1 | //===------ VirtualInstruction.cpp ------------------------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // Tools for determining which instructions are within a statement and the |
10 | // nature of their operands. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "polly/Support/VirtualInstruction.h" |
15 | |
16 | using namespace polly; |
17 | using namespace llvm; |
18 | |
19 | VirtualUse VirtualUse::create(Scop *S, const Use &U, LoopInfo *LI, |
20 | bool Virtual) { |
21 | auto *UserBB = getUseBlock(U); |
22 | Loop *UserScope = LI->getLoopFor(BB: UserBB); |
23 | Instruction *UI = dyn_cast<Instruction>(Val: U.getUser()); |
24 | ScopStmt *UserStmt = S->getStmtFor(Inst: UI); |
25 | |
26 | // Uses by PHI nodes are always reading values written by other statements, |
27 | // except it is within a region statement. |
28 | if (PHINode *PHI = dyn_cast<PHINode>(Val: UI)) { |
29 | // Handle PHI in exit block. |
30 | if (S->getRegion().getExit() == PHI->getParent()) |
31 | return VirtualUse(UserStmt, U.get(), Inter, nullptr, nullptr); |
32 | |
33 | if (UserStmt->getEntryBlock() != PHI->getParent()) |
34 | return VirtualUse(UserStmt, U.get(), Intra, nullptr, nullptr); |
35 | |
36 | // The MemoryAccess is expected to be set if @p Virtual is true. |
37 | MemoryAccess *IncomingMA = nullptr; |
38 | if (Virtual) { |
39 | if (const ScopArrayInfo *SAI = |
40 | S->getScopArrayInfoOrNull(BasePtr: PHI, Kind: MemoryKind::PHI)) { |
41 | IncomingMA = S->getPHIRead(SAI); |
42 | assert(IncomingMA->getStatement() == UserStmt); |
43 | } |
44 | } |
45 | |
46 | return VirtualUse(UserStmt, U.get(), Inter, nullptr, IncomingMA); |
47 | } |
48 | |
49 | return create(S, UserStmt, UserScope, Val: U.get(), Virtual); |
50 | } |
51 | |
52 | VirtualUse VirtualUse::create(Scop *S, ScopStmt *UserStmt, Loop *UserScope, |
53 | Value *Val, bool Virtual) { |
54 | assert(!isa<StoreInst>(Val) && "a StoreInst cannot be used" ); |
55 | |
56 | if (isa<BasicBlock>(Val)) |
57 | return VirtualUse(UserStmt, Val, Block, nullptr, nullptr); |
58 | |
59 | if (isa<llvm::Constant>(Val) || isa<MetadataAsValue>(Val) || |
60 | isa<InlineAsm>(Val)) |
61 | return VirtualUse(UserStmt, Val, Constant, nullptr, nullptr); |
62 | |
63 | // Is the value synthesizable? If the user has been pruned |
64 | // (UserStmt == nullptr), it is either not used anywhere or is synthesizable. |
65 | // We assume synthesizable which practically should have the same effect. |
66 | auto *SE = S->getSE(); |
67 | if (SE->isSCEVable(Ty: Val->getType())) { |
68 | auto *ScevExpr = SE->getSCEVAtScope(V: Val, L: UserScope); |
69 | if (!UserStmt || canSynthesize(V: Val, S: *UserStmt->getParent(), SE, Scope: UserScope)) |
70 | return VirtualUse(UserStmt, Val, Synthesizable, ScevExpr, nullptr); |
71 | } |
72 | |
73 | // FIXME: Inconsistency between lookupInvariantEquivClass and |
74 | // getRequiredInvariantLoads. Querying one of them should be enough. |
75 | auto &RIL = S->getRequiredInvariantLoads(); |
76 | if (S->lookupInvariantEquivClass(Val) || RIL.count(key: dyn_cast<LoadInst>(Val))) |
77 | return VirtualUse(UserStmt, Val, Hoisted, nullptr, nullptr); |
78 | |
79 | // ReadOnly uses may have MemoryAccesses that we want to associate with the |
80 | // use. This is why we look for a MemoryAccess here already. |
81 | MemoryAccess *InputMA = nullptr; |
82 | if (UserStmt && Virtual) |
83 | InputMA = UserStmt->lookupValueReadOf(Inst: Val); |
84 | |
85 | // Uses are read-only if they have been defined before the SCoP, i.e., they |
86 | // cannot be written to inside the SCoP. Arguments are defined before any |
87 | // instructions, hence also before the SCoP. If the user has been pruned |
88 | // (UserStmt == nullptr) and is not SCEVable, assume it is read-only as it is |
89 | // neither an intra- nor an inter-use. |
90 | if (!UserStmt || isa<Argument>(Val)) |
91 | return VirtualUse(UserStmt, Val, ReadOnly, nullptr, InputMA); |
92 | |
93 | auto Inst = cast<Instruction>(Val); |
94 | if (!S->contains(I: Inst)) |
95 | return VirtualUse(UserStmt, Val, ReadOnly, nullptr, InputMA); |
96 | |
97 | // A use is inter-statement if either it is defined in another statement, or |
98 | // there is a MemoryAccess that reads its value that has been written by |
99 | // another statement. |
100 | if (InputMA || (!Virtual && UserStmt != S->getStmtFor(Inst))) |
101 | return VirtualUse(UserStmt, Val, Inter, nullptr, InputMA); |
102 | |
103 | return VirtualUse(UserStmt, Val, Intra, nullptr, nullptr); |
104 | } |
105 | |
106 | void VirtualUse::print(raw_ostream &OS, bool Reproducible) const { |
107 | OS << "User: [" << User->getBaseName() << "] " ; |
108 | switch (Kind) { |
109 | case VirtualUse::Constant: |
110 | OS << "Constant Op:" ; |
111 | break; |
112 | case VirtualUse::Block: |
113 | OS << "BasicBlock Op:" ; |
114 | break; |
115 | case VirtualUse::Synthesizable: |
116 | OS << "Synthesizable Op:" ; |
117 | break; |
118 | case VirtualUse::Hoisted: |
119 | OS << "Hoisted load Op:" ; |
120 | break; |
121 | case VirtualUse::ReadOnly: |
122 | OS << "Read-Only Op:" ; |
123 | break; |
124 | case VirtualUse::Intra: |
125 | OS << "Intra Op:" ; |
126 | break; |
127 | case VirtualUse::Inter: |
128 | OS << "Inter Op:" ; |
129 | break; |
130 | } |
131 | |
132 | if (Val) { |
133 | OS << ' '; |
134 | if (Reproducible) |
135 | OS << '"' << Val->getName() << '"'; |
136 | else |
137 | Val->print(O&: OS, IsForDebug: true); |
138 | } |
139 | if (ScevExpr) { |
140 | OS << ' '; |
141 | ScevExpr->print(OS); |
142 | } |
143 | if (InputMA && !Reproducible) |
144 | OS << ' ' << InputMA; |
145 | } |
146 | |
147 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
148 | LLVM_DUMP_METHOD void VirtualUse::dump() const { |
149 | print(OS&: errs(), Reproducible: false); |
150 | errs() << '\n'; |
151 | } |
152 | #endif |
153 | |
154 | void VirtualInstruction::print(raw_ostream &OS, bool Reproducible) const { |
155 | if (!Stmt || !Inst) { |
156 | OS << "[null VirtualInstruction]" ; |
157 | return; |
158 | } |
159 | |
160 | OS << "[" << Stmt->getBaseName() << "]" ; |
161 | Inst->print(O&: OS, IsForDebug: !Reproducible); |
162 | } |
163 | |
164 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
165 | LLVM_DUMP_METHOD void VirtualInstruction::dump() const { |
166 | print(OS&: errs(), Reproducible: false); |
167 | errs() << '\n'; |
168 | } |
169 | #endif |
170 | |
171 | /// Return true if @p Inst cannot be removed, even if it is nowhere referenced. |
172 | static bool isRoot(const Instruction *Inst) { |
173 | // The store is handled by its MemoryAccess. The load must be reached from the |
174 | // roots in order to be marked as used. |
175 | if (isa<LoadInst>(Val: Inst) || isa<StoreInst>(Val: Inst)) |
176 | return false; |
177 | |
178 | // Terminator instructions (in region statements) are required for control |
179 | // flow. |
180 | if (Inst->isTerminator()) |
181 | return true; |
182 | |
183 | // Writes to memory must be honored. |
184 | if (Inst->mayWriteToMemory()) |
185 | return true; |
186 | |
187 | return false; |
188 | } |
189 | |
190 | /// Return true for MemoryAccesses that cannot be removed because it represents |
191 | /// an llvm::Value that is used after the SCoP. |
192 | static bool isEscaping(MemoryAccess *MA) { |
193 | assert(MA->isOriginalValueKind()); |
194 | Scop *S = MA->getStatement()->getParent(); |
195 | return S->isEscaping(Inst: cast<Instruction>(Val: MA->getAccessValue())); |
196 | } |
197 | |
198 | /// Add non-removable virtual instructions in @p Stmt to @p RootInsts. |
199 | static void |
200 | addInstructionRoots(ScopStmt *Stmt, |
201 | SmallVectorImpl<VirtualInstruction> &RootInsts) { |
202 | if (!Stmt->isBlockStmt()) { |
203 | // In region statements the terminator statement and all statements that |
204 | // are not in the entry block cannot be eliminated and consequently must |
205 | // be roots. |
206 | RootInsts.emplace_back(Args&: Stmt, |
207 | Args: Stmt->getRegion()->getEntry()->getTerminator()); |
208 | for (BasicBlock *BB : Stmt->getRegion()->blocks()) |
209 | if (Stmt->getRegion()->getEntry() != BB) |
210 | for (Instruction &Inst : *BB) |
211 | RootInsts.emplace_back(Args&: Stmt, Args: &Inst); |
212 | return; |
213 | } |
214 | |
215 | for (Instruction *Inst : Stmt->getInstructions()) |
216 | if (isRoot(Inst)) |
217 | RootInsts.emplace_back(Args&: Stmt, Args&: Inst); |
218 | } |
219 | |
220 | /// Add non-removable memory accesses in @p Stmt to @p RootInsts. |
221 | /// |
222 | /// @param Local If true, all writes are assumed to escape. markAndSweep |
223 | /// algorithms can use this to be applicable to a single ScopStmt only without |
224 | /// the risk of removing definitions required by other statements. |
225 | /// If false, only writes for SCoP-escaping values are roots. This |
226 | /// is global mode, where such writes must be marked by theirs uses |
227 | /// in order to be reachable. |
228 | static void addAccessRoots(ScopStmt *Stmt, |
229 | SmallVectorImpl<MemoryAccess *> &RootAccs, |
230 | bool Local) { |
231 | for (auto *MA : *Stmt) { |
232 | if (!MA->isWrite()) |
233 | continue; |
234 | |
235 | // Writes to arrays are always used. |
236 | if (MA->isLatestArrayKind()) |
237 | RootAccs.push_back(Elt: MA); |
238 | |
239 | // Values are roots if they are escaping. |
240 | else if (MA->isLatestValueKind()) { |
241 | if (Local || isEscaping(MA)) |
242 | RootAccs.push_back(Elt: MA); |
243 | } |
244 | |
245 | // Exit phis are, by definition, escaping. |
246 | else if (MA->isLatestExitPHIKind()) |
247 | RootAccs.push_back(Elt: MA); |
248 | |
249 | // phi writes are only roots if we are not visiting the statement |
250 | // containing the PHINode. |
251 | else if (Local && MA->isLatestPHIKind()) |
252 | RootAccs.push_back(Elt: MA); |
253 | } |
254 | } |
255 | |
256 | /// Determine all instruction and access roots. |
257 | static void addRoots(ScopStmt *Stmt, |
258 | SmallVectorImpl<VirtualInstruction> &RootInsts, |
259 | SmallVectorImpl<MemoryAccess *> &RootAccs, bool Local) { |
260 | addInstructionRoots(Stmt, RootInsts); |
261 | addAccessRoots(Stmt, RootAccs, Local); |
262 | } |
263 | |
264 | /// Mark accesses and instructions as used if they are reachable from a root, |
265 | /// walking the operand trees. |
266 | /// |
267 | /// @param S The SCoP to walk. |
268 | /// @param LI The LoopInfo Analysis. |
269 | /// @param RootInsts List of root instructions. |
270 | /// @param RootAccs List of root accesses. |
271 | /// @param UsesInsts[out] Receives all reachable instructions, including the |
272 | /// roots. |
273 | /// @param UsedAccs[out] Receives all reachable accesses, including the roots. |
274 | /// @param OnlyLocal If non-nullptr, restricts walking to a single |
275 | /// statement. |
276 | static void walkReachable(Scop *S, LoopInfo *LI, |
277 | ArrayRef<VirtualInstruction> RootInsts, |
278 | ArrayRef<MemoryAccess *> RootAccs, |
279 | DenseSet<VirtualInstruction> &UsedInsts, |
280 | DenseSet<MemoryAccess *> &UsedAccs, |
281 | ScopStmt *OnlyLocal = nullptr) { |
282 | UsedInsts.clear(); |
283 | UsedAccs.clear(); |
284 | |
285 | SmallVector<VirtualInstruction, 32> WorklistInsts; |
286 | SmallVector<MemoryAccess *, 32> WorklistAccs; |
287 | |
288 | WorklistInsts.append(in_start: RootInsts.begin(), in_end: RootInsts.end()); |
289 | WorklistAccs.append(in_start: RootAccs.begin(), in_end: RootAccs.end()); |
290 | |
291 | auto AddToWorklist = [&](VirtualUse VUse) { |
292 | switch (VUse.getKind()) { |
293 | case VirtualUse::Block: |
294 | case VirtualUse::Constant: |
295 | case VirtualUse::Synthesizable: |
296 | case VirtualUse::Hoisted: |
297 | break; |
298 | case VirtualUse::ReadOnly: |
299 | // Read-only scalars only have MemoryAccesses if ModelReadOnlyScalars is |
300 | // enabled. |
301 | if (!VUse.getMemoryAccess()) |
302 | break; |
303 | [[fallthrough]]; |
304 | case VirtualUse::Inter: |
305 | assert(VUse.getMemoryAccess()); |
306 | WorklistAccs.push_back(Elt: VUse.getMemoryAccess()); |
307 | break; |
308 | case VirtualUse::Intra: |
309 | WorklistInsts.emplace_back(Args: VUse.getUser(), |
310 | Args: cast<Instruction>(Val: VUse.getValue())); |
311 | break; |
312 | } |
313 | }; |
314 | |
315 | while (true) { |
316 | // We have two worklists to process: Only when the MemoryAccess worklist is |
317 | // empty, we process the instruction worklist. |
318 | |
319 | while (!WorklistAccs.empty()) { |
320 | auto *Acc = WorklistAccs.pop_back_val(); |
321 | |
322 | ScopStmt *Stmt = Acc->getStatement(); |
323 | if (OnlyLocal && Stmt != OnlyLocal) |
324 | continue; |
325 | |
326 | auto Inserted = UsedAccs.insert(V: Acc); |
327 | if (!Inserted.second) |
328 | continue; |
329 | |
330 | if (Acc->isRead()) { |
331 | const ScopArrayInfo *SAI = Acc->getScopArrayInfo(); |
332 | |
333 | if (Acc->isLatestValueKind()) { |
334 | MemoryAccess *DefAcc = S->getValueDef(SAI); |
335 | |
336 | // Accesses to read-only values do not have a definition. |
337 | if (DefAcc) |
338 | WorklistAccs.push_back(Elt: S->getValueDef(SAI)); |
339 | } |
340 | |
341 | if (Acc->isLatestAnyPHIKind()) { |
342 | auto IncomingMAs = S->getPHIIncomings(SAI); |
343 | WorklistAccs.append(in_start: IncomingMAs.begin(), in_end: IncomingMAs.end()); |
344 | } |
345 | } |
346 | |
347 | if (Acc->isWrite()) { |
348 | if (Acc->isOriginalValueKind() || |
349 | (Acc->isOriginalArrayKind() && Acc->getAccessValue())) { |
350 | Loop *Scope = Stmt->getSurroundingLoop(); |
351 | VirtualUse VUse = |
352 | VirtualUse::create(S, UserStmt: Stmt, UserScope: Scope, Val: Acc->getAccessValue(), Virtual: true); |
353 | AddToWorklist(VUse); |
354 | } |
355 | |
356 | if (Acc->isOriginalAnyPHIKind()) { |
357 | for (auto Incoming : Acc->getIncoming()) { |
358 | VirtualUse VUse = VirtualUse::create( |
359 | S, UserStmt: Stmt, UserScope: LI->getLoopFor(BB: Incoming.first), Val: Incoming.second, Virtual: true); |
360 | AddToWorklist(VUse); |
361 | } |
362 | } |
363 | |
364 | if (Acc->isOriginalArrayKind()) |
365 | WorklistInsts.emplace_back(Args&: Stmt, Args: Acc->getAccessInstruction()); |
366 | } |
367 | } |
368 | |
369 | // If both worklists are empty, stop walking. |
370 | if (WorklistInsts.empty()) |
371 | break; |
372 | |
373 | VirtualInstruction VInst = WorklistInsts.pop_back_val(); |
374 | ScopStmt *Stmt = VInst.getStmt(); |
375 | Instruction *Inst = VInst.getInstruction(); |
376 | |
377 | // Do not process statements other than the local. |
378 | if (OnlyLocal && Stmt != OnlyLocal) |
379 | continue; |
380 | |
381 | auto InsertResult = UsedInsts.insert(V: VInst); |
382 | if (!InsertResult.second) |
383 | continue; |
384 | |
385 | // Add all operands to the worklists. |
386 | PHINode *PHI = dyn_cast<PHINode>(Val: Inst); |
387 | if (PHI && PHI->getParent() == Stmt->getEntryBlock()) { |
388 | if (MemoryAccess *PHIRead = Stmt->lookupPHIReadOf(PHI)) |
389 | WorklistAccs.push_back(Elt: PHIRead); |
390 | } else { |
391 | for (VirtualUse VUse : VInst.operands()) |
392 | AddToWorklist(VUse); |
393 | } |
394 | |
395 | // If there is an array access, also add its MemoryAccesses to the worklist. |
396 | const MemoryAccessList *Accs = Stmt->lookupArrayAccessesFor(Inst); |
397 | if (!Accs) |
398 | continue; |
399 | |
400 | for (MemoryAccess *Acc : *Accs) |
401 | WorklistAccs.push_back(Elt: Acc); |
402 | } |
403 | } |
404 | |
405 | void polly::markReachable(Scop *S, LoopInfo *LI, |
406 | DenseSet<VirtualInstruction> &UsedInsts, |
407 | DenseSet<MemoryAccess *> &UsedAccs, |
408 | ScopStmt *OnlyLocal) { |
409 | SmallVector<VirtualInstruction, 32> RootInsts; |
410 | SmallVector<MemoryAccess *, 32> RootAccs; |
411 | |
412 | if (OnlyLocal) { |
413 | addRoots(Stmt: OnlyLocal, RootInsts, RootAccs, Local: true); |
414 | } else { |
415 | for (auto &Stmt : *S) |
416 | addRoots(Stmt: &Stmt, RootInsts, RootAccs, Local: false); |
417 | } |
418 | |
419 | walkReachable(S, LI, RootInsts, RootAccs, UsedInsts, UsedAccs, OnlyLocal); |
420 | } |
421 | |