1 | // Copyright 2009-2021 Intel Corporation |
2 | // SPDX-License-Identifier: Apache-2.0 |
3 | |
4 | #pragma once |
5 | |
6 | #include "../common/ray.h" |
7 | #include "quad_intersector.h" |
8 | #include "curve_intersector_precalculations.h" |
9 | |
10 | #define Bezier1Intersector1 RibbonCurve1Intersector1 |
11 | #define Bezier1IntersectorK RibbonCurve1IntersectorK |
12 | |
13 | namespace embree |
14 | { |
15 | namespace isa |
16 | { |
17 | template<typename NativeCurve3ff, int M> |
18 | struct RibbonHit |
19 | { |
20 | __forceinline RibbonHit() {} |
21 | |
22 | __forceinline RibbonHit(const vbool<M>& valid, const vfloat<M>& U, const vfloat<M>& V, const vfloat<M>& T, const int i, const int N, |
23 | const NativeCurve3ff& curve3D) |
24 | : U(U), V(V), T(T), i(i), N(N), curve3D(curve3D), valid(valid) {} |
25 | |
26 | __forceinline void finalize() |
27 | { |
28 | vu = (vfloat<M>(step)+U+vfloat<M>(float(i)))*(1.0f/float(N)); |
29 | vv = V; |
30 | vt = T; |
31 | } |
32 | |
33 | __forceinline Vec2f uv (const size_t i) const { return Vec2f(vu[i],vv[i]); } |
34 | __forceinline float t (const size_t i) const { return vt[i]; } |
35 | __forceinline Vec3fa Ng(const size_t i) const { return curve3D.eval_du(vu[i]); } |
36 | |
37 | __forceinline Vec2vf<M> uv() const { return Vec2vf<M>(vu,vv); } |
38 | __forceinline vfloat<M> t () const { return vt; } |
39 | __forceinline Vec3vf<M> Ng() const { return (Vec3vf<M>) curve3D.template veval_du<M>(vu); } |
40 | |
41 | public: |
42 | vfloat<M> U; |
43 | vfloat<M> V; |
44 | vfloat<M> T; |
45 | int i, N; |
46 | NativeCurve3ff curve3D; |
47 | |
48 | public: |
49 | vbool<M> valid; |
50 | vfloat<M> vu; |
51 | vfloat<M> vv; |
52 | vfloat<M> vt; |
53 | }; |
54 | |
55 | /* calculate squared distance of point p0 to line p1->p2 */ |
56 | __forceinline std::pair<vfloatx,vfloatx> sqr_point_line_distance(const Vec2vfx& p0, const Vec2vfx& p1, const Vec2vfx& p2) |
57 | { |
58 | const vfloatx num = det(a: p2-p1,b: p1-p0); |
59 | const vfloatx den2 = dot(a: p2-p1,b: p2-p1); |
60 | return std::make_pair(x: num*num,y: den2); |
61 | } |
62 | |
63 | /* performs culling against a cylinder */ |
64 | __forceinline vboolx cylinder_culling_test(const Vec2vfx& p0, const Vec2vfx& p1, const Vec2vfx& p2, const vfloatx& r) |
65 | { |
66 | const std::pair<vfloatx,vfloatx> d = sqr_point_line_distance(p0,p1,p2); |
67 | return d.first <= r*r*d.second; |
68 | } |
69 | |
70 | template<typename NativeCurve3ff, typename Epilog> |
71 | __forceinline bool intersect_ribbon(const Vec3fa& ray_org, const Vec3fa& ray_dir, const float ray_tnear, const float& ray_tfar, |
72 | const LinearSpace3fa& ray_space, const float& depth_scale, |
73 | const NativeCurve3ff& curve3D, const int N, |
74 | const Epilog& epilog) |
75 | { |
76 | /* transform control points into ray space */ |
77 | const NativeCurve3ff curve2D = curve3D.xfm_pr(ray_space,ray_org); |
78 | float eps = 4.0f*float(ulp)*reduce_max(max(abs(curve2D.v0),abs(curve2D.v1),abs(curve2D.v2),abs(curve2D.v3))); |
79 | |
80 | /* evaluate the bezier curve */ |
81 | bool ishit = false; |
82 | vboolx valid = vfloatx(step) < vfloatx(float(N)); |
83 | const Vec4vfx p0 = curve2D.template eval0<VSIZEX>(0,N); |
84 | const Vec4vfx p1 = curve2D.template eval1<VSIZEX>(0,N); |
85 | valid &= cylinder_culling_test(p0: zero,p1: Vec2vfx(p0.x,p0.y),p2: Vec2vfx(p1.x,p1.y),r: max(a: p0.w,b: p1.w)); |
86 | |
87 | if (any(b: valid)) |
88 | { |
89 | Vec3vfx dp0dt = curve2D.template derivative0<VSIZEX>(0,N); |
90 | Vec3vfx dp1dt = curve2D.template derivative1<VSIZEX>(0,N); |
91 | dp0dt = select(s: reduce_max(a: abs(a: dp0dt)) < vfloatx(eps),t: Vec3vfx(p1-p0),f: dp0dt); |
92 | dp1dt = select(s: reduce_max(a: abs(a: dp1dt)) < vfloatx(eps),t: Vec3vfx(p1-p0),f: dp1dt); |
93 | const Vec3vfx n0(dp0dt.y,-dp0dt.x,0.0f); |
94 | const Vec3vfx n1(dp1dt.y,-dp1dt.x,0.0f); |
95 | const Vec3vfx nn0 = normalize(a: n0); |
96 | const Vec3vfx nn1 = normalize(a: n1); |
97 | const Vec3vfx lp0 = madd(a: p0.w,b: nn0,c: Vec3vfx(p0)); |
98 | const Vec3vfx lp1 = madd(a: p1.w,b: nn1,c: Vec3vfx(p1)); |
99 | const Vec3vfx up0 = nmadd(a: p0.w,b: nn0,c: Vec3vfx(p0)); |
100 | const Vec3vfx up1 = nmadd(a: p1.w,b: nn1,c: Vec3vfx(p1)); |
101 | |
102 | vfloatx vu,vv,vt; |
103 | vboolx valid0 = intersect_quad_backface_culling<VSIZEX>(valid0: valid,ray_org: zero,ray_dir: Vec3fa(0,0,1),ray_tnear,ray_tfar,quad_v0: lp0,quad_v1: lp1,quad_v2: up1,quad_v3: up0,u_o&: vu,v_o&: vv,t_o&: vt); |
104 | |
105 | if (any(b: valid0)) |
106 | { |
107 | /* ignore self intersections */ |
108 | if (EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR != 0.0f) { |
109 | vfloatx r = lerp(a: p0.w, b: p1.w, t: vu); |
110 | valid0 &= vt > float(EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR)*r*depth_scale; |
111 | } |
112 | |
113 | if (any(b: valid0)) |
114 | { |
115 | vv = madd(a: 2.0f,b: vv,c: vfloatx(-1.0f)); |
116 | RibbonHit<NativeCurve3ff,VSIZEX> bhit(valid0,vu,vv,vt,0,N,curve3D); |
117 | ishit |= epilog(bhit.valid,bhit); |
118 | } |
119 | } |
120 | } |
121 | |
122 | if (unlikely(VSIZEX < N)) |
123 | { |
124 | /* process SIMD-size many segments per iteration */ |
125 | for (int i=VSIZEX; i<N; i+=VSIZEX) |
126 | { |
127 | /* evaluate the bezier curve */ |
128 | vboolx valid = vintx(i)+vintx(step) < vintx(N); |
129 | const Vec4vfx p0 = curve2D.template eval0<VSIZEX>(i,N); |
130 | const Vec4vfx p1 = curve2D.template eval1<VSIZEX>(i,N); |
131 | valid &= cylinder_culling_test(p0: zero,p1: Vec2vfx(p0.x,p0.y),p2: Vec2vfx(p1.x,p1.y),r: max(a: p0.w,b: p1.w)); |
132 | if (none(b: valid)) continue; |
133 | |
134 | Vec3vfx dp0dt = curve2D.template derivative0<VSIZEX>(i,N); |
135 | Vec3vfx dp1dt = curve2D.template derivative1<VSIZEX>(i,N); |
136 | dp0dt = select(s: reduce_max(a: abs(a: dp0dt)) < vfloatx(eps),t: Vec3vfx(p1-p0),f: dp0dt); |
137 | dp1dt = select(s: reduce_max(a: abs(a: dp1dt)) < vfloatx(eps),t: Vec3vfx(p1-p0),f: dp1dt); |
138 | const Vec3vfx n0(dp0dt.y,-dp0dt.x,0.0f); |
139 | const Vec3vfx n1(dp1dt.y,-dp1dt.x,0.0f); |
140 | const Vec3vfx nn0 = normalize(a: n0); |
141 | const Vec3vfx nn1 = normalize(a: n1); |
142 | const Vec3vfx lp0 = madd(a: p0.w,b: nn0,c: Vec3vfx(p0)); |
143 | const Vec3vfx lp1 = madd(a: p1.w,b: nn1,c: Vec3vfx(p1)); |
144 | const Vec3vfx up0 = nmadd(a: p0.w,b: nn0,c: Vec3vfx(p0)); |
145 | const Vec3vfx up1 = nmadd(a: p1.w,b: nn1,c: Vec3vfx(p1)); |
146 | |
147 | vfloatx vu,vv,vt; |
148 | vboolx valid0 = intersect_quad_backface_culling<VSIZEX>(valid0: valid,ray_org: zero,ray_dir: Vec3fa(0,0,1),ray_tnear,ray_tfar,quad_v0: lp0,quad_v1: lp1,quad_v2: up1,quad_v3: up0,u_o&: vu,v_o&: vv,t_o&: vt); |
149 | |
150 | if (any(b: valid0)) |
151 | { |
152 | /* ignore self intersections */ |
153 | if (EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR != 0.0f) { |
154 | vfloatx r = lerp(a: p0.w, b: p1.w, t: vu); |
155 | valid0 &= vt > float(EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR)*r*depth_scale; |
156 | } |
157 | |
158 | if (any(b: valid0)) |
159 | { |
160 | vv = madd(a: 2.0f,b: vv,c: vfloatx(-1.0f)); |
161 | RibbonHit<NativeCurve3ff,VSIZEX> bhit(valid0,vu,vv,vt,i,N,curve3D); |
162 | ishit |= epilog(bhit.valid,bhit); |
163 | } |
164 | } |
165 | } |
166 | } |
167 | return ishit; |
168 | } |
169 | |
170 | template<template<typename Ty> class NativeCurve> |
171 | struct RibbonCurve1Intersector1 |
172 | { |
173 | typedef NativeCurve<Vec3ff> NativeCurve3ff; |
174 | |
175 | template<typename Epilog> |
176 | __forceinline bool intersect(const CurvePrecalculations1& pre, Ray& ray, |
177 | IntersectContext* context, |
178 | const CurveGeometry* geom, const unsigned int primID, |
179 | const Vec3ff& v0, const Vec3ff& v1, const Vec3ff& v2, const Vec3ff& v3, |
180 | const Epilog& epilog) |
181 | { |
182 | const int N = geom->tessellationRate; |
183 | NativeCurve3ff curve(v0,v1,v2,v3); |
184 | curve = enlargeRadiusToMinWidth(context,geom,ray.org,curve); |
185 | return intersect_ribbon<NativeCurve3ff>(ray.org,ray.dir,ray.tnear(),ray.tfar, |
186 | pre.ray_space,pre.depth_scale, |
187 | curve,N, |
188 | epilog); |
189 | } |
190 | }; |
191 | |
192 | template<template<typename Ty> class NativeCurve, int K> |
193 | struct RibbonCurve1IntersectorK |
194 | { |
195 | typedef NativeCurve<Vec3ff> NativeCurve3ff; |
196 | |
197 | template<typename Epilog> |
198 | __forceinline bool intersect(const CurvePrecalculationsK<K>& pre, RayK<K>& ray, size_t k, |
199 | IntersectContext* context, |
200 | const CurveGeometry* geom, const unsigned int primID, |
201 | const Vec3ff& v0, const Vec3ff& v1, const Vec3ff& v2, const Vec3ff& v3, |
202 | const Epilog& epilog) |
203 | { |
204 | const int N = geom->tessellationRate; |
205 | const Vec3fa ray_org(ray.org.x[k],ray.org.y[k],ray.org.z[k]); |
206 | const Vec3fa ray_dir(ray.dir.x[k],ray.dir.y[k],ray.dir.z[k]); |
207 | NativeCurve3ff curve(v0,v1,v2,v3); |
208 | curve = enlargeRadiusToMinWidth(context,geom,ray_org,curve); |
209 | return intersect_ribbon<NativeCurve3ff>(ray_org,ray_dir,ray.tnear()[k],ray.tfar[k], |
210 | pre.ray_space[k],pre.depth_scale[k], |
211 | curve,N, |
212 | epilog); |
213 | } |
214 | }; |
215 | } |
216 | } |
217 | |