 | LogicalResult matchAndRewrite(vector::BitCastOp bitcastOp, |
| 800 | PatternRewriter &rewriter) const override { |
| 801 | VectorType castSrcType = bitcastOp.getSourceVectorType(); |
| 802 | VectorType castDstType = bitcastOp.getResultVectorType(); |
| 803 | assert(castSrcType.getRank() == castDstType.getRank()); |
| 804 | // Skip 0-D vector which will not from InsertStridedSliceOp. |
| 805 | if (castSrcType.getRank() == 0) |
| 806 | return failure(); |
| 807 | |
| 808 | int64_t castSrcLastDim = castSrcType.getShape().back(); |
| 809 | int64_t castDstLastDim = castDstType.getShape().back(); |
| 810 | // Require casting to less elements for now; other cases to be implemented. |
| 811 | if (castSrcLastDim < castDstLastDim) |
| 812 | return failure(); |
| 813 | |
| 814 | assert(castSrcLastDim % castDstLastDim == 0); |
| 815 | int64_t shrinkRatio = castSrcLastDim / castDstLastDim; |
| 816 | |
| 817 | auto insertOp = |
| 818 | bitcastOp.getSource().getDefiningOp<vector::InsertStridedSliceOp>(); |
| 819 | if (!insertOp) |
| 820 | return failure(); |
| 821 | |
| 822 | // Only accept all one strides for now. |
| 823 | if (llvm::any_of(insertOp.getStrides().getAsValueRange<IntegerAttr>(), |
| 824 | [](const APInt &val) { return !val.isOne(); })) |
| 825 | return failure(); |
| 826 | |
| 827 | unsigned rank = insertOp.getSourceVectorType().getRank(); |
| 828 | // Require insert op to have the same rank for the source and destination |
| 829 | // vector; other cases to be implemented. |
| 830 | if (rank != insertOp.getDestVectorType().getRank()) |
| 831 | return failure(); |
| 832 | |
| 833 | // Requires that shape of insert op src is castable to dstType. |
| 834 | unsigned sourceWidth = castSrcType.getElementType().getIntOrFloatBitWidth(); |
| 835 | unsigned destinationWidth = |
| 836 | castDstType.getElementType().getIntOrFloatBitWidth(); |
| 837 | unsigned numElements = destinationWidth / sourceWidth; |
| 838 | if (insertOp.getSourceVectorType().getNumElements() % numElements != 0) |
| 839 | return failure(); |
| 840 | |
| 841 | ArrayAttr newOffsets = insertOp.getOffsets(); |
| 842 | assert(newOffsets.size() == rank); |
| 843 | SmallVector<int64_t> offsets = getIntValueVector(newOffsets); |
| 844 | if (offsets.back() % shrinkRatio != 0) |
| 845 | return failure(); |
| 846 | offsets.back() = offsets.back() / shrinkRatio; |
| 847 | newOffsets = rewriter.getI64ArrayAttr(offsets); |
| 848 | |
| 849 | SmallVector<int64_t> srcDims = |
| 850 | llvm::to_vector<4>(insertOp.getSourceVectorType().getShape()); |
| 851 | srcDims.back() = srcDims.back() / shrinkRatio; |
| 852 | VectorType newCastSrcType = |
| 853 | VectorType::get(srcDims, castDstType.getElementType()); |
| 854 | |
| 855 | auto newCastSrcOp = rewriter.create<vector::BitCastOp>( |
| 856 | bitcastOp.getLoc(), newCastSrcType, insertOp.getValueToStore()); |
| 857 | |
| 858 | SmallVector<int64_t> dstDims = |
| 859 | llvm::to_vector<4>(insertOp.getDestVectorType().getShape()); |
| 860 | dstDims.back() = dstDims.back() / shrinkRatio; |
| 861 | VectorType newCastDstType = |
| 862 | VectorType::get(dstDims, castDstType.getElementType()); |
| 863 | |
| 864 | auto newCastDstOp = rewriter.create<vector::BitCastOp>( |
| 865 | bitcastOp.getLoc(), newCastDstType, insertOp.getDest()); |
| 866 | |
| 867 | rewriter.replaceOpWithNewOp<vector::InsertStridedSliceOp>( |
| 868 | bitcastOp, bitcastOp.getType(), newCastSrcOp, newCastDstOp, newOffsets, |
| 869 | insertOp.getStrides()); |
| 870 | |
| 871 | return success(); |
| 872 | } |
| 873 | }; |
| 874 | |
| 875 | // Breaks down vector.bitcast op |
| 876 | // |
| 877 | // This transforms IR like: |
| 878 | // %1 = vector.bitcast %0: vector<8xf16> to vector<4xf32> |
| 879 | // Into: |
| 880 | // %cst = vector.splat %c0_f32 : vector<4xf32> |
| 881 | // %1 = vector.extract_strided_slice %0 { |
| 882 | // offsets = [0], sizes = [4], strides = [1] |
| 883 | // } : vector<8xf16> to vector<4xf16> |
| 884 | // %2 = vector.bitcast %1 : vector<4xf16> to vector<2xf32> |
| 885 | // %4 = vector.insert_strided_slice %2, %cst { |
| 886 | // offsets = [0], strides = [1]} : vector<2xf32> into vector<4xf32> |
| 887 | // %5 = vector.extract_strided_slice %0 { |
| 888 | // offsets = [4], sizes = [4], strides = [1] |
| 889 | // } : vector<8xf16> to vector<4xf16> |
| 890 | // %6 = vector.bitcast %5 : vector<4xf16> to vector<2xf32> |
| 891 | // %7 = vector.insert_strided_slice %6, %cst { |
| 892 | // offsets = [2], strides = [1]} : vector<2xf32> into vector<4xf32> |
| 893 | struct BreakDownVectorBitCast : public OpRewritePattern<vector::BitCastOp> { |
| 894 | using OpRewritePattern::OpRewritePattern; |
| 895 | |
| 896 | public: |
| 897 | BreakDownVectorBitCast(MLIRContext *context, |
| 898 | std::function<bool(vector::BitCastOp)> controlFn, |
| 899 | PatternBenefit benefit) |
| 900 | : OpRewritePattern(context, benefit), controlFn(std::move(controlFn)) {} |
| 901 | |
| 902 | LogicalResult matchAndRewrite(vector::BitCastOp bitcastOp, |
| 903 | PatternRewriter &rewriter) const override { |
| 904 | |
| 905 | if (controlFn && !controlFn(bitcastOp)) |
| 906 | return failure(); |
| 907 | |
| 908 | VectorType castSrcType = bitcastOp.getSourceVectorType(); |
| 909 | VectorType castDstType = bitcastOp.getResultVectorType(); |
| 910 | assert(castSrcType.getRank() == castDstType.getRank()); |
| 911 | |
| 912 | // This transformation builds on top of |
| 913 | // vector.{extract|insert}_strided_slice, which do not support |
| 914 | // extracting/inserting "scallable sub-vectors". Bail out. |
| 915 | if (castSrcType.isScalable()) |
| 916 | return rewriter.notifyMatchFailure(bitcastOp, |
| 917 | "Scalable vectors are not supported" ); |
| 918 | |
| 919 | // Only support rank 1 case for now. |
| 920 | if (castSrcType.getRank() != 1) |
| 921 | return failure(); |
| 922 | |
| 923 | int64_t castSrcLastDim = castSrcType.getShape().back(); |
| 924 | int64_t castDstLastDim = castDstType.getShape().back(); |
| 925 | // Require casting to less elements for now; other cases to be implemented. |
| 926 | if (castSrcLastDim < castDstLastDim) |
| 927 | return failure(); |
| 928 | |
| 929 | assert(castSrcLastDim % castDstLastDim == 0); |
| 930 | int64_t shrinkRatio = castSrcLastDim / castDstLastDim; |
| 931 | // Nothing to do if it is already bitcasting to a single element. |
| 932 | if (castSrcLastDim == shrinkRatio) |
| 933 | return failure(); |
| 934 | |
| 935 | Location loc = bitcastOp.getLoc(); |
| 936 | Type elemType = castDstType.getElementType(); |
| 937 | assert(elemType.isSignlessIntOrIndexOrFloat()); |
| 938 | |
| 939 | Value zero = rewriter.create<arith::ConstantOp>( |
| 940 | loc, elemType, rewriter.getZeroAttr(elemType)); |
| 941 | Value res = rewriter.create<SplatOp>(loc, castDstType, zero); |
| 942 | |
| 943 | SmallVector<int64_t> sliceShape = {castDstLastDim}; |
| 944 | SmallVector<int64_t> strides = {1}; |
| 945 | VectorType newCastDstType = |
| 946 | VectorType::get(SmallVector<int64_t>{castDstLastDim / shrinkRatio}, |
| 947 | castDstType.getElementType()); |
| 948 | |
| 949 | for (int i = 0, e = shrinkRatio; i < e; ++i) { |
| 950 | Value = rewriter.create<ExtractStridedSliceOp>( |
| 951 | loc, bitcastOp.getSource(), ArrayRef<int64_t>{i * castDstLastDim}, |
| 952 | sliceShape, strides); |
| 953 | Value bitcast = |
| 954 | rewriter.create<BitCastOp>(loc, newCastDstType, extracted); |
| 955 | res = rewriter.create<InsertStridedSliceOp>( |
| 956 | loc, bitcast, res, |
| 957 | ArrayRef<int64_t>{i * castDstLastDim / shrinkRatio}, strides); |
| 958 | } |
| 959 | rewriter.replaceOp(bitcastOp, res); |
| 960 | return success(); |
| 961 | } |
| 962 | |
| 963 | private: |
| 964 | std::function<bool(BitCastOp)> controlFn; |
| 965 | }; |
| 966 | |
| 967 | /// Reorders elementwise(broadcast/splat) to broadcast(elementwise). Ex: |
| 968 | /// |
| 969 | /// Example: |
| 970 | /// ``` |
| 971 | /// %a = vector.broadcast %arg1 : index to vector<1x4xindex> |
| 972 | /// %b = vector.broadcast %arg2 : index to vector<1x4xindex> |
| 973 | /// %r = arith.addi %a, %b : vector<1x4xindex> |
| 974 | /// ``` |
| 975 | /// Gets converted to: |
| 976 | /// ``` |
| 977 | /// %r = arith.addi %arg0, %arg1 : index |
| 978 | /// %b = vector.broadcast %r : index to vector<1x4xindex> |
| 979 | /// ``` |
| 980 | /// |
| 981 | /// Both `vector.broadcast` and `vector.splat` are supported as broadcasting |
| 982 | /// ops. |
| 983 | struct ReorderElementwiseOpsOnBroadcast final |
| 984 | : public OpTraitRewritePattern<OpTrait::Elementwise> { |
| 985 | using OpTraitRewritePattern::OpTraitRewritePattern; |
| 986 | LogicalResult matchAndRewrite(Operation *op, |
| 987 | PatternRewriter &rewriter) const override { |
| 988 | if (op->getNumResults() != 1) |
| 989 | return failure(); |
| 990 | if (!llvm::isa<ShapedType>(Val: op->getResults()[0].getType())) |
| 991 | return failure(); |
| 992 | if (!OpTrait::hasElementwiseMappableTraits(op)) |
| 993 | return rewriter.notifyMatchFailure( |
| 994 | arg&: op, msg: "Op doesn't have ElementwiseMappableTraits" ); |
| 995 | if (op->getNumOperands() == 0) |
| 996 | return failure(); |
| 997 | if (op->getResults()[0].getType() != op->getOperand(idx: 0).getType()) |
| 998 | return rewriter.notifyMatchFailure(arg&: op, |
| 999 | msg: "result and operand type mismatch" ); |
| 1000 | if (isa<vector::FMAOp>(op)) { |
| 1001 | return rewriter.notifyMatchFailure( |
| 1002 | arg&: op, |
| 1003 | msg: "Op only accepts vector types - not supported as broadcast source " |
| 1004 | "might be a scalar" ); |
| 1005 | } |
| 1006 | |
| 1007 | // Get the type of the lhs operand |
| 1008 | auto *lhsBcastOrSplat = op->getOperand(idx: 0).getDefiningOp(); |
| 1009 | if (!lhsBcastOrSplat || |
| 1010 | !isa<vector::BroadcastOp, vector::SplatOp>(*lhsBcastOrSplat)) |
| 1011 | return failure(); |
| 1012 | auto lhsBcastOrSplatType = lhsBcastOrSplat->getOperand(idx: 0).getType(); |
| 1013 | |
| 1014 | // Make sure that all operands are broadcast from identical types: |
| 1015 | // * scalar (`vector.broadcast` + `vector.splat`), or |
| 1016 | // * vector (`vector.broadcast`). |
| 1017 | // Otherwise the re-ordering wouldn't be safe. |
| 1018 | if (!llvm::all_of(Range: op->getOperands(), P: [&lhsBcastOrSplatType](Value val) { |
| 1019 | auto bcast = val.getDefiningOp<vector::BroadcastOp>(); |
| 1020 | if (bcast) |
| 1021 | return (bcast.getOperand().getType() == lhsBcastOrSplatType); |
| 1022 | auto splat = val.getDefiningOp<vector::SplatOp>(); |
| 1023 | if (splat) |
| 1024 | return (splat.getOperand().getType() == lhsBcastOrSplatType); |
| 1025 | return false; |
| 1026 | })) { |
| 1027 | return failure(); |
| 1028 | } |
| 1029 | |
| 1030 | // Collect the source values before broadcasting |
| 1031 | SmallVector<Value> srcValues; |
| 1032 | srcValues.reserve(N: op->getNumOperands()); |
| 1033 | for (Value operand : op->getOperands()) { |
| 1034 | srcValues.push_back(Elt: operand.getDefiningOp()->getOperand(idx: 0)); |
| 1035 | } |
| 1036 | |
| 1037 | // Create the "elementwise" Op |
| 1038 | Operation *elementwiseOp = |
| 1039 | rewriter.create(op->getLoc(), op->getName().getIdentifier(), srcValues, |
| 1040 | lhsBcastOrSplatType, op->getAttrs()); |
| 1041 | |
| 1042 | // Replace the original Op with the elementwise Op |
| 1043 | auto vectorType = op->getResultTypes()[0]; |
| 1044 | rewriter.replaceOpWithNewOp<vector::BroadcastOp>( |
| 1045 | op, vectorType, elementwiseOp->getResults()); |
| 1046 | |
| 1047 | return success(); |
| 1048 | } |
| 1049 | }; |
| 1050 | |
| 1051 | /// Pattern to rewrite a ExtractOp(Elementwise) -> Elementwise(ExtractOp). |
| 1052 | /// This may result in cleaner code when extracting a single value |
| 1053 | /// from multi-element vector and also to help canonicalize 1-element vectors to |
| 1054 | /// scalars. |
| 1055 | /// |
| 1056 | /// Example: |
| 1057 | /// ``` |
| 1058 | /// %0 = arith.addf %arg0, %arg1 : vector<4xf32> |
| 1059 | /// %1 = vector.extract %0[1] : f32 from vector<4xf32> |
| 1060 | /// ``` |
| 1061 | /// Gets converted to: |
| 1062 | /// ``` |
| 1063 | /// %0 = vector.extract %arg0[1] : f32 from vector<4xf32> |
| 1064 | /// %1 = vector.extract %arg1[1] : f32 from vector<4xf32> |
| 1065 | /// %2 = arith.addf %0, %1 : f32 |
| 1066 | /// ``` |
| 1067 | class final |
| 1068 | : public OpRewritePattern<vector::ExtractOp> { |
| 1069 | public: |
| 1070 | using OpRewritePattern::OpRewritePattern; |
| 1071 | |
| 1072 | LogicalResult matchAndRewrite(vector::ExtractOp op, |
| 1073 | PatternRewriter &rewriter) const override { |
| 1074 | Operation *eltwise = op.getVector().getDefiningOp(); |
| 1075 | |
| 1076 | // TODO: vector::FMAOp is not an ElemetwiseMappable even if it claims to be, |
| 1077 | // as it doesn't support scalars. |
| 1078 | if (!eltwise || !OpTrait::hasElementwiseMappableTraits(eltwise) || |
| 1079 | isa<vector::FMAOp>(eltwise)) |
| 1080 | return rewriter.notifyMatchFailure(op, "not an elementwise op" ); |
| 1081 | |
| 1082 | if (eltwise->getNumResults() != 1) |
| 1083 | return rewriter.notifyMatchFailure(op, "expected single result" ); |
| 1084 | |
| 1085 | if (!eltwise->hasOneUse()) |
| 1086 | return rewriter.notifyMatchFailure(op, "expected single op use" ); |
| 1087 | |
| 1088 | if (!llvm::all_equal(Range: eltwise->getOperandTypes())) |
| 1089 | return rewriter.notifyMatchFailure(op, "operand types are different" ); |
| 1090 | |
| 1091 | Type dstType = op.getType(); |
| 1092 | |
| 1093 | OpBuilder::InsertionGuard g(rewriter); |
| 1094 | rewriter.setInsertionPoint(eltwise); |
| 1095 | |
| 1096 | IRMapping mapping; |
| 1097 | Location loc = eltwise->getLoc(); |
| 1098 | SmallVector<OpFoldResult> pos = op.getMixedPosition(); |
| 1099 | for (Value arg : eltwise->getOperands()) { |
| 1100 | Value newArg = rewriter.create<vector::ExtractOp>(loc, arg, pos); |
| 1101 | mapping.map(arg, newArg); |
| 1102 | } |
| 1103 | |
| 1104 | Operation *newEltwise = rewriter.clone(op&: *eltwise, mapper&: mapping); |
| 1105 | newEltwise->getResult(idx: 0).setType(dstType); |
| 1106 | |
| 1107 | rewriter.replaceOp(op, newEltwise); |
| 1108 | rewriter.eraseOp(op: eltwise); |
| 1109 | return success(); |
| 1110 | } |
| 1111 | }; |
| 1112 | |
| 1113 | /// Check if the element type is suitable for vector.load/store sinking. |
| 1114 | /// Element type must be index or byte-aligned integer or floating-point type. |
| 1115 | static bool isSupportedMemSinkElementType(Type type) { |
| 1116 | if (isa<IndexType>(Val: type)) |
| 1117 | return true; |
| 1118 | |
| 1119 | return type.isIntOrFloat() && type.getIntOrFloatBitWidth() % 8 == 0; |
| 1120 | } |
| 1121 | |
| 1122 | /// Pattern to rewrite `vector.extract(vector.load) -> vector/memref.load. |
| 1123 | /// Only index and byte-aligned integer and floating-point element types are |
| 1124 | /// supported for now. |
| 1125 | /// |
| 1126 | /// Example: |
| 1127 | /// ``` |
| 1128 | /// vector.load %arg0[%arg1] : memref<?xf32>, vector<4xf32> |
| 1129 | /// vector.extract %0[1] : f32 from vector<4xf32> |
| 1130 | /// ``` |
| 1131 | /// Gets converted to: |
| 1132 | /// ``` |
| 1133 | /// %c1 = arith.constant 1 : index |
| 1134 | /// %0 = arith.addi %arg1, %c1 overflow<nsw> : index |
| 1135 | /// %1 = memref.load %arg0[%0] : memref<?xf32> |
| 1136 | /// ``` |
| 1137 | class final : public OpRewritePattern<vector::ExtractOp> { |
| 1138 | public: |
| 1139 | using OpRewritePattern::OpRewritePattern; |
| 1140 | |
| 1141 | LogicalResult matchAndRewrite(vector::ExtractOp op, |
| 1142 | PatternRewriter &rewriter) const override { |
| 1143 | auto loadOp = op.getVector().getDefiningOp<vector::LoadOp>(); |
| 1144 | if (!loadOp) |
| 1145 | return rewriter.notifyMatchFailure(op, "expected a load op" ); |
| 1146 | |
| 1147 | // Checking for single use so we won't duplicate load ops. |
| 1148 | if (!loadOp->hasOneUse()) |
| 1149 | return rewriter.notifyMatchFailure(op, "expected single op use" ); |
| 1150 | |
| 1151 | VectorType loadVecType = loadOp.getVectorType(); |
| 1152 | if (loadVecType.isScalable()) |
| 1153 | return rewriter.notifyMatchFailure(op, |
| 1154 | "scalable vectors are not supported" ); |
| 1155 | |
| 1156 | MemRefType memType = loadOp.getMemRefType(); |
| 1157 | |
| 1158 | // Non-byte-aligned types are tricky and may require special handling, |
| 1159 | // ignore them for now. |
| 1160 | if (!isSupportedMemSinkElementType(memType.getElementType())) |
| 1161 | return rewriter.notifyMatchFailure(op, "unsupported element type" ); |
| 1162 | |
| 1163 | int64_t rankOffset = memType.getRank() - loadVecType.getRank(); |
| 1164 | if (rankOffset < 0) |
| 1165 | return rewriter.notifyMatchFailure(op, "unsupported ranks combination" ); |
| 1166 | |
| 1167 | auto = dyn_cast<VectorType>(op.getResult().getType()); |
| 1168 | int64_t finalRank = 0; |
| 1169 | if (extractVecType) |
| 1170 | finalRank = extractVecType.getRank(); |
| 1171 | |
| 1172 | SmallVector<Value> indices = loadOp.getIndices(); |
| 1173 | SmallVector<OpFoldResult> = op.getMixedPosition(); |
| 1174 | |
| 1175 | // There may be memory stores between the load and the extract op, so we |
| 1176 | // need to make sure that the new load op is inserted at the same place as |
| 1177 | // the original load op. |
| 1178 | OpBuilder::InsertionGuard g(rewriter); |
| 1179 | rewriter.setInsertionPoint(loadOp); |
| 1180 | Location loc = loadOp.getLoc(); |
| 1181 | ArithIndexingBuilder idxBuilderf(rewriter, loc); |
| 1182 | for (auto i : llvm::seq<int64_t>(rankOffset, indices.size() - finalRank)) { |
| 1183 | OpFoldResult pos = extractPos[i - rankOffset]; |
| 1184 | if (isZeroInteger(pos)) |
| 1185 | continue; |
| 1186 | |
| 1187 | Value offset = getValueOrCreateConstantIndexOp(rewriter, loc, pos); |
| 1188 | indices[i] = idxBuilderf.add(indices[i], offset); |
| 1189 | } |
| 1190 | |
| 1191 | Value base = loadOp.getBase(); |
| 1192 | if (extractVecType) { |
| 1193 | rewriter.replaceOpWithNewOp<vector::LoadOp>(op, extractVecType, base, |
| 1194 | indices); |
| 1195 | } else { |
| 1196 | rewriter.replaceOpWithNewOp<memref::LoadOp>(op, base, indices); |
| 1197 | } |
| 1198 | // We checked for single use so we can safely erase the load op. |
| 1199 | rewriter.eraseOp(op: loadOp); |
| 1200 | return success(); |
| 1201 | } |
| 1202 | }; |
| 1203 | |
| 1204 | /// Pattern to rewrite vector.store(vector.splat) -> vector/memref.store. |
| 1205 | /// |
| 1206 | /// Example: |
| 1207 | /// ``` |
| 1208 | /// %0 = vector.splat %arg2 : vector<1xf32> |
| 1209 | /// vector.store %0, %arg0[%arg1] : memref<?xf32>, vector<1xf32> |
| 1210 | /// ``` |
| 1211 | /// Gets converted to: |
| 1212 | /// ``` |
| 1213 | /// memref.store %arg2, %arg0[%arg1] : memref<?xf32> |
| 1214 | /// ``` |
| 1215 | class StoreOpFromSplatOrBroadcast final |
| 1216 | : public OpRewritePattern<vector::StoreOp> { |
| 1217 | public: |
| 1218 | using OpRewritePattern::OpRewritePattern; |
| 1219 | |
| 1220 | LogicalResult matchAndRewrite(vector::StoreOp op, |
| 1221 | PatternRewriter &rewriter) const override { |
| 1222 | VectorType vecType = op.getVectorType(); |
| 1223 | if (vecType.isScalable()) |
| 1224 | return rewriter.notifyMatchFailure(op, |
| 1225 | "scalable vectors are not supported" ); |
| 1226 | |
| 1227 | if (isa<VectorType>(op.getMemRefType().getElementType())) |
| 1228 | return rewriter.notifyMatchFailure( |
| 1229 | op, "memrefs of vectors are not supported" ); |
| 1230 | |
| 1231 | if (vecType.getNumElements() != 1) |
| 1232 | return rewriter.notifyMatchFailure( |
| 1233 | op, "only 1-element vectors are supported" ); |
| 1234 | |
| 1235 | Operation *splat = op.getValueToStore().getDefiningOp(); |
| 1236 | if (!isa_and_present<vector::BroadcastOp, vector::SplatOp>(splat)) |
| 1237 | return rewriter.notifyMatchFailure(op, "neither a splat nor a broadcast" ); |
| 1238 | |
| 1239 | // Checking for single use so we can remove splat. |
| 1240 | if (!splat->hasOneUse()) |
| 1241 | return rewriter.notifyMatchFailure(op, "expected single op use" ); |
| 1242 | |
| 1243 | Value source = splat->getOperand(idx: 0); |
| 1244 | Value base = op.getBase(); |
| 1245 | ValueRange indices = op.getIndices(); |
| 1246 | |
| 1247 | if (isa<VectorType>(Val: source.getType())) { |
| 1248 | rewriter.replaceOpWithNewOp<vector::StoreOp>(op, source, base, indices); |
| 1249 | } else { |
| 1250 | rewriter.replaceOpWithNewOp<memref::StoreOp>(op, source, base, indices); |
| 1251 | } |
| 1252 | rewriter.eraseOp(op: splat); |
| 1253 | return success(); |
| 1254 | } |
| 1255 | }; |
| 1256 | |
| 1257 | // Helper that returns a vector comparison that constructs a mask: |
| 1258 | // mask = [0,1,..,n-1] + [o,o,..,o] < [b,b,..,b] |
| 1259 | // |
| 1260 | // If `dim == 0` then the result will be a 0-D vector. |
| 1261 | // |
| 1262 | // NOTE: The LLVM::GetActiveLaneMaskOp intrinsic would provide an alternative, |
| 1263 | // much more compact, IR for this operation, but LLVM eventually |
| 1264 | // generates more elaborate instructions for this intrinsic since it |
| 1265 | // is very conservative on the boundary conditions. |
| 1266 | static Value buildVectorComparison(PatternRewriter &rewriter, Operation *op, |
| 1267 | bool force32BitVectorIndices, int64_t dim, |
| 1268 | Value b, Value *off = nullptr) { |
| 1269 | auto loc = op->getLoc(); |
| 1270 | // If we can assume all indices fit in 32-bit, we perform the vector |
| 1271 | // comparison in 32-bit to get a higher degree of SIMD parallelism. |
| 1272 | // Otherwise we perform the vector comparison using 64-bit indices. |
| 1273 | Type idxType = |
| 1274 | force32BitVectorIndices ? rewriter.getI32Type() : rewriter.getI64Type(); |
| 1275 | DenseIntElementsAttr indicesAttr; |
| 1276 | if (dim == 0 && force32BitVectorIndices) { |
| 1277 | indicesAttr = DenseIntElementsAttr::get( |
| 1278 | VectorType::get(ArrayRef<int64_t>{}, idxType), ArrayRef<int32_t>{0}); |
| 1279 | } else if (dim == 0) { |
| 1280 | indicesAttr = DenseIntElementsAttr::get( |
| 1281 | VectorType::get(ArrayRef<int64_t>{}, idxType), ArrayRef<int64_t>{0}); |
| 1282 | } else if (force32BitVectorIndices) { |
| 1283 | indicesAttr = rewriter.getI32VectorAttr( |
| 1284 | values: llvm::to_vector<4>(Range: llvm::seq<int32_t>(Begin: 0, End: dim))); |
| 1285 | } else { |
| 1286 | indicesAttr = rewriter.getI64VectorAttr( |
| 1287 | values: llvm::to_vector<4>(Range: llvm::seq<int64_t>(Begin: 0, End: dim))); |
| 1288 | } |
| 1289 | Value indices = rewriter.create<arith::ConstantOp>(loc, indicesAttr); |
| 1290 | // Add in an offset if requested. |
| 1291 | if (off) { |
| 1292 | Value o = getValueOrCreateCastToIndexLike(b&: rewriter, loc, targetType: idxType, value: *off); |
| 1293 | Value ov = rewriter.create<vector::SplatOp>(loc, indices.getType(), o); |
| 1294 | indices = rewriter.create<arith::AddIOp>(loc, ov, indices); |
| 1295 | } |
| 1296 | // Construct the vector comparison. |
| 1297 | Value bound = getValueOrCreateCastToIndexLike(b&: rewriter, loc, targetType: idxType, value: b); |
| 1298 | Value bounds = |
| 1299 | rewriter.create<vector::SplatOp>(loc, indices.getType(), bound); |
| 1300 | return rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, indices, |
| 1301 | bounds); |
| 1302 | } |
| 1303 | |
| 1304 | template <typename ConcreteOp> |
| 1305 | struct MaterializeTransferMask : public OpRewritePattern<ConcreteOp> { |
| 1306 | public: |
| 1307 | explicit MaterializeTransferMask(MLIRContext *context, bool enableIndexOpt, |
| 1308 | PatternBenefit benefit = 1) |
| 1309 | : mlir::OpRewritePattern<ConcreteOp>(context, benefit), |
| 1310 | force32BitVectorIndices(enableIndexOpt) {} |
| 1311 | |
| 1312 | LogicalResult matchAndRewrite(ConcreteOp xferOp, |
| 1313 | PatternRewriter &rewriter) const override { |
| 1314 | if (!xferOp.hasOutOfBoundsDim()) |
| 1315 | return failure(); |
| 1316 | |
| 1317 | if (xferOp.getVectorType().getRank() > 1 || xferOp.getIndices().empty()) |
| 1318 | return failure(); |
| 1319 | |
| 1320 | Location loc = xferOp->getLoc(); |
| 1321 | VectorType vtp = xferOp.getVectorType(); |
| 1322 | |
| 1323 | // Create the in-bounds mask with all elements between [0 .. dim - offset) |
| 1324 | // set and [dim - offset .. vector_length) unset. |
| 1325 | // |
| 1326 | // TODO: when the leaf transfer rank is k > 1, we need the last `k` |
| 1327 | // dimensions here. |
| 1328 | unsigned lastIndex = llvm::size(xferOp.getIndices()) - 1; |
| 1329 | Value off = xferOp.getIndices()[lastIndex]; |
| 1330 | Value dim = |
| 1331 | vector::createOrFoldDimOp(b&: rewriter, loc, source: xferOp.getBase(), dim: lastIndex); |
| 1332 | Value b = rewriter.create<arith::SubIOp>(loc, dim.getType(), dim, off); |
| 1333 | Value mask = rewriter.create<vector::CreateMaskOp>( |
| 1334 | loc, |
| 1335 | VectorType::get(vtp.getShape(), rewriter.getI1Type(), |
| 1336 | vtp.getScalableDims()), |
| 1337 | b); |
| 1338 | if (xferOp.getMask()) { |
| 1339 | // Intersect the in-bounds with the mask specified as an op parameter. |
| 1340 | mask = rewriter.create<arith::AndIOp>(loc, mask, xferOp.getMask()); |
| 1341 | } |
| 1342 | |
| 1343 | rewriter.modifyOpInPlace(xferOp, [&]() { |
| 1344 | xferOp.getMaskMutable().assign(mask); |
| 1345 | xferOp.setInBoundsAttr(rewriter.getBoolArrayAttr({true})); |
| 1346 | }); |
| 1347 | |
| 1348 | return success(); |
| 1349 | } |
| 1350 | |
| 1351 | private: |
| 1352 | const bool force32BitVectorIndices; |
| 1353 | }; |
| 1354 | |
| 1355 | /// Conversion pattern for a `vector.create_mask` (0-D and 1-D only). |
| 1356 | class VectorCreateMaskOpConversion |
| 1357 | : public OpRewritePattern<vector::CreateMaskOp> { |
| 1358 | public: |
| 1359 | explicit VectorCreateMaskOpConversion(MLIRContext *context, |
| 1360 | bool enableIndexOpt, |
| 1361 | PatternBenefit benefit = 1) |
| 1362 | : mlir::OpRewritePattern<vector::CreateMaskOp>(context, benefit), |
| 1363 | force32BitVectorIndices(enableIndexOpt) {} |
| 1364 | |
| 1365 | LogicalResult matchAndRewrite(vector::CreateMaskOp op, |
| 1366 | PatternRewriter &rewriter) const override { |
| 1367 | auto dstType = op.getType(); |
| 1368 | if (cast<VectorType>(dstType).isScalable()) |
| 1369 | return failure(); |
| 1370 | int64_t rank = dstType.getRank(); |
| 1371 | if (rank > 1) |
| 1372 | return failure(); |
| 1373 | rewriter.replaceOp( |
| 1374 | op, buildVectorComparison(rewriter, op, force32BitVectorIndices, |
| 1375 | rank == 0 ? 0 : dstType.getDimSize(0), |
| 1376 | op.getOperand(0))); |
| 1377 | return success(); |
| 1378 | } |
| 1379 | |
| 1380 | private: |
| 1381 | const bool force32BitVectorIndices; |
| 1382 | }; |
| 1383 | |
| 1384 | /// Returns true if all the `i1` elements of `constantOp` are set to `value`. |
| 1385 | static bool allI1ConstantValuesSetTo(arith::ConstantOp constantOp, bool value) { |
| 1386 | auto denseAttr = dyn_cast<DenseIntElementsAttr>(constantOp.getValue()); |
| 1387 | // TODO: Support non-dense constant. |
| 1388 | if (!denseAttr) |
| 1389 | return false; |
| 1390 | |
| 1391 | assert(denseAttr.getElementType().isInteger(1) && "Unexpected type" ); |
| 1392 | return denseAttr.isSplat() && denseAttr.getSplatValue<bool>() == value; |
| 1393 | } |
| 1394 | |
| 1395 | /// Folds a select operation between an all-true and all-false vector. For now, |
| 1396 | /// only single element vectors (i.e., vector<1xi1>) are supported. That is: |
| 1397 | /// |
| 1398 | /// %true = arith.constant dense<true> : vector<1xi1> |
| 1399 | /// %false = arith.constant dense<false> : vector<1xi1> |
| 1400 | /// %result = arith.select %cond, %true, %false : i1, vector<1xi1> |
| 1401 | /// => |
| 1402 | /// %result = vector.broadcast %cond : i1 to vector<1xi1> |
| 1403 | /// |
| 1404 | /// InstCombine seems to handle vectors with multiple elements but not the |
| 1405 | /// single element ones. |
| 1406 | struct FoldI1Select : public OpRewritePattern<arith::SelectOp> { |
| 1407 | using OpRewritePattern<arith::SelectOp>::OpRewritePattern; |
| 1408 | |
| 1409 | LogicalResult matchAndRewrite(arith::SelectOp selectOp, |
| 1410 | PatternRewriter &rewriter) const override { |
| 1411 | auto vecType = dyn_cast<VectorType>(selectOp.getType()); |
| 1412 | if (!vecType || !vecType.getElementType().isInteger(1)) |
| 1413 | return failure(); |
| 1414 | |
| 1415 | // Only scalar conditions can be folded. |
| 1416 | Value cond = selectOp.getCondition(); |
| 1417 | if (isa<VectorType>(Val: cond.getType())) |
| 1418 | return failure(); |
| 1419 | |
| 1420 | // TODO: Support n-D and scalable vectors. |
| 1421 | if (vecType.getRank() != 1 || vecType.isScalable()) |
| 1422 | return failure(); |
| 1423 | |
| 1424 | // TODO: Support vectors with multiple elements. |
| 1425 | if (vecType.getShape()[0] != 1) |
| 1426 | return failure(); |
| 1427 | |
| 1428 | auto trueConst = selectOp.getTrueValue().getDefiningOp<arith::ConstantOp>(); |
| 1429 | if (!trueConst || !allI1ConstantValuesSetTo(trueConst, true)) |
| 1430 | return failure(); |
| 1431 | |
| 1432 | auto falseConst = |
| 1433 | selectOp.getFalseValue().getDefiningOp<arith::ConstantOp>(); |
| 1434 | if (!falseConst || !allI1ConstantValuesSetTo(falseConst, false)) |
| 1435 | return failure(); |
| 1436 | |
| 1437 | // Replace select with its condition broadcasted to single element vector. |
| 1438 | auto elemType = rewriter.getIntegerType(vecType.getNumElements()); |
| 1439 | auto bcastType = VectorType::get(/*shape=*/{1}, elemType); |
| 1440 | rewriter.replaceOpWithNewOp<vector::BroadcastOp>(selectOp, bcastType, cond); |
| 1441 | return success(); |
| 1442 | } |
| 1443 | }; |
| 1444 | |
| 1445 | /// Returns the number of dims can be folded away from transfer ops. It returns |
| 1446 | /// a failure if it can not determine the number of dims to be folded. |
| 1447 | /// |
| 1448 | /// Ex 1: returns "2" if `srcType` is memref<512x16x1x1xf32> and |
| 1449 | /// `vectorType` is vector<16x16x1x1xf32> |
| 1450 | /// (there two inner most dims can be dropped by memref.subview ops) |
| 1451 | /// |
| 1452 | /// Ex 2: returns "1" if `srcType` is memref<512x16x1x1xf32> with |
| 1453 | /// [8192, 16, 8, 1] strides and `vectorType` is vector<16x16x1x1xf32> |
| 1454 | /// (only the inner most unit dim of `srcType` can be dropped) |
| 1455 | /// |
| 1456 | /// Ex 3: return "0" if `srcType` is memref<512x16x1x1xf32> and |
| 1457 | /// `vectorType` is vector<16x16x1x[1]xf32> |
| 1458 | /// (the most inner dim in `vectorType` is not a unit dim (it's a "scalable |
| 1459 | /// unit") |
| 1460 | static FailureOr<size_t> |
| 1461 | getTransferFoldableInnerUnitDims(MemRefType srcType, VectorType vectorType) { |
| 1462 | SmallVector<int64_t> srcStrides; |
| 1463 | int64_t srcOffset; |
| 1464 | if (failed(srcType.getStridesAndOffset(srcStrides, srcOffset))) |
| 1465 | return failure(); |
| 1466 | |
| 1467 | auto isUnitDim = [](VectorType type, int dim) { |
| 1468 | return type.getDimSize(dim) == 1 && !type.getScalableDims()[dim]; |
| 1469 | }; |
| 1470 | |
| 1471 | // According to vector.transfer_read/write semantics, the vector can be a |
| 1472 | // slice. Thus, we have to offset the check index with `rankDiff` in |
| 1473 | // `srcStrides` and source dim sizes. |
| 1474 | size_t result = 0; |
| 1475 | int rankDiff = srcType.getRank() - vectorType.getRank(); |
| 1476 | for (int64_t i = 0, e = vectorType.getRank(); i < e; ++i) { |
| 1477 | // Check that the inner dim size is 1 for both memref type and vector slice. |
| 1478 | // It can be folded only if they are 1 and the stride is 1. |
| 1479 | int dim = vectorType.getRank() - i - 1; |
| 1480 | if (srcStrides[dim + rankDiff] != 1 || |
| 1481 | srcType.getDimSize(dim + rankDiff) != 1 || !isUnitDim(vectorType, dim)) |
| 1482 | break; |
| 1483 | result++; |
| 1484 | } |
| 1485 | return result; |
| 1486 | } |
| 1487 | |
| 1488 | /// Drop inner most contiguous unit dimensions from transfer_read operand. |
| 1489 | class DropInnerMostUnitDimsTransferRead |
| 1490 | : public OpRewritePattern<vector::TransferReadOp> { |
| 1491 | using OpRewritePattern::OpRewritePattern; |
| 1492 | |
| 1493 | LogicalResult matchAndRewrite(vector::TransferReadOp readOp, |
| 1494 | PatternRewriter &rewriter) const override { |
| 1495 | // TODO: support 0-d corner case. |
| 1496 | if (readOp.getTransferRank() == 0) |
| 1497 | return failure(); |
| 1498 | |
| 1499 | // TODO: support mask. |
| 1500 | if (readOp.getMask()) |
| 1501 | return failure(); |
| 1502 | |
| 1503 | auto srcType = dyn_cast<MemRefType>(readOp.getBase().getType()); |
| 1504 | if (!srcType) |
| 1505 | return failure(); |
| 1506 | |
| 1507 | if (!readOp.getPermutationMap().isMinorIdentity()) |
| 1508 | return failure(); |
| 1509 | |
| 1510 | auto targetType = readOp.getVectorType(); |
| 1511 | if (targetType.getRank() <= 1) |
| 1512 | return failure(); |
| 1513 | |
| 1514 | FailureOr<size_t> maybeDimsToDrop = |
| 1515 | getTransferFoldableInnerUnitDims(srcType, targetType); |
| 1516 | if (failed(Result: maybeDimsToDrop)) |
| 1517 | return failure(); |
| 1518 | |
| 1519 | size_t dimsToDrop = maybeDimsToDrop.value(); |
| 1520 | if (dimsToDrop == 0) |
| 1521 | return failure(); |
| 1522 | |
| 1523 | auto inBounds = readOp.getInBoundsValues(); |
| 1524 | auto droppedInBounds = ArrayRef<bool>(inBounds).take_back(N: dimsToDrop); |
| 1525 | if (llvm::is_contained(droppedInBounds, false)) |
| 1526 | return failure(); |
| 1527 | |
| 1528 | auto resultTargetVecType = |
| 1529 | VectorType::get(targetType.getShape().drop_back(dimsToDrop), |
| 1530 | targetType.getElementType(), |
| 1531 | targetType.getScalableDims().drop_back(dimsToDrop)); |
| 1532 | |
| 1533 | auto loc = readOp.getLoc(); |
| 1534 | SmallVector<OpFoldResult> sizes = |
| 1535 | memref::getMixedSizes(builder&: rewriter, loc: loc, value: readOp.getBase()); |
| 1536 | SmallVector<OpFoldResult> offsets(srcType.getRank(), |
| 1537 | rewriter.getIndexAttr(0)); |
| 1538 | SmallVector<OpFoldResult> strides(srcType.getRank(), |
| 1539 | rewriter.getIndexAttr(1)); |
| 1540 | MemRefType resultMemrefType = memref::SubViewOp::inferRankReducedResultType( |
| 1541 | srcType.getShape().drop_back(dimsToDrop), srcType, offsets, sizes, |
| 1542 | strides); |
| 1543 | ArrayAttr inBoundsAttr = rewriter.getArrayAttr( |
| 1544 | readOp.getInBoundsAttr().getValue().drop_back(dimsToDrop)); |
| 1545 | Value rankedReducedView = rewriter.create<memref::SubViewOp>( |
| 1546 | loc, resultMemrefType, readOp.getBase(), offsets, sizes, strides); |
| 1547 | auto permMap = getTransferMinorIdentityMap( |
| 1548 | cast<ShapedType>(rankedReducedView.getType()), resultTargetVecType); |
| 1549 | Value result = rewriter.create<vector::TransferReadOp>( |
| 1550 | loc, resultTargetVecType, rankedReducedView, |
| 1551 | readOp.getIndices().drop_back(dimsToDrop), AffineMapAttr::get(permMap), |
| 1552 | readOp.getPadding(), |
| 1553 | // TODO: support mask. |
| 1554 | /*mask=*/Value(), inBoundsAttr); |
| 1555 | rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(readOp, targetType, |
| 1556 | result); |
| 1557 | return success(); |
| 1558 | } |
| 1559 | }; |
| 1560 | |
| 1561 | /// Drop inner most contiguous unit dimensions from transfer_write operand. |
| 1562 | /// E.g., |
| 1563 | /// vector.transfer_write %arg1, %arg0[%c0, %arg2, %c0, %c0, %c0] |
| 1564 | /// {in_bounds = [true, true, true, true, true]} |
| 1565 | /// : vector<1x16x16x1x1xf32>, memref<1x512x16x1x1xf32> |
| 1566 | /// |
| 1567 | /// will be replaced with |
| 1568 | /// |
| 1569 | /// %subview = memref.subview %arg0 |
| 1570 | /// [0, 0, 0, 0, 0] [1, 512, 16, 1, 1] [1, 1, 1, 1, 1] |
| 1571 | /// : memref<1x512x16x1x1xf32> to memref<1x512x16xf32> |
| 1572 | /// %0 = vector.shape_cast %arg1 : vector<1x16x16x1x1xf32> |
| 1573 | /// to vector<1x16x16xf32> |
| 1574 | /// vector.transfer_write %0, %subview[%c0, %arg2, %c0] |
| 1575 | /// {in_bounds = [true, true, true]} |
| 1576 | /// : vector<1x16x16xf32>, memref<1x512x16xf32> |
| 1577 | /// |
| 1578 | /// Note, this pattern will not collapse "scalable unit" dims (i.e. `[1]`). |
| 1579 | class DropInnerMostUnitDimsTransferWrite |
| 1580 | : public OpRewritePattern<vector::TransferWriteOp> { |
| 1581 | using OpRewritePattern::OpRewritePattern; |
| 1582 | |
| 1583 | LogicalResult matchAndRewrite(vector::TransferWriteOp writeOp, |
| 1584 | PatternRewriter &rewriter) const override { |
| 1585 | // TODO: support 0-d corner case. |
| 1586 | if (writeOp.getTransferRank() == 0) |
| 1587 | return failure(); |
| 1588 | |
| 1589 | // TODO: support mask. |
| 1590 | if (writeOp.getMask()) |
| 1591 | return failure(); |
| 1592 | |
| 1593 | auto srcType = dyn_cast<MemRefType>(writeOp.getBase().getType()); |
| 1594 | if (!srcType) |
| 1595 | return failure(); |
| 1596 | |
| 1597 | if (!writeOp.getPermutationMap().isMinorIdentity()) |
| 1598 | return failure(); |
| 1599 | |
| 1600 | auto targetType = writeOp.getVectorType(); |
| 1601 | if (targetType.getRank() <= 1) |
| 1602 | return failure(); |
| 1603 | |
| 1604 | FailureOr<size_t> maybeDimsToDrop = |
| 1605 | getTransferFoldableInnerUnitDims(srcType, targetType); |
| 1606 | if (failed(Result: maybeDimsToDrop)) |
| 1607 | return failure(); |
| 1608 | |
| 1609 | size_t dimsToDrop = maybeDimsToDrop.value(); |
| 1610 | if (dimsToDrop == 0) |
| 1611 | return failure(); |
| 1612 | |
| 1613 | auto inBounds = writeOp.getInBoundsValues(); |
| 1614 | auto droppedInBounds = ArrayRef<bool>(inBounds).take_back(N: dimsToDrop); |
| 1615 | if (llvm::is_contained(droppedInBounds, false)) |
| 1616 | return failure(); |
| 1617 | |
| 1618 | auto resultTargetVecType = |
| 1619 | VectorType::get(targetType.getShape().drop_back(dimsToDrop), |
| 1620 | targetType.getElementType(), |
| 1621 | targetType.getScalableDims().drop_back(dimsToDrop)); |
| 1622 | |
| 1623 | Location loc = writeOp.getLoc(); |
| 1624 | SmallVector<OpFoldResult> sizes = |
| 1625 | memref::getMixedSizes(builder&: rewriter, loc, value: writeOp.getBase()); |
| 1626 | SmallVector<OpFoldResult> offsets(srcType.getRank(), |
| 1627 | rewriter.getIndexAttr(0)); |
| 1628 | SmallVector<OpFoldResult> strides(srcType.getRank(), |
| 1629 | rewriter.getIndexAttr(1)); |
| 1630 | MemRefType resultMemrefType = memref::SubViewOp::inferRankReducedResultType( |
| 1631 | srcType.getShape().drop_back(dimsToDrop), srcType, offsets, sizes, |
| 1632 | strides); |
| 1633 | ArrayAttr inBoundsAttr = rewriter.getArrayAttr( |
| 1634 | writeOp.getInBoundsAttr().getValue().drop_back(dimsToDrop)); |
| 1635 | |
| 1636 | Value rankedReducedView = rewriter.create<memref::SubViewOp>( |
| 1637 | loc, resultMemrefType, writeOp.getBase(), offsets, sizes, strides); |
| 1638 | auto permMap = getTransferMinorIdentityMap( |
| 1639 | cast<ShapedType>(rankedReducedView.getType()), resultTargetVecType); |
| 1640 | |
| 1641 | auto shapeCast = rewriter.createOrFold<vector::ShapeCastOp>( |
| 1642 | loc, resultTargetVecType, writeOp.getVector()); |
| 1643 | rewriter.replaceOpWithNewOp<vector::TransferWriteOp>( |
| 1644 | writeOp, shapeCast, rankedReducedView, |
| 1645 | writeOp.getIndices().drop_back(dimsToDrop), AffineMapAttr::get(permMap), |
| 1646 | // TODO: support mask. |
| 1647 | /*mask=*/Value(), inBoundsAttr); |
| 1648 | return success(); |
| 1649 | } |
| 1650 | }; |
| 1651 | |
| 1652 | /// Canonicalization of a `vector.contraction %a, %b, %c` with row-major matmul |
| 1653 | /// semantics to a contraction suitable for MMT (matrix matrix multiplication |
| 1654 | /// with the RHS transposed) lowering. |
| 1655 | struct CanonicalizeContractMatmulToMMT final |
| 1656 | : OpRewritePattern<vector::ContractionOp> { |
| 1657 | using OpRewritePattern::OpRewritePattern; |
| 1658 | |
| 1659 | using FilterConstraintType = |
| 1660 | std::function<LogicalResult(vector::ContractionOp op)>; |
| 1661 | |
| 1662 | CanonicalizeContractMatmulToMMT(MLIRContext *context, PatternBenefit benefit, |
| 1663 | FilterConstraintType constraint) |
| 1664 | : OpRewritePattern<vector::ContractionOp>(context, benefit), |
| 1665 | filter(std::move(constraint)) {} |
| 1666 | |
| 1667 | LogicalResult matchAndRewrite(vector::ContractionOp op, |
| 1668 | PatternRewriter &rewriter) const override { |
| 1669 | if (failed(filter(op))) |
| 1670 | return failure(); |
| 1671 | |
| 1672 | Location loc = op.getLoc(); |
| 1673 | Value lhs = op.getLhs(); |
| 1674 | Value rhs = op.getRhs(); |
| 1675 | Value res = op.getAcc(); |
| 1676 | |
| 1677 | // Set up the parallel/reduction structure in right form. |
| 1678 | using MapList = ArrayRef<ArrayRef<AffineExpr>>; |
| 1679 | auto infer = [&](MapList m) { |
| 1680 | return AffineMap::inferFromExprList(m, op.getContext()); |
| 1681 | }; |
| 1682 | AffineExpr m; |
| 1683 | AffineExpr n; |
| 1684 | AffineExpr k; |
| 1685 | bindDims(ctx: rewriter.getContext(), exprs&: m, exprs&: n, exprs&: k); |
| 1686 | static constexpr std::array<int64_t, 2> perm = {1, 0}; |
| 1687 | auto iteratorTypes = op.getIteratorTypes().getValue(); |
| 1688 | SmallVector<AffineMap, 4> maps = op.getIndexingMapsArray(); |
| 1689 | if (iteratorTypes.size() != 3 || |
| 1690 | !vector::isParallelIterator(attr: iteratorTypes[0]) || |
| 1691 | !vector::isParallelIterator(attr: iteratorTypes[1]) || |
| 1692 | !vector::isReductionIterator(attr: iteratorTypes[2])) |
| 1693 | return rewriter.notifyMatchFailure(op, "contraction is not a gemm" ); |
| 1694 | |
| 1695 | // The canonical form is "TNT" = A row-major, B col-major, C row-major. |
| 1696 | const auto canonicalForm = infer({{m, k}, {n, k}, {m, n}}); |
| 1697 | if (maps == canonicalForm) |
| 1698 | return rewriter.notifyMatchFailure(op, "already in the canonical form" ); |
| 1699 | |
| 1700 | // Create a vector transpose making sure to emit zero/sign-extend at the |
| 1701 | // end. |
| 1702 | auto createTranspose = [&rewriter, loc](Value mat) -> Value { |
| 1703 | if (auto sext = mat.getDefiningOp<arith::ExtSIOp>()) { |
| 1704 | Value trans = |
| 1705 | rewriter.create<vector::TransposeOp>(loc, sext.getIn(), perm); |
| 1706 | VectorType newType = |
| 1707 | cast<VectorType>(trans.getType()) |
| 1708 | .clone(cast<VectorType>(mat.getType()).getElementType()); |
| 1709 | return rewriter.create<arith::ExtSIOp>(loc, newType, trans); |
| 1710 | } |
| 1711 | if (auto zext = mat.getDefiningOp<arith::ExtUIOp>()) { |
| 1712 | Value trans = |
| 1713 | rewriter.create<vector::TransposeOp>(loc, zext.getIn(), perm); |
| 1714 | VectorType newType = |
| 1715 | VectorType::get(cast<VectorType>(trans.getType()).getShape(), |
| 1716 | cast<VectorType>(mat.getType()).getElementType()); |
| 1717 | return rewriter.create<arith::ExtUIOp>(loc, newType, trans); |
| 1718 | } |
| 1719 | return rewriter.create<vector::TransposeOp>(loc, mat, perm); |
| 1720 | }; |
| 1721 | |
| 1722 | if (maps == infer({{m, k}, {k, n}, {m, n}})) { |
| 1723 | rhs = createTranspose(rhs); |
| 1724 | } else if (maps == infer({{k, m}, {n, k}, {m, n}})) { |
| 1725 | lhs = createTranspose(lhs); |
| 1726 | } else if (maps == infer({{k, m}, {k, n}, {m, n}})) { |
| 1727 | rhs = createTranspose(rhs); |
| 1728 | lhs = createTranspose(lhs); |
| 1729 | } else if (maps == infer({{k, m}, {k, n}, {n, m}})) { |
| 1730 | std::swap(a&: rhs, b&: lhs); |
| 1731 | rhs = createTranspose(rhs); |
| 1732 | lhs = createTranspose(lhs); |
| 1733 | } else if (maps == infer({{k, m}, {n, k}, {n, m}})) { |
| 1734 | std::swap(a&: rhs, b&: lhs); |
| 1735 | rhs = createTranspose(rhs); |
| 1736 | } else if (maps == infer({{m, k}, {k, n}, {n, m}})) { |
| 1737 | std::swap(a&: lhs, b&: rhs); |
| 1738 | lhs = createTranspose(lhs); |
| 1739 | } else if (maps == infer({{m, k}, {n, k}, {n, m}})) { |
| 1740 | std::swap(a&: lhs, b&: rhs); |
| 1741 | } else { |
| 1742 | return rewriter.notifyMatchFailure(op, "unhandled contraction form" ); |
| 1743 | } |
| 1744 | rewriter.replaceOpWithNewOp<vector::ContractionOp>( |
| 1745 | op, lhs, rhs, res, rewriter.getAffineMapArrayAttr(values: canonicalForm), |
| 1746 | op.getIteratorTypes()); |
| 1747 | return success(); |
| 1748 | }; |
| 1749 | |
| 1750 | private: |
| 1751 | FilterConstraintType filter; |
| 1752 | }; |
| 1753 | |
| 1754 | /// Pattern to fold arithmetic extensions on floating point data types into |
| 1755 | /// vector contraction operations. linalg.matmul introduces arithmetic |
| 1756 | /// extensions on its operands. Please mlir snippets below for more details. |
| 1757 | /// ```mlir |
| 1758 | /// "linalg.matmul"(%lhs, %rhs, %acc) ({ |
| 1759 | /// ^bb0(%arg1: f16, %arg2: f16, %arg3: f32): |
| 1760 | /// %lhs_f32 = "arith.extf"(%arg1) : (f16) -> f32 |
| 1761 | /// %rhs_f32 = "arith.extf"(%arg2) : (f16) -> f32 |
| 1762 | /// %mul = "arith.mulf"(%lhs_f32, %rhs_f32) : (f32, f32) -> f32 |
| 1763 | /// %acc = "arith.addf"(%arg3, %mul) : (f32, f32) -> f32 |
| 1764 | /// "linalg.yield"(%acc) : (f32) -> () |
| 1765 | /// }) |
| 1766 | /// ``` |
| 1767 | /// This restricts the native usage of mixed precision NVIDIA Ampere Tensor |
| 1768 | /// Cores, i.e, `mma.sync.*.f32.f16.f16.f32` and `mma.sync.*.f32.bf16.bf16.f32`. |
| 1769 | /// This pattern folds the arithmetic extensions into the vector contraction and |
| 1770 | /// enables the usage of native mixed precision Tensor Core instructions. |
| 1771 | template <typename ExtOp> |
| 1772 | struct FoldArithExtIntoContractionOp |
| 1773 | : public OpRewritePattern<vector::ContractionOp> { |
| 1774 | using OpRewritePattern::OpRewritePattern; |
| 1775 | |
| 1776 | LogicalResult matchAndRewrite(vector::ContractionOp contractOp, |
| 1777 | PatternRewriter &rewriter) const override { |
| 1778 | |
| 1779 | auto lhsDefOp = contractOp.getLhs().getDefiningOp<ExtOp>(); |
| 1780 | auto rhsDefOp = contractOp.getRhs().getDefiningOp<ExtOp>(); |
| 1781 | |
| 1782 | if (!lhsDefOp || !rhsDefOp) { |
| 1783 | return rewriter.notifyMatchFailure(contractOp, |
| 1784 | "no defining op on contract operands" ); |
| 1785 | } |
| 1786 | |
| 1787 | rewriter.replaceOpWithNewOp<vector::ContractionOp>( |
| 1788 | contractOp, lhsDefOp->getOperand(0), rhsDefOp->getOperand(0), |
| 1789 | contractOp.getAcc(), contractOp.getIndexingMapsAttr(), |
| 1790 | contractOp.getIteratorTypesAttr()); |
| 1791 | |
| 1792 | return success(); |
| 1793 | } |
| 1794 | }; |
| 1795 | |
| 1796 | /// Pattern to fold chained reduction to a series of vector additions and a |
| 1797 | /// final reduction. This form should require fewer subgroup operations. |
| 1798 | /// |
| 1799 | /// ```mlir |
| 1800 | /// %a = vector.reduction <add> %x, %acc |
| 1801 | /// %b = vector.reduction <add> %y, %a |
| 1802 | /// ==> |
| 1803 | /// %a = arith.addf %x, %y |
| 1804 | /// %b = vector.reduction <add> %a, %acc |
| 1805 | /// ``` |
| 1806 | struct ChainedReduction final : OpRewritePattern<vector::ReductionOp> { |
| 1807 | using OpRewritePattern::OpRewritePattern; |
| 1808 | |
| 1809 | LogicalResult matchAndRewrite(vector::ReductionOp op, |
| 1810 | PatternRewriter &rewriter) const override { |
| 1811 | // TODO: Handle other combining kinds. |
| 1812 | if (op.getKind() != vector::CombiningKind::ADD) |
| 1813 | return failure(); |
| 1814 | |
| 1815 | // Accumulator is optional. |
| 1816 | Value acc = op.getAcc(); |
| 1817 | if (!acc) |
| 1818 | return failure(); |
| 1819 | |
| 1820 | if (!acc.getType().isIntOrFloat()) |
| 1821 | return failure(); |
| 1822 | |
| 1823 | auto parentReduction = acc.getDefiningOp<vector::ReductionOp>(); |
| 1824 | if (!parentReduction) |
| 1825 | return failure(); |
| 1826 | |
| 1827 | Location loc = op.getLoc(); |
| 1828 | Value vAdd; |
| 1829 | if (isa<IntegerType>(Val: acc.getType())) { |
| 1830 | vAdd = rewriter.createOrFold<arith::AddIOp>( |
| 1831 | loc, parentReduction.getVector(), op.getVector()); |
| 1832 | } else { |
| 1833 | vAdd = rewriter.create<arith::AddFOp>(loc, parentReduction.getVector(), |
| 1834 | op.getVector()); |
| 1835 | } |
| 1836 | rewriter.replaceOpWithNewOp<vector::ReductionOp>(op, op.getKind(), vAdd, |
| 1837 | parentReduction.getAcc()); |
| 1838 | return success(); |
| 1839 | } |
| 1840 | }; |
| 1841 | |
| 1842 | // Helper function dropping unit non-scalable dimension from a VectorType |
| 1843 | // keeping at least 1 dimension to avoid generating 0-D vectors. Scalable unit |
| 1844 | // dimensions are not dropped. Folding such dimensions would require "shifting" |
| 1845 | // the scalable flag onto some other fixed-width dim (e.g. vector<[1]x4xf32> -> |
| 1846 | // vector<[4]xf32>). This could be implemented in the future. |
| 1847 | static VectorType dropNonScalableUnitDimFromType(VectorType inVecTy) { |
| 1848 | auto inVecShape = inVecTy.getShape(); |
| 1849 | SmallVector<int64_t> newShape; |
| 1850 | SmallVector<bool> newScalableDims; |
| 1851 | for (auto [dim, isScalable] : |
| 1852 | llvm::zip_equal(inVecShape, inVecTy.getScalableDims())) { |
| 1853 | if (dim == 1 && !isScalable) |
| 1854 | continue; |
| 1855 | |
| 1856 | newShape.push_back(dim); |
| 1857 | newScalableDims.push_back(isScalable); |
| 1858 | } |
| 1859 | // All dims have been dropped, return vector<1xeType>. |
| 1860 | if (newShape.empty()) { |
| 1861 | newShape.push_back(Elt: 1); |
| 1862 | newScalableDims.push_back(Elt: false); |
| 1863 | } |
| 1864 | |
| 1865 | return VectorType::get(newShape, inVecTy.getElementType(), newScalableDims); |
| 1866 | } |
| 1867 | |
| 1868 | /// For vectors with at least one unit dim, replaces: |
| 1869 | /// elementwise(a, b) |
| 1870 | /// with: |
| 1871 | /// sc_a = shape_cast(a) |
| 1872 | /// sc_b = shape_cast(b) |
| 1873 | /// res = elementwise(sc_a, sc_b) |
| 1874 | /// return shape_cast(res) |
| 1875 | /// The newly inserted shape_cast Ops fold (before elementwise Op) and then |
| 1876 | /// restore (after elementwise Op) the unit dim. Vectors `a` and `b` are |
| 1877 | /// required to be rank > 1. |
| 1878 | /// |
| 1879 | /// Ex: |
| 1880 | /// %mul = arith.mulf %B_row, %A_row : vector<1x[4]xf32> |
| 1881 | /// %cast = vector.shape_cast %mul : vector<1x[4]xf32> to vector<[4]xf32> |
| 1882 | /// |
| 1883 | /// gets converted to: |
| 1884 | /// |
| 1885 | /// %B_row_sc = vector.shape_cast %B_row : vector<1x[4]xf32> to vector<[4]xf32> |
| 1886 | /// %A_row_sc = vector.shape_cast %A_row : vector<1x[4]xf32> to vector<[4]xf32> |
| 1887 | /// %mul = arith.mulf %B_row_sc, %A_row_sc : vector<[4]xf32> |
| 1888 | /// %cast_new = vector.shape_cast %mul : vector<[4]xf32> to vector<1x[4]xf32> |
| 1889 | /// %cast = vector.shape_cast %cast_new : vector<1x[4]xf32> to vector<[4]xf32> |
| 1890 | /// |
| 1891 | /// Patterns for folding shape_casts should instantly eliminate `%cast_new` and |
| 1892 | /// `%cast`. |
| 1893 | struct DropUnitDimFromElementwiseOps final |
| 1894 | : public OpTraitRewritePattern<OpTrait::Elementwise> { |
| 1895 | using OpTraitRewritePattern::OpTraitRewritePattern; |
| 1896 | LogicalResult matchAndRewrite(Operation *op, |
| 1897 | PatternRewriter &rewriter) const override { |
| 1898 | if (op->getNumResults() != 1 || op->getNumRegions() != 0) |
| 1899 | return failure(); |
| 1900 | |
| 1901 | auto resultVectorType = dyn_cast<VectorType>(op->getResult(idx: 0).getType()); |
| 1902 | if (!resultVectorType) |
| 1903 | return failure(); |
| 1904 | |
| 1905 | // Check the operand pre-conditions. For `Elementwise` ops all operands are |
| 1906 | // guaranteed to have identical shapes (with some exceptions such as |
| 1907 | // `arith.select`) and it suffices to only check one of them. |
| 1908 | auto sourceVectorType = dyn_cast<VectorType>(op->getOperand(idx: 0).getType()); |
| 1909 | if (!sourceVectorType) |
| 1910 | return failure(); |
| 1911 | if (sourceVectorType.getRank() < 2) |
| 1912 | return failure(); |
| 1913 | |
| 1914 | SmallVector<Value> newOperands; |
| 1915 | auto loc = op->getLoc(); |
| 1916 | for (auto operand : op->getOperands()) { |
| 1917 | auto opVectorType = cast<VectorType>(operand.getType()); |
| 1918 | auto newVType = dropNonScalableUnitDimFromType(opVectorType); |
| 1919 | if (newVType == opVectorType) |
| 1920 | return rewriter.notifyMatchFailure(arg&: op, msg: "No unit dimension to remove." ); |
| 1921 | |
| 1922 | auto opSC = rewriter.create<vector::ShapeCastOp>(loc, newVType, operand); |
| 1923 | newOperands.push_back(Elt: opSC); |
| 1924 | } |
| 1925 | |
| 1926 | VectorType newResultVectorType = |
| 1927 | dropNonScalableUnitDimFromType(resultVectorType); |
| 1928 | // Create an updated elementwise Op without unit dim. |
| 1929 | Operation *elementwiseOp = |
| 1930 | rewriter.create(loc, op->getName().getIdentifier(), newOperands, |
| 1931 | newResultVectorType, op->getAttrs()); |
| 1932 | |
| 1933 | // Restore the unit dim by applying vector.shape_cast to the result. |
| 1934 | rewriter.replaceOpWithNewOp<ShapeCastOp>(op, resultVectorType, |
| 1935 | elementwiseOp->getResult(0)); |
| 1936 | |
| 1937 | return success(); |
| 1938 | } |
| 1939 | }; |
| 1940 | |
| 1941 | /// A pattern to drop unit dims from vector.transpose. |
| 1942 | /// |
| 1943 | /// Example: |
| 1944 | /// |
| 1945 | /// BEFORE: |
| 1946 | /// ```mlir |
| 1947 | /// %transpose = vector.transpose %vector, [3, 0, 1, 2] |
| 1948 | /// : vector<1x1x4x[4]xf32> to vector<[4]x1x1x4xf32> |
| 1949 | /// ``` |
| 1950 | /// |
| 1951 | /// AFTER: |
| 1952 | /// ```mlir |
| 1953 | /// %dropDims = vector.shape_cast %vector |
| 1954 | /// : vector<1x1x4x[4]xf32> to vector<4x[4]xf32> |
| 1955 | /// %transpose = vector.transpose %0, [1, 0] |
| 1956 | /// : vector<4x[4]xf32> to vector<[4]x4xf32> |
| 1957 | /// %restoreDims = vector.shape_cast %transpose |
| 1958 | /// : vector<[4]x4xf32> to vector<[4]x1x1x4xf32> |
| 1959 | /// ``` |
| 1960 | struct DropUnitDimsFromTransposeOp final |
| 1961 | : OpRewritePattern<vector::TransposeOp> { |
| 1962 | using OpRewritePattern::OpRewritePattern; |
| 1963 | |
| 1964 | LogicalResult matchAndRewrite(vector::TransposeOp op, |
| 1965 | PatternRewriter &rewriter) const override { |
| 1966 | VectorType sourceType = op.getSourceVectorType(); |
| 1967 | VectorType sourceTypeWithoutUnitDims = |
| 1968 | dropNonScalableUnitDimFromType(sourceType); |
| 1969 | |
| 1970 | if (sourceType == sourceTypeWithoutUnitDims) |
| 1971 | return failure(); |
| 1972 | |
| 1973 | // Construct a map from dimIdx -> number of dims dropped before dimIdx. |
| 1974 | auto sourceDims = llvm::to_vector(vector::getDims(sourceType)); |
| 1975 | SmallVector<int64_t> droppedDimsBefore(sourceType.getRank()); |
| 1976 | int64_t droppedDims = 0; |
| 1977 | for (auto [i, dim] : llvm::enumerate(sourceDims)) { |
| 1978 | droppedDimsBefore[i] = droppedDims; |
| 1979 | if (dim == std::make_tuple(1, false)) |
| 1980 | ++droppedDims; |
| 1981 | } |
| 1982 | |
| 1983 | // Drop unit dims from transpose permutation. |
| 1984 | ArrayRef<int64_t> perm = op.getPermutation(); |
| 1985 | SmallVector<int64_t> newPerm; |
| 1986 | for (int64_t idx : perm) { |
| 1987 | if (sourceDims[idx] == std::make_tuple(1, false)) |
| 1988 | continue; |
| 1989 | newPerm.push_back(idx - droppedDimsBefore[idx]); |
| 1990 | } |
| 1991 | |
| 1992 | // Fixup for `newPerm`. The `sourceTypeWithoutUnitDims` could be vector<1xT> |
| 1993 | // type when the dimensions are unit dimensions. In this case, the newPerm |
| 1994 | // should be [0]. |
| 1995 | if (newPerm.empty()) { |
| 1996 | newPerm.push_back(Elt: 0); |
| 1997 | } |
| 1998 | |
| 1999 | Location loc = op.getLoc(); |
| 2000 | // Drop the unit dims via shape_cast. |
| 2001 | auto dropDimsShapeCast = rewriter.create<vector::ShapeCastOp>( |
| 2002 | loc, sourceTypeWithoutUnitDims, op.getVector()); |
| 2003 | // Create the new transpose. |
| 2004 | auto transposeWithoutUnitDims = |
| 2005 | rewriter.create<vector::TransposeOp>(loc, dropDimsShapeCast, newPerm); |
| 2006 | // Restore the unit dims via shape cast. |
| 2007 | rewriter.replaceOpWithNewOp<vector::ShapeCastOp>( |
| 2008 | op, op.getResultVectorType(), transposeWithoutUnitDims); |
| 2009 | |
| 2010 | return success(); |
| 2011 | } |
| 2012 | }; |
| 2013 | |
| 2014 | /// A pattern to drop unit dims from the iter_args of an scf.for. |
| 2015 | /// |
| 2016 | /// Example: |
| 2017 | /// |
| 2018 | /// BEFORE: |
| 2019 | /// ```mlir |
| 2020 | /// %res = scf.for ... iter_args(%iter = %init) -> vector<[4]x1x1x4xf32> { |
| 2021 | /// ... |
| 2022 | /// scf.yield % |
| 2023 | /// } |
| 2024 | /// ``` |
| 2025 | /// |
| 2026 | /// AFTER: |
| 2027 | /// ```mlir |
| 2028 | /// %drop = vector.shape_cast %init |
| 2029 | /// : vector<4x1x1x[4]xf32> to vector<4x[4]xf32> |
| 2030 | /// %new_loop = scf.for ... iter_args(%iter = %drop) -> vector<[4]x4xf32> { |
| 2031 | /// %new_iter = vector.shape_cast %iter |
| 2032 | /// : vector<[4]x4xf32> to vector<[4]x1x1x4xf32> |
| 2033 | /// ... |
| 2034 | /// } |
| 2035 | /// %res = vector.shape_cast %new_loop |
| 2036 | /// : vector<[4]x4xf32> to vector<[4]x1x1x4xf32> |
| 2037 | /// ``` |
| 2038 | struct DropUnitDimsFromScfForOp final : OpRewritePattern<scf::ForOp> { |
| 2039 | using OpRewritePattern::OpRewritePattern; |
| 2040 | |
| 2041 | LogicalResult matchAndRewrite(scf::ForOp forOp, |
| 2042 | PatternRewriter &rewriter) const override { |
| 2043 | /// Find the first iter_arg with droppable unit dims. Further applications |
| 2044 | /// of this pattern will apply to later arguments. |
| 2045 | for (OpOperand &operand : forOp.getInitArgsMutable()) { |
| 2046 | auto vectorType = dyn_cast<VectorType>(operand.get().getType()); |
| 2047 | if (!vectorType) |
| 2048 | continue; |
| 2049 | |
| 2050 | VectorType newVectorType = dropNonScalableUnitDimFromType(vectorType); |
| 2051 | if (vectorType == newVectorType) |
| 2052 | continue; |
| 2053 | |
| 2054 | // Create a new ForOp with that iter operand replaced. |
| 2055 | auto castFn = [](OpBuilder &b, Location loc, Type type, Value source) { |
| 2056 | return b.create<vector::ShapeCastOp>(loc, type, source); |
| 2057 | }; |
| 2058 | |
| 2059 | Value replacement = |
| 2060 | castFn(rewriter, forOp.getLoc(), newVectorType, operand.get()); |
| 2061 | rewriter.replaceOp(forOp, |
| 2062 | replaceAndCastForOpIterArg(rewriter, forOp, operand, |
| 2063 | replacement, castFn)); |
| 2064 | return success(); |
| 2065 | } |
| 2066 | return failure(); |
| 2067 | } |
| 2068 | }; |
| 2069 | |
| 2070 | /// Pattern to eliminate redundant zero-constants added to reduction operands. |
| 2071 | /// It's enough for there to be one initial zero value, so we can eliminate the |
| 2072 | /// extra ones that feed into `vector.reduction <add>`. These get created by the |
| 2073 | /// `ChainedReduction` pattern. |
| 2074 | /// |
| 2075 | /// ```mlir |
| 2076 | /// %a = arith.addf %x, %zero |
| 2077 | /// %b = arith.addf %a, %y |
| 2078 | /// %c = vector.reduction <add> %b, %acc |
| 2079 | /// ==> |
| 2080 | /// %b = arith.addf %a, %y |
| 2081 | /// %c = vector.reduction <add> %b, %acc |
| 2082 | /// ``` |
| 2083 | struct ReduceRedundantZero final : OpRewritePattern<vector::ReductionOp> { |
| 2084 | using OpRewritePattern::OpRewritePattern; |
| 2085 | |
| 2086 | LogicalResult matchAndRewrite(vector::ReductionOp op, |
| 2087 | PatternRewriter &rewriter) const override { |
| 2088 | // TODO: Handle other reduction kinds and their identity values. |
| 2089 | if (op.getKind() != vector::CombiningKind::ADD) |
| 2090 | return failure(); |
| 2091 | |
| 2092 | Type elemType = op.getSourceVectorType().getElementType(); |
| 2093 | // The integer case should be handled by `arith.addi` folders, only check |
| 2094 | // for floats here. |
| 2095 | if (!isa<FloatType>(Val: elemType)) |
| 2096 | return failure(); |
| 2097 | |
| 2098 | auto vAdd = op.getVector().getDefiningOp<arith::AddFOp>(); |
| 2099 | if (!vAdd) |
| 2100 | return failure(); |
| 2101 | auto addLhs = vAdd.getLhs().getDefiningOp<arith::AddFOp>(); |
| 2102 | if (!addLhs) |
| 2103 | return failure(); |
| 2104 | |
| 2105 | if (!matchPattern(addLhs.getRhs(), m_AnyZeroFloat())) |
| 2106 | return failure(); |
| 2107 | |
| 2108 | auto newAdd = rewriter.create<arith::AddFOp>(vAdd.getLoc(), addLhs.getLhs(), |
| 2109 | vAdd.getRhs()); |
| 2110 | rewriter.replaceOpWithNewOp<vector::ReductionOp>(op, op.getKind(), newAdd, |
| 2111 | op.getAcc()); |
| 2112 | return success(); |
| 2113 | } |
| 2114 | }; |
| 2115 | |
| 2116 | /// Example: |
| 2117 | /// ``` |
| 2118 | /// %a = vector.reduction <add> %x : vector<2xf32> into f32 |
| 2119 | /// ``` |
| 2120 | /// is transformed into: |
| 2121 | /// ``` |
| 2122 | /// %y = vector.extract %x[0] : f32 from vector<2xf32> |
| 2123 | /// %z = vector.extract %x[1] : f32 from vector<2xf32> |
| 2124 | /// %a = arith.addf %y, %z : f32 |
| 2125 | /// ``` |
| 2126 | struct BreakDownVectorReduction final : OpRewritePattern<vector::ReductionOp> { |
| 2127 | BreakDownVectorReduction(MLIRContext *context, |
| 2128 | unsigned , |
| 2129 | PatternBenefit benefit) |
| 2130 | : OpRewritePattern(context, benefit), |
| 2131 | maxNumElementsToExtract(maxNumElementsToExtract) {} |
| 2132 | |
| 2133 | LogicalResult matchAndRewrite(vector::ReductionOp op, |
| 2134 | PatternRewriter &rewriter) const override { |
| 2135 | VectorType type = op.getSourceVectorType(); |
| 2136 | if (type.isScalable() || op.isMasked()) |
| 2137 | return failure(); |
| 2138 | assert(type.getRank() == 1 && "Expected a 1-d vector" ); |
| 2139 | |
| 2140 | int64_t numElems = type.getNumElements(); |
| 2141 | if (numElems > maxNumElementsToExtract) { |
| 2142 | return rewriter.notifyMatchFailure( |
| 2143 | op, llvm::formatv(Fmt: "has too many vector elements ({0}) to break down " |
| 2144 | "(max allowed: {1})" , |
| 2145 | Vals&: numElems, Vals: maxNumElementsToExtract)); |
| 2146 | } |
| 2147 | |
| 2148 | Location loc = op.getLoc(); |
| 2149 | SmallVector<Value> (numElems, nullptr); |
| 2150 | for (auto [idx, extractedElem] : llvm::enumerate(extracted)) |
| 2151 | extractedElem = rewriter.create<vector::ExtractOp>( |
| 2152 | loc, op.getVector(), static_cast<int64_t>(idx)); |
| 2153 | |
| 2154 | Value res = extracted.front(); |
| 2155 | for (auto extractedElem : llvm::drop_begin(extracted)) |
| 2156 | res = vector::makeArithReduction(rewriter, loc, op.getKind(), res, |
| 2157 | extractedElem, op.getFastmathAttr()); |
| 2158 | if (Value acc = op.getAcc()) |
| 2159 | res = vector::makeArithReduction(rewriter, loc, op.getKind(), res, acc, |
| 2160 | op.getFastmathAttr()); |
| 2161 | |
| 2162 | rewriter.replaceOp(op, res); |
| 2163 | return success(); |
| 2164 | } |
| 2165 | |
| 2166 | private: |
| 2167 | unsigned = 0; |
| 2168 | }; |
| 2169 | |
| 2170 | /// Fold `mulf(tr(broadcast(A)), broadcast(B))` into `vector.outerproduct(A, |
| 2171 | /// B)`. |
| 2172 | /// Example: |
| 2173 | /// %lhsBcast = vector.broadcast %lhs : vector<4xi32> to vector<4x4xi32> |
| 2174 | /// %lhsT = vector.transpose %lhsBcast, [1, 0] : vector<4x4xi32> to |
| 2175 | /// vector<4x4xi32> %rhsBcast = vector.broadcast %rhs : vector<4xi32> to |
| 2176 | /// vector<4x4xi32> %mul = arith.muli %lhsT, %rhsBcast : vector<4x4xi32> |
| 2177 | /// |
| 2178 | /// Becomes : |
| 2179 | /// |
| 2180 | /// %res = vector.outerproduct %lhs, %rhs : vector<4xi32>, vector<4xi32> |
| 2181 | /// |
| 2182 | /// Supports only 1D-to-2D broadcasts. The following cases are not supported. |
| 2183 | /// %ex1 = vector.broadcast %lhsCast : vector<1x4xf32> to vector<4x4xf32> |
| 2184 | /// %ex2 = vector.broadcast %lhsCast : f32 to vector<4x4xf32> |
| 2185 | /// %ex3 = vector.broadcast %lhsCast : vector<1x1xf32> to vector<4x4xf32> |
| 2186 | template <typename MulOpType> |
| 2187 | struct FoldArithToVectorOuterProduct : public OpRewritePattern<MulOpType> { |
| 2188 | using OpRewritePattern<MulOpType>::OpRewritePattern; |
| 2189 | // Returns whether a vector.broadcast matches requirements for an outerproduct |
| 2190 | // pattern. aka a 1D-to-2D broadcastOp without broadcasted unit dimension. |
| 2191 | bool isValidBroadcastSource(vector::BroadcastOp broadcastOp) const { |
| 2192 | // Fail if it is not a 1-to-2 dimension to broadcast to avoid generating |
| 2193 | // shape_casts/broadcasts which does not belong in this pattern. |
| 2194 | if (!broadcastOp.computeBroadcastedUnitDims().empty()) |
| 2195 | return false; |
| 2196 | // Avoid broadcast like f32 or vector<f32> -> ResType |
| 2197 | auto srcType = dyn_cast<VectorType>(broadcastOp.getSourceType()); |
| 2198 | return srcType && srcType.getRank() != 2; |
| 2199 | } |
| 2200 | |
| 2201 | LogicalResult matchAndRewrite(MulOpType mulOp, |
| 2202 | PatternRewriter &rewriter) const override { |
| 2203 | auto resType = llvm::cast<VectorType>(mulOp.getResult().getType()); |
| 2204 | if (!resType) |
| 2205 | return failure(); |
| 2206 | if (resType.getRank() != 2) |
| 2207 | return failure(); |
| 2208 | /// If operandA can be written as tr(broadcast(A)) and operandB as |
| 2209 | /// broadcast(B) where broadcasts are 1D-to-2D, create and return |
| 2210 | /// vector.outerproduct(A, B). Returns failure() otherwise. |
| 2211 | auto matchOuterProduct = |
| 2212 | [&](Value operandA, |
| 2213 | Value operandB) -> FailureOr<vector::OuterProductOp> { |
| 2214 | auto transposedLhs = operandA.getDefiningOp<vector::TransposeOp>(); |
| 2215 | if (!transposedLhs) |
| 2216 | return failure(); |
| 2217 | // Fail unless this is a true 2-D matrix transpose. |
| 2218 | ArrayRef<int64_t> permutation = transposedLhs.getPermutation(); |
| 2219 | if (permutation.size() != 2 || permutation[0] != 1 || permutation[1] != 0) |
| 2220 | return failure(); |
| 2221 | |
| 2222 | auto broadcastedLhs = |
| 2223 | transposedLhs.getVector().getDefiningOp<vector::BroadcastOp>(); |
| 2224 | if (!broadcastedLhs || !isValidBroadcastSource(broadcastedLhs)) |
| 2225 | return failure(); |
| 2226 | |
| 2227 | auto broadcastedRhs = operandB.getDefiningOp<vector::BroadcastOp>(); |
| 2228 | if (!broadcastedRhs || !isValidBroadcastSource(broadcastedRhs)) |
| 2229 | return failure(); |
| 2230 | |
| 2231 | return rewriter.create<vector::OuterProductOp>( |
| 2232 | mulOp->getLoc(), resType, broadcastedLhs.getSource(), |
| 2233 | broadcastedRhs.getSource(), Value(), vector::CombiningKind::ADD); |
| 2234 | }; |
| 2235 | |
| 2236 | Value lhs = mulOp->getOperand(0), rhs = mulOp->getOperand(1); |
| 2237 | auto maybeOuterP = matchOuterProduct(lhs, rhs); |
| 2238 | // Handle commutativity, the transposed op is the outerproduct LHS. |
| 2239 | if (failed(maybeOuterP)) |
| 2240 | maybeOuterP = matchOuterProduct(rhs, lhs); |
| 2241 | if (failed(maybeOuterP)) |
| 2242 | return failure(); |
| 2243 | rewriter.replaceOp(mulOp, maybeOuterP->getResult()); |
| 2244 | return success(); |
| 2245 | } |
| 2246 | }; |
| 2247 | |
| 2248 | } // namespace |
| 2249 | |
| 2250 | void mlir::vector::populateFoldArithExtensionPatterns( |
| 2251 | RewritePatternSet &patterns) { |
| 2252 | patterns.add<FoldArithExtIntoContractionOp<arith::ExtFOp>, |
| 2253 | FoldArithExtIntoContractionOp<arith::ExtSIOp>>( |
| 2254 | patterns.getContext()); |
| 2255 | } |
| 2256 | |
| 2257 | void mlir::vector::populateVectorMaskMaterializationPatterns( |
| 2258 | RewritePatternSet &patterns, bool force32BitVectorIndices, |
| 2259 | PatternBenefit benefit) { |
| 2260 | patterns.add<VectorCreateMaskOpConversion, |
| 2261 | MaterializeTransferMask<vector::TransferReadOp>, |
| 2262 | MaterializeTransferMask<vector::TransferWriteOp>>( |
| 2263 | arg: patterns.getContext(), args&: force32BitVectorIndices, args&: benefit); |
| 2264 | patterns.add<FoldI1Select>(arg: patterns.getContext(), args&: benefit); |
| 2265 | } |
| 2266 | |
| 2267 | void mlir::vector::populateDropUnitDimWithShapeCastPatterns( |
| 2268 | RewritePatternSet &patterns, PatternBenefit benefit) { |
| 2269 | // TODO: Consider either: |
| 2270 | // * including DropInnerMostUnitDimsTransferRead and |
| 2271 | // DropInnerMostUnitDimsTransferWrite, or |
| 2272 | // * better naming to distinguish this and |
| 2273 | // populateVectorTransferCollapseInnerMostContiguousDimsPatterns. |
| 2274 | patterns.add<DropUnitDimFromElementwiseOps, DropUnitDimsFromScfForOp, |
| 2275 | DropUnitDimsFromTransposeOp>(arg: patterns.getContext(), args&: benefit); |
| 2276 | } |
| 2277 | |
| 2278 | void mlir::vector::populateBubbleVectorBitCastOpPatterns( |
| 2279 | RewritePatternSet &patterns, PatternBenefit benefit) { |
| 2280 | patterns.add<BubbleDownVectorBitCastForExtract, |
| 2281 | BubbleDownBitCastForStridedSliceExtract, |
| 2282 | BubbleUpBitCastForInsert, BubbleUpBitCastForStridedSliceInsert>( |
| 2283 | arg: patterns.getContext(), args&: benefit); |
| 2284 | } |
| 2285 | |
| 2286 | void mlir::vector::populateBreakDownVectorBitCastOpPatterns( |
| 2287 | RewritePatternSet &patterns, |
| 2288 | std::function<bool(vector::BitCastOp)> controlFn, PatternBenefit benefit) { |
| 2289 | patterns.add<BreakDownVectorBitCast>(patterns.getContext(), |
| 2290 | std::move(controlFn), benefit); |
| 2291 | } |
| 2292 | |
| 2293 | void mlir::vector::populateVectorContractCanonicalizeMatmulToMMT( |
| 2294 | RewritePatternSet &patterns, |
| 2295 | std::function<LogicalResult(vector::ContractionOp)> constraint, |
| 2296 | PatternBenefit benefit) { |
| 2297 | patterns.add<CanonicalizeContractMatmulToMMT>(arg: patterns.getContext(), args&: benefit, |
| 2298 | args: std::move(constraint)); |
| 2299 | } |
| 2300 | |
| 2301 | void mlir::vector::populateVectorReductionToContractPatterns( |
| 2302 | RewritePatternSet &patterns, PatternBenefit benefit) { |
| 2303 | patterns.add<MultiReduceToContract, CombineContractBroadcastMask, |
| 2304 | CombineContractABTranspose, CombineContractResultTranspose>( |
| 2305 | arg: patterns.getContext(), args&: benefit); |
| 2306 | } |
| 2307 | |
| 2308 | void mlir::vector:: |
| 2309 | populateVectorTransferCollapseInnerMostContiguousDimsPatterns( |
| 2310 | RewritePatternSet &patterns, PatternBenefit benefit) { |
| 2311 | patterns.add<DropInnerMostUnitDimsTransferRead, |
| 2312 | DropInnerMostUnitDimsTransferWrite>(arg: patterns.getContext(), |
| 2313 | args&: benefit); |
| 2314 | } |
| 2315 | |
| 2316 | void mlir::vector::populateSinkVectorOpsPatterns(RewritePatternSet &patterns, |
| 2317 | PatternBenefit benefit) { |
| 2318 | patterns.add<ReorderElementwiseOpsOnTranspose, ReorderCastOpsOnBroadcast, |
| 2319 | ReorderElementwiseOpsOnBroadcast, ExtractOpFromElementwise>( |
| 2320 | arg: patterns.getContext(), args&: benefit); |
| 2321 | } |
| 2322 | |
| 2323 | void mlir::vector::populateSinkVectorMemOpsPatterns(RewritePatternSet &patterns, |
| 2324 | PatternBenefit benefit) { |
| 2325 | // TODO: Consider converting these patterns to canonicalizations. |
| 2326 | patterns.add<ExtractOpFromLoad, StoreOpFromSplatOrBroadcast>( |
| 2327 | arg: patterns.getContext(), args&: benefit); |
| 2328 | } |
| 2329 | |
| 2330 | void mlir::vector::populateChainedVectorReductionFoldingPatterns( |
| 2331 | RewritePatternSet &patterns, PatternBenefit benefit) { |
| 2332 | patterns.add<ChainedReduction>(arg: patterns.getContext(), args&: benefit); |
| 2333 | patterns.add<ReduceRedundantZero>(arg: patterns.getContext(), |
| 2334 | args: PatternBenefit(benefit.getBenefit() + 1)); |
| 2335 | } |
| 2336 | |
| 2337 | void mlir::vector::populateBreakDownVectorReductionPatterns( |
| 2338 | RewritePatternSet &patterns, unsigned , |
| 2339 | PatternBenefit benefit) { |
| 2340 | patterns.add<BreakDownVectorReduction>(arg: patterns.getContext(), |
| 2341 | args&: maxNumElementsToExtract, args&: benefit); |
| 2342 | } |
| 2343 | |
| 2344 | void mlir::vector::populateElementwiseToVectorOpsPatterns( |
| 2345 | RewritePatternSet &patterns) { |
| 2346 | patterns.add<FoldArithToVectorOuterProduct<arith::MulFOp>, |
| 2347 | FoldArithToVectorOuterProduct<arith::MulIOp>>( |
| 2348 | patterns.getContext()); |
| 2349 | } |
| 2350 | |
| 2351 | //===----------------------------------------------------------------------===// |
| 2352 | // TableGen'd enum attribute definitions |
| 2353 | //===----------------------------------------------------------------------===// |
| 2354 | |
| 2355 | #include "mlir/Dialect/Vector/Transforms/VectorTransformsEnums.cpp.inc" |
| 2356 | |