1 | //===- ByteCode.cpp - Pattern ByteCode Interpreter ------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements MLIR to byte-code generation and the interpreter. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "ByteCode.h" |
14 | #include "mlir/Analysis/Liveness.h" |
15 | #include "mlir/Dialect/PDL/IR/PDLTypes.h" |
16 | #include "mlir/Dialect/PDLInterp/IR/PDLInterp.h" |
17 | #include "mlir/IR/BuiltinOps.h" |
18 | #include "mlir/IR/RegionGraphTraits.h" |
19 | #include "llvm/ADT/IntervalMap.h" |
20 | #include "llvm/ADT/PostOrderIterator.h" |
21 | #include "llvm/ADT/TypeSwitch.h" |
22 | #include "llvm/Support/Debug.h" |
23 | #include "llvm/Support/Format.h" |
24 | #include "llvm/Support/FormatVariadic.h" |
25 | #include <numeric> |
26 | #include <optional> |
27 | |
28 | #define DEBUG_TYPE "pdl-bytecode" |
29 | |
30 | using namespace mlir; |
31 | using namespace mlir::detail; |
32 | |
33 | //===----------------------------------------------------------------------===// |
34 | // PDLByteCodePattern |
35 | //===----------------------------------------------------------------------===// |
36 | |
37 | PDLByteCodePattern PDLByteCodePattern::create(pdl_interp::RecordMatchOp matchOp, |
38 | PDLPatternConfigSet *configSet, |
39 | ByteCodeAddr rewriterAddr) { |
40 | PatternBenefit benefit = matchOp.getBenefit(); |
41 | MLIRContext *ctx = matchOp.getContext(); |
42 | |
43 | // Collect the set of generated operations. |
44 | SmallVector<StringRef, 8> generatedOps; |
45 | if (ArrayAttr generatedOpsAttr = matchOp.getGeneratedOpsAttr()) |
46 | generatedOps = |
47 | llvm::to_vector<8>(generatedOpsAttr.getAsValueRange<StringAttr>()); |
48 | |
49 | // Check to see if this is pattern matches a specific operation type. |
50 | if (std::optional<StringRef> rootKind = matchOp.getRootKind()) |
51 | return PDLByteCodePattern(rewriterAddr, configSet, *rootKind, benefit, ctx, |
52 | generatedOps); |
53 | return PDLByteCodePattern(rewriterAddr, configSet, MatchAnyOpTypeTag(), |
54 | benefit, ctx, generatedOps); |
55 | } |
56 | |
57 | //===----------------------------------------------------------------------===// |
58 | // PDLByteCodeMutableState |
59 | //===----------------------------------------------------------------------===// |
60 | |
61 | /// Set the new benefit for a bytecode pattern. The `patternIndex` corresponds |
62 | /// to the position of the pattern within the range returned by |
63 | /// `PDLByteCode::getPatterns`. |
64 | void PDLByteCodeMutableState::updatePatternBenefit(unsigned patternIndex, |
65 | PatternBenefit benefit) { |
66 | currentPatternBenefits[patternIndex] = benefit; |
67 | } |
68 | |
69 | /// Cleanup any allocated state after a full match/rewrite has been completed. |
70 | /// This method should be called irregardless of whether the match+rewrite was a |
71 | /// success or not. |
72 | void PDLByteCodeMutableState::cleanupAfterMatchAndRewrite() { |
73 | allocatedTypeRangeMemory.clear(); |
74 | allocatedValueRangeMemory.clear(); |
75 | } |
76 | |
77 | //===----------------------------------------------------------------------===// |
78 | // Bytecode OpCodes |
79 | //===----------------------------------------------------------------------===// |
80 | |
81 | namespace { |
82 | enum OpCode : ByteCodeField { |
83 | /// Apply an externally registered constraint. |
84 | ApplyConstraint, |
85 | /// Apply an externally registered rewrite. |
86 | ApplyRewrite, |
87 | /// Check if two generic values are equal. |
88 | AreEqual, |
89 | /// Check if two ranges are equal. |
90 | AreRangesEqual, |
91 | /// Unconditional branch. |
92 | Branch, |
93 | /// Compare the operand count of an operation with a constant. |
94 | CheckOperandCount, |
95 | /// Compare the name of an operation with a constant. |
96 | CheckOperationName, |
97 | /// Compare the result count of an operation with a constant. |
98 | CheckResultCount, |
99 | /// Compare a range of types to a constant range of types. |
100 | CheckTypes, |
101 | /// Continue to the next iteration of a loop. |
102 | Continue, |
103 | /// Create a type range from a list of constant types. |
104 | CreateConstantTypeRange, |
105 | /// Create an operation. |
106 | CreateOperation, |
107 | /// Create a type range from a list of dynamic types. |
108 | CreateDynamicTypeRange, |
109 | /// Create a value range. |
110 | CreateDynamicValueRange, |
111 | /// Erase an operation. |
112 | EraseOp, |
113 | /// Extract the op from a range at the specified index. |
114 | , |
115 | /// Extract the type from a range at the specified index. |
116 | , |
117 | /// Extract the value from a range at the specified index. |
118 | , |
119 | /// Terminate a matcher or rewrite sequence. |
120 | Finalize, |
121 | /// Iterate over a range of values. |
122 | ForEach, |
123 | /// Get a specific attribute of an operation. |
124 | GetAttribute, |
125 | /// Get the type of an attribute. |
126 | GetAttributeType, |
127 | /// Get the defining operation of a value. |
128 | GetDefiningOp, |
129 | /// Get a specific operand of an operation. |
130 | GetOperand0, |
131 | GetOperand1, |
132 | GetOperand2, |
133 | GetOperand3, |
134 | GetOperandN, |
135 | /// Get a specific operand group of an operation. |
136 | GetOperands, |
137 | /// Get a specific result of an operation. |
138 | GetResult0, |
139 | GetResult1, |
140 | GetResult2, |
141 | GetResult3, |
142 | GetResultN, |
143 | /// Get a specific result group of an operation. |
144 | GetResults, |
145 | /// Get the users of a value or a range of values. |
146 | GetUsers, |
147 | /// Get the type of a value. |
148 | GetValueType, |
149 | /// Get the types of a value range. |
150 | GetValueRangeTypes, |
151 | /// Check if a generic value is not null. |
152 | IsNotNull, |
153 | /// Record a successful pattern match. |
154 | RecordMatch, |
155 | /// Replace an operation. |
156 | ReplaceOp, |
157 | /// Compare an attribute with a set of constants. |
158 | SwitchAttribute, |
159 | /// Compare the operand count of an operation with a set of constants. |
160 | SwitchOperandCount, |
161 | /// Compare the name of an operation with a set of constants. |
162 | SwitchOperationName, |
163 | /// Compare the result count of an operation with a set of constants. |
164 | SwitchResultCount, |
165 | /// Compare a type with a set of constants. |
166 | SwitchType, |
167 | /// Compare a range of types with a set of constants. |
168 | SwitchTypes, |
169 | }; |
170 | } // namespace |
171 | |
172 | /// A marker used to indicate if an operation should infer types. |
173 | static constexpr ByteCodeField kInferTypesMarker = |
174 | std::numeric_limits<ByteCodeField>::max(); |
175 | |
176 | //===----------------------------------------------------------------------===// |
177 | // ByteCode Generation |
178 | //===----------------------------------------------------------------------===// |
179 | |
180 | //===----------------------------------------------------------------------===// |
181 | // Generator |
182 | |
183 | namespace { |
184 | struct ByteCodeLiveRange; |
185 | struct ByteCodeWriter; |
186 | |
187 | /// Check if the given class `T` can be converted to an opaque pointer. |
188 | template <typename T, typename... Args> |
189 | using has_pointer_traits = decltype(std::declval<T>().getAsOpaquePointer()); |
190 | |
191 | /// This class represents the main generator for the pattern bytecode. |
192 | class Generator { |
193 | public: |
194 | Generator(MLIRContext *ctx, std::vector<const void *> &uniquedData, |
195 | SmallVectorImpl<ByteCodeField> &matcherByteCode, |
196 | SmallVectorImpl<ByteCodeField> &rewriterByteCode, |
197 | SmallVectorImpl<PDLByteCodePattern> &patterns, |
198 | ByteCodeField &maxValueMemoryIndex, |
199 | ByteCodeField &maxOpRangeMemoryIndex, |
200 | ByteCodeField &maxTypeRangeMemoryIndex, |
201 | ByteCodeField &maxValueRangeMemoryIndex, |
202 | ByteCodeField &maxLoopLevel, |
203 | llvm::StringMap<PDLConstraintFunction> &constraintFns, |
204 | llvm::StringMap<PDLRewriteFunction> &rewriteFns, |
205 | const DenseMap<Operation *, PDLPatternConfigSet *> &configMap) |
206 | : ctx(ctx), uniquedData(uniquedData), matcherByteCode(matcherByteCode), |
207 | rewriterByteCode(rewriterByteCode), patterns(patterns), |
208 | maxValueMemoryIndex(maxValueMemoryIndex), |
209 | maxOpRangeMemoryIndex(maxOpRangeMemoryIndex), |
210 | maxTypeRangeMemoryIndex(maxTypeRangeMemoryIndex), |
211 | maxValueRangeMemoryIndex(maxValueRangeMemoryIndex), |
212 | maxLoopLevel(maxLoopLevel), configMap(configMap) { |
213 | for (const auto &it : llvm::enumerate(First&: constraintFns)) |
214 | constraintToMemIndex.try_emplace(Key: it.value().first(), Args: it.index()); |
215 | for (const auto &it : llvm::enumerate(First&: rewriteFns)) |
216 | externalRewriterToMemIndex.try_emplace(Key: it.value().first(), Args: it.index()); |
217 | } |
218 | |
219 | /// Generate the bytecode for the given PDL interpreter module. |
220 | void generate(ModuleOp module); |
221 | |
222 | /// Return the memory index to use for the given value. |
223 | ByteCodeField &getMemIndex(Value value) { |
224 | assert(valueToMemIndex.count(value) && |
225 | "expected memory index to be assigned" ); |
226 | return valueToMemIndex[value]; |
227 | } |
228 | |
229 | /// Return the range memory index used to store the given range value. |
230 | ByteCodeField &getRangeStorageIndex(Value value) { |
231 | assert(valueToRangeIndex.count(value) && |
232 | "expected range index to be assigned" ); |
233 | return valueToRangeIndex[value]; |
234 | } |
235 | |
236 | /// Return an index to use when referring to the given data that is uniqued in |
237 | /// the MLIR context. |
238 | template <typename T> |
239 | std::enable_if_t<!std::is_convertible<T, Value>::value, ByteCodeField &> |
240 | getMemIndex(T val) { |
241 | const void *opaqueVal = val.getAsOpaquePointer(); |
242 | |
243 | // Get or insert a reference to this value. |
244 | auto it = uniquedDataToMemIndex.try_emplace( |
245 | Key: opaqueVal, Args: maxValueMemoryIndex + uniquedData.size()); |
246 | if (it.second) |
247 | uniquedData.push_back(x: opaqueVal); |
248 | return it.first->second; |
249 | } |
250 | |
251 | private: |
252 | /// Allocate memory indices for the results of operations within the matcher |
253 | /// and rewriters. |
254 | void allocateMemoryIndices(pdl_interp::FuncOp matcherFunc, |
255 | ModuleOp rewriterModule); |
256 | |
257 | /// Generate the bytecode for the given operation. |
258 | void generate(Region *region, ByteCodeWriter &writer); |
259 | void generate(Operation *op, ByteCodeWriter &writer); |
260 | void generate(pdl_interp::ApplyConstraintOp op, ByteCodeWriter &writer); |
261 | void generate(pdl_interp::ApplyRewriteOp op, ByteCodeWriter &writer); |
262 | void generate(pdl_interp::AreEqualOp op, ByteCodeWriter &writer); |
263 | void generate(pdl_interp::BranchOp op, ByteCodeWriter &writer); |
264 | void generate(pdl_interp::CheckAttributeOp op, ByteCodeWriter &writer); |
265 | void generate(pdl_interp::CheckOperandCountOp op, ByteCodeWriter &writer); |
266 | void generate(pdl_interp::CheckOperationNameOp op, ByteCodeWriter &writer); |
267 | void generate(pdl_interp::CheckResultCountOp op, ByteCodeWriter &writer); |
268 | void generate(pdl_interp::CheckTypeOp op, ByteCodeWriter &writer); |
269 | void generate(pdl_interp::CheckTypesOp op, ByteCodeWriter &writer); |
270 | void generate(pdl_interp::ContinueOp op, ByteCodeWriter &writer); |
271 | void generate(pdl_interp::CreateAttributeOp op, ByteCodeWriter &writer); |
272 | void generate(pdl_interp::CreateOperationOp op, ByteCodeWriter &writer); |
273 | void generate(pdl_interp::CreateRangeOp op, ByteCodeWriter &writer); |
274 | void generate(pdl_interp::CreateTypeOp op, ByteCodeWriter &writer); |
275 | void generate(pdl_interp::CreateTypesOp op, ByteCodeWriter &writer); |
276 | void generate(pdl_interp::EraseOp op, ByteCodeWriter &writer); |
277 | void generate(pdl_interp::ExtractOp op, ByteCodeWriter &writer); |
278 | void generate(pdl_interp::FinalizeOp op, ByteCodeWriter &writer); |
279 | void generate(pdl_interp::ForEachOp op, ByteCodeWriter &writer); |
280 | void generate(pdl_interp::GetAttributeOp op, ByteCodeWriter &writer); |
281 | void generate(pdl_interp::GetAttributeTypeOp op, ByteCodeWriter &writer); |
282 | void generate(pdl_interp::GetDefiningOpOp op, ByteCodeWriter &writer); |
283 | void generate(pdl_interp::GetOperandOp op, ByteCodeWriter &writer); |
284 | void generate(pdl_interp::GetOperandsOp op, ByteCodeWriter &writer); |
285 | void generate(pdl_interp::GetResultOp op, ByteCodeWriter &writer); |
286 | void generate(pdl_interp::GetResultsOp op, ByteCodeWriter &writer); |
287 | void generate(pdl_interp::GetUsersOp op, ByteCodeWriter &writer); |
288 | void generate(pdl_interp::GetValueTypeOp op, ByteCodeWriter &writer); |
289 | void generate(pdl_interp::IsNotNullOp op, ByteCodeWriter &writer); |
290 | void generate(pdl_interp::RecordMatchOp op, ByteCodeWriter &writer); |
291 | void generate(pdl_interp::ReplaceOp op, ByteCodeWriter &writer); |
292 | void generate(pdl_interp::SwitchAttributeOp op, ByteCodeWriter &writer); |
293 | void generate(pdl_interp::SwitchTypeOp op, ByteCodeWriter &writer); |
294 | void generate(pdl_interp::SwitchTypesOp op, ByteCodeWriter &writer); |
295 | void generate(pdl_interp::SwitchOperandCountOp op, ByteCodeWriter &writer); |
296 | void generate(pdl_interp::SwitchOperationNameOp op, ByteCodeWriter &writer); |
297 | void generate(pdl_interp::SwitchResultCountOp op, ByteCodeWriter &writer); |
298 | |
299 | /// Mapping from value to its corresponding memory index. |
300 | DenseMap<Value, ByteCodeField> valueToMemIndex; |
301 | |
302 | /// Mapping from a range value to its corresponding range storage index. |
303 | DenseMap<Value, ByteCodeField> valueToRangeIndex; |
304 | |
305 | /// Mapping from the name of an externally registered rewrite to its index in |
306 | /// the bytecode registry. |
307 | llvm::StringMap<ByteCodeField> externalRewriterToMemIndex; |
308 | |
309 | /// Mapping from the name of an externally registered constraint to its index |
310 | /// in the bytecode registry. |
311 | llvm::StringMap<ByteCodeField> constraintToMemIndex; |
312 | |
313 | /// Mapping from rewriter function name to the bytecode address of the |
314 | /// rewriter function in byte. |
315 | llvm::StringMap<ByteCodeAddr> rewriterToAddr; |
316 | |
317 | /// Mapping from a uniqued storage object to its memory index within |
318 | /// `uniquedData`. |
319 | DenseMap<const void *, ByteCodeField> uniquedDataToMemIndex; |
320 | |
321 | /// The current level of the foreach loop. |
322 | ByteCodeField curLoopLevel = 0; |
323 | |
324 | /// The current MLIR context. |
325 | MLIRContext *ctx; |
326 | |
327 | /// Mapping from block to its address. |
328 | DenseMap<Block *, ByteCodeAddr> blockToAddr; |
329 | |
330 | /// Data of the ByteCode class to be populated. |
331 | std::vector<const void *> &uniquedData; |
332 | SmallVectorImpl<ByteCodeField> &matcherByteCode; |
333 | SmallVectorImpl<ByteCodeField> &rewriterByteCode; |
334 | SmallVectorImpl<PDLByteCodePattern> &patterns; |
335 | ByteCodeField &maxValueMemoryIndex; |
336 | ByteCodeField &maxOpRangeMemoryIndex; |
337 | ByteCodeField &maxTypeRangeMemoryIndex; |
338 | ByteCodeField &maxValueRangeMemoryIndex; |
339 | ByteCodeField &maxLoopLevel; |
340 | |
341 | /// A map of pattern configurations. |
342 | const DenseMap<Operation *, PDLPatternConfigSet *> &configMap; |
343 | }; |
344 | |
345 | /// This class provides utilities for writing a bytecode stream. |
346 | struct ByteCodeWriter { |
347 | ByteCodeWriter(SmallVectorImpl<ByteCodeField> &bytecode, Generator &generator) |
348 | : bytecode(bytecode), generator(generator) {} |
349 | |
350 | /// Append a field to the bytecode. |
351 | void append(ByteCodeField field) { bytecode.push_back(Elt: field); } |
352 | void append(OpCode opCode) { bytecode.push_back(Elt: opCode); } |
353 | |
354 | /// Append an address to the bytecode. |
355 | void append(ByteCodeAddr field) { |
356 | static_assert((sizeof(ByteCodeAddr) / sizeof(ByteCodeField)) == 2, |
357 | "unexpected ByteCode address size" ); |
358 | |
359 | ByteCodeField fieldParts[2]; |
360 | std::memcpy(dest: fieldParts, src: &field, n: sizeof(ByteCodeAddr)); |
361 | bytecode.append(IL: {fieldParts[0], fieldParts[1]}); |
362 | } |
363 | |
364 | /// Append a single successor to the bytecode, the exact address will need to |
365 | /// be resolved later. |
366 | void append(Block *successor) { |
367 | // Add back a reference to the successor so that the address can be resolved |
368 | // later. |
369 | unresolvedSuccessorRefs[successor].push_back(Elt: bytecode.size()); |
370 | append(field: ByteCodeAddr(0)); |
371 | } |
372 | |
373 | /// Append a successor range to the bytecode, the exact address will need to |
374 | /// be resolved later. |
375 | void append(SuccessorRange successors) { |
376 | for (Block *successor : successors) |
377 | append(successor); |
378 | } |
379 | |
380 | /// Append a range of values that will be read as generic PDLValues. |
381 | void appendPDLValueList(OperandRange values) { |
382 | bytecode.push_back(Elt: values.size()); |
383 | for (Value value : values) |
384 | appendPDLValue(value); |
385 | } |
386 | |
387 | /// Append a value as a PDLValue. |
388 | void appendPDLValue(Value value) { |
389 | appendPDLValueKind(value); |
390 | append(value); |
391 | } |
392 | |
393 | /// Append the PDLValue::Kind of the given value. |
394 | void appendPDLValueKind(Value value) { appendPDLValueKind(type: value.getType()); } |
395 | |
396 | /// Append the PDLValue::Kind of the given type. |
397 | void appendPDLValueKind(Type type) { |
398 | PDLValue::Kind kind = |
399 | TypeSwitch<Type, PDLValue::Kind>(type) |
400 | .Case<pdl::AttributeType>( |
401 | [](Type) { return PDLValue::Kind::Attribute; }) |
402 | .Case<pdl::OperationType>( |
403 | [](Type) { return PDLValue::Kind::Operation; }) |
404 | .Case<pdl::RangeType>([](pdl::RangeType rangeTy) { |
405 | if (isa<pdl::TypeType>(rangeTy.getElementType())) |
406 | return PDLValue::Kind::TypeRange; |
407 | return PDLValue::Kind::ValueRange; |
408 | }) |
409 | .Case<pdl::TypeType>([](Type) { return PDLValue::Kind::Type; }) |
410 | .Case<pdl::ValueType>([](Type) { return PDLValue::Kind::Value; }); |
411 | bytecode.push_back(Elt: static_cast<ByteCodeField>(kind)); |
412 | } |
413 | |
414 | /// Append a value that will be stored in a memory slot and not inline within |
415 | /// the bytecode. |
416 | template <typename T> |
417 | std::enable_if_t<llvm::is_detected<has_pointer_traits, T>::value || |
418 | std::is_pointer<T>::value> |
419 | append(T value) { |
420 | bytecode.push_back(Elt: generator.getMemIndex(value)); |
421 | } |
422 | |
423 | /// Append a range of values. |
424 | template <typename T, typename IteratorT = llvm::detail::IterOfRange<T>> |
425 | std::enable_if_t<!llvm::is_detected<has_pointer_traits, T>::value> |
426 | append(T range) { |
427 | bytecode.push_back(Elt: llvm::size(range)); |
428 | for (auto it : range) |
429 | append(it); |
430 | } |
431 | |
432 | /// Append a variadic number of fields to the bytecode. |
433 | template <typename FieldTy, typename Field2Ty, typename... FieldTys> |
434 | void append(FieldTy field, Field2Ty field2, FieldTys... fields) { |
435 | append(field); |
436 | append(field2, fields...); |
437 | } |
438 | |
439 | /// Appends a value as a pointer, stored inline within the bytecode. |
440 | template <typename T> |
441 | std::enable_if_t<llvm::is_detected<has_pointer_traits, T>::value> |
442 | appendInline(T value) { |
443 | constexpr size_t numParts = sizeof(const void *) / sizeof(ByteCodeField); |
444 | const void *pointer = value.getAsOpaquePointer(); |
445 | ByteCodeField fieldParts[numParts]; |
446 | std::memcpy(dest: fieldParts, src: &pointer, n: sizeof(const void *)); |
447 | bytecode.append(in_start: fieldParts, in_end: fieldParts + numParts); |
448 | } |
449 | |
450 | /// Successor references in the bytecode that have yet to be resolved. |
451 | DenseMap<Block *, SmallVector<unsigned, 4>> unresolvedSuccessorRefs; |
452 | |
453 | /// The underlying bytecode buffer. |
454 | SmallVectorImpl<ByteCodeField> &bytecode; |
455 | |
456 | /// The main generator producing PDL. |
457 | Generator &generator; |
458 | }; |
459 | |
460 | /// This class represents a live range of PDL Interpreter values, containing |
461 | /// information about when values are live within a match/rewrite. |
462 | struct ByteCodeLiveRange { |
463 | using Set = llvm::IntervalMap<uint64_t, char, 16>; |
464 | using Allocator = Set::Allocator; |
465 | |
466 | ByteCodeLiveRange(Allocator &alloc) : liveness(new Set(alloc)) {} |
467 | |
468 | /// Union this live range with the one provided. |
469 | void unionWith(const ByteCodeLiveRange &rhs) { |
470 | for (auto it = rhs.liveness->begin(), e = rhs.liveness->end(); it != e; |
471 | ++it) |
472 | liveness->insert(a: it.start(), b: it.stop(), /*dummyValue*/ y: 0); |
473 | } |
474 | |
475 | /// Returns true if this range overlaps with the one provided. |
476 | bool overlaps(const ByteCodeLiveRange &rhs) const { |
477 | return llvm::IntervalMapOverlaps<Set, Set>(*liveness, *rhs.liveness) |
478 | .valid(); |
479 | } |
480 | |
481 | /// A map representing the ranges of the match/rewrite that a value is live in |
482 | /// the interpreter. |
483 | /// |
484 | /// We use std::unique_ptr here, because IntervalMap does not provide a |
485 | /// correct copy or move constructor. We can eliminate the pointer once |
486 | /// https://reviews.llvm.org/D113240 lands. |
487 | std::unique_ptr<llvm::IntervalMap<uint64_t, char, 16>> liveness; |
488 | |
489 | /// The operation range storage index for this range. |
490 | std::optional<unsigned> opRangeIndex; |
491 | |
492 | /// The type range storage index for this range. |
493 | std::optional<unsigned> typeRangeIndex; |
494 | |
495 | /// The value range storage index for this range. |
496 | std::optional<unsigned> valueRangeIndex; |
497 | }; |
498 | } // namespace |
499 | |
500 | void Generator::generate(ModuleOp module) { |
501 | auto matcherFunc = module.lookupSymbol<pdl_interp::FuncOp>( |
502 | pdl_interp::PDLInterpDialect::getMatcherFunctionName()); |
503 | ModuleOp rewriterModule = module.lookupSymbol<ModuleOp>( |
504 | pdl_interp::PDLInterpDialect::getRewriterModuleName()); |
505 | assert(matcherFunc && rewriterModule && "invalid PDL Interpreter module" ); |
506 | |
507 | // Allocate memory indices for the results of operations within the matcher |
508 | // and rewriters. |
509 | allocateMemoryIndices(matcherFunc, rewriterModule); |
510 | |
511 | // Generate code for the rewriter functions. |
512 | ByteCodeWriter rewriterByteCodeWriter(rewriterByteCode, *this); |
513 | for (auto rewriterFunc : rewriterModule.getOps<pdl_interp::FuncOp>()) { |
514 | rewriterToAddr.try_emplace(rewriterFunc.getName(), rewriterByteCode.size()); |
515 | for (Operation &op : rewriterFunc.getOps()) |
516 | generate(&op, rewriterByteCodeWriter); |
517 | } |
518 | assert(rewriterByteCodeWriter.unresolvedSuccessorRefs.empty() && |
519 | "unexpected branches in rewriter function" ); |
520 | |
521 | // Generate code for the matcher function. |
522 | ByteCodeWriter matcherByteCodeWriter(matcherByteCode, *this); |
523 | generate(&matcherFunc.getBody(), matcherByteCodeWriter); |
524 | |
525 | // Resolve successor references in the matcher. |
526 | for (auto &it : matcherByteCodeWriter.unresolvedSuccessorRefs) { |
527 | ByteCodeAddr addr = blockToAddr[it.first]; |
528 | for (unsigned offsetToFix : it.second) |
529 | std::memcpy(dest: &matcherByteCode[offsetToFix], src: &addr, n: sizeof(ByteCodeAddr)); |
530 | } |
531 | } |
532 | |
533 | void Generator::allocateMemoryIndices(pdl_interp::FuncOp matcherFunc, |
534 | ModuleOp rewriterModule) { |
535 | // Rewriters use simplistic allocation scheme that simply assigns an index to |
536 | // each result. |
537 | for (auto rewriterFunc : rewriterModule.getOps<pdl_interp::FuncOp>()) { |
538 | ByteCodeField index = 0, typeRangeIndex = 0, valueRangeIndex = 0; |
539 | auto processRewriterValue = [&](Value val) { |
540 | valueToMemIndex.try_emplace(val, index++); |
541 | if (pdl::RangeType rangeType = dyn_cast<pdl::RangeType>(val.getType())) { |
542 | Type elementTy = rangeType.getElementType(); |
543 | if (isa<pdl::TypeType>(elementTy)) |
544 | valueToRangeIndex.try_emplace(val, typeRangeIndex++); |
545 | else if (isa<pdl::ValueType>(elementTy)) |
546 | valueToRangeIndex.try_emplace(val, valueRangeIndex++); |
547 | } |
548 | }; |
549 | |
550 | for (BlockArgument arg : rewriterFunc.getArguments()) |
551 | processRewriterValue(arg); |
552 | rewriterFunc.getBody().walk([&](Operation *op) { |
553 | for (Value result : op->getResults()) |
554 | processRewriterValue(result); |
555 | }); |
556 | if (index > maxValueMemoryIndex) |
557 | maxValueMemoryIndex = index; |
558 | if (typeRangeIndex > maxTypeRangeMemoryIndex) |
559 | maxTypeRangeMemoryIndex = typeRangeIndex; |
560 | if (valueRangeIndex > maxValueRangeMemoryIndex) |
561 | maxValueRangeMemoryIndex = valueRangeIndex; |
562 | } |
563 | |
564 | // The matcher function uses a more sophisticated numbering that tries to |
565 | // minimize the number of memory indices assigned. This is done by determining |
566 | // a live range of the values within the matcher, then the allocation is just |
567 | // finding the minimal number of overlapping live ranges. This is essentially |
568 | // a simplified form of register allocation where we don't necessarily have a |
569 | // limited number of registers, but we still want to minimize the number used. |
570 | DenseMap<Operation *, unsigned> opToFirstIndex; |
571 | DenseMap<Operation *, unsigned> opToLastIndex; |
572 | |
573 | // A custom walk that marks the first and the last index of each operation. |
574 | // The entry marks the beginning of the liveness range for this operation, |
575 | // followed by nested operations, followed by the end of the liveness range. |
576 | unsigned index = 0; |
577 | llvm::unique_function<void(Operation *)> walk = [&](Operation *op) { |
578 | opToFirstIndex.try_emplace(Key: op, Args: index++); |
579 | for (Region ®ion : op->getRegions()) |
580 | for (Block &block : region.getBlocks()) |
581 | for (Operation &nested : block) |
582 | walk(&nested); |
583 | opToLastIndex.try_emplace(Key: op, Args: index++); |
584 | }; |
585 | walk(matcherFunc); |
586 | |
587 | // Liveness info for each of the defs within the matcher. |
588 | ByteCodeLiveRange::Allocator allocator; |
589 | DenseMap<Value, ByteCodeLiveRange> valueDefRanges; |
590 | |
591 | // Assign the root operation being matched to slot 0. |
592 | BlockArgument rootOpArg = matcherFunc.getArgument(0); |
593 | valueToMemIndex[rootOpArg] = 0; |
594 | |
595 | // Walk each of the blocks, computing the def interval that the value is used. |
596 | Liveness matcherLiveness(matcherFunc); |
597 | matcherFunc->walk([&](Block *block) { |
598 | const LivenessBlockInfo *info = matcherLiveness.getLiveness(block); |
599 | assert(info && "expected liveness info for block" ); |
600 | auto processValue = [&](Value value, Operation *firstUseOrDef) { |
601 | // We don't need to process the root op argument, this value is always |
602 | // assigned to the first memory slot. |
603 | if (value == rootOpArg) |
604 | return; |
605 | |
606 | // Set indices for the range of this block that the value is used. |
607 | auto defRangeIt = valueDefRanges.try_emplace(Key: value, Args&: allocator).first; |
608 | defRangeIt->second.liveness->insert( |
609 | a: opToFirstIndex[firstUseOrDef], |
610 | b: opToLastIndex[info->getEndOperation(value, startOperation: firstUseOrDef)], |
611 | /*dummyValue*/ y: 0); |
612 | |
613 | // Check to see if this value is a range type. |
614 | if (auto rangeTy = dyn_cast<pdl::RangeType>(value.getType())) { |
615 | Type eleType = rangeTy.getElementType(); |
616 | if (isa<pdl::OperationType>(eleType)) |
617 | defRangeIt->second.opRangeIndex = 0; |
618 | else if (isa<pdl::TypeType>(eleType)) |
619 | defRangeIt->second.typeRangeIndex = 0; |
620 | else if (isa<pdl::ValueType>(eleType)) |
621 | defRangeIt->second.valueRangeIndex = 0; |
622 | } |
623 | }; |
624 | |
625 | // Process the live-ins of this block. |
626 | for (Value liveIn : info->in()) { |
627 | // Only process the value if it has been defined in the current region. |
628 | // Other values that span across pdl_interp.foreach will be added higher |
629 | // up. This ensures that the we keep them alive for the entire duration |
630 | // of the loop. |
631 | if (liveIn.getParentRegion() == block->getParent()) |
632 | processValue(liveIn, &block->front()); |
633 | } |
634 | |
635 | // Process the block arguments for the entry block (those are not live-in). |
636 | if (block->isEntryBlock()) { |
637 | for (Value argument : block->getArguments()) |
638 | processValue(argument, &block->front()); |
639 | } |
640 | |
641 | // Process any new defs within this block. |
642 | for (Operation &op : *block) |
643 | for (Value result : op.getResults()) |
644 | processValue(result, &op); |
645 | }); |
646 | |
647 | // Greedily allocate memory slots using the computed def live ranges. |
648 | std::vector<ByteCodeLiveRange> allocatedIndices; |
649 | |
650 | // The number of memory indices currently allocated (and its next value). |
651 | // Recall that the root gets allocated memory index 0. |
652 | ByteCodeField numIndices = 1; |
653 | |
654 | // The number of memory ranges of various types (and their next values). |
655 | ByteCodeField numOpRanges = 0, numTypeRanges = 0, numValueRanges = 0; |
656 | |
657 | for (auto &defIt : valueDefRanges) { |
658 | ByteCodeField &memIndex = valueToMemIndex[defIt.first]; |
659 | ByteCodeLiveRange &defRange = defIt.second; |
660 | |
661 | // Try to allocate to an existing index. |
662 | for (const auto &existingIndexIt : llvm::enumerate(First&: allocatedIndices)) { |
663 | ByteCodeLiveRange &existingRange = existingIndexIt.value(); |
664 | if (!defRange.overlaps(rhs: existingRange)) { |
665 | existingRange.unionWith(rhs: defRange); |
666 | memIndex = existingIndexIt.index() + 1; |
667 | |
668 | if (defRange.opRangeIndex) { |
669 | if (!existingRange.opRangeIndex) |
670 | existingRange.opRangeIndex = numOpRanges++; |
671 | valueToRangeIndex[defIt.first] = *existingRange.opRangeIndex; |
672 | } else if (defRange.typeRangeIndex) { |
673 | if (!existingRange.typeRangeIndex) |
674 | existingRange.typeRangeIndex = numTypeRanges++; |
675 | valueToRangeIndex[defIt.first] = *existingRange.typeRangeIndex; |
676 | } else if (defRange.valueRangeIndex) { |
677 | if (!existingRange.valueRangeIndex) |
678 | existingRange.valueRangeIndex = numValueRanges++; |
679 | valueToRangeIndex[defIt.first] = *existingRange.valueRangeIndex; |
680 | } |
681 | break; |
682 | } |
683 | } |
684 | |
685 | // If no existing index could be used, add a new one. |
686 | if (memIndex == 0) { |
687 | allocatedIndices.emplace_back(args&: allocator); |
688 | ByteCodeLiveRange &newRange = allocatedIndices.back(); |
689 | newRange.unionWith(rhs: defRange); |
690 | |
691 | // Allocate an index for op/type/value ranges. |
692 | if (defRange.opRangeIndex) { |
693 | newRange.opRangeIndex = numOpRanges; |
694 | valueToRangeIndex[defIt.first] = numOpRanges++; |
695 | } else if (defRange.typeRangeIndex) { |
696 | newRange.typeRangeIndex = numTypeRanges; |
697 | valueToRangeIndex[defIt.first] = numTypeRanges++; |
698 | } else if (defRange.valueRangeIndex) { |
699 | newRange.valueRangeIndex = numValueRanges; |
700 | valueToRangeIndex[defIt.first] = numValueRanges++; |
701 | } |
702 | |
703 | memIndex = allocatedIndices.size(); |
704 | ++numIndices; |
705 | } |
706 | } |
707 | |
708 | // Print the index usage and ensure that we did not run out of index space. |
709 | LLVM_DEBUG({ |
710 | llvm::dbgs() << "Allocated " << allocatedIndices.size() << " indices " |
711 | << "(down from initial " << valueDefRanges.size() << ").\n" ; |
712 | }); |
713 | assert(allocatedIndices.size() <= std::numeric_limits<ByteCodeField>::max() && |
714 | "Ran out of memory for allocated indices" ); |
715 | |
716 | // Update the max number of indices. |
717 | if (numIndices > maxValueMemoryIndex) |
718 | maxValueMemoryIndex = numIndices; |
719 | if (numOpRanges > maxOpRangeMemoryIndex) |
720 | maxOpRangeMemoryIndex = numOpRanges; |
721 | if (numTypeRanges > maxTypeRangeMemoryIndex) |
722 | maxTypeRangeMemoryIndex = numTypeRanges; |
723 | if (numValueRanges > maxValueRangeMemoryIndex) |
724 | maxValueRangeMemoryIndex = numValueRanges; |
725 | } |
726 | |
727 | void Generator::generate(Region *region, ByteCodeWriter &writer) { |
728 | llvm::ReversePostOrderTraversal<Region *> rpot(region); |
729 | for (Block *block : rpot) { |
730 | // Keep track of where this block begins within the matcher function. |
731 | blockToAddr.try_emplace(Key: block, Args: matcherByteCode.size()); |
732 | for (Operation &op : *block) |
733 | generate(op: &op, writer); |
734 | } |
735 | } |
736 | |
737 | void Generator::generate(Operation *op, ByteCodeWriter &writer) { |
738 | LLVM_DEBUG({ |
739 | // The following list must contain all the operations that do not |
740 | // produce any bytecode. |
741 | if (!isa<pdl_interp::CreateAttributeOp, pdl_interp::CreateTypeOp>(op)) |
742 | writer.appendInline(op->getLoc()); |
743 | }); |
744 | TypeSwitch<Operation *>(op) |
745 | .Case<pdl_interp::ApplyConstraintOp, pdl_interp::ApplyRewriteOp, |
746 | pdl_interp::AreEqualOp, pdl_interp::BranchOp, |
747 | pdl_interp::CheckAttributeOp, pdl_interp::CheckOperandCountOp, |
748 | pdl_interp::CheckOperationNameOp, pdl_interp::CheckResultCountOp, |
749 | pdl_interp::CheckTypeOp, pdl_interp::CheckTypesOp, |
750 | pdl_interp::ContinueOp, pdl_interp::CreateAttributeOp, |
751 | pdl_interp::CreateOperationOp, pdl_interp::CreateRangeOp, |
752 | pdl_interp::CreateTypeOp, pdl_interp::CreateTypesOp, |
753 | pdl_interp::EraseOp, pdl_interp::ExtractOp, pdl_interp::FinalizeOp, |
754 | pdl_interp::ForEachOp, pdl_interp::GetAttributeOp, |
755 | pdl_interp::GetAttributeTypeOp, pdl_interp::GetDefiningOpOp, |
756 | pdl_interp::GetOperandOp, pdl_interp::GetOperandsOp, |
757 | pdl_interp::GetResultOp, pdl_interp::GetResultsOp, |
758 | pdl_interp::GetUsersOp, pdl_interp::GetValueTypeOp, |
759 | pdl_interp::IsNotNullOp, pdl_interp::RecordMatchOp, |
760 | pdl_interp::ReplaceOp, pdl_interp::SwitchAttributeOp, |
761 | pdl_interp::SwitchTypeOp, pdl_interp::SwitchTypesOp, |
762 | pdl_interp::SwitchOperandCountOp, pdl_interp::SwitchOperationNameOp, |
763 | pdl_interp::SwitchResultCountOp>( |
764 | [&](auto interpOp) { this->generate(interpOp, writer); }) |
765 | .Default([](Operation *) { |
766 | llvm_unreachable("unknown `pdl_interp` operation" ); |
767 | }); |
768 | } |
769 | |
770 | void Generator::generate(pdl_interp::ApplyConstraintOp op, |
771 | ByteCodeWriter &writer) { |
772 | // Constraints that should return a value have to be registered as rewrites. |
773 | // If a constraint and a rewrite of similar name are registered the |
774 | // constraint takes precedence |
775 | writer.append(OpCode::ApplyConstraint, constraintToMemIndex[op.getName()]); |
776 | writer.appendPDLValueList(values: op.getArgs()); |
777 | writer.append(field: ByteCodeField(op.getIsNegated())); |
778 | ResultRange results = op.getResults(); |
779 | writer.append(field: ByteCodeField(results.size())); |
780 | for (Value result : results) { |
781 | // We record the expected kind of the result, so that we can provide extra |
782 | // verification of the native rewrite function and handle the failure case |
783 | // of constraints accordingly. |
784 | writer.appendPDLValueKind(result); |
785 | |
786 | // Range results also need to append the range storage index. |
787 | if (isa<pdl::RangeType>(result.getType())) |
788 | writer.append(getRangeStorageIndex(result)); |
789 | writer.append(result); |
790 | } |
791 | writer.append(op.getSuccessors()); |
792 | } |
793 | void Generator::generate(pdl_interp::ApplyRewriteOp op, |
794 | ByteCodeWriter &writer) { |
795 | assert(externalRewriterToMemIndex.count(op.getName()) && |
796 | "expected index for rewrite function" ); |
797 | writer.append(OpCode::ApplyRewrite, externalRewriterToMemIndex[op.getName()]); |
798 | writer.appendPDLValueList(values: op.getArgs()); |
799 | |
800 | ResultRange results = op.getResults(); |
801 | writer.append(field: ByteCodeField(results.size())); |
802 | for (Value result : results) { |
803 | // We record the expected kind of the result, so that we |
804 | // can provide extra verification of the native rewrite function. |
805 | writer.appendPDLValueKind(result); |
806 | |
807 | // Range results also need to append the range storage index. |
808 | if (isa<pdl::RangeType>(result.getType())) |
809 | writer.append(getRangeStorageIndex(result)); |
810 | writer.append(result); |
811 | } |
812 | } |
813 | void Generator::generate(pdl_interp::AreEqualOp op, ByteCodeWriter &writer) { |
814 | Value lhs = op.getLhs(); |
815 | if (isa<pdl::RangeType>(lhs.getType())) { |
816 | writer.append(opCode: OpCode::AreRangesEqual); |
817 | writer.appendPDLValueKind(value: lhs); |
818 | writer.append(op.getLhs(), op.getRhs(), op.getSuccessors()); |
819 | return; |
820 | } |
821 | |
822 | writer.append(OpCode::AreEqual, lhs, op.getRhs(), op.getSuccessors()); |
823 | } |
824 | void Generator::generate(pdl_interp::BranchOp op, ByteCodeWriter &writer) { |
825 | writer.append(field: OpCode::Branch, field2: SuccessorRange(op.getOperation())); |
826 | } |
827 | void Generator::generate(pdl_interp::CheckAttributeOp op, |
828 | ByteCodeWriter &writer) { |
829 | writer.append(OpCode::AreEqual, op.getAttribute(), op.getConstantValue(), |
830 | op.getSuccessors()); |
831 | } |
832 | void Generator::generate(pdl_interp::CheckOperandCountOp op, |
833 | ByteCodeWriter &writer) { |
834 | writer.append(OpCode::CheckOperandCount, op.getInputOp(), op.getCount(), |
835 | static_cast<ByteCodeField>(op.getCompareAtLeast()), |
836 | op.getSuccessors()); |
837 | } |
838 | void Generator::generate(pdl_interp::CheckOperationNameOp op, |
839 | ByteCodeWriter &writer) { |
840 | writer.append(OpCode::CheckOperationName, op.getInputOp(), |
841 | OperationName(op.getName(), ctx), op.getSuccessors()); |
842 | } |
843 | void Generator::generate(pdl_interp::CheckResultCountOp op, |
844 | ByteCodeWriter &writer) { |
845 | writer.append(OpCode::CheckResultCount, op.getInputOp(), op.getCount(), |
846 | static_cast<ByteCodeField>(op.getCompareAtLeast()), |
847 | op.getSuccessors()); |
848 | } |
849 | void Generator::generate(pdl_interp::CheckTypeOp op, ByteCodeWriter &writer) { |
850 | writer.append(OpCode::AreEqual, op.getValue(), op.getType(), |
851 | op.getSuccessors()); |
852 | } |
853 | void Generator::generate(pdl_interp::CheckTypesOp op, ByteCodeWriter &writer) { |
854 | writer.append(OpCode::CheckTypes, op.getValue(), op.getTypes(), |
855 | op.getSuccessors()); |
856 | } |
857 | void Generator::generate(pdl_interp::ContinueOp op, ByteCodeWriter &writer) { |
858 | assert(curLoopLevel > 0 && "encountered pdl_interp.continue at top level" ); |
859 | writer.append(field: OpCode::Continue, field2: ByteCodeField(curLoopLevel - 1)); |
860 | } |
861 | void Generator::generate(pdl_interp::CreateAttributeOp op, |
862 | ByteCodeWriter &writer) { |
863 | // Simply repoint the memory index of the result to the constant. |
864 | getMemIndex(op.getAttribute()) = getMemIndex(op.getValue()); |
865 | } |
866 | void Generator::generate(pdl_interp::CreateOperationOp op, |
867 | ByteCodeWriter &writer) { |
868 | writer.append(OpCode::CreateOperation, op.getResultOp(), |
869 | OperationName(op.getName(), ctx)); |
870 | writer.appendPDLValueList(values: op.getInputOperands()); |
871 | |
872 | // Add the attributes. |
873 | OperandRange attributes = op.getInputAttributes(); |
874 | writer.append(field: static_cast<ByteCodeField>(attributes.size())); |
875 | for (auto it : llvm::zip(op.getInputAttributeNames(), attributes)) |
876 | writer.append(std::get<0>(it), std::get<1>(it)); |
877 | |
878 | // Add the result types. If the operation has inferred results, we use a |
879 | // marker "size" value. Otherwise, we add the list of explicit result types. |
880 | if (op.getInferredResultTypes()) |
881 | writer.append(field: kInferTypesMarker); |
882 | else |
883 | writer.appendPDLValueList(values: op.getInputResultTypes()); |
884 | } |
885 | void Generator::generate(pdl_interp::CreateRangeOp op, ByteCodeWriter &writer) { |
886 | // Append the correct opcode for the range type. |
887 | TypeSwitch<Type>(op.getType().getElementType()) |
888 | .Case( |
889 | caseFn: [&](pdl::TypeType) { writer.append(opCode: OpCode::CreateDynamicTypeRange); }) |
890 | .Case(caseFn: [&](pdl::ValueType) { |
891 | writer.append(opCode: OpCode::CreateDynamicValueRange); |
892 | }); |
893 | |
894 | writer.append(op.getResult(), getRangeStorageIndex(value: op.getResult())); |
895 | writer.appendPDLValueList(values: op->getOperands()); |
896 | } |
897 | void Generator::generate(pdl_interp::CreateTypeOp op, ByteCodeWriter &writer) { |
898 | // Simply repoint the memory index of the result to the constant. |
899 | getMemIndex(op.getResult()) = getMemIndex(op.getValue()); |
900 | } |
901 | void Generator::generate(pdl_interp::CreateTypesOp op, ByteCodeWriter &writer) { |
902 | writer.append(OpCode::CreateConstantTypeRange, op.getResult(), |
903 | getRangeStorageIndex(value: op.getResult()), op.getValue()); |
904 | } |
905 | void Generator::generate(pdl_interp::EraseOp op, ByteCodeWriter &writer) { |
906 | writer.append(OpCode::EraseOp, op.getInputOp()); |
907 | } |
908 | void Generator::generate(pdl_interp::ExtractOp op, ByteCodeWriter &writer) { |
909 | OpCode opCode = |
910 | TypeSwitch<Type, OpCode>(op.getResult().getType()) |
911 | .Case(caseFn: [](pdl::OperationType) { return OpCode::ExtractOp; }) |
912 | .Case(caseFn: [](pdl::ValueType) { return OpCode::ExtractValue; }) |
913 | .Case(caseFn: [](pdl::TypeType) { return OpCode::ExtractType; }) |
914 | .Default(defaultFn: [](Type) -> OpCode { |
915 | llvm_unreachable("unsupported element type" ); |
916 | }); |
917 | writer.append(opCode, op.getRange(), op.getIndex(), op.getResult()); |
918 | } |
919 | void Generator::generate(pdl_interp::FinalizeOp op, ByteCodeWriter &writer) { |
920 | writer.append(opCode: OpCode::Finalize); |
921 | } |
922 | void Generator::generate(pdl_interp::ForEachOp op, ByteCodeWriter &writer) { |
923 | BlockArgument arg = op.getLoopVariable(); |
924 | writer.append(OpCode::ForEach, getRangeStorageIndex(value: op.getValues()), arg); |
925 | writer.appendPDLValueKind(type: arg.getType()); |
926 | writer.append(curLoopLevel, op.getSuccessor()); |
927 | ++curLoopLevel; |
928 | if (curLoopLevel > maxLoopLevel) |
929 | maxLoopLevel = curLoopLevel; |
930 | generate(&op.getRegion(), writer); |
931 | --curLoopLevel; |
932 | } |
933 | void Generator::generate(pdl_interp::GetAttributeOp op, |
934 | ByteCodeWriter &writer) { |
935 | writer.append(OpCode::GetAttribute, op.getAttribute(), op.getInputOp(), |
936 | op.getNameAttr()); |
937 | } |
938 | void Generator::generate(pdl_interp::GetAttributeTypeOp op, |
939 | ByteCodeWriter &writer) { |
940 | writer.append(OpCode::GetAttributeType, op.getResult(), op.getValue()); |
941 | } |
942 | void Generator::generate(pdl_interp::GetDefiningOpOp op, |
943 | ByteCodeWriter &writer) { |
944 | writer.append(OpCode::GetDefiningOp, op.getInputOp()); |
945 | writer.appendPDLValue(value: op.getValue()); |
946 | } |
947 | void Generator::generate(pdl_interp::GetOperandOp op, ByteCodeWriter &writer) { |
948 | uint32_t index = op.getIndex(); |
949 | if (index < 4) |
950 | writer.append(opCode: static_cast<OpCode>(OpCode::GetOperand0 + index)); |
951 | else |
952 | writer.append(field: OpCode::GetOperandN, field2: index); |
953 | writer.append(op.getInputOp(), op.getValue()); |
954 | } |
955 | void Generator::generate(pdl_interp::GetOperandsOp op, ByteCodeWriter &writer) { |
956 | Value result = op.getValue(); |
957 | std::optional<uint32_t> index = op.getIndex(); |
958 | writer.append(OpCode::GetOperands, |
959 | index.value_or(u: std::numeric_limits<uint32_t>::max()), |
960 | op.getInputOp()); |
961 | if (isa<pdl::RangeType>(result.getType())) |
962 | writer.append(field: getRangeStorageIndex(value: result)); |
963 | else |
964 | writer.append(field: std::numeric_limits<ByteCodeField>::max()); |
965 | writer.append(value: result); |
966 | } |
967 | void Generator::generate(pdl_interp::GetResultOp op, ByteCodeWriter &writer) { |
968 | uint32_t index = op.getIndex(); |
969 | if (index < 4) |
970 | writer.append(opCode: static_cast<OpCode>(OpCode::GetResult0 + index)); |
971 | else |
972 | writer.append(field: OpCode::GetResultN, field2: index); |
973 | writer.append(op.getInputOp(), op.getValue()); |
974 | } |
975 | void Generator::generate(pdl_interp::GetResultsOp op, ByteCodeWriter &writer) { |
976 | Value result = op.getValue(); |
977 | std::optional<uint32_t> index = op.getIndex(); |
978 | writer.append(OpCode::GetResults, |
979 | index.value_or(u: std::numeric_limits<uint32_t>::max()), |
980 | op.getInputOp()); |
981 | if (isa<pdl::RangeType>(result.getType())) |
982 | writer.append(field: getRangeStorageIndex(value: result)); |
983 | else |
984 | writer.append(field: std::numeric_limits<ByteCodeField>::max()); |
985 | writer.append(value: result); |
986 | } |
987 | void Generator::generate(pdl_interp::GetUsersOp op, ByteCodeWriter &writer) { |
988 | Value operations = op.getOperations(); |
989 | ByteCodeField rangeIndex = getRangeStorageIndex(value: operations); |
990 | writer.append(field: OpCode::GetUsers, field2: operations, fields: rangeIndex); |
991 | writer.appendPDLValue(value: op.getValue()); |
992 | } |
993 | void Generator::generate(pdl_interp::GetValueTypeOp op, |
994 | ByteCodeWriter &writer) { |
995 | if (isa<pdl::RangeType>(op.getType())) { |
996 | Value result = op.getResult(); |
997 | writer.append(OpCode::GetValueRangeTypes, result, |
998 | getRangeStorageIndex(value: result), op.getValue()); |
999 | } else { |
1000 | writer.append(OpCode::GetValueType, op.getResult(), op.getValue()); |
1001 | } |
1002 | } |
1003 | void Generator::generate(pdl_interp::IsNotNullOp op, ByteCodeWriter &writer) { |
1004 | writer.append(OpCode::IsNotNull, op.getValue(), op.getSuccessors()); |
1005 | } |
1006 | void Generator::generate(pdl_interp::RecordMatchOp op, ByteCodeWriter &writer) { |
1007 | ByteCodeField patternIndex = patterns.size(); |
1008 | patterns.emplace_back(PDLByteCodePattern::create( |
1009 | matchOp: op, configSet: configMap.lookup(Val: op), |
1010 | rewriterAddr: rewriterToAddr[op.getRewriter().getLeafReference().getValue()])); |
1011 | writer.append(OpCode::RecordMatch, patternIndex, |
1012 | SuccessorRange(op.getOperation()), op.getMatchedOps()); |
1013 | writer.appendPDLValueList(values: op.getInputs()); |
1014 | } |
1015 | void Generator::generate(pdl_interp::ReplaceOp op, ByteCodeWriter &writer) { |
1016 | writer.append(OpCode::ReplaceOp, op.getInputOp()); |
1017 | writer.appendPDLValueList(values: op.getReplValues()); |
1018 | } |
1019 | void Generator::generate(pdl_interp::SwitchAttributeOp op, |
1020 | ByteCodeWriter &writer) { |
1021 | writer.append(OpCode::SwitchAttribute, op.getAttribute(), |
1022 | op.getCaseValuesAttr(), op.getSuccessors()); |
1023 | } |
1024 | void Generator::generate(pdl_interp::SwitchOperandCountOp op, |
1025 | ByteCodeWriter &writer) { |
1026 | writer.append(OpCode::SwitchOperandCount, op.getInputOp(), |
1027 | op.getCaseValuesAttr(), op.getSuccessors()); |
1028 | } |
1029 | void Generator::generate(pdl_interp::SwitchOperationNameOp op, |
1030 | ByteCodeWriter &writer) { |
1031 | auto cases = llvm::map_range(op.getCaseValuesAttr(), [&](Attribute attr) { |
1032 | return OperationName(cast<StringAttr>(attr).getValue(), ctx); |
1033 | }); |
1034 | writer.append(OpCode::SwitchOperationName, op.getInputOp(), cases, |
1035 | op.getSuccessors()); |
1036 | } |
1037 | void Generator::generate(pdl_interp::SwitchResultCountOp op, |
1038 | ByteCodeWriter &writer) { |
1039 | writer.append(OpCode::SwitchResultCount, op.getInputOp(), |
1040 | op.getCaseValuesAttr(), op.getSuccessors()); |
1041 | } |
1042 | void Generator::generate(pdl_interp::SwitchTypeOp op, ByteCodeWriter &writer) { |
1043 | writer.append(OpCode::SwitchType, op.getValue(), op.getCaseValuesAttr(), |
1044 | op.getSuccessors()); |
1045 | } |
1046 | void Generator::generate(pdl_interp::SwitchTypesOp op, ByteCodeWriter &writer) { |
1047 | writer.append(OpCode::SwitchTypes, op.getValue(), op.getCaseValuesAttr(), |
1048 | op.getSuccessors()); |
1049 | } |
1050 | |
1051 | //===----------------------------------------------------------------------===// |
1052 | // PDLByteCode |
1053 | //===----------------------------------------------------------------------===// |
1054 | |
1055 | PDLByteCode::PDLByteCode( |
1056 | ModuleOp module, SmallVector<std::unique_ptr<PDLPatternConfigSet>> configs, |
1057 | const DenseMap<Operation *, PDLPatternConfigSet *> &configMap, |
1058 | llvm::StringMap<PDLConstraintFunction> constraintFns, |
1059 | llvm::StringMap<PDLRewriteFunction> rewriteFns) |
1060 | : configs(std::move(configs)) { |
1061 | Generator generator(module.getContext(), uniquedData, matcherByteCode, |
1062 | rewriterByteCode, patterns, maxValueMemoryIndex, |
1063 | maxOpRangeCount, maxTypeRangeCount, maxValueRangeCount, |
1064 | maxLoopLevel, constraintFns, rewriteFns, configMap); |
1065 | generator.generate(module); |
1066 | |
1067 | // Initialize the external functions. |
1068 | for (auto &it : constraintFns) |
1069 | constraintFunctions.push_back(x: std::move(it.second)); |
1070 | for (auto &it : rewriteFns) |
1071 | rewriteFunctions.push_back(x: std::move(it.second)); |
1072 | } |
1073 | |
1074 | /// Initialize the given state such that it can be used to execute the current |
1075 | /// bytecode. |
1076 | void PDLByteCode::initializeMutableState(PDLByteCodeMutableState &state) const { |
1077 | state.memory.resize(new_size: maxValueMemoryIndex, x: nullptr); |
1078 | state.opRangeMemory.resize(new_size: maxOpRangeCount); |
1079 | state.typeRangeMemory.resize(new_size: maxTypeRangeCount, x: TypeRange()); |
1080 | state.valueRangeMemory.resize(new_size: maxValueRangeCount, x: ValueRange()); |
1081 | state.loopIndex.resize(new_size: maxLoopLevel, x: 0); |
1082 | state.currentPatternBenefits.reserve(n: patterns.size()); |
1083 | for (const PDLByteCodePattern &pattern : patterns) |
1084 | state.currentPatternBenefits.push_back(x: pattern.getBenefit()); |
1085 | } |
1086 | |
1087 | //===----------------------------------------------------------------------===// |
1088 | // ByteCode Execution |
1089 | |
1090 | namespace { |
1091 | /// This class is an instantiation of the PDLResultList that provides access to |
1092 | /// the returned results. This API is not on `PDLResultList` to avoid |
1093 | /// overexposing access to information specific solely to the ByteCode. |
1094 | class ByteCodeRewriteResultList : public PDLResultList { |
1095 | public: |
1096 | ByteCodeRewriteResultList(unsigned maxNumResults) |
1097 | : PDLResultList(maxNumResults) {} |
1098 | |
1099 | /// Return the list of PDL results. |
1100 | MutableArrayRef<PDLValue> getResults() { return results; } |
1101 | |
1102 | /// Return the type ranges allocated by this list. |
1103 | MutableArrayRef<llvm::OwningArrayRef<Type>> getAllocatedTypeRanges() { |
1104 | return allocatedTypeRanges; |
1105 | } |
1106 | |
1107 | /// Return the value ranges allocated by this list. |
1108 | MutableArrayRef<llvm::OwningArrayRef<Value>> getAllocatedValueRanges() { |
1109 | return allocatedValueRanges; |
1110 | } |
1111 | }; |
1112 | |
1113 | /// This class provides support for executing a bytecode stream. |
1114 | class ByteCodeExecutor { |
1115 | public: |
1116 | ByteCodeExecutor( |
1117 | const ByteCodeField *curCodeIt, MutableArrayRef<const void *> memory, |
1118 | MutableArrayRef<llvm::OwningArrayRef<Operation *>> opRangeMemory, |
1119 | MutableArrayRef<TypeRange> typeRangeMemory, |
1120 | std::vector<llvm::OwningArrayRef<Type>> &allocatedTypeRangeMemory, |
1121 | MutableArrayRef<ValueRange> valueRangeMemory, |
1122 | std::vector<llvm::OwningArrayRef<Value>> &allocatedValueRangeMemory, |
1123 | MutableArrayRef<unsigned> loopIndex, ArrayRef<const void *> uniquedMemory, |
1124 | ArrayRef<ByteCodeField> code, |
1125 | ArrayRef<PatternBenefit> currentPatternBenefits, |
1126 | ArrayRef<PDLByteCodePattern> patterns, |
1127 | ArrayRef<PDLConstraintFunction> constraintFunctions, |
1128 | ArrayRef<PDLRewriteFunction> rewriteFunctions) |
1129 | : curCodeIt(curCodeIt), memory(memory), opRangeMemory(opRangeMemory), |
1130 | typeRangeMemory(typeRangeMemory), |
1131 | allocatedTypeRangeMemory(allocatedTypeRangeMemory), |
1132 | valueRangeMemory(valueRangeMemory), |
1133 | allocatedValueRangeMemory(allocatedValueRangeMemory), |
1134 | loopIndex(loopIndex), uniquedMemory(uniquedMemory), code(code), |
1135 | currentPatternBenefits(currentPatternBenefits), patterns(patterns), |
1136 | constraintFunctions(constraintFunctions), |
1137 | rewriteFunctions(rewriteFunctions) {} |
1138 | |
1139 | /// Start executing the code at the current bytecode index. `matches` is an |
1140 | /// optional field provided when this function is executed in a matching |
1141 | /// context. |
1142 | LogicalResult |
1143 | execute(PatternRewriter &rewriter, |
1144 | SmallVectorImpl<PDLByteCode::MatchResult> *matches = nullptr, |
1145 | std::optional<Location> mainRewriteLoc = {}); |
1146 | |
1147 | private: |
1148 | /// Internal implementation of executing each of the bytecode commands. |
1149 | void executeApplyConstraint(PatternRewriter &rewriter); |
1150 | LogicalResult executeApplyRewrite(PatternRewriter &rewriter); |
1151 | void executeAreEqual(); |
1152 | void executeAreRangesEqual(); |
1153 | void executeBranch(); |
1154 | void executeCheckOperandCount(); |
1155 | void executeCheckOperationName(); |
1156 | void executeCheckResultCount(); |
1157 | void executeCheckTypes(); |
1158 | void executeContinue(); |
1159 | void executeCreateConstantTypeRange(); |
1160 | void executeCreateOperation(PatternRewriter &rewriter, |
1161 | Location mainRewriteLoc); |
1162 | template <typename T> |
1163 | void executeDynamicCreateRange(StringRef type); |
1164 | void executeEraseOp(PatternRewriter &rewriter); |
1165 | template <typename T, typename Range, PDLValue::Kind kind> |
1166 | void executeExtract(); |
1167 | void executeFinalize(); |
1168 | void executeForEach(); |
1169 | void executeGetAttribute(); |
1170 | void executeGetAttributeType(); |
1171 | void executeGetDefiningOp(); |
1172 | void executeGetOperand(unsigned index); |
1173 | void executeGetOperands(); |
1174 | void executeGetResult(unsigned index); |
1175 | void executeGetResults(); |
1176 | void executeGetUsers(); |
1177 | void executeGetValueType(); |
1178 | void executeGetValueRangeTypes(); |
1179 | void executeIsNotNull(); |
1180 | void executeRecordMatch(PatternRewriter &rewriter, |
1181 | SmallVectorImpl<PDLByteCode::MatchResult> &matches); |
1182 | void executeReplaceOp(PatternRewriter &rewriter); |
1183 | void executeSwitchAttribute(); |
1184 | void executeSwitchOperandCount(); |
1185 | void executeSwitchOperationName(); |
1186 | void executeSwitchResultCount(); |
1187 | void executeSwitchType(); |
1188 | void executeSwitchTypes(); |
1189 | void processNativeFunResults(ByteCodeRewriteResultList &results, |
1190 | unsigned numResults, |
1191 | LogicalResult &rewriteResult); |
1192 | |
1193 | /// Pushes a code iterator to the stack. |
1194 | void pushCodeIt(const ByteCodeField *it) { resumeCodeIt.push_back(Elt: it); } |
1195 | |
1196 | /// Pops a code iterator from the stack, returning true on success. |
1197 | void popCodeIt() { |
1198 | assert(!resumeCodeIt.empty() && "attempt to pop code off empty stack" ); |
1199 | curCodeIt = resumeCodeIt.back(); |
1200 | resumeCodeIt.pop_back(); |
1201 | } |
1202 | |
1203 | /// Return the bytecode iterator at the start of the current op code. |
1204 | const ByteCodeField *getPrevCodeIt() const { |
1205 | LLVM_DEBUG({ |
1206 | // Account for the op code and the Location stored inline. |
1207 | return curCodeIt - 1 - sizeof(const void *) / sizeof(ByteCodeField); |
1208 | }); |
1209 | |
1210 | // Account for the op code only. |
1211 | return curCodeIt - 1; |
1212 | } |
1213 | |
1214 | /// Read a value from the bytecode buffer, optionally skipping a certain |
1215 | /// number of prefix values. These methods always update the buffer to point |
1216 | /// to the next field after the read data. |
1217 | template <typename T = ByteCodeField> |
1218 | T read(size_t skipN = 0) { |
1219 | curCodeIt += skipN; |
1220 | return readImpl<T>(); |
1221 | } |
1222 | ByteCodeField read(size_t skipN = 0) { return read<ByteCodeField>(skipN); } |
1223 | |
1224 | /// Read a list of values from the bytecode buffer. |
1225 | template <typename ValueT, typename T> |
1226 | void readList(SmallVectorImpl<T> &list) { |
1227 | list.clear(); |
1228 | for (unsigned i = 0, e = read(); i != e; ++i) |
1229 | list.push_back(read<ValueT>()); |
1230 | } |
1231 | |
1232 | /// Read a list of values from the bytecode buffer. The values may be encoded |
1233 | /// either as a single element or a range of elements. |
1234 | void readList(SmallVectorImpl<Type> &list) { |
1235 | for (unsigned i = 0, e = read(); i != e; ++i) { |
1236 | if (read<PDLValue::Kind>() == PDLValue::Kind::Type) { |
1237 | list.push_back(Elt: read<Type>()); |
1238 | } else { |
1239 | TypeRange *values = read<TypeRange *>(); |
1240 | list.append(in_start: values->begin(), in_end: values->end()); |
1241 | } |
1242 | } |
1243 | } |
1244 | void readList(SmallVectorImpl<Value> &list) { |
1245 | for (unsigned i = 0, e = read(); i != e; ++i) { |
1246 | if (read<PDLValue::Kind>() == PDLValue::Kind::Value) { |
1247 | list.push_back(Elt: read<Value>()); |
1248 | } else { |
1249 | ValueRange *values = read<ValueRange *>(); |
1250 | list.append(in_start: values->begin(), in_end: values->end()); |
1251 | } |
1252 | } |
1253 | } |
1254 | |
1255 | /// Read a value stored inline as a pointer. |
1256 | template <typename T> |
1257 | std::enable_if_t<llvm::is_detected<has_pointer_traits, T>::value, T> |
1258 | readInline() { |
1259 | const void *pointer; |
1260 | std::memcpy(dest: &pointer, src: curCodeIt, n: sizeof(const void *)); |
1261 | curCodeIt += sizeof(const void *) / sizeof(ByteCodeField); |
1262 | return T::getFromOpaquePointer(pointer); |
1263 | } |
1264 | |
1265 | void skip(size_t skipN) { curCodeIt += skipN; } |
1266 | |
1267 | /// Jump to a specific successor based on a predicate value. |
1268 | void selectJump(bool isTrue) { selectJump(destIndex: size_t(isTrue ? 0 : 1)); } |
1269 | /// Jump to a specific successor based on a destination index. |
1270 | void selectJump(size_t destIndex) { |
1271 | curCodeIt = &code[read<ByteCodeAddr>(skipN: destIndex * 2)]; |
1272 | } |
1273 | |
1274 | /// Handle a switch operation with the provided value and cases. |
1275 | template <typename T, typename RangeT, typename Comparator = std::equal_to<T>> |
1276 | void handleSwitch(const T &value, RangeT &&cases, Comparator cmp = {}) { |
1277 | LLVM_DEBUG({ |
1278 | llvm::dbgs() << " * Value: " << value << "\n" |
1279 | << " * Cases: " ; |
1280 | llvm::interleaveComma(cases, llvm::dbgs()); |
1281 | llvm::dbgs() << "\n" ; |
1282 | }); |
1283 | |
1284 | // Check to see if the attribute value is within the case list. Jump to |
1285 | // the correct successor index based on the result. |
1286 | for (auto it = cases.begin(), e = cases.end(); it != e; ++it) |
1287 | if (cmp(*it, value)) |
1288 | return selectJump(destIndex: size_t((it - cases.begin()) + 1)); |
1289 | selectJump(destIndex: size_t(0)); |
1290 | } |
1291 | |
1292 | /// Store a pointer to memory. |
1293 | void storeToMemory(unsigned index, const void *value) { |
1294 | memory[index] = value; |
1295 | } |
1296 | |
1297 | /// Store a value to memory as an opaque pointer. |
1298 | template <typename T> |
1299 | std::enable_if_t<llvm::is_detected<has_pointer_traits, T>::value> |
1300 | storeToMemory(unsigned index, T value) { |
1301 | memory[index] = value.getAsOpaquePointer(); |
1302 | } |
1303 | |
1304 | /// Internal implementation of reading various data types from the bytecode |
1305 | /// stream. |
1306 | template <typename T> |
1307 | const void *readFromMemory() { |
1308 | size_t index = *curCodeIt++; |
1309 | |
1310 | // If this type is an SSA value, it can only be stored in non-const memory. |
1311 | if (llvm::is_one_of<T, Operation *, TypeRange *, ValueRange *, |
1312 | Value>::value || |
1313 | index < memory.size()) |
1314 | return memory[index]; |
1315 | |
1316 | // Otherwise, if this index is not inbounds it is uniqued. |
1317 | return uniquedMemory[index - memory.size()]; |
1318 | } |
1319 | template <typename T> |
1320 | std::enable_if_t<std::is_pointer<T>::value, T> readImpl() { |
1321 | return reinterpret_cast<T>(const_cast<void *>(readFromMemory<T>())); |
1322 | } |
1323 | template <typename T> |
1324 | std::enable_if_t<std::is_class<T>::value && !std::is_same<PDLValue, T>::value, |
1325 | T> |
1326 | readImpl() { |
1327 | return T(T::getFromOpaquePointer(readFromMemory<T>())); |
1328 | } |
1329 | template <typename T> |
1330 | std::enable_if_t<std::is_same<PDLValue, T>::value, T> readImpl() { |
1331 | switch (read<PDLValue::Kind>()) { |
1332 | case PDLValue::Kind::Attribute: |
1333 | return read<Attribute>(); |
1334 | case PDLValue::Kind::Operation: |
1335 | return read<Operation *>(); |
1336 | case PDLValue::Kind::Type: |
1337 | return read<Type>(); |
1338 | case PDLValue::Kind::Value: |
1339 | return read<Value>(); |
1340 | case PDLValue::Kind::TypeRange: |
1341 | return read<TypeRange *>(); |
1342 | case PDLValue::Kind::ValueRange: |
1343 | return read<ValueRange *>(); |
1344 | } |
1345 | llvm_unreachable("unhandled PDLValue::Kind" ); |
1346 | } |
1347 | template <typename T> |
1348 | std::enable_if_t<std::is_same<T, ByteCodeAddr>::value, T> readImpl() { |
1349 | static_assert((sizeof(ByteCodeAddr) / sizeof(ByteCodeField)) == 2, |
1350 | "unexpected ByteCode address size" ); |
1351 | ByteCodeAddr result; |
1352 | std::memcpy(dest: &result, src: curCodeIt, n: sizeof(ByteCodeAddr)); |
1353 | curCodeIt += 2; |
1354 | return result; |
1355 | } |
1356 | template <typename T> |
1357 | std::enable_if_t<std::is_same<T, ByteCodeField>::value, T> readImpl() { |
1358 | return *curCodeIt++; |
1359 | } |
1360 | template <typename T> |
1361 | std::enable_if_t<std::is_same<T, PDLValue::Kind>::value, T> readImpl() { |
1362 | return static_cast<PDLValue::Kind>(readImpl<ByteCodeField>()); |
1363 | } |
1364 | |
1365 | /// Assign the given range to the given memory index. This allocates a new |
1366 | /// range object if necessary. |
1367 | template <typename RangeT, typename T = llvm::detail::ValueOfRange<RangeT>> |
1368 | void assignRangeToMemory(RangeT &&range, unsigned memIndex, |
1369 | unsigned rangeIndex) { |
1370 | // Utility functor used to type-erase the assignment. |
1371 | auto assignRange = [&](auto &allocatedRangeMemory, auto &rangeMemory) { |
1372 | // If the input range is empty, we don't need to allocate anything. |
1373 | if (range.empty()) { |
1374 | rangeMemory[rangeIndex] = {}; |
1375 | } else { |
1376 | // Allocate a buffer for this type range. |
1377 | llvm::OwningArrayRef<T> storage(llvm::size(range)); |
1378 | llvm::copy(range, storage.begin()); |
1379 | |
1380 | // Assign this to the range slot and use the range as the value for the |
1381 | // memory index. |
1382 | allocatedRangeMemory.emplace_back(std::move(storage)); |
1383 | rangeMemory[rangeIndex] = allocatedRangeMemory.back(); |
1384 | } |
1385 | memory[memIndex] = &rangeMemory[rangeIndex]; |
1386 | }; |
1387 | |
1388 | // Dispatch based on the concrete range type. |
1389 | if constexpr (std::is_same_v<T, Type>) { |
1390 | return assignRange(allocatedTypeRangeMemory, typeRangeMemory); |
1391 | } else if constexpr (std::is_same_v<T, Value>) { |
1392 | return assignRange(allocatedValueRangeMemory, valueRangeMemory); |
1393 | } else { |
1394 | llvm_unreachable("unhandled range type" ); |
1395 | } |
1396 | } |
1397 | |
1398 | /// The underlying bytecode buffer. |
1399 | const ByteCodeField *curCodeIt; |
1400 | |
1401 | /// The stack of bytecode positions at which to resume operation. |
1402 | SmallVector<const ByteCodeField *> resumeCodeIt; |
1403 | |
1404 | /// The current execution memory. |
1405 | MutableArrayRef<const void *> memory; |
1406 | MutableArrayRef<OwningOpRange> opRangeMemory; |
1407 | MutableArrayRef<TypeRange> typeRangeMemory; |
1408 | std::vector<llvm::OwningArrayRef<Type>> &allocatedTypeRangeMemory; |
1409 | MutableArrayRef<ValueRange> valueRangeMemory; |
1410 | std::vector<llvm::OwningArrayRef<Value>> &allocatedValueRangeMemory; |
1411 | |
1412 | /// The current loop indices. |
1413 | MutableArrayRef<unsigned> loopIndex; |
1414 | |
1415 | /// References to ByteCode data necessary for execution. |
1416 | ArrayRef<const void *> uniquedMemory; |
1417 | ArrayRef<ByteCodeField> code; |
1418 | ArrayRef<PatternBenefit> currentPatternBenefits; |
1419 | ArrayRef<PDLByteCodePattern> patterns; |
1420 | ArrayRef<PDLConstraintFunction> constraintFunctions; |
1421 | ArrayRef<PDLRewriteFunction> rewriteFunctions; |
1422 | }; |
1423 | } // namespace |
1424 | |
1425 | void ByteCodeExecutor::executeApplyConstraint(PatternRewriter &rewriter) { |
1426 | LLVM_DEBUG(llvm::dbgs() << "Executing ApplyConstraint:\n" ); |
1427 | ByteCodeField fun_idx = read(); |
1428 | SmallVector<PDLValue, 16> args; |
1429 | readList<PDLValue>(list&: args); |
1430 | |
1431 | LLVM_DEBUG({ |
1432 | llvm::dbgs() << " * Arguments: " ; |
1433 | llvm::interleaveComma(args, llvm::dbgs()); |
1434 | llvm::dbgs() << "\n" ; |
1435 | }); |
1436 | |
1437 | ByteCodeField isNegated = read(); |
1438 | LLVM_DEBUG({ |
1439 | llvm::dbgs() << " * isNegated: " << isNegated << "\n" ; |
1440 | llvm::interleaveComma(args, llvm::dbgs()); |
1441 | }); |
1442 | |
1443 | ByteCodeField numResults = read(); |
1444 | const PDLRewriteFunction &constraintFn = constraintFunctions[fun_idx]; |
1445 | ByteCodeRewriteResultList results(numResults); |
1446 | LogicalResult rewriteResult = constraintFn(rewriter, results, args); |
1447 | [[maybe_unused]] ArrayRef<PDLValue> constraintResults = results.getResults(); |
1448 | LLVM_DEBUG({ |
1449 | if (succeeded(rewriteResult)) { |
1450 | llvm::dbgs() << " * Constraint succeeded\n" ; |
1451 | llvm::dbgs() << " * Results: " ; |
1452 | llvm::interleaveComma(constraintResults, llvm::dbgs()); |
1453 | llvm::dbgs() << "\n" ; |
1454 | } else { |
1455 | llvm::dbgs() << " * Constraint failed\n" ; |
1456 | } |
1457 | }); |
1458 | assert((failed(rewriteResult) || constraintResults.size() == numResults) && |
1459 | "native PDL rewrite function succeeded but returned " |
1460 | "unexpected number of results" ); |
1461 | processNativeFunResults(results, numResults, rewriteResult); |
1462 | |
1463 | // Depending on the constraint jump to the proper destination. |
1464 | selectJump(isTrue: isNegated != succeeded(result: rewriteResult)); |
1465 | } |
1466 | |
1467 | LogicalResult ByteCodeExecutor::executeApplyRewrite(PatternRewriter &rewriter) { |
1468 | LLVM_DEBUG(llvm::dbgs() << "Executing ApplyRewrite:\n" ); |
1469 | const PDLRewriteFunction &rewriteFn = rewriteFunctions[read()]; |
1470 | SmallVector<PDLValue, 16> args; |
1471 | readList<PDLValue>(list&: args); |
1472 | |
1473 | LLVM_DEBUG({ |
1474 | llvm::dbgs() << " * Arguments: " ; |
1475 | llvm::interleaveComma(args, llvm::dbgs()); |
1476 | }); |
1477 | |
1478 | // Execute the rewrite function. |
1479 | ByteCodeField numResults = read(); |
1480 | ByteCodeRewriteResultList results(numResults); |
1481 | LogicalResult rewriteResult = rewriteFn(rewriter, results, args); |
1482 | |
1483 | assert(results.getResults().size() == numResults && |
1484 | "native PDL rewrite function returned unexpected number of results" ); |
1485 | |
1486 | processNativeFunResults(results, numResults, rewriteResult); |
1487 | |
1488 | if (failed(result: rewriteResult)) { |
1489 | LLVM_DEBUG(llvm::dbgs() << " - Failed" ); |
1490 | return failure(); |
1491 | } |
1492 | return success(); |
1493 | } |
1494 | |
1495 | void ByteCodeExecutor::processNativeFunResults( |
1496 | ByteCodeRewriteResultList &results, unsigned numResults, |
1497 | LogicalResult &rewriteResult) { |
1498 | // Store the results in the bytecode memory or handle missing results on |
1499 | // failure. |
1500 | for (unsigned resultIdx = 0; resultIdx < numResults; resultIdx++) { |
1501 | PDLValue::Kind resultKind = read<PDLValue::Kind>(); |
1502 | |
1503 | // Skip the according number of values on the buffer on failure and exit |
1504 | // early as there are no results to process. |
1505 | if (failed(result: rewriteResult)) { |
1506 | if (resultKind == PDLValue::Kind::TypeRange || |
1507 | resultKind == PDLValue::Kind::ValueRange) { |
1508 | skip(skipN: 2); |
1509 | } else { |
1510 | skip(skipN: 1); |
1511 | } |
1512 | return; |
1513 | } |
1514 | PDLValue result = results.getResults()[resultIdx]; |
1515 | LLVM_DEBUG(llvm::dbgs() << " * Result: " << result << "\n" ); |
1516 | assert(result.getKind() == resultKind && |
1517 | "native PDL rewrite function returned an unexpected type of " |
1518 | "result" ); |
1519 | // If the result is a range, we need to copy it over to the bytecodes |
1520 | // range memory. |
1521 | if (std::optional<TypeRange> typeRange = result.dyn_cast<TypeRange>()) { |
1522 | unsigned rangeIndex = read(); |
1523 | typeRangeMemory[rangeIndex] = *typeRange; |
1524 | memory[read()] = &typeRangeMemory[rangeIndex]; |
1525 | } else if (std::optional<ValueRange> valueRange = |
1526 | result.dyn_cast<ValueRange>()) { |
1527 | unsigned rangeIndex = read(); |
1528 | valueRangeMemory[rangeIndex] = *valueRange; |
1529 | memory[read()] = &valueRangeMemory[rangeIndex]; |
1530 | } else { |
1531 | memory[read()] = result.getAsOpaquePointer(); |
1532 | } |
1533 | } |
1534 | |
1535 | // Copy over any underlying storage allocated for result ranges. |
1536 | for (auto &it : results.getAllocatedTypeRanges()) |
1537 | allocatedTypeRangeMemory.push_back(x: std::move(it)); |
1538 | for (auto &it : results.getAllocatedValueRanges()) |
1539 | allocatedValueRangeMemory.push_back(x: std::move(it)); |
1540 | } |
1541 | |
1542 | void ByteCodeExecutor::executeAreEqual() { |
1543 | LLVM_DEBUG(llvm::dbgs() << "Executing AreEqual:\n" ); |
1544 | const void *lhs = read<const void *>(); |
1545 | const void *rhs = read<const void *>(); |
1546 | |
1547 | LLVM_DEBUG(llvm::dbgs() << " * " << lhs << " == " << rhs << "\n" ); |
1548 | selectJump(isTrue: lhs == rhs); |
1549 | } |
1550 | |
1551 | void ByteCodeExecutor::executeAreRangesEqual() { |
1552 | LLVM_DEBUG(llvm::dbgs() << "Executing AreRangesEqual:\n" ); |
1553 | PDLValue::Kind valueKind = read<PDLValue::Kind>(); |
1554 | const void *lhs = read<const void *>(); |
1555 | const void *rhs = read<const void *>(); |
1556 | |
1557 | switch (valueKind) { |
1558 | case PDLValue::Kind::TypeRange: { |
1559 | const TypeRange *lhsRange = reinterpret_cast<const TypeRange *>(lhs); |
1560 | const TypeRange *rhsRange = reinterpret_cast<const TypeRange *>(rhs); |
1561 | LLVM_DEBUG(llvm::dbgs() << " * " << lhs << " == " << rhs << "\n\n" ); |
1562 | selectJump(isTrue: *lhsRange == *rhsRange); |
1563 | break; |
1564 | } |
1565 | case PDLValue::Kind::ValueRange: { |
1566 | const auto *lhsRange = reinterpret_cast<const ValueRange *>(lhs); |
1567 | const auto *rhsRange = reinterpret_cast<const ValueRange *>(rhs); |
1568 | LLVM_DEBUG(llvm::dbgs() << " * " << lhs << " == " << rhs << "\n\n" ); |
1569 | selectJump(isTrue: *lhsRange == *rhsRange); |
1570 | break; |
1571 | } |
1572 | default: |
1573 | llvm_unreachable("unexpected `AreRangesEqual` value kind" ); |
1574 | } |
1575 | } |
1576 | |
1577 | void ByteCodeExecutor::executeBranch() { |
1578 | LLVM_DEBUG(llvm::dbgs() << "Executing Branch\n" ); |
1579 | curCodeIt = &code[read<ByteCodeAddr>()]; |
1580 | } |
1581 | |
1582 | void ByteCodeExecutor::executeCheckOperandCount() { |
1583 | LLVM_DEBUG(llvm::dbgs() << "Executing CheckOperandCount:\n" ); |
1584 | Operation *op = read<Operation *>(); |
1585 | uint32_t expectedCount = read<uint32_t>(); |
1586 | bool compareAtLeast = read(); |
1587 | |
1588 | LLVM_DEBUG(llvm::dbgs() << " * Found: " << op->getNumOperands() << "\n" |
1589 | << " * Expected: " << expectedCount << "\n" |
1590 | << " * Comparator: " |
1591 | << (compareAtLeast ? ">=" : "==" ) << "\n" ); |
1592 | if (compareAtLeast) |
1593 | selectJump(isTrue: op->getNumOperands() >= expectedCount); |
1594 | else |
1595 | selectJump(isTrue: op->getNumOperands() == expectedCount); |
1596 | } |
1597 | |
1598 | void ByteCodeExecutor::executeCheckOperationName() { |
1599 | LLVM_DEBUG(llvm::dbgs() << "Executing CheckOperationName:\n" ); |
1600 | Operation *op = read<Operation *>(); |
1601 | OperationName expectedName = read<OperationName>(); |
1602 | |
1603 | LLVM_DEBUG(llvm::dbgs() << " * Found: \"" << op->getName() << "\"\n" |
1604 | << " * Expected: \"" << expectedName << "\"\n" ); |
1605 | selectJump(isTrue: op->getName() == expectedName); |
1606 | } |
1607 | |
1608 | void ByteCodeExecutor::executeCheckResultCount() { |
1609 | LLVM_DEBUG(llvm::dbgs() << "Executing CheckResultCount:\n" ); |
1610 | Operation *op = read<Operation *>(); |
1611 | uint32_t expectedCount = read<uint32_t>(); |
1612 | bool compareAtLeast = read(); |
1613 | |
1614 | LLVM_DEBUG(llvm::dbgs() << " * Found: " << op->getNumResults() << "\n" |
1615 | << " * Expected: " << expectedCount << "\n" |
1616 | << " * Comparator: " |
1617 | << (compareAtLeast ? ">=" : "==" ) << "\n" ); |
1618 | if (compareAtLeast) |
1619 | selectJump(isTrue: op->getNumResults() >= expectedCount); |
1620 | else |
1621 | selectJump(isTrue: op->getNumResults() == expectedCount); |
1622 | } |
1623 | |
1624 | void ByteCodeExecutor::executeCheckTypes() { |
1625 | LLVM_DEBUG(llvm::dbgs() << "Executing AreEqual:\n" ); |
1626 | TypeRange *lhs = read<TypeRange *>(); |
1627 | Attribute rhs = read<Attribute>(); |
1628 | LLVM_DEBUG(llvm::dbgs() << " * " << lhs << " == " << rhs << "\n\n" ); |
1629 | |
1630 | selectJump(*lhs == cast<ArrayAttr>(rhs).getAsValueRange<TypeAttr>()); |
1631 | } |
1632 | |
1633 | void ByteCodeExecutor::executeContinue() { |
1634 | ByteCodeField level = read(); |
1635 | LLVM_DEBUG(llvm::dbgs() << "Executing Continue\n" |
1636 | << " * Level: " << level << "\n" ); |
1637 | ++loopIndex[level]; |
1638 | popCodeIt(); |
1639 | } |
1640 | |
1641 | void ByteCodeExecutor::executeCreateConstantTypeRange() { |
1642 | LLVM_DEBUG(llvm::dbgs() << "Executing CreateConstantTypeRange:\n" ); |
1643 | unsigned memIndex = read(); |
1644 | unsigned rangeIndex = read(); |
1645 | ArrayAttr typesAttr = cast<ArrayAttr>(read<Attribute>()); |
1646 | |
1647 | LLVM_DEBUG(llvm::dbgs() << " * Types: " << typesAttr << "\n\n" ); |
1648 | assignRangeToMemory(typesAttr.getAsValueRange<TypeAttr>(), memIndex, |
1649 | rangeIndex); |
1650 | } |
1651 | |
1652 | void ByteCodeExecutor::executeCreateOperation(PatternRewriter &rewriter, |
1653 | Location mainRewriteLoc) { |
1654 | LLVM_DEBUG(llvm::dbgs() << "Executing CreateOperation:\n" ); |
1655 | |
1656 | unsigned memIndex = read(); |
1657 | OperationState state(mainRewriteLoc, read<OperationName>()); |
1658 | readList(list&: state.operands); |
1659 | for (unsigned i = 0, e = read(); i != e; ++i) { |
1660 | StringAttr name = read<StringAttr>(); |
1661 | if (Attribute attr = read<Attribute>()) |
1662 | state.addAttribute(name, attr); |
1663 | } |
1664 | |
1665 | // Read in the result types. If the "size" is the sentinel value, this |
1666 | // indicates that the result types should be inferred. |
1667 | unsigned numResults = read(); |
1668 | if (numResults == kInferTypesMarker) { |
1669 | InferTypeOpInterface::Concept *inferInterface = |
1670 | state.name.getInterface<InferTypeOpInterface>(); |
1671 | assert(inferInterface && |
1672 | "expected operation to provide InferTypeOpInterface" ); |
1673 | |
1674 | // TODO: Handle failure. |
1675 | if (failed(inferInterface->inferReturnTypes( |
1676 | state.getContext(), state.location, state.operands, |
1677 | state.attributes.getDictionary(state.getContext()), |
1678 | state.getRawProperties(), state.regions, state.types))) |
1679 | return; |
1680 | } else { |
1681 | // Otherwise, this is a fixed number of results. |
1682 | for (unsigned i = 0; i != numResults; ++i) { |
1683 | if (read<PDLValue::Kind>() == PDLValue::Kind::Type) { |
1684 | state.types.push_back(Elt: read<Type>()); |
1685 | } else { |
1686 | TypeRange *resultTypes = read<TypeRange *>(); |
1687 | state.types.append(in_start: resultTypes->begin(), in_end: resultTypes->end()); |
1688 | } |
1689 | } |
1690 | } |
1691 | |
1692 | Operation *resultOp = rewriter.create(state); |
1693 | memory[memIndex] = resultOp; |
1694 | |
1695 | LLVM_DEBUG({ |
1696 | llvm::dbgs() << " * Attributes: " |
1697 | << state.attributes.getDictionary(state.getContext()) |
1698 | << "\n * Operands: " ; |
1699 | llvm::interleaveComma(state.operands, llvm::dbgs()); |
1700 | llvm::dbgs() << "\n * Result Types: " ; |
1701 | llvm::interleaveComma(state.types, llvm::dbgs()); |
1702 | llvm::dbgs() << "\n * Result: " << *resultOp << "\n" ; |
1703 | }); |
1704 | } |
1705 | |
1706 | template <typename T> |
1707 | void ByteCodeExecutor::executeDynamicCreateRange(StringRef type) { |
1708 | LLVM_DEBUG(llvm::dbgs() << "Executing CreateDynamic" << type << "Range:\n" ); |
1709 | unsigned memIndex = read(); |
1710 | unsigned rangeIndex = read(); |
1711 | SmallVector<T> values; |
1712 | readList(values); |
1713 | |
1714 | LLVM_DEBUG({ |
1715 | llvm::dbgs() << "\n * " << type << "s: " ; |
1716 | llvm::interleaveComma(values, llvm::dbgs()); |
1717 | llvm::dbgs() << "\n" ; |
1718 | }); |
1719 | |
1720 | assignRangeToMemory(values, memIndex, rangeIndex); |
1721 | } |
1722 | |
1723 | void ByteCodeExecutor::executeEraseOp(PatternRewriter &rewriter) { |
1724 | LLVM_DEBUG(llvm::dbgs() << "Executing EraseOp:\n" ); |
1725 | Operation *op = read<Operation *>(); |
1726 | |
1727 | LLVM_DEBUG(llvm::dbgs() << " * Operation: " << *op << "\n" ); |
1728 | rewriter.eraseOp(op); |
1729 | } |
1730 | |
1731 | template <typename T, typename Range, PDLValue::Kind kind> |
1732 | void ByteCodeExecutor::() { |
1733 | LLVM_DEBUG(llvm::dbgs() << "Executing Extract" << kind << ":\n" ); |
1734 | Range *range = read<Range *>(); |
1735 | unsigned index = read<uint32_t>(); |
1736 | unsigned memIndex = read(); |
1737 | |
1738 | if (!range) { |
1739 | memory[memIndex] = nullptr; |
1740 | return; |
1741 | } |
1742 | |
1743 | T result = index < range->size() ? (*range)[index] : T(); |
1744 | LLVM_DEBUG(llvm::dbgs() << " * " << kind << "s(" << range->size() << ")\n" |
1745 | << " * Index: " << index << "\n" |
1746 | << " * Result: " << result << "\n" ); |
1747 | storeToMemory(memIndex, result); |
1748 | } |
1749 | |
1750 | void ByteCodeExecutor::executeFinalize() { |
1751 | LLVM_DEBUG(llvm::dbgs() << "Executing Finalize\n" ); |
1752 | } |
1753 | |
1754 | void ByteCodeExecutor::executeForEach() { |
1755 | LLVM_DEBUG(llvm::dbgs() << "Executing ForEach:\n" ); |
1756 | const ByteCodeField *prevCodeIt = getPrevCodeIt(); |
1757 | unsigned rangeIndex = read(); |
1758 | unsigned memIndex = read(); |
1759 | const void *value = nullptr; |
1760 | |
1761 | switch (read<PDLValue::Kind>()) { |
1762 | case PDLValue::Kind::Operation: { |
1763 | unsigned &index = loopIndex[read()]; |
1764 | ArrayRef<Operation *> array = opRangeMemory[rangeIndex]; |
1765 | assert(index <= array.size() && "iterated past the end" ); |
1766 | if (index < array.size()) { |
1767 | LLVM_DEBUG(llvm::dbgs() << " * Result: " << array[index] << "\n" ); |
1768 | value = array[index]; |
1769 | break; |
1770 | } |
1771 | |
1772 | LLVM_DEBUG(llvm::dbgs() << " * Done\n" ); |
1773 | index = 0; |
1774 | selectJump(destIndex: size_t(0)); |
1775 | return; |
1776 | } |
1777 | default: |
1778 | llvm_unreachable("unexpected `ForEach` value kind" ); |
1779 | } |
1780 | |
1781 | // Store the iterate value and the stack address. |
1782 | memory[memIndex] = value; |
1783 | pushCodeIt(it: prevCodeIt); |
1784 | |
1785 | // Skip over the successor (we will enter the body of the loop). |
1786 | read<ByteCodeAddr>(); |
1787 | } |
1788 | |
1789 | void ByteCodeExecutor::executeGetAttribute() { |
1790 | LLVM_DEBUG(llvm::dbgs() << "Executing GetAttribute:\n" ); |
1791 | unsigned memIndex = read(); |
1792 | Operation *op = read<Operation *>(); |
1793 | StringAttr attrName = read<StringAttr>(); |
1794 | Attribute attr = op->getAttr(attrName); |
1795 | |
1796 | LLVM_DEBUG(llvm::dbgs() << " * Operation: " << *op << "\n" |
1797 | << " * Attribute: " << attrName << "\n" |
1798 | << " * Result: " << attr << "\n" ); |
1799 | memory[memIndex] = attr.getAsOpaquePointer(); |
1800 | } |
1801 | |
1802 | void ByteCodeExecutor::executeGetAttributeType() { |
1803 | LLVM_DEBUG(llvm::dbgs() << "Executing GetAttributeType:\n" ); |
1804 | unsigned memIndex = read(); |
1805 | Attribute attr = read<Attribute>(); |
1806 | Type type; |
1807 | if (auto typedAttr = dyn_cast<TypedAttr>(attr)) |
1808 | type = typedAttr.getType(); |
1809 | |
1810 | LLVM_DEBUG(llvm::dbgs() << " * Attribute: " << attr << "\n" |
1811 | << " * Result: " << type << "\n" ); |
1812 | memory[memIndex] = type.getAsOpaquePointer(); |
1813 | } |
1814 | |
1815 | void ByteCodeExecutor::executeGetDefiningOp() { |
1816 | LLVM_DEBUG(llvm::dbgs() << "Executing GetDefiningOp:\n" ); |
1817 | unsigned memIndex = read(); |
1818 | Operation *op = nullptr; |
1819 | if (read<PDLValue::Kind>() == PDLValue::Kind::Value) { |
1820 | Value value = read<Value>(); |
1821 | if (value) |
1822 | op = value.getDefiningOp(); |
1823 | LLVM_DEBUG(llvm::dbgs() << " * Value: " << value << "\n" ); |
1824 | } else { |
1825 | ValueRange *values = read<ValueRange *>(); |
1826 | if (values && !values->empty()) { |
1827 | op = values->front().getDefiningOp(); |
1828 | } |
1829 | LLVM_DEBUG(llvm::dbgs() << " * Values: " << values << "\n" ); |
1830 | } |
1831 | |
1832 | LLVM_DEBUG(llvm::dbgs() << " * Result: " << op << "\n" ); |
1833 | memory[memIndex] = op; |
1834 | } |
1835 | |
1836 | void ByteCodeExecutor::executeGetOperand(unsigned index) { |
1837 | Operation *op = read<Operation *>(); |
1838 | unsigned memIndex = read(); |
1839 | Value operand = |
1840 | index < op->getNumOperands() ? op->getOperand(idx: index) : Value(); |
1841 | |
1842 | LLVM_DEBUG(llvm::dbgs() << " * Operation: " << *op << "\n" |
1843 | << " * Index: " << index << "\n" |
1844 | << " * Result: " << operand << "\n" ); |
1845 | memory[memIndex] = operand.getAsOpaquePointer(); |
1846 | } |
1847 | |
1848 | /// This function is the internal implementation of `GetResults` and |
1849 | /// `GetOperands` that provides support for extracting a value range from the |
1850 | /// given operation. |
1851 | template <template <typename> class AttrSizedSegmentsT, typename RangeT> |
1852 | static void * |
1853 | executeGetOperandsResults(RangeT values, Operation *op, unsigned index, |
1854 | ByteCodeField rangeIndex, StringRef attrSizedSegments, |
1855 | MutableArrayRef<ValueRange> valueRangeMemory) { |
1856 | // Check for the sentinel index that signals that all values should be |
1857 | // returned. |
1858 | if (index == std::numeric_limits<uint32_t>::max()) { |
1859 | LLVM_DEBUG(llvm::dbgs() << " * Getting all values\n" ); |
1860 | // `values` is already the full value range. |
1861 | |
1862 | // Otherwise, check to see if this operation uses AttrSizedSegments. |
1863 | } else if (op->hasTrait<AttrSizedSegmentsT>()) { |
1864 | LLVM_DEBUG(llvm::dbgs() |
1865 | << " * Extracting values from `" << attrSizedSegments << "`\n" ); |
1866 | |
1867 | auto segmentAttr = op->getAttrOfType<DenseI32ArrayAttr>(attrSizedSegments); |
1868 | if (!segmentAttr || segmentAttr.asArrayRef().size() <= index) |
1869 | return nullptr; |
1870 | |
1871 | ArrayRef<int32_t> segments = segmentAttr; |
1872 | unsigned startIndex = |
1873 | std::accumulate(first: segments.begin(), last: segments.begin() + index, init: 0); |
1874 | values = values.slice(startIndex, *std::next(x: segments.begin(), n: index)); |
1875 | |
1876 | LLVM_DEBUG(llvm::dbgs() << " * Extracting range[" << startIndex << ", " |
1877 | << *std::next(segments.begin(), index) << "]\n" ); |
1878 | |
1879 | // Otherwise, assume this is the last operand group of the operation. |
1880 | // FIXME: We currently don't support operations with |
1881 | // SameVariadicOperandSize/SameVariadicResultSize here given that we don't |
1882 | // have a way to detect it's presence. |
1883 | } else if (values.size() >= index) { |
1884 | LLVM_DEBUG(llvm::dbgs() |
1885 | << " * Treating values as trailing variadic range\n" ); |
1886 | values = values.drop_front(index); |
1887 | |
1888 | // If we couldn't detect a way to compute the values, bail out. |
1889 | } else { |
1890 | return nullptr; |
1891 | } |
1892 | |
1893 | // If the range index is valid, we are returning a range. |
1894 | if (rangeIndex != std::numeric_limits<ByteCodeField>::max()) { |
1895 | valueRangeMemory[rangeIndex] = values; |
1896 | return &valueRangeMemory[rangeIndex]; |
1897 | } |
1898 | |
1899 | // If a range index wasn't provided, the range is required to be non-variadic. |
1900 | return values.size() != 1 ? nullptr : values.front().getAsOpaquePointer(); |
1901 | } |
1902 | |
1903 | void ByteCodeExecutor::executeGetOperands() { |
1904 | LLVM_DEBUG(llvm::dbgs() << "Executing GetOperands:\n" ); |
1905 | unsigned index = read<uint32_t>(); |
1906 | Operation *op = read<Operation *>(); |
1907 | ByteCodeField rangeIndex = read(); |
1908 | |
1909 | void *result = executeGetOperandsResults<OpTrait::AttrSizedOperandSegments>( |
1910 | values: op->getOperands(), op, index, rangeIndex, attrSizedSegments: "operandSegmentSizes" , |
1911 | valueRangeMemory); |
1912 | if (!result) |
1913 | LLVM_DEBUG(llvm::dbgs() << " * Invalid operand range\n" ); |
1914 | memory[read()] = result; |
1915 | } |
1916 | |
1917 | void ByteCodeExecutor::executeGetResult(unsigned index) { |
1918 | Operation *op = read<Operation *>(); |
1919 | unsigned memIndex = read(); |
1920 | OpResult result = |
1921 | index < op->getNumResults() ? op->getResult(idx: index) : OpResult(); |
1922 | |
1923 | LLVM_DEBUG(llvm::dbgs() << " * Operation: " << *op << "\n" |
1924 | << " * Index: " << index << "\n" |
1925 | << " * Result: " << result << "\n" ); |
1926 | memory[memIndex] = result.getAsOpaquePointer(); |
1927 | } |
1928 | |
1929 | void ByteCodeExecutor::executeGetResults() { |
1930 | LLVM_DEBUG(llvm::dbgs() << "Executing GetResults:\n" ); |
1931 | unsigned index = read<uint32_t>(); |
1932 | Operation *op = read<Operation *>(); |
1933 | ByteCodeField rangeIndex = read(); |
1934 | |
1935 | void *result = executeGetOperandsResults<OpTrait::AttrSizedResultSegments>( |
1936 | values: op->getResults(), op, index, rangeIndex, attrSizedSegments: "resultSegmentSizes" , |
1937 | valueRangeMemory); |
1938 | if (!result) |
1939 | LLVM_DEBUG(llvm::dbgs() << " * Invalid result range\n" ); |
1940 | memory[read()] = result; |
1941 | } |
1942 | |
1943 | void ByteCodeExecutor::executeGetUsers() { |
1944 | LLVM_DEBUG(llvm::dbgs() << "Executing GetUsers:\n" ); |
1945 | unsigned memIndex = read(); |
1946 | unsigned rangeIndex = read(); |
1947 | OwningOpRange &range = opRangeMemory[rangeIndex]; |
1948 | memory[memIndex] = ⦥ |
1949 | |
1950 | range = OwningOpRange(); |
1951 | if (read<PDLValue::Kind>() == PDLValue::Kind::Value) { |
1952 | // Read the value. |
1953 | Value value = read<Value>(); |
1954 | if (!value) |
1955 | return; |
1956 | LLVM_DEBUG(llvm::dbgs() << " * Value: " << value << "\n" ); |
1957 | |
1958 | // Extract the users of a single value. |
1959 | range = OwningOpRange(std::distance(first: value.user_begin(), last: value.user_end())); |
1960 | llvm::copy(Range: value.getUsers(), Out: range.begin()); |
1961 | } else { |
1962 | // Read a range of values. |
1963 | ValueRange *values = read<ValueRange *>(); |
1964 | if (!values) |
1965 | return; |
1966 | LLVM_DEBUG({ |
1967 | llvm::dbgs() << " * Values (" << values->size() << "): " ; |
1968 | llvm::interleaveComma(*values, llvm::dbgs()); |
1969 | llvm::dbgs() << "\n" ; |
1970 | }); |
1971 | |
1972 | // Extract all the users of a range of values. |
1973 | SmallVector<Operation *> users; |
1974 | for (Value value : *values) |
1975 | users.append(in_start: value.user_begin(), in_end: value.user_end()); |
1976 | range = OwningOpRange(users.size()); |
1977 | llvm::copy(Range&: users, Out: range.begin()); |
1978 | } |
1979 | |
1980 | LLVM_DEBUG(llvm::dbgs() << " * Result: " << range.size() << " operations\n" ); |
1981 | } |
1982 | |
1983 | void ByteCodeExecutor::executeGetValueType() { |
1984 | LLVM_DEBUG(llvm::dbgs() << "Executing GetValueType:\n" ); |
1985 | unsigned memIndex = read(); |
1986 | Value value = read<Value>(); |
1987 | Type type = value ? value.getType() : Type(); |
1988 | |
1989 | LLVM_DEBUG(llvm::dbgs() << " * Value: " << value << "\n" |
1990 | << " * Result: " << type << "\n" ); |
1991 | memory[memIndex] = type.getAsOpaquePointer(); |
1992 | } |
1993 | |
1994 | void ByteCodeExecutor::executeGetValueRangeTypes() { |
1995 | LLVM_DEBUG(llvm::dbgs() << "Executing GetValueRangeTypes:\n" ); |
1996 | unsigned memIndex = read(); |
1997 | unsigned rangeIndex = read(); |
1998 | ValueRange *values = read<ValueRange *>(); |
1999 | if (!values) { |
2000 | LLVM_DEBUG(llvm::dbgs() << " * Values: <NULL>\n\n" ); |
2001 | memory[memIndex] = nullptr; |
2002 | return; |
2003 | } |
2004 | |
2005 | LLVM_DEBUG({ |
2006 | llvm::dbgs() << " * Values (" << values->size() << "): " ; |
2007 | llvm::interleaveComma(*values, llvm::dbgs()); |
2008 | llvm::dbgs() << "\n * Result: " ; |
2009 | llvm::interleaveComma(values->getType(), llvm::dbgs()); |
2010 | llvm::dbgs() << "\n" ; |
2011 | }); |
2012 | typeRangeMemory[rangeIndex] = values->getType(); |
2013 | memory[memIndex] = &typeRangeMemory[rangeIndex]; |
2014 | } |
2015 | |
2016 | void ByteCodeExecutor::executeIsNotNull() { |
2017 | LLVM_DEBUG(llvm::dbgs() << "Executing IsNotNull:\n" ); |
2018 | const void *value = read<const void *>(); |
2019 | |
2020 | LLVM_DEBUG(llvm::dbgs() << " * Value: " << value << "\n" ); |
2021 | selectJump(isTrue: value != nullptr); |
2022 | } |
2023 | |
2024 | void ByteCodeExecutor::executeRecordMatch( |
2025 | PatternRewriter &rewriter, |
2026 | SmallVectorImpl<PDLByteCode::MatchResult> &matches) { |
2027 | LLVM_DEBUG(llvm::dbgs() << "Executing RecordMatch:\n" ); |
2028 | unsigned patternIndex = read(); |
2029 | PatternBenefit benefit = currentPatternBenefits[patternIndex]; |
2030 | const ByteCodeField *dest = &code[read<ByteCodeAddr>()]; |
2031 | |
2032 | // If the benefit of the pattern is impossible, skip the processing of the |
2033 | // rest of the pattern. |
2034 | if (benefit.isImpossibleToMatch()) { |
2035 | LLVM_DEBUG(llvm::dbgs() << " * Benefit: Impossible To Match\n" ); |
2036 | curCodeIt = dest; |
2037 | return; |
2038 | } |
2039 | |
2040 | // Create a fused location containing the locations of each of the |
2041 | // operations used in the match. This will be used as the location for |
2042 | // created operations during the rewrite that don't already have an |
2043 | // explicit location set. |
2044 | unsigned numMatchLocs = read(); |
2045 | SmallVector<Location, 4> matchLocs; |
2046 | matchLocs.reserve(N: numMatchLocs); |
2047 | for (unsigned i = 0; i != numMatchLocs; ++i) |
2048 | matchLocs.push_back(Elt: read<Operation *>()->getLoc()); |
2049 | Location matchLoc = rewriter.getFusedLoc(locs: matchLocs); |
2050 | |
2051 | LLVM_DEBUG(llvm::dbgs() << " * Benefit: " << benefit.getBenefit() << "\n" |
2052 | << " * Location: " << matchLoc << "\n" ); |
2053 | matches.emplace_back(Args&: matchLoc, Args: patterns[patternIndex], Args&: benefit); |
2054 | PDLByteCode::MatchResult &match = matches.back(); |
2055 | |
2056 | // Record all of the inputs to the match. If any of the inputs are ranges, we |
2057 | // will also need to remap the range pointer to memory stored in the match |
2058 | // state. |
2059 | unsigned numInputs = read(); |
2060 | match.values.reserve(N: numInputs); |
2061 | match.typeRangeValues.reserve(N: numInputs); |
2062 | match.valueRangeValues.reserve(N: numInputs); |
2063 | for (unsigned i = 0; i < numInputs; ++i) { |
2064 | switch (read<PDLValue::Kind>()) { |
2065 | case PDLValue::Kind::TypeRange: |
2066 | match.typeRangeValues.push_back(Elt: *read<TypeRange *>()); |
2067 | match.values.push_back(Elt: &match.typeRangeValues.back()); |
2068 | break; |
2069 | case PDLValue::Kind::ValueRange: |
2070 | match.valueRangeValues.push_back(Elt: *read<ValueRange *>()); |
2071 | match.values.push_back(Elt: &match.valueRangeValues.back()); |
2072 | break; |
2073 | default: |
2074 | match.values.push_back(Elt: read<const void *>()); |
2075 | break; |
2076 | } |
2077 | } |
2078 | curCodeIt = dest; |
2079 | } |
2080 | |
2081 | void ByteCodeExecutor::executeReplaceOp(PatternRewriter &rewriter) { |
2082 | LLVM_DEBUG(llvm::dbgs() << "Executing ReplaceOp:\n" ); |
2083 | Operation *op = read<Operation *>(); |
2084 | SmallVector<Value, 16> args; |
2085 | readList(list&: args); |
2086 | |
2087 | LLVM_DEBUG({ |
2088 | llvm::dbgs() << " * Operation: " << *op << "\n" |
2089 | << " * Values: " ; |
2090 | llvm::interleaveComma(args, llvm::dbgs()); |
2091 | llvm::dbgs() << "\n" ; |
2092 | }); |
2093 | rewriter.replaceOp(op, newValues: args); |
2094 | } |
2095 | |
2096 | void ByteCodeExecutor::executeSwitchAttribute() { |
2097 | LLVM_DEBUG(llvm::dbgs() << "Executing SwitchAttribute:\n" ); |
2098 | Attribute value = read<Attribute>(); |
2099 | ArrayAttr cases = read<ArrayAttr>(); |
2100 | handleSwitch(value, cases); |
2101 | } |
2102 | |
2103 | void ByteCodeExecutor::executeSwitchOperandCount() { |
2104 | LLVM_DEBUG(llvm::dbgs() << "Executing SwitchOperandCount:\n" ); |
2105 | Operation *op = read<Operation *>(); |
2106 | auto cases = read<DenseIntOrFPElementsAttr>().getValues<uint32_t>(); |
2107 | |
2108 | LLVM_DEBUG(llvm::dbgs() << " * Operation: " << *op << "\n" ); |
2109 | handleSwitch(op->getNumOperands(), cases); |
2110 | } |
2111 | |
2112 | void ByteCodeExecutor::executeSwitchOperationName() { |
2113 | LLVM_DEBUG(llvm::dbgs() << "Executing SwitchOperationName:\n" ); |
2114 | OperationName value = read<Operation *>()->getName(); |
2115 | size_t caseCount = read(); |
2116 | |
2117 | // The operation names are stored in-line, so to print them out for |
2118 | // debugging purposes we need to read the array before executing the |
2119 | // switch so that we can display all of the possible values. |
2120 | LLVM_DEBUG({ |
2121 | const ByteCodeField *prevCodeIt = curCodeIt; |
2122 | llvm::dbgs() << " * Value: " << value << "\n" |
2123 | << " * Cases: " ; |
2124 | llvm::interleaveComma( |
2125 | llvm::map_range(llvm::seq<size_t>(0, caseCount), |
2126 | [&](size_t) { return read<OperationName>(); }), |
2127 | llvm::dbgs()); |
2128 | llvm::dbgs() << "\n" ; |
2129 | curCodeIt = prevCodeIt; |
2130 | }); |
2131 | |
2132 | // Try to find the switch value within any of the cases. |
2133 | for (size_t i = 0; i != caseCount; ++i) { |
2134 | if (read<OperationName>() == value) { |
2135 | curCodeIt += (caseCount - i - 1); |
2136 | return selectJump(destIndex: i + 1); |
2137 | } |
2138 | } |
2139 | selectJump(destIndex: size_t(0)); |
2140 | } |
2141 | |
2142 | void ByteCodeExecutor::executeSwitchResultCount() { |
2143 | LLVM_DEBUG(llvm::dbgs() << "Executing SwitchResultCount:\n" ); |
2144 | Operation *op = read<Operation *>(); |
2145 | auto cases = read<DenseIntOrFPElementsAttr>().getValues<uint32_t>(); |
2146 | |
2147 | LLVM_DEBUG(llvm::dbgs() << " * Operation: " << *op << "\n" ); |
2148 | handleSwitch(op->getNumResults(), cases); |
2149 | } |
2150 | |
2151 | void ByteCodeExecutor::executeSwitchType() { |
2152 | LLVM_DEBUG(llvm::dbgs() << "Executing SwitchType:\n" ); |
2153 | Type value = read<Type>(); |
2154 | auto cases = read<ArrayAttr>().getAsValueRange<TypeAttr>(); |
2155 | handleSwitch(value, cases); |
2156 | } |
2157 | |
2158 | void ByteCodeExecutor::executeSwitchTypes() { |
2159 | LLVM_DEBUG(llvm::dbgs() << "Executing SwitchTypes:\n" ); |
2160 | TypeRange *value = read<TypeRange *>(); |
2161 | auto cases = read<ArrayAttr>().getAsRange<ArrayAttr>(); |
2162 | if (!value) { |
2163 | LLVM_DEBUG(llvm::dbgs() << "Types: <NULL>\n" ); |
2164 | return selectJump(destIndex: size_t(0)); |
2165 | } |
2166 | handleSwitch(*value, cases, [](ArrayAttr caseValue, const TypeRange &value) { |
2167 | return value == caseValue.getAsValueRange<TypeAttr>(); |
2168 | }); |
2169 | } |
2170 | |
2171 | LogicalResult |
2172 | ByteCodeExecutor::execute(PatternRewriter &rewriter, |
2173 | SmallVectorImpl<PDLByteCode::MatchResult> *matches, |
2174 | std::optional<Location> mainRewriteLoc) { |
2175 | while (true) { |
2176 | // Print the location of the operation being executed. |
2177 | LLVM_DEBUG(llvm::dbgs() << readInline<Location>() << "\n" ); |
2178 | |
2179 | OpCode opCode = static_cast<OpCode>(read()); |
2180 | switch (opCode) { |
2181 | case ApplyConstraint: |
2182 | executeApplyConstraint(rewriter); |
2183 | break; |
2184 | case ApplyRewrite: |
2185 | if (failed(result: executeApplyRewrite(rewriter))) |
2186 | return failure(); |
2187 | break; |
2188 | case AreEqual: |
2189 | executeAreEqual(); |
2190 | break; |
2191 | case AreRangesEqual: |
2192 | executeAreRangesEqual(); |
2193 | break; |
2194 | case Branch: |
2195 | executeBranch(); |
2196 | break; |
2197 | case CheckOperandCount: |
2198 | executeCheckOperandCount(); |
2199 | break; |
2200 | case CheckOperationName: |
2201 | executeCheckOperationName(); |
2202 | break; |
2203 | case CheckResultCount: |
2204 | executeCheckResultCount(); |
2205 | break; |
2206 | case CheckTypes: |
2207 | executeCheckTypes(); |
2208 | break; |
2209 | case Continue: |
2210 | executeContinue(); |
2211 | break; |
2212 | case CreateConstantTypeRange: |
2213 | executeCreateConstantTypeRange(); |
2214 | break; |
2215 | case CreateOperation: |
2216 | executeCreateOperation(rewriter, mainRewriteLoc: *mainRewriteLoc); |
2217 | break; |
2218 | case CreateDynamicTypeRange: |
2219 | executeDynamicCreateRange<Type>(type: "Type" ); |
2220 | break; |
2221 | case CreateDynamicValueRange: |
2222 | executeDynamicCreateRange<Value>(type: "Value" ); |
2223 | break; |
2224 | case EraseOp: |
2225 | executeEraseOp(rewriter); |
2226 | break; |
2227 | case ExtractOp: |
2228 | executeExtract<Operation *, OwningOpRange, PDLValue::Kind::Operation>(); |
2229 | break; |
2230 | case ExtractType: |
2231 | executeExtract<Type, TypeRange, PDLValue::Kind::Type>(); |
2232 | break; |
2233 | case ExtractValue: |
2234 | executeExtract<Value, ValueRange, PDLValue::Kind::Value>(); |
2235 | break; |
2236 | case Finalize: |
2237 | executeFinalize(); |
2238 | LLVM_DEBUG(llvm::dbgs() << "\n" ); |
2239 | return success(); |
2240 | case ForEach: |
2241 | executeForEach(); |
2242 | break; |
2243 | case GetAttribute: |
2244 | executeGetAttribute(); |
2245 | break; |
2246 | case GetAttributeType: |
2247 | executeGetAttributeType(); |
2248 | break; |
2249 | case GetDefiningOp: |
2250 | executeGetDefiningOp(); |
2251 | break; |
2252 | case GetOperand0: |
2253 | case GetOperand1: |
2254 | case GetOperand2: |
2255 | case GetOperand3: { |
2256 | unsigned index = opCode - GetOperand0; |
2257 | LLVM_DEBUG(llvm::dbgs() << "Executing GetOperand" << index << ":\n" ); |
2258 | executeGetOperand(index); |
2259 | break; |
2260 | } |
2261 | case GetOperandN: |
2262 | LLVM_DEBUG(llvm::dbgs() << "Executing GetOperandN:\n" ); |
2263 | executeGetOperand(index: read<uint32_t>()); |
2264 | break; |
2265 | case GetOperands: |
2266 | executeGetOperands(); |
2267 | break; |
2268 | case GetResult0: |
2269 | case GetResult1: |
2270 | case GetResult2: |
2271 | case GetResult3: { |
2272 | unsigned index = opCode - GetResult0; |
2273 | LLVM_DEBUG(llvm::dbgs() << "Executing GetResult" << index << ":\n" ); |
2274 | executeGetResult(index); |
2275 | break; |
2276 | } |
2277 | case GetResultN: |
2278 | LLVM_DEBUG(llvm::dbgs() << "Executing GetResultN:\n" ); |
2279 | executeGetResult(index: read<uint32_t>()); |
2280 | break; |
2281 | case GetResults: |
2282 | executeGetResults(); |
2283 | break; |
2284 | case GetUsers: |
2285 | executeGetUsers(); |
2286 | break; |
2287 | case GetValueType: |
2288 | executeGetValueType(); |
2289 | break; |
2290 | case GetValueRangeTypes: |
2291 | executeGetValueRangeTypes(); |
2292 | break; |
2293 | case IsNotNull: |
2294 | executeIsNotNull(); |
2295 | break; |
2296 | case RecordMatch: |
2297 | assert(matches && |
2298 | "expected matches to be provided when executing the matcher" ); |
2299 | executeRecordMatch(rewriter, matches&: *matches); |
2300 | break; |
2301 | case ReplaceOp: |
2302 | executeReplaceOp(rewriter); |
2303 | break; |
2304 | case SwitchAttribute: |
2305 | executeSwitchAttribute(); |
2306 | break; |
2307 | case SwitchOperandCount: |
2308 | executeSwitchOperandCount(); |
2309 | break; |
2310 | case SwitchOperationName: |
2311 | executeSwitchOperationName(); |
2312 | break; |
2313 | case SwitchResultCount: |
2314 | executeSwitchResultCount(); |
2315 | break; |
2316 | case SwitchType: |
2317 | executeSwitchType(); |
2318 | break; |
2319 | case SwitchTypes: |
2320 | executeSwitchTypes(); |
2321 | break; |
2322 | } |
2323 | LLVM_DEBUG(llvm::dbgs() << "\n" ); |
2324 | } |
2325 | } |
2326 | |
2327 | void PDLByteCode::match(Operation *op, PatternRewriter &rewriter, |
2328 | SmallVectorImpl<MatchResult> &matches, |
2329 | PDLByteCodeMutableState &state) const { |
2330 | // The first memory slot is always the root operation. |
2331 | state.memory[0] = op; |
2332 | |
2333 | // The matcher function always starts at code address 0. |
2334 | ByteCodeExecutor executor( |
2335 | matcherByteCode.data(), state.memory, state.opRangeMemory, |
2336 | state.typeRangeMemory, state.allocatedTypeRangeMemory, |
2337 | state.valueRangeMemory, state.allocatedValueRangeMemory, state.loopIndex, |
2338 | uniquedData, matcherByteCode, state.currentPatternBenefits, patterns, |
2339 | constraintFunctions, rewriteFunctions); |
2340 | LogicalResult executeResult = executor.execute(rewriter, matches: &matches); |
2341 | (void)executeResult; |
2342 | assert(succeeded(executeResult) && "unexpected matcher execution failure" ); |
2343 | |
2344 | // Order the found matches by benefit. |
2345 | std::stable_sort(first: matches.begin(), last: matches.end(), |
2346 | comp: [](const MatchResult &lhs, const MatchResult &rhs) { |
2347 | return lhs.benefit > rhs.benefit; |
2348 | }); |
2349 | } |
2350 | |
2351 | LogicalResult PDLByteCode::rewrite(PatternRewriter &rewriter, |
2352 | const MatchResult &match, |
2353 | PDLByteCodeMutableState &state) const { |
2354 | auto *configSet = match.pattern->getConfigSet(); |
2355 | if (configSet) |
2356 | configSet->notifyRewriteBegin(rewriter); |
2357 | |
2358 | // The arguments of the rewrite function are stored at the start of the |
2359 | // memory buffer. |
2360 | llvm::copy(Range: match.values, Out: state.memory.begin()); |
2361 | |
2362 | ByteCodeExecutor executor( |
2363 | &rewriterByteCode[match.pattern->getRewriterAddr()], state.memory, |
2364 | state.opRangeMemory, state.typeRangeMemory, |
2365 | state.allocatedTypeRangeMemory, state.valueRangeMemory, |
2366 | state.allocatedValueRangeMemory, state.loopIndex, uniquedData, |
2367 | rewriterByteCode, state.currentPatternBenefits, patterns, |
2368 | constraintFunctions, rewriteFunctions); |
2369 | LogicalResult result = |
2370 | executor.execute(rewriter, /*matches=*/nullptr, mainRewriteLoc: match.location); |
2371 | |
2372 | if (configSet) |
2373 | configSet->notifyRewriteEnd(rewriter); |
2374 | |
2375 | // If the rewrite failed, check if the pattern rewriter can recover. If it |
2376 | // can, we can signal to the pattern applicator to keep trying patterns. If it |
2377 | // doesn't, we need to bail. Bailing here should be fine, given that we have |
2378 | // no means to propagate such a failure to the user, and it also indicates a |
2379 | // bug in the user code (i.e. failable rewrites should not be used with |
2380 | // pattern rewriters that don't support it). |
2381 | if (failed(result) && !rewriter.canRecoverFromRewriteFailure()) { |
2382 | LLVM_DEBUG(llvm::dbgs() << " and rollback is not supported - aborting" ); |
2383 | llvm::report_fatal_error( |
2384 | reason: "Native PDL Rewrite failed, but the pattern " |
2385 | "rewriter doesn't support recovery. Failable pattern rewrites should " |
2386 | "not be used with pattern rewriters that do not support them." ); |
2387 | } |
2388 | return result; |
2389 | } |
2390 | |