| 1 | // Copyright 2009-2021 Intel Corporation | 
| 2 | // SPDX-License-Identifier: Apache-2.0 | 
| 3 |  | 
| 4 | #pragma once | 
| 5 |  | 
| 6 | #include "../common/ray.h" | 
| 7 | #include "curve_intersector_precalculations.h" | 
| 8 | #include "curve_intersector_sweep.h" | 
| 9 | #include "../subdiv/linear_bezier_patch.h" | 
| 10 |  | 
| 11 | #define DBG(x) | 
| 12 |  | 
| 13 | namespace embree | 
| 14 | { | 
| 15 |   namespace isa | 
| 16 |   { | 
| 17 |     template<typename Ray, typename Epilog> | 
| 18 |       struct TensorLinearCubicBezierSurfaceIntersector | 
| 19 |       { | 
| 20 |         const LinearSpace3fa& ray_space; | 
| 21 |         Ray& ray; | 
| 22 |         TensorLinearCubicBezierSurface3fa curve3d; | 
| 23 |         TensorLinearCubicBezierSurface2fa curve2d; | 
| 24 |         float eps; | 
| 25 |         const Epilog& epilog; | 
| 26 |         bool isHit; | 
| 27 |  | 
| 28 |         __forceinline TensorLinearCubicBezierSurfaceIntersector (const LinearSpace3fa& ray_space, Ray& ray, const TensorLinearCubicBezierSurface3fa& curve3d, const Epilog& epilog) | 
| 29 |           : ray_space(ray_space), ray(ray), curve3d(curve3d), epilog(epilog), isHit(false) | 
| 30 |         { | 
| 31 |           const TensorLinearCubicBezierSurface3fa curve3dray = curve3d.xfm(ray_space,ray.org); | 
| 32 |           curve2d = TensorLinearCubicBezierSurface2fa(CubicBezierCurve2fa(curve3dray.L),CubicBezierCurve2fa(curve3dray.R)); | 
| 33 |           const BBox2fa b2 = curve2d.bounds(); | 
| 34 |           eps = 8.0f*float(ulp)*reduce_max(v: max(a: abs(a: b2.lower),b: abs(a: b2.upper))); | 
| 35 |         } | 
| 36 |          | 
| 37 |         __forceinline Interval1f solve_linear(const float u0, const float u1, const float& p0, const float& p1) | 
| 38 |         { | 
| 39 |           if (p1 == p0) { | 
| 40 |             if (p0 == 0.0f) return Interval1f(u0,u1); | 
| 41 |             else return Interval1f(empty); | 
| 42 |           } | 
| 43 |           const float t = -p0/(p1-p0); | 
| 44 |           const float tt = lerp(v0: u0,v1: u1,t); | 
| 45 |           return Interval1f(tt); | 
| 46 |         } | 
| 47 |  | 
| 48 |         __forceinline void solve_linear(const float u0, const float u1, const Interval1f& p0, const Interval1f& p1, Interval1f& u) | 
| 49 |         { | 
| 50 |           if (sign(x: p0.lower) != sign(x: p0.upper)) u.extend(other: u0); | 
| 51 |           if (sign(x: p0.lower) != sign(x: p1.lower)) u.extend(solve_linear(u0,u1,p0.lower,p1.lower)); | 
| 52 |           if (sign(x: p0.upper) != sign(x: p1.upper)) u.extend(solve_linear(u0,u1,p0.upper,p1.upper)); | 
| 53 |           if (sign(x: p1.lower) != sign(x: p1.upper)) u.extend(other: u1); | 
| 54 |         } | 
| 55 |  | 
| 56 |         __forceinline Interval1f bezier_clipping(const CubicBezierCurve<Interval1f>& curve) | 
| 57 |         { | 
| 58 |           Interval1f u = empty; | 
| 59 |           solve_linear(0.0f/3.0f,1.0f/3.0f,curve.v0,curve.v1,u); | 
| 60 |           solve_linear(0.0f/3.0f,2.0f/3.0f,curve.v0,curve.v2,u); | 
| 61 |           solve_linear(0.0f/3.0f,3.0f/3.0f,curve.v0,curve.v3,u); | 
| 62 |           solve_linear(1.0f/3.0f,2.0f/3.0f,curve.v1,curve.v2,u); | 
| 63 |           solve_linear(1.0f/3.0f,3.0f/3.0f,curve.v1,curve.v3,u); | 
| 64 |           solve_linear(2.0f/3.0f,3.0f/3.0f,curve.v2,curve.v3,u); | 
| 65 |           return intersect(a: u,b: Interval1f(0.0f,1.0f)); | 
| 66 |         } | 
| 67 |          | 
| 68 |         __forceinline Interval1f bezier_clipping(const LinearBezierCurve<Interval1f>& curve) | 
| 69 |         { | 
| 70 |           Interval1f v = empty; | 
| 71 |           solve_linear(0.0f,1.0f,curve.v0,curve.v1,v); | 
| 72 |           return intersect(a: v,b: Interval1f(0.0f,1.0f)); | 
| 73 |         } | 
| 74 |  | 
| 75 |         __forceinline void solve_bezier_clipping(BBox1f cu, BBox1f cv, const TensorLinearCubicBezierSurface2fa& curve2) | 
| 76 |         { | 
| 77 |           BBox2fa bounds = curve2.bounds(); | 
| 78 |           if (bounds.upper.x < 0.0f) return; | 
| 79 |           if (bounds.upper.y < 0.0f) return; | 
| 80 |           if (bounds.lower.x > 0.0f) return; | 
| 81 |           if (bounds.lower.y > 0.0f) return; | 
| 82 |            | 
| 83 |           if (max(a: cu.size(),b: cv.size()) < 1E-4f) | 
| 84 |           { | 
| 85 |             const float u = cu.center(); | 
| 86 |             const float v = cv.center(); | 
| 87 |             TensorLinearCubicBezierSurface1f curve_z = curve3d.xfm(ray_space.row2(),ray.org); | 
| 88 |             const float t = curve_z.eval(u,v); | 
| 89 |             if (ray.tnear() <= t && t <= ray.tfar) { | 
| 90 |               const Vec3fa Ng = cross(a: curve3d.eval_du(u,v),b: curve3d.eval_dv(u,v)); | 
| 91 |               BezierCurveHit hit(t,u,v,Ng); | 
| 92 |               isHit |= epilog(hit); | 
| 93 |             } | 
| 94 |             return; | 
| 95 |           } | 
| 96 |            | 
| 97 |           const Vec2fa dv = curve2.axis_v(); | 
| 98 |           const TensorLinearCubicBezierSurface1f curve1v = curve2.xfm(dx: dv); | 
| 99 |           LinearBezierCurve<Interval1f> curve0v = curve1v.reduce_u(); | 
| 100 |           if (!curve0v.hasRoot()) return; | 
| 101 |            | 
| 102 |           const Interval1f v = bezier_clipping(curve0v); | 
| 103 |           if (isEmpty(v)) return; | 
| 104 |           TensorLinearCubicBezierSurface2fa curve2a = curve2.clip_v(v); | 
| 105 |           cv = BBox1f(lerp(v0: cv.lower,v1: cv.upper,t: v.lower),lerp(v0: cv.lower,v1: cv.upper,t: v.upper)); | 
| 106 |  | 
| 107 |           const Vec2fa du = curve2.axis_u(); | 
| 108 |           const TensorLinearCubicBezierSurface1f curve1u = curve2a.xfm(dx: du); | 
| 109 |           CubicBezierCurve<Interval1f> curve0u = curve1u.reduce_v();          | 
| 110 |           int roots = curve0u.maxRoots(); | 
| 111 |           if (roots == 0) return; | 
| 112 |            | 
| 113 |           if (roots == 1) | 
| 114 |           { | 
| 115 |             const Interval1f u = bezier_clipping(curve0u); | 
| 116 |             if (isEmpty(v: u)) return; | 
| 117 |             TensorLinearCubicBezierSurface2fa curve2b = curve2a.clip_u(u); | 
| 118 |             cu = BBox1f(lerp(v0: cu.lower,v1: cu.upper,t: u.lower),lerp(v0: cu.lower,v1: cu.upper,t: u.upper)); | 
| 119 |             solve_bezier_clipping(cu,cv,curve2b); | 
| 120 |             return; | 
| 121 |           } | 
| 122 |  | 
| 123 |           TensorLinearCubicBezierSurface2fa curve2l, curve2r; | 
| 124 |           curve2a.split_u(left&: curve2l,right&: curve2r); | 
| 125 |           solve_bezier_clipping(BBox1f(cu.lower,cu.center()),cv,curve2l); | 
| 126 |           solve_bezier_clipping(BBox1f(cu.center(),cu.upper),cv,curve2r); | 
| 127 |         } | 
| 128 |          | 
| 129 |         __forceinline bool solve_bezier_clipping() | 
| 130 |         { | 
| 131 |           solve_bezier_clipping(BBox1f(0.0f,1.0f),BBox1f(0.0f,1.0f),curve2d); | 
| 132 |           return isHit; | 
| 133 |         } | 
| 134 |  | 
| 135 |         __forceinline void solve_newton_raphson(BBox1f cu, BBox1f cv) | 
| 136 |         { | 
| 137 |           Vec2fa uv(cu.center(),cv.center()); | 
| 138 |           const Vec2fa dfdu = curve2d.eval_du(u: uv.x,v: uv.y); | 
| 139 |           const Vec2fa dfdv = curve2d.eval_dv(u: uv.x,v: uv.y); | 
| 140 |           const LinearSpace2fa rcp_J = rcp(a: LinearSpace2fa(dfdu,dfdv)); | 
| 141 |           solve_newton_raphson_loop(cu,cv,uv_in: uv,dfdu,dfdv,rcp_J); | 
| 142 |         } | 
| 143 |  | 
| 144 |         __forceinline void solve_newton_raphson_loop(BBox1f cu, BBox1f cv, const Vec2fa& uv_in, const Vec2fa& dfdu, const Vec2fa& dfdv, const LinearSpace2fa& rcp_J) | 
| 145 |         { | 
| 146 |           Vec2fa uv = uv_in; | 
| 147 |            | 
| 148 |           for (size_t i=0; i<200; i++) | 
| 149 |           { | 
| 150 |             const Vec2fa f = curve2d.eval(u: uv.x,v: uv.y); | 
| 151 |             const Vec2fa duv = rcp_J*f; | 
| 152 |             uv -= duv; | 
| 153 |  | 
| 154 |             if (max(a: abs(x: f.x),b: abs(x: f.y)) < eps) | 
| 155 |             { | 
| 156 |               const float u = uv.x; | 
| 157 |               const float v = uv.y; | 
| 158 |               if (!(u >= 0.0f && u <= 1.0f)) return; // rejects NaNs | 
| 159 |               if (!(v >= 0.0f && v <= 1.0f)) return; // rejects NaNs | 
| 160 |               const TensorLinearCubicBezierSurface1f curve_z = curve3d.xfm(ray_space.row2(),ray.org); | 
| 161 |               const float t = curve_z.eval(u,v); | 
| 162 |               if (!(ray.tnear() <= t && t <= ray.tfar)) return; // rejects NaNs | 
| 163 |               const Vec3fa Ng = cross(a: curve3d.eval_du(u,v),b: curve3d.eval_dv(u,v)); | 
| 164 |               BezierCurveHit hit(t,u,v,Ng); | 
| 165 |               isHit |= epilog(hit); | 
| 166 |               return; | 
| 167 |             } | 
| 168 |           }        | 
| 169 |         } | 
| 170 |  | 
| 171 |         __forceinline bool clip_v(BBox1f& cu, BBox1f& cv) | 
| 172 |         { | 
| 173 |           const Vec2fa dv = curve2d.eval_dv(u: cu.lower,v: cv.lower); | 
| 174 |           const TensorLinearCubicBezierSurface1f curve1v = curve2d.xfm(dx: dv).clip(u: cu,v: cv); | 
| 175 |           LinearBezierCurve<Interval1f> curve0v = curve1v.reduce_u(); | 
| 176 |           if (!curve0v.hasRoot()) return false; | 
| 177 |           Interval1f v = bezier_clipping(curve0v); | 
| 178 |           if (isEmpty(v)) return false; | 
| 179 |           v = intersect(a: v + Interval1f(-0.1f,+0.1f),b: Interval1f(0.0f,1.0f)); | 
| 180 |           cv = BBox1f(lerp(v0: cv.lower,v1: cv.upper,t: v.lower),lerp(v0: cv.lower,v1: cv.upper,t: v.upper)); | 
| 181 |           return true; | 
| 182 |         } | 
| 183 |  | 
| 184 |         __forceinline bool solve_krawczyk(bool very_small, BBox1f& cu, BBox1f& cv) | 
| 185 |         { | 
| 186 |           /* perform bezier clipping in v-direction to get tight v-bounds */ | 
| 187 |           TensorLinearCubicBezierSurface2fa curve2 = curve2d.clip(u: cu,v: cv); | 
| 188 |           const Vec2fa dv = curve2.axis_v(); | 
| 189 |           const TensorLinearCubicBezierSurface1f curve1v = curve2.xfm(dx: dv); | 
| 190 |           LinearBezierCurve<Interval1f> curve0v = curve1v.reduce_u(); | 
| 191 |           if (unlikely(!curve0v.hasRoot())) return true; | 
| 192 |           Interval1f v = bezier_clipping(curve0v); | 
| 193 |           if (unlikely(isEmpty(v))) return true; | 
| 194 |           v = intersect(a: v + Interval1f(-0.1f,+0.1f),b: Interval1f(0.0f,1.0f)); | 
| 195 |           curve2 = curve2.clip_v(v); | 
| 196 |           cv = BBox1f(lerp(v0: cv.lower,v1: cv.upper,t: v.lower),lerp(v0: cv.lower,v1: cv.upper,t: v.upper)); | 
| 197 |  | 
| 198 |           /* perform one newton raphson iteration */ | 
| 199 |           Vec2fa c(cu.center(),cv.center()); | 
| 200 |           Vec2fa f,dfdu,dfdv; curve2d.eval(u: c.x,v: c.y,p&: f,dpdu&: dfdu,dpdv&: dfdv); | 
| 201 |           const LinearSpace2fa rcp_J = rcp(a: LinearSpace2fa(dfdu,dfdv)); | 
| 202 |           const Vec2fa c1 = c - rcp_J*f; | 
| 203 |            | 
| 204 |           /* calculate bounds of derivatives */ | 
| 205 |           const BBox2fa bounds_du = (1.0f/cu.size())*curve2.derivative_u().bounds(); | 
| 206 |           const BBox2fa bounds_dv = (1.0f/cv.size())*curve2.derivative_v().bounds(); | 
| 207 |  | 
| 208 |           /* calculate krawczyk test */ | 
| 209 |           LinearSpace2<Vec2<Interval1f>> I(Interval1f(1.0f), Interval1f(0.0f), | 
| 210 |                                            Interval1f(0.0f), Interval1f(1.0f)); | 
| 211 |  | 
| 212 |           LinearSpace2<Vec2<Interval1f>> G(Interval1f(bounds_du.lower.x,bounds_du.upper.x), Interval1f(bounds_dv.lower.x,bounds_dv.upper.x), | 
| 213 |                                            Interval1f(bounds_du.lower.y,bounds_du.upper.y), Interval1f(bounds_dv.lower.y,bounds_dv.upper.y)); | 
| 214 |  | 
| 215 |           const LinearSpace2<Vec2f> rcp_J2(rcp_J); | 
| 216 |           const LinearSpace2<Vec2<Interval1f>> rcp_Ji(rcp_J2); | 
| 217 |            | 
| 218 |           const Vec2<Interval1f> x(cu,cv); | 
| 219 |           const Vec2<Interval1f> K = Vec2<Interval1f>(Vec2f(c1)) + (I - rcp_Ji*G)*(x-Vec2<Interval1f>(Vec2f(c))); | 
| 220 |  | 
| 221 |           /* test if there is no solution */ | 
| 222 |           const Vec2<Interval1f> KK = intersect(a: K,b: x); | 
| 223 |           if (unlikely(isEmpty(KK.x) || isEmpty(KK.y))) return true; | 
| 224 |  | 
| 225 |           /* exit if convergence cannot get proven, but terminate if we are very small */ | 
| 226 |           if (unlikely(!subset(K,x) && !very_small)) return false; | 
| 227 |  | 
| 228 |           /* solve using newton raphson iteration of convergence is guarenteed */ | 
| 229 |           solve_newton_raphson_loop(cu,cv,uv_in: c1,dfdu,dfdv,rcp_J); | 
| 230 |           return true; | 
| 231 |         } | 
| 232 |  | 
| 233 |         __forceinline void solve_newton_raphson_no_recursion(BBox1f cu, BBox1f cv) | 
| 234 |         { | 
| 235 |            if (!clip_v(cu,cv)) return; | 
| 236 |            return solve_newton_raphson(cu,cv); | 
| 237 |         } | 
| 238 |          | 
| 239 |         __forceinline void solve_newton_raphson_recursion(BBox1f cu, BBox1f cv) | 
| 240 |         { | 
| 241 |           unsigned int sptr = 0; | 
| 242 |           const unsigned int stack_size = 4; | 
| 243 |           unsigned int mask_stack[stack_size]; | 
| 244 |           BBox1f cu_stack[stack_size]; | 
| 245 |           BBox1f cv_stack[stack_size]; | 
| 246 |           goto entry; | 
| 247 |            | 
| 248 |           /* terminate if stack is empty */ | 
| 249 |           while (sptr) | 
| 250 |           { | 
| 251 |             /* pop from stack */ | 
| 252 |             { | 
| 253 |               sptr--; | 
| 254 |               size_t mask = mask_stack[sptr]; | 
| 255 |               cu = cu_stack[sptr]; | 
| 256 |               cv = cv_stack[sptr]; | 
| 257 |               const size_t i = bscf(v&: mask); | 
| 258 |               mask_stack[sptr] = mask; | 
| 259 |               if (mask) sptr++; // there are still items on the stack | 
| 260 |                | 
| 261 |               /* process next element recurse into each hit curve segment */ | 
| 262 |               const float u0 = float(i+0)*(1.0f/(VSIZEX-1)); | 
| 263 |               const float u1 = float(i+1)*(1.0f/(VSIZEX-1)); | 
| 264 |               const BBox1f cui(lerp(v0: cu.lower,v1: cu.upper,t: u0),lerp(v0: cu.lower,v1: cu.upper,t: u1)); | 
| 265 |               cu = cui; | 
| 266 |             } | 
| 267 |  | 
| 268 | #if 0 | 
| 269 |             solve_newton_raphson_no_recursion(cu,cv); | 
| 270 |             continue; | 
| 271 |              | 
| 272 | #else | 
| 273 |             /* we assume convergence for small u ranges and verify using krawczyk */ | 
| 274 |             if (cu.size() < 1.0f/6.0f) { | 
| 275 |               const bool very_small = cu.size() < 0.001f || sptr >= stack_size; | 
| 276 |               if (solve_krawczyk(very_small,cu,cv)) { | 
| 277 |                 continue; | 
| 278 |               } | 
| 279 |             } | 
| 280 | #endif | 
| 281 |  | 
| 282 |           entry: | 
| 283 |            | 
| 284 |             /* split the curve into VSIZEX-1 segments in u-direction */ | 
| 285 |             vboolx valid = true; | 
| 286 |             TensorLinearCubicBezierSurface<Vec2vfx> subcurves = curve2d.clip_v(v: cv).vsplit_u(valid,u: cu); | 
| 287 |              | 
| 288 |             /* slabs test in u-direction */ | 
| 289 |             Vec2vfx ndv = cross(a: subcurves.axis_v()); | 
| 290 |             BBox<vfloatx> boundsv = subcurves.vxfm(dx: ndv).bounds(); | 
| 291 |             valid &= boundsv.lower <= eps; | 
| 292 |             valid &= boundsv.upper >= -eps; | 
| 293 |             if (none(b: valid)) continue; | 
| 294 |  | 
| 295 |             /* slabs test in v-direction */ | 
| 296 |             Vec2vfx ndu = cross(a: subcurves.axis_u()); | 
| 297 |             BBox<vfloatx> boundsu = subcurves.vxfm(dx: ndu).bounds(); | 
| 298 |             valid &= boundsu.lower <= eps; | 
| 299 |             valid &= boundsu.upper >= -eps; | 
| 300 |             if (none(b: valid)) continue; | 
| 301 |  | 
| 302 |             /* push valid segments to stack */ | 
| 303 |             assert(sptr < stack_size); | 
| 304 |             mask_stack [sptr] = movemask(a: valid); | 
| 305 |             cu_stack   [sptr] = cu; | 
| 306 |             cv_stack   [sptr] = cv; | 
| 307 |             sptr++; | 
| 308 |           } | 
| 309 |         } | 
| 310 |          | 
| 311 |         __forceinline bool solve_newton_raphson_main() | 
| 312 |         { | 
| 313 |           BBox1f vu(0.0f,1.0f); | 
| 314 |           BBox1f vv(0.0f,1.0f); | 
| 315 |           solve_newton_raphson_recursion(cu: vu,cv: vv); | 
| 316 |           return isHit; | 
| 317 |         } | 
| 318 |       }; | 
| 319 |  | 
| 320 |  | 
| 321 |     template<template<typename Ty> class SourceCurve> | 
| 322 |       struct OrientedCurve1Intersector1 | 
| 323 |     { | 
| 324 |       //template<typename Ty> using Curve = SourceCurve<Ty>; | 
| 325 |       typedef SourceCurve<Vec3ff> SourceCurve3ff; | 
| 326 |       typedef SourceCurve<Vec3fa> SourceCurve3fa; | 
| 327 |        | 
| 328 |       __forceinline OrientedCurve1Intersector1() {} | 
| 329 |        | 
| 330 |       __forceinline OrientedCurve1Intersector1(const Ray& ray, const void* ptr) {} | 
| 331 |        | 
| 332 |       template<typename Epilog> | 
| 333 |       __noinline bool intersect(const CurvePrecalculations1& pre, Ray& ray, | 
| 334 |                                 IntersectContext* context, | 
| 335 |                                 const CurveGeometry* geom, const unsigned int primID,  | 
| 336 |                                 const Vec3ff& v0i, const Vec3ff& v1i, const Vec3ff& v2i, const Vec3ff& v3i, | 
| 337 |                                 const Vec3fa& n0i, const Vec3fa& n1i, const Vec3fa& n2i, const Vec3fa& n3i, | 
| 338 |                                 const Epilog& epilog) const | 
| 339 |       { | 
| 340 |         STAT3(normal.trav_prims,1,1,1); | 
| 341 |  | 
| 342 |         SourceCurve3ff ccurve(v0i,v1i,v2i,v3i); | 
| 343 |         SourceCurve3fa ncurve(n0i,n1i,n2i,n3i); | 
| 344 |         ccurve = enlargeRadiusToMinWidth(context,geom,ray.org,ccurve); | 
| 345 |         TensorLinearCubicBezierSurface3fa curve = TensorLinearCubicBezierSurface3fa::fromCenterAndNormalCurve(ccurve,ncurve); | 
| 346 |         //return TensorLinearCubicBezierSurfaceIntersector<Ray,Epilog>(pre.ray_space,ray,curve,epilog).solve_bezier_clipping(); | 
| 347 |         return TensorLinearCubicBezierSurfaceIntersector<Ray,Epilog>(pre.ray_space,ray,curve,epilog).solve_newton_raphson_main(); | 
| 348 |       } | 
| 349 |  | 
| 350 |       template<typename Epilog> | 
| 351 |       __noinline bool intersect(const CurvePrecalculations1& pre, Ray& ray, | 
| 352 |                                 IntersectContext* context, | 
| 353 |                                 const CurveGeometry* geom, const unsigned int primID, | 
| 354 |                                 const TensorLinearCubicBezierSurface3fa& curve, const Epilog& epilog) const | 
| 355 |       { | 
| 356 |         STAT3(normal.trav_prims,1,1,1); | 
| 357 |         //return TensorLinearCubicBezierSurfaceIntersector<Ray,Epilog>(pre.ray_space,ray,curve,epilog).solve_bezier_clipping(); | 
| 358 |         return TensorLinearCubicBezierSurfaceIntersector<Ray,Epilog>(pre.ray_space,ray,curve,epilog).solve_newton_raphson_main(); | 
| 359 |       } | 
| 360 |     }; | 
| 361 |  | 
| 362 |     template<template<typename Ty> class SourceCurve, int K> | 
| 363 |       struct OrientedCurve1IntersectorK | 
| 364 |     { | 
| 365 |       //template<typename Ty> using Curve = SourceCurve<Ty>; | 
| 366 |       typedef SourceCurve<Vec3ff> SourceCurve3ff; | 
| 367 |       typedef SourceCurve<Vec3fa> SourceCurve3fa; | 
| 368 |        | 
| 369 |       struct Ray1 | 
| 370 |       { | 
| 371 |         __forceinline Ray1(RayK<K>& ray, size_t k) | 
| 372 |           : org(ray.org.x[k],ray.org.y[k],ray.org.z[k]), dir(ray.dir.x[k],ray.dir.y[k],ray.dir.z[k]), _tnear(ray.tnear()[k]), tfar(ray.tfar[k]) {} | 
| 373 |  | 
| 374 |         Vec3fa org; | 
| 375 |         Vec3fa dir; | 
| 376 |         float _tnear; | 
| 377 |         float& tfar; | 
| 378 |  | 
| 379 |         __forceinline float& tnear() { return _tnear; } | 
| 380 |         //__forceinline float& tfar()  { return _tfar; } | 
| 381 |         __forceinline const float& tnear() const { return _tnear; } | 
| 382 |         //__forceinline const float& tfar()  const { return _tfar; } | 
| 383 |       }; | 
| 384 |  | 
| 385 |       template<typename Epilog> | 
| 386 |       __forceinline bool intersect(const CurvePrecalculationsK<K>& pre, RayK<K>& vray, size_t k, | 
| 387 |                                    IntersectContext* context, | 
| 388 |                                    const CurveGeometry* geom, const unsigned int primID, | 
| 389 |                                    const Vec3ff& v0i, const Vec3ff& v1i, const Vec3ff& v2i, const Vec3ff& v3i, | 
| 390 |                                    const Vec3fa& n0i, const Vec3fa& n1i, const Vec3fa& n2i, const Vec3fa& n3i, | 
| 391 |                                    const Epilog& epilog) | 
| 392 |       { | 
| 393 |         STAT3(normal.trav_prims,1,1,1); | 
| 394 |         Ray1 ray(vray,k); | 
| 395 |         SourceCurve3ff ccurve(v0i,v1i,v2i,v3i); | 
| 396 |         SourceCurve3fa ncurve(n0i,n1i,n2i,n3i); | 
| 397 |         ccurve = enlargeRadiusToMinWidth(context,geom,ray.org,ccurve); | 
| 398 |         TensorLinearCubicBezierSurface3fa curve = TensorLinearCubicBezierSurface3fa::fromCenterAndNormalCurve(ccurve,ncurve); | 
| 399 |         //return TensorLinearCubicBezierSurfaceIntersector<Ray1,Epilog>(pre.ray_space[k],ray,curve,epilog).solve_bezier_clipping(); | 
| 400 |         return TensorLinearCubicBezierSurfaceIntersector<Ray1,Epilog>(pre.ray_space[k],ray,curve,epilog).solve_newton_raphson_main(); | 
| 401 |       } | 
| 402 |  | 
| 403 |       template<typename Epilog> | 
| 404 |       __forceinline bool intersect(const CurvePrecalculationsK<K>& pre, RayK<K>& vray, size_t k, | 
| 405 |                                    IntersectContext* context, | 
| 406 |                                    const CurveGeometry* geom, const unsigned int primID, | 
| 407 |                                    const TensorLinearCubicBezierSurface3fa& curve, | 
| 408 |                                    const Epilog& epilog) | 
| 409 |       { | 
| 410 |         STAT3(normal.trav_prims,1,1,1); | 
| 411 |         Ray1 ray(vray,k); | 
| 412 |         //return TensorLinearCubicBezierSurfaceIntersector<Ray1,Epilog>(pre.ray_space[k],ray,curve,epilog).solve_bezier_clipping(); | 
| 413 |         return TensorLinearCubicBezierSurfaceIntersector<Ray1,Epilog>(pre.ray_space[k],ray,curve,epilog).solve_newton_raphson_main(); | 
| 414 |       } | 
| 415 |     }; | 
| 416 |   } | 
| 417 | } | 
| 418 |  |