| 1 | // | 
| 2 | // Redistribution and use in source and binary forms, with or without | 
| 3 | // modification, are permitted provided that the following conditions | 
| 4 | // are met: | 
| 5 | //  * Redistributions of source code must retain the above copyright | 
| 6 | //    notice, this list of conditions and the following disclaimer. | 
| 7 | //  * Redistributions in binary form must reproduce the above copyright | 
| 8 | //    notice, this list of conditions and the following disclaimer in the | 
| 9 | //    documentation and/or other materials provided with the distribution. | 
| 10 | //  * Neither the name of NVIDIA CORPORATION nor the names of its | 
| 11 | //    contributors may be used to endorse or promote products derived | 
| 12 | //    from this software without specific prior written permission. | 
| 13 | // | 
| 14 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY | 
| 15 | // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
| 16 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
| 17 | // PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR | 
| 18 | // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | 
| 19 | // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | 
| 20 | // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | 
| 21 | // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY | 
| 22 | // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
| 23 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
| 24 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
| 25 | // | 
| 26 | // Copyright (c) 2008-2021 NVIDIA Corporation. All rights reserved. | 
| 27 | // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. | 
| 28 | // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. | 
| 29 |  | 
| 30 | #ifndef PXFOUNDATION_PXMAT44_H | 
| 31 | #define PXFOUNDATION_PXMAT44_H | 
| 32 | /** \addtogroup foundation | 
| 33 | @{ | 
| 34 | */ | 
| 35 |  | 
| 36 | #include "foundation/PxQuat.h" | 
| 37 | #include "foundation/PxVec4.h" | 
| 38 | #include "foundation/PxMat33.h" | 
| 39 | #include "foundation/PxTransform.h" | 
| 40 |  | 
| 41 | #if !PX_DOXYGEN | 
| 42 | namespace physx | 
| 43 | { | 
| 44 | #endif | 
| 45 |  | 
| 46 | /*! | 
| 47 | \brief 4x4 matrix class | 
| 48 |  | 
| 49 | This class is layout-compatible with D3D and OpenGL matrices. More notes on layout are given in the PxMat33 | 
| 50 |  | 
| 51 | @see PxMat33 PxTransform | 
| 52 | */ | 
| 53 |  | 
| 54 | class PxMat44 | 
| 55 | { | 
| 56 |   public: | 
| 57 | 	//! Default constructor | 
| 58 | 	PX_CUDA_CALLABLE PX_INLINE PxMat44() | 
| 59 | 	{ | 
| 60 | 	} | 
| 61 |  | 
| 62 | 	//! identity constructor | 
| 63 | 	PX_CUDA_CALLABLE PX_INLINE PxMat44(PxIDENTITY r) | 
| 64 | 	: column0(1.0f, 0.0f, 0.0f, 0.0f) | 
| 65 | 	, column1(0.0f, 1.0f, 0.0f, 0.0f) | 
| 66 | 	, column2(0.0f, 0.0f, 1.0f, 0.0f) | 
| 67 | 	, column3(0.0f, 0.0f, 0.0f, 1.0f) | 
| 68 | 	{ | 
| 69 | 		PX_UNUSED(r); | 
| 70 | 	} | 
| 71 |  | 
| 72 | 	//! zero constructor | 
| 73 | 	PX_CUDA_CALLABLE PX_INLINE PxMat44(PxZERO r) : column0(PxZero), column1(PxZero), column2(PxZero), column3(PxZero) | 
| 74 | 	{ | 
| 75 | 		PX_UNUSED(r); | 
| 76 | 	} | 
| 77 |  | 
| 78 | 	//! Construct from four 4-vectors | 
| 79 | 	PX_CUDA_CALLABLE PxMat44(const PxVec4& col0, const PxVec4& col1, const PxVec4& col2, const PxVec4& col3) | 
| 80 | 	: column0(col0), column1(col1), column2(col2), column3(col3) | 
| 81 | 	{ | 
| 82 | 	} | 
| 83 |  | 
| 84 | 	//! constructor that generates a multiple of the identity matrix | 
| 85 | 	explicit PX_CUDA_CALLABLE PX_INLINE PxMat44(float r) | 
| 86 | 	: column0(r, 0.0f, 0.0f, 0.0f) | 
| 87 | 	, column1(0.0f, r, 0.0f, 0.0f) | 
| 88 | 	, column2(0.0f, 0.0f, r, 0.0f) | 
| 89 | 	, column3(0.0f, 0.0f, 0.0f, r) | 
| 90 | 	{ | 
| 91 | 	} | 
| 92 |  | 
| 93 | 	//! Construct from three base vectors and a translation | 
| 94 | 	PX_CUDA_CALLABLE PxMat44(const PxVec3& col0, const PxVec3& col1, const PxVec3& col2, const PxVec3& col3) | 
| 95 | 	: column0(col0, 0), column1(col1, 0), column2(col2, 0), column3(col3, 1.0f) | 
| 96 | 	{ | 
| 97 | 	} | 
| 98 |  | 
| 99 | 	//! Construct from float[16] | 
| 100 | 	explicit PX_CUDA_CALLABLE PX_INLINE PxMat44(float values[]) | 
| 101 | 	: column0(values[0], values[1], values[2], values[3]) | 
| 102 | 	, column1(values[4], values[5], values[6], values[7]) | 
| 103 | 	, column2(values[8], values[9], values[10], values[11]) | 
| 104 | 	, column3(values[12], values[13], values[14], values[15]) | 
| 105 | 	{ | 
| 106 | 	} | 
| 107 |  | 
| 108 | 	//! Construct from a quaternion | 
| 109 | 	explicit PX_CUDA_CALLABLE PX_INLINE PxMat44(const PxQuat& q) | 
| 110 | 	{ | 
| 111 | 		const float x = q.x; | 
| 112 | 		const float y = q.y; | 
| 113 | 		const float z = q.z; | 
| 114 | 		const float w = q.w; | 
| 115 |  | 
| 116 | 		const float x2 = x + x; | 
| 117 | 		const float y2 = y + y; | 
| 118 | 		const float z2 = z + z; | 
| 119 |  | 
| 120 | 		const float xx = x2 * x; | 
| 121 | 		const float yy = y2 * y; | 
| 122 | 		const float zz = z2 * z; | 
| 123 |  | 
| 124 | 		const float xy = x2 * y; | 
| 125 | 		const float xz = x2 * z; | 
| 126 | 		const float xw = x2 * w; | 
| 127 |  | 
| 128 | 		const float yz = y2 * z; | 
| 129 | 		const float yw = y2 * w; | 
| 130 | 		const float zw = z2 * w; | 
| 131 |  | 
| 132 | 		column0 = PxVec4(1.0f - yy - zz, xy + zw, xz - yw, 0.0f); | 
| 133 | 		column1 = PxVec4(xy - zw, 1.0f - xx - zz, yz + xw, 0.0f); | 
| 134 | 		column2 = PxVec4(xz + yw, yz - xw, 1.0f - xx - yy, 0.0f); | 
| 135 | 		column3 = PxVec4(0.0f, 0.0f, 0.0f, 1.0f); | 
| 136 | 	} | 
| 137 |  | 
| 138 | 	//! Construct from a diagonal vector | 
| 139 | 	explicit PX_CUDA_CALLABLE PX_INLINE PxMat44(const PxVec4& diagonal) | 
| 140 | 	: column0(diagonal.x, 0.0f, 0.0f, 0.0f) | 
| 141 | 	, column1(0.0f, diagonal.y, 0.0f, 0.0f) | 
| 142 | 	, column2(0.0f, 0.0f, diagonal.z, 0.0f) | 
| 143 | 	, column3(0.0f, 0.0f, 0.0f, diagonal.w) | 
| 144 | 	{ | 
| 145 | 	} | 
| 146 |  | 
| 147 | 	//! Construct from Mat33 and a translation | 
| 148 | 	PX_CUDA_CALLABLE PxMat44(const PxMat33& axes, const PxVec3& position) | 
| 149 | 	: column0(axes.column0, 0.0f), column1(axes.column1, 0.0f), column2(axes.column2, 0.0f), column3(position, 1.0f) | 
| 150 | 	{ | 
| 151 | 	} | 
| 152 |  | 
| 153 | 	PX_CUDA_CALLABLE PxMat44(const PxTransform& t) | 
| 154 | 	{ | 
| 155 | 		*this = PxMat44(PxMat33(t.q), t.p); | 
| 156 | 	} | 
| 157 |  | 
| 158 | 	/** | 
| 159 | 	\brief returns true if the two matrices are exactly equal | 
| 160 | 	*/ | 
| 161 | 	PX_CUDA_CALLABLE PX_INLINE bool operator==(const PxMat44& m) const | 
| 162 | 	{ | 
| 163 | 		return column0 == m.column0 && column1 == m.column1 && column2 == m.column2 && column3 == m.column3; | 
| 164 | 	} | 
| 165 |  | 
| 166 | 	//! Copy constructor | 
| 167 | 	PX_CUDA_CALLABLE PX_INLINE PxMat44(const PxMat44& other) | 
| 168 | 	: column0(other.column0), column1(other.column1), column2(other.column2), column3(other.column3) | 
| 169 | 	{ | 
| 170 | 	} | 
| 171 |  | 
| 172 | 	//! Assignment operator | 
| 173 | 	PX_CUDA_CALLABLE PX_INLINE PxMat44& operator=(const PxMat44& other) | 
| 174 | 	{ | 
| 175 | 		column0 = other.column0; | 
| 176 | 		column1 = other.column1; | 
| 177 | 		column2 = other.column2; | 
| 178 | 		column3 = other.column3; | 
| 179 | 		return *this; | 
| 180 | 	} | 
| 181 |  | 
| 182 | 	//! Get transposed matrix | 
| 183 | 	PX_CUDA_CALLABLE PX_INLINE const PxMat44 getTranspose() const | 
| 184 | 	{ | 
| 185 | 		return PxMat44( | 
| 186 | 		    PxVec4(column0.x, column1.x, column2.x, column3.x), PxVec4(column0.y, column1.y, column2.y, column3.y), | 
| 187 | 		    PxVec4(column0.z, column1.z, column2.z, column3.z), PxVec4(column0.w, column1.w, column2.w, column3.w)); | 
| 188 | 	} | 
| 189 |  | 
| 190 | 	//! Unary minus | 
| 191 | 	PX_CUDA_CALLABLE PX_INLINE const PxMat44 operator-() const | 
| 192 | 	{ | 
| 193 | 		return PxMat44(-column0, -column1, -column2, -column3); | 
| 194 | 	} | 
| 195 |  | 
| 196 | 	//! Add | 
| 197 | 	PX_CUDA_CALLABLE PX_INLINE const PxMat44 operator+(const PxMat44& other) const | 
| 198 | 	{ | 
| 199 | 		return PxMat44(column0 + other.column0, column1 + other.column1, column2 + other.column2, | 
| 200 | 		               column3 + other.column3); | 
| 201 | 	} | 
| 202 |  | 
| 203 | 	//! Subtract | 
| 204 | 	PX_CUDA_CALLABLE PX_INLINE const PxMat44 operator-(const PxMat44& other) const | 
| 205 | 	{ | 
| 206 | 		return PxMat44(column0 - other.column0, column1 - other.column1, column2 - other.column2, | 
| 207 | 		               column3 - other.column3); | 
| 208 | 	} | 
| 209 |  | 
| 210 | 	//! Scalar multiplication | 
| 211 | 	PX_CUDA_CALLABLE PX_INLINE const PxMat44 operator*(float scalar) const | 
| 212 | 	{ | 
| 213 | 		return PxMat44(column0 * scalar, column1 * scalar, column2 * scalar, column3 * scalar); | 
| 214 | 	} | 
| 215 |  | 
| 216 | 	friend PxMat44 operator*(float, const PxMat44&); | 
| 217 |  | 
| 218 | 	//! Matrix multiplication | 
| 219 | 	PX_CUDA_CALLABLE PX_INLINE const PxMat44 operator*(const PxMat44& other) const | 
| 220 | 	{ | 
| 221 | 		// Rows from this <dot> columns from other | 
| 222 | 		// column0 = transform(other.column0) etc | 
| 223 | 		return PxMat44(transform(other: other.column0), transform(other: other.column1), transform(other: other.column2), | 
| 224 | 		               transform(other: other.column3)); | 
| 225 | 	} | 
| 226 |  | 
| 227 | 	// a <op>= b operators | 
| 228 |  | 
| 229 | 	//! Equals-add | 
| 230 | 	PX_CUDA_CALLABLE PX_INLINE PxMat44& operator+=(const PxMat44& other) | 
| 231 | 	{ | 
| 232 | 		column0 += other.column0; | 
| 233 | 		column1 += other.column1; | 
| 234 | 		column2 += other.column2; | 
| 235 | 		column3 += other.column3; | 
| 236 | 		return *this; | 
| 237 | 	} | 
| 238 |  | 
| 239 | 	//! Equals-sub | 
| 240 | 	PX_CUDA_CALLABLE PX_INLINE PxMat44& operator-=(const PxMat44& other) | 
| 241 | 	{ | 
| 242 | 		column0 -= other.column0; | 
| 243 | 		column1 -= other.column1; | 
| 244 | 		column2 -= other.column2; | 
| 245 | 		column3 -= other.column3; | 
| 246 | 		return *this; | 
| 247 | 	} | 
| 248 |  | 
| 249 | 	//! Equals scalar multiplication | 
| 250 | 	PX_CUDA_CALLABLE PX_INLINE PxMat44& operator*=(float scalar) | 
| 251 | 	{ | 
| 252 | 		column0 *= scalar; | 
| 253 | 		column1 *= scalar; | 
| 254 | 		column2 *= scalar; | 
| 255 | 		column3 *= scalar; | 
| 256 | 		return *this; | 
| 257 | 	} | 
| 258 |  | 
| 259 | 	//! Equals matrix multiplication | 
| 260 | 	PX_CUDA_CALLABLE PX_INLINE PxMat44& operator*=(const PxMat44& other) | 
| 261 | 	{ | 
| 262 | 		*this = *this * other; | 
| 263 | 		return *this; | 
| 264 | 	} | 
| 265 |  | 
| 266 | 	//! Element access, mathematical way! | 
| 267 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE float operator()(unsigned int row, unsigned int col) const | 
| 268 | 	{ | 
| 269 | 		return (*this)[col][row]; | 
| 270 | 	} | 
| 271 |  | 
| 272 | 	//! Element access, mathematical way! | 
| 273 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE float& operator()(unsigned int row, unsigned int col) | 
| 274 | 	{ | 
| 275 | 		return (*this)[col][row]; | 
| 276 | 	} | 
| 277 |  | 
| 278 | 	//! Transform vector by matrix, equal to v' = M*v | 
| 279 | 	PX_CUDA_CALLABLE PX_INLINE const PxVec4 transform(const PxVec4& other) const | 
| 280 | 	{ | 
| 281 | 		return column0 * other.x + column1 * other.y + column2 * other.z + column3 * other.w; | 
| 282 | 	} | 
| 283 |  | 
| 284 | 	//! Transform vector by matrix, equal to v' = M*v | 
| 285 | 	PX_CUDA_CALLABLE PX_INLINE const PxVec3 transform(const PxVec3& other) const | 
| 286 | 	{ | 
| 287 | 		return transform(other: PxVec4(other, 1.0f)).getXYZ(); | 
| 288 | 	} | 
| 289 |  | 
| 290 | 	//! Rotate vector by matrix, equal to v' = M*v | 
| 291 | 	PX_CUDA_CALLABLE PX_INLINE const PxVec4 rotate(const PxVec4& other) const | 
| 292 | 	{ | 
| 293 | 		return column0 * other.x + column1 * other.y + column2 * other.z; // + column3*0; | 
| 294 | 	} | 
| 295 |  | 
| 296 | 	//! Rotate vector by matrix, equal to v' = M*v | 
| 297 | 	PX_CUDA_CALLABLE PX_INLINE const PxVec3 rotate(const PxVec3& other) const | 
| 298 | 	{ | 
| 299 | 		return rotate(other: PxVec4(other, 1.0f)).getXYZ(); | 
| 300 | 	} | 
| 301 |  | 
| 302 | 	PX_CUDA_CALLABLE PX_INLINE const PxVec3 getBasis(int num) const | 
| 303 | 	{ | 
| 304 | 		PX_SHARED_ASSERT(num >= 0 && num < 3); | 
| 305 | 		return (&column0)[num].getXYZ(); | 
| 306 | 	} | 
| 307 |  | 
| 308 | 	PX_CUDA_CALLABLE PX_INLINE const PxVec3 getPosition() const | 
| 309 | 	{ | 
| 310 | 		return column3.getXYZ(); | 
| 311 | 	} | 
| 312 |  | 
| 313 | 	PX_CUDA_CALLABLE PX_INLINE void setPosition(const PxVec3& position) | 
| 314 | 	{ | 
| 315 | 		column3.x = position.x; | 
| 316 | 		column3.y = position.y; | 
| 317 | 		column3.z = position.z; | 
| 318 | 	} | 
| 319 |  | 
| 320 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE const float* front() const | 
| 321 | 	{ | 
| 322 | 		return &column0.x; | 
| 323 | 	} | 
| 324 |  | 
| 325 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec4& operator[](unsigned int num) | 
| 326 | 	{ | 
| 327 | 		return (&column0)[num]; | 
| 328 | 	} | 
| 329 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE const PxVec4& operator[](unsigned int num) const | 
| 330 | 	{ | 
| 331 | 		return (&column0)[num]; | 
| 332 | 	} | 
| 333 |  | 
| 334 | 	PX_CUDA_CALLABLE PX_INLINE void scale(const PxVec4& p) | 
| 335 | 	{ | 
| 336 | 		column0 *= p.x; | 
| 337 | 		column1 *= p.y; | 
| 338 | 		column2 *= p.z; | 
| 339 | 		column3 *= p.w; | 
| 340 | 	} | 
| 341 |  | 
| 342 | 	PX_CUDA_CALLABLE PX_INLINE const PxMat44 inverseRT(void) const | 
| 343 | 	{ | 
| 344 | 		PxVec3 r0(column0.x, column1.x, column2.x), r1(column0.y, column1.y, column2.y), | 
| 345 | 		    r2(column0.z, column1.z, column2.z); | 
| 346 |  | 
| 347 | 		return PxMat44(r0, r1, r2, -(r0 * column3.x + r1 * column3.y + r2 * column3.z)); | 
| 348 | 	} | 
| 349 |  | 
| 350 | 	PX_CUDA_CALLABLE PX_INLINE bool isFinite() const | 
| 351 | 	{ | 
| 352 | 		return column0.isFinite() && column1.isFinite() && column2.isFinite() && column3.isFinite(); | 
| 353 | 	} | 
| 354 |  | 
| 355 | 	// Data, see above for format! | 
| 356 |  | 
| 357 | 	PxVec4 column0, column1, column2, column3; // the four base vectors | 
| 358 | }; | 
| 359 |  | 
| 360 | // implementation from PxTransform.h | 
| 361 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxTransform::PxTransform(const PxMat44& m) | 
| 362 | { | 
| 363 | 	PxVec3 column0 = PxVec3(m.column0.x, m.column0.y, m.column0.z); | 
| 364 | 	PxVec3 column1 = PxVec3(m.column1.x, m.column1.y, m.column1.z); | 
| 365 | 	PxVec3 column2 = PxVec3(m.column2.x, m.column2.y, m.column2.z); | 
| 366 |  | 
| 367 | 	q = PxQuat(PxMat33(column0, column1, column2)); | 
| 368 | 	p = PxVec3(m.column3.x, m.column3.y, m.column3.z); | 
| 369 | } | 
| 370 |  | 
| 371 | #if !PX_DOXYGEN | 
| 372 | } // namespace physx | 
| 373 | #endif | 
| 374 |  | 
| 375 | /** @} */ | 
| 376 | #endif // #ifndef PXFOUNDATION_PXMAT44_H | 
| 377 |  |