1 | /**************************************************************************** |
2 | ** |
3 | ** Copyright (C) 2018 The Qt Company Ltd. |
4 | ** Contact: https://www.qt.io/licensing/ |
5 | ** |
6 | ** This file is part of the QtGui module of the Qt Toolkit. |
7 | ** |
8 | ** $QT_BEGIN_LICENSE:LGPL$ |
9 | ** Commercial License Usage |
10 | ** Licensees holding valid commercial Qt licenses may use this file in |
11 | ** accordance with the commercial license agreement provided with the |
12 | ** Software or, alternatively, in accordance with the terms contained in |
13 | ** a written agreement between you and The Qt Company. For licensing terms |
14 | ** and conditions see https://www.qt.io/terms-conditions. For further |
15 | ** information use the contact form at https://www.qt.io/contact-us. |
16 | ** |
17 | ** GNU Lesser General Public License Usage |
18 | ** Alternatively, this file may be used under the terms of the GNU Lesser |
19 | ** General Public License version 3 as published by the Free Software |
20 | ** Foundation and appearing in the file LICENSE.LGPL3 included in the |
21 | ** packaging of this file. Please review the following information to |
22 | ** ensure the GNU Lesser General Public License version 3 requirements |
23 | ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. |
24 | ** |
25 | ** GNU General Public License Usage |
26 | ** Alternatively, this file may be used under the terms of the GNU |
27 | ** General Public License version 2.0 or (at your option) the GNU General |
28 | ** Public license version 3 or any later version approved by the KDE Free |
29 | ** Qt Foundation. The licenses are as published by the Free Software |
30 | ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 |
31 | ** included in the packaging of this file. Please review the following |
32 | ** information to ensure the GNU General Public License requirements will |
33 | ** be met: https://www.gnu.org/licenses/gpl-2.0.html and |
34 | ** https://www.gnu.org/licenses/gpl-3.0.html. |
35 | ** |
36 | ** $QT_END_LICENSE$ |
37 | ** |
38 | ****************************************************************************/ |
39 | |
40 | #include "qimage.h" |
41 | |
42 | #include "qbuffer.h" |
43 | #include "qdatastream.h" |
44 | #include "qcolortransform.h" |
45 | #include "qmap.h" |
46 | #include "qmatrix.h" |
47 | #include "qtransform.h" |
48 | #include "qimagereader.h" |
49 | #include "qimagewriter.h" |
50 | #include "qstringlist.h" |
51 | #include "qvariant.h" |
52 | #include "qimagepixmapcleanuphooks_p.h" |
53 | #include <qpa/qplatformintegration.h> |
54 | #include <private/qguiapplication_p.h> |
55 | #include <ctype.h> |
56 | #include <stdlib.h> |
57 | #include <limits.h> |
58 | #include <qpa/qplatformpixmap.h> |
59 | #include <private/qcolortransform_p.h> |
60 | #include <private/qdrawhelper_p.h> |
61 | #include <private/qmemrotate_p.h> |
62 | #include <private/qimagescale_p.h> |
63 | #include <private/qsimd_p.h> |
64 | |
65 | #include <qhash.h> |
66 | |
67 | #include <private/qpaintengine_raster_p.h> |
68 | |
69 | #include <private/qimage_p.h> |
70 | #include <private/qfont_p.h> |
71 | |
72 | #if QT_CONFIG(thread) |
73 | #include "qsemaphore.h" |
74 | #include "qthreadpool.h" |
75 | #endif |
76 | |
77 | #include <qtgui_tracepoints_p.h> |
78 | |
79 | QT_BEGIN_NAMESPACE |
80 | |
81 | static inline bool isLocked(QImageData *data) |
82 | { |
83 | return data != nullptr && data->is_locked; |
84 | } |
85 | |
86 | #if defined(Q_CC_DEC) && defined(__alpha) && (__DECCXX_VER-0 >= 50190001) |
87 | #pragma message disable narrowptr |
88 | #endif |
89 | |
90 | |
91 | #define QIMAGE_SANITYCHECK_MEMORY(image) \ |
92 | if ((image).isNull()) { \ |
93 | qWarning("QImage: out of memory, returning null image"); \ |
94 | return QImage(); \ |
95 | } |
96 | |
97 | |
98 | static QImage rotated90(const QImage &src); |
99 | static QImage rotated180(const QImage &src); |
100 | static QImage rotated270(const QImage &src); |
101 | |
102 | static int next_qimage_serial_number() |
103 | { |
104 | static QBasicAtomicInt serial = Q_BASIC_ATOMIC_INITIALIZER(0); |
105 | return 1 + serial.fetchAndAddRelaxed(valueToAdd: 1); |
106 | } |
107 | |
108 | QImageData::QImageData() |
109 | : ref(0), width(0), height(0), depth(0), nbytes(0), devicePixelRatio(1.0), data(nullptr), |
110 | format(QImage::Format_ARGB32), bytes_per_line(0), |
111 | ser_no(next_qimage_serial_number()), |
112 | detach_no(0), |
113 | dpmx(qt_defaultDpiX() * 100 / qreal(2.54)), |
114 | dpmy(qt_defaultDpiY() * 100 / qreal(2.54)), |
115 | offset(0, 0), own_data(true), ro_data(false), has_alpha_clut(false), |
116 | is_cached(false), is_locked(false), cleanupFunction(nullptr), cleanupInfo(nullptr), |
117 | paintEngine(nullptr) |
118 | { |
119 | } |
120 | |
121 | /*! \fn QImageData * QImageData::create(const QSize &size, QImage::Format format) |
122 | |
123 | \internal |
124 | |
125 | Creates a new image data. |
126 | Returns \nullptr if invalid parameters are give or anything else failed. |
127 | */ |
128 | QImageData * QImageData::create(const QSize &size, QImage::Format format) |
129 | { |
130 | if (size.isEmpty() || format == QImage::Format_Invalid) |
131 | return nullptr; // invalid parameter(s) |
132 | |
133 | Q_TRACE_SCOPE(QImageData_create, size, format); |
134 | |
135 | int width = size.width(); |
136 | int height = size.height(); |
137 | int depth = qt_depthForFormat(format); |
138 | auto params = calculateImageParameters(width, height, depth); |
139 | if (!params.isValid()) |
140 | return nullptr; |
141 | |
142 | QScopedPointer<QImageData> d(new QImageData); |
143 | |
144 | switch (format) { |
145 | case QImage::Format_Mono: |
146 | case QImage::Format_MonoLSB: |
147 | d->colortable.resize(asize: 2); |
148 | d->colortable[0] = QColor(Qt::black).rgba(); |
149 | d->colortable[1] = QColor(Qt::white).rgba(); |
150 | break; |
151 | default: |
152 | break; |
153 | } |
154 | |
155 | d->width = width; |
156 | d->height = height; |
157 | d->depth = depth; |
158 | d->format = format; |
159 | d->has_alpha_clut = false; |
160 | d->is_cached = false; |
161 | |
162 | d->bytes_per_line = params.bytesPerLine; |
163 | d->nbytes = params.totalSize; |
164 | d->data = (uchar *)malloc(size: d->nbytes); |
165 | |
166 | if (!d->data) |
167 | return nullptr; |
168 | |
169 | d->ref.ref(); |
170 | return d.take(); |
171 | } |
172 | |
173 | QImageData::~QImageData() |
174 | { |
175 | if (cleanupFunction) |
176 | cleanupFunction(cleanupInfo); |
177 | if (is_cached) |
178 | QImagePixmapCleanupHooks::executeImageHooks(key: (((qint64) ser_no) << 32) | ((qint64) detach_no)); |
179 | delete paintEngine; |
180 | if (data && own_data) |
181 | free(ptr: data); |
182 | data = nullptr; |
183 | } |
184 | |
185 | #if defined(_M_ARM) && defined(_MSC_VER) |
186 | #pragma optimize("", off) |
187 | #endif |
188 | |
189 | bool QImageData::checkForAlphaPixels() const |
190 | { |
191 | bool has_alpha_pixels = false; |
192 | |
193 | switch (format) { |
194 | |
195 | case QImage::Format_Mono: |
196 | case QImage::Format_MonoLSB: |
197 | case QImage::Format_Indexed8: |
198 | has_alpha_pixels = has_alpha_clut; |
199 | break; |
200 | case QImage::Format_Alpha8: |
201 | has_alpha_pixels = true; |
202 | break; |
203 | case QImage::Format_ARGB32: |
204 | case QImage::Format_ARGB32_Premultiplied: { |
205 | const uchar *bits = data; |
206 | for (int y=0; y<height && !has_alpha_pixels; ++y) { |
207 | uint alphaAnd = 0xff000000; |
208 | for (int x=0; x<width; ++x) |
209 | alphaAnd &= reinterpret_cast<const uint*>(bits)[x]; |
210 | has_alpha_pixels = (alphaAnd != 0xff000000); |
211 | bits += bytes_per_line; |
212 | } |
213 | } break; |
214 | |
215 | case QImage::Format_RGBA8888: |
216 | case QImage::Format_RGBA8888_Premultiplied: { |
217 | const uchar *bits = data; |
218 | for (int y=0; y<height && !has_alpha_pixels; ++y) { |
219 | uchar alphaAnd = 0xff; |
220 | for (int x=0; x<width; ++x) |
221 | alphaAnd &= bits[x * 4+ 3]; |
222 | has_alpha_pixels = (alphaAnd != 0xff); |
223 | bits += bytes_per_line; |
224 | } |
225 | } break; |
226 | |
227 | case QImage::Format_A2BGR30_Premultiplied: |
228 | case QImage::Format_A2RGB30_Premultiplied: { |
229 | const uchar *bits = data; |
230 | for (int y=0; y<height && !has_alpha_pixels; ++y) { |
231 | uint alphaAnd = 0xc0000000; |
232 | for (int x=0; x<width; ++x) |
233 | alphaAnd &= reinterpret_cast<const uint*>(bits)[x]; |
234 | has_alpha_pixels = (alphaAnd != 0xc0000000); |
235 | bits += bytes_per_line; |
236 | } |
237 | } break; |
238 | |
239 | case QImage::Format_ARGB8555_Premultiplied: |
240 | case QImage::Format_ARGB8565_Premultiplied: { |
241 | const uchar *bits = data; |
242 | const uchar *end_bits = data + bytes_per_line; |
243 | |
244 | for (int y=0; y<height && !has_alpha_pixels; ++y) { |
245 | uchar alphaAnd = 0xff; |
246 | while (bits < end_bits) { |
247 | alphaAnd &= bits[0]; |
248 | bits += 3; |
249 | } |
250 | has_alpha_pixels = (alphaAnd != 0xff); |
251 | bits = end_bits; |
252 | end_bits += bytes_per_line; |
253 | } |
254 | } break; |
255 | |
256 | case QImage::Format_ARGB6666_Premultiplied: { |
257 | const uchar *bits = data; |
258 | const uchar *end_bits = data + bytes_per_line; |
259 | |
260 | for (int y=0; y<height && !has_alpha_pixels; ++y) { |
261 | uchar alphaAnd = 0xfc; |
262 | while (bits < end_bits) { |
263 | alphaAnd &= bits[0]; |
264 | bits += 3; |
265 | } |
266 | has_alpha_pixels = (alphaAnd != 0xfc); |
267 | bits = end_bits; |
268 | end_bits += bytes_per_line; |
269 | } |
270 | } break; |
271 | |
272 | case QImage::Format_ARGB4444_Premultiplied: { |
273 | const uchar *bits = data; |
274 | for (int y=0; y<height && !has_alpha_pixels; ++y) { |
275 | ushort alphaAnd = 0xf000; |
276 | for (int x=0; x<width; ++x) |
277 | alphaAnd &= reinterpret_cast<const ushort*>(bits)[x]; |
278 | has_alpha_pixels = (alphaAnd != 0xf000); |
279 | bits += bytes_per_line; |
280 | } |
281 | } break; |
282 | case QImage::Format_RGBA64: |
283 | case QImage::Format_RGBA64_Premultiplied: { |
284 | uchar *bits = data; |
285 | for (int y=0; y<height && !has_alpha_pixels; ++y) { |
286 | for (int x=0; x<width; ++x) { |
287 | has_alpha_pixels |= !(((QRgba64 *)bits)[x].isOpaque()); |
288 | } |
289 | bits += bytes_per_line; |
290 | } |
291 | } break; |
292 | |
293 | case QImage::Format_RGB32: |
294 | case QImage::Format_RGB16: |
295 | case QImage::Format_RGB444: |
296 | case QImage::Format_RGB555: |
297 | case QImage::Format_RGB666: |
298 | case QImage::Format_RGB888: |
299 | case QImage::Format_BGR888: |
300 | case QImage::Format_RGBX8888: |
301 | case QImage::Format_BGR30: |
302 | case QImage::Format_RGB30: |
303 | case QImage::Format_Grayscale8: |
304 | case QImage::Format_Grayscale16: |
305 | case QImage::Format_RGBX64: |
306 | break; |
307 | case QImage::Format_Invalid: |
308 | case QImage::NImageFormats: |
309 | Q_UNREACHABLE(); |
310 | break; |
311 | } |
312 | |
313 | return has_alpha_pixels; |
314 | } |
315 | #if defined(_M_ARM) && defined(_MSC_VER) |
316 | #pragma optimize("", on) |
317 | #endif |
318 | |
319 | /*! |
320 | \class QImage |
321 | |
322 | \inmodule QtGui |
323 | \ingroup painting |
324 | \ingroup shared |
325 | |
326 | \reentrant |
327 | |
328 | \brief The QImage class provides a hardware-independent image |
329 | representation that allows direct access to the pixel data, and |
330 | can be used as a paint device. |
331 | |
332 | Qt provides four classes for handling image data: QImage, QPixmap, |
333 | QBitmap and QPicture. QImage is designed and optimized for I/O, |
334 | and for direct pixel access and manipulation, while QPixmap is |
335 | designed and optimized for showing images on screen. QBitmap is |
336 | only a convenience class that inherits QPixmap, ensuring a |
337 | depth of 1. Finally, the QPicture class is a paint device that |
338 | records and replays QPainter commands. |
339 | |
340 | Because QImage is a QPaintDevice subclass, QPainter can be used to |
341 | draw directly onto images. When using QPainter on a QImage, the |
342 | painting can be performed in another thread than the current GUI |
343 | thread. |
344 | |
345 | The QImage class supports several image formats described by the |
346 | \l Format enum. These include monochrome, 8-bit, 32-bit and |
347 | alpha-blended images which are available in all versions of Qt |
348 | 4.x. |
349 | |
350 | QImage provides a collection of functions that can be used to |
351 | obtain a variety of information about the image. There are also |
352 | several functions that enables transformation of the image. |
353 | |
354 | QImage objects can be passed around by value since the QImage |
355 | class uses \l{Implicit Data Sharing}{implicit data |
356 | sharing}. QImage objects can also be streamed and compared. |
357 | |
358 | \note If you would like to load QImage objects in a static build of Qt, |
359 | refer to the \l{How to Create Qt Plugins}{Plugin HowTo}. |
360 | |
361 | \warning Painting on a QImage with the format |
362 | QImage::Format_Indexed8 is not supported. |
363 | |
364 | \tableofcontents |
365 | |
366 | \section1 Reading and Writing Image Files |
367 | |
368 | QImage provides several ways of loading an image file: The file |
369 | can be loaded when constructing the QImage object, or by using the |
370 | load() or loadFromData() functions later on. QImage also provides |
371 | the static fromData() function, constructing a QImage from the |
372 | given data. When loading an image, the file name can either refer |
373 | to an actual file on disk or to one of the application's embedded |
374 | resources. See \l{The Qt Resource System} overview for details |
375 | on how to embed images and other resource files in the |
376 | application's executable. |
377 | |
378 | Simply call the save() function to save a QImage object. |
379 | |
380 | The complete list of supported file formats are available through |
381 | the QImageReader::supportedImageFormats() and |
382 | QImageWriter::supportedImageFormats() functions. New file formats |
383 | can be added as plugins. By default, Qt supports the following |
384 | formats: |
385 | |
386 | \table |
387 | \header \li Format \li Description \li Qt's support |
388 | \row \li BMP \li Windows Bitmap \li Read/write |
389 | \row \li GIF \li Graphic Interchange Format (optional) \li Read |
390 | \row \li JPG \li Joint Photographic Experts Group \li Read/write |
391 | \row \li JPEG \li Joint Photographic Experts Group \li Read/write |
392 | \row \li PNG \li Portable Network Graphics \li Read/write |
393 | \row \li PBM \li Portable Bitmap \li Read |
394 | \row \li PGM \li Portable Graymap \li Read |
395 | \row \li PPM \li Portable Pixmap \li Read/write |
396 | \row \li XBM \li X11 Bitmap \li Read/write |
397 | \row \li XPM \li X11 Pixmap \li Read/write |
398 | \endtable |
399 | |
400 | \section1 Image Information |
401 | |
402 | QImage provides a collection of functions that can be used to |
403 | obtain a variety of information about the image: |
404 | |
405 | \table |
406 | \header |
407 | \li \li Available Functions |
408 | |
409 | \row |
410 | \li Geometry |
411 | \li |
412 | |
413 | The size(), width(), height(), dotsPerMeterX(), and |
414 | dotsPerMeterY() functions provide information about the image size |
415 | and aspect ratio. |
416 | |
417 | The rect() function returns the image's enclosing rectangle. The |
418 | valid() function tells if a given pair of coordinates is within |
419 | this rectangle. The offset() function returns the number of pixels |
420 | by which the image is intended to be offset by when positioned |
421 | relative to other images, which also can be manipulated using the |
422 | setOffset() function. |
423 | |
424 | \row |
425 | \li Colors |
426 | \li |
427 | |
428 | The color of a pixel can be retrieved by passing its coordinates |
429 | to the pixel() function. The pixel() function returns the color |
430 | as a QRgb value indepedent of the image's format. |
431 | |
432 | In case of monochrome and 8-bit images, the colorCount() and |
433 | colorTable() functions provide information about the color |
434 | components used to store the image data: The colorTable() function |
435 | returns the image's entire color table. To obtain a single entry, |
436 | use the pixelIndex() function to retrieve the pixel index for a |
437 | given pair of coordinates, then use the color() function to |
438 | retrieve the color. Note that if you create an 8-bit image |
439 | manually, you have to set a valid color table on the image as |
440 | well. |
441 | |
442 | The hasAlphaChannel() function tells if the image's format |
443 | respects the alpha channel, or not. The allGray() and |
444 | isGrayscale() functions tell whether an image's colors are all |
445 | shades of gray. |
446 | |
447 | See also the \l {QImage#Pixel Manipulation}{Pixel Manipulation} |
448 | and \l {QImage#Image Transformations}{Image Transformations} |
449 | sections. |
450 | |
451 | \row |
452 | \li Text |
453 | \li |
454 | |
455 | The text() function returns the image text associated with the |
456 | given text key. An image's text keys can be retrieved using the |
457 | textKeys() function. Use the setText() function to alter an |
458 | image's text. |
459 | |
460 | \row |
461 | \li Low-level information |
462 | \li |
463 | |
464 | The depth() function returns the depth of the image. The supported |
465 | depths are 1 (monochrome), 8, 16, 24 and 32 bits. The |
466 | bitPlaneCount() function tells how many of those bits that are |
467 | used. For more information see the |
468 | \l {QImage#Image Formats}{Image Formats} section. |
469 | |
470 | The format(), bytesPerLine(), and sizeInBytes() functions provide |
471 | low-level information about the data stored in the image. |
472 | |
473 | The cacheKey() function returns a number that uniquely |
474 | identifies the contents of this QImage object. |
475 | \endtable |
476 | |
477 | \section1 Pixel Manipulation |
478 | |
479 | The functions used to manipulate an image's pixels depend on the |
480 | image format. The reason is that monochrome and 8-bit images are |
481 | index-based and use a color lookup table, while 32-bit images |
482 | store ARGB values directly. For more information on image formats, |
483 | see the \l {Image Formats} section. |
484 | |
485 | In case of a 32-bit image, the setPixel() function can be used to |
486 | alter the color of the pixel at the given coordinates to any other |
487 | color specified as an ARGB quadruplet. To make a suitable QRgb |
488 | value, use the qRgb() (adding a default alpha component to the |
489 | given RGB values, i.e. creating an opaque color) or qRgba() |
490 | function. For example: |
491 | |
492 | \table |
493 | \header |
494 | \li {2,1}32-bit |
495 | \row |
496 | \li \inlineimage qimage-32bit_scaled.png |
497 | \li |
498 | \snippet code/src_gui_image_qimage.cpp 0 |
499 | \endtable |
500 | |
501 | In case of a 8-bit and monchrome images, the pixel value is only |
502 | an index from the image's color table. So the setPixel() function |
503 | can only be used to alter the color of the pixel at the given |
504 | coordinates to a predefined color from the image's color table, |
505 | i.e. it can only change the pixel's index value. To alter or add a |
506 | color to an image's color table, use the setColor() function. |
507 | |
508 | An entry in the color table is an ARGB quadruplet encoded as an |
509 | QRgb value. Use the qRgb() and qRgba() functions to make a |
510 | suitable QRgb value for use with the setColor() function. For |
511 | example: |
512 | |
513 | \table |
514 | \header |
515 | \li {2,1} 8-bit |
516 | \row |
517 | \li \inlineimage qimage-8bit_scaled.png |
518 | \li |
519 | \snippet code/src_gui_image_qimage.cpp 1 |
520 | \endtable |
521 | |
522 | For images with more than 8-bit per color-channel. The methods |
523 | setPixelColor() and pixelColor() can be used to set and get |
524 | with QColor values. |
525 | |
526 | QImage also provide the scanLine() function which returns a |
527 | pointer to the pixel data at the scanline with the given index, |
528 | and the bits() function which returns a pointer to the first pixel |
529 | data (this is equivalent to \c scanLine(0)). |
530 | |
531 | \section1 Image Formats |
532 | |
533 | Each pixel stored in a QImage is represented by an integer. The |
534 | size of the integer varies depending on the format. QImage |
535 | supports several image formats described by the \l Format |
536 | enum. |
537 | |
538 | Monochrome images are stored using 1-bit indexes into a color table |
539 | with at most two colors. There are two different types of |
540 | monochrome images: big endian (MSB first) or little endian (LSB |
541 | first) bit order. |
542 | |
543 | 8-bit images are stored using 8-bit indexes into a color table, |
544 | i.e. they have a single byte per pixel. The color table is a |
545 | QVector<QRgb>, and the QRgb typedef is equivalent to an unsigned |
546 | int containing an ARGB quadruplet on the format 0xAARRGGBB. |
547 | |
548 | 32-bit images have no color table; instead, each pixel contains an |
549 | QRgb value. There are three different types of 32-bit images |
550 | storing RGB (i.e. 0xffRRGGBB), ARGB and premultiplied ARGB |
551 | values respectively. In the premultiplied format the red, green, |
552 | and blue channels are multiplied by the alpha component divided by |
553 | 255. |
554 | |
555 | An image's format can be retrieved using the format() |
556 | function. Use the convertToFormat() functions to convert an image |
557 | into another format. The allGray() and isGrayscale() functions |
558 | tell whether a color image can safely be converted to a grayscale |
559 | image. |
560 | |
561 | \section1 Image Transformations |
562 | |
563 | QImage supports a number of functions for creating a new image |
564 | that is a transformed version of the original: The |
565 | createAlphaMask() function builds and returns a 1-bpp mask from |
566 | the alpha buffer in this image, and the createHeuristicMask() |
567 | function creates and returns a 1-bpp heuristic mask for this |
568 | image. The latter function works by selecting a color from one of |
569 | the corners, then chipping away pixels of that color starting at |
570 | all the edges. |
571 | |
572 | The mirrored() function returns a mirror of the image in the |
573 | desired direction, the scaled() returns a copy of the image scaled |
574 | to a rectangle of the desired measures, and the rgbSwapped() function |
575 | constructs a BGR image from a RGB image. |
576 | |
577 | The scaledToWidth() and scaledToHeight() functions return scaled |
578 | copies of the image. |
579 | |
580 | The transformed() function returns a copy of the image that is |
581 | transformed with the given transformation matrix and |
582 | transformation mode: Internally, the transformation matrix is |
583 | adjusted to compensate for unwanted translation, |
584 | i.e. transformed() returns the smallest image containing all |
585 | transformed points of the original image. The static trueMatrix() |
586 | function returns the actual matrix used for transforming the |
587 | image. |
588 | |
589 | There are also functions for changing attributes of an image |
590 | in-place: |
591 | |
592 | \table |
593 | \header \li Function \li Description |
594 | \row |
595 | \li setDotsPerMeterX() |
596 | \li Defines the aspect ratio by setting the number of pixels that fit |
597 | horizontally in a physical meter. |
598 | \row |
599 | \li setDotsPerMeterY() |
600 | \li Defines the aspect ratio by setting the number of pixels that fit |
601 | vertically in a physical meter. |
602 | \row |
603 | \li fill() |
604 | \li Fills the entire image with the given pixel value. |
605 | \row |
606 | \li invertPixels() |
607 | \li Inverts all pixel values in the image using the given InvertMode value. |
608 | \row |
609 | \li setColorTable() |
610 | \li Sets the color table used to translate color indexes. Only |
611 | monochrome and 8-bit formats. |
612 | \row |
613 | \li setColorCount() |
614 | \li Resizes the color table. Only monochrome and 8-bit formats. |
615 | |
616 | \endtable |
617 | |
618 | \sa QImageReader, QImageWriter, QPixmap, QSvgRenderer, {Image Composition Example}, |
619 | {Image Viewer Example}, {Scribble Example}, {Pixelator Example} |
620 | */ |
621 | |
622 | /*! |
623 | \fn QImage::QImage(QImage &&other) |
624 | |
625 | Move-constructs a QImage instance, making it point at the same |
626 | object that \a other was pointing to. |
627 | |
628 | \since 5.2 |
629 | */ |
630 | |
631 | /*! |
632 | \fn QImage &QImage::operator=(QImage &&other) |
633 | |
634 | Move-assigns \a other to this QImage instance. |
635 | |
636 | \since 5.2 |
637 | */ |
638 | |
639 | /*! |
640 | \typedef QImageCleanupFunction |
641 | \relates QImage |
642 | \since 5.0 |
643 | |
644 | A function with the following signature that can be used to |
645 | implement basic image memory management: |
646 | |
647 | \code |
648 | void myImageCleanupHandler(void *info); |
649 | \endcode |
650 | */ |
651 | |
652 | /*! |
653 | \enum QImage::InvertMode |
654 | |
655 | This enum type is used to describe how pixel values should be |
656 | inverted in the invertPixels() function. |
657 | |
658 | \value InvertRgb Invert only the RGB values and leave the alpha |
659 | channel unchanged. |
660 | |
661 | \value InvertRgba Invert all channels, including the alpha channel. |
662 | |
663 | \sa invertPixels() |
664 | */ |
665 | |
666 | /*! |
667 | \enum QImage::Format |
668 | |
669 | The following image formats are available in Qt. |
670 | See the notes after the table. |
671 | |
672 | \value Format_Invalid The image is invalid. |
673 | \value Format_Mono The image is stored using 1-bit per pixel. Bytes are |
674 | packed with the most significant bit (MSB) first. |
675 | \value Format_MonoLSB The image is stored using 1-bit per pixel. Bytes are |
676 | packed with the less significant bit (LSB) first. |
677 | |
678 | \value Format_Indexed8 The image is stored using 8-bit indexes |
679 | into a colormap. |
680 | |
681 | \value Format_RGB32 The image is stored using a 32-bit RGB format (0xffRRGGBB). |
682 | |
683 | \value Format_ARGB32 The image is stored using a 32-bit ARGB |
684 | format (0xAARRGGBB). |
685 | |
686 | \value Format_ARGB32_Premultiplied The image is stored using a premultiplied 32-bit |
687 | ARGB format (0xAARRGGBB), i.e. the red, |
688 | green, and blue channels are multiplied |
689 | by the alpha component divided by 255. (If RR, GG, or BB |
690 | has a higher value than the alpha channel, the results are |
691 | undefined.) Certain operations (such as image composition |
692 | using alpha blending) are faster using premultiplied ARGB32 |
693 | than with plain ARGB32. |
694 | |
695 | \value Format_RGB16 The image is stored using a 16-bit RGB format (5-6-5). |
696 | |
697 | \value Format_ARGB8565_Premultiplied The image is stored using a |
698 | premultiplied 24-bit ARGB format (8-5-6-5). |
699 | \value Format_RGB666 The image is stored using a 24-bit RGB format (6-6-6). |
700 | The unused most significant bits is always zero. |
701 | \value Format_ARGB6666_Premultiplied The image is stored using a |
702 | premultiplied 24-bit ARGB format (6-6-6-6). |
703 | \value Format_RGB555 The image is stored using a 16-bit RGB format (5-5-5). |
704 | The unused most significant bit is always zero. |
705 | \value Format_ARGB8555_Premultiplied The image is stored using a |
706 | premultiplied 24-bit ARGB format (8-5-5-5). |
707 | \value Format_RGB888 The image is stored using a 24-bit RGB format (8-8-8). |
708 | \value Format_RGB444 The image is stored using a 16-bit RGB format (4-4-4). |
709 | The unused bits are always zero. |
710 | \value Format_ARGB4444_Premultiplied The image is stored using a |
711 | premultiplied 16-bit ARGB format (4-4-4-4). |
712 | \value Format_RGBX8888 The image is stored using a 32-bit byte-ordered RGB(x) format (8-8-8-8). |
713 | This is the same as the Format_RGBA8888 except alpha must always be 255. (added in Qt 5.2) |
714 | \value Format_RGBA8888 The image is stored using a 32-bit byte-ordered RGBA format (8-8-8-8). |
715 | Unlike ARGB32 this is a byte-ordered format, which means the 32bit |
716 | encoding differs between big endian and little endian architectures, |
717 | being respectively (0xRRGGBBAA) and (0xAABBGGRR). The order of the colors |
718 | is the same on any architecture if read as bytes 0xRR,0xGG,0xBB,0xAA. (added in Qt 5.2) |
719 | \value Format_RGBA8888_Premultiplied The image is stored using a |
720 | premultiplied 32-bit byte-ordered RGBA format (8-8-8-8). (added in Qt 5.2) |
721 | \value Format_BGR30 The image is stored using a 32-bit BGR format (x-10-10-10). (added in Qt 5.4) |
722 | \value Format_A2BGR30_Premultiplied The image is stored using a 32-bit premultiplied ABGR format (2-10-10-10). (added in Qt 5.4) |
723 | \value Format_RGB30 The image is stored using a 32-bit RGB format (x-10-10-10). (added in Qt 5.4) |
724 | \value Format_A2RGB30_Premultiplied The image is stored using a 32-bit premultiplied ARGB format (2-10-10-10). (added in Qt 5.4) |
725 | \value Format_Alpha8 The image is stored using an 8-bit alpha only format. (added in Qt 5.5) |
726 | \value Format_Grayscale8 The image is stored using an 8-bit grayscale format. (added in Qt 5.5) |
727 | \value Format_Grayscale16 The image is stored using an 16-bit grayscale format. (added in Qt 5.13) |
728 | \value Format_RGBX64 The image is stored using a 64-bit halfword-ordered RGB(x) format (16-16-16-16). |
729 | This is the same as the Format_RGBA64 except alpha must always be 65535. (added in Qt 5.12) |
730 | \value Format_RGBA64 The image is stored using a 64-bit halfword-ordered RGBA format (16-16-16-16). (added in Qt 5.12) |
731 | \value Format_RGBA64_Premultiplied The image is stored using a premultiplied 64-bit halfword-ordered |
732 | RGBA format (16-16-16-16). (added in Qt 5.12) |
733 | \value Format_BGR888 The image is stored using a 24-bit BGR format. (added in Qt 5.14) |
734 | |
735 | \note Drawing into a QImage with QImage::Format_Indexed8 is not |
736 | supported. |
737 | |
738 | \note Avoid most rendering directly to most of these formats using QPainter. Rendering |
739 | is best optimized to the \c Format_RGB32 and \c Format_ARGB32_Premultiplied formats, and secondarily for rendering to the |
740 | \c Format_RGB16, \c Format_RGBX8888, \c Format_RGBA8888_Premultiplied, \c Format_RGBX64 and \c Format_RGBA64_Premultiplied formats |
741 | |
742 | \sa format(), convertToFormat() |
743 | */ |
744 | |
745 | /***************************************************************************** |
746 | QImage member functions |
747 | *****************************************************************************/ |
748 | |
749 | /*! |
750 | Constructs a null image. |
751 | |
752 | \sa isNull() |
753 | */ |
754 | |
755 | QImage::QImage() noexcept |
756 | : QPaintDevice() |
757 | { |
758 | d = nullptr; |
759 | } |
760 | |
761 | /*! |
762 | Constructs an image with the given \a width, \a height and \a |
763 | format. |
764 | |
765 | A \l{isNull()}{null} image will be returned if memory cannot be allocated. |
766 | |
767 | \warning This will create a QImage with uninitialized data. Call |
768 | fill() to fill the image with an appropriate pixel value before |
769 | drawing onto it with QPainter. |
770 | */ |
771 | QImage::QImage(int width, int height, Format format) |
772 | : QImage(QSize(width, height), format) |
773 | { |
774 | } |
775 | |
776 | /*! |
777 | Constructs an image with the given \a size and \a format. |
778 | |
779 | A \l{isNull()}{null} image is returned if memory cannot be allocated. |
780 | |
781 | \warning This will create a QImage with uninitialized data. Call |
782 | fill() to fill the image with an appropriate pixel value before |
783 | drawing onto it with QPainter. |
784 | */ |
785 | QImage::QImage(const QSize &size, Format format) |
786 | : QPaintDevice() |
787 | { |
788 | d = QImageData::create(size, format); |
789 | } |
790 | |
791 | |
792 | |
793 | QImageData *QImageData::create(uchar *data, int width, int height, int bpl, QImage::Format format, bool readOnly, QImageCleanupFunction cleanupFunction, void *cleanupInfo) |
794 | { |
795 | if (width <= 0 || height <= 0 || !data || format == QImage::Format_Invalid) |
796 | return nullptr; |
797 | |
798 | const int depth = qt_depthForFormat(format); |
799 | auto params = calculateImageParameters(width, height, depth); |
800 | if (!params.isValid()) |
801 | return nullptr; |
802 | |
803 | if (bpl > 0) { |
804 | // can't overflow, because has calculateImageParameters already done this multiplication |
805 | const int min_bytes_per_line = (width * depth + 7)/8; |
806 | if (bpl < min_bytes_per_line) |
807 | return nullptr; |
808 | |
809 | // recalculate the total with this value |
810 | params.bytesPerLine = bpl; |
811 | if (mul_overflow<qsizetype>(v1: bpl, v2: height, r: ¶ms.totalSize)) |
812 | return nullptr; |
813 | } |
814 | |
815 | QImageData *d = new QImageData; |
816 | d->ref.ref(); |
817 | |
818 | d->own_data = false; |
819 | d->ro_data = readOnly; |
820 | d->data = data; |
821 | d->width = width; |
822 | d->height = height; |
823 | d->depth = depth; |
824 | d->format = format; |
825 | |
826 | d->bytes_per_line = params.bytesPerLine; |
827 | d->nbytes = params.totalSize; |
828 | |
829 | d->cleanupFunction = cleanupFunction; |
830 | d->cleanupInfo = cleanupInfo; |
831 | |
832 | return d; |
833 | } |
834 | |
835 | /*! |
836 | Constructs an image with the given \a width, \a height and \a |
837 | format, that uses an existing memory buffer, \a data. The \a width |
838 | and \a height must be specified in pixels, \a data must be 32-bit aligned, |
839 | and each scanline of data in the image must also be 32-bit aligned. |
840 | |
841 | The buffer must remain valid throughout the life of the QImage and |
842 | all copies that have not been modified or otherwise detached from |
843 | the original buffer. The image does not delete the buffer at destruction. |
844 | You can provide a function pointer \a cleanupFunction along with an |
845 | extra pointer \a cleanupInfo that will be called when the last copy |
846 | is destroyed. |
847 | |
848 | If \a format is an indexed color format, the image color table is |
849 | initially empty and must be sufficiently expanded with |
850 | setColorCount() or setColorTable() before the image is used. |
851 | */ |
852 | QImage::QImage(uchar* data, int width, int height, Format format, QImageCleanupFunction cleanupFunction, void *cleanupInfo) |
853 | : QPaintDevice() |
854 | { |
855 | d = QImageData::create(data, width, height, bpl: 0, format, readOnly: false, cleanupFunction, cleanupInfo); |
856 | } |
857 | |
858 | /*! |
859 | Constructs an image with the given \a width, \a height and \a |
860 | format, that uses an existing read-only memory buffer, \a |
861 | data. The \a width and \a height must be specified in pixels, \a |
862 | data must be 32-bit aligned, and each scanline of data in the |
863 | image must also be 32-bit aligned. |
864 | |
865 | The buffer must remain valid throughout the life of the QImage and |
866 | all copies that have not been modified or otherwise detached from |
867 | the original buffer. The image does not delete the buffer at destruction. |
868 | You can provide a function pointer \a cleanupFunction along with an |
869 | extra pointer \a cleanupInfo that will be called when the last copy |
870 | is destroyed. |
871 | |
872 | If \a format is an indexed color format, the image color table is |
873 | initially empty and must be sufficiently expanded with |
874 | setColorCount() or setColorTable() before the image is used. |
875 | |
876 | Unlike the similar QImage constructor that takes a non-const data buffer, |
877 | this version will never alter the contents of the buffer. For example, |
878 | calling QImage::bits() will return a deep copy of the image, rather than |
879 | the buffer passed to the constructor. This allows for the efficiency of |
880 | constructing a QImage from raw data, without the possibility of the raw |
881 | data being changed. |
882 | */ |
883 | QImage::QImage(const uchar* data, int width, int height, Format format, QImageCleanupFunction cleanupFunction, void *cleanupInfo) |
884 | : QPaintDevice() |
885 | { |
886 | d = QImageData::create(data: const_cast<uchar*>(data), width, height, bpl: 0, format, readOnly: true, cleanupFunction, cleanupInfo); |
887 | } |
888 | |
889 | /*! |
890 | Constructs an image with the given \a width, \a height and \a |
891 | format, that uses an existing memory buffer, \a data. The \a width |
892 | and \a height must be specified in pixels. \a bytesPerLine |
893 | specifies the number of bytes per line (stride). |
894 | |
895 | The buffer must remain valid throughout the life of the QImage and |
896 | all copies that have not been modified or otherwise detached from |
897 | the original buffer. The image does not delete the buffer at destruction. |
898 | You can provide a function pointer \a cleanupFunction along with an |
899 | extra pointer \a cleanupInfo that will be called when the last copy |
900 | is destroyed. |
901 | |
902 | If \a format is an indexed color format, the image color table is |
903 | initially empty and must be sufficiently expanded with |
904 | setColorCount() or setColorTable() before the image is used. |
905 | */ |
906 | QImage::QImage(uchar *data, int width, int height, int bytesPerLine, Format format, QImageCleanupFunction cleanupFunction, void *cleanupInfo) |
907 | :QPaintDevice() |
908 | { |
909 | d = QImageData::create(data, width, height, bpl: bytesPerLine, format, readOnly: false, cleanupFunction, cleanupInfo); |
910 | } |
911 | |
912 | |
913 | /*! |
914 | Constructs an image with the given \a width, \a height and \a |
915 | format, that uses an existing memory buffer, \a data. The \a width |
916 | and \a height must be specified in pixels. \a bytesPerLine |
917 | specifies the number of bytes per line (stride). |
918 | |
919 | The buffer must remain valid throughout the life of the QImage and |
920 | all copies that have not been modified or otherwise detached from |
921 | the original buffer. The image does not delete the buffer at destruction. |
922 | You can provide a function pointer \a cleanupFunction along with an |
923 | extra pointer \a cleanupInfo that will be called when the last copy |
924 | is destroyed. |
925 | |
926 | If \a format is an indexed color format, the image color table is |
927 | initially empty and must be sufficiently expanded with |
928 | setColorCount() or setColorTable() before the image is used. |
929 | |
930 | Unlike the similar QImage constructor that takes a non-const data buffer, |
931 | this version will never alter the contents of the buffer. For example, |
932 | calling QImage::bits() will return a deep copy of the image, rather than |
933 | the buffer passed to the constructor. This allows for the efficiency of |
934 | constructing a QImage from raw data, without the possibility of the raw |
935 | data being changed. |
936 | */ |
937 | |
938 | QImage::QImage(const uchar *data, int width, int height, int bytesPerLine, Format format, QImageCleanupFunction cleanupFunction, void *cleanupInfo) |
939 | :QPaintDevice() |
940 | { |
941 | d = QImageData::create(data: const_cast<uchar*>(data), width, height, bpl: bytesPerLine, format, readOnly: true, cleanupFunction, cleanupInfo); |
942 | } |
943 | |
944 | /*! |
945 | Constructs an image and tries to load the image from the file with |
946 | the given \a fileName. |
947 | |
948 | The loader attempts to read the image using the specified \a |
949 | format. If the \a format is not specified (which is the default), |
950 | it is auto-detected based on the file's suffix and header. For |
951 | details, see {QImageReader::setAutoDetectImageFormat()}{QImageReader}. |
952 | |
953 | If the loading of the image failed, this object is a null image. |
954 | |
955 | The file name can either refer to an actual file on disk or to one |
956 | of the application's embedded resources. See the |
957 | \l{resources.html}{Resource System} overview for details on how to |
958 | embed images and other resource files in the application's |
959 | executable. |
960 | |
961 | \sa isNull(), {QImage#Reading and Writing Image Files}{Reading and Writing Image Files} |
962 | */ |
963 | |
964 | QImage::QImage(const QString &fileName, const char *format) |
965 | : QPaintDevice() |
966 | { |
967 | d = nullptr; |
968 | load(fileName, format); |
969 | } |
970 | |
971 | #ifndef QT_NO_IMAGEFORMAT_XPM |
972 | extern bool qt_read_xpm_image_or_array(QIODevice *device, const char * const *source, QImage &image); |
973 | |
974 | /*! |
975 | Constructs an image from the given \a xpm image. |
976 | |
977 | Make sure that the image is a valid XPM image. Errors are silently |
978 | ignored. |
979 | |
980 | Note that it's possible to squeeze the XPM variable a little bit |
981 | by using an unusual declaration: |
982 | |
983 | \snippet code/src_gui_image_qimage.cpp 2 |
984 | |
985 | The extra \c const makes the entire definition read-only, which is |
986 | slightly more efficient (e.g., when the code is in a shared |
987 | library) and able to be stored in ROM with the application. |
988 | */ |
989 | |
990 | QImage::QImage(const char * const xpm[]) |
991 | : QPaintDevice() |
992 | { |
993 | d = nullptr; |
994 | if (!xpm) |
995 | return; |
996 | if (!qt_read_xpm_image_or_array(device: nullptr, source: xpm, image&: *this)) |
997 | // Issue: Warning because the constructor may be ambigious |
998 | qWarning(msg: "QImage::QImage(), XPM is not supported" ); |
999 | } |
1000 | #endif // QT_NO_IMAGEFORMAT_XPM |
1001 | |
1002 | /*! |
1003 | Constructs a shallow copy of the given \a image. |
1004 | |
1005 | For more information about shallow copies, see the \l {Implicit |
1006 | Data Sharing} documentation. |
1007 | |
1008 | \sa copy() |
1009 | */ |
1010 | |
1011 | QImage::QImage(const QImage &image) |
1012 | : QPaintDevice() |
1013 | { |
1014 | if (image.paintingActive() || isLocked(data: image.d)) { |
1015 | d = nullptr; |
1016 | image.copy().swap(other&: *this); |
1017 | } else { |
1018 | d = image.d; |
1019 | if (d) |
1020 | d->ref.ref(); |
1021 | } |
1022 | } |
1023 | |
1024 | /*! |
1025 | Destroys the image and cleans up. |
1026 | */ |
1027 | |
1028 | QImage::~QImage() |
1029 | { |
1030 | if (d && !d->ref.deref()) |
1031 | delete d; |
1032 | } |
1033 | |
1034 | /*! |
1035 | Assigns a shallow copy of the given \a image to this image and |
1036 | returns a reference to this image. |
1037 | |
1038 | For more information about shallow copies, see the \l {Implicit |
1039 | Data Sharing} documentation. |
1040 | |
1041 | \sa copy(), QImage() |
1042 | */ |
1043 | |
1044 | QImage &QImage::operator=(const QImage &image) |
1045 | { |
1046 | if (image.paintingActive() || isLocked(data: image.d)) { |
1047 | operator=(other: image.copy()); |
1048 | } else { |
1049 | if (image.d) |
1050 | image.d->ref.ref(); |
1051 | if (d && !d->ref.deref()) |
1052 | delete d; |
1053 | d = image.d; |
1054 | } |
1055 | return *this; |
1056 | } |
1057 | |
1058 | /*! |
1059 | \fn void QImage::swap(QImage &other) |
1060 | \since 4.8 |
1061 | |
1062 | Swaps image \a other with this image. This operation is very |
1063 | fast and never fails. |
1064 | */ |
1065 | |
1066 | /*! |
1067 | \internal |
1068 | */ |
1069 | int QImage::devType() const |
1070 | { |
1071 | return QInternal::Image; |
1072 | } |
1073 | |
1074 | /*! |
1075 | Returns the image as a QVariant. |
1076 | */ |
1077 | QImage::operator QVariant() const |
1078 | { |
1079 | return QVariant(QMetaType::QImage, this); |
1080 | } |
1081 | |
1082 | /*! |
1083 | \internal |
1084 | |
1085 | If multiple images share common data, this image makes a copy of |
1086 | the data and detaches itself from the sharing mechanism, making |
1087 | sure that this image is the only one referring to the data. |
1088 | |
1089 | Nothing is done if there is just a single reference. |
1090 | |
1091 | \sa copy(), {QImage::isDetached()}{isDetached()}, {Implicit Data Sharing} |
1092 | */ |
1093 | void QImage::detach() |
1094 | { |
1095 | if (d) { |
1096 | if (d->is_cached && d->ref.loadRelaxed() == 1) |
1097 | QImagePixmapCleanupHooks::executeImageHooks(key: cacheKey()); |
1098 | |
1099 | if (d->ref.loadRelaxed() != 1 || d->ro_data) |
1100 | *this = copy(); |
1101 | |
1102 | if (d) |
1103 | ++d->detach_no; |
1104 | } |
1105 | } |
1106 | |
1107 | |
1108 | static void copyPhysicalMetadata(QImageData *dst, const QImageData *src) |
1109 | { |
1110 | dst->dpmx = src->dpmx; |
1111 | dst->dpmy = src->dpmy; |
1112 | dst->devicePixelRatio = src->devicePixelRatio; |
1113 | } |
1114 | |
1115 | static void copyMetadata(QImageData *dst, const QImageData *src) |
1116 | { |
1117 | // Doesn't copy colortable and alpha_clut, or offset. |
1118 | copyPhysicalMetadata(dst, src); |
1119 | dst->text = src->text; |
1120 | dst->colorSpace = src->colorSpace; |
1121 | } |
1122 | |
1123 | static void copyMetadata(QImage *dst, const QImage &src) |
1124 | { |
1125 | dst->setDotsPerMeterX(src.dotsPerMeterX()); |
1126 | dst->setDotsPerMeterY(src.dotsPerMeterY()); |
1127 | dst->setDevicePixelRatio(src.devicePixelRatio()); |
1128 | const auto textKeys = src.textKeys(); |
1129 | for (const auto &key: textKeys) |
1130 | dst->setText(key, value: src.text(key)); |
1131 | |
1132 | } |
1133 | |
1134 | /*! |
1135 | \fn QImage QImage::copy(int x, int y, int width, int height) const |
1136 | \overload |
1137 | |
1138 | The returned image is copied from the position (\a x, \a y) in |
1139 | this image, and will always have the given \a width and \a height. |
1140 | In areas beyond this image, pixels are set to 0. |
1141 | |
1142 | */ |
1143 | |
1144 | /*! |
1145 | \fn QImage QImage::copy(const QRect& rectangle) const |
1146 | |
1147 | Returns a sub-area of the image as a new image. |
1148 | |
1149 | The returned image is copied from the position (\a |
1150 | {rectangle}.x(), \a{rectangle}.y()) in this image, and will always |
1151 | have the size of the given \a rectangle. |
1152 | |
1153 | In areas beyond this image, pixels are set to 0. For 32-bit RGB |
1154 | images, this means black; for 32-bit ARGB images, this means |
1155 | transparent black; for 8-bit images, this means the color with |
1156 | index 0 in the color table which can be anything; for 1-bit |
1157 | images, this means Qt::color0. |
1158 | |
1159 | If the given \a rectangle is a null rectangle the entire image is |
1160 | copied. |
1161 | |
1162 | \sa QImage() |
1163 | */ |
1164 | QImage QImage::copy(const QRect& r) const |
1165 | { |
1166 | Q_TRACE_SCOPE(QImage_copy, r); |
1167 | if (!d) |
1168 | return QImage(); |
1169 | |
1170 | if (r.isNull()) { |
1171 | QImage image(d->width, d->height, d->format); |
1172 | if (image.isNull()) |
1173 | return image; |
1174 | |
1175 | // Qt for Embedded Linux can create images with non-default bpl |
1176 | // make sure we don't crash. |
1177 | if (image.d->nbytes != d->nbytes) { |
1178 | int bpl = qMin(a: bytesPerLine(), b: image.bytesPerLine()); |
1179 | for (int i = 0; i < height(); i++) |
1180 | memcpy(dest: image.scanLine(i), src: scanLine(i), n: bpl); |
1181 | } else |
1182 | memcpy(dest: image.bits(), src: bits(), n: d->nbytes); |
1183 | image.d->colortable = d->colortable; |
1184 | image.d->offset = d->offset; |
1185 | image.d->has_alpha_clut = d->has_alpha_clut; |
1186 | copyMetadata(dst: image.d, src: d); |
1187 | return image; |
1188 | } |
1189 | |
1190 | int x = r.x(); |
1191 | int y = r.y(); |
1192 | int w = r.width(); |
1193 | int h = r.height(); |
1194 | |
1195 | int dx = 0; |
1196 | int dy = 0; |
1197 | if (w <= 0 || h <= 0) |
1198 | return QImage(); |
1199 | |
1200 | QImage image(w, h, d->format); |
1201 | if (image.isNull()) |
1202 | return image; |
1203 | |
1204 | if (x < 0 || y < 0 || x + w > d->width || y + h > d->height) { |
1205 | // bitBlt will not cover entire image - clear it. |
1206 | image.fill(pixel: 0); |
1207 | if (x < 0) { |
1208 | dx = -x; |
1209 | x = 0; |
1210 | } |
1211 | if (y < 0) { |
1212 | dy = -y; |
1213 | y = 0; |
1214 | } |
1215 | } |
1216 | |
1217 | image.d->colortable = d->colortable; |
1218 | |
1219 | int pixels_to_copy = qMax(a: w - dx, b: 0); |
1220 | if (x > d->width) |
1221 | pixels_to_copy = 0; |
1222 | else if (pixels_to_copy > d->width - x) |
1223 | pixels_to_copy = d->width - x; |
1224 | int lines_to_copy = qMax(a: h - dy, b: 0); |
1225 | if (y > d->height) |
1226 | lines_to_copy = 0; |
1227 | else if (lines_to_copy > d->height - y) |
1228 | lines_to_copy = d->height - y; |
1229 | |
1230 | bool byteAligned = true; |
1231 | if (d->format == Format_Mono || d->format == Format_MonoLSB) |
1232 | byteAligned = !(dx & 7) && !(x & 7) && !(pixels_to_copy & 7); |
1233 | |
1234 | if (byteAligned) { |
1235 | const uchar *src = d->data + ((x * d->depth) >> 3) + y * d->bytes_per_line; |
1236 | uchar *dest = image.d->data + ((dx * d->depth) >> 3) + dy * image.d->bytes_per_line; |
1237 | const int bytes_to_copy = (pixels_to_copy * d->depth) >> 3; |
1238 | for (int i = 0; i < lines_to_copy; ++i) { |
1239 | memcpy(dest: dest, src: src, n: bytes_to_copy); |
1240 | src += d->bytes_per_line; |
1241 | dest += image.d->bytes_per_line; |
1242 | } |
1243 | } else if (d->format == Format_Mono) { |
1244 | const uchar *src = d->data + y * d->bytes_per_line; |
1245 | uchar *dest = image.d->data + dy * image.d->bytes_per_line; |
1246 | for (int i = 0; i < lines_to_copy; ++i) { |
1247 | for (int j = 0; j < pixels_to_copy; ++j) { |
1248 | if (src[(x + j) >> 3] & (0x80 >> ((x + j) & 7))) |
1249 | dest[(dx + j) >> 3] |= (0x80 >> ((dx + j) & 7)); |
1250 | else |
1251 | dest[(dx + j) >> 3] &= ~(0x80 >> ((dx + j) & 7)); |
1252 | } |
1253 | src += d->bytes_per_line; |
1254 | dest += image.d->bytes_per_line; |
1255 | } |
1256 | } else { // Format_MonoLSB |
1257 | Q_ASSERT(d->format == Format_MonoLSB); |
1258 | const uchar *src = d->data + y * d->bytes_per_line; |
1259 | uchar *dest = image.d->data + dy * image.d->bytes_per_line; |
1260 | for (int i = 0; i < lines_to_copy; ++i) { |
1261 | for (int j = 0; j < pixels_to_copy; ++j) { |
1262 | if (src[(x + j) >> 3] & (0x1 << ((x + j) & 7))) |
1263 | dest[(dx + j) >> 3] |= (0x1 << ((dx + j) & 7)); |
1264 | else |
1265 | dest[(dx + j) >> 3] &= ~(0x1 << ((dx + j) & 7)); |
1266 | } |
1267 | src += d->bytes_per_line; |
1268 | dest += image.d->bytes_per_line; |
1269 | } |
1270 | } |
1271 | |
1272 | copyMetadata(dst: image.d, src: d); |
1273 | image.d->offset = offset(); |
1274 | image.d->has_alpha_clut = d->has_alpha_clut; |
1275 | return image; |
1276 | } |
1277 | |
1278 | |
1279 | /*! |
1280 | \fn bool QImage::isNull() const |
1281 | |
1282 | Returns \c true if it is a null image, otherwise returns \c false. |
1283 | |
1284 | A null image has all parameters set to zero and no allocated data. |
1285 | */ |
1286 | bool QImage::isNull() const |
1287 | { |
1288 | return !d; |
1289 | } |
1290 | |
1291 | /*! |
1292 | \fn int QImage::width() const |
1293 | |
1294 | Returns the width of the image. |
1295 | |
1296 | \sa {QImage#Image Information}{Image Information} |
1297 | */ |
1298 | int QImage::width() const |
1299 | { |
1300 | return d ? d->width : 0; |
1301 | } |
1302 | |
1303 | /*! |
1304 | \fn int QImage::height() const |
1305 | |
1306 | Returns the height of the image. |
1307 | |
1308 | \sa {QImage#Image Information}{Image Information} |
1309 | */ |
1310 | int QImage::height() const |
1311 | { |
1312 | return d ? d->height : 0; |
1313 | } |
1314 | |
1315 | /*! |
1316 | \fn QSize QImage::size() const |
1317 | |
1318 | Returns the size of the image, i.e. its width() and height(). |
1319 | |
1320 | \sa {QImage#Image Information}{Image Information} |
1321 | */ |
1322 | QSize QImage::size() const |
1323 | { |
1324 | return d ? QSize(d->width, d->height) : QSize(0, 0); |
1325 | } |
1326 | |
1327 | /*! |
1328 | \fn QRect QImage::rect() const |
1329 | |
1330 | Returns the enclosing rectangle (0, 0, width(), height()) of the |
1331 | image. |
1332 | |
1333 | \sa {QImage#Image Information}{Image Information} |
1334 | */ |
1335 | QRect QImage::rect() const |
1336 | { |
1337 | return d ? QRect(0, 0, d->width, d->height) : QRect(); |
1338 | } |
1339 | |
1340 | /*! |
1341 | Returns the depth of the image. |
1342 | |
1343 | The image depth is the number of bits used to store a single |
1344 | pixel, also called bits per pixel (bpp). |
1345 | |
1346 | The supported depths are 1, 8, 16, 24, 32 and 64. |
1347 | |
1348 | \sa bitPlaneCount(), convertToFormat(), {QImage#Image Formats}{Image Formats}, |
1349 | {QImage#Image Information}{Image Information} |
1350 | |
1351 | */ |
1352 | int QImage::depth() const |
1353 | { |
1354 | return d ? d->depth : 0; |
1355 | } |
1356 | |
1357 | /*! |
1358 | \obsolete |
1359 | \fn int QImage::numColors() const |
1360 | |
1361 | Returns the size of the color table for the image. |
1362 | |
1363 | \sa setColorCount() |
1364 | */ |
1365 | |
1366 | /*! |
1367 | \since 4.6 |
1368 | \fn int QImage::colorCount() const |
1369 | |
1370 | Returns the size of the color table for the image. |
1371 | |
1372 | Notice that colorCount() returns 0 for 32-bpp images because these |
1373 | images do not use color tables, but instead encode pixel values as |
1374 | ARGB quadruplets. |
1375 | |
1376 | \sa setColorCount(), {QImage#Image Information}{Image Information} |
1377 | */ |
1378 | int QImage::colorCount() const |
1379 | { |
1380 | return d ? d->colortable.size() : 0; |
1381 | } |
1382 | |
1383 | /*! |
1384 | Sets the color table used to translate color indexes to QRgb |
1385 | values, to the specified \a colors. |
1386 | |
1387 | When the image is used, the color table must be large enough to |
1388 | have entries for all the pixel/index values present in the image, |
1389 | otherwise the results are undefined. |
1390 | |
1391 | \sa colorTable(), setColor(), {QImage#Image Transformations}{Image |
1392 | Transformations} |
1393 | */ |
1394 | #if QT_VERSION >= QT_VERSION_CHECK(6,0,0) |
1395 | void QImage::setColorTable(const QVector<QRgb> &colors) |
1396 | #else |
1397 | void QImage::setColorTable(const QVector<QRgb> colors) |
1398 | #endif |
1399 | { |
1400 | if (!d) |
1401 | return; |
1402 | detach(); |
1403 | |
1404 | // In case detach() ran out of memory |
1405 | if (!d) |
1406 | return; |
1407 | |
1408 | #if QT_VERSION >= QT_VERSION_CHECK(6,0,0) |
1409 | d->colortable = colors; |
1410 | #else |
1411 | d->colortable = std::move(const_cast<QVector<QRgb>&>(colors)); |
1412 | #endif |
1413 | d->has_alpha_clut = false; |
1414 | for (int i = 0; i < d->colortable.size(); ++i) { |
1415 | if (qAlpha(rgb: d->colortable.at(i)) != 255) { |
1416 | d->has_alpha_clut = true; |
1417 | break; |
1418 | } |
1419 | } |
1420 | } |
1421 | |
1422 | /*! |
1423 | Returns a list of the colors contained in the image's color table, |
1424 | or an empty list if the image does not have a color table |
1425 | |
1426 | \sa setColorTable(), colorCount(), color() |
1427 | */ |
1428 | QVector<QRgb> QImage::colorTable() const |
1429 | { |
1430 | return d ? d->colortable : QVector<QRgb>(); |
1431 | } |
1432 | |
1433 | /*! |
1434 | Returns the device pixel ratio for the image. This is the |
1435 | ratio between \e{device pixels} and \e{device independent pixels}. |
1436 | |
1437 | Use this function when calculating layout geometry based on |
1438 | the image size: QSize layoutSize = image.size() / image.devicePixelRatio() |
1439 | |
1440 | The default value is 1.0. |
1441 | |
1442 | \sa setDevicePixelRatio(), QImageReader |
1443 | */ |
1444 | qreal QImage::devicePixelRatio() const |
1445 | { |
1446 | if (!d) |
1447 | return 1.0; |
1448 | return d->devicePixelRatio; |
1449 | } |
1450 | |
1451 | /*! |
1452 | Sets the device pixel ratio for the image. This is the |
1453 | ratio between image pixels and device-independent pixels. |
1454 | |
1455 | The default \a scaleFactor is 1.0. Setting it to something else has |
1456 | two effects: |
1457 | |
1458 | QPainters that are opened on the image will be scaled. For |
1459 | example, painting on a 200x200 image if with a ratio of 2.0 |
1460 | will result in effective (device-independent) painting bounds |
1461 | of 100x100. |
1462 | |
1463 | Code paths in Qt that calculate layout geometry based on the |
1464 | image size will take the ratio into account: |
1465 | QSize layoutSize = image.size() / image.devicePixelRatio() |
1466 | The net effect of this is that the image is displayed as |
1467 | high-DPI image rather than a large image |
1468 | (see \l{Drawing High Resolution Versions of Pixmaps and Images}). |
1469 | |
1470 | \sa devicePixelRatio() |
1471 | */ |
1472 | void QImage::setDevicePixelRatio(qreal scaleFactor) |
1473 | { |
1474 | if (!d) |
1475 | return; |
1476 | |
1477 | if (scaleFactor == d->devicePixelRatio) |
1478 | return; |
1479 | |
1480 | detach(); |
1481 | if (d) |
1482 | d->devicePixelRatio = scaleFactor; |
1483 | } |
1484 | |
1485 | #if QT_DEPRECATED_SINCE(5, 10) |
1486 | /*! |
1487 | \since 4.6 |
1488 | \obsolete |
1489 | Returns the number of bytes occupied by the image data. |
1490 | |
1491 | Note this method should never be called on an image larger than 2 gigabytes. |
1492 | Instead use sizeInBytes(). |
1493 | |
1494 | \sa sizeInBytes(), bytesPerLine(), bits(), {QImage#Image Information}{Image |
1495 | Information} |
1496 | */ |
1497 | int QImage::byteCount() const |
1498 | { |
1499 | Q_ASSERT(!d || d->nbytes < std::numeric_limits<int>::max()); |
1500 | return d ? int(d->nbytes) : 0; |
1501 | } |
1502 | #endif |
1503 | |
1504 | /*! |
1505 | \since 5.10 |
1506 | Returns the image data size in bytes. |
1507 | |
1508 | \sa byteCount(), bytesPerLine(), bits(), {QImage#Image Information}{Image |
1509 | Information} |
1510 | */ |
1511 | qsizetype QImage::sizeInBytes() const |
1512 | { |
1513 | return d ? d->nbytes : 0; |
1514 | } |
1515 | |
1516 | /*! |
1517 | Returns the number of bytes per image scanline. |
1518 | |
1519 | This is equivalent to sizeInBytes() / height() if height() is non-zero. |
1520 | |
1521 | \sa scanLine() |
1522 | */ |
1523 | #if QT_VERSION >= QT_VERSION_CHECK(6,0,0) |
1524 | qsizetype QImage::bytesPerLine() const |
1525 | { |
1526 | return d ? d->bytes_per_line : 0; |
1527 | } |
1528 | #else |
1529 | int QImage::bytesPerLine() const |
1530 | { |
1531 | return d ? d->bytes_per_line : 0; |
1532 | } |
1533 | #endif |
1534 | |
1535 | |
1536 | /*! |
1537 | Returns the color in the color table at index \a i. The first |
1538 | color is at index 0. |
1539 | |
1540 | The colors in an image's color table are specified as ARGB |
1541 | quadruplets (QRgb). Use the qAlpha(), qRed(), qGreen(), and |
1542 | qBlue() functions to get the color value components. |
1543 | |
1544 | \sa setColor(), pixelIndex(), {QImage#Pixel Manipulation}{Pixel |
1545 | Manipulation} |
1546 | */ |
1547 | QRgb QImage::color(int i) const |
1548 | { |
1549 | Q_ASSERT(i < colorCount()); |
1550 | return d ? d->colortable.at(i) : QRgb(uint(-1)); |
1551 | } |
1552 | |
1553 | /*! |
1554 | \fn void QImage::setColor(int index, QRgb colorValue) |
1555 | |
1556 | Sets the color at the given \a index in the color table, to the |
1557 | given to \a colorValue. The color value is an ARGB quadruplet. |
1558 | |
1559 | If \a index is outside the current size of the color table, it is |
1560 | expanded with setColorCount(). |
1561 | |
1562 | \sa color(), colorCount(), setColorTable(), {QImage#Pixel Manipulation}{Pixel |
1563 | Manipulation} |
1564 | */ |
1565 | void QImage::setColor(int i, QRgb c) |
1566 | { |
1567 | if (!d) |
1568 | return; |
1569 | if (i < 0 || d->depth > 8 || i >= 1<<d->depth) { |
1570 | qWarning(msg: "QImage::setColor: Index out of bound %d" , i); |
1571 | return; |
1572 | } |
1573 | detach(); |
1574 | |
1575 | // In case detach() run out of memory |
1576 | if (!d) |
1577 | return; |
1578 | |
1579 | if (i >= d->colortable.size()) |
1580 | setColorCount(i+1); |
1581 | d->colortable[i] = c; |
1582 | d->has_alpha_clut |= (qAlpha(rgb: c) != 255); |
1583 | } |
1584 | |
1585 | /*! |
1586 | Returns a pointer to the pixel data at the scanline with index \a |
1587 | i. The first scanline is at index 0. |
1588 | |
1589 | The scanline data is as minimum 32-bit aligned. For 64-bit formats |
1590 | it follows the native alignment of 64-bit integers (64-bit for most |
1591 | platforms, but notably 32-bit on i386). |
1592 | |
1593 | \warning If you are accessing 32-bpp image data, cast the returned |
1594 | pointer to \c{QRgb*} (QRgb has a 32-bit size) and use it to |
1595 | read/write the pixel value. You cannot use the \c{uchar*} pointer |
1596 | directly, because the pixel format depends on the byte order on |
1597 | the underlying platform. Use qRed(), qGreen(), qBlue(), and |
1598 | qAlpha() to access the pixels. |
1599 | |
1600 | \sa bytesPerLine(), bits(), {QImage#Pixel Manipulation}{Pixel |
1601 | Manipulation}, constScanLine() |
1602 | */ |
1603 | uchar *QImage::scanLine(int i) |
1604 | { |
1605 | if (!d) |
1606 | return nullptr; |
1607 | |
1608 | detach(); |
1609 | |
1610 | // In case detach() ran out of memory |
1611 | if (!d) |
1612 | return nullptr; |
1613 | |
1614 | return d->data + i * d->bytes_per_line; |
1615 | } |
1616 | |
1617 | /*! |
1618 | \overload |
1619 | */ |
1620 | const uchar *QImage::scanLine(int i) const |
1621 | { |
1622 | if (!d) |
1623 | return nullptr; |
1624 | |
1625 | Q_ASSERT(i >= 0 && i < height()); |
1626 | return d->data + i * d->bytes_per_line; |
1627 | } |
1628 | |
1629 | |
1630 | /*! |
1631 | Returns a pointer to the pixel data at the scanline with index \a |
1632 | i. The first scanline is at index 0. |
1633 | |
1634 | The scanline data is as minimum 32-bit aligned. For 64-bit formats |
1635 | it follows the native alignment of 64-bit integers (64-bit for most |
1636 | platforms, but notably 32-bit on i386). |
1637 | |
1638 | Note that QImage uses \l{Implicit Data Sharing} {implicit data |
1639 | sharing}, but this function does \e not perform a deep copy of the |
1640 | shared pixel data, because the returned data is const. |
1641 | |
1642 | \sa scanLine(), constBits() |
1643 | \since 4.7 |
1644 | */ |
1645 | const uchar *QImage::constScanLine(int i) const |
1646 | { |
1647 | if (!d) |
1648 | return nullptr; |
1649 | |
1650 | Q_ASSERT(i >= 0 && i < height()); |
1651 | return d->data + i * d->bytes_per_line; |
1652 | } |
1653 | |
1654 | /*! |
1655 | Returns a pointer to the first pixel data. This is equivalent to |
1656 | scanLine(0). |
1657 | |
1658 | Note that QImage uses \l{Implicit Data Sharing} {implicit data |
1659 | sharing}. This function performs a deep copy of the shared pixel |
1660 | data, thus ensuring that this QImage is the only one using the |
1661 | current return value. |
1662 | |
1663 | \sa scanLine(), sizeInBytes(), constBits() |
1664 | */ |
1665 | uchar *QImage::bits() |
1666 | { |
1667 | if (!d) |
1668 | return nullptr; |
1669 | detach(); |
1670 | |
1671 | // In case detach ran out of memory... |
1672 | if (!d) |
1673 | return nullptr; |
1674 | |
1675 | return d->data; |
1676 | } |
1677 | |
1678 | /*! |
1679 | \overload |
1680 | |
1681 | Note that QImage uses \l{Implicit Data Sharing} {implicit data |
1682 | sharing}, but this function does \e not perform a deep copy of the |
1683 | shared pixel data, because the returned data is const. |
1684 | */ |
1685 | const uchar *QImage::bits() const |
1686 | { |
1687 | return d ? d->data : nullptr; |
1688 | } |
1689 | |
1690 | |
1691 | /*! |
1692 | Returns a pointer to the first pixel data. |
1693 | |
1694 | Note that QImage uses \l{Implicit Data Sharing} {implicit data |
1695 | sharing}, but this function does \e not perform a deep copy of the |
1696 | shared pixel data, because the returned data is const. |
1697 | |
1698 | \sa bits(), constScanLine() |
1699 | \since 4.7 |
1700 | */ |
1701 | const uchar *QImage::constBits() const |
1702 | { |
1703 | return d ? d->data : nullptr; |
1704 | } |
1705 | |
1706 | /*! |
1707 | \fn void QImage::fill(uint pixelValue) |
1708 | |
1709 | Fills the entire image with the given \a pixelValue. |
1710 | |
1711 | If the depth of this image is 1, only the lowest bit is used. If |
1712 | you say fill(0), fill(2), etc., the image is filled with 0s. If |
1713 | you say fill(1), fill(3), etc., the image is filled with 1s. If |
1714 | the depth is 8, the lowest 8 bits are used and if the depth is 16 |
1715 | the lowest 16 bits are used. |
1716 | |
1717 | Note: QImage::pixel() returns the color of the pixel at the given |
1718 | coordinates while QColor::pixel() returns the pixel value of the |
1719 | underlying window system (essentially an index value), so normally |
1720 | you will want to use QImage::pixel() to use a color from an |
1721 | existing image or QColor::rgb() to use a specific color. |
1722 | |
1723 | \sa depth(), {QImage#Image Transformations}{Image Transformations} |
1724 | */ |
1725 | |
1726 | void QImage::fill(uint pixel) |
1727 | { |
1728 | if (!d) |
1729 | return; |
1730 | |
1731 | detach(); |
1732 | |
1733 | // In case detach() ran out of memory |
1734 | if (!d) |
1735 | return; |
1736 | |
1737 | if (d->depth == 1 || d->depth == 8) { |
1738 | int w = d->width; |
1739 | if (d->depth == 1) { |
1740 | if (pixel & 1) |
1741 | pixel = 0xffffffff; |
1742 | else |
1743 | pixel = 0; |
1744 | w = (w + 7) / 8; |
1745 | } else { |
1746 | pixel &= 0xff; |
1747 | } |
1748 | qt_rectfill<quint8>(dest: d->data, value: pixel, x: 0, y: 0, |
1749 | width: w, height: d->height, stride: d->bytes_per_line); |
1750 | return; |
1751 | } else if (d->depth == 16) { |
1752 | if (d->format == Format_RGB444) |
1753 | pixel |= 0xf000; |
1754 | qt_rectfill<quint16>(dest: reinterpret_cast<quint16*>(d->data), value: pixel, |
1755 | x: 0, y: 0, width: d->width, height: d->height, stride: d->bytes_per_line); |
1756 | return; |
1757 | } else if (d->depth == 24) { |
1758 | if (d->format == Format_RGB666) |
1759 | pixel |= 0xfc0000; |
1760 | qt_rectfill<quint24>(dest: reinterpret_cast<quint24*>(d->data), value: pixel, |
1761 | x: 0, y: 0, width: d->width, height: d->height, stride: d->bytes_per_line); |
1762 | return; |
1763 | } else if (d->depth == 64) { |
1764 | qt_rectfill<quint64>(dest: reinterpret_cast<quint64*>(d->data), value: QRgba64::fromArgb32(rgb: pixel), |
1765 | x: 0, y: 0, width: d->width, height: d->height, stride: d->bytes_per_line); |
1766 | return; |
1767 | } |
1768 | |
1769 | if (d->format == Format_RGB32) |
1770 | pixel |= 0xff000000; |
1771 | if (d->format == Format_RGBX8888) |
1772 | #if Q_BYTE_ORDER == Q_LITTLE_ENDIAN |
1773 | pixel |= 0xff000000; |
1774 | #else |
1775 | pixel |= 0x000000ff; |
1776 | #endif |
1777 | if (d->format == Format_BGR30 || d->format == Format_RGB30) |
1778 | pixel |= 0xc0000000; |
1779 | |
1780 | qt_rectfill<uint>(dest: reinterpret_cast<uint*>(d->data), value: pixel, |
1781 | x: 0, y: 0, width: d->width, height: d->height, stride: d->bytes_per_line); |
1782 | } |
1783 | |
1784 | |
1785 | /*! |
1786 | \fn void QImage::fill(Qt::GlobalColor color) |
1787 | \overload |
1788 | \since 4.8 |
1789 | |
1790 | Fills the image with the given \a color, described as a standard global |
1791 | color. |
1792 | */ |
1793 | |
1794 | void QImage::fill(Qt::GlobalColor color) |
1795 | { |
1796 | fill(color: QColor(color)); |
1797 | } |
1798 | |
1799 | |
1800 | |
1801 | /*! |
1802 | \fn void QImage::fill(const QColor &color) |
1803 | |
1804 | \overload |
1805 | |
1806 | Fills the entire image with the given \a color. |
1807 | |
1808 | If the depth of the image is 1, the image will be filled with 1 if |
1809 | \a color equals Qt::color1; it will otherwise be filled with 0. |
1810 | |
1811 | If the depth of the image is 8, the image will be filled with the |
1812 | index corresponding the \a color in the color table if present; it |
1813 | will otherwise be filled with 0. |
1814 | |
1815 | \since 4.8 |
1816 | */ |
1817 | |
1818 | void QImage::fill(const QColor &color) |
1819 | { |
1820 | if (!d) |
1821 | return; |
1822 | detach(); |
1823 | |
1824 | // In case we run out of memory |
1825 | if (!d) |
1826 | return; |
1827 | |
1828 | QRgba64 opaque = color.rgba64(); |
1829 | opaque.setAlpha(65535); |
1830 | switch (d->format) { |
1831 | case QImage::Format_RGB32: |
1832 | case QImage::Format_ARGB32: |
1833 | fill(pixel: color.rgba()); |
1834 | break; |
1835 | case QImage::Format_ARGB32_Premultiplied: |
1836 | fill(pixel: qPremultiply(x: color.rgba())); |
1837 | break; |
1838 | case QImage::Format_RGBX8888: |
1839 | fill(pixel: ARGB2RGBA(x: color.rgba() | 0xff000000)); |
1840 | break; |
1841 | case QImage::Format_RGBA8888: |
1842 | fill(pixel: ARGB2RGBA(x: color.rgba())); |
1843 | break; |
1844 | case QImage::Format_RGBA8888_Premultiplied: |
1845 | fill(pixel: ARGB2RGBA(x: qPremultiply(x: color.rgba()))); |
1846 | break; |
1847 | case QImage::Format_BGR30: |
1848 | fill(pixel: qConvertRgb64ToRgb30<PixelOrderBGR>(c: opaque)); |
1849 | break; |
1850 | case QImage::Format_RGB30: |
1851 | fill(pixel: qConvertRgb64ToRgb30<PixelOrderRGB>(c: opaque)); |
1852 | break; |
1853 | case QImage::Format_RGB16: |
1854 | fill(pixel: (uint) qConvertRgb32To16(c: color.rgba())); |
1855 | break; |
1856 | case QImage::Format_Indexed8: { |
1857 | uint pixel = 0; |
1858 | for (int i=0; i<d->colortable.size(); ++i) { |
1859 | if (color.rgba() == d->colortable.at(i)) { |
1860 | pixel = i; |
1861 | break; |
1862 | } |
1863 | } |
1864 | fill(pixel); |
1865 | break; |
1866 | } |
1867 | case QImage::Format_Mono: |
1868 | case QImage::Format_MonoLSB: |
1869 | if (color == Qt::color1) |
1870 | fill(pixel: (uint) 1); |
1871 | else |
1872 | fill(pixel: (uint) 0); |
1873 | break; |
1874 | case QImage::Format_RGBX64: |
1875 | qt_rectfill<quint64>(dest: reinterpret_cast<quint64*>(d->data), value: opaque, |
1876 | x: 0, y: 0, width: d->width, height: d->height, stride: d->bytes_per_line); |
1877 | break; |
1878 | case QImage::Format_RGBA64: |
1879 | qt_rectfill<quint64>(dest: reinterpret_cast<quint64*>(d->data), value: color.rgba64(), |
1880 | x: 0, y: 0, width: d->width, height: d->height, stride: d->bytes_per_line); |
1881 | break; |
1882 | case QImage::Format_RGBA64_Premultiplied: |
1883 | qt_rectfill<quint64>(dest: reinterpret_cast<quint64 *>(d->data), value: color.rgba64().premultiplied(), |
1884 | x: 0, y: 0, width: d->width, height: d->height, stride: d->bytes_per_line); |
1885 | break; |
1886 | default: { |
1887 | QPainter p(this); |
1888 | p.setCompositionMode(QPainter::CompositionMode_Source); |
1889 | p.fillRect(rect(), color); |
1890 | }} |
1891 | } |
1892 | |
1893 | |
1894 | |
1895 | /*! |
1896 | Inverts all pixel values in the image. |
1897 | |
1898 | The given invert \a mode only have a meaning when the image's |
1899 | depth is 32. The default \a mode is InvertRgb, which leaves the |
1900 | alpha channel unchanged. If the \a mode is InvertRgba, the alpha |
1901 | bits are also inverted. |
1902 | |
1903 | Inverting an 8-bit image means to replace all pixels using color |
1904 | index \e i with a pixel using color index 255 minus \e i. The same |
1905 | is the case for a 1-bit image. Note that the color table is \e not |
1906 | changed. |
1907 | |
1908 | If the image has a premultiplied alpha channel, the image is first |
1909 | converted to an unpremultiplied image format to be inverted and |
1910 | then converted back. |
1911 | |
1912 | \sa {QImage#Image Transformations}{Image Transformations} |
1913 | */ |
1914 | |
1915 | void QImage::invertPixels(InvertMode mode) |
1916 | { |
1917 | if (!d) |
1918 | return; |
1919 | |
1920 | detach(); |
1921 | |
1922 | // In case detach() ran out of memory |
1923 | if (!d) |
1924 | return; |
1925 | |
1926 | QImage::Format originalFormat = d->format; |
1927 | // Inverting premultiplied pixels would produce invalid image data. |
1928 | if (hasAlphaChannel() && qPixelLayouts[d->format].premultiplied) { |
1929 | if (depth() > 32) { |
1930 | if (!d->convertInPlace(newFormat: QImage::Format_RGBA64, { })) |
1931 | *this = convertToFormat(f: QImage::Format_RGBA64); |
1932 | } else { |
1933 | if (!d->convertInPlace(newFormat: QImage::Format_ARGB32, { })) |
1934 | *this = convertToFormat(f: QImage::Format_ARGB32); |
1935 | } |
1936 | } |
1937 | |
1938 | if (depth() < 32) { |
1939 | // This assumes no alpha-channel as the only formats with non-premultipled alpha are 32bit. |
1940 | int bpl = (d->width * d->depth + 7) / 8; |
1941 | int pad = d->bytes_per_line - bpl; |
1942 | uchar *sl = d->data; |
1943 | for (int y=0; y<d->height; ++y) { |
1944 | for (int x=0; x<bpl; ++x) |
1945 | *sl++ ^= 0xff; |
1946 | sl += pad; |
1947 | } |
1948 | } |
1949 | else if (depth() == 64) { |
1950 | quint16 *p = (quint16*)d->data; |
1951 | quint16 *end = (quint16*)(d->data + d->nbytes); |
1952 | quint16 xorbits = 0xffff; |
1953 | while (p < end) { |
1954 | *p++ ^= xorbits; |
1955 | *p++ ^= xorbits; |
1956 | *p++ ^= xorbits; |
1957 | if (mode == InvertRgba) |
1958 | *p++ ^= xorbits; |
1959 | else |
1960 | p++; |
1961 | } |
1962 | } else { |
1963 | quint32 *p = (quint32*)d->data; |
1964 | quint32 *end = (quint32*)(d->data + d->nbytes); |
1965 | quint32 xorbits = 0xffffffff; |
1966 | switch (d->format) { |
1967 | case QImage::Format_RGBA8888: |
1968 | if (mode == InvertRgba) |
1969 | break; |
1970 | Q_FALLTHROUGH(); |
1971 | case QImage::Format_RGBX8888: |
1972 | #if Q_BYTE_ORDER == Q_BIG_ENDIAN |
1973 | xorbits = 0xffffff00; |
1974 | break; |
1975 | #else |
1976 | xorbits = 0x00ffffff; |
1977 | break; |
1978 | #endif |
1979 | case QImage::Format_ARGB32: |
1980 | if (mode == InvertRgba) |
1981 | break; |
1982 | Q_FALLTHROUGH(); |
1983 | case QImage::Format_RGB32: |
1984 | xorbits = 0x00ffffff; |
1985 | break; |
1986 | case QImage::Format_BGR30: |
1987 | case QImage::Format_RGB30: |
1988 | xorbits = 0x3fffffff; |
1989 | break; |
1990 | default: |
1991 | Q_UNREACHABLE(); |
1992 | xorbits = 0; |
1993 | break; |
1994 | } |
1995 | while (p < end) |
1996 | *p++ ^= xorbits; |
1997 | } |
1998 | |
1999 | if (originalFormat != d->format) { |
2000 | if (!d->convertInPlace(newFormat: originalFormat, { })) |
2001 | *this = convertToFormat(f: originalFormat); |
2002 | } |
2003 | } |
2004 | |
2005 | // Windows defines these |
2006 | #if defined(write) |
2007 | # undef write |
2008 | #endif |
2009 | #if defined(close) |
2010 | # undef close |
2011 | #endif |
2012 | #if defined(read) |
2013 | # undef read |
2014 | #endif |
2015 | |
2016 | /*! |
2017 | \since 4.6 |
2018 | Resizes the color table to contain \a colorCount entries. |
2019 | |
2020 | If the color table is expanded, all the extra colors will be set to |
2021 | transparent (i.e qRgba(0, 0, 0, 0)). |
2022 | |
2023 | When the image is used, the color table must be large enough to |
2024 | have entries for all the pixel/index values present in the image, |
2025 | otherwise the results are undefined. |
2026 | |
2027 | \sa colorCount(), colorTable(), setColor(), {QImage#Image |
2028 | Transformations}{Image Transformations} |
2029 | */ |
2030 | |
2031 | void QImage::setColorCount(int colorCount) |
2032 | { |
2033 | if (!d) { |
2034 | qWarning(msg: "QImage::setColorCount: null image" ); |
2035 | return; |
2036 | } |
2037 | |
2038 | detach(); |
2039 | |
2040 | // In case detach() ran out of memory |
2041 | if (!d) |
2042 | return; |
2043 | |
2044 | if (colorCount == d->colortable.size()) |
2045 | return; |
2046 | if (colorCount <= 0) { // use no color table |
2047 | d->colortable = QVector<QRgb>(); |
2048 | return; |
2049 | } |
2050 | int nc = d->colortable.size(); |
2051 | d->colortable.resize(asize: colorCount); |
2052 | for (int i = nc; i < colorCount; ++i) |
2053 | d->colortable[i] = 0; |
2054 | } |
2055 | |
2056 | /*! |
2057 | Returns the format of the image. |
2058 | |
2059 | \sa {QImage#Image Formats}{Image Formats} |
2060 | */ |
2061 | QImage::Format QImage::format() const |
2062 | { |
2063 | return d ? d->format : Format_Invalid; |
2064 | } |
2065 | |
2066 | /*! |
2067 | \fn QImage QImage::convertToFormat(Format format, Qt::ImageConversionFlags flags) const & |
2068 | \fn QImage QImage::convertToFormat(Format format, Qt::ImageConversionFlags flags) && |
2069 | |
2070 | Returns a copy of the image in the given \a format. |
2071 | |
2072 | The specified image conversion \a flags control how the image data |
2073 | is handled during the conversion process. |
2074 | |
2075 | \sa {Image Formats} |
2076 | */ |
2077 | |
2078 | /*! |
2079 | \internal |
2080 | */ |
2081 | QImage QImage::convertToFormat_helper(Format format, Qt::ImageConversionFlags flags) const |
2082 | { |
2083 | if (!d || d->format == format) |
2084 | return *this; |
2085 | |
2086 | if (format == Format_Invalid || d->format == Format_Invalid) |
2087 | return QImage(); |
2088 | |
2089 | const QPixelLayout *destLayout = &qPixelLayouts[format]; |
2090 | Image_Converter converter = qimage_converter_map[d->format][format]; |
2091 | if (!converter && format > QImage::Format_Indexed8 && d->format > QImage::Format_Indexed8) { |
2092 | if (qt_highColorPrecision(format: d->format, opaque: !destLayout->hasAlphaChannel) |
2093 | && qt_highColorPrecision(format, opaque: !hasAlphaChannel())) { |
2094 | converter = convert_generic_to_rgb64; |
2095 | } else |
2096 | converter = convert_generic; |
2097 | } |
2098 | if (converter) { |
2099 | QImage image(d->width, d->height, format); |
2100 | |
2101 | QIMAGE_SANITYCHECK_MEMORY(image); |
2102 | |
2103 | image.d->offset = offset(); |
2104 | copyMetadata(dst: image.d, src: d); |
2105 | |
2106 | converter(image.d, d, flags); |
2107 | return image; |
2108 | } |
2109 | |
2110 | // Convert indexed formats over ARGB32 or RGB32 to the final format. |
2111 | Q_ASSERT(format != QImage::Format_ARGB32 && format != QImage::Format_RGB32); |
2112 | Q_ASSERT(d->format != QImage::Format_ARGB32 && d->format != QImage::Format_RGB32); |
2113 | |
2114 | if (!hasAlphaChannel()) |
2115 | return convertToFormat(f: Format_RGB32, flags).convertToFormat(f: format, flags); |
2116 | |
2117 | return convertToFormat(f: Format_ARGB32, flags).convertToFormat(f: format, flags); |
2118 | } |
2119 | |
2120 | /*! |
2121 | \internal |
2122 | */ |
2123 | bool QImage::convertToFormat_inplace(Format format, Qt::ImageConversionFlags flags) |
2124 | { |
2125 | return d && d->convertInPlace(newFormat: format, flags); |
2126 | } |
2127 | |
2128 | static inline int pixel_distance(QRgb p1, QRgb p2) { |
2129 | int r1 = qRed(rgb: p1); |
2130 | int g1 = qGreen(rgb: p1); |
2131 | int b1 = qBlue(rgb: p1); |
2132 | int a1 = qAlpha(rgb: p1); |
2133 | |
2134 | int r2 = qRed(rgb: p2); |
2135 | int g2 = qGreen(rgb: p2); |
2136 | int b2 = qBlue(rgb: p2); |
2137 | int a2 = qAlpha(rgb: p2); |
2138 | |
2139 | return abs(x: r1 - r2) + abs(x: g1 - g2) + abs(x: b1 - b2) + abs(x: a1 - a2); |
2140 | } |
2141 | |
2142 | static inline int closestMatch(QRgb pixel, const QVector<QRgb> &clut) { |
2143 | int idx = 0; |
2144 | int current_distance = INT_MAX; |
2145 | for (int i=0; i<clut.size(); ++i) { |
2146 | int dist = pixel_distance(p1: pixel, p2: clut.at(i)); |
2147 | if (dist < current_distance) { |
2148 | current_distance = dist; |
2149 | idx = i; |
2150 | } |
2151 | } |
2152 | return idx; |
2153 | } |
2154 | |
2155 | static QImage convertWithPalette(const QImage &src, QImage::Format format, |
2156 | const QVector<QRgb> &clut) { |
2157 | QImage dest(src.size(), format); |
2158 | dest.setColorTable(clut); |
2159 | |
2160 | copyMetadata(dst: QImageData::get(img&: dest), src: QImageData::get(img: src)); |
2161 | |
2162 | int h = src.height(); |
2163 | int w = src.width(); |
2164 | |
2165 | QHash<QRgb, int> cache; |
2166 | |
2167 | if (format == QImage::Format_Indexed8) { |
2168 | for (int y=0; y<h; ++y) { |
2169 | const QRgb *src_pixels = (const QRgb *) src.scanLine(i: y); |
2170 | uchar *dest_pixels = (uchar *) dest.scanLine(i: y); |
2171 | for (int x=0; x<w; ++x) { |
2172 | int src_pixel = src_pixels[x]; |
2173 | int value = cache.value(akey: src_pixel, adefaultValue: -1); |
2174 | if (value == -1) { |
2175 | value = closestMatch(pixel: src_pixel, clut); |
2176 | cache.insert(akey: src_pixel, avalue: value); |
2177 | } |
2178 | dest_pixels[x] = (uchar) value; |
2179 | } |
2180 | } |
2181 | } else { |
2182 | QVector<QRgb> table = clut; |
2183 | table.resize(asize: 2); |
2184 | for (int y=0; y<h; ++y) { |
2185 | const QRgb *src_pixels = (const QRgb *) src.scanLine(i: y); |
2186 | for (int x=0; x<w; ++x) { |
2187 | int src_pixel = src_pixels[x]; |
2188 | int value = cache.value(akey: src_pixel, adefaultValue: -1); |
2189 | if (value == -1) { |
2190 | value = closestMatch(pixel: src_pixel, clut: table); |
2191 | cache.insert(akey: src_pixel, avalue: value); |
2192 | } |
2193 | dest.setPixel(x, y, index_or_rgb: value); |
2194 | } |
2195 | } |
2196 | } |
2197 | |
2198 | return dest; |
2199 | } |
2200 | |
2201 | /*! |
2202 | \overload |
2203 | |
2204 | Returns a copy of the image converted to the given \a format, |
2205 | using the specified \a colorTable. |
2206 | |
2207 | Conversion from RGB formats to indexed formats is a slow operation |
2208 | and will use a straightforward nearest color approach, with no |
2209 | dithering. |
2210 | */ |
2211 | QImage QImage::convertToFormat(Format format, const QVector<QRgb> &colorTable, Qt::ImageConversionFlags flags) const |
2212 | { |
2213 | if (!d || d->format == format) |
2214 | return *this; |
2215 | |
2216 | if (format == QImage::Format_Invalid) |
2217 | return QImage(); |
2218 | if (format <= QImage::Format_Indexed8) |
2219 | return convertWithPalette(src: convertToFormat(f: QImage::Format_ARGB32, flags), format, clut: colorTable); |
2220 | |
2221 | return convertToFormat(f: format, flags); |
2222 | } |
2223 | |
2224 | /*! |
2225 | \since 5.9 |
2226 | |
2227 | Changes the format of the image to \a format without changing the |
2228 | data. Only works between formats of the same depth. |
2229 | |
2230 | Returns \c true if successful. |
2231 | |
2232 | This function can be used to change images with alpha-channels to |
2233 | their corresponding opaque formats if the data is known to be opaque-only, |
2234 | or to change the format of a given image buffer before overwriting |
2235 | it with new data. |
2236 | |
2237 | \warning The function does not check if the image data is valid in the |
2238 | new format and will still return \c true if the depths are compatible. |
2239 | Operations on an image with invalid data are undefined. |
2240 | |
2241 | \warning If the image is not detached, this will cause the data to be |
2242 | copied. |
2243 | |
2244 | \sa hasAlphaChannel(), convertToFormat() |
2245 | */ |
2246 | |
2247 | bool QImage::reinterpretAsFormat(Format format) |
2248 | { |
2249 | if (!d) |
2250 | return false; |
2251 | if (d->format == format) |
2252 | return true; |
2253 | if (qt_depthForFormat(format) != qt_depthForFormat(format: d->format)) |
2254 | return false; |
2255 | if (!isDetached()) { // Detach only if shared, not for read-only data. |
2256 | QImageData *oldD = d; |
2257 | detach(); |
2258 | // In case detach() ran out of memory |
2259 | if (!d) { |
2260 | d = oldD; |
2261 | d->ref.ref(); |
2262 | return false; |
2263 | } |
2264 | } |
2265 | |
2266 | d->format = format; |
2267 | return true; |
2268 | } |
2269 | |
2270 | /*! |
2271 | \since 5.13 |
2272 | |
2273 | Detach and convert the image to the given \a format in place. |
2274 | |
2275 | The specified image conversion \a flags control how the image data |
2276 | is handled during the conversion process. |
2277 | |
2278 | \sa convertToFormat() |
2279 | */ |
2280 | |
2281 | void QImage::convertTo(Format format, Qt::ImageConversionFlags flags) |
2282 | { |
2283 | if (!d || format == QImage::Format_Invalid) |
2284 | return; |
2285 | |
2286 | detach(); |
2287 | if (convertToFormat_inplace(format, flags)) |
2288 | return; |
2289 | |
2290 | *this = convertToFormat_helper(format, flags); |
2291 | } |
2292 | |
2293 | /*! |
2294 | \fn bool QImage::valid(const QPoint &pos) const |
2295 | |
2296 | Returns \c true if \a pos is a valid coordinate pair within the |
2297 | image; otherwise returns \c false. |
2298 | |
2299 | \sa rect(), QRect::contains() |
2300 | */ |
2301 | |
2302 | /*! |
2303 | \overload |
2304 | |
2305 | Returns \c true if QPoint(\a x, \a y) is a valid coordinate pair |
2306 | within the image; otherwise returns \c false. |
2307 | */ |
2308 | bool QImage::valid(int x, int y) const |
2309 | { |
2310 | return d |
2311 | && x >= 0 && x < d->width |
2312 | && y >= 0 && y < d->height; |
2313 | } |
2314 | |
2315 | /*! |
2316 | \fn int QImage::pixelIndex(const QPoint &position) const |
2317 | |
2318 | Returns the pixel index at the given \a position. |
2319 | |
2320 | If \a position is not valid, or if the image is not a paletted |
2321 | image (depth() > 8), the results are undefined. |
2322 | |
2323 | \sa valid(), depth(), {QImage#Pixel Manipulation}{Pixel Manipulation} |
2324 | */ |
2325 | |
2326 | /*! |
2327 | \overload |
2328 | |
2329 | Returns the pixel index at (\a x, \a y). |
2330 | */ |
2331 | int QImage::pixelIndex(int x, int y) const |
2332 | { |
2333 | if (!d || x < 0 || x >= d->width || y < 0 || y >= height()) { |
2334 | qWarning(msg: "QImage::pixelIndex: coordinate (%d,%d) out of range" , x, y); |
2335 | return -12345; |
2336 | } |
2337 | const uchar * s = scanLine(i: y); |
2338 | switch(d->format) { |
2339 | case Format_Mono: |
2340 | return (*(s + (x >> 3)) >> (7- (x & 7))) & 1; |
2341 | case Format_MonoLSB: |
2342 | return (*(s + (x >> 3)) >> (x & 7)) & 1; |
2343 | case Format_Indexed8: |
2344 | return (int)s[x]; |
2345 | default: |
2346 | qWarning(msg: "QImage::pixelIndex: Not applicable for %d-bpp images (no palette)" , d->depth); |
2347 | } |
2348 | return 0; |
2349 | } |
2350 | |
2351 | |
2352 | /*! |
2353 | \fn QRgb QImage::pixel(const QPoint &position) const |
2354 | |
2355 | Returns the color of the pixel at the given \a position. |
2356 | |
2357 | If the \a position is not valid, the results are undefined. |
2358 | |
2359 | \warning This function is expensive when used for massive pixel |
2360 | manipulations. Use constBits() or constScanLine() when many |
2361 | pixels needs to be read. |
2362 | |
2363 | \sa setPixel(), valid(), constBits(), constScanLine(), {QImage#Pixel Manipulation}{Pixel |
2364 | Manipulation} |
2365 | */ |
2366 | |
2367 | /*! |
2368 | \overload |
2369 | |
2370 | Returns the color of the pixel at coordinates (\a x, \a y). |
2371 | */ |
2372 | QRgb QImage::pixel(int x, int y) const |
2373 | { |
2374 | if (!d || x < 0 || x >= d->width || y < 0 || y >= d->height) { |
2375 | qWarning(msg: "QImage::pixel: coordinate (%d,%d) out of range" , x, y); |
2376 | return 12345; |
2377 | } |
2378 | |
2379 | const uchar *s = d->data + y * d->bytes_per_line; |
2380 | |
2381 | int index = -1; |
2382 | switch (d->format) { |
2383 | case Format_Mono: |
2384 | index = (*(s + (x >> 3)) >> (~x & 7)) & 1; |
2385 | break; |
2386 | case Format_MonoLSB: |
2387 | index = (*(s + (x >> 3)) >> (x & 7)) & 1; |
2388 | break; |
2389 | case Format_Indexed8: |
2390 | index = s[x]; |
2391 | break; |
2392 | default: |
2393 | break; |
2394 | } |
2395 | if (index >= 0) { // Indexed format |
2396 | if (index >= d->colortable.size()) { |
2397 | qWarning(msg: "QImage::pixel: color table index %d out of range." , index); |
2398 | return 0; |
2399 | } |
2400 | return d->colortable.at(i: index); |
2401 | } |
2402 | |
2403 | switch (d->format) { |
2404 | case Format_RGB32: |
2405 | return 0xff000000 | reinterpret_cast<const QRgb *>(s)[x]; |
2406 | case Format_ARGB32: // Keep old behaviour. |
2407 | case Format_ARGB32_Premultiplied: |
2408 | return reinterpret_cast<const QRgb *>(s)[x]; |
2409 | case Format_RGBX8888: |
2410 | case Format_RGBA8888: // Match ARGB32 behavior. |
2411 | case Format_RGBA8888_Premultiplied: |
2412 | return RGBA2ARGB(x: reinterpret_cast<const quint32 *>(s)[x]); |
2413 | case Format_BGR30: |
2414 | case Format_A2BGR30_Premultiplied: |
2415 | return qConvertA2rgb30ToArgb32<PixelOrderBGR>(c: reinterpret_cast<const quint32 *>(s)[x]); |
2416 | case Format_RGB30: |
2417 | case Format_A2RGB30_Premultiplied: |
2418 | return qConvertA2rgb30ToArgb32<PixelOrderRGB>(c: reinterpret_cast<const quint32 *>(s)[x]); |
2419 | case Format_RGB16: |
2420 | return qConvertRgb16To32(c: reinterpret_cast<const quint16 *>(s)[x]); |
2421 | case Format_RGBX64: |
2422 | case Format_RGBA64: // Match ARGB32 behavior. |
2423 | case Format_RGBA64_Premultiplied: |
2424 | return reinterpret_cast<const QRgba64 *>(s)[x].toArgb32(); |
2425 | default: |
2426 | break; |
2427 | } |
2428 | const QPixelLayout *layout = &qPixelLayouts[d->format]; |
2429 | uint result; |
2430 | return *layout->fetchToARGB32PM(&result, s, x, 1, nullptr, nullptr); |
2431 | } |
2432 | |
2433 | /*! |
2434 | \fn void QImage::setPixel(const QPoint &position, uint index_or_rgb) |
2435 | |
2436 | Sets the pixel index or color at the given \a position to \a |
2437 | index_or_rgb. |
2438 | |
2439 | If the image's format is either monochrome or paletted, the given \a |
2440 | index_or_rgb value must be an index in the image's color table, |
2441 | otherwise the parameter must be a QRgb value. |
2442 | |
2443 | If \a position is not a valid coordinate pair in the image, or if |
2444 | \a index_or_rgb >= colorCount() in the case of monochrome and |
2445 | paletted images, the result is undefined. |
2446 | |
2447 | \warning This function is expensive due to the call of the internal |
2448 | \c{detach()} function called within; if performance is a concern, we |
2449 | recommend the use of scanLine() or bits() to access pixel data directly. |
2450 | |
2451 | \sa pixel(), {QImage#Pixel Manipulation}{Pixel Manipulation} |
2452 | */ |
2453 | |
2454 | /*! |
2455 | \overload |
2456 | |
2457 | Sets the pixel index or color at (\a x, \a y) to \a index_or_rgb. |
2458 | */ |
2459 | void QImage::setPixel(int x, int y, uint index_or_rgb) |
2460 | { |
2461 | if (!d || x < 0 || x >= width() || y < 0 || y >= height()) { |
2462 | qWarning(msg: "QImage::setPixel: coordinate (%d,%d) out of range" , x, y); |
2463 | return; |
2464 | } |
2465 | // detach is called from within scanLine |
2466 | uchar * s = scanLine(i: y); |
2467 | switch(d->format) { |
2468 | case Format_Mono: |
2469 | case Format_MonoLSB: |
2470 | if (index_or_rgb > 1) { |
2471 | qWarning(msg: "QImage::setPixel: Index %d out of range" , index_or_rgb); |
2472 | } else if (format() == Format_MonoLSB) { |
2473 | if (index_or_rgb==0) |
2474 | *(s + (x >> 3)) &= ~(1 << (x & 7)); |
2475 | else |
2476 | *(s + (x >> 3)) |= (1 << (x & 7)); |
2477 | } else { |
2478 | if (index_or_rgb==0) |
2479 | *(s + (x >> 3)) &= ~(1 << (7-(x & 7))); |
2480 | else |
2481 | *(s + (x >> 3)) |= (1 << (7-(x & 7))); |
2482 | } |
2483 | return; |
2484 | case Format_Indexed8: |
2485 | if (index_or_rgb >= (uint)d->colortable.size()) { |
2486 | qWarning(msg: "QImage::setPixel: Index %d out of range" , index_or_rgb); |
2487 | return; |
2488 | } |
2489 | s[x] = index_or_rgb; |
2490 | return; |
2491 | case Format_RGB32: |
2492 | //make sure alpha is 255, we depend on it in qdrawhelper for cases |
2493 | // when image is set as a texture pattern on a qbrush |
2494 | ((uint *)s)[x] = 0xff000000 | index_or_rgb; |
2495 | return; |
2496 | case Format_ARGB32: |
2497 | case Format_ARGB32_Premultiplied: |
2498 | ((uint *)s)[x] = index_or_rgb; |
2499 | return; |
2500 | case Format_RGB16: |
2501 | ((quint16 *)s)[x] = qConvertRgb32To16(c: index_or_rgb); |
2502 | return; |
2503 | case Format_RGBX8888: |
2504 | ((uint *)s)[x] = ARGB2RGBA(x: 0xff000000 | index_or_rgb); |
2505 | return; |
2506 | case Format_RGBA8888: |
2507 | case Format_RGBA8888_Premultiplied: |
2508 | ((uint *)s)[x] = ARGB2RGBA(x: index_or_rgb); |
2509 | return; |
2510 | case Format_BGR30: |
2511 | ((uint *)s)[x] = qConvertRgb32ToRgb30<PixelOrderBGR>(c: index_or_rgb); |
2512 | return; |
2513 | case Format_A2BGR30_Premultiplied: |
2514 | ((uint *)s)[x] = qConvertArgb32ToA2rgb30<PixelOrderBGR>(c: index_or_rgb); |
2515 | return; |
2516 | case Format_RGB30: |
2517 | ((uint *)s)[x] = qConvertRgb32ToRgb30<PixelOrderRGB>(c: index_or_rgb); |
2518 | return; |
2519 | case Format_A2RGB30_Premultiplied: |
2520 | ((uint *)s)[x] = qConvertArgb32ToA2rgb30<PixelOrderRGB>(c: index_or_rgb); |
2521 | return; |
2522 | case Format_RGBA64: |
2523 | case Format_RGBA64_Premultiplied: |
2524 | ((QRgba64 *)s)[x] = QRgba64::fromArgb32(rgb: index_or_rgb); |
2525 | return; |
2526 | case Format_Invalid: |
2527 | case NImageFormats: |
2528 | Q_ASSERT(false); |
2529 | return; |
2530 | default: |
2531 | break; |
2532 | } |
2533 | |
2534 | const QPixelLayout *layout = &qPixelLayouts[d->format]; |
2535 | if (!hasAlphaChannel()) |
2536 | layout->storeFromRGB32(s, &index_or_rgb, x, 1, nullptr, nullptr); |
2537 | else |
2538 | layout->storeFromARGB32PM(s, &index_or_rgb, x, 1, nullptr, nullptr); |
2539 | } |
2540 | |
2541 | /*! |
2542 | \fn QColor QImage::pixelColor(const QPoint &position) const |
2543 | \since 5.6 |
2544 | |
2545 | Returns the color of the pixel at the given \a position as a QColor. |
2546 | |
2547 | If the \a position is not valid, an invalid QColor is returned. |
2548 | |
2549 | \warning This function is expensive when used for massive pixel |
2550 | manipulations. Use constBits() or constScanLine() when many |
2551 | pixels needs to be read. |
2552 | |
2553 | \sa setPixel(), valid(), constBits(), constScanLine(), {QImage#Pixel Manipulation}{Pixel |
2554 | Manipulation} |
2555 | */ |
2556 | |
2557 | /*! |
2558 | \overload |
2559 | \since 5.6 |
2560 | |
2561 | Returns the color of the pixel at coordinates (\a x, \a y) as a QColor. |
2562 | */ |
2563 | QColor QImage::pixelColor(int x, int y) const |
2564 | { |
2565 | if (!d || x < 0 || x >= d->width || y < 0 || y >= height()) { |
2566 | qWarning(msg: "QImage::pixelColor: coordinate (%d,%d) out of range" , x, y); |
2567 | return QColor(); |
2568 | } |
2569 | |
2570 | QRgba64 c; |
2571 | const uchar * s = constScanLine(i: y); |
2572 | switch (d->format) { |
2573 | case Format_BGR30: |
2574 | case Format_A2BGR30_Premultiplied: |
2575 | c = qConvertA2rgb30ToRgb64<PixelOrderBGR>(rgb: reinterpret_cast<const quint32 *>(s)[x]); |
2576 | break; |
2577 | case Format_RGB30: |
2578 | case Format_A2RGB30_Premultiplied: |
2579 | c = qConvertA2rgb30ToRgb64<PixelOrderRGB>(rgb: reinterpret_cast<const quint32 *>(s)[x]); |
2580 | break; |
2581 | case Format_RGBX64: |
2582 | case Format_RGBA64: |
2583 | case Format_RGBA64_Premultiplied: |
2584 | c = reinterpret_cast<const QRgba64 *>(s)[x]; |
2585 | break; |
2586 | case Format_Grayscale16: { |
2587 | quint16 v = reinterpret_cast<const quint16 *>(s)[x]; |
2588 | return QColor(qRgba64(r: v, g: v, b: v, a: 0xffff)); |
2589 | } |
2590 | default: |
2591 | c = QRgba64::fromArgb32(rgb: pixel(x, y)); |
2592 | break; |
2593 | } |
2594 | // QColor is always unpremultiplied |
2595 | if (hasAlphaChannel() && qPixelLayouts[d->format].premultiplied) |
2596 | c = c.unpremultiplied(); |
2597 | return QColor(c); |
2598 | } |
2599 | |
2600 | /*! |
2601 | \fn void QImage::setPixelColor(const QPoint &position, const QColor &color) |
2602 | \since 5.6 |
2603 | |
2604 | Sets the color at the given \a position to \a color. |
2605 | |
2606 | If \a position is not a valid coordinate pair in the image, or |
2607 | the image's format is either monochrome or paletted, the result is undefined. |
2608 | |
2609 | \warning This function is expensive due to the call of the internal |
2610 | \c{detach()} function called within; if performance is a concern, we |
2611 | recommend the use of scanLine() or bits() to access pixel data directly. |
2612 | |
2613 | \sa pixel(), bits(), scanLine(), {QImage#Pixel Manipulation}{Pixel Manipulation} |
2614 | */ |
2615 | |
2616 | /*! |
2617 | \overload |
2618 | \since 5.6 |
2619 | |
2620 | Sets the pixel color at (\a x, \a y) to \a color. |
2621 | */ |
2622 | void QImage::setPixelColor(int x, int y, const QColor &color) |
2623 | { |
2624 | if (!d || x < 0 || x >= width() || y < 0 || y >= height()) { |
2625 | qWarning(msg: "QImage::setPixelColor: coordinate (%d,%d) out of range" , x, y); |
2626 | return; |
2627 | } |
2628 | |
2629 | if (!color.isValid()) { |
2630 | qWarning(msg: "QImage::setPixelColor: color is invalid" ); |
2631 | return; |
2632 | } |
2633 | |
2634 | // QColor is always unpremultiplied |
2635 | QRgba64 c = color.rgba64(); |
2636 | if (!hasAlphaChannel()) |
2637 | c.setAlpha(65535); |
2638 | else if (qPixelLayouts[d->format].premultiplied) |
2639 | c = c.premultiplied(); |
2640 | // detach is called from within scanLine |
2641 | uchar * s = scanLine(i: y); |
2642 | switch (d->format) { |
2643 | case Format_Mono: |
2644 | case Format_MonoLSB: |
2645 | case Format_Indexed8: |
2646 | qWarning(msg: "QImage::setPixelColor: called on monochrome or indexed format" ); |
2647 | return; |
2648 | case Format_BGR30: |
2649 | ((uint *)s)[x] = qConvertRgb64ToRgb30<PixelOrderBGR>(c) | 0xc0000000; |
2650 | return; |
2651 | case Format_A2BGR30_Premultiplied: |
2652 | ((uint *)s)[x] = qConvertRgb64ToRgb30<PixelOrderBGR>(c); |
2653 | return; |
2654 | case Format_RGB30: |
2655 | ((uint *)s)[x] = qConvertRgb64ToRgb30<PixelOrderRGB>(c) | 0xc0000000; |
2656 | return; |
2657 | case Format_A2RGB30_Premultiplied: |
2658 | ((uint *)s)[x] = qConvertRgb64ToRgb30<PixelOrderRGB>(c); |
2659 | return; |
2660 | case Format_RGBX64: |
2661 | case Format_RGBA64: |
2662 | case Format_RGBA64_Premultiplied: |
2663 | ((QRgba64 *)s)[x] = c; |
2664 | return; |
2665 | default: |
2666 | setPixel(x, y, index_or_rgb: c.toArgb32()); |
2667 | return; |
2668 | } |
2669 | } |
2670 | |
2671 | /*! |
2672 | Returns \c true if all the colors in the image are shades of gray |
2673 | (i.e. their red, green and blue components are equal); otherwise |
2674 | false. |
2675 | |
2676 | Note that this function is slow for images without color table. |
2677 | |
2678 | \sa isGrayscale() |
2679 | */ |
2680 | bool QImage::allGray() const |
2681 | { |
2682 | if (!d) |
2683 | return true; |
2684 | |
2685 | switch (d->format) { |
2686 | case Format_Mono: |
2687 | case Format_MonoLSB: |
2688 | case Format_Indexed8: |
2689 | for (int i = 0; i < d->colortable.size(); ++i) { |
2690 | if (!qIsGray(rgb: d->colortable.at(i))) |
2691 | return false; |
2692 | } |
2693 | return true; |
2694 | case Format_Alpha8: |
2695 | return false; |
2696 | case Format_Grayscale8: |
2697 | case Format_Grayscale16: |
2698 | return true; |
2699 | case Format_RGB32: |
2700 | case Format_ARGB32: |
2701 | case Format_ARGB32_Premultiplied: |
2702 | #if Q_BYTE_ORDER == Q_LITTLE_ENDIAN |
2703 | case Format_RGBX8888: |
2704 | case Format_RGBA8888: |
2705 | case Format_RGBA8888_Premultiplied: |
2706 | #endif |
2707 | for (int j = 0; j < d->height; ++j) { |
2708 | const QRgb *b = (const QRgb *)constScanLine(i: j); |
2709 | for (int i = 0; i < d->width; ++i) { |
2710 | if (!qIsGray(rgb: b[i])) |
2711 | return false; |
2712 | } |
2713 | } |
2714 | return true; |
2715 | case Format_RGB16: |
2716 | for (int j = 0; j < d->height; ++j) { |
2717 | const quint16 *b = (const quint16 *)constScanLine(i: j); |
2718 | for (int i = 0; i < d->width; ++i) { |
2719 | if (!qIsGray(rgb: qConvertRgb16To32(c: b[i]))) |
2720 | return false; |
2721 | } |
2722 | } |
2723 | return true; |
2724 | default: |
2725 | break; |
2726 | } |
2727 | |
2728 | uint buffer[BufferSize]; |
2729 | const QPixelLayout *layout = &qPixelLayouts[d->format]; |
2730 | const auto fetch = layout->fetchToARGB32PM; |
2731 | for (int j = 0; j < d->height; ++j) { |
2732 | const uchar *b = constScanLine(i: j); |
2733 | int x = 0; |
2734 | while (x < d->width) { |
2735 | int l = qMin(a: d->width - x, b: BufferSize); |
2736 | const uint *ptr = fetch(buffer, b, x, l, nullptr, nullptr); |
2737 | for (int i = 0; i < l; ++i) { |
2738 | if (!qIsGray(rgb: ptr[i])) |
2739 | return false; |
2740 | } |
2741 | x += l; |
2742 | } |
2743 | } |
2744 | return true; |
2745 | } |
2746 | |
2747 | /*! |
2748 | For 32-bit images, this function is equivalent to allGray(). |
2749 | |
2750 | For color indexed images, this function returns \c true if |
2751 | color(i) is QRgb(i, i, i) for all indexes of the color table; |
2752 | otherwise returns \c false. |
2753 | |
2754 | \sa allGray(), {QImage#Image Formats}{Image Formats} |
2755 | */ |
2756 | bool QImage::isGrayscale() const |
2757 | { |
2758 | if (!d) |
2759 | return false; |
2760 | |
2761 | if (d->format == QImage::Format_Alpha8) |
2762 | return false; |
2763 | |
2764 | if (d->format == QImage::Format_Grayscale8 || d->format == QImage::Format_Grayscale16) |
2765 | return true; |
2766 | |
2767 | switch (depth()) { |
2768 | case 32: |
2769 | case 24: |
2770 | case 16: |
2771 | return allGray(); |
2772 | case 8: { |
2773 | Q_ASSERT(d->format == QImage::Format_Indexed8); |
2774 | for (int i = 0; i < colorCount(); i++) |
2775 | if (d->colortable.at(i) != qRgb(r: i,g: i,b: i)) |
2776 | return false; |
2777 | return true; |
2778 | } |
2779 | } |
2780 | return false; |
2781 | } |
2782 | |
2783 | /*! |
2784 | \fn QImage QImage::scaled(int width, int height, Qt::AspectRatioMode aspectRatioMode, |
2785 | Qt::TransformationMode transformMode) const |
2786 | \overload |
2787 | |
2788 | Returns a copy of the image scaled to a rectangle with the given |
2789 | \a width and \a height according to the given \a aspectRatioMode |
2790 | and \a transformMode. |
2791 | |
2792 | If either the \a width or the \a height is zero or negative, this |
2793 | function returns a null image. |
2794 | */ |
2795 | |
2796 | /*! |
2797 | \fn QImage QImage::scaled(const QSize &size, Qt::AspectRatioMode aspectRatioMode, |
2798 | Qt::TransformationMode transformMode) const |
2799 | |
2800 | Returns a copy of the image scaled to a rectangle defined by the |
2801 | given \a size according to the given \a aspectRatioMode and \a |
2802 | transformMode. |
2803 | |
2804 | \image qimage-scaling.png |
2805 | |
2806 | \list |
2807 | \li If \a aspectRatioMode is Qt::IgnoreAspectRatio, the image |
2808 | is scaled to \a size. |
2809 | \li If \a aspectRatioMode is Qt::KeepAspectRatio, the image is |
2810 | scaled to a rectangle as large as possible inside \a size, preserving the aspect ratio. |
2811 | \li If \a aspectRatioMode is Qt::KeepAspectRatioByExpanding, |
2812 | the image is scaled to a rectangle as small as possible |
2813 | outside \a size, preserving the aspect ratio. |
2814 | \endlist |
2815 | |
2816 | If the given \a size is empty, this function returns a null image. |
2817 | |
2818 | \sa isNull(), {QImage#Image Transformations}{Image |
2819 | Transformations} |
2820 | */ |
2821 | QImage QImage::scaled(const QSize& s, Qt::AspectRatioMode aspectMode, Qt::TransformationMode mode) const |
2822 | { |
2823 | if (!d) { |
2824 | qWarning(msg: "QImage::scaled: Image is a null image" ); |
2825 | return QImage(); |
2826 | } |
2827 | if (s.isEmpty()) |
2828 | return QImage(); |
2829 | |
2830 | QSize newSize = size(); |
2831 | newSize.scale(s, mode: aspectMode); |
2832 | newSize.rwidth() = qMax(a: newSize.width(), b: 1); |
2833 | newSize.rheight() = qMax(a: newSize.height(), b: 1); |
2834 | if (newSize == size()) |
2835 | return *this; |
2836 | |
2837 | Q_TRACE_SCOPE(QImage_scaled, s, aspectMode, mode); |
2838 | |
2839 | QTransform wm = QTransform::fromScale(dx: (qreal)newSize.width() / width(), dy: (qreal)newSize.height() / height()); |
2840 | QImage img = transformed(matrix: wm, mode); |
2841 | return img; |
2842 | } |
2843 | |
2844 | /*! |
2845 | \fn QImage QImage::scaledToWidth(int width, Qt::TransformationMode mode) const |
2846 | |
2847 | Returns a scaled copy of the image. The returned image is scaled |
2848 | to the given \a width using the specified transformation \a |
2849 | mode. |
2850 | |
2851 | This function automatically calculates the height of the image so |
2852 | that its aspect ratio is preserved. |
2853 | |
2854 | If the given \a width is 0 or negative, a null image is returned. |
2855 | |
2856 | \sa {QImage#Image Transformations}{Image Transformations} |
2857 | */ |
2858 | QImage QImage::scaledToWidth(int w, Qt::TransformationMode mode) const |
2859 | { |
2860 | if (!d) { |
2861 | qWarning(msg: "QImage::scaleWidth: Image is a null image" ); |
2862 | return QImage(); |
2863 | } |
2864 | if (w <= 0) |
2865 | return QImage(); |
2866 | |
2867 | Q_TRACE_SCOPE(QImage_scaledToWidth, w, mode); |
2868 | |
2869 | qreal factor = (qreal) w / width(); |
2870 | QTransform wm = QTransform::fromScale(dx: factor, dy: factor); |
2871 | return transformed(matrix: wm, mode); |
2872 | } |
2873 | |
2874 | /*! |
2875 | \fn QImage QImage::scaledToHeight(int height, Qt::TransformationMode mode) const |
2876 | |
2877 | Returns a scaled copy of the image. The returned image is scaled |
2878 | to the given \a height using the specified transformation \a |
2879 | mode. |
2880 | |
2881 | This function automatically calculates the width of the image so that |
2882 | the ratio of the image is preserved. |
2883 | |
2884 | If the given \a height is 0 or negative, a null image is returned. |
2885 | |
2886 | \sa {QImage#Image Transformations}{Image Transformations} |
2887 | */ |
2888 | QImage QImage::scaledToHeight(int h, Qt::TransformationMode mode) const |
2889 | { |
2890 | if (!d) { |
2891 | qWarning(msg: "QImage::scaleHeight: Image is a null image" ); |
2892 | return QImage(); |
2893 | } |
2894 | if (h <= 0) |
2895 | return QImage(); |
2896 | |
2897 | Q_TRACE_SCOPE(QImage_scaledToHeight, h, mode); |
2898 | |
2899 | qreal factor = (qreal) h / height(); |
2900 | QTransform wm = QTransform::fromScale(dx: factor, dy: factor); |
2901 | return transformed(matrix: wm, mode); |
2902 | } |
2903 | |
2904 | |
2905 | #if QT_DEPRECATED_SINCE(5, 15) |
2906 | |
2907 | /*! |
2908 | \obsolete |
2909 | |
2910 | Use trueMatrix(const QTransform &matrix, int w, int h) instead. |
2911 | |
2912 | \fn QMatrix QImage::trueMatrix(const QMatrix &matrix, int width, int height) |
2913 | |
2914 | Returns the actual matrix used for transforming an image with the |
2915 | given \a width, \a height and \a matrix. |
2916 | |
2917 | When transforming an image using the transformed() function, the |
2918 | transformation matrix is internally adjusted to compensate for |
2919 | unwanted translation, i.e. transformed() returns the smallest |
2920 | image containing all transformed points of the original image. |
2921 | This function returns the modified matrix, which maps points |
2922 | correctly from the original image into the new image. |
2923 | |
2924 | \sa transformed(), {QImage#Image Transformations}{Image |
2925 | Transformations} |
2926 | */ |
2927 | QMatrix QImage::trueMatrix(const QMatrix &matrix, int w, int h) |
2928 | { |
2929 | return trueMatrix(QTransform(matrix), w, h).toAffine(); |
2930 | } |
2931 | |
2932 | /*! |
2933 | \obsolete |
2934 | |
2935 | Use transformed(const QTransform &matrix, Qt::TransformationMode mode) instead. |
2936 | |
2937 | Returns a copy of the image that is transformed using the given |
2938 | transformation \a matrix and transformation \a mode. |
2939 | |
2940 | The returned image will normally have the same {Image Formats}{format} as |
2941 | the original image. However, a complex transformation may result in an |
2942 | image where not all pixels are covered by the transformed pixels of the |
2943 | original image. In such cases, those background pixels will be assigned a |
2944 | transparent color value, and the transformed image will be given a format |
2945 | with an alpha channel, even if the orginal image did not have that. |
2946 | |
2947 | The transformation \a matrix is internally adjusted to compensate |
2948 | for unwanted translation; i.e. the image produced is the smallest |
2949 | image that contains all the transformed points of the original |
2950 | image. Use the trueMatrix() function to retrieve the actual matrix |
2951 | used for transforming an image. |
2952 | |
2953 | \sa trueMatrix(), {QImage#Image Transformations}{Image |
2954 | Transformations} |
2955 | */ |
2956 | QImage QImage::transformed(const QMatrix &matrix, Qt::TransformationMode mode) const |
2957 | { |
2958 | return transformed(matrix: QTransform(matrix), mode); |
2959 | } |
2960 | |
2961 | #endif // QT_DEPRECATED_SINCE(5, 15) |
2962 | |
2963 | /*! |
2964 | Builds and returns a 1-bpp mask from the alpha buffer in this |
2965 | image. Returns a null image if the image's format is |
2966 | QImage::Format_RGB32. |
2967 | |
2968 | The \a flags argument is a bitwise-OR of the |
2969 | Qt::ImageConversionFlags, and controls the conversion |
2970 | process. Passing 0 for flags sets all the default options. |
2971 | |
2972 | The returned image has little-endian bit order (i.e. the image's |
2973 | format is QImage::Format_MonoLSB), which you can convert to |
2974 | big-endian (QImage::Format_Mono) using the convertToFormat() |
2975 | function. |
2976 | |
2977 | \sa createHeuristicMask(), {QImage#Image Transformations}{Image |
2978 | Transformations} |
2979 | */ |
2980 | QImage QImage::createAlphaMask(Qt::ImageConversionFlags flags) const |
2981 | { |
2982 | if (!d || d->format == QImage::Format_RGB32) |
2983 | return QImage(); |
2984 | |
2985 | if (d->depth == 1) { |
2986 | // A monochrome pixmap, with alpha channels on those two colors. |
2987 | // Pretty unlikely, so use less efficient solution. |
2988 | return convertToFormat(f: Format_Indexed8, flags).createAlphaMask(flags); |
2989 | } |
2990 | |
2991 | QImage mask(d->width, d->height, Format_MonoLSB); |
2992 | if (!mask.isNull()) { |
2993 | dither_to_Mono(dst: mask.d, src: d, flags, fromalpha: true); |
2994 | copyPhysicalMetadata(dst: mask.d, src: d); |
2995 | } |
2996 | return mask; |
2997 | } |
2998 | |
2999 | #ifndef QT_NO_IMAGE_HEURISTIC_MASK |
3000 | /*! |
3001 | Creates and returns a 1-bpp heuristic mask for this image. |
3002 | |
3003 | The function works by selecting a color from one of the corners, |
3004 | then chipping away pixels of that color starting at all the edges. |
3005 | The four corners vote for which color is to be masked away. In |
3006 | case of a draw (this generally means that this function is not |
3007 | applicable to the image), the result is arbitrary. |
3008 | |
3009 | The returned image has little-endian bit order (i.e. the image's |
3010 | format is QImage::Format_MonoLSB), which you can convert to |
3011 | big-endian (QImage::Format_Mono) using the convertToFormat() |
3012 | function. |
3013 | |
3014 | If \a clipTight is true (the default) the mask is just large |
3015 | enough to cover the pixels; otherwise, the mask is larger than the |
3016 | data pixels. |
3017 | |
3018 | Note that this function disregards the alpha buffer. |
3019 | |
3020 | \sa createAlphaMask(), {QImage#Image Transformations}{Image |
3021 | Transformations} |
3022 | */ |
3023 | |
3024 | QImage QImage::createHeuristicMask(bool clipTight) const |
3025 | { |
3026 | if (!d) |
3027 | return QImage(); |
3028 | |
3029 | if (d->depth != 32) { |
3030 | QImage img32 = convertToFormat(f: Format_RGB32); |
3031 | return img32.createHeuristicMask(clipTight); |
3032 | } |
3033 | |
3034 | #define PIX(x,y) (*((const QRgb*)scanLine(y)+x) & 0x00ffffff) |
3035 | |
3036 | int w = width(); |
3037 | int h = height(); |
3038 | QImage m(w, h, Format_MonoLSB); |
3039 | QIMAGE_SANITYCHECK_MEMORY(m); |
3040 | m.setColorCount(2); |
3041 | m.setColor(i: 0, c: QColor(Qt::color0).rgba()); |
3042 | m.setColor(i: 1, c: QColor(Qt::color1).rgba()); |
3043 | m.fill(pixel: 0xff); |
3044 | |
3045 | QRgb background = PIX(0,0); |
3046 | if (background != PIX(w-1,0) && |
3047 | background != PIX(0,h-1) && |
3048 | background != PIX(w-1,h-1)) { |
3049 | background = PIX(w-1,0); |
3050 | if (background != PIX(w-1,h-1) && |
3051 | background != PIX(0,h-1) && |
3052 | PIX(0,h-1) == PIX(w-1,h-1)) { |
3053 | background = PIX(w-1,h-1); |
3054 | } |
3055 | } |
3056 | |
3057 | int x,y; |
3058 | bool done = false; |
3059 | uchar *ypp, *ypc, *ypn; |
3060 | while(!done) { |
3061 | done = true; |
3062 | ypn = m.scanLine(i: 0); |
3063 | ypc = nullptr; |
3064 | for (y = 0; y < h; y++) { |
3065 | ypp = ypc; |
3066 | ypc = ypn; |
3067 | ypn = (y == h-1) ? nullptr : m.scanLine(i: y+1); |
3068 | const QRgb *p = (const QRgb *)scanLine(i: y); |
3069 | for (x = 0; x < w; x++) { |
3070 | // slowness here - it's possible to do six of these tests |
3071 | // together in one go. oh well. |
3072 | if ((x == 0 || y == 0 || x == w-1 || y == h-1 || |
3073 | !(*(ypc + ((x-1) >> 3)) & (1 << ((x-1) & 7))) || |
3074 | !(*(ypc + ((x+1) >> 3)) & (1 << ((x+1) & 7))) || |
3075 | !(*(ypp + (x >> 3)) & (1 << (x & 7))) || |
3076 | !(*(ypn + (x >> 3)) & (1 << (x & 7)))) && |
3077 | ( (*(ypc + (x >> 3)) & (1 << (x & 7)))) && |
3078 | ((*p & 0x00ffffff) == background)) { |
3079 | done = false; |
3080 | *(ypc + (x >> 3)) &= ~(1 << (x & 7)); |
3081 | } |
3082 | p++; |
3083 | } |
3084 | } |
3085 | } |
3086 | |
3087 | if (!clipTight) { |
3088 | ypn = m.scanLine(i: 0); |
3089 | ypc = nullptr; |
3090 | for (y = 0; y < h; y++) { |
3091 | ypp = ypc; |
3092 | ypc = ypn; |
3093 | ypn = (y == h-1) ? nullptr : m.scanLine(i: y+1); |
3094 | const QRgb *p = (const QRgb *)scanLine(i: y); |
3095 | for (x = 0; x < w; x++) { |
3096 | if ((*p & 0x00ffffff) != background) { |
3097 | if (x > 0) |
3098 | *(ypc + ((x-1) >> 3)) |= (1 << ((x-1) & 7)); |
3099 | if (x < w-1) |
3100 | *(ypc + ((x+1) >> 3)) |= (1 << ((x+1) & 7)); |
3101 | if (y > 0) |
3102 | *(ypp + (x >> 3)) |= (1 << (x & 7)); |
3103 | if (y < h-1) |
3104 | *(ypn + (x >> 3)) |= (1 << (x & 7)); |
3105 | } |
3106 | p++; |
3107 | } |
3108 | } |
3109 | } |
3110 | |
3111 | #undef PIX |
3112 | |
3113 | copyPhysicalMetadata(dst: m.d, src: d); |
3114 | return m; |
3115 | } |
3116 | #endif //QT_NO_IMAGE_HEURISTIC_MASK |
3117 | |
3118 | /*! |
3119 | Creates and returns a mask for this image based on the given \a |
3120 | color value. If the \a mode is MaskInColor (the default value), |
3121 | all pixels matching \a color will be opaque pixels in the mask. If |
3122 | \a mode is MaskOutColor, all pixels matching the given color will |
3123 | be transparent. |
3124 | |
3125 | \sa createAlphaMask(), createHeuristicMask() |
3126 | */ |
3127 | |
3128 | QImage QImage::createMaskFromColor(QRgb color, Qt::MaskMode mode) const |
3129 | { |
3130 | if (!d) |
3131 | return QImage(); |
3132 | QImage maskImage(size(), QImage::Format_MonoLSB); |
3133 | QIMAGE_SANITYCHECK_MEMORY(maskImage); |
3134 | maskImage.fill(pixel: 0); |
3135 | uchar *s = maskImage.bits(); |
3136 | |
3137 | if (depth() == 32) { |
3138 | for (int h = 0; h < d->height; h++) { |
3139 | const uint *sl = (const uint *) scanLine(i: h); |
3140 | for (int w = 0; w < d->width; w++) { |
3141 | if (sl[w] == color) |
3142 | *(s + (w >> 3)) |= (1 << (w & 7)); |
3143 | } |
3144 | s += maskImage.bytesPerLine(); |
3145 | } |
3146 | } else { |
3147 | for (int h = 0; h < d->height; h++) { |
3148 | for (int w = 0; w < d->width; w++) { |
3149 | if ((uint) pixel(x: w, y: h) == color) |
3150 | *(s + (w >> 3)) |= (1 << (w & 7)); |
3151 | } |
3152 | s += maskImage.bytesPerLine(); |
3153 | } |
3154 | } |
3155 | if (mode == Qt::MaskOutColor) |
3156 | maskImage.invertPixels(); |
3157 | |
3158 | copyPhysicalMetadata(dst: maskImage.d, src: d); |
3159 | return maskImage; |
3160 | } |
3161 | |
3162 | /*! |
3163 | \fn QImage QImage::mirrored(bool horizontal = false, bool vertical = true) const & |
3164 | \fn QImage QImage::mirrored(bool horizontal = false, bool vertical = true) && |
3165 | |
3166 | Returns a mirror of the image, mirrored in the horizontal and/or |
3167 | the vertical direction depending on whether \a horizontal and \a |
3168 | vertical are set to true or false. |
3169 | |
3170 | Note that the original image is not changed. |
3171 | |
3172 | \sa {QImage#Image Transformations}{Image Transformations} |
3173 | */ |
3174 | |
3175 | template<class T> inline void do_mirror_data(QImageData *dst, QImageData *src, |
3176 | int dstX0, int dstY0, |
3177 | int dstXIncr, int dstYIncr, |
3178 | int w, int h) |
3179 | { |
3180 | if (dst == src) { |
3181 | // When mirroring in-place, stop in the middle for one of the directions, since we |
3182 | // are swapping the bytes instead of merely copying. |
3183 | const int srcXEnd = (dstX0 && !dstY0) ? w / 2 : w; |
3184 | const int srcYEnd = dstY0 ? h / 2 : h; |
3185 | for (int srcY = 0, dstY = dstY0; srcY < srcYEnd; ++srcY, dstY += dstYIncr) { |
3186 | T *srcPtr = (T *) (src->data + srcY * src->bytes_per_line); |
3187 | T *dstPtr = (T *) (dst->data + dstY * dst->bytes_per_line); |
3188 | for (int srcX = 0, dstX = dstX0; srcX < srcXEnd; ++srcX, dstX += dstXIncr) |
3189 | std::swap(srcPtr[srcX], dstPtr[dstX]); |
3190 | } |
3191 | // If mirroring both ways, the middle line needs to be mirrored horizontally only. |
3192 | if (dstX0 && dstY0 && (h & 1)) { |
3193 | int srcY = h / 2; |
3194 | int srcXEnd2 = w / 2; |
3195 | T *srcPtr = (T *) (src->data + srcY * src->bytes_per_line); |
3196 | for (int srcX = 0, dstX = dstX0; srcX < srcXEnd2; ++srcX, dstX += dstXIncr) |
3197 | std::swap(srcPtr[srcX], srcPtr[dstX]); |
3198 | } |
3199 | } else { |
3200 | for (int srcY = 0, dstY = dstY0; srcY < h; ++srcY, dstY += dstYIncr) { |
3201 | T *srcPtr = (T *) (src->data + srcY * src->bytes_per_line); |
3202 | T *dstPtr = (T *) (dst->data + dstY * dst->bytes_per_line); |
3203 | for (int srcX = 0, dstX = dstX0; srcX < w; ++srcX, dstX += dstXIncr) |
3204 | dstPtr[dstX] = srcPtr[srcX]; |
3205 | } |
3206 | } |
3207 | } |
3208 | |
3209 | inline void do_flip(QImageData *dst, QImageData *src, int w, int h, int depth) |
3210 | { |
3211 | const int data_bytes_per_line = w * (depth / 8); |
3212 | if (dst == src) { |
3213 | uint *srcPtr = reinterpret_cast<uint *>(src->data); |
3214 | uint *dstPtr = reinterpret_cast<uint *>(dst->data + (h - 1) * dst->bytes_per_line); |
3215 | h = h / 2; |
3216 | const int uint_per_line = (data_bytes_per_line + 3) >> 2; // bytes per line must be a multiple of 4 |
3217 | for (int y = 0; y < h; ++y) { |
3218 | // This is auto-vectorized, no need for SSE2 or NEON versions: |
3219 | for (int x = 0; x < uint_per_line; x++) { |
3220 | const uint d = dstPtr[x]; |
3221 | const uint s = srcPtr[x]; |
3222 | dstPtr[x] = s; |
3223 | srcPtr[x] = d; |
3224 | } |
3225 | srcPtr += src->bytes_per_line >> 2; |
3226 | dstPtr -= dst->bytes_per_line >> 2; |
3227 | } |
3228 | |
3229 | } else { |
3230 | const uchar *srcPtr = src->data; |
3231 | uchar *dstPtr = dst->data + (h - 1) * dst->bytes_per_line; |
3232 | for (int y = 0; y < h; ++y) { |
3233 | memcpy(dest: dstPtr, src: srcPtr, n: data_bytes_per_line); |
3234 | srcPtr += src->bytes_per_line; |
3235 | dstPtr -= dst->bytes_per_line; |
3236 | } |
3237 | } |
3238 | } |
3239 | |
3240 | inline void do_mirror(QImageData *dst, QImageData *src, bool horizontal, bool vertical) |
3241 | { |
3242 | Q_ASSERT(src->width == dst->width && src->height == dst->height && src->depth == dst->depth); |
3243 | int w = src->width; |
3244 | int h = src->height; |
3245 | int depth = src->depth; |
3246 | |
3247 | if (src->depth == 1) { |
3248 | w = (w + 7) / 8; // byte aligned width |
3249 | depth = 8; |
3250 | } |
3251 | |
3252 | if (vertical && !horizontal) { |
3253 | // This one is simple and common, so do it a little more optimized |
3254 | do_flip(dst, src, w, h, depth); |
3255 | return; |
3256 | } |
3257 | |
3258 | int dstX0 = 0, dstXIncr = 1; |
3259 | int dstY0 = 0, dstYIncr = 1; |
3260 | if (horizontal) { |
3261 | // 0 -> w-1, 1 -> w-2, 2 -> w-3, ... |
3262 | dstX0 = w - 1; |
3263 | dstXIncr = -1; |
3264 | } |
3265 | if (vertical) { |
3266 | // 0 -> h-1, 1 -> h-2, 2 -> h-3, ... |
3267 | dstY0 = h - 1; |
3268 | dstYIncr = -1; |
3269 | } |
3270 | |
3271 | switch (depth) { |
3272 | case 64: |
3273 | do_mirror_data<quint64>(dst, src, dstX0, dstY0, dstXIncr, dstYIncr, w, h); |
3274 | break; |
3275 | case 32: |
3276 | do_mirror_data<quint32>(dst, src, dstX0, dstY0, dstXIncr, dstYIncr, w, h); |
3277 | break; |
3278 | case 24: |
3279 | do_mirror_data<quint24>(dst, src, dstX0, dstY0, dstXIncr, dstYIncr, w, h); |
3280 | break; |
3281 | case 16: |
3282 | do_mirror_data<quint16>(dst, src, dstX0, dstY0, dstXIncr, dstYIncr, w, h); |
3283 | break; |
3284 | case 8: |
3285 | do_mirror_data<quint8>(dst, src, dstX0, dstY0, dstXIncr, dstYIncr, w, h); |
3286 | break; |
3287 | default: |
3288 | Q_ASSERT(false); |
3289 | break; |
3290 | } |
3291 | |
3292 | // The bytes are now all in the correct place. In addition, the bits in the individual |
3293 | // bytes have to be flipped too when horizontally mirroring a 1 bit-per-pixel image. |
3294 | if (horizontal && dst->depth == 1) { |
3295 | Q_ASSERT(dst->format == QImage::Format_Mono || dst->format == QImage::Format_MonoLSB); |
3296 | const int shift = 8 - (dst->width % 8); |
3297 | const uchar *bitflip = qt_get_bitflip_array(); |
3298 | for (int y = 0; y < h; ++y) { |
3299 | uchar *begin = dst->data + y * dst->bytes_per_line; |
3300 | uchar *end = begin + dst->bytes_per_line; |
3301 | for (uchar *p = begin; p < end; ++p) { |
3302 | *p = bitflip[*p]; |
3303 | // When the data is non-byte aligned, an extra bit shift (of the number of |
3304 | // unused bits at the end) is needed for the entire scanline. |
3305 | if (shift != 8 && p != begin) { |
3306 | if (dst->format == QImage::Format_Mono) { |
3307 | for (int i = 0; i < shift; ++i) { |
3308 | p[-1] <<= 1; |
3309 | p[-1] |= (*p & (128 >> i)) >> (7 - i); |
3310 | } |
3311 | } else { |
3312 | for (int i = 0; i < shift; ++i) { |
3313 | p[-1] >>= 1; |
3314 | p[-1] |= (*p & (1 << i)) << (7 - i); |
3315 | } |
3316 | } |
3317 | } |
3318 | } |
3319 | if (shift != 8) { |
3320 | if (dst->format == QImage::Format_Mono) |
3321 | end[-1] <<= shift; |
3322 | else |
3323 | end[-1] >>= shift; |
3324 | } |
3325 | } |
3326 | } |
3327 | } |
3328 | |
3329 | /*! |
3330 | \internal |
3331 | */ |
3332 | QImage QImage::mirrored_helper(bool horizontal, bool vertical) const |
3333 | { |
3334 | if (!d) |
3335 | return QImage(); |
3336 | |
3337 | if ((d->width <= 1 && d->height <= 1) || (!horizontal && !vertical)) |
3338 | return *this; |
3339 | |
3340 | // Create result image, copy colormap |
3341 | QImage result(d->width, d->height, d->format); |
3342 | QIMAGE_SANITYCHECK_MEMORY(result); |
3343 | |
3344 | // check if we ran out of of memory.. |
3345 | if (!result.d) |
3346 | return QImage(); |
3347 | |
3348 | result.d->colortable = d->colortable; |
3349 | result.d->has_alpha_clut = d->has_alpha_clut; |
3350 | copyMetadata(dst: result.d, src: d); |
3351 | |
3352 | do_mirror(dst: result.d, src: d, horizontal, vertical); |
3353 | |
3354 | return result; |
3355 | } |
3356 | |
3357 | /*! |
3358 | \internal |
3359 | */ |
3360 | void QImage::mirrored_inplace(bool horizontal, bool vertical) |
3361 | { |
3362 | if (!d || (d->width <= 1 && d->height <= 1) || (!horizontal && !vertical)) |
3363 | return; |
3364 | |
3365 | detach(); |
3366 | if (!d) |
3367 | return; |
3368 | if (!d->own_data) |
3369 | *this = copy(); |
3370 | |
3371 | do_mirror(dst: d, src: d, horizontal, vertical); |
3372 | } |
3373 | |
3374 | /*! |
3375 | \fn QImage QImage::rgbSwapped() const & |
3376 | \fn QImage QImage::rgbSwapped() && |
3377 | |
3378 | Returns a QImage in which the values of the red and blue |
3379 | components of all pixels have been swapped, effectively converting |
3380 | an RGB image to an BGR image. |
3381 | |
3382 | The original QImage is not changed. |
3383 | |
3384 | \sa {QImage#Image Transformations}{Image Transformations} |
3385 | */ |
3386 | |
3387 | static inline void rgbSwapped_generic(int width, int height, const QImage *src, QImage *dst, const QPixelLayout* layout) |
3388 | { |
3389 | const RbSwapFunc func = layout->rbSwap; |
3390 | if (!func) { |
3391 | qWarning(msg: "Trying to rb-swap an image format where it doesn't make sense" ); |
3392 | if (src != dst) |
3393 | *dst = *src; |
3394 | return; |
3395 | } |
3396 | |
3397 | for (int i = 0; i < height; ++i) { |
3398 | uchar *q = dst->scanLine(i); |
3399 | const uchar *p = src->constScanLine(i); |
3400 | func(q, p, width); |
3401 | } |
3402 | } |
3403 | |
3404 | /*! |
3405 | \internal |
3406 | */ |
3407 | QImage QImage::rgbSwapped_helper() const |
3408 | { |
3409 | if (isNull()) |
3410 | return *this; |
3411 | |
3412 | Q_TRACE_SCOPE(QImage_rgbSwapped_helper); |
3413 | |
3414 | QImage res; |
3415 | |
3416 | switch (d->format) { |
3417 | case Format_Invalid: |
3418 | case NImageFormats: |
3419 | Q_ASSERT(false); |
3420 | break; |
3421 | case Format_Alpha8: |
3422 | case Format_Grayscale8: |
3423 | case Format_Grayscale16: |
3424 | return *this; |
3425 | case Format_Mono: |
3426 | case Format_MonoLSB: |
3427 | case Format_Indexed8: |
3428 | res = copy(); |
3429 | for (int i = 0; i < res.d->colortable.size(); i++) { |
3430 | QRgb c = res.d->colortable.at(i); |
3431 | res.d->colortable[i] = QRgb(((c << 16) & 0xff0000) | ((c >> 16) & 0xff) | (c & 0xff00ff00)); |
3432 | } |
3433 | break; |
3434 | case Format_RGBX8888: |
3435 | case Format_RGBA8888: |
3436 | case Format_RGBA8888_Premultiplied: |
3437 | #if Q_BYTE_ORDER == Q_BIG_ENDIAN |
3438 | res = QImage(d->width, d->height, d->format); |
3439 | QIMAGE_SANITYCHECK_MEMORY(res); |
3440 | for (int i = 0; i < d->height; i++) { |
3441 | uint *q = (uint*)res.scanLine(i); |
3442 | const uint *p = (const uint*)constScanLine(i); |
3443 | const uint *end = p + d->width; |
3444 | while (p < end) { |
3445 | uint c = *p; |
3446 | *q = ((c << 16) & 0xff000000) | ((c >> 16) & 0xff00) | (c & 0x00ff00ff); |
3447 | p++; |
3448 | q++; |
3449 | } |
3450 | } |
3451 | break; |
3452 | #else |
3453 | // On little-endian rgba8888 is abgr32 and can use same rgb-swap as argb32 |
3454 | Q_FALLTHROUGH(); |
3455 | #endif |
3456 | case Format_RGB32: |
3457 | case Format_ARGB32: |
3458 | case Format_ARGB32_Premultiplied: |
3459 | res = QImage(d->width, d->height, d->format); |
3460 | QIMAGE_SANITYCHECK_MEMORY(res); |
3461 | for (int i = 0; i < d->height; i++) { |
3462 | uint *q = (uint*)res.scanLine(i); |
3463 | const uint *p = (const uint*)constScanLine(i); |
3464 | const uint *end = p + d->width; |
3465 | while (p < end) { |
3466 | uint c = *p; |
3467 | *q = ((c << 16) & 0xff0000) | ((c >> 16) & 0xff) | (c & 0xff00ff00); |
3468 | p++; |
3469 | q++; |
3470 | } |
3471 | } |
3472 | break; |
3473 | case Format_RGB16: |
3474 | res = QImage(d->width, d->height, d->format); |
3475 | QIMAGE_SANITYCHECK_MEMORY(res); |
3476 | for (int i = 0; i < d->height; i++) { |
3477 | ushort *q = (ushort*)res.scanLine(i); |
3478 | const ushort *p = (const ushort*)constScanLine(i); |
3479 | const ushort *end = p + d->width; |
3480 | while (p < end) { |
3481 | ushort c = *p; |
3482 | *q = ((c << 11) & 0xf800) | ((c >> 11) & 0x1f) | (c & 0x07e0); |
3483 | p++; |
3484 | q++; |
3485 | } |
3486 | } |
3487 | break; |
3488 | case Format_RGBX64: |
3489 | case Format_RGBA64: |
3490 | case Format_RGBA64_Premultiplied: |
3491 | res = QImage(d->width, d->height, d->format); |
3492 | QIMAGE_SANITYCHECK_MEMORY(res); |
3493 | for (int i = 0; i < d->height; i++) { |
3494 | QRgba64 *q = reinterpret_cast<QRgba64 *>(res.scanLine(i)); |
3495 | const QRgba64 *p = reinterpret_cast<const QRgba64 *>(constScanLine(i)); |
3496 | const QRgba64 *end = p + d->width; |
3497 | while (p < end) { |
3498 | QRgba64 c = *p; |
3499 | *q = QRgba64::fromRgba64(red: c.blue(), green: c.green(), blue: c.red(), alpha: c.alpha()); |
3500 | p++; |
3501 | q++; |
3502 | } |
3503 | } |
3504 | break; |
3505 | default: |
3506 | res = QImage(d->width, d->height, d->format); |
3507 | rgbSwapped_generic(width: d->width, height: d->height, src: this, dst: &res, layout: &qPixelLayouts[d->format]); |
3508 | break; |
3509 | } |
3510 | copyMetadata(dst: res.d, src: d); |
3511 | return res; |
3512 | } |
3513 | |
3514 | /*! |
3515 | \internal |
3516 | */ |
3517 | void QImage::rgbSwapped_inplace() |
3518 | { |
3519 | if (isNull()) |
3520 | return; |
3521 | |
3522 | detach(); |
3523 | if (!d) |
3524 | return; |
3525 | if (!d->own_data) |
3526 | *this = copy(); |
3527 | |
3528 | switch (d->format) { |
3529 | case Format_Invalid: |
3530 | case NImageFormats: |
3531 | Q_ASSERT(false); |
3532 | break; |
3533 | case Format_Alpha8: |
3534 | case Format_Grayscale8: |
3535 | case Format_Grayscale16: |
3536 | return; |
3537 | case Format_Mono: |
3538 | case Format_MonoLSB: |
3539 | case Format_Indexed8: |
3540 | for (int i = 0; i < d->colortable.size(); i++) { |
3541 | QRgb c = d->colortable.at(i); |
3542 | d->colortable[i] = QRgb(((c << 16) & 0xff0000) | ((c >> 16) & 0xff) | (c & 0xff00ff00)); |
3543 | } |
3544 | break; |
3545 | case Format_RGBX8888: |
3546 | case Format_RGBA8888: |
3547 | case Format_RGBA8888_Premultiplied: |
3548 | #if Q_BYTE_ORDER == Q_BIG_ENDIAN |
3549 | for (int i = 0; i < d->height; i++) { |
3550 | uint *p = (uint*)scanLine(i); |
3551 | uint *end = p + d->width; |
3552 | while (p < end) { |
3553 | uint c = *p; |
3554 | *p = ((c << 16) & 0xff000000) | ((c >> 16) & 0xff00) | (c & 0x00ff00ff); |
3555 | p++; |
3556 | } |
3557 | } |
3558 | break; |
3559 | #else |
3560 | // On little-endian rgba8888 is abgr32 and can use same rgb-swap as argb32 |
3561 | Q_FALLTHROUGH(); |
3562 | #endif |
3563 | case Format_RGB32: |
3564 | case Format_ARGB32: |
3565 | case Format_ARGB32_Premultiplied: |
3566 | for (int i = 0; i < d->height; i++) { |
3567 | uint *p = (uint*)scanLine(i); |
3568 | uint *end = p + d->width; |
3569 | while (p < end) { |
3570 | uint c = *p; |
3571 | *p = ((c << 16) & 0xff0000) | ((c >> 16) & 0xff) | (c & 0xff00ff00); |
3572 | p++; |
3573 | } |
3574 | } |
3575 | break; |
3576 | case Format_RGB16: |
3577 | for (int i = 0; i < d->height; i++) { |
3578 | ushort *p = (ushort*)scanLine(i); |
3579 | ushort *end = p + d->width; |
3580 | while (p < end) { |
3581 | ushort c = *p; |
3582 | *p = ((c << 11) & 0xf800) | ((c >> 11) & 0x1f) | (c & 0x07e0); |
3583 | p++; |
3584 | } |
3585 | } |
3586 | break; |
3587 | case Format_BGR30: |
3588 | case Format_A2BGR30_Premultiplied: |
3589 | case Format_RGB30: |
3590 | case Format_A2RGB30_Premultiplied: |
3591 | for (int i = 0; i < d->height; i++) { |
3592 | uint *p = (uint*)scanLine(i); |
3593 | uint *end = p + d->width; |
3594 | while (p < end) { |
3595 | *p = qRgbSwapRgb30(c: *p); |
3596 | p++; |
3597 | } |
3598 | } |
3599 | break; |
3600 | case Format_RGBX64: |
3601 | case Format_RGBA64: |
3602 | case Format_RGBA64_Premultiplied: |
3603 | for (int i = 0; i < d->height; i++) { |
3604 | QRgba64 *p = reinterpret_cast<QRgba64 *>(scanLine(i)); |
3605 | QRgba64 *end = p + d->width; |
3606 | while (p < end) { |
3607 | QRgba64 c = *p; |
3608 | *p = QRgba64::fromRgba64(red: c.blue(), green: c.green(), blue: c.red(), alpha: c.alpha()); |
3609 | p++; |
3610 | } |
3611 | } |
3612 | break; |
3613 | default: |
3614 | rgbSwapped_generic(width: d->width, height: d->height, src: this, dst: this, layout: &qPixelLayouts[d->format]); |
3615 | break; |
3616 | } |
3617 | } |
3618 | |
3619 | /*! |
3620 | Loads an image from the file with the given \a fileName. Returns \c true if |
3621 | the image was successfully loaded; otherwise invalidates the image |
3622 | and returns \c false. |
3623 | |
3624 | The loader attempts to read the image using the specified \a format, e.g., |
3625 | PNG or JPG. If \a format is not specified (which is the default), it is |
3626 | auto-detected based on the file's suffix and header. For details, see |
3627 | QImageReader::setAutoDetectImageFormat(). |
3628 | |
3629 | The file name can either refer to an actual file on disk or to one |
3630 | of the application's embedded resources. See the |
3631 | \l{resources.html}{Resource System} overview for details on how to |
3632 | embed images and other resource files in the application's |
3633 | executable. |
3634 | |
3635 | \sa {QImage#Reading and Writing Image Files}{Reading and Writing Image Files} |
3636 | */ |
3637 | |
3638 | bool QImage::load(const QString &fileName, const char* format) |
3639 | { |
3640 | *this = QImageReader(fileName, format).read(); |
3641 | return !isNull(); |
3642 | } |
3643 | |
3644 | /*! |
3645 | \overload |
3646 | |
3647 | This function reads a QImage from the given \a device. This can, |
3648 | for example, be used to load an image directly into a QByteArray. |
3649 | */ |
3650 | |
3651 | bool QImage::load(QIODevice* device, const char* format) |
3652 | { |
3653 | *this = QImageReader(device, format).read(); |
3654 | return !isNull(); |
3655 | } |
3656 | |
3657 | /*! |
3658 | \fn bool QImage::loadFromData(const uchar *data, int len, const char *format) |
3659 | |
3660 | Loads an image from the first \a len bytes of the given binary \a |
3661 | data. Returns \c true if the image was successfully loaded; otherwise |
3662 | invalidates the image and returns \c false. |
3663 | |
3664 | The loader attempts to read the image using the specified \a format, e.g., |
3665 | PNG or JPG. If \a format is not specified (which is the default), the |
3666 | loader probes the file for a header to guess the file format. |
3667 | |
3668 | \sa {QImage#Reading and Writing Image Files}{Reading and Writing Image Files} |
3669 | */ |
3670 | |
3671 | bool QImage::loadFromData(const uchar *data, int len, const char *format) |
3672 | { |
3673 | *this = fromData(data, size: len, format); |
3674 | return !isNull(); |
3675 | } |
3676 | |
3677 | /*! |
3678 | \fn bool QImage::loadFromData(const QByteArray &data, const char *format) |
3679 | |
3680 | \overload |
3681 | |
3682 | Loads an image from the given QByteArray \a data. |
3683 | */ |
3684 | |
3685 | /*! |
3686 | \fn QImage QImage::fromData(const uchar *data, int size, const char *format) |
3687 | |
3688 | Constructs a QImage from the first \a size bytes of the given |
3689 | binary \a data. The loader attempts to read the image using the |
3690 | specified \a format. If \a format is not specified (which is the default), |
3691 | the loader probes the data for a header to guess the file format. |
3692 | |
3693 | If \a format is specified, it must be one of the values returned by |
3694 | QImageReader::supportedImageFormats(). |
3695 | |
3696 | If the loading of the image fails, the image returned will be a null image. |
3697 | |
3698 | \sa load(), save(), {QImage#Reading and Writing Image Files}{Reading and Writing Image Files} |
3699 | */ |
3700 | |
3701 | QImage QImage::fromData(const uchar *data, int size, const char *format) |
3702 | { |
3703 | QByteArray a = QByteArray::fromRawData(reinterpret_cast<const char *>(data), size); |
3704 | QBuffer b; |
3705 | b.setData(a); |
3706 | b.open(openMode: QIODevice::ReadOnly); |
3707 | return QImageReader(&b, format).read(); |
3708 | } |
3709 | |
3710 | /*! |
3711 | \fn QImage QImage::fromData(const QByteArray &data, const char *format) |
3712 | |
3713 | \overload |
3714 | |
3715 | Loads an image from the given QByteArray \a data. |
3716 | */ |
3717 | |
3718 | /*! |
3719 | Saves the image to the file with the given \a fileName, using the |
3720 | given image file \a format and \a quality factor. If \a format is |
3721 | \nullptr, QImage will attempt to guess the format by looking at |
3722 | \a fileName's suffix. |
3723 | |
3724 | The \a quality factor must be in the range 0 to 100 or -1. Specify |
3725 | 0 to obtain small compressed files, 100 for large uncompressed |
3726 | files, and -1 (the default) to use the default settings. |
3727 | |
3728 | Returns \c true if the image was successfully saved; otherwise |
3729 | returns \c false. |
3730 | |
3731 | \sa {QImage#Reading and Writing Image Files}{Reading and Writing |
3732 | Image Files} |
3733 | */ |
3734 | bool QImage::save(const QString &fileName, const char *format, int quality) const |
3735 | { |
3736 | if (isNull()) |
3737 | return false; |
3738 | QImageWriter writer(fileName, format); |
3739 | return d->doImageIO(image: this, io: &writer, quality); |
3740 | } |
3741 | |
3742 | /*! |
3743 | \overload |
3744 | |
3745 | This function writes a QImage to the given \a device. |
3746 | |
3747 | This can, for example, be used to save an image directly into a |
3748 | QByteArray: |
3749 | |
3750 | \snippet image/image.cpp 0 |
3751 | */ |
3752 | |
3753 | bool QImage::save(QIODevice* device, const char* format, int quality) const |
3754 | { |
3755 | if (isNull()) |
3756 | return false; // nothing to save |
3757 | QImageWriter writer(device, format); |
3758 | return d->doImageIO(image: this, io: &writer, quality); |
3759 | } |
3760 | |
3761 | /* \internal |
3762 | */ |
3763 | |
3764 | bool QImageData::doImageIO(const QImage *image, QImageWriter *writer, int quality) const |
3765 | { |
3766 | if (quality > 100 || quality < -1) |
3767 | qWarning(msg: "QPixmap::save: Quality out of range [-1, 100]" ); |
3768 | if (quality >= 0) |
3769 | writer->setQuality(qMin(a: quality,b: 100)); |
3770 | return writer->write(image: *image); |
3771 | } |
3772 | |
3773 | /***************************************************************************** |
3774 | QImage stream functions |
3775 | *****************************************************************************/ |
3776 | #if !defined(QT_NO_DATASTREAM) |
3777 | /*! |
3778 | \fn QDataStream &operator<<(QDataStream &stream, const QImage &image) |
3779 | \relates QImage |
3780 | |
3781 | Writes the given \a image to the given \a stream as a PNG image, |
3782 | or as a BMP image if the stream's version is 1. Note that writing |
3783 | the stream to a file will not produce a valid image file. |
3784 | |
3785 | \sa QImage::save(), {Serializing Qt Data Types} |
3786 | */ |
3787 | |
3788 | QDataStream &operator<<(QDataStream &s, const QImage &image) |
3789 | { |
3790 | if (s.version() >= 5) { |
3791 | if (image.isNull()) { |
3792 | s << (qint32) 0; // null image marker |
3793 | return s; |
3794 | } else { |
3795 | s << (qint32) 1; |
3796 | // continue ... |
3797 | } |
3798 | } |
3799 | QImageWriter writer(s.device(), s.version() == 1 ? "bmp" : "png" ); |
3800 | writer.write(image); |
3801 | return s; |
3802 | } |
3803 | |
3804 | /*! |
3805 | \fn QDataStream &operator>>(QDataStream &stream, QImage &image) |
3806 | \relates QImage |
3807 | |
3808 | Reads an image from the given \a stream and stores it in the given |
3809 | \a image. |
3810 | |
3811 | \sa QImage::load(), {Serializing Qt Data Types} |
3812 | */ |
3813 | |
3814 | QDataStream &operator>>(QDataStream &s, QImage &image) |
3815 | { |
3816 | if (s.version() >= 5) { |
3817 | qint32 nullMarker; |
3818 | s >> nullMarker; |
3819 | if (!nullMarker) { |
3820 | image = QImage(); // null image |
3821 | return s; |
3822 | } |
3823 | } |
3824 | image = QImageReader(s.device(), s.version() == 1 ? "bmp" : "png" ).read(); |
3825 | if (image.isNull() && s.version() >= 5) |
3826 | s.setStatus(QDataStream::ReadPastEnd); |
3827 | return s; |
3828 | } |
3829 | #endif // QT_NO_DATASTREAM |
3830 | |
3831 | |
3832 | |
3833 | /*! |
3834 | \fn bool QImage::operator==(const QImage & image) const |
3835 | |
3836 | Returns \c true if this image and the given \a image have the same |
3837 | contents; otherwise returns \c false. |
3838 | |
3839 | The comparison can be slow, unless there is some obvious |
3840 | difference (e.g. different size or format), in which case the |
3841 | function will return quickly. |
3842 | |
3843 | \sa operator=() |
3844 | */ |
3845 | |
3846 | bool QImage::operator==(const QImage & i) const |
3847 | { |
3848 | // same object, or shared? |
3849 | if (i.d == d) |
3850 | return true; |
3851 | if (!i.d || !d) |
3852 | return false; |
3853 | |
3854 | // obviously different stuff? |
3855 | if (i.d->height != d->height || i.d->width != d->width || i.d->format != d->format) |
3856 | return false; |
3857 | |
3858 | if (d->format != Format_RGB32) { |
3859 | if (d->format >= Format_ARGB32) { // all bits defined |
3860 | const int n = d->width * d->depth / 8; |
3861 | if (n == d->bytes_per_line && n == i.d->bytes_per_line) { |
3862 | if (memcmp(s1: bits(), s2: i.bits(), n: d->nbytes)) |
3863 | return false; |
3864 | } else { |
3865 | for (int y = 0; y < d->height; ++y) { |
3866 | if (memcmp(s1: scanLine(i: y), s2: i.scanLine(i: y), n: n)) |
3867 | return false; |
3868 | } |
3869 | } |
3870 | } else { |
3871 | const int w = width(); |
3872 | const int h = height(); |
3873 | const QVector<QRgb> &colortable = d->colortable; |
3874 | const QVector<QRgb> &icolortable = i.d->colortable; |
3875 | for (int y=0; y<h; ++y) { |
3876 | for (int x=0; x<w; ++x) { |
3877 | if (colortable[pixelIndex(x, y)] != icolortable[i.pixelIndex(x, y)]) |
3878 | return false; |
3879 | } |
3880 | } |
3881 | } |
3882 | } else { |
3883 | //alpha channel undefined, so we must mask it out |
3884 | for(int l = 0; l < d->height; l++) { |
3885 | int w = d->width; |
3886 | const uint *p1 = reinterpret_cast<const uint*>(scanLine(i: l)); |
3887 | const uint *p2 = reinterpret_cast<const uint*>(i.scanLine(i: l)); |
3888 | while (w--) { |
3889 | if ((*p1++ & 0x00ffffff) != (*p2++ & 0x00ffffff)) |
3890 | return false; |
3891 | } |
3892 | } |
3893 | } |
3894 | return true; |
3895 | } |
3896 | |
3897 | |
3898 | /*! |
3899 | \fn bool QImage::operator!=(const QImage & image) const |
3900 | |
3901 | Returns \c true if this image and the given \a image have different |
3902 | contents; otherwise returns \c false. |
3903 | |
3904 | The comparison can be slow, unless there is some obvious |
3905 | difference, such as different widths, in which case the function |
3906 | will return quickly. |
3907 | |
3908 | \sa operator=() |
3909 | */ |
3910 | |
3911 | bool QImage::operator!=(const QImage & i) const |
3912 | { |
3913 | return !(*this == i); |
3914 | } |
3915 | |
3916 | |
3917 | |
3918 | |
3919 | /*! |
3920 | Returns the number of pixels that fit horizontally in a physical |
3921 | meter. Together with dotsPerMeterY(), this number defines the |
3922 | intended scale and aspect ratio of the image. |
3923 | |
3924 | \sa setDotsPerMeterX(), {QImage#Image Information}{Image |
3925 | Information} |
3926 | */ |
3927 | int QImage::dotsPerMeterX() const |
3928 | { |
3929 | return d ? qRound(d: d->dpmx) : 0; |
3930 | } |
3931 | |
3932 | /*! |
3933 | Returns the number of pixels that fit vertically in a physical |
3934 | meter. Together with dotsPerMeterX(), this number defines the |
3935 | intended scale and aspect ratio of the image. |
3936 | |
3937 | \sa setDotsPerMeterY(), {QImage#Image Information}{Image |
3938 | Information} |
3939 | */ |
3940 | int QImage::dotsPerMeterY() const |
3941 | { |
3942 | return d ? qRound(d: d->dpmy) : 0; |
3943 | } |
3944 | |
3945 | /*! |
3946 | Sets the number of pixels that fit horizontally in a physical |
3947 | meter, to \a x. |
3948 | |
3949 | Together with dotsPerMeterY(), this number defines the intended |
3950 | scale and aspect ratio of the image, and determines the scale |
3951 | at which QPainter will draw graphics on the image. It does not |
3952 | change the scale or aspect ratio of the image when it is rendered |
3953 | on other paint devices. |
3954 | |
3955 | \sa dotsPerMeterX(), {QImage#Image Information}{Image Information} |
3956 | */ |
3957 | void QImage::setDotsPerMeterX(int x) |
3958 | { |
3959 | if (!d || !x) |
3960 | return; |
3961 | detach(); |
3962 | |
3963 | if (d) |
3964 | d->dpmx = x; |
3965 | } |
3966 | |
3967 | /*! |
3968 | Sets the number of pixels that fit vertically in a physical meter, |
3969 | to \a y. |
3970 | |
3971 | Together with dotsPerMeterX(), this number defines the intended |
3972 | scale and aspect ratio of the image, and determines the scale |
3973 | at which QPainter will draw graphics on the image. It does not |
3974 | change the scale or aspect ratio of the image when it is rendered |
3975 | on other paint devices. |
3976 | |
3977 | \sa dotsPerMeterY(), {QImage#Image Information}{Image Information} |
3978 | */ |
3979 | void QImage::setDotsPerMeterY(int y) |
3980 | { |
3981 | if (!d || !y) |
3982 | return; |
3983 | detach(); |
3984 | |
3985 | if (d) |
3986 | d->dpmy = y; |
3987 | } |
3988 | |
3989 | /*! |
3990 | \fn QPoint QImage::offset() const |
3991 | |
3992 | Returns the number of pixels by which the image is intended to be |
3993 | offset by when positioning relative to other images. |
3994 | |
3995 | \sa setOffset(), {QImage#Image Information}{Image Information} |
3996 | */ |
3997 | QPoint QImage::offset() const |
3998 | { |
3999 | return d ? d->offset : QPoint(); |
4000 | } |
4001 | |
4002 | |
4003 | /*! |
4004 | \fn void QImage::setOffset(const QPoint& offset) |
4005 | |
4006 | Sets the number of pixels by which the image is intended to be |
4007 | offset by when positioning relative to other images, to \a offset. |
4008 | |
4009 | \sa offset(), {QImage#Image Information}{Image Information} |
4010 | */ |
4011 | void QImage::setOffset(const QPoint& p) |
4012 | { |
4013 | if (!d) |
4014 | return; |
4015 | detach(); |
4016 | |
4017 | if (d) |
4018 | d->offset = p; |
4019 | } |
4020 | |
4021 | /*! |
4022 | Returns the text keys for this image. |
4023 | |
4024 | You can use these keys with text() to list the image text for a |
4025 | certain key. |
4026 | |
4027 | \sa text() |
4028 | */ |
4029 | QStringList QImage::textKeys() const |
4030 | { |
4031 | return d ? QStringList(d->text.keys()) : QStringList(); |
4032 | } |
4033 | |
4034 | /*! |
4035 | Returns the image text associated with the given \a key. If the |
4036 | specified \a key is an empty string, the whole image text is |
4037 | returned, with each key-text pair separated by a newline. |
4038 | |
4039 | \sa setText(), textKeys() |
4040 | */ |
4041 | QString QImage::text(const QString &key) const |
4042 | { |
4043 | if (!d) |
4044 | return QString(); |
4045 | |
4046 | if (!key.isEmpty()) |
4047 | return d->text.value(akey: key); |
4048 | |
4049 | QString tmp; |
4050 | for (auto it = d->text.begin(), end = d->text.end(); it != end; ++it) |
4051 | tmp += it.key() + QLatin1String(": " ) + it.value().simplified() + QLatin1String("\n\n" ); |
4052 | if (!tmp.isEmpty()) |
4053 | tmp.chop(n: 2); // remove final \n\n |
4054 | return tmp; |
4055 | } |
4056 | |
4057 | /*! |
4058 | \fn void QImage::setText(const QString &key, const QString &text) |
4059 | |
4060 | Sets the image text to the given \a text and associate it with the |
4061 | given \a key. |
4062 | |
4063 | If you just want to store a single text block (i.e., a "comment" |
4064 | or just a description), you can either pass an empty key, or use a |
4065 | generic key like "Description". |
4066 | |
4067 | The image text is embedded into the image data when you |
4068 | call save() or QImageWriter::write(). |
4069 | |
4070 | Not all image formats support embedded text. You can find out |
4071 | if a specific image or format supports embedding text |
4072 | by using QImageWriter::supportsOption(). We give an example: |
4073 | |
4074 | \snippet image/supportedformat.cpp 0 |
4075 | |
4076 | You can use QImageWriter::supportedImageFormats() to find out |
4077 | which image formats are available to you. |
4078 | |
4079 | \sa text(), textKeys() |
4080 | */ |
4081 | void QImage::setText(const QString &key, const QString &value) |
4082 | { |
4083 | if (!d) |
4084 | return; |
4085 | detach(); |
4086 | |
4087 | if (d) |
4088 | d->text.insert(akey: key, avalue: value); |
4089 | } |
4090 | |
4091 | /*! |
4092 | \fn QString QImage::text(const char* key, const char* language) const |
4093 | \obsolete |
4094 | |
4095 | Returns the text recorded for the given \a key in the given \a |
4096 | language, or in a default language if \a language is \nullptr. |
4097 | |
4098 | Use text() instead. |
4099 | |
4100 | The language the text is recorded in is no longer relevant since |
4101 | the text is always set using QString and UTF-8 representation. |
4102 | */ |
4103 | |
4104 | /*! |
4105 | \fn QString QImage::text(const QImageTextKeyLang& keywordAndLanguage) const |
4106 | \overload |
4107 | \obsolete |
4108 | |
4109 | Returns the text recorded for the given \a keywordAndLanguage. |
4110 | |
4111 | Use text() instead. |
4112 | |
4113 | The language the text is recorded in is no longer relevant since |
4114 | the text is always set using QString and UTF-8 representation. |
4115 | */ |
4116 | |
4117 | /*! |
4118 | \fn void QImage::setText(const char* key, const char* language, const QString& text) |
4119 | \obsolete |
4120 | |
4121 | Sets the image text to the given \a text and associate it with the |
4122 | given \a key. The text is recorded in the specified \a language, |
4123 | or in a default language if \a language is \nullptr. |
4124 | |
4125 | Use setText() instead. |
4126 | |
4127 | The language the text is recorded in is no longer relevant since |
4128 | the text is always set using QString and UTF-8 representation. |
4129 | |
4130 | \omit |
4131 | Records string \a for the keyword \a key. The \a key should be |
4132 | a portable keyword recognizable by other software - some suggested |
4133 | values can be found in |
4134 | \l{http://www.libpng.org/pub/png/spec/1.2/png-1.2-pdg.html#C.Anc-text} |
4135 | {the PNG specification}. \a s can be any text. \a lang should |
4136 | specify the language code (see |
4137 | \l{http://www.rfc-editor.org/rfc/rfc1766.txt}{RFC 1766}) or \nullptr. |
4138 | \endomit |
4139 | */ |
4140 | |
4141 | /* |
4142 | Sets the image bits to the \a pixmap contents and returns a |
4143 | reference to the image. |
4144 | |
4145 | If the image shares data with other images, it will first |
4146 | dereference the shared data. |
4147 | |
4148 | Makes a call to QPixmap::convertToImage(). |
4149 | */ |
4150 | |
4151 | /*! |
4152 | \internal |
4153 | |
4154 | Used by QPainter to retrieve a paint engine for the image. |
4155 | */ |
4156 | |
4157 | QPaintEngine *QImage::paintEngine() const |
4158 | { |
4159 | if (!d) |
4160 | return nullptr; |
4161 | |
4162 | if (!d->paintEngine) { |
4163 | QPaintDevice *paintDevice = const_cast<QImage *>(this); |
4164 | QPlatformIntegration *platformIntegration = QGuiApplicationPrivate::platformIntegration(); |
4165 | if (platformIntegration) |
4166 | d->paintEngine = platformIntegration->createImagePaintEngine(paintDevice); |
4167 | if (!d->paintEngine) |
4168 | d->paintEngine = new QRasterPaintEngine(paintDevice); |
4169 | } |
4170 | |
4171 | return d->paintEngine; |
4172 | } |
4173 | |
4174 | |
4175 | /*! |
4176 | \internal |
4177 | |
4178 | Returns the size for the specified \a metric on the device. |
4179 | */ |
4180 | int QImage::metric(PaintDeviceMetric metric) const |
4181 | { |
4182 | if (!d) |
4183 | return 0; |
4184 | |
4185 | switch (metric) { |
4186 | case PdmWidth: |
4187 | return d->width; |
4188 | |
4189 | case PdmHeight: |
4190 | return d->height; |
4191 | |
4192 | case PdmWidthMM: |
4193 | return qRound(d: d->width * 1000 / d->dpmx); |
4194 | |
4195 | case PdmHeightMM: |
4196 | return qRound(d: d->height * 1000 / d->dpmy); |
4197 | |
4198 | case PdmNumColors: |
4199 | return d->colortable.size(); |
4200 | |
4201 | case PdmDepth: |
4202 | return d->depth; |
4203 | |
4204 | case PdmDpiX: |
4205 | return qRound(d: d->dpmx * 0.0254); |
4206 | break; |
4207 | |
4208 | case PdmDpiY: |
4209 | return qRound(d: d->dpmy * 0.0254); |
4210 | break; |
4211 | |
4212 | case PdmPhysicalDpiX: |
4213 | return qRound(d: d->dpmx * 0.0254); |
4214 | break; |
4215 | |
4216 | case PdmPhysicalDpiY: |
4217 | return qRound(d: d->dpmy * 0.0254); |
4218 | break; |
4219 | |
4220 | case PdmDevicePixelRatio: |
4221 | return d->devicePixelRatio; |
4222 | break; |
4223 | |
4224 | case PdmDevicePixelRatioScaled: |
4225 | return d->devicePixelRatio * QPaintDevice::devicePixelRatioFScale(); |
4226 | break; |
4227 | |
4228 | default: |
4229 | qWarning(msg: "QImage::metric(): Unhandled metric type %d" , metric); |
4230 | break; |
4231 | } |
4232 | return 0; |
4233 | } |
4234 | |
4235 | |
4236 | |
4237 | /***************************************************************************** |
4238 | QPixmap (and QImage) helper functions |
4239 | *****************************************************************************/ |
4240 | /* |
4241 | This internal function contains the common (i.e. platform independent) code |
4242 | to do a transformation of pixel data. It is used by QPixmap::transform() and by |
4243 | QImage::transform(). |
4244 | |
4245 | \a trueMat is the true transformation matrix (see QPixmap::trueMatrix()) and |
4246 | \a xoffset is an offset to the matrix. |
4247 | |
4248 | \a msbfirst specifies for 1bpp images, if the MSB or LSB comes first and \a |
4249 | depth specifies the colordepth of the data. |
4250 | |
4251 | \a dptr is a pointer to the destination data, \a dbpl specifies the bits per |
4252 | line for the destination data, \a p_inc is the offset that we advance for |
4253 | every scanline and \a dHeight is the height of the destination image. |
4254 | |
4255 | \a sprt is the pointer to the source data, \a sbpl specifies the bits per |
4256 | line of the source data, \a sWidth and \a sHeight are the width and height of |
4257 | the source data. |
4258 | */ |
4259 | |
4260 | #undef IWX_MSB |
4261 | #define IWX_MSB(b) if (trigx < maxws && trigy < maxhs) { \ |
4262 | if (*(sptr+sbpl*(trigy>>12)+(trigx>>15)) & \ |
4263 | (1 << (7-((trigx>>12)&7)))) \ |
4264 | *dptr |= b; \ |
4265 | } \ |
4266 | trigx += m11; \ |
4267 | trigy += m12; |
4268 | // END OF MACRO |
4269 | #undef IWX_LSB |
4270 | #define IWX_LSB(b) if (trigx < maxws && trigy < maxhs) { \ |
4271 | if (*(sptr+sbpl*(trigy>>12)+(trigx>>15)) & \ |
4272 | (1 << ((trigx>>12)&7))) \ |
4273 | *dptr |= b; \ |
4274 | } \ |
4275 | trigx += m11; \ |
4276 | trigy += m12; |
4277 | // END OF MACRO |
4278 | #undef IWX_PIX |
4279 | #define IWX_PIX(b) if (trigx < maxws && trigy < maxhs) { \ |
4280 | if ((*(sptr+sbpl*(trigy>>12)+(trigx>>15)) & \ |
4281 | (1 << (7-((trigx>>12)&7)))) == 0) \ |
4282 | *dptr &= ~b; \ |
4283 | } \ |
4284 | trigx += m11; \ |
4285 | trigy += m12; |
4286 | // END OF MACRO |
4287 | bool qt_xForm_helper(const QTransform &trueMat, int xoffset, int type, int depth, |
4288 | uchar *dptr, int dbpl, int p_inc, int dHeight, |
4289 | const uchar *sptr, int sbpl, int sWidth, int sHeight) |
4290 | { |
4291 | int m11 = int(trueMat.m11()*4096.0); |
4292 | int m12 = int(trueMat.m12()*4096.0); |
4293 | int m21 = int(trueMat.m21()*4096.0); |
4294 | int m22 = int(trueMat.m22()*4096.0); |
4295 | int dx = qRound(d: trueMat.dx()*4096.0); |
4296 | int dy = qRound(d: trueMat.dy()*4096.0); |
4297 | |
4298 | int m21ydx = dx + (xoffset<<16) + (m11 + m21) / 2; |
4299 | int m22ydy = dy + (m12 + m22) / 2; |
4300 | uint trigx; |
4301 | uint trigy; |
4302 | uint maxws = sWidth<<12; |
4303 | uint maxhs = sHeight<<12; |
4304 | |
4305 | for (int y=0; y<dHeight; y++) { // for each target scanline |
4306 | trigx = m21ydx; |
4307 | trigy = m22ydy; |
4308 | uchar *maxp = dptr + dbpl; |
4309 | if (depth != 1) { |
4310 | switch (depth) { |
4311 | case 8: // 8 bpp transform |
4312 | while (dptr < maxp) { |
4313 | if (trigx < maxws && trigy < maxhs) |
4314 | *dptr = *(sptr+sbpl*(trigy>>12)+(trigx>>12)); |
4315 | trigx += m11; |
4316 | trigy += m12; |
4317 | dptr++; |
4318 | } |
4319 | break; |
4320 | |
4321 | case 16: // 16 bpp transform |
4322 | while (dptr < maxp) { |
4323 | if (trigx < maxws && trigy < maxhs) |
4324 | *((ushort*)dptr) = *((const ushort *)(sptr+sbpl*(trigy>>12) + |
4325 | ((trigx>>12)<<1))); |
4326 | trigx += m11; |
4327 | trigy += m12; |
4328 | dptr++; |
4329 | dptr++; |
4330 | } |
4331 | break; |
4332 | |
4333 | case 24: // 24 bpp transform |
4334 | while (dptr < maxp) { |
4335 | if (trigx < maxws && trigy < maxhs) { |
4336 | const uchar *p2 = sptr+sbpl*(trigy>>12) + ((trigx>>12)*3); |
4337 | dptr[0] = p2[0]; |
4338 | dptr[1] = p2[1]; |
4339 | dptr[2] = p2[2]; |
4340 | } |
4341 | trigx += m11; |
4342 | trigy += m12; |
4343 | dptr += 3; |
4344 | } |
4345 | break; |
4346 | |
4347 | case 32: // 32 bpp transform |
4348 | while (dptr < maxp) { |
4349 | if (trigx < maxws && trigy < maxhs) |
4350 | *((uint*)dptr) = *((const uint *)(sptr+sbpl*(trigy>>12) + |
4351 | ((trigx>>12)<<2))); |
4352 | trigx += m11; |
4353 | trigy += m12; |
4354 | dptr += 4; |
4355 | } |
4356 | break; |
4357 | |
4358 | default: { |
4359 | return false; |
4360 | } |
4361 | } |
4362 | } else { |
4363 | switch (type) { |
4364 | case QT_XFORM_TYPE_MSBFIRST: |
4365 | while (dptr < maxp) { |
4366 | IWX_MSB(128); |
4367 | IWX_MSB(64); |
4368 | IWX_MSB(32); |
4369 | IWX_MSB(16); |
4370 | IWX_MSB(8); |
4371 | IWX_MSB(4); |
4372 | IWX_MSB(2); |
4373 | IWX_MSB(1); |
4374 | dptr++; |
4375 | } |
4376 | break; |
4377 | case QT_XFORM_TYPE_LSBFIRST: |
4378 | while (dptr < maxp) { |
4379 | IWX_LSB(1); |
4380 | IWX_LSB(2); |
4381 | IWX_LSB(4); |
4382 | IWX_LSB(8); |
4383 | IWX_LSB(16); |
4384 | IWX_LSB(32); |
4385 | IWX_LSB(64); |
4386 | IWX_LSB(128); |
4387 | dptr++; |
4388 | } |
4389 | break; |
4390 | } |
4391 | } |
4392 | m21ydx += m21; |
4393 | m22ydy += m22; |
4394 | dptr += p_inc; |
4395 | } |
4396 | return true; |
4397 | } |
4398 | #undef IWX_MSB |
4399 | #undef IWX_LSB |
4400 | #undef IWX_PIX |
4401 | |
4402 | /*! \fn int QImage::serialNumber() const |
4403 | \obsolete |
4404 | Returns a number that identifies the contents of this |
4405 | QImage object. Distinct QImage objects can only have the same |
4406 | serial number if they refer to the same contents (but they don't |
4407 | have to). |
4408 | |
4409 | Use cacheKey() instead. |
4410 | |
4411 | \warning The serial number doesn't necessarily change when the |
4412 | image is altered. This means that it may be dangerous to use |
4413 | it as a cache key. |
4414 | |
4415 | \sa operator==() |
4416 | */ |
4417 | |
4418 | /*! |
4419 | Returns a number that identifies the contents of this QImage |
4420 | object. Distinct QImage objects can only have the same key if they |
4421 | refer to the same contents. |
4422 | |
4423 | The key will change when the image is altered. |
4424 | */ |
4425 | qint64 QImage::cacheKey() const |
4426 | { |
4427 | if (!d) |
4428 | return 0; |
4429 | else |
4430 | return (((qint64) d->ser_no) << 32) | ((qint64) d->detach_no); |
4431 | } |
4432 | |
4433 | /*! |
4434 | \internal |
4435 | |
4436 | Returns \c true if the image is detached; otherwise returns \c false. |
4437 | |
4438 | \sa detach(), {Implicit Data Sharing} |
4439 | */ |
4440 | |
4441 | bool QImage::isDetached() const |
4442 | { |
4443 | return d && d->ref.loadRelaxed() == 1; |
4444 | } |
4445 | |
4446 | |
4447 | /*! |
4448 | Sets the alpha channel of this image to the given \a alphaChannel. |
4449 | |
4450 | If \a alphaChannel is an 8 bit alpha image, the alpha values are |
4451 | used directly. Otherwise, \a alphaChannel is converted to 8 bit |
4452 | grayscale and the intensity of the pixel values is used. |
4453 | |
4454 | If the image already has an alpha channel, the existing alpha channel |
4455 | is multiplied with the new one. If the image doesn't have an alpha |
4456 | channel it will be converted to a format that does. |
4457 | |
4458 | The operation is similar to painting \a alphaChannel as an alpha image |
4459 | over this image using \c QPainter::CompositionMode_DestinationIn. |
4460 | |
4461 | \sa hasAlphaChannel(), alphaChannel(), |
4462 | {QImage#Image Transformations}{Image Transformations}, |
4463 | {QImage#Image Formats}{Image Formats} |
4464 | */ |
4465 | |
4466 | void QImage::setAlphaChannel(const QImage &alphaChannel) |
4467 | { |
4468 | if (!d || alphaChannel.isNull()) |
4469 | return; |
4470 | |
4471 | if (d->paintEngine && d->paintEngine->isActive()) { |
4472 | qWarning(msg: "QImage::setAlphaChannel: " |
4473 | "Unable to set alpha channel while image is being painted on" ); |
4474 | return; |
4475 | } |
4476 | |
4477 | const Format alphaFormat = qt_alphaVersionForPainting(format: d->format); |
4478 | if (d->format == alphaFormat) |
4479 | detach(); |
4480 | else |
4481 | convertTo(format: alphaFormat); |
4482 | |
4483 | if (isNull()) |
4484 | return; |
4485 | |
4486 | QImage sourceImage; |
4487 | if (alphaChannel.format() == QImage::Format_Alpha8 || (alphaChannel.d->depth == 8 && alphaChannel.isGrayscale())) |
4488 | sourceImage = alphaChannel; |
4489 | else |
4490 | sourceImage = alphaChannel.convertToFormat(f: QImage::Format_Grayscale8); |
4491 | if (!sourceImage.reinterpretAsFormat(format: QImage::Format_Alpha8)) |
4492 | return; |
4493 | |
4494 | QPainter painter(this); |
4495 | if (sourceImage.size() != size()) |
4496 | painter.setRenderHint(hint: QPainter::SmoothPixmapTransform); |
4497 | painter.setCompositionMode(QPainter::CompositionMode_DestinationIn); |
4498 | painter.drawImage(r: rect(), image: sourceImage); |
4499 | } |
4500 | |
4501 | |
4502 | #if QT_DEPRECATED_SINCE(5, 15) |
4503 | /*! |
4504 | \obsolete |
4505 | |
4506 | Returns the alpha channel of the image as a new grayscale QImage in which |
4507 | each pixel's red, green, and blue values are given the alpha value of the |
4508 | original image. The color depth of the returned image is 8-bit. |
4509 | |
4510 | You can see an example of use of this function in QPixmap's |
4511 | \l{QPixmap::}{alphaChannel()}, which works in the same way as |
4512 | this function on QPixmaps. |
4513 | |
4514 | Most usecases for this function can be replaced with QPainter and |
4515 | using composition modes. |
4516 | |
4517 | Note this returns a color-indexed image if you want the alpha channel in |
4518 | the alpha8 format instead use convertToFormat(Format_Alpha8) on the source |
4519 | image. |
4520 | |
4521 | \warning This is an expensive function. |
4522 | |
4523 | \sa setAlphaChannel(), hasAlphaChannel(), convertToFormat(), |
4524 | {QPixmap#Pixmap Information}{Pixmap}, |
4525 | {QImage#Image Transformations}{Image Transformations} |
4526 | */ |
4527 | |
4528 | QImage QImage::alphaChannel() const |
4529 | { |
4530 | if (!d) |
4531 | return QImage(); |
4532 | |
4533 | int w = d->width; |
4534 | int h = d->height; |
4535 | |
4536 | QImage image(w, h, Format_Indexed8); |
4537 | image.setColorCount(256); |
4538 | |
4539 | // set up gray scale table. |
4540 | for (int i=0; i<256; ++i) |
4541 | image.setColor(i, c: qRgb(r: i, g: i, b: i)); |
4542 | |
4543 | if (!hasAlphaChannel()) { |
4544 | image.fill(pixel: 255); |
4545 | return image; |
4546 | } |
4547 | |
4548 | if (d->format == Format_Indexed8) { |
4549 | const uchar *src_data = d->data; |
4550 | uchar *dest_data = image.d->data; |
4551 | for (int y=0; y<h; ++y) { |
4552 | const uchar *src = src_data; |
4553 | uchar *dest = dest_data; |
4554 | for (int x=0; x<w; ++x) { |
4555 | *dest = qAlpha(rgb: d->colortable.at(i: *src)); |
4556 | ++dest; |
4557 | ++src; |
4558 | } |
4559 | src_data += d->bytes_per_line; |
4560 | dest_data += image.d->bytes_per_line; |
4561 | } |
4562 | } else if (d->format == Format_Alpha8) { |
4563 | const uchar *src_data = d->data; |
4564 | uchar *dest_data = image.d->data; |
4565 | memcpy(dest: dest_data, src: src_data, n: d->bytes_per_line * h); |
4566 | } else { |
4567 | QImage alpha32 = *this; |
4568 | bool canSkipConversion = (d->format == Format_ARGB32 || d->format == Format_ARGB32_Premultiplied); |
4569 | #if Q_BYTE_ORDER == Q_LITTLE_ENDIAN |
4570 | canSkipConversion = canSkipConversion || (d->format == Format_RGBA8888 || d->format == Format_RGBA8888_Premultiplied); |
4571 | #endif |
4572 | if (!canSkipConversion) |
4573 | alpha32 = convertToFormat(f: Format_ARGB32); |
4574 | |
4575 | const uchar *src_data = alpha32.d->data; |
4576 | uchar *dest_data = image.d->data; |
4577 | for (int y=0; y<h; ++y) { |
4578 | const QRgb *src = (const QRgb *) src_data; |
4579 | uchar *dest = dest_data; |
4580 | for (int x=0; x<w; ++x) { |
4581 | *dest = qAlpha(rgb: *src); |
4582 | ++dest; |
4583 | ++src; |
4584 | } |
4585 | src_data += alpha32.d->bytes_per_line; |
4586 | dest_data += image.d->bytes_per_line; |
4587 | } |
4588 | } |
4589 | |
4590 | return image; |
4591 | } |
4592 | #endif |
4593 | |
4594 | /*! |
4595 | Returns \c true if the image has a format that respects the alpha |
4596 | channel, otherwise returns \c false. |
4597 | |
4598 | \sa {QImage#Image Information}{Image Information} |
4599 | */ |
4600 | bool QImage::hasAlphaChannel() const |
4601 | { |
4602 | if (!d) |
4603 | return false; |
4604 | const QPixelFormat format = pixelFormat(); |
4605 | if (format.alphaUsage() == QPixelFormat::UsesAlpha) |
4606 | return true; |
4607 | if (format.colorModel() == QPixelFormat::Indexed) |
4608 | return d->has_alpha_clut; |
4609 | return false; |
4610 | } |
4611 | |
4612 | /*! |
4613 | \since 4.7 |
4614 | Returns the number of bit planes in the image. |
4615 | |
4616 | The number of bit planes is the number of bits of color and |
4617 | transparency information for each pixel. This is different from |
4618 | (i.e. smaller than) the depth when the image format contains |
4619 | unused bits. |
4620 | |
4621 | \sa depth(), format(), {QImage#Image Formats}{Image Formats} |
4622 | */ |
4623 | int QImage::bitPlaneCount() const |
4624 | { |
4625 | if (!d) |
4626 | return 0; |
4627 | int bpc = 0; |
4628 | switch (d->format) { |
4629 | case QImage::Format_Invalid: |
4630 | break; |
4631 | case QImage::Format_BGR30: |
4632 | case QImage::Format_RGB30: |
4633 | bpc = 30; |
4634 | break; |
4635 | case QImage::Format_RGB32: |
4636 | case QImage::Format_RGBX8888: |
4637 | bpc = 24; |
4638 | break; |
4639 | case QImage::Format_RGB666: |
4640 | bpc = 18; |
4641 | break; |
4642 | case QImage::Format_RGB555: |
4643 | bpc = 15; |
4644 | break; |
4645 | case QImage::Format_ARGB8555_Premultiplied: |
4646 | bpc = 23; |
4647 | break; |
4648 | case QImage::Format_RGB444: |
4649 | bpc = 12; |
4650 | break; |
4651 | case QImage::Format_RGBX64: |
4652 | bpc = 48; |
4653 | break; |
4654 | default: |
4655 | bpc = qt_depthForFormat(format: d->format); |
4656 | break; |
4657 | } |
4658 | return bpc; |
4659 | } |
4660 | |
4661 | /*! |
4662 | Returns a smoothly scaled copy of the image. The returned image has a size |
4663 | of width \a w by height \a h pixels. |
4664 | */ |
4665 | QImage QImage::smoothScaled(int w, int h) const { |
4666 | QImage src = *this; |
4667 | switch (src.format()) { |
4668 | case QImage::Format_RGB32: |
4669 | case QImage::Format_ARGB32_Premultiplied: |
4670 | #if Q_BYTE_ORDER == Q_LITTLE_ENDIAN |
4671 | case QImage::Format_RGBX8888: |
4672 | #endif |
4673 | case QImage::Format_RGBA8888_Premultiplied: |
4674 | #if QT_CONFIG(raster_64bit) |
4675 | case QImage::Format_RGBX64: |
4676 | case QImage::Format_RGBA64_Premultiplied: |
4677 | break; |
4678 | case QImage::Format_RGBA64: |
4679 | src = src.convertToFormat(f: QImage::Format_RGBA64_Premultiplied); |
4680 | break; |
4681 | #endif |
4682 | default: |
4683 | if (src.hasAlphaChannel()) |
4684 | src = src.convertToFormat(f: QImage::Format_ARGB32_Premultiplied); |
4685 | else |
4686 | src = src.convertToFormat(f: QImage::Format_RGB32); |
4687 | } |
4688 | src = qSmoothScaleImage(img: src, w, h); |
4689 | if (!src.isNull()) |
4690 | copyMetadata(dst: src.d, src: d); |
4691 | return src; |
4692 | } |
4693 | |
4694 | static QImage rotated90(const QImage &image) |
4695 | { |
4696 | QImage out(image.height(), image.width(), image.format()); |
4697 | copyMetadata(dst: &out, src: image); |
4698 | if (image.colorCount() > 0) |
4699 | out.setColorTable(image.colorTable()); |
4700 | int w = image.width(); |
4701 | int h = image.height(); |
4702 | const MemRotateFunc memrotate = qMemRotateFunctions[qPixelLayouts[image.format()].bpp][2]; |
4703 | if (memrotate) { |
4704 | memrotate(image.constBits(), w, h, image.bytesPerLine(), out.bits(), out.bytesPerLine()); |
4705 | } else { |
4706 | for (int y=0; y<h; ++y) { |
4707 | if (image.colorCount()) |
4708 | for (int x=0; x<w; ++x) |
4709 | out.setPixel(x: h-y-1, y: x, index_or_rgb: image.pixelIndex(x, y)); |
4710 | else |
4711 | for (int x=0; x<w; ++x) |
4712 | out.setPixel(x: h-y-1, y: x, index_or_rgb: image.pixel(x, y)); |
4713 | } |
4714 | } |
4715 | return out; |
4716 | } |
4717 | |
4718 | static QImage rotated180(const QImage &image) |
4719 | { |
4720 | const MemRotateFunc memrotate = qMemRotateFunctions[qPixelLayouts[image.format()].bpp][1]; |
4721 | if (!memrotate) |
4722 | return image.mirrored(horizontally: true, vertically: true); |
4723 | |
4724 | QImage out(image.width(), image.height(), image.format()); |
4725 | copyMetadata(dst: &out, src: image); |
4726 | if (image.colorCount() > 0) |
4727 | out.setColorTable(image.colorTable()); |
4728 | int w = image.width(); |
4729 | int h = image.height(); |
4730 | memrotate(image.constBits(), w, h, image.bytesPerLine(), out.bits(), out.bytesPerLine()); |
4731 | return out; |
4732 | } |
4733 | |
4734 | static QImage rotated270(const QImage &image) |
4735 | { |
4736 | QImage out(image.height(), image.width(), image.format()); |
4737 | copyMetadata(dst: &out, src: image); |
4738 | if (image.colorCount() > 0) |
4739 | out.setColorTable(image.colorTable()); |
4740 | int w = image.width(); |
4741 | int h = image.height(); |
4742 | const MemRotateFunc memrotate = qMemRotateFunctions[qPixelLayouts[image.format()].bpp][0]; |
4743 | if (memrotate) { |
4744 | memrotate(image.constBits(), w, h, image.bytesPerLine(), out.bits(), out.bytesPerLine()); |
4745 | } else { |
4746 | for (int y=0; y<h; ++y) { |
4747 | if (image.colorCount()) |
4748 | for (int x=0; x<w; ++x) |
4749 | out.setPixel(x: y, y: w-x-1, index_or_rgb: image.pixelIndex(x, y)); |
4750 | else |
4751 | for (int x=0; x<w; ++x) |
4752 | out.setPixel(x: y, y: w-x-1, index_or_rgb: image.pixel(x, y)); |
4753 | } |
4754 | } |
4755 | return out; |
4756 | } |
4757 | |
4758 | /*! |
4759 | Returns a copy of the image that is transformed using the given |
4760 | transformation \a matrix and transformation \a mode. |
4761 | |
4762 | The returned image will normally have the same {Image Formats}{format} as |
4763 | the original image. However, a complex transformation may result in an |
4764 | image where not all pixels are covered by the transformed pixels of the |
4765 | original image. In such cases, those background pixels will be assigned a |
4766 | transparent color value, and the transformed image will be given a format |
4767 | with an alpha channel, even if the orginal image did not have that. |
4768 | |
4769 | The transformation \a matrix is internally adjusted to compensate |
4770 | for unwanted translation; i.e. the image produced is the smallest |
4771 | image that contains all the transformed points of the original |
4772 | image. Use the trueMatrix() function to retrieve the actual matrix |
4773 | used for transforming an image. |
4774 | |
4775 | Unlike the other overload, this function can be used to perform perspective |
4776 | transformations on images. |
4777 | |
4778 | \sa trueMatrix(), {QImage#Image Transformations}{Image |
4779 | Transformations} |
4780 | */ |
4781 | |
4782 | QImage QImage::transformed(const QTransform &matrix, Qt::TransformationMode mode ) const |
4783 | { |
4784 | if (!d) |
4785 | return QImage(); |
4786 | |
4787 | Q_TRACE_SCOPE(QImage_transformed, matrix, mode); |
4788 | |
4789 | // source image data |
4790 | int ws = width(); |
4791 | int hs = height(); |
4792 | |
4793 | // target image data |
4794 | int wd; |
4795 | int hd; |
4796 | |
4797 | // compute size of target image |
4798 | QTransform mat = trueMatrix(matrix, w: ws, h: hs); |
4799 | bool complex_xform = false; |
4800 | bool scale_xform = false; |
4801 | if (mat.type() <= QTransform::TxScale) { |
4802 | if (mat.type() == QTransform::TxNone) // identity matrix |
4803 | return *this; |
4804 | else if (mat.m11() == -1. && mat.m22() == -1.) |
4805 | return rotated180(image: *this); |
4806 | |
4807 | if (mode == Qt::FastTransformation) { |
4808 | hd = qRound(d: qAbs(t: mat.m22()) * hs); |
4809 | wd = qRound(d: qAbs(t: mat.m11()) * ws); |
4810 | } else { |
4811 | hd = int(qAbs(t: mat.m22()) * hs + 0.9999); |
4812 | wd = int(qAbs(t: mat.m11()) * ws + 0.9999); |
4813 | } |
4814 | scale_xform = true; |
4815 | } else { |
4816 | if (mat.type() <= QTransform::TxRotate && mat.m11() == 0 && mat.m22() == 0) { |
4817 | if (mat.m12() == 1. && mat.m21() == -1.) |
4818 | return rotated90(image: *this); |
4819 | else if (mat.m12() == -1. && mat.m21() == 1.) |
4820 | return rotated270(image: *this); |
4821 | } |
4822 | |
4823 | QPolygonF a(QRectF(0, 0, ws, hs)); |
4824 | a = mat.map(a); |
4825 | QRect r = a.boundingRect().toAlignedRect(); |
4826 | wd = r.width(); |
4827 | hd = r.height(); |
4828 | complex_xform = true; |
4829 | } |
4830 | |
4831 | if (wd == 0 || hd == 0) |
4832 | return QImage(); |
4833 | |
4834 | // Make use of the optimized algorithm when we're scaling |
4835 | if (scale_xform && mode == Qt::SmoothTransformation) { |
4836 | if (mat.m11() < 0.0F && mat.m22() < 0.0F) { // horizontal/vertical flip |
4837 | return smoothScaled(w: wd, h: hd).mirrored(horizontally: true, vertically: true); |
4838 | } else if (mat.m11() < 0.0F) { // horizontal flip |
4839 | return smoothScaled(w: wd, h: hd).mirrored(horizontally: true, vertically: false); |
4840 | } else if (mat.m22() < 0.0F) { // vertical flip |
4841 | return smoothScaled(w: wd, h: hd).mirrored(horizontally: false, vertically: true); |
4842 | } else { // no flipping |
4843 | return smoothScaled(w: wd, h: hd); |
4844 | } |
4845 | } |
4846 | |
4847 | int bpp = depth(); |
4848 | |
4849 | int sbpl = bytesPerLine(); |
4850 | const uchar *sptr = bits(); |
4851 | |
4852 | QImage::Format target_format = d->format; |
4853 | |
4854 | if (complex_xform || mode == Qt::SmoothTransformation) { |
4855 | if (d->format < QImage::Format_RGB32 || !hasAlphaChannel()) { |
4856 | target_format = qt_alphaVersion(format: d->format); |
4857 | } |
4858 | } |
4859 | |
4860 | QImage dImage(wd, hd, target_format); |
4861 | QIMAGE_SANITYCHECK_MEMORY(dImage); |
4862 | |
4863 | if (target_format == QImage::Format_MonoLSB |
4864 | || target_format == QImage::Format_Mono |
4865 | || target_format == QImage::Format_Indexed8) { |
4866 | dImage.d->colortable = d->colortable; |
4867 | dImage.d->has_alpha_clut = d->has_alpha_clut | complex_xform; |
4868 | } |
4869 | |
4870 | // initizialize the data |
4871 | if (target_format == QImage::Format_Indexed8) { |
4872 | if (dImage.d->colortable.size() < 256) { |
4873 | // colors are left in the color table, so pick that one as transparent |
4874 | dImage.d->colortable.append(t: 0x0); |
4875 | memset(s: dImage.bits(), c: dImage.d->colortable.size() - 1, n: dImage.d->nbytes); |
4876 | } else { |
4877 | memset(s: dImage.bits(), c: 0, n: dImage.d->nbytes); |
4878 | } |
4879 | } else |
4880 | memset(s: dImage.bits(), c: 0x00, n: dImage.d->nbytes); |
4881 | |
4882 | if (target_format >= QImage::Format_RGB32) { |
4883 | // Prevent QPainter from applying devicePixelRatio corrections |
4884 | const QImage sImage = (devicePixelRatio() != 1) ? QImage(constBits(), width(), height(), format()) : *this; |
4885 | |
4886 | Q_ASSERT(sImage.devicePixelRatio() == 1); |
4887 | Q_ASSERT(sImage.devicePixelRatio() == dImage.devicePixelRatio()); |
4888 | |
4889 | QPainter p(&dImage); |
4890 | if (mode == Qt::SmoothTransformation) { |
4891 | p.setRenderHint(hint: QPainter::Antialiasing); |
4892 | p.setRenderHint(hint: QPainter::SmoothPixmapTransform); |
4893 | } |
4894 | p.setTransform(transform: mat); |
4895 | p.drawImage(p: QPoint(0, 0), image: sImage); |
4896 | } else { |
4897 | bool invertible; |
4898 | mat = mat.inverted(invertible: &invertible); // invert matrix |
4899 | if (!invertible) // error, return null image |
4900 | return QImage(); |
4901 | |
4902 | // create target image (some of the code is from QImage::copy()) |
4903 | int type = format() == Format_Mono ? QT_XFORM_TYPE_MSBFIRST : QT_XFORM_TYPE_LSBFIRST; |
4904 | int dbpl = dImage.bytesPerLine(); |
4905 | qt_xForm_helper(trueMat: mat, xoffset: 0, type, depth: bpp, dptr: dImage.bits(), dbpl, p_inc: 0, dHeight: hd, sptr, sbpl, sWidth: ws, sHeight: hs); |
4906 | } |
4907 | copyMetadata(dst: dImage.d, src: d); |
4908 | |
4909 | return dImage; |
4910 | } |
4911 | |
4912 | /*! |
4913 | \fn QTransform QImage::trueMatrix(const QTransform &matrix, int width, int height) |
4914 | |
4915 | Returns the actual matrix used for transforming an image with the |
4916 | given \a width, \a height and \a matrix. |
4917 | |
4918 | When transforming an image using the transformed() function, the |
4919 | transformation matrix is internally adjusted to compensate for |
4920 | unwanted translation, i.e. transformed() returns the smallest |
4921 | image containing all transformed points of the original image. |
4922 | This function returns the modified matrix, which maps points |
4923 | correctly from the original image into the new image. |
4924 | |
4925 | Unlike the other overload, this function creates transformation |
4926 | matrices that can be used to perform perspective |
4927 | transformations on images. |
4928 | |
4929 | \sa transformed(), {QImage#Image Transformations}{Image |
4930 | Transformations} |
4931 | */ |
4932 | |
4933 | QTransform QImage::trueMatrix(const QTransform &matrix, int w, int h) |
4934 | { |
4935 | const QRectF rect(0, 0, w, h); |
4936 | const QRect mapped = matrix.mapRect(rect).toAlignedRect(); |
4937 | const QPoint delta = mapped.topLeft(); |
4938 | return matrix * QTransform().translate(dx: -delta.x(), dy: -delta.y()); |
4939 | } |
4940 | |
4941 | /*! |
4942 | \since 5.14 |
4943 | |
4944 | Sets the image color space to \a colorSpace without performing any conversions on image data. |
4945 | |
4946 | \sa colorSpace() |
4947 | */ |
4948 | void QImage::setColorSpace(const QColorSpace &colorSpace) |
4949 | { |
4950 | if (!d) |
4951 | return; |
4952 | if (d->colorSpace == colorSpace) |
4953 | return; |
4954 | if (!isDetached()) // Detach only if shared, not for read-only data. |
4955 | detach(); |
4956 | d->colorSpace = colorSpace; |
4957 | } |
4958 | |
4959 | /*! |
4960 | \since 5.14 |
4961 | |
4962 | Converts the image to \a colorSpace. |
4963 | |
4964 | If the image has no valid color space, the method does nothing. |
4965 | |
4966 | \sa convertedToColorSpace(), setColorSpace() |
4967 | */ |
4968 | void QImage::convertToColorSpace(const QColorSpace &colorSpace) |
4969 | { |
4970 | if (!d) |
4971 | return; |
4972 | if (!d->colorSpace.isValid()) |
4973 | return; |
4974 | if (!colorSpace.isValid()) { |
4975 | qWarning() << "QImage::convertToColorSpace: Output colorspace is not valid" ; |
4976 | return; |
4977 | } |
4978 | detach(); |
4979 | applyColorTransform(transform: d->colorSpace.transformationToColorSpace(colorspace: colorSpace)); |
4980 | d->colorSpace = colorSpace; |
4981 | } |
4982 | |
4983 | /*! |
4984 | \since 5.14 |
4985 | |
4986 | Returns the image converted to \a colorSpace. |
4987 | |
4988 | If the image has no valid color space, a null QImage is returned. |
4989 | |
4990 | \sa convertToColorSpace() |
4991 | */ |
4992 | QImage QImage::convertedToColorSpace(const QColorSpace &colorSpace) const |
4993 | { |
4994 | if (!d || !d->colorSpace.isValid() || !colorSpace.isValid()) |
4995 | return QImage(); |
4996 | QImage image = copy(); |
4997 | image.convertToColorSpace(colorSpace); |
4998 | return image; |
4999 | } |
5000 | |
5001 | /*! |
5002 | \since 5.14 |
5003 | |
5004 | Returns the color space of the image if a color space is defined. |
5005 | */ |
5006 | QColorSpace QImage::colorSpace() const |
5007 | { |
5008 | if (!d) |
5009 | return QColorSpace(); |
5010 | return d->colorSpace; |
5011 | } |
5012 | |
5013 | /*! |
5014 | \since 5.14 |
5015 | |
5016 | Applies the color transformation \a transform to all pixels in the image. |
5017 | */ |
5018 | void QImage::applyColorTransform(const QColorTransform &transform) |
5019 | { |
5020 | QImage::Format oldFormat = format(); |
5021 | if (depth() > 32) { |
5022 | if (format() != QImage::Format_RGBX64 && format() != QImage::Format_RGBA64 |
5023 | && format() != QImage::Format_RGBA64_Premultiplied) |
5024 | *this = std::move(*this).convertToFormat(f: QImage::Format_RGBA64); |
5025 | } else if (format() != QImage::Format_ARGB32 && format() != QImage::Format_RGB32 |
5026 | && format() != QImage::Format_ARGB32_Premultiplied) { |
5027 | if (hasAlphaChannel()) |
5028 | *this = std::move(*this).convertToFormat(f: QImage::Format_ARGB32); |
5029 | else |
5030 | *this = std::move(*this).convertToFormat(f: QImage::Format_RGB32); |
5031 | } |
5032 | |
5033 | QColorTransformPrivate::TransformFlags flags = QColorTransformPrivate::Unpremultiplied; |
5034 | switch (format()) { |
5035 | case Format_ARGB32_Premultiplied: |
5036 | case Format_RGBA64_Premultiplied: |
5037 | flags = QColorTransformPrivate::Premultiplied; |
5038 | break; |
5039 | case Format_RGB32: |
5040 | case Format_RGBX64: |
5041 | flags = QColorTransformPrivate::InputOpaque; |
5042 | break; |
5043 | case Format_ARGB32: |
5044 | case Format_RGBA64: |
5045 | break; |
5046 | default: |
5047 | Q_UNREACHABLE(); |
5048 | } |
5049 | |
5050 | std::function<void(int,int)> transformSegment; |
5051 | |
5052 | if (depth() > 32) { |
5053 | transformSegment = [&](int yStart, int yEnd) { |
5054 | for (int y = yStart; y < yEnd; ++y) { |
5055 | QRgba64 *scanline = reinterpret_cast<QRgba64 *>(scanLine(i: y)); |
5056 | transform.d->apply(dst: scanline, src: scanline, count: width(), flags); |
5057 | } |
5058 | }; |
5059 | } else { |
5060 | transformSegment = [&](int yStart, int yEnd) { |
5061 | for (int y = yStart; y < yEnd; ++y) { |
5062 | QRgb *scanline = reinterpret_cast<QRgb *>(scanLine(i: y)); |
5063 | transform.d->apply(dst: scanline, src: scanline, count: width(), flags); |
5064 | } |
5065 | }; |
5066 | } |
5067 | |
5068 | #if QT_CONFIG(thread) && !defined(Q_OS_WASM) |
5069 | int segments = sizeInBytes() / (1<<16); |
5070 | segments = std::min(a: segments, b: height()); |
5071 | QThreadPool *threadPool = QThreadPool::globalInstance(); |
5072 | if (segments > 1 && threadPool && !threadPool->contains(thread: QThread::currentThread())) { |
5073 | QSemaphore semaphore; |
5074 | int y = 0; |
5075 | for (int i = 0; i < segments; ++i) { |
5076 | int yn = (height() - y) / (segments - i); |
5077 | threadPool->start(functionToRun: [&, y, yn]() { |
5078 | transformSegment(y, y + yn); |
5079 | semaphore.release(n: 1); |
5080 | }); |
5081 | y += yn; |
5082 | } |
5083 | semaphore.acquire(n: segments); |
5084 | } else |
5085 | #endif |
5086 | transformSegment(0, height()); |
5087 | |
5088 | if (oldFormat != format()) |
5089 | *this = std::move(*this).convertToFormat(f: oldFormat); |
5090 | } |
5091 | |
5092 | |
5093 | bool QImageData::convertInPlace(QImage::Format newFormat, Qt::ImageConversionFlags flags) |
5094 | { |
5095 | if (format == newFormat) |
5096 | return true; |
5097 | |
5098 | // No in-place conversion if we have to detach |
5099 | if (ref.loadRelaxed() > 1 || !own_data) |
5100 | return false; |
5101 | |
5102 | InPlace_Image_Converter converter = qimage_inplace_converter_map[format][newFormat]; |
5103 | if (converter) |
5104 | return converter(this, flags); |
5105 | else if (format > QImage::Format_Indexed8 && newFormat > QImage::Format_Indexed8 && !qimage_converter_map[format][newFormat]) |
5106 | // Convert inplace generic, but only if there are no direct converters, |
5107 | // any direct ones are probably better even if not inplace. |
5108 | return convert_generic_inplace(data: this, dst_format: newFormat, flags); |
5109 | else |
5110 | return false; |
5111 | } |
5112 | |
5113 | /*! |
5114 | \typedef QImage::DataPtr |
5115 | \internal |
5116 | */ |
5117 | |
5118 | /*! |
5119 | \fn DataPtr & QImage::data_ptr() |
5120 | \internal |
5121 | */ |
5122 | |
5123 | #ifndef QT_NO_DEBUG_STREAM |
5124 | QDebug operator<<(QDebug dbg, const QImage &i) |
5125 | { |
5126 | QDebugStateSaver saver(dbg); |
5127 | dbg.nospace(); |
5128 | dbg.noquote(); |
5129 | dbg << "QImage(" ; |
5130 | if (i.isNull()) { |
5131 | dbg << "null" ; |
5132 | } else { |
5133 | dbg << i.size() << ",format=" << i.format() << ",depth=" << i.depth(); |
5134 | if (i.colorCount()) |
5135 | dbg << ",colorCount=" << i.colorCount(); |
5136 | const int bytesPerLine = i.bytesPerLine(); |
5137 | dbg << ",devicePixelRatio=" << i.devicePixelRatio() |
5138 | << ",bytesPerLine=" << bytesPerLine << ",sizeInBytes=" << i.sizeInBytes(); |
5139 | if (dbg.verbosity() > 2 && i.height() > 0) { |
5140 | const int outputLength = qMin(a: bytesPerLine, b: 24); |
5141 | dbg << ",line0=" |
5142 | << QByteArray(reinterpret_cast<const char *>(i.scanLine(i: 0)), outputLength).toHex() |
5143 | << "..." ; |
5144 | } |
5145 | } |
5146 | dbg << ')'; |
5147 | return dbg; |
5148 | } |
5149 | #endif |
5150 | |
5151 | /*! |
5152 | \fn void QImage::setNumColors(int n) |
5153 | \obsolete |
5154 | |
5155 | Resizes the color table to contain \a n entries. |
5156 | |
5157 | \sa setColorCount() |
5158 | */ |
5159 | |
5160 | /*! |
5161 | \fn int QImage::numBytes() const |
5162 | \obsolete |
5163 | |
5164 | Returns the number of bytes occupied by the image data. |
5165 | |
5166 | \sa sizeInBytes() |
5167 | */ |
5168 | |
5169 | /*! |
5170 | \fn QStringList QImage::textLanguages() const |
5171 | \obsolete |
5172 | |
5173 | Returns the language identifiers for which some texts are recorded. |
5174 | Note that if you want to iterate over the list, you should iterate over a copy. |
5175 | |
5176 | The language the text is recorded in is no longer relevant since the text is |
5177 | always set using QString and UTF-8 representation. |
5178 | |
5179 | \sa textKeys() |
5180 | */ |
5181 | |
5182 | /*! |
5183 | \fn QList<QImageTextKeyLang> QImage::textList() const |
5184 | \obsolete |
5185 | |
5186 | Returns a list of QImageTextKeyLang objects that enumerate all the texts |
5187 | key/language pairs set for this image. |
5188 | |
5189 | The language the text is recorded in is no longer relevant since the text |
5190 | is always set using QString and UTF-8 representation. |
5191 | |
5192 | \sa textKeys() |
5193 | */ |
5194 | |
5195 | static Q_CONSTEXPR QPixelFormat pixelformats[] = { |
5196 | //QImage::Format_Invalid: |
5197 | QPixelFormat(), |
5198 | //QImage::Format_Mono: |
5199 | QPixelFormat(QPixelFormat::Indexed, |
5200 | /*RED*/ 1, |
5201 | /*GREEN*/ 0, |
5202 | /*BLUE*/ 0, |
5203 | /*FOURTH*/ 0, |
5204 | /*FIFTH*/ 0, |
5205 | /*ALPHA*/ 0, |
5206 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
5207 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
5208 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
5209 | /*INTERPRETATION*/ QPixelFormat::UnsignedByte, |
5210 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5211 | //QImage::Format_MonoLSB: |
5212 | QPixelFormat(QPixelFormat::Indexed, |
5213 | /*RED*/ 1, |
5214 | /*GREEN*/ 0, |
5215 | /*BLUE*/ 0, |
5216 | /*FOURTH*/ 0, |
5217 | /*FIFTH*/ 0, |
5218 | /*ALPHA*/ 0, |
5219 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
5220 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
5221 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
5222 | /*INTERPRETATION*/ QPixelFormat::UnsignedByte, |
5223 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5224 | //QImage::Format_Indexed8: |
5225 | QPixelFormat(QPixelFormat::Indexed, |
5226 | /*RED*/ 8, |
5227 | /*GREEN*/ 0, |
5228 | /*BLUE*/ 0, |
5229 | /*FOURTH*/ 0, |
5230 | /*FIFTH*/ 0, |
5231 | /*ALPHA*/ 0, |
5232 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
5233 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
5234 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
5235 | /*INTERPRETATION*/ QPixelFormat::UnsignedByte, |
5236 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5237 | //QImage::Format_RGB32: |
5238 | QPixelFormat(QPixelFormat::RGB, |
5239 | /*RED*/ 8, |
5240 | /*GREEN*/ 8, |
5241 | /*BLUE*/ 8, |
5242 | /*FOURTH*/ 0, |
5243 | /*FIFTH*/ 0, |
5244 | /*ALPHA*/ 8, |
5245 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
5246 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
5247 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
5248 | /*INTERPRETATION*/ QPixelFormat::UnsignedInteger, |
5249 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5250 | //QImage::Format_ARGB32: |
5251 | QPixelFormat(QPixelFormat::RGB, |
5252 | /*RED*/ 8, |
5253 | /*GREEN*/ 8, |
5254 | /*BLUE*/ 8, |
5255 | /*FOURTH*/ 0, |
5256 | /*FIFTH*/ 0, |
5257 | /*ALPHA*/ 8, |
5258 | /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, |
5259 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
5260 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
5261 | /*INTERPRETATION*/ QPixelFormat::UnsignedInteger, |
5262 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5263 | //QImage::Format_ARGB32_Premultiplied: |
5264 | QPixelFormat(QPixelFormat::RGB, |
5265 | /*RED*/ 8, |
5266 | /*GREEN*/ 8, |
5267 | /*BLUE*/ 8, |
5268 | /*FOURTH*/ 0, |
5269 | /*FIFTH*/ 0, |
5270 | /*ALPHA*/ 8, |
5271 | /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, |
5272 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
5273 | /*PREMULTIPLIED*/ QPixelFormat::Premultiplied, |
5274 | /*INTERPRETATION*/ QPixelFormat::UnsignedInteger, |
5275 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5276 | //QImage::Format_RGB16: |
5277 | QPixelFormat(QPixelFormat::RGB, |
5278 | /*RED*/ 5, |
5279 | /*GREEN*/ 6, |
5280 | /*BLUE*/ 5, |
5281 | /*FOURTH*/ 0, |
5282 | /*FIFTH*/ 0, |
5283 | /*ALPHA*/ 0, |
5284 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
5285 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
5286 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
5287 | /*INTERPRETATION*/ QPixelFormat::UnsignedShort, |
5288 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5289 | //QImage::Format_ARGB8565_Premultiplied: |
5290 | QPixelFormat(QPixelFormat::RGB, |
5291 | /*RED*/ 5, |
5292 | /*GREEN*/ 6, |
5293 | /*BLUE*/ 5, |
5294 | /*FOURTH*/ 0, |
5295 | /*FIFTH*/ 0, |
5296 | /*ALPHA*/ 8, |
5297 | /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, |
5298 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
5299 | /*PREMULTIPLIED*/ QPixelFormat::Premultiplied, |
5300 | /*INTERPRETATION*/ QPixelFormat::UnsignedInteger, |
5301 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5302 | //QImage::Format_RGB666: |
5303 | QPixelFormat(QPixelFormat::RGB, |
5304 | /*RED*/ 6, |
5305 | /*GREEN*/ 6, |
5306 | /*BLUE*/ 6, |
5307 | /*FOURTH*/ 0, |
5308 | /*FIFTH*/ 0, |
5309 | /*ALPHA*/ 0, |
5310 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
5311 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
5312 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
5313 | /*INTERPRETATION*/ QPixelFormat::UnsignedInteger, |
5314 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5315 | //QImage::Format_ARGB6666_Premultiplied: |
5316 | QPixelFormat(QPixelFormat::RGB, |
5317 | /*RED*/ 6, |
5318 | /*GREEN*/ 6, |
5319 | /*BLUE*/ 6, |
5320 | /*FOURTH*/ 0, |
5321 | /*FIFTH*/ 0, |
5322 | /*ALPHA*/ 6, |
5323 | /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, |
5324 | /*ALPHA POSITION*/ QPixelFormat::AtEnd, |
5325 | /*PREMULTIPLIED*/ QPixelFormat::Premultiplied, |
5326 | /*INTERPRETATION*/ QPixelFormat::UnsignedInteger, |
5327 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5328 | //QImage::Format_RGB555: |
5329 | QPixelFormat(QPixelFormat::RGB, |
5330 | /*RED*/ 5, |
5331 | /*GREEN*/ 5, |
5332 | /*BLUE*/ 5, |
5333 | /*FOURTH*/ 0, |
5334 | /*FIFTH*/ 0, |
5335 | /*ALPHA*/ 0, |
5336 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
5337 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
5338 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
5339 | /*INTERPRETATION*/ QPixelFormat::UnsignedShort, |
5340 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5341 | //QImage::Format_ARGB8555_Premultiplied: |
5342 | QPixelFormat(QPixelFormat::RGB, |
5343 | /*RED*/ 5, |
5344 | /*GREEN*/ 5, |
5345 | /*BLUE*/ 5, |
5346 | /*FOURTH*/ 0, |
5347 | /*FIFTH*/ 0, |
5348 | /*ALPHA*/ 8, |
5349 | /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, |
5350 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
5351 | /*PREMULTIPLIED*/ QPixelFormat::Premultiplied, |
5352 | /*INTERPRETATION*/ QPixelFormat::UnsignedInteger, |
5353 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5354 | //QImage::Format_RGB888: |
5355 | QPixelFormat(QPixelFormat::RGB, |
5356 | /*RED*/ 8, |
5357 | /*GREEN*/ 8, |
5358 | /*BLUE*/ 8, |
5359 | /*FOURTH*/ 0, |
5360 | /*FIFTH*/ 0, |
5361 | /*ALPHA*/ 0, |
5362 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
5363 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
5364 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
5365 | /*INTERPRETATION*/ QPixelFormat::UnsignedByte, |
5366 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5367 | //QImage::Format_RGB444: |
5368 | QPixelFormat(QPixelFormat::RGB, |
5369 | /*RED*/ 4, |
5370 | /*GREEN*/ 4, |
5371 | /*BLUE*/ 4, |
5372 | /*FOURTH*/ 0, |
5373 | /*FIFTH*/ 0, |
5374 | /*ALPHA*/ 0, |
5375 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
5376 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
5377 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
5378 | /*INTERPRETATION*/ QPixelFormat::UnsignedShort, |
5379 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5380 | //QImage::Format_ARGB4444_Premultiplied: |
5381 | QPixelFormat(QPixelFormat::RGB, |
5382 | /*RED*/ 4, |
5383 | /*GREEN*/ 4, |
5384 | /*BLUE*/ 4, |
5385 | /*FOURTH*/ 0, |
5386 | /*FIFTH*/ 0, |
5387 | /*ALPHA*/ 4, |
5388 | /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, |
5389 | /*ALPHA POSITION*/ QPixelFormat::AtEnd, |
5390 | /*PREMULTIPLIED*/ QPixelFormat::Premultiplied, |
5391 | /*INTERPRETATION*/ QPixelFormat::UnsignedShort, |
5392 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5393 | //QImage::Format_RGBX8888: |
5394 | QPixelFormat(QPixelFormat::RGB, |
5395 | /*RED*/ 8, |
5396 | /*GREEN*/ 8, |
5397 | /*BLUE*/ 8, |
5398 | /*FOURTH*/ 0, |
5399 | /*FIFTH*/ 0, |
5400 | /*ALPHA*/ 8, |
5401 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
5402 | /*ALPHA POSITION*/ QPixelFormat::AtEnd, |
5403 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
5404 | /*INTERPRETATION*/ QPixelFormat::UnsignedByte, |
5405 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5406 | //QImage::Format_RGBA8888: |
5407 | QPixelFormat(QPixelFormat::RGB, |
5408 | /*RED*/ 8, |
5409 | /*GREEN*/ 8, |
5410 | /*BLUE*/ 8, |
5411 | /*FOURTH*/ 0, |
5412 | /*FIFTH*/ 0, |
5413 | /*ALPHA*/ 8, |
5414 | /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, |
5415 | /*ALPHA POSITION*/ QPixelFormat::AtEnd, |
5416 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
5417 | /*INTERPRETATION*/ QPixelFormat::UnsignedByte, |
5418 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5419 | //QImage::Format_RGBA8888_Premultiplied: |
5420 | QPixelFormat(QPixelFormat::RGB, |
5421 | /*RED*/ 8, |
5422 | /*GREEN*/ 8, |
5423 | /*BLUE*/ 8, |
5424 | /*FOURTH*/ 0, |
5425 | /*FIFTH*/ 0, |
5426 | /*ALPHA*/ 8, |
5427 | /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, |
5428 | /*ALPHA POSITION*/ QPixelFormat::AtEnd, |
5429 | /*PREMULTIPLIED*/ QPixelFormat::Premultiplied, |
5430 | /*INTERPRETATION*/ QPixelFormat::UnsignedByte, |
5431 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5432 | //QImage::Format_BGR30: |
5433 | QPixelFormat(QPixelFormat::BGR, |
5434 | /*RED*/ 10, |
5435 | /*GREEN*/ 10, |
5436 | /*BLUE*/ 10, |
5437 | /*FOURTH*/ 0, |
5438 | /*FIFTH*/ 0, |
5439 | /*ALPHA*/ 2, |
5440 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
5441 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
5442 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
5443 | /*INTERPRETATION*/ QPixelFormat::UnsignedInteger, |
5444 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5445 | //QImage::Format_A2BGR30_Premultiplied: |
5446 | QPixelFormat(QPixelFormat::BGR, |
5447 | /*RED*/ 10, |
5448 | /*GREEN*/ 10, |
5449 | /*BLUE*/ 10, |
5450 | /*FOURTH*/ 0, |
5451 | /*FIFTH*/ 0, |
5452 | /*ALPHA*/ 2, |
5453 | /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, |
5454 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
5455 | /*PREMULTIPLIED*/ QPixelFormat::Premultiplied, |
5456 | /*INTERPRETATION*/ QPixelFormat::UnsignedInteger, |
5457 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5458 | //QImage::Format_RGB30: |
5459 | QPixelFormat(QPixelFormat::RGB, |
5460 | /*RED*/ 10, |
5461 | /*GREEN*/ 10, |
5462 | /*BLUE*/ 10, |
5463 | /*FOURTH*/ 0, |
5464 | /*FIFTH*/ 0, |
5465 | /*ALPHA*/ 2, |
5466 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
5467 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
5468 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
5469 | /*INTERPRETATION*/ QPixelFormat::UnsignedInteger, |
5470 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5471 | //QImage::Format_A2RGB30_Premultiplied: |
5472 | QPixelFormat(QPixelFormat::RGB, |
5473 | /*RED*/ 10, |
5474 | /*GREEN*/ 10, |
5475 | /*BLUE*/ 10, |
5476 | /*FOURTH*/ 0, |
5477 | /*FIFTH*/ 0, |
5478 | /*ALPHA*/ 2, |
5479 | /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, |
5480 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
5481 | /*PREMULTIPLIED*/ QPixelFormat::Premultiplied, |
5482 | /*INTERPRETATION*/ QPixelFormat::UnsignedInteger, |
5483 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5484 | //QImage::Format_Alpha8: |
5485 | QPixelFormat(QPixelFormat::Alpha, |
5486 | /*First*/ 0, |
5487 | /*SECOND*/ 0, |
5488 | /*THIRD*/ 0, |
5489 | /*FOURTH*/ 0, |
5490 | /*FIFTH*/ 0, |
5491 | /*ALPHA*/ 8, |
5492 | /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, |
5493 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
5494 | /*PREMULTIPLIED*/ QPixelFormat::Premultiplied, |
5495 | /*INTERPRETATION*/ QPixelFormat::UnsignedByte, |
5496 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5497 | //QImage::Format_Grayscale8: |
5498 | QPixelFormat(QPixelFormat::Grayscale, |
5499 | /*GRAY*/ 8, |
5500 | /*SECOND*/ 0, |
5501 | /*THIRD*/ 0, |
5502 | /*FOURTH*/ 0, |
5503 | /*FIFTH*/ 0, |
5504 | /*ALPHA*/ 0, |
5505 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
5506 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
5507 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
5508 | /*INTERPRETATION*/ QPixelFormat::UnsignedByte, |
5509 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5510 | //QImage::Format_RGBX64: |
5511 | QPixelFormat(QPixelFormat::RGB, |
5512 | /*RED*/ 16, |
5513 | /*GREEN*/ 16, |
5514 | /*BLUE*/ 16, |
5515 | /*FOURTH*/ 0, |
5516 | /*FIFTH*/ 0, |
5517 | /*ALPHA*/ 16, |
5518 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
5519 | /*ALPHA POSITION*/ QPixelFormat::AtEnd, |
5520 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
5521 | /*INTERPRETATION*/ QPixelFormat::UnsignedShort, |
5522 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5523 | //QImage::Format_RGBA64: |
5524 | QPixelFormat(QPixelFormat::RGB, |
5525 | /*RED*/ 16, |
5526 | /*GREEN*/ 16, |
5527 | /*BLUE*/ 16, |
5528 | /*FOURTH*/ 0, |
5529 | /*FIFTH*/ 0, |
5530 | /*ALPHA*/ 16, |
5531 | /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, |
5532 | /*ALPHA POSITION*/ QPixelFormat::AtEnd, |
5533 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
5534 | /*INTERPRETATION*/ QPixelFormat::UnsignedShort, |
5535 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5536 | //QImage::Format_RGBA64_Premultiplied: |
5537 | QPixelFormat(QPixelFormat::RGB, |
5538 | /*RED*/ 16, |
5539 | /*GREEN*/ 16, |
5540 | /*BLUE*/ 16, |
5541 | /*FOURTH*/ 0, |
5542 | /*FIFTH*/ 0, |
5543 | /*ALPHA*/ 16, |
5544 | /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, |
5545 | /*ALPHA POSITION*/ QPixelFormat::AtEnd, |
5546 | /*PREMULTIPLIED*/ QPixelFormat::Premultiplied, |
5547 | /*INTERPRETATION*/ QPixelFormat::UnsignedShort, |
5548 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5549 | //QImage::Format_Grayscale16: |
5550 | QPixelFormat(QPixelFormat::Grayscale, |
5551 | /*GRAY*/ 16, |
5552 | /*SECOND*/ 0, |
5553 | /*THIRD*/ 0, |
5554 | /*FOURTH*/ 0, |
5555 | /*FIFTH*/ 0, |
5556 | /*ALPHA*/ 0, |
5557 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
5558 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
5559 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
5560 | /*INTERPRETATION*/ QPixelFormat::UnsignedShort, |
5561 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5562 | //QImage::Format_BGR888: |
5563 | QPixelFormat(QPixelFormat::BGR, |
5564 | /*RED*/ 8, |
5565 | /*GREEN*/ 8, |
5566 | /*BLUE*/ 8, |
5567 | /*FOURTH*/ 0, |
5568 | /*FIFTH*/ 0, |
5569 | /*ALPHA*/ 0, |
5570 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
5571 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
5572 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
5573 | /*INTERPRETATION*/ QPixelFormat::UnsignedByte, |
5574 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5575 | }; |
5576 | Q_STATIC_ASSERT(sizeof(pixelformats) / sizeof(*pixelformats) == QImage::NImageFormats); |
5577 | |
5578 | /*! |
5579 | Returns the QImage::Format as a QPixelFormat |
5580 | */ |
5581 | QPixelFormat QImage::pixelFormat() const noexcept |
5582 | { |
5583 | return toPixelFormat(format: format()); |
5584 | } |
5585 | |
5586 | /*! |
5587 | Converts \a format into a QPixelFormat |
5588 | */ |
5589 | QPixelFormat QImage::toPixelFormat(QImage::Format format) noexcept |
5590 | { |
5591 | Q_ASSERT(static_cast<int>(format) < NImageFormats); |
5592 | return pixelformats[format]; |
5593 | } |
5594 | |
5595 | /*! |
5596 | Converts \a format into a QImage::Format |
5597 | */ |
5598 | QImage::Format QImage::toImageFormat(QPixelFormat format) noexcept |
5599 | { |
5600 | for (int i = 0; i < NImageFormats; i++) { |
5601 | if (format == pixelformats[i]) |
5602 | return Format(i); |
5603 | } |
5604 | return Format_Invalid; |
5605 | } |
5606 | |
5607 | Q_GUI_EXPORT void qt_imageTransform(QImage &src, QImageIOHandler::Transformations orient) |
5608 | { |
5609 | if (orient == QImageIOHandler::TransformationNone) |
5610 | return; |
5611 | if (orient == QImageIOHandler::TransformationRotate270) { |
5612 | src = rotated270(image: src); |
5613 | } else { |
5614 | src = std::move(src).mirrored(horizontally: orient & QImageIOHandler::TransformationMirror, |
5615 | vertically: orient & QImageIOHandler::TransformationFlip); |
5616 | if (orient & QImageIOHandler::TransformationRotate90) |
5617 | src = rotated90(image: src); |
5618 | } |
5619 | } |
5620 | |
5621 | QMap<QString, QString> qt_getImageText(const QImage &image, const QString &description) |
5622 | { |
5623 | QMap<QString, QString> text = qt_getImageTextFromDescription(description); |
5624 | const auto textKeys = image.textKeys(); |
5625 | for (const QString &key : textKeys) { |
5626 | if (!key.isEmpty() && !text.contains(akey: key)) |
5627 | text.insert(akey: key, avalue: image.text(key)); |
5628 | } |
5629 | return text; |
5630 | } |
5631 | |
5632 | QMap<QString, QString> qt_getImageTextFromDescription(const QString &description) |
5633 | { |
5634 | QMap<QString, QString> text; |
5635 | const auto pairs = description.splitRef(sep: QLatin1String("\n\n" )); |
5636 | for (const QStringRef &pair : pairs) { |
5637 | int index = pair.indexOf(ch: QLatin1Char(':')); |
5638 | if (index >= 0 && pair.indexOf(ch: QLatin1Char(' ')) < index) { |
5639 | if (!pair.trimmed().isEmpty()) |
5640 | text.insert(akey: QLatin1String("Description" ), avalue: pair.toString().simplified()); |
5641 | } else { |
5642 | const QStringRef key = pair.left(n: index); |
5643 | if (!key.trimmed().isEmpty()) |
5644 | text.insert(akey: key.toString(), avalue: pair.mid(pos: index + 2).toString().simplified()); |
5645 | } |
5646 | } |
5647 | return text; |
5648 | } |
5649 | |
5650 | QT_END_NAMESPACE |
5651 | |