1 | //===- ScopInfo.cpp -------------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // Create a polyhedral description for a static control flow region. |
10 | // |
11 | // The pass creates a polyhedral description of the Scops detected by the Scop |
12 | // detection derived from their LLVM-IR code. |
13 | // |
14 | // This representation is shared among several tools in the polyhedral |
15 | // community, which are e.g. Cloog, Pluto, Loopo, Graphite. |
16 | // |
17 | //===----------------------------------------------------------------------===// |
18 | |
19 | #include "polly/ScopInfo.h" |
20 | #include "polly/LinkAllPasses.h" |
21 | #include "polly/Options.h" |
22 | #include "polly/ScopBuilder.h" |
23 | #include "polly/ScopDetection.h" |
24 | #include "polly/Support/GICHelper.h" |
25 | #include "polly/Support/ISLOStream.h" |
26 | #include "polly/Support/ISLTools.h" |
27 | #include "polly/Support/SCEVAffinator.h" |
28 | #include "polly/Support/SCEVValidator.h" |
29 | #include "polly/Support/ScopHelper.h" |
30 | #include "llvm/ADT/APInt.h" |
31 | #include "llvm/ADT/ArrayRef.h" |
32 | #include "llvm/ADT/PostOrderIterator.h" |
33 | #include "llvm/ADT/Sequence.h" |
34 | #include "llvm/ADT/SmallPtrSet.h" |
35 | #include "llvm/ADT/SmallSet.h" |
36 | #include "llvm/ADT/Statistic.h" |
37 | #include "llvm/ADT/StringExtras.h" |
38 | #include "llvm/Analysis/AliasAnalysis.h" |
39 | #include "llvm/Analysis/AssumptionCache.h" |
40 | #include "llvm/Analysis/Loads.h" |
41 | #include "llvm/Analysis/LoopInfo.h" |
42 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
43 | #include "llvm/Analysis/RegionInfo.h" |
44 | #include "llvm/Analysis/RegionIterator.h" |
45 | #include "llvm/Analysis/ScalarEvolution.h" |
46 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
47 | #include "llvm/IR/BasicBlock.h" |
48 | #include "llvm/IR/ConstantRange.h" |
49 | #include "llvm/IR/DataLayout.h" |
50 | #include "llvm/IR/DebugLoc.h" |
51 | #include "llvm/IR/Dominators.h" |
52 | #include "llvm/IR/Function.h" |
53 | #include "llvm/IR/InstrTypes.h" |
54 | #include "llvm/IR/Instruction.h" |
55 | #include "llvm/IR/Instructions.h" |
56 | #include "llvm/IR/Module.h" |
57 | #include "llvm/IR/PassManager.h" |
58 | #include "llvm/IR/Type.h" |
59 | #include "llvm/IR/Value.h" |
60 | #include "llvm/InitializePasses.h" |
61 | #include "llvm/Support/Compiler.h" |
62 | #include "llvm/Support/Debug.h" |
63 | #include "llvm/Support/ErrorHandling.h" |
64 | #include "llvm/Support/raw_ostream.h" |
65 | #include "isl/aff.h" |
66 | #include "isl/local_space.h" |
67 | #include "isl/map.h" |
68 | #include "isl/options.h" |
69 | #include "isl/set.h" |
70 | #include <cassert> |
71 | #include <numeric> |
72 | |
73 | using namespace llvm; |
74 | using namespace polly; |
75 | |
76 | #include "polly/Support/PollyDebug.h" |
77 | #define DEBUG_TYPE "polly-scops" |
78 | |
79 | STATISTIC(AssumptionsAliasing, "Number of aliasing assumptions taken." ); |
80 | STATISTIC(AssumptionsInbounds, "Number of inbounds assumptions taken." ); |
81 | STATISTIC(AssumptionsWrapping, "Number of wrapping assumptions taken." ); |
82 | STATISTIC(AssumptionsUnsigned, "Number of unsigned assumptions taken." ); |
83 | STATISTIC(AssumptionsComplexity, "Number of too complex SCoPs." ); |
84 | STATISTIC(AssumptionsUnprofitable, "Number of unprofitable SCoPs." ); |
85 | STATISTIC(AssumptionsErrorBlock, "Number of error block assumptions taken." ); |
86 | STATISTIC(AssumptionsInfiniteLoop, "Number of bounded loop assumptions taken." ); |
87 | STATISTIC(AssumptionsInvariantLoad, |
88 | "Number of invariant loads assumptions taken." ); |
89 | STATISTIC(AssumptionsDelinearization, |
90 | "Number of delinearization assumptions taken." ); |
91 | |
92 | STATISTIC(NumScops, "Number of feasible SCoPs after ScopInfo" ); |
93 | STATISTIC(NumLoopsInScop, "Number of loops in scops" ); |
94 | STATISTIC(NumBoxedLoops, "Number of boxed loops in SCoPs after ScopInfo" ); |
95 | STATISTIC(NumAffineLoops, "Number of affine loops in SCoPs after ScopInfo" ); |
96 | |
97 | STATISTIC(NumScopsDepthZero, "Number of scops with maximal loop depth 0" ); |
98 | STATISTIC(NumScopsDepthOne, "Number of scops with maximal loop depth 1" ); |
99 | STATISTIC(NumScopsDepthTwo, "Number of scops with maximal loop depth 2" ); |
100 | STATISTIC(NumScopsDepthThree, "Number of scops with maximal loop depth 3" ); |
101 | STATISTIC(NumScopsDepthFour, "Number of scops with maximal loop depth 4" ); |
102 | STATISTIC(NumScopsDepthFive, "Number of scops with maximal loop depth 5" ); |
103 | STATISTIC(NumScopsDepthLarger, |
104 | "Number of scops with maximal loop depth 6 and larger" ); |
105 | STATISTIC(MaxNumLoopsInScop, "Maximal number of loops in scops" ); |
106 | |
107 | STATISTIC(NumValueWrites, "Number of scalar value writes after ScopInfo" ); |
108 | STATISTIC( |
109 | NumValueWritesInLoops, |
110 | "Number of scalar value writes nested in affine loops after ScopInfo" ); |
111 | STATISTIC(NumPHIWrites, "Number of scalar phi writes after ScopInfo" ); |
112 | STATISTIC(NumPHIWritesInLoops, |
113 | "Number of scalar phi writes nested in affine loops after ScopInfo" ); |
114 | STATISTIC(NumSingletonWrites, "Number of singleton writes after ScopInfo" ); |
115 | STATISTIC(NumSingletonWritesInLoops, |
116 | "Number of singleton writes nested in affine loops after ScopInfo" ); |
117 | |
118 | unsigned const polly::MaxDisjunctsInDomain = 20; |
119 | |
120 | // The number of disjunct in the context after which we stop to add more |
121 | // disjuncts. This parameter is there to avoid exponential growth in the |
122 | // number of disjunct when adding non-convex sets to the context. |
123 | static int const MaxDisjunctsInContext = 4; |
124 | |
125 | // Be a bit more generous for the defined behavior context which is used less |
126 | // often. |
127 | static int const MaxDisjunktsInDefinedBehaviourContext = 8; |
128 | |
129 | static cl::opt<bool> ( |
130 | "polly-remarks-minimal" , |
131 | cl::desc("Do not emit remarks about assumptions that are known" ), |
132 | cl::Hidden, cl::cat(PollyCategory)); |
133 | |
134 | static cl::opt<bool> |
135 | IslOnErrorAbort("polly-on-isl-error-abort" , |
136 | cl::desc("Abort if an isl error is encountered" ), |
137 | cl::init(Val: true), cl::cat(PollyCategory)); |
138 | |
139 | static cl::opt<bool> PollyPreciseInbounds( |
140 | "polly-precise-inbounds" , |
141 | cl::desc("Take more precise inbounds assumptions (do not scale well)" ), |
142 | cl::Hidden, cl::init(Val: false), cl::cat(PollyCategory)); |
143 | |
144 | static cl::opt<bool> PollyIgnoreParamBounds( |
145 | "polly-ignore-parameter-bounds" , |
146 | cl::desc( |
147 | "Do not add parameter bounds and do no gist simplify sets accordingly" ), |
148 | cl::Hidden, cl::init(Val: false), cl::cat(PollyCategory)); |
149 | |
150 | static cl::opt<bool> PollyPreciseFoldAccesses( |
151 | "polly-precise-fold-accesses" , |
152 | cl::desc("Fold memory accesses to model more possible delinearizations " |
153 | "(does not scale well)" ), |
154 | cl::Hidden, cl::init(Val: false), cl::cat(PollyCategory)); |
155 | |
156 | bool polly::UseInstructionNames; |
157 | |
158 | static cl::opt<bool, true> XUseInstructionNames( |
159 | "polly-use-llvm-names" , |
160 | cl::desc("Use LLVM-IR names when deriving statement names" ), |
161 | cl::location(L&: UseInstructionNames), cl::Hidden, cl::cat(PollyCategory)); |
162 | |
163 | static cl::opt<bool> PollyPrintInstructions( |
164 | "polly-print-instructions" , cl::desc("Output instructions per ScopStmt" ), |
165 | cl::Hidden, cl::Optional, cl::init(Val: false), cl::cat(PollyCategory)); |
166 | |
167 | static cl::list<std::string> IslArgs("polly-isl-arg" , |
168 | cl::value_desc("argument" ), |
169 | cl::desc("Option passed to ISL" ), |
170 | cl::cat(PollyCategory)); |
171 | |
172 | //===----------------------------------------------------------------------===// |
173 | |
174 | static isl::set addRangeBoundsToSet(isl::set S, const ConstantRange &Range, |
175 | int dim, isl::dim type) { |
176 | isl::val V; |
177 | isl::ctx Ctx = S.ctx(); |
178 | |
179 | // The upper and lower bound for a parameter value is derived either from |
180 | // the data type of the parameter or from the - possibly more restrictive - |
181 | // range metadata. |
182 | V = valFromAPInt(Ctx: Ctx.get(), Int: Range.getSignedMin(), IsSigned: true); |
183 | S = S.lower_bound_val(type, pos: dim, value: V); |
184 | V = valFromAPInt(Ctx: Ctx.get(), Int: Range.getSignedMax(), IsSigned: true); |
185 | S = S.upper_bound_val(type, pos: dim, value: V); |
186 | |
187 | if (Range.isFullSet()) |
188 | return S; |
189 | |
190 | if (S.n_basic_set().release() > MaxDisjunctsInContext) |
191 | return S; |
192 | |
193 | // In case of signed wrapping, we can refine the set of valid values by |
194 | // excluding the part not covered by the wrapping range. |
195 | if (Range.isSignWrappedSet()) { |
196 | V = valFromAPInt(Ctx: Ctx.get(), Int: Range.getLower(), IsSigned: true); |
197 | isl::set SLB = S.lower_bound_val(type, pos: dim, value: V); |
198 | |
199 | V = valFromAPInt(Ctx: Ctx.get(), Int: Range.getUpper(), IsSigned: true); |
200 | V = V.sub(v2: 1); |
201 | isl::set SUB = S.upper_bound_val(type, pos: dim, value: V); |
202 | S = SLB.unite(set2: SUB); |
203 | } |
204 | |
205 | return S; |
206 | } |
207 | |
208 | static const ScopArrayInfo *identifyBasePtrOriginSAI(Scop *S, Value *BasePtr) { |
209 | LoadInst *BasePtrLI = dyn_cast<LoadInst>(Val: BasePtr); |
210 | if (!BasePtrLI) |
211 | return nullptr; |
212 | |
213 | if (!S->contains(I: BasePtrLI)) |
214 | return nullptr; |
215 | |
216 | ScalarEvolution &SE = *S->getSE(); |
217 | |
218 | auto *OriginBaseSCEV = |
219 | SE.getPointerBase(V: SE.getSCEV(V: BasePtrLI->getPointerOperand())); |
220 | if (!OriginBaseSCEV) |
221 | return nullptr; |
222 | |
223 | auto *OriginBaseSCEVUnknown = dyn_cast<SCEVUnknown>(Val: OriginBaseSCEV); |
224 | if (!OriginBaseSCEVUnknown) |
225 | return nullptr; |
226 | |
227 | return S->getScopArrayInfo(BasePtr: OriginBaseSCEVUnknown->getValue(), |
228 | Kind: MemoryKind::Array); |
229 | } |
230 | |
231 | ScopArrayInfo::ScopArrayInfo(Value *BasePtr, Type *ElementType, isl::ctx Ctx, |
232 | ArrayRef<const SCEV *> Sizes, MemoryKind Kind, |
233 | const DataLayout &DL, Scop *S, |
234 | const char *BaseName) |
235 | : BasePtr(BasePtr), ElementType(ElementType), Kind(Kind), DL(DL), S(*S) { |
236 | std::string BasePtrName = |
237 | BaseName ? BaseName |
238 | : getIslCompatibleName(Prefix: "MemRef" , Val: BasePtr, Number: S->getNextArrayIdx(), |
239 | Suffix: Kind == MemoryKind::PHI ? "__phi" : "" , |
240 | UseInstructionNames); |
241 | Id = isl::id::alloc(ctx: Ctx, name: BasePtrName, user: this); |
242 | |
243 | updateSizes(Sizes); |
244 | |
245 | if (!BasePtr || Kind != MemoryKind::Array) { |
246 | BasePtrOriginSAI = nullptr; |
247 | return; |
248 | } |
249 | |
250 | BasePtrOriginSAI = identifyBasePtrOriginSAI(S, BasePtr); |
251 | if (BasePtrOriginSAI) |
252 | const_cast<ScopArrayInfo *>(BasePtrOriginSAI)->addDerivedSAI(DerivedSAI: this); |
253 | } |
254 | |
255 | ScopArrayInfo::~ScopArrayInfo() = default; |
256 | |
257 | isl::space ScopArrayInfo::getSpace() const { |
258 | auto Space = isl::space(Id.ctx(), 0, getNumberOfDimensions()); |
259 | Space = Space.set_tuple_id(type: isl::dim::set, id: Id); |
260 | return Space; |
261 | } |
262 | |
263 | bool ScopArrayInfo::isReadOnly() { |
264 | isl::union_set WriteSet = S.getWrites().range(); |
265 | isl::space Space = getSpace(); |
266 | WriteSet = WriteSet.extract_set(space: Space); |
267 | |
268 | return bool(WriteSet.is_empty()); |
269 | } |
270 | |
271 | bool ScopArrayInfo::isCompatibleWith(const ScopArrayInfo *Array) const { |
272 | if (Array->getElementType() != getElementType()) |
273 | return false; |
274 | |
275 | if (Array->getNumberOfDimensions() != getNumberOfDimensions()) |
276 | return false; |
277 | |
278 | for (unsigned i = 0; i < getNumberOfDimensions(); i++) |
279 | if (Array->getDimensionSize(Dim: i) != getDimensionSize(Dim: i)) |
280 | return false; |
281 | |
282 | return true; |
283 | } |
284 | |
285 | void ScopArrayInfo::updateElementType(Type *NewElementType) { |
286 | if (NewElementType == ElementType) |
287 | return; |
288 | |
289 | auto OldElementSize = DL.getTypeAllocSizeInBits(Ty: ElementType); |
290 | auto NewElementSize = DL.getTypeAllocSizeInBits(Ty: NewElementType); |
291 | |
292 | if (NewElementSize == OldElementSize || NewElementSize == 0) |
293 | return; |
294 | |
295 | if (NewElementSize % OldElementSize == 0 && NewElementSize < OldElementSize) { |
296 | ElementType = NewElementType; |
297 | } else { |
298 | auto GCD = std::gcd(m: (uint64_t)NewElementSize, n: (uint64_t)OldElementSize); |
299 | ElementType = IntegerType::get(C&: ElementType->getContext(), NumBits: GCD); |
300 | } |
301 | } |
302 | |
303 | bool ScopArrayInfo::updateSizes(ArrayRef<const SCEV *> NewSizes, |
304 | bool CheckConsistency) { |
305 | int SharedDims = std::min(a: NewSizes.size(), b: DimensionSizes.size()); |
306 | int = NewSizes.size() - SharedDims; |
307 | int = DimensionSizes.size() - SharedDims; |
308 | |
309 | if (CheckConsistency) { |
310 | for (int i = 0; i < SharedDims; i++) { |
311 | auto *NewSize = NewSizes[i + ExtraDimsNew]; |
312 | auto *KnownSize = DimensionSizes[i + ExtraDimsOld]; |
313 | if (NewSize && KnownSize && NewSize != KnownSize) |
314 | return false; |
315 | } |
316 | |
317 | if (DimensionSizes.size() >= NewSizes.size()) |
318 | return true; |
319 | } |
320 | |
321 | DimensionSizes.clear(); |
322 | DimensionSizes.insert(I: DimensionSizes.begin(), From: NewSizes.begin(), |
323 | To: NewSizes.end()); |
324 | DimensionSizesPw.clear(); |
325 | for (const SCEV *Expr : DimensionSizes) { |
326 | if (!Expr) { |
327 | DimensionSizesPw.push_back(Elt: isl::pw_aff()); |
328 | continue; |
329 | } |
330 | isl::pw_aff Size = S.getPwAffOnly(E: Expr); |
331 | DimensionSizesPw.push_back(Elt: Size); |
332 | } |
333 | return true; |
334 | } |
335 | |
336 | std::string ScopArrayInfo::getName() const { return Id.get_name(); } |
337 | |
338 | int ScopArrayInfo::getElemSizeInBytes() const { |
339 | return DL.getTypeAllocSize(Ty: ElementType); |
340 | } |
341 | |
342 | isl::id ScopArrayInfo::getBasePtrId() const { return Id; } |
343 | |
344 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
345 | LLVM_DUMP_METHOD void ScopArrayInfo::dump() const { print(OS&: errs()); } |
346 | #endif |
347 | |
348 | void ScopArrayInfo::print(raw_ostream &OS, bool SizeAsPwAff) const { |
349 | OS.indent(NumSpaces: 8) << *getElementType() << " " << getName(); |
350 | unsigned u = 0; |
351 | |
352 | if (getNumberOfDimensions() > 0 && !getDimensionSize(Dim: 0)) { |
353 | OS << "[*]" ; |
354 | u++; |
355 | } |
356 | for (; u < getNumberOfDimensions(); u++) { |
357 | OS << "[" ; |
358 | |
359 | if (SizeAsPwAff) { |
360 | isl::pw_aff Size = getDimensionSizePw(Dim: u); |
361 | OS << " " << Size << " " ; |
362 | } else { |
363 | OS << *getDimensionSize(Dim: u); |
364 | } |
365 | |
366 | OS << "]" ; |
367 | } |
368 | |
369 | OS << ";" ; |
370 | |
371 | if (BasePtrOriginSAI) |
372 | OS << " [BasePtrOrigin: " << BasePtrOriginSAI->getName() << "]" ; |
373 | |
374 | OS << " // Element size " << getElemSizeInBytes() << "\n" ; |
375 | } |
376 | |
377 | const ScopArrayInfo * |
378 | ScopArrayInfo::getFromAccessFunction(isl::pw_multi_aff PMA) { |
379 | isl::id Id = PMA.get_tuple_id(type: isl::dim::out); |
380 | assert(!Id.is_null() && "Output dimension didn't have an ID" ); |
381 | return getFromId(Id); |
382 | } |
383 | |
384 | const ScopArrayInfo *ScopArrayInfo::getFromId(isl::id Id) { |
385 | void *User = Id.get_user(); |
386 | const ScopArrayInfo *SAI = static_cast<ScopArrayInfo *>(User); |
387 | return SAI; |
388 | } |
389 | |
390 | void MemoryAccess::wrapConstantDimensions() { |
391 | auto *SAI = getScopArrayInfo(); |
392 | isl::space ArraySpace = SAI->getSpace(); |
393 | isl::ctx Ctx = ArraySpace.ctx(); |
394 | unsigned DimsArray = SAI->getNumberOfDimensions(); |
395 | |
396 | isl::multi_aff DivModAff = isl::multi_aff::identity( |
397 | space: ArraySpace.map_from_domain_and_range(range: ArraySpace)); |
398 | isl::local_space LArraySpace = isl::local_space(ArraySpace); |
399 | |
400 | // Begin with last dimension, to iteratively carry into higher dimensions. |
401 | for (int i = DimsArray - 1; i > 0; i--) { |
402 | auto *DimSize = SAI->getDimensionSize(Dim: i); |
403 | auto *DimSizeCst = dyn_cast<SCEVConstant>(Val: DimSize); |
404 | |
405 | // This transformation is not applicable to dimensions with dynamic size. |
406 | if (!DimSizeCst) |
407 | continue; |
408 | |
409 | // This transformation is not applicable to dimensions of size zero. |
410 | if (DimSize->isZero()) |
411 | continue; |
412 | |
413 | isl::val DimSizeVal = |
414 | valFromAPInt(Ctx: Ctx.get(), Int: DimSizeCst->getAPInt(), IsSigned: false); |
415 | isl::aff Var = isl::aff::var_on_domain(ls: LArraySpace, type: isl::dim::set, pos: i); |
416 | isl::aff PrevVar = |
417 | isl::aff::var_on_domain(ls: LArraySpace, type: isl::dim::set, pos: i - 1); |
418 | |
419 | // Compute: index % size |
420 | // Modulo must apply in the divide of the previous iteration, if any. |
421 | isl::aff Modulo = Var.mod(mod: DimSizeVal); |
422 | Modulo = Modulo.pullback(ma: DivModAff); |
423 | |
424 | // Compute: floor(index / size) |
425 | isl::aff Divide = Var.div(aff2: isl::aff(LArraySpace, DimSizeVal)); |
426 | Divide = Divide.floor(); |
427 | Divide = Divide.add(aff2: PrevVar); |
428 | Divide = Divide.pullback(ma: DivModAff); |
429 | |
430 | // Apply Modulo and Divide. |
431 | DivModAff = DivModAff.set_aff(pos: i, el: Modulo); |
432 | DivModAff = DivModAff.set_aff(pos: i - 1, el: Divide); |
433 | } |
434 | |
435 | // Apply all modulo/divides on the accesses. |
436 | isl::map Relation = AccessRelation; |
437 | Relation = Relation.apply_range(map2: isl::map::from_multi_aff(maff: DivModAff)); |
438 | Relation = Relation.detect_equalities(); |
439 | AccessRelation = Relation; |
440 | } |
441 | |
442 | void MemoryAccess::updateDimensionality() { |
443 | auto *SAI = getScopArrayInfo(); |
444 | isl::space ArraySpace = SAI->getSpace(); |
445 | isl::space AccessSpace = AccessRelation.get_space().range(); |
446 | isl::ctx Ctx = ArraySpace.ctx(); |
447 | |
448 | unsigned DimsArray = unsignedFromIslSize(Size: ArraySpace.dim(type: isl::dim::set)); |
449 | unsigned DimsAccess = unsignedFromIslSize(Size: AccessSpace.dim(type: isl::dim::set)); |
450 | assert(DimsArray >= DimsAccess); |
451 | unsigned DimsMissing = DimsArray - DimsAccess; |
452 | |
453 | auto *BB = getStatement()->getEntryBlock(); |
454 | auto &DL = BB->getModule()->getDataLayout(); |
455 | unsigned ArrayElemSize = SAI->getElemSizeInBytes(); |
456 | unsigned ElemBytes = DL.getTypeAllocSize(Ty: getElementType()); |
457 | |
458 | isl::map Map = isl::map::from_domain_and_range( |
459 | domain: isl::set::universe(space: AccessSpace), range: isl::set::universe(space: ArraySpace)); |
460 | |
461 | for (auto i : seq<unsigned>(Begin: 0, End: DimsMissing)) |
462 | Map = Map.fix_si(type: isl::dim::out, pos: i, value: 0); |
463 | |
464 | for (auto i : seq<unsigned>(Begin: DimsMissing, End: DimsArray)) |
465 | Map = Map.equate(type1: isl::dim::in, pos1: i - DimsMissing, type2: isl::dim::out, pos2: i); |
466 | |
467 | AccessRelation = AccessRelation.apply_range(map2: Map); |
468 | |
469 | // For the non delinearized arrays, divide the access function of the last |
470 | // subscript by the size of the elements in the array. |
471 | // |
472 | // A stride one array access in C expressed as A[i] is expressed in |
473 | // LLVM-IR as something like A[i * elementsize]. This hides the fact that |
474 | // two subsequent values of 'i' index two values that are stored next to |
475 | // each other in memory. By this division we make this characteristic |
476 | // obvious again. If the base pointer was accessed with offsets not divisible |
477 | // by the accesses element size, we will have chosen a smaller ArrayElemSize |
478 | // that divides the offsets of all accesses to this base pointer. |
479 | if (DimsAccess == 1) { |
480 | isl::val V = isl::val(Ctx, ArrayElemSize); |
481 | AccessRelation = AccessRelation.floordiv_val(d: V); |
482 | } |
483 | |
484 | // We currently do this only if we added at least one dimension, which means |
485 | // some dimension's indices have not been specified, an indicator that some |
486 | // index values have been added together. |
487 | // TODO: Investigate general usefulness; Effect on unit tests is to make index |
488 | // expressions more complicated. |
489 | if (DimsMissing) |
490 | wrapConstantDimensions(); |
491 | |
492 | if (!isAffine()) |
493 | computeBoundsOnAccessRelation(ElementSize: ArrayElemSize); |
494 | |
495 | // Introduce multi-element accesses in case the type loaded by this memory |
496 | // access is larger than the canonical element type of the array. |
497 | // |
498 | // An access ((float *)A)[i] to an array char *A is modeled as |
499 | // {[i] -> A[o] : 4 i <= o <= 4 i + 3 |
500 | if (ElemBytes > ArrayElemSize) { |
501 | assert(ElemBytes % ArrayElemSize == 0 && |
502 | "Loaded element size should be multiple of canonical element size" ); |
503 | assert(DimsArray >= 1); |
504 | isl::map Map = isl::map::from_domain_and_range( |
505 | domain: isl::set::universe(space: ArraySpace), range: isl::set::universe(space: ArraySpace)); |
506 | for (auto i : seq<unsigned>(Begin: 0, End: DimsArray - 1)) |
507 | Map = Map.equate(type1: isl::dim::in, pos1: i, type2: isl::dim::out, pos2: i); |
508 | |
509 | isl::constraint C; |
510 | isl::local_space LS; |
511 | |
512 | LS = isl::local_space(Map.get_space()); |
513 | int Num = ElemBytes / getScopArrayInfo()->getElemSizeInBytes(); |
514 | |
515 | C = isl::constraint::alloc_inequality(ls: LS); |
516 | C = C.set_constant_val(isl::val(Ctx, Num - 1)); |
517 | C = C.set_coefficient_si(type: isl::dim::in, pos: DimsArray - 1, v: 1); |
518 | C = C.set_coefficient_si(type: isl::dim::out, pos: DimsArray - 1, v: -1); |
519 | Map = Map.add_constraint(constraint: C); |
520 | |
521 | C = isl::constraint::alloc_inequality(ls: LS); |
522 | C = C.set_coefficient_si(type: isl::dim::in, pos: DimsArray - 1, v: -1); |
523 | C = C.set_coefficient_si(type: isl::dim::out, pos: DimsArray - 1, v: 1); |
524 | C = C.set_constant_val(isl::val(Ctx, 0)); |
525 | Map = Map.add_constraint(constraint: C); |
526 | AccessRelation = AccessRelation.apply_range(map2: Map); |
527 | } |
528 | } |
529 | |
530 | const std::string |
531 | MemoryAccess::getReductionOperatorStr(MemoryAccess::ReductionType RT) { |
532 | switch (RT) { |
533 | case MemoryAccess::RT_NONE: |
534 | llvm_unreachable("Requested a reduction operator string for a memory " |
535 | "access which isn't a reduction" ); |
536 | case MemoryAccess::RT_ADD: |
537 | return "+" ; |
538 | case MemoryAccess::RT_MUL: |
539 | return "*" ; |
540 | case MemoryAccess::RT_BOR: |
541 | return "|" ; |
542 | case MemoryAccess::RT_BXOR: |
543 | return "^" ; |
544 | case MemoryAccess::RT_BAND: |
545 | return "&" ; |
546 | } |
547 | llvm_unreachable("Unknown reduction type" ); |
548 | } |
549 | |
550 | const ScopArrayInfo *MemoryAccess::getOriginalScopArrayInfo() const { |
551 | isl::id ArrayId = getArrayId(); |
552 | void *User = ArrayId.get_user(); |
553 | const ScopArrayInfo *SAI = static_cast<ScopArrayInfo *>(User); |
554 | return SAI; |
555 | } |
556 | |
557 | const ScopArrayInfo *MemoryAccess::getLatestScopArrayInfo() const { |
558 | isl::id ArrayId = getLatestArrayId(); |
559 | void *User = ArrayId.get_user(); |
560 | const ScopArrayInfo *SAI = static_cast<ScopArrayInfo *>(User); |
561 | return SAI; |
562 | } |
563 | |
564 | isl::id MemoryAccess::getOriginalArrayId() const { |
565 | return AccessRelation.get_tuple_id(type: isl::dim::out); |
566 | } |
567 | |
568 | isl::id MemoryAccess::getLatestArrayId() const { |
569 | if (!hasNewAccessRelation()) |
570 | return getOriginalArrayId(); |
571 | return NewAccessRelation.get_tuple_id(type: isl::dim::out); |
572 | } |
573 | |
574 | isl::map MemoryAccess::getAddressFunction() const { |
575 | return getAccessRelation().lexmin(); |
576 | } |
577 | |
578 | isl::pw_multi_aff |
579 | MemoryAccess::applyScheduleToAccessRelation(isl::union_map USchedule) const { |
580 | isl::map Schedule, ScheduledAccRel; |
581 | isl::union_set UDomain; |
582 | |
583 | UDomain = getStatement()->getDomain(); |
584 | USchedule = USchedule.intersect_domain(uset: UDomain); |
585 | Schedule = isl::map::from_union_map(umap: USchedule); |
586 | ScheduledAccRel = getAddressFunction().apply_domain(map2: Schedule); |
587 | return isl::pw_multi_aff::from_map(map: ScheduledAccRel); |
588 | } |
589 | |
590 | isl::map MemoryAccess::getOriginalAccessRelation() const { |
591 | return AccessRelation; |
592 | } |
593 | |
594 | std::string MemoryAccess::getOriginalAccessRelationStr() const { |
595 | return stringFromIslObj(Obj: AccessRelation); |
596 | } |
597 | |
598 | isl::space MemoryAccess::getOriginalAccessRelationSpace() const { |
599 | return AccessRelation.get_space(); |
600 | } |
601 | |
602 | isl::map MemoryAccess::getNewAccessRelation() const { |
603 | return NewAccessRelation; |
604 | } |
605 | |
606 | std::string MemoryAccess::getNewAccessRelationStr() const { |
607 | return stringFromIslObj(Obj: NewAccessRelation); |
608 | } |
609 | |
610 | std::string MemoryAccess::getAccessRelationStr() const { |
611 | return stringFromIslObj(Obj: getAccessRelation()); |
612 | } |
613 | |
614 | isl::basic_map MemoryAccess::createBasicAccessMap(ScopStmt *Statement) { |
615 | isl::space Space = isl::space(Statement->getIslCtx(), 0, 1); |
616 | Space = Space.align_params(space2: Statement->getDomainSpace()); |
617 | |
618 | return isl::basic_map::from_domain_and_range( |
619 | domain: isl::basic_set::universe(space: Statement->getDomainSpace()), |
620 | range: isl::basic_set::universe(space: Space)); |
621 | } |
622 | |
623 | // Formalize no out-of-bound access assumption |
624 | // |
625 | // When delinearizing array accesses we optimistically assume that the |
626 | // delinearized accesses do not access out of bound locations (the subscript |
627 | // expression of each array evaluates for each statement instance that is |
628 | // executed to a value that is larger than zero and strictly smaller than the |
629 | // size of the corresponding dimension). The only exception is the outermost |
630 | // dimension for which we do not need to assume any upper bound. At this point |
631 | // we formalize this assumption to ensure that at code generation time the |
632 | // relevant run-time checks can be generated. |
633 | // |
634 | // To find the set of constraints necessary to avoid out of bound accesses, we |
635 | // first build the set of data locations that are not within array bounds. We |
636 | // then apply the reverse access relation to obtain the set of iterations that |
637 | // may contain invalid accesses and reduce this set of iterations to the ones |
638 | // that are actually executed by intersecting them with the domain of the |
639 | // statement. If we now project out all loop dimensions, we obtain a set of |
640 | // parameters that may cause statement instances to be executed that may |
641 | // possibly yield out of bound memory accesses. The complement of these |
642 | // constraints is the set of constraints that needs to be assumed to ensure such |
643 | // statement instances are never executed. |
644 | isl::set MemoryAccess::assumeNoOutOfBound() { |
645 | auto *SAI = getScopArrayInfo(); |
646 | isl::space Space = getOriginalAccessRelationSpace().range(); |
647 | isl::set Outside = isl::set::empty(space: Space); |
648 | for (int i = 1, Size = Space.dim(type: isl::dim::set).release(); i < Size; ++i) { |
649 | isl::local_space LS(Space); |
650 | isl::pw_aff Var = isl::pw_aff::var_on_domain(ls: LS, type: isl::dim::set, pos: i); |
651 | isl::pw_aff Zero = isl::pw_aff(LS); |
652 | |
653 | isl::set DimOutside = Var.lt_set(pwaff2: Zero); |
654 | isl::pw_aff SizeE = SAI->getDimensionSizePw(Dim: i); |
655 | SizeE = SizeE.add_dims(type: isl::dim::in, n: Space.dim(type: isl::dim::set).release()); |
656 | SizeE = SizeE.set_tuple_id(type: isl::dim::in, id: Space.get_tuple_id(type: isl::dim::set)); |
657 | DimOutside = DimOutside.unite(set2: SizeE.le_set(pwaff2: Var)); |
658 | |
659 | Outside = Outside.unite(set2: DimOutside); |
660 | } |
661 | |
662 | Outside = Outside.apply(map: getAccessRelation().reverse()); |
663 | Outside = Outside.intersect(set2: Statement->getDomain()); |
664 | Outside = Outside.params(); |
665 | |
666 | // Remove divs to avoid the construction of overly complicated assumptions. |
667 | // Doing so increases the set of parameter combinations that are assumed to |
668 | // not appear. This is always save, but may make the resulting run-time check |
669 | // bail out more often than strictly necessary. |
670 | Outside = Outside.remove_divs(); |
671 | Outside = Outside.complement(); |
672 | |
673 | if (!PollyPreciseInbounds) |
674 | Outside = Outside.gist_params(context: Statement->getDomain().params()); |
675 | return Outside; |
676 | } |
677 | |
678 | void MemoryAccess::buildMemIntrinsicAccessRelation() { |
679 | assert(isMemoryIntrinsic()); |
680 | assert(Subscripts.size() == 2 && Sizes.size() == 1); |
681 | |
682 | isl::pw_aff SubscriptPWA = getPwAff(E: Subscripts[0]); |
683 | isl::map SubscriptMap = isl::map::from_pw_aff(pwaff: SubscriptPWA); |
684 | |
685 | isl::map LengthMap; |
686 | if (Subscripts[1] == nullptr) { |
687 | LengthMap = isl::map::universe(space: SubscriptMap.get_space()); |
688 | } else { |
689 | isl::pw_aff LengthPWA = getPwAff(E: Subscripts[1]); |
690 | LengthMap = isl::map::from_pw_aff(pwaff: LengthPWA); |
691 | isl::space RangeSpace = LengthMap.get_space().range(); |
692 | LengthMap = LengthMap.apply_range(map2: isl::map::lex_gt(set_space: RangeSpace)); |
693 | } |
694 | LengthMap = LengthMap.lower_bound_si(type: isl::dim::out, pos: 0, value: 0); |
695 | LengthMap = LengthMap.align_params(model: SubscriptMap.get_space()); |
696 | SubscriptMap = SubscriptMap.align_params(model: LengthMap.get_space()); |
697 | LengthMap = LengthMap.sum(map2: SubscriptMap); |
698 | AccessRelation = |
699 | LengthMap.set_tuple_id(type: isl::dim::in, id: getStatement()->getDomainId()); |
700 | } |
701 | |
702 | void MemoryAccess::computeBoundsOnAccessRelation(unsigned ElementSize) { |
703 | ScalarEvolution *SE = Statement->getParent()->getSE(); |
704 | |
705 | auto MAI = MemAccInst(getAccessInstruction()); |
706 | if (isa<MemIntrinsic>(Val: MAI)) |
707 | return; |
708 | |
709 | Value *Ptr = MAI.getPointerOperand(); |
710 | if (!Ptr || !SE->isSCEVable(Ty: Ptr->getType())) |
711 | return; |
712 | |
713 | auto *PtrSCEV = SE->getSCEV(V: Ptr); |
714 | if (isa<SCEVCouldNotCompute>(Val: PtrSCEV)) |
715 | return; |
716 | |
717 | auto *BasePtrSCEV = SE->getPointerBase(V: PtrSCEV); |
718 | if (BasePtrSCEV && !isa<SCEVCouldNotCompute>(Val: BasePtrSCEV)) |
719 | PtrSCEV = SE->getMinusSCEV(LHS: PtrSCEV, RHS: BasePtrSCEV); |
720 | |
721 | const ConstantRange &Range = SE->getSignedRange(S: PtrSCEV); |
722 | if (Range.isFullSet()) |
723 | return; |
724 | |
725 | if (Range.isUpperWrapped() || Range.isSignWrappedSet()) |
726 | return; |
727 | |
728 | bool isWrapping = Range.isSignWrappedSet(); |
729 | |
730 | unsigned BW = Range.getBitWidth(); |
731 | const auto One = APInt(BW, 1); |
732 | const auto LB = isWrapping ? Range.getLower() : Range.getSignedMin(); |
733 | const auto UB = isWrapping ? (Range.getUpper() - One) : Range.getSignedMax(); |
734 | |
735 | auto Min = LB.sdiv(RHS: APInt(BW, ElementSize)); |
736 | auto Max = UB.sdiv(RHS: APInt(BW, ElementSize)) + One; |
737 | |
738 | assert(Min.sle(Max) && "Minimum expected to be less or equal than max" ); |
739 | |
740 | isl::map Relation = AccessRelation; |
741 | isl::set AccessRange = Relation.range(); |
742 | AccessRange = addRangeBoundsToSet(S: AccessRange, Range: ConstantRange(Min, Max), dim: 0, |
743 | type: isl::dim::set); |
744 | AccessRelation = Relation.intersect_range(set: AccessRange); |
745 | } |
746 | |
747 | void MemoryAccess::foldAccessRelation() { |
748 | if (Sizes.size() < 2 || isa<SCEVConstant>(Val: Sizes[1])) |
749 | return; |
750 | |
751 | int Size = Subscripts.size(); |
752 | |
753 | isl::map NewAccessRelation = AccessRelation; |
754 | |
755 | for (int i = Size - 2; i >= 0; --i) { |
756 | isl::space Space; |
757 | isl::map MapOne, MapTwo; |
758 | isl::pw_aff DimSize = getPwAff(E: Sizes[i + 1]); |
759 | |
760 | isl::space SpaceSize = DimSize.get_space(); |
761 | isl::id ParamId = SpaceSize.get_dim_id(type: isl::dim::param, pos: 0); |
762 | |
763 | Space = AccessRelation.get_space(); |
764 | Space = Space.range().map_from_set(); |
765 | Space = Space.align_params(space2: SpaceSize); |
766 | |
767 | int ParamLocation = Space.find_dim_by_id(type: isl::dim::param, id: ParamId); |
768 | |
769 | MapOne = isl::map::universe(space: Space); |
770 | for (int j = 0; j < Size; ++j) |
771 | MapOne = MapOne.equate(type1: isl::dim::in, pos1: j, type2: isl::dim::out, pos2: j); |
772 | MapOne = MapOne.lower_bound_si(type: isl::dim::in, pos: i + 1, value: 0); |
773 | |
774 | MapTwo = isl::map::universe(space: Space); |
775 | for (int j = 0; j < Size; ++j) |
776 | if (j < i || j > i + 1) |
777 | MapTwo = MapTwo.equate(type1: isl::dim::in, pos1: j, type2: isl::dim::out, pos2: j); |
778 | |
779 | isl::local_space LS(Space); |
780 | isl::constraint C; |
781 | C = isl::constraint::alloc_equality(ls: LS); |
782 | C = C.set_constant_si(-1); |
783 | C = C.set_coefficient_si(type: isl::dim::in, pos: i, v: 1); |
784 | C = C.set_coefficient_si(type: isl::dim::out, pos: i, v: -1); |
785 | MapTwo = MapTwo.add_constraint(constraint: C); |
786 | C = isl::constraint::alloc_equality(ls: LS); |
787 | C = C.set_coefficient_si(type: isl::dim::in, pos: i + 1, v: 1); |
788 | C = C.set_coefficient_si(type: isl::dim::out, pos: i + 1, v: -1); |
789 | C = C.set_coefficient_si(type: isl::dim::param, pos: ParamLocation, v: 1); |
790 | MapTwo = MapTwo.add_constraint(constraint: C); |
791 | MapTwo = MapTwo.upper_bound_si(type: isl::dim::in, pos: i + 1, value: -1); |
792 | |
793 | MapOne = MapOne.unite(map2: MapTwo); |
794 | NewAccessRelation = NewAccessRelation.apply_range(map2: MapOne); |
795 | } |
796 | |
797 | isl::id BaseAddrId = getScopArrayInfo()->getBasePtrId(); |
798 | isl::space Space = Statement->getDomainSpace(); |
799 | NewAccessRelation = NewAccessRelation.set_tuple_id( |
800 | type: isl::dim::in, id: Space.get_tuple_id(type: isl::dim::set)); |
801 | NewAccessRelation = NewAccessRelation.set_tuple_id(type: isl::dim::out, id: BaseAddrId); |
802 | NewAccessRelation = NewAccessRelation.gist_domain(context: Statement->getDomain()); |
803 | |
804 | // Access dimension folding might in certain cases increase the number of |
805 | // disjuncts in the memory access, which can possibly complicate the generated |
806 | // run-time checks and can lead to costly compilation. |
807 | if (!PollyPreciseFoldAccesses && NewAccessRelation.n_basic_map().release() > |
808 | AccessRelation.n_basic_map().release()) { |
809 | } else { |
810 | AccessRelation = NewAccessRelation; |
811 | } |
812 | } |
813 | |
814 | void MemoryAccess::buildAccessRelation(const ScopArrayInfo *SAI) { |
815 | assert(AccessRelation.is_null() && "AccessRelation already built" ); |
816 | |
817 | // Initialize the invalid domain which describes all iterations for which the |
818 | // access relation is not modeled correctly. |
819 | isl::set StmtInvalidDomain = getStatement()->getInvalidDomain(); |
820 | InvalidDomain = isl::set::empty(space: StmtInvalidDomain.get_space()); |
821 | |
822 | isl::ctx Ctx = Id.ctx(); |
823 | isl::id BaseAddrId = SAI->getBasePtrId(); |
824 | |
825 | if (getAccessInstruction() && isa<MemIntrinsic>(Val: getAccessInstruction())) { |
826 | buildMemIntrinsicAccessRelation(); |
827 | AccessRelation = AccessRelation.set_tuple_id(type: isl::dim::out, id: BaseAddrId); |
828 | return; |
829 | } |
830 | |
831 | if (!isAffine()) { |
832 | // We overapproximate non-affine accesses with a possible access to the |
833 | // whole array. For read accesses it does not make a difference, if an |
834 | // access must or may happen. However, for write accesses it is important to |
835 | // differentiate between writes that must happen and writes that may happen. |
836 | if (AccessRelation.is_null()) |
837 | AccessRelation = createBasicAccessMap(Statement); |
838 | |
839 | AccessRelation = AccessRelation.set_tuple_id(type: isl::dim::out, id: BaseAddrId); |
840 | return; |
841 | } |
842 | |
843 | isl::space Space = isl::space(Ctx, 0, Statement->getNumIterators(), 0); |
844 | AccessRelation = isl::map::universe(space: Space); |
845 | |
846 | for (int i = 0, Size = Subscripts.size(); i < Size; ++i) { |
847 | isl::pw_aff Affine = getPwAff(E: Subscripts[i]); |
848 | isl::map SubscriptMap = isl::map::from_pw_aff(pwaff: Affine); |
849 | AccessRelation = AccessRelation.flat_range_product(map2: SubscriptMap); |
850 | } |
851 | |
852 | Space = Statement->getDomainSpace(); |
853 | AccessRelation = AccessRelation.set_tuple_id( |
854 | type: isl::dim::in, id: Space.get_tuple_id(type: isl::dim::set)); |
855 | AccessRelation = AccessRelation.set_tuple_id(type: isl::dim::out, id: BaseAddrId); |
856 | |
857 | AccessRelation = AccessRelation.gist_domain(context: Statement->getDomain()); |
858 | } |
859 | |
860 | MemoryAccess::MemoryAccess(ScopStmt *Stmt, Instruction *AccessInst, |
861 | AccessType AccType, Value *BaseAddress, |
862 | Type *ElementType, bool Affine, |
863 | ArrayRef<const SCEV *> Subscripts, |
864 | ArrayRef<const SCEV *> Sizes, Value *AccessValue, |
865 | MemoryKind Kind) |
866 | : Kind(Kind), AccType(AccType), Statement(Stmt), InvalidDomain(), |
867 | BaseAddr(BaseAddress), ElementType(ElementType), |
868 | Sizes(Sizes.begin(), Sizes.end()), AccessInstruction(AccessInst), |
869 | AccessValue(AccessValue), IsAffine(Affine), |
870 | Subscripts(Subscripts.begin(), Subscripts.end()), AccessRelation(), |
871 | NewAccessRelation() { |
872 | static const std::string TypeStrings[] = {"" , "_Read" , "_Write" , "_MayWrite" }; |
873 | const std::string Access = TypeStrings[AccType] + utostr(X: Stmt->size()); |
874 | |
875 | std::string IdName = Stmt->getBaseName() + Access; |
876 | Id = isl::id::alloc(ctx: Stmt->getParent()->getIslCtx(), name: IdName, user: this); |
877 | } |
878 | |
879 | MemoryAccess::MemoryAccess(ScopStmt *Stmt, AccessType AccType, isl::map AccRel) |
880 | : Kind(MemoryKind::Array), AccType(AccType), Statement(Stmt), |
881 | InvalidDomain(), AccessRelation(), NewAccessRelation(AccRel) { |
882 | isl::id ArrayInfoId = NewAccessRelation.get_tuple_id(type: isl::dim::out); |
883 | auto *SAI = ScopArrayInfo::getFromId(Id: ArrayInfoId); |
884 | Sizes.push_back(Elt: nullptr); |
885 | for (unsigned i = 1; i < SAI->getNumberOfDimensions(); i++) |
886 | Sizes.push_back(Elt: SAI->getDimensionSize(Dim: i)); |
887 | ElementType = SAI->getElementType(); |
888 | BaseAddr = SAI->getBasePtr(); |
889 | static const std::string TypeStrings[] = {"" , "_Read" , "_Write" , "_MayWrite" }; |
890 | const std::string Access = TypeStrings[AccType] + utostr(X: Stmt->size()); |
891 | |
892 | std::string IdName = Stmt->getBaseName() + Access; |
893 | Id = isl::id::alloc(ctx: Stmt->getParent()->getIslCtx(), name: IdName, user: this); |
894 | } |
895 | |
896 | MemoryAccess::~MemoryAccess() = default; |
897 | |
898 | void MemoryAccess::realignParams() { |
899 | isl::set Ctx = Statement->getParent()->getContext(); |
900 | InvalidDomain = InvalidDomain.gist_params(context: Ctx); |
901 | AccessRelation = AccessRelation.gist_params(context: Ctx); |
902 | |
903 | // Predictable parameter order is required for JSON imports. Ensure alignment |
904 | // by explicitly calling align_params. |
905 | isl::space CtxSpace = Ctx.get_space(); |
906 | InvalidDomain = InvalidDomain.align_params(model: CtxSpace); |
907 | AccessRelation = AccessRelation.align_params(model: CtxSpace); |
908 | } |
909 | |
910 | const std::string MemoryAccess::getReductionOperatorStr() const { |
911 | return MemoryAccess::getReductionOperatorStr(RT: getReductionType()); |
912 | } |
913 | |
914 | isl::id MemoryAccess::getId() const { return Id; } |
915 | |
916 | raw_ostream &polly::operator<<(raw_ostream &OS, |
917 | MemoryAccess::ReductionType RT) { |
918 | if (RT == MemoryAccess::RT_NONE) |
919 | OS << "NONE" ; |
920 | else |
921 | OS << MemoryAccess::getReductionOperatorStr(RT); |
922 | return OS; |
923 | } |
924 | |
925 | void MemoryAccess::print(raw_ostream &OS) const { |
926 | switch (AccType) { |
927 | case READ: |
928 | OS.indent(NumSpaces: 12) << "ReadAccess :=\t" ; |
929 | break; |
930 | case MUST_WRITE: |
931 | OS.indent(NumSpaces: 12) << "MustWriteAccess :=\t" ; |
932 | break; |
933 | case MAY_WRITE: |
934 | OS.indent(NumSpaces: 12) << "MayWriteAccess :=\t" ; |
935 | break; |
936 | } |
937 | |
938 | OS << "[Reduction Type: " << getReductionType() << "] " ; |
939 | |
940 | OS << "[Scalar: " << isScalarKind() << "]\n" ; |
941 | OS.indent(NumSpaces: 16) << getOriginalAccessRelationStr() << ";\n" ; |
942 | if (hasNewAccessRelation()) |
943 | OS.indent(NumSpaces: 11) << "new: " << getNewAccessRelationStr() << ";\n" ; |
944 | } |
945 | |
946 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
947 | LLVM_DUMP_METHOD void MemoryAccess::dump() const { print(OS&: errs()); } |
948 | #endif |
949 | |
950 | isl::pw_aff MemoryAccess::getPwAff(const SCEV *E) { |
951 | auto *Stmt = getStatement(); |
952 | PWACtx PWAC = Stmt->getParent()->getPwAff(E, BB: Stmt->getEntryBlock()); |
953 | isl::set StmtDom = getStatement()->getDomain(); |
954 | StmtDom = StmtDom.reset_tuple_id(); |
955 | isl::set NewInvalidDom = StmtDom.intersect(set2: PWAC.second); |
956 | InvalidDomain = InvalidDomain.unite(set2: NewInvalidDom); |
957 | return PWAC.first; |
958 | } |
959 | |
960 | // Create a map in the size of the provided set domain, that maps from the |
961 | // one element of the provided set domain to another element of the provided |
962 | // set domain. |
963 | // The mapping is limited to all points that are equal in all but the last |
964 | // dimension and for which the last dimension of the input is strict smaller |
965 | // than the last dimension of the output. |
966 | // |
967 | // getEqualAndLarger(set[i0, i1, ..., iX]): |
968 | // |
969 | // set[i0, i1, ..., iX] -> set[o0, o1, ..., oX] |
970 | // : i0 = o0, i1 = o1, ..., i(X-1) = o(X-1), iX < oX |
971 | // |
972 | static isl::map getEqualAndLarger(isl::space SetDomain) { |
973 | isl::space Space = SetDomain.map_from_set(); |
974 | isl::map Map = isl::map::universe(space: Space); |
975 | unsigned lastDimension = Map.domain_tuple_dim().release() - 1; |
976 | |
977 | // Set all but the last dimension to be equal for the input and output |
978 | // |
979 | // input[i0, i1, ..., iX] -> output[o0, o1, ..., oX] |
980 | // : i0 = o0, i1 = o1, ..., i(X-1) = o(X-1) |
981 | for (unsigned i = 0; i < lastDimension; ++i) |
982 | Map = Map.equate(type1: isl::dim::in, pos1: i, type2: isl::dim::out, pos2: i); |
983 | |
984 | // Set the last dimension of the input to be strict smaller than the |
985 | // last dimension of the output. |
986 | // |
987 | // input[?,?,?,...,iX] -> output[?,?,?,...,oX] : iX < oX |
988 | Map = Map.order_lt(type1: isl::dim::in, pos1: lastDimension, type2: isl::dim::out, pos2: lastDimension); |
989 | return Map; |
990 | } |
991 | |
992 | isl::set MemoryAccess::getStride(isl::map Schedule) const { |
993 | isl::map AccessRelation = getAccessRelation(); |
994 | isl::space Space = Schedule.get_space().range(); |
995 | isl::map NextScatt = getEqualAndLarger(SetDomain: Space); |
996 | |
997 | Schedule = Schedule.reverse(); |
998 | NextScatt = NextScatt.lexmin(); |
999 | |
1000 | NextScatt = NextScatt.apply_range(map2: Schedule); |
1001 | NextScatt = NextScatt.apply_range(map2: AccessRelation); |
1002 | NextScatt = NextScatt.apply_domain(map2: Schedule); |
1003 | NextScatt = NextScatt.apply_domain(map2: AccessRelation); |
1004 | |
1005 | isl::set Deltas = NextScatt.deltas(); |
1006 | return Deltas; |
1007 | } |
1008 | |
1009 | bool MemoryAccess::isStrideX(isl::map Schedule, int StrideWidth) const { |
1010 | isl::set Stride, StrideX; |
1011 | bool IsStrideX; |
1012 | |
1013 | Stride = getStride(Schedule); |
1014 | StrideX = isl::set::universe(space: Stride.get_space()); |
1015 | int Size = unsignedFromIslSize(Size: StrideX.tuple_dim()); |
1016 | for (auto i : seq<int>(Begin: 0, End: Size - 1)) |
1017 | StrideX = StrideX.fix_si(type: isl::dim::set, pos: i, value: 0); |
1018 | StrideX = StrideX.fix_si(type: isl::dim::set, pos: Size - 1, value: StrideWidth); |
1019 | IsStrideX = Stride.is_subset(set2: StrideX); |
1020 | |
1021 | return IsStrideX; |
1022 | } |
1023 | |
1024 | bool MemoryAccess::isStrideZero(isl::map Schedule) const { |
1025 | return isStrideX(Schedule, StrideWidth: 0); |
1026 | } |
1027 | |
1028 | bool MemoryAccess::isStrideOne(isl::map Schedule) const { |
1029 | return isStrideX(Schedule, StrideWidth: 1); |
1030 | } |
1031 | |
1032 | void MemoryAccess::setAccessRelation(isl::map NewAccess) { |
1033 | AccessRelation = NewAccess; |
1034 | } |
1035 | |
1036 | void MemoryAccess::setNewAccessRelation(isl::map NewAccess) { |
1037 | assert(!NewAccess.is_null()); |
1038 | |
1039 | #ifndef NDEBUG |
1040 | // Check domain space compatibility. |
1041 | isl::space NewSpace = NewAccess.get_space(); |
1042 | isl::space NewDomainSpace = NewSpace.domain(); |
1043 | isl::space OriginalDomainSpace = getStatement()->getDomainSpace(); |
1044 | assert(OriginalDomainSpace.has_equal_tuples(NewDomainSpace)); |
1045 | |
1046 | // Reads must be executed unconditionally. Writes might be executed in a |
1047 | // subdomain only. |
1048 | if (isRead()) { |
1049 | // Check whether there is an access for every statement instance. |
1050 | isl::set StmtDomain = getStatement()->getDomain(); |
1051 | isl::set DefinedContext = |
1052 | getStatement()->getParent()->getBestKnownDefinedBehaviorContext(); |
1053 | StmtDomain = StmtDomain.intersect_params(params: DefinedContext); |
1054 | isl::set NewDomain = NewAccess.domain(); |
1055 | assert(!StmtDomain.is_subset(NewDomain).is_false() && |
1056 | "Partial READ accesses not supported" ); |
1057 | } |
1058 | |
1059 | isl::space NewAccessSpace = NewAccess.get_space(); |
1060 | assert(NewAccessSpace.has_tuple_id(isl::dim::set) && |
1061 | "Must specify the array that is accessed" ); |
1062 | isl::id NewArrayId = NewAccessSpace.get_tuple_id(type: isl::dim::set); |
1063 | auto *SAI = static_cast<ScopArrayInfo *>(NewArrayId.get_user()); |
1064 | assert(SAI && "Must set a ScopArrayInfo" ); |
1065 | |
1066 | if (SAI->isArrayKind() && SAI->getBasePtrOriginSAI()) { |
1067 | InvariantEquivClassTy *EqClass = |
1068 | getStatement()->getParent()->lookupInvariantEquivClass( |
1069 | Val: SAI->getBasePtr()); |
1070 | assert(EqClass && |
1071 | "Access functions to indirect arrays must have an invariant and " |
1072 | "hoisted base pointer" ); |
1073 | } |
1074 | |
1075 | // Check whether access dimensions correspond to number of dimensions of the |
1076 | // accesses array. |
1077 | unsigned Dims = SAI->getNumberOfDimensions(); |
1078 | unsigned SpaceSize = unsignedFromIslSize(Size: NewAccessSpace.dim(type: isl::dim::set)); |
1079 | assert(SpaceSize == Dims && "Access dims must match array dims" ); |
1080 | #endif |
1081 | |
1082 | NewAccess = NewAccess.gist_params(context: getStatement()->getParent()->getContext()); |
1083 | NewAccess = NewAccess.gist_domain(context: getStatement()->getDomain()); |
1084 | NewAccessRelation = NewAccess; |
1085 | } |
1086 | |
1087 | bool MemoryAccess::isLatestPartialAccess() const { |
1088 | isl::set StmtDom = getStatement()->getDomain(); |
1089 | isl::set AccDom = getLatestAccessRelation().domain(); |
1090 | |
1091 | return !StmtDom.is_subset(set2: AccDom); |
1092 | } |
1093 | |
1094 | //===----------------------------------------------------------------------===// |
1095 | |
1096 | isl::map ScopStmt::getSchedule() const { |
1097 | isl::set Domain = getDomain(); |
1098 | if (Domain.is_empty()) |
1099 | return isl::map::from_aff(aff: isl::aff(isl::local_space(getDomainSpace()))); |
1100 | auto Schedule = getParent()->getSchedule(); |
1101 | if (Schedule.is_null()) |
1102 | return {}; |
1103 | Schedule = Schedule.intersect_domain(uset: isl::union_set(Domain)); |
1104 | if (Schedule.is_empty()) |
1105 | return isl::map::from_aff(aff: isl::aff(isl::local_space(getDomainSpace()))); |
1106 | isl::map M = M.from_union_map(umap: Schedule); |
1107 | M = M.coalesce(); |
1108 | M = M.gist_domain(context: Domain); |
1109 | M = M.coalesce(); |
1110 | return M; |
1111 | } |
1112 | |
1113 | void ScopStmt::restrictDomain(isl::set NewDomain) { |
1114 | assert(NewDomain.is_subset(Domain) && |
1115 | "New domain is not a subset of old domain!" ); |
1116 | Domain = NewDomain; |
1117 | } |
1118 | |
1119 | void ScopStmt::addAccess(MemoryAccess *Access, bool Prepend) { |
1120 | Instruction *AccessInst = Access->getAccessInstruction(); |
1121 | |
1122 | if (Access->isArrayKind()) { |
1123 | MemoryAccessList &MAL = InstructionToAccess[AccessInst]; |
1124 | MAL.emplace_front(args&: Access); |
1125 | } else if (Access->isValueKind() && Access->isWrite()) { |
1126 | Instruction *AccessVal = cast<Instruction>(Val: Access->getAccessValue()); |
1127 | assert(!ValueWrites.lookup(AccessVal)); |
1128 | |
1129 | ValueWrites[AccessVal] = Access; |
1130 | } else if (Access->isValueKind() && Access->isRead()) { |
1131 | Value *AccessVal = Access->getAccessValue(); |
1132 | assert(!ValueReads.lookup(AccessVal)); |
1133 | |
1134 | ValueReads[AccessVal] = Access; |
1135 | } else if (Access->isAnyPHIKind() && Access->isWrite()) { |
1136 | PHINode *PHI = cast<PHINode>(Val: Access->getAccessValue()); |
1137 | assert(!PHIWrites.lookup(PHI)); |
1138 | |
1139 | PHIWrites[PHI] = Access; |
1140 | } else if (Access->isAnyPHIKind() && Access->isRead()) { |
1141 | PHINode *PHI = cast<PHINode>(Val: Access->getAccessValue()); |
1142 | assert(!PHIReads.lookup(PHI)); |
1143 | |
1144 | PHIReads[PHI] = Access; |
1145 | } |
1146 | |
1147 | if (Prepend) { |
1148 | MemAccs.insert(I: MemAccs.begin(), Elt: Access); |
1149 | return; |
1150 | } |
1151 | MemAccs.push_back(Elt: Access); |
1152 | } |
1153 | |
1154 | void ScopStmt::realignParams() { |
1155 | for (MemoryAccess *MA : *this) |
1156 | MA->realignParams(); |
1157 | |
1158 | simplify(Set&: InvalidDomain); |
1159 | simplify(Set&: Domain); |
1160 | |
1161 | isl::set Ctx = Parent.getContext(); |
1162 | InvalidDomain = InvalidDomain.gist_params(context: Ctx); |
1163 | Domain = Domain.gist_params(context: Ctx); |
1164 | |
1165 | // Predictable parameter order is required for JSON imports. Ensure alignment |
1166 | // by explicitly calling align_params. |
1167 | isl::space CtxSpace = Ctx.get_space(); |
1168 | InvalidDomain = InvalidDomain.align_params(model: CtxSpace); |
1169 | Domain = Domain.align_params(model: CtxSpace); |
1170 | } |
1171 | |
1172 | ScopStmt::ScopStmt(Scop &parent, Region &R, StringRef Name, |
1173 | Loop *SurroundingLoop, |
1174 | std::vector<Instruction *> EntryBlockInstructions) |
1175 | : Parent(parent), InvalidDomain(), Domain(), R(&R), Build(), BaseName(Name), |
1176 | SurroundingLoop(SurroundingLoop), Instructions(EntryBlockInstructions) {} |
1177 | |
1178 | ScopStmt::ScopStmt(Scop &parent, BasicBlock &bb, StringRef Name, |
1179 | Loop *SurroundingLoop, |
1180 | std::vector<Instruction *> Instructions) |
1181 | : Parent(parent), InvalidDomain(), Domain(), BB(&bb), Build(), |
1182 | BaseName(Name), SurroundingLoop(SurroundingLoop), |
1183 | Instructions(Instructions) {} |
1184 | |
1185 | ScopStmt::ScopStmt(Scop &parent, isl::map SourceRel, isl::map TargetRel, |
1186 | isl::set NewDomain) |
1187 | : Parent(parent), InvalidDomain(), Domain(NewDomain), Build() { |
1188 | BaseName = getIslCompatibleName(Prefix: "CopyStmt_" , Middle: "" , |
1189 | Suffix: std::to_string(val: parent.getCopyStmtsNum())); |
1190 | isl::id Id = isl::id::alloc(ctx: getIslCtx(), name: getBaseName(), user: this); |
1191 | Domain = Domain.set_tuple_id(Id); |
1192 | TargetRel = TargetRel.set_tuple_id(type: isl::dim::in, id: Id); |
1193 | auto *Access = |
1194 | new MemoryAccess(this, MemoryAccess::AccessType::MUST_WRITE, TargetRel); |
1195 | parent.addAccessFunction(Access); |
1196 | addAccess(Access); |
1197 | SourceRel = SourceRel.set_tuple_id(type: isl::dim::in, id: Id); |
1198 | Access = new MemoryAccess(this, MemoryAccess::AccessType::READ, SourceRel); |
1199 | parent.addAccessFunction(Access); |
1200 | addAccess(Access); |
1201 | } |
1202 | |
1203 | ScopStmt::~ScopStmt() = default; |
1204 | |
1205 | std::string ScopStmt::getDomainStr() const { return stringFromIslObj(Obj: Domain); } |
1206 | |
1207 | std::string ScopStmt::getScheduleStr() const { |
1208 | return stringFromIslObj(Obj: getSchedule()); |
1209 | } |
1210 | |
1211 | void ScopStmt::setInvalidDomain(isl::set ID) { InvalidDomain = ID; } |
1212 | |
1213 | BasicBlock *ScopStmt::getEntryBlock() const { |
1214 | if (isBlockStmt()) |
1215 | return getBasicBlock(); |
1216 | return getRegion()->getEntry(); |
1217 | } |
1218 | |
1219 | unsigned ScopStmt::getNumIterators() const { return NestLoops.size(); } |
1220 | |
1221 | const char *ScopStmt::getBaseName() const { return BaseName.c_str(); } |
1222 | |
1223 | Loop *ScopStmt::getLoopForDimension(unsigned Dimension) const { |
1224 | return NestLoops[Dimension]; |
1225 | } |
1226 | |
1227 | isl::ctx ScopStmt::getIslCtx() const { return Parent.getIslCtx(); } |
1228 | |
1229 | isl::set ScopStmt::getDomain() const { return Domain; } |
1230 | |
1231 | isl::space ScopStmt::getDomainSpace() const { return Domain.get_space(); } |
1232 | |
1233 | isl::id ScopStmt::getDomainId() const { return Domain.get_tuple_id(); } |
1234 | |
1235 | void ScopStmt::printInstructions(raw_ostream &OS) const { |
1236 | OS << "Instructions {\n" ; |
1237 | |
1238 | for (Instruction *Inst : Instructions) |
1239 | OS.indent(NumSpaces: 16) << *Inst << "\n" ; |
1240 | |
1241 | OS.indent(NumSpaces: 12) << "}\n" ; |
1242 | } |
1243 | |
1244 | void ScopStmt::print(raw_ostream &OS, bool PrintInstructions) const { |
1245 | OS << "\t" << getBaseName() << "\n" ; |
1246 | OS.indent(NumSpaces: 12) << "Domain :=\n" ; |
1247 | |
1248 | if (!Domain.is_null()) { |
1249 | OS.indent(NumSpaces: 16) << getDomainStr() << ";\n" ; |
1250 | } else |
1251 | OS.indent(NumSpaces: 16) << "n/a\n" ; |
1252 | |
1253 | OS.indent(NumSpaces: 12) << "Schedule :=\n" ; |
1254 | |
1255 | if (!Domain.is_null()) { |
1256 | OS.indent(NumSpaces: 16) << getScheduleStr() << ";\n" ; |
1257 | } else |
1258 | OS.indent(NumSpaces: 16) << "n/a\n" ; |
1259 | |
1260 | for (MemoryAccess *Access : MemAccs) |
1261 | Access->print(OS); |
1262 | |
1263 | if (PrintInstructions) |
1264 | printInstructions(OS&: OS.indent(NumSpaces: 12)); |
1265 | } |
1266 | |
1267 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
1268 | LLVM_DUMP_METHOD void ScopStmt::dump() const { print(OS&: dbgs(), PrintInstructions: true); } |
1269 | #endif |
1270 | |
1271 | void ScopStmt::removeAccessData(MemoryAccess *MA) { |
1272 | if (MA->isRead() && MA->isOriginalValueKind()) { |
1273 | bool Found = ValueReads.erase(Val: MA->getAccessValue()); |
1274 | (void)Found; |
1275 | assert(Found && "Expected access data not found" ); |
1276 | } |
1277 | if (MA->isWrite() && MA->isOriginalValueKind()) { |
1278 | bool Found = ValueWrites.erase(Val: cast<Instruction>(Val: MA->getAccessValue())); |
1279 | (void)Found; |
1280 | assert(Found && "Expected access data not found" ); |
1281 | } |
1282 | if (MA->isWrite() && MA->isOriginalAnyPHIKind()) { |
1283 | bool Found = PHIWrites.erase(Val: cast<PHINode>(Val: MA->getAccessInstruction())); |
1284 | (void)Found; |
1285 | assert(Found && "Expected access data not found" ); |
1286 | } |
1287 | if (MA->isRead() && MA->isOriginalAnyPHIKind()) { |
1288 | bool Found = PHIReads.erase(Val: cast<PHINode>(Val: MA->getAccessInstruction())); |
1289 | (void)Found; |
1290 | assert(Found && "Expected access data not found" ); |
1291 | } |
1292 | } |
1293 | |
1294 | void ScopStmt::removeMemoryAccess(MemoryAccess *MA) { |
1295 | // Remove the memory accesses from this statement together with all scalar |
1296 | // accesses that were caused by it. MemoryKind::Value READs have no access |
1297 | // instruction, hence would not be removed by this function. However, it is |
1298 | // only used for invariant LoadInst accesses, its arguments are always affine, |
1299 | // hence synthesizable, and therefore there are no MemoryKind::Value READ |
1300 | // accesses to be removed. |
1301 | auto Predicate = [&](MemoryAccess *Acc) { |
1302 | return Acc->getAccessInstruction() == MA->getAccessInstruction(); |
1303 | }; |
1304 | for (auto *MA : MemAccs) { |
1305 | if (Predicate(MA)) { |
1306 | removeAccessData(MA); |
1307 | Parent.removeAccessData(Access: MA); |
1308 | } |
1309 | } |
1310 | llvm::erase_if(C&: MemAccs, P: Predicate); |
1311 | InstructionToAccess.erase(Val: MA->getAccessInstruction()); |
1312 | } |
1313 | |
1314 | void ScopStmt::removeSingleMemoryAccess(MemoryAccess *MA, bool AfterHoisting) { |
1315 | if (AfterHoisting) { |
1316 | auto MAIt = std::find(first: MemAccs.begin(), last: MemAccs.end(), val: MA); |
1317 | assert(MAIt != MemAccs.end()); |
1318 | MemAccs.erase(CI: MAIt); |
1319 | |
1320 | removeAccessData(MA); |
1321 | Parent.removeAccessData(Access: MA); |
1322 | } |
1323 | |
1324 | auto It = InstructionToAccess.find(Val: MA->getAccessInstruction()); |
1325 | if (It != InstructionToAccess.end()) { |
1326 | It->second.remove(val: MA); |
1327 | if (It->second.empty()) |
1328 | InstructionToAccess.erase(Val: MA->getAccessInstruction()); |
1329 | } |
1330 | } |
1331 | |
1332 | MemoryAccess *ScopStmt::ensureValueRead(Value *V) { |
1333 | MemoryAccess *Access = lookupInputAccessOf(Val: V); |
1334 | if (Access) |
1335 | return Access; |
1336 | |
1337 | ScopArrayInfo *SAI = |
1338 | Parent.getOrCreateScopArrayInfo(BasePtr: V, ElementType: V->getType(), Sizes: {}, Kind: MemoryKind::Value); |
1339 | Access = new MemoryAccess(this, nullptr, MemoryAccess::READ, V, V->getType(), |
1340 | true, {}, {}, V, MemoryKind::Value); |
1341 | Parent.addAccessFunction(Access); |
1342 | Access->buildAccessRelation(SAI); |
1343 | addAccess(Access); |
1344 | Parent.addAccessData(Access); |
1345 | return Access; |
1346 | } |
1347 | |
1348 | raw_ostream &polly::operator<<(raw_ostream &OS, const ScopStmt &S) { |
1349 | S.print(OS, PrintInstructions: PollyPrintInstructions); |
1350 | return OS; |
1351 | } |
1352 | |
1353 | //===----------------------------------------------------------------------===// |
1354 | /// Scop class implement |
1355 | |
1356 | void Scop::setContext(isl::set NewContext) { |
1357 | Context = NewContext.align_params(model: Context.get_space()); |
1358 | } |
1359 | |
1360 | namespace { |
1361 | |
1362 | /// Remap parameter values but keep AddRecs valid wrt. invariant loads. |
1363 | class SCEVSensitiveParameterRewriter final |
1364 | : public SCEVRewriteVisitor<SCEVSensitiveParameterRewriter> { |
1365 | const ValueToValueMap &VMap; |
1366 | |
1367 | public: |
1368 | SCEVSensitiveParameterRewriter(const ValueToValueMap &VMap, |
1369 | ScalarEvolution &SE) |
1370 | : SCEVRewriteVisitor(SE), VMap(VMap) {} |
1371 | |
1372 | static const SCEV *rewrite(const SCEV *E, ScalarEvolution &SE, |
1373 | const ValueToValueMap &VMap) { |
1374 | SCEVSensitiveParameterRewriter SSPR(VMap, SE); |
1375 | return SSPR.visit(S: E); |
1376 | } |
1377 | |
1378 | const SCEV *visitAddRecExpr(const SCEVAddRecExpr *E) { |
1379 | auto *Start = visit(S: E->getStart()); |
1380 | auto *AddRec = SE.getAddRecExpr(Start: SE.getConstant(Ty: E->getType(), V: 0), |
1381 | Step: visit(S: E->getStepRecurrence(SE)), |
1382 | L: E->getLoop(), Flags: SCEV::FlagAnyWrap); |
1383 | return SE.getAddExpr(LHS: Start, RHS: AddRec); |
1384 | } |
1385 | |
1386 | const SCEV *visitUnknown(const SCEVUnknown *E) { |
1387 | if (auto *NewValue = VMap.lookup(Val: E->getValue())) |
1388 | return SE.getUnknown(V: NewValue); |
1389 | return E; |
1390 | } |
1391 | }; |
1392 | |
1393 | /// Check whether we should remap a SCEV expression. |
1394 | class SCEVFindInsideScop : public SCEVTraversal<SCEVFindInsideScop> { |
1395 | const ValueToValueMap &VMap; |
1396 | bool FoundInside = false; |
1397 | const Scop *S; |
1398 | |
1399 | public: |
1400 | SCEVFindInsideScop(const ValueToValueMap &VMap, ScalarEvolution &SE, |
1401 | const Scop *S) |
1402 | : SCEVTraversal(*this), VMap(VMap), S(S) {} |
1403 | |
1404 | static bool hasVariant(const SCEV *E, ScalarEvolution &SE, |
1405 | const ValueToValueMap &VMap, const Scop *S) { |
1406 | SCEVFindInsideScop SFIS(VMap, SE, S); |
1407 | SFIS.visitAll(Root: E); |
1408 | return SFIS.FoundInside; |
1409 | } |
1410 | |
1411 | bool follow(const SCEV *E) { |
1412 | if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Val: E)) { |
1413 | FoundInside |= S->getRegion().contains(L: AddRec->getLoop()); |
1414 | } else if (auto *Unknown = dyn_cast<SCEVUnknown>(Val: E)) { |
1415 | if (Instruction *I = dyn_cast<Instruction>(Val: Unknown->getValue())) |
1416 | FoundInside |= S->getRegion().contains(Inst: I) && !VMap.count(Val: I); |
1417 | } |
1418 | return !FoundInside; |
1419 | } |
1420 | |
1421 | bool isDone() { return FoundInside; } |
1422 | }; |
1423 | } // end anonymous namespace |
1424 | |
1425 | const SCEV *Scop::getRepresentingInvariantLoadSCEV(const SCEV *E) const { |
1426 | // Check whether it makes sense to rewrite the SCEV. (ScalarEvolution |
1427 | // doesn't like addition between an AddRec and an expression that |
1428 | // doesn't have a dominance relationship with it.) |
1429 | if (SCEVFindInsideScop::hasVariant(E, SE&: *SE, VMap: InvEquivClassVMap, S: this)) |
1430 | return E; |
1431 | |
1432 | // Rewrite SCEV. |
1433 | return SCEVSensitiveParameterRewriter::rewrite(E, SE&: *SE, VMap: InvEquivClassVMap); |
1434 | } |
1435 | |
1436 | void Scop::createParameterId(const SCEV *Parameter) { |
1437 | assert(Parameters.count(Parameter)); |
1438 | assert(!ParameterIds.count(Parameter)); |
1439 | |
1440 | std::string ParameterName = "p_" + std::to_string(val: getNumParams() - 1); |
1441 | |
1442 | if (const SCEVUnknown *ValueParameter = dyn_cast<SCEVUnknown>(Val: Parameter)) { |
1443 | Value *Val = ValueParameter->getValue(); |
1444 | |
1445 | if (UseInstructionNames) { |
1446 | // If this parameter references a specific Value and this value has a name |
1447 | // we use this name as it is likely to be unique and more useful than just |
1448 | // a number. |
1449 | if (Val->hasName()) |
1450 | ParameterName = Val->getName().str(); |
1451 | else if (LoadInst *LI = dyn_cast<LoadInst>(Val)) { |
1452 | auto *LoadOrigin = LI->getPointerOperand()->stripInBoundsOffsets(); |
1453 | if (LoadOrigin->hasName()) { |
1454 | ParameterName += "_loaded_from_" ; |
1455 | ParameterName += |
1456 | LI->getPointerOperand()->stripInBoundsOffsets()->getName(); |
1457 | } |
1458 | } |
1459 | } |
1460 | |
1461 | ParameterName = getIslCompatibleName(Prefix: "" , Middle: ParameterName, Suffix: "" ); |
1462 | } |
1463 | |
1464 | isl::id Id = isl::id::alloc(ctx: getIslCtx(), name: ParameterName, |
1465 | user: const_cast<void *>((const void *)Parameter)); |
1466 | ParameterIds[Parameter] = Id; |
1467 | } |
1468 | |
1469 | void Scop::addParams(const ParameterSetTy &NewParameters) { |
1470 | for (const SCEV *Parameter : NewParameters) { |
1471 | // Normalize the SCEV to get the representing element for an invariant load. |
1472 | Parameter = extractConstantFactor(M: Parameter, SE&: *SE).second; |
1473 | Parameter = getRepresentingInvariantLoadSCEV(E: Parameter); |
1474 | |
1475 | if (Parameters.insert(X: Parameter)) |
1476 | createParameterId(Parameter); |
1477 | } |
1478 | } |
1479 | |
1480 | isl::id Scop::getIdForParam(const SCEV *Parameter) const { |
1481 | // Normalize the SCEV to get the representing element for an invariant load. |
1482 | Parameter = getRepresentingInvariantLoadSCEV(E: Parameter); |
1483 | return ParameterIds.lookup(Val: Parameter); |
1484 | } |
1485 | |
1486 | bool Scop::isDominatedBy(const DominatorTree &DT, BasicBlock *BB) const { |
1487 | return DT.dominates(A: BB, B: getEntry()); |
1488 | } |
1489 | |
1490 | void Scop::buildContext() { |
1491 | isl::space Space = isl::space::params_alloc(ctx: getIslCtx(), nparam: 0); |
1492 | Context = isl::set::universe(space: Space); |
1493 | InvalidContext = isl::set::empty(space: Space); |
1494 | AssumedContext = isl::set::universe(space: Space); |
1495 | DefinedBehaviorContext = isl::set::universe(space: Space); |
1496 | } |
1497 | |
1498 | void Scop::addParameterBounds() { |
1499 | unsigned PDim = 0; |
1500 | for (auto *Parameter : Parameters) { |
1501 | ConstantRange SRange = SE->getSignedRange(S: Parameter); |
1502 | Context = addRangeBoundsToSet(S: Context, Range: SRange, dim: PDim++, type: isl::dim::param); |
1503 | } |
1504 | intersectDefinedBehavior(Set: Context, Sign: AS_ASSUMPTION); |
1505 | } |
1506 | |
1507 | void Scop::realignParams() { |
1508 | if (PollyIgnoreParamBounds) |
1509 | return; |
1510 | |
1511 | // Add all parameters into a common model. |
1512 | isl::space Space = getFullParamSpace(); |
1513 | |
1514 | // Align the parameters of all data structures to the model. |
1515 | Context = Context.align_params(model: Space); |
1516 | AssumedContext = AssumedContext.align_params(model: Space); |
1517 | InvalidContext = InvalidContext.align_params(model: Space); |
1518 | |
1519 | // As all parameters are known add bounds to them. |
1520 | addParameterBounds(); |
1521 | |
1522 | for (ScopStmt &Stmt : *this) |
1523 | Stmt.realignParams(); |
1524 | // Simplify the schedule according to the context too. |
1525 | Schedule = Schedule.gist_domain_params(context: getContext()); |
1526 | |
1527 | // Predictable parameter order is required for JSON imports. Ensure alignment |
1528 | // by explicitly calling align_params. |
1529 | Schedule = Schedule.align_params(space: Space); |
1530 | } |
1531 | |
1532 | static isl::set simplifyAssumptionContext(isl::set AssumptionContext, |
1533 | const Scop &S) { |
1534 | // If we have modeled all blocks in the SCoP that have side effects we can |
1535 | // simplify the context with the constraints that are needed for anything to |
1536 | // be executed at all. However, if we have error blocks in the SCoP we already |
1537 | // assumed some parameter combinations cannot occur and removed them from the |
1538 | // domains, thus we cannot use the remaining domain to simplify the |
1539 | // assumptions. |
1540 | if (!S.hasErrorBlock()) { |
1541 | auto DomainParameters = S.getDomains().params(); |
1542 | AssumptionContext = AssumptionContext.gist_params(context: DomainParameters); |
1543 | } |
1544 | |
1545 | AssumptionContext = AssumptionContext.gist_params(context: S.getContext()); |
1546 | return AssumptionContext; |
1547 | } |
1548 | |
1549 | void Scop::simplifyContexts() { |
1550 | // The parameter constraints of the iteration domains give us a set of |
1551 | // constraints that need to hold for all cases where at least a single |
1552 | // statement iteration is executed in the whole scop. We now simplify the |
1553 | // assumed context under the assumption that such constraints hold and at |
1554 | // least a single statement iteration is executed. For cases where no |
1555 | // statement instances are executed, the assumptions we have taken about |
1556 | // the executed code do not matter and can be changed. |
1557 | // |
1558 | // WARNING: This only holds if the assumptions we have taken do not reduce |
1559 | // the set of statement instances that are executed. Otherwise we |
1560 | // may run into a case where the iteration domains suggest that |
1561 | // for a certain set of parameter constraints no code is executed, |
1562 | // but in the original program some computation would have been |
1563 | // performed. In such a case, modifying the run-time conditions and |
1564 | // possibly influencing the run-time check may cause certain scops |
1565 | // to not be executed. |
1566 | // |
1567 | // Example: |
1568 | // |
1569 | // When delinearizing the following code: |
1570 | // |
1571 | // for (long i = 0; i < 100; i++) |
1572 | // for (long j = 0; j < m; j++) |
1573 | // A[i+p][j] = 1.0; |
1574 | // |
1575 | // we assume that the condition m <= 0 or (m >= 1 and p >= 0) holds as |
1576 | // otherwise we would access out of bound data. Now, knowing that code is |
1577 | // only executed for the case m >= 0, it is sufficient to assume p >= 0. |
1578 | AssumedContext = simplifyAssumptionContext(AssumptionContext: AssumedContext, S: *this); |
1579 | InvalidContext = InvalidContext.align_params(model: getParamSpace()); |
1580 | simplify(Set&: DefinedBehaviorContext); |
1581 | DefinedBehaviorContext = DefinedBehaviorContext.align_params(model: getParamSpace()); |
1582 | } |
1583 | |
1584 | isl::set Scop::getDomainConditions(const ScopStmt *Stmt) const { |
1585 | return getDomainConditions(BB: Stmt->getEntryBlock()); |
1586 | } |
1587 | |
1588 | isl::set Scop::getDomainConditions(BasicBlock *BB) const { |
1589 | auto DIt = DomainMap.find(Val: BB); |
1590 | if (DIt != DomainMap.end()) |
1591 | return DIt->getSecond(); |
1592 | |
1593 | auto &RI = *R.getRegionInfo(); |
1594 | auto *BBR = RI.getRegionFor(BB); |
1595 | while (BBR->getEntry() == BB) |
1596 | BBR = BBR->getParent(); |
1597 | return getDomainConditions(BB: BBR->getEntry()); |
1598 | } |
1599 | |
1600 | Scop::(Region &R, ScalarEvolution &ScalarEvolution, LoopInfo &LI, |
1601 | DominatorTree &DT, ScopDetection::DetectionContext &DC, |
1602 | OptimizationRemarkEmitter &ORE, int ID) |
1603 | : IslCtx(isl_ctx_alloc(), isl_ctx_free), SE(&ScalarEvolution), DT(&DT), |
1604 | R(R), name(std::nullopt), HasSingleExitEdge(R.getExitingBlock()), DC(DC), |
1605 | ORE(ORE), Affinator(this, LI), ID(ID) { |
1606 | |
1607 | // Options defaults that are different from ISL's. |
1608 | isl_options_set_schedule_serialize_sccs(ctx: IslCtx.get(), val: true); |
1609 | |
1610 | SmallVector<char *, 8> IslArgv; |
1611 | IslArgv.reserve(N: 1 + IslArgs.size()); |
1612 | |
1613 | // Substitute for program name. |
1614 | IslArgv.push_back(Elt: const_cast<char *>("-polly-isl-arg" )); |
1615 | |
1616 | for (std::string &Arg : IslArgs) |
1617 | IslArgv.push_back(Elt: const_cast<char *>(Arg.c_str())); |
1618 | |
1619 | // Abort if unknown argument is passed. |
1620 | // Note that "-V" (print isl version) will always call exit(0), so we cannot |
1621 | // avoid ISL aborting the program at this point. |
1622 | unsigned IslParseFlags = ISL_ARG_ALL; |
1623 | |
1624 | isl_ctx_parse_options(ctx: IslCtx.get(), argc: IslArgv.size(), argv: IslArgv.data(), |
1625 | flags: IslParseFlags); |
1626 | |
1627 | if (IslOnErrorAbort) |
1628 | isl_options_set_on_error(ctx: getIslCtx().get(), ISL_ON_ERROR_ABORT); |
1629 | buildContext(); |
1630 | } |
1631 | |
1632 | Scop::~Scop() = default; |
1633 | |
1634 | void Scop::removeFromStmtMap(ScopStmt &Stmt) { |
1635 | for (Instruction *Inst : Stmt.getInstructions()) |
1636 | InstStmtMap.erase(Val: Inst); |
1637 | |
1638 | if (Stmt.isRegionStmt()) { |
1639 | for (BasicBlock *BB : Stmt.getRegion()->blocks()) { |
1640 | StmtMap.erase(Val: BB); |
1641 | // Skip entry basic block, as its instructions are already deleted as |
1642 | // part of the statement's instruction list. |
1643 | if (BB == Stmt.getEntryBlock()) |
1644 | continue; |
1645 | for (Instruction &Inst : *BB) |
1646 | InstStmtMap.erase(Val: &Inst); |
1647 | } |
1648 | } else { |
1649 | auto StmtMapIt = StmtMap.find(Val: Stmt.getBasicBlock()); |
1650 | if (StmtMapIt != StmtMap.end()) |
1651 | llvm::erase(C&: StmtMapIt->second, V: &Stmt); |
1652 | for (Instruction *Inst : Stmt.getInstructions()) |
1653 | InstStmtMap.erase(Val: Inst); |
1654 | } |
1655 | } |
1656 | |
1657 | void Scop::removeStmts(function_ref<bool(ScopStmt &)> ShouldDelete, |
1658 | bool AfterHoisting) { |
1659 | for (auto StmtIt = Stmts.begin(), StmtEnd = Stmts.end(); StmtIt != StmtEnd;) { |
1660 | if (!ShouldDelete(*StmtIt)) { |
1661 | StmtIt++; |
1662 | continue; |
1663 | } |
1664 | |
1665 | // Start with removing all of the statement's accesses including erasing it |
1666 | // from all maps that are pointing to them. |
1667 | // Make a temporary copy because removing MAs invalidates the iterator. |
1668 | SmallVector<MemoryAccess *, 16> MAList(StmtIt->begin(), StmtIt->end()); |
1669 | for (MemoryAccess *MA : MAList) |
1670 | StmtIt->removeSingleMemoryAccess(MA, AfterHoisting); |
1671 | |
1672 | removeFromStmtMap(Stmt&: *StmtIt); |
1673 | StmtIt = Stmts.erase(position: StmtIt); |
1674 | } |
1675 | } |
1676 | |
1677 | void Scop::removeStmtNotInDomainMap() { |
1678 | removeStmts(ShouldDelete: [this](ScopStmt &Stmt) -> bool { |
1679 | isl::set Domain = DomainMap.lookup(Val: Stmt.getEntryBlock()); |
1680 | if (Domain.is_null()) |
1681 | return true; |
1682 | return Domain.is_empty(); |
1683 | }); |
1684 | } |
1685 | |
1686 | void Scop::simplifySCoP(bool AfterHoisting) { |
1687 | removeStmts( |
1688 | ShouldDelete: [AfterHoisting](ScopStmt &Stmt) -> bool { |
1689 | // Never delete statements that contain calls to debug functions. |
1690 | if (hasDebugCall(Stmt: &Stmt)) |
1691 | return false; |
1692 | |
1693 | bool RemoveStmt = Stmt.isEmpty(); |
1694 | |
1695 | // Remove read only statements only after invariant load hoisting. |
1696 | if (!RemoveStmt && AfterHoisting) { |
1697 | bool OnlyRead = true; |
1698 | for (MemoryAccess *MA : Stmt) { |
1699 | if (MA->isRead()) |
1700 | continue; |
1701 | |
1702 | OnlyRead = false; |
1703 | break; |
1704 | } |
1705 | |
1706 | RemoveStmt = OnlyRead; |
1707 | } |
1708 | return RemoveStmt; |
1709 | }, |
1710 | AfterHoisting); |
1711 | } |
1712 | |
1713 | InvariantEquivClassTy *Scop::lookupInvariantEquivClass(Value *Val) { |
1714 | LoadInst *LInst = dyn_cast<LoadInst>(Val); |
1715 | if (!LInst) |
1716 | return nullptr; |
1717 | |
1718 | if (Value *Rep = InvEquivClassVMap.lookup(Val: LInst)) |
1719 | LInst = cast<LoadInst>(Val: Rep); |
1720 | |
1721 | Type *Ty = LInst->getType(); |
1722 | const SCEV *PointerSCEV = SE->getSCEV(V: LInst->getPointerOperand()); |
1723 | for (auto &IAClass : InvariantEquivClasses) { |
1724 | if (PointerSCEV != IAClass.IdentifyingPointer || Ty != IAClass.AccessType) |
1725 | continue; |
1726 | |
1727 | auto &MAs = IAClass.InvariantAccesses; |
1728 | for (auto *MA : MAs) |
1729 | if (MA->getAccessInstruction() == Val) |
1730 | return &IAClass; |
1731 | } |
1732 | |
1733 | return nullptr; |
1734 | } |
1735 | |
1736 | ScopArrayInfo *Scop::getOrCreateScopArrayInfo(Value *BasePtr, Type *ElementType, |
1737 | ArrayRef<const SCEV *> Sizes, |
1738 | MemoryKind Kind, |
1739 | const char *BaseName) { |
1740 | assert((BasePtr || BaseName) && |
1741 | "BasePtr and BaseName can not be nullptr at the same time." ); |
1742 | assert(!(BasePtr && BaseName) && "BaseName is redundant." ); |
1743 | auto &SAI = BasePtr ? ScopArrayInfoMap[std::make_pair(x&: BasePtr, y&: Kind)] |
1744 | : ScopArrayNameMap[BaseName]; |
1745 | if (!SAI) { |
1746 | auto &DL = getFunction().getParent()->getDataLayout(); |
1747 | SAI.reset(p: new ScopArrayInfo(BasePtr, ElementType, getIslCtx(), Sizes, Kind, |
1748 | DL, this, BaseName)); |
1749 | ScopArrayInfoSet.insert(X: SAI.get()); |
1750 | } else { |
1751 | SAI->updateElementType(NewElementType: ElementType); |
1752 | // In case of mismatching array sizes, we bail out by setting the run-time |
1753 | // context to false. |
1754 | if (!SAI->updateSizes(NewSizes: Sizes)) |
1755 | invalidate(Kind: DELINEARIZATION, Loc: DebugLoc()); |
1756 | } |
1757 | return SAI.get(); |
1758 | } |
1759 | |
1760 | ScopArrayInfo *Scop::createScopArrayInfo(Type *ElementType, |
1761 | const std::string &BaseName, |
1762 | const std::vector<unsigned> &Sizes) { |
1763 | auto *DimSizeType = Type::getInt64Ty(C&: getSE()->getContext()); |
1764 | std::vector<const SCEV *> SCEVSizes; |
1765 | |
1766 | for (auto size : Sizes) |
1767 | if (size) |
1768 | SCEVSizes.push_back(x: getSE()->getConstant(Ty: DimSizeType, V: size, isSigned: false)); |
1769 | else |
1770 | SCEVSizes.push_back(x: nullptr); |
1771 | |
1772 | auto *SAI = getOrCreateScopArrayInfo(BasePtr: nullptr, ElementType, Sizes: SCEVSizes, |
1773 | Kind: MemoryKind::Array, BaseName: BaseName.c_str()); |
1774 | return SAI; |
1775 | } |
1776 | |
1777 | ScopArrayInfo *Scop::getScopArrayInfoOrNull(Value *BasePtr, MemoryKind Kind) { |
1778 | auto *SAI = ScopArrayInfoMap[std::make_pair(x&: BasePtr, y&: Kind)].get(); |
1779 | return SAI; |
1780 | } |
1781 | |
1782 | ScopArrayInfo *Scop::getScopArrayInfo(Value *BasePtr, MemoryKind Kind) { |
1783 | auto *SAI = getScopArrayInfoOrNull(BasePtr, Kind); |
1784 | assert(SAI && "No ScopArrayInfo available for this base pointer" ); |
1785 | return SAI; |
1786 | } |
1787 | |
1788 | std::string Scop::getContextStr() const { |
1789 | return stringFromIslObj(Obj: getContext()); |
1790 | } |
1791 | |
1792 | std::string Scop::getAssumedContextStr() const { |
1793 | assert(!AssumedContext.is_null() && "Assumed context not yet built" ); |
1794 | return stringFromIslObj(Obj: AssumedContext); |
1795 | } |
1796 | |
1797 | std::string Scop::getInvalidContextStr() const { |
1798 | return stringFromIslObj(Obj: InvalidContext); |
1799 | } |
1800 | |
1801 | std::string Scop::getNameStr() const { |
1802 | std::string ExitName, EntryName; |
1803 | std::tie(args&: EntryName, args&: ExitName) = getEntryExitStr(); |
1804 | return EntryName + "---" + ExitName; |
1805 | } |
1806 | |
1807 | std::pair<std::string, std::string> Scop::getEntryExitStr() const { |
1808 | std::string ExitName, EntryName; |
1809 | raw_string_ostream ExitStr(ExitName); |
1810 | raw_string_ostream EntryStr(EntryName); |
1811 | |
1812 | R.getEntry()->printAsOperand(O&: EntryStr, PrintType: false); |
1813 | EntryStr.str(); |
1814 | |
1815 | if (R.getExit()) { |
1816 | R.getExit()->printAsOperand(O&: ExitStr, PrintType: false); |
1817 | ExitStr.str(); |
1818 | } else |
1819 | ExitName = "FunctionExit" ; |
1820 | |
1821 | return std::make_pair(x&: EntryName, y&: ExitName); |
1822 | } |
1823 | |
1824 | isl::set Scop::getContext() const { return Context; } |
1825 | |
1826 | isl::space Scop::getParamSpace() const { return getContext().get_space(); } |
1827 | |
1828 | isl::space Scop::getFullParamSpace() const { |
1829 | |
1830 | isl::space Space = isl::space::params_alloc(ctx: getIslCtx(), nparam: ParameterIds.size()); |
1831 | |
1832 | unsigned PDim = 0; |
1833 | for (const SCEV *Parameter : Parameters) { |
1834 | isl::id Id = getIdForParam(Parameter); |
1835 | Space = Space.set_dim_id(type: isl::dim::param, pos: PDim++, id: Id); |
1836 | } |
1837 | |
1838 | return Space; |
1839 | } |
1840 | |
1841 | isl::set Scop::getAssumedContext() const { |
1842 | assert(!AssumedContext.is_null() && "Assumed context not yet built" ); |
1843 | return AssumedContext; |
1844 | } |
1845 | |
1846 | bool Scop::isProfitable(bool ScalarsAreUnprofitable) const { |
1847 | if (PollyProcessUnprofitable) |
1848 | return true; |
1849 | |
1850 | if (isEmpty()) |
1851 | return false; |
1852 | |
1853 | unsigned OptimizableStmtsOrLoops = 0; |
1854 | for (auto &Stmt : *this) { |
1855 | if (Stmt.getNumIterators() == 0) |
1856 | continue; |
1857 | |
1858 | bool ContainsArrayAccs = false; |
1859 | bool ContainsScalarAccs = false; |
1860 | for (auto *MA : Stmt) { |
1861 | if (MA->isRead()) |
1862 | continue; |
1863 | ContainsArrayAccs |= MA->isLatestArrayKind(); |
1864 | ContainsScalarAccs |= MA->isLatestScalarKind(); |
1865 | } |
1866 | |
1867 | if (!ScalarsAreUnprofitable || (ContainsArrayAccs && !ContainsScalarAccs)) |
1868 | OptimizableStmtsOrLoops += Stmt.getNumIterators(); |
1869 | } |
1870 | |
1871 | return OptimizableStmtsOrLoops > 1; |
1872 | } |
1873 | |
1874 | bool Scop::hasFeasibleRuntimeContext() const { |
1875 | if (Stmts.empty()) |
1876 | return false; |
1877 | |
1878 | isl::set PositiveContext = getAssumedContext(); |
1879 | isl::set NegativeContext = getInvalidContext(); |
1880 | PositiveContext = PositiveContext.intersect_params(params: Context); |
1881 | PositiveContext = PositiveContext.intersect_params(params: getDomains().params()); |
1882 | return PositiveContext.is_empty().is_false() && |
1883 | PositiveContext.is_subset(set2: NegativeContext).is_false(); |
1884 | } |
1885 | |
1886 | MemoryAccess *Scop::lookupBasePtrAccess(MemoryAccess *MA) { |
1887 | Value *PointerBase = MA->getOriginalBaseAddr(); |
1888 | |
1889 | auto *PointerBaseInst = dyn_cast<Instruction>(Val: PointerBase); |
1890 | if (!PointerBaseInst) |
1891 | return nullptr; |
1892 | |
1893 | auto *BasePtrStmt = getStmtFor(Inst: PointerBaseInst); |
1894 | if (!BasePtrStmt) |
1895 | return nullptr; |
1896 | |
1897 | return BasePtrStmt->getArrayAccessOrNULLFor(Inst: PointerBaseInst); |
1898 | } |
1899 | |
1900 | static std::string toString(AssumptionKind Kind) { |
1901 | switch (Kind) { |
1902 | case ALIASING: |
1903 | return "No-aliasing" ; |
1904 | case INBOUNDS: |
1905 | return "Inbounds" ; |
1906 | case WRAPPING: |
1907 | return "No-overflows" ; |
1908 | case UNSIGNED: |
1909 | return "Signed-unsigned" ; |
1910 | case COMPLEXITY: |
1911 | return "Low complexity" ; |
1912 | case PROFITABLE: |
1913 | return "Profitable" ; |
1914 | case ERRORBLOCK: |
1915 | return "No-error" ; |
1916 | case INFINITELOOP: |
1917 | return "Finite loop" ; |
1918 | case INVARIANTLOAD: |
1919 | return "Invariant load" ; |
1920 | case DELINEARIZATION: |
1921 | return "Delinearization" ; |
1922 | } |
1923 | llvm_unreachable("Unknown AssumptionKind!" ); |
1924 | } |
1925 | |
1926 | bool Scop::isEffectiveAssumption(isl::set Set, AssumptionSign Sign) { |
1927 | if (Sign == AS_ASSUMPTION) { |
1928 | if (Context.is_subset(set2: Set)) |
1929 | return false; |
1930 | |
1931 | if (AssumedContext.is_subset(set2: Set)) |
1932 | return false; |
1933 | } else { |
1934 | if (Set.is_disjoint(set2: Context)) |
1935 | return false; |
1936 | |
1937 | if (Set.is_subset(set2: InvalidContext)) |
1938 | return false; |
1939 | } |
1940 | return true; |
1941 | } |
1942 | |
1943 | bool Scop::trackAssumption(AssumptionKind Kind, isl::set Set, DebugLoc Loc, |
1944 | AssumptionSign Sign, BasicBlock *BB) { |
1945 | if (PollyRemarksMinimal && !isEffectiveAssumption(Set, Sign)) |
1946 | return false; |
1947 | |
1948 | // Do never emit trivial assumptions as they only clutter the output. |
1949 | if (!PollyRemarksMinimal) { |
1950 | isl::set Univ; |
1951 | if (Sign == AS_ASSUMPTION) |
1952 | Univ = isl::set::universe(space: Set.get_space()); |
1953 | |
1954 | bool IsTrivial = (Sign == AS_RESTRICTION && Set.is_empty()) || |
1955 | (Sign == AS_ASSUMPTION && Univ.is_equal(set2: Set)); |
1956 | |
1957 | if (IsTrivial) |
1958 | return false; |
1959 | } |
1960 | |
1961 | switch (Kind) { |
1962 | case ALIASING: |
1963 | AssumptionsAliasing++; |
1964 | break; |
1965 | case INBOUNDS: |
1966 | AssumptionsInbounds++; |
1967 | break; |
1968 | case WRAPPING: |
1969 | AssumptionsWrapping++; |
1970 | break; |
1971 | case UNSIGNED: |
1972 | AssumptionsUnsigned++; |
1973 | break; |
1974 | case COMPLEXITY: |
1975 | AssumptionsComplexity++; |
1976 | break; |
1977 | case PROFITABLE: |
1978 | AssumptionsUnprofitable++; |
1979 | break; |
1980 | case ERRORBLOCK: |
1981 | AssumptionsErrorBlock++; |
1982 | break; |
1983 | case INFINITELOOP: |
1984 | AssumptionsInfiniteLoop++; |
1985 | break; |
1986 | case INVARIANTLOAD: |
1987 | AssumptionsInvariantLoad++; |
1988 | break; |
1989 | case DELINEARIZATION: |
1990 | AssumptionsDelinearization++; |
1991 | break; |
1992 | } |
1993 | |
1994 | auto Suffix = Sign == AS_ASSUMPTION ? " assumption:\t" : " restriction:\t" ; |
1995 | std::string Msg = toString(Kind) + Suffix + stringFromIslObj(Obj: Set); |
1996 | if (BB) |
1997 | ORE.emit(OptDiag&: OptimizationRemarkAnalysis(DEBUG_TYPE, "AssumpRestrict" , Loc, BB) |
1998 | << Msg); |
1999 | else |
2000 | ORE.emit(OptDiag&: OptimizationRemarkAnalysis(DEBUG_TYPE, "AssumpRestrict" , Loc, |
2001 | R.getEntry()) |
2002 | << Msg); |
2003 | return true; |
2004 | } |
2005 | |
2006 | void Scop::addAssumption(AssumptionKind Kind, isl::set Set, DebugLoc Loc, |
2007 | AssumptionSign Sign, BasicBlock *BB, |
2008 | bool RequiresRTC) { |
2009 | // Simplify the assumptions/restrictions first. |
2010 | Set = Set.gist_params(context: getContext()); |
2011 | intersectDefinedBehavior(Set, Sign); |
2012 | |
2013 | if (!RequiresRTC) |
2014 | return; |
2015 | |
2016 | if (!trackAssumption(Kind, Set, Loc, Sign, BB)) |
2017 | return; |
2018 | |
2019 | if (Sign == AS_ASSUMPTION) |
2020 | AssumedContext = AssumedContext.intersect(set2: Set).coalesce(); |
2021 | else |
2022 | InvalidContext = InvalidContext.unite(set2: Set).coalesce(); |
2023 | } |
2024 | |
2025 | void Scop::intersectDefinedBehavior(isl::set Set, AssumptionSign Sign) { |
2026 | if (DefinedBehaviorContext.is_null()) |
2027 | return; |
2028 | |
2029 | if (Sign == AS_ASSUMPTION) |
2030 | DefinedBehaviorContext = DefinedBehaviorContext.intersect(set2: Set); |
2031 | else |
2032 | DefinedBehaviorContext = DefinedBehaviorContext.subtract(set2: Set); |
2033 | |
2034 | // Limit the complexity of the context. If complexity is exceeded, simplify |
2035 | // the set and check again. |
2036 | if (DefinedBehaviorContext.n_basic_set().release() > |
2037 | MaxDisjunktsInDefinedBehaviourContext) { |
2038 | simplify(Set&: DefinedBehaviorContext); |
2039 | if (DefinedBehaviorContext.n_basic_set().release() > |
2040 | MaxDisjunktsInDefinedBehaviourContext) |
2041 | DefinedBehaviorContext = {}; |
2042 | } |
2043 | } |
2044 | |
2045 | void Scop::invalidate(AssumptionKind Kind, DebugLoc Loc, BasicBlock *BB) { |
2046 | POLLY_DEBUG(dbgs() << "Invalidate SCoP because of reason " << Kind << "\n" ); |
2047 | addAssumption(Kind, Set: isl::set::empty(space: getParamSpace()), Loc, Sign: AS_ASSUMPTION, BB); |
2048 | } |
2049 | |
2050 | isl::set Scop::getInvalidContext() const { return InvalidContext; } |
2051 | |
2052 | void Scop::printContext(raw_ostream &OS) const { |
2053 | OS << "Context:\n" ; |
2054 | OS.indent(NumSpaces: 4) << Context << "\n" ; |
2055 | |
2056 | OS.indent(NumSpaces: 4) << "Assumed Context:\n" ; |
2057 | OS.indent(NumSpaces: 4) << AssumedContext << "\n" ; |
2058 | |
2059 | OS.indent(NumSpaces: 4) << "Invalid Context:\n" ; |
2060 | OS.indent(NumSpaces: 4) << InvalidContext << "\n" ; |
2061 | |
2062 | OS.indent(NumSpaces: 4) << "Defined Behavior Context:\n" ; |
2063 | if (!DefinedBehaviorContext.is_null()) |
2064 | OS.indent(NumSpaces: 4) << DefinedBehaviorContext << "\n" ; |
2065 | else |
2066 | OS.indent(NumSpaces: 4) << "<unavailable>\n" ; |
2067 | |
2068 | unsigned Dim = 0; |
2069 | for (const SCEV *Parameter : Parameters) |
2070 | OS.indent(NumSpaces: 4) << "p" << Dim++ << ": " << *Parameter << "\n" ; |
2071 | } |
2072 | |
2073 | void Scop::printAliasAssumptions(raw_ostream &OS) const { |
2074 | int noOfGroups = 0; |
2075 | for (const MinMaxVectorPairTy &Pair : MinMaxAliasGroups) { |
2076 | if (Pair.second.size() == 0) |
2077 | noOfGroups += 1; |
2078 | else |
2079 | noOfGroups += Pair.second.size(); |
2080 | } |
2081 | |
2082 | OS.indent(NumSpaces: 4) << "Alias Groups (" << noOfGroups << "):\n" ; |
2083 | if (MinMaxAliasGroups.empty()) { |
2084 | OS.indent(NumSpaces: 8) << "n/a\n" ; |
2085 | return; |
2086 | } |
2087 | |
2088 | for (const MinMaxVectorPairTy &Pair : MinMaxAliasGroups) { |
2089 | |
2090 | // If the group has no read only accesses print the write accesses. |
2091 | if (Pair.second.empty()) { |
2092 | OS.indent(NumSpaces: 8) << "[[" ; |
2093 | for (const MinMaxAccessTy &MMANonReadOnly : Pair.first) { |
2094 | OS << " <" << MMANonReadOnly.first << ", " << MMANonReadOnly.second |
2095 | << ">" ; |
2096 | } |
2097 | OS << " ]]\n" ; |
2098 | } |
2099 | |
2100 | for (const MinMaxAccessTy &MMAReadOnly : Pair.second) { |
2101 | OS.indent(NumSpaces: 8) << "[[" ; |
2102 | OS << " <" << MMAReadOnly.first << ", " << MMAReadOnly.second << ">" ; |
2103 | for (const MinMaxAccessTy &MMANonReadOnly : Pair.first) { |
2104 | OS << " <" << MMANonReadOnly.first << ", " << MMANonReadOnly.second |
2105 | << ">" ; |
2106 | } |
2107 | OS << " ]]\n" ; |
2108 | } |
2109 | } |
2110 | } |
2111 | |
2112 | void Scop::printStatements(raw_ostream &OS, bool PrintInstructions) const { |
2113 | OS << "Statements {\n" ; |
2114 | |
2115 | for (const ScopStmt &Stmt : *this) { |
2116 | OS.indent(NumSpaces: 4); |
2117 | Stmt.print(OS, PrintInstructions); |
2118 | } |
2119 | |
2120 | OS.indent(NumSpaces: 4) << "}\n" ; |
2121 | } |
2122 | |
2123 | void Scop::printArrayInfo(raw_ostream &OS) const { |
2124 | OS << "Arrays {\n" ; |
2125 | |
2126 | for (auto &Array : arrays()) |
2127 | Array->print(OS); |
2128 | |
2129 | OS.indent(NumSpaces: 4) << "}\n" ; |
2130 | |
2131 | OS.indent(NumSpaces: 4) << "Arrays (Bounds as pw_affs) {\n" ; |
2132 | |
2133 | for (auto &Array : arrays()) |
2134 | Array->print(OS, /* SizeAsPwAff */ true); |
2135 | |
2136 | OS.indent(NumSpaces: 4) << "}\n" ; |
2137 | } |
2138 | |
2139 | void Scop::print(raw_ostream &OS, bool PrintInstructions) const { |
2140 | OS.indent(NumSpaces: 4) << "Function: " << getFunction().getName() << "\n" ; |
2141 | OS.indent(NumSpaces: 4) << "Region: " << getNameStr() << "\n" ; |
2142 | OS.indent(NumSpaces: 4) << "Max Loop Depth: " << getMaxLoopDepth() << "\n" ; |
2143 | OS.indent(NumSpaces: 4) << "Invariant Accesses: {\n" ; |
2144 | for (const auto &IAClass : InvariantEquivClasses) { |
2145 | const auto &MAs = IAClass.InvariantAccesses; |
2146 | if (MAs.empty()) { |
2147 | OS.indent(NumSpaces: 12) << "Class Pointer: " << *IAClass.IdentifyingPointer << "\n" ; |
2148 | } else { |
2149 | MAs.front()->print(OS); |
2150 | OS.indent(NumSpaces: 12) << "Execution Context: " << IAClass.ExecutionContext |
2151 | << "\n" ; |
2152 | } |
2153 | } |
2154 | OS.indent(NumSpaces: 4) << "}\n" ; |
2155 | printContext(OS&: OS.indent(NumSpaces: 4)); |
2156 | printArrayInfo(OS&: OS.indent(NumSpaces: 4)); |
2157 | printAliasAssumptions(OS); |
2158 | printStatements(OS&: OS.indent(NumSpaces: 4), PrintInstructions); |
2159 | } |
2160 | |
2161 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
2162 | LLVM_DUMP_METHOD void Scop::dump() const { print(OS&: dbgs(), PrintInstructions: true); } |
2163 | #endif |
2164 | |
2165 | isl::ctx Scop::getIslCtx() const { return IslCtx.get(); } |
2166 | |
2167 | __isl_give PWACtx Scop::getPwAff(const SCEV *E, BasicBlock *BB, |
2168 | bool NonNegative, |
2169 | RecordedAssumptionsTy *RecordedAssumptions) { |
2170 | // First try to use the SCEVAffinator to generate a piecewise defined |
2171 | // affine function from @p E in the context of @p BB. If that tasks becomes to |
2172 | // complex the affinator might return a nullptr. In such a case we invalidate |
2173 | // the SCoP and return a dummy value. This way we do not need to add error |
2174 | // handling code to all users of this function. |
2175 | auto PWAC = Affinator.getPwAff(E, BB, RecordedAssumptions); |
2176 | if (!PWAC.first.is_null()) { |
2177 | // TODO: We could use a heuristic and either use: |
2178 | // SCEVAffinator::takeNonNegativeAssumption |
2179 | // or |
2180 | // SCEVAffinator::interpretAsUnsigned |
2181 | // to deal with unsigned or "NonNegative" SCEVs. |
2182 | if (NonNegative) |
2183 | Affinator.takeNonNegativeAssumption(PWAC, RecordedAssumptions); |
2184 | return PWAC; |
2185 | } |
2186 | |
2187 | auto DL = BB ? BB->getTerminator()->getDebugLoc() : DebugLoc(); |
2188 | invalidate(Kind: COMPLEXITY, Loc: DL, BB); |
2189 | return Affinator.getPwAff(E: SE->getZero(Ty: E->getType()), BB, RecordedAssumptions); |
2190 | } |
2191 | |
2192 | isl::union_set Scop::getDomains() const { |
2193 | isl_space *EmptySpace = isl_space_params_alloc(ctx: getIslCtx().get(), nparam: 0); |
2194 | isl_union_set *Domain = isl_union_set_empty(space: EmptySpace); |
2195 | |
2196 | for (const ScopStmt &Stmt : *this) |
2197 | Domain = isl_union_set_add_set(uset: Domain, set: Stmt.getDomain().release()); |
2198 | |
2199 | return isl::manage(ptr: Domain); |
2200 | } |
2201 | |
2202 | isl::pw_aff Scop::getPwAffOnly(const SCEV *E, BasicBlock *BB, |
2203 | RecordedAssumptionsTy *RecordedAssumptions) { |
2204 | PWACtx PWAC = getPwAff(E, BB, NonNegative: RecordedAssumptions); |
2205 | return PWAC.first; |
2206 | } |
2207 | |
2208 | isl::union_map |
2209 | Scop::getAccessesOfType(std::function<bool(MemoryAccess &)> Predicate) { |
2210 | isl::union_map Accesses = isl::union_map::empty(ctx: getIslCtx()); |
2211 | |
2212 | for (ScopStmt &Stmt : *this) { |
2213 | for (MemoryAccess *MA : Stmt) { |
2214 | if (!Predicate(*MA)) |
2215 | continue; |
2216 | |
2217 | isl::set Domain = Stmt.getDomain(); |
2218 | isl::map AccessDomain = MA->getAccessRelation(); |
2219 | AccessDomain = AccessDomain.intersect_domain(set: Domain); |
2220 | Accesses = Accesses.unite(umap2: AccessDomain); |
2221 | } |
2222 | } |
2223 | |
2224 | return Accesses.coalesce(); |
2225 | } |
2226 | |
2227 | isl::union_map Scop::getMustWrites() { |
2228 | return getAccessesOfType(Predicate: [](MemoryAccess &MA) { return MA.isMustWrite(); }); |
2229 | } |
2230 | |
2231 | isl::union_map Scop::getMayWrites() { |
2232 | return getAccessesOfType(Predicate: [](MemoryAccess &MA) { return MA.isMayWrite(); }); |
2233 | } |
2234 | |
2235 | isl::union_map Scop::getWrites() { |
2236 | return getAccessesOfType(Predicate: [](MemoryAccess &MA) { return MA.isWrite(); }); |
2237 | } |
2238 | |
2239 | isl::union_map Scop::getReads() { |
2240 | return getAccessesOfType(Predicate: [](MemoryAccess &MA) { return MA.isRead(); }); |
2241 | } |
2242 | |
2243 | isl::union_map Scop::getAccesses() { |
2244 | return getAccessesOfType(Predicate: [](MemoryAccess &MA) { return true; }); |
2245 | } |
2246 | |
2247 | isl::union_map Scop::getAccesses(ScopArrayInfo *Array) { |
2248 | return getAccessesOfType( |
2249 | Predicate: [Array](MemoryAccess &MA) { return MA.getScopArrayInfo() == Array; }); |
2250 | } |
2251 | |
2252 | isl::union_map Scop::getSchedule() const { |
2253 | auto Tree = getScheduleTree(); |
2254 | return Tree.get_map(); |
2255 | } |
2256 | |
2257 | isl::schedule Scop::getScheduleTree() const { |
2258 | return Schedule.intersect_domain(domain: getDomains()); |
2259 | } |
2260 | |
2261 | void Scop::setSchedule(isl::union_map NewSchedule) { |
2262 | auto S = isl::schedule::from_domain(domain: getDomains()); |
2263 | Schedule = S.insert_partial_schedule( |
2264 | partial: isl::multi_union_pw_aff::from_union_map(umap: NewSchedule)); |
2265 | ScheduleModified = true; |
2266 | } |
2267 | |
2268 | void Scop::setScheduleTree(isl::schedule NewSchedule) { |
2269 | Schedule = NewSchedule; |
2270 | ScheduleModified = true; |
2271 | } |
2272 | |
2273 | bool Scop::restrictDomains(isl::union_set Domain) { |
2274 | bool Changed = false; |
2275 | for (ScopStmt &Stmt : *this) { |
2276 | isl::union_set StmtDomain = isl::union_set(Stmt.getDomain()); |
2277 | isl::union_set NewStmtDomain = StmtDomain.intersect(uset2: Domain); |
2278 | |
2279 | if (StmtDomain.is_subset(uset2: NewStmtDomain)) |
2280 | continue; |
2281 | |
2282 | Changed = true; |
2283 | |
2284 | NewStmtDomain = NewStmtDomain.coalesce(); |
2285 | |
2286 | if (NewStmtDomain.is_empty()) |
2287 | Stmt.restrictDomain(NewDomain: isl::set::empty(space: Stmt.getDomainSpace())); |
2288 | else |
2289 | Stmt.restrictDomain(NewDomain: isl::set(NewStmtDomain)); |
2290 | } |
2291 | return Changed; |
2292 | } |
2293 | |
2294 | ScalarEvolution *Scop::getSE() const { return SE; } |
2295 | |
2296 | void Scop::addScopStmt(BasicBlock *BB, StringRef Name, Loop *SurroundingLoop, |
2297 | std::vector<Instruction *> Instructions) { |
2298 | assert(BB && "Unexpected nullptr!" ); |
2299 | Stmts.emplace_back(args&: *this, args&: *BB, args&: Name, args&: SurroundingLoop, args&: Instructions); |
2300 | auto *Stmt = &Stmts.back(); |
2301 | StmtMap[BB].push_back(x: Stmt); |
2302 | for (Instruction *Inst : Instructions) { |
2303 | assert(!InstStmtMap.count(Inst) && |
2304 | "Unexpected statement corresponding to the instruction." ); |
2305 | InstStmtMap[Inst] = Stmt; |
2306 | } |
2307 | } |
2308 | |
2309 | void Scop::addScopStmt(Region *R, StringRef Name, Loop *SurroundingLoop, |
2310 | std::vector<Instruction *> Instructions) { |
2311 | assert(R && "Unexpected nullptr!" ); |
2312 | Stmts.emplace_back(args&: *this, args&: *R, args&: Name, args&: SurroundingLoop, args&: Instructions); |
2313 | auto *Stmt = &Stmts.back(); |
2314 | |
2315 | for (Instruction *Inst : Instructions) { |
2316 | assert(!InstStmtMap.count(Inst) && |
2317 | "Unexpected statement corresponding to the instruction." ); |
2318 | InstStmtMap[Inst] = Stmt; |
2319 | } |
2320 | |
2321 | for (BasicBlock *BB : R->blocks()) { |
2322 | StmtMap[BB].push_back(x: Stmt); |
2323 | if (BB == R->getEntry()) |
2324 | continue; |
2325 | for (Instruction &Inst : *BB) { |
2326 | assert(!InstStmtMap.count(&Inst) && |
2327 | "Unexpected statement corresponding to the instruction." ); |
2328 | InstStmtMap[&Inst] = Stmt; |
2329 | } |
2330 | } |
2331 | } |
2332 | |
2333 | ScopStmt *Scop::addScopStmt(isl::map SourceRel, isl::map TargetRel, |
2334 | isl::set Domain) { |
2335 | #ifndef NDEBUG |
2336 | isl::set SourceDomain = SourceRel.domain(); |
2337 | isl::set TargetDomain = TargetRel.domain(); |
2338 | assert(Domain.is_subset(TargetDomain) && |
2339 | "Target access not defined for complete statement domain" ); |
2340 | assert(Domain.is_subset(SourceDomain) && |
2341 | "Source access not defined for complete statement domain" ); |
2342 | #endif |
2343 | Stmts.emplace_back(args&: *this, args&: SourceRel, args&: TargetRel, args&: Domain); |
2344 | CopyStmtsNum++; |
2345 | return &(Stmts.back()); |
2346 | } |
2347 | |
2348 | ArrayRef<ScopStmt *> Scop::getStmtListFor(BasicBlock *BB) const { |
2349 | auto StmtMapIt = StmtMap.find(Val: BB); |
2350 | if (StmtMapIt == StmtMap.end()) |
2351 | return {}; |
2352 | return StmtMapIt->second; |
2353 | } |
2354 | |
2355 | ScopStmt *Scop::getIncomingStmtFor(const Use &U) const { |
2356 | auto *PHI = cast<PHINode>(Val: U.getUser()); |
2357 | BasicBlock *IncomingBB = PHI->getIncomingBlock(U); |
2358 | |
2359 | // If the value is a non-synthesizable from the incoming block, use the |
2360 | // statement that contains it as user statement. |
2361 | if (auto *IncomingInst = dyn_cast<Instruction>(Val: U.get())) { |
2362 | if (IncomingInst->getParent() == IncomingBB) { |
2363 | if (ScopStmt *IncomingStmt = getStmtFor(Inst: IncomingInst)) |
2364 | return IncomingStmt; |
2365 | } |
2366 | } |
2367 | |
2368 | // Otherwise, use the epilogue/last statement. |
2369 | return getLastStmtFor(BB: IncomingBB); |
2370 | } |
2371 | |
2372 | ScopStmt *Scop::getLastStmtFor(BasicBlock *BB) const { |
2373 | ArrayRef<ScopStmt *> StmtList = getStmtListFor(BB); |
2374 | if (!StmtList.empty()) |
2375 | return StmtList.back(); |
2376 | return nullptr; |
2377 | } |
2378 | |
2379 | ArrayRef<ScopStmt *> Scop::getStmtListFor(RegionNode *RN) const { |
2380 | if (RN->isSubRegion()) |
2381 | return getStmtListFor(R: RN->getNodeAs<Region>()); |
2382 | return getStmtListFor(BB: RN->getNodeAs<BasicBlock>()); |
2383 | } |
2384 | |
2385 | ArrayRef<ScopStmt *> Scop::getStmtListFor(Region *R) const { |
2386 | return getStmtListFor(BB: R->getEntry()); |
2387 | } |
2388 | |
2389 | int Scop::getRelativeLoopDepth(const Loop *L) const { |
2390 | if (!L || !R.contains(L)) |
2391 | return -1; |
2392 | // outermostLoopInRegion always returns nullptr for top level regions |
2393 | if (R.isTopLevelRegion()) { |
2394 | // LoopInfo's depths start at 1, we start at 0 |
2395 | return L->getLoopDepth() - 1; |
2396 | } else { |
2397 | Loop *OuterLoop = R.outermostLoopInRegion(L: const_cast<Loop *>(L)); |
2398 | assert(OuterLoop); |
2399 | return L->getLoopDepth() - OuterLoop->getLoopDepth(); |
2400 | } |
2401 | } |
2402 | |
2403 | ScopArrayInfo *Scop::getArrayInfoByName(const std::string BaseName) { |
2404 | for (auto &SAI : arrays()) { |
2405 | if (SAI->getName() == BaseName) |
2406 | return SAI; |
2407 | } |
2408 | return nullptr; |
2409 | } |
2410 | |
2411 | void Scop::addAccessData(MemoryAccess *Access) { |
2412 | const ScopArrayInfo *SAI = Access->getOriginalScopArrayInfo(); |
2413 | assert(SAI && "can only use after access relations have been constructed" ); |
2414 | |
2415 | if (Access->isOriginalValueKind() && Access->isRead()) |
2416 | ValueUseAccs[SAI].push_back(Elt: Access); |
2417 | else if (Access->isOriginalAnyPHIKind() && Access->isWrite()) |
2418 | PHIIncomingAccs[SAI].push_back(Elt: Access); |
2419 | } |
2420 | |
2421 | void Scop::removeAccessData(MemoryAccess *Access) { |
2422 | if (Access->isOriginalValueKind() && Access->isWrite()) { |
2423 | ValueDefAccs.erase(Val: Access->getAccessValue()); |
2424 | } else if (Access->isOriginalValueKind() && Access->isRead()) { |
2425 | auto &Uses = ValueUseAccs[Access->getScopArrayInfo()]; |
2426 | llvm::erase(C&: Uses, V: Access); |
2427 | } else if (Access->isOriginalPHIKind() && Access->isRead()) { |
2428 | PHINode *PHI = cast<PHINode>(Val: Access->getAccessInstruction()); |
2429 | PHIReadAccs.erase(Val: PHI); |
2430 | } else if (Access->isOriginalAnyPHIKind() && Access->isWrite()) { |
2431 | auto &Incomings = PHIIncomingAccs[Access->getScopArrayInfo()]; |
2432 | llvm::erase(C&: Incomings, V: Access); |
2433 | } |
2434 | } |
2435 | |
2436 | MemoryAccess *Scop::getValueDef(const ScopArrayInfo *SAI) const { |
2437 | assert(SAI->isValueKind()); |
2438 | |
2439 | Instruction *Val = dyn_cast<Instruction>(Val: SAI->getBasePtr()); |
2440 | if (!Val) |
2441 | return nullptr; |
2442 | |
2443 | return ValueDefAccs.lookup(Val); |
2444 | } |
2445 | |
2446 | ArrayRef<MemoryAccess *> Scop::getValueUses(const ScopArrayInfo *SAI) const { |
2447 | assert(SAI->isValueKind()); |
2448 | auto It = ValueUseAccs.find(Val: SAI); |
2449 | if (It == ValueUseAccs.end()) |
2450 | return {}; |
2451 | return It->second; |
2452 | } |
2453 | |
2454 | MemoryAccess *Scop::getPHIRead(const ScopArrayInfo *SAI) const { |
2455 | assert(SAI->isPHIKind() || SAI->isExitPHIKind()); |
2456 | |
2457 | if (SAI->isExitPHIKind()) |
2458 | return nullptr; |
2459 | |
2460 | PHINode *PHI = cast<PHINode>(Val: SAI->getBasePtr()); |
2461 | return PHIReadAccs.lookup(Val: PHI); |
2462 | } |
2463 | |
2464 | ArrayRef<MemoryAccess *> Scop::getPHIIncomings(const ScopArrayInfo *SAI) const { |
2465 | assert(SAI->isPHIKind() || SAI->isExitPHIKind()); |
2466 | auto It = PHIIncomingAccs.find(Val: SAI); |
2467 | if (It == PHIIncomingAccs.end()) |
2468 | return {}; |
2469 | return It->second; |
2470 | } |
2471 | |
2472 | bool Scop::isEscaping(Instruction *Inst) { |
2473 | assert(contains(Inst) && "The concept of escaping makes only sense for " |
2474 | "values defined inside the SCoP" ); |
2475 | |
2476 | for (Use &Use : Inst->uses()) { |
2477 | BasicBlock *UserBB = getUseBlock(U: Use); |
2478 | if (!contains(BB: UserBB)) |
2479 | return true; |
2480 | |
2481 | // When the SCoP region exit needs to be simplified, PHIs in the region exit |
2482 | // move to a new basic block such that its incoming blocks are not in the |
2483 | // SCoP anymore. |
2484 | if (hasSingleExitEdge() && isa<PHINode>(Val: Use.getUser()) && |
2485 | isExit(BB: cast<PHINode>(Val: Use.getUser())->getParent())) |
2486 | return true; |
2487 | } |
2488 | return false; |
2489 | } |
2490 | |
2491 | void Scop::incrementNumberOfAliasingAssumptions(unsigned step) { |
2492 | AssumptionsAliasing += step; |
2493 | } |
2494 | |
2495 | Scop::ScopStatistics Scop::getStatistics() const { |
2496 | ScopStatistics Result; |
2497 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_STATS) |
2498 | auto LoopStat = ScopDetection::countBeneficialLoops(R: &R, SE&: *SE, LI&: *getLI(), MinProfitableTrips: 0); |
2499 | |
2500 | int NumTotalLoops = LoopStat.NumLoops; |
2501 | Result.NumBoxedLoops = getBoxedLoops().size(); |
2502 | Result.NumAffineLoops = NumTotalLoops - Result.NumBoxedLoops; |
2503 | |
2504 | for (const ScopStmt &Stmt : *this) { |
2505 | isl::set Domain = Stmt.getDomain().intersect_params(params: getContext()); |
2506 | bool IsInLoop = Stmt.getNumIterators() >= 1; |
2507 | for (MemoryAccess *MA : Stmt) { |
2508 | if (!MA->isWrite()) |
2509 | continue; |
2510 | |
2511 | if (MA->isLatestValueKind()) { |
2512 | Result.NumValueWrites += 1; |
2513 | if (IsInLoop) |
2514 | Result.NumValueWritesInLoops += 1; |
2515 | } |
2516 | |
2517 | if (MA->isLatestAnyPHIKind()) { |
2518 | Result.NumPHIWrites += 1; |
2519 | if (IsInLoop) |
2520 | Result.NumPHIWritesInLoops += 1; |
2521 | } |
2522 | |
2523 | isl::set AccSet = |
2524 | MA->getAccessRelation().intersect_domain(set: Domain).range(); |
2525 | if (AccSet.is_singleton()) { |
2526 | Result.NumSingletonWrites += 1; |
2527 | if (IsInLoop) |
2528 | Result.NumSingletonWritesInLoops += 1; |
2529 | } |
2530 | } |
2531 | } |
2532 | #endif |
2533 | return Result; |
2534 | } |
2535 | |
2536 | raw_ostream &polly::operator<<(raw_ostream &OS, const Scop &scop) { |
2537 | scop.print(OS, PrintInstructions: PollyPrintInstructions); |
2538 | return OS; |
2539 | } |
2540 | |
2541 | //===----------------------------------------------------------------------===// |
2542 | void ScopInfoRegionPass::getAnalysisUsage(AnalysisUsage &AU) const { |
2543 | AU.addRequired<LoopInfoWrapperPass>(); |
2544 | AU.addRequired<RegionInfoPass>(); |
2545 | AU.addRequired<DominatorTreeWrapperPass>(); |
2546 | AU.addRequiredTransitive<ScalarEvolutionWrapperPass>(); |
2547 | AU.addRequiredTransitive<ScopDetectionWrapperPass>(); |
2548 | AU.addRequired<AAResultsWrapperPass>(); |
2549 | AU.addRequired<AssumptionCacheTracker>(); |
2550 | AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); |
2551 | AU.setPreservesAll(); |
2552 | } |
2553 | |
2554 | void updateLoopCountStatistic(ScopDetection::LoopStats Stats, |
2555 | Scop::ScopStatistics ScopStats) { |
2556 | assert(Stats.NumLoops == ScopStats.NumAffineLoops + ScopStats.NumBoxedLoops); |
2557 | |
2558 | NumScops++; |
2559 | NumLoopsInScop += Stats.NumLoops; |
2560 | MaxNumLoopsInScop = |
2561 | std::max(a: MaxNumLoopsInScop.getValue(), b: (uint64_t)Stats.NumLoops); |
2562 | |
2563 | if (Stats.MaxDepth == 0) |
2564 | NumScopsDepthZero++; |
2565 | else if (Stats.MaxDepth == 1) |
2566 | NumScopsDepthOne++; |
2567 | else if (Stats.MaxDepth == 2) |
2568 | NumScopsDepthTwo++; |
2569 | else if (Stats.MaxDepth == 3) |
2570 | NumScopsDepthThree++; |
2571 | else if (Stats.MaxDepth == 4) |
2572 | NumScopsDepthFour++; |
2573 | else if (Stats.MaxDepth == 5) |
2574 | NumScopsDepthFive++; |
2575 | else |
2576 | NumScopsDepthLarger++; |
2577 | |
2578 | NumAffineLoops += ScopStats.NumAffineLoops; |
2579 | NumBoxedLoops += ScopStats.NumBoxedLoops; |
2580 | |
2581 | NumValueWrites += ScopStats.NumValueWrites; |
2582 | NumValueWritesInLoops += ScopStats.NumValueWritesInLoops; |
2583 | NumPHIWrites += ScopStats.NumPHIWrites; |
2584 | NumPHIWritesInLoops += ScopStats.NumPHIWritesInLoops; |
2585 | NumSingletonWrites += ScopStats.NumSingletonWrites; |
2586 | NumSingletonWritesInLoops += ScopStats.NumSingletonWritesInLoops; |
2587 | } |
2588 | |
2589 | bool ScopInfoRegionPass::runOnRegion(Region *R, RGPassManager &RGM) { |
2590 | auto &SD = getAnalysis<ScopDetectionWrapperPass>().getSD(); |
2591 | |
2592 | if (!SD.isMaxRegionInScop(R: *R)) |
2593 | return false; |
2594 | |
2595 | Function *F = R->getEntry()->getParent(); |
2596 | auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); |
2597 | auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
2598 | auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); |
2599 | auto const &DL = F->getParent()->getDataLayout(); |
2600 | auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
2601 | auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F&: *F); |
2602 | auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); |
2603 | |
2604 | ScopBuilder SB(R, AC, AA, DL, DT, LI, SD, SE, ORE); |
2605 | S = SB.getScop(); // take ownership of scop object |
2606 | |
2607 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_STATS) |
2608 | if (S) { |
2609 | ScopDetection::LoopStats Stats = |
2610 | ScopDetection::countBeneficialLoops(R: &S->getRegion(), SE, LI, MinProfitableTrips: 0); |
2611 | updateLoopCountStatistic(Stats, ScopStats: S->getStatistics()); |
2612 | } |
2613 | #endif |
2614 | |
2615 | return false; |
2616 | } |
2617 | |
2618 | void ScopInfoRegionPass::print(raw_ostream &OS, const Module *) const { |
2619 | if (S) |
2620 | S->print(OS, PrintInstructions: PollyPrintInstructions); |
2621 | else |
2622 | OS << "Invalid Scop!\n" ; |
2623 | } |
2624 | |
2625 | char ScopInfoRegionPass::ID = 0; |
2626 | |
2627 | Pass *polly::createScopInfoRegionPassPass() { return new ScopInfoRegionPass(); } |
2628 | |
2629 | INITIALIZE_PASS_BEGIN(ScopInfoRegionPass, "polly-scops" , |
2630 | "Polly - Create polyhedral description of Scops" , false, |
2631 | false); |
2632 | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass); |
2633 | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker); |
2634 | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); |
2635 | INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); |
2636 | INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); |
2637 | INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass); |
2638 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); |
2639 | INITIALIZE_PASS_END(ScopInfoRegionPass, "polly-scops" , |
2640 | "Polly - Create polyhedral description of Scops" , false, |
2641 | false) |
2642 | |
2643 | //===----------------------------------------------------------------------===// |
2644 | |
2645 | namespace { |
2646 | |
2647 | /// Print result from ScopInfoRegionPass. |
2648 | class ScopInfoPrinterLegacyRegionPass final : public RegionPass { |
2649 | public: |
2650 | static char ID; |
2651 | |
2652 | ScopInfoPrinterLegacyRegionPass() : ScopInfoPrinterLegacyRegionPass(outs()) {} |
2653 | |
2654 | explicit ScopInfoPrinterLegacyRegionPass(llvm::raw_ostream &OS) |
2655 | : RegionPass(ID), OS(OS) {} |
2656 | |
2657 | bool runOnRegion(Region *R, RGPassManager &RGM) override { |
2658 | ScopInfoRegionPass &P = getAnalysis<ScopInfoRegionPass>(); |
2659 | |
2660 | OS << "Printing analysis '" << P.getPassName() << "' for region: '" |
2661 | << R->getNameStr() << "' in function '" |
2662 | << R->getEntry()->getParent()->getName() << "':\n" ; |
2663 | P.print(OS); |
2664 | |
2665 | return false; |
2666 | } |
2667 | |
2668 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
2669 | RegionPass::getAnalysisUsage(AU); |
2670 | AU.addRequired<ScopInfoRegionPass>(); |
2671 | AU.setPreservesAll(); |
2672 | } |
2673 | |
2674 | private: |
2675 | llvm::raw_ostream &OS; |
2676 | }; |
2677 | |
2678 | char ScopInfoPrinterLegacyRegionPass::ID = 0; |
2679 | } // namespace |
2680 | |
2681 | Pass *polly::createScopInfoPrinterLegacyRegionPass(raw_ostream &OS) { |
2682 | return new ScopInfoPrinterLegacyRegionPass(OS); |
2683 | } |
2684 | |
2685 | INITIALIZE_PASS_BEGIN(ScopInfoPrinterLegacyRegionPass, "polly-print-scops" , |
2686 | "Polly - Print polyhedral description of Scops" , false, |
2687 | false); |
2688 | INITIALIZE_PASS_DEPENDENCY(ScopInfoRegionPass); |
2689 | INITIALIZE_PASS_END(ScopInfoPrinterLegacyRegionPass, "polly-print-scops" , |
2690 | "Polly - Print polyhedral description of Scops" , false, |
2691 | false) |
2692 | |
2693 | //===----------------------------------------------------------------------===// |
2694 | |
2695 | ScopInfo::ScopInfo(const DataLayout &DL, ScopDetection &SD, ScalarEvolution &SE, |
2696 | LoopInfo &LI, AliasAnalysis &AA, DominatorTree &DT, |
2697 | AssumptionCache &AC, OptimizationRemarkEmitter &ORE) |
2698 | : DL(DL), SD(SD), SE(SE), LI(LI), AA(AA), DT(DT), AC(AC), ORE(ORE) { |
2699 | recompute(); |
2700 | } |
2701 | |
2702 | void ScopInfo::recompute() { |
2703 | RegionToScopMap.clear(); |
2704 | /// Create polyhedral description of scops for all the valid regions of a |
2705 | /// function. |
2706 | for (auto &It : SD) { |
2707 | Region *R = const_cast<Region *>(It); |
2708 | if (!SD.isMaxRegionInScop(R: *R)) |
2709 | continue; |
2710 | |
2711 | ScopBuilder SB(R, AC, AA, DL, DT, LI, SD, SE, ORE); |
2712 | std::unique_ptr<Scop> S = SB.getScop(); |
2713 | if (!S) |
2714 | continue; |
2715 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_STATS) |
2716 | ScopDetection::LoopStats Stats = |
2717 | ScopDetection::countBeneficialLoops(R: &S->getRegion(), SE, LI, MinProfitableTrips: 0); |
2718 | updateLoopCountStatistic(Stats, ScopStats: S->getStatistics()); |
2719 | #endif |
2720 | bool Inserted = RegionToScopMap.insert(KV: {R, std::move(S)}).second; |
2721 | assert(Inserted && "Building Scop for the same region twice!" ); |
2722 | (void)Inserted; |
2723 | } |
2724 | } |
2725 | |
2726 | bool ScopInfo::invalidate(Function &F, const PreservedAnalyses &PA, |
2727 | FunctionAnalysisManager::Invalidator &Inv) { |
2728 | // Check whether the analysis, all analyses on functions have been preserved |
2729 | // or anything we're holding references to is being invalidated |
2730 | auto PAC = PA.getChecker<ScopInfoAnalysis>(); |
2731 | return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || |
2732 | Inv.invalidate<ScopAnalysis>(IR&: F, PA) || |
2733 | Inv.invalidate<ScalarEvolutionAnalysis>(IR&: F, PA) || |
2734 | Inv.invalidate<LoopAnalysis>(IR&: F, PA) || |
2735 | Inv.invalidate<AAManager>(IR&: F, PA) || |
2736 | Inv.invalidate<DominatorTreeAnalysis>(IR&: F, PA) || |
2737 | Inv.invalidate<AssumptionAnalysis>(IR&: F, PA); |
2738 | } |
2739 | |
2740 | AnalysisKey ScopInfoAnalysis::Key; |
2741 | |
2742 | ScopInfoAnalysis::Result ScopInfoAnalysis::run(Function &F, |
2743 | FunctionAnalysisManager &FAM) { |
2744 | auto &SD = FAM.getResult<ScopAnalysis>(IR&: F); |
2745 | auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(IR&: F); |
2746 | auto &LI = FAM.getResult<LoopAnalysis>(IR&: F); |
2747 | auto &AA = FAM.getResult<AAManager>(IR&: F); |
2748 | auto &DT = FAM.getResult<DominatorTreeAnalysis>(IR&: F); |
2749 | auto &AC = FAM.getResult<AssumptionAnalysis>(IR&: F); |
2750 | auto &DL = F.getParent()->getDataLayout(); |
2751 | auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(IR&: F); |
2752 | return {DL, SD, SE, LI, AA, DT, AC, ORE}; |
2753 | } |
2754 | |
2755 | PreservedAnalyses ScopInfoPrinterPass::run(Function &F, |
2756 | FunctionAnalysisManager &FAM) { |
2757 | auto &SI = FAM.getResult<ScopInfoAnalysis>(IR&: F); |
2758 | // Since the legacy PM processes Scops in bottom up, we print them in reverse |
2759 | // order here to keep the output persistent |
2760 | for (auto &It : reverse(C&: SI)) { |
2761 | if (It.second) |
2762 | It.second->print(OS&: Stream, PrintInstructions: PollyPrintInstructions); |
2763 | else |
2764 | Stream << "Invalid Scop!\n" ; |
2765 | } |
2766 | return PreservedAnalyses::all(); |
2767 | } |
2768 | |
2769 | void ScopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { |
2770 | AU.addRequired<LoopInfoWrapperPass>(); |
2771 | AU.addRequired<RegionInfoPass>(); |
2772 | AU.addRequired<DominatorTreeWrapperPass>(); |
2773 | AU.addRequiredTransitive<ScalarEvolutionWrapperPass>(); |
2774 | AU.addRequiredTransitive<ScopDetectionWrapperPass>(); |
2775 | AU.addRequired<AAResultsWrapperPass>(); |
2776 | AU.addRequired<AssumptionCacheTracker>(); |
2777 | AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); |
2778 | AU.setPreservesAll(); |
2779 | } |
2780 | |
2781 | bool ScopInfoWrapperPass::runOnFunction(Function &F) { |
2782 | auto &SD = getAnalysis<ScopDetectionWrapperPass>().getSD(); |
2783 | auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); |
2784 | auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
2785 | auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); |
2786 | auto const &DL = F.getParent()->getDataLayout(); |
2787 | auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
2788 | auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); |
2789 | auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); |
2790 | |
2791 | Result.reset(p: new ScopInfo{DL, SD, SE, LI, AA, DT, AC, ORE}); |
2792 | return false; |
2793 | } |
2794 | |
2795 | void ScopInfoWrapperPass::print(raw_ostream &OS, const Module *) const { |
2796 | for (auto &It : *Result) { |
2797 | if (It.second) |
2798 | It.second->print(OS, PrintInstructions: PollyPrintInstructions); |
2799 | else |
2800 | OS << "Invalid Scop!\n" ; |
2801 | } |
2802 | } |
2803 | |
2804 | char ScopInfoWrapperPass::ID = 0; |
2805 | |
2806 | Pass *polly::createScopInfoWrapperPassPass() { |
2807 | return new ScopInfoWrapperPass(); |
2808 | } |
2809 | |
2810 | INITIALIZE_PASS_BEGIN( |
2811 | ScopInfoWrapperPass, "polly-function-scops" , |
2812 | "Polly - Create polyhedral description of all Scops of a function" , false, |
2813 | false); |
2814 | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass); |
2815 | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker); |
2816 | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); |
2817 | INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); |
2818 | INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); |
2819 | INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass); |
2820 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); |
2821 | INITIALIZE_PASS_END( |
2822 | ScopInfoWrapperPass, "polly-function-scops" , |
2823 | "Polly - Create polyhedral description of all Scops of a function" , false, |
2824 | false) |
2825 | |
2826 | //===----------------------------------------------------------------------===// |
2827 | |
2828 | namespace { |
2829 | /// Print result from ScopInfoWrapperPass. |
2830 | class ScopInfoPrinterLegacyFunctionPass final : public FunctionPass { |
2831 | public: |
2832 | static char ID; |
2833 | |
2834 | ScopInfoPrinterLegacyFunctionPass() |
2835 | : ScopInfoPrinterLegacyFunctionPass(outs()) {} |
2836 | explicit ScopInfoPrinterLegacyFunctionPass(llvm::raw_ostream &OS) |
2837 | : FunctionPass(ID), OS(OS) {} |
2838 | |
2839 | bool runOnFunction(Function &F) override { |
2840 | ScopInfoWrapperPass &P = getAnalysis<ScopInfoWrapperPass>(); |
2841 | |
2842 | OS << "Printing analysis '" << P.getPassName() << "' for function '" |
2843 | << F.getName() << "':\n" ; |
2844 | P.print(OS); |
2845 | |
2846 | return false; |
2847 | } |
2848 | |
2849 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
2850 | FunctionPass::getAnalysisUsage(AU); |
2851 | AU.addRequired<ScopInfoWrapperPass>(); |
2852 | AU.setPreservesAll(); |
2853 | } |
2854 | |
2855 | private: |
2856 | llvm::raw_ostream &OS; |
2857 | }; |
2858 | |
2859 | char ScopInfoPrinterLegacyFunctionPass::ID = 0; |
2860 | } // namespace |
2861 | |
2862 | Pass *polly::createScopInfoPrinterLegacyFunctionPass(raw_ostream &OS) { |
2863 | return new ScopInfoPrinterLegacyFunctionPass(OS); |
2864 | } |
2865 | |
2866 | INITIALIZE_PASS_BEGIN( |
2867 | ScopInfoPrinterLegacyFunctionPass, "polly-print-function-scops" , |
2868 | "Polly - Print polyhedral description of all Scops of a function" , false, |
2869 | false); |
2870 | INITIALIZE_PASS_DEPENDENCY(ScopInfoWrapperPass); |
2871 | INITIALIZE_PASS_END( |
2872 | ScopInfoPrinterLegacyFunctionPass, "polly-print-function-scops" , |
2873 | "Polly - Print polyhedral description of all Scops of a function" , false, |
2874 | false) |
2875 | |