| 1 | //===------ VirtualInstruction.cpp ------------------------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Tools for determining which instructions are within a statement and the |
| 10 | // nature of their operands. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "polly/Support/VirtualInstruction.h" |
| 15 | |
| 16 | using namespace polly; |
| 17 | using namespace llvm; |
| 18 | |
| 19 | VirtualUse VirtualUse::create(Scop *S, const Use &U, LoopInfo *LI, |
| 20 | bool Virtual) { |
| 21 | auto *UserBB = getUseBlock(U); |
| 22 | Loop *UserScope = LI->getLoopFor(BB: UserBB); |
| 23 | Instruction *UI = dyn_cast<Instruction>(Val: U.getUser()); |
| 24 | ScopStmt *UserStmt = S->getStmtFor(Inst: UI); |
| 25 | |
| 26 | // Uses by PHI nodes are always reading values written by other statements, |
| 27 | // except it is within a region statement. |
| 28 | if (PHINode *PHI = dyn_cast<PHINode>(Val: UI)) { |
| 29 | // Handle PHI in exit block. |
| 30 | if (S->getRegion().getExit() == PHI->getParent()) |
| 31 | return VirtualUse(UserStmt, U.get(), Inter, nullptr, nullptr); |
| 32 | |
| 33 | if (UserStmt->getEntryBlock() != PHI->getParent()) |
| 34 | return VirtualUse(UserStmt, U.get(), Intra, nullptr, nullptr); |
| 35 | |
| 36 | // The MemoryAccess is expected to be set if @p Virtual is true. |
| 37 | MemoryAccess *IncomingMA = nullptr; |
| 38 | if (Virtual) { |
| 39 | if (const ScopArrayInfo *SAI = |
| 40 | S->getScopArrayInfoOrNull(BasePtr: PHI, Kind: MemoryKind::PHI)) { |
| 41 | IncomingMA = S->getPHIRead(SAI); |
| 42 | assert(IncomingMA->getStatement() == UserStmt); |
| 43 | } |
| 44 | } |
| 45 | |
| 46 | return VirtualUse(UserStmt, U.get(), Inter, nullptr, IncomingMA); |
| 47 | } |
| 48 | |
| 49 | return create(S, UserStmt, UserScope, Val: U.get(), Virtual); |
| 50 | } |
| 51 | |
| 52 | VirtualUse VirtualUse::create(Scop *S, ScopStmt *UserStmt, Loop *UserScope, |
| 53 | Value *Val, bool Virtual) { |
| 54 | assert(!isa<StoreInst>(Val) && "a StoreInst cannot be used" ); |
| 55 | |
| 56 | if (isa<BasicBlock>(Val)) |
| 57 | return VirtualUse(UserStmt, Val, Block, nullptr, nullptr); |
| 58 | |
| 59 | if (isa<llvm::Constant>(Val) || isa<MetadataAsValue>(Val) || |
| 60 | isa<InlineAsm>(Val)) |
| 61 | return VirtualUse(UserStmt, Val, Constant, nullptr, nullptr); |
| 62 | |
| 63 | // Is the value synthesizable? If the user has been pruned |
| 64 | // (UserStmt == nullptr), it is either not used anywhere or is synthesizable. |
| 65 | // We assume synthesizable which practically should have the same effect. |
| 66 | auto *SE = S->getSE(); |
| 67 | if (SE->isSCEVable(Ty: Val->getType())) { |
| 68 | const SCEV *ScevExpr = SE->getSCEVAtScope(V: Val, L: UserScope); |
| 69 | if (!UserStmt || canSynthesize(V: Val, S: *UserStmt->getParent(), SE, Scope: UserScope)) |
| 70 | return VirtualUse(UserStmt, Val, Synthesizable, ScevExpr, nullptr); |
| 71 | } |
| 72 | |
| 73 | // FIXME: Inconsistency between lookupInvariantEquivClass and |
| 74 | // getRequiredInvariantLoads. Querying one of them should be enough. |
| 75 | auto &RIL = S->getRequiredInvariantLoads(); |
| 76 | if (S->lookupInvariantEquivClass(Val) || RIL.count(key: dyn_cast<LoadInst>(Val))) |
| 77 | return VirtualUse(UserStmt, Val, Hoisted, nullptr, nullptr); |
| 78 | |
| 79 | // ReadOnly uses may have MemoryAccesses that we want to associate with the |
| 80 | // use. This is why we look for a MemoryAccess here already. |
| 81 | MemoryAccess *InputMA = nullptr; |
| 82 | if (UserStmt && Virtual) |
| 83 | InputMA = UserStmt->lookupValueReadOf(Inst: Val); |
| 84 | |
| 85 | // Uses are read-only if they have been defined before the SCoP, i.e., they |
| 86 | // cannot be written to inside the SCoP. Arguments are defined before any |
| 87 | // instructions, hence also before the SCoP. If the user has been pruned |
| 88 | // (UserStmt == nullptr) and is not SCEVable, assume it is read-only as it is |
| 89 | // neither an intra- nor an inter-use. |
| 90 | if (!UserStmt || isa<Argument>(Val)) |
| 91 | return VirtualUse(UserStmt, Val, ReadOnly, nullptr, InputMA); |
| 92 | |
| 93 | auto Inst = cast<Instruction>(Val); |
| 94 | if (!S->contains(I: Inst)) |
| 95 | return VirtualUse(UserStmt, Val, ReadOnly, nullptr, InputMA); |
| 96 | |
| 97 | // A use is inter-statement if either it is defined in another statement, or |
| 98 | // there is a MemoryAccess that reads its value that has been written by |
| 99 | // another statement. |
| 100 | if (InputMA || (!Virtual && UserStmt != S->getStmtFor(Inst))) |
| 101 | return VirtualUse(UserStmt, Val, Inter, nullptr, InputMA); |
| 102 | |
| 103 | return VirtualUse(UserStmt, Val, Intra, nullptr, nullptr); |
| 104 | } |
| 105 | |
| 106 | void VirtualUse::print(raw_ostream &OS, bool Reproducible) const { |
| 107 | OS << "User: [" << User->getBaseName() << "] " ; |
| 108 | switch (Kind) { |
| 109 | case VirtualUse::Constant: |
| 110 | OS << "Constant Op:" ; |
| 111 | break; |
| 112 | case VirtualUse::Block: |
| 113 | OS << "BasicBlock Op:" ; |
| 114 | break; |
| 115 | case VirtualUse::Synthesizable: |
| 116 | OS << "Synthesizable Op:" ; |
| 117 | break; |
| 118 | case VirtualUse::Hoisted: |
| 119 | OS << "Hoisted load Op:" ; |
| 120 | break; |
| 121 | case VirtualUse::ReadOnly: |
| 122 | OS << "Read-Only Op:" ; |
| 123 | break; |
| 124 | case VirtualUse::Intra: |
| 125 | OS << "Intra Op:" ; |
| 126 | break; |
| 127 | case VirtualUse::Inter: |
| 128 | OS << "Inter Op:" ; |
| 129 | break; |
| 130 | } |
| 131 | |
| 132 | if (Val) { |
| 133 | OS << ' '; |
| 134 | if (Reproducible) |
| 135 | OS << '"' << Val->getName() << '"'; |
| 136 | else |
| 137 | Val->print(O&: OS, IsForDebug: true); |
| 138 | } |
| 139 | if (ScevExpr) { |
| 140 | OS << ' '; |
| 141 | ScevExpr->print(OS); |
| 142 | } |
| 143 | if (InputMA && !Reproducible) |
| 144 | OS << ' ' << InputMA; |
| 145 | } |
| 146 | |
| 147 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 148 | LLVM_DUMP_METHOD void VirtualUse::dump() const { |
| 149 | print(OS&: errs(), Reproducible: false); |
| 150 | errs() << '\n'; |
| 151 | } |
| 152 | #endif |
| 153 | |
| 154 | void VirtualInstruction::print(raw_ostream &OS, bool Reproducible) const { |
| 155 | if (!Stmt || !Inst) { |
| 156 | OS << "[null VirtualInstruction]" ; |
| 157 | return; |
| 158 | } |
| 159 | |
| 160 | OS << "[" << Stmt->getBaseName() << "]" ; |
| 161 | Inst->print(O&: OS, IsForDebug: !Reproducible); |
| 162 | } |
| 163 | |
| 164 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 165 | LLVM_DUMP_METHOD void VirtualInstruction::dump() const { |
| 166 | print(OS&: errs(), Reproducible: false); |
| 167 | errs() << '\n'; |
| 168 | } |
| 169 | #endif |
| 170 | |
| 171 | /// Return true if @p Inst cannot be removed, even if it is nowhere referenced. |
| 172 | static bool isRoot(const Instruction *Inst) { |
| 173 | // The store is handled by its MemoryAccess. The load must be reached from the |
| 174 | // roots in order to be marked as used. |
| 175 | if (isa<LoadInst>(Val: Inst) || isa<StoreInst>(Val: Inst)) |
| 176 | return false; |
| 177 | |
| 178 | // Terminator instructions (in region statements) are required for control |
| 179 | // flow. |
| 180 | if (Inst->isTerminator()) |
| 181 | return true; |
| 182 | |
| 183 | // Writes to memory must be honored. |
| 184 | if (Inst->mayWriteToMemory()) |
| 185 | return true; |
| 186 | |
| 187 | return false; |
| 188 | } |
| 189 | |
| 190 | /// Return true for MemoryAccesses that cannot be removed because it represents |
| 191 | /// an llvm::Value that is used after the SCoP. |
| 192 | static bool isEscaping(MemoryAccess *MA) { |
| 193 | assert(MA->isOriginalValueKind()); |
| 194 | Scop *S = MA->getStatement()->getParent(); |
| 195 | return S->isEscaping(Inst: cast<Instruction>(Val: MA->getAccessValue())); |
| 196 | } |
| 197 | |
| 198 | /// Add non-removable virtual instructions in @p Stmt to @p RootInsts. |
| 199 | static void |
| 200 | addInstructionRoots(ScopStmt *Stmt, |
| 201 | SmallVectorImpl<VirtualInstruction> &RootInsts) { |
| 202 | if (!Stmt->isBlockStmt()) { |
| 203 | // In region statements the terminator statement and all statements that |
| 204 | // are not in the entry block cannot be eliminated and consequently must |
| 205 | // be roots. |
| 206 | RootInsts.emplace_back(Args&: Stmt, |
| 207 | Args: Stmt->getRegion()->getEntry()->getTerminator()); |
| 208 | for (BasicBlock *BB : Stmt->getRegion()->blocks()) |
| 209 | if (Stmt->getRegion()->getEntry() != BB) |
| 210 | for (Instruction &Inst : *BB) |
| 211 | RootInsts.emplace_back(Args&: Stmt, Args: &Inst); |
| 212 | return; |
| 213 | } |
| 214 | |
| 215 | for (Instruction *Inst : Stmt->getInstructions()) |
| 216 | if (isRoot(Inst)) |
| 217 | RootInsts.emplace_back(Args&: Stmt, Args&: Inst); |
| 218 | } |
| 219 | |
| 220 | /// Add non-removable memory accesses in @p Stmt to @p RootInsts. |
| 221 | /// |
| 222 | /// @param Local If true, all writes are assumed to escape. markAndSweep |
| 223 | /// algorithms can use this to be applicable to a single ScopStmt only without |
| 224 | /// the risk of removing definitions required by other statements. |
| 225 | /// If false, only writes for SCoP-escaping values are roots. This |
| 226 | /// is global mode, where such writes must be marked by theirs uses |
| 227 | /// in order to be reachable. |
| 228 | static void addAccessRoots(ScopStmt *Stmt, |
| 229 | SmallVectorImpl<MemoryAccess *> &RootAccs, |
| 230 | bool Local) { |
| 231 | for (auto *MA : *Stmt) { |
| 232 | if (!MA->isWrite()) |
| 233 | continue; |
| 234 | |
| 235 | // Writes to arrays are always used. |
| 236 | if (MA->isLatestArrayKind()) |
| 237 | RootAccs.push_back(Elt: MA); |
| 238 | |
| 239 | // Values are roots if they are escaping. |
| 240 | else if (MA->isLatestValueKind()) { |
| 241 | if (Local || isEscaping(MA)) |
| 242 | RootAccs.push_back(Elt: MA); |
| 243 | } |
| 244 | |
| 245 | // Exit phis are, by definition, escaping. |
| 246 | else if (MA->isLatestExitPHIKind()) |
| 247 | RootAccs.push_back(Elt: MA); |
| 248 | |
| 249 | // phi writes are only roots if we are not visiting the statement |
| 250 | // containing the PHINode. |
| 251 | else if (Local && MA->isLatestPHIKind()) |
| 252 | RootAccs.push_back(Elt: MA); |
| 253 | } |
| 254 | } |
| 255 | |
| 256 | /// Determine all instruction and access roots. |
| 257 | static void addRoots(ScopStmt *Stmt, |
| 258 | SmallVectorImpl<VirtualInstruction> &RootInsts, |
| 259 | SmallVectorImpl<MemoryAccess *> &RootAccs, bool Local) { |
| 260 | addInstructionRoots(Stmt, RootInsts); |
| 261 | addAccessRoots(Stmt, RootAccs, Local); |
| 262 | } |
| 263 | |
| 264 | /// Mark accesses and instructions as used if they are reachable from a root, |
| 265 | /// walking the operand trees. |
| 266 | /// |
| 267 | /// @param S The SCoP to walk. |
| 268 | /// @param LI The LoopInfo Analysis. |
| 269 | /// @param RootInsts List of root instructions. |
| 270 | /// @param RootAccs List of root accesses. |
| 271 | /// @param UsesInsts[out] Receives all reachable instructions, including the |
| 272 | /// roots. |
| 273 | /// @param UsedAccs[out] Receives all reachable accesses, including the roots. |
| 274 | /// @param OnlyLocal If non-nullptr, restricts walking to a single |
| 275 | /// statement. |
| 276 | static void walkReachable(Scop *S, LoopInfo *LI, |
| 277 | ArrayRef<VirtualInstruction> RootInsts, |
| 278 | ArrayRef<MemoryAccess *> RootAccs, |
| 279 | DenseSet<VirtualInstruction> &UsedInsts, |
| 280 | DenseSet<MemoryAccess *> &UsedAccs, |
| 281 | ScopStmt *OnlyLocal = nullptr) { |
| 282 | UsedInsts.clear(); |
| 283 | UsedAccs.clear(); |
| 284 | |
| 285 | SmallVector<VirtualInstruction, 32> WorklistInsts; |
| 286 | SmallVector<MemoryAccess *, 32> WorklistAccs; |
| 287 | |
| 288 | WorklistInsts.append(in_start: RootInsts.begin(), in_end: RootInsts.end()); |
| 289 | WorklistAccs.append(in_start: RootAccs.begin(), in_end: RootAccs.end()); |
| 290 | |
| 291 | auto AddToWorklist = [&](VirtualUse VUse) { |
| 292 | switch (VUse.getKind()) { |
| 293 | case VirtualUse::Block: |
| 294 | case VirtualUse::Constant: |
| 295 | case VirtualUse::Synthesizable: |
| 296 | case VirtualUse::Hoisted: |
| 297 | break; |
| 298 | case VirtualUse::ReadOnly: |
| 299 | // Read-only scalars only have MemoryAccesses if ModelReadOnlyScalars is |
| 300 | // enabled. |
| 301 | if (!VUse.getMemoryAccess()) |
| 302 | break; |
| 303 | [[fallthrough]]; |
| 304 | case VirtualUse::Inter: |
| 305 | assert(VUse.getMemoryAccess()); |
| 306 | WorklistAccs.push_back(Elt: VUse.getMemoryAccess()); |
| 307 | break; |
| 308 | case VirtualUse::Intra: |
| 309 | WorklistInsts.emplace_back(Args: VUse.getUser(), |
| 310 | Args: cast<Instruction>(Val: VUse.getValue())); |
| 311 | break; |
| 312 | } |
| 313 | }; |
| 314 | |
| 315 | while (true) { |
| 316 | // We have two worklists to process: Only when the MemoryAccess worklist is |
| 317 | // empty, we process the instruction worklist. |
| 318 | |
| 319 | while (!WorklistAccs.empty()) { |
| 320 | auto *Acc = WorklistAccs.pop_back_val(); |
| 321 | |
| 322 | ScopStmt *Stmt = Acc->getStatement(); |
| 323 | if (OnlyLocal && Stmt != OnlyLocal) |
| 324 | continue; |
| 325 | |
| 326 | auto Inserted = UsedAccs.insert(V: Acc); |
| 327 | if (!Inserted.second) |
| 328 | continue; |
| 329 | |
| 330 | if (Acc->isRead()) { |
| 331 | const ScopArrayInfo *SAI = Acc->getScopArrayInfo(); |
| 332 | |
| 333 | if (Acc->isLatestValueKind()) { |
| 334 | MemoryAccess *DefAcc = S->getValueDef(SAI); |
| 335 | |
| 336 | // Accesses to read-only values do not have a definition. |
| 337 | if (DefAcc) |
| 338 | WorklistAccs.push_back(Elt: S->getValueDef(SAI)); |
| 339 | } |
| 340 | |
| 341 | if (Acc->isLatestAnyPHIKind()) { |
| 342 | auto IncomingMAs = S->getPHIIncomings(SAI); |
| 343 | WorklistAccs.append(in_start: IncomingMAs.begin(), in_end: IncomingMAs.end()); |
| 344 | } |
| 345 | } |
| 346 | |
| 347 | if (Acc->isWrite()) { |
| 348 | if (Acc->isOriginalValueKind() || |
| 349 | (Acc->isOriginalArrayKind() && Acc->getAccessValue())) { |
| 350 | Loop *Scope = Stmt->getSurroundingLoop(); |
| 351 | VirtualUse VUse = |
| 352 | VirtualUse::create(S, UserStmt: Stmt, UserScope: Scope, Val: Acc->getAccessValue(), Virtual: true); |
| 353 | AddToWorklist(VUse); |
| 354 | } |
| 355 | |
| 356 | if (Acc->isOriginalAnyPHIKind()) { |
| 357 | for (auto Incoming : Acc->getIncoming()) { |
| 358 | VirtualUse VUse = VirtualUse::create( |
| 359 | S, UserStmt: Stmt, UserScope: LI->getLoopFor(BB: Incoming.first), Val: Incoming.second, Virtual: true); |
| 360 | AddToWorklist(VUse); |
| 361 | } |
| 362 | } |
| 363 | |
| 364 | if (Acc->isOriginalArrayKind()) |
| 365 | WorklistInsts.emplace_back(Args&: Stmt, Args: Acc->getAccessInstruction()); |
| 366 | } |
| 367 | } |
| 368 | |
| 369 | // If both worklists are empty, stop walking. |
| 370 | if (WorklistInsts.empty()) |
| 371 | break; |
| 372 | |
| 373 | VirtualInstruction VInst = WorklistInsts.pop_back_val(); |
| 374 | ScopStmt *Stmt = VInst.getStmt(); |
| 375 | Instruction *Inst = VInst.getInstruction(); |
| 376 | |
| 377 | // Do not process statements other than the local. |
| 378 | if (OnlyLocal && Stmt != OnlyLocal) |
| 379 | continue; |
| 380 | |
| 381 | auto InsertResult = UsedInsts.insert(V: VInst); |
| 382 | if (!InsertResult.second) |
| 383 | continue; |
| 384 | |
| 385 | // Add all operands to the worklists. |
| 386 | PHINode *PHI = dyn_cast<PHINode>(Val: Inst); |
| 387 | if (PHI && PHI->getParent() == Stmt->getEntryBlock()) { |
| 388 | if (MemoryAccess *PHIRead = Stmt->lookupPHIReadOf(PHI)) |
| 389 | WorklistAccs.push_back(Elt: PHIRead); |
| 390 | } else { |
| 391 | for (VirtualUse VUse : VInst.operands()) |
| 392 | AddToWorklist(VUse); |
| 393 | } |
| 394 | |
| 395 | // If there is an array access, also add its MemoryAccesses to the worklist. |
| 396 | const MemoryAccessList *Accs = Stmt->lookupArrayAccessesFor(Inst); |
| 397 | if (!Accs) |
| 398 | continue; |
| 399 | |
| 400 | for (MemoryAccess *Acc : *Accs) |
| 401 | WorklistAccs.push_back(Elt: Acc); |
| 402 | } |
| 403 | } |
| 404 | |
| 405 | void polly::markReachable(Scop *S, LoopInfo *LI, |
| 406 | DenseSet<VirtualInstruction> &UsedInsts, |
| 407 | DenseSet<MemoryAccess *> &UsedAccs, |
| 408 | ScopStmt *OnlyLocal) { |
| 409 | SmallVector<VirtualInstruction, 32> RootInsts; |
| 410 | SmallVector<MemoryAccess *, 32> RootAccs; |
| 411 | |
| 412 | if (OnlyLocal) { |
| 413 | addRoots(Stmt: OnlyLocal, RootInsts, RootAccs, Local: true); |
| 414 | } else { |
| 415 | for (auto &Stmt : *S) |
| 416 | addRoots(Stmt: &Stmt, RootInsts, RootAccs, Local: false); |
| 417 | } |
| 418 | |
| 419 | walkReachable(S, LI, RootInsts, RootAccs, UsedInsts, UsedAccs, OnlyLocal); |
| 420 | } |
| 421 | |