| 1 | //===--------- SCEVAffinator.cpp - Create Scops from LLVM IR -------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Create a polyhedral description for a SCEV value. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "polly/Support/SCEVAffinator.h" |
| 14 | #include "polly/Options.h" |
| 15 | #include "polly/ScopInfo.h" |
| 16 | #include "polly/Support/GICHelper.h" |
| 17 | #include "polly/Support/SCEVValidator.h" |
| 18 | #include "llvm/IR/DataLayout.h" |
| 19 | #include "isl/aff.h" |
| 20 | #include "isl/local_space.h" |
| 21 | #include "isl/set.h" |
| 22 | #include "isl/val.h" |
| 23 | |
| 24 | using namespace llvm; |
| 25 | using namespace polly; |
| 26 | |
| 27 | static cl::opt<bool> IgnoreIntegerWrapping( |
| 28 | "polly-ignore-integer-wrapping" , |
| 29 | cl::desc("Do not build run-time checks to proof absence of integer " |
| 30 | "wrapping" ), |
| 31 | cl::Hidden, cl::cat(PollyCategory)); |
| 32 | |
| 33 | // The maximal number of basic sets we allow during the construction of a |
| 34 | // piecewise affine function. More complex ones will result in very high |
| 35 | // compile time. |
| 36 | static int const MaxDisjunctionsInPwAff = 100; |
| 37 | |
| 38 | // The maximal number of bits for which a general expression is modeled |
| 39 | // precisely. |
| 40 | static unsigned const MaxSmallBitWidth = 7; |
| 41 | |
| 42 | /// Add the number of basic sets in @p Domain to @p User |
| 43 | static isl_stat addNumBasicSets(__isl_take isl_set *Domain, |
| 44 | __isl_take isl_aff *Aff, void *User) { |
| 45 | auto *NumBasicSets = static_cast<unsigned *>(User); |
| 46 | *NumBasicSets += isl_set_n_basic_set(set: Domain); |
| 47 | isl_set_free(set: Domain); |
| 48 | isl_aff_free(aff: Aff); |
| 49 | return isl_stat_ok; |
| 50 | } |
| 51 | |
| 52 | /// Determine if @p PWAC is too complex to continue. |
| 53 | static bool isTooComplex(PWACtx PWAC) { |
| 54 | unsigned NumBasicSets = 0; |
| 55 | isl_pw_aff_foreach_piece(pwaff: PWAC.first.get(), fn: addNumBasicSets, user: &NumBasicSets); |
| 56 | if (NumBasicSets <= MaxDisjunctionsInPwAff) |
| 57 | return false; |
| 58 | return true; |
| 59 | } |
| 60 | |
| 61 | /// Return the flag describing the possible wrapping of @p Expr. |
| 62 | static SCEV::NoWrapFlags getNoWrapFlags(const SCEV *Expr) { |
| 63 | if (auto *NAry = dyn_cast<SCEVNAryExpr>(Val: Expr)) |
| 64 | return NAry->getNoWrapFlags(); |
| 65 | return SCEV::NoWrapMask; |
| 66 | } |
| 67 | |
| 68 | static PWACtx combine(PWACtx PWAC0, PWACtx PWAC1, |
| 69 | __isl_give isl_pw_aff *(Fn)(__isl_take isl_pw_aff *, |
| 70 | __isl_take isl_pw_aff *)) { |
| 71 | PWAC0.first = isl::manage(ptr: Fn(PWAC0.first.release(), PWAC1.first.release())); |
| 72 | PWAC0.second = PWAC0.second.unite(set2: PWAC1.second); |
| 73 | return PWAC0; |
| 74 | } |
| 75 | |
| 76 | static __isl_give isl_pw_aff *getWidthExpValOnDomain(unsigned Width, |
| 77 | __isl_take isl_set *Dom) { |
| 78 | auto *Ctx = isl_set_get_ctx(set: Dom); |
| 79 | auto *WidthVal = isl_val_int_from_ui(ctx: Ctx, u: Width); |
| 80 | auto *ExpVal = isl_val_2exp(v: WidthVal); |
| 81 | return isl_pw_aff_val_on_domain(domain: Dom, v: ExpVal); |
| 82 | } |
| 83 | |
| 84 | SCEVAffinator::SCEVAffinator(Scop *S, LoopInfo &LI) |
| 85 | : S(S), Ctx(S->getIslCtx().get()), SE(*S->getSE()), LI(LI), |
| 86 | TD(S->getFunction().getDataLayout()) {} |
| 87 | |
| 88 | Loop *SCEVAffinator::getScope() { return BB ? LI.getLoopFor(BB) : nullptr; } |
| 89 | |
| 90 | void SCEVAffinator::interpretAsUnsigned(PWACtx &PWAC, unsigned Width) { |
| 91 | auto *NonNegDom = isl_pw_aff_nonneg_set(pwaff: PWAC.first.copy()); |
| 92 | auto *NonNegPWA = |
| 93 | isl_pw_aff_intersect_domain(pa: PWAC.first.copy(), set: isl_set_copy(set: NonNegDom)); |
| 94 | auto *ExpPWA = getWidthExpValOnDomain(Width, Dom: isl_set_complement(set: NonNegDom)); |
| 95 | PWAC.first = isl::manage(ptr: isl_pw_aff_union_add( |
| 96 | pwaff1: NonNegPWA, pwaff2: isl_pw_aff_add(pwaff1: PWAC.first.release(), pwaff2: ExpPWA))); |
| 97 | } |
| 98 | |
| 99 | void SCEVAffinator::takeNonNegativeAssumption( |
| 100 | PWACtx &PWAC, RecordedAssumptionsTy *RecordedAssumptions) { |
| 101 | this->RecordedAssumptions = RecordedAssumptions; |
| 102 | |
| 103 | auto *NegPWA = isl_pw_aff_neg(pwaff: PWAC.first.copy()); |
| 104 | auto *NegDom = isl_pw_aff_pos_set(pa: NegPWA); |
| 105 | PWAC.second = |
| 106 | isl::manage(ptr: isl_set_union(set1: PWAC.second.release(), set2: isl_set_copy(set: NegDom))); |
| 107 | auto *Restriction = BB ? NegDom : isl_set_params(set: NegDom); |
| 108 | auto DL = BB ? BB->getTerminator()->getDebugLoc() : DebugLoc(); |
| 109 | recordAssumption(RecordedAssumptions, Kind: UNSIGNED, Set: isl::manage(ptr: Restriction), Loc: DL, |
| 110 | Sign: AS_RESTRICTION, BB); |
| 111 | } |
| 112 | |
| 113 | PWACtx SCEVAffinator::getPWACtxFromPWA(isl::pw_aff PWA) { |
| 114 | return std::make_pair(x&: PWA, y: isl::set::empty(space: isl::space(Ctx, 0, NumIterators))); |
| 115 | } |
| 116 | |
| 117 | PWACtx SCEVAffinator::getPwAff(const SCEV *Expr, BasicBlock *BB, |
| 118 | RecordedAssumptionsTy *RecordedAssumptions) { |
| 119 | this->BB = BB; |
| 120 | this->RecordedAssumptions = RecordedAssumptions; |
| 121 | |
| 122 | if (BB) { |
| 123 | auto *DC = S->getDomainConditions(BB).release(); |
| 124 | NumIterators = isl_set_n_dim(set: DC); |
| 125 | isl_set_free(set: DC); |
| 126 | } else |
| 127 | NumIterators = 0; |
| 128 | |
| 129 | return visit(E: Expr); |
| 130 | } |
| 131 | |
| 132 | PWACtx SCEVAffinator::checkForWrapping(const SCEV *Expr, PWACtx PWAC) const { |
| 133 | // If the SCEV flags do contain NSW (no signed wrap) then PWA already |
| 134 | // represents Expr in modulo semantic (it is not allowed to overflow), thus we |
| 135 | // are done. Otherwise, we will compute: |
| 136 | // PWA = ((PWA + 2^(n-1)) mod (2 ^ n)) - 2^(n-1) |
| 137 | // whereas n is the number of bits of the Expr, hence: |
| 138 | // n = bitwidth(ExprType) |
| 139 | |
| 140 | if (IgnoreIntegerWrapping || (getNoWrapFlags(Expr) & SCEV::FlagNSW)) |
| 141 | return PWAC; |
| 142 | |
| 143 | isl::pw_aff PWAMod = addModuloSemantic(PWA: PWAC.first, ExprType: Expr->getType()); |
| 144 | |
| 145 | isl::set NotEqualSet = PWAC.first.ne_set(pwaff2: PWAMod); |
| 146 | PWAC.second = PWAC.second.unite(set2: NotEqualSet).coalesce(); |
| 147 | |
| 148 | const DebugLoc &Loc = BB ? BB->getTerminator()->getDebugLoc() : DebugLoc(); |
| 149 | if (!BB) |
| 150 | NotEqualSet = NotEqualSet.params(); |
| 151 | NotEqualSet = NotEqualSet.coalesce(); |
| 152 | |
| 153 | if (!NotEqualSet.is_empty()) |
| 154 | recordAssumption(RecordedAssumptions, Kind: WRAPPING, Set: NotEqualSet, Loc, |
| 155 | Sign: AS_RESTRICTION, BB); |
| 156 | |
| 157 | return PWAC; |
| 158 | } |
| 159 | |
| 160 | isl::pw_aff SCEVAffinator::addModuloSemantic(isl::pw_aff PWA, |
| 161 | Type *ExprType) const { |
| 162 | unsigned Width = TD.getTypeSizeInBits(Ty: ExprType); |
| 163 | |
| 164 | auto ModVal = isl::val::int_from_ui(ctx: Ctx, u: Width); |
| 165 | ModVal = ModVal.pow2(); |
| 166 | |
| 167 | isl::set Domain = PWA.domain(); |
| 168 | isl::pw_aff AddPW = |
| 169 | isl::manage(ptr: getWidthExpValOnDomain(Width: Width - 1, Dom: Domain.release())); |
| 170 | |
| 171 | return PWA.add(pwaff2: AddPW).mod(mod: ModVal).sub(pwaff2: AddPW); |
| 172 | } |
| 173 | |
| 174 | bool SCEVAffinator::hasNSWAddRecForLoop(Loop *L) const { |
| 175 | for (const auto &CachedPair : CachedExpressions) { |
| 176 | auto *AddRec = dyn_cast<SCEVAddRecExpr>(Val: CachedPair.first.first); |
| 177 | if (!AddRec) |
| 178 | continue; |
| 179 | if (AddRec->getLoop() != L) |
| 180 | continue; |
| 181 | if (AddRec->getNoWrapFlags() & SCEV::FlagNSW) |
| 182 | return true; |
| 183 | } |
| 184 | |
| 185 | return false; |
| 186 | } |
| 187 | |
| 188 | bool SCEVAffinator::computeModuloForExpr(const SCEV *Expr) { |
| 189 | unsigned Width = TD.getTypeSizeInBits(Ty: Expr->getType()); |
| 190 | // We assume nsw expressions never overflow. |
| 191 | if (auto *NAry = dyn_cast<SCEVNAryExpr>(Val: Expr)) |
| 192 | if (NAry->getNoWrapFlags() & SCEV::FlagNSW) |
| 193 | return false; |
| 194 | return Width <= MaxSmallBitWidth; |
| 195 | } |
| 196 | |
| 197 | PWACtx SCEVAffinator::visit(const SCEV *Expr) { |
| 198 | |
| 199 | auto Key = std::make_pair(x&: Expr, y&: BB); |
| 200 | PWACtx PWAC = CachedExpressions[Key]; |
| 201 | if (!PWAC.first.is_null()) |
| 202 | return PWAC; |
| 203 | |
| 204 | auto ConstantAndLeftOverPair = extractConstantFactor(M: Expr, SE); |
| 205 | auto *Factor = ConstantAndLeftOverPair.first; |
| 206 | Expr = ConstantAndLeftOverPair.second; |
| 207 | |
| 208 | auto *Scope = getScope(); |
| 209 | S->addParams(NewParameters: getParamsInAffineExpr(R: &S->getRegion(), Scope, Expression: Expr, SE)); |
| 210 | |
| 211 | // In case the scev is a valid parameter, we do not further analyze this |
| 212 | // expression, but create a new parameter in the isl_pw_aff. This allows us |
| 213 | // to treat subexpressions that we cannot translate into an piecewise affine |
| 214 | // expression, as constant parameters of the piecewise affine expression. |
| 215 | if (isl_id *Id = S->getIdForParam(Parameter: Expr).release()) { |
| 216 | isl_space *Space = isl_space_set_alloc(ctx: Ctx.get(), nparam: 1, dim: NumIterators); |
| 217 | Space = isl_space_set_dim_id(space: Space, type: isl_dim_param, pos: 0, id: Id); |
| 218 | |
| 219 | isl_set *Domain = isl_set_universe(space: isl_space_copy(space: Space)); |
| 220 | isl_aff *Affine = isl_aff_zero_on_domain(ls: isl_local_space_from_space(space: Space)); |
| 221 | Affine = isl_aff_add_coefficient_si(aff: Affine, type: isl_dim_param, pos: 0, v: 1); |
| 222 | |
| 223 | PWAC = getPWACtxFromPWA(PWA: isl::manage(ptr: isl_pw_aff_alloc(set: Domain, aff: Affine))); |
| 224 | } else { |
| 225 | PWAC = SCEVVisitor<SCEVAffinator, PWACtx>::visit(S: Expr); |
| 226 | if (computeModuloForExpr(Expr)) |
| 227 | PWAC.first = addModuloSemantic(PWA: PWAC.first, ExprType: Expr->getType()); |
| 228 | else |
| 229 | PWAC = checkForWrapping(Expr, PWAC); |
| 230 | } |
| 231 | |
| 232 | if (!Factor->getType()->isIntegerTy(Bitwidth: 1)) { |
| 233 | PWAC = combine(PWAC0: PWAC, PWAC1: visitConstant(E: Factor), Fn: isl_pw_aff_mul); |
| 234 | if (computeModuloForExpr(Expr: Key.first)) |
| 235 | PWAC.first = addModuloSemantic(PWA: PWAC.first, ExprType: Expr->getType()); |
| 236 | } |
| 237 | |
| 238 | // For compile time reasons we need to simplify the PWAC before we cache and |
| 239 | // return it. |
| 240 | PWAC.first = PWAC.first.coalesce(); |
| 241 | if (!computeModuloForExpr(Expr: Key.first)) |
| 242 | PWAC = checkForWrapping(Expr: Key.first, PWAC); |
| 243 | |
| 244 | CachedExpressions[Key] = PWAC; |
| 245 | return PWAC; |
| 246 | } |
| 247 | |
| 248 | PWACtx SCEVAffinator::visitConstant(const SCEVConstant *Expr) { |
| 249 | ConstantInt *Value = Expr->getValue(); |
| 250 | isl_val *v; |
| 251 | |
| 252 | // LLVM does not define if an integer value is interpreted as a signed or |
| 253 | // unsigned value. Hence, without further information, it is unknown how |
| 254 | // this value needs to be converted to GMP. At the moment, we only support |
| 255 | // signed operations. So we just interpret it as signed. Later, there are |
| 256 | // two options: |
| 257 | // |
| 258 | // 1. We always interpret any value as signed and convert the values on |
| 259 | // demand. |
| 260 | // 2. We pass down the signedness of the calculation and use it to interpret |
| 261 | // this constant correctly. |
| 262 | v = isl_valFromAPInt(Ctx: Ctx.get(), Int: Value->getValue(), /* isSigned */ IsSigned: true); |
| 263 | |
| 264 | isl_space *Space = isl_space_set_alloc(ctx: Ctx.get(), nparam: 0, dim: NumIterators); |
| 265 | isl_local_space *ls = isl_local_space_from_space(space: Space); |
| 266 | return getPWACtxFromPWA( |
| 267 | PWA: isl::manage(ptr: isl_pw_aff_from_aff(aff: isl_aff_val_on_domain(ls, val: v)))); |
| 268 | } |
| 269 | |
| 270 | PWACtx SCEVAffinator::visitVScale(const SCEVVScale *VScale) { |
| 271 | llvm_unreachable("SCEVVScale not yet supported" ); |
| 272 | } |
| 273 | |
| 274 | PWACtx SCEVAffinator::visitPtrToIntExpr(const SCEVPtrToIntExpr *Expr) { |
| 275 | return visit(Expr: Expr->getOperand(i: 0)); |
| 276 | } |
| 277 | |
| 278 | PWACtx SCEVAffinator::visitTruncateExpr(const SCEVTruncateExpr *Expr) { |
| 279 | // Truncate operations are basically modulo operations, thus we can |
| 280 | // model them that way. However, for large types we assume the operand |
| 281 | // to fit in the new type size instead of introducing a modulo with a very |
| 282 | // large constant. |
| 283 | |
| 284 | const SCEV *Op = Expr->getOperand(); |
| 285 | auto OpPWAC = visit(Expr: Op); |
| 286 | |
| 287 | unsigned Width = TD.getTypeSizeInBits(Ty: Expr->getType()); |
| 288 | |
| 289 | if (computeModuloForExpr(Expr)) |
| 290 | return OpPWAC; |
| 291 | |
| 292 | auto *Dom = OpPWAC.first.domain().release(); |
| 293 | auto *ExpPWA = getWidthExpValOnDomain(Width: Width - 1, Dom); |
| 294 | auto *GreaterDom = |
| 295 | isl_pw_aff_ge_set(pwaff1: OpPWAC.first.copy(), pwaff2: isl_pw_aff_copy(pwaff: ExpPWA)); |
| 296 | auto *SmallerDom = |
| 297 | isl_pw_aff_lt_set(pwaff1: OpPWAC.first.copy(), pwaff2: isl_pw_aff_neg(pwaff: ExpPWA)); |
| 298 | auto *OutOfBoundsDom = isl_set_union(set1: SmallerDom, set2: GreaterDom); |
| 299 | OpPWAC.second = OpPWAC.second.unite(set2: isl::manage_copy(ptr: OutOfBoundsDom)); |
| 300 | |
| 301 | if (!BB) { |
| 302 | assert(isl_set_dim(OutOfBoundsDom, isl_dim_set) == 0 && |
| 303 | "Expected a zero dimensional set for non-basic-block domains" ); |
| 304 | OutOfBoundsDom = isl_set_params(set: OutOfBoundsDom); |
| 305 | } |
| 306 | |
| 307 | recordAssumption(RecordedAssumptions, Kind: UNSIGNED, Set: isl::manage(ptr: OutOfBoundsDom), |
| 308 | Loc: DebugLoc(), Sign: AS_RESTRICTION, BB); |
| 309 | |
| 310 | return OpPWAC; |
| 311 | } |
| 312 | |
| 313 | PWACtx SCEVAffinator::visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { |
| 314 | // A zero-extended value can be interpreted as a piecewise defined signed |
| 315 | // value. If the value was non-negative it stays the same, otherwise it |
| 316 | // is the sum of the original value and 2^n where n is the bit-width of |
| 317 | // the original (or operand) type. Examples: |
| 318 | // zext i8 127 to i32 -> { [127] } |
| 319 | // zext i8 -1 to i32 -> { [256 + (-1)] } = { [255] } |
| 320 | // zext i8 %v to i32 -> [v] -> { [v] | v >= 0; [256 + v] | v < 0 } |
| 321 | // |
| 322 | // However, LLVM/Scalar Evolution uses zero-extend (potentially lead by a |
| 323 | // truncate) to represent some forms of modulo computation. The left-hand side |
| 324 | // of the condition in the code below would result in the SCEV |
| 325 | // "zext i1 <false, +, true>for.body" which is just another description |
| 326 | // of the C expression "i & 1 != 0" or, equivalently, "i % 2 != 0". |
| 327 | // |
| 328 | // for (i = 0; i < N; i++) |
| 329 | // if (i & 1 != 0 /* == i % 2 */) |
| 330 | // /* do something */ |
| 331 | // |
| 332 | // If we do not make the modulo explicit but only use the mechanism described |
| 333 | // above we will get the very restrictive assumption "N < 3", because for all |
| 334 | // values of N >= 3 the SCEVAddRecExpr operand of the zero-extend would wrap. |
| 335 | // Alternatively, we can make the modulo in the operand explicit in the |
| 336 | // resulting piecewise function and thereby avoid the assumption on N. For the |
| 337 | // example this would result in the following piecewise affine function: |
| 338 | // { [i0] -> [(1)] : 2*floor((-1 + i0)/2) = -1 + i0; |
| 339 | // [i0] -> [(0)] : 2*floor((i0)/2) = i0 } |
| 340 | // To this end we can first determine if the (immediate) operand of the |
| 341 | // zero-extend can wrap and, in case it might, we will use explicit modulo |
| 342 | // semantic to compute the result instead of emitting non-wrapping |
| 343 | // assumptions. |
| 344 | // |
| 345 | // Note that operands with large bit-widths are less likely to be negative |
| 346 | // because it would result in a very large access offset or loop bound after |
| 347 | // the zero-extend. To this end one can optimistically assume the operand to |
| 348 | // be positive and avoid the piecewise definition if the bit-width is bigger |
| 349 | // than some threshold (here MaxZextSmallBitWidth). |
| 350 | // |
| 351 | // We choose to go with a hybrid solution of all modeling techniques described |
| 352 | // above. For small bit-widths (up to MaxZextSmallBitWidth) we will model the |
| 353 | // wrapping explicitly and use a piecewise defined function. However, if the |
| 354 | // bit-width is bigger than MaxZextSmallBitWidth we will employ overflow |
| 355 | // assumptions and assume the "former negative" piece will not exist. |
| 356 | |
| 357 | const SCEV *Op = Expr->getOperand(); |
| 358 | auto OpPWAC = visit(Expr: Op); |
| 359 | |
| 360 | // If the width is to big we assume the negative part does not occur. |
| 361 | if (!computeModuloForExpr(Expr: Op)) { |
| 362 | takeNonNegativeAssumption(PWAC&: OpPWAC, RecordedAssumptions); |
| 363 | return OpPWAC; |
| 364 | } |
| 365 | |
| 366 | // If the width is small build the piece for the non-negative part and |
| 367 | // the one for the negative part and unify them. |
| 368 | unsigned Width = TD.getTypeSizeInBits(Ty: Op->getType()); |
| 369 | interpretAsUnsigned(PWAC&: OpPWAC, Width); |
| 370 | return OpPWAC; |
| 371 | } |
| 372 | |
| 373 | PWACtx SCEVAffinator::visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { |
| 374 | // As all values are represented as signed, a sign extension is a noop. |
| 375 | return visit(Expr: Expr->getOperand()); |
| 376 | } |
| 377 | |
| 378 | PWACtx SCEVAffinator::visitAddExpr(const SCEVAddExpr *Expr) { |
| 379 | PWACtx Sum = visit(Expr: Expr->getOperand(i: 0)); |
| 380 | |
| 381 | for (int i = 1, e = Expr->getNumOperands(); i < e; ++i) { |
| 382 | Sum = combine(PWAC0: Sum, PWAC1: visit(Expr: Expr->getOperand(i)), Fn: isl_pw_aff_add); |
| 383 | if (isTooComplex(PWAC: Sum)) |
| 384 | return complexityBailout(); |
| 385 | } |
| 386 | |
| 387 | return Sum; |
| 388 | } |
| 389 | |
| 390 | PWACtx SCEVAffinator::visitMulExpr(const SCEVMulExpr *Expr) { |
| 391 | PWACtx Prod = visit(Expr: Expr->getOperand(i: 0)); |
| 392 | |
| 393 | for (int i = 1, e = Expr->getNumOperands(); i < e; ++i) { |
| 394 | Prod = combine(PWAC0: Prod, PWAC1: visit(Expr: Expr->getOperand(i)), Fn: isl_pw_aff_mul); |
| 395 | if (isTooComplex(PWAC: Prod)) |
| 396 | return complexityBailout(); |
| 397 | } |
| 398 | |
| 399 | return Prod; |
| 400 | } |
| 401 | |
| 402 | PWACtx SCEVAffinator::visitAddRecExpr(const SCEVAddRecExpr *Expr) { |
| 403 | assert(Expr->isAffine() && "Only affine AddRecurrences allowed" ); |
| 404 | |
| 405 | auto Flags = Expr->getNoWrapFlags(); |
| 406 | |
| 407 | // Directly generate isl_pw_aff for Expr if 'start' is zero. |
| 408 | if (Expr->getStart()->isZero()) { |
| 409 | assert(S->contains(Expr->getLoop()) && |
| 410 | "Scop does not contain the loop referenced in this AddRec" ); |
| 411 | |
| 412 | PWACtx Step = visit(Expr: Expr->getOperand(i: 1)); |
| 413 | isl_space *Space = isl_space_set_alloc(ctx: Ctx.get(), nparam: 0, dim: NumIterators); |
| 414 | isl_local_space *LocalSpace = isl_local_space_from_space(space: Space); |
| 415 | |
| 416 | unsigned loopDimension = S->getRelativeLoopDepth(L: Expr->getLoop()); |
| 417 | |
| 418 | isl_aff *LAff = isl_aff_set_coefficient_si( |
| 419 | aff: isl_aff_zero_on_domain(ls: LocalSpace), type: isl_dim_in, pos: loopDimension, v: 1); |
| 420 | isl_pw_aff *LPwAff = isl_pw_aff_from_aff(aff: LAff); |
| 421 | |
| 422 | Step.first = Step.first.mul(pwaff2: isl::manage(ptr: LPwAff)); |
| 423 | return Step; |
| 424 | } |
| 425 | |
| 426 | // Translate AddRecExpr from '{start, +, inc}' into 'start + {0, +, inc}' |
| 427 | // if 'start' is not zero. |
| 428 | // TODO: Using the original SCEV no-wrap flags is not always safe, however |
| 429 | // as our code generation is reordering the expression anyway it doesn't |
| 430 | // really matter. |
| 431 | const SCEV *ZeroStartExpr = |
| 432 | SE.getAddRecExpr(Start: SE.getConstant(Ty: Expr->getStart()->getType(), V: 0), |
| 433 | Step: Expr->getStepRecurrence(SE), L: Expr->getLoop(), Flags); |
| 434 | |
| 435 | PWACtx Result = visit(Expr: ZeroStartExpr); |
| 436 | PWACtx Start = visit(Expr: Expr->getStart()); |
| 437 | Result = combine(PWAC0: Result, PWAC1: Start, Fn: isl_pw_aff_add); |
| 438 | return Result; |
| 439 | } |
| 440 | |
| 441 | PWACtx SCEVAffinator::visitSMaxExpr(const SCEVSMaxExpr *Expr) { |
| 442 | PWACtx Max = visit(Expr: Expr->getOperand(i: 0)); |
| 443 | |
| 444 | for (int i = 1, e = Expr->getNumOperands(); i < e; ++i) { |
| 445 | Max = combine(PWAC0: Max, PWAC1: visit(Expr: Expr->getOperand(i)), Fn: isl_pw_aff_max); |
| 446 | if (isTooComplex(PWAC: Max)) |
| 447 | return complexityBailout(); |
| 448 | } |
| 449 | |
| 450 | return Max; |
| 451 | } |
| 452 | |
| 453 | PWACtx SCEVAffinator::visitSMinExpr(const SCEVSMinExpr *Expr) { |
| 454 | PWACtx Min = visit(Expr: Expr->getOperand(i: 0)); |
| 455 | |
| 456 | for (int i = 1, e = Expr->getNumOperands(); i < e; ++i) { |
| 457 | Min = combine(PWAC0: Min, PWAC1: visit(Expr: Expr->getOperand(i)), Fn: isl_pw_aff_min); |
| 458 | if (isTooComplex(PWAC: Min)) |
| 459 | return complexityBailout(); |
| 460 | } |
| 461 | |
| 462 | return Min; |
| 463 | } |
| 464 | |
| 465 | PWACtx SCEVAffinator::visitUMaxExpr(const SCEVUMaxExpr *Expr) { |
| 466 | llvm_unreachable("SCEVUMaxExpr not yet supported" ); |
| 467 | } |
| 468 | |
| 469 | PWACtx SCEVAffinator::visitUMinExpr(const SCEVUMinExpr *Expr) { |
| 470 | llvm_unreachable("SCEVUMinExpr not yet supported" ); |
| 471 | } |
| 472 | |
| 473 | PWACtx |
| 474 | SCEVAffinator::visitSequentialUMinExpr(const SCEVSequentialUMinExpr *Expr) { |
| 475 | llvm_unreachable("SCEVSequentialUMinExpr not yet supported" ); |
| 476 | } |
| 477 | |
| 478 | PWACtx SCEVAffinator::visitUDivExpr(const SCEVUDivExpr *Expr) { |
| 479 | // The handling of unsigned division is basically the same as for signed |
| 480 | // division, except the interpretation of the operands. As the divisor |
| 481 | // has to be constant in both cases we can simply interpret it as an |
| 482 | // unsigned value without additional complexity in the representation. |
| 483 | // For the dividend we could choose from the different representation |
| 484 | // schemes introduced for zero-extend operations but for now we will |
| 485 | // simply use an assumption. |
| 486 | const SCEV *Dividend = Expr->getLHS(); |
| 487 | const SCEV *Divisor = Expr->getRHS(); |
| 488 | assert(isa<SCEVConstant>(Divisor) && |
| 489 | "UDiv is no parameter but has a non-constant RHS." ); |
| 490 | |
| 491 | auto DividendPWAC = visit(Expr: Dividend); |
| 492 | auto DivisorPWAC = visit(Expr: Divisor); |
| 493 | |
| 494 | if (SE.isKnownNegative(S: Divisor)) { |
| 495 | // Interpret negative divisors unsigned. This is a special case of the |
| 496 | // piece-wise defined value described for zero-extends as we already know |
| 497 | // the actual value of the constant divisor. |
| 498 | unsigned Width = TD.getTypeSizeInBits(Ty: Expr->getType()); |
| 499 | auto *DivisorDom = DivisorPWAC.first.domain().release(); |
| 500 | auto *WidthExpPWA = getWidthExpValOnDomain(Width, Dom: DivisorDom); |
| 501 | DivisorPWAC.first = DivisorPWAC.first.add(pwaff2: isl::manage(ptr: WidthExpPWA)); |
| 502 | } |
| 503 | |
| 504 | // TODO: One can represent the dividend as piece-wise function to be more |
| 505 | // precise but therefore a heuristic is needed. |
| 506 | |
| 507 | // Assume a non-negative dividend. |
| 508 | takeNonNegativeAssumption(PWAC&: DividendPWAC, RecordedAssumptions); |
| 509 | |
| 510 | DividendPWAC = combine(PWAC0: DividendPWAC, PWAC1: DivisorPWAC, Fn: isl_pw_aff_div); |
| 511 | DividendPWAC.first = DividendPWAC.first.floor(); |
| 512 | |
| 513 | return DividendPWAC; |
| 514 | } |
| 515 | |
| 516 | PWACtx SCEVAffinator::visitSDivInstruction(Instruction *SDiv) { |
| 517 | assert(SDiv->getOpcode() == Instruction::SDiv && "Assumed SDiv instruction!" ); |
| 518 | |
| 519 | auto *Scope = getScope(); |
| 520 | auto *Divisor = SDiv->getOperand(i: 1); |
| 521 | const SCEV *DivisorSCEV = SE.getSCEVAtScope(V: Divisor, L: Scope); |
| 522 | auto DivisorPWAC = visit(Expr: DivisorSCEV); |
| 523 | assert(isa<SCEVConstant>(DivisorSCEV) && |
| 524 | "SDiv is no parameter but has a non-constant RHS." ); |
| 525 | |
| 526 | auto *Dividend = SDiv->getOperand(i: 0); |
| 527 | const SCEV *DividendSCEV = SE.getSCEVAtScope(V: Dividend, L: Scope); |
| 528 | auto DividendPWAC = visit(Expr: DividendSCEV); |
| 529 | DividendPWAC = combine(PWAC0: DividendPWAC, PWAC1: DivisorPWAC, Fn: isl_pw_aff_tdiv_q); |
| 530 | return DividendPWAC; |
| 531 | } |
| 532 | |
| 533 | PWACtx SCEVAffinator::visitSRemInstruction(Instruction *SRem) { |
| 534 | assert(SRem->getOpcode() == Instruction::SRem && "Assumed SRem instruction!" ); |
| 535 | |
| 536 | auto *Scope = getScope(); |
| 537 | auto *Divisor = SRem->getOperand(i: 1); |
| 538 | const SCEV *DivisorSCEV = SE.getSCEVAtScope(V: Divisor, L: Scope); |
| 539 | auto DivisorPWAC = visit(Expr: DivisorSCEV); |
| 540 | assert(isa<ConstantInt>(Divisor) && |
| 541 | "SRem is no parameter but has a non-constant RHS." ); |
| 542 | |
| 543 | auto *Dividend = SRem->getOperand(i: 0); |
| 544 | const SCEV *DividendSCEV = SE.getSCEVAtScope(V: Dividend, L: Scope); |
| 545 | auto DividendPWAC = visit(Expr: DividendSCEV); |
| 546 | DividendPWAC = combine(PWAC0: DividendPWAC, PWAC1: DivisorPWAC, Fn: isl_pw_aff_tdiv_r); |
| 547 | return DividendPWAC; |
| 548 | } |
| 549 | |
| 550 | PWACtx SCEVAffinator::visitUnknown(const SCEVUnknown *Expr) { |
| 551 | if (Instruction *I = dyn_cast<Instruction>(Val: Expr->getValue())) { |
| 552 | switch (I->getOpcode()) { |
| 553 | case Instruction::IntToPtr: |
| 554 | return visit(Expr: SE.getSCEVAtScope(V: I->getOperand(i: 0), L: getScope())); |
| 555 | case Instruction::SDiv: |
| 556 | return visitSDivInstruction(SDiv: I); |
| 557 | case Instruction::SRem: |
| 558 | return visitSRemInstruction(SRem: I); |
| 559 | default: |
| 560 | break; // Fall through. |
| 561 | } |
| 562 | } |
| 563 | |
| 564 | if (isa<ConstantPointerNull>(Val: Expr->getValue())) { |
| 565 | isl::val v{Ctx, 0}; |
| 566 | isl::space Space{Ctx, 0, NumIterators}; |
| 567 | isl::local_space ls{Space}; |
| 568 | return getPWACtxFromPWA(PWA: isl::aff(ls, v)); |
| 569 | } |
| 570 | |
| 571 | llvm_unreachable("Unknowns SCEV was neither a parameter, a constant nor a " |
| 572 | "valid instruction." ); |
| 573 | } |
| 574 | |
| 575 | PWACtx SCEVAffinator::complexityBailout() { |
| 576 | // We hit the complexity limit for affine expressions; invalidate the scop |
| 577 | // and return a constant zero. |
| 578 | const DebugLoc &Loc = BB ? BB->getTerminator()->getDebugLoc() : DebugLoc(); |
| 579 | S->invalidate(Kind: COMPLEXITY, Loc); |
| 580 | return visit(Expr: SE.getZero(Ty: Type::getInt32Ty(C&: S->getFunction().getContext()))); |
| 581 | } |
| 582 | |