| 1 | //===- ByteCode.cpp - Pattern ByteCode Interpreter ------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements MLIR to byte-code generation and the interpreter. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "ByteCode.h" |
| 14 | #include "mlir/Analysis/Liveness.h" |
| 15 | #include "mlir/Dialect/PDL/IR/PDLTypes.h" |
| 16 | #include "mlir/Dialect/PDLInterp/IR/PDLInterp.h" |
| 17 | #include "mlir/IR/BuiltinOps.h" |
| 18 | #include "mlir/IR/RegionGraphTraits.h" |
| 19 | #include "llvm/ADT/IntervalMap.h" |
| 20 | #include "llvm/ADT/PostOrderIterator.h" |
| 21 | #include "llvm/ADT/TypeSwitch.h" |
| 22 | #include "llvm/Support/Debug.h" |
| 23 | #include "llvm/Support/Format.h" |
| 24 | #include "llvm/Support/FormatVariadic.h" |
| 25 | #include <numeric> |
| 26 | #include <optional> |
| 27 | |
| 28 | #define DEBUG_TYPE "pdl-bytecode" |
| 29 | |
| 30 | using namespace mlir; |
| 31 | using namespace mlir::detail; |
| 32 | |
| 33 | //===----------------------------------------------------------------------===// |
| 34 | // PDLByteCodePattern |
| 35 | //===----------------------------------------------------------------------===// |
| 36 | |
| 37 | PDLByteCodePattern PDLByteCodePattern::create(pdl_interp::RecordMatchOp matchOp, |
| 38 | PDLPatternConfigSet *configSet, |
| 39 | ByteCodeAddr rewriterAddr) { |
| 40 | PatternBenefit benefit = matchOp.getBenefit(); |
| 41 | MLIRContext *ctx = matchOp.getContext(); |
| 42 | |
| 43 | // Collect the set of generated operations. |
| 44 | SmallVector<StringRef, 8> generatedOps; |
| 45 | if (ArrayAttr generatedOpsAttr = matchOp.getGeneratedOpsAttr()) |
| 46 | generatedOps = |
| 47 | llvm::to_vector<8>(generatedOpsAttr.getAsValueRange<StringAttr>()); |
| 48 | |
| 49 | // Check to see if this is pattern matches a specific operation type. |
| 50 | if (std::optional<StringRef> rootKind = matchOp.getRootKind()) |
| 51 | return PDLByteCodePattern(rewriterAddr, configSet, *rootKind, benefit, ctx, |
| 52 | generatedOps); |
| 53 | return PDLByteCodePattern(rewriterAddr, configSet, MatchAnyOpTypeTag(), |
| 54 | benefit, ctx, generatedOps); |
| 55 | } |
| 56 | |
| 57 | //===----------------------------------------------------------------------===// |
| 58 | // PDLByteCodeMutableState |
| 59 | //===----------------------------------------------------------------------===// |
| 60 | |
| 61 | /// Set the new benefit for a bytecode pattern. The `patternIndex` corresponds |
| 62 | /// to the position of the pattern within the range returned by |
| 63 | /// `PDLByteCode::getPatterns`. |
| 64 | void PDLByteCodeMutableState::updatePatternBenefit(unsigned patternIndex, |
| 65 | PatternBenefit benefit) { |
| 66 | currentPatternBenefits[patternIndex] = benefit; |
| 67 | } |
| 68 | |
| 69 | /// Cleanup any allocated state after a full match/rewrite has been completed. |
| 70 | /// This method should be called irregardless of whether the match+rewrite was a |
| 71 | /// success or not. |
| 72 | void PDLByteCodeMutableState::cleanupAfterMatchAndRewrite() { |
| 73 | allocatedTypeRangeMemory.clear(); |
| 74 | allocatedValueRangeMemory.clear(); |
| 75 | } |
| 76 | |
| 77 | //===----------------------------------------------------------------------===// |
| 78 | // Bytecode OpCodes |
| 79 | //===----------------------------------------------------------------------===// |
| 80 | |
| 81 | namespace { |
| 82 | enum OpCode : ByteCodeField { |
| 83 | /// Apply an externally registered constraint. |
| 84 | ApplyConstraint, |
| 85 | /// Apply an externally registered rewrite. |
| 86 | ApplyRewrite, |
| 87 | /// Check if two generic values are equal. |
| 88 | AreEqual, |
| 89 | /// Check if two ranges are equal. |
| 90 | AreRangesEqual, |
| 91 | /// Unconditional branch. |
| 92 | Branch, |
| 93 | /// Compare the operand count of an operation with a constant. |
| 94 | CheckOperandCount, |
| 95 | /// Compare the name of an operation with a constant. |
| 96 | CheckOperationName, |
| 97 | /// Compare the result count of an operation with a constant. |
| 98 | CheckResultCount, |
| 99 | /// Compare a range of types to a constant range of types. |
| 100 | CheckTypes, |
| 101 | /// Continue to the next iteration of a loop. |
| 102 | Continue, |
| 103 | /// Create a type range from a list of constant types. |
| 104 | CreateConstantTypeRange, |
| 105 | /// Create an operation. |
| 106 | CreateOperation, |
| 107 | /// Create a type range from a list of dynamic types. |
| 108 | CreateDynamicTypeRange, |
| 109 | /// Create a value range. |
| 110 | CreateDynamicValueRange, |
| 111 | /// Erase an operation. |
| 112 | EraseOp, |
| 113 | /// Extract the op from a range at the specified index. |
| 114 | , |
| 115 | /// Extract the type from a range at the specified index. |
| 116 | , |
| 117 | /// Extract the value from a range at the specified index. |
| 118 | , |
| 119 | /// Terminate a matcher or rewrite sequence. |
| 120 | Finalize, |
| 121 | /// Iterate over a range of values. |
| 122 | ForEach, |
| 123 | /// Get a specific attribute of an operation. |
| 124 | GetAttribute, |
| 125 | /// Get the type of an attribute. |
| 126 | GetAttributeType, |
| 127 | /// Get the defining operation of a value. |
| 128 | GetDefiningOp, |
| 129 | /// Get a specific operand of an operation. |
| 130 | GetOperand0, |
| 131 | GetOperand1, |
| 132 | GetOperand2, |
| 133 | GetOperand3, |
| 134 | GetOperandN, |
| 135 | /// Get a specific operand group of an operation. |
| 136 | GetOperands, |
| 137 | /// Get a specific result of an operation. |
| 138 | GetResult0, |
| 139 | GetResult1, |
| 140 | GetResult2, |
| 141 | GetResult3, |
| 142 | GetResultN, |
| 143 | /// Get a specific result group of an operation. |
| 144 | GetResults, |
| 145 | /// Get the users of a value or a range of values. |
| 146 | GetUsers, |
| 147 | /// Get the type of a value. |
| 148 | GetValueType, |
| 149 | /// Get the types of a value range. |
| 150 | GetValueRangeTypes, |
| 151 | /// Check if a generic value is not null. |
| 152 | IsNotNull, |
| 153 | /// Record a successful pattern match. |
| 154 | RecordMatch, |
| 155 | /// Replace an operation. |
| 156 | ReplaceOp, |
| 157 | /// Compare an attribute with a set of constants. |
| 158 | SwitchAttribute, |
| 159 | /// Compare the operand count of an operation with a set of constants. |
| 160 | SwitchOperandCount, |
| 161 | /// Compare the name of an operation with a set of constants. |
| 162 | SwitchOperationName, |
| 163 | /// Compare the result count of an operation with a set of constants. |
| 164 | SwitchResultCount, |
| 165 | /// Compare a type with a set of constants. |
| 166 | SwitchType, |
| 167 | /// Compare a range of types with a set of constants. |
| 168 | SwitchTypes, |
| 169 | }; |
| 170 | } // namespace |
| 171 | |
| 172 | /// A marker used to indicate if an operation should infer types. |
| 173 | static constexpr ByteCodeField kInferTypesMarker = |
| 174 | std::numeric_limits<ByteCodeField>::max(); |
| 175 | |
| 176 | //===----------------------------------------------------------------------===// |
| 177 | // ByteCode Generation |
| 178 | //===----------------------------------------------------------------------===// |
| 179 | |
| 180 | //===----------------------------------------------------------------------===// |
| 181 | // Generator |
| 182 | //===----------------------------------------------------------------------===// |
| 183 | |
| 184 | namespace { |
| 185 | struct ByteCodeLiveRange; |
| 186 | struct ByteCodeWriter; |
| 187 | |
| 188 | /// Check if the given class `T` can be converted to an opaque pointer. |
| 189 | template <typename T, typename... Args> |
| 190 | using has_pointer_traits = decltype(std::declval<T>().getAsOpaquePointer()); |
| 191 | |
| 192 | /// This class represents the main generator for the pattern bytecode. |
| 193 | class Generator { |
| 194 | public: |
| 195 | Generator(MLIRContext *ctx, std::vector<const void *> &uniquedData, |
| 196 | SmallVectorImpl<ByteCodeField> &matcherByteCode, |
| 197 | SmallVectorImpl<ByteCodeField> &rewriterByteCode, |
| 198 | SmallVectorImpl<PDLByteCodePattern> &patterns, |
| 199 | ByteCodeField &maxValueMemoryIndex, |
| 200 | ByteCodeField &maxOpRangeMemoryIndex, |
| 201 | ByteCodeField &maxTypeRangeMemoryIndex, |
| 202 | ByteCodeField &maxValueRangeMemoryIndex, |
| 203 | ByteCodeField &maxLoopLevel, |
| 204 | llvm::StringMap<PDLConstraintFunction> &constraintFns, |
| 205 | llvm::StringMap<PDLRewriteFunction> &rewriteFns, |
| 206 | const DenseMap<Operation *, PDLPatternConfigSet *> &configMap) |
| 207 | : ctx(ctx), uniquedData(uniquedData), matcherByteCode(matcherByteCode), |
| 208 | rewriterByteCode(rewriterByteCode), patterns(patterns), |
| 209 | maxValueMemoryIndex(maxValueMemoryIndex), |
| 210 | maxOpRangeMemoryIndex(maxOpRangeMemoryIndex), |
| 211 | maxTypeRangeMemoryIndex(maxTypeRangeMemoryIndex), |
| 212 | maxValueRangeMemoryIndex(maxValueRangeMemoryIndex), |
| 213 | maxLoopLevel(maxLoopLevel), configMap(configMap) { |
| 214 | for (const auto &it : llvm::enumerate(First&: constraintFns)) |
| 215 | constraintToMemIndex.try_emplace(Key: it.value().first(), Args: it.index()); |
| 216 | for (const auto &it : llvm::enumerate(First&: rewriteFns)) |
| 217 | externalRewriterToMemIndex.try_emplace(Key: it.value().first(), Args: it.index()); |
| 218 | } |
| 219 | |
| 220 | /// Generate the bytecode for the given PDL interpreter module. |
| 221 | void generate(ModuleOp module); |
| 222 | |
| 223 | /// Return the memory index to use for the given value. |
| 224 | ByteCodeField &getMemIndex(Value value) { |
| 225 | assert(valueToMemIndex.count(value) && |
| 226 | "expected memory index to be assigned" ); |
| 227 | return valueToMemIndex[value]; |
| 228 | } |
| 229 | |
| 230 | /// Return the range memory index used to store the given range value. |
| 231 | ByteCodeField &getRangeStorageIndex(Value value) { |
| 232 | assert(valueToRangeIndex.count(value) && |
| 233 | "expected range index to be assigned" ); |
| 234 | return valueToRangeIndex[value]; |
| 235 | } |
| 236 | |
| 237 | /// Return an index to use when referring to the given data that is uniqued in |
| 238 | /// the MLIR context. |
| 239 | template <typename T> |
| 240 | std::enable_if_t<!std::is_convertible<T, Value>::value, ByteCodeField &> |
| 241 | getMemIndex(T val) { |
| 242 | const void *opaqueVal = val.getAsOpaquePointer(); |
| 243 | |
| 244 | // Get or insert a reference to this value. |
| 245 | auto it = uniquedDataToMemIndex.try_emplace( |
| 246 | Key: opaqueVal, Args: maxValueMemoryIndex + uniquedData.size()); |
| 247 | if (it.second) |
| 248 | uniquedData.push_back(x: opaqueVal); |
| 249 | return it.first->second; |
| 250 | } |
| 251 | |
| 252 | private: |
| 253 | /// Allocate memory indices for the results of operations within the matcher |
| 254 | /// and rewriters. |
| 255 | void allocateMemoryIndices(pdl_interp::FuncOp matcherFunc, |
| 256 | ModuleOp rewriterModule); |
| 257 | |
| 258 | /// Generate the bytecode for the given operation. |
| 259 | void generate(Region *region, ByteCodeWriter &writer); |
| 260 | void generate(Operation *op, ByteCodeWriter &writer); |
| 261 | void generate(pdl_interp::ApplyConstraintOp op, ByteCodeWriter &writer); |
| 262 | void generate(pdl_interp::ApplyRewriteOp op, ByteCodeWriter &writer); |
| 263 | void generate(pdl_interp::AreEqualOp op, ByteCodeWriter &writer); |
| 264 | void generate(pdl_interp::BranchOp op, ByteCodeWriter &writer); |
| 265 | void generate(pdl_interp::CheckAttributeOp op, ByteCodeWriter &writer); |
| 266 | void generate(pdl_interp::CheckOperandCountOp op, ByteCodeWriter &writer); |
| 267 | void generate(pdl_interp::CheckOperationNameOp op, ByteCodeWriter &writer); |
| 268 | void generate(pdl_interp::CheckResultCountOp op, ByteCodeWriter &writer); |
| 269 | void generate(pdl_interp::CheckTypeOp op, ByteCodeWriter &writer); |
| 270 | void generate(pdl_interp::CheckTypesOp op, ByteCodeWriter &writer); |
| 271 | void generate(pdl_interp::ContinueOp op, ByteCodeWriter &writer); |
| 272 | void generate(pdl_interp::CreateAttributeOp op, ByteCodeWriter &writer); |
| 273 | void generate(pdl_interp::CreateOperationOp op, ByteCodeWriter &writer); |
| 274 | void generate(pdl_interp::CreateRangeOp op, ByteCodeWriter &writer); |
| 275 | void generate(pdl_interp::CreateTypeOp op, ByteCodeWriter &writer); |
| 276 | void generate(pdl_interp::CreateTypesOp op, ByteCodeWriter &writer); |
| 277 | void generate(pdl_interp::EraseOp op, ByteCodeWriter &writer); |
| 278 | void generate(pdl_interp::ExtractOp op, ByteCodeWriter &writer); |
| 279 | void generate(pdl_interp::FinalizeOp op, ByteCodeWriter &writer); |
| 280 | void generate(pdl_interp::ForEachOp op, ByteCodeWriter &writer); |
| 281 | void generate(pdl_interp::GetAttributeOp op, ByteCodeWriter &writer); |
| 282 | void generate(pdl_interp::GetAttributeTypeOp op, ByteCodeWriter &writer); |
| 283 | void generate(pdl_interp::GetDefiningOpOp op, ByteCodeWriter &writer); |
| 284 | void generate(pdl_interp::GetOperandOp op, ByteCodeWriter &writer); |
| 285 | void generate(pdl_interp::GetOperandsOp op, ByteCodeWriter &writer); |
| 286 | void generate(pdl_interp::GetResultOp op, ByteCodeWriter &writer); |
| 287 | void generate(pdl_interp::GetResultsOp op, ByteCodeWriter &writer); |
| 288 | void generate(pdl_interp::GetUsersOp op, ByteCodeWriter &writer); |
| 289 | void generate(pdl_interp::GetValueTypeOp op, ByteCodeWriter &writer); |
| 290 | void generate(pdl_interp::IsNotNullOp op, ByteCodeWriter &writer); |
| 291 | void generate(pdl_interp::RecordMatchOp op, ByteCodeWriter &writer); |
| 292 | void generate(pdl_interp::ReplaceOp op, ByteCodeWriter &writer); |
| 293 | void generate(pdl_interp::SwitchAttributeOp op, ByteCodeWriter &writer); |
| 294 | void generate(pdl_interp::SwitchTypeOp op, ByteCodeWriter &writer); |
| 295 | void generate(pdl_interp::SwitchTypesOp op, ByteCodeWriter &writer); |
| 296 | void generate(pdl_interp::SwitchOperandCountOp op, ByteCodeWriter &writer); |
| 297 | void generate(pdl_interp::SwitchOperationNameOp op, ByteCodeWriter &writer); |
| 298 | void generate(pdl_interp::SwitchResultCountOp op, ByteCodeWriter &writer); |
| 299 | |
| 300 | /// Mapping from value to its corresponding memory index. |
| 301 | DenseMap<Value, ByteCodeField> valueToMemIndex; |
| 302 | |
| 303 | /// Mapping from a range value to its corresponding range storage index. |
| 304 | DenseMap<Value, ByteCodeField> valueToRangeIndex; |
| 305 | |
| 306 | /// Mapping from the name of an externally registered rewrite to its index in |
| 307 | /// the bytecode registry. |
| 308 | llvm::StringMap<ByteCodeField> externalRewriterToMemIndex; |
| 309 | |
| 310 | /// Mapping from the name of an externally registered constraint to its index |
| 311 | /// in the bytecode registry. |
| 312 | llvm::StringMap<ByteCodeField> constraintToMemIndex; |
| 313 | |
| 314 | /// Mapping from rewriter function name to the bytecode address of the |
| 315 | /// rewriter function in byte. |
| 316 | llvm::StringMap<ByteCodeAddr> rewriterToAddr; |
| 317 | |
| 318 | /// Mapping from a uniqued storage object to its memory index within |
| 319 | /// `uniquedData`. |
| 320 | DenseMap<const void *, ByteCodeField> uniquedDataToMemIndex; |
| 321 | |
| 322 | /// The current level of the foreach loop. |
| 323 | ByteCodeField curLoopLevel = 0; |
| 324 | |
| 325 | /// The current MLIR context. |
| 326 | MLIRContext *ctx; |
| 327 | |
| 328 | /// Mapping from block to its address. |
| 329 | DenseMap<Block *, ByteCodeAddr> blockToAddr; |
| 330 | |
| 331 | /// Data of the ByteCode class to be populated. |
| 332 | std::vector<const void *> &uniquedData; |
| 333 | SmallVectorImpl<ByteCodeField> &matcherByteCode; |
| 334 | SmallVectorImpl<ByteCodeField> &rewriterByteCode; |
| 335 | SmallVectorImpl<PDLByteCodePattern> &patterns; |
| 336 | ByteCodeField &maxValueMemoryIndex; |
| 337 | ByteCodeField &maxOpRangeMemoryIndex; |
| 338 | ByteCodeField &maxTypeRangeMemoryIndex; |
| 339 | ByteCodeField &maxValueRangeMemoryIndex; |
| 340 | ByteCodeField &maxLoopLevel; |
| 341 | |
| 342 | /// A map of pattern configurations. |
| 343 | const DenseMap<Operation *, PDLPatternConfigSet *> &configMap; |
| 344 | }; |
| 345 | |
| 346 | /// This class provides utilities for writing a bytecode stream. |
| 347 | struct ByteCodeWriter { |
| 348 | ByteCodeWriter(SmallVectorImpl<ByteCodeField> &bytecode, Generator &generator) |
| 349 | : bytecode(bytecode), generator(generator) {} |
| 350 | |
| 351 | /// Append a field to the bytecode. |
| 352 | void append(ByteCodeField field) { bytecode.push_back(Elt: field); } |
| 353 | void append(OpCode opCode) { bytecode.push_back(Elt: opCode); } |
| 354 | |
| 355 | /// Append an address to the bytecode. |
| 356 | void append(ByteCodeAddr field) { |
| 357 | static_assert((sizeof(ByteCodeAddr) / sizeof(ByteCodeField)) == 2, |
| 358 | "unexpected ByteCode address size" ); |
| 359 | |
| 360 | ByteCodeField fieldParts[2]; |
| 361 | std::memcpy(dest: fieldParts, src: &field, n: sizeof(ByteCodeAddr)); |
| 362 | bytecode.append(IL: {fieldParts[0], fieldParts[1]}); |
| 363 | } |
| 364 | |
| 365 | /// Append a single successor to the bytecode, the exact address will need to |
| 366 | /// be resolved later. |
| 367 | void append(Block *successor) { |
| 368 | // Add back a reference to the successor so that the address can be resolved |
| 369 | // later. |
| 370 | unresolvedSuccessorRefs[successor].push_back(Elt: bytecode.size()); |
| 371 | append(field: ByteCodeAddr(0)); |
| 372 | } |
| 373 | |
| 374 | /// Append a successor range to the bytecode, the exact address will need to |
| 375 | /// be resolved later. |
| 376 | void append(SuccessorRange successors) { |
| 377 | for (Block *successor : successors) |
| 378 | append(successor); |
| 379 | } |
| 380 | |
| 381 | /// Append a range of values that will be read as generic PDLValues. |
| 382 | void appendPDLValueList(OperandRange values) { |
| 383 | bytecode.push_back(Elt: values.size()); |
| 384 | for (Value value : values) |
| 385 | appendPDLValue(value); |
| 386 | } |
| 387 | |
| 388 | /// Append a value as a PDLValue. |
| 389 | void appendPDLValue(Value value) { |
| 390 | appendPDLValueKind(value); |
| 391 | append(value); |
| 392 | } |
| 393 | |
| 394 | /// Append the PDLValue::Kind of the given value. |
| 395 | void appendPDLValueKind(Value value) { appendPDLValueKind(type: value.getType()); } |
| 396 | |
| 397 | /// Append the PDLValue::Kind of the given type. |
| 398 | void appendPDLValueKind(Type type) { |
| 399 | PDLValue::Kind kind = |
| 400 | TypeSwitch<Type, PDLValue::Kind>(type) |
| 401 | .Case<pdl::AttributeType>( |
| 402 | [](Type) { return PDLValue::Kind::Attribute; }) |
| 403 | .Case<pdl::OperationType>( |
| 404 | [](Type) { return PDLValue::Kind::Operation; }) |
| 405 | .Case<pdl::RangeType>([](pdl::RangeType rangeTy) { |
| 406 | if (isa<pdl::TypeType>(rangeTy.getElementType())) |
| 407 | return PDLValue::Kind::TypeRange; |
| 408 | return PDLValue::Kind::ValueRange; |
| 409 | }) |
| 410 | .Case<pdl::TypeType>([](Type) { return PDLValue::Kind::Type; }) |
| 411 | .Case<pdl::ValueType>([](Type) { return PDLValue::Kind::Value; }); |
| 412 | bytecode.push_back(Elt: static_cast<ByteCodeField>(kind)); |
| 413 | } |
| 414 | |
| 415 | /// Append a value that will be stored in a memory slot and not inline within |
| 416 | /// the bytecode. |
| 417 | template <typename T> |
| 418 | std::enable_if_t<llvm::is_detected<has_pointer_traits, T>::value || |
| 419 | std::is_pointer<T>::value> |
| 420 | append(T value) { |
| 421 | bytecode.push_back(Elt: generator.getMemIndex(value)); |
| 422 | } |
| 423 | |
| 424 | /// Append a range of values. |
| 425 | template <typename T, typename IteratorT = llvm::detail::IterOfRange<T>> |
| 426 | std::enable_if_t<!llvm::is_detected<has_pointer_traits, T>::value> |
| 427 | append(T range) { |
| 428 | bytecode.push_back(Elt: llvm::size(range)); |
| 429 | for (auto it : range) |
| 430 | append(it); |
| 431 | } |
| 432 | |
| 433 | /// Append a variadic number of fields to the bytecode. |
| 434 | template <typename FieldTy, typename Field2Ty, typename... FieldTys> |
| 435 | void append(FieldTy field, Field2Ty field2, FieldTys... fields) { |
| 436 | append(field); |
| 437 | append(field2, fields...); |
| 438 | } |
| 439 | |
| 440 | /// Appends a value as a pointer, stored inline within the bytecode. |
| 441 | template <typename T> |
| 442 | std::enable_if_t<llvm::is_detected<has_pointer_traits, T>::value> |
| 443 | appendInline(T value) { |
| 444 | constexpr size_t numParts = sizeof(const void *) / sizeof(ByteCodeField); |
| 445 | const void *pointer = value.getAsOpaquePointer(); |
| 446 | ByteCodeField fieldParts[numParts]; |
| 447 | std::memcpy(dest: fieldParts, src: &pointer, n: sizeof(const void *)); |
| 448 | bytecode.append(in_start: fieldParts, in_end: fieldParts + numParts); |
| 449 | } |
| 450 | |
| 451 | /// Successor references in the bytecode that have yet to be resolved. |
| 452 | DenseMap<Block *, SmallVector<unsigned, 4>> unresolvedSuccessorRefs; |
| 453 | |
| 454 | /// The underlying bytecode buffer. |
| 455 | SmallVectorImpl<ByteCodeField> &bytecode; |
| 456 | |
| 457 | /// The main generator producing PDL. |
| 458 | Generator &generator; |
| 459 | }; |
| 460 | |
| 461 | /// This class represents a live range of PDL Interpreter values, containing |
| 462 | /// information about when values are live within a match/rewrite. |
| 463 | struct ByteCodeLiveRange { |
| 464 | using Set = llvm::IntervalMap<uint64_t, char, 16>; |
| 465 | using Allocator = Set::Allocator; |
| 466 | |
| 467 | ByteCodeLiveRange(Allocator &alloc) : liveness(new Set(alloc)) {} |
| 468 | |
| 469 | /// Union this live range with the one provided. |
| 470 | void unionWith(const ByteCodeLiveRange &rhs) { |
| 471 | for (auto it = rhs.liveness->begin(), e = rhs.liveness->end(); it != e; |
| 472 | ++it) |
| 473 | liveness->insert(a: it.start(), b: it.stop(), /*dummyValue*/ y: 0); |
| 474 | } |
| 475 | |
| 476 | /// Returns true if this range overlaps with the one provided. |
| 477 | bool overlaps(const ByteCodeLiveRange &rhs) const { |
| 478 | return llvm::IntervalMapOverlaps<Set, Set>(*liveness, *rhs.liveness) |
| 479 | .valid(); |
| 480 | } |
| 481 | |
| 482 | /// A map representing the ranges of the match/rewrite that a value is live in |
| 483 | /// the interpreter. |
| 484 | /// |
| 485 | /// We use std::unique_ptr here, because IntervalMap does not provide a |
| 486 | /// correct copy or move constructor. We can eliminate the pointer once |
| 487 | /// https://reviews.llvm.org/D113240 lands. |
| 488 | std::unique_ptr<llvm::IntervalMap<uint64_t, char, 16>> liveness; |
| 489 | |
| 490 | /// The operation range storage index for this range. |
| 491 | std::optional<unsigned> opRangeIndex; |
| 492 | |
| 493 | /// The type range storage index for this range. |
| 494 | std::optional<unsigned> typeRangeIndex; |
| 495 | |
| 496 | /// The value range storage index for this range. |
| 497 | std::optional<unsigned> valueRangeIndex; |
| 498 | }; |
| 499 | } // namespace |
| 500 | |
| 501 | void Generator::generate(ModuleOp module) { |
| 502 | auto matcherFunc = module.lookupSymbol<pdl_interp::FuncOp>( |
| 503 | pdl_interp::PDLInterpDialect::getMatcherFunctionName()); |
| 504 | ModuleOp rewriterModule = module.lookupSymbol<ModuleOp>( |
| 505 | pdl_interp::PDLInterpDialect::getRewriterModuleName()); |
| 506 | assert(matcherFunc && rewriterModule && "invalid PDL Interpreter module" ); |
| 507 | |
| 508 | // Allocate memory indices for the results of operations within the matcher |
| 509 | // and rewriters. |
| 510 | allocateMemoryIndices(matcherFunc, rewriterModule); |
| 511 | |
| 512 | // Generate code for the rewriter functions. |
| 513 | ByteCodeWriter rewriterByteCodeWriter(rewriterByteCode, *this); |
| 514 | for (auto rewriterFunc : rewriterModule.getOps<pdl_interp::FuncOp>()) { |
| 515 | rewriterToAddr.try_emplace(rewriterFunc.getName(), rewriterByteCode.size()); |
| 516 | for (Operation &op : rewriterFunc.getOps()) |
| 517 | generate(&op, rewriterByteCodeWriter); |
| 518 | } |
| 519 | assert(rewriterByteCodeWriter.unresolvedSuccessorRefs.empty() && |
| 520 | "unexpected branches in rewriter function" ); |
| 521 | |
| 522 | // Generate code for the matcher function. |
| 523 | ByteCodeWriter matcherByteCodeWriter(matcherByteCode, *this); |
| 524 | generate(&matcherFunc.getBody(), matcherByteCodeWriter); |
| 525 | |
| 526 | // Resolve successor references in the matcher. |
| 527 | for (auto &it : matcherByteCodeWriter.unresolvedSuccessorRefs) { |
| 528 | ByteCodeAddr addr = blockToAddr[it.first]; |
| 529 | for (unsigned offsetToFix : it.second) |
| 530 | std::memcpy(dest: &matcherByteCode[offsetToFix], src: &addr, n: sizeof(ByteCodeAddr)); |
| 531 | } |
| 532 | } |
| 533 | |
| 534 | void Generator::allocateMemoryIndices(pdl_interp::FuncOp matcherFunc, |
| 535 | ModuleOp rewriterModule) { |
| 536 | // Rewriters use simplistic allocation scheme that simply assigns an index to |
| 537 | // each result. |
| 538 | for (auto rewriterFunc : rewriterModule.getOps<pdl_interp::FuncOp>()) { |
| 539 | ByteCodeField index = 0, typeRangeIndex = 0, valueRangeIndex = 0; |
| 540 | auto processRewriterValue = [&](Value val) { |
| 541 | valueToMemIndex.try_emplace(val, index++); |
| 542 | if (pdl::RangeType rangeType = dyn_cast<pdl::RangeType>(val.getType())) { |
| 543 | Type elementTy = rangeType.getElementType(); |
| 544 | if (isa<pdl::TypeType>(elementTy)) |
| 545 | valueToRangeIndex.try_emplace(val, typeRangeIndex++); |
| 546 | else if (isa<pdl::ValueType>(elementTy)) |
| 547 | valueToRangeIndex.try_emplace(val, valueRangeIndex++); |
| 548 | } |
| 549 | }; |
| 550 | |
| 551 | for (BlockArgument arg : rewriterFunc.getArguments()) |
| 552 | processRewriterValue(arg); |
| 553 | rewriterFunc.getBody().walk([&](Operation *op) { |
| 554 | for (Value result : op->getResults()) |
| 555 | processRewriterValue(result); |
| 556 | }); |
| 557 | if (index > maxValueMemoryIndex) |
| 558 | maxValueMemoryIndex = index; |
| 559 | if (typeRangeIndex > maxTypeRangeMemoryIndex) |
| 560 | maxTypeRangeMemoryIndex = typeRangeIndex; |
| 561 | if (valueRangeIndex > maxValueRangeMemoryIndex) |
| 562 | maxValueRangeMemoryIndex = valueRangeIndex; |
| 563 | } |
| 564 | |
| 565 | // The matcher function uses a more sophisticated numbering that tries to |
| 566 | // minimize the number of memory indices assigned. This is done by determining |
| 567 | // a live range of the values within the matcher, then the allocation is just |
| 568 | // finding the minimal number of overlapping live ranges. This is essentially |
| 569 | // a simplified form of register allocation where we don't necessarily have a |
| 570 | // limited number of registers, but we still want to minimize the number used. |
| 571 | DenseMap<Operation *, unsigned> opToFirstIndex; |
| 572 | DenseMap<Operation *, unsigned> opToLastIndex; |
| 573 | |
| 574 | // A custom walk that marks the first and the last index of each operation. |
| 575 | // The entry marks the beginning of the liveness range for this operation, |
| 576 | // followed by nested operations, followed by the end of the liveness range. |
| 577 | unsigned index = 0; |
| 578 | llvm::unique_function<void(Operation *)> walk = [&](Operation *op) { |
| 579 | opToFirstIndex.try_emplace(Key: op, Args: index++); |
| 580 | for (Region ®ion : op->getRegions()) |
| 581 | for (Block &block : region.getBlocks()) |
| 582 | for (Operation &nested : block) |
| 583 | walk(&nested); |
| 584 | opToLastIndex.try_emplace(Key: op, Args: index++); |
| 585 | }; |
| 586 | walk(matcherFunc); |
| 587 | |
| 588 | // Liveness info for each of the defs within the matcher. |
| 589 | ByteCodeLiveRange::Allocator allocator; |
| 590 | DenseMap<Value, ByteCodeLiveRange> valueDefRanges; |
| 591 | |
| 592 | // Assign the root operation being matched to slot 0. |
| 593 | BlockArgument rootOpArg = matcherFunc.getArgument(0); |
| 594 | valueToMemIndex[rootOpArg] = 0; |
| 595 | |
| 596 | // Walk each of the blocks, computing the def interval that the value is used. |
| 597 | Liveness matcherLiveness(matcherFunc); |
| 598 | matcherFunc->walk([&](Block *block) { |
| 599 | const LivenessBlockInfo *info = matcherLiveness.getLiveness(block); |
| 600 | assert(info && "expected liveness info for block" ); |
| 601 | auto processValue = [&](Value value, Operation *firstUseOrDef) { |
| 602 | // We don't need to process the root op argument, this value is always |
| 603 | // assigned to the first memory slot. |
| 604 | if (value == rootOpArg) |
| 605 | return; |
| 606 | |
| 607 | // Set indices for the range of this block that the value is used. |
| 608 | auto defRangeIt = valueDefRanges.try_emplace(Key: value, Args&: allocator).first; |
| 609 | defRangeIt->second.liveness->insert( |
| 610 | a: opToFirstIndex[firstUseOrDef], |
| 611 | b: opToLastIndex[info->getEndOperation(value, startOperation: firstUseOrDef)], |
| 612 | /*dummyValue*/ y: 0); |
| 613 | |
| 614 | // Check to see if this value is a range type. |
| 615 | if (auto rangeTy = dyn_cast<pdl::RangeType>(value.getType())) { |
| 616 | Type eleType = rangeTy.getElementType(); |
| 617 | if (isa<pdl::OperationType>(eleType)) |
| 618 | defRangeIt->second.opRangeIndex = 0; |
| 619 | else if (isa<pdl::TypeType>(eleType)) |
| 620 | defRangeIt->second.typeRangeIndex = 0; |
| 621 | else if (isa<pdl::ValueType>(eleType)) |
| 622 | defRangeIt->second.valueRangeIndex = 0; |
| 623 | } |
| 624 | }; |
| 625 | |
| 626 | // Process the live-ins of this block. |
| 627 | for (Value liveIn : info->in()) { |
| 628 | // Only process the value if it has been defined in the current region. |
| 629 | // Other values that span across pdl_interp.foreach will be added higher |
| 630 | // up. This ensures that the we keep them alive for the entire duration |
| 631 | // of the loop. |
| 632 | if (liveIn.getParentRegion() == block->getParent()) |
| 633 | processValue(liveIn, &block->front()); |
| 634 | } |
| 635 | |
| 636 | // Process the block arguments for the entry block (those are not live-in). |
| 637 | if (block->isEntryBlock()) { |
| 638 | for (Value argument : block->getArguments()) |
| 639 | processValue(argument, &block->front()); |
| 640 | } |
| 641 | |
| 642 | // Process any new defs within this block. |
| 643 | for (Operation &op : *block) |
| 644 | for (Value result : op.getResults()) |
| 645 | processValue(result, &op); |
| 646 | }); |
| 647 | |
| 648 | // Greedily allocate memory slots using the computed def live ranges. |
| 649 | std::vector<ByteCodeLiveRange> allocatedIndices; |
| 650 | |
| 651 | // The number of memory indices currently allocated (and its next value). |
| 652 | // Recall that the root gets allocated memory index 0. |
| 653 | ByteCodeField numIndices = 1; |
| 654 | |
| 655 | // The number of memory ranges of various types (and their next values). |
| 656 | ByteCodeField numOpRanges = 0, numTypeRanges = 0, numValueRanges = 0; |
| 657 | |
| 658 | for (auto &defIt : valueDefRanges) { |
| 659 | ByteCodeField &memIndex = valueToMemIndex[defIt.first]; |
| 660 | ByteCodeLiveRange &defRange = defIt.second; |
| 661 | |
| 662 | // Try to allocate to an existing index. |
| 663 | for (const auto &existingIndexIt : llvm::enumerate(First&: allocatedIndices)) { |
| 664 | ByteCodeLiveRange &existingRange = existingIndexIt.value(); |
| 665 | if (!defRange.overlaps(rhs: existingRange)) { |
| 666 | existingRange.unionWith(rhs: defRange); |
| 667 | memIndex = existingIndexIt.index() + 1; |
| 668 | |
| 669 | if (defRange.opRangeIndex) { |
| 670 | if (!existingRange.opRangeIndex) |
| 671 | existingRange.opRangeIndex = numOpRanges++; |
| 672 | valueToRangeIndex[defIt.first] = *existingRange.opRangeIndex; |
| 673 | } else if (defRange.typeRangeIndex) { |
| 674 | if (!existingRange.typeRangeIndex) |
| 675 | existingRange.typeRangeIndex = numTypeRanges++; |
| 676 | valueToRangeIndex[defIt.first] = *existingRange.typeRangeIndex; |
| 677 | } else if (defRange.valueRangeIndex) { |
| 678 | if (!existingRange.valueRangeIndex) |
| 679 | existingRange.valueRangeIndex = numValueRanges++; |
| 680 | valueToRangeIndex[defIt.first] = *existingRange.valueRangeIndex; |
| 681 | } |
| 682 | break; |
| 683 | } |
| 684 | } |
| 685 | |
| 686 | // If no existing index could be used, add a new one. |
| 687 | if (memIndex == 0) { |
| 688 | allocatedIndices.emplace_back(args&: allocator); |
| 689 | ByteCodeLiveRange &newRange = allocatedIndices.back(); |
| 690 | newRange.unionWith(rhs: defRange); |
| 691 | |
| 692 | // Allocate an index for op/type/value ranges. |
| 693 | if (defRange.opRangeIndex) { |
| 694 | newRange.opRangeIndex = numOpRanges; |
| 695 | valueToRangeIndex[defIt.first] = numOpRanges++; |
| 696 | } else if (defRange.typeRangeIndex) { |
| 697 | newRange.typeRangeIndex = numTypeRanges; |
| 698 | valueToRangeIndex[defIt.first] = numTypeRanges++; |
| 699 | } else if (defRange.valueRangeIndex) { |
| 700 | newRange.valueRangeIndex = numValueRanges; |
| 701 | valueToRangeIndex[defIt.first] = numValueRanges++; |
| 702 | } |
| 703 | |
| 704 | memIndex = allocatedIndices.size(); |
| 705 | ++numIndices; |
| 706 | } |
| 707 | } |
| 708 | |
| 709 | // Print the index usage and ensure that we did not run out of index space. |
| 710 | LLVM_DEBUG({ |
| 711 | llvm::dbgs() << "Allocated " << allocatedIndices.size() << " indices " |
| 712 | << "(down from initial " << valueDefRanges.size() << ").\n" ; |
| 713 | }); |
| 714 | assert(allocatedIndices.size() <= std::numeric_limits<ByteCodeField>::max() && |
| 715 | "Ran out of memory for allocated indices" ); |
| 716 | |
| 717 | // Update the max number of indices. |
| 718 | if (numIndices > maxValueMemoryIndex) |
| 719 | maxValueMemoryIndex = numIndices; |
| 720 | if (numOpRanges > maxOpRangeMemoryIndex) |
| 721 | maxOpRangeMemoryIndex = numOpRanges; |
| 722 | if (numTypeRanges > maxTypeRangeMemoryIndex) |
| 723 | maxTypeRangeMemoryIndex = numTypeRanges; |
| 724 | if (numValueRanges > maxValueRangeMemoryIndex) |
| 725 | maxValueRangeMemoryIndex = numValueRanges; |
| 726 | } |
| 727 | |
| 728 | void Generator::generate(Region *region, ByteCodeWriter &writer) { |
| 729 | llvm::ReversePostOrderTraversal<Region *> rpot(region); |
| 730 | for (Block *block : rpot) { |
| 731 | // Keep track of where this block begins within the matcher function. |
| 732 | blockToAddr.try_emplace(Key: block, Args: matcherByteCode.size()); |
| 733 | for (Operation &op : *block) |
| 734 | generate(op: &op, writer); |
| 735 | } |
| 736 | } |
| 737 | |
| 738 | void Generator::generate(Operation *op, ByteCodeWriter &writer) { |
| 739 | LLVM_DEBUG({ |
| 740 | // The following list must contain all the operations that do not |
| 741 | // produce any bytecode. |
| 742 | if (!isa<pdl_interp::CreateAttributeOp, pdl_interp::CreateTypeOp>(op)) |
| 743 | writer.appendInline(op->getLoc()); |
| 744 | }); |
| 745 | TypeSwitch<Operation *>(op) |
| 746 | .Case<pdl_interp::ApplyConstraintOp, pdl_interp::ApplyRewriteOp, |
| 747 | pdl_interp::AreEqualOp, pdl_interp::BranchOp, |
| 748 | pdl_interp::CheckAttributeOp, pdl_interp::CheckOperandCountOp, |
| 749 | pdl_interp::CheckOperationNameOp, pdl_interp::CheckResultCountOp, |
| 750 | pdl_interp::CheckTypeOp, pdl_interp::CheckTypesOp, |
| 751 | pdl_interp::ContinueOp, pdl_interp::CreateAttributeOp, |
| 752 | pdl_interp::CreateOperationOp, pdl_interp::CreateRangeOp, |
| 753 | pdl_interp::CreateTypeOp, pdl_interp::CreateTypesOp, |
| 754 | pdl_interp::EraseOp, pdl_interp::ExtractOp, pdl_interp::FinalizeOp, |
| 755 | pdl_interp::ForEachOp, pdl_interp::GetAttributeOp, |
| 756 | pdl_interp::GetAttributeTypeOp, pdl_interp::GetDefiningOpOp, |
| 757 | pdl_interp::GetOperandOp, pdl_interp::GetOperandsOp, |
| 758 | pdl_interp::GetResultOp, pdl_interp::GetResultsOp, |
| 759 | pdl_interp::GetUsersOp, pdl_interp::GetValueTypeOp, |
| 760 | pdl_interp::IsNotNullOp, pdl_interp::RecordMatchOp, |
| 761 | pdl_interp::ReplaceOp, pdl_interp::SwitchAttributeOp, |
| 762 | pdl_interp::SwitchTypeOp, pdl_interp::SwitchTypesOp, |
| 763 | pdl_interp::SwitchOperandCountOp, pdl_interp::SwitchOperationNameOp, |
| 764 | pdl_interp::SwitchResultCountOp>( |
| 765 | [&](auto interpOp) { this->generate(interpOp, writer); }) |
| 766 | .Default([](Operation *) { |
| 767 | llvm_unreachable("unknown `pdl_interp` operation" ); |
| 768 | }); |
| 769 | } |
| 770 | |
| 771 | void Generator::generate(pdl_interp::ApplyConstraintOp op, |
| 772 | ByteCodeWriter &writer) { |
| 773 | // Constraints that should return a value have to be registered as rewrites. |
| 774 | // If a constraint and a rewrite of similar name are registered the |
| 775 | // constraint takes precedence |
| 776 | writer.append(OpCode::ApplyConstraint, constraintToMemIndex[op.getName()]); |
| 777 | writer.appendPDLValueList(values: op.getArgs()); |
| 778 | writer.append(field: ByteCodeField(op.getIsNegated())); |
| 779 | ResultRange results = op.getResults(); |
| 780 | writer.append(field: ByteCodeField(results.size())); |
| 781 | for (Value result : results) { |
| 782 | // We record the expected kind of the result, so that we can provide extra |
| 783 | // verification of the native rewrite function and handle the failure case |
| 784 | // of constraints accordingly. |
| 785 | writer.appendPDLValueKind(result); |
| 786 | |
| 787 | // Range results also need to append the range storage index. |
| 788 | if (isa<pdl::RangeType>(result.getType())) |
| 789 | writer.append(getRangeStorageIndex(result)); |
| 790 | writer.append(result); |
| 791 | } |
| 792 | writer.append(op.getSuccessors()); |
| 793 | } |
| 794 | void Generator::generate(pdl_interp::ApplyRewriteOp op, |
| 795 | ByteCodeWriter &writer) { |
| 796 | assert(externalRewriterToMemIndex.count(op.getName()) && |
| 797 | "expected index for rewrite function" ); |
| 798 | writer.append(OpCode::ApplyRewrite, externalRewriterToMemIndex[op.getName()]); |
| 799 | writer.appendPDLValueList(values: op.getArgs()); |
| 800 | |
| 801 | ResultRange results = op.getResults(); |
| 802 | writer.append(field: ByteCodeField(results.size())); |
| 803 | for (Value result : results) { |
| 804 | // We record the expected kind of the result, so that we |
| 805 | // can provide extra verification of the native rewrite function. |
| 806 | writer.appendPDLValueKind(result); |
| 807 | |
| 808 | // Range results also need to append the range storage index. |
| 809 | if (isa<pdl::RangeType>(result.getType())) |
| 810 | writer.append(getRangeStorageIndex(result)); |
| 811 | writer.append(result); |
| 812 | } |
| 813 | } |
| 814 | void Generator::generate(pdl_interp::AreEqualOp op, ByteCodeWriter &writer) { |
| 815 | Value lhs = op.getLhs(); |
| 816 | if (isa<pdl::RangeType>(lhs.getType())) { |
| 817 | writer.append(opCode: OpCode::AreRangesEqual); |
| 818 | writer.appendPDLValueKind(value: lhs); |
| 819 | writer.append(op.getLhs(), op.getRhs(), op.getSuccessors()); |
| 820 | return; |
| 821 | } |
| 822 | |
| 823 | writer.append(OpCode::AreEqual, lhs, op.getRhs(), op.getSuccessors()); |
| 824 | } |
| 825 | void Generator::generate(pdl_interp::BranchOp op, ByteCodeWriter &writer) { |
| 826 | writer.append(field: OpCode::Branch, field2: SuccessorRange(op.getOperation())); |
| 827 | } |
| 828 | void Generator::generate(pdl_interp::CheckAttributeOp op, |
| 829 | ByteCodeWriter &writer) { |
| 830 | writer.append(OpCode::AreEqual, op.getAttribute(), op.getConstantValue(), |
| 831 | op.getSuccessors()); |
| 832 | } |
| 833 | void Generator::generate(pdl_interp::CheckOperandCountOp op, |
| 834 | ByteCodeWriter &writer) { |
| 835 | writer.append(OpCode::CheckOperandCount, op.getInputOp(), op.getCount(), |
| 836 | static_cast<ByteCodeField>(op.getCompareAtLeast()), |
| 837 | op.getSuccessors()); |
| 838 | } |
| 839 | void Generator::generate(pdl_interp::CheckOperationNameOp op, |
| 840 | ByteCodeWriter &writer) { |
| 841 | writer.append(OpCode::CheckOperationName, op.getInputOp(), |
| 842 | OperationName(op.getName(), ctx), op.getSuccessors()); |
| 843 | } |
| 844 | void Generator::generate(pdl_interp::CheckResultCountOp op, |
| 845 | ByteCodeWriter &writer) { |
| 846 | writer.append(OpCode::CheckResultCount, op.getInputOp(), op.getCount(), |
| 847 | static_cast<ByteCodeField>(op.getCompareAtLeast()), |
| 848 | op.getSuccessors()); |
| 849 | } |
| 850 | void Generator::generate(pdl_interp::CheckTypeOp op, ByteCodeWriter &writer) { |
| 851 | writer.append(OpCode::AreEqual, op.getValue(), op.getType(), |
| 852 | op.getSuccessors()); |
| 853 | } |
| 854 | void Generator::generate(pdl_interp::CheckTypesOp op, ByteCodeWriter &writer) { |
| 855 | writer.append(OpCode::CheckTypes, op.getValue(), op.getTypes(), |
| 856 | op.getSuccessors()); |
| 857 | } |
| 858 | void Generator::generate(pdl_interp::ContinueOp op, ByteCodeWriter &writer) { |
| 859 | assert(curLoopLevel > 0 && "encountered pdl_interp.continue at top level" ); |
| 860 | writer.append(field: OpCode::Continue, field2: ByteCodeField(curLoopLevel - 1)); |
| 861 | } |
| 862 | void Generator::generate(pdl_interp::CreateAttributeOp op, |
| 863 | ByteCodeWriter &writer) { |
| 864 | // Simply repoint the memory index of the result to the constant. |
| 865 | getMemIndex(op.getAttribute()) = getMemIndex(op.getValue()); |
| 866 | } |
| 867 | void Generator::generate(pdl_interp::CreateOperationOp op, |
| 868 | ByteCodeWriter &writer) { |
| 869 | writer.append(OpCode::CreateOperation, op.getResultOp(), |
| 870 | OperationName(op.getName(), ctx)); |
| 871 | writer.appendPDLValueList(values: op.getInputOperands()); |
| 872 | |
| 873 | // Add the attributes. |
| 874 | OperandRange attributes = op.getInputAttributes(); |
| 875 | writer.append(field: static_cast<ByteCodeField>(attributes.size())); |
| 876 | for (auto it : llvm::zip(op.getInputAttributeNames(), attributes)) |
| 877 | writer.append(std::get<0>(it), std::get<1>(it)); |
| 878 | |
| 879 | // Add the result types. If the operation has inferred results, we use a |
| 880 | // marker "size" value. Otherwise, we add the list of explicit result types. |
| 881 | if (op.getInferredResultTypes()) |
| 882 | writer.append(field: kInferTypesMarker); |
| 883 | else |
| 884 | writer.appendPDLValueList(values: op.getInputResultTypes()); |
| 885 | } |
| 886 | void Generator::generate(pdl_interp::CreateRangeOp op, ByteCodeWriter &writer) { |
| 887 | // Append the correct opcode for the range type. |
| 888 | TypeSwitch<Type>(op.getType().getElementType()) |
| 889 | .Case( |
| 890 | caseFn: [&](pdl::TypeType) { writer.append(opCode: OpCode::CreateDynamicTypeRange); }) |
| 891 | .Case(caseFn: [&](pdl::ValueType) { |
| 892 | writer.append(opCode: OpCode::CreateDynamicValueRange); |
| 893 | }); |
| 894 | |
| 895 | writer.append(op.getResult(), getRangeStorageIndex(value: op.getResult())); |
| 896 | writer.appendPDLValueList(values: op->getOperands()); |
| 897 | } |
| 898 | void Generator::generate(pdl_interp::CreateTypeOp op, ByteCodeWriter &writer) { |
| 899 | // Simply repoint the memory index of the result to the constant. |
| 900 | getMemIndex(op.getResult()) = getMemIndex(op.getValue()); |
| 901 | } |
| 902 | void Generator::generate(pdl_interp::CreateTypesOp op, ByteCodeWriter &writer) { |
| 903 | writer.append(OpCode::CreateConstantTypeRange, op.getResult(), |
| 904 | getRangeStorageIndex(value: op.getResult()), op.getValue()); |
| 905 | } |
| 906 | void Generator::generate(pdl_interp::EraseOp op, ByteCodeWriter &writer) { |
| 907 | writer.append(OpCode::EraseOp, op.getInputOp()); |
| 908 | } |
| 909 | void Generator::generate(pdl_interp::ExtractOp op, ByteCodeWriter &writer) { |
| 910 | OpCode opCode = |
| 911 | TypeSwitch<Type, OpCode>(op.getResult().getType()) |
| 912 | .Case(caseFn: [](pdl::OperationType) { return OpCode::ExtractOp; }) |
| 913 | .Case(caseFn: [](pdl::ValueType) { return OpCode::ExtractValue; }) |
| 914 | .Case(caseFn: [](pdl::TypeType) { return OpCode::ExtractType; }) |
| 915 | .Default(defaultFn: [](Type) -> OpCode { |
| 916 | llvm_unreachable("unsupported element type" ); |
| 917 | }); |
| 918 | writer.append(opCode, op.getRange(), op.getIndex(), op.getResult()); |
| 919 | } |
| 920 | void Generator::generate(pdl_interp::FinalizeOp op, ByteCodeWriter &writer) { |
| 921 | writer.append(opCode: OpCode::Finalize); |
| 922 | } |
| 923 | void Generator::generate(pdl_interp::ForEachOp op, ByteCodeWriter &writer) { |
| 924 | BlockArgument arg = op.getLoopVariable(); |
| 925 | writer.append(OpCode::ForEach, getRangeStorageIndex(value: op.getValues()), arg); |
| 926 | writer.appendPDLValueKind(type: arg.getType()); |
| 927 | writer.append(curLoopLevel, op.getSuccessor()); |
| 928 | ++curLoopLevel; |
| 929 | if (curLoopLevel > maxLoopLevel) |
| 930 | maxLoopLevel = curLoopLevel; |
| 931 | generate(&op.getRegion(), writer); |
| 932 | --curLoopLevel; |
| 933 | } |
| 934 | void Generator::generate(pdl_interp::GetAttributeOp op, |
| 935 | ByteCodeWriter &writer) { |
| 936 | writer.append(OpCode::GetAttribute, op.getAttribute(), op.getInputOp(), |
| 937 | op.getNameAttr()); |
| 938 | } |
| 939 | void Generator::generate(pdl_interp::GetAttributeTypeOp op, |
| 940 | ByteCodeWriter &writer) { |
| 941 | writer.append(OpCode::GetAttributeType, op.getResult(), op.getValue()); |
| 942 | } |
| 943 | void Generator::generate(pdl_interp::GetDefiningOpOp op, |
| 944 | ByteCodeWriter &writer) { |
| 945 | writer.append(OpCode::GetDefiningOp, op.getInputOp()); |
| 946 | writer.appendPDLValue(value: op.getValue()); |
| 947 | } |
| 948 | void Generator::generate(pdl_interp::GetOperandOp op, ByteCodeWriter &writer) { |
| 949 | uint32_t index = op.getIndex(); |
| 950 | if (index < 4) |
| 951 | writer.append(opCode: static_cast<OpCode>(OpCode::GetOperand0 + index)); |
| 952 | else |
| 953 | writer.append(field: OpCode::GetOperandN, field2: index); |
| 954 | writer.append(op.getInputOp(), op.getValue()); |
| 955 | } |
| 956 | void Generator::generate(pdl_interp::GetOperandsOp op, ByteCodeWriter &writer) { |
| 957 | Value result = op.getValue(); |
| 958 | std::optional<uint32_t> index = op.getIndex(); |
| 959 | writer.append(OpCode::GetOperands, |
| 960 | index.value_or(u: std::numeric_limits<uint32_t>::max()), |
| 961 | op.getInputOp()); |
| 962 | if (isa<pdl::RangeType>(result.getType())) |
| 963 | writer.append(field: getRangeStorageIndex(value: result)); |
| 964 | else |
| 965 | writer.append(field: std::numeric_limits<ByteCodeField>::max()); |
| 966 | writer.append(value: result); |
| 967 | } |
| 968 | void Generator::generate(pdl_interp::GetResultOp op, ByteCodeWriter &writer) { |
| 969 | uint32_t index = op.getIndex(); |
| 970 | if (index < 4) |
| 971 | writer.append(opCode: static_cast<OpCode>(OpCode::GetResult0 + index)); |
| 972 | else |
| 973 | writer.append(field: OpCode::GetResultN, field2: index); |
| 974 | writer.append(op.getInputOp(), op.getValue()); |
| 975 | } |
| 976 | void Generator::generate(pdl_interp::GetResultsOp op, ByteCodeWriter &writer) { |
| 977 | Value result = op.getValue(); |
| 978 | std::optional<uint32_t> index = op.getIndex(); |
| 979 | writer.append(OpCode::GetResults, |
| 980 | index.value_or(u: std::numeric_limits<uint32_t>::max()), |
| 981 | op.getInputOp()); |
| 982 | if (isa<pdl::RangeType>(result.getType())) |
| 983 | writer.append(field: getRangeStorageIndex(value: result)); |
| 984 | else |
| 985 | writer.append(field: std::numeric_limits<ByteCodeField>::max()); |
| 986 | writer.append(value: result); |
| 987 | } |
| 988 | void Generator::generate(pdl_interp::GetUsersOp op, ByteCodeWriter &writer) { |
| 989 | Value operations = op.getOperations(); |
| 990 | ByteCodeField rangeIndex = getRangeStorageIndex(value: operations); |
| 991 | writer.append(field: OpCode::GetUsers, field2: operations, fields: rangeIndex); |
| 992 | writer.appendPDLValue(value: op.getValue()); |
| 993 | } |
| 994 | void Generator::generate(pdl_interp::GetValueTypeOp op, |
| 995 | ByteCodeWriter &writer) { |
| 996 | if (isa<pdl::RangeType>(op.getType())) { |
| 997 | Value result = op.getResult(); |
| 998 | writer.append(OpCode::GetValueRangeTypes, result, |
| 999 | getRangeStorageIndex(value: result), op.getValue()); |
| 1000 | } else { |
| 1001 | writer.append(OpCode::GetValueType, op.getResult(), op.getValue()); |
| 1002 | } |
| 1003 | } |
| 1004 | void Generator::generate(pdl_interp::IsNotNullOp op, ByteCodeWriter &writer) { |
| 1005 | writer.append(OpCode::IsNotNull, op.getValue(), op.getSuccessors()); |
| 1006 | } |
| 1007 | void Generator::generate(pdl_interp::RecordMatchOp op, ByteCodeWriter &writer) { |
| 1008 | ByteCodeField patternIndex = patterns.size(); |
| 1009 | patterns.emplace_back(PDLByteCodePattern::create( |
| 1010 | matchOp: op, configSet: configMap.lookup(Val: op), |
| 1011 | rewriterAddr: rewriterToAddr[op.getRewriter().getLeafReference().getValue()])); |
| 1012 | writer.append(OpCode::RecordMatch, patternIndex, |
| 1013 | SuccessorRange(op.getOperation()), op.getMatchedOps()); |
| 1014 | writer.appendPDLValueList(values: op.getInputs()); |
| 1015 | } |
| 1016 | void Generator::generate(pdl_interp::ReplaceOp op, ByteCodeWriter &writer) { |
| 1017 | writer.append(OpCode::ReplaceOp, op.getInputOp()); |
| 1018 | writer.appendPDLValueList(values: op.getReplValues()); |
| 1019 | } |
| 1020 | void Generator::generate(pdl_interp::SwitchAttributeOp op, |
| 1021 | ByteCodeWriter &writer) { |
| 1022 | writer.append(OpCode::SwitchAttribute, op.getAttribute(), |
| 1023 | op.getCaseValuesAttr(), op.getSuccessors()); |
| 1024 | } |
| 1025 | void Generator::generate(pdl_interp::SwitchOperandCountOp op, |
| 1026 | ByteCodeWriter &writer) { |
| 1027 | writer.append(OpCode::SwitchOperandCount, op.getInputOp(), |
| 1028 | op.getCaseValuesAttr(), op.getSuccessors()); |
| 1029 | } |
| 1030 | void Generator::generate(pdl_interp::SwitchOperationNameOp op, |
| 1031 | ByteCodeWriter &writer) { |
| 1032 | auto cases = llvm::map_range(op.getCaseValuesAttr(), [&](Attribute attr) { |
| 1033 | return OperationName(cast<StringAttr>(attr).getValue(), ctx); |
| 1034 | }); |
| 1035 | writer.append(OpCode::SwitchOperationName, op.getInputOp(), cases, |
| 1036 | op.getSuccessors()); |
| 1037 | } |
| 1038 | void Generator::generate(pdl_interp::SwitchResultCountOp op, |
| 1039 | ByteCodeWriter &writer) { |
| 1040 | writer.append(OpCode::SwitchResultCount, op.getInputOp(), |
| 1041 | op.getCaseValuesAttr(), op.getSuccessors()); |
| 1042 | } |
| 1043 | void Generator::generate(pdl_interp::SwitchTypeOp op, ByteCodeWriter &writer) { |
| 1044 | writer.append(OpCode::SwitchType, op.getValue(), op.getCaseValuesAttr(), |
| 1045 | op.getSuccessors()); |
| 1046 | } |
| 1047 | void Generator::generate(pdl_interp::SwitchTypesOp op, ByteCodeWriter &writer) { |
| 1048 | writer.append(OpCode::SwitchTypes, op.getValue(), op.getCaseValuesAttr(), |
| 1049 | op.getSuccessors()); |
| 1050 | } |
| 1051 | |
| 1052 | //===----------------------------------------------------------------------===// |
| 1053 | // PDLByteCode |
| 1054 | //===----------------------------------------------------------------------===// |
| 1055 | |
| 1056 | PDLByteCode::PDLByteCode( |
| 1057 | ModuleOp module, SmallVector<std::unique_ptr<PDLPatternConfigSet>> configs, |
| 1058 | const DenseMap<Operation *, PDLPatternConfigSet *> &configMap, |
| 1059 | llvm::StringMap<PDLConstraintFunction> constraintFns, |
| 1060 | llvm::StringMap<PDLRewriteFunction> rewriteFns) |
| 1061 | : configs(std::move(configs)) { |
| 1062 | Generator generator(module.getContext(), uniquedData, matcherByteCode, |
| 1063 | rewriterByteCode, patterns, maxValueMemoryIndex, |
| 1064 | maxOpRangeCount, maxTypeRangeCount, maxValueRangeCount, |
| 1065 | maxLoopLevel, constraintFns, rewriteFns, configMap); |
| 1066 | generator.generate(module); |
| 1067 | |
| 1068 | // Initialize the external functions. |
| 1069 | for (auto &it : constraintFns) |
| 1070 | constraintFunctions.push_back(x: std::move(it.second)); |
| 1071 | for (auto &it : rewriteFns) |
| 1072 | rewriteFunctions.push_back(x: std::move(it.second)); |
| 1073 | } |
| 1074 | |
| 1075 | /// Initialize the given state such that it can be used to execute the current |
| 1076 | /// bytecode. |
| 1077 | void PDLByteCode::initializeMutableState(PDLByteCodeMutableState &state) const { |
| 1078 | state.memory.resize(new_size: maxValueMemoryIndex, x: nullptr); |
| 1079 | state.opRangeMemory.resize(new_size: maxOpRangeCount); |
| 1080 | state.typeRangeMemory.resize(new_size: maxTypeRangeCount, x: TypeRange()); |
| 1081 | state.valueRangeMemory.resize(new_size: maxValueRangeCount, x: ValueRange()); |
| 1082 | state.loopIndex.resize(new_size: maxLoopLevel, x: 0); |
| 1083 | state.currentPatternBenefits.reserve(n: patterns.size()); |
| 1084 | for (const PDLByteCodePattern &pattern : patterns) |
| 1085 | state.currentPatternBenefits.push_back(x: pattern.getBenefit()); |
| 1086 | } |
| 1087 | |
| 1088 | //===----------------------------------------------------------------------===// |
| 1089 | // ByteCode Execution |
| 1090 | //===----------------------------------------------------------------------===// |
| 1091 | |
| 1092 | namespace { |
| 1093 | /// This class is an instantiation of the PDLResultList that provides access to |
| 1094 | /// the returned results. This API is not on `PDLResultList` to avoid |
| 1095 | /// overexposing access to information specific solely to the ByteCode. |
| 1096 | class ByteCodeRewriteResultList : public PDLResultList { |
| 1097 | public: |
| 1098 | ByteCodeRewriteResultList(unsigned maxNumResults) |
| 1099 | : PDLResultList(maxNumResults) {} |
| 1100 | |
| 1101 | /// Return the list of PDL results. |
| 1102 | MutableArrayRef<PDLValue> getResults() { return results; } |
| 1103 | |
| 1104 | /// Return the type ranges allocated by this list. |
| 1105 | MutableArrayRef<llvm::OwningArrayRef<Type>> getAllocatedTypeRanges() { |
| 1106 | return allocatedTypeRanges; |
| 1107 | } |
| 1108 | |
| 1109 | /// Return the value ranges allocated by this list. |
| 1110 | MutableArrayRef<llvm::OwningArrayRef<Value>> getAllocatedValueRanges() { |
| 1111 | return allocatedValueRanges; |
| 1112 | } |
| 1113 | }; |
| 1114 | |
| 1115 | /// This class provides support for executing a bytecode stream. |
| 1116 | class ByteCodeExecutor { |
| 1117 | public: |
| 1118 | ByteCodeExecutor( |
| 1119 | const ByteCodeField *curCodeIt, MutableArrayRef<const void *> memory, |
| 1120 | MutableArrayRef<llvm::OwningArrayRef<Operation *>> opRangeMemory, |
| 1121 | MutableArrayRef<TypeRange> typeRangeMemory, |
| 1122 | std::vector<llvm::OwningArrayRef<Type>> &allocatedTypeRangeMemory, |
| 1123 | MutableArrayRef<ValueRange> valueRangeMemory, |
| 1124 | std::vector<llvm::OwningArrayRef<Value>> &allocatedValueRangeMemory, |
| 1125 | MutableArrayRef<unsigned> loopIndex, ArrayRef<const void *> uniquedMemory, |
| 1126 | ArrayRef<ByteCodeField> code, |
| 1127 | ArrayRef<PatternBenefit> currentPatternBenefits, |
| 1128 | ArrayRef<PDLByteCodePattern> patterns, |
| 1129 | ArrayRef<PDLConstraintFunction> constraintFunctions, |
| 1130 | ArrayRef<PDLRewriteFunction> rewriteFunctions) |
| 1131 | : curCodeIt(curCodeIt), memory(memory), opRangeMemory(opRangeMemory), |
| 1132 | typeRangeMemory(typeRangeMemory), |
| 1133 | allocatedTypeRangeMemory(allocatedTypeRangeMemory), |
| 1134 | valueRangeMemory(valueRangeMemory), |
| 1135 | allocatedValueRangeMemory(allocatedValueRangeMemory), |
| 1136 | loopIndex(loopIndex), uniquedMemory(uniquedMemory), code(code), |
| 1137 | currentPatternBenefits(currentPatternBenefits), patterns(patterns), |
| 1138 | constraintFunctions(constraintFunctions), |
| 1139 | rewriteFunctions(rewriteFunctions) {} |
| 1140 | |
| 1141 | /// Start executing the code at the current bytecode index. `matches` is an |
| 1142 | /// optional field provided when this function is executed in a matching |
| 1143 | /// context. |
| 1144 | LogicalResult |
| 1145 | execute(PatternRewriter &rewriter, |
| 1146 | SmallVectorImpl<PDLByteCode::MatchResult> *matches = nullptr, |
| 1147 | std::optional<Location> mainRewriteLoc = {}); |
| 1148 | |
| 1149 | private: |
| 1150 | /// Internal implementation of executing each of the bytecode commands. |
| 1151 | void executeApplyConstraint(PatternRewriter &rewriter); |
| 1152 | LogicalResult executeApplyRewrite(PatternRewriter &rewriter); |
| 1153 | void executeAreEqual(); |
| 1154 | void executeAreRangesEqual(); |
| 1155 | void executeBranch(); |
| 1156 | void executeCheckOperandCount(); |
| 1157 | void executeCheckOperationName(); |
| 1158 | void executeCheckResultCount(); |
| 1159 | void executeCheckTypes(); |
| 1160 | void executeContinue(); |
| 1161 | void executeCreateConstantTypeRange(); |
| 1162 | void executeCreateOperation(PatternRewriter &rewriter, |
| 1163 | Location mainRewriteLoc); |
| 1164 | template <typename T> |
| 1165 | void executeDynamicCreateRange(StringRef type); |
| 1166 | void executeEraseOp(PatternRewriter &rewriter); |
| 1167 | template <typename T, typename Range, PDLValue::Kind kind> |
| 1168 | void executeExtract(); |
| 1169 | void executeFinalize(); |
| 1170 | void executeForEach(); |
| 1171 | void executeGetAttribute(); |
| 1172 | void executeGetAttributeType(); |
| 1173 | void executeGetDefiningOp(); |
| 1174 | void executeGetOperand(unsigned index); |
| 1175 | void executeGetOperands(); |
| 1176 | void executeGetResult(unsigned index); |
| 1177 | void executeGetResults(); |
| 1178 | void executeGetUsers(); |
| 1179 | void executeGetValueType(); |
| 1180 | void executeGetValueRangeTypes(); |
| 1181 | void executeIsNotNull(); |
| 1182 | void executeRecordMatch(PatternRewriter &rewriter, |
| 1183 | SmallVectorImpl<PDLByteCode::MatchResult> &matches); |
| 1184 | void executeReplaceOp(PatternRewriter &rewriter); |
| 1185 | void executeSwitchAttribute(); |
| 1186 | void executeSwitchOperandCount(); |
| 1187 | void executeSwitchOperationName(); |
| 1188 | void executeSwitchResultCount(); |
| 1189 | void executeSwitchType(); |
| 1190 | void executeSwitchTypes(); |
| 1191 | void processNativeFunResults(ByteCodeRewriteResultList &results, |
| 1192 | unsigned numResults, |
| 1193 | LogicalResult &rewriteResult); |
| 1194 | |
| 1195 | /// Pushes a code iterator to the stack. |
| 1196 | void pushCodeIt(const ByteCodeField *it) { resumeCodeIt.push_back(Elt: it); } |
| 1197 | |
| 1198 | /// Pops a code iterator from the stack, returning true on success. |
| 1199 | void popCodeIt() { |
| 1200 | assert(!resumeCodeIt.empty() && "attempt to pop code off empty stack" ); |
| 1201 | curCodeIt = resumeCodeIt.pop_back_val(); |
| 1202 | } |
| 1203 | |
| 1204 | /// Return the bytecode iterator at the start of the current op code. |
| 1205 | const ByteCodeField *getPrevCodeIt() const { |
| 1206 | LLVM_DEBUG({ |
| 1207 | // Account for the op code and the Location stored inline. |
| 1208 | return curCodeIt - 1 - sizeof(const void *) / sizeof(ByteCodeField); |
| 1209 | }); |
| 1210 | |
| 1211 | // Account for the op code only. |
| 1212 | return curCodeIt - 1; |
| 1213 | } |
| 1214 | |
| 1215 | /// Read a value from the bytecode buffer, optionally skipping a certain |
| 1216 | /// number of prefix values. These methods always update the buffer to point |
| 1217 | /// to the next field after the read data. |
| 1218 | template <typename T = ByteCodeField> |
| 1219 | T read(size_t skipN = 0) { |
| 1220 | curCodeIt += skipN; |
| 1221 | return readImpl<T>(); |
| 1222 | } |
| 1223 | ByteCodeField read(size_t skipN = 0) { return read<ByteCodeField>(skipN); } |
| 1224 | |
| 1225 | /// Read a list of values from the bytecode buffer. |
| 1226 | template <typename ValueT, typename T> |
| 1227 | void readList(SmallVectorImpl<T> &list) { |
| 1228 | list.clear(); |
| 1229 | for (unsigned i = 0, e = read(); i != e; ++i) |
| 1230 | list.push_back(read<ValueT>()); |
| 1231 | } |
| 1232 | |
| 1233 | /// Read a list of values from the bytecode buffer. The values may be encoded |
| 1234 | /// either as a single element or a range of elements. |
| 1235 | void readList(SmallVectorImpl<Type> &list) { |
| 1236 | for (unsigned i = 0, e = read(); i != e; ++i) { |
| 1237 | if (read<PDLValue::Kind>() == PDLValue::Kind::Type) { |
| 1238 | list.push_back(Elt: read<Type>()); |
| 1239 | } else { |
| 1240 | TypeRange *values = read<TypeRange *>(); |
| 1241 | list.append(in_start: values->begin(), in_end: values->end()); |
| 1242 | } |
| 1243 | } |
| 1244 | } |
| 1245 | void readList(SmallVectorImpl<Value> &list) { |
| 1246 | for (unsigned i = 0, e = read(); i != e; ++i) { |
| 1247 | if (read<PDLValue::Kind>() == PDLValue::Kind::Value) { |
| 1248 | list.push_back(Elt: read<Value>()); |
| 1249 | } else { |
| 1250 | ValueRange *values = read<ValueRange *>(); |
| 1251 | list.append(in_start: values->begin(), in_end: values->end()); |
| 1252 | } |
| 1253 | } |
| 1254 | } |
| 1255 | |
| 1256 | /// Read a value stored inline as a pointer. |
| 1257 | template <typename T> |
| 1258 | std::enable_if_t<llvm::is_detected<has_pointer_traits, T>::value, T> |
| 1259 | readInline() { |
| 1260 | const void *pointer; |
| 1261 | std::memcpy(dest: &pointer, src: curCodeIt, n: sizeof(const void *)); |
| 1262 | curCodeIt += sizeof(const void *) / sizeof(ByteCodeField); |
| 1263 | return T::getFromOpaquePointer(pointer); |
| 1264 | } |
| 1265 | |
| 1266 | void skip(size_t skipN) { curCodeIt += skipN; } |
| 1267 | |
| 1268 | /// Jump to a specific successor based on a predicate value. |
| 1269 | void selectJump(bool isTrue) { selectJump(destIndex: size_t(isTrue ? 0 : 1)); } |
| 1270 | /// Jump to a specific successor based on a destination index. |
| 1271 | void selectJump(size_t destIndex) { |
| 1272 | curCodeIt = &code[read<ByteCodeAddr>(skipN: destIndex * 2)]; |
| 1273 | } |
| 1274 | |
| 1275 | /// Handle a switch operation with the provided value and cases. |
| 1276 | template <typename T, typename RangeT, typename Comparator = std::equal_to<T>> |
| 1277 | void handleSwitch(const T &value, RangeT &&cases, Comparator cmp = {}) { |
| 1278 | LLVM_DEBUG({ |
| 1279 | llvm::dbgs() << " * Value: " << value << "\n" |
| 1280 | << " * Cases: " ; |
| 1281 | llvm::interleaveComma(cases, llvm::dbgs()); |
| 1282 | llvm::dbgs() << "\n" ; |
| 1283 | }); |
| 1284 | |
| 1285 | // Check to see if the attribute value is within the case list. Jump to |
| 1286 | // the correct successor index based on the result. |
| 1287 | for (auto it = cases.begin(), e = cases.end(); it != e; ++it) |
| 1288 | if (cmp(*it, value)) |
| 1289 | return selectJump(destIndex: size_t((it - cases.begin()) + 1)); |
| 1290 | selectJump(destIndex: size_t(0)); |
| 1291 | } |
| 1292 | |
| 1293 | /// Store a pointer to memory. |
| 1294 | void storeToMemory(unsigned index, const void *value) { |
| 1295 | memory[index] = value; |
| 1296 | } |
| 1297 | |
| 1298 | /// Store a value to memory as an opaque pointer. |
| 1299 | template <typename T> |
| 1300 | std::enable_if_t<llvm::is_detected<has_pointer_traits, T>::value> |
| 1301 | storeToMemory(unsigned index, T value) { |
| 1302 | memory[index] = value.getAsOpaquePointer(); |
| 1303 | } |
| 1304 | |
| 1305 | /// Internal implementation of reading various data types from the bytecode |
| 1306 | /// stream. |
| 1307 | template <typename T> |
| 1308 | const void *readFromMemory() { |
| 1309 | size_t index = *curCodeIt++; |
| 1310 | |
| 1311 | // If this type is an SSA value, it can only be stored in non-const memory. |
| 1312 | if (llvm::is_one_of<T, Operation *, TypeRange *, ValueRange *, |
| 1313 | Value>::value || |
| 1314 | index < memory.size()) |
| 1315 | return memory[index]; |
| 1316 | |
| 1317 | // Otherwise, if this index is not inbounds it is uniqued. |
| 1318 | return uniquedMemory[index - memory.size()]; |
| 1319 | } |
| 1320 | template <typename T> |
| 1321 | std::enable_if_t<std::is_pointer<T>::value, T> readImpl() { |
| 1322 | return reinterpret_cast<T>(const_cast<void *>(readFromMemory<T>())); |
| 1323 | } |
| 1324 | template <typename T> |
| 1325 | std::enable_if_t<std::is_class<T>::value && !std::is_same<PDLValue, T>::value, |
| 1326 | T> |
| 1327 | readImpl() { |
| 1328 | return T(T::getFromOpaquePointer(readFromMemory<T>())); |
| 1329 | } |
| 1330 | template <typename T> |
| 1331 | std::enable_if_t<std::is_same<PDLValue, T>::value, T> readImpl() { |
| 1332 | switch (read<PDLValue::Kind>()) { |
| 1333 | case PDLValue::Kind::Attribute: |
| 1334 | return read<Attribute>(); |
| 1335 | case PDLValue::Kind::Operation: |
| 1336 | return read<Operation *>(); |
| 1337 | case PDLValue::Kind::Type: |
| 1338 | return read<Type>(); |
| 1339 | case PDLValue::Kind::Value: |
| 1340 | return read<Value>(); |
| 1341 | case PDLValue::Kind::TypeRange: |
| 1342 | return read<TypeRange *>(); |
| 1343 | case PDLValue::Kind::ValueRange: |
| 1344 | return read<ValueRange *>(); |
| 1345 | } |
| 1346 | llvm_unreachable("unhandled PDLValue::Kind" ); |
| 1347 | } |
| 1348 | template <typename T> |
| 1349 | std::enable_if_t<std::is_same<T, ByteCodeAddr>::value, T> readImpl() { |
| 1350 | static_assert((sizeof(ByteCodeAddr) / sizeof(ByteCodeField)) == 2, |
| 1351 | "unexpected ByteCode address size" ); |
| 1352 | ByteCodeAddr result; |
| 1353 | std::memcpy(dest: &result, src: curCodeIt, n: sizeof(ByteCodeAddr)); |
| 1354 | curCodeIt += 2; |
| 1355 | return result; |
| 1356 | } |
| 1357 | template <typename T> |
| 1358 | std::enable_if_t<std::is_same<T, ByteCodeField>::value, T> readImpl() { |
| 1359 | return *curCodeIt++; |
| 1360 | } |
| 1361 | template <typename T> |
| 1362 | std::enable_if_t<std::is_same<T, PDLValue::Kind>::value, T> readImpl() { |
| 1363 | return static_cast<PDLValue::Kind>(readImpl<ByteCodeField>()); |
| 1364 | } |
| 1365 | |
| 1366 | /// Assign the given range to the given memory index. This allocates a new |
| 1367 | /// range object if necessary. |
| 1368 | template <typename RangeT, typename T = llvm::detail::ValueOfRange<RangeT>> |
| 1369 | void assignRangeToMemory(RangeT &&range, unsigned memIndex, |
| 1370 | unsigned rangeIndex) { |
| 1371 | // Utility functor used to type-erase the assignment. |
| 1372 | auto assignRange = [&](auto &allocatedRangeMemory, auto &rangeMemory) { |
| 1373 | // If the input range is empty, we don't need to allocate anything. |
| 1374 | if (range.empty()) { |
| 1375 | rangeMemory[rangeIndex] = {}; |
| 1376 | } else { |
| 1377 | // Allocate a buffer for this type range. |
| 1378 | llvm::OwningArrayRef<T> storage(llvm::size(range)); |
| 1379 | llvm::copy(range, storage.begin()); |
| 1380 | |
| 1381 | // Assign this to the range slot and use the range as the value for the |
| 1382 | // memory index. |
| 1383 | allocatedRangeMemory.emplace_back(std::move(storage)); |
| 1384 | rangeMemory[rangeIndex] = allocatedRangeMemory.back(); |
| 1385 | } |
| 1386 | memory[memIndex] = &rangeMemory[rangeIndex]; |
| 1387 | }; |
| 1388 | |
| 1389 | // Dispatch based on the concrete range type. |
| 1390 | if constexpr (std::is_same_v<T, Type>) { |
| 1391 | return assignRange(allocatedTypeRangeMemory, typeRangeMemory); |
| 1392 | } else if constexpr (std::is_same_v<T, Value>) { |
| 1393 | return assignRange(allocatedValueRangeMemory, valueRangeMemory); |
| 1394 | } else { |
| 1395 | llvm_unreachable("unhandled range type" ); |
| 1396 | } |
| 1397 | } |
| 1398 | |
| 1399 | /// The underlying bytecode buffer. |
| 1400 | const ByteCodeField *curCodeIt; |
| 1401 | |
| 1402 | /// The stack of bytecode positions at which to resume operation. |
| 1403 | SmallVector<const ByteCodeField *> resumeCodeIt; |
| 1404 | |
| 1405 | /// The current execution memory. |
| 1406 | MutableArrayRef<const void *> memory; |
| 1407 | MutableArrayRef<OwningOpRange> opRangeMemory; |
| 1408 | MutableArrayRef<TypeRange> typeRangeMemory; |
| 1409 | std::vector<llvm::OwningArrayRef<Type>> &allocatedTypeRangeMemory; |
| 1410 | MutableArrayRef<ValueRange> valueRangeMemory; |
| 1411 | std::vector<llvm::OwningArrayRef<Value>> &allocatedValueRangeMemory; |
| 1412 | |
| 1413 | /// The current loop indices. |
| 1414 | MutableArrayRef<unsigned> loopIndex; |
| 1415 | |
| 1416 | /// References to ByteCode data necessary for execution. |
| 1417 | ArrayRef<const void *> uniquedMemory; |
| 1418 | ArrayRef<ByteCodeField> code; |
| 1419 | ArrayRef<PatternBenefit> currentPatternBenefits; |
| 1420 | ArrayRef<PDLByteCodePattern> patterns; |
| 1421 | ArrayRef<PDLConstraintFunction> constraintFunctions; |
| 1422 | ArrayRef<PDLRewriteFunction> rewriteFunctions; |
| 1423 | }; |
| 1424 | } // namespace |
| 1425 | |
| 1426 | void ByteCodeExecutor::executeApplyConstraint(PatternRewriter &rewriter) { |
| 1427 | LLVM_DEBUG(llvm::dbgs() << "Executing ApplyConstraint:\n" ); |
| 1428 | ByteCodeField fun_idx = read(); |
| 1429 | SmallVector<PDLValue, 16> args; |
| 1430 | readList<PDLValue>(list&: args); |
| 1431 | |
| 1432 | LLVM_DEBUG({ |
| 1433 | llvm::dbgs() << " * Arguments: " ; |
| 1434 | llvm::interleaveComma(args, llvm::dbgs()); |
| 1435 | llvm::dbgs() << "\n" ; |
| 1436 | }); |
| 1437 | |
| 1438 | ByteCodeField isNegated = read(); |
| 1439 | LLVM_DEBUG({ |
| 1440 | llvm::dbgs() << " * isNegated: " << isNegated << "\n" ; |
| 1441 | llvm::interleaveComma(args, llvm::dbgs()); |
| 1442 | }); |
| 1443 | |
| 1444 | ByteCodeField numResults = read(); |
| 1445 | const PDLRewriteFunction &constraintFn = constraintFunctions[fun_idx]; |
| 1446 | ByteCodeRewriteResultList results(numResults); |
| 1447 | LogicalResult rewriteResult = constraintFn(rewriter, results, args); |
| 1448 | [[maybe_unused]] ArrayRef<PDLValue> constraintResults = results.getResults(); |
| 1449 | LLVM_DEBUG({ |
| 1450 | if (succeeded(rewriteResult)) { |
| 1451 | llvm::dbgs() << " * Constraint succeeded\n" ; |
| 1452 | llvm::dbgs() << " * Results: " ; |
| 1453 | llvm::interleaveComma(constraintResults, llvm::dbgs()); |
| 1454 | llvm::dbgs() << "\n" ; |
| 1455 | } else { |
| 1456 | llvm::dbgs() << " * Constraint failed\n" ; |
| 1457 | } |
| 1458 | }); |
| 1459 | assert((failed(rewriteResult) || constraintResults.size() == numResults) && |
| 1460 | "native PDL rewrite function succeeded but returned " |
| 1461 | "unexpected number of results" ); |
| 1462 | processNativeFunResults(results, numResults, rewriteResult); |
| 1463 | |
| 1464 | // Depending on the constraint jump to the proper destination. |
| 1465 | selectJump(isTrue: isNegated != succeeded(Result: rewriteResult)); |
| 1466 | } |
| 1467 | |
| 1468 | LogicalResult ByteCodeExecutor::executeApplyRewrite(PatternRewriter &rewriter) { |
| 1469 | LLVM_DEBUG(llvm::dbgs() << "Executing ApplyRewrite:\n" ); |
| 1470 | const PDLRewriteFunction &rewriteFn = rewriteFunctions[read()]; |
| 1471 | SmallVector<PDLValue, 16> args; |
| 1472 | readList<PDLValue>(list&: args); |
| 1473 | |
| 1474 | LLVM_DEBUG({ |
| 1475 | llvm::dbgs() << " * Arguments: " ; |
| 1476 | llvm::interleaveComma(args, llvm::dbgs()); |
| 1477 | }); |
| 1478 | |
| 1479 | // Execute the rewrite function. |
| 1480 | ByteCodeField numResults = read(); |
| 1481 | ByteCodeRewriteResultList results(numResults); |
| 1482 | LogicalResult rewriteResult = rewriteFn(rewriter, results, args); |
| 1483 | |
| 1484 | assert(results.getResults().size() == numResults && |
| 1485 | "native PDL rewrite function returned unexpected number of results" ); |
| 1486 | |
| 1487 | processNativeFunResults(results, numResults, rewriteResult); |
| 1488 | |
| 1489 | if (failed(Result: rewriteResult)) { |
| 1490 | LLVM_DEBUG(llvm::dbgs() << " - Failed" ); |
| 1491 | return failure(); |
| 1492 | } |
| 1493 | return success(); |
| 1494 | } |
| 1495 | |
| 1496 | void ByteCodeExecutor::processNativeFunResults( |
| 1497 | ByteCodeRewriteResultList &results, unsigned numResults, |
| 1498 | LogicalResult &rewriteResult) { |
| 1499 | if (failed(Result: rewriteResult)) { |
| 1500 | // Skip the according number of values on the buffer on failure and exit |
| 1501 | // early as there are no results to process. |
| 1502 | for (unsigned resultIdx = 0; resultIdx < numResults; resultIdx++) { |
| 1503 | const PDLValue::Kind resultKind = read<PDLValue::Kind>(); |
| 1504 | if (resultKind == PDLValue::Kind::TypeRange || |
| 1505 | resultKind == PDLValue::Kind::ValueRange) { |
| 1506 | skip(skipN: 2); |
| 1507 | } else { |
| 1508 | skip(skipN: 1); |
| 1509 | } |
| 1510 | } |
| 1511 | return; |
| 1512 | } |
| 1513 | |
| 1514 | // Store the results in the bytecode memory |
| 1515 | for (unsigned resultIdx = 0; resultIdx < numResults; resultIdx++) { |
| 1516 | PDLValue::Kind resultKind = read<PDLValue::Kind>(); |
| 1517 | (void)resultKind; |
| 1518 | PDLValue result = results.getResults()[resultIdx]; |
| 1519 | LLVM_DEBUG(llvm::dbgs() << " * Result: " << result << "\n" ); |
| 1520 | assert(result.getKind() == resultKind && |
| 1521 | "native PDL rewrite function returned an unexpected type of " |
| 1522 | "result" ); |
| 1523 | // If the result is a range, we need to copy it over to the bytecodes |
| 1524 | // range memory. |
| 1525 | if (std::optional<TypeRange> typeRange = result.dyn_cast<TypeRange>()) { |
| 1526 | unsigned rangeIndex = read(); |
| 1527 | typeRangeMemory[rangeIndex] = *typeRange; |
| 1528 | memory[read()] = &typeRangeMemory[rangeIndex]; |
| 1529 | } else if (std::optional<ValueRange> valueRange = |
| 1530 | result.dyn_cast<ValueRange>()) { |
| 1531 | unsigned rangeIndex = read(); |
| 1532 | valueRangeMemory[rangeIndex] = *valueRange; |
| 1533 | memory[read()] = &valueRangeMemory[rangeIndex]; |
| 1534 | } else { |
| 1535 | memory[read()] = result.getAsOpaquePointer(); |
| 1536 | } |
| 1537 | } |
| 1538 | |
| 1539 | // Copy over any underlying storage allocated for result ranges. |
| 1540 | for (auto &it : results.getAllocatedTypeRanges()) |
| 1541 | allocatedTypeRangeMemory.push_back(x: std::move(it)); |
| 1542 | for (auto &it : results.getAllocatedValueRanges()) |
| 1543 | allocatedValueRangeMemory.push_back(x: std::move(it)); |
| 1544 | } |
| 1545 | |
| 1546 | void ByteCodeExecutor::executeAreEqual() { |
| 1547 | LLVM_DEBUG(llvm::dbgs() << "Executing AreEqual:\n" ); |
| 1548 | const void *lhs = read<const void *>(); |
| 1549 | const void *rhs = read<const void *>(); |
| 1550 | |
| 1551 | LLVM_DEBUG(llvm::dbgs() << " * " << lhs << " == " << rhs << "\n" ); |
| 1552 | selectJump(isTrue: lhs == rhs); |
| 1553 | } |
| 1554 | |
| 1555 | void ByteCodeExecutor::executeAreRangesEqual() { |
| 1556 | LLVM_DEBUG(llvm::dbgs() << "Executing AreRangesEqual:\n" ); |
| 1557 | PDLValue::Kind valueKind = read<PDLValue::Kind>(); |
| 1558 | const void *lhs = read<const void *>(); |
| 1559 | const void *rhs = read<const void *>(); |
| 1560 | |
| 1561 | switch (valueKind) { |
| 1562 | case PDLValue::Kind::TypeRange: { |
| 1563 | const TypeRange *lhsRange = reinterpret_cast<const TypeRange *>(lhs); |
| 1564 | const TypeRange *rhsRange = reinterpret_cast<const TypeRange *>(rhs); |
| 1565 | LLVM_DEBUG(llvm::dbgs() << " * " << lhs << " == " << rhs << "\n\n" ); |
| 1566 | selectJump(isTrue: *lhsRange == *rhsRange); |
| 1567 | break; |
| 1568 | } |
| 1569 | case PDLValue::Kind::ValueRange: { |
| 1570 | const auto *lhsRange = reinterpret_cast<const ValueRange *>(lhs); |
| 1571 | const auto *rhsRange = reinterpret_cast<const ValueRange *>(rhs); |
| 1572 | LLVM_DEBUG(llvm::dbgs() << " * " << lhs << " == " << rhs << "\n\n" ); |
| 1573 | selectJump(isTrue: *lhsRange == *rhsRange); |
| 1574 | break; |
| 1575 | } |
| 1576 | default: |
| 1577 | llvm_unreachable("unexpected `AreRangesEqual` value kind" ); |
| 1578 | } |
| 1579 | } |
| 1580 | |
| 1581 | void ByteCodeExecutor::executeBranch() { |
| 1582 | LLVM_DEBUG(llvm::dbgs() << "Executing Branch\n" ); |
| 1583 | curCodeIt = &code[read<ByteCodeAddr>()]; |
| 1584 | } |
| 1585 | |
| 1586 | void ByteCodeExecutor::executeCheckOperandCount() { |
| 1587 | LLVM_DEBUG(llvm::dbgs() << "Executing CheckOperandCount:\n" ); |
| 1588 | Operation *op = read<Operation *>(); |
| 1589 | uint32_t expectedCount = read<uint32_t>(); |
| 1590 | bool compareAtLeast = read(); |
| 1591 | |
| 1592 | LLVM_DEBUG(llvm::dbgs() << " * Found: " << op->getNumOperands() << "\n" |
| 1593 | << " * Expected: " << expectedCount << "\n" |
| 1594 | << " * Comparator: " |
| 1595 | << (compareAtLeast ? ">=" : "==" ) << "\n" ); |
| 1596 | if (compareAtLeast) |
| 1597 | selectJump(isTrue: op->getNumOperands() >= expectedCount); |
| 1598 | else |
| 1599 | selectJump(isTrue: op->getNumOperands() == expectedCount); |
| 1600 | } |
| 1601 | |
| 1602 | void ByteCodeExecutor::executeCheckOperationName() { |
| 1603 | LLVM_DEBUG(llvm::dbgs() << "Executing CheckOperationName:\n" ); |
| 1604 | Operation *op = read<Operation *>(); |
| 1605 | OperationName expectedName = read<OperationName>(); |
| 1606 | |
| 1607 | LLVM_DEBUG(llvm::dbgs() << " * Found: \"" << op->getName() << "\"\n" |
| 1608 | << " * Expected: \"" << expectedName << "\"\n" ); |
| 1609 | selectJump(isTrue: op->getName() == expectedName); |
| 1610 | } |
| 1611 | |
| 1612 | void ByteCodeExecutor::executeCheckResultCount() { |
| 1613 | LLVM_DEBUG(llvm::dbgs() << "Executing CheckResultCount:\n" ); |
| 1614 | Operation *op = read<Operation *>(); |
| 1615 | uint32_t expectedCount = read<uint32_t>(); |
| 1616 | bool compareAtLeast = read(); |
| 1617 | |
| 1618 | LLVM_DEBUG(llvm::dbgs() << " * Found: " << op->getNumResults() << "\n" |
| 1619 | << " * Expected: " << expectedCount << "\n" |
| 1620 | << " * Comparator: " |
| 1621 | << (compareAtLeast ? ">=" : "==" ) << "\n" ); |
| 1622 | if (compareAtLeast) |
| 1623 | selectJump(isTrue: op->getNumResults() >= expectedCount); |
| 1624 | else |
| 1625 | selectJump(isTrue: op->getNumResults() == expectedCount); |
| 1626 | } |
| 1627 | |
| 1628 | void ByteCodeExecutor::executeCheckTypes() { |
| 1629 | LLVM_DEBUG(llvm::dbgs() << "Executing AreEqual:\n" ); |
| 1630 | TypeRange *lhs = read<TypeRange *>(); |
| 1631 | Attribute rhs = read<Attribute>(); |
| 1632 | LLVM_DEBUG(llvm::dbgs() << " * " << lhs << " == " << rhs << "\n\n" ); |
| 1633 | |
| 1634 | selectJump(*lhs == cast<ArrayAttr>(rhs).getAsValueRange<TypeAttr>()); |
| 1635 | } |
| 1636 | |
| 1637 | void ByteCodeExecutor::executeContinue() { |
| 1638 | ByteCodeField level = read(); |
| 1639 | LLVM_DEBUG(llvm::dbgs() << "Executing Continue\n" |
| 1640 | << " * Level: " << level << "\n" ); |
| 1641 | ++loopIndex[level]; |
| 1642 | popCodeIt(); |
| 1643 | } |
| 1644 | |
| 1645 | void ByteCodeExecutor::executeCreateConstantTypeRange() { |
| 1646 | LLVM_DEBUG(llvm::dbgs() << "Executing CreateConstantTypeRange:\n" ); |
| 1647 | unsigned memIndex = read(); |
| 1648 | unsigned rangeIndex = read(); |
| 1649 | ArrayAttr typesAttr = cast<ArrayAttr>(read<Attribute>()); |
| 1650 | |
| 1651 | LLVM_DEBUG(llvm::dbgs() << " * Types: " << typesAttr << "\n\n" ); |
| 1652 | assignRangeToMemory(typesAttr.getAsValueRange<TypeAttr>(), memIndex, |
| 1653 | rangeIndex); |
| 1654 | } |
| 1655 | |
| 1656 | void ByteCodeExecutor::executeCreateOperation(PatternRewriter &rewriter, |
| 1657 | Location mainRewriteLoc) { |
| 1658 | LLVM_DEBUG(llvm::dbgs() << "Executing CreateOperation:\n" ); |
| 1659 | |
| 1660 | unsigned memIndex = read(); |
| 1661 | OperationState state(mainRewriteLoc, read<OperationName>()); |
| 1662 | readList(list&: state.operands); |
| 1663 | for (unsigned i = 0, e = read(); i != e; ++i) { |
| 1664 | StringAttr name = read<StringAttr>(); |
| 1665 | if (Attribute attr = read<Attribute>()) |
| 1666 | state.addAttribute(name, attr); |
| 1667 | } |
| 1668 | |
| 1669 | // Read in the result types. If the "size" is the sentinel value, this |
| 1670 | // indicates that the result types should be inferred. |
| 1671 | unsigned numResults = read(); |
| 1672 | if (numResults == kInferTypesMarker) { |
| 1673 | InferTypeOpInterface::Concept *inferInterface = |
| 1674 | state.name.getInterface<InferTypeOpInterface>(); |
| 1675 | assert(inferInterface && |
| 1676 | "expected operation to provide InferTypeOpInterface" ); |
| 1677 | |
| 1678 | // TODO: Handle failure. |
| 1679 | if (failed(inferInterface->inferReturnTypes( |
| 1680 | state.getContext(), state.location, state.operands, |
| 1681 | state.attributes.getDictionary(state.getContext()), |
| 1682 | state.getRawProperties(), state.regions, state.types))) |
| 1683 | return; |
| 1684 | } else { |
| 1685 | // Otherwise, this is a fixed number of results. |
| 1686 | for (unsigned i = 0; i != numResults; ++i) { |
| 1687 | if (read<PDLValue::Kind>() == PDLValue::Kind::Type) { |
| 1688 | state.types.push_back(Elt: read<Type>()); |
| 1689 | } else { |
| 1690 | TypeRange *resultTypes = read<TypeRange *>(); |
| 1691 | state.types.append(in_start: resultTypes->begin(), in_end: resultTypes->end()); |
| 1692 | } |
| 1693 | } |
| 1694 | } |
| 1695 | |
| 1696 | Operation *resultOp = rewriter.create(state); |
| 1697 | memory[memIndex] = resultOp; |
| 1698 | |
| 1699 | LLVM_DEBUG({ |
| 1700 | llvm::dbgs() << " * Attributes: " |
| 1701 | << state.attributes.getDictionary(state.getContext()) |
| 1702 | << "\n * Operands: " ; |
| 1703 | llvm::interleaveComma(state.operands, llvm::dbgs()); |
| 1704 | llvm::dbgs() << "\n * Result Types: " ; |
| 1705 | llvm::interleaveComma(state.types, llvm::dbgs()); |
| 1706 | llvm::dbgs() << "\n * Result: " << *resultOp << "\n" ; |
| 1707 | }); |
| 1708 | } |
| 1709 | |
| 1710 | template <typename T> |
| 1711 | void ByteCodeExecutor::executeDynamicCreateRange(StringRef type) { |
| 1712 | LLVM_DEBUG(llvm::dbgs() << "Executing CreateDynamic" << type << "Range:\n" ); |
| 1713 | unsigned memIndex = read(); |
| 1714 | unsigned rangeIndex = read(); |
| 1715 | SmallVector<T> values; |
| 1716 | readList(values); |
| 1717 | |
| 1718 | LLVM_DEBUG({ |
| 1719 | llvm::dbgs() << "\n * " << type << "s: " ; |
| 1720 | llvm::interleaveComma(values, llvm::dbgs()); |
| 1721 | llvm::dbgs() << "\n" ; |
| 1722 | }); |
| 1723 | |
| 1724 | assignRangeToMemory(values, memIndex, rangeIndex); |
| 1725 | } |
| 1726 | |
| 1727 | void ByteCodeExecutor::executeEraseOp(PatternRewriter &rewriter) { |
| 1728 | LLVM_DEBUG(llvm::dbgs() << "Executing EraseOp:\n" ); |
| 1729 | Operation *op = read<Operation *>(); |
| 1730 | |
| 1731 | LLVM_DEBUG(llvm::dbgs() << " * Operation: " << *op << "\n" ); |
| 1732 | rewriter.eraseOp(op); |
| 1733 | } |
| 1734 | |
| 1735 | template <typename T, typename Range, PDLValue::Kind kind> |
| 1736 | void ByteCodeExecutor::() { |
| 1737 | LLVM_DEBUG(llvm::dbgs() << "Executing Extract" << kind << ":\n" ); |
| 1738 | Range *range = read<Range *>(); |
| 1739 | unsigned index = read<uint32_t>(); |
| 1740 | unsigned memIndex = read(); |
| 1741 | |
| 1742 | if (!range) { |
| 1743 | memory[memIndex] = nullptr; |
| 1744 | return; |
| 1745 | } |
| 1746 | |
| 1747 | T result = index < range->size() ? (*range)[index] : T(); |
| 1748 | LLVM_DEBUG(llvm::dbgs() << " * " << kind << "s(" << range->size() << ")\n" |
| 1749 | << " * Index: " << index << "\n" |
| 1750 | << " * Result: " << result << "\n" ); |
| 1751 | storeToMemory(memIndex, result); |
| 1752 | } |
| 1753 | |
| 1754 | void ByteCodeExecutor::executeFinalize() { |
| 1755 | LLVM_DEBUG(llvm::dbgs() << "Executing Finalize\n" ); |
| 1756 | } |
| 1757 | |
| 1758 | void ByteCodeExecutor::executeForEach() { |
| 1759 | LLVM_DEBUG(llvm::dbgs() << "Executing ForEach:\n" ); |
| 1760 | const ByteCodeField *prevCodeIt = getPrevCodeIt(); |
| 1761 | unsigned rangeIndex = read(); |
| 1762 | unsigned memIndex = read(); |
| 1763 | const void *value = nullptr; |
| 1764 | |
| 1765 | switch (read<PDLValue::Kind>()) { |
| 1766 | case PDLValue::Kind::Operation: { |
| 1767 | unsigned &index = loopIndex[read()]; |
| 1768 | ArrayRef<Operation *> array = opRangeMemory[rangeIndex]; |
| 1769 | assert(index <= array.size() && "iterated past the end" ); |
| 1770 | if (index < array.size()) { |
| 1771 | LLVM_DEBUG(llvm::dbgs() << " * Result: " << array[index] << "\n" ); |
| 1772 | value = array[index]; |
| 1773 | break; |
| 1774 | } |
| 1775 | |
| 1776 | LLVM_DEBUG(llvm::dbgs() << " * Done\n" ); |
| 1777 | index = 0; |
| 1778 | selectJump(destIndex: size_t(0)); |
| 1779 | return; |
| 1780 | } |
| 1781 | default: |
| 1782 | llvm_unreachable("unexpected `ForEach` value kind" ); |
| 1783 | } |
| 1784 | |
| 1785 | // Store the iterate value and the stack address. |
| 1786 | memory[memIndex] = value; |
| 1787 | pushCodeIt(it: prevCodeIt); |
| 1788 | |
| 1789 | // Skip over the successor (we will enter the body of the loop). |
| 1790 | read<ByteCodeAddr>(); |
| 1791 | } |
| 1792 | |
| 1793 | void ByteCodeExecutor::executeGetAttribute() { |
| 1794 | LLVM_DEBUG(llvm::dbgs() << "Executing GetAttribute:\n" ); |
| 1795 | unsigned memIndex = read(); |
| 1796 | Operation *op = read<Operation *>(); |
| 1797 | StringAttr attrName = read<StringAttr>(); |
| 1798 | Attribute attr = op->getAttr(attrName); |
| 1799 | |
| 1800 | LLVM_DEBUG(llvm::dbgs() << " * Operation: " << *op << "\n" |
| 1801 | << " * Attribute: " << attrName << "\n" |
| 1802 | << " * Result: " << attr << "\n" ); |
| 1803 | memory[memIndex] = attr.getAsOpaquePointer(); |
| 1804 | } |
| 1805 | |
| 1806 | void ByteCodeExecutor::executeGetAttributeType() { |
| 1807 | LLVM_DEBUG(llvm::dbgs() << "Executing GetAttributeType:\n" ); |
| 1808 | unsigned memIndex = read(); |
| 1809 | Attribute attr = read<Attribute>(); |
| 1810 | Type type; |
| 1811 | if (auto typedAttr = dyn_cast<TypedAttr>(attr)) |
| 1812 | type = typedAttr.getType(); |
| 1813 | |
| 1814 | LLVM_DEBUG(llvm::dbgs() << " * Attribute: " << attr << "\n" |
| 1815 | << " * Result: " << type << "\n" ); |
| 1816 | memory[memIndex] = type.getAsOpaquePointer(); |
| 1817 | } |
| 1818 | |
| 1819 | void ByteCodeExecutor::executeGetDefiningOp() { |
| 1820 | LLVM_DEBUG(llvm::dbgs() << "Executing GetDefiningOp:\n" ); |
| 1821 | unsigned memIndex = read(); |
| 1822 | Operation *op = nullptr; |
| 1823 | if (read<PDLValue::Kind>() == PDLValue::Kind::Value) { |
| 1824 | Value value = read<Value>(); |
| 1825 | if (value) |
| 1826 | op = value.getDefiningOp(); |
| 1827 | LLVM_DEBUG(llvm::dbgs() << " * Value: " << value << "\n" ); |
| 1828 | } else { |
| 1829 | ValueRange *values = read<ValueRange *>(); |
| 1830 | if (values && !values->empty()) { |
| 1831 | op = values->front().getDefiningOp(); |
| 1832 | } |
| 1833 | LLVM_DEBUG(llvm::dbgs() << " * Values: " << values << "\n" ); |
| 1834 | } |
| 1835 | |
| 1836 | LLVM_DEBUG(llvm::dbgs() << " * Result: " << op << "\n" ); |
| 1837 | memory[memIndex] = op; |
| 1838 | } |
| 1839 | |
| 1840 | void ByteCodeExecutor::executeGetOperand(unsigned index) { |
| 1841 | Operation *op = read<Operation *>(); |
| 1842 | unsigned memIndex = read(); |
| 1843 | Value operand = |
| 1844 | index < op->getNumOperands() ? op->getOperand(idx: index) : Value(); |
| 1845 | |
| 1846 | LLVM_DEBUG(llvm::dbgs() << " * Operation: " << *op << "\n" |
| 1847 | << " * Index: " << index << "\n" |
| 1848 | << " * Result: " << operand << "\n" ); |
| 1849 | memory[memIndex] = operand.getAsOpaquePointer(); |
| 1850 | } |
| 1851 | |
| 1852 | /// This function is the internal implementation of `GetResults` and |
| 1853 | /// `GetOperands` that provides support for extracting a value range from the |
| 1854 | /// given operation. |
| 1855 | template <template <typename> class AttrSizedSegmentsT, typename RangeT> |
| 1856 | static void * |
| 1857 | executeGetOperandsResults(RangeT values, Operation *op, unsigned index, |
| 1858 | ByteCodeField rangeIndex, StringRef attrSizedSegments, |
| 1859 | MutableArrayRef<ValueRange> valueRangeMemory) { |
| 1860 | // Check for the sentinel index that signals that all values should be |
| 1861 | // returned. |
| 1862 | if (index == std::numeric_limits<uint32_t>::max()) { |
| 1863 | LLVM_DEBUG(llvm::dbgs() << " * Getting all values\n" ); |
| 1864 | // `values` is already the full value range. |
| 1865 | |
| 1866 | // Otherwise, check to see if this operation uses AttrSizedSegments. |
| 1867 | } else if (op->hasTrait<AttrSizedSegmentsT>()) { |
| 1868 | LLVM_DEBUG(llvm::dbgs() |
| 1869 | << " * Extracting values from `" << attrSizedSegments << "`\n" ); |
| 1870 | |
| 1871 | auto segmentAttr = op->getAttrOfType<DenseI32ArrayAttr>(attrSizedSegments); |
| 1872 | if (!segmentAttr || segmentAttr.asArrayRef().size() <= index) |
| 1873 | return nullptr; |
| 1874 | |
| 1875 | ArrayRef<int32_t> segments = segmentAttr; |
| 1876 | unsigned startIndex = |
| 1877 | std::accumulate(first: segments.begin(), last: segments.begin() + index, init: 0); |
| 1878 | values = values.slice(startIndex, *std::next(x: segments.begin(), n: index)); |
| 1879 | |
| 1880 | LLVM_DEBUG(llvm::dbgs() << " * Extracting range[" << startIndex << ", " |
| 1881 | << *std::next(segments.begin(), index) << "]\n" ); |
| 1882 | |
| 1883 | // Otherwise, assume this is the last operand group of the operation. |
| 1884 | // FIXME: We currently don't support operations with |
| 1885 | // SameVariadicOperandSize/SameVariadicResultSize here given that we don't |
| 1886 | // have a way to detect it's presence. |
| 1887 | } else if (values.size() >= index) { |
| 1888 | LLVM_DEBUG(llvm::dbgs() |
| 1889 | << " * Treating values as trailing variadic range\n" ); |
| 1890 | values = values.drop_front(index); |
| 1891 | |
| 1892 | // If we couldn't detect a way to compute the values, bail out. |
| 1893 | } else { |
| 1894 | return nullptr; |
| 1895 | } |
| 1896 | |
| 1897 | // If the range index is valid, we are returning a range. |
| 1898 | if (rangeIndex != std::numeric_limits<ByteCodeField>::max()) { |
| 1899 | valueRangeMemory[rangeIndex] = values; |
| 1900 | return &valueRangeMemory[rangeIndex]; |
| 1901 | } |
| 1902 | |
| 1903 | // If a range index wasn't provided, the range is required to be non-variadic. |
| 1904 | return values.size() != 1 ? nullptr : values.front().getAsOpaquePointer(); |
| 1905 | } |
| 1906 | |
| 1907 | void ByteCodeExecutor::executeGetOperands() { |
| 1908 | LLVM_DEBUG(llvm::dbgs() << "Executing GetOperands:\n" ); |
| 1909 | unsigned index = read<uint32_t>(); |
| 1910 | Operation *op = read<Operation *>(); |
| 1911 | ByteCodeField rangeIndex = read(); |
| 1912 | |
| 1913 | void *result = executeGetOperandsResults<OpTrait::AttrSizedOperandSegments>( |
| 1914 | values: op->getOperands(), op, index, rangeIndex, attrSizedSegments: "operandSegmentSizes" , |
| 1915 | valueRangeMemory); |
| 1916 | if (!result) |
| 1917 | LLVM_DEBUG(llvm::dbgs() << " * Invalid operand range\n" ); |
| 1918 | memory[read()] = result; |
| 1919 | } |
| 1920 | |
| 1921 | void ByteCodeExecutor::executeGetResult(unsigned index) { |
| 1922 | Operation *op = read<Operation *>(); |
| 1923 | unsigned memIndex = read(); |
| 1924 | OpResult result = |
| 1925 | index < op->getNumResults() ? op->getResult(idx: index) : OpResult(); |
| 1926 | |
| 1927 | LLVM_DEBUG(llvm::dbgs() << " * Operation: " << *op << "\n" |
| 1928 | << " * Index: " << index << "\n" |
| 1929 | << " * Result: " << result << "\n" ); |
| 1930 | memory[memIndex] = result.getAsOpaquePointer(); |
| 1931 | } |
| 1932 | |
| 1933 | void ByteCodeExecutor::executeGetResults() { |
| 1934 | LLVM_DEBUG(llvm::dbgs() << "Executing GetResults:\n" ); |
| 1935 | unsigned index = read<uint32_t>(); |
| 1936 | Operation *op = read<Operation *>(); |
| 1937 | ByteCodeField rangeIndex = read(); |
| 1938 | |
| 1939 | void *result = executeGetOperandsResults<OpTrait::AttrSizedResultSegments>( |
| 1940 | values: op->getResults(), op, index, rangeIndex, attrSizedSegments: "resultSegmentSizes" , |
| 1941 | valueRangeMemory); |
| 1942 | if (!result) |
| 1943 | LLVM_DEBUG(llvm::dbgs() << " * Invalid result range\n" ); |
| 1944 | memory[read()] = result; |
| 1945 | } |
| 1946 | |
| 1947 | void ByteCodeExecutor::executeGetUsers() { |
| 1948 | LLVM_DEBUG(llvm::dbgs() << "Executing GetUsers:\n" ); |
| 1949 | unsigned memIndex = read(); |
| 1950 | unsigned rangeIndex = read(); |
| 1951 | OwningOpRange &range = opRangeMemory[rangeIndex]; |
| 1952 | memory[memIndex] = ⦥ |
| 1953 | |
| 1954 | range = OwningOpRange(); |
| 1955 | if (read<PDLValue::Kind>() == PDLValue::Kind::Value) { |
| 1956 | // Read the value. |
| 1957 | Value value = read<Value>(); |
| 1958 | if (!value) |
| 1959 | return; |
| 1960 | LLVM_DEBUG(llvm::dbgs() << " * Value: " << value << "\n" ); |
| 1961 | |
| 1962 | // Extract the users of a single value. |
| 1963 | range = OwningOpRange(std::distance(first: value.user_begin(), last: value.user_end())); |
| 1964 | llvm::copy(Range: value.getUsers(), Out: range.begin()); |
| 1965 | } else { |
| 1966 | // Read a range of values. |
| 1967 | ValueRange *values = read<ValueRange *>(); |
| 1968 | if (!values) |
| 1969 | return; |
| 1970 | LLVM_DEBUG({ |
| 1971 | llvm::dbgs() << " * Values (" << values->size() << "): " ; |
| 1972 | llvm::interleaveComma(*values, llvm::dbgs()); |
| 1973 | llvm::dbgs() << "\n" ; |
| 1974 | }); |
| 1975 | |
| 1976 | // Extract all the users of a range of values. |
| 1977 | SmallVector<Operation *> users; |
| 1978 | for (Value value : *values) |
| 1979 | users.append(in_start: value.user_begin(), in_end: value.user_end()); |
| 1980 | range = OwningOpRange(users.size()); |
| 1981 | llvm::copy(Range&: users, Out: range.begin()); |
| 1982 | } |
| 1983 | |
| 1984 | LLVM_DEBUG(llvm::dbgs() << " * Result: " << range.size() << " operations\n" ); |
| 1985 | } |
| 1986 | |
| 1987 | void ByteCodeExecutor::executeGetValueType() { |
| 1988 | LLVM_DEBUG(llvm::dbgs() << "Executing GetValueType:\n" ); |
| 1989 | unsigned memIndex = read(); |
| 1990 | Value value = read<Value>(); |
| 1991 | Type type = value ? value.getType() : Type(); |
| 1992 | |
| 1993 | LLVM_DEBUG(llvm::dbgs() << " * Value: " << value << "\n" |
| 1994 | << " * Result: " << type << "\n" ); |
| 1995 | memory[memIndex] = type.getAsOpaquePointer(); |
| 1996 | } |
| 1997 | |
| 1998 | void ByteCodeExecutor::executeGetValueRangeTypes() { |
| 1999 | LLVM_DEBUG(llvm::dbgs() << "Executing GetValueRangeTypes:\n" ); |
| 2000 | unsigned memIndex = read(); |
| 2001 | unsigned rangeIndex = read(); |
| 2002 | ValueRange *values = read<ValueRange *>(); |
| 2003 | if (!values) { |
| 2004 | LLVM_DEBUG(llvm::dbgs() << " * Values: <NULL>\n\n" ); |
| 2005 | memory[memIndex] = nullptr; |
| 2006 | return; |
| 2007 | } |
| 2008 | |
| 2009 | LLVM_DEBUG({ |
| 2010 | llvm::dbgs() << " * Values (" << values->size() << "): " ; |
| 2011 | llvm::interleaveComma(*values, llvm::dbgs()); |
| 2012 | llvm::dbgs() << "\n * Result: " ; |
| 2013 | llvm::interleaveComma(values->getType(), llvm::dbgs()); |
| 2014 | llvm::dbgs() << "\n" ; |
| 2015 | }); |
| 2016 | typeRangeMemory[rangeIndex] = values->getType(); |
| 2017 | memory[memIndex] = &typeRangeMemory[rangeIndex]; |
| 2018 | } |
| 2019 | |
| 2020 | void ByteCodeExecutor::executeIsNotNull() { |
| 2021 | LLVM_DEBUG(llvm::dbgs() << "Executing IsNotNull:\n" ); |
| 2022 | const void *value = read<const void *>(); |
| 2023 | |
| 2024 | LLVM_DEBUG(llvm::dbgs() << " * Value: " << value << "\n" ); |
| 2025 | selectJump(isTrue: value != nullptr); |
| 2026 | } |
| 2027 | |
| 2028 | void ByteCodeExecutor::executeRecordMatch( |
| 2029 | PatternRewriter &rewriter, |
| 2030 | SmallVectorImpl<PDLByteCode::MatchResult> &matches) { |
| 2031 | LLVM_DEBUG(llvm::dbgs() << "Executing RecordMatch:\n" ); |
| 2032 | unsigned patternIndex = read(); |
| 2033 | PatternBenefit benefit = currentPatternBenefits[patternIndex]; |
| 2034 | const ByteCodeField *dest = &code[read<ByteCodeAddr>()]; |
| 2035 | |
| 2036 | // If the benefit of the pattern is impossible, skip the processing of the |
| 2037 | // rest of the pattern. |
| 2038 | if (benefit.isImpossibleToMatch()) { |
| 2039 | LLVM_DEBUG(llvm::dbgs() << " * Benefit: Impossible To Match\n" ); |
| 2040 | curCodeIt = dest; |
| 2041 | return; |
| 2042 | } |
| 2043 | |
| 2044 | // Create a fused location containing the locations of each of the |
| 2045 | // operations used in the match. This will be used as the location for |
| 2046 | // created operations during the rewrite that don't already have an |
| 2047 | // explicit location set. |
| 2048 | unsigned numMatchLocs = read(); |
| 2049 | SmallVector<Location, 4> matchLocs; |
| 2050 | matchLocs.reserve(N: numMatchLocs); |
| 2051 | for (unsigned i = 0; i != numMatchLocs; ++i) |
| 2052 | matchLocs.push_back(Elt: read<Operation *>()->getLoc()); |
| 2053 | Location matchLoc = rewriter.getFusedLoc(locs: matchLocs); |
| 2054 | |
| 2055 | LLVM_DEBUG(llvm::dbgs() << " * Benefit: " << benefit.getBenefit() << "\n" |
| 2056 | << " * Location: " << matchLoc << "\n" ); |
| 2057 | matches.emplace_back(Args&: matchLoc, Args: patterns[patternIndex], Args&: benefit); |
| 2058 | PDLByteCode::MatchResult &match = matches.back(); |
| 2059 | |
| 2060 | // Record all of the inputs to the match. If any of the inputs are ranges, we |
| 2061 | // will also need to remap the range pointer to memory stored in the match |
| 2062 | // state. |
| 2063 | unsigned numInputs = read(); |
| 2064 | match.values.reserve(N: numInputs); |
| 2065 | match.typeRangeValues.reserve(N: numInputs); |
| 2066 | match.valueRangeValues.reserve(N: numInputs); |
| 2067 | for (unsigned i = 0; i < numInputs; ++i) { |
| 2068 | switch (read<PDLValue::Kind>()) { |
| 2069 | case PDLValue::Kind::TypeRange: |
| 2070 | match.typeRangeValues.push_back(Elt: *read<TypeRange *>()); |
| 2071 | match.values.push_back(Elt: &match.typeRangeValues.back()); |
| 2072 | break; |
| 2073 | case PDLValue::Kind::ValueRange: |
| 2074 | match.valueRangeValues.push_back(Elt: *read<ValueRange *>()); |
| 2075 | match.values.push_back(Elt: &match.valueRangeValues.back()); |
| 2076 | break; |
| 2077 | default: |
| 2078 | match.values.push_back(Elt: read<const void *>()); |
| 2079 | break; |
| 2080 | } |
| 2081 | } |
| 2082 | curCodeIt = dest; |
| 2083 | } |
| 2084 | |
| 2085 | void ByteCodeExecutor::executeReplaceOp(PatternRewriter &rewriter) { |
| 2086 | LLVM_DEBUG(llvm::dbgs() << "Executing ReplaceOp:\n" ); |
| 2087 | Operation *op = read<Operation *>(); |
| 2088 | SmallVector<Value, 16> args; |
| 2089 | readList(list&: args); |
| 2090 | |
| 2091 | LLVM_DEBUG({ |
| 2092 | llvm::dbgs() << " * Operation: " << *op << "\n" |
| 2093 | << " * Values: " ; |
| 2094 | llvm::interleaveComma(args, llvm::dbgs()); |
| 2095 | llvm::dbgs() << "\n" ; |
| 2096 | }); |
| 2097 | rewriter.replaceOp(op, newValues: args); |
| 2098 | } |
| 2099 | |
| 2100 | void ByteCodeExecutor::executeSwitchAttribute() { |
| 2101 | LLVM_DEBUG(llvm::dbgs() << "Executing SwitchAttribute:\n" ); |
| 2102 | Attribute value = read<Attribute>(); |
| 2103 | ArrayAttr cases = read<ArrayAttr>(); |
| 2104 | handleSwitch(value, cases); |
| 2105 | } |
| 2106 | |
| 2107 | void ByteCodeExecutor::executeSwitchOperandCount() { |
| 2108 | LLVM_DEBUG(llvm::dbgs() << "Executing SwitchOperandCount:\n" ); |
| 2109 | Operation *op = read<Operation *>(); |
| 2110 | auto cases = read<DenseIntOrFPElementsAttr>().getValues<uint32_t>(); |
| 2111 | |
| 2112 | LLVM_DEBUG(llvm::dbgs() << " * Operation: " << *op << "\n" ); |
| 2113 | handleSwitch(op->getNumOperands(), cases); |
| 2114 | } |
| 2115 | |
| 2116 | void ByteCodeExecutor::executeSwitchOperationName() { |
| 2117 | LLVM_DEBUG(llvm::dbgs() << "Executing SwitchOperationName:\n" ); |
| 2118 | OperationName value = read<Operation *>()->getName(); |
| 2119 | size_t caseCount = read(); |
| 2120 | |
| 2121 | // The operation names are stored in-line, so to print them out for |
| 2122 | // debugging purposes we need to read the array before executing the |
| 2123 | // switch so that we can display all of the possible values. |
| 2124 | LLVM_DEBUG({ |
| 2125 | const ByteCodeField *prevCodeIt = curCodeIt; |
| 2126 | llvm::dbgs() << " * Value: " << value << "\n" |
| 2127 | << " * Cases: " ; |
| 2128 | llvm::interleaveComma( |
| 2129 | llvm::map_range(llvm::seq<size_t>(0, caseCount), |
| 2130 | [&](size_t) { return read<OperationName>(); }), |
| 2131 | llvm::dbgs()); |
| 2132 | llvm::dbgs() << "\n" ; |
| 2133 | curCodeIt = prevCodeIt; |
| 2134 | }); |
| 2135 | |
| 2136 | // Try to find the switch value within any of the cases. |
| 2137 | for (size_t i = 0; i != caseCount; ++i) { |
| 2138 | if (read<OperationName>() == value) { |
| 2139 | curCodeIt += (caseCount - i - 1); |
| 2140 | return selectJump(destIndex: i + 1); |
| 2141 | } |
| 2142 | } |
| 2143 | selectJump(destIndex: size_t(0)); |
| 2144 | } |
| 2145 | |
| 2146 | void ByteCodeExecutor::executeSwitchResultCount() { |
| 2147 | LLVM_DEBUG(llvm::dbgs() << "Executing SwitchResultCount:\n" ); |
| 2148 | Operation *op = read<Operation *>(); |
| 2149 | auto cases = read<DenseIntOrFPElementsAttr>().getValues<uint32_t>(); |
| 2150 | |
| 2151 | LLVM_DEBUG(llvm::dbgs() << " * Operation: " << *op << "\n" ); |
| 2152 | handleSwitch(op->getNumResults(), cases); |
| 2153 | } |
| 2154 | |
| 2155 | void ByteCodeExecutor::executeSwitchType() { |
| 2156 | LLVM_DEBUG(llvm::dbgs() << "Executing SwitchType:\n" ); |
| 2157 | Type value = read<Type>(); |
| 2158 | auto cases = read<ArrayAttr>().getAsValueRange<TypeAttr>(); |
| 2159 | handleSwitch(value, cases); |
| 2160 | } |
| 2161 | |
| 2162 | void ByteCodeExecutor::executeSwitchTypes() { |
| 2163 | LLVM_DEBUG(llvm::dbgs() << "Executing SwitchTypes:\n" ); |
| 2164 | TypeRange *value = read<TypeRange *>(); |
| 2165 | auto cases = read<ArrayAttr>().getAsRange<ArrayAttr>(); |
| 2166 | if (!value) { |
| 2167 | LLVM_DEBUG(llvm::dbgs() << "Types: <NULL>\n" ); |
| 2168 | return selectJump(destIndex: size_t(0)); |
| 2169 | } |
| 2170 | handleSwitch(*value, cases, [](ArrayAttr caseValue, const TypeRange &value) { |
| 2171 | return value == caseValue.getAsValueRange<TypeAttr>(); |
| 2172 | }); |
| 2173 | } |
| 2174 | |
| 2175 | LogicalResult |
| 2176 | ByteCodeExecutor::execute(PatternRewriter &rewriter, |
| 2177 | SmallVectorImpl<PDLByteCode::MatchResult> *matches, |
| 2178 | std::optional<Location> mainRewriteLoc) { |
| 2179 | while (true) { |
| 2180 | // Print the location of the operation being executed. |
| 2181 | LLVM_DEBUG(llvm::dbgs() << readInline<Location>() << "\n" ); |
| 2182 | |
| 2183 | OpCode opCode = static_cast<OpCode>(read()); |
| 2184 | switch (opCode) { |
| 2185 | case ApplyConstraint: |
| 2186 | executeApplyConstraint(rewriter); |
| 2187 | break; |
| 2188 | case ApplyRewrite: |
| 2189 | if (failed(Result: executeApplyRewrite(rewriter))) |
| 2190 | return failure(); |
| 2191 | break; |
| 2192 | case AreEqual: |
| 2193 | executeAreEqual(); |
| 2194 | break; |
| 2195 | case AreRangesEqual: |
| 2196 | executeAreRangesEqual(); |
| 2197 | break; |
| 2198 | case Branch: |
| 2199 | executeBranch(); |
| 2200 | break; |
| 2201 | case CheckOperandCount: |
| 2202 | executeCheckOperandCount(); |
| 2203 | break; |
| 2204 | case CheckOperationName: |
| 2205 | executeCheckOperationName(); |
| 2206 | break; |
| 2207 | case CheckResultCount: |
| 2208 | executeCheckResultCount(); |
| 2209 | break; |
| 2210 | case CheckTypes: |
| 2211 | executeCheckTypes(); |
| 2212 | break; |
| 2213 | case Continue: |
| 2214 | executeContinue(); |
| 2215 | break; |
| 2216 | case CreateConstantTypeRange: |
| 2217 | executeCreateConstantTypeRange(); |
| 2218 | break; |
| 2219 | case CreateOperation: |
| 2220 | executeCreateOperation(rewriter, mainRewriteLoc: *mainRewriteLoc); |
| 2221 | break; |
| 2222 | case CreateDynamicTypeRange: |
| 2223 | executeDynamicCreateRange<Type>(type: "Type" ); |
| 2224 | break; |
| 2225 | case CreateDynamicValueRange: |
| 2226 | executeDynamicCreateRange<Value>(type: "Value" ); |
| 2227 | break; |
| 2228 | case EraseOp: |
| 2229 | executeEraseOp(rewriter); |
| 2230 | break; |
| 2231 | case ExtractOp: |
| 2232 | executeExtract<Operation *, OwningOpRange, PDLValue::Kind::Operation>(); |
| 2233 | break; |
| 2234 | case ExtractType: |
| 2235 | executeExtract<Type, TypeRange, PDLValue::Kind::Type>(); |
| 2236 | break; |
| 2237 | case ExtractValue: |
| 2238 | executeExtract<Value, ValueRange, PDLValue::Kind::Value>(); |
| 2239 | break; |
| 2240 | case Finalize: |
| 2241 | executeFinalize(); |
| 2242 | LLVM_DEBUG(llvm::dbgs() << "\n" ); |
| 2243 | return success(); |
| 2244 | case ForEach: |
| 2245 | executeForEach(); |
| 2246 | break; |
| 2247 | case GetAttribute: |
| 2248 | executeGetAttribute(); |
| 2249 | break; |
| 2250 | case GetAttributeType: |
| 2251 | executeGetAttributeType(); |
| 2252 | break; |
| 2253 | case GetDefiningOp: |
| 2254 | executeGetDefiningOp(); |
| 2255 | break; |
| 2256 | case GetOperand0: |
| 2257 | case GetOperand1: |
| 2258 | case GetOperand2: |
| 2259 | case GetOperand3: { |
| 2260 | unsigned index = opCode - GetOperand0; |
| 2261 | LLVM_DEBUG(llvm::dbgs() << "Executing GetOperand" << index << ":\n" ); |
| 2262 | executeGetOperand(index); |
| 2263 | break; |
| 2264 | } |
| 2265 | case GetOperandN: |
| 2266 | LLVM_DEBUG(llvm::dbgs() << "Executing GetOperandN:\n" ); |
| 2267 | executeGetOperand(index: read<uint32_t>()); |
| 2268 | break; |
| 2269 | case GetOperands: |
| 2270 | executeGetOperands(); |
| 2271 | break; |
| 2272 | case GetResult0: |
| 2273 | case GetResult1: |
| 2274 | case GetResult2: |
| 2275 | case GetResult3: { |
| 2276 | unsigned index = opCode - GetResult0; |
| 2277 | LLVM_DEBUG(llvm::dbgs() << "Executing GetResult" << index << ":\n" ); |
| 2278 | executeGetResult(index); |
| 2279 | break; |
| 2280 | } |
| 2281 | case GetResultN: |
| 2282 | LLVM_DEBUG(llvm::dbgs() << "Executing GetResultN:\n" ); |
| 2283 | executeGetResult(index: read<uint32_t>()); |
| 2284 | break; |
| 2285 | case GetResults: |
| 2286 | executeGetResults(); |
| 2287 | break; |
| 2288 | case GetUsers: |
| 2289 | executeGetUsers(); |
| 2290 | break; |
| 2291 | case GetValueType: |
| 2292 | executeGetValueType(); |
| 2293 | break; |
| 2294 | case GetValueRangeTypes: |
| 2295 | executeGetValueRangeTypes(); |
| 2296 | break; |
| 2297 | case IsNotNull: |
| 2298 | executeIsNotNull(); |
| 2299 | break; |
| 2300 | case RecordMatch: |
| 2301 | assert(matches && |
| 2302 | "expected matches to be provided when executing the matcher" ); |
| 2303 | executeRecordMatch(rewriter, matches&: *matches); |
| 2304 | break; |
| 2305 | case ReplaceOp: |
| 2306 | executeReplaceOp(rewriter); |
| 2307 | break; |
| 2308 | case SwitchAttribute: |
| 2309 | executeSwitchAttribute(); |
| 2310 | break; |
| 2311 | case SwitchOperandCount: |
| 2312 | executeSwitchOperandCount(); |
| 2313 | break; |
| 2314 | case SwitchOperationName: |
| 2315 | executeSwitchOperationName(); |
| 2316 | break; |
| 2317 | case SwitchResultCount: |
| 2318 | executeSwitchResultCount(); |
| 2319 | break; |
| 2320 | case SwitchType: |
| 2321 | executeSwitchType(); |
| 2322 | break; |
| 2323 | case SwitchTypes: |
| 2324 | executeSwitchTypes(); |
| 2325 | break; |
| 2326 | } |
| 2327 | LLVM_DEBUG(llvm::dbgs() << "\n" ); |
| 2328 | } |
| 2329 | } |
| 2330 | |
| 2331 | void PDLByteCode::match(Operation *op, PatternRewriter &rewriter, |
| 2332 | SmallVectorImpl<MatchResult> &matches, |
| 2333 | PDLByteCodeMutableState &state) const { |
| 2334 | // The first memory slot is always the root operation. |
| 2335 | state.memory[0] = op; |
| 2336 | |
| 2337 | // The matcher function always starts at code address 0. |
| 2338 | ByteCodeExecutor executor( |
| 2339 | matcherByteCode.data(), state.memory, state.opRangeMemory, |
| 2340 | state.typeRangeMemory, state.allocatedTypeRangeMemory, |
| 2341 | state.valueRangeMemory, state.allocatedValueRangeMemory, state.loopIndex, |
| 2342 | uniquedData, matcherByteCode, state.currentPatternBenefits, patterns, |
| 2343 | constraintFunctions, rewriteFunctions); |
| 2344 | LogicalResult executeResult = executor.execute(rewriter, matches: &matches); |
| 2345 | (void)executeResult; |
| 2346 | assert(succeeded(executeResult) && "unexpected matcher execution failure" ); |
| 2347 | |
| 2348 | // Order the found matches by benefit. |
| 2349 | llvm::stable_sort(Range&: matches, |
| 2350 | C: [](const MatchResult &lhs, const MatchResult &rhs) { |
| 2351 | return lhs.benefit > rhs.benefit; |
| 2352 | }); |
| 2353 | } |
| 2354 | |
| 2355 | LogicalResult PDLByteCode::rewrite(PatternRewriter &rewriter, |
| 2356 | const MatchResult &match, |
| 2357 | PDLByteCodeMutableState &state) const { |
| 2358 | auto *configSet = match.pattern->getConfigSet(); |
| 2359 | if (configSet) |
| 2360 | configSet->notifyRewriteBegin(rewriter); |
| 2361 | |
| 2362 | // The arguments of the rewrite function are stored at the start of the |
| 2363 | // memory buffer. |
| 2364 | llvm::copy(Range: match.values, Out: state.memory.begin()); |
| 2365 | |
| 2366 | ByteCodeExecutor executor( |
| 2367 | &rewriterByteCode[match.pattern->getRewriterAddr()], state.memory, |
| 2368 | state.opRangeMemory, state.typeRangeMemory, |
| 2369 | state.allocatedTypeRangeMemory, state.valueRangeMemory, |
| 2370 | state.allocatedValueRangeMemory, state.loopIndex, uniquedData, |
| 2371 | rewriterByteCode, state.currentPatternBenefits, patterns, |
| 2372 | constraintFunctions, rewriteFunctions); |
| 2373 | LogicalResult result = |
| 2374 | executor.execute(rewriter, /*matches=*/nullptr, mainRewriteLoc: match.location); |
| 2375 | |
| 2376 | if (configSet) |
| 2377 | configSet->notifyRewriteEnd(rewriter); |
| 2378 | |
| 2379 | // If the rewrite failed, check if the pattern rewriter can recover. If it |
| 2380 | // can, we can signal to the pattern applicator to keep trying patterns. If it |
| 2381 | // doesn't, we need to bail. Bailing here should be fine, given that we have |
| 2382 | // no means to propagate such a failure to the user, and it also indicates a |
| 2383 | // bug in the user code (i.e. failable rewrites should not be used with |
| 2384 | // pattern rewriters that don't support it). |
| 2385 | if (failed(Result: result) && !rewriter.canRecoverFromRewriteFailure()) { |
| 2386 | LLVM_DEBUG(llvm::dbgs() << " and rollback is not supported - aborting" ); |
| 2387 | llvm::report_fatal_error( |
| 2388 | reason: "Native PDL Rewrite failed, but the pattern " |
| 2389 | "rewriter doesn't support recovery. Failable pattern rewrites should " |
| 2390 | "not be used with pattern rewriters that do not support them." ); |
| 2391 | } |
| 2392 | return result; |
| 2393 | } |
| 2394 | |